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Preface

This text is designed with two audiences in mind. One group consists of programmers

who have already acquired a basic level of proficiency in programming,
preferably in BASIC. Such skills may have been acquired by reading an

introductory text in BASIC programming complemented by some hands-on experience
on a personal computer. The programming skills acquired at this level may

be disorganized and the programmer may realize that in order to solve more involved
and complex problems it is necessary to learn about more high-level programming

techniques. The subject of data structures coupled with enhanced

programming skills is the next step in the pursuit of these high level skills.
A second group consists of those who are studying computer science in an

academic environment. With the proliferation of personal computers, computer
science education is becoming more popular, even in schools which previously
had only one or two introductory courses in programming. Although this description

will typically fit two-year schools or high schools, a number of four-year

colleges with small budgets for computing also fit into this category. BASIC is
frequently the language used at such institutions.

The purpose of this book is to introduce the reader to the elementary concepts
of data structures in conjunction with reinforcement of high-level programming
skills.

For several years, we have taught a course in data structures to students who

have had a semester course in high-level programming and a semester course in

assembly language programming. We found that a considerable amount of time

was spent in teaching programming techniques because the students had not had

sufficient exposure to programming and were unable to implement abstract strucX
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Preface xiii

tures on their own. The brighter students eventually caught on to what was being

done. The weaker students never did. Based on this experience, we have reached

the firm conclusion that a first course in data structures must go hand in hand
with a second course in programming. This text is a product of that conviction.

The text introduces abstract concepts, shows how these concepts are useful
in problem solving and then shows how the abstractions can be made concrete by
using a programming language. Equal emphasis is placed on both the abstract

and the concrete versions of a concept, so that the student learns about the concept

itself, its implementation, and its application.

The language used in this book is BASIC. Although there are several languages

which support good programming techniques and are better than BASIC

for implementing abstract data structures, we have selected BASIC for several

reasons. BASIC is the most widely-used high-level language today because of its

widespread accessibility on personal computers. Within nonacademic circles,

there is a growing interest in computer science. Many people who have an interest

in data structures, but without programming skills in another high level language,

have few sources to which to turn. Furthermore, although BASIC has

become far from universally accepted (and will probably never be) within academic

circles, its use in recognized computer science programs is spreading (particularly,
as we mentioned earlier, at smaller institutions). Although BASIC has

been criticized as being very problem-prone, it can be used correctly. In Chapter

2 we introduce a consistent approach to BASIC and continue to emphasize that
approach throughout the remainder of the book. The only prerequisite for students

using this book is the equivalent of a one-semester course in programming

in BASIC. Readers who are not familiar with BASIC are referred to the Bibliography

for a selection of introductory texts in the language.

Chapter 1 is an introduction to data structures. Section 1.1 introduces the

concept of an abstract data structure and the concept of an implementation. Section

1.2 introduces arrays—their implementation as well as their application.

Section 1.3 introduces data aggregates and how they can be implemented in
BASIC.

Chapter 2 introduces and discusses structured programming techniques in
BASIC and their algorithmic counterparts. These techniques present a style of
programming that is used throughout the remainder of the text.

Chapter 3 discusses stacks and their BASIC implementation. Because this is
the first new data structure introduced, considerable discussion of the pitfalls of
implementing such a structure is included. Section 3.4 introduces postfix, prefix,
and infix notations.

Chapter 4 introduces queues and linked lists and their implementations using
an array of available nodes.

Chapter 5 discusses recursion and its applications. Because recursion is not
implemented on most versions of BASIC, methods of simulating recursion are
presented as well.
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Chapter 6 discusses trees and Chapter 7 introduces graphs.

Chapter 8 covers sorting and Chapter 9 covers searching.

At the end of the book, we have included a bibliography listing a selected

set of texts in the areas of BASIC programming and data structures, to which the

reader is referred for further reading. In a one-semester course, Chapter 7 and

parts of Chapters 1, 2, 6, 8, and 9 can be omitted.
The text is suitable for course Ii of Curriculum 68 (Communications of the

ACM, March 1968), courses UC1 and UC8 of the Undergraduate Programs in

Information Systems (Communications of the ACM, Dec. 1973) and course C52

and parts of courses C57 and C513 of Curriculum 78 (Communications of the

ACM, March 1979). In particular, the text covers parts or all of topics P1, P2,
P3, P4, P5, S2, Dl, D2, and D6 of Curriculum 78.

Algorithms (which we introduce in Chapter 2) are presented as intermediaries

between English language descriptions and BASIC programs. They are written

in a style consisting of high-level constructs interspersed with English. These

algorithms allow the reader to focus on the method used to solve a problem without

concern about declaration of variables and the peculiarities of a real language.

In transforming an algorithm into a program, we introduce these issues and point

out the pitfalls which accompany them.

The indentation pattern used for BASIC programs and algorithms is based

on a format introduced in Chapter 2 which we have found to be a useful tool in
improving program comprehensibility. We distinguish between algorithms and

programs by presenting the former in lower case italics and the latter in upper
case roman.

Most of the concepts in the text are illustrated by several examples. Some of

these examples are important topics in their own right (e.g., postfix notation,

multi-word arithmetic, etc.) and may be treated as such. Other examples illustrate

different implementation techniques (such as sequential storage of trees).

When using this text for a one-semester course, the instructor is free to cover as
many or as few of these examples as he or she wishes. Examples may also be
assigned to students as independent reading. It is anticipated that an instructor

will be unable to cover all the examples in sufficient detail within the confines of
a one- or two-semester course. We feel that, at the stage of student’s development

for which the text is designed, it is more important to cover several examples
in great detail than to cover a broad range of topics cursorily.
The exercises vary widely in type and difficulty. Some are drill exercises to

insure comprehension of topics in the text. Others involve modifications of programs

or algorithms presented in the text. Still others introduce new concepts and
are quite challenging. Often, a group of successive exercises includes the complete

development of a new topic which can be used as the basis for a term project
or an additional lecture. The instructor should use caution in assigning

exercises so that an assignment is suitable to the student’s level. We consider it
imperative for students to be assigned several (from five to twelve, depending on

difficulty) programming projects per semester. The exercises contain several pro-
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jects of this type. The instructor may find a great many additional exercises and

projects in the Exercise Manual of one of our earlier texts, Data Structures and
PLII Programming (Prentice-Hall, 1979). Although many of the exercises in that

manual are presented using PL/I, they can readily be recast in a BASIC setting.
The Exercise Manual for Data Structures and PLII Programming is available

from the publisher.
One of the most difficult choices which had to be made in writing this book

was the question of which BASIC dialect to use. In order to present programs
which would run on a wide variety of personal computers, it is desirable to
choose the “lowest common denominator” of all commonly available BASIC

dialects. On the other hand, by choosing a very small proper subset of BASIC,
our programs would not be able to take advantage of “standard” BASIC features

provided by the vast majority of personal computers. We decided to ensure that

the programs in this book would run under each of Radio Shack BASIC Level II,
Microsoft BASIC-80, and BASIC for the IBM PC. Of these three, Radio Shack

BASIC Level II is fairly close to being a proper subset of the other two, and yet

provides all the features which we deemed essential. One of the limitations of
Radio Shack BASIC Level II is that it distinguishes variables by only the first
two characters of their names and forbids the use of embedded reserved words.

The same restriction applies to Applesoft BASIC. We have taken great pains to
use meaningful variable names and yet to abide by these limitations. Naturally, in

those versions of BASIC which do not have these limitations, the programmer is
free to substitute somewhat less awkward variable names. We have deliberately

not taken advantage of those advanced features (e.g., the WHILE-WEND construct,
the MOD built-in function, etc.) of Microsoft BASIC-80 and BASIC for

the IBM PC that are not supported by the majority of BASICs currently available
for personal computers. However, we do introduce these constructs in Chapter 2
and do use them in presenting algorithms.

One feature which we felt we could not omit was the ELSE clause for the

IF-THEN construct. Without the availability of the IF-THEN-ELSE, programs

would become unwieldy and their pedagogical value would be greatly diminished.

Unfortunately, Applesoft BASIC does not support the ELSE clause. The

Applesoft programmer may simulate ELSE clauses by methods presented in
Chapter 2. We also use the DEF statement to declare variable types rather than

relying on the special type symbols. This is also invalid in Applesoft BASIC but
can easily be remedied by inserting the type symbols. All other features used

throughout this book are also valid in Applesoft BASIC. Each program (or subroutine)
in this book has been tested on a Radio Shack Model III using BASIC

Level II, on an Apple II Plus equipped with a Softcard using Microsoft BASIC80,

and on an IBM PC using cassette BASIC. We wish to thank Imran Khan,
Linda Laub, Diana Lombardi, Joel Plaut, and Chris Ungeheuer for their invaluable

assistance in this task. Their zeal for the task was above and beyond the call

of duty and their suggestions were always valuable. Of course, any errors that

remain are the sole responsibility of the authors.
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We have prepared two sets of diskettes containing the BASIC source code

of programs and subroutines in the text. One set of diskettes was prepared under
BASIC-80 using the Microsoft CP/M Softcard for the Apple II Plus and the second

set using IBM PC BASIC. These diskettes are available from the publisher
using the tear-off card bound into the book.

Linda Laub, Carl Markowitz, and Chris Ungeheuer spent many hours typing

and correcting the original manuscript. Their cooperation and patience as we
continually changed our minds about additions and deletions are most sincerely
appreciated. We wish to single them out for their extraordinary enthusiasm and

dedication in all phases of the book’s production, for which we are deeply grateful.

We would like to thank Maria Argiro, Mirrel Eissenberg, Beverly Heller,
Gun Kim, Amalia Kletsky, Sholom Krischer, Linda Laub, Diana Lombardi,

Chaim Markowitz, Joel Plaut, Barbara Reznik, Chris Ungeheur, and Shirley Yee
for their invaluable assistance.

The staff of the City University Computer Center deserves special mention.

They were extremely helpful in assisting us in using the excellent facilities of the
Center. The same can be said of Julio Berger and Lawrence Schweitzer and the

rest of the staff of the Brooklyn College Computer Center.

We would like to thank the editors and staff at Prentice-Hall and especially

the reviewers for their helpful comments and suggestions.

Finally, we thank our wives, Vivienne Langsam, Gail Augenstein, and Miriam
Tenenbaum, for their advice and encouragement during the long and arduous

task of producing such a book.

Yedidyah Langsam

Moshe Augenstein
Aaron Tenenbaum



1

Introduction to Data Structures

A computer is a machine that manipulates information. The study of computer
science includes the study of how information is organized in a computer, how it
can be manipulated, and how it can be utilized. Thus it is extremely important for

a student of computer science to understand the concepts of information organization

and manipulation in order to continue study of the field.

1. INFORMATION AND MEANING

If computer science is fundamentally the study of information, the first question

that arises is: What is information? Unfortunately, although the concept of information
is the bedrock of the entire field, this question cannot be answered precisely.
In this sense, the concept of information in computer science is similar to

the concepts of point, line, and plane in geometry—they are all undefined terms
about which statements can be made but which cannot be explained in terms of

more elementary concepts.
In geometry, it is possible to talk about the length of a line despite the fact

that the concept of a line itself is undefined. The length of a line is a measure of
quantity. Similarly, in computer science, we can measure quantities of information.

The basic unit of information is the bit, whose value asserts one of two

mutually exclusive possibilities. For example, if a light switch can be in one of
two positions but not in both simultaneously, the fact that it is either in the “on”
position or the “off” position is 1 bit of information. If a device can be in more
than two possible states, the fact that it is in a particular state is more than 1 bit of

1
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(c) Three switches (eight possibilities). Figure 1.1.1
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Sec. 1 Information and Meaning 3

information. For example, if a dial has eight possible positions, the fact that it is
in position four rules out seven other possibilities, whereas the fact that a light
switch is on rules out only one other possibility.

Another way of thinking of this is as follows. Suppose that we had only
two-way switches, but could use as many of them as we needed. How many such
switches would be necessary to represent a dial with eight positions? Clearly, one
switch can represent only two positions [see Figure 1.1. 1(a)j. Two switches can
represent four different positions [Figure 1.1. i(b)j, and three switches are required

to represent eight different positions [Figure 1.1. 1(c)j. In general, n
switches can represent 2 different possibilities.

The binary digits zero and one are used to represent the two possible states
of a particular bit (in fact, the word “bit” is a contraction of the words “binary
digit”). Given n bits, a string of n is and Os is used to represent their settings.
For example, the string iOiOl i represents six switches, the first (starting from
the left) of which is “on” (1), the second of which is “off” (0), the third on, the
fourth off, and the fifth and sixth on.

We have seen that three bits are sufficient to represent eight possibilities.
The eight possible configurations of these 3 bits (000, OOi, OiO, Oi i, iOO, iOi,
1 iO, and iii) can be used to represent the integers 0 through 7. However, there
is nothing intrinsic about these bit settings which implies that a particular setting
represents a particular integer. All assignments of integer values to bit settings
are equally valid as long as no two integers are assigned to the same bit setting.
Once such an assignment has been made, a particular bit setting can be interpreted

unambiguously as a specific integer. Let us examine several widely used
methods for interpreting bit settings as integers. BASIC interpreters used on microcomputers

may in fact represent integers in slightly more complicated forms,
but the exact details of the representations used are not particularly important.
The important point is that once a consistent method for treating bit strings as
integers is specified, the details of the specification technique are irrelevant to the
user.

Binary and Decimal Integers

The most widely used method for interpreting bit settings as nonnegative integers

is the binary number system. In this system, each bit position represents a power

of 2. The rightmost bit position represents 2°, which equals i; the next position to

its left represents 2’, which is 2; the next bit position represents 22, which is 4;

and so on. An integer is represented as a sum of powers of 2. A string of all Os

represents the number 0. If a 1 appears in a particular bit position, the power of 2

represented by that bit position is included in the sum, but if a 0 appears, that

power of 2 is not included in the sum. For example, the group of bits OOiOOi iO

has is in positions 1, 2, and 5 (counting from right to left with the rightmost

position counted as position 0). Thus 00100110 represents the integer
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21 + 22 + 2 = 2 + 4 + 32 = 38. Under this interpretation, any string of

bits of length n represents a unique nonnegative integer between 0 and 2 — 1,

and any nonnegative integer between 0 and 2 — 1 can be represented by a

unique string of bits of length n.

There are two widely used basic methods for representing negative binary

numbers. In the first method, called ones-complement notation, a negative number

is represented by changing each bit in its absolute value to the opposite bit

setting. For example, since 00100110 represents 38, 11011001 is used to represent
— 38. This means that the first bit of a number is no longer used to represent

a power of 2, but is reserved for the sign of the number. A bit string starting with

a 0 represents a positive number, while a bit string starting with a 1 represents a
negative number. Given n bits, the range of numbers that can be represented

is — 2 -1 + 1 (a 1 followed by n — 1 Os) to 2 1 — 1 (a 0 followed by n — 1

is). Note that under this representation, there are two representations for the

number 0: a “positive 0” consisting of all Os, and a “negative 0” consisting of
all is.

A second method of representing negative binary numbers is called twos-
complement notation. In this notation, 1 is added to the ones-complement representation

of a negative number. For example, since 11011001 represents —38 in

ones-complement notation, 1 iOi 1010 represents —38 in twos-complement notation.

Given n bits, the range of numbers that can be represented is — 2’ I (a 1

followedbyn — 1 Os)to2’’ —i(aOfollowedbyn — 1 is). Note that —2’’

can be represented in twos-complement notation but not in ones-complement notation.

However, its absolute value 2’ I cannot be represented in either notation

using n bits. Note also that in twos-complement notation, there is only one representation

for the number 0 using n bits. To see this, consider 0 using 8 bits:

00000000. The one’s complement is 11111111, which is “negative 0” in that

notation. Adding one to produce the twos-complement form yields 100000000,

which is 9 bits long. Since only 8 bits are allowed, the leftmost bit (or “overflow”)

is discarded, leaving 00000000 as minus 0.

The binary number system is by no means the only method by which bits

can be used to represent integers. For example, a string of bits may be used to

represent integers in the decimal number system, as follows. Four bits can be

used to represent a decimal digit between 0 and 9 in the binary notation described
above. A string of bits of arbitrary length may be divided into consecutive sets of

4 bits, where each set represents a decimal digit. The string then represents the
number that is formed by those decimal digits in conventional decimal notation.

For example, in this system, the bit string 00100110 is separated into two strings
of 4 bits each: 0010 and 0110. The first of these represents the decimal digit 2

and the second represents the decimal digit 6, so that the entire string represents

the integer 26. This representation is called binary-coded decimal.
One important feature of the binary-coded decimal representation of nonnegative

integers is that not all bit strings are valid representations of a decimal
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integer. Four bits can be used to represent one of 16 different possibilities, since
there are 16 possible states for a set of 4 bits. However, in the binary-coded decimal

integer representation, only 10 of those 16 possibilities are used. That is,
codes such as 1010 and 1100 whose binary values are 10 or larger are invalid in a
binary-coded decimal number.

Real Numbers

The usual method used by computers to represent real numbers is floating-point

notation. There are many variations of floating-point notation, each with its own

individual characteristics. The key concept is that a real number is represented by

a number, called a mantissa, times a base raised to an integer power, called an

exponent. The base is usually fixed and the mantissa and exponent vary to represent

different real numbers. For example, if the base is fixed at 10, the number

387.53 could be represented as 38,753 times 10 to the —2 power. (Recall that

10-2 is .01.) The mantissa is 38753 and the exponent is —2. Other possible representations

are .38753 x 10 and 387.53 x 100. We choose the representation

in which the mantissa is an integer with no trailing zeros.

In the floating-point notation that we describe (which is not necessarily implemented

on any particular machine), a real number is represented by a 32-bit

string consisting of a 24-bit mantissa followed by an 8-bit exponent. The base is

fixed at 10. Both the mantissa and the exponent are twos-complement binary integers.

For example, the 24-bit binary representation of the integer 38753 is

000000001001011101100001 and the 8-bit twos-complement binary representation

of —2 is 11111110, so the representation of 387.53 is
0000000010010111011000011111111o.

Other real numbers and their floating-point representations are:

0 00000000000000000000000000000000

100 00000000000000000000000100000010

.5 000000000000000000000101 11111111

.000005 000000000000000000000 101 11111010

12000 0000000000000000000110000000011

—387.53 11111111O11O1000100111111111111O

—12000 11111111111111111111O10000000011

The advantage of floating-point notation is that it can be used to represent
numbers with extremely large or extremely small absolute values. For example,

in the notation presented above, the largest number that can be represented is

(223 — 1) x 10127, which is a very large number indeed. The smallest positive

number that can be represented is 10-128, which is quite small. The limiting factor
on the precision to which numbers can be represented on a particular machine

is the number of significant binary digits in the mantissa. Not every number between

the largest and the smallest can be represented. Our representation allows
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only 23 significant bits. Thus a number such as 10 million and 1, which requires

24 significant binary digits in the mantissa, would have to be approximated by 10

million (1 x 10), which requires only one significant digit.

Character Strings

As we all know, information is not always interpreted numerically. Items such as

names, job titles, and addresses must also be represented in some fashion within

a computer. To enable the representation of such nonnumeric objects, still another

method of interpreting bit strings is necessary. Such information is usually represented

in character-string form. For example, in some computers, the 8 bits

00100110 are used to represent the character “&“. A different 8-bit pattern is

used to represent the character “A”, another to represent “B”, another to represent

“C”, and still another for each character that has a representation in a particular

machine. A Soviet machine uses bit patterns to represent Russian characters,

while an Israeli machine uses bit patterns to represent Hebrew characters. (In

fact, the characters being used are transparent to the machine; the character set

can be changed by using a different character generator or printer.) If 8 bits are

used to represent a character, up to 256 different characters can be represented

since there are 256 different 8-bit patterns. If the string 01000001 is used to represent

the character “A” and 01000010 is used to represent the character “B”,

then the character string “AB” would be represented by the bit string

0100000101000010. In general, a character string STR is represented by the concatenation

of the bit strings that represent the individual characters of STR.

As in the case of integers, there is nothing intrinsic about a particular bit

string that makes it suitable for representing a specific character. The assignment

of bit strings to characters may be entirely arbitrary, but it must be adhered to

consistently. It may be that some convenient rule is used in assigning bit strings

to characters. For example, two bit strings may be assigned to two letters so that

the one with a smaller binary value is assigned to the letter that comes earlier in

the alphabet. However, such a rule is merely a convenience; it is not mandated by

any intrinsic relation between characters and bit strings. In fact, computers even

differ over the number of bits used to represent a character. Some computers use

7 bits (and therefore allow only up to 128 possible characters), some use 8 (up to

256 characters), and some use 10 (up to 1024 possible characters). The number

of bits necessary to represent a character in a particular computer is called the

byte size and a group of bits of that number is called a byte. The byte size of most

microcomputers is 8.

Note that using 8 bits to represent a character means that 256 possible characters

can be represented. It is not very often that one finds a computer that uses

so many different characters (although it is conceivable for a computer to include

upper- and lowercase letters, special characters, italics, boldface, and other type

characters, and many personal computers use some of the 256 codes for graphics

characters), so that many of the 8-bit codes are not used to represent characters.
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Many codes are used not to represent displayable or printable characters, but as
control codes for communications or I/O device control.

Most microcomputers represent characters internally by means of the ASCII
code. ASCII (or American Standard Code for Information Interchange) is a standardized

system by which manufacturers have agreed to represent various characters
and symbols in order that a computer manufactured by one company can

communicate with printers (and other computers) manufactured by another company.

Thus we see that information itself has no meaning. Any meaning can be
assigned to a particular bit pattern, as long as it is done consistently. It is the
interpretation of a bit pattern that gives it meaning. For example, the bit string
00100110 can be interpreted as the number 38 (binary), the number 26 (binary-

coded decimal) or the character “&“. A method of interpreting a bit pattern is

often called a data type. We have presented several data types: binary integers,
binary-coded-decimal nonnegative integers, real numbers, and character strings.

The key questions are how to determine what data types are available to interpret
bit patterns and which data type to use in interpreting a particular bit pattern.

Hardware and Software

The memory (also called storage or core) of a computer is simply a group of bits

(switches). At any instant of the computer’s operation, any particular bit in memory
is either 0 or 1 (off or on). The setting of a bit is called its value or its contents.

The bits in a computer memory are grouped together into larger units such
as bytes. In some computers, several bytes are grouped together into units called
words. Each such unit (byte or word, depending on the machine) is assigned an

address, which is a name identifying a particular unit among all the units in

memory. This address is usually numeric, so that we may speak of byte 746 or
word 937. An address is often called a location and the contents of a location are

the values of the bits which make up the unit at that location.

Every computer has a set of “native” data types. This means that it is constructed
with a mechanism for manipulating bit patterns in a way that is consistent

with the objects they represent. For example, suppose that a computer
contains an instruction to add two binary integers and place their sum at a given

location in memory for subsequent use. Then there is a mechanism built into the
computer to

1. Extract operand bit patterns from two given locations

2. Produce a third bit pattern representing the binary integer which is the sum
of the two binary integers represented by the two operands

3. Store the resultant bit pattern at a given location

The computer “knows” to interpret the bit patterns at the given locations as
binary integers because the hardware which executes that particular instruction is
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designed to do so. This is akin to a light “knowing” to be on when the switch is

in a particular position.
If the same machine also has an instruction to add two real numbers, there is

a separate built-in mechanism to interpret operands as real numbers. Two distinct

instructions are necessary for the two operations, and each instruction carries

within itself an implicit identification of the types of its operands as well as their

explicit locations. Therefore, it is the programmer’s responsibility to know which

data type is contained in each location that is used and to select the appropriate

instruction (e.g., integer or floating-point addition to obtain the sum of two numbers).

A high-level programming language aids in this task considerably. An identifier

(or varwble name) is used instead of a numerical address to refer to a particular

memory location because of its convenience for the programmer. In

BASIC, identifiers are written as a sequence of letters and digits, starting with a

letter. (Note: Although many versions of BASIC allow variable names to be of

any length, in some BASICs only the first two characters are significant. Thus
SUB, SUM, and SU will all be treated as the same variable. In addition, most

BASICs impose severe restrictions on the choice of variable names in that no

variable may contain an embedded “reserved word.” For example, the variable

name BEFORE is not permitted since it contains the reserved word FOR. Other

versions of BASIC limit variable names to only two characters in their entirety.
We discuss this further in Section 2.1.)

If a BASIC programmer writes

10 DEFINT X,Y

20 DEFDBLA,B

then any variable beginning with the letter X or Y will be interpreted as an integer,

while any variable beginning with the letter A or B will be interpreted as a

double-precision real number (i.e., as a floating-point number with a double-

length mantissa). Thus the contents of the locations reserved for XVAR and

YVAR will be interpreted as integers, while the contents of AVAR and BVAR

will be interpreted as real numbers. The interpreter that is responsible for translating

BASIC statements into machine language will translate the “+“ in the statement

100 X = X + Y

into integer addition, and will translate the “+“ in the statement

200 A = A + B

into real addition. An operator such as “+“ is really a generic operator because
it has several different meanings, depending on its context. The interpreter relieves

the programmer of specifying the type of addition that must be performed
by examining the context and using the appropriate version. [Note: In some
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BASIC dialects (e.g., Applesoft), the “type” of a variable may only be specified
by means of appending a “type declaration” character to the variable name.
Thus X$ represents a character-string variable, while X% would be treated as an
integer variable. Many other BASICs (e.g., TRS 80 Level II) allow type specification

by means of a DEF statement as well as by the use of type declaration
characters. For further discussion, see Section 2.1. The reader is urged to clarify

the method of type specification used in the BASIC implementation being used.]
It is important to recognize the key role played by type specification in a

high-level language. It is by means of these declarations that the programmer
specifies how the contents of the computer memory are to be interpreted by the
program. In doing this, a declaration specifies how much memory is needed for a

particular entity, how the contents of that memory are to be interpreted, and other
vital details. Declarations also specify to the interpreter exactly what is meant by

the operation symbols that are subsequently used.

The Concept of Implementation

Thus far, we have been viewing data types as a method of interpreting the memory

contents of a computer. The set of native data types which a particular computer

can support is determined by the functions that have been wired into its
hardware. However, we can view the concept of “data type” from a completely

different perspective: not in terms of what a computer can do, but in terms of
what the user wants done. For example, if a person wishes to obtain the sum of
two integers, he or she does not care very much about the detailed mechanism by

which that sum will be obtained. The person is interested in manipulating the
mathematical concept of an “integer’ ‘—not in manipulating hardware bits. The
hardware of the computer may be used to represent an integer and is useful only
insofar as the representation is successful.

Once the concept of “data type” is divorced from the hardware capabilities
of the computer, there are an unlimited number of data types that can be considered.

A data type is an abstract concept defined by a set of logical properties.

Once such an abstract data type is defined and the legal operations involving that
type are specified, we may implement that data type (or a close approximation to
it). An implementation may be a hardware implementation in which the circuitry

necessary to perform the required operations is designed and constructed as part
of a computer. Or it may be a software implementation in which a program consisting

of existing hardware instructions is written to interpret bit strings in the

desired fashion and to perform the required operations. Thus a software implementation

includes a specification of how an object of the new data type is represented

by objects of previously existing data types, as well as a specification of

how such an object is manipulated in conformance with the operations that have
been defined for it. Throughout the remainder of this text, the term “implementation”

is used to mean’ ‘software implementation.”
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An Example

Let us illustrate these concepts with an example. Suppose that the hardware of a

computer contains an instruction

MOVE(SOURCE,DEST,length)

which copies a fixed-length character string of length bytes from an address specified

by SOURCE to an address specified by DEST. We present hardware instructions

and locations using uppercase italic letters. The length must be specified by

an integer constant, and for that reason we indicate it with lowercase letters.

SOURCE and DEST can be specified by identifiers that represent storage locations.

An example of this instruction is MOVE(A,B,3), which copies the three

bytes starting at location A to the 3 bytes starting at location B.

Note the different roles played by the identifiers A and B in this operation.

The first operand of the MOVE instruction is the contents of the location specified

by the identifier A. The second operand, however, is not the contents of location
B, since these contents are irrelevant to the execution of the instruction.

Rather, the location itself is the operand, since the location specifies the destination

of the character string. Although an identifier always stands for a location, it
is common for an identifier to be used to reference the contents of that location. It

is always apparent from the context whether an identifier is referencing a location

or its contents. The identifier appearing as the first operand of a MOVE instruction

refers to the contents of memory, whereas the identifier appearing as the second

operand refers to a location.

We also assume the computer hardware to contain the usual arithmetic and

branching instructions, which we indicate by using BASIC-like notation. For example,
the instruction

z=x+Y

interprets the contents of the bytes at locations X and Y as binary integers, calculates
their sum, and inserts the binary representation of their sum into the byte at

location Z. (We do not operate on integers greater than 1 byte in length and ignore

the possibility of overflow.) Here again, X and Y are used to reference memory
contents while Z is used to reference a memory location, but the proper

interpretation is clear from the context.
Sometimes, it is desirable to add a quantity to an address to obtain another

address. For example, if A is a location in memory, we might want to reference
the location 4 bytes beyond A. We cannot refer to this location as A +4 since that
notation is reserved for the sum of the integer contents of location A and the integer

4. We therefore introduce the notation A(4) to refer to this location. We also

introduce the notation A(X) to refer to the address given by adding the binary

integer contents of the byte at X to the address A.
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The MOVE instruction, as defined above, requires the programmer to specify
the length of the string to be copied. Thus it deals with an operand that is a

fixed-length character string (i.e., the length of the string must be known). A
fixed-length string and a byte-sized binary integer may be considered native data
types of that particular machine.

Suppose that we wish to implement varying-length character strings on this
machine. That is, we want to enable programmers to use an instruction

MOVEVAR(SOURCE,DEST)

to move a character string from location SOURCE to location DEST without being

required to specify any length.

To implement this new data type, we must first decide on how it is to be

represented in the memory of the machine and then indicate how that representation

is to be manipulated. Clearly, it is necessary to know how many bytes must

be moved in order to execute this instruction. Since the MOVEVAR operation

does not specify this number, the number must be contained within the representation

of the character string itself. A varying-length character string of length 1

may be represented by a contiguous set of 1 + 1 bytes (1 < 256). The first byte

contains the binary representation of the length 1 and the remaining bytes contain

the representations of the characters in the sthng. Representations of three such

strings are illustrated in Figure 1. 1.2. [Note that the digits 5 and 9 in these figures

do not stand for the bit patterns representing the characters “5” and “9” but

rather for the patterns 00000101 and 00001001, which represent the integers five

and nine. Similarly, 14 in Figure 1.1.2(c) stands for the bit pattern 00001110.]

T51H1ELLH1
(a)

I9IEIVIEIRIYIBI0ID1YI
(b)

1141H1E1 LLIO1EIVIE RIYBOIDIY[
(c)

Figure 1.1.2
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The program to implement the MO VE VAR operation can be written as follows

(I is an auxiliary memory location):

for!= 1IoDEST
MOVE(SOURCE(!),DEST(!), 1)

next!

Similarly, we can implement an operation CONCATVAR(C1,C2,C3) to

concatenate two character strings of varying length at locations Cl and C2 and
place the result at C3. Figure 1. 1.2(c) illustrates the concatenation of the two
strings in Figure 1.1.2(a) and (b):

‘move the length
Z = Cl + C2

MOVE(Z,C3, 1)

‘move the first string

for! = ito Cl

MOVE(Cl(!),C3(I), 1)
next!

for!= ltoC2
X = Cl +!

MOVE(C2(!),C3(X), 1)

next!

However, once the operation MO VE VAR has been defined, CONCATVAR

can be implemented using MO VE VAR as follows:

MOVE VAR(C2 ,C3(C1)): ‘ move the second string
MOVE VAR(C1 ,C3): ‘ move the first string
Z = Cl + C2: ‘ update the length of the result

MOVE(Z,C3, 1)

Figure 1.1.3 illustrates phases of this operation on the strings of Figure 1.1.2.

Although this latter version is shorter, it is not really more efficient since all the

instructions used in implementing MO VE VAR are performed each time that
MO VE VAR is used.

The statement Z = Cl + C2 in both of the algorithms above is of particular

interest. The addition instruction operates independently of the use of its operands

(in this case, parts of varying-length character strings). The instruction is

designed to treat its operands as single-byte integers regardless of any other use

that the programmer has for them. Similarly, the reference to C3(C1) is to the

location whose address is given by adding the contents of the byte at location Cl

to the address C3. Thus the byte at Cl is treated as holding a binary integer,

although it is also the start of a varying-length character string. This illustrates

the fact that a data type is a method of treating the contents of memory and that

those contents have no intrinsic meaning.



jHjEIL1LjoI 1111

I9JEIVJEIRIYJBLOIDLYI I I I

C3(C1)

11111 I9IEIVIEIRIYIBI0IDIYI
(a) MO VE VAR (C2, C3 (Cl));

L5IHIEILILI0IEIVLELRIYI01DIYI 11
(b) MO VE VAR (Cl, C3);

I’I I I I I

C3

jl4j H I E IL! L 101 E I VIE I RI lB 10 ID I I
(c) Z=Cl+C2;MOVE(Z,C3,l);

Figure 1.1.3
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Note that this representation of character strings of varying length allows

only strings whose length is less than or equal to the largest binary integer that

fits into a single byte. If a byte is 8 bits, this means that the largest such string is

255 (which is 28 — 1) characters long. To allow for longer strings, a different

representation must be chosen and a new set of programs must be written. If we

use this representation of character strings of varying length, the concatenation

operation is invalid if the resulting string is more than 255 characters long. Since

the result of such an operation is undefined, the implementer has a wide variety
of actions that can be taken if that operation is attempted. One possibility is to use

only the first 255 characters of the result. Another possibility is to ignore the

operation entirely and not move anything to the result field. There is also a choice

of printing a warning message or of assuming that the user wants to achieve

whatever result the implementer decides on.

Once a representation has been chosen for objects of a particular data type

and routines have been written to operate on those representations, the programmer

is free to use that data type to solve a problem. The original hardware of the

machine plus the programs for implementing more complex data types than those

provided by the hardware can be thought of as a “better” machine than the one

consisting of the hardware alone. The programmer of the original machine need
not worry about how the computer is designed and what circuitry is being used to

execute each instruction. He need know only what instructions are available and
how those instructions can be used. Similarly, the programmer who uses the “extended”

machine (which consists of hardware and software) need not be concerned

with the details of how various data types are implemented. All the

programmer needs to know is how they can be manipulated.

In the next two sections of this chapter we examine a composite data structure

which already exists in BASIC (the array) and its use in representing heterogeneous

data aggregates. We focus on the abstract definitions of these data

structures and how they can be useful in problem solving. We also examine how

they are implemented in BASIC.
In the remainder of the book (except for Chapter 2, which deals with

BASIC programming techniques), we develop more complex data types and

show their usefulness in problem solving. We also show how to implement these

data types using the data types which are already available in BASIC. Since the

problems that arise in the course of attempting to implement high-level data
structures are quite complex, this will also allow us to investigate the BASIC

language more thoroughly and to gain valuable experience in the use of that language.

Often, no implementation, in hardware or software, can model a mathematical
concept completely. For example, it is impossible to represent arbitrarily

large integers on a computer since the size of such a machine’s memory is finite.

Thus it is not the data type “integer” which is represented by the hardware but



Sec. 1 Information and Meaning 15

rather the data type “integer between X and Y,” where X and Y are the smallest

and largest integers that can be represented by that machine.

It is important to recognize the limitations of a particular implementation.
Often it will be possible to present several implementations of the same data

type, each with its own strengths and weaknesses. One particular implementation
may be better than another for a specific application and the programmer must be
aware of the possible trade-offs that might be involved.

One important consideration in any implementation is its efficiency. In fact,
the reason that the high-level data types which we discuss are not built into
BASIC is because of the significant overhead that they would entail. There are

languages of significantly higher level than BASIC which have many of these

data types already built into them, many of which are also available on microcomputers.

Efficiency is usually measured by two factors—time and space. If a particular

application is heavily dependent on manipulating high-level data structures,

the speed at which those manipulations can be performed will be the major determinant

of the speed of the entire application. Similarly, if a program uses a large

number of such structures, an implementation that uses an inordinate amount of

space to represent the data structure will be impractical. Unfortunately, there is

usually a trade-off between these two efficiencies, so that an implementation

which is fast uses more storage than does one which is slow. The choice of implementation

in such a case involves a careful evaluation of the trade-offs among

the various possibilities.

EXERCISES

1. In the text, an analogy is made between the length of a line and the number of bits of

information in a bit string. In what ways is this analogy inadequate?

2. Determine what hardware data types are available on your microcomputer and what

operations can be performed on them.

3. Prove that there are 2 different settings for n two-way switches. Suppose that we

wanted to have m settings. How many switches would be necessary?

4. Interpret the following bit settings as binary integers and as binary-coded decimal

integers. If a setting cannot be interpreted as a binary-coded decimal integer, explain

why.

(a) 10011001 (b) 1001 (c) 000100010001

(d) 01110111 (e) 01010101 (f) 100000010101

5. Microsoft BASIC, one of the most widely used implementations of BASIC, represents

integers using a variant of twos-complement notation. Each integer (positive or

negative) occupies 2 bytes (16 bits) of storage, with the low byte followed by the
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high byte (i.e., reversed from the conventional order). Thus 38 would be represented

by 0010011000000000 and —38 by 1101110011111111. How would each of the

following decimal integers be represented in Microsoft BASIC?
(a) 32 (b) 258 (c) —47

(d) —32 (e) — 32768 (f) 32767

6. Microsoft BASIC represents single-precision real numbers using floating-point notation.

A real number is represented by a 32-bit string consisting of a 24-bit (3-byte)

mantissa followed by an 8-bit (1-byte) exponent. The real (decimal) number is first

converted into its binary equivalent with the base fixed at 2. For example, 49(ten) =

.1 1000 100(two) x 26. The mantissa is chosen so that the first digit is a 1. The exponent

is then added to 128 and the resulting value is represented in binary. Thus

6 + 128 = 1 34(ten) = 100001 10(two). Since the first digit of the mantissa is 1, it

can be dropped, and the information content of that bit can be used to represent the

sign (0 being positive and 1 being negative). In our example the mantissa is

11000100, which is represented internally by 01000100, with the first bit indicating

a positive number (—49 would be represented as 11000100). The 3 bytes representing

the mantissa are ordered from low to high and thus the 24-bit representation of

the mantissa is 00000000 00000000 01000100. Combining the mantissa with the

exponent, the 32-bit representation of 49 is 00000000 00000000 01000100

10000110. How would each of the following single-precision real numbers be represented
in Microsoft BASIC?

(a) 100 (b) 12000 (c) — 12000

(d) 32768 (e) 32 (f) — 258

7. Write three BASIC routines, each of which interprets two bit strings (a bit string is a

character string consisting of only the characters “0” and “1”) of length 16 as positive

binary integers and prints the bit string representing the sum, difference, and

product, respectively, of the two integers. The routines should not convert the bit

strings into integers.

8. Develop a representation of integers between 0 and 255 by bit strings of length 8 sO

that only one bit changes from any integer to its successor. Write a BASIC routine

which inputs an integer and produces the bit string that represents it under this representation

and another routine which inputs such a bit string and produces the integer

that it represents. Write a third BASIC routine which inputs two such bit strings and

produces the bit string that represents the sum of the two integers represented by the

two input bit strings.

9. Assume a ternary computer in which the basic unit of memory is a “tn” (ternary

digit) rather than a bit. Such a tnt can have three possible settings (0, 1, and 2) rather

than just two (0 and 1). Show how nonnegative integers can be represented in ternary

notation using such trits by a method analogous to binary notation using bits. Is there

any nonnegative integer that can be represented using ternary notation and trits which

cannot be represented using binary notation and bits? Are there any that can be represented

using bits which cannot be represented using trits? Why are binary computers

more common than ternary computers?
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10. Write BASIC routines to convert between binary and ternary numbers (see Exercise

9). To convert from binary to ternary, the input should be a bit string and the output

should be a character string consisting of the characters “0”, “1”, and “2”. To

convert in the opposite direction, the input should be a character string and the output

should be a bit string.

11. Write BASIC routines that input two character strings representing ternary nonnegative

integers as in Exercise 10 and output the character strings representing their

sum, difference, and product, respectively.

12. What are the largest and smallest nonnegative integers that can be represented in ternary

notation using n trits? How many trits are necessary to represent the nonnegative

integer m? If an integer can be represented by k decimal digits, how many bits

and trits are necessary to represent it?

13. In implementing the CONCATVAR operation in terms of MOVE VAR as shown in the

text, why was the second string moved into the result area before the first?

2. ARRAYS IN BASIC

In this section we examine a familiar data structure, the array. The array is an

example of a composite structure; that is, it is made up of simpler data types

which exist in the language. The study of a composite structure involves an analysis

of how simpler structures combine to form the composite and how to extract

a specific component from the composite. We will see how to use the array and

how it is implemented in BASIC.

The simplest form of an array is a one-dimensional array, which may be

defined abstractly as a finite ordered set of homogeneous elements. By “finite”

we mean that there are a specific number of elements in the array. This number

may be large or small, but it must exist. By “ordered” we mean that the elements

of the array are arranged so that there is a first, second, third, and so on.

By “homogeneous” we mean that all the elements in the array must be of the

same data type. For example, an array may contain all integers or all character

strings but may not contain both.

There are two basic operations that can be performed on a one-dimensional

array. The first is the extraction of a particular element from an array. The inputs

to this operation are the array and an indication of which element of the array is

to be accessed. This indication is given as an integer, called an index. Thus the

operation

extract(a ,5)

retrieves element number 5 of the array a. The second operation stores an element

into an array. For example, the operation

store(a,5 ,x)

stores the value of the variable x into element number 5 of the array.
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Thus far, we have introduced an abstract data structure and two abstract operations.

BASIC includes an implementation of this data structure and these operations.
To declare a one-dimensional array named A with 100 elements, all of

which are integers, the programmer may write

10 DEFINT A

20 DIM A(100)

The function extract(a,5) is written in BASIC as A(5), which refers to element

number 5 of array A. The operation store(a,5,x) is written as the statement

100 A(5) = X

The smallest index of the array is called the lower bound and the largest is the

upper bound. You may specify the upper bound of an array in a DIM statement,

but the lower bound is always fixed. Some BASIC interpreters and compilers use

a lower bound of 0, while others use a lower bound of 1. Still others allow you to

select either as the lower bound of all arrays in a particular program. (In order to

promote program uniformity, the programs in this book will not make use of the

zeroth element of the array unless otherwise specified. This enables the same program

to be run regardless of the convention adopted by a particular version of

BASIC.) The number of elements in a one-dimensional array, called the range of

the array, is equal to 1 more than the difference between the upper and lower

bounds. If 1 is the lower bound, u the upper bound, and r the range of a one-

dimensional array, then r = u — I + 1. Thus, in a version of BASIC with a

lower bound of zero, an array A established by the statement

DIM A(10)

contains 11 elements (since 10 — 0 + 1 = 11), while in a version with a lower

bound of 1, A contains 10 elements (since 10 — 1 + 1 = 10).

One important feature of a BASIC array is that once such an array is created,

it is static; that is, its upper bound (and therefore its range) cannot be

changed. Attempts to reDlMension an array will result in an error. Thus a

BASIC array has a fixed number of elements throughout its existence. Before any

values can be stored in the array, its size must be established.

Using One-Dimensional Arrays

A one-dimensional array is used when it is necessary to keep a large number of

items in memory and reference all the items in a uniform manner. Let us see how

these two requirements apply to practical situations.

Suppose that we wish to read 100 numbers, find their average, and determine

by how much each number deviates from that average. The following program

accomplishes this. (In the BASIC programs in this book we use variable

names with an arbitrary number of characters, although some versions of BASIC
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do not permit this. A more complete discussion of our BASIC programming conventions
is deferred until Section 2.1.)

10 ‘program average
20 DIM NUM(100)

30 SUM = 0

40 ‘read the numbers into the array and compute their sum
50 FORI=1TO100

60 READ NUM(I)

70 SUM = SUM + NUM(I)

80 NEXT I

90 ‘at this point, SUM contains the sum of the numbers

100 AVG = SUM/100

110 ‘print headings

120 PRINT “NUMBER”, “DIFFERENCE”

130 ‘print each number and the difference
140 FORI=1TO100

150 DEVIAT = NUM(I) - AVG

160 PRINT NUM(I), DEVIAT

170 NEXT I

180 ‘print average

190 PRINT: PRINT “AVERAGE IS “; AVG

200 END

500 DATA

This program uses two groups of 100 numbers. The first group is the set of

input numbers and is represented by the array NUM, and the second group is the

set of differences which are the successive values assigned to the variable

DEVIAT in the loop 140—170. The question arises as to why an array is used to

hold all the values of the first group simultaneously but only a single variable is

used to hold the values of the second group, one at a time.

The answer is quite simple. Each difference is computed and printed and is

never needed again. Thus the variable DEVIAT can be reused for the difference

of the next number and the average. However, the original numbers which are

the values of the array NUM must all be kept in memory. Although each number

could be added to SUM as it is input, it must be retained until after the average is

computed in order for the program to compute the difference between it and the

average. Therefore, an array is used.

Of course, 100 separate variables could have been used to hold the numbers.

The advantage of an array, however, is that it allows the programmer to

declare only a single variable and yet obtain many storage locations. Furthermore,

in conjunction with the FOR-NEXT loop, it also allows the programmer to

reference each element of the group in a uniform manner instead of requiring a
statement such as

60 READ Ni, N2, N3,...
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A particular element of an array may be retrieved through its index. For
example, suppose that a company is using a program in which an array is declared

by

10 DIM SALES(10)

The array will hold sales figures for a 10-year period. Suppose that each DATA

statement in the program contains an integer from 1 to 10 representing a year as
well as a sales figure for that year, and it is desired to read the sales figure into
the appropriate element of the array. This can be accomplished by executing the
statement

100 READ YR, SALES(YR)

within a loop. In this statement, a particular element of the array is accessed directly
by using its index. Consider the situation if 10 variables 51, S2, . . . , S9,

SO had been declared. Then even after executing READ YR to set YR to the
integer representing the year, the sales figure could not be read into the proper
variable without coding something like

100 IF YR = 1 THEN READ Si

180 IF YR = 9 THEN READ S9

190 IF YR = 10 THEN READ SO

This is bad enough with 10 elements—imagine the inconvenience if there were
100 or 1000.

Implementing One-Dimensional Arrays

A one-dimensional array can be easily implemented. The BASIC declaration

10 DIM B(i00)

reserves 100 successive memory locations (we are assuming a lower bound of 1),

each large enough to contain a single number. The address of the first of these

locations is called the base address of the array B and will be denoted by

base(B). Suppose that the size of each individual element of the array is esize.
Then a reference to the element B(1) is to the element at location base(B), a reference

to B(2) is to the element at base(B) + esize, a reference to B(3) is to the

element base(B) + 2*esize. In general, a reference to B(I) is to the element at

location base(B) + (I — 1)*esize. Thus it is possible to reference any element in

the array, given its index. [Naturally, if the lower bound of an array is zero, a
reference to the element B(0) is to the element at location base(B), a reference to

B(1) is to the element at base(B) + esize, and, in general, a reference to B(I) is
to the element at location base(B) + * esize.]
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If the elements of an array do not have a fixed size, however, this method

cannot be used to implement such an array. (An example of this is an array of
character strings in which the length of each string can vary.) This is because the

foregoing method of calculating the address of a specific element of the array

depends upon knowing the fixed size esize of each preceding element. If not all

the elements have the same size, a different implementation must be used.

One method of implementing an array of varying-sized elements is to reserve

a contiguous set of memory locations, each of which holds an address. The

contents of each such memory location is the address of the varying-length array

element in some other portion of memory. For example, Figure 1.2.1(a) illustrates
an array of five varying-length character strings under this implementation.

The arrows in that diagram indicate addresses of other portions of memory. The
character “b” indicates a blank.

Since the length of each address is fixed, the location of the address of a

particular element can be computed in the same way that the location of a fixed-

length element was computed in the previous examples. Once this location is

known, its contents can be used to determine the location of the actual array element.

This, of course, adds an extra level of indirection to referencing an array

element by involving an extra memory reference, which in turn decreases efficiency.

However, this is a small price to pay for the convenience of being able to

maintain such an array.
A similar method for implementing an array of varying-sized elements is to

keep all fixed-length portions of the elements together with the address of the

varying-length portion in the contiguous area. For example, in the implementation

of character strings presented in the preceding section, each such string contains

a fixed-length portion (a 1-byte-length field) and a variable-length portion

(the character string itself). One implementation of an array of character strings

keeps the length of the string together with the address, as shown in Figure

1.2.1(b). The advantage of this method is that those parts of an element that are

of fixed length can be examined without an extra memory reference. For example,

the LEN function for character strings can be implemented with a single

memory lookup. The fixed-length information for an array element of varying

length which is stored in the contiguous memory area of the array is often called a
header.

Two-Dimensional Arrays

An array need not be a linear set of homogeneous elements; it can also be multidimensional.

A two-dimensional array is one in which each element is accessed

by two indices: a row number and a column number. Figure 1.2.2 illustrates such

a two-dimensional array declared by the BASIC statement

10 DIM A(3,5)
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Figure 1.2.2

Assuming a lower bound of 1, the element that is darkened in Figure 1.2.2 is
referred to as A(2,4), since it is in row 2 and column 4. As in the case of a one-

dimensional array, the lower bound of each dimension is 1 or 0 by definition.
The number of rows or columns is equal to the upper bound minus the lower

bound plus 1. This number is called the range of the dimension. In the array A
above, the range of the first dimension is 3 — 1 + 1 (assuming a lower bound
of 1), which is 3, and the range of the second dimension is 5 — 1 + 1, which is
5. Thus the array A has three rows and five columns. The number of elements in
a two-dimensional array is equal to the product of the number of rows and the
number of columns. Thus the array A contains 3 X 5 = 15 elements. (If the
lower bound were zero, the array would have four rows, six columns, and 24
elements.)

A two-dimensional array clearly illustrates the differences between a logical
and a physical view of data. A two-dimensional array is a logical data structure
which is useful in programming and problem solving. For example, such an array
is useful in describing an object that is physically two-dimensional, such as a
map or a checkerboard. It is also useful in organizing a set of values that are
dependent on two inputs. For example, a program for a department store which
has 20 branches, each of which sells 30 items, might include a two-dimensional
array declared by

10 DIM SALES(20,30)

Each element SALES(I,J) represents the amount of item J sold in branch I.

However, although it is convenient for the programmer to think of the elements

of such an array as being organized in a two-dimensional table and programming

languages do indeed include facilities for treating them as a

two-dimensional array, the hardware of most computers have no such facilities.

An array must be stored in the memory of a computer and that memory is usually

linear. By this we mean that the memory of a computer is essentially a onedimensional

array. A single address (which may be viewed as a subscript for a

one-dimensional array) is used to retrieve a particular item from memory. In order

to implement a two-dimensional array, it is necessary to develop a method of

ordering its elements in a linear array and of transforming a two-dimensional reference

to the linear representation.
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One method of representing a two-dimensional array in memory is the column-major
representation. Under this representation, the first column of the array

occupies the first set of memory locations reserved for the array, the second
column occupies the next set, and so on. There may also be several locations at

the start of the physical array which serve as a header and which contain the upper
bounds of the two dimensions. (This header should not be confused with the

headers discussed above. This header is for the entire array, whereas the headers

mentioned earlier are headers for the individual array elements.) Figure 1.2.3 illustrates
the column-major representation of the two-dimensional array A declared

above (assuming a lower bound of 1) and illustrated in Figure 1.2.2.
Alternatively, the header need not be contiguous to the array elements, but could

instead contain the address of the first element of the array. Additionally, if the
elements of the two-dimensional array are variable-length objects, the elements

of the contiguous area could themselves contain the addresses of those objects in
a form similar to those of Figure 1.2.1 for linear arrays.

Let us suppose that a two-dimensional array is stored in column-major sequence,

as in Figure 1.2.3 and let us suppose that, for an array AR, base(AR) is
the address of the first element of the array. That is, if AR is declared by

10 DIM AR(U1,U2)

where Ui and U2 are the integer upper bounds, then (assuming a lower bound of
1) base(AR) is the address of AR(1 , 1). Let us define ri as the range of the first
dimension. We also assume that esize is the size of each element in the array. Let

us calculate the address of an arbitrary element, AR(I1 ,12). Since the element is

in column 12, its address can be calculated by computing the address of the first

element of column 12 and adding the quantity (Ii — 1)*esize (this quantity represents
how far into column 12 the element at row Ii is). But in order to reach the

first element of column 12 [which is the element AR(1,I1)], it is necessary to pass

through (12 — 1) complete columns each of which contains ri elements (since
there is one element from each row in each column), so that the address of the

first element of column 12 is at base(AR) + (12— 1)*rl*esize. Therefore, the
address of AR(I1 ,12) is at

base(AR) + [(12_1)*rl + (I1_1)]*esize.

As an example, consider the array A of Figure 1.2.2 whose representation

is illustrated in Figure 1.2.3. In this array, Ui = 3 and U2 = 5, so that base(A)
is the address of A(1 , 1) and Ri equals 3. Let us also suppose that each element of
the array requires a single unit of storage, so that esize equals 1. (This is not
necessarily true; for simplicity, however, we accept this assumption.) Then the
location of A(2,3) may be computed as follows. In order to reach column 3, we
must skip over columns 1 and 2. Each of those columns contains three elements
consisting of one memory location each. Thus the first element of column 3
[which is A(1 ,3)] is six elements past the address of A(1 , 1), which is base(A).
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The element A(2,3) is one element past A(1,3). The formula above yields the
address of A(2,3) as

base(A) + [(3_1)*3 + (2_1)]*1

which is

base(A) + 6 + 1 = base(A) +7.

You may confirm the fact that A(2,3) is seven units past base(A) in Figure 1.2.3.
The derivation above assumed a lower bound of 1. In those BASICs in

which the lower bound is 0, the formula above for the address of AR(I1 ,12) reads

base(AR) + [(12*rl) + Ii] * esize

The reader is asked, as an exercise, to derive this modification.

Multi-Dimensional Arrays

BASIC allows arrays which have more than two dimensions. For example, a
three-dimensional array may be declared by

10 DIM C(3,2,4)
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and is illustrated in Figure 1.2.4(a). An element of this array is specified by three
subscripts, such as C(2, 1,3). The first subscript specifies a plane number, the
second subscript a row number, and the third a column number. Such an array is

useful when a value is determined by three inputs. For example, an array of temperatures

might be indexed by latitude, longitude, and altitude.

For obvious reasons, the geometric analogy breaks down when we go beyond
three dimensions. However, BASIC does allow an arbitrary number of dimensions.

For example, a six-dimensional array may be declared by

10 DIM D(2,8,5,3,15,7)

Referencing an element of this array would require six subscripts, such as

D(2,7, 1,1,14,3). The number of different subscripts which are allowed in a particular

position (the range of a particular dimension) equals the upper bound
of that dimension minus its lower bound plus 1. The number of elements in an
array is the product of the ranges of all its dimensions. For example, the array C
above contains 3 x 2 x 4 = 24 elements, while the array D contains

2 X 8 X 5 X 3 X 15 X 7 = 25,200 elements (assuming lower bounds of 1).

The column-major representation of arrays can be extended to arrays of

more than two-dimensions. Figure 1.2.4(b) illustrates the representation of the
array C of Figure 1.2.4(a). The elements of the six-dimensional array D described

above are ordered as follows:

D(1 ,1,1 ,1,1,1)

D(2,1,1,1,1,1)

D(1 ,2, 1,1,1,1)

D(2,2,1,1,1,1)

D(1,3,1,1,1,1)

D(1,6,5,3,15,7)

D(2,6,5,3, 15,7)

D(1 ,7,5,3,15,7)

D(2,7,5,3, 15,7)

D(1 ,8,5,3, 15,7)

D(2,8,5,3, 15,7)

That is, the first subscript varies most rapidly and a subscript is not increased

until all possible combinations of the subscripts to its left have been exhausted.
What mechanism is needed to access an element of an arbitrary multidimensional

array? Suppose that AR is an n-dimensional array declared by

10 DIM AR(U1,U2,. .

which is stored in column-major order. Each element of AR is assumed to occupy

esize storage locations and base(AR) is defined as the address of the first element
of the array, which is AR(l,l, . . . ,l), where the lower bound 1 is either 1 or
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0, depending on the implementation. r is defined as U —1 + 1 for all i between 1
and n. Then in order to access the element

AR(11,12, . . ,I)

it is first necessary to pass through (I, —1) complete “hyperplanes,” each consisting
of r1 *r2*. *rn i elements to reach the first element of AR whose last

subscript is I,. Then it is necessary to pass through an additional (In —1) groups
of ri*r2*. *rfl_2 elements in order to reach the first element of AR whose last

two subscripts are ‘n-I and I,, respectively. A similar process must be carried out

through the other dimensions until the last element whose last n — 1 subscripts

match those of the desired element is reached. Finally, it is necessary to pass

through (I — 1) additional elements to reach the element desired.
Thus the address of AR(11 ,I2, . . . ,I,) may be written as base(AR) + esize

* [(Ifl_l)*rI*r2*. *1 + (Ifl_I_l)*rI*r2*. ,. + . . . + (I—i)r +

(I — 1)1 which can be evaluated more efficiently by using the equivalent formula

base(AR) + esize * [Ii —1 + ri*((12 — 1) + r2*(.

+ rn2*(Ini_l + rn_I*(In_l)). .

This formula may be evaluated by the following algorithm (assuming a variable 1
to hold the lower bound, and arrays i and r of size n to hold the indices and the

ranges respectively):

offset = 0

forj = ‘ito 1 step — 1

offset = r(j) * offset + (i(j) —1)

nextj

addr = base(AR) + esize*offset

Handling Subscript Errors

Suppose, as is often the case, that a programmer erroneously uses a subscript

which is not within the range of the array bounds. For example, the programmer
references A(I), where A is an array with subscripts 1 to 100 and where the current

value of I is 101. Such mistakes are quite common when expressions are

used as subscripts or inside a FOR-NEXT loop which is repeated once too often.

Because the reference is illegal, the results of such a reference are unspecified by

the BASIC language. Since the programmer is not programming in legal BASIC,

he or she cannot expect BASIC to define what the results will be. In many
BASIC implementations such a reference results in an error that causes program
execution to halt.

Let us examine some of the alternative actions that might be taken when a
subscript is out of bounds. The simplest alternative is to do nothing. That is,

whenever a reference to an array element A(I) is made, the machine proceeds to

compute the address of that element using the formula given above as though the
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subscript were legitimate. For example, if the size of each array element (esize) is
one storage unit and the array was declared with bounds 1 and 100, a reference to
the element with subscript 101 will result in the address which is 100 storage
units past the first element of the array. That address is no longer within the array
and may even be outside the area in memory set aside for the entire program. The
system may take whatever action is appropriate. If the address is outside the program’s

memory area, this may involve printing an error message and stopping the
program. However, the error message may not indicate an illegal array reference;
it may state only that an attempt is being made to access a location that is nonexistent

or is not allocated to the program.
It may be that the computed address is within the program area but that the

information at that address is not of the proper format for an array element. When
an attempt is made to interpret that information as an array element, the system
will produce an error message stating that the information is in incorrect format.
Again, there is no indication that the cause of the error was a subscript that was
out of bounds.

Even if the programmer receives one of these imprecise messages, things

could be worse. A far more distressing possibility is that the computed location is

within the program area and that the information contained therein is in proper
format. In that case, the system will simply use that information and will give no

indication that anything is wrong. Instead, it will proceed to produce incorrect

results based on that information. Often the programmer will have no indication
that the results are incorrect. Or the programmer may see that they are obviously
incorrect but will have no indication of where the large program went wrong.

In all of the cases noted above, the language implementation relies on the
backup error-detection system of the hardware or of the operating system. It does

not itself check for whether the subscript is within bounds of the specific array.

Since a subscript may be a variable or an expression, there is no way to determine,

without explicitly checking the subscript for validity, whether or not its
value will be within bounds. A check that is made during execution must be

made each time the statement is executed. Thus if a statement that appears within

a loop is repeated 1000 times, an execution check would involve 1000 checks.
An execution check means that every array reference involves not only an address

computation but also a check for validity. This sharply decreases efficiency.
Furthermore, in order to be able to check a subscript for validity, it is

necessary to keep the upper bound of the array in memory during execution time.
The alternative to doing nothing is to forgo efficiency for clarity and ease of

debugging. An array is not represented solely by the elements of which it is comprised.
Rather, each array has a header that contains its upper bounds. This header

could be located at the beginning of the contiguous area that holds the array
elements, or it could be a separate entity and contain the base address of the array
as well as the upper bounds. Whenever a reference to an array element is made
during execution, a test is made to ensure that the subscript lies within the range
before computing the element’s address. If the subscript is out of bounds, a de
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tailed error message giving the name of the array and the value of the illegal subscript
can be printed.

As mentioned earlier, many BASIC implementations forgo efficiency for

program reliability and perform checking throughout program execution. Should

an illegal array reference occur, the ERROR condition is raised and execution
halts. For those BASICs that possess an ON ERROR statement, alternative actions

may be specified at the programmer’s discretion.

EXERCISES

1. Write a BASIC subroutine that sorts the contents of a one-dimensional array into ascending

order.

2. The median of an array of numbers is the element m of the array such that half the

remaining numbers in the array are greater than or equal to m and half are less than or

equal to m, if the number of elements in the array is odd. If the number of elements is

even, the median is the average of the two elements ml and m2 such that half the

remaining elements are greater than or equal to ml and m2, and half the elements are

less than or equal to ml and m2. Write a BASIC subroutine that computes the median

of a set of numbers in an array.

3. The mode of an array of numbers is the number m in the array which is repeated most

frequently. If more than one number is repeated with equal maximal frequency, there

is no mode. Write a BASIC subroutine that either finds the mode of an array of numbers

or determines that the mode does not exist.

4. Write a BASIC subroutine which reverses a one-dimensional array of numbers (so

that the first element of the array becomes the element that was previously last, the

second element becomes the one that was previously next to last, etc.).

5. An n X n array a is symmetric if the element a(i,j) equals a(j,i) for all i and j between

1 and n. Write a program to input the elements of a 5 X 5 array in column-

major order, print the array in tabular format, and print a message as to whether or

not the array is symmetric.

6. Write a BASIC program to read a set of temperature readings. A reading consists of

two numbers: an integer between —90 and 90 representing the latitude at which the

reading was taken, and the observed temperature at that latitude. Print a table consisting

of each latitude and the average temperature at that latitude. If there are no readings

at a particular latitude, print NO DATA instead of an average. Then print the

average temperature in the northern and southern hemispheres (the northern hemisphere

consists of latitudes 1 through 90 and the southern hemisphere consists of latitudes

— 1 through — 90). (This average temperature should be computed as the

average of the averages, not the average of the original readings.) Also determine

which hemisphere is warmer. In making the determination, take the average temperatures

in all latitudes of the hemisphere for which there are data for both that latitude

and the corresponding latitude in the other hemisphere. (For example, if there are
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data for latitude 57 but not for latitude —57, the average temperature for latitude 57

should be ignored in determining which hemisphere is warmer.)

7. Assume that you are writing a program for a chain of 20 department stores, each of

which sells 10 different items. Every month, each store manager submits data for

each item consisting of a branch number (from 1 to 20), an item number (from 1 to

10), and a sales figure (less than $100,000) representing the amount of sales for that

item in that branch. However, some managers may not submit data for some items

(e.g., not all items are sold in all branches). You are to write a BASIC program to

read these data and print a table with 12 columns. The first column should contain the
branch numbers from 1 to 20 and the word TOTAL in the last line. The next 10

columns should contain the sales figures for each of the 10 items for each of the

branches, with the total sales of each item in the last line. The last column should

contain the total sales of each of the 20 branches for all items, with the grand total

sales figure for the chain in the lower right-hand corner. Each column should have an

appropriate heading. If no sales were reported for a particular branch and item, assume

zero sales. Do not assume that your input is in any particular order.

8. (a) Show how a checkerboard can be represented by a BASIC array. Show how to

represent the state of a game of checkers at a particular instant. Write a BASIC

routine which prints all possible moves that black can make from a particular

checkerboard position.

(b) Do the same as in part (a) for the game of chess.

9. Write a program to print out a method of placing eight queens on a chessboard so that

no two queens are in the same row, column, or diagonal. The output of your program

should be eight lines, each containing eight characters. Each character represents a

position on the board which is either an asterisk (indicating an empty position) or a 1

(indicating a position occupied by a queen).

10. Assume that each element of an array A stored in column-major order occupies four

units of storage. If A is declared by each of the following, and the address of the first

element of A is 100, find the address of the indicated array element. (Assume a lower

bound of 1 in all cases.)

(a) DIM A(100) address of A(10)

(b) DIM A( 10,20) address of A( 1,1)

(c) DIM A( 10,20) address of A(5, 1)

(d) DIM A(10,20) address of A(1,10)

(e) DIM A(10,20) address of A(2,10)

(f) DIM A(10,20) address of A(10,20)

(g) DIM A(5,6,4) address of A(3,2,4)

11. An array can be stored in row-major order, in which the elements of the first row are

followed by the elements of the second row, and so on.

(a) Write a program to read the elements of a 5 X 5 array from data in columnmajor

order and print them in row-major order.

(b) Write a program to read the elements of a 5 X 5 array in row-major order and

print them in column-major order.
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12. Develop formulas and algorithms as in the text to access an array element if the array

is stored in row-major order rather than column-major order (see Exercise 11).

13. A lower triangular array a is an n X n array in which a(i,j) = 0 if i <j. What is

the maximum number of nonzero elements in such an array? How can these elements

by stored sequentially in memory? Develop an algorithm for accessing a(i,j) where

i j. Define an upper triangular array in an analogous manner and do the same as

instructed above for such an array.

14. A strictly lower triangular array a is an n X n array in which a(i,j) = 0 if i j.

Answer the questions of Exercise 13 for such an array.

15. Let a and b be two n x n lower triangular arrays (see Exercises 13 and 14). Show

how an n X (n + 1) array c can be used to contain the nonzero elements of the two

arrays. Which elements of c represent the elements of a(i,j) and b(i,j), respectively?

16. A tridiagonal array a is an n X n array in which a(i,j) = 0 if the absolute value of

— j is greater than 1. What is the maximum number of nonzero elements in such an

array? How can these elements be stored sequentially in memory? Develop an algorithm

for accessing a(i,j) if the absolute value of i —j is 1 or less. Do the same for an

array a in which a(ij) = 0 if the absolute value of i — j is greater than k.

17. Develop a method of implementing a nonhomogeneous array; that is, implement an

array whose elements are not all of the same data type. Can BASIC syntax be extended
to deal with this new data structure?

3. AGGREGATING DATA IN BASIC

Very often, it is helpful to view a collection of data as a single entity. For example,

suppose that we wish to retain information relating to an employee. If the

employee data include a first name, middle initial, and last name, those data
could be initialized as follows:

10 DEFSTRF,L,M

20 READ FIRST, MIDINIT, LAST

Under this method, there is no relationship among the three components of the
name.

An alternative organization is to group the three components of the name

into a single entity (an array) as follows:

10 DEFSTR N

20 DIM NAME(3)

30 FIRST = 1

40 MIDINIT = 2

50 LAST = 3

60 READ NAME(FIRST), NAME(MIDINIT), NAME(LAST)
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In this representation, NAME(FIRST) refers to the first name, NAME(MIDINIT)

to the middle initial, and NAME(LAST) to the last name. The advantage of this

representation is that we can refer to the complete name of the employee (by
NAME) when necessary and to the individual components (by their full names)

when necessary.

This representation can be extended to the case where we wish to retain

information on a number of employees. For example, suppose that we wish to

store the names of 50 employees. We could begin the program as follows:

10 DEFSTR N

20 DIM NAME(50,3)

30 FIRST = 1

40 MIDINIT = 2

50 LAST = 3

60 FORI=1T050

70 READ NAME(I,FIRST), NAME(I,MIDINIT), NAME(I,LAST)

80 NEXT I

Of course, the array NAME could have been represented by three individual

arrays, FIRST(50), MIDINIT(50), and LAST(50), but the relationship among the

three arrays would have been lost.

Note that in both of the examples above we grouped together variables of

the same data type (in this case, character strings). Variables of different data

types cannot be grouped together in this manner; they must be enumerated separately.
For example, if we wished to retain additional data relating to a set of 50

employees, we may group all related components explicitly into several two-
dimensional arrays, as follows:

10 DEFSTR H, N, P, R, W

20 ‘employee records

30 DIM NAME(50,3)

40 FIRST = 1

50 MIDINIT = 2

60 LAST=3

70 DIM RESIDENCE(50,4)

80 ADDR=1

90 CITY=2

100 STATE = 3

110 ZIP=4

120 DIM POSITN(50,2)

130 DEPTNO = 1

140 JOBTITLE = 2

150 DIM SALARY(50)

160 DIM DEPENDENTS(50)

170 DIM HEALTHPLAN(50)

180 DIM WHENHIRED(50)
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Using this representation we may refer to the first name of the Ith employee
by NAME(I,FIRST) and to his or her job title by POSITN(I,JOBTITLE). The
last names and salaries of all employees may be printed by

200 FOR! = 1T050

210 PRINT NAME(I,LAST), SALARY(I)

220 NEXT I

We may print the last names and residences of all employees by simply coding

200 FORI=1T050

210 PRINT NAME(I, LAST)

220 FORJ = 1T04

230 PRINT RESIDENCE(I,J)

240 NEXT J

250 PRINT: ‘skip a line
260 NEXT I

A set of related data items grouped together into a single entity is called a

data aggregate or a record. Some high-level programming languages (e.g., Pascal,

PL/I, COBOL) support the aggregating of different elements into a single
variable; most versions of BASIC do not (unless the elements have the same attributes,

in which case they can be placed into an array). The grouping of related

information into a single array contributes greatly to program clarity. However,

variables with different data types, such as SALARY and HEALTHPLAN, cannot

be grouped together into a single array.

Representing Other Data Structures

Throughout the remainder of this text, arrays will be used to represent the more

complex data structures which are studied. Aggregating data is useful because it

enables us to group objects within a single entity and to name each of these objects

according to its function.

As examples of how data aggregates can be used in this fashion, let us consider

the problems of representing rational numbers and multidimensional arrays.

Rational Numbers

Let us apply the concept of data aggregates to the representation of rational numbers.
A rational number is any number that can be expressed as the quotient of

two integers. Thus

1/2, 3/4, 2/3, and 2(i.e.,2/1)

are all rational numbers, whereas

/2 andIT
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are not. A computer usually represents a rational number by means of its decimal
approximation. If we instruct the computer to print 1/3, the computer responds
with .333333. Although this is close enough (the difference between .333333 and
one-third is only one three-millionth), it is not exact. If we were to ask for the

value of 1/3 + 1/3, the result would be .666666 (which equals
.333333 + .333333), while the result of printing 2/3 might be .666667. This
would mean that the result of the test 1/3 + 1/3 = 2/3 would be false! In most

instances, the decimal approximation is good enough, but sometimes it is not. It

is therefore desirable to implement a representation of rational numbers for which
exact arithmetic can be performed.

How can we represent a rational number exactly? Since a rational number
consists of a numerator and a denominator, we can represent a rational number
RTNL using a data aggregate as follows:

10 DEFINT R

20 DIM RTNL (2)

30 NMRTR = 1

40 DNMNTR = 2

We refer to the numerator as RTNL(NMRTR) and to the denominator as

RTNL(DNMNTR).

You might think that we are now ready to define rational number arithmetic

for our new representation, but there is one significant problem. Suppose that we

defined two rational numbers Ri and R2 by

50 DIM R1(2), R2(2)

and we had given them values. How can we test if the two numbers are the same?

Perhaps you might want to code

100 IF R1(NMRTR) = R2(NMRTR) AND R1(DNMNTR) = R2(DNMNTR)
THEN...

That is, if both numerators and denominators are equal, the two rational numbers

are equal. However, it is possible for both numerators and denominators to be

unequal, yet the two rational numbers are the same. For example, the numbers

1/2 and 2/4 are indeed equal, although their numerators (1 and 2) as well as their
denominators (2 and 4) are unequal. We therefore need a new way of testing

equality under our representation.

Well, why are 1/2 and 2/4 equal? The answer is that they both represent the
same ratio. One out of two and two out of four are both one-half. In order to test

rational numbers for equality, we must first reduce them to lowest terms. Once
both numbers have been reduced to lowest terms, we can test for equality by

simple comparison of their numerators and denominators.
We define a reduced rational number as a rational number in which there is
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no integer greater than 1 by which both the denominator and numerator can be

divided evenly. Thus

1/2 , 2/3, and 10/1

are all reduced to lowest terms, whereas

4/8, 12/18, and 15/6

are not. In our example, 2/4 reduced to lowest terms is 1/2, so the two numbers
are equal.

A procedure known as Euclid’s algorithm can be used to reduce any fraction

of the form numerator/denominator into its lowest terms. This procedure

may be outlined as follows:

1. Let a be the larger of the numerator and denominator and let b be the smaller.

2. Divide b into a, finding a quotient q and a remainder r (i.e.,
a = q*b + r).

3. Leta = bandb = r.

4. Repeat steps 2 and 3 until b is zero.

5. Divide both the numerator and the denominator by the value of a.

As an illustration, let us reduce 1032/1976 to its lowest terms.

Step 0

Step 1
Step 2

Step 3
Steps 4 and 2

Step 3

Steps 4 and 2

Step 3
Steps 4 and 2

Step 3

Steps 4 and 2
Step 3
Steps 4 and 2

Step 3

Steps 4 and 2
Step 3
Step 5

numerator = 1032

a = 1976

a = 1976

a = 1032

a = 1032

a = 944

a = 944

a = 88

a = 88

a=64

a=64

a = 24

a = 24

a = 16

a = 16

a=8

1032/8 = 129

denominator = 1976

b = 1032

b = 1032

b = 944

b = 944

b = 88

b = 88

b = 64

b=64

b = 24

b = 24

b = 16

b = 16

b=8

b=8

b=0

q = 1 r = 944

q = 1 r = 88

q = 10 r = 64

q = 1 r = 24

q = 2 r = 16

q= lr=8

q = 2r = 0

1976/8 = 247

Thus 1032/1976 in lowest terms is 129/247.

Let us write a subroutine to reduce a rational number RTNL. Before we call

this subroutine, RTNL is not necessarily reduced, but after we return from it,
RTNL is reduced.
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2000 ‘subroutine reduce

2010 ‘step 1 — Find the larger of the numerator and denominator

2020 IF RTNL(NMRTR) > RTNL(DNMNTR)

THEN A = RTNL(NMRTR): B = RTNL(DNMNTR): GO TO 2040

2030 B = RTNL(NMRTR): A = RTNL(DNMNTR)

2040 Q = INT(A / B): ‘step 2

2050 R=A_Q*B
2060 A = B: ‘step 3
2070 B = R

2080 IF R > 0 THEN GO TO 2040: ‘step 4

2090 RTNL(NMRTR) = RTNL(NMRTR)/A: ‘step 5

2100 RTNL(DNMNTR) = RTNL(DNMNTR)/A
2110 RETURN

2120 ‘end subroutine reduce

Using the subroutine reduce, we can write another subroutine equal, which

determines whether or not two rational numbers Ri and R2 are equal. If they are,
the variable EQUAL is set to 1; otherwise, the variable EQUAL is set to 0.

1000 ‘subroutine equal
1010 ‘reduce Ri and R2 to lowest terms

1020 RTNL(NMRTR) = R1(NMRTR): RTNL(DNMNTR) =R1(DNMNTR)

1030 GOSUB 2000: ‘reduce Ri

1040 R1(NMRTR) = RTNL(NMRTR): R1(DNMNTR) = RTNL(DNMNTR)

1050 RTNL(NMRTR) = R2(NMRTR): RTNL(DNMNTR) = R2(DNMNTR)

1060 GOSUB 2000: ‘reduce R2

1070 R2(NMRTR) = RTNL(NMRTR): R2(DNMNTR) = RTNL(DNMNTR)

1080 ‘check the reduced rationals for equality

1090 EQUAL = 0

1100 IF R1(NMRTR) = R2(NMRTR) AND R1(DNMNTR) = R2(DNMNTR)

THEN EQUAL = 1

1110 RETURN

We may now write routines to perform arithmetic on rational numbers. We

present a routine to multiply two rational numbers and leave as an exercise the

problem of writing similar routines to add, subtract, and divide such numbers.

The input to the multiplication routine consists of two rational numbers, and
our routine is to produce a third. In order to represent the three rational numbers,

we choose to modify our representation slightly by defining a single data aggregate

to represent all three rational numbers:

10 DEFINT R

20 DIM RTNL(3,2)

30 NMRTR = 1

40 DNMNTR = 2

50 FIRST = 1

60 SECND = 2

70 RESULT = 3



38 Introduction to Data Structures Chap. 1

This data aggregate allows us to refer to the denominator of the first operand
as RTNL(FIRST, DNMNTR) and to the numerator of the result as

RTNL (RESULT, NMRTR). Recall that

(a/b) * (c/d) = (a*c) / (b*d)

However, since the numbers a*c and b*d may be large, we reduce the result

to lowest terms before completing the multiplication routine. The following

is a complete program to input two fractions repeatedly and print their product.

The program is terminated when 0 is the input for the denominator of
one of the fractions. Note that the subroutine reduce has been modified to

reduce the rational number represented by RTNL(RESULT,NMRTR) over
RTNL(RESULT,DNMNTR).

10 DEFINT R

20 DIM RTNL(3,2)

30 NMRTR = 1

40 DNMNTR = 2

50 FIRST = 1

60 SECND = 2

70 RESULT = 3

80 PRINT” ENTER THE NUMERATOR AND DENOMINATOR OF THE”;

“FIRST RATIONAL NUMBER”

90 INPUT RTNL (FIRST,NMRTR), RTNL(FIRST,DNMNTR)

100 IF RTNL(FIRST,DNMNTR) = 0 THEN GO TO 200

110 PRINT” ENTER THE NUMERATOR AND DENOMINATOR OF THE”;

“SECOND RATIONAL NUMBER”

120 INPUT RTNL(SECND,NMRTR), RTNL(SECND, DNMNTR)

130 IF RTNL(SECND,DNMNTR) = 0 THEN GO TO 200

140 ‘multiply the two numbers
150 GOSUB 1000

160 ‘print the reduced answer

170 PRINT” THE REDUCED PRODUCT IS”

180 PRINT RTNL(RESULT, NMRTR); “I “; RTNL(RESULT,DNMNTR)

190 GOTO 80

200 PRINT” A ZERO DENOMINATOR TERMINATES THE PROGRAM”

210 END

1000 ‘subroutine multiply

1010 ‘multiply the numerators
1020 RTNL(RESULT,NMRTR) = RTNL(FIRST,NMRTR) *

RTNL(SECND,NMRTR)

1030 ‘multiply the denominators

1040 RTNL (RESULT,DNMNTR) = RTNL(FIRST,DNMNTR) *

RTNL(SECND,DNMNTR)
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1050 ‘reduce the result

1060 GOSUB 2000

1070 RETURN

1080 ‘end subroutine multiply

2000 ‘subroutine reduce

2010 ‘step 1

2020 IF RTNL(RESULT,NMRTR) > RTNL(RESULT,DNMNTR)

THEN A = RTNL(RESULT,NMRTR):

B = RTNL(RESULT,DNMNTR): GOTO 2040

2030 B = RTNL(RESULT, NMRTR): A = RTNL(RESULT, DNMNTR)

2040 Q = INT (A / B): ‘step 2

2050 R=A_Q*B
2060 A = B: ‘step 3
2070 B = R

2080 IF R > 0 THE GOTO 2040: ‘step 4

2090 RTNL(RESULT,NMRTR) = RTNL(RESULT,NMRTR)/A: ‘step 5

2100 RTNL(RESULT,DNMNTR) = RTNL(RESULT,DNMNTR)/A
2110 RETURN

2120 ‘end subroutine reduce

Multi-Dimensional Arrays

Recall from Section 2 that multidimensional arrays are actually implemented in a

one-dimensional linear memory. Let us see how we can implement such arrays

for ourselves in a system that permits only two-dimensional arrays. At the same

time, we will also allow the lower bounds of each dimension to be specified by

the user, rather than defaulting to 0 or 1. We will illustrate the implementation of

three-dimensional arrays; the reader will see that the analog for any other number

of dimensions is straightforward.

There are essentially two operations that must be implemented for a three-

dimensional array: storing a value into the array at a specified position and extracting

a value from a specified position within the array. These two operations

will be denoted by

store(a,sl ,s2,s3,v)

and

extract(a,sl ,s2,s3)

respectively. In each of these, a is the data structure representing the array and

sl, s2 and s3 are the three subscripts. In the store operation, v is the value stored

at the specified position. The extract operation is a function that retrieves the value

extracted from the specified position and assigns it to the variable extract.

Suppose that we wish to implement a three-dimensional array whose first

dimension has lower bound 5 and upper bound 10, whose second dimension has
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lower bound 1 and upper bound 7, and whose third dimension has lower bound 2

and upper bound 4. Such an array would contain a total of 126 elements. This can

be done by declaring a data aggregate such as

10 DIM BOUNDS(2,3)

20 LO = 1: ‘BOUNDS(LO,I) holds the lower bound of the Ith dimension

30 HI = 2: ‘BOUNDS(HI,I) holds the upper bound of the Ith dimension

40 DIM ELEMENT(1 26): ‘the array ELEMENT holds the elements of the

‘three-dimensional array

50 ‘initialization of lower and upper bounds
60 BOUNDS(W,1) = 5

70 BOUNDS(W,2) = 1

80 BOUNDS(W,3) = 2

90 BOUNDS(HI,1) = 10

100 BOUNDS(HI,2) = 7

110 BOUNDS(HI,3) = 4

The values in the elements BOUNDS(LO,I) are the lower bounds of the three

dimensions and the values in BOUNDS(HI,I) are their upper bounds. The array
ELEMENT contains the actual elements of the array. The size of ELEMENT is

equal to 126, which is the number of elements in the three-dimensional array
((10—5 + 1) * (7 — 1 + 1) * (4 — 2 + 1)). The elements are stored in column-major

order so that ELEMENT(1) represents ARRAY(5,1 ,2), ELEMENT(2)

represents ARRAY(6, 1,2), and so on. It is important to note that the

array ELEMENT may not be combined with the array BOUNDS in a single array,

since ELEMENT could conceivably contain characters (if we were implementing

an array of character strings), whereas BOUNDS always contains

integers.

The routines store and extract involve computing the offset for an array reference

and using that offset as a subscript in the one-dimensional array ELEMENT.

The routine store (which places the value V in the array position with the

subscripts 51, S2, and S3) may be written as follows:

1000 ‘subroutine store

1010 ‘error checking

1020 IF Si <BOUNDS(W,1) OR Si > BOUNDS(HI,i) OR

S2 < BOUNDS(W,2) OR S2 > BOUNDS(HI,2) OR

S3 < BOUNDS(W,3) OR S3 > BOUNDS(HI,3)

THEN PRINT “ILLEGAL SUBSCRIPT”: STOP

1030 OFFST = (S3 — BOUNDS(LO,3)) * (BOUNDS(HI,2) —

BOUNDS(W,2) + 1)

1040 OFFST = (OFFST + (S2 — BOUNDS(W,2))) *

(BOUNDS(HI,i)— BOUNDS(W,1) + 1)

1050 OFFST = OFFST + (Si — BOUNDS(W, 1))
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1060 ELEMENT(OFFST) = V

1070 RETURN

1080 ‘end subroutine store

The routine extract (which sets the variable EXTRACT to the value of the

array position subscripted by Si, S2, and S3) may be written as follows:

2000 ‘subroutine extract

2010 ‘error checking

2020 IF Si <BOUNDS(W,1) OR Si > BOUNDS(HI,i) OR

S2 < BOUNDS(W,2) OR S2> BOUNDS(HI,2) OR

S3 < BOUNDS(W,3) OR S3 > BOUNDS(HI,3)
THEN PRINT “ILLEGAL SUBSCRIPT”: STOP

2030 OFFST = (S3 — BOUNDS(LO,3)) * (BOUNDS(HI,2) —

BOUNDS(W,2)+ 1)

2040 OFFST = (OFFST + (S2 — BOUNDS(LO,2))) *

(BOUNDS(HI,1)— BOUNDS(W,i)+ 1)

2050 OFFST = OFFST + (Si — BOUNDS(W, i))

2060 EXTRACT = ELEMENT(OFFST)

2070 RETURN

2080 ‘end subroutine extract

These routines use the formulas developed in Section 2 for computing the offset
of a specific element in a multi-dimensional array. In the exercises, you are asked
to generalize the routines above so that the number of dimensions of the array can

also be input to the subroutines.

EXERCISES

1. Generalize the routines store and extract of the text so that they accept four input variables:

A, N, SUB, and V, where A is a data aggregate representing a multidimensional

array of N dimensions, SUB is a one-dimensional array of size N and such that

SUB(I) equals the subscript of the Ith dimension in the array reference, and V is the

value to be stored or extracted in the array.

2. A complex number is one that contains real and imaginary parts and satisfies the following

properties: If ci has real and imaginary parts ri and ii, respectively, and c2

has real and imaginary parts r2 and i2, respectively, then

(a) The sum of ci and c2 has real part (ri + r2) and imaginary part (ii + i2).

(b) The difference of ci and c2 has real part (ri — r2) and imaginary part (ii — i2).

(c) The product of ci and c2 has real part (ri *r2 — ii *i2) and imaginary part

(ri *j2 + r2*ii).

Implement complex numbers by defining a data aggregate with real and complex parts

and write routines to add, subtract, and multiply such complex numbers.
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3. A fixed-point number is one in which the number of digits to the left and right of the

decimal point remains constant. Suppose that a fixed-point number with five decimal

places is represented by

10 DEFINT F

20 DIM FIXEDEC(2)

30 LEFT=1

40 RIGHT = 2

where FIXEDEC(LEFT) and FIXEDEC(RIGHT) represent the digits to the left

and right of the decimal point, respectively. For example, 1.00002 is represented by

FIXEDEC(1) equaling 1 and FIXEDEC(2) equaling 2, while 1.2 is represented by

FIXEDEC(1) equaling 1 and FIXEDEC(2) equaling 20,000.

(a) Write a routine to read a fixed-point number from a DATA statement and create a

data aggregate representing that number.

(b) Write a routine that accepts such a data aggregate and prints the fixed-point number

represented by it.

(c) Write three routines that accept two such data aggregates and set the value of a

third data aggregate to the sum, difference, and product of the two original data

aggregates.

4. Using the rational number representation given in the text, write routines to add, subtract,
and divide such numbers.

5. The text presents a subroutine equal, which determines whether or not two rational

numbers Ri and R2 are equal, by first reducing Ri and R2 to lowest terms and then

testing for equality. An alternatative method would be to multiply R1(NMRTR) by

R2(DNMNTR) and R2(NMRTR) by R1(DNMNTR) and testing the products for

equality. Write a subroutine equal2 to implement this algorithm. Which of the two

methods is preferable?
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Programming in BASIC

1. BASIC FOR MICROCOMPUTERS

BASIC (Beginner’s All-purpose Symbolic Instruction Code) was developed at
Dartmouth College in 1972 as a simple computer language to teach students how

to program. BASIC has grown from a local instructional language to become one

of the most widely used programming languages in the world. With the introduction
of microcomputers in 1975, BASIC has matured into a powerful language

that is available to almost all owners of personal computers. Although it has

grown into a large and powerful language, BASIC remains simple and easy to
learn.

Interpreters and Compilers

As is the case with all high-level languages, BASIC cannot be executed directly

by a computer. A computer can “understand” instructions only when these instructions

are presented to it in machine language. Machine language is a low-
level language consisting solely of strings of Os and is which represent the

operations native to the machine being used. On most computers, BASIC statements
are translated into machine instructions by means of an interpreter. An interpreter

is a program that examines a line of BASIC, decodes its meaning, and

instructs the computer to carry out the operations indicated. This decoding is accomplished
one statement at a time. Alternatively, there are versions of BASIC

which are translated into machine language by means of a compiler. Unlike an

interpreter, a compiler first translates a complete program, known as the source

43
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code, into a machine language program, known as the object code. Once the entire

program has been translated, the object code may be executed. (We should

note that most interpreters proceed in two stages as well: a translation phase in

which the actual BASIC program is translated into an intermedwte language representation,

and an interpretation phase, in which the intermediate language

statements are executed, one at a time. The intermediate language resembles

BASIC more closely than does machine language, so the entire process may be

properly termed interpretation rather than compilation.)

There are advantages to each of the translation procedures noted above. Interpreted

languages, since they translate and execute each program line, allow the

user to modify a program and run it immediately without having to retranslate (or

compile) the entire program. Thus interpreted BASICs are favored by students

and other programmers involved in program development. It is also possible to

suspend execution of the program, examine or modify any variables, and resume

execution from that point. Unfortunately, a price must be paid for this flexibility.

Since each line must be interpreted as it is encountered, a line that may be executed

more than once, such as within a loop, would be translated more than once.

For this reason, interpreted BASICs are comparatively slow. Compilation, on the

other hand, translates a program statement only once, regardless of the number of

times it is executed, leading to increased execution efficiency but with a concurrent

loss of flexibility. In addition, there is another consideration. Compiled programs

tend to be large and require more space than do corresponding interpreted

programs.

As we have mentioned earlier, BASIC has evolved from its original form to

a language that can be found on most personal computers. During the period of

evolution, little attention was paid to keeping the language standardized, with

each manufacturer enhancing the language to make the most efficient use of the

specific hardware. Unfortunately, this led to a Tower of Babel of BASIC languages.

It is likely that a program written in a particular dialect of BASIC will

not perform properly, without some modifications, on another machine.

Throughout the text we will point out some of the major incompatibilities among

different versions of BASIC. In the programs that follow in the remainder of the

book we have gone to great lengths to avoid using code that is heavily dependent

on a specific machine or a specific version of BASIC. The reader, on the other

hand, is encouraged to rewrite the programs presented here to take advantage of

the full power of the version of BASIC being used.

In the following paragraphs we will outline some of the elementary BASIC

concepts that will be used in forthcoming chapters. This material is not intended

as an introduction to BASIC or to programming. Rather, it is an attempt to present

a uniform framework from which to build expanded program constructs. It is

suggested that the reader who finds these discussions unfamiliar should review

the BASIC language manual accompanying the personal computer being used, as

well as introductory BASIC textbooks.
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Lines, Statements, and Remarks

A BASIC program consists of one or more lines. Each line begins with a number
indicating the relative order in which the line (or rather the statements on that

line) are to be executed. Line numbers must be integers in the range of 0 to about
64000 (depending on the version of BASIC being used). A statement may not

span more than one line, but a line may contain more than one statement. When

more than one statement appear on a line, a colon is used to separate the statements.

A BASIC line is considered to be terminated by a carriage return (or

ENTER) regardless of whether it physically occupies more than one line on the

monitor or other display device. There are a maximum number of characters that

may appear on a line (usually 255). For example,

30 PRINT 5 + 3 : PRINT “BYE”

10 REM this line was typed second
20 PRINT “HI”

would be processed as if it were entered as follows:

10 REM this line was typed second
20 PRINT “HI”

30 PRINT 5 + 3 : PRINT “BYE”

and result in the following output:

HI

8

BYE

In the program above, note line number 10 which begins with the keyword
REM. This statement is known as a remark and is ignored by the translator. The

purpose of a remark is to serve as documentation to the program or a portion of

the program. We will have more to say about the importance of the remark later

in this chapter. In many versions of BASIC, a remark may also be denoted by

means of a single quote (‘) placed at its beginning. A remark must always be the
last (or only) statement on a line, since once a remark delimiter is encountered,

the remainder of the line is ignored by the computer.

Variables in BASIC

Variables in BASIC are written as a string of one or more alphabetic characters

and digits, the first of which must be alphabetic. Although many versions of BASIC
allow variable names to be of any length, in some implementations (e.g.,

Applesoft and TRS-80 Level II), only the first two characters are significant.
That is, two variable names with the same first two characters both represent the
same variable. Thus SUB, SUM, and SU will be treated identically in these im
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plementations. In addition, each version of BASIC has a list of “reserved”

words which are set aside for specific purposes and cannot be used as variable

names. Some versions of BASIC (e.g., Applesoft and TRS-80 Level II) impose

the additional restriction that a reserved word may not be embedded within a

variable name (e.g., STOCK may not be used as a variable since it contains the

reserved word TO). We will adhere to these restrictions in this book. That is, no

two variables appearing in the same program have the same first two characters

and no variable name includes a reserved word. For these reasons, variable

names may not be as meaningful as might be desirable.

Primitive Data Types

Every computer language supports a set of native data types. These types may be

native either to the machine on which the programs are run or to the compiler or

interpreter that is translating these programs. Most versions of BASIC, for example,

support integers, reals, and strings as native data types.

Integers are whole numbers (numbers not containing decimal points) within

some range (often between — 32768 and + 32767). Positive or negative numbers

that are not integers are known as real numbers. These numbers may be represented

using either fixed-point or floating-point notation. In fixed-point notation,

the decimal point is located at its proper position within the number. For example,

4.2, .003, and —452.6378 are all real numbers in fixed-point notation. For

numbers that are very large or very small, it is convenient to use floating-point

notation. A floating-point number consists of an optionally signed integer or real

number in fixed-point notation, followed by the letter E and an optionally signed

integer (representing the exponent of 10). For example, 1 .86E05 represents

1.86 X 1O, which is 186,000, and — 4.056E —03 represents — 4.056 X 10,

which is — .004056. On most personal computers, the exponent must be in the

range —38 to + 38. The number of digits which the computer is capable of representing

is known as the precision of the number. Most versions of BASIC

maintain a precision of between 7 (TRS-80, IBM BASIC, and Microsoft BASIC-

80) and 10 (Applesoft) digits. Such reals are called singleprecision reals. Some

versions of BASIC are also capable of representing numbers of up to 16 digits.

Such numbers are known as double precision reals and are indicated by the letter

D appearing in the representation instead of an E. Several versions of BASIC

(IBM BASIC and Microsoft BASIC-80) are also capable of representing numbers

in hexadecimal (base 16) and octal (base 8) notation.

Character strings are represented in BASIC by a sequence of characters enclosed

in double-quotation marks and may contain up to 255 alphanumeric characters.

TRS-80 BASIC requires that space be set aside explicitly for string

storage. When the TRS-80 microcomputer is first turned on, 50 bytes are set

aside for string storage. In order to set aside additional string storage space, the

statement CLEAR n (where n is a positive integer) causes the computer to reserve

n bytes for string storage. In other versions of BASIC (Applesoft and Microsoft
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BASIC-80), string storage is allocated automatically. The CLEAR statement is
used differently in other versions of BASIC and the reader should ascertain its

exact function on any particular machine.
The type of a variable (i.e., the data type of the values that it can assume)

may be indicated in one of several ways. One method is to append a type declara
tion character to the variable name. The set of declaration characters usually
used are as follows:

Type T’pe declaratio n character

Integer %

Single-precision real ! (or by default)

Double-precision real #

String $

For example, in Applesoft BASIC and IBM BASIC, F# represents a double-
precision real number while A$ represents a character string. Note that A$ and
A! are different variables under this convention.

Some versions of BASIC allow the type of a variable to be declared by
means of a DEF statement as follows:

lype DEF statement

Integer DEFINT

Single-precision real DEFSNG

Double-precision real DEFDBL

String DEFSTR

Using DEF statements, it is possible to define and identify the type of a variable
by means of its first letter. For example, if a BASIC programmer writes

10 DEFINTX,Y

20 DEFDBLA,B

then any variable beginning with the letter X or Y will be treated as an integer,
while any variable beginning with the letter A or B will be interpreted as a double-precision

real number. Thus the contents of the locations reserved for XVAR

and YVAR will be interpreted as integers, while the contents of AVAR and
BVAR will be interpreted as real numbers. The processor (interpreter or compiler)

which is responsible for translating a BASIC program into machine language
will translate the “+“ in the statement

x=x+Y

into integer addition, and will translate the “+“ in the statement

A=A+B
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into real addition. An operator such as “+“ is known as a generic operator because
it has several different meanings depending on its context. The translator

relieves the programmer from specifying the type of addition that must be performed
by examining the types of the operands and using the appropriate operation.

In some BASIC dialects (e.g., Applesoft), the “type” of a variable may

only be specified by means of type declaration characters. Other versions of BASIC

(e.g., TRS-80 Level II, IBM BASIC, and Microsoft BASIC-80) allow type

specification by either declaration characters or DEF statements. The reader is

urged to clarify the methods that can be used to specify variable types in the

BASIC implementation at hand.

Pseudocode

In Chapter 1 we discussed some of the reasons for our interest in studying the

definition and implementation of more complex data structures. One of the reasons

mentioned was that it is often easy to describe the solution to a problem in

terms of more complex data structures than those available in a particular language

(e.g., BASIC). Therefore, if we can present an implementation of this
complex data structure in the language being used, solutions to problems that are

stated in terms of this complex data structure can be run on the machine at hand
using the given implementation. In effect, we will have enlarged our arsenal of

available types by this data structure.

In a similiar fashion, it is possible to extend the control structures of a language

beyond those supported by the semantics of the language. All high-level

languages are equipped with a set of control structures. These control structures,

as opposed to simple statements which manipulate data, govern the sequence in

which other statements are executed. For example,

10 READX

20 PRINT Y

30 A = B + C

are examples of statements that manipulate data, while

40 GOTO 1000

is an example of a control statement.

Because of the inherent complexity of the solutions to some of the problems

in this text, it will be most helpful to have available a set of high-level control

structures with which we can express these solutions. Such solutions can often be

expressed quite simply in terms of these complex control structures. While it is

also possible to express these solutions using a more limited set of control structures,

such expressions are often cumbersome and sometimes lead to problems in
detecting and isolating errors. It is therefore desirable to have such a set of highlevel

control structures available.
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Many newer versions of BASIC for microcomputers are equipped with sophisticated

control structures found in some of the more powerful high-level languages;

other versions are not so well equipped. Even in languages that do
support high-level control structures, there is inconsistency in their syntactical

expression and even in their semantic meaning. Therefore, in order not to depend

on the form of a particular version of BASIC, yet not to be limited by the unavailability
of these control structures, we choose an intermediate route. We express

solutions to problems in an intermediate descriptive language which serves

as a bridge between English and BASIC. We will call this intermediate language

pseudocode. This pseudocode has the advantage that it reads like English and is

at least similar to more powerful versions of BASIC and to other more powerful

high-level languages. For this reason, it will be helpful as a powerful tool in stating

the solutions to problems. On the other hand, since this pseudocode solution

does not consist solely of BASIC statements, it cannot be entered directly into the

machine for processing. The pseudocode solution must first be translated into

simpler BASIC statements.

In the following paragraphs, we present several forms of control structures

using pseudocode. These standard control structures will be used throughout the

text in presenting solutions to problems. In some instances, we present a solution

both in its pseudocode form as well as in its BASIC form; in others, we present

only the pseudocode solution or the BASIC program. To distinguish typographically

between pseudocode and BASIC programs, we use lowercase characters for

pseudocode and uppercase characters for BASIC programs. For example, the

pseudocode version of the statements

10 X = A + B

20 IFX>100THENZ=1

30 FORI=1TOX

40 S=S+I

50 NEXT I

is

x=a+b

if x> 100
then z = 1

endif

fori = 1 tox

s= S + i

next i

Note that statement numbers are omitted from the pseudocode and that pseudocode

appears slightly different from BASIC (as, for example, the endif and the
indentation of the then). These differences and explanations for them will be discussed

below. Solutions expressed in pseudocode are often called algorithms;
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although they are not programs that can be directly executed on a computer, they
are precise descriptions of the process to be performed in producing such a solution

by a computer.

For each of the pseudocode structures discussed below, we present the
structure itself, an example of its use, and a method of converting the pseudocode
into BASIC. As we mentioned earlier, in order to make our programs portable
from one version of BASIC to another, we have adopted a minimal standard for

our conventions. Users of BASIC on specific machines are of course free to
translate these control structures into less constraining forms available on their

particular machine. As exercises, you are urged to explore some of these possibilities.

Flow of Control

We begin by considering several program constructs and how they appear in BASIC.
Executable statements in BASIC fall into one of two major categories: simple

statements that accomplish a single operation or a set of operations, and
compound statements that group statements together to form an overall control
structure.

The following statements are examples of simple statements:

10 INPUTX

20 X=X+1

30 PRINT”X = “;X

Each of the statements above is “simple” in that it performs a single task. A task

may consist of two parts (such as PRINT “X = “; X, which prints two items),
but each such task basically represents a single operation. One such statement is

executed sequentially after another in the order of the line numbers associated
with the statements.

The pseudocode versions of simple statements are direct translations from
BASIC. For example, the pseudocode version of the statements above are

input x
x=x+1

print ‘‘x = “; x

The second major category of BASIC executable statements are those that
control the execution of other BASIC statements:

10 IF A = B THEN PRINT X

10 FORI=1TOX

20 PRINT I

30 NEXT I
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These constructions determine the sequence in which the simple operations
which they include are to be performed. In such constructions, the simple statements

are not necessarily executed in the order in which they appear. The sequence
of their execution cannot always be determined by simply looking at the

code; it depends on conditions (e.g., A = B, I > X) which are tested during
program execution. The sequence in which instructions are executed is called the
flow of control of a program. We shall discuss several types of flow of control,
how they can be expressed in pseudocode, and how they may be implemented in
BASIC.

Sequential Flow

“Sequential flow” means that statements are executed sequentially in the order

in which they appear. Sequential flow may be achieved by writing simple statements
in the order in which they are to be executed (with line numbers in increasing

sequence). As we shall discuss in more detail later in this chapter, the code is

easier to read if each statement appears on a separate line and all the statements

are indented to the same column. If the computation that is being performed is

not clear from the code, remarks at key points in the code should be used to explain

the purpose and the intended effects of each group of statements.

Conditional Flow

Conditional flow is “almost” sequential in that the statements, if executed, are

executed in their order of appearance. However, a statement or group of statements

may or may not be executed in certain cases. One example of this type of
flow is achieved by an IF statement of the form

IF condition THEN statement

If condition is satisfied, then statement is executed; if condition fails, then statement

is not executed. In either case, the next statement to be executed is the one
that follows the IF THEN construction.

In pseudocode, we express this type of conditional flow as follows:

if condition
then statement

endif

The reason for using the endif becomes clear when we consider the possibility of
incorporating more than one statement in a then clause. In most microcomputer
versions of BASIC, a colon can be used to separate the statements to be included
within the THEN clause. For example, we may write

100 IF X > 0 THEN X = X - 1: PRINT X, X 2: COUNT = COUNT + 1
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In pseudocode, we may include each statement on a separate line:

if x> 0
thenx = x — 1

print x, x 1 2
count = count + 1

endif

endif indicates that all of the statements between the keyword then and the endif

are to be executed only if the condition (x> 0) is true.

Sometimes, the statements to be included in a THEN clause are too numerous

and/or too long to be included within a single BASIC program line. In that

case, we must “program around” the problem by writing something like the following:

100 IF X <= 0 THEN GOTO 150

110 ‘statements 120— 140 are executed only if X> 0

120 X=X—1

130 PRINTX,X12
140 COUNT = COUNT + 1

150

This is quite awkward. In pseudocode, however, we are not limited by the length
of a single line, since each component statement can be listed on a separate line,

with the entire list terminated by endif. This leads to greater comprehensibility
and neatness.

[At this point, we should say something about how BASIC programs are

displayed in this book. In general, most BASICs have a limit on the number of

characters in a line. We assume this limit to be 240, although it can be as low as

80. Most display devices (e.g., monitors or printers) do not permit physical lines

to be so long, but rather have a line length of 80 or even 40. Thus a single BASIC

line may take up more than one physical line on a particular device. For this reason,

a BASIC line may be written using several textual lines, as, for example,

100 IF X <0 THEN PRINT “X IS NEGATIVE”:

Y = X + At2:A = A + 1:X = X + Y:

PRINT “X = “; X, “A = “; A, “Y = “; Y

In displaying such a statement in this book, we attempt to make it as readable

as possible through the use of indentation. It may be difficult to use such

indentation consistently in practice, since different display devices have different

physical line sizes, so that the number of blanks and the points of line division

appropriate for one device are inappropriate for another. Generally, we do not

use more than three text lines for a BASIC line, assuming a BASIC line length of

240 and a physical display line length of 80. In cases where more than three lines

would be necessary, we split the BASIC construct into several BASIC lines using
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a GOTO, as above. In pseudocode, of course, there is no limit on the number of
statements that can be included within a then clause—which is one of the reasons

pseudocode is so convenient.]

Another conditional flow construct (which is available in some versions of

BASIC) may be written in pseudocode as follows:

if condition
then statement 1

else statement2

endif

or, in some versions of BASIC,

100 IF condition THEN statement 1

ELSE statement2

If condition is satisfied, statementl is executed but statement2 is not. If condition

fails, statement 1 is not executed but statement2 is. In either case, one of the two

statements (but not both) is executed. After executing either statementl or statement2,

the computer next executes the statement immediately following the complete
IF-THEN-ELSE construction.

TRS-80 Level II BASIC, IBM BASIC, and BASIC-80 all permit an ELSE

clause; Applesoft BASIC does not. Note that since the ELSE clause does not

have its own line number, the limit on line length applies to the entire IF statement,

including both the THEN and ELSE clauses. For this reason, in order to be

able to use more space, the IF statement is sometimes indented:

100 IF condition THEN statement 1

ELSE statement2

or even

100 IF condition THEN statement 1 ELSE statement2

Of course, both the THEN and ELSE clauses can consist of multiple statements,
as in

100 IF X > 0 THEN PRINT “X IS POSITIVE “: X = X + 1

ELSE PRINT “X IS NEGATIVE “: X = X — 1

In pseudocode, this would be written as

if x > 0

then print “x is positive”
x=x+ 1

else print “x is negative”
x=x—1

endif
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In those versions of BASIC that do not support the ELSE clause, or if an

ELSE clause would make a line too long, the statement above can be implemented

using a GOTO:

100 IF X > 0 THEN PRINT “X IS POSITIVE “: X = X + 1: GOTO 140

110 ‘else statements 120— 130

120 PRINT “X IS NEGATIVE”

130 X=X—1

140

or, if the THEN clause also becomes too long,

100 IF X <= 0 THEN GOTO 150

110 ‘then clause is statements 120— 130

120 PRINT “X IS POSITIVE”

130 X=X+1

140 GOTO 180: ‘branch around else clause

150 ‘else clause is statements 160— 170

160 PRINT “X IS NEGATIVE”

170 X=X—1

180

In the remainder of this book, we will assume that ELSE clauses are permitted in

BASIC. If your version of BASIC does not permit them, use the translation techniques

that we have presented.

Very often in programming, it is necessary to use a nested IF. That is, depending

on the outcome of one test, another test may have to be made. As we

shall see, this is expressed quite naturally in pseudocode but awkwardly in BASIC.

For example, consider the specification for an automatic teller machine.

input type, amount

if type = “deposit”
then balance = balance + amount

print “deposit accepted. amt = “; amount

print “thank you for banking with us”

else if type = “withdrawal”

then if amount <= balance
then balance = balance — amount

print “withdrawal = “; amount

else print “insufficient funds”

endif

else print “unrecognized transaction”

endif

endif
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Note that this pseudocode is readable and self-explanatory due to the indentation
and structuring. In many versions of BASIC, nested IFs are permitted, as in

100 IF A> 10 THEN IF B> 10 THEN X = X + 1

However, the limit on statement length in BASIC makes it impractical to use
nested IFs in situations such as the algorithm above. Therefore, we usually express

nested IFs using GOTOs. The BASIC version of the algorithm above is the

following:

100 DEFSTR T

110 INPUT TYPE, AMOUNT

120 IF TYPE <> “DEPOSIT” THEN GOTO 170

130 BALANCE = BALANCE + AMOUNT

140 PRINT “DEPOSIT ACCEPTED. AMOUNT = “; AMOUNT

150 PRINT “THANK YOU FOR BANKING WITH US”

160 GOTO 250

170 ‘else clause

180 IF TYPE <> “WITHDRAWAL” THEN GOTO 220

190 IF AMOUNT <= BALANCE

THEN BALANCE = BALANCE - AMOUNT:

PRINT “WITHDRAWAL = “; AMOUNT

ELSE PRINT “INSUFFICIENT FUNDS”

200 ‘endif
210 GOTO 240

220 ‘else clause

230 PRINT “UNRECOGNIZED TRANSACTION”

240 ‘endif

250 ‘endif
260 END

Note that it is not necessary to include the remark ‘ endif in the program; all that is
necessary is to code the subsequent statement in the program. While the ‘endif
remark is sometimes helpful as a placeholder (as in the example above), in the
interest of clarity and simplicity we will usually omit it.

We should point out that nested IFs are often unnecessary in solving a particular
problem. For example, suppose that it is necessary to set X to 10 if A is

between 100 and 200. One version is

100 IF A > = 100 THEN IF A <= 200 THEN X = 10

Such code is overly complicated. There is no need to use a nested IF when a

single (compound) test will do, as in

100 IF (A > = 100) AND (A <= 200) THEN X = 10
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The second version mirrors the statement of the problem more closely than the

first. In general, it is easier to read single statements involving compound tests
(when those tests are connected with the same logical operators) than to read
nested control structures.

There is a common pitfall in using compound tests. For example, suppose
that A is an array declared by

10 DIM A(10)

and it is desired to determine whether a subscript I is within bounds of the array

and whether A(I) is negative. A novice might use the following scheme:

100 IF (I > = 1) AND (I <= 10) AND (A(I) <0) THEN...

However, this code is incorrect because in the case that the subscript I is out of

bounds, the reference to A(I) is undefined. For example, suppose that I equals
12. Then the expression (I > = 1) is evaluated to true and the expression
(I <= 10) is evaluated to false. But when the expression (A(I) < 0) is evaluated,

an error results since A(I) does not exist. The code can be written correctly as

100 IF (I > = 1) AND (I <= 10) THEN IF A(I) <0 THEN...

It should be noted that in some versions of BASIC and some other languages,

the first statement executes correctly. In a sequence of tests connected by
the “AND” operation, as soon as one operand is found to be false, no further

testing of the other conditions is necessary. Similarly, when one component of a

sequence of tests connected by the “OR” operation is found to be true, the entire

expression is assumed to be true and no further testing is performed. When

writing programs for such versions of BASIC, a judicious ordering of the tests
will make statements such as the former usable. In other versions, however, such
tests will result in an error.

The choice of whether to use logical operations or nested IFs should be
made on the merits of each particular case. However, within the limits of a correct

program, one should select the version that is clearest and most readable.

Logical Data

Note that every form of the IF statement includes a condition. This condition uses

comparison operations to compare two values. For example, in

A+B > 7

the comparison operation “ > “ (greater than) compares the values of A + B
and 7, while in

X<= B+12*4

the comparison operation “< =“ (less than or equal to) compares the values of
X and B + 12*4. The result of the comparison operation is a logical value, that
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is, either the value of true or false. An IF statement tests a logical value; if it is
true, the THEN clause is executed, and if it is false, the ELSE clause or the next
statement is executed.

As we have seen in Chapter 1, every data value must be represented by
some method of interpreting bit settings. This must be true of logical values as
well. Most BASICs use an integer to represent a logical value. In some BASICs,

the integer 0 represents false and the integer 1 represents true; in others, 0 represents
false and — 1 (which is all is in twos-complement notation) represents

true; and other versions of BASIC use still other representations. (Some BASICs

allow you to determine the representation used by executing statements such as

PRINT 1 = 1 or PRINT 1 = 0.) However, as noted in Chapter 1, it makes very

little difference what representation is used, as long as data types can be used

consistently.
It is sometimes useful to allow a variable to assume a logical value. Some

BASICs which represent logical values by integers allow statements such as

100 X = A>B

which sets X to the integer that represents the logical value true if A is greater

than B and to the integer that represents false if A is not greater than B. In most
BASICs, however, such variables cannot be used as a condition in an IF statement,

as in

110 IFXTHENB=B+1

If we knew the integer representation of true were 1, we could write

110 IFX=1THENB=B+1

but this is quite enigmatic and may be incorrect in another version of BASIC

which uses a different representation. For this reason, it is useful to develop a

programmed implementation of logical variables, as follows.

Each program requiring logical variables would begin with

10 TRUE = 1

20 FALSE = 0

The variables TRUE and FALSE would subsequently be treated as constants

(i.e., they would not appear on the left-hand side of an assignment statement or
within a READ or INPUT statement). Once these “constants” have been initialized,

they could be assigned to logical variables, and they could be tested against

logical variables. For example,

50 IF At2 + Bt2 = Ct2 THEN RIGHT = TRUE: ‘right triangle
60 ‘other statements

100 IF RIGHT = TRUE THEN...
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Such a construction allows us to ask questions about whether the triangle considered

was a right triangle without duplicating the test.
We can combine logical operations as follows. Suppose that we had the following

code:

10 ABIG = FALSE

20 IF A> B THEN ABIG = TRUE

30 CBIG = FALSE

40 IF C > D THEN CBIG = TRUE

Then we may write:

50 IF (ABIG = TRUE) OR (CBIG = FALSE) THEN...

or

60 IF (ABIG = TRUE) AND (CBIG = FALSE) THEN...

We will make use of this simple implementation of logical variables throughout
the text.

Repetitive Flow

Another major control structure is repetitive flow, in which a statement or group

of statements is executed repeatedly until some halting condition is reached. This

type of structure is called a loop. The computing done by most programs (whether

to calculate ‘rr correct to 500 decimal places, or to calculate and print payroll

checks for several thousand employees) is basically a repetitive process. Most

high-level programming languages provide for some form of automatic loop control.

Let us examine the basic types of loop structures that arise in programming

and show how they can be implemented in BASIC.

The most basic loop construct is one that loops as long as a condition is

met, as in the following pseudocode:

while condition do

‘body of ioop
endwhile

Whenever the while statement is encountered, condition is tested. If condition is

satisfied, the body of the loop is executed. When the endwhile statement is encountered,

control is returned to the while statement, where the process is repeated.

Each execution of the body of the loop is called an iteration. The number of

iterations through a loop may be 0, 1, 2, or 5000. The body of the loop is repeated

as long as the condition in the while clause is true. At some point (hopefully)

the condition becomes false. When this occurs, control passes to the statement

immediately following the endwhile statement. (Of course, it is the programmer’s

responsibility to make sure that the loop does not execute forever.)
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For example, the following loop prints all nonnegative powers of two less

than tp:

power = 1

while power < tp do

print power

power power * 2
endwhile

Note that the value of power is changed within the loop so that eventually power

is greater than or equal to tp and the loop terminates. One of the requirements for

the normal termination of a while loop is that the value of some variable appearing

within the while condition be altered within the loop body so that the condition

eventually becomes false. The condition within the while clause is tested

before each execution of the loop body.

The while construct may easily be implemented in BASIC by the following

10 IF NOT condition THEN GOTO 110

20 ‘body of ioop

100 GOTO1O

110 ‘remainder of program

We can now write a BASIC program to print all powers of 2 less than TP (where

TP>= 1):

100 POWER = 1

110 IF POWER> = TP THEN GOTO 150

120 PRINT POWER

130 POWER = POWER * 2

140 GOTO 110

150 END

Some versions of BASIC do support some form of the while statement. For example,
in BASIC-80 and IBM BASIC one may code

10 WHILE expression
20 ‘body of loop

100 WEND

As long as expression is nonzero (i.e., true), the statements between the WHILE
and the WEND are executed repeatedly. Most versions of BASIC, however, do
not support the while construct directly and therefore we will not use it in the
BASIC programs in this book.

BASIC does contain another very popular and useful loop structure in
which a counter is incremented (or decremented) automatically after each execu
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tion of the ioop body. When the counter becomes greater than (or less than) some
test value, the loop is terminated. Such a loop has the following form:

10 FOR I = start TO finish STEP inc
20 ‘body of loop

100 NEXT I

In pseudocode, this becomes

for i = start to finish step inc

‘body of loop

next i

The variable I (known as the index or the control variable of the loop) is initialized
to start and is tested against finish. If the result of the test is true, the loop

body is executed. If the result is false, the loop is skipped. The type of test depends
on the sign of inc. If inc is positive, the test is whether I <= finish. If inc

is negative, the test is whether I > = finish. When the NEXT statement is encountered,
the variable I is reset to I + inc and is again tested against the original

value of finish. When the test fails (even if the loop body has never been
executed), execution resumes with the statement immediately following the
NEXT statement. If the STEP inc portion is omitted, the increment is set to 1.

It should be noted that the value of the loop control variable may be

changed within the body of the loop (not recommended), a practice that may
have an effect on the number of iterations. However, changes to the values of inc

or finish have no effect on the loop iteration. (There may be some versions of
BASIC for which this is not true.)

This type of loop can be used to control a simple count of the number of
times a particular process is executed. It may be combined with other types of
looping mechanisms to perform a significant amount of work.

For example, consider an alternative method for printing all powers of 2
less than TP:

100 FOR I = 0 TO 1E30 STEP 1

110 IF 2t1 > = TP THEN GOTO 140

120 PRINT 211

130 NEXT I

140 END

The value of I is initialized to 0 and is incremented by 1. Then its power of 2 is
printed, as long as that power is less than TP. Note that the TO clause contains a
ridiculously large value. For all intents and purposes the value of I is increased

indefinitely by 1 with no upper limit. The loop is terminated only if POWER
becomes greater than TP.
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The control variable of a loop is frequently used to index an array. For example,
suppose that the first N elements of an array A are in increasing numerical

order. It is desired to insert the value of another variable X at its proper numerical
position within the array. The following code accomplishes this:

100 ‘find the proper position for X
110 FORI=1TON

120 IF X <= A(I) THEN GOTO 140

130 NEXTI

140 ‘at this point X <= A(I). Thus X should be inserted

‘immediately before A(I)
150 N=N+1

160 ‘move the remaining elements and place X in its proper position
170 FOR J = N + 1 TO I + 1 STEP — 1: ‘move each element in

180 A(J) = A(J — 1) : ‘the array larger than X
190 NEXTJ

200 A(I) = X

Make sure that you understand how the indices are manipulated in each of the

loops above. Such techniques are standard tools of programming and are used in

many applications.

By now, the reader should have noticed a significant difference between a

while and a for-next loop. A while loop is a repetitive flow control structure

which is terminated when a specified condition becomes false. Such a loop may

repeat zero, one, or many times, depending on the logical value of the condition

at each iteration. A for-next loop, on the other hand, repeats a specified number

of times as determined by the values of the start, step, and terminal variables in

the for statement upon initial execution.

Some loops are not terminated by a condition in a while clause. Instead, the

logical tests that cause loop termination are made within the loop body. In such

cases, we desire a loop that is inherently infinite unless it can somehow be terminated

from within. One example of such a loop is the following:

while 1 = 1 do

‘body of ioop
endwhile

This loop repeats indefinitely since the condition 1 = 1 always evaluates to true.

A simpler and more direct method is to use true as the condition. Such a loop is

coded in pseudocode as

while true do

‘body of loop
endwhile
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This control structure may be implemented in BASIC by

100 ‘body of loop

200 GOTO 100

Of course, the programmer must provide a mechanism for exiting from within the
body of such a loop (usually via a GOTO).

Subroutines

The subroutine is a most helpful programming tool in reducing large unmanageable

problems to reasonable size. The proper approach to designing a program of

any complexity involves the separation of a complete solution into its component

subtasks. This allows the programmer to focus on each individual task independently
of the others. After all the tasks have been debugged, they may be combined

into a single program. In the remainder of this section we present
techniques that will be used to represent subroutines in pseudocode and their corresponding

counterparts in BASIC. In the following section we discuss a strategy

for decomposing larger programs into a set of subroutines.
In order to identify programs and subroutines, it is convenient to assign

names to them. This helps in recognizing those routines that may be called more

than once in a program or those routines that may be used in other programs.

Because BASIC provides no syntactic method for naming programs or subroutines,

we do this through a remark. Thus a program may be indicated by

10 ‘program progi

• . balance of prog 1

and a subroutine by

1000 ‘subroutine subl

• . . balance of subl

For example, suppose that we wish to write a main program that will call a subroutine

to print the integers and their square roots for all integers between 1 and
10. We could first write an algorithm in pseudocode as follows:

print “number”, “root”
sqprint ‘subroutine sqprint prints the numbers between 1 and 10

‘and their corresponding square roots

print “finished”
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The second line of the algorithm, sqprnt, is a call to the subroutine sqprnt which

presumably performs the desired actions. The algorithm sqprnt could be written
in pseudocode as follows:

subroutine sqprnt
fori = ito 10

print i sqr(i)
next i

return

If it were desired to translate the pseudocode into a single BASIC program, it
could be done as follows:

10 ‘program printroots

20 PRINT “NUMBER” , “ROOT”

30 GOSUB 100: ‘subroutine sqprnt prints the required table

40 PRINT “FINISHED”

50 END

60

70

100 ‘subroutine sqprnt

110 ‘locals:!

120 ‘This subroutine prints 10 lines. Each line contains an

130 ‘integer between 1 and 10 and its square root.

140 FORI=1TO1O

150 PRINT I, SQR(I)

160 NEXT I

170 RETURN

180 ‘endsub

If the program above were run, it would achieve the desired effect.
Let us examine the notational conventions used above. In line 30 where the

subroutine is called, we indicate in a remark the name of the subroutine and a

brief indication of the purpose of the subroutine. When the subroutine is called,
control is transferred to line 100. But before this transfer takes place, the address

of the next statement is saved by the system for subsequent use by the RETURN

statement. That is, the BASIC system remembers that the subroutine is being
called from line 30 so that when the subroutine is completed, execution resumes
at line 40. Since lines 100—130 are remarks, the first executable statement within

the subroutine is at line 140. Lines 140—160 produce the appropriate table, after
which control is returned to the return address (line 40) that was saved by the
GOSUB statement. Whenever a subroutine is called, it returns to the statement

immediately following the point of call.
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Lines 100—130 are for documentation purposes only and have no effect on

the execution of the program. Line 100 defines the name of the subroutine. This

is helpful in identifying where the routine begins and, together with the endsub

remark at line 180, delimits the subroutine from the remainder of the program.

This is useful, for example, when it is desired to use a subroutine that already

exists in a different program. The statements need only be copied if the line numbers

are available, or renumbered and then copied if the line numbers are in use.

In any case, it is easy to see where the subroutine begins and ends by using the
name of the subroutine in an initial remark and the endsub delimiter in a terminating

remark. In addition to delimiting the body of the subroutine itself, the name

of the subroutine is also helpful in documenting the call to the subroutine. Notice

the remark in the GOSUB statement at line 30, which specifies the name of the

subroutine being called. This enables the reader to read the program without having

to check line numbers at each point of the way. Note that beginning a subroutine

with a name and terminating it with an endsub remark does not relieve the

programmer of the responsibility of adhering to the usual rules for calling and

returning from a subroutine; that is, the routine must be called by GOSUB 100

(GOSUB SQPRNT is not legal) and a return is effected by a RETURN statement
(endsub does not effect a return). However, there are some versions of BASIC

that do allow naming of subroutines and calling them by name.

Line 110 is a listing of the “local variables” of the subroutine. We say that

a variable is local if the following three conditions hold:

1. The subroutine does not make use of a value that was assigned to the variable
before the subroutine was called.

2. The variable is assigned a value within the subroutine (either in an assignment
statement, a FOR statement, or in a READ or INPUT statement).

3. The value assigned to the variable within the subroutine is not used by the

calling program upon return from the subroutine.

The variable I satisfies all of these conditions. The variable I is not used in

the subroutine before line 140, which is its first assignment there. In fact, the

variable I does not appear within the body of the main program (lines 10—50) at

all. The FOR-NEXT construction within the subroutine assigns a value to I, so
the second condition is satisfied. The third condition holds since no use is made

of the variable I following the return from the subroutine (in lines 40—50). The

primary reason for listing local variables in a remark is to help the programmer
recognize potential conflicts as a result of reusing the same variable (sometimes
unknowingly). If, in this example, the variable I had a value before the call to the
subroutine at line 30, that value would be lost upon return from the subroutine,

since the subroutine changes that value. In such cases it is therefore necessary to
change the names of the variables either within the subroutine or within the main

program. The use of local identifications within remarks will help the program-
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mer identify those variable names that may have to be modified as a result of the

inclusion of certain subroutines within a program.

Parameters in BASIC

The subroutine sqprnt in the example above consists of a self-contained set of

statements that could be moved elsewhere in this or another program and accomplish
the same task. In fact, if the RETURN statement is omitted, the subroutine

sqprint could be run as a complete program. Very often, however, it is necessary

that a subroutine communicate with its environment (i.e., the calling program).

For example, suppose that we wish to write a subroutine that will interchange

two variables. We could easily do this to interchange the two variables A and B.

But if it were necessary to interchange two other variables, say C and D, the

subroutine could not be used directly (without first saving A and B temporarily,

moving C and D into A and B, calling the subroutine, recopying A and B into C

and D, and finally restoring the values of A and B). It would therefore be helpful

if we could write a general subroutine that would interchange any two numeric

variables and be able to call the same subroutine to interchange A and B or C and

D as necessary. Although such mechanisms are fundamental features of other

high level programming languages, they are not supported in most versions of

BASIC. Therefore, we present a method of accomplishing this.

In pseudocode, we can express a subroutine to do this as follows:

subroutine swap(pl ‘p2)

temp = p1

p1 = p2

p2 = temp
return

The variables p1 and p2 are parameters of the subroutine. This is indicated by

their appearance in parentheses after the name of the subroutine in its first statement.

When a pseudocode statement such as

swap(a,b)

appears, the values of a and b (called arguments) are automatically substituted

into p1 and p2 and the subroutine begins execution. When the subroutine returns,
a receives the final value of p1 and b receives the final value of p2. Thus, interchanging

the values of p1 and p2 in the subroutine will result in the interchanging

of the values of a and b as well. Similarly, the statement

swap(b, c)

which calls on swap with b and c as arguments, results in the interchange of the
values of b and c.
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Let us consider an example of an application of the subroutine above. Suppose

that we wish to read three numbers and sort them in ascending order. Consider

the following algorithm:

‘read and sort three numbers

read a, b, c

if a>b

then swap (a,b)

endif

if b>c

then swap (b,c)

endif

if a>b

then swap (a,b)

endif

print a, b, C

The algorithm above in pseudocode calls on the subroutine swap three times,

with different parameters on each call. The pseudocode statement

swap (a,b)

causes the subroutine swap to be called with p1 having the value of a and p2 the
value of b. Thus the values of a and b will be interchanged. The statement

swap(b,c)

causes swap to be called with p1 having the value of b and p2 the value of c, thus

interchanging the values of b and c. Readers should convince themselves that the

steps above do indeed sort the values into increasing order regardless of the original
sequence.

Note that the parameters p1 and p2 serve as both inputs and outputs of the
subroutine swap. An input parameter is one that obtains its initial value from a

corresponding variable in the calling routine and whose initial value is used by

the subroutine. An output parameter is one whose value is set by the subroutine

for use by the calling routine after the subroutine returns. To see that p1 is an

input parameter, note the statement

temp = p1

which utilizes the value of p1 without first setting it explicitly within the subroutine.
Similarly, the statement

p1 = p2

confirms that p2 is an input parameter. The same statement indicates that p1 is an
output parameter, since its value is being set within the subroutine for use outside
the subroutine. Similarly, the statement

p2 = temp
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indicates that p2 is an output parameter. The variable temp is neither an input nor

an output parameter. Aside from the fact that it does not appear in the header of
the subroutine, temp cannot be an input parameter because it is set by the statement

temp = p1

before its value is used. The fact that it is not an output parameter, despite its
being set in the statement above, is apparent when we recognize that its value is
no longer required outside the subroutine. The parameters p1 and p2 and the corresponding

variables (a and b in two calls; b and c in the other) are swapped in

the subroutine. temp is only a temporary variable used in the swapping process;

once the process has been concluded, there is no need for its value. As we have
already seen, temp is a local variable used within the subroutine.

To translate the pseudocode subroutine into BASIC, we list in opening remarks
all the inputs, outputs, and local variables of the subroutine. In calling the

subroutine we must explicitly assign the output values to their corresponding
variables. Following is a complete BASIC version of the program to sort three
numbers using the subroutine swap.

10 ‘program sort

20 ‘read three variables and sort them in increasing order
30 READA,B,C
40 IFA>B

THEN P1 = A: P2 = B: GOSUB 1000: A = P1: B = P2:

‘subroutine swap interchanges P1 and P2
50 IFB>C

THEN P1 = B: P2 = C: GOSUB 1000: B = P1: C = P2

60 IFA>B

THEN P1 = A: P2 = B: GOSUB 1000: A = P1: B = P2

70 PRINT “SORTED SEQUENCE IS “; A; B; C

80 END

90 DATA...

100

110

1000 ‘subroutine swap

1010 ‘inputs: P1, P2

1020 ‘outputs: P1, P2
1030 ‘locals: TEMP

1040 ‘swap interchanges the values P1 and P2
1050 TEMP = P1

1060 P1 = P2

1070 P2 = TEMP

1080 RETURN

1090 ‘endsub
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The original algorithm contains the statement

if a>b

then swap(a,b)

endif

Let us see how this is translated into the corresponding BASIC statements at line

40. The first step in calling a subroutine is to assign values to the inputs. This is

done by the statements P1 = A and P2 = B. Once these inputs have been initalized,

the subroutine can be called (GOSUB 1000) to interchange the values of

P1 and P2. After the subroutine has completed its task, control is returned to the

calling program (through the RETURN statement). At this point, it is necessary

to assign the outputs to their corresponding variables in the calling program. This

is done by the statements A = P1 and B = P2. The translations of the remaining

if statements are similar.

Note also that, whereas the opening statement of the swap pseudocode algorithm

is an actual pseudocode statement (not a remark) and includes the input and

output parameters in parentheses, there is no corresponding BASIC statement.

Rather, we indicate the beginning of the subroutine in a remark and list the input,

output, and local variables in subsequent remarks.

Readers should note that we have adopted these conventions to make the

use of subroutines more standard and general. Many languages (and even some

versions of BASIC) support features that allow the programmer to call a subroutine

directly through a statement such as SWAP(A, B) without the need to explicitly

assign the values of A and B to parameters P1 and P2, and vice versa.

Functions in BASIC

A function is a subroutine with one output parameter; that is, it computes a single
value to be returned to the calling program. In writing algorithms to perform various

processes, it is often convenient to use functional notation. In this notation,

the name of the function followed by a list of its arguments enclosed in parentheses

indicates a call to the function with those arguments and represents the value

of that call. For example, SQR is a function (which is available in BASIC). If the
following pseudocode statements were to be translated into a BASIC program

numb = 64

root = sqr(numb)

print numb, root

the reference to SQR(NUMB) would indicate a call to the SQR (square root)
function with argument 64. The result of the application of this function to the
argument 64 is 8, so that the PRINT statement will print 64 and 8.

Suppose that another function, cbr calculated the cube root of a number.

Then we could expand the algorithm above as follows:
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numb = 64

sroot = sqr (numb)

croot = cbr (numb)

print numb, sroot, croot

The algorithm would now print 64, 8, 4, which are the number, its square root,

and its cube root, respectively. Because SQR is a built-in function (available as

part of the BASIC language itself) it is not necessary to write either an algorithm

or the BASIC code for this function. However, the function cbr is not available

within the language, so it must be implemented by the programmer. The following

pseudocode implements the definition for the function cbr:

function cbr (nmb)

cbr = nmbf (1/3)

return

The function name (in this case, cbr) is used as an output variable within the

function definition to hold the value returned by the function.

Some versions of BASIC (e.g., BASIC-80 and IBM BASIC) allow the direct

definition of a function as long as it is a single formula which produces a

value. For example, we can define the cube root function above by the BASIC
statement

10 DEF FNCBR(NMB) = NMB 1’ (1/3)

The name of such a function must be of the form FNx, where x is any legal variable

name. The variable NMB is a true input parameter which need not be given

a value explicitly. Once the function has been defined, it can be used as in

100 CROOT = FNCBR (X)

The variable CROOT will be set to the cube root of X regardless of any value that

the variable NMB may have. The value of the variable NMB is not changed by
this call.

However, some versions of BASIC (e.g., TRS-80 Level II) do not allow

such functions, and it is often desirable to use functions that involve more than a

simple formula of input parameters. For this reason, we often implement functions

in BASIC using subroutines. For example, the cbr function may be coded
as follows:

1000 ‘subroutine cbr

1010 ‘inputs:NMB

1020 ‘outputs: CBR
1030 ‘locals: none

1040 ‘this subroutine calculates the cube root of its input

1050 CBR = NMB 1’ (1/3)
1060 RETURN

1070 ‘endsub
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We adopt the convention of using the name of the function as its output variable.

If it is not possible to use the function name (e.g., if its first letter designates a

different type or another variable with the same first two letters already exists in

the program under some versions of BASIC), then a variable whose name is as

close as possible to the function name is used as the output variable.

The following is a complete program to print a table of the numbers, square

roots, and cube roots of all numbers between 1 and 10.

10 ‘program table

20 ‘This program prints a list of numbers from 1 to 10

30 ‘along with their square roots and cube roots.
40 FOR NUMB = 1 TO 10

50 SROOT = SQR (NUMB)

60 NMB = NUMB

70 GOSUB 1000: ‘subroutine cbr sets the variable CBR

80 CROOT = CBR

90 PRINT NUMB, SROOT, CROOT

100 NEXT NUMB

110 END

1000 ‘subroutine cbr

1010 ‘inputs:NMB

1020 ‘outputs: CBR

1030 ‘locals: none

1040 ‘this subroutine calculates the cube root of its input

1050 CBR = NMB 1 (1/3)

1060 RETURN

1070 ‘endsub

EXERCISES

1. Write code to compute the number of vacation days for an employee, NUMVAC, by

the following method. Let SICK be the number of days on which the employee called

in sick during the past year. The employee is ordinarily entitled to 10 vacation days.

However, for each day over 10 for which the employee called in sick, his vacation is

reduced by 1 day. If the employee called in sick on fewer than 5 days, he receives 2

extra vacation days. The number of vacation days may not be negative.

2. Rewrite each of the following pieces of code without using FOR-NEXT loops. Instead,
use IFs and GOTO statements.
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(a) 10 FOR I = A TO B STEP 10

20 READ X, Y

30 Z=Z+XY

40 NEXT I

(b) 10 FOR I = A TO N STEP L

20 READX,Y

30 Z=Z+X*Y

40 NEXT I

(c) 10 FOR I = A TO N STEP 10

20 FORJ=1T03000

30 READX,Y

40 Z=Z+X+Y

50 NEXTJ

60 NEXT I

(d) 10 FORI=1TO1O

20 FOR J = 3 TO I—i STEP 3

30 SUM=SUM+J

40 READ X

50 IFX> 100GOTO8O

60 IF X> 50 GOTO 100

70 SUM=SUM-X

80 NEXTJ

90 SUM=SUM+I

100 NEXT I

3. Determine the purpose of each of the following pieces of code and rewrite them so

that they do not use any GOTO statements.

(a) 10 X = 1

20 IF X> 500 THEN GOTO 60

30 PRINT X; SQR(X); X + 500; SQR(X + 500)

40 X = X + 1

50 GOTO2O

60 ‘remainder of program

(b) 10 I = 0
20 IF I> 10 THEN GOTO 60

30 PRINT I;

40 I = I + 1

50 GOTO2O

60 I = 1

70 IF I> 10 THEN GOTO 170

80 PRINT I;

90 J = 1

100 IF J> 10 THEN GOTO 140
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110 PRINT I*J

120 J = J + 1

130 GOTO 100

140 PRINT

150 I = I + 1

160 GOTO 70

170 END

4. The Royal Dromedary Corporation Ltd. has just installed a computer to assist its

camel drivers in ensuring that camel caravans reach their destination safely. It has

been determined by the company’s Zoological Transportation Expert that a camel can

safely carry the weight of 7496 straws before its back breaks. Each caravan leader

keys a group of data lines for the caravan he is leading. The first data line contains
the driver’s name. The next data line contains the number of camels in the caravan.

Then, for each camel in the caravan there is a data line that contains the number of

baskets of straw which that camel is carrying followed by the number of straws in

each basket. Each basket itself consists of 137 straws.

Write a program to read a series of such data lines and, for each caravan, print

the driver’s name followed by a list of the camels that are carrying too heavy a load,

together with the weight of those loads. If all the camels are safe, print a message to

that effect. For example, typical output might be

BOB SMITH

ALL THE CAMELS ARE OK

JOHN JONES

THE FOLLOWING CAMELS ARE UNSAFE:

CAMEL 3 CARRYING 8467 STRAWS

CAMEL 6 CARRYING 7514 STRAWS

5. Assume that the data to a program consist of a number N, followed by N sets of data

which are used to initialize an array declared by

DIM X(100,100)

Each of the N sets of data consists of a row number R followed by an indeterminate

number of integer pairs. Each integer pair consists of a column number C and a value

V. The value of X(R,C) is to be set to V. Each set of row data is terminated by a pair

of Os. If a row number R is not between 1 and 100, its entire set of data is to be

ignored. If a column number is not between 1 and 100, its integer pair is to be ignored

(unless both C and V equal 0, in which case the end of a set of row data is

signaled). All array elements that are not given values by the data must be set to 0. If

an array element is given two different values, an error message is to be printed.

Write a program to initialize such an array in the manner described.
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6. Consider the following code, which sorts an array X of size N:
10 FOR TP = N TO 2 STEP —1

20 FOR! = 1TOTP—1

30 !F X(!)> X(!+ 1) THEN

TEMP = X(!): X(I) = X(!+ 1): X(I+ 1) = TEMP

40 NEXT I

50 NEXT TP

(a) Explain how the code sorts the array X.

(b) Modify the code by using a logical flag so that if the condition X(!) > X(! + 1)

within the FOR-NEXT loop for! is always FALSE throughout a single complete

execution of that ioop, the FOR-NEXT loop for TP is terminated prematurely.

(c) Explain why the modified code also sorts the array X.

7. Write an algorithm to compute the square root of a number x (greater than 4) correct

to within an error margin err, by the following method. Let est be an estimate of the

square root. Initially, est is x/4. !f the difference between est and x/est is less than

err, then est is the square root. Otherwise, reset est to the average of est and x/est. Do

not use any goto statements.

8. A positive integer greater than 1 is a prime if it is not divisible by any integer other

than itself or 1. Examples of primes are 2, 11, 37, and 43; 4, 15, and 24 are not

primes. Write a routine prime that returns true if x is a prime and false if it is not.

9. A perfect number is an integer greater than 1 which is the sum of all its divisors

except itself. For example, 6 is a perfect number since 6 = 1 + 2 + 3, and 28 is a

perfect number since 28 = 1 + 2 + 4 + 7 + 14. Write a program to find the

smallest perfect number greater than 28.

10. Consider two arrays. Array X contains five different elements in ascending order and

array Y contains six different elements in descending order. An array Z of size 11 is
declared. Write a BASIC routine to set the values of Z to the values of X and Y in

ascending order.

11. Write an algorithm and a BASIC program to find the smallest prime number larger

than a given integer x.

12. (a) Write a function fact(n) to compute the value of the product of all the integers

between 1 and n inclusive. In mathematics, fact(n) is written as n!.

(b) Suppose that n people serve on a committee and k of them must be chosen for a

subcommittee. Let comm(n,k) be the number of different such subcommittees

that can be formed. Show that comm(n,k) equals n!/(k!*(n — k)!)”. Write a function

comm(n,k) to compute this value.

(c) If an urn contains p black and v white balls and b + w balls are chosen at random

from the urn, let prob(p,v,b,w) be the probability that exactly b black and w white

balls are picked. Show that prob(p,v,b,w) can be computed by the formula

(comm(p,b)*comm(v,w))/comm(p + v,b + w). Write a program that reads sets of

data each of which contains integers p, v, b, and w and which computes

prob(p,v,b,w). For each input set, the program prints the values of p, v, b, w and

prob(p, v, b, w).
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(d) Modify the program of part (c) so that after all the output of that part is printed,

the program prints the number of times that the functionfact was called.

(e) Rewrite the program of part (c) without using any subroutines.

2. PROGRAMMING TECHNIQUES

In the preceding section we examined some of the programming constructs of

BASIC and have shown how they can be extended to other control structures to

produce logical, readable, and correct programs. Let us now turn our attention to

specific techniques that are helpful in writing programs.

Program Development

We all have an intuitive idea of the relationship between a problem and a solution.

We think of a problem as the formulation of a question that is presented and

the solution as the response to that question.

For large problems, we are not the sole problem solvers. Most problem solutions

that involve large amounts of data or that require a process to be performed

many times are processed by a computer (so that human beings can

devote their time to presumably more worthwhile endeavors). The programmer’s

job is essentially to formulate the solution so that a machine can be used to carry

out the mechanics of that solution. Computer design has not yet reached the level

where one can walk up to a computer and ask it: “What is my mortgage payment?”

or “What is the value of -rr correct to 5000 decimal places?” It is therefore

necessary to write programs to enable a machine to answer these questions.

The program is a vehicle with which we may arrive at answers to these and other

questions.

In the process of producing a solution from a problem, the work of the programmer

must pass through several stages:

1. Problem formulation

2. Choice of algorithm and data structures

3. Coding a solution

Let us examine each of these stages in turn.

Formulating the Problem

The problem formulation phase is an extremely important one. It has been said

that specifying a problem well is half its solution. As a problem is specified in

more and more detail, it becomes clearer what resources are necessary for the

problem’s solution and how those resources are to be utilized in achieving that
solution.

For example, suppose that you are hired by a college to produce a computenzed

system for student records. Although this may be enough of a description
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for specifying the requirements of a programming position, it is by no means sufficient
information from which to write a program. The problem must be defined

precisely so that the programmer knows exactly what inputs the program will expect
and what outputs are expected from it. The inputs and outputs may be specified
by company management, in which case the programmer has no choice other

than to accept the specifications handed to him or her and write the program (or
possibly quit his or her job). On the other hand, the programmer may have some
input into the specification of the program. In that case, he or she can exercise
some degree of control over the specification so that programming may be simplified

and the value of the final product to its users enhanced. For example, it
may be determined that certain information which is difficult to compute is not

really necessary until a subsequent phase of the project, when it is easier to obtain.

Or, it may be determined that such information is not needed at all. Similarly,

it may turn out that some procedure or process is really a very inefficient

method of obtaining a result, whereas a simpler method produces the same or
similar results at a much lower cost.

In any case, a final, precise, definition of the problem is arrived at—usually
with input from both the programmer and the user. It should be pointed out that

no programming should be attempted or even outlined before the problem is completely
specified. Projects that enter the coding stage prematurely usually end up

requiring large amounts of time in constant revision of code as the needs of the

final product evolve. Worse yet, such code is frequently patched up to get around
sticky points based on invalid initial assumptions which stem from an incomplete
understanding of the problem. The time that a programmer spends writing and
refining the specification of the problem and its solution will be retrieved by
eliminating much debugging, reorganizing, and rewriting portions of code that
were written too hastily.

The following are the inputs and outputs for the problem above:

Inputs
Number of students

For each student

Social security number
Name

Number of courses

For each course

Grade

Outputs
For each student

Social security number
Name

The student’s average

Class average

Alphabetical list of the students and their corresponding averages

and social security numbers
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The practice of explicitly specifying the inputs and outputs of a program is extremely

valuable. Aside from serving as a summary of problem specification,

such a list helps focus on the question of whether each output can be computed

from the given set of inputs. It is often the case that one or two inputs have been

unintentionally omitted from the problem specification. This omission can be detected

at this point before any programming has been done, at a time when the

machinery necessary to obtain missing inputs can be put into effect.

Developing an Algorithm

A list of inputs and outputs naturally leads to the next phase of program development:

choosing algorithms and data structures. An algorithm is a set of instructions

by which the outputs are computed from the inputs. A good programmer

realizes that no solution is completely specified unless an algorithm for its solution

has been described. In developing such an algorithm, the programmer must

ask how each of the outputs can be derived from the inputs, that is, which of the

outputs can be derived directly from the inputs and which need intermediate

quantities or other output quantities for their derivation. For example, the social

security number and name of a student are given by the input. Each student’s

average must be derived from the input grades. The class average must be derived

from the students’ averages, which are themselves outputs. This implies

that the students’ averages must be computed before the class average.

During the process of writing and modifying an algorithm, the good programmer

uncovers remaining gaps in the problem specification. In general, programming

is not a straight-line activity in which one can proceed from one step to

another. Rather, at each stage, decisions that were made in previous stages must

be reexamined and sometimes modified. Other decisions which were consciously

postponed in previous stages must be made in later stages. For example, in the

interest of increasing the efficiency of a program, specifications might be modified

during the actual coding. Of course, any such change of specification must

be agreed to by the user as well as by the programmer.

A first attempt at an algorithm outline for the college program might be the

following:

read number of students

for each student

read social security number
read name

read grades of the student

calculate the student’s average

print the student’s social security number, name, and average

calculate the class average

sort the class list alphabetically

print in alphabetical order the names, social security numbers,

and averages of the students
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Although the algorithm above can be regarded as a logical description of the solution,
it cannot be used directly to construct a program. In order to write a

BASIC program from such an algorithm it is necessary to be able to translate
every statement in the algorithm into equivalent BASIC code. This requires two
things: descriptions of how the data are maintained (i.e., the data structures to be
used) and the actual computations involved.

We will return shortly to the problem of how to transform the algorithm into
BASIC code. For now, let us examine the data structures that are necessary for
the solution of the problem.

Choosing Data Structures

The selection of data structures has profound ramifications on the complexity of
the algorithm that is required for the solution of a problem and the ease with
which this algorithm is implemented. Indeed, the major subject of this book concerns

the selection of data structures for problem solving.
In the example above, the choice of data structures is straightforward. Each

of the entities required in the program may be retained in a simple variable suitably
created for this purpose. In general, variables that are read as a group (e.g.,

the grades of an individual student) need not be placed in an array unless they
must be processed together, as, for example, in a sort routine. Economy of space
is achieved by reusing an individual variable, rather than using an array. On the
other hand, it is sometimes easier to perform certain tasks on an array than on a
set of simple variables. The student averages, names, and social security numbers,

for example, should be retained in arrays in order to sort and print the list in
alphabetical order. Since we require the average of a set of values at two distinct
points, we will use a subroutine for this purpose. This subroutine will accept an
array of numbers and the number of items whose average is to be computed and
will compute the average of these values. In order to use this subroutine to compute

the average of each individual student, it will be necessary to store the set of
grades for each student in an array. Although this is not technically necessary and
does require some extra space, it will make some of the programming easier. We
present the main program.

10 ‘program college
20 ‘read each student’s social security number, name, and grades
30 ‘and calculate and print the following information
40 ‘ social security number of each student
50 ‘ name of each student

60 ‘ average of each student

70 ‘ average of the students’ averages

80 ‘also print the averages in alphabetical order
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90 DEFSTR N

100 DIM ARR(100), NAM(100), NSEC(100), STAVG(100)

110 READ SNUM

120 FOR I = 1 TO SNUM

130 READ NSEC(I), NAM(I)

140 READ CNT

150 FORJ=1TOCNT

160 READ ARR(J)

170 NEXTJ

180 GOSUB 1000: ‘subroutine avg accepts ARR and CNT
‘and sets the variable AVG

190 STAVG(I) = AVG

200 PRINT NSEC(I), NAM(I), STAVG(I)

210 NEXT I

220 ‘the names and averages of the individual students

230 ‘have been printed
240 FOR I = 1 TO SNUM

250 ARR(I) = STAVG(I)

260 NEXT I

270 CNT = SNUM

280 GOSUB 1000: ‘subroutine avg
290 CLASAVG = AVG

300 PRINT “THE CLASS AVERAGE IS “; CLASAVG

310 GOSUB 2000: ‘subroutine sort accepts SNUM, NAM, NSEC, and

‘STAVG and sorts the list in alphabetical order
320 PRINT “ALPHABETICAL CLASS LIST”

330 FOR I = 1 TO SNUM

340 PRINT NSEC(I), NAM(I), STAVG(I)

350 NEXT I

360 END

800 DATA...

1000 ‘subroutine avg goes here

2000 ‘subroutine sort goes here

The main program should act only in a supervisory fashion. In other words,

it should act as a manager which organizes the work that is to be done and assigns

various tasks to specific subroutines. Each routine, in turn, organizes the job that

it must do and breaks up the work into components to be assigned to still other,

lower-level routines. This process continues until the lowest-level routines are

written. These routines can perform their job easily enough without calling other
routines.

The programmer then proceeds to solve the subproblems. At this time it is
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necessary to specify those subproblems more precisely. In particular, it is necessary
to determine exactly what information the subroutine can access when it is

called and what actions it is expected to take. Once the purpose of the subroutine
is completely specified, the subroutine may be coded using the same techniques
that were used in coding the calling program. This process continues until there
are no more algorithms to refine and no more subgoals to accomplish. The routine

to calculate the average is straightforward.

1000 ‘subroutine avg
1010 ‘inputs: ARR, CNT
1020 ‘outputs: AVG
1030 ‘locals: K, SUM

1040 ‘subroutine avg sets AVG to the average of

‘the values in ARR(1) through ARR(CNT)

1050 SUM = 0

1060 FOR K = 1 TO CNT

1070 SUM = SUM + ARR(K)

1080 NEXT K

1090 AVG = SUM / CNT

1100 RETURN

1110 ‘endsub

Let us consider the problem of sorting the list. In the process of sorting the
list alphabetically, we must remember that the information associated with a particular

student must be kept with that student (i.e., it is not sufficient to rearrange
only the names; the social security numbers and averages must be rearranged as
well). Once we have precisely defined the task of the subroutine, we proceed to
code it:

3000 ‘subroutine sort

3010 ‘inputs: NAM, NSEC, SNUM, STAVG

3020 ‘outputs: NAM, NSEC, STAVG

3030 ‘locals: K, L, NTMP, TEMP

3040 ‘subroutine sort rearranges the first SNUM entries in the list alphabetically
3050 FORK = 1TOSNUM- 1

3060

3070

3080

FOR L = K + 1 TO SNUM

IF NAM(K) <= NAM(L) THEN GOTO 3120
‘else do statements 3090-3110

‘interchange the data for student K with that of student L

TEMP = STAVG(K): STAVG(K) = STAVG(L):

STAVG(L) = TEMP

NTMP = NAM(K): NAM(K) = NAM(L): NAM(L) = NTMP

NTMP = NSEC(K): NSEC(K) = NSEC(L): NSEC(L) = NTMP

3090

3100

3110

3120

3130 NEXT K

3140 RETURN

3150 ‘endsub

NEXT L
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Note that whereas statements 240—270 are used to initialize the inputs to

avg, there is no initialization of the inputs to avg before the call in line 180. This

is because the inputs (the array ARR and CNT) were directly initialized from the

input stream. Similarly, there are no initializations for the call to sort, because it

uses the variables of the main program directly. It is also possible to eliminate the

extra work of initializing inputs when several routines have the same inputs.

However, it is important to ascertain that the inputs have not been changed between

the two calls. Often, when a program must be efficient, initialization of an

array input to a subroutine takes too much time. This is especially true if it must

be done repeatedly (unlike our example, where initialization of ARR from

STAVG need be done only once because the class average is computed only

once). In such cases, it may be advisable to eliminate the subroutine and to place

code to perform its processing directly into the calling program. A more recommended

practice, to keep the program structured and maintainable, is to use the

array which already contains the data in the calling program as the input to the

subroutine; as was done in the case of the sort subroutine. This may mean several

copies of the same subroutine, each operating on a different input array. The

same is true when an array is an output of a subroutine. (Other programming

languages use a different mechanism for passing array parameters which does not

involve the inefficiency of copying the entire array.)

Note also that NAM, NSEC, and STAVG are both input and output parameters

of sort since the values of the arrays are being rearranged.

Finally, it is interesting to note that the routine sort only sorts the data into

alphabetical order. It if were necessary to sort into some other order (e.g., order

of increasing average), a separate subroutine would have to be written. It is often

the case that separate routines must be written even if they perform the same or

similar operations on different types of data.

A question that must be answered for each problem solution is how to divide

the chores among a main routine and its subroutines. This question does not

have a clear answer, and must be answered by the programmer for each individual

program. However, there are two general guidelines that are helpful in selecting

those tasks which are to be performed in a calling program and those which

are relegated to a subprogram.

The first criterion is that segments of a program that include a large amount

of detail which is secondary to the solution of the problem should be placed in a

subroutine. When writing and reading a routine, a programmer does not want to

be concerned with the details of how certain subtasks are accomplished; he or she
merely wants to be able to be sure that they are done. Included in this category is

any task whose actual actions may be modified at a later date. A program that is

permeated with code that is “to be improved” may prove to be very difficult to

improve. On the other hand, if that code is isolated in compact subroutines, each

subroutine can be modified and tested independently of the calling routine so that

the calling routine need not be changed at all. When the modification is com
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plete, the new subroutine replaces the old one and the total program works correctly.

This concept of being able to replace one version of a routine by another is

called modularity and the individual routines are called modules. Programming
in a modular style, in which each routine is a self-contained unit that is easily

replaceable, enables subsequent modifications to be performed efficiently, correctly,

and without worrying about possible side effects of one piece of code on
all the others. During the remainder of the text we will be structuring our solutions

in this top-down modular manner.

A second criterion for placing a specific operation or set of operations in a

subroutine is its usefulness to other programs or other portions of the same program.

For example, if a particular process (such as sorting) is required at several

points in a program, it is helpful to code this process as a subroutine and access

the routine through subroutine calls. Thus the code need not be repeated at several

points in the program, and hence it need not be debugged several times. Similarly,

if one has developed a working sort subroutine, it can be used intact

whenever a program that requires sorting is being written. (Of course, all inputs

must be initialized properly in the program).

Program Layout

In addition to the difficult issue of how a program should be developed, there are

a number of simple, almost mechanical techniques for creating readable, modifiable,

and correct programs. The first of these techniques involves the layout of a

program.

Consider the following program segment:

10 INPUT A,B,C: IF A <B THEN
GOTO 20 ELSE IF B <C THEN GOTO

30 ELSE D = C: GOTO 50: ‘unconditional branch

20 IF A <C THEN GOTO 40 ELSE D = C:

GOTO 50: ‘unconditional branch

30 D = B: GOTO 50: ‘unconditional branch

40 D = A: ‘assign A to D

50 PRINT D

Before reading further, see if you can determine what this program segment does.
The code above reads three numbers A, B, and C, assigns the smallest to D, and

prints D. Although it accomplishes its task, this sample is a far cry from the type

of program one would like to read and modify. First, the layout of the code is
very disorganized. While the BASIC language imposes few restrictions on the

format of code, good programmers use formats that are consistent with easy reading
and understanding. In particular, rarely should more than one statement ap
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pear on a line. In addition, an ELSE clause need never be used after a THEN
clause ending in a GOTO. The statements in the ELSE clause will be executed
only if the condition is false, regardless of whether an ELSE appears, since if the
condition is true, the GOTO will have branched elsewhere.

The following version incorporates these improvements:

10 INPUTA,B,C

20 IF A < B THEN GOTO 60: ‘branch to 60

30 IF B <C THEN GOTO 90

40 D = C

50 GOTO 120: ‘unconditional branch

60 IF A < C THEN GOTO 110

70 D = C

80 GOTO 120: ‘unconditional branch

90 D = B

100 GOTO 120: ‘unconditional branch

110 D = A: ‘assign A to D

120 PRINT D

Certainly, the second version is better than the first, although it is far from a

“good” program. One of the difficulties in reading the code above is that little is

done to help the reader decipher which portions of code do what. There are several

steps that can be taken to improve program readability further.

Meaningful Variable Names

It is helpful to use variable names that promote an understanding of the purpose
of the variable (subject to the limitations of the version of BASIC being used, as
discussed in Section 1). Even if the programmer has no control over the names
A, B, and C (they might have been passed on from some previous portion of the
program), he or she can still select a more meaningful name than D for the smallest

number. Simply by using a variable name such as SMALL, the programmer

gives a good indication of what the program does. As another illustration, suppose
that the variables of a program to compute interest on a principal could be

named PRINC, AMT, YEARS, and RATE rather than A, B, C, and D. Such an

assignment of variable names helps reduce the time required to understand a program.

In some cases the programmer may feel that it is more expedient to use
“simple” variable names such as X and Y. However, the added time spent in
trying to determine, at some later date, just what these variables represent probably

costs more than any time initially spent in selecting meaningful names. However,
it is usually considered acceptable to use simple variable names such as I, J,

or K as indices of a loop.
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Documentation

Another way in which the programmer can aid the reader in understanding programs

is by providing good documentation. Documentation, in its most general

interpretation, refers to any supporting material that the programmer provides (in

addition to the code) to help explain the program to the user and to any other
programmer who wants to make changes in the future. Included are flowcharts,

instructions on the format of the inputs, and explanations of the outputs. More

narrowly, documentation has been used to refer to remarks in the actual code.

There are several points to be made concerning remarks. If a program is

well written, it is not necessary to insert remarks at each elementary stage. A

good program is self-explanatory, so that the reader does not have to plow

through a long series of remarks in order to determine what a small portion of
code is doing.

Let us analyze the remarks in the second version of our program segment

above. One thing that is worse than no remark is a useless remark. Each of the

three different remarks in the above program fits remarkably well into this category.
The remark

‘branch to 60

says nothing more than the statement

GOTO 60

immediately preceding it. The same is true of the remark

‘assign A to D

Such remarks serve only to clutter the layout of the code and perhaps mislead the

reader into thinking that something more substantial than actually indicated by

the code is really going on. Similarly, the remark

‘unconditional branch

is of use only to the novice programmer who is totally unfamiliar with the terminology
of programming. Cluttering up code with such meaningless remarks

serves only to confuse the reader.

How, then, should remarks be used to help rather than hinder the reader of a
program? First, as mentioned earlier, the code should be written in such a way
that many remarks are not necessary. Among the techniques that promote this
goal are the use of meaningful identifiers and the use of constructs such as while
loops and if statements in the development of programs.

Yet, even if all the right techniques are used, an explanation should be provided
at the beginning of a process or self-contained block of code. These remarks
should be concise but complete so that the reader knows the function of the

code. In addition, there should usually be a remark at the beginning of a loop
explaining the purpose of the loop, and unless it is completely obvious, the re
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mark should also specify the conditions for exiting the loop. Finally, those portions

of code whose actions are not clear should be fully documented. These

ideas should be used as guidelines and not as rules; the programmer must make
the ultimate decision in deciding which statements or groups of statements should
be documented.

Another useful documentation technique is to include explanatory output

messages. A program that produces a page of numbers is often useless. Make

sure that output statements include a message that identifies the final result.
To improve readability, code should be interspersed with blank lines so that

individual groups of statements stand out as being related to each other. Incorporating

these suggestions, the example above can be rewritten as follows:

10 ‘compute the smallest of three numbers
20 PRINT “ENTER THREE NUMBERS”

30 INPUTA,B,C

40 IF A < B THEN GOTO 90

50 IF B <C THEN GOTO 140

60 SMALL = C

70 GOTO 200

80

90 ‘check whether A or C is smallest

100 IF A <C THEN GOTO 180

110 SMALL = C

120 GOTO 200

130

140 ‘B is smallest

150 SMALL = B

160 GOTO 200

170

180 ‘A is smallest

190 SMALL = A

200

210 PRINT “SMALLEST IS “; SMALL

Avoiding Needless Branches

Unfortunately, although we have improved the layout of the code and the documentation,

there is very little that can be done to make an inherently poor program

understandable. The major problem with the code above is its structure and

organization. Upon findng a condition to be true or false, control is transferred to

a different portion of code. Upon completing that second portion of code, control

is again transferred around some third portion of code. As the complexity of a

program increases, this problem is compounded until the final product becomes

totally unreadable “spaghetti code.”
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Whenever a GOTO statement is used to transfer control from one portion of
a program to another, the resultant code lacks both structure and organization.
The complete elimination of the GOTO statement, however, is not feasible. As
we have shown in the preceding section, the GOTO statement is often (properly)
used to implement various higher-level structures (e.g., while, if-then-else).
Rather than transferring control from one portion of the program to another, the
GOTO statement serves to create a unified programming structure. Indeed, when
used in this disciplined manner, the GOTO statement contributes to a highly desirable

structured programming style. The problem of unstructured or “spaghetti”
organization is one that cannot be easily remedied by patching up poorly

structured code; it requires careful planning and attention from the start.

The smallest of a set of numbers must be less than or equal to each of the

other numbers in the set. However, it is not necessary to compare each number
with every other number in order to locate this smallest number. Suppose that as
the set of numbers is scanned, the program keeps track of the smallest number
encountered thus far in a variable SMALL. Then each time a new number is considered,

it need be compared only with SMALL. If the new number is less than

SMALL, then it is also less than each of the numbers encountered previously; if

the new number is not less than SMALL, then SMALL retains the property of

being the smallest. Using this analysis, the solution can be coded in either of the

following ways:

10 PRINT “ENTER THREE NUMBERS”

20 INPUTA,B,C

30 ‘SMALL is set to the smallest of A, B and C
40 IF A <= B THEN SMALL = A

ELSE SMALL = B

50 IF C < SMALL THEN SMALL = C

60 PRINT “SMALLEST IS “; SMALL

or

10 PRINT “ENTER THREE NUMBERS”

20 INPUTA,B,C

30 ‘SMALL is set to the smallest of A, B and C
40 SMALL = A

50 IF B <SMALL THEN SMALL = B

60 IF C < SMALL THEN SMALL = C

70 PRINT “SMALLEST IS “; SMALL

Contrast either of these versions with any of the three preceding versions.

These new versions solve the problem directly by making use of the simple relationship

described above. As soon as a condition that requires an action is detected,

the appropriate action is performed by a statement that is in close proximity to

the condition. No branching is used. Even the casual reader should have little

difficulty in following the actions since the program reads sequentially. It is un
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necessary to intersperse comments to explain the more intricate parts of the code

since there are no intricate parts to explain. The earlier versions, on the other
hand, contain an additional comparison and five branches. Of course, not all of

these branches are taken on any single run of the program. Yet, for a reader to

determine just what is actually going on, it is necessary to understand every possible

sequence of statements.

Program Readability

There are several other things the programmer can do in order to make programs

more readable. One of these is the use of visual spacing for portions of code.

Such spacing includes the use of blank lines to group together different portions

of code. This enables the reader to detect logical sections of the program by their

physical separation. In addition to using blank lines, separate routines should be

given line numbers which differ markedly from the line numbers preceding them.
Certainly, major subroutines should be given their own series of line numbers.

Perhaps each subroutine should begin on a new “thousand” so that the main program
might begin at line number 10 while successive major routines should begin

at line numbers 1000, 2000, and so on. By separating logical portions of code

through the use of blank lines and using separate numbering schemes the programmer

can provide simple visual aids to the reader.

Still another visual feature that enhances program readability is the use of

indentation. BASIC is a free-form language in that there are almost no restrictions

as to the position of parts of a statement on a physical line. For example, a

statement may span two or more lines of code, and conversely, two or more

statements may be placed on a single line. Some programmers use this freedom

to code programs haphazardly, paying little attention to the position and the layout

of the statements. This carelessness yields a program that is difficult to read.

In Section 1 we have outlined useful indentation patterns for BASIC code which

follow elementary pseudocode structures. This indentation pattern is used in the
remainder of this book.

“Clever” Code

Finally, the programmer should stay away from “clever” code. For example, the
following statements compute the bigger and smaller of two numbers, A and B:

100 BIG = (A+B+ABS(A—B))/2
110 SMALL = (A + B — ABS(A —

This is a prime example of the type of coding that should never be used (except
perhaps to show off a repertoire of clever tricks). Let us see how it works.

A + B is the sum of the bigger number and the smaller. ABS(A — B), the

absolute value of the difference between the two numbers, equals the bigger
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number minus the smaller. If BIG represents the bigger number and SMALL
the smaller, then A + B equals BIG + SMALL, and ABS(A — B) equals
BIG — SMALL, so A + B + ABS(A — B) equals (BIG + SMALL)
+ (BIG — SMALL), which equals 2*BIG, and A + B — ABS(A — B) equals
(BIG + SMALL) — (BIG — SMALL), which equals 2 * SMALL. Therefore, dividing

by 2 yields BIG and SMALL, respectively. The two statements do indeed
set BIG and SMALL to the correct values.

A program that is loaded with such “clever” code is doomed to failure,

should it ever be modified. Unless the original author remembers precisely how

the program works, it is almost impossible to decipher. Unfortunately, many programs

in use today are permeated with tricks that only the original author understands.

Although such tactics do make the author indispensable to the

maintenance of the program (and may for this reason be a guarantee of a lifetime

job), they have no place in an environment where well-styled and modifiable programs

are run. A simpler version of the code above would be

100 IF A > B THEN BIG = A: SMALL = B

ELSE BIG = B: SMALL = A

This second version is clearer than its predecessor and does not require any extra
code.

Signaling the End of Data

It is generally helpful for a programmer to have available a set of programming

techniques to solve specific problems or parts of problems. This is useful when

decomposing programs into tasks for which code has already been designed. Possible

techniques include signaling the end of data, searching for an element of an

array, and so on.

Suppose that it is necessary to read pairs of values from DATA lines and

insert the second of these values at the position in the array specified by the first.

Consider the loop

while true do

read i, a(i)

endwhile

Since the while loop continues indefinitely, we eventually arrive at the situation

in which a read is attempted with no data present. Naturally, an error occurs and
program execution is terminated. There are two methods used to signal the end of
data before the error condition occurs. These are known as the header method

and the trailer method. If the number of data items is known in advance, a header

data item consisting of the number of subsequent data items is placed prior to the
actual data. Using this number, we may loop through the READ statement the
exact number of times necessary. As an example, suppose that we wish to read
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five names and insert the names into the array. Using the header method, we can
write

10 DEFSTRA

20 DIM A(l00)

30 READ N

40 FORI=1TON

50 READ K, A(K)

60 NEXT I

70 END

500 DATA 5

510 DATA 2, “GAIL”

520 DATA 1, “VIVIENNE”

530 DATA 5, “CHRIS”

540 DATA 3, “MIRIAM”

550 DATA 4, “LINDA”

Alternatively, a trailer card containing an “impossible” value may be used
to signal the end of data. This method must be used when the number of data

items is unknown. Modifying the preceding example, suppose that we wish to

read an undetermined number of names and insert them into an array. Using the

trailer 0, “XXX” to signal the end of data we may write

10 DEFSTRA,P

20 DIM A(l00)
30 READ K, PRSN
40 IF K = 0 THEN GOTO 70

50 A(K) = PRSN

60 GOTO 30

70 END

500 DATA 2, “GAIL”

510 DATA 1, “VIVIENNE”

520 DATA 5, “CHRIS”

530 DATA 3, “MIRIAM”

540 DATA 4, “LINDA”

550 DATA 0, “XXX”

Conclusion

In this section we have mentioned many points which form a list of dos and

don’ts in writing code. We summarize this list.

Code only one statement per line.

•Use meaningful identifiers.

•Use proper documentation, including proper remarks and explanatory

output for the user.
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•Use blank lines and distinct line numbering schemes.
•Use indentation (for FOR, IF-THEN-ELSE, etc.).
•Avoid needless transfers.

•Avoid clever code.

•Use standard techniques.

The rules above should be used as a guide, but they are not inflexible. The programmer
must make the decision as to when rules may be broken and when exceptions

should be made. Programming does require initiative and originality.

However, a style built on these suggestions contributes to making the final program

easy to read and therefore easier to debug and easier to modify when necessary.

EXERCISES

1. Write a program that reads a sequence of numbers and prints the longest ascending

subsequence of those numbers.

2. Write a program that reads monetary amounts (under $1.00) and prints the number of

each coin necessary to yield that amount using the smallest total number of coins

(e.g., $0.42 = 1 quarter, 1 dime, 1 nickel, and 2 pennies). When all the amounts

have been processed, print the total number of coins of each type required.

3. Do the same as in Exercise 2, but generate all possible combinations of change rather

than only the one with the fewest number of coins.

4. The standard formula for compound interest is

a = p * (1 +r/n) t (p*)

where p is the original principal, r the annual percentage rate, n the number of periods

per year at which compounding is done, t the number of years of the investment or the

loan, and a the amount to which the principal has grown.

(a) Compute the final value of $100 invested at 5% for 25 years compounded annually

by an explicit loop and also by the formula above.

(b) Do the same as in part (a) using successive values of n = 1, 2, . . . , 365 (annual

compounding to daily compounding) and observe the results. Can you derive a

formula for “continuous” compounding?

5. Another common problem that can be solved by computer is the solution of n equations

in n unknowns, using Gaussian elimination. For example, a system of three

equations in three unknowns might appear as follows:

a(l,l)*x + a(l,2)*y + a(1,3)*z = b(1)

a(2,l)*x + a(2,2)*y + a(2,3)*z = b(2)

a(3,l)*x + a(3,2)*y + a(3,3)*z = b(3)

The algorithm to solve for x, y, and z proceeds as follows:
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(a) Interchange equations (if necessary) so that a(l , 1) does not equal 0. (At least one

leading coefficient must be nonzero. Why?)

(b) Eliminate the coefficient of x in the second equation by replacing that equation by

a new equation formed in the following way. Multiply the first equation by

a(2,l)/a(l , 1) and subtract the result from the second equation. Do the same for the

third equation, but this time multiply by a(3, 1 )/a( 1,1).

(c) Eliminate the coefficient of y from the third equation by performing a similar process

using the second and third equations.

(d) When the process has been completed, the form of the equations is (asterisks represent

nonzero coefficients)

* + * y + * z = c(l)

* y + * z = c(2)

* z = c(3)

where each leading coefficient is nonzero and c(1), c(2), and c(3) are the respective

constants. The value of z is c(3) divided by the coefficient of z in the last

equation, and the values of y and x can be obtained by substituting into the previous

equations. Write a program that inputs the two-dimensional array a and the

one-dimensional array b and computes the values of x, y, and z.

6. Write a program to trace a path through a maze. The form of the maze is such that

each square is either open or closed. If the square is open, it can be entered from either

side, above or below (but not diagonally). If the square is closed, it may not be entered.

The program reads the dimensions of the maze followed by a series of Os and is

representing the status of the squares (0 represents an open square and 1 a closed

square). The program finds a path through the maze (if one exists) from the upper left

square to the lower right square. Both of these squares must be open. After the path

has been found, the program prints the maze with an asterisk representing each closed

square and a blank for each open square. Then the program reprints the maze using the

digit 1 to represent squares on the actual path taken.

7. A company manufactures three items. The cost of each item is kept in an array declared

by DIM COST(2,3). COST(i ,I) is the cost of item I to a preferred customer,

and COST(2,I) is the cost of item I to a regular customer. The company maintains

records on its customers in the following data aggregate:

DEFSTR N

‘customer records

DIM NAME(20): ‘name information

DIM ONORD(20,3): ‘order information

DIM BAL(20): ‘customers’ balances

NAME(I) is the name of the Ith customer, ONORD(I,J) is the amount of the Jth item

placed on order by customer I, and BAL(I) is the amount owed by the Ith customer.

Write a main program and series of routines to do the following:

(a) Read the arrays COST and NAME. Initialize the ONORD array and the BAL array
to zeros.



Sec. 3 Program Reliability 91

(b) Read a set of DATA lines, each containing a customer name, the type of the customer

(preferred or regular), and three integers representing changes to the

ONORD array for that customer. If a change is positive (additional items are being

ordered), the cost to that customer type (preferred or regular) is to be used in updating

the BAL amount for that customer. If the change is negative (an order is

being canceled), the smaller cost is to be used. A customer may not cancel more of

an item than he has on order. If, after all three changes are made, the new balance

is less than the old balance, a 10% surcharge on the difference is to be added. The

appropriate fields in the customer record are to be adjusted by a routine called update.

The appropriate customer record to be updated is to be determined by a routine

find which accepts a customer name and determines the index of that

customer’s record within the array NAME.

(c) When a DATA line containing a blank customer name is encountered, print all the

customers’ names, ONORD amounts, and BAL values, and terminate the program.

3. PROGRAM RELIABILITY

Let us summarize the stages of the program development process. We start with a

possibly imprecise problem statement. The problem statement is refined to clarify

exactly what the inputs to the program are and exactly what outputs are expected

of it. An algorithm for solution is chosen; this algorithm might be well known

or it might be one that the programmer has to derive personally. The algorithm

contains several statements which can be translated directly into a programming

language. Others are vague in that they specify only that some task be done without

specifying how. Such statements require further clarification and are usually

specified by a subalgorithm. This subalgorithm may, in turn, require other subalgorithms.

This process continues until the lowest-level algorithms can be readily

translated into program statements. In the course of developing each algorithm,

the data structures that must be used in its implementation are specified.

Once the algorithms have been written, they can be translated into actual

code. If the programmer follows the coding suggestions of the previous sections,

the resulting program will be easy to read, understand, and modify. The programmer

might congratulate himself or herself on a job well done.

Or are such congratulations a bit premature? It would seem that the programmer

should be able to answer some questions about the program. The first

question is: Does it work? If a program does not work, it is worthless, regardless

of how well it was planned or how nicely the code is documented or how neat the

output looks. A “yes” answer to the question of whether a program works requires

that the program always works and not just sometimes. The program that

fails to work only for certain inputs in exceptional cases will invariably be presented

with just those inputs in just those cases and will, of course, fail to work.
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Even if a program does work, the question arises: How well does it work? If
a payroll program that is to be run on a machine with 2 hours of available time
requires 8 hours to run, that program is of no help to the user. Efficiency may
seem at times to be an academic question, but when programming on a real machine

with real constraints, the question may become crucial.
Questions of whether a program works, and if so, how well, form the subject

of program reliability. Throughout the remainder of this section we consider

some aspects of program reliability. It is not possible to cover all aspects of reliability
because there is no general way of determining whether an arbitrary program

does what it is supposed to do for all inputs within specific time and space
constraints. However, if programmers avoid obvious blunders and make a strong
effort to program properly, they improve the chances that their programs are correct

and do not require an exorbitant amount of resources.
In this section we consider three major questions in program reliability: “Is

the algorithm correct?”, “Does the program produce the results intended by the

algorithm?” and “Is the program reasonably efficient?”

Program Correctness

A logic error reflects a serious flaw in the programmed solution which cannot be
attributed to its implementation. As a trivial example, consider the following
problem and proposed solution, both in algorithmic and program form. Suppose
that it is necessary to read two numbers from data and to compute and print their

sum. The following is a proposed algorithmic solution.

read nl,n2
ans = nl*n2

print ans

To implement the algorithm above as a program, we can code

10 ‘program solution
20 READN1,N2
30 ANS = Nl*N2

40 PRINT “THE ANSWER IS “; ANS

50 END

60 DATA...

The solution above is obviously incorrect but it is important to understand where

its fault lies. A casual reader of the problem statement and the program solution

might say that the error is a keying error (an “k” was typed instead of a “+ “).
However, the reader who has followed the solution from start to finish should

note that the program is a correct implementation of the algorithm given above.

In fact, the program is correct—but it solves the “wrong problem.” The real
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mistake in this case is in the algorithm—instead of adding two numbers, it multiplies
them. Such an error is one of the most difficult errors to find. (In fact, if the

programmer tests the program using the inputs 2 and 2, he or she will not even
know that there is anything wrong with it.)

How does one ascertain that a program is logically correct? There is no easy
answer to this question. In some cases, as in the example above, it is possible to
verify by inspection whether a program is correct or not. In fact, most programs
that require only that a set of computations be done can be verified for correctness

in this way. However, most programs that do anything substantial involve
conditional executions and loops. Such control structures are not as easy to follow,

especially if the number of iterations through a loop is variable.
There are formal methods that can be used to determine whether a program

is correct. However, these are quite tedious and are usually far more complex
than the program itself. For this reason, they are rarely used in practice.

Thus it is necessary to rely on techniques that are less than perfect for verifying
program correctness. Such techniques when combined with good programming
practice and common sense can help eliminate logic errors. The

programmer should code all logical portions of the program as separate entities.
Each of these entities should be preceded by a remark describing the state of affairs

before that portion of the program is executed. This is particularly important
in the case of loops. Each portion of the code should be written clearly so that the
reader who understands the situation before the code is executed should be able

to understand the situation after that portion of code is executed. If any portion of
the code is unclear, it should be documented more fully, with an explanation of
precisely what actions are to be taken.

If this process is followed consistently from the beginning of the program to
its end, the program includes, as remarks, a series of assertions about the values
of the program variables. The code of the program should read as proof that each

assertion is valid, based on the previous assertion and the code between the two
assertions. Thus the reader should be able to follow the transformations of the

program variables from start to finish. If the transformations imply that the desired
output is not correct, there is something wrong with the logic of the program.

We have actually discovered another argument for simplicity. In theory,

one should be able to prove the correctness of every program submitted as correct.
In reality, however, this is not always possible. If a program is short and

simple, it is easier to analyze. Even if it is not possible to prove that a program is

correct, it should be possible to justify intuitively the appropriateness of each portion

of the program toward the final solution. These intuitive justifications properly

belong as remarks separating major segments of the program. These
substitute for more formal proofs and should be paid as much attention as the
coding itself. For if one cannot justify the individual portions of the program, the

overall solution is very likely incorrect.
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Testing and Debugging

Even after the logic of a program has been validated, the question remains whether

the program does what it is supposed to. From a logical point of view, an

approach may indeed be correct, but the actual implementation of that approach

as a program may be incorrect. There are many areas where a program can go

wrong. It is the responsibility of the programmer to test a program to the point

where he or she is reasonably certain that the code is correct. It may not always

be clear just when the testing phase is complete enough to ensure validity, but

some general guidelines are helpful.

Testing is the process of detecting errors or “bugs” in a program; debugging

is the process of correcting the program in such a way that existing errors

are removed without introducing new ones. In practice, the removal of errors in a

way that does not affect other parts of a program is not at all easy.

An important distinction must be made between the symptom of an error

and its cause. For example, suppose that array A has upper bound 10 and an

attempt is made to reference A(I), where I is 11. It may be possible to suppress

the error and obtain output by rerunning the program with the upper bound of A

changed to 11 and A(11) initialized to 0. However, such a modification rarely

corrects the error; it merely eliminates its symptom. The actual cause of the error

may be a loop that is executing once too often. The proper response is to modify

the loop rather than the declaration. It is crucial that the programmer learn to

recognize an indication of error for what it is—a symptom and not necessarily a

cause. In all cases, debugging should aim at removing the cause and not the

symptom. In subsequent examples, we address our attention to the symptoms of

errors and their possible causes. We do not consider the underlying logic of the

problem because we consider only isolated program segments. However, the programmer

should always be on the lookout for errors that stem from the method of

problem solution rather than only from the program as written.

How can one determine that there are errors in a program? In general, there

are three possibilities. Either there is some form of output indicating an error

(e.g., a message indicating division by zero or a system message indicating that

the program has exceeded its space allocation), or there are no error messages,

but the output is obviously incorrect (e.g., a program that is supposed to compute

the sum of squares produces a negative number), or there may be no obvious

indication that anything is wrong. In the first two cases there is clearly something

wrong; it remains only to determine just what. This determination may not always

be easy but it is certainly easier than in the third case, where the programmer

has no idea that something is wrong. The most dangerous of all errors is the

one that gives no indication of its presence. The fact that such an error can go

undetected is a reflection that the testing phase was not sufficiently thorough.

Unfortunately, there are many programs that “work” for long periods of time

before a particular set of inputs uncovers an error “that was never there before.”

Although the programmer can rarely be absolutely certain that a program is cor
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rect, he or she should do all within his or her power to eliminate all possible
errors.

We now consider several types of errors that frequently arise in programming.

Syntax and Execution Errors

Syntax errors are errors that are detected during program translation. They are
usually easy to correct, unless they involve some little-used feature of the language.

Frequently, a possible source of error is given as part of the system message.
Although blindly following the suggestions supplied may eliminate the

error message, it will probably not eliminate the error and may even introduce
another. Thus, although such error messages are very helpful in pinpointing the
existence of an error, the programmer should be the final judge of how to correct
it.

Most errors that a programmer faces in debugging programs are execution
errors—errors that occur during the actual running of the program. These errors
are not always easy to pinpoint and are usually even more difficult to correct. We
mention some of the most common causes of execution errors in BASIC.

Reusing Variable Names

A common source of error in BASIC programs is the use of a variable name for

more than one purpose. The simplest example of such an error occurs when a

programmer mistakenly sets a variable equal to two distinct values. The programmer

might mistakenly believe that the original value is no longer necessary or the

programmer might have overlooked the fact that the variable was already assigned

a value in an earlier part of the program. This error sometimes occurs

when the programmer inadvertently uses two variables which share the same first

two characters in those versions of BASIC where the first two characters identify

a variable uniquely.

There are several steps that can be taken to eliminate such oversights. First,

the programmer should describe the purpose of each variable within the program.

This description should be inserted as a remark at the beginning of a program or

subroutine. Second, the programmer can make use of a cross-reference listing

that may be obtained by using special utility programs which are available for
most versions of BASIC. This listing contains the statement numbers of all statements

that reference each variable within the program. A careful check of this
cross-reference should point to those statements in the program that should not be
making reference to a particular variable.

There is a related problem that may not yield an error message, although the
results are almost certainly incorrect. This problem arises when a local variable
within a subroutine has not been identified. For example, consider a program to

compute the amount of money that is accumulated if an amount, PRINC, is in-
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vested at a rate, RATE, for a period of years, YEARS, where the interest is compounded

annually. Suppose that this computation is to be repeated for a variable

number of input sets.
A sample program might be the following:

10 ‘program prog
20 READ NUMBER

30 FOR I = 1 TO NUMBER

40 READ PRINC, RATE, YEARS

50 GOSUB 1000: ‘subroutine final sets the variable AMT

60 PRINT PRINC; RATE; YEARS; AMT

70 NEXT I

80 END

500 DATA...

1000 ‘subroutine final

1010 ‘inputs: PRINC, RATE, YEARS

1020 ‘outputs: AMT
1030 AMT = PRINC

1040 FOR I = 1 TO YEARS

1050 AMT = AMT * (1+ RATE)

1060 NEXT I

1070 RETURN

1080 ‘endsub

Logically, the program is correct. However, the code as it stands is incorrect.

The problem is that the variable name I in the subroutine final was already used

in the main program. Thus, instead of processing inputs numbered 1, 2, 3, .

NUMBER, the program may demand an infinite amount of input. This is because

when control returns from the subroutine to the main program, the value of I is
the value of YEARS + 1. Of course, the value of YEARS is different for each

input, so there is no control over the number of items to be processed. If the

value of YEARS is always less than NUMBER — 1, the value of I upon return

from final is always less than NUMBER and thus the FOR loop is repeated indefinitely.

This situation is an infinite loop (which is ended when the program runs
out of data). On the other hand, if the value of YEARS exceeds NUMBER — 1 in

one input set, the loop is exited upon return from final and the program is terminated

prematurely.

The problem is that the same variable, I, is used in both the main program

and the subroutine. The programmer intended that the loop in the main program
execute NUMBER times and the loop in the subroutine execute YEARS times.

By mistakenly using the same variable for both of these loops, the error indicated

above arose. All variables should be listed in every routine in which the variable
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is used, and special care must be taken to avoid this type of conflict. If the subroutine
contained the remark

1025 ‘locals: I

the programmer might realize that I is being used for another purpose.

Counting Errors

Another type of error that often occurs is one that deals with counting. The usual
case is that of a loop that is executed once too often (or once too infrequently).
This error may or may not yield an error message. But even if it does, the message

probably has very little to do with the controls of the ioop. As a simple
example, consider the problem of finding the average of an arbitrary number of
nonzero numbers read into the initial portion of an array, all of whose elements
had been previously initialized to zero. One might suggest the following:

10 DIM A(100)

100 FORI=1TO100

110 IF A(I) = 0 THEN GOTO 140

120 SUM = SUM + A(I)

130 NEXT I

140 AVERAGE = SUM / I

Unfortunately, the program does not work. The error is that the index I is incremented
before A(I) is tested for a zero value. For example, I is set to 5, then A(5)

is tested; then I is set to 6, then A(6) is tested; and so on. If there are 20 nonzero

numbers, I is set to 21 before the loop is exited. The value of I used to calculate
the average in statement 140 is incorrect.

A correct (and easier to understand) solution to the above is the following:

10 DIM A(100)

100 FORI=1TO100

110 IF A(I) = 0 THEN GOTO 140

120 SUM = SUM + A(I)

130 NEXT I

140 ‘the value of I is the position of the first zero;

there are I — 1 nonzero numbers

150 CNT=I—1

160 AVERAGE = SUM / CNT
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Accuracy of Numerical Results

Even after a program has been written and validated and even after it has been

established that the correct process is performed the proper number of times,

there are still places where a program can go wrong. One of these is the reuse or

misuse of identifiers for too many purposes, as discussed earlier in this section. A

second area relates to the accuracy of the results.

Consider, for example, the following program segment, which determines

whether a triangle is a right triangle by means of the Pythagorean theorem.

10 PRINT “ENTER THREE NUMBERS”

20 INPUTX,Y,Z

30 IFXt2+Y12=Zt2

THEN PRINT X; Y; Z; “FORM A RIGHT TRIANGLE”

ELSE PRINT X; Y; Z; “DO NOT FORM A RIGHT TRIANGLE”

By executing the program above “by hand” for the values 5, 12, and 13, one

would expect that they indeed form a right triangle. Try running the program and

you may obtain a different answer. The problem lies in the method used by BASIC

to calculate exponentiation. The complex computations often have very

slight errors (such as .000001), so that the result of an exponentiation need not be

an integer even if both operands are integers. In fact, if one were to print both

sides of the equality test in statement 30 by including the statement

25 PRINT X t 2 + Y 1 2; Z t 2

the value 169 would be printed twice. Nonetheless, the test for equality evaluates

to false on many microcomputers. This is because numbers are represented internally

to greater precision than they are displayed and, therefore, even though 169

is displayed externally, the two sides of the expression are unequal. It is important

to remember that the computer produces results according to rigid rules of

precision which do not always correspond to programmer intuition. These are

often implementation dependent, which makes them even more difficult to detect.

Even if the equality test in statement 30 is replaced by

X*X + Y*Y = Z*Z

the program may not give the expected result. (Although the program may work
for the values 5, 12, and 13, it fails to give the correct result when .5, 1.2, and
1.3 are used. This once again illustrates the difficulty in testing a program fully.)

These cases also extend to controls on the number of times a loop is to be
executed, as in the index of a FOR loop. As an illustration of this, consider the
following code:

10 51 = 0

20 S2 = 0

30 FOR I = —20 TO 20 STEP 2

40 S1=S1+1

50 NEXT I
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60 FOR X = —2 TO 2 STEP .2

70 S2=S2+1

80 NEXT X

90 PRINTS1,S2

One might expect that when the PRINT statement is executed, the values of

Si and S2 are the same, since it appears that each loop is repeated the same number
of times (21). Interestingly enough, the values are not the same. The first

loop executes correctly so that the value of Si is 2i (in floating-point form). The

value of S2, however, is 20, indicating that the second loop went through 20
iterations.

The reason for this anomaly lies in the method used to represent floating-

point numbers. The internal floating-point representation of a number may be a

close approximation of its real value. For example, the number 5 may be represented

by 4.99999. Sometimes, the difference can be ignored. In cases where a

precise count is necessary, as in the example above, the floating-point approximation

may yield an incorrect result. Floating-point numbers should not be used

where the real intent of the solution is most clearly expressed by the use of integers.

Floating-point numbers also cannot be compared for exact equality. Instead,

they should be tested for proximity, as in the statement

IF ABS(X — Y) <= DELTA THEN...

DELTA can be made as small as desired, but it should not be 0. Thus, if in the

program which tests for a right triangle, statement 30 is replaced by

30 IF ABS((X 1’ 2 + Y 1 2) — (Z 2)) <= 1E —06 THEN...

the program gives the correct result.

In general, then, the use of floating-point numbers may be crucial in some

cases and disastrous in others. It is the programmer’s responsibility to make sure

that the attributes of a particular variable are appropriate to the problem at hand.

Testing

For some of the errors mentioned above, the presence of an error is indicated by

an error message. In other cases, the program may just run out of time or space

because it is in an infinite loop. In many cases, however, unless the programmer

tests a program thoroughly, there may be errors in the program that go undetected

until just the right combination of inputs is encountered. For this reason, it is

extremely important that a program be tested properly before it is put to serious
use. Although there exists no uniform method to guarantee that proper testing

procedures are used, there are some general guidelines that uncover many of the
errors mentioned above. By no means are these suggestions complete; each program

requires test cases peculiar to its application.
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Certainly, as a start one should test the program for some simple inputs for

which solutions can be computed easily by hand. If the program’s solutions do

not match those that have been calculated independently, the program is clearly

incorrect. However, since the correct answers are known, the temptation exists to

adjust the program in the most expedient way so that it produces those correct

answers. The most expedient method may not, however, be a valid one. The fact

that correct answers are produced for certain inputs does not mean that the program

has been corrected. It is necessary to trace the intermediate results of the

program from start to finish and to determine which intermediate step is in error.

Only when this has been done can a programmer be reasonably sure that the

source of error has been located. In fact, even when initial tests indicate that the

results for simple cases are correct, the intermediate results should be checked to

be sure that correct actions are being taken at each point in the program.

Another set of test cases consisting of “boundary” values should be used.

For example, suppose a tax law specifies that all people with an income of less

than $500.00 pay no tax, while those with an income of $500.00 or above pay at
a rate of 4%. It is important to test the program for an income which is exactly
$500.00 to verify that the proper tax is computed. In some cases, boundary cases
can be verified by simply checking that the proper action is taken on equality. In
others, it may be necessary to trace the actions of the program on boundary inputs
to ascertain that those actions are correct. Besides testing some of these boundary
values individually, it is also important to test them together to see how the program

behaves on combinations of such inputs.
After the programmer is satisfied that the program behaves correctly on

simple inputs and boundary values, the program should be tested on inputs that
are known to be invalid. Very often a program’s success depends on its ability to
defend itself against invalid inputs as much as on its effects on valid inputs. Even
if the user believes that all the input data have been verified before submission to
the program, there should be a basic amount of error detection within the program.

If there exists a program to validate the input data that fact should be stated,
perhaps as a remark, at the outset of the program in question. This will at

least absolve the programmer of any responsibility for the validity of the input.
Yet, even when the input to a large program has been validated, the inputs to
specific subroutines and processes must be validated. For this reason it is a good
idea that each routine test that assumptions about its inputs hold. Also, it is important

to check that one or more bad items of input do not adversely affect computations
on subsequent inputs.

Finally, the program should be tested for a large random sample of input
values. In some cases, it may be possible to test the outputs against results from
existing (but perhaps less efficient) programs. In cases where this is not feasible,
some of these test cases should be followed through and checked by hand, laborious

as this may be. Any time spent in testing the program from the start will
probably pay off tenfold by eliminating errors during production runs.
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Now that we have described the types of values for which to test the program,
how should the testing proceed? If the program has been written in a top-

down fashion, the set of routines should be tested individually and as a single
program. The routines may be tested in a top-down fashion; that is, the main
program is to be tested first, then the subroutines it calls, and finally the entire
system as a whole. While testing a routine at a certain level, one assumes that the
subroutines it calls already exist. In order to allow the program to run, the programmer

has to code dummy routines. For example, consider the following routine:

1000 ‘subroutine rout

1010 ‘inputs: P1

1020 ‘outputs: P1, X

1030 ‘locals: Q1, Q2

1040 ‘group! of statements giving a value to X

1200 Qi = P1

1210 Q2 = X

1220 GOSUB 2000: ‘subroutine subi modifies Q1 and Q2

1230 P1 = Qi

1240 X = Q2

1250 ‘group2 of statements modifying P1 and X

1400 RETURN

1410 ‘endsub

The purpose of testing the routine above is to determine whether the statements
included in group 1 and group2 are correct. However, in order to allow the subroutine

rout to execute for testing purposes, a dummy routine for subl must be
coded, as in:

2000 ‘subroutine sub!

2010 ‘inputs: Q!, Q2

2020 ‘outputs: Q1, Q2

2030 Qi = 8

2040 Q2 = 9
2050 RETURN

2060 ‘endsub

Before subl is actually coded, the values “computed” by subl in the dummy
routine can be altered intentionally to cover all possible cases. In this way the

actions of rout can be verified for all possibilities. Once rout has been tested,
routines such as subl can be coded and tested. This type of testing, in which
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routines at higher levels are tested before those at lower levels, is called top-

down testing.

Another type of testing, called bottom-up testing, proceeds in the reverse

order. From a logical point of view, the program must be designed in a top-down

fashion (one cannnot know what a subroutine is to do before the program using
that subroutine has been written). However, once all the routines have been designed,

the ones at the lowest levels are written and tested before those at the

higher levels. This type of testing is easier, since whenever a program is being

tested, all programs on which it depends have already been tested. For this reason,

many programmers prefer this technique. The only disadvantage to this

method is that the calling programs may not be fully tested. For example, if a

subroutine always returns positive numbers, the calling routine is never tested on

negative numbers. If the subroutine is subsequently modified so that negative

numbers may be returned, a hitherto undiscovered error in the calling routine

may occur. However, both of these methods can be used effectively if the testing

is done in a comprehensive manner.

Tracing the execution of a program is important in both general testing (so

that intermediate results can be checked) and in detecting many types of errors.

For example, programs that produce incorrect results for no apparent reason and

those that appear to be in an infinite loop can best be debugged by tracing intermediate

results. Probably the best way to trace a program is to force the printing
of crucial variables at various intervals of execution. Each of these statements

should identify the source of the output, as in

150 PRINT “AT STATEMENT 150; X = “; X

By following a sequence of such printouts, one can trace the order in which

groups of statements are executed and the values of X as they are computed. By

narrowing the error down to smaller and smaller segments of the program, the

source of an error can be pinpointed precisely.

Tracing can also be done through the use of various debugging features

built into an interpreter (e.g., the TRON option). These features can be very

helpful. One of their disadvantages, however, is that they sometimes produce voluminous

output so that some small but important detail can go undetected. Nevertheless,

they can be very effective in tracing errors.

Efficiency

Once it has been established that a program is correct, the program still cannot be
considered reliable if it uses an inordinate amount of the machine’s resources.

For example, if only 2 hours of machine time or 2000 units of memory are available

for a particular application and a program requires 25 hours or 25,000 units

of memory, the program is not acceptable. Of course, the program may be very
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efficient but the facilities are simply saturated. However, it may be that rewriting
the program would produce a better product.

Good programmers should consider the efficiency of their product when the
initial solution is planned. The selection of the overall solution to a program usually

has significantly more effect on the efficiency of the resulting program than
does the actual form of the source statements. In the remainder of the text, a

major part of our attention will be focused on efficient methods to solve problems.

However, there are some ways by which an existing program can be made
more efficient. For example, consider the following program segment:

10 FORI=1T01000

20 READ A(I)

30 NEXT I

40 FOR! = iTO 1000

50 IF A(I) > 0 THEN X = X + A(I)

60 NEXT!

The code above could be replaced by the following much more efficient version:

10 FORI=1TO1000

20 READ A(I)

30 IF A(I) > 0 THEN X = X + A(I)

40 NEXT!

Implicit in every iteration of a loop is at least one branch, one test, and

possibly the computation of other functions. In the case above, there is no reason

to duplicate this effort needlessly by using the second loop to perform some action
that could just as easily have been done in the first loop. There are other

“obvious” places where programs can be improved. Programmers should review

their code carefully to guarantee that it is as efficient as possible.

But there are also many nontrivial areas in which programs can be improved.

For example, consider the following code:

10 READA,B

20 READX,Y

30 IF X = 0 THEN GOTO 70

40 W = (X+Y) * (A+B) / SQR(10)

50 PRINTX,Y,W

60 GOTO 20

70 END

Each iteration through the loop, the value of the square root of 10 is recomputed.
However, this value need be computed only once since its value does not change
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with each repetition of the ioop. Similarly, the value of (A + B) does not change

within the loop so that it, too, may be computed once outside the ioop. A more
efficient version of the code above is

10 ROOT = SQR(10)

20 READA,B

30 APLUSB = A + B

40 READX,Y

50 IF X = 0 THEN GOTO 90

60 W = (X + Y) * APLUSB / ROOT

70 PRINTX,Y,W

80 GOTO 40

90 END

If the loop is repeated 1000 times (before being terminated by an OUT OF DATA
error), this revision saves 999 additions and 999 executions of the SQR routine.

In general, any computation that can be performed outside a loop should not appear

within the loop.
Another example of local inefficiency is the following:

10 FORI=1TO100

20 READ X, Y

30 W=3*I*(X+Y)

40 PRINTX,Y,W

50 NEXT I

In this example, I is multiplied by 3 each time through the loop. Thus (X + Y) is

multiplied by each of the values 3, 6, 9, . . . , 300. I is not used within the loop
except at this point. The code above could therefore be performed more efficiently

by the following:

10 FOR I = 3 TO 300 STEP 3

20 READX,Y

30 W=I*(X+Y)

40 PRINTX,Y,W

50 NEXT I

This eliminates 100 multiplications.

Another way in which efficiency can be improved is by eliminating needless

references to array elements. For example, consider the following code segment:

10 FOR I = 1 TO 99 STEP 2

20 READ A(I), A(I +1)

30 X = (A(I) + A(I + 1)) / 2

40 Y = (A(I) — A(I + 1)) / 2
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50 A(I)=X

60 A(I+1)=Y

70 NEXT I

Each time that an array element is referenced, a computation must be performed
(add the base and offset). The code above involves 8 x 50 such computations.
Contrast this with:

10 FOR I = 1 TO 99 STEP 2

20 READX,Y

30 A(I) = (X+Y)/2

40 A(I+1) = (X—Y)/2

50 NEXT!

The latter code involves only 2 x 50 address computations.

Unfortunately, it often happens that the process of making a program more
efficient also makes the program less readable. Many of the techniques of good

structure outlined in previous sections require more time to execute than do other

methods, so that when an entire program is constructed using these techniques,

they may add to the overhead of the program. For this reason, some people argue
that techniques of good structure should be abandoned if more efficient methods

can be found to perform the same task.

This attitude does not promote the development of good programs. There is
probably no more efficient method to perform many processes than to code the
solution in assembly language and then optimize that code. However, the major
purpose of high-level languages such as BASIC is to allow programmers to code

solutions to problems without worrying about the details of the lowest-level operations.

Once the decision to use a high-level language has been made, the programmer
should exploit the features of that language that make the coding of the solution

easier. When coding is done in BASIC, the rules of good structure outlined

earlier in this chapter should be followed. These techniques produce programs

that are easy to modify and adapt to changing needs.
Related to the question of algorithm efficiency is the method by which the

program is translated. As we pointed out at the beginning of the chapter, a program
may be translated either by an interpreter or by a compiler. Although an

interpreter is more efficient during the development process since it allows easier

detection of errors, a program will be most efficient if it is compiled; that is,

translated completely into a machine language version which is then executed.

Compiled programs often run 5 to 30 times faster than interpreted programs.

However, since compiled programs tend to be larger than corresponding interpreted
programs, memory limitations may preclude compiling very large programs.

There may be portions of a program that are inefficient. Before a decision is
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made to rewrite a portion of code, an important question must be answered: What

percentage of the total execution time is spent in this section of code? If a particular

portion of code represents only 5% of the total execution time of the program

and a major rewriting operation can improve it so that it requires only half as

much time to run, the net savings to the total program is not 50% but 2.5%.

In selecting an algorithm to solve a problem, efficiency should be the overriding

factor after correctness is assured. Once that algorithm has been selected,

the program should be coded and tested using the top-down structured approach.

That program should be “speeded up” only if the improvement does not make

the program less modifiable or if it can be established that the newer version produces

a significant saving in the overall running time of the complete program.

EXERCISES

1. Write a program that declares an array of size 100 x 100, initializes each of its elements

to zero, and repeatedly inputs groups of three integers. The third integer is to

be assigned to the array element at the row and column specified by the first two

integers. If either the row or column number is out of bounds, that particular group of

three integers is ignored. At the end of the program, print the number of data groups

for which only the row number is out of bounds, the number of groups for which only

the column number is out of bounds, and the number of data groups for which both

are out of bounds. Then print the array.

2. What is the error in the following section of code?

10 DIM FACT(10)

20 FORI=1TO1O

30 X=I

40 GOSUB 100

50 FACT(I) = PROD

60 PRINT I, FACT(I)

70 NEXT I

80 ‘end

100 ‘subroutine fact

110 ‘inputs:X

120 ‘outputs: PROD

130 ‘locals: I

140 PROD = 1

150 FOR I = X TO 2 STEP —1

160 PROD = PROD * I

170 NEXT I

180 RETURN

190 ‘endsub
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3. Show how each of the following pieces of code can be made more efficient.
(a) 100 FORI = 1 TO 10

110 B(I) = A(I) + A(3)

120 NEXT I

(b) 100 FORI=1TO1O

110 X=X+5*I

120 NEXT I

(c) 100 FOR I = 100 TO 1 STEP — 1

110 TEMP = A(I)

120 A(I) = A(I— 1)

130 A(I—1) = TEMP

140 NEXT!

(d) 100 X = A/2 + B/2
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The Stack

One of the most useful concepts in computer science is that of the stack. In this

chapter we examine this deceptively simple data structure and see why it plays
such a prominent role in the areas of programming and programming languages.

We define the abstract concept of a stack and show how that concept can be made

into a concrete and valuable tool in problem solving. Section 1 introduces the

stack as an abstract data structure using pseudocode operations. Section 2 presents

an implementation of the stack in BASIC. Sections 3 and 4 present examples
of the use of stacks.

1. DEFINITION AND EXAMPLES

A stack is an ordered collection of items into which new items may be inserted

and from which items may be deleted at one end, called the top of the stack. Let

us see what this definition means. Given any two items in a stack, one of them

can be thought of as “higher” in the stack than the other. Thus we can picture a

stack as in Figure 3.1.1. Item F is higher in the stack than all the other items.
Item D is higher than items A, B, and C but is lower than items E and F.

You may protest that if Figure 3.1.1 were turned upside down a very similar
picture would result, but A rather than F would be the highest element. If a stack

were a static, unchanging object, your objection would be quite correct. However,

the definition of a stack provides for insertion and deletion of items so that a
stack is really a dynamic, constantly changing object. Figure 3.1. 1 is only a

108
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F

E

D

C

Figure 3.1 1 A stack containing six items.

snapshot of a stack at a particular point in its continuing evolution. To have a true

view of a stack, a motion picture is necessary.

The question therefore arises: How does a stack change? From the definition,

note that a single end of the stack must be designated as the stack top. A

new item may be placed on top of the stack (in which case the top of the stack

moves upward to correspond to the new highest element) or the item that is at the

top of the stack may be removed (in which case the top of the stack moves downward

to correspond to the new highest element). To answer the question “Which

way is up?” we must decide which end of the stack is designated as its top—that

is, at which end will items be added or deleted. By drawing Figure 3.1.1 so that

F is physically higher on the page than all the other items in the stack, we mean

to imply that F is the current top element of the stack. If any new items are to be

added to the stack, they will be placed on top of F, and if any items are to be
deleted, F will be the first to be deleted. This is also indicated by the vertical

lines that extend past the items of the stack in the direction of the stack top.

Of course, stacks may be drawn in many different ways, as shown in Figure

3.1.2, as long as it is clearly understood which end is the top of the stack. Ordinarily,

we will illustrate stacks as in Figure 3.1.1, with the stack top facing the

top of the page.

Let us now view a motion picture of a stack to see how it expands and

shrinks with the passage of time. Such a picture is given by Figure 3.1.3. In Figure
3. 1.3(a) we see the stack as it exists at the time that the snapshot of Figure

3.1.1 was taken. In Figure 3.1.3(b), item G is added to the stack. According to

the definition, there is only one place on the stack where it can be placed—on the

top. The top element on the stack is now G. As our motion picture progresses
through frames (c), (d), and (e), we see items H, I, and J successively added onto
the stack. Notice that the last item inserted (in this case J) is at the top of the

stack. Beginning with frame (f), however, the stack begins to shrink as first J,

then I, H, G, and F, are successively removed. At each point, the top element is
removed since a deletion can be made only from the top. Item G could not be
removed from the stack before items J, I, and H were gone. This illustrates the
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Figure 3.1.2 Four different views of the same stack.

most important attribute of a stack—that the last element inserted into a stack is
the first element deleted. Thus J is deleted before I because J was inserted after I.

For this reason a stack is sometimes called a last-in, first-out (or lifo) list.

Between frames (j) and (k), the stack has stopped shrinking and begins to

expand again as item K is added. However, this expansion is short-lived, as the

stack then shrinks to only three items in frame (n).

Items deleted

4— top
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Note that there is no way to distinguish between frame (a) and frame (i) by
looking at the stack’s state at the two instances. In both cases, the stack contains
the identical items in the same order and has the same stack top. No record is

kept on the stack of the fact that four items had been inserted and deleted in the
meantime. Similarly, there is no way to distinguish between frames (d) and (f) or
(j) and (1). If a record is needed of the intermediate items having been on the

stack, that record must be kept elsewhere; it does not exist within the stack.
In fact, we have actually taken an extended view of what is really observed

in a stack. The true picture of a stack is given by a view from the top looking
down, rather than from a side looking in. Thus there is no perceptible difference

between frames (h) and (o) in Figure 3.1.3. In each case the element at the top is

G. Although we know that the stack at (h) and the stack at (o) are not equal, the
only way to determine this is to remove all the elements on both stacks and compare

them individually. We have been looking at cross sections of stacks to make
our understanding clearer, but you should remember that this is an added liberty

and there is no real provision for taking such a picture.

Primitive Operations

The two changes that can be made to a stack are given special names. When an
item is added to a stack, it is pushed onto the stack. Given a stack s, and an item

i, performing the operation push(s, i) is defined as adding the item i to the top of

stack s. Similarly, the operation pop(s) removes the top element and returns it as

a function value. Thus the assignment operation

= pop(s)

removes the element at the top of s and assigns its value to i.

For example, if s is the stack of Figure 3.1.3, we performed the operation

push(s,G) in going from frame (a) to frame (b). We then performed, in turn, the
operations:

push(s,H) [frame (c)]

push(s,I) [frame (d)j

push(s,J) [frame (e)j

pop(s) [frame (f)]

pop(s) [frame (g)]

pop(s) [frame (h)J

pop(s) [frame (i)]

pop(s) [frame (j)J

push(s,K) [frame (k)]

pop(s) [frame (1)]

pop(s) [frame (m)]

pop(s) [frame (n)]

push(s,G) [frame (0)]
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Because of the push operation, which adds elements to a stack, a stack is some
times called a pushdown list.

There is no upper limit on the number of items that may be kept in a stack
since no mention was made in the definition as to how many items are allowed in
the collection. Pushing another item onto a stack merely produces a larger collection

of items. However, if a stack contains a single item and the stack is popped,
the resulting stack contains no items and is called the empty stack. Although the
push operation is applicable to any stack, the pop operation cannot be applied to
the empty stack because such a stack has no elements to delete. Therefore, before

applying the pop operator to a stack, we must ensure that the stack is not empty.

The operation empty(s) determines whether or not a stack s is empty. If the stack

is empty, empty(s) returns the value true: otherwise, it returns the value false.

Another operation that can be performed on a stack is to determine what the
top item on a stack is without removing it. This operation is written stacktop(s)

and returns as its value the top element of stack s. The operation stacktop(s) is not
really a new operation since it can be decomposed into a pop and a push.

i = stacktop(s)

is equivalent to

= pop(s)

push(s,i)

Like the operation pop, stacktop is not defined for an empty stack. The result of
an illegal attempt to pop or access an item from an empty stack is called underflow.

Underfiow can be avoided by ensuring that empty(s) is false before attempting
the operation pop(s) or stacktop(s).

An Example

Now that we have defined a stack and have indicated the operations which can be

performed on it, let us see how we may use the stack in problem solving. Suppose
a mathematical expression is given which includes several sets of nested

parentheses; for example,

7_((X*((X+Y)/(J — 3))+Y)/(4—2.5))

and we want to ensure that the parentheses are nested correctly. That is, we want
to check that

1. There are an equal number of right and left parentheses.

2. Every right parenthesis is preceded by a matching left parenthesis.

Expressions such as

((A+B) or A+B(

would violate condition 1, while

)A+B(— C or (A+B)) — (C+D

would violate condition 2.
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In order to solve this problem, think of each left parenthesis as opening a
scope and each right parenthesis as closing a scope. The nesting depth at a particular

point in an expression is the number of scopes which have been opened but
not yet closed at that point. This is the same as the number of left parentheses
encountered whose matching right parentheses have not yet been encountered.
Let us define the parenthesis count at a particular point in an expression as the

number of left parentheses minus the number of right parentheses which have

been encountered in scanning the expression from its left end up to that particular
point. If the parenthesis count is nonnegative, it is the same as the nesting depth.
The two conditions that must hold if the parentheses in an expression are to form

an admissible pattern are:

1. The parenthesis count at the end of the expression is 0. This implies that no

scopes have been left open or that exactly as many right parentheses as left

parentheses have been found.

2. The parenthesis count at each point in the expression is nonnegative. This

implies that no right parenthesis has been encountered for which a matching

left parenthesis had not previously been encountered.

In Figure 3.1.4, the count at each point in each of the previous five strings
is given directly below that point. Since only the first string meets the two conditions

listed above, it is the only one among the five with a correct parenthesis

pattern.

Let us now change the problem slightly and assume that three different

types of scopes exist. These types are indicated by parentheses (“(“and”)”),

brackets (“[“and”]”), and braces (“{“and”}”). A scope ender must be of the

same type as its scope opener. Thus strings such as

(A+BJ, [(A+B]), {A— (B]}

are illegal.

It is necessary to keep track not only of how many scopes have been
opened, but also of their types. This information is needed because when a scope
ender is encountered, we must know the symbol with which the scope was

opened to ensure that it is being closed properly.

A stack may be used to keep track of the types of scopes encountered.

Whenever a scope opener is encountered, it is pushed onto the stack. Whenever a
scope ender is encountered, the stack is examined. If the stack is empty, the
scope ender does not have a matching opener and the string is invalid. If, however,

the stack is nonempty, we pop the stack and check whether the popped item
corresponds to the scope ender. If a match occurs, we continue. If it does not, the
string is invalid. When the end of the string is reached, we make sure that the

stack is empty; otherwise, one or more scopes have been opened which have not
been closed, making the string invalid. The algorithm for this procedure is outlined

below. Figure 3.1.5 shows the state of the stack after reading parts of the
string {x + (y — [a + bJ)*c — [(d + e)J}/(h — (j — (k — [1— nJ))).
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7— ( ( X ( ( X+Y)/( J —3) ) +Y) / (4—2.5)

00 1 2 2 2344443344443 2 22 1 1 222 2 1 0

A+B)

122221

A+B

000 1

A + B (-C

—1 —1 —1 —1 0 0 0

(A+B) ) - (C+D

1 1 1 1 0 —1 —1 0 0 00

Figure 3.1.4 Parenthesis count at various points of strings.

valid = true

s = the empty stack

while (we have not read the entire string) and (valid = true) do

read the next symbol (symb) of the string

ifsymb = “(“ orsymb = “[“ orsymb = “{“

then push (s,symb)

endif

ifsymb = “)“ orsymb = “]“ orsymb = “}“

then if empty(s)

then valid = false

else i = pop(s)

if i is not the matching opener for symb

then valid = false

endif

endif

endif
endwhile

if empty(s) = false

then valid = false

endif

if valid = true

then print (“the string is valid”)

else print (“the string is invalid”)

endif
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Figure 3.1.5 The parenthesis stack at various stages of processing.
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Let us see why the solution to this problem calls for the use of a stack. The
last scope to be opened must be the first to be closed. This is precisely simulated
by a stack where the last element arriving is the first to leave. Each item on the
stack represents a scope that has been opened but which has not yet been closed.
Pushing an item onto the stack corresponds to the opening of a scope and popping
an item from the stack corresponds to the closing of a scope, leaving one less
scope open.

Notice the correspondence between the number of elements on the stack in

this example and the parenthesis count in the previous example. When the stack

is empty (parenthesis count = 0), and a scope ender is encountered, an attempt

is being made to close a scope that has never been opened, so the parentheses

pattern is invalid. In the first example, this is indicated by a negative parenthesis

count and in the second example by the inability to pop the stack. The reason a

simple parenthesis count is inadequate for the second example is that we must

keep track of the actual scope openers themselves. This can be done by the use of

a stack. Notice also that at any point we examine only the element at the top. The

particular configuration of parentheses below the top element is irrelevant while

we are examining this top element. It is only after the top element has been

popped that we concern ourselves with subsequent elements in a stack.

In general, a stack can be used in any situation that calls for a last-in, first-

out discipline or which displays a nesting pattern. We shall see more examples of

the use of stacks in the remaining sections of this chapter and, indeed, throughout
the text.

EXERCISES

1. Use the operations push, pop, stacktop, and empty to construct operations that do

each of the following:

(a) Set ito the second element from the top of the stack, leaving the stack without its

top two elements.

(b) Set i to the second element from the top of the stack, leaving the stack unchanged.

(c) Given an integer n, set ito the nth element from the top of the stack, leaving the

stack without its top n elements.

(d) Given an integer n, set i to the nth element from the top of the stack, leaving the

stack unchanged.

(e) Set i to the bottom element of the stack, leaving the stack empty.

(I) Set i to the bottom element of the stack, leaving the stack unchanged (Hint: Use

another, auxiliary stack.)

(g) Set ito the third element from the bottom of the stack.

2. Simulate the action of the algorithm in this section for each of the following strings

by showing the contents of the stack at each point.
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(a) (A+B})

(b) {[A+B] —[ (C—D)]

(c)(A+B)—{C+D}—[F+G]

(d) ((H) * {([J+K])})

(e) (((A))))

3. Write an algorithm to determine if an input character string is of the form

xCy

where x is a string consisting of the letters “A” and “B” and where y is the reverse

of x (i.e., if x = “ABABBA”, then y must equal “ABBABA”). At each point you

may read only the next character of the string.

4. Write an algorithm to determine if an input character string is of the form

aDbDcD. . . Dz

where each string a, b, . . . , z is of the form of the string defined in Exercise 3.

(Thus a string is in the proper form if it consists of any number of such strings

separated by the character “D”.) At each point you may read only the next character

of the string.

5. Design an algorithm that does not use a stack which reads a sequence of push and pop

operations and determines whether or not underfiow occurs on some pop operation.

Implement the algorithm as a BASIC program.

6. What set of conditions are necessary and sufficient for a sequence of push and pop

operations on a single stack (initially empty) to leave the stack empty and not to cause

underfiow? What set of conditions are necessary for such a sequence to leave a

nonempty stack unchanged?

2. REPRESENTING STACKS IN BASIC

Before programming a problem solution that calls for the use of a stack, we must

decide how to represent a stack using the data structures that exist in our programming

language. As we shall see, there are several ways to represent a stack

in BASIC. We will now consider the simplest of these. In subsequent sections of

the book you will be introduced to other possible representations. Each of them,

however, is merely an implementation of the concept introduced in Section 1 of

this chapter. Each has its advantages and disadvantages in terms of how close it

comes to mirroring the abstract concept of a stack and how much effort must be

made by the programmer and the computer in using it.

A stack is an ordered collection of items and BASIC already contains a data

type that is an ordered collection of items—the array. Whenever a problem solution

calls for use of a stack, therefore, it is tempting to begin a program by declanng

a variable STACK to be an array. Unfortunately, however, a stack and an

array are two entirely different things. The number of elements in an array is

fixed and is assigned by the declaration for the array. In general, the user cannot
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change this number. A stack, on the other hand, is fundamentally a dynamic object

whose size is constantly changing as items are popped and pushed.
However, although an array cannot be a stack, it can be the home of a

stack. That is, an array can be declared with a range that is large enough for the

maximum size of the stack. During the course of program execution, the stack

will grow and shrink within the space reserved for it. One end of the array will be
the fixed bottom of the stack, while the top of the stack will constantly shift as

items are popped and pushed. Thus another variable is needed which, at each
point during program execution, will keep track of the current position of the top
of the stack.

A stack in BASIC may therefore be declared and initalized using an array
SITEM to hold the elements of the stack, and an integer TP to indicate the position

of the current stack top within the array. This may be done by the statements:

10 MAXSTACK = 100

20 DIM SITEM(MAXSTACK)

30 TP = 0

Here we use the variable MAXSTACK to hold the value of the maximum stack

size and assume that the stack will at no time contain more than this many numbers

in locations SITEM(1) through SITEM(MAXSTACK). In this example, the

maximum stack size is set to 100. For consistency among various versions of
BASIC, SITEM(O) is not used.

We use a variable MAXSTACK to ensure that modification of the maximum

stack size involves changing only a single number, the value of MAX-

STACK. If SITEM were directly dimensioned to be of size 100, the constant 100
would have to be changed in every reference to the maximum stack size. The

more changes that must be made, the less likely that a program modification will

be successful. Programs should be written initally so that they are easily modifiable.
Some versions of BASIC may not allow dimensioning an array using a variable
bound and in those versions the constant 100 must be used instead of

MAXSTACK in the DIM statement. However, even there the variable MAX-

STACK should be used in all other references to the maximum stack size to reduce

the number of changes to no more than two.

We also assume that the items in the stack are single-precision numbers.

There is, of course, no reason to restrict a stack to contain only single-precision

numbers; SITEM could just as easily have been given the type integer, double

precision, or character string by means of the DEFINT, DEFBL, or DEFSTR
statements, respectively. The value of TP, however, must be an integer between
0 and 100 since its value represents the position within the array SITEM of the
topmost stack element. (We do not declare TP to be an integer using the DEFINT
statement since that would require that all variables in the program beginning
with T be declared integers as well.) Thus, if the value of TP is 5, there are five
elements on the stack. These are SITEM(1), SITEM(2), SITEM(3), SITEM(4),

and SITEM(5). When the stack is popped, the value of TP must be changed to 4
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to indicate that there are now only four elements on the stack and that SITEM(4)
is the top element. On the other hand, if a new object is pushed onto the stack,
the value of TP must be increased by 1 to 6 and the new object inserted into
SITEM(6).

The empty stack contains no elements and can therefore be indicated by TP
equaling 0. In order to initialize the stack to the empty state, we execute TP = 0.

(It is good programming practice to assign initial values explicitly to all variables
rather than relying on language or system defaults.)

To determine during the course of execution whether or not a stack is empty,
the condition TP = 0 may be tested by means of an IF statement, as follows:

100 IFTP=0

THEN ‘stack is empty

ELSE ‘stack is not empty

This test corresponds to the operation empty(s), which was introduced in Section

1. Alternatively, assuming that the variable TRUE has been set to 1 and the variable

FALSE to 0, we may write a subroutine that sets a variable to TRUE if the

stack is empty and FALSE if it is not empty. Such a subroutine may be written as
follows:

3000 ‘subroutine empty

3010 ‘inputs: TP

3020 ‘outputs: EMPTY
3030 ‘locals: none

3040 IF TP = 0 THEN EMPTY = TRUE

ELSE EMPTY = FALSE

3050 RETURN

3060 ‘endsub

Once this subroutine exists, a test for the empty stack is implemented by the
statements

100 GOSUB 3000: ‘subroutine empty sets the variable EMPTY

110 IF EMPTY = TRUE THEN ‘the stack is empty

ELSE ‘the stack is not empty

You may wonder why we bother to define the subroutine empty when we could

just as easily write IF TP = 0 each time that we want to test for the empty condition.

The answer is that we wish to make our programs more comprehensible and

to make the use of a stack independent of its implementation. Once we understand

the concept of a stack, the phrase “EMPTY = TRUE” is more meaningful

than the phrase “TP = 0.” If we should later introduce a better

implementation of a stack so that “TP = 0” becomes meaningless, we would

have to change every reference to the identifier TP throughout our entire program.

On the other hand, the phrase “EMPTY = TRUE” would still retain its

meaning, since it is an inherent attribute of the stack concept rather than of an
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implementation of that concept. All that would be required to revise our program
to accommodate a new implementation of the stack would be a revision of the
declaration of the stack in the main program and the rewriting of the subroutine
empty. Aggregating the set of implementation-dependent trouble spots into small,
easily identifiable units is an important method of making a program more understandable

and modifiable. This concept is known as modularization, in which
individual functions are isolated into low-level modules whose properties are easily

provable. These low-level modules can then be used by more complex routines
which do not have to concern themselves with the details of the low-level

modules but only with their function. The complex routines may then themselves
be viewed as modules by still-higher-level routines which use them independently

of their internal details.

To implement the pop operation, the possibility of underfiow must be considered
since the user may inadvertantly attempt to pop an element from an empty

stack. Of course, such an attempt is illegal and should be avoided. However, if

such an attempt should be made, the user should be informed of the underfiow
condition. We therefore introduce a function pop, which consists of the following
three actions:

1. If the stack is empty, it prints a warning message and halts execution.

2. It removes the top element from the stack.

3. It makes this element available to the calling program.

2000 ‘subroutine pop
2010 ‘inputs: SITEM, TP
2020 ‘outputs: POPS, TP
2030 ‘locals: none

2040 GOSUB 3000: ‘subroutine empty sets the variable EMPTY
2050 IF EMPTY = TRUE THEN PRINT “STACK UNDERFWW”: STOP

ELSE POPS = SITEM(TP): TP = TP — 1

2060 RETURN

2070 ‘endsub

Note that the output variable of pop is named POPS since POP is a reserved word
in some versions of BASIC.

Testing for Exceptional Conditions

Let us look at the pop function more closely. If the stack is not empty, the top
element of the stack is saved as the returned value. This element is then removed

from the stack by the statement TP = TP — 1. Let us assume that when pop is
called, TP equals 87; that is, there are 87 items on the stack. The value of
SITEM(87) is returned and the value of TP is changed to 86. Note that
SITEM(87) still retains its old value; the array SITEM remains unchanged by the
call to pop. However, the stack is changed since it now contains only 86 elements
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rather than 87. Recall that an array and a stack are two different objects. The

array only provides a home for the stack. The stack itself contains only those
elements between the first item of the array and the TPth element. Thus, reducing

the value of TP by 1 effectively removes an element from the stack. This is true

despite the fact that SITEM(87) retains its old value.

In order to use the subroutine pop, the programmer can write

100 GOSUB 2000: ‘subroutine pop sets the variable POPS
110 X = POPS

X will then contain the value popped from the stack. If the intent of the pop operation
was not to retrieve the element on the top of the stack but only to remove it

from the stack, the variable X need not be used. Of course, the programmer
should ensure that the stack is not empty when he or she calls the subroutine pop.
If unsure of the state of the stack, the programmer may write

100 GOSUB 3000: ‘subroutine empty sets the variable EMPTY
110 IF EMPTY <> TRUE THEN GOSUB 2000: X = POPS

ELSE ‘take remedial action

If the programmer unwittingly does call pop with an empty stack, the subroutine
prints the error message STACK UNDERFLOW and execution halts. Although
this is an unfortunate state of affairs, it is far better than what would occur

had the IF statement in the pop routine been omitted entirely. In that case, the

value of TP would be 0 and an attempt would be made to access the uninitialized
(or nonexistent) element SITEM(O).

A programmer should always provide for the almost certain possibility of

error. This is done by including diagnostics that are meaningful in the context of
the problem. By doing so, if and when an error does occur, the programmer will

be able to pinpoint its source and take corrective action immediately.

However, within the context of a given problem, it may not be necessary to

halt execution immediately upon the detection of underfiow. Instead, it might be
more desirable for the pop routine to signal the calling program that an underfiow

has occurred. The calling routine, upon detecting this signal, can take corrective
action. Let us call the subroutine that pops the stack and returns an indication as
to whether underfiow has occurred, popandtest.

7000 ‘subroutine popandtest
7010 ‘inputs: SITEM, TP
7020 ‘outputs: POPS, TP, UND
7030 ‘locals: none

7040 GOSUB 3000: ‘subroutine empty sets the variable EMPTY
7050 IF EMPTY = TRUE THEN UND = TRUE

ELSE UND = FALSE: POPS = SITEM(TP):

TP = TP — 1

7060 RETURN

7070 ‘endsub
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In the calling program the programmer would write

110 GOSUB 7000: ‘subroutine popandtest sets UND and possibly POPS
120 IF UND = TRUE THEN ‘take corrective action

ELSE X = POPS: ‘X is the element popped off the stack

Implementing the push Operation

Let us now examine the push operation. It seems that this operation should be
quite easy to implement using the array representation of a stack. Assume that a

variable X contains the value to be pushed onto the stack. Then a first attempt at
a push subroutine might be the following:

1000 ‘subroutine push
1010 ‘inputs: TP, X
1020 ‘outputs: SITEM, TP
1030 ‘locals: none

1040 TP = TP + 1

1050 SITEM(TP) = X

1060 RETURN

1070 ‘endsub

This routine makes room for the item X to be pushed onto the stack by incrementing

TP by 1, and then it inserts X into the array SITEM.

The subroutine directly implements the push operation which was introduced

in the preceding section. Yet, as it stands, it is quite incorrect. It allows a
subtle error to creep in, caused by using the array representation of the stack. See

if you can spot this error before reading further.
Recall that a stack is a dynamic structure that is constantly allowed to grow

and shrink and thus change its size. An array, on the other hand, is a fixed object

of predetermined size. Thus it is quite conceivable that a stack will outgrow the

array that was set aside to contain it. This will occur when the array is full, that

is, when the stack contains as many elements as the array—and an attempt is

made to push yet another element onto the stack. The result of such an attempt is
called an overflow.

Assume that the array is full and that the push routine above is called. The

full array is indicated by the condition TP = 100, so that the 100th (and last)

element of the array is the current top of the stack. When push is called, TP is

increased to 101 and an attempt is made to insert X into the lOith position of the
array SITEM. Of course, SITEM contains only 100 elements, so this attempt at

insertion will result in an error and produce an appropriate error message. This

message is totally meaningless within the context of the original algorithm, since
it does not indicate an error in the algorithm, but rather an error in the computer

implementation of that algorithm. It would be far more desirable for the programmer
to provide for the possibility of overflow and to print out a more meaningful

message.
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The subroutine push may therefore be revised so that it reads as follows:

1000 ‘subroutine push

1010 ‘inputs: MAXSTACK, TP, X

1020 ‘outputs: SITEM, TP
1030 ‘locals: none

1040 IF TP = MAXSTACK THEN PRINT “STACK OVERFLOW”: STOP

1050 TP = TP + 1

1060 SITEM(TP) = X

1070 RETURN

1080 ‘endsub

Here a check is made to determine whether the array is full before attempting to

push another element onto the stack. The array will be full if TP = MAXSTACK.

You should again note that if and when the overflow condition is detected in

push, execution halts immediately after printing an error message. This action, as

in the case of pop, may not be the most desirable. It might, in some cases, make

more sense for the calling routine to be able to invoke the push operation in the

following manner:

pushandtest(overflow, stack, x)

if overflow = true
then ‘ Overflow has been detected. x was not

‘pushed on stack. Take remedial action.

else ‘x was successfully pushed on the stack.

Continue processing.

This will allow the program to proceed after returning from pushandtest whether

or not overflow was detected. The subroutine pushandtest is left as an exercise
for the reader.

It is useful to compare the subroutine push with the earlier subroutine pop.

Although the overflow and underfiow conditions are handled similarly in the two
routines, there is a fundamental difference between them. Underfiow indicates

that the pop operation cannot be performed on the stack and may indicate an error

in the algorithm or the data. No other implementation or representation of the

stack will cure the underfiow condition. Rather, the entire problem must be rethought.

(Of course, it is possible that the programmer wishes an underfiow to

occur as a signal to end one process and begin another. However, in such a case,

it would be necessary to use the subroutine popandtest rather than the subroutine

pop.)

Overflow, however, is not a condition that is applicable to a stack as an

abstract data structure. As we saw in the preceding section, it is always possible

to push an element onto a stack since a stack is just an ordered set and there is no

limit to the number of elements such a set can contain. The possibility of an overflow

is introduced when a stack is implemented using an array with only a finite

number of elements, thereby prohibiting the growth of the stack beyond that
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number. It may very well be that the algorithm which the programmer used is
correct; he or she just did not anticipate that the stack would become so large.
Thus, in some cases, a possible way to correct an overflow condition is to change
the initialization of the stack so that the array SITEM contains more elements.
Note that this can be done simply by increasing the initial value of MAXSTACK.
No change is needed to the subroutine push since it refers to whatever value
MAXSTACK was given in the main program. This illustrates another advantage
of using a variable to hold the maximum stack size: modularity and portability.
The same subroutine push can be used regardless of the particular size of the
array SITEM.

However, more often than not, an overflow does indicate an error in the

program which cannot be attributed to a simple lack of space. The program may

be in an infinite loop, where things are constantly being pushed onto the stack

and nothing is ever popped. Thus the stack will outgrow the array bound no matter

how high that bound is set. The programmer should always check that this is

not the case before indiscriminately raising the array bound. Often, the maximum

stack size can easily be determined from the program and its inputs, so that if the

stack does overflow, there is probably something wrong with the algorithm the

program represents.

Let us now look at our last operation on stacks, stacktop(s), which returns

the top element of a stack without removing it from the stack. As we noted in the

preceding section, stacktop is not really a primitive operation because it can be

decomposed into the two operations

x = pop(s)

push(s,x)

However, this is a rather awkward way to retrieve the top element of a stack.

Why not ignore the decomposition noted above and retrieve the proper value directly?

Of course, a check for the empty stack and underfiow must then be explicitly

stated since the test is no longer handled within pop.

We present a BASIC subroutine stacktop which sets a variable STKTP to

the top element of the stack without removing it from the stack, as follows:

4000 ‘subroutine stacktop

4010 ‘inputs: SITEM, TP

4020 ‘outputs: STKTP
4030 ‘locals: none

4040 GOSUB 3000: ‘subroutine empty sets the variable EMPTY
4050 IF EMPTY = TRUE THEN PRINT “STACK UNDERFLOW”: STOP

4060 STKTP = SITEM(TP)
4070 RETURN

4080 ‘endsub

You may wonder why we bother writing a separate routine stacktop when a reference
to SITEM(TP) would serve just as well. There are several reasons for this.
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First, the routine stacktop incorporates a test for underfiow so that no mysterious

errors will occur if the stack is empty. Second, it allows the programmer to use a

stack without worrying about its internal makeup. Third, if a different implementation

of a stack is introduced, the programmer need not comb through all of the

places that refer to SITEM(TP) in order to make those references compatible with
the new implementation. He or she need only change the stacktop routine.

Armed with this set of BASIC routines, we can begin attacking problems

that call for the use of stacks and presenting BASIC solutions. We shall do this in

the succeeding sections. In the next chapter, we present other implementations of
stacks.

EXERCISES

1. Write BASIC programs that use the routines presented in this chapter to implement

the operations of Exercise 3.1.1.

2. Given a sequence of push and pop operations and an integer representing the size of

an array in which a stack is to be implemented, design an algorithm to determine

whether or not overflow occurs. The algorithm should not use a stack. Implement the

algorithm as a BASIC program.

3. Implement the algorithms of Exercises 3. 1.3 and 3.1.4 as BASIC programs.

4. Show how to implement a stack of integers in BASIC by using an array 5, where

5(0) (rather than a separate variable TP) is used to contain the index of the top element

of the stack and where 5(1) through S(MAXSTACK) contain the elements on

the stack. Write a declaration and routines pop, push, empty, popandtest, stacktop,

and pushandtest for this implementation.

5. Using the array implementation of stacks, write a BASIC program to read a character

string containing the three sets of scope enclosers (“(“ and “)“), (“<“ and “>“),

and (“[“ and “1 “) and to check whether or not the string contains a correct scoping

pattern.

6. Consider a language that does not have arrays but does have stacks as a data type.

That is, one can declare

DEFSTACK S

and the push, pop, popandtest, and stacktop operations are defined as part of the

language. Show how a one-dimensional array can be implemented by using these

operations on two stacks.

7. Design a method for keeping two stacks within a single linear array s in such a way

that neither stack overflows until all of the array is used and an entire stack is never

shifted to a different location within the array. Write BASIC routines push!, push2,

pop!, and pop2 to manipulate the two stacks. (Hint: The two stacks grow toward

each other.)
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8. The Bashemin Parking Garage contains a single lane which can hold up to 10 cars.
There is only a single entrance/exit to the garage at one end of the lane. If a customer

arrives to pick up a car that is not nearest the exit, all cars blocking its path are moved
out, the customer’s car is driven out, and the other cars are restored in the order they
were in originally.

Write a program that processes a group of input lines. Each input line contains
an “A” for arrival or a “D” for departure, and a license plate number. Cars are
assumed to arrive and depart in the order specified by the input. The program should
print a message whenever a car arrives or departs. When a car arrives, the message
should specify whether or not there is room for the car in the garage. If there is no
room, the car leaves without entering the garage. When a car departs, the message
should include the number of times that the car was moved out of the garage to allow

other cars to depart.

9. The XYZ Widget Store receives shipments of widgets at various costs. The store’s
policy is to charge a 20% markup and to sell widgets that were received later before
widgets that were received earlier (because widgets received later are at a higher
price—this is called a LIFO policy). Write a BASIC program that reads a deck of
transactions of two types: sales transactions and receipt transactions. A sales transaction

contains an “S” and a quantity and represents a sale of that quantity of widgets.
A receipt card contains an “R”, a quantity, and a cost per widget and represents a
receipt of a quantity of widgets at that cost per widget. When a receipt transaction is
read, print a message. After a sales transaction is read, print a message stating the

number sold and the price for each widget. For example, if 200 widgets were sold

and there were 50 widgets from a shipment at $1.25, 100 at $1.10, and 50 at $1.00,
print (recall the 20% markup)

200 WIDGETS SOLD

50 AT $1.50 EACH SALES: $ 75.00

100 AT $1.32 EACH SALES: $ 132.00

50 AT $1.20 EACH SALES: $ 60.00

TOTAL SALES: $ 267.00

If there are an insufficient number of widgets in stock to fill an order, sell as many as

are available and then print

REMAINDER OF XXX WIDGETS NOT AVAILABLE.

3. AN EXAMPLE: BASIC SCOPE NESTING

Statement of Problem

To illustrate the usefulness of stacks, let us consider the rules for FOR-NEXT

nesting in BASIC. A BASIC FOR statement begins the scope of a loop and a

NEXT statement ends that scope. FOR-NEXT loops may be nested as long as

each subsequently nested loop is contained entirely within the surrounding loop.
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For the programmer’s convenience, in order to keep track of the nesting order,

each NEXT statement may contain a variable corresponding to the variable in the

FOR statement. We may consider the variable as identifying the particular loop

referenced by the FOR-NEXT statements. If a NEXT statement does not contain

a variable after the keyword NEXT, the NEXT statement closes the most recently

opened scope which has not yet been closed. Although the use of an identifying

variable in a NEXT statement is optional, if such a variable does appear in a

NEXT statement, it must correspond to the innermost (most recently opened)

scope that is still open. Thus scopes are closed in the opposite order in which they

were opened. (Many popular versions of BASIC allow a single NEXT statement

to contain several variables and to terminate multiply nested loops, provided that

the variables are specified in the proper order in the NEXT statement. Other BASIC

interpreters do not allow a NEXT statement without an identifying variable.)

For an illustration of these rules, let us examine the program segment of

Figure 3.3.1. At line 10 of the program, the scope of the loop labeled I is opened

and at line 20 the scope of loop J is opened. At line 30, yet another scope (of loop

K) is opened, so that three scopes are open at that point. Line 40 indicates that

the scope K is to be closed. A new scope (L) is opened in line 50, so that once

again three scopes (L, J, I) are open. Scope L is closed in line 60, J in line 70,
and I in line 80.

Note that lines 30 and 50 are equally indented since they are both contained

within the scope of loop 20 but not contained within each other. While the interpreter

ignores all indentation and processes a program solely based on the pattern

of FORs and NEXTs that appear, the human reader (including the programmer)

will be better able to understand the program that is indented.

We wish to write a BASIC program which associates the NEXT statement

10 ForI=1TO1O

20 FORJ=1T05

30 FORK=1T07

40 NEXT K

50 FORL=1T012

60 NEXT L

70 NEXT

Figure 3.3.1 A BASIC program segment
80 NEXT I illustrating FOR-NEXT nesting.
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that closes a scope with the FOR statement that begins it. To simplify the input
process, we assume that the input consists of DATA statements each of which
contains a character string in one of the two forms

FOR variable

or

NEXT variable

where variable is either a valid BASIC identifier or a blank. For example, input
corresponding to the FOR-NEXT structure of Figure 3.3.1 is as follows:

300 DATA”FORI”

310 DATA”FORJ”

320 DATA”FORK”

330 DATA “NEXT K”

340 DATA “FOR L”

350 DATA “NEXT L”

360 DATA “NEXT”

370 DATA “NEXT I”

The program should first read and print a character string. If the string represents

a FOR statement, the program should print a message of the form

SCOPE variable OPENED

If the string represents a NEXT statement, the program should print a message of
the form

SCOPE variable CLOSED

For input corresponding to Figure 3.3.1 the output should be

FOR I

SCOPE I OPENED

FOR J

SCOPE J OPENED

FOR K

SCOPE K OPENED

NEXT K

SCOPE K CLOSED

FOR L

SCOPE L OPENED

NEXT L

SCOPE L CLOSED

NEXT

SCOPE J CLOSED

NEXT I

SCOPE I CLOSED
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We also wish the program to alert us should the variable in the NEXT statement
not correspond to the appropriate scope, in which case a suitable error message

should be printed.

Algorithm for Solution

We can outline an algorithm as follows:

1. while there is more input do
2. read stmt

3. print stmt
4. scope = the first word of stint
5. vrble = the second word of stmt

6. if scope = “for”
7. then print an appropriate message
8. store away vrble
9. else if scope = “next”

10. then if vrble =
11. then print a message closing the last scope
12. else if vrble = the variable on the most recently opened scope
13. then print a message closing that scope
14. else print an error message and stop
15. endif
16. endif
17. else print an error message and perform appropriate error recovery
18. endif
19. endif
20. endwhile

This outline is quite imprecise and cannot be immediately translated into a

program. Rather, it is an attempt to mirror the specification statement (which is

even more ambiguous) and to mold it into a framework around which a program

can be written. In formulating such an outline, ambiguities in the specification

are highlighted. (See if you can spot the ambiguities in specification that are illustrated

by the outline example.) Once this outline has been written, each part of

it can be isolated separately and refined until it has the precision necessary to be

directly translatable into BASIC. During this refinement process you may find

that certain parts of the specification have been omitted or must be made more

precise. In that case, the outline must be revised and the entire process reiterated.

However, revision of the outline is a much simpler task than attempting to patch

up a BASIC program that has been written directly from an English description.

The relation between a BASIC statement and a specific English phrase in the

specification is often very difficult to uncover since English and BASIC are very

different from each other. By using an outline as a bridge between the two languages,

the path between them becomes more visible. This isolation and refine-
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ment process has become a very important tool in writing correct programs and
has resulted in large savings of both machine time and programmer time.

Refining the Outline

Let us therefore begin refining the program outline. Line 1 begins a loop that will
terminate when the input is exhausted. Let us assume that the end of the input is
indicated by the use of a trailer. Thus the main loop of the program may be written

as

10 ‘program scope
30 DEFSTR S

90 READ STMT

100 IF STMT = “FINISH” THEN GOTO 320

110 PRINT STMT

310 GOTO9O

320 END

500 DATA...

Of course, the variable STMT must be declared as a character string (using the
statement DEFSTR S). In lines 4 and 5 of the algorithm, we are asked to extract

the first and second “words” from the string STMT. Since this is a possibly
complicated operation (an arbitrary number of blanks may be interspersed among
the words, or we may want to ensure that the words are valid BASIC identifiers),
it is best left isolated in a subroutine of its own. We will therefore assume the

existence of a subroutine word which accepts two inputs: the first is a character
string X and the second is an integer N. word sets the variable WRD to the Nth
word in X, or the null string if there is no Nth word.

We can therefore translate lines 4 and 5 of the outline into the following
lines of code:

30 DEFSTRS,V,W,X

120 ‘scope = word(stmt,1)

130 N = 1

140 X = STMT

150 GOSUB 8000: ‘subroutine word sets the variable WRD

160 SCOPE = WRD

170 ‘vrble = word(stmt,2)

180 N = 2

190 X = STMT

200 GOSUB 8000: ‘subroutine word sets the variable WRD

210 VRBLE = WRD
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Eventually, the subroutine word must be programmed in BASIC. However,

by isolating it as a separate subroutine, we can postpone consideration of the details

of character-string extraction and focus instead on the main goals of the program.

Later, when the program has been completed, we can fill in the details of

the subroutine word. This is a further step in the outline/refinement process in

which programs are broken up into separately manageable modules.

Let us now turn our attention to lines 6—19 of the outline, which represent
the heart of the program. Line 8 instructs us to “store away VRBLE.” Note the

deliberate vagueness of this instruction. Where are we to store this variable? How

are we to retrieve it? By the previous analysis, we have seen that FOR-NEXT

loop scoping represents a last-in, first-out discipline; the last scope to be opened
must be the first to be closed. Thus a stack is the natural data structure to use for

this problem. (Hopefully, you had already realized that fact by now.)

We will, therefore, declare a stack of character strings as follows:

30 DEFSTR 5, V, W, X

60 MAXSTACK = 100

70 DIM SITEM(MAXSTACK)

80 TP = 0

We are assuming that no more than 100 scopes will be open simultaneously

(many BASIC interpreters impose practical limitations on the number of FOR-

NEXT loops that may be nested). Thus “store away VRBLE” is translated as

“push VRBLE onto a stack.”

Another point must be clarified before continuing with the program. Line 7

refers to an “appropriate message” to be printed upon opening a scope. By the

original specification of the problem the program must print

SCOPE variable OPENED

We can now translate lines 6—8 of the outline:

220 IF SCOPE = “FOR” THEN PRINT “SCOPE “; VRBLE; “OPENED”:

X = VRBLE: GOSUB 1000: GOTO 310:

‘push(sitem,vrble)

Let us now turn our attention to lines 9—13 of the outline. The message that

is printed in lines 11 and 13 must refer to the variable of the last scope opened.

This variable can be retrieved by popping the stack. Thus the program continues:

230 ‘else do statements 240-300

240 ‘if scope = “NEXT” then pop(sitem) else print error message
250 IF SCOPE = “NEXT” THEN GOSUB 2000: VB = POPS

ELSE GOTO 290

260 IF VRBLE = “ OR VRBLE = VB

THEN PRINT “SCOPE “; VB; “ CLOSED “: GOTO 310
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Line 14 refers to the case where the label on a NEXT statement does not correspond

to the label identifying the most recently opened scope. This indicates an
illegal nesting of FOR-NEXT loops and would cause execution to be terminated.
This may be accomplished by the statements

270 ‘else do statement 280

280 PRINT “ERROR. NEXT WITHOUT FOR”: STOP

Line 17 refers to the case where a statement has been read whose instruction is

neither FOR nor NEXT. We must decide what to print to indicate the error and
what to do once an error has been found. Perhaps the easiest thing to do is to print

ERROR. INSTRUCTION IS ILLEGAL, STATEMENT IGNORED

and then ignore the statement and continue processing as though it had never

been encountered. This can be accomplished by the statements

290 ‘instruction is neither FOR nor NEXT

300 PRINT “ERROR. INSTRUCTION IS ILLEGAL, STATEMENT IGNORED.”

The Complete Program

Let us now put all the pieces together, add appropriate declarations, and examine

the complete program.

10 ‘program scope

20 ‘the statement CLEAR 100 is required on TRS-80 microcomputers

30 DEFSTR P, 5, V, W, X
40 TRUE = 1

50 FALSE = 0

60 MAXSTACK = 100

70 DIM SITEM(MAXSTACK)

80 TP = 0

90 READ STMT

100 IF STMT = “FINISH” THEN GOTO 320

110 PRINT STMT

120 ‘scope = word(stmt,1)
130 N = 1

140 X = STMT

150 GOSUB 8000: ‘subroutine word sets the variable WRD

160 SCOPE = WRD

170 ‘vrble = word(stmt,2)

180 N = 2

190 X = STMT

200 GOSUB 8000: ‘subroutine word

210 VRBLE = WRD
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220 IF SCOPE = “FOR” THEN PRINT “SCOPE “; VRBLE; “OPENED”:

X = VRBLE: GOSUB 1000: GOTO 310:

‘push(sitem,vrble)
230 ‘else do statements 240-300

240 ‘if scope = “NEXT” then pop(sitem) else print error message
250 IF SCOPE = “NEXT” THEN GOSUB 2000: VB = POPS

ELSE GOTO 290

260 IF VRBLE = “ OR VRBLE = VB

THEN PRINT “SCOPE “; VB; “CLOSED”: GOTO 310

270 ‘else do statement 280

280 PRINT “ERROR. NEXT WITHOUT FOR”: STOP

290 ‘instruction is neither FOR nor NEXT

300 PRINT “ERROR. INSTRUCTION IS ILLEGAL, STATEMENT IGNORED.”

310 GOTO9O

320 END

500 DATA...

1000 ‘subroutine push

2000 ‘subroutine pop

3000 ‘subroutine empty

8000 ‘subroutine word

We must, of course, include the subroutine word and appropriate versions

of pop and push which apply to stacks of character strings. We leave these as

exercises for the student. The reader is urged to use the nesting structure of Figure

3.3.1 as input to the program above, and to note the following points:

1. The program produces the correct output for those inputs.

2. At each point of the program, the stack contains the variables of scopes that

have been opened but not yet closed.

Note that only minimal error recovery has been incorporated into our program.
A cardinal rule of programming is that program design should anticipate

erroneous input. Upon reading a FOR statement, a message opening the scope is
to be printed and the variable is to be pushed onto the stack for later comparison
with the variable identifying the NEXT statement. However, suppose that a FOR
statement erroneously contains no variable. Upon encountering the NEXT statement

which was to have closed this scope, the program would (according to line

14 of the algorithm) print an error message and stop without noting that the error
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was in the FOR statement opening that scope. An even more serious problem
could occur if the corresponding NEXT statement also did not contain an identifying

variable. In such a case the condition in line 12 of the algorithm would be
true and the program would continue, giving no indication that an error had occurred.

Although we may want to halt program execution upon occurrence of an
error, more frequently we would like to take some appropriate action. We must
decide what corrective action to take. Upon reading a FOR statement without an
identifying variable, a reasonable course would be to print an error message, ignore

the FOR statement, and continue processing.
Another error situation that can occur is for scopes to remain open after the

input has been exhausted. This occurs when not enough NEXT statements have
been placed in the input to match the FOR statements. A simple message at the
end of the output, listing all unclosed scopes, should suffice to note this error.

EXERCISES

1. Program the subroutine word that sets WRD to the Nth BASIC identifier in a string
STR or “ if STR has no Nth identifier.

2. Write versions of pop, push, empty, and popandtest for stacks of character strings.

Note that if two independent stacks, one of integers and one of character strings,

appear in the same program, two versions of pop, push, empty, and popandtest must
be included.

3. Assume that FOR statements are of the form

## FOR var = mit TO final STEP step

where ## is a line number; var is a BASIC identifier; mit, final, and step are either

integers or BASIC identifiers; and step is assumed positive. Write a program that

accepts input consisting of such FOR and NEXT statements and translates them into

IF, assignment, and GOTO statements. For example, the following input:

10 FOR I = 1 TO N STEP 3

20 FOR J = N TO 500 STEP 1

30 NEXT J

40 NEXT I

50 FOR I = 1 TO 5 STEP K

60 NEXT I

would be translated into

10 I = 1

20 IF I> N THEN GOTO 90

30 J = N

40 IF J> 500 THEN GOTO 70
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50 J = J + 1

60 GOTO 40

70 I = I + 3

80 GOTO 20

90 I = 1

100 IF I> 5 THEN GOTO 130

110 I = I + K

120 GOTO 100

130 ‘remainder of program

(Hint: Use stacks of variables, line numbers, and increments.)

4. Assume that a single NEXT statement containing several variables may terminate multiply

nested loops provided that the variables are specified in the proper order. Modify

the program in this section so that upon encountering a statement of the form

50 NEXTX,Y,Z

the scopes identified by the variables X, Y, and Z are properly closed, and messages
of the form

SCOPE X CLOSED

SCOPE Y CLOSED

SCOPE Z CLOSED

are printed. Your program should detect incorrectly nested FOR-NEXT loops.

5. Consider a language in which a NEXT statement containing a variable closes all open

scopes nested within the scope identified by that variable. Thus any scopes that have

been opened beyond the FOR statement containing the variable but which have not yet

been closed, as well as the scope identified by that variable, are to be ended by the

same NEXT statement. Modify the program in this section so that a NEXT statement

containing a variable closes all such scopes, printing multiple messages indicating

which scopes have been closed.

4. AN EXAMPLE: INFIX, POSTFIX, AND PREFIX

Basic Definitions and Examples

In this section we examine a major application of stacks. Although it is one of the

most prominent applications, it is by no means the only one. The reason that we

consider this application is that it illustrates so well the different types of stacks

and the various operations we have defined upon them. The example is also an

important topic of computer science in its own right.

Before proceeding with the algorithms and programs of this section it is

necessary to provide some groundwork. Consider the sum of A and B. We think

of applying the operator “+“ to the operands A and B and write the sum as
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A + B. This particular representation is called infix. There are two alternative notations
for expressing the sum of A and B using the symbols A, B, and +. These

are:

+AB prefix
AB+ postfIx

The prefixes “pre,” “post,” and “in” refer to the relative position of the

operator with respect to the two operands. In prefix notation the operator precedes

the two operands, in postfix notation the operator follows the two operands,

and in infix notation the operator is between the two operands. The prefix

and postfix notations are not really as awkward to use as they might first appear.

For example, in many versions of BASIC, we can invoke a defined function

FNADD to return the sum of the two arguments A and B by writing

T = FNADD(A,B). The operator precedes the operands A and B.

Let us now consider some additional examples. The evaluation of the expression

A + B*C as written in standard infix notation requires knowledge of

which of the two operations, + or ‘K, is to be performed first. In the case

of + and ‘K, we “know” that multiplication is to be done before addition (in the

absence of parentheses to the contrary). Thus A + B*C is interpreted as A + (B*C)

unless otherwise specified. We say that multiplication takes precedence over addition.

Suppose that we would like to rewrite A +B*C in postfix. Applying the

rules of precedence, we first convert the portion of the expression that is evaluated

first, the multiplication. By doing this conversion in stages, we obtain

A + (B*C) parentheses for emphasis

A + (BC*) convert the multiplication

A(BC*) + convert the addition

ABC* + postfix form

The only rules to remember during the conversion process are that the operations

with highest precedence are converted first and that after a portion of the

expression has been converted to postfix it is to be treated as a single operand.

Let us now consider the same example with the precedence of the operators reversed

by the deliberate insertion of parentheses.

(A+B)*C infix form

(AR + )*C convert the addition

(AR + )C* convert the multiplication
AB+C* postfix form

In the example above, the addition was converted before the multiplication because

of the parentheses. In going from (A +B)*C to (AB + )*C, A and B are the

operands and + is the operator. In going from (AB + )*C to (AB + )C*, (AB +)

and C are the operands and * is the operator. The rules for converting from infix

to postfix are simple, provided that you know the order of precedence.

We will consider five binary operations: addition, subtraction, multiplica
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tion, division, and exponentiation. These operations are denoted by the usual operators
+, —, ‘K, /, and t. For these binary operators the following is the order

of precedence (highest to lowest):

Exponentiation
Multiplication/division
Addition/subtraction

By using parentheses we can override the default precedence.
We give the following additional examples of converting from infix to post-

fix. Be sure that you understand each of these examples (and can do them on your

own) before proceeding to the remainder of this section. We follow the convention
that when unparenthesized operators of the same precedence are scanned, the

order is assumed to be left to right except in the case of exponentiation, where the

order is assumed to be from right to left. Thus A — B — C means (A — B) — C,
while A1’B1’C means AT(B1’C).

Infix Postfix

A+B AB+

A+B—C AB+C—

(A+B)*(C_D) AB+CD_*

AtB*C — D +E/F/(G +H) ABIYJ*D — EFIGH + / +

((A +B)*C_(D_E)yt(F+G) AB+C*DE_FG+

A ABCDEt*/ —

The precedence rules for converting an expression from infix to prefix are

identical. The only change from postfix conversion is that the operator is placed

before the operands rather than after them. We present the prefix forms of the

expressions above. Again, you should attempt to make the transformations on

your own.

Infix Prefix

A+B +AB

A+B-C -+ABC

(A +B)*(C_D) * +AB—CD

AtB*C — D +E/F/(G +H) + — * ABCD/EF + GH

((A +B)*C(D —E))t(F + G) * +ABC —DE +FG

A

Note that the prefix form of a complex expression is not the mirror image of the
postfix form, as can be seen from the second of the examples above, A + B — C.
We will henceforth be concerned with the postfix transformations and will leave

to the reader as exercises most of the work involving prefix.
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One point immediately obvious about the postfix form of an expression is
that it requires no parentheses. Let us consider the two expressions A + (B*C)
and (A + B)*C. Whereas the parentheses in one of the two expressions is superfluous

[by convention A + B*C = A + (B*C)1, the parentheses in the second expression
is necessary to avoid confusion with the first. The postfix forms of these

expressions are

Infix Postfix

A+(B*C) ABC*+

(A+B)*C AB+C*

There are no parentheses in either of the two transformed expressions. A close

look tells us that the order of the operators in the postfix expressions determines

the actual order of operations in evaluating the expression, making the use of

parentheses unnecessary. In going from infix to postfix we are sacrificing the

ability to note at a glance the operands associated with a particular operator. We

are gaining, however, an unambiguous form of the original expression without

the use of cumbersome parentheses. In fact, you may argue that the postfix form

of the original expression might look simpler were it not for the fact that it appears

difficult to evaluate. For example, how do we know that if A = 3, B = 4,

and C = 5 in the examples above, then 3 4 5 * + equals 23 and 3 4 + 5 *

equals 35?

Evaluating a Postfix Expression

The answer to this question lies in the development of an algorithm for evaluating

an expression in postfix. Each operator in a postfix string refers to the preceding

two operands in the string. (Of course, one of these two operands may itself be

the result of applying a previous operator.) Suppose that each time we read an
operand, we push it onto a stack. When we reach an operator, its operands will

then be the top two elements on the stack. We can then pop these two elements,

perform the indicated operation on them, and push the result on the stack so that
it will be available for use as an operand of the next operator. The following

algorithm evaluates an expression in postfix using this method.

initialize a stack s to be empty

‘scan the input string reading one element at a time into symb
while there are more characters in the input string do

symb = next input character

if symb is an operand

then push(s,symb)
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else secoper = pop(s)

open = pop(s)

value = result of applying symb to open and secoper

push(s ,value)

endif
endwhile

result = pop(s)

Let us now consider an example. Suppose that we are asked to evaluate the following
expression in postfix:

623 + — 382/ + *2t3 +

We show the contents of the operand stack s and the variables symb, open,

secoper, and value after each successive iteration of the ioop. The top of s is to
the right.

symb open secoper value s

6 6

2 6,2

3 6,2,3

+ 2

6

3

5

5

1

6,5

1

3 6 5 1 1,3

8 6 5 1 1,3,8

2 6 5 1 1,3,8,2

I 8 2 4 1,3,4

+ 3 4 7 1,7
* 1 7 7 7

2 1 7 7 7,2

1 7 2 49 49

3 7 2 49 49,3

+ 49 3 52 52

Note that s is a stack of operands. Each operand is pushed onto the stack
when it is encountered. Therefore, the maximum size of the stack is the number

of operands that appear in the input expression. However, in dealing with most

postfix expressions, the actual size of the stack needed is less than this maximum
since an operator removes operands from the stack. In the previous example the
stack never contained more than four elements, despite the fact that eight operands

appeared in the postfix expression.

Program to Evaluate a Postfix Expression

We are now prepared to plan a program to evaluate an expression in postfix notation.
There are a number of questions that we must consider before we can actu
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ally write the program. A primary consideration, as in all programs, is to define
precisely the form and restrictions, if any, on the input. Usually, the programmer
is presented with the form of the input and is required to design a program to
accommodate the given data. On the other hand, we are in the fortunate position
of being able to choose the form of our input. This enables us to construct a program

that is not overburdened with transformation problems that overshadow the
actual intent of the routine. Had we been confronted with data in a form that is

awkward and cumbersome to work with, we could relegate the transformations to

various subroutines and use the output of these subroutines as input to the primary
routine. In the “real world,” recognition and transformation of input is a major
concern.

Let us assume in this case that each input expression is in the form of a

string of digits and operator symbols. We will assume that operands are single

nonnegative digits (e.g., 0, 1, 2, . . . , 8, 9). For example, an input string might

be “345* + “. We would like to write a program that inputs expressions in this

format and prints for each expression the original input string and the result of the

evaluated expression.

Since the symbols are read as characters, we must find a method to convert

the operand characters to numbers and the operator characters to operations. For

example, we must have a method for converting the character “5” to the number

5 and the character “+“ to the addition operation. The conversion of a character

to an integer can be handled easily in BASIC. If X$ is the string representation of
a number in BASIC, the function VAL(X$) returns the numerical value of that

string. [Similarly, STR$(Y) can be used to convert a number Y to its string representation.]

To convert an operator symbol into the corresponding action, we use a
subroutine apply that accepts the character representation of an operator and two

operands as inputs. The subroutine sets the variable APPLY to the value of the

expression obtained by applying the operator to the two operands. The body of

this subroutine will be given below.

The main part of the program is presented below. The routine is merely the

BASIC implementation of the evaluation algorithm, taking into account the specific

environment and format of the input data and calculated outputs.

10 ‘program evaluate

20 ‘the statement CLEAR 100 is required on TRS-80 microcomputers
30 DEFSTR A, 0, P, 5, X
40 TRUE = 1

50 FALSE = 0

60 MAXSTACK = 100

70 DIM SITEM(MAXSTACK): ‘contains stack items 1—100

80 TP = 0

90 INPUT “ENTER STRING”; STRING

100 FOR CHAR = 1 TO LEN(STRING)

110 SYMB = MID$(STRING,CHAR,1): ‘extract the next character
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120 ‘jf SYMB is a digit, push it on to the stack
130 IF SYMB > = “0” AND SYMB <= “9”

THEN X = SYMB: GOSUB 1000: GOTO 230

140 ‘else do stmts 150—220

150 GOSUB 2000: ‘subroutine pop sets the variable POP
160 SECOPER = POPS

170 GOSUB 2000: ‘subroutine pop
180 OPER 1 = POPS

190 GOSUB 6000: ‘subroutine apply sets the variable APPLY
200 ‘we apply the operator to the top two items in the stack and

‘push the resulting value onto the stack in their place
210 X = APPLY

220 GOSUB 1000: ‘subroutine push
230 NEXT CHAR

240 GOSUB 2000: ‘subroutine pop
250 RESULT = VAL(POPS)

260 PRINT STRING;” = “; RESULT
270 GOTO 80: ‘repeat for another expression
280 END

1000 ‘subroutine push

2000 ‘subroutine pop

3000 ‘subroutine empty

6000 ‘subroutine apply

The subroutine apply checks to ensure that SYMB is a valid operator and if it is,

determines the results of its operation on the operands OPER1 and SECOPER.

6000 ‘subroutine apply

6010 ‘inputs: OPER1, SECOPER, SYMB

6020 ‘outputs: APPLY
6030 ‘locals: Y

6040 IF NOT (SYMB = “+“ OR SYMB = “—“ OR SYMB = “i” OR

SYMB = “I” OR SYMB = “t”)
THEN PRINT “INVALID OPERATOR”: STOP

6050 IF SYMB = “+“ THEN Y = VAL(OPER1) + VAL(SECOPER)

6060 IF SYMB = “—“ THEN Y = VAL(OPER1) — VAL(SECOPER)

6070 IF SYMB = “*“ THEN Y = VAL(OPER1) * VAL(SECOPER)

6080 IF SYMB = “I” THEN Y = VAL(OPER1) / VAL(SECOPER)

6090 IF SYMB = “1” THEN Y = VAL(OPER1) 1 VAL(SECOPER)
6100 APPLY = STR$(Y)
6110 RETURN

6120 ‘endsub
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Limitations of the Program

Before we leave the program, we should note some of its deficiencies. Understanding

what a program cannot do is as important as knowing what it can do. It

should be obvious that attempting to use a program to solve a problem for which

it was not intended will lead to chaos. Worse still is the case where an attempt is

made to solve a problem with an incorrect program only to have the program

produce incorrect results, without the slightest trace of an error message. In these

cases the programmer has no indication that the results are wrong, and may therefore

make faulty judgments based on those results. For this reason it is important

for the programmer to understand the limitations of a program.

A major criticism of this program is that it does nothing in terms of error

detection and recovery. If the data on each input line comprise a valid postfix

expression, the program works. Suppose, however, that one input line has too

many operators or operands or that they are not in a proper sequence. These problems

could come about as a result of someone innocently using the program on a

postfix expression that contains two-digit numbers, yielding an excessive number

of operands. Or, possibly, the user of the program was under the impression that

negative numbers could be handled by the program and that they are to be entered

with the minus sign, the same sign that is used to represent subtraction. These

minus signs are treated as subtraction operators, resulting in an excess number of

operators. Depending on the specific type of error, the computer may take one of

several actions (e.g., halt execution, print erroneous results, etc.). As another

example suppose that at the final statement of the program, the stack is not empty.

We get no error messages (because we asked for none) and produce a numerical

value for an expression that was probably incorrectly stated in the first place.

Suppose that one of the calls to the pop routine raises the underfiow condition.

Since we did not use the popandtest routine to pop elements from the stack, the

program stops. This seems unreasonable since faulty data in one expression

should not prevent the processing of additional expressions. By no means are

these the only problems that could arise. As exercises, you may wish to write

programs that accommodate less restrictive inputs and some others that will test
for and detect some of the errors listed above.

Converting an Expression from In fix to Postfix

We have thus far presented routines to evaluate a postfix expression. Although

we have discussed a method for transforming infix to postfix, we have not as yet

presented an algorithm for doing so. It is to this task that we now direct our attention.

Once such an algorithm has been constructed, we will have the capability of

reading an infix expression and evaluating it by first converting it to postfix and

then evaluating the postfix expression.

In our previous discussion, we mentioned that subexpressions within innermost

parentheses must first be converted to postfix so that they can then be treat-
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ed as single operands. In this fashion, parentheses can be successively eliminated

until the entire expression is converted. The last pair of parentheses to be opened
within a group of parentheses encloses the first subexpression within that group

to be transformed. This last-in first-out behavior should immediately suggest the
use of a stack.

Consider the two infix expressions A + B*C and (A + B)*C and their respective

postfix versions, ABC* + and AB + C. In each case the order of the operands

is the same as the order of the operands in the original infix expressions. In

scanning the first expression, A + B*C, the first operand A can be inserted immediately

into the postfix expression. Clearly, the + symbol cannot be inserted until

after its second operand, which has not yet been scanned, is inserted.

Therefore, it must be stored away to be retrieved and inserted in its proper position.
When the operand B is scanned, it is inserted immediately after A. Now,

however, two operands have been scanned. What prevents the symbol + from

being retrieved and inserted? The answer is, of course, the * symbol that follows,

which has precedence over +. In the case of the second expression the closing

parentheses indicates that the + operation should be performed first. Remember

that in postfix, unlike infix, the operator that appears earlier in the string is the

one that is applied first.

Since precedence plays such an important role in transforming infix to post-
fix, let us assume the existence of a function prcd(operl ,secoper), where open

and secoper are characters representing operators. This function returns true if

open has precedence over secoper when open appears to the left of secoper in

an infix expression without parentheses. pncd(operl ,secoper) returns false otherwise.

For example, prcd(”*”,” + “) and prcd(” + “,“ + “) are true, while

prcd(” + “,‘ ‘“) is false. Let us now present an outline of an algorithm to convert

an infix string without parentheses into a postfix string. Since we are assuming

no parentheses in our input string, the only governor of the order in which

operators appear in the postfix string is precedence.

1. initialize the postfix string to

2. initialize the stack opstk to empty

3. while there are more input symbols do
4. read symb
5. if symb is an operand
6. then add symb to postfix string
7. else ‘the symbol is an operator
8. while (empry(stack) false) and

(prcd(stacktop(opstk),symb) = true) do
9. smbtp = pop(opstk)

‘smbtp has precedence over symb so it can

‘be added to the postfix string
10. add smbtp to the postfix string
11. endwhile
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‘at this point, either opstk is empty or symb has

‘precedence over stacktop(opstk). We cannot output

‘symb into the postfix string until we have read

‘the next operator which may have precedence. We

‘must, therefore, store symb.
12. push (opstk,symb)

13. endif
14. endwhile

‘at this point, we have reached the end of the

‘string. We must output the operators remaining

‘on the stack into the postfix string.

15. while empiy(opstk) = false do
16. smbtp = pop(opstk)
17. add smbtp to the postfix string
18. endwhile

Simulate the algorithm with such infix strings as “A*B + C*D” and

“A + B*CtDtE” [where prcd (“t”, ‘1”) = false] to convince yourself that it

is correct. Note that at each point of the simulation, an operator on the stack has a

lower precedence than all the operators above it. This is because the initial empty

stack trivially satisfies this condition, and an operator is pushed onto the stack

(line 12) only if the operator currently on top of the stack has a lower precedence
than the incoming one.

You should also note the liberty that we have taken in line 8 in forming the
condition

(empiy(opstk) = false) and (prcd(stacktop(opstk),symb) = true)

Make sure that you understand why such a condition cannot be used in an actual

program.

What modification must be made to this algorithm to accommodate parentheses?

The answer is surprisingly little. When an opening parenthesis is read, it

must be pushed onto the stack. This can be done by establishing the convention

that prcd(op,”(”) = false, for any operator symbol op other than a right parenthesis.

We also define prcd(”(” ,op) = false to ensure that an operator symbol

appearing after a left parenthesis will be pushed onto the stack.

When a closing parenthesis is read, all operators up to the first opening parenthesis

must be popped from the stack onto the postfix string. This can be done

by setting prcd(op,”)”) = true for all operators op other than a left parenthesis.

When these operators have been popped off the stack and the opening parenthesis
is uncovered, special action must be taken. The opening parenthesis must be

popped off the stack, and it and the closing parenthesis must be discarded rather
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than placed in the postfix string or on the stack. Let us set prcd(”(”,”) “) to
false. This will ensure that upon reaching an opening parenthesis, the loop beginning

at line 8 will be skipped so that the opening parenthesis will not be inserted
into the postfix string. Execution will therefore proceed to line 12. However,

since the closing parenthesis should not be pushed onto the stack, line 12 is replaced
by the statement

12. if(empiy(opstk) = true) or (symb <> “)“)

then push(opstk,symb)

else smbtp = pop(opstk)

With these conventions for the prcd function and the revision to line 12, the

algorithm can be used to convert any infix string to postfix. We summarize the

precedence rules for parentheses:

prcd(”(’ ‘ ,op) = false for any operator op

prcd(op,”(”) = false for any operator op other than “)“
prcd(op,”)”) = true for any operator op other than “(“
prcd(’ ‘)‘ ‘ ,op) = undefined for any operator op (an attempt to

compare the two indicates an error)

We illustrate this algorithm with some examples

Example 1: A+B*C

The contents of symb, the postfix string, and opstk are shown after scanning each

symbol. opstk is shown with its top to the right.

Line symb Postfix string opstk

1 A A

2 + A +

3 B AB +

4 * AB +*

5 C ABC +

6 ABC* +

7 ABC*+

Lines 1, 3, and 5 correspond to the scanning of an operand, so the symbol

(symb) is immediately placed on the postfix string. In line 2 an operator was

scanned and the stack was found to be empty, so the operator is placed on the stack.

In line 4 the precedence of the new symbol (*) is greater than the precedence of the

symbol on the top of the stack (+), so the new symbol is pushed onto the stack. In

steps 6 and 7 the input string is empty, so the stack is popped and its contents

placed on the postfix string.
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Example 2: (A + B)*C

symb Postfix string opstk

( (

A A (

+ A (+

B AB (+

) AB+

* AB+ *

C AB+C

AB+C*

*

In this example, when the right parenthesis is encountered the stack is popped

until a left parenthesis is encountered, at which point both parentheses are discarded.

By using parentheses to force an order of precedence different from the default,

the order of appearance of the operators in the postfix string is different from that in

Example 1.

Example 3: ((A — (B + C))*D)t(E + F)

symb Postfix string opstk

( (

( ((

A A ((

A ((—

( A ((—(

B AB ((—(

+ AB ((—(+

C ABC ((-(+

) ABC+ ((—

) ABC+- (

*
ABC+— (*

D ABC+—D (*

)

t
(

E

+

F

)

ABC+_D*

ABC+_D*

ABC+_D*

ABC+_D*E

ABC+_D*E

ABC+_D*EF

ABC+_D*EF+

ABC+

1’
‘(
t(
1’(+
t(+
1’

Why does the conversion algorithm seem so involved, whereas the evaluation

algorithm seems so simple? The answer is that the former converts from one
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order of precedence (governed by the prcd function and the appearance of parentheses)
to the natural order (i.e., the operation to be executed first appears first).

Because of the many combinations of elements at the top of the stack (if not empty)
and possible incoming symbol, a large number of statements are necessary to

cover each possibility. In the latter algorithm, on the other hand, the operators
appear in precisely the order in which they are to be executed. For this reason the
operands can be stacked until an operator is found, at which point the operation is
performed immediately.

The motivation behind the conversion algorithm is the desire to output the
operators in the order in which they are to be executed. In solving this problem
by hand we could follow vague instructions that require us to convert from the
inside out. This works very well for human beings doing a problem with pencil
and paper (if they do not become confused or make a mistake). However, when
writing a program or an algorithm, we must be more precise in our instructions.
We cannot be sure that we have reached the innermost parentheses or the operator

with the highest precedence until we have actually scanned many additional
symbols. At that time, we must backtrack to some previous point.

Rather than backtrack continuously, we make use of the stack to “remember”
the operators encountered previously. If an incoming operator is of greater

precedence than the one on top of the stack, this new operator is pushed onto the
stack. This means that when all the elements in the stack are finally popped, this
new operator will precede the former top in the postfix string (which is correct
since it has higher precedence). If, on the other hand, the precedence of the new
operator is less than that of the top of the stack, the operator at the top of the stack
should be executed first. Therefore, the stack is popped, the popped operator
placed on the output string, and the incoming symbol is compared with the new
top; and so on. By including parentheses in our input string, we may override the
order of operations. Thus when a left parenthesis is scanned, it is pushed on the
stack. When its associated right parenthesis is found, all the operators between
the two parentheses are placed on the output string, because they are to be executed

before any operators appearing following the parentheses.

Program to Convert
an Expression from Infix
to Post fix

There are two things that we must do before we actually write the program. The
first is to define precisely the format of the input and output. The second is to
construct, or at least define, those routines on which the main routine depends.

We assume that the input consists of strings of characters, one string per input
line. The end of the string is signaled by the occurrence of a blank. For the sake

of simplicity, we assume that all operands are single-character letters or digits.
The output is a character string, so the output of the conversion process will be
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suitable for the evaluation process, provided that all the single-character operands
in the initial infix string are digits.

In transforming the conversion algorithm into a program, we make use of
several routines. Among these are empty, pop, push, and popandtest, all suitably
modified so that the elements on the stack are characters.

Note that we cannot use the variable PRCD for the output of the prcd subroutine
since all variables beginning with the letter P have already been defined

to be character strings. This was necessary because both the pop and popandtest

subroutines produce character-string output in the variable POPS. For this reason

we use the variable ZPRCD as the output of the prcd subroutine. prcd accepts

two single-character operator symbols as arguments and sets ZPRCD to TRUE if

the first has precedence over the second when it appears to the left of the second

in an infix string, and FALSE otherwise. The subroutine should, of course, incorporate

the parentheses conventions previously introduced. Similarly, we cannot

use the variable STKTP for the output of the stacktop subroutine, since in

many versions of BASIC only the first two characters will be used by the computer

to distinguish between variables. Thus STKTP and STRING will be treated
as one and the same variable. For this reason we use the variable XSTKTP as the

output of the stacktop subroutine.

Once these auxiliary subroutines have been written, we can write the program.

We assume that the program inputs a line containing an expression in infix,

performs the conversion procedures, and prints the original string and the

postfix string. The body of the program follows:

10 ‘program postfix

20 ‘the statement CLEAR 100 is required on TRS-80 microcomputers
30 DEFSTRO,P,S,X
40 TRUE = 1

50 FALSE = 0

60 MAXSTACK = 100

70 DIM SITEM(MAXSTACK): ‘contains opstk items 1—100
80 TP = 0

90 PSTFX =

100 ‘stack is initially empty

110 INPUT “ENTER STRING”; STRING

120 ‘begin scanning symbols one at a time

130 ‘line 3 of the conversion algorithm

140 FOR CHAR = 1 TO LEN(STRING)
150 ‘line 4

160 SYMB = MID$(STRING,CHAR, 1): ‘extract the next input symbol
170 ‘check if SYMB is an operand
180 ‘lines5and6

190 IF SYMB > = “0” AND SYMB <= “9”

THEN PSTFX = PSTFX + SYMB: GOTO 310
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200 ‘else do stmts 210—300

210 ‘lines 8 through 11
220 GOSUB 3000: ‘subroutine empty
230 IF EMPTY = TRUE THEN GOTO 290

240 GOSUB 4000: ‘subroutine stacktop sets XSTKTP
250 OPER1 = XSTKTP

260 SECOPER = SYMB

270 GOSUB 8000: ‘subroutine prcd sets ZPRCD
280 IF ZPRCD = TRUE

THEN GOSUB 2000: SMBTP = POPS:

PSTFX = PSTFX + SMBTP: GOTO 210

290 ‘line 12 (as revised)

300 IF (EMPTY = TRUE) OR (SYMB <> “)“)

THEN X = SYMB: GOSUB 1000

ELSE GOSUB 2000

310 NEXT CHAR

320 ‘lines 15 through 18

330 GOSUB 3000: ‘subroutine empty
340 IF EMPTY = TRUE THEN GOTO 380

350 GOSUB 2000: ‘subroutine pop
360 PSTFX = PSTFX + POPS

370 GOTO 330

380 PRINT “INFIX STRING = “; STRING

390 PRINT “POSTFIX STRING = “; PSTFX

400 PRINT

410 GOTO 80: ‘get the next input string
420 END

1000 ‘subroutine push

2000 ‘subroutine pop

3000 ‘subroutine empty

4000 ‘subroutine stacktop

8000 ‘subroutine prcd

8010 ‘inputs: OPER1, SECOPER

8020 ‘outputs: ZPRCD
8030 ‘locals: none

8040 ZPRCD = TRUE

8050 IF (OPER1 = “(“ OR SECOPER =

THEN ZPRCD = FALSE

8060 IF SECOPER = “t” THEN ZPRCD = FALSE
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8070 IF (OPER1 = “+“ OR OPER1 = “) AND (SECOPER = “*“ OR

SECOPER = “I”)

THEN ZPRCD = FALSE

8080 RETURN

8090 ‘endsub

The program has one major flaw—it does not check that the input string is a valid
infix expression. In fact, it would be instructive for you to examine the operation
of this program when it is presented with a valid postfix string as input. As an

exercise you are asked to write a program that checks whether or not an input

string is a valid infix expression.

We can now write a program to read an infix string and find its numerical

value. If the original input strings consist of single-digit operands with no letter

operands, then combining programs may be accomplished by linking the output

of procedure posx for each input string with the input of procedure evaluate. A

single set of stack manipulation routines may be defined and used by both the
conversion and evaluation routines.

Most of our attention in this section has been devoted to transformations

involving postfix expressions. The algorithm to convert an infix expression into
postfix scans characters from left to right, stacking and unstacking as necessary.

If it were necessary to convert from infix to prefix, the infix string could be

scanned from right to left and the appropriate symbols entered in the prefix string
from right to left. Since most algebraic expressions are read from left to right,

postfix is a more natural choice.

The programs above are merely indicative of the types of routines one could
write to manipulate and evaluate postfix expressions. They are by no means comprehensive

or unique. There are many variations of the routines discussed above

that are equally acceptable. Some of the older high-level-language compilers actually
used routines such as evaluate and posfix to handle algebraic expressions.

Since that time, more sophisticated schemes have been developed to handle these

problems.

EXERCISES

1. Transform each of the following expressions to prefix and postfix.

(a) A+B—C

(b) (A + B)*(C — D)tE*F

(c) (A+B)*(Ct(D_ E)+F)—G

(d) A + (((B — C)*(D — E) + F)/G) 1(H — J)

2. Transform each of the following prefix expressions to infix.

(a) + — ABC

(b) +A — BC
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(c) + + A -4 BCD/+ EF*GHI

(d) + — tABC*D**EFG

3. Transform each of the following postfix expressions to infix.

(a) AB+C—

(b) ABC+ —

(c) AB-C+DEF-+t

(d) ABCDE — + t*EF* —

4. Apply the evaluation algorithm in the text to evaluate the following postfix expressions.
Assume that A = 1, B = 2, C = 3.

(a) AB+C — BA+Ct—

(b) ABC+*CBA_ +*

5. Modify the infix to postfix conversion program to accept as input a character string of

operators and operands representing a postfix expression and to create the fully parenthesized

infix form of the original postfix. For example, AB + would be transformed

into (A + B), and AB + C — would be transformed into ((A + B) — C).

6. Write a single program to evaluate a string given in infix. You are to use two stacks,

one for operands and the other for operators. You should not first convert the infix

string to postfix and then evaluate the postfix string, but rather evaluate as you go

along.

7. Write a program prefix to accept an input string in infix and create the prefix form of

that string, assuming that the string is read from right to left and that the prefix string

is created from right to left.

8. Write a BASIC program to convert

(a) A prefix string to postfix.

(b) A postfix string to prefix.

(c) A prefix string to infix.

(d) A postfix string to infix.

9. Write a BASIC program that accepts an infix string and forms an equivalent infix

string with all superfluous parentheses removed. Can this be done without using a
stack?

10. Assume a machine that has a single register and six instructions.

LD A which places the operand A into the register
ST A which places the contents of the register into the variable A
AD A which adds the contents of the variable A to the register
SB A which subtracts the contents of the variable A from the register
ML A which multiplies the contents of the register by the variable A
DV A which divides the contents of the register by the variable A

Write a program that accepts a postfix expression containing single-letter operands

and the operators +, —, , and I, and which prints a sequence of instructions to

evaluate the expression and leave the result in the register. Use variables of the form
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Tn as temporary variables. For example, the postfix expression ABC* + DE — / should

yield the printout

LD B

ML C

ST Ti

LD A

AD Ti

ST 12

LD D

SB E

ST T3

LD 12

DV T3

ST T4
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Queues and Lists

This chapter introduces the queue, an important data structure which is often used
to simulate real-world situations. The concepts of the stack and queue are then
extended to a new structure, the list. Various forms of lists and their associated

operations are examined and several applications are presented.

1. THE QUEUE AND ITS SEQUENTIAL REPRESENTATION

A queue is an ordered collection of items from which items may be deleted at one

end (called the front of the queue) and into which items may be inserted at the
other end (called the rear of the queue).

Figure 4.1.1(a) illustrates a queue containing three elements, A, B, and C.

A is at the front of the queue and C is at the rear. In Figure 4.1.1(b), an element

has been deleted from the queue. Since elements may be deleted only from the

front of the queue, A is removed and B is now at the front. In Figure 4.1.1(c),
when items D and E are inserted, they must be inserted at the rear of the queue.

Since D has been inserted into the queue before E, it will be removed earlier.
The first element inserted into a queue is the first element to be removed. For

this reason a queue is sometimes called afifo (first-in, first-out) list, as opposed
to a stack, which is a lifo (last-in, first-out) list. Examples of queues abound in
the real world. A line at a bank or at a bus stop, and a batch of jobs waiting to be
processed by a computer, are familiar examples of queues.

There are three primitive operations that can be applied to a queue. The

operation insert(q,x) inserts item x at the rear of the queue q. The operation

154



Sec. 1 The Queue and Its Sequential Representation 155

Front

HI DE
(c) Rear

x = remove(q) deletes the element at the front of the queue q and sets x to its

contents. The third operation, empry(q), returns true or false, depending on

whether or not the queue is empty. The queue in Figure 4.1.1 can be obtained by
the following sequence of operations. We assume that the queue is initially empty.

[Figure 4.1.1(a)]

[Figure 4.1.1(b); x is set to Al

[Figure 4.1.1(c)]

The insert operation can always be performed since there is no limit to the
number of elements a queue may contain. The remove operation, however, can
be applied only if the queue is nonempty—there is no way to remove an element

from a queue that contains no elements. The result of an illegal attempt to remove

an element from an empty queue is called underfiow. The empty operation is, of
course, always applicable.

How shall a queue be represented in BASIC? An idea that comes immediately
to mind is to use an array to hold the elements of the queue, and to use two

variables, FRNT and REAR, to hold the positions within the array of the first and
last elements of the queue. Initially, REAR is set to 0 and FRNT is set to 1, and
the queue is empty whenever REAR < FRNT. The number of elements in the

Front

IABIC
(a)

Rear

Front

BC
(b)

Rear

Figure 4.1.1 A queue.

insert(q,A)

insert(q,B)

insert(q,C)

x = remove(q)

insert(q,D)

insert(q,E)
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queue at any time is equal to the value of REAR — FRNT + 1. Thus an empty
queue of numbers might be initialized by

10 MAXQUEUE = 100

20 DIM QITEMS(MAXQUEUE)
30 FRNT = 1

40 REAR = 0

Of course, using an array to hold a queue introduces the possibility of overflow if
the queue contains more elements than were allocated for the array. Ignoring the
possibility of underflow and overflow for the moment, the operation insert(q,x)
could be implemented by the statements

3000 REAR = REAR + 1

3010 QITEMS(REAR) = X

and the operation x = remove(q) could be implemented by

2000 X = QITEMS(FRNT)
2010 FRNT = FRNT + 1

Let us examine what might happen under this representation. Figure 4.1.2
illustrates an array of five elements (again ignoring a possible element at index 0)

used to represent a queue (i.e., MAXQUEUE = 5). Initially [Figure 4.1 .2(a)1,

QITEMS QITEMS

5 5

4 4

3 3 C REAR=3

2 2 B

I FRNT=1 1 A FRNT=1

REAR =0

(a) (b)

QITEMS QITEMS

5 E REAR=5

4 4 D

3 C FRNT=REAR=3 3 C FRNT=3

2 2

I I

(c) (d)

Figure 4.1.2
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the queue is empty. In Figure 4.1.2(b) items A, B, and C have been inserted. In
Figure 4.1.2(c) two items have been deleted and in Figure 4.1.2(d) two new
items, D and E, have been inserted. The value of FRNT is 3 and the value of

REAR is 5, so there are only 5 — 3 + 1 = 3 elements in the queue. Since the
array contains five elements, there should be room for the queue to expand without

the worry of overflow. However, to insert F into the queue, REAR must be
increased by 1 to 6 and QITEMS(6) must be set to the value F. But QITEMS is
an array of only five elements, so the insertion cannot be made. It is possible to
reach the absurd situation where the queue is empty, yet no new element can be

inserted (see if you can come up with a sequence of insertions and deletions to

reach that situation). Clearly, the array representation as outlined above is unacceptable.

One solution is to modify the remove operation so that when an item is deleted,
the entire queue is shifted to the beginning of the array. The operation

x = remove(q) would then be implemented (again, ignoring the possibility of
underfiow) by

2000 X = QITEMS(1)
2010 FOR I = 1 TO REAR —1

2020 QITEMS(I) = QITEMS(I + 1)

2030 NEXT I

2040 REAR = REAR -1

The variable FRNT need no longer be specified as part of a queue, since the first
element of the array is always at the front of the queue. The empty queue is represented

by the queue in which REAR equals zero. Figure 4.1.3 shows the queue

of Figure 4.1.2 under this new representation.
This method, however, is too inefficient to be satisfactory. Each deletion

involves moving every remaining element of the queue. If a queue contains 500

or 1000 elements, this is clearly too high a price to pay. Further, the operation of
removing an element from a queue logically involves manipulation of only one

element—the one currently at the front of the queue. The implementation of that

operation should reflect this and should not involve a host of extraneous operations.
For a somewhat more efficient alternative, see Exercise 3.

Another solution is to treat the array that holds the queue as a circle rather
than as a straight line. That is, we imagine the first element of the array as immediately

following its last element. This implies that even if the last element is
occupied, a new value can be inserted behind it in the first element of the array as

long as that first element is empty.

Let us look at an example. Assume that a queue contains three items in positions
3, 4, and 5 of a five-element array. This is the situation of Figure

4.1.2(d), reproduced as Figure 4.1.4(a). Although the array is not full, the last

element of the array is occupied. If an attempt is now made to insert item F into
the queue, it can be placed in position 1 of the array, as shown in Figure

4.1.4(b). The first item of the queue is in QITEMS(3), which is followed in the
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QITEMS

5 5

4 4

3 3 C REAR=3

2 2 B

1 1 A

REAR =0

(a) (b)

____________

QITEMS

5 5

4 4

3 3 F REAR=3

2 2 D

1 C REAR=1 1 C

(c) (d)

Figure 4.1.3

queue by QITEMS(4), QITEMS(5), and QITEMS(1). Figure 4.1.4(c), (d), and
(e) show the status of the queue as the first two items, C and D, are deleted, then
G is inserted, and finally E is deleted.

Unfortunately, it is difficult under this representation to determine when the
queue is empty. The condition REAR < FRNT is no longer valid as a test for the
empty queue since Figure 4.1.4(b), (c) and (d) all illustrate situations in which

the condition is true, yet the queue is not empty.
One way of solving this problem is to establish the convention that the value

of FRNT is the index of the array element immediately preceding the first element
of the queue rather than the index of the first element itself. Thus, since

REAR contains the index of the last element of the queue, the condition
FRNT = REAR implies that the queue is empty.

A queue of numbers may therefore be declared and initialized by

10 MAXQUEUE = 100
20 DIM QITEMS(MAXQUEUE)
30 FRNT = MAXQUEUE
40 REAR = MAXQUEUE

Note that FRNT and REAR are initialized to the last index of the array, rather
than 0 or 1, because the last element of the array immediately precedes the first

QITEMS
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one within the queue under this representation. Since REAR = FRNT, the queue
is initially empty.

The empty subroutine may be coded as

1000 ‘subroutine empty
1010 ‘inputs: FRNT, REAR
1020 ‘outputs: EMPTY
1030 ‘locals: none

1040 IF FRNT = REAR THEN EMPTY = TRUE ELSE EMPTY = FALSE

1050 RETURN

1060 ‘endsub

QITEMS QITEMS

E REAR=5 5 E

D 4 D

C FRNT=3 3 C FRNT=3

21 2 _____________

ir 1 F

(a) (b)

QITEMS QITEMS

5 E FRNT = 5 5 li FRNT =5

4 4

3 3

2 2 G REAR=2

1 F REAR=1 I F

(c) (d)

QITEMS

5

4

3

2 G REAR=2

1 F FRNT I

(e)

Figure 4.1.4
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The operation remove(q) may be coded as

2000 ‘subroutine remove

2010 ‘inputs: FRNT, MAXQUEUE, QITEMS

2020 ‘outputs: RMOVE
2030 ‘locals: EMPTY

2040 GOSUB 1000: ‘subroutine empty sets the variable EMPTY

2050 IF EMPTY = TRUE THEN PRINT “QUEUE UNDERFWW”: STOP

2060 IF FRNT = MAXQUEUE THEN FRNT = 1 ELSE FRNT = FRNT + 1

2070 RMOVE = QITEMS(FRNT)
2080 RETURN

2090 ‘endsub

Note that FRNT must be updated before an element is extracted.
Of course, often an underfiow condition is meaningful and serves as a signal

for a new phase of processing. We may wish to use a subroutine rmovandtest
at statement number 9000, which would be invoked by

100 GOSUB 9000: ‘subroutine removeandtest sets the

‘variables RMOVE and UND

110 IF UND = TRUE THEN ‘take corrective action

ELSE ‘RMOVE is the element removed

‘from the queue

removeandtest sets UND to FALSE and RMOVE to the element removed from

the queue if the queue is nonempty and sets UND to TRUE if underfiow occurs.

The coding of the routine is left to the reader.

The insert Operation

In order to code the insert operation, the question of overflow must be considered.

Overflow occurs when the entire array is occupied by items of the queue

and an attempt is made to insert yet another element into the queue. For example,

consider the queue of Figure 4.1.5(a). There are three elements in the queue: C,

D, and E in QITEMS(3), QITEMS(4), and QITEMS(5), respectively. Since the

last item of the queue occupies QITEMS(5), REAR equals 5. Since the first element

of the queue is in QITEMS(3), FRNT equals 2. In Figure 4.1.5(b) and (c),

items F and G are inserted into the queue and the value of REAR is changed

accordingly. At that point, the array is full and an attempt to perform any

more insertions will cause an overflow. But this is indicated by the fact that

FRNT = REAR, which is precisely the indication for underfiow. It seems that

there is no way to distinguish between the empty queue and the full queue under

this implementation. Such a situation is clearly unsatisfactory.

One solution is to sacrifice one element of the array and to allow a queue to
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QITEMS QITEMS

5 E REAR=5 5 E

4 D 4 D

3 C 3 C

2 FRNT=2 2 FRNT=2

1 1 F REAR=1

(a) (b)

QITEMS

5 li

4 D

3 C

2 G FRNT=REAR=2

F

(c)

Figure 4.1.5

grow only as large as one less than the size of the array. Thus, if an array of 100

elements is declared as a queue, the queue may have up to 99 members. An attempt
to insert a 100th element into the queue will result in an overflow. The

insert routine may then be written as follows:

3000 ‘subroutine insert

3010 ‘inputs: FRNT, MAXQUEUE, QITEMS, REAR, X

3020 ‘outputs: QITEMS, REAR
3030 ‘locals: none

3040 ‘make room for new element

3050 IF REAR = MAXQUEUE THEN REAR = 1 ELSE REAR = REAR + 1

3060 ‘check for oveiflow

3070 IF REAR = FRNT THEN PRINT “QUEUE OVERFWW”: STOP

3080 QITEMS(REAR) = X

3090 RETURN

3100 ‘endsub

The test for overflow in insert occurs after REAR has been adjusted, whereas the
test for underfiow in remove occurs immediately upon entering the routine, before

FRNT is updated.
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An Alternative BASIC Representation

An alternative technique for representing a queue in BASIC is to declare arrays

QUEUE and QITEMS and initialize variables FRNT, REAR, and the array

QUEUE as follows:

10 MAXQUEUE = 100

20 DIM QITEMS(MAXQUEUE)

30 DIM QUEUE(2)
40 FRNT=1

50 REAR=2

60 QUEUE(FRNT) = MAXQUEUE

70 QUEUE(REAR) = MAXQUEUE

Under this representation, QUEUE(FRNT) and QUEUE(REAR), rather than
FRNT and REAR, point to the front and rear of the queue. The advantage of this

representation is that it allows both queue pointers to be contained in a single
entity (QUEUE). However, the insert and remove routines become somewhat
more cumbersome.

EXERCISES

1. Write the subroutine removeandtest, which sets UND to FALSE and X to the item

removed from a nonempty queue, and sets UND to TRUE if the queue is empty.

2. What set of conditions is necessary and sufficient for a sequence of insert and remove

operations on a single empty queue to leave the queue empty without causing under-

flow? What set of conditions is necessary and sufficient for such a sequence to leave

a nonempty queue unchanged?

3. If an array is not considered circular, the text suggests that each remove operation

must shift down every remaining element of a queue. An alternative method is to

postpone shifting until REAR equals the last index of the array. When that situation

occurs and an attempt is made to insert an element into the queue, the entire queue is

shifted down so that the first element of the queue is in the first position of the array.

What are the advantages of this method over performing a shift at each remove operation?

What are the disadvantages? Rewrite the routines remove, insert, and empty

using this method.

4. Show how a sequence of insertions and removals from a queue represented by a linear

array can cause an overflow to occur upon an attempt to insert an element into an

empty queue.

5. We can avoid sacrificing one element of a queue if a variable EMPTY is added to the

queue representation. Show how this can be done and rewrite the queue manipulation

routines under that representation.
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6. How would you implement a queue of stacks? a stack of queues? a queue of queues?

Write routines to implement the appropriate operations for each of these data structures.

7. Show how to implement a queue of integers in BASIC (assuming that arrays start at

index 0) by using an array QITEMS where QITEMS(O) is used to indicate the front of

the queue, QITEMS(MAXQUEUE + 1) is used to indicate its rear, and QITEMS(1)

through QITEMS(MAXQUEUE) are used to contain the queue elements. Show how

to initialize such an array to represent the empty queue, and write routines remove,

insert, and empty for such an implementation.

8. Show how to implement a queue in BASIC in which each item consists of three integers.

9. A deque is an ordered set of items from which items may be deleted at either end and

into which items may be inserted at either end. Call the two ends of a deque left and

right. How can a deque be represented as a BASIC array? Write four BASIC routines,

remvleft, remvright, insrtleft, insrtright

to remove and insert elements at the left and right ends of a deque. Make sure that the

routines work properly for the empty deque and that they detect overflow and under-
flow.

10. Define an input-restricted deque as a deque (see Exercise 9) for which only the operations

remvleft, remvright, and insrtleft are valid, and an output-restricted deque as a

deque for which only the operations remvleft, insrtleft, and insrtright are valid. Show

how each of these can be used to represent both a stack and a queue.

11. The Scratchemup Parking Garage contains a single lane which can hold up to 10 cars.

Cars arrive at the south end of the garage and leave from the north end. If a customer

arrives to pick up a car that is not the northernmost, all cars to the north of the customer’s

car are moved out, his or her car is driven out, and the other cars are restored

in the order they were in originally. Whenever a car leaves, all cars to the south are

moved forward so that at all times all the empty spaces are in the southern part of the

garage.

Write a program that reads a group of DATA lines. Each line contains an “A”

for arrival or a “D” for departure, and a license plate number. Cars are assumed to

arrive and depart in the order specified by the input. The program should print a message

each time a car arrives or departs. When a car arrives, the message should specify

whether or not there is room for the car in the garage. If there is no room for a car,

the car waits until there is room or until a departure card is read for the car. When

room becomes available, another message should be printed. When a car departs, the

message should include the number of times the car was moved within the garage

(including the departure itself but not the arrival; this number is 0 if the car departs

from the waiting line).

12. The ABC Widget Store receives shipments of widgets at various costs. The store’s

policy is to charge a 20% markup and to sell widgets that were received earlier be-
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fore widgets that were received later (a FIFO policy). Thus widgets from the first

shipment are sold at 20% above their cost; when there are no more first-shipment

widgets left, widgets from the second shipment are sold at 20% above their cost; and

so on. Write a program that reads transactions of two types: sales transactions and

receipt transactions. A sales transaction contains an “S” and a quantity, and represents

a sale of that quantity of widgets. A receipt transaction contains an “R”, a

quantity, and a cost per widget, and represents a receipt of a quantity of widgets at a

given cost per widget. After a receipt transaction is read, print the transaction. After

a sales transaction, print the transaction and then print a message stating the price at

which the widgets were sold. For example, if 200 widgets were sold and there were

50 widgets from a shipment at $1.00, 100 widgets from a shipment at $1.10, and 50

widgets from a shipment at $1.25, print (recall the 20% markup)

200 WIDGETS SOLD

50 AT $ 1.20 PRICE $ 60.00

100 AT $ 1.32 PRICE $ 132.00

50 AT $ 1.50 PRICE $ 75.00

TOTAL PRICE $ 267.00

If there is an insufficient number of widgets in stock to fill an order, sell as many as

are available and then print

REMAINDER OF XXX WIDGETS ARE NOT AVAILABLE.

2. LINKED LISTS

What are the drawbacks of using sequential storage to represent stacks and

queues? One major drawback is that a fixed amount of storage remains allocated

to the stack or queue even when the structure is actually using a smaller amount

or possibly no storage at all. Further, no more than that fixed amount of storage

may be allocated, thus introducing the possibility of overflow.

Assume that a program uses two stacks implemented in two separate arrays,
S1ITEMS and S2ITEMS. Further, assume that each of these arrays has 100 elements.

Then despite the fact that 200 elements are available for the two stacks,

neither can grow beyond 100 items. Even if the first stack contains only 25 items,
the second cannot contain more than 100. One solution to this problem is to allocate

a single array SITEMS of 200 elements. The first stack will occupy
SITEMS(i), SITEMS(2), . . . , SITEMS(T1), while the second stack will be allocated

from the other end of the array, occupying SITEMS(200), SITEMS(199),
• . . , SITEMS(T2) (where Ti <T2). Thus, when one of the stacks is not occupying

storage, the other stack may make use of that storage. Of course, two distinct

sets of pop, push, and empty routines are necessary for the two stacks since

one grows by increasing Ti while the other grows by decreasing T2.

Unfortunately, while such a scheme allows two stacks to share a common
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info ptrnxt info ptrnvt info ptrnxt info ptrnxt

lst HL }L
node node node node

Figure 4.2.1 A linear linked list.

area, no such simple solution exists for three or more stacks or even for two

queues. Instead, one must keep track of the tops and bottoms (or fronts and rears)

of all the structures sharing a single large array. Each time that the growth of one

structure is about to impinge on the storage currently being used by another, all

the structures must be shifted within the single array to allow for the growth.

In a sequential representation, the items of a stack or queue are implicitly

ordered by the sequential order of storage. Thus, if QITEMS(X) represents an
element of a queue, the next element will be QITEMS(X + 1) [or QITEMS(1) if

X = MAXQUEUE]. Suppose that the items of a stack or a queue were explicitly
ordered; that is, each item contains within itself the address of the next item.

Such an explicit ordering gives rise to a data structure pictured in Figure 4.2.1,
which is known as a linear linked list. Each item in the list is called a node and

contains two fields, an information field and a next address field. The information
field holds the actual element on the list. The next address field contains the

address of the next node in the list. Such an address, which is used to access a

particular node, is known as a pointer. The entire linked list is accessed from an
external pointer 1st which points to (contains the address of) the first node in the
list. (By an “external” pointer, we mean one that is not included within a node.
Rather, its value can be accessed directly by referencing a variable.) The next

address field of the last node in the list contains a special value, known as null,
which is not a valid address. This null pointer is used to signal the end of a list.

The list with no nodes on it is called the empty list or the null list. The value

of the external pointer 1st to such a list is the null pointer. Thus a list can be
initialized to the empty list by the operation 1st = null.

We now introduce some notation for use in algorithms (but not in BASIC

programs). If p is a pointer to a node, node(p) refers to the node pointed to by p,
info(p) refers to the information portion of that node, and ptrnxt(p) refers to the

next address portion and is therefore a pointer. Thus, if ptrnxt(p) is not null,
info(ptrnxt(p)) refers to the information portion of the node that follows node(p)
in the list.

Inserting and Removing Nodes from a List

A list is a dynamic data structure. The number of nodes on a list may vary dramatically
as elements are inserted and removed. The dynamic nature of a list may
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be contrasted with the static nature of an array whose size remains constant. For

example, suppose that we are given a list of integers, as illustrated in Figure

4.2.2(a) and we desire to insert the integer 6 at the front of that list. That is, we

wish to change the list so that it appears as in Figure 4.2.2(f).

The first step is to obtain a node in which to house the additional integer. If

a list is to grow and shrink, there must be some mechanism for obtaining empty

nodes to be inserted onto the list. Note that, unlike an array, a list does not come

with a presupplied set of storage locations into which elements can be placed.

info ptrnxt info ptrnxt info ptrnxt

lst_.[ 1 -F[ I FL8 Hill
(a)

info ptrnxt

info ptrnxt info ptrnxt info ptrnxt

lst_[ I -FL I H-i 8 I’
(b)

info ptrnxt

61 1
info ptrnxt info ptrnxt info ptrnxt

istH 5 +[ I 8 11
(c)

info ptrnxt

info ptrnxt info ptrnxt info ptrnxt
P—- 6 1 I

5 3 8 null

1st —0-- ____________________
_____________________

____________________

(d)

info ptrnxt info ptrnxt info ptrnxt info ptrnxt

—- r 6 —j.-ø. 5 8 null

lst—’— II I I ________________
(e)

info ptrnxt info ptrnxt info ptrnxt info ptrnxt

1st 6 L [ 3 1 8 null

(f)

Figure 4.2.2 Adding an element to the front of a list.
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Let us assume the existence of a mechanism for obtaining empty nodes. The
operation

p = getnode

obtains an empty node and sets the contents of a variable named p to the address
of that node. This means that p is a pointer to this newly allocated node. Figure
4.2.2(b) illustrates the list and the new node after performing the getnode operation.

The details of how this operation can be implemented will be explained
shortly.

The next step is to insert the integer 6 into the info portion of the newly
allocated node. This is done by the operation

info(p) = 6

The result of this operation is illustrated in Figure 4.2.2(c).
After setting the info portion of node(p), it is necessary to set the ptrnxt

portion of that node. Since node(p) is to be inserted at the front of the list, the
node that follows should be the current first node on the list. Since the variable 1st

contains the address of that first node, node(p) can be added to the list by performing
the operation

ptrnxt(p) = 1st

This operation places the value of 1st (which is the address of the first node on the
list) into the ptrnxt field of node(p). Figure 4.2.2(d) illustrates the result of this
operation.

At this point, p points to the list with the additional item included. However,
since 1st is the external pointer to the desired list, its value must be modified

to the address of the new first node of the list. This can be done by performing
the operation

1st = p

which changes the value of 1st to the value of p. Figure 4.2.2(e) illustrates the
result of this operation. Note that Figure 4.2.2(e) and (f) are identical except that
the value of p is not shown in Figure 4.2.2(f). This is because p is used as an
auxiliary variable during the process of modifying the list but its value is irrelevant

to the status of the list before and after the process. Once the operations
above have been performed, the value of p may be changed without affecting the
list.

Putting all the steps together, we have an algorithm for inserting the integer
6 onto the front of the list 1st:

p = getnode

info(p) = 6

ptrnxt(p) = 1st

1st = p
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The algorithm can obviously be generalized so that it inserts any object x onto the

front of a list 1st by replacing the operation info(p) = 6 with info(p) = x. Convince
yourself that the algorithm works correctly even if the list is initially empty

(1st = null).

Figure 4.2.3 illustrates the process of removing the first node of a nonempty
list and storing the value of its info field into a variable x. The initial configuration

is shown in Figure 4.2.3(a) and the final configuration is shown in Figure
4.2.3(f). The process itself is almost the exact opposite of the process to add a

info ptrnxt info ptrnxt info ptrnxt

1st - [ 7 H s -H null
(a)

p—ø- I I
7 t’ 5 1 9 null

lst—- _______________ I _______________

(b)

5 9 null

1st —-- ____________________
____________________

(c)

x7 p—- I I
I I 9 null

1st _____________ [

(d)

L__I___J _________ _________
1st 9 null

(e)

x=7 lst.........+_L 5 —Fl null
(f)

Figure 4.2.3 Removing a node from the front of a list.
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node to the front of a list. To obtain Figure 4.2.3(d) from Figure 4.2.3(a), the
following operations (whose actions should be clear) are performed:

p = 1st [Figure 4.2.3(b)]
1st = ptrnxt(p) [Figure 4.2.3(c)]
x = info(p) [Figure 4.2.3(d)]

At this point, the algorithm has accomplished what it was supposed to do:
The first node has been removed from 1st and x has been set to the desired value.

However, the algorithm is not yet complete. In Figure 4.2.3(d), p still points to

the node that was formerly first on the list. However, that node is currently useless

because it is no longer on the list and its information has been stored in x.

[The node is not considered to be on the list despite the fact that ptrnxt(p) points
to a node on the list, since there is no way to reach node(p) from the external

pointer 1st.] The variable p was used as an auxiliary variable during the process of

removing the first node from the list. The starting and ending configurations of

the list make no reference to p. It is therefore reasonable to expect that p will be

used for some other purpose in a short while after this operation has been performed.

But once the value of p is changed, there is no way to access the node at

all, since neither an external pointer nor a ptrnxt field contains its address. Therefore,

the node is currently useless and cannot be reused; yet it is taking up valuable

storage.

It would also be desirable to have some mechanism for making node(p)

available for reuse even if the value of the pointer p is changed. The operation
that does this is

freenode(p) [Figure 4.2.3(e)]

Once this operation has been performed, it becomes illegal to reference node(p)

since the node is no longer allocated. Since the value of p is a pointer to a node

that has been freed, any reference to that value is also illegal.

However, the node might be reallocated and a pointer to it reassigned to p
by the operation p = getnode. Note that we say that the node “might be” reallocated,

since the getnode operation returns a pointer to some newly allocated
node. There is no guarantee that this new node is the same as the one that has just
been freed.

Another way of thinking of getnode and freenode is that getnode creates a
new node, while freenode destroys a node. Under this view, nodes are not used

and reused but are rather created and destroyed. We shall say more about the two

operations getnode and freenode and about the concepts they represent in a moment,

but first we make the following interesting observation.

Linked Implementation of Stacks

The operation of adding an element to the front of a linked list is quite similar to

that of pushing an element onto a stack. In both cases, a new item is added as the
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only immediately accessible item in a collection. A stack can be accessed only

through its top element and a list can be accessed only from the pointer to its first
element. Similarly, the operation of removing the first element from a linked list

is analogous to popping a stack. In both cases, the only immediately accessible
item of a collection is removed from that collection, and the next item becomes

immediately accessible.

Thus we have discovered another way of implementing a stack. A stack

may be represented by a linear linked list. The first node of the list is the top of

the stack. If an external pointer stack points to such a linked list, the operation

push(stack,x) may be implemented by

p = getnode
info(p) = x

ptrnxt(p) = stack

stack = p

The operation empty(stack) is merely a test as to whether stack equals null.

The operation x = pop(stack) is the operation of removing the first node from a

non-empty list and signaling underfiow if the list is empty:

if empty(stack) = true

then print “underfiow”

stop

endif

p = stack

stack = ptrnxt(p)

x = info(p)

freenode(p)

Figure 4.2.4(a) illustrates a stack implemented as a linked list, and Figure

4.2.4(b) illustrates the same stack after another element has been pushed onto it.

The getnode and freenode Operations

We now return to a discussion of the getnode and freenode operations. In an abstract,

idealized world it is possible to postulate an infinite number of unused

nodes available for use by abstract algorithms. The getnode operation finds one

such node and makes it available to the algorithm. Alternatively, the getnode operation
may be regarded as a machine that manufactures nodes and never breaks

down. Thus each time that getnode is invoked, it presents its caller with a brand
new node, different from all the nodes previously in use.

In such an ideal world, the freenode operation would be unnecessary to

make a node available for reuse. Why use an old secondhand node when a simple
call to getnode can produce a new, never-before-used node? The only harm that

an unused node can do is to reduce the number of nodes which can possibly be
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used, but if an infinite supply of nodes is available, such a reduction is meaningless.
Therefore, there is never a reason to reuse a node.

Unfortunately, we live in a real world. Computers do not have an infinite

amount of storage and cannot manufacture more storage for immediate utilization

(at least, not yet). Therefore, there are a finite number of nodes available and it is

impossible to use more than that number at any given instant. If it is desired to

use more than that number over a given period of time, some nodes must be reused.

The function of freenode is to make a node that is no longer being used in
its current context available for reuse in a different context.

We might think of a finite pool of empty nodes existing initially. This pool

cannot be accessed by the programmer except through the getnode and freenode

operations. getnode removes a node from the pool, while freenode returns a node

to the pool. Since any unused node is as good as any other, it makes no difference

which node is retrieved by getnode or where within the pool a node is placed

by freenode.

The most natural form for this pool to take is that of a linked list acting as a

stack. The list is linked together by the ptrnxt field in each node. The getnode

operation removes the first node from this list and makes it available for use. The

freenode operation adds a node to the front of the list, making it available for

reallocation by the next getnode. The list of available nodes is called the available
list.

What happens when the available list is empty? This means that all nodes

are currently in use and it is impossible to allocate any additional nodes. If a

program calls on getnode when the available list is empty, the amount of storage

assigned for that program’s data structures is too small. Therefore, overflow occurs.

This is similar to the situation of a stack implemented in an array overflowing

the array bounds.
As long as data structures are abstract, theoretical concepts in a world of

infinite space, there is no possibility of overflow. It is only when they are implemented

as real objects in a finite area that the possibility of overflow arises.
Let us assume that the external pointer avail points to the list of available

nodes. Then the operation

p = getnode

is implemented as follows:

if avail = null

then print “overflow”
stop

endif

p = avail

avail = ptrnxt(avail)

Since the possibility of overflow is accounted for in the getnode operation,

it need not be mentioned in the list implementation of push. If a stack is about to
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overflow all available nodes, the statement p = getnode within the push operation
will result in an overflow.

The implementation of freenode(p) is straightforward:

ptrnxt(p) = avail
avail = p

The advantage of the list implementation of stacks is that all the stacks being

used by a program can share the same available list. When any stack needs a
node, it can obtain it from the single available list. When any stack no longer

needs a node, it returns the node to that same available list. As long as the total

amount of space needed by all the stacks at any one time is less than the amount

of space initially available to them all, each stack is able to grow and shrink to

any size. No space has been preallocated to any single stack and no stack is using

space which it does not need. Furthermore, other data structures such as queues

may also share the same set of nodes.

Linked Implementation of Queues

Let us now examine how to represent a queue as a linked list. Recall that items

are deleted from the front of a queue and inserted at the rear. Let the list pointer

that points to the first element of a list represent the front of the queue. Another

pointer to the last element of the list represents the rear of the queue, as shown in

Figure 4.2.4(c). Figure 4.2.4(d) illustrates the same queue after a new item has
been inserted.

If we let a queue queue consist of a list and two pointers, frnt and rear, the

operations empty(queue) and x = remove(queue) are completely analogous to

empty(stack) and x = pop(stack) with the pointerfrnt replacing stack. However,

special attention must be paid to the case in which the last element is removed

from a queue. In this case, rear must also be set to null since in an empty queue

both frnt and rear are null. The operation x = remove(queue) may therefore be
implemented as follows:

if empty(queue) = true

then print “queue underfiow”

stop

endif

p = frnt

x = info(p)

frnt = ptrnxt(p)

if frnt = null

then rear = null

endif

freenode(p)
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The operation insert(queue,x) can be implemented by

p = getnode

info(p) = x
ptrnxt(p) = null
if rear = null

then frnt = p

else ptrnxt(rear) = p
endif

rear = p

What are the disadvantages of representing a stack or queue by a linked list?
Clearly, a node in a linked list occupies more storage than a corresponding element

in an array since two pieces of information are necessary in a list node for
each item (info and ptrnxt), whereas only one piece of information is needed in

the array implementation. However, the space used for a list node is usually not

twice the space used by an array element since the elements in such a list usually

consist of records with many subfields. For example, if each element on a stack

were a record occupying 10 words, the addition of an eleventh word to contain a
pointer increases the space requirement by only 10%. Further, in many machine
languages it is possible to compress information and a pointer into a single word

so that there is no space degradation.

Another disadvantage is the additional time that must be spent in managing
the available list. Each addition and deletion of an element from a stack or a

queue involves a corresponding deletion or addition to the available list.

The advantage of using linked lists is that all the stacks and queues of a

program have access to the same available list of nodes. Nodes that are unused by

one stack may be used by another, as long as the total number of nodes in use at
any one time is not greater than the total number of nodes available.

The Linked List as a Data Structure

Linked lists are important not only as a means of implementing stacks and
queues, but as data structures in their own right. An item is accessed in a linked

list by traversing the list from its beginning. An array implementation allows access
to the nth item in a group using a single operation, while a list implementation
requires n operations. It is necessary to pass through each of the first n — 1

elements before reaching the nth element because there is no relation between the
memory location occupied by an element of a list and its position within that list.

The advantage of a list over an array occurs when it is necessary to insert or
delete an element in the middle of a group of other elements. For example, suppose

that we wish to insert an element x between the third and fourth elements in

an array of size 10 which currently contains seven items. Items 7 through 4 must

first be moved one slot and the new element inserted in the newly available position

4. This process is illustrated by Figure 4.2.5(a). In this case, insertion of one
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item involves moving four items in addition to the insertion itself. If the array

contained 500 or 1000 elements, a correspondingly larger number of elements
would have to be moved. Similarly, to delete an element from an array, all the

elements past the element deleted must be moved one position.
On the other hand, if the items are stored as a list, then, if p is a pointer to a

given element of the list, inserting a new element after node(p) involves allocating
a node, inserting the information, and adjusting two pointers. The amount of

work required is independent of the size of the list. This is illustrated in Figure
4.2.5(b).

Let insafter(p,x) denote the operation of inserting an item x into a list following

a node pointed to by p. This operation may be implemented as follows:

q = getnode

info(q) = x

ptrnxt(q) = ptrnxt(p)

ptrnxt(p) = q

An item can be inserted only after a given node, not before the node. This is

because there is no way to proceed from a given node to its predecessor in a

linear list without traversing the list from its beginning. To insert an item before

node(p), the ptrnxt field of its predecessor must be changed to point to a newly

allocated node. But, given p, there is no way to find that predecessor. However,

it is possible to achieve the effect of inserting an element before a given node in a

x1 x1 x1

X2 X2 X2

X3 X3 X3

X4 X

X5 X4 X4

X6 X5 X5

X7 X6 X6

X7 X7

(a) Figure 4.2.5
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linked list by inserting the element after the node and then switching the contents

of the given node and its newly created successor. We leave the details for the
reader.

Similarly, to delete a node from a linear list it is not sufficient to be given a

pointer to that node. This is because the ptrnxt field of the node’s predecessor

must be changed to point to the node’s successor and there is no direct way of

reaching the predecessor of a given node. The best that can be done is to delete a
node following a given node. (However, it is possible to save the contents of the

following node, delete the following node, and then replace the contents of the

given node with the information saved. This achieves the effect of deleting a given

node.) Let delafter(p,x) denote the operation of deleting the node following

node(p) and assigning its contents to the variable x. This operation may be implemented
as follows:

q = ptrnxt(p)

x = info(q)

ptrnxt(p) = ptrnxt(q)

freenode(q)

The freed node is placed back onto the available list so that it may be reused in
the future.

Examples of List Operations

We illustrate these two operations as well as the push and pop operations for lists
with some simple examples. The first example is to delete all occurrences of the
number 4 from a list 1st. The list is traversed in a search for nodes that contain 4

in their info fields. Each such node must be deleted from the list. But to delete a

node from a list, its predecessor must be known. For this reason, two pointers, p

and q, are used. p is used to traverse the list and q always points to the predecessor

of p. The algorithm makes use of the pop operation to remove nodes from the

beginning of the list, and the delafter operation to remove nodes from the middle
of the list.

q = null

p = 1st

while p <> null do

if info(p) = 4

then if q = null

then ‘remove first node of 1st

x = pop(lst)

freenode(p)

p = 1st

else ‘advance p and delete the node following node(q)

p = ptrnxt(p)

delafter(q,x)

endif
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else ‘continue traversing the list

‘advance p and q

q=p

p = ptrnxt(p)

endif
endwhile

The practice of using two pointers, one following the other, is a common

one in working with lists. This technique is used in the next example as well.

Assume that a list 1st is ordered so that smaller items precede larger ones. It is

desired to insert an item x into this list in its proper position. The algorithm to do

this makes use of the push operation to add a node to the front of the list and the

insafter operation to add a node in the middle of the list:

q = null

p = 1st

while (p <> null) and (x> info(p)) do

q=p

p = ptrnxt(p)
endwhile

‘at this point, a node containing x must be inserted

if q = null

then ‘insert x at the head of the list

push(lst,x)

else insafter(q,x)

endif

This is a very common operation and will be denoted by place(lst,x).

Lists in BASIC

How can linear lists be represented in BASIC? Since a list is simply a collection

of nodes, an array of nodes immediately suggests itself. However, the nodes cannot

be ordered by the array ordering; each node must contain within itself a pointer

to its successor. However, BASIC has no facilities for referring to a single

node with two fields (let alone an array of such nodes). Therefore, we declare

two arrays, INFO and PTRNXT, as follows:

10 DIM INFO(500)

20 DIM PTRNXT(500)

In this scheme, a pointer to a node is an integer between 1 and 500. The null

pointer is represented by the integer 0. We use the notation “node(P),” where P

is a BASIC variable representing a pointer, to represent the collection of

{IN-FO(P), PTRNXT(P)}. This INFO(P) represents the information contained in
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node(P) and PTRNXT(P) represents the pointer to the node following node(P)
(or 0). Since BASIC cannot manipulate entire nodes, we cannot use the notation

“NODE(P)” in programs. It is merely useful to refer to node(P) in algorithms or
discussions. It should be noted that although INFO and PTRNXT are independent

BASIC variables, it is the programmer’s responsibility to preserve their logical
relationship in any programs that use linked lists.

Let the variable LST represent a pointer to a list. Suppose that LST has the
value 7. Then INFO(7) is the first data item on the list. The second node of the

list is given by PTRNXT(7). Suppose that PTRNXT(7) equals 385. Then
INFO(385) is the second data item on the list and PTRNXT(385) points to the

third node. The nodes of a list may be scattered throughout the array in any arbitrary
order. Each node carries within itself the address of its successor. The

PTRNXT field of the last node in the list contains 0, which is the null pointer.

There is no relation between the contents of a node and the pointer to it. The

pointer P to a node merely specifies which node is being referenced; it is

INFO(P) that represents the information contained within that node.

Figure 4.2.6 illustrates a portion of the arrays INFO and PTRNXT that conINFO

PTRNXT

if 26 [ I
2 ii 10

3 5 16

L4=4 1 25

L2=5 17 1

6 13 2

7 _______________ _______________
8 19 19

9 14 13

10 4 22

ii _________________ _________________
L3=12 31 8

13 6 3

14 __________ __________

15 ____________ ____________

16 37 24

L1=17 3 21

18 ___________ ___________
19 32 0

20 ____________ ____________
21 7 9

22 15 0

23 _____________ _____________
24 12 0

25 18 6

26
____________

27
_______ Figure 4.2.6 Arrays of nodes containing

four linked lists.
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tam four linked lists. The list Li starts at node(17) and contains the integers 3, 7,

14, 6, 5, 37, 12. The nodes that contain these integers in their INFO fields are

scattered throughout the array. The corresponding PTRNXT field of each node

contains the index within the arrays of the node containing the next element of
the list. The last node on the list is node(24), which contains the integer 12 in its

INFO field and the null pointer (0) in its PTRNXT field to indicate that it is last

on the list. Similarly, L2 begins at node(5) and contains the integers 17 and 26;

L3 begins at node(12) and contains the integers 31, 19, and 32; and L4 begins at
node(4) and contains the integers 1, 18, 13, ii, 4, and 15. The variables Li, L2,

L3, and L4 are integers representing external pointers to the four lists. Thus the

fact that the variable L2 has the value 5 represents the fact that the list to which it

points begins at node(S).

Initially, all nodes are unused since no lists have yet been formed. Therefore,

they must all be placed on the available list. If the variable AVAIL is used

to point to the available list, we may initially organize that list as follows:

50 AVAIL = 1

60 FORI= 1T0499

70 PTRNXT(I) = I + 1

80 NEXT I

90 PTRNXT(500) = 0

The 500 nodes are initially linked in their natural order, so that PTRNXT(I)

points to node(I + 1). Thus node(i) is the first node on the available list, node(2)
is the second, and so on; node(500) is the last node on the list since

PTRNXT(500) equals 0. There is no reason other than convenience for initially

ordering the nodes in this fashion. We could just as well have set PTRNXT(1) to
500, PTRNXT(500) to 2, PTRNXT(2) to 499, and so on, until PTRNXT(250) is

set to 251 and PTRNXT(251) to 0. The important point is that the ordering is

explicit within the nodes themselves and is not implied by some other underlying
structure.

When a node is needed for use in a particular list, it is obtained from the

available list. Similarly, when a node is no longer necessary, it is returned to the

available list. These two operations are implemented by the BASIC routines get-

node and freenode. getnode is a function that removes a node from the available

list and returns a pointer to it.

1000 ‘subroutine getnode

1010 ‘inputs: AVAIL, PTRNXT
1020 ‘outputs: AVAIL, GTNODE
1030 ‘locals: none

1040 IF AVAIL = 0 THEN PRINT “OVERFLOW”: STOP

1050 GTNODE = AVAIL

1060 AVAIL = PTRNXT(AVAIL)

1070 RETURN

1080 ‘endsub
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If AVAIL equals 0 when this routine is called, there are no nodes available. This

means that the list structures of a particular program have overflowed the available
space.

The subroutine freenode accepts a pointer FRNODE to a node and returns
that node to the available list:

2000 ‘subroutine freenode

2010 ‘inputs: AVAIL, FRNODE

2020 ‘outputs: AVAIL, PTRNXT

2030 ‘locals: none

2040 PTRNXT(FRNODE) = AVAIL

2050 AVAIL = FRNODE

2060 RETURN

2070 ‘endsub

For the remaining subroutines in this chapter, we assume that the variables
INFO, PTRNXT, and AVAIL have been initialized properly in the program and

can therefore be used by any routine. We therefore do not indicate the use of

these three variables as explicit inputs or outputs of our list manipulation routines.

The primitive operations for lists are straightforward BASIC versions of the

corresponding algorithms. The routine insafter accepts a pointer PNTR to a node
and an item X as parameters. It first ensures that PNTR is not null and then inserts

X into a node following the node pointed to by PNTR.

3000 ‘subroutine insafter

3010 ‘inputs: PNTR, X

3020 ‘outputs: none

3030 ‘locals: GTNODE, Q

3040 IF PNTR = 0 THEN PRINT “VOID INSERTION”: RETURN

3050 GOSUB 1000: ‘subroutine getnode sets the variable GTNODE

3060 Q = GTNODE

3070 INFO(Q) = X

3080 PTRNXT(Q) = PTRNXT(PNTR)

3090 PTRNXT(PNTR) = Q
3100 RETURN

3110 ‘endsub

The routine delafter accepts a pointer PNTR to a node and deletes the following
node [i.e., the node pointed to by PTRNXT(PNTR)] and stores its contents

in X.

4000 ‘subroutine delafter

4010 ‘inputs: PNTR

4020 ‘outputs:X

4030 ‘locals: FRNODE, Q



182 Queues and Lists Chap. 4

4040 IF PNTR = 0 THEN PRINT “VOID DELETION”: RETURN

4050 IF PTRNXT(PNTR) = 0 THEN PRINT “VOID DELETION”: RETURN

4060 Q = PTRNXT(PNTR)

4070 X = INFO(Q)

4080 PTRNXT(PNTR) = PTRNXT(Q)

4090 FRNODE = Q

4100 GOSUB 2000: ‘subroutine freenode accepts the variable FRNODE
4110 RETURN

4120 ‘endsub

Before calling insafter we must be sure that PNTR is not null. Before calling

delafter we must be sure that neither PNTR nor PTRNXT(PNTR) is null.

Queues as Lists in BASIC

We now present BASIC routines for manipulating a queue represented as a linear

list, leaving routines for manipulating a stack as exercises for the reader. A queue

may be represented as follows:

10 DIM QUEUE(2)

20 FRNT = 1

30 REAR = 2

QUEUE(FRNT) and QUEUE(REAR) are pointers to the first and last nodes of a

queue represented as a list. (This representation is similar to the alternative method

for representing a queue mentioned at the end of the preceding section.) In an

empty queue, both QUEUE(FRNT) and QUEUE(REAR) equal 0, the null pointer.

The empty subroutine need check only one of these pointers since in a non-

empty queue, neither QUEUE(FRNT) nor QUEUE(REAR) will be 0. (Because

the values of FRNT and REAR remain constant throughout the queue manipulation

routines, we do not list them explicitly among the inputs.)

5000 ‘subroutine empty

5010 ‘inputs: QUEUE

5020 ‘outputs: EMPTY

5030 ‘locals: none

5040 IF QUEUE(FRNT) = 0 THEN EMPTY = TRUE ELSE EMPTY = FALSE

5050 RETURN

5060 ‘endsub

The routine to insert an element into a queue may be written as follows:

6000 ‘subroutine insert

6010 ‘inputs: QUEUE, X

6020 ‘outputs: QUEUE

6030 ‘locals: GTNODE, P
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6040 GOSUB 1000: ‘subroutine getnode sets the variable GTNODE
6050 P = GTNODE

6060 INFO(P) = X

6070 PTRNXT(P) = 0

6080 IF QUEUE(REAR) = 0 THEN QUEUE(FRNT) = P

ELSE PTRNXT(QUEUE(REAR)) = P

6090 QUEUE(REAR) = P
6100 RETURN

6110 ‘endsub

The function remove, which deletes the first element from a queue and returns

its value, may be written as follows. (Note that we cannot use the variable

FRNODE for the input of the freenode subroutine since FRNODE and FRNT will
be treated as the same variable in some versions of BASIC. For this reason we

use the variable ZFRNODE as the input variable to the freenode subroutine.)

7000 ‘subroutine remove

7010 ‘inputs: QUEUE

7020 ‘outputs: QUEUE, RMOVE

7030 ‘locals: P, ZFRNODE

7040 GOSUB 5000: ‘subroutine empty sets the variable EMPTY

7050 IF EMPTY = TRUE THEN PRINT “QUEUE UNDERFWW”: STOP

7060 p = QUEUE(FRNT)

7070 RMOVE = INFO(P)

7080 QUEUE(FRNT) = PTRNXT(P)

7090 IF QUEUE(FRNT) = 0 THEN QUEUE(REAR) = 0
7100 ZFRNODE = P

7110 GOSUB 2000: ‘subroutine freenode accepts the variable ZFRNODE
7120 RETURN

7130 ‘endsub

Example of a List Operation in BASIC

Let us look at a somewhat more complex list operation implemented in BASIC.

We have defined the operation place(lst,x), where 1st points to an ordered linear

list and x is an element to be inserted into its proper position within the list. Ordinarily,

the algorithm for performing that operation could be translated directly

into BASIC. However, that algorithm contains the line

while (p <> null) and (x> info(p)) do

If P is equal to 0 (which is the null pointer under this BASIC implementation of

lists), then INFO(P) is undefined (under those versions of BASIC in which arrays

do not start with an index of 0) or has not been initialized explicitly (under those
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versions of BASIC that do) and a reference to INFO(O) should be avoided. Thus
we want to avoid the evaluation of the second condition in the while statement

in the case that P equals 0. We assume that we have already implemented the
stack operation push at statement 9000, which accepts a list pointer STACK and

an element X. The code to implement the place operation is as follows:

8000 ‘subroutine place
8010 ‘inputs: LST, X

8020 ‘outputs: LST
8030 ‘locals: P, Q
8040 P = LST

8050 Q = 0

8060 ‘search section

8070 IF P = 0 THEN GOTO 8130

8080 IF X <= INFO(P) THEN GOTO 8130

8090 ‘else advance the pointers P and Q
8100 Q=P

8110 P = PTRNXT(P)

8120 GOTO 8070

8130 ‘insertion section

8140 ‘f Q = 0 then subroutine push inserts X at the head of the list

else subroutine insafter inserts Xfollowing node(Q)

8150 IF Q = 0 THEN STACK = LST: GOSUB 9000: LST = STACK

ELSE PNTR = Q: GOSUB 3000
8160 RETURN

8170 ‘endsub

Noninteger Lists

Of course, a node on a list need not contain an integer. For example, to represent

a stack of character strings by a linked list, nodes containing character strings in

their INFO fields are needed. Such nodes could be declared by

10 DEFSTR I

20 DIM INFO(500)

30 DIM PTRNXT(500)

A particular application may call for nodes containing more than one item

of information. For example, each student node in a list of students may contain

the following information: the student’s name, college identification number, address,

grade-point index, major, and so on. Nodes for such an application may be
declared as follows:

10 DEFSTRA,I,M,S

20 DIM STUDENT(500)
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30 DIM ID(500)

40 DIM ADDRESS(500)

50 DIM GPINDX(500)

60 DIM MAJR(500)

70 DIM PTRNXT(500)

The arrays STUDENT, ID, ADDRESS, GPINDX, and MAJR make up the
“info” portions of the list nodes. These arrays, together with the array
PTRNXT, represent the complete set of nodes. A separate set of BASIC routines
must be written to manipulate lists containing each type of node.

Header Nodes

Sometimes it is desirable to keep an extra node at the front of a list. Such a node
does not represent an item in the list and is called a header node or a list header.

The INFO portion of such a header node might be unused, as illustrated in Figure

4.2.7(a). More often, the INFO portion of such a node could be used to keep
global information about the entire list. For example, Figure 4.2.7(b) illustrates a

list in which the INFO portion of the header node contains the number of nodes
(not including the header) in the list. In such a data structure more work is needed
to add or delete an item from the list since the count in the header node must be

adjusted properly. However, the number of items in the list may be obtained directly
from the header node so that the entire list need not be traversed.

Another example of the use of header nodes is the following. Suppose that a
factory assembles machinery out of smaller units. A particular machine (inventory

number A746) might be composed of a number of different parts (numbers

B841, K321, A087, J492, G593). This assembly could be represented by a list

such as the one illustrated in Figure 4.2.7(c), where each item on the list represents

a component and where the header node represents the entire assembly.

The empty list would no longer be represented by the null pointer, but rather

by a list with a single header node, as in Figure 4.2.7(d).
Of course, routines such as empty, push, pop, insert, and remove must be

rewritten to account for the presence of a header node. Most of the routines become

a bit more complex, but some, like insert, become simpler since an external

list pointer is never null. We leave the rewriting of the routines as an exercise
for the reader. The routines insafter and delafter need not be changed at all. In

fact, insafter and delafter can be used instead of push and pop since the first item

in such a list appears in the node that follows the header node, rather than in the
first node on the list.

If the info portion of a node can contain a pointer (as is true in our BASIC
implementation of a list of integers where a pointer is represented by an integer),
additional possibilities for the use of a header node present themselves. For example,

the info portion of a list header might contain a pointer to the last node
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in the list, as in Figure 4.2.7(e). Such an implementation would simplify the

representation of a queue. Until now, two external pointers, queue(frnt) and
queue(rear), were necessary for a list to represent a queue. However, now only a

single external pointer q to the header node of the list is necessary. ptrnxt(q)

would point to the front of the queue and info(q) to its rear.
Another possibility for the use of the INFO portion of a list header is as a

pointer to a “current” node in the list during a traversal process. This would
eliminate the need for an external pointer during traversal.

EXERCISES

1. Write a set of routines for implementing several stacks and queues within a single

array.

2. What are the advantages and disadvantages of representing a group of items as an

array versus a linear linked list?

3. Present four methods of implementing a queue of queues using the list and array implementations

of a queue. Write each of the following routines for each implementation:

remvq which removes a queue from the queue

of queues qq and assigns it to q

insrtq which inserts queue q on qq

remvonq which removes an element from the

first queue of qq and assigns it to x

insrtonq which inserts an element x on the first

queue on qq

Define analogous implementations and operations for a stack of stacks, a stack of

queues, and a queue of stacks.

4. Write an algorithm and a BASIC routine to perform each of the following operations.

(a) Append an element to the end of a list.

(b) Concatenate two lists.

(c) Free all the nodes in a list.

(d) Reverse a list, so that the last element becomes the first, and so on.

(e) Delete the last element from a list.

(f) Delete the nth element from a list.

(g) Combine two ordered lists into a single ordered list.

(h) Form a list containing the union of the elements of two lists.

(1) Form a list containing the intersection of the elements of two lists.

(j) Insert an element after the nth element of a list.
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(k) Delete every second element from a list.

(I) Place the elements of a list in increasing order.

(m) Return the sum of the integers in a list.

(n) Return the number of elements in a list.

(o) Move node(p) forward n positions in a list.

(p) Make a copy of a list.

5. Write an algorithm and a BASIC routine to perform each of the operations of Exercise

4 on a group of elements in contiguous positions of an array.

6. Write a BASIC routine to interchange the mth and nth elements of a list.

7. Write a routine inssub to insert the elements of list 12 beginning at the i2th element

and continuing for len elements into the list 11 beginning at position ii. No elements

of the list 11 are to be removed or replaced. If ii > length(l1) + 1 [where length(l1)

denotes the number of nodes in the list 111, or if i2 + len — 1 > length(12), or if

ii < 1, or if i2 < 1, print an error message. The list 12 should remain unchanged.

8. Write a BASIC routine search which accepts a pointer L to a list of integers and an

integer X and returns a pointer to a node containing X if it exists, and the null pointer
otherwise. Write another routine srchinsrt which adds X to L if it is not found and

always returns a pointer to a node containing X.

9. Write a BASIC program to read a group of DATA lines, each containing one word.

Print each word that appears in the input and the number of times that it appears.

10. (a) Consider a factory that assembles machinery from smaller units. An elementary

part is one that is not assembled from smaller parts. Write a program that reads a

set of DATA lines containing four-character part numbers. The first such number

on the line identifies a nonelementary part and the remaining numbers identify the

parts from which the nonelementary part is assembled. These constituent parts

may be elementary, or may in turn be assembled from other parts (in which case

their numbers appear as the first number on some DATA line). The program creates

a list with a header node for each nonelementary part. The header node contains

the name of the nonelementary part and a pointer to a list of nodes

describing the constituent parts, as discussed in the text at the end of this section.

Pointers to the header nodes of each of the lists are placed in successive elements

of an array PARTS. The program then prints all nonelementary parts.

(b) Write a program that accepts an array PARTS and a set of lists as constructed in

part (a) and prints for each nonelementary part a list of all the elementary parts

that are contained within its assembly. (For example, if part A contains parts B,

C, and D, where B contains elementary parts E and F, C is elementary, and D

contains G, which contains elementary parts H and I, and D also contains elementary

part J, then A contains the elementary parts C, E, F, H, I, and J.)

(c) Show how part (b) is simplified if each node includes an additional pointer field.

Explain the use of such an additional field in this application and rewrite the programs

of parts (a) and (b) so that such a field is included.
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3. AN EXAMPLE: SIMULATION USING LINKED LISTS

One of the most useful applications of queues and linked lists is in simulation. A
simulation program is one that attempts to model a real-world situation in order
to learn something about it. Each object and action in the real situation has its
counterpart in the program. If the simulation is accurate, that is, if the program
successfully mirrors the real world, the result of the program should mirror the
result of the actual actions being simulated. Thus it is possible to understand what
occurs in the real-world situation without actually observing its occurrence.

Let us look at an example. Suppose that there is a bank with four tellers. A
customer enters the bank at a specific time ti, desiring to conduct a transaction

with any teller. The transaction may be expected to take a certain period of time
t2 before it is completed. If a teller is free, the teller can process the customer’s
transaction immediately and the customer leaves the bank as soon as the transaction

has been completed, at time ti + t2. The total time spent in the bank by the
customer is exactly equal to the duration of the transaction, t2.

However, it is possible that none of the tellers are free; they are all servicing
customers who arrived previously. In that case, there is a line waiting at each

teller’s window. The line for a particular teller may consist of a single person—
the one currently transacting business with the teller, or it may be a very long
line. The customer proceeds to the back of the shortest line and waits until all
previous customers in the line have completed their transactions and have left the
bank. At that time, he may transact his business. The customer leaves the bank at
t2 time units after reaching the front of a teller’s line. In this case the time spent
in the bank is t2 plus the time spent waiting on line.

Given such a system, we would like to compute the average time spent by a
customer in the bank. One way of doing so is to stand in the bank doorway, ask
departing customers the time of their arrival and record the time of their departure,

subtract the first from the second, and take the average over all customers.
However, this would not be very practical. It would be difficult to ensure that no
customer is overlooked leaving the bank. Furthermore, it is doubtful that most
customers would remember the exact time of their arrival.

Instead, we write a program to simulate the customer actions. Each part of
the real-world situation has its analog in the program. Each DATA line of the
program represents a customer. The real-world action of a customer arriving is
modeled by a DATA line being read. As each customer arrives, two facts are
known: the time of the customer’s arrival and the duration of the customer’s

transaction (since, presumably, when a customer arrives, he or she knows what
he or she wishes to do at the bank). Thus each DATA line contains two numbers:

the time (in minutes since the bank opened) of the customer’s arrival and the
amount of time (again, in minutes) necessary for the transaction. These DATA
lines are ordered by increasing arrival time. The input is ended by a trailer on
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which the arrival time and the transaction duration are both zero. We assume at

least one DATA line.

The four lines in the bank are represented by four queues. Each node of the

queues represents a customer waiting in a line, with the node at the front of a

queue representing the customer currently being served by a teller.

Suppose that at a given instant of time the four lines each contain a specific

number of customers. What can happen to alter the status of the lines? Either a
new customer enters the bank, in which case one of the lines will have an additional

customer, or the first customer in one of the four lines completes a transaction,
in which case that line will have one less customer. Thus there are a total of

five actions (a customer entering, plus four cases of a customer leaving) which

can change the status of the lines. Each of these five actions is called an event.
The simulation proceeds by finding the next event to occur and effecting the

change in the queues which mirrors the change in the lines at the bank due to that

event. In order to keep track of events, the program uses an event list. This list

contains at most five nodes, each representing the next occurrence of one of the

five types of event. Thus the event list contains one node representing the next
customer arriving and up to four nodes representing each of the four customers at
the head of a line completing a transaction and leaving the bank. Of course, it is
possible that one or more of the lines in the bank are empty, or that the doors of

the bank have been closed for the day so that no more customers are arriving. In
such cases, the event list contains fewer than five nodes.

An event node representing a customer’s arrival is called an arrival node,

and a node representing a departure is called a departure node. At each point in
the simulation, it is necessary to know the next event to occur. For this reason,

the event list is ordered by increasing time of event occurrence so that the first

event node on the list represents the next event to occur.
The first event to occur is the arrival of the first customer. The event list is

therefore initialized by reading the first DATA line and placing an arrival node

representing the first customer’s arrival on the event list. Initially, of course, all
four queues are empty. The simulation then proceeds as follows: The first node is
removed from the event list and the changes which that event causes are made to

the queues. As we shall soon see, these changes may also cause additional events

to be placed on the event list. The process of removing the first node from the
event list and effecting the changes that it causes is repeated until the event list is
empty.

When an arrival node is removed from the event list, a node representing
the arriving customer is placed on the shortest of the queues representing the four
lines. If that customer is the only one on a queue, a node representing her departure

is also placed on the event list, since she is at the front of her queue. At the
same time, the next DATA line is read and an arrival node representing the next
customer to arrive is placed on the event list. Thus there will always be an arrival
node on the event list (as long as the input is not exhausted, at which point no
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more customers arrive) since as soon as one arrival node is removed from the

event list, another is added to it.

When a departure node is removed from the event list, the node representing

the departing customer is removed from the front of one of the four queues.

At that point, the amount of time that the departing customer has spent in the

bank is computed and added to a total. At the end of the simulation, this total will

be divided by the number of customers to yield the average time spent by a customer.

After a customer node has been deleted from the front of its queue, the

next customer on the queue (if any) becomes the one being serviced by that teller

and a departure node for that next customer is added to the event list.

This process continues until the event list is empty, at which point the average

time is computed and printed. Note that the event list itself does not mirror

any part of the real-world situation. It is used as part of the program to control the

entire process. A simulation such as this one, which proceeds by changing the

simulated situation in response to the occurrence of one of several events, is
called an event-driven simulation.

We now examine the data structures required by this program. The nodes

on the queues represent customers and therefore must contain fields representing

the arrival time and the transaction duration, in addition to a PTRNXT field to

link the nodes in a list. The nodes on the event list represent events and therefore

must contain the time that the event occurs, the type of the event, and any other

information associated with that event, as well as a PTRNXT field. Thus it would

seem that two separate node pools are needed for the two different types of node.

This would entail two getnode and freenode routines and two sets of list manipulation

routines. To avoid this cumbersome set of duplicate routines, let us try to

use a single type of node for both events and customers.

We can declare such a pool of nodes as follows:

20 DIM INFO(500,3)
30 TIME = 1

40 ELAPSEDTIME = 2

50 TYPE = 3

60 DIM PTRNXT(500)

For a customer node I, INFO(I,TIME) is the customer’s arrival time and

INFO(I,ELAPSEDTIME) is the transaction’s duration. INFO(I,TYPE) is unused

in a customer node. The PTRNXT field is used as a pointer to link the nodes of a

queue together. For an event node I, INFO(I,TIME) is used to hold the time of

the event’s occurrence; INFO(I, ELAPSEDTIME) is used for the transaction duration

of the arriving customer in an arrival node and is unused in a departure

node. INFO(I,TYPE) is an integer between 0 and 4, depending on whether the

event is an arrival [INFO(I,TYPE) = 0] or a departure from line one, two, three,

or four [INFO(I,TYPE) = 1, 2, 3 or 4]. PTRNXT holds a pointer linking the

nodes of the event list together. (Note that we compress the arrival time, dura



192 Queues and Lists Chap. 4

tion, and type into a single array INFO because they are all represented by integers,
although the integer array PTRNXT is a separate array. The reason for

doing this is that we wish to make an explicit distinction between the information

and pointer portions of a node. If the various pieces of information needed in a
node were of different types, we would have to separate INFO into several distinct

arrays as we did for the student nodes at the end of the preceding section.)

The four queues are defined by arrays Q and NUM introduced by the statements

80 DIM Q(4,2)
90 FRNT = 1

100 REAR = 2

110 DIM NUM(4)

Q(I,FRNT) and Q(I,REAR) contain pointers to the front and rear of the Ith
queue, while NUM(I) contains the number of customers on the Ith queue.

An additional variable, EVLST, points to the front of the event list, another

variable, TTLTIME, is used to keep track of the total time spent by all customers,
and a third variable, COUNT, keeps count of the number of customers who

have passed through the bank. An auxiliary array, AUXINFO, is used to store

temporarily the information portion of a node.

The program first declares all the global variables mentioned above, initializes
all lists and queues, and repeatedly removes the next node from the event list

to drive the simulation until the event list is empty. It calls on the subroutine

placeaux to insert a node whose information is given by AUXINFO into its proper
place in the event list. The event list is ordered by increasing value of the

TIME field. The program also calls on subroutine popaux to remove the first

node from the event list and place its information into AUXINFO. These routines

are equivalent to the routines place and pop introduced earlier except that they

reference the array AUXINFO rather than the variables X and POPS.

The main program also calls on subroutines arrive and depart, which effect
the changes in the event list and the queues caused by an arrival and a departure.
Specifically, subroutine arrive reflects the arrival of a customer at time ATIME

with a transaction of duration DUR, and subroutine depart reflects the departure
of the first customer from the QINDXth queue at time DTIME. The coding of
these routines will be given shortly.

10 ‘program bank
20 DIM INFO(500,3): ‘information portion of list node
30 TIME = 1

40 ELAPSEDTIME = 2

50 TYPE = 3

60 DIM PTRNXT(5OO) next address portion of list node

70 DIM AUXINFO(3): ‘temporary storage; input to insafter, insert,

‘placeaux, push; output of popaux, remove
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80 DIM Q(4,2): ‘pointers to teller queues
90 FRNT = 1

100 REAR = 2

110 DIM NUM(4) ‘number of nodes on teller queues

120 DIM QUEUE(2): ‘used as an input and output of routines
‘insert and remove

130 ‘initialize variables and lists

140 TRUE = 1

150 FALSE = 0

160 EVLST = 0: ‘pointer to event list
170 COUNT = 0: ‘number of customers
180 TTLTIME = 0: ‘total time spent by all customers
190 ‘initialize available list

200 AVAIL = 1

210 FORI = 1T0499

220 PTRNXT(I) = I + 1

230 NEXT I

240 PTRNXT(500) = 0

250 ‘initialize queues
260 FORI=1T04

270 Q(I,FRNT) = 0

280 Q(I,REAR) = 0

290 NUM(I) = 0

300 NEXT I

310 ‘initialize the event list with the first arrival

320 READ AUXINFO(TIME), AUXINFO(ELAPSEDTIME)

330 AUXINFO(TYPE) = 0

340 LST = EVLST

350 GOSUB 8000: ‘subroutine placeaux may reset LST
360 EVLST = LST

370 ‘begin the event-driven simulation
380 IF EVLST = 0 THEN GOTO 540

390 STACK = EVLST

400 GOSUB 4000: ‘subroutine popaux resets the variables STACK
‘and AUXINFO

410 EVLST = STACK

420 ‘check if the next event is an arrival or a departure

430 IF AUXINFO(TYPE) > 0 THEN GOTO 490

440 ‘arrival

450 ATIME = AUXINFO(TIME)

460 DUR = AUXINFO(ELAPSEDTIME)

470 GOSUB 9000: ‘subroutine arrive accepts ATIME and DUR and

‘resets EVLST, NUM, and Q

480 GOTO 380
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490 ‘departure
500 QINDX = AUXINFO(TYPE)

510 DTIME = AUXINFO(TIME)

520 GOSUB 10000: ‘subroutine depart accepts QINDX and DTIME

‘and resets EVLST, NUM, Q, COUNT, and TTL TIME
530 GOTO 380

540 PRINT “AVERAGE TIME IS”; TI’LTIME / COUNT

550 END

600 DATA

610 DATA

700 DATAO,0

1000 ‘subroutine getnode

2000 ‘subroutine freenode

3000 ‘subroutine insafter

4000 ‘subroutine popaux

5000 ‘subroutine empty (stack)

6000 ‘subroutine insert

7000 ‘subroutine remove

8000 ‘subroutine placeaux

9000 ‘subroutine arrive

10000 ‘subroutine depart

11000 ‘subroutine push

12000 ‘subroutine empty (queue)

The subroutine arrive modifies the queues and the event list to reflect a new
arrival at time ATIME with a transaction of duration DUR. It inserts a new customer

node at the rear of the shortest queue by calling the subroutine insert,

which must be suitably modified to handle the type of node in this example. arrive

must then increase the NUM field of that queue by 1. If the customer is the

only one on his queue, a node representing his departure is added to the event list

by calling the subroutine placeaux. Then the next data item (if any) is read and an
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arrival node is placed on the event list to replace the arrival that has just been
processed. If there is no more input (as signaled by two zeros), subroutine arrive
returns without adding a new arrival node and the main program processes any
remaining (departure) nodes on the event list.

9000 ‘subroutine arrive

9010 ‘inputs: ATIME, DUR, EVLST, NUM, Q

9020 ‘outputs: EVLST, NUM, Q

9030 ‘locals: I, J, SMALL

9040 ‘Find the shortest queue

9050 J = 1

9060 SMALL = NUM(1)

9070 FORI = 2T04

9080 IF NUM(I) < SMALL THEN SMALL = NUM(I): J = I

9090 NEXT I

9100 ‘Queue J is the shortest. Insert a new node representing

9110 ‘the new arrival

9120 AUXINFO(TIME) = ATIME

9130 AUXINFO(ELAPSEDTIME) = DUR

9140 AUXINFO(TYPE) = J

9150 QUEUE(FRNT) = Q(J, FRNT)

9160 QUEUE(REAR) = Q(J, REAR)

9170 GOSUB 6000: ‘subroutine insert modifies the array QUEUE

9180 Q(J, FRNT) = QUEUE(FRNT)

9190 Q(J, REAR) = QUEUE(REAR)

9200 NUM(J) = NUM(J) + 1

9210 ‘Check if this is the only node on the queue. If it is, the

9220 ‘customer’s departure must be placed on the event list.

9230 IF NUM(J) <> 1 THEN GOTO 9290
9240 ‘else do stmnts 9250-9280

9250 AUXINFO(TIME) = ATIME + DUR

9260 LST = EVLST

9270 GOSUB 8000: ‘subroutine placeaux may reset the variable LST
9280 EVLST = LST

9290 ‘Read the new arrival line. Place the arrival on the event list.

9300 READ AUXINFO(TIME), AUXINFO(ELAPSEDTIME)

9310 IF AUXINFO(TIME) = 0 AND AUXINFO(ELAPSEDTIME) = 0

THEN RETURN: ‘trailer card

9320 AUXINFO(TYPE) = 0

9330 LST = EVLST

9340 GOSUB 8000: ‘subroutine placeaux
9350 EVLST = LST

9360 RETURN

9370 ‘endsub
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The routine depart modifies the QINDXth queue and the event list to reflect

the departure of the first customer on the queue at time DTIME. The customer is

removed from the queue by calling subroutine remove, which must be suitably

modified to handle the type of node in this example. depart must then decrement

the queue’s NUM field by 1. The departure node of the next customer on the

queue (if any) replaces the departure node that has just been removed from the
event list.

10000 ‘subroutine depart

10010 ‘inputs: COUNT, DTIME, EVLST, NUM, Q, QINDX, 7TL TIME

10020 ‘outputs: COUNT, EVLST, NUM, Q, 7TL TIME

10030 ‘locals: P

10040 ‘remove the customer node from the queue and gather statistics

10050 QUEUE(FRNT) = Q(QINDX, FRNT)

10060 QUEUE(REAR) = Q(QINDX, REAR)

10070 GOSUB 7000: ‘subroutine remove modifies the array QUEUE

10080 Q(QINDX, FRNT) = QUEUE(FRNT)

10090 Q(QINDX, REAR) = QUEUE(REAR)

10100 NUM(QINDX) = NUM(QINDX) - 1

10110 TI’LTIME = TTLTIME + (DTIME — AUXINFO(TIME))

10120 COUNT = COUNT + 1

10130 ‘if there are any more customers on the queue, place the

10140 ‘departure of the next customer onto the event list after

10150 ‘computing its departure time

10160 IF NUM(QINDX) = 0 THEN RETURN

10170 p = Q(QINDX, FRNT)

10180 AUXINFO(TIME) = DTIME + INFO(P, ELAPSEDTIME)

10190 AUXINFO(TYPE) = QINDX

10200 LST = EVLST

10210 GOSUB 8000: ‘subroutine placeaux may reset the variable LST

10220 EVLST = LST

10230 RETURN

10240 ‘endsub

Simulation programs are rich in their use of list structures. The reader is
urged to explore the use of BASIC for simulation and the use of special-purpose
simulation languages.

EXERCISES

1. In the bank simulation program of the text, a departure node on the event list represents

the same customer as the first node on a customer queue. Is it possible to use a

single node for a customer currently being served? Rewrite the program of the text so

that only a single node is used. Is there any advantage to using two nodes?
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2. The program in the text uses the same type of node for both customer and event nodes.

Rewrite the program using two different types of nodes for these two purposes. Does

this save space?

3. Revise the bank simulation program of the text to determine the average length of the
four lines.

4. The standard deviation of a group of n numbers is given by

(xi—m)2

where x, are the individual numbers and m their mean. Modify the bank simulation

program to compute the standard deviation of the time spent by a customer in the

bank. Write another program which simulates a single line for all four tellers with the

customer at the head of the single line going to the next available teller. Compare the
means and standard deviations of the two methods.

5. Modify the bank simulation program so that whenever the length of one line exceeds

the length of another by more than two, the last customer on the longer line moves to
the rear of the shorter.

6. Write a BASIC program to simulate a simple multiuser computer system as follows.

Each user has a unique ID and wishes to perform a number of transactions on the

computer. However, only one transaction may be processed by the computer at any

given moment. Each input line represents a single user and contains the user’s ID followed

by a starting time followed by a series of integers representing the duration of

each of the user’s transactions. The input is sorted by increasing starting time, and all

times and durations are in seconds. Assume that a user does not request time for a

transaction until the preceding transaction is complete and that the computer accepts

transactions on a first-come, first-served basis. The program should simulate the system

and print a message containing the user ID and the time whenever a transaction

begins and ends. At the end of the simulation it should print the average waiting time

for a transaction. (The waiting time is the amount of time between the time that the

transaction was requested and the time it was started.)

7. Many simulations do not simulate events given by input data, but rather generate

events according to some probability distribution. The following exercises explain

how. Most computer systems have a random-number generating function RND(X).

(The name and parameters of the function vary from computer to computer. RND is

used as an example only.) X is initialized to a value between 0 and 1 called a seed.

The statement X = RND(X) resets the value of the variable X to a uniform random

real number between 0 and 1. By this we mean that if the statement is executed a

sufficient number of times and any two equal-length intervals between 0 and 1 are

chosen, approximately as many of the successive values of X fall into one interval as

into the other. Thus the probability of a value of X falling in an interval of length
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1 <= 1 equals 1. Find out the name of the random-number generating function on

your computer and verify that the above is true.

Given a random number generator RND, consider the following statements:

100X = RND(X)

11OY = (BA)*X + A

(a) Show that, given any two equal-sized intervals within the interval from A to B, if

the statements are repeated sufficiently often, an approximately equal number of
successive values of Y fall into each of the two intervals. The variable Y is said to

be a uniformly distributed random variable. What is the average of the values of

Yin terms of A and B?

(b) Rewrite the bank simulation of the text assuming that the transaction duration is

uniformly distributed between 1 and 15. Each input line represents an arriving customer

and contains only the time of arrival. Upon reading an input line, generate a

transaction duration for that customer by computing the next value according to
the method outlined above.

8. The successive values of Y that are generated by the following statements are called

normally distributed with mean M and standard deviation S. (Actually, they are approximately

normally distributed, but the approximation is close enough.)

10 DEFDBLM,S,Y,X
20 DEFINT I

30 DIM X(15)

40 ‘statements initializing the values of S, M and

50 ‘the array X go here
60 SUM = 0

70 FORI=1T015

80 X(I) = RND(X(I))

90 SUM = SUM + X(I)

100 NEXT I

110 Y = S*(SUM7.5)/SQR(1.25) + M

120 ‘statements that use the value of Y go here
130 IF condition THEN GOTO 60

140 END

(a) Verify that the average of the values of Y (the mean of the distribution) equals M

and that the standard deviation (see Exercise 4) equals S.

(b) A certain factory produces items according to the following process: an item must

be assembled and polished. Assembly time is uniformly distributed between 100

and 300 seconds and polishing time is normally distributed with a mean of 20 seconds

and a standard deviation of 7 seconds (but values below 5 are discarded).

After an item is assembled, a polishing machine must be used and a worker cannot

begin assembling the next item until the item he has just assembled has been polished.

There are 10 workers but only one polishing machine. If the machine is not
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available, workers who have finished assembling their items must wait for the machine

to be free. Compute the average waiting time per item by means of a simulation.

Do the same under the assumption of two and three polishing machines.

9. (a) The XYZ Widget Store has expanded! Instead of selling only superior-quality widgets,

it now also sells thingamijigs and dohickies. The store still charges a 20%

markup on widgets, but in order to attract customers to its new products, it charges

only a 15% markup on thingamijigs and dohickies. Whenever the store’s inventory

of a particular product falls below a certain number (called the reorder point), the

store reorders a certain amount (called the reorder amount) of the product. Once a

given item is reordered, it takes a certain number of days (called the reorder period)

for the item to arrive at the store. However, if customers have placed orders in

excess of the reorder amount, the quantity that is reordered equals the reorder

amount plus the amount demanded by the customers. If additional customers ask

for the item after the item has already been reordered but the reorder amount

would not cover the additional demand, another order is placed for the item. The

amount of the additional order is equal to the reorder amount plus the total amount

demanded minus the amount already ordered.

Write a program to read the reorder point, reorder amount, reorder period,

and an initial factory price for each of the three items. Initially, assume that on day

1 the reorder amount of each item has been ordered. Then read a group of two

types of transactions: a customer transaction containing a “C”, the customer’s

name, and three numbers representing the amounts of each item that the customer

wishes to buy, and a price transaction containing a “P” and three prices representing

new factory prices for each of the items that the store sells. Each transaction

also contains a day number. The transactions are sorted by increasing day number.

If the store has quantities of a particular item at varying prices, it uses a LIFO

policy and first sells those items which it received last (and presumably are higher

priced).

The output of the program is a series of messages ordered by increasing day

number. The initial message is that on day 1 a specific amount of each item has

been ordered at a specific cost. (The cost for an order is the price that is in effect

on the day of the order, not that in effect on the day of delivery.) Messages are

printed whenever an order is placed, whenever a shipment is received, whenever a

customer requests a sale, and whenever items are sent to a customer. Whenever

more than one customer is waiting for items in a shipment, the rule used is first

come, first served. If only part of a sale can be filled, it is filled and the remainder

is filled upon receipt of a shipment. When all the items in a given sale have been

sent out, the total price for the sale is computed and a message is printed.

(b) What changes would have to be introduced to the program under each of the following
altered conditions?

(1) The store uses a FIFO policy instead of a LIFO policy (e.g., shipments received

earlier are sold first).
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(2) The store always sells items from shipments at higher costs before items at

lower cost, regardless of time of receipt.

(3) If more than one customer is waiting for a given shipment, the shipment is

sold to the customer with the greatest total sale.

4. OTHER LIST STRUCTURES

Although a linked linear list is a rather useful data structure, it has several shortcomings.

In this section we present other methods of organizing a list and show

how they can be used to overcome these shortcomings.

Circular Lists

One of the shortcomings of linear lists is that given a pointer p to a node in such a

list, we cannot reach any of the nodes that precede node(p). If a list is traversed,

the original pointer to the beginning of the list must be preserved in order to be

able to reference the list again.

Suppose that a small change is made to the structure of a linear list so that

the ptrnxt field in the last node contains a pointer back to the first node rather

than the null pointer. Such a list is called a circular list and is illustrated in Figure

4.4.1. From any point in such a list it is possible to reach any other point in the

list. If we begin at a given node and traverse the entire list, we ultimately end up

at the starting point. Note that a circular list does not have a natural “first” or

“last” node. We must, therefore, establish a first and last node by convention.

One useful convention is to let the external pointer to the circular list point to the

last node, and to allow the following node to be the first node, as illustrated in

Figure 4.4.2. We also establish the convention that a null pointer represents an

empty circular list.

The Stack as a Circular List

A circular list can be used to represent a stack or a queue. Let stack be a pointer

to the last node of a circular list and let us adopt the convention that the first node

is the top of the stack. The following is a BASIC subroutine to push a number X

onto the stack, assuming a set of nodes and an auxiliary routine getnode at statement

1000 as presented in previous sections. The push subroutine calls on the

empty subroutine at statement 4000, which tests whether STACK equals zero.

dl*L 1*1 IH 1
Figure 4.4.1 A circular list.
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1st

First Last

Node Node

1 1 I 1 I 1 L
Figure 4.4.2 The first and last nodes of a circular list.

5000 ‘subroutine push

5010 ‘inputs: STACK, X

5020 ‘outputs: STACK
5030 ‘locals: EMPTY, GTNODE, P

5040 GOSUB 1000: ‘subroutine getnode sets the variable GTNODE
soso P = GTNODE

5060 INFO(P) = X

5070 GOSUB 4000: ‘subroutine empty sets the variable EMPTY
5080 IF EMPTY = TRUE THEN STACK = P

ELSE PTRNXT(P) = PTRNXT(STACK)

5090 PTRNXT(STACK) = P

5100 RETURN

5110 ‘endsub

Note that the push subroutine is slightly more complex for circular lists than it is
for linear lists.

The BASIC pop subroutine for a stack of numbers implemented as a circular
list is as follows. It calls the subroutinefreenode at statement 2000 introduced

earlier.

6000 ‘subroutine pop

6010 ‘inputs: STACK

6020 ‘outputs: POPS, STACK

6030 ‘locals: EMPTY, P

6040 GOSUB 4000: ‘subroutine empty sets the variable EMPTY

6050 IF EMPTY = TRUE THEN PRINT “STACK OVERFWW”: STOP

6060 P = PTRNXT(STACK)

6070 POPS = INFO(P)

6080 ‘if P = STACK then there is only one node in the stack

6090 IF P = STACK THEN STACK = 0 ELSE PTRNXT(STACK) = PTRNXT(P)

6100 FRNODE = P

6110 GOSUB 2000: ‘subroutine freenode

6120 RETURN

6130 ‘endsub
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The Queue as a Circular List

It is easier to represent a queue as a circular list than as a linear list. As a linear

list, a queue is specified by two pointers, one to the front of the list and the other

to its rear. However, by using a circular list, a queue may be specified by a single

pointer QUEUE to that list. The node pointed to by QUEUE is the rear of the

queue and the following node is its front. The routine remove (accepting a variable
QUEUE) is identical to pop (accepting STACK) except that all references to

STACK are replaced by QUEUE and all references to POPS are replaced by

RMOVE. empty must also be modified to accept QUEUE, rather than STACK,

as an input. The BASIC routine insert may be coded as follows:

7000 ‘subroutine insert

7010 ‘inputs: QUEUE, X

7020 ‘outputs: QUEUE

7030 ‘locals: GTNODE, P

7040 GOSUB 1000: ‘subroutine getnode sets the variable GTNODE
7050 P = GTNODE

7060 INFO(P) = X

7070 GOSUB 4000: ‘subroutine empty sets the variable EMPTY

7080 IF EMPTY = TRUE THEN QUEUE = P
ELSE PTRNXT(P) = PTRNXT(QUEUE)

7090 PTRNXT(QUEUE) = P

7100 QUEUE = P
7110 RETURN

7120 ‘endsub

Note that this is equivalent to the code

90 STACK = PTRNXT(QUEUE)
100 X = ‘element to be inserted

110 GOSUB 9000: ‘subroutine push

120 QUEUE = PTRNXT(QUEUE)

That is, to insert an element into the rear of a circular queue, the element is inserted

into the front of the queue and the queue pointer is then advanced one
element, so that the new element becomes the rear.

Primitive Operations on Circular Lists

The routines insafter, which inserts a node containing X after node(PNTR), and

delafter, which deletes the node following node(PNTR) and stores its contents in

X, are similar to the routines for linear lists as presented in Section 2. Let us now

consider the delafter subroutine in more detail. Looking at the corresponding rou
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tine for linear lists in Section 2, we note an additional consideration in the case of

a circular list. Suppose that PNTR points to the only node in the list. In a linear

list, PTRNXT(PNTR) is null in that case, making the deletion invalid. In the case

of a circular list, however, PTRNXT(PNTR) points to node(PNTR) so that

node(PNTR) follows itself. The question is whether it is desirable to delete

node(PNTR) from the list in this case. It is unlikely that we would want to do so,

since the operation delafter is usually invoked when pointers to each of two

nodes are available, one immediately following another, and it is desired to delete

the second. delafter for circular lists is therefore implemented as follows:

8000 ‘subroutine delafter

8010 ‘inputs: PNTR

8020 ‘outputs: X

8030 ‘locals: FRNODE, Q

8040 ‘if PNTR = 0 then the list is empty
8050 IF PNTR = 0 THEN PRINT “VOID DELETION”: RETURN

8060 ‘if PNTR = PTRNXT(PNTR) then the list contains only a single node

8070 IF PNTR = PTRNXT(PNTR) THEN PRINT “VOID DELETION”: RETURN

8080 Q = PTRNXT(PNTR)

8090 X = INFO(Q)

8100 PTRNXT(PNTR) = PTRNXT(Q)

8110 FRNODE = Q
8120 GOSUB 2000: ‘subroutine freenode

8130 RETURN

8140 ‘endsub

Note, however, that insafter cannot be used to insert a node following the last

node in a circular list and delafter cannot be used to delete the last node of a

circular list. In both cases, the external pointer to the list must be modified to

point to the new last node. The routines can be modified to accept LST as an

additional parameter and to change its value when necessary. An alternative is to

write separate routines insend and dellast for these cases. (insend is identical to

the insert operation for a queue implemented as a circular list.) The calling routine

would be responsible for determining which routine to call. Another alternative

is to give the calling routine the responsibility of adjusting the external

pointer LST if necessary. We leave the exploration of these possibilities to the
reader.

It is also easier to free all the nodes of a circular list than to free all the

nodes of a linear list. In the case of a linear list, the entire list must be traversed,

as one node at a time is returned to the available list or until the last node is

reached and the entire list is appended to the available list. For a circular list, we
can write a routine freelist, which effectively frees an entire list without traversing

the list:
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9000 ‘subroutine freelist

9010 ‘inputs: LST

9020 ‘outputs. LST
9030 ‘locals: P

9040 P = PTRNXT(LST)

9050 PTRNXT(LST) = AVAIL
9060 AVAIL = P

9070 LST = 0

9080 RETURN

9090 ‘endsub

Similarly, we may write a routine concat, which concatenates two lists—

that is, it appends the circular list pointed to by L2 to the end of the circular list

pointed to by Li:

10000 ‘subroutine concat

10010 ‘inputs: Li, L2

10020 ‘outputs: Li
10030 IF L2 = 0 THEN RETURN

10040 IF Li = 0 THEN Li = L2: RETURN

i0050 P = PTRNXT(Li)

i0060 PTRNXT(Li) = PTRNXT(L2)

i0070 PTRNXT(L2) = P

10080 Li = L2

10090 RETURN

10100 ‘endsub

The Josephus Problem

Let us consider a problem that can be solved in a straightforward manner by using

a circular list. The problem is known as the Josephus problem and postulates

a group of soldiers surrounded by an overwhelming enemy force. There is no

hope for victory without reinforcements, but there is only a single horse available

for escape. The soldiers agree to a pact to determine which of them is to escape

and summon help. They form a circle and a number n is picked from a hat. One

of their names is also picked from a hat. Beginning with the soldier whose name

is picked, they begin to count clockwise around the circle. When the count

reaches n, that soldier is removed from the circle, and the count begins again

with the next soldier. The process continues so that each time the count reaches
n, a soldier is removed from the circle. Once a soldier is removed from the circle,

of course, he is no longer counted. The last soldier remaining is to take the horse

and escape. The problem is, given a number n, the ordering of the soldiers in the

circle, and the soldier from whom the count begins, to determine the order in

which soldiers are eliminated from the circle, and which soldier escapes.

The input to the program is the number n and a list of names which is the

clockwise ordering of the soldiers in the circle, beginning with the soldier from
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whom the count is to start. The last input line contains the string “END,” indicating
the end of the input. The program should print the names of the soldiers in

the order in which they are eliminated and the name of the soldier who escapes.
For example, suppose that n equals 3 and there are five soldiers, named A,

B, C, D and E. We count three soldiers starting at A, so that C is eliminated first.
We then begin at D and count D, E, and back to A, so A is eliminated next. Then
we count B, D, and E (C has already been eliminated) and finally B, D, and B, so
D is the soldier who escapes.

Clearly, a circular list in which each node represents one soldier is a natural
data structure to use in solving this problem. It is possible to reach any node from
any other by counting around the circle. To represent the removal of a soldier

from the circle, that soldier’s node is deleted from the circular list. Finally, when
only one node remains on the list, the result is determined.

An outline of the program might be the following:

read n

read soldier

while soldier is not “end” do

insert soldier on the circular list

read soldier

endwhile

while there is more than one node on the list do

count through n-i nodes on the list

print the name of the soldier in the nth node
delete the nth node

endwhile

print the name of the soldier in the only node on the list

We assume at least one name in the input. The program uses the routines

insert, delafter, and freenode.

10 ‘program josephus

20 DEFSTR I, 5, X

30 DIM INFO(500)

40 DIM PTRNXT(500)
50 TRUE = i

60 FALSE = 0

70 LST = 0

80 AVAIL = i

90 FORK = iTO499

iOO PTRNXT(K) = K + i

110 NEXTK

i20 PTRNXT(500) = 0

i30 READ N

i40 PRINT “THE ORDER IN WHICH THE SOLDIERS ARE ELIMINATED IS:”
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150 ‘read the names, placing each at the rear of the list
160 READ SOLDIER

170 IF SOLDIER = “END” THEN GOTO 230

180 QUEUE = LST

190 X = SOLDIER

200 GOSUB 7000: ‘subroutine insert accepts QUEUE and X

‘and resets QUEUE
210 LST = QUEUE

220 GOTO 160

230 ‘repeat as long as more than one node remains on the list

240 IF LST = PTRNXT(LST) THEN GOTO 350
250 ‘else do statements 260-330

260 FORJ=1TON—1

270 LST = PTRNXT(LST)

280 ‘at this point LST points to the Jth node counted
290 NEXT J

300 ‘PTRNXT(LST) points to the Nth node; delete that node
310 PNTR = LST

320 GOSUB 8000: ‘subroutine delafter sets the variable X

330 PRINT X

340 GOTO 240

350 ‘print the only name remaining on the list and free its node

360 PRINT “THE SOLDIER WHO ESCAPES IS “; INFO(LST)
370 FRNODE = LST

380 GOSUB 2000: ‘subroutine freenode

390 END

500 DATA...

990 DATA”END”

1000 ‘subroutine getnode

2000 ‘subroutine freenode

4000 ‘subroutine empty

7000 ‘subroutine insert

8000 ‘subroutine delafter

Header Nodes

Suppose that we wish to traverse a circular list. This can be done by repeatedly
executing the statement P = PTRNXT(P), where P is initially a pointer to the
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1st

I Header
Node

_____________ ____________ ____________ ____________

____ii_I[_iri
Figure 4.4.3 A circular list with a header node.

beginning of the list. However, since the list is circular, we will not know when
the entire list has been traversed unless another pointer LST points to the first
node and a test is made for the condition P = LST.

An alternative method is to place a header node as the first node of a circulax
list. This list header may be recognized by a special value in its INFO field,

which cannot be the valid contents of a list node in the context of the problem, or

it may contain a flag marking it as a header. The list can then be traversed using a
single pointer, with the traversal halting when the header node is reached. The
external pointer to the list is to its header node, as illustrated in Figure 4.4.3. This
means that a node cannot be added easily onto the rear of such a circular list, as
could be done when the external pointer was to the last node of the list. Of
course, it may be possible to keep a pointer to the last node of a circular list
within the header node or to keep an additional external pointer to the last node.

If a stationary external pointer to a circular list is present in addition to the
pointer used for traversal, the header node need not contain a special flag but can
be used in much the same way as a header node of a linear list to contain global
information about the list. The end of a traversal would be signaled by the equality

of the traversing pointer and the external stationary pointer.

Addition of Long Positive Integers Using
Circular Lists

We now present an example of an application that uses circular lists with header
nodes. The hardware of most computers allows integers of only a specific maximum

length. Suppose that we wish to represent positive integers of arbitrary
length and to write a function that returns the sum of two such integers. To add
two integers, their digits are traversed from right to left and corresponding digits
and a possible carry from the previous digits’ sum are added. This suggests representing

long integers by storing their digits from right to left in a list so that the
first node on the list contains the least significant digit (rightmost) and the last
node contains the most significant (leftmost). However, in order to save space,
we will keep five digits in each node. We may declare the set of nodes by

20 DIM INFO(500)

30 DIM PTRNXT(500)
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CL’i [98463f 721O6j *1763491 [ 1
Figure 4.4.4 A large integer as a circular list.

Since we wish to traverse the lists during the addition but wish eventually to
restore the list pointers to their original values, we use circular lists with headers.

The header node is distinguished by an INFO value of — 1. For example, the
integer 459763497210698463 is represented by the list illustrated in Figure
4.4.4.

Now let us write a subroutine addnum, which accepts pointers to two such

lists representing integers, creates a list representing the sum of the integers, and

returns a pointer to the sum list. Both lists are traversed in parallel and five digits

are added at a time. If the sum of two five digit numbers is SUM, the carry of the

sum, CARRY, is given by INT(SUM / 100000). The low-order five digits of
SUM are then given by SUM_100000*CARRY. When the end of one list is

reached, the carry is propagated to the remaining digits of the other list. The subroutine

follows and uses the routines getnode at statement 1000 and insafter at
statement 11000.

20000 ‘subroutine addnum

200 10 ‘inputs: PLST, QLST

20020 ‘outputs: ADDNUM

20030 ‘locals: CARRY, GTNODE, HUNTHOU, PPTR, QPTR, S, SUM

20040 HUNTHOU = 100000

20050 ‘PLST and QLST are pointers to the header nodes of two

‘lists representing long integers

‘set PPNTR and QPNTR to the nodes following the headers20060

PPNTR = PTRNXT(PLST)20070

QPNTR = PTRNXT(QLST)20080

‘set up header node for the sum20090

GOSUB 1000: ‘subroutine getnode sets the variable GTNODE20100

S = GTNODE20110

INFO(S) = —120120

PTRNXT(S) = S20130

‘initially there is no carry20140

CARRY = 020150

‘traverse section20160

IF INFO(PPNTR) = —1 OR INFO(QPNTR) = —1 THEN GOTO 2031020170

‘add the info of two nodes and previous carry

SUM = INFO(PPNTR) + INFO(QPNTR) + CARRY

1st

20180

20190
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20200 ‘determine whether there is a carry

202 10 CARRY = INT(SUM / HUNTHOU)

20220 ‘determine the low-order five digits of SUM
20230 X = SUM - HUNTHOU * CARRY

20240 ‘insert into the list, advance the traversals.

20250 PNTR = S

20260 GOSUB 11000: ‘subroutine insafter accepts PNTR and X
20270 5 = PTRNXT(S)

20280 PPNTR = PTRNXT(PPNTR)

20290 QPNTR = PTRNXT(QPNTR)

20300 GOTO 20170

20310 ‘at this point there may be nodes left in one of PLST or QLST

20320 ‘traverse the remainder of PLST

20330 IF INFO(PPNTR) = —1 THEN GOTO 20420
20340 SUM = INFO(PPNTR) + CARRY

20350 CARRY = INT(SUM / HUNTHOU)

20360 X = SUM - HUNTHOU * CARRY

20370 PNTR = S

20380 GOSUB 11000: ‘subroutine insafter

20390 5 = PTRNXT(S)

20400 PPNTR = PTRNXT(PPNTR)

20410 GOTO 20320

20420 ‘traverse the remainder of QLST

20430 IF INFO(QPNTR) = —1 THEN GOTO 20520
20440 SUM = INFO(QPNTR) + CARRY

20450 CARRY = INT(SUM / HUNTHOU)

20460 X = SUM - HUNTHOU * CARRY

20470 PNTR = S

20480 GOSUB 11000: ‘subroutine insafter

20490 5 = PTRNXT(S)

20500 QPNTR = PTRNXT(QPNTR)

20510 GOTO 20430

20520 ‘check if there is an extra carry from the first five digits
20530 IF CARRY = 0 THEN GOTO 20590

20540 ‘else do stmnts 20550-20580

20550 PNTR = S

20560 X = CARRY

20570 GOSUB 11000: ‘subroutine insafter

20580 5 = PTRNXT(S)

20590 ‘S points to the last node in the sum
20600 ADDNUM = PTRNXT(S)
20610 RETURN

20620 ‘endsub
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Doubly Linked Lists

Although a circularly linked list has advantages over a linear list, it still has several
drawbacks. One cannot traverse such a list backward nor can a node be deleted

from a circularly linked list given only a pointer to that node. In cases where

these facilities are required, the appropriate data structure is a doubly linked list.

Each node in such a list contains two pointers, one to its predecessor and another

to its successor. In fact, in the context of doubly linked lists, the terms predecessor

and successor are meaningless, since the list is entirely symmetric. Doubly

linked lists may be either linear or circular and may or may not contain a header

node, as illustrated in Figure 4.4.5.

We may consider the nodes on a doubly linked list as consisting of three

fields: an info field, which contains the information stored in the node, and left

and right fields, which contain pointers to the nodes on either side. We may declare

variables to represent such nodes by

30 DIM INFO(500)

40 DIM LEFT(500)

50 DIM RIGHT(500)

LEFT(I) and RIGHT(I) point to the nodes to the left and right of node(I), respectively.

null null
(a) A linear doubly linked list.

(b) A circular doubly linked list without a header.

_______ Header
Node

________________

I
(c) A circular doubly linked list with a header.

Figure 4.4.5 Doubly linked lists.
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Alternatively, we may declare a set of such nodes by

30 DIM INFO(500)

40 DIM PTRNXT(500,2)

50 LEFT = 1

60 RIGHT = 2

Under this representation, PTRNXT(I,LEFT) and PTRNXT(I,RIGHT) point to

the nodes to the left and right of node(I), respectively. It is the latter representation
that we use in the remainder of the text.

Note that the available list for such a set of nodes need not be doubly

linked, since it is not traversed bidirectionally. The available list may be linked
together by using either PTRNXT(I,LEFT) or PTRNXT(I,RIGHT). Of course,
appropriate getnode and freenode routines must be written.

We now present routines to operate on doubly linked circular lists. A convenient
property of such a list is that if p is a pointer to any node in a doubly

linked circular list, then

left(right(p)) = p = right(left(p))

One operation that can be performed on doubly linked lists but not on ordinary
linked lists is to delete a given node, given only a pointer to that node. The following

BASIC routine deletes the node pointed to by PNTR from a doubly linked
list and stores its contents in X.

15000 ‘subroutine delete (doubly linked list)

15010 ‘inputs: PNTR

15020 ‘outputs: X

15030 ‘locals: FRNODE, Q, R

15040 IF PNTR = 0 THEN PRINT “VOID DELETION”: RETURN

15050 X = INFO(PNTR)

15060 Q = PTRNXT(PNTR,LEFT)

15070 R = PTRNXT(PNTR,RIGHT)

15080 PTRNXT(Q,RIGHT) = R

15090 PTRNXT(R,LEFT) = Q

15100 FRNODE = PNTR

15110 GOSUB 2000: ‘subroutine freenode

15120 RETURN

15130 ‘endsub

The routine insertright inserts a node with information field X to the right of

node(PNTR) in a doubly linked list.
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16000 ‘subroutine insertright

16010 ‘inputs: PNTR, X

16020 ‘outputs: none

16030 ‘locals: GTNODE, Q, R
16040 IF PNTR = 0 THEN PRINT “VOID INSERTION”: RETURN

16050 GOSUB 1000: ‘subroutine getnode sets the variable GTNODE

16060 Q = GTNODE

16070 INFO(Q) = X

16080 R = PTRNXT(PNTR,RIGHT)

16090 PTRNXT(R,LEFT) = Q

16100 PTRNXT(Q,RIGHT) = R

16110 PTRNXT(Q,LEFT) = PNTR

16120 PTRNXT(PNTR,RIGHT) = Q
16130 RETURN

16140 ‘endsub

A routine insertleft to insert a node with information field X to the left of

node(PNTR) in a doubly linked list is similar and is left as an exercise for the
reader.

In programming for microcomputers, space efficiency is often a crucial

consideration. A program may not be able to afford the overhead of two pointers

for each element of a list. There are several techniques for compressing the left

and right pointers of a node into a single field. For example, a single pointer field

PTR in each node can contain the sum of pointers to its left and right neighbors.

Given two external pointers, P and Q, to two adjacent nodes such that

P = LEF]’(Q), RIGHT(Q) can be computed as PTR(Q) — P and LEF]’(P) can be

computed as PTR(P) — Q. Given P and Q, it is possible to delete either node and

reset its pointer to the preceding or succeeding node. It is also possible to insert a

node to the left of node(P) or to the right of node(Q) or to insert a node between

node(P) and node(Q) and reset either P or Q to the newly inserted node. In using

such a scheme, it is crucial always to maintain two external pointers to two adjacent
nodes in the list.

Addition of Long Integers Using Doubly Linked Lists

As an illustration of the use of doubly linked lists, let us consider extending the

implementation of long integers to include negative as well as positive integers.

The header node of a circular list representing a long integer will contain an indication

of whether the integer is positive or negative. When we wanted to add two

positive integers, we traversed the integers from the least significant digit to the

most significant. However, to add a positive and a negative integer, the smaller

absolute value must be subtracted from the larger absolute value and the result

must be given the sign of the integer with the larger absolute value. Thus some

method is needed for testing which of two integers represented as circular lists

has the larger absolute value.
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The first criterion that may be used to identify the integer with the larger
absolute value is the length of the integers (assuming that they do not contain
leading zeros). Thus, we can count the number of nodes in each list, and the list

that has more nodes represents the integer with the larger absolute value. However,
this count involves an extra traversal of the list. Instead of counting the number
of nodes, the count could be kept as part of the header node and referred to as

needed.

However, if both lists have the same number of nodes, it is necessary to

traverse the lists from the most significant digit to the least significant to determine

which number is larger. Note that this traversal is in the opposite direction

of the traversal that must be used in actually adding two integers. For this reason,

doubly linked lists are used to represent such integers.

Consider the format of the header node. In addition to a right and left pointer,

the header must contain the length of the list and an indication of whether the

number is positive or negative. These two items of information can be combined

into a single integer whose absolute value is the length of the list and whose sign

is the sign of the number being represented. However, in doing so, the ability to

identify the header node by examining the sign of its INFO field is destroyed.

When a positive integer was represented as a singly linked circular list, an INFO

field of — 1 indicated a header node. Under the new representation, however, a

header node may contain an INFO field such as 5, which is a valid INFO value

for any other node in the list.

There are several ways to remedy this problem. One way is to add another

field to each node to indicate whether or not it is a header node. Such a flag could
contain the value 1 if the node is a header and 0 if it is not. This means, of

course, that each node would require more space. Alternatively, the count could
be eliminated from the header node and the INFO value — 1 would indicate a

positive number and —2 a negative number. A header node could then be identified

by its negative INFO field. However, this would increase the time needed to

compare two numbers since it would be necessary to count the number of nodes

in each list. Such space/time trade-offs are very common in computing, and a

decision must be made as to which efficiency should be sacrificed and which retained.

In our case, we choose yet a third option, which is to retain an external

pointer to the list header. A pointer P can be identified as pointing to a header if it

equals the original external pointer; otherwise, node(P) is not a header.

Figure 4.4.6 indicates a sample node and the representation of four integers

as doubly linked lists. Note that the least significant digits are to the right of the
header and that the counts in the header nodes do not include the header node

itself.

Using the representation above, we present a routine compare, which compares
the absolute values of two integers represented as doubly linked lists. This

routine accepts as inputs two variables which are pointers to the list headers. The
output variable COMPARE is set to 1 if the first integer has the greater absolute
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4 j left f info riJ
(a) A sample node.

( [leader

(b) The integer —3242197849762.

Header
______________

L ffj6 R
(c) The integer 676941.

(d) The integer 0.

Figure 4.4.6 Integers as doubly linked lists.

value, — 1 if the second integer has the greater absolute value, and 0 if the absolute
values of the two integers are equal.

30000 ‘subroutine compare
30010 ‘inputs: PPNTR, QPNTR
30020 ‘outputs: COMPARE
30030 ‘locals: R, S

30040 ‘compare the counts

30050 IF ABS(INFO(PPNTR)) > ABS(INFO(QPNTR))

THEN COMPARE = 1: RETURN

30060 IF ABS(INFO(PPNTR)) <ABS(INFO(QPNTR))

THEN COMPARE = -1: RETURN

30070 ‘the counts are equal

30080 R = PTRNXT(PPNTR, LEFT)

30090 S = PTRNXT(QPNTR, LEFT)
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30100 ‘traverse the list from the most significant digit
30110 IF R = PPNTR THEN GOTO 30170
30120 IF INFO(R) > INFO(S) THEN COMPARE = 1: RETURN

30130 IF INFO(R) < INFO(S) THEN COMPARE = —1: RETURN

30140 R = PTRNXT(R, LEFT)

30150 5 = PTRNXT(S, LEFT)

30160 GOTO 30110

30170 ‘the absolute values are equal

30180 COMPARE = 0

30190 RETURN

30200 ‘endsub

We are now ready to write a subroutine oppsignadd that accepts two pointers

to lists representing long integers of opposite sign where the absolute value of

the first is not less than that of the second. oppsignadd outputs a pointer to a list

representing the sum of the integers. We must, of course, be careful to eliminate
leading zeros from the sum. To do this, we use the variable ZEROPTR to traverse

the list, deleting those nodes containing leading zeros.

In this routine PPNTR points to the integer with the larger absolute value

and QPNTR points to the integer with the smaller absolute value. The values of

these variables do not change. Auxiliary variables P1 and Qi are used to traverse

the lists. The sum is formed in a list pointed to by the variable RPNTR.

35000 ‘subroutine oppsignadd

35010 ‘inputs: PPNTR, QPNTR

35020 ‘outputs: OPPSIGNADD
35030 ‘locals: BRROW, CNTR, GTNODE, HUNTHOU, P1, PNTR, Q1, RPNTR, X,

ZEROPTR

35040 HUNTHOU = 100000

35050 CNTR = 0: ‘counter for number of nodes in result

35060 BRROW = 0: ‘1 if a borrow was required, 0 if not; initially no ‘borrow

35070 ‘generate a header node for the sum

35080 GOSUB 1000: ‘subroutine getnode sets the variable GTNODE
35090 RPNTR = GTNODE

35100 PTRNXT(RPNTR, LEFT) = RPNTR

35110 PTRNXT(RPNTR, RIGHT) = RPNTR

35120 ‘traverse the two lists

35130 P1 = PTRNXT(PPNTR, RIGHT)

35140 Qi = PTRNXT(QPNTR, RIGHT)

35150 IF Qi = QPNTR THEN GOTO 35250

35160 X = INFO(P1) — BRROW — INFO(Q1)
35170 IF X > = 0 THEN BRROW = 0

ELSE X = X + HUNTHOU: BRROW = 1
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35180 ‘generate a node and insert it to the left of the header in the sum
35190 PNTR = RPNTR

35200 GOSUB 16500: ‘subroutine insertleft accepts PNTR and X
35210 CNTR = CNTR + 1

35220 P1 = PTRNXT(P1, RIGHT)

35230 Qi = PTRNXT(Q1, RIGHT)

35240 GOTO 35150

35250 ‘traverse remainder of PPNTR list
35260 IF P1 = PPNTR THEN GOTO 35340

35270 X = INFO(P1) — BRROW

35280 IF X > = 0 THEN BRROW = 0

ELSE X = X + HUNTHOU: BRROW = 1

35290 PNTR = RPNTR

35300 GOSUB 16500: ‘subroutine insertleft

35310 CNTR = CNTR + 1

35320 P1 = PTRNXT(P1, RIGHT)

35330 GOTO 35260

35340 ‘delete leading zeros

35350 ZEROPTR = PTRNXT(RPNTR, LEFT)

35360 IF INFO(ZEROPTR) <>0 OR ZEROPTR = RPNTR THEN GOTO 35420
35370 PNTR = ZEROPTR

35380 ZEROPTR = PTRNXT(ZEROPTR, LEFT)

35390 GOSUB 15000: ‘subroutine delete accepts PNTR
35400 CNTR = CNTR -1

35410 GOTO 35360

35420 ‘insert count and sign into header

35430 IF INFO(PPNTR) > 0 THEN INFO(RPNTR) = CNTR

ELSE INFO(RPNTR) = — CNTR
35440 OPPSIGNADD = RPNTR

35450 RETURN

35460 ‘endsub

We can also write a subroutine samesignadd at line 25000, which adds two

integers with like signs. This is very similar to the subroutine addnum of the previous

implementation except that it deals with a doubly linked list and must keep
track of the number of nodes in the sum.

Using these routines, we can write a new version of addnum, which adds

two integers represented by doubly linked lists.
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20000 ‘subroutine addnum

20010 ‘inputs: PLST, QLST

20020 ‘outputs: ADDNUM

20030 ‘locals: COMPARE, OPPSIGNADD, PPTR, QPTR, TEMP
20040 PPNTR = PLST

20050 QPNTR = QLST

20060 ‘check if integers are of like sign;

‘if they are call the samesignadd routine

20070 IF INFO(PPNTR) * INFO(QPNTR) > 0
THEN GOSUB 25000: ADDNUM = SAMESIGNADD: RETURN

20080 ‘check which integer has the greater absolute value

20090 GOSUB 30000: ‘subroutine compare sets the variable COMPARE

20100 ‘if necessary, reverse pointers so that PPNTR points

‘to the larger integer
20110 IF COMPARE < 0

THEN TEMP = PPNTR: PPNTR = QPNTR: QPNTR = TEMP

20120 GOSUB 35000: ‘subroutine oppsignadd
20130 ADDNUM = OPPSIGNADD

20140 RETURN

20150 ‘endsub

Multilists

Sometimes, it is desirable to have a particular item of data on more than one list

without repeating the item in several nodes. For example, consider a public
health survey on the effects of cigarette smoking and alcohol. Researchers have

collected the medical histories of a large number of people, each of whom has

been categorized as a nonsmoker, a light smoker, or a heavy smoker, and as a

nondrinker, a light drinker, or a heavy drinker. The researchers wish to be able to

maintain this information so that they can obtain various statistics or follow-up

mailing labels for specific subgroups (e.g., what is the incidence rate of a particular

disease for heavy smokers who are also heavy drinkers?). One solution is to

maintain each person’s medical record in a node that is kept on two lists: one
indicating the level of smoking, and the other indicating the level of alcohol consumption.

In order to keep a node on more than one list, the node must contain a pointer
for each list in which it resides. A data structure containing such nodes is

called a multilist. In the example above, a node would contain a person’s name

and medical history in the information portion, one pointer to the next node with

the same level of smoking and another pointer to the next node with the same

level of alcohol consumption. It is also a good idea to keep fields in a node indicating
which lists contain the node so that when traversing one list it is possible to

determine the other lists that contain each particular node. Such a node for the

example above is illustrated in Figure 4.4.7. Figure 4.4.8 illustrates a portion of
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a multilist for that example, showing eight nodes representing people responding
as follows:

Name Alcohol level Smoking level

A No No

B Heavy No

C Light Heavy

D No No

E Heavy Heavy

F Light Light

G No Heavy

H Heavy Light

In this figure, each list is ordered alphabetically. The pointers in the figure are

labeled for the reader’s convenience to indicate the list of which they are a part

(e.g., LA represents “light alcohol,” NS represents “no smoking,” etc.). For

example, the list for light smoking contains nodes F and H, while the one for

heavy alcohol consumption contains nodes B, E, and H. Thus, if we wanted to
determine all light smokers who were also heavy drinkers, we could traverse either

the list of light smokers and check every light smoker as to whether he was a

heavy drinker, or traverse the list of heavy drinkers and check for light smoking.
In either case, the result would be node H.

The lists in a multilist may be linear or circular, singly or doubly linked. Of

course, if they are doubly linked, twice as many pointers are required. Also, they

may or may not contain a header node. For example, suppose that each list had a

header containing the number of nodes in the list. Then, if we wished to find all

heavy drinkers who are light smokers, we could check the headers of the two lists

Alcohol Smoking

level level

Name

Medical

record

Pointer to next node with

same alcohol level

Pointer to next node with

same smoking level

Figure 4.4.7 A node in a multilist.



-NA

HS

Figure 4.4.8 A portion of a multilist.

LS

219



220 Queues and Lists Chap. 4

to determine which list is smaller. By traversing the smaller list, we can avoid a

great deal of extra work.

EXERCISES

1. Write an algorithm and a BASIC routine to perform each of the operations of Exercise

4.2.4 for circular lists. Which are more efficient on circular lists than on linear

lists? Which are less efficient?

2. Rewrite the subroutine place of Section 2 to insert a new item in an ordered circular

list.

3. Write a program to solve the Josephus problem by using an array rather than a circular

list. Why is a circular list more efficient?

4. Consider the following variation of the Josephus problem. A group of people stand in

a circle and each chooses a positive integer. One of their names and a positive integer

n are chosen. Starting with the person whose name is chosen, they count around the

circle clockwise and eliminate the nth person. The positive integer which that person

chose is then used to continue the count. Each time a person is eliminated, the number

that person chose is used to determine the next person eliminated. For example,

suppose that the five people are A, B, C, D, and E and they choose integers 3, 4, 6,

2, and 7, respectively, and person A and the integer 2 are initially chosen. Then if

they start from A, the order in which people are eliminated from the circle is B, A, E,

C, leaving D as the last one in the circle.

Write a program that reads a group of DATA lines. Each DATA line except the

first and last contains a name and a positive integer chosen by that person. The order

of the names in the data is the clockwise ordering of the people in the circle and the

count is to start with the first name in the input. The first input line contains the

number of people in the circle. The last input line contains a single positive integer

representing the initial count. The program prints the order in which the people are

eliminated from the circle.

5. Write a BASIC routine that prints an arbitrarily long integer represented by a list.

Note that if a node contains fewer than five digits, its contents must be padded with

leading zeros prior to printing unless it represents the most significant digits of the

number.

6. Write a BASIC subroutine muitnum to multiply two long positive integers represented

by singly linked circular lists.

7. Write an algorithm and a BASIC routine to perform each of the operations of Exercise

4.2.4 for doubly linked circular lists. Which are more efficient on doubly linked

than on singly linked lists? Which are less efficient?

8. Assume that a single pointer field in each node of a doubly linked list contains the

sum of pointers to the node’s predecessor and successor, as described in the text.

Given pointers P and Q to two adjacent nodes in such a list, write BASIC routines to
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insert a node to the right of node(Q), to the left of node(P), and between node(P) and

node(Q) modifying P to point to the newly inserted node. Write an additional routine

to delete node(Q), resetting Q to its successor.

9. Assume that FIRST and LAST are external pointers to the first and last nodes of a

doubly linked list represented as in Exercise 8. Write BASIC routines to implement

the operations of Exercise 4.2.4 for such a list.

10. Write the routine samesignadd to add two long integers of the same sign represented

by doubly linked lists.

11. Rewrite the routine oppsignadd for the doubly-linked-list representation of Exercise
8.

12. Write a BASIC subroutine muitnum to multiply two long integers represented by doubly
linked circular lists.

13. How can you represent a polynomial in three variables (x, y, and z) as a circular list?

Each node should represent a term of the polynomial and should contain the powers

of x, y, and z as well as the coefficient of that term. The nodes should be ordered in

decreasing powers of x, then in decreasing powers of y, then in decreasing powers of

z. Write BASIC subroutines to do the following:

(a) Add two such polynomials.

(b) Multiply two such polynomials.

(c) Take the partial derivative of such a polynomial with respect to any of its variables.

(d) Evaluate such a polynomial for given values of x, y and z.

(e) Divide one such polynomial by another, creating a quotient and a remainder polynomial.

(f) Integrate such a polynomial with respect to any of its variables.

(g) Print the representation of such a polynomial.

(h) Given four such polynomials, f(x,y,z), g(x,y,z), h(x,y,z), and i(x,y,z), compute

the polynomial f(g(x,y,z), h(x,y,z), i(x,y,z)).

14. Write a BASIC program that reads two groups of DATA lines. Each line of the first

group consists of a name, a smoking level, and an alcohol consumption level. This

first group is terminated by a line that contains the name END. After reading the first

group, the program should form a multilist as outlined in the text. The program then

reads the second group, each line of which contains a smoking level and an alcohol

consumption level. For each DATA line of the second group, the program should

print the number of people with both the smoking and alcohol consumption levels

given on that line.



5

Recursion

This chapter introduces recursion, a problem-solving tool which is one of the

most powerful and at the same time one of the least understood by beginning

students of programming. We define recursion, present several examples, and

show how it can be an effective tool in problem solving. In some languages that

are more powerful than BASIC, recursion is implemented as part of the language;

this is not true in BASIC. We therefore examine how recursive algorithms can be

implemented in BASIC using stacks. Finally, we discuss the advantages and disadvantages

of using recursion in problem solving.

1. RECURSIVE DEFINITION AND PROCESSES

Many objects in mathematics are defined by presenting a process to produce that

object. For example, -rr is defined as the ratio of the circumference of a circle to
its diameter. This is equivalent to the following set of instructions: Obtain the
circumference of a circle and its diameter, divide the former by the latter, and
call the result -rr. Clearly, the process specified must terminate with a definite
result.

The Factorial Function

Another example of a definition specified by a process is that of the factorial
function, a function that plays an important role in mathematics and statistics.

Given a positive integer n, n factorwi is defined as the product of all integers

222
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between n and 1. For example, 5 factorial is equal to 5*4*3*2* 1 = 120 and 3
factorial equals 3*2*1 = 6. 0 factorial is defined as 1. In mathematics, the exclamation

mark (!) is often used to denote the factorial function. We may therefore
write the definition of this function as follows:

n!=1 ifn=0

n! = n*(n_1)*(n_2)*. . .*1 if n >0

Note that the three dots are really a shorthand notation for the product of all
the numbers between n —3 and 2 (assuming that n> 5). To avoid this shorthand
in the definition of n!, we would have to list a formula for n! for each value of n

separately, as follows:

0! = 1

1! = 1

2! = 2*1

3! = 3*2*1

4! = 4*3*2*1

Of course, we cannot hope to list a formula for the factorial of each integer.
In order to avoid any shorthand and to avoid an infinite set of definitions, yet to
define the function precisely, we may present an algorithm that accepts an integer
n and computes the value of n! in a variable fact:

x= n

prod = 1
while x > 0 do

prod = x * prod
x = x —1

endwhile

fact = prod
return

Such an algorithm is called iterative because it calls for the explicit repetition

of some process as long as a certain condition is met. An algorithm may be

thought of as a program for an “ideal” machine without any of the practical limitations
of a real computer and may therefore be used to define a mathematical

function. Although the algorithm above may be readily translated into a BASIC
subroutine, this subroutine cannot serve as the definition of the factorial function

because of such limitations as precision and the finite size of a real machine.
Let us look more closely at the definition of n!, which lists a separate formula

for each value of n. We may note, for example, that 4! equals 4*3*2*1,
which equals 4*3!. In fact, for any n > 0, we see that n! equals n*(n — 1)!. Multiplying

n by the product of all integers from n — 1 to 1 yields the product of all
integers from n to 1. We may therefore define
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0! = 1

1! = 1*0!

2! = 2*1!

3! = 3*2!

4! = 4*3!

or, using the mathematical notation used earlier,

n!=1 ifn=0

n! = n*(n_1)! if n>0

This definition may appear quite strange since it defines the factorial function

in terms of itself. This seems to be a circular definition and totally unacceptable

until we realize that the mathematical notation is simply a concise way of

writing the infinite number of equations necessary to define n! for each n. 0! is

defined directly as 1. Once 0! has been defined, defining 1! as 1*0! is not circular

at all. Similarly, once 1! has been defined, defining 2! as 2*1! is equally straightforward.

It may be argued that the latter notation is more precise than the definition
of n! as n*(n_ 1)* . . . *1 for n > 0 because it does not resort to three dots

to be filled in by the hopefully logical intuition of the reader. Such a definition,

which defines an object in terms of a simpler case of itself, is called a recursive
definition.

Let us see how the recursive definition of the factorial function may be used

to evaluate 5!. The definition states that 5! equals 5*4!. Thus, before we can

evaluate 5!, we must first evaluate 4!. Using the definition once more, we find

that 4! = 4*3!. Therefore, we must evaluate 3!. Repeating this process, we have

1. 5! = 5*4!

2. 4! = 4*3!

3. 3! = 3*2!

4. 2! = 2*1!

5. 1! = 1*0!

6. 0!=1

Each case is reduced to a simpler case until we reach the case of 0!, which
is, of course, 1. At line 6 we have a value which is defined directly rather than as
the factorial of another number. We may therefore backtrack from line 6 to line
1, returning the value computed in one line to evaluate the result of the previous
line. This produces

6’. 0! = 1

5’. 1! = 1*0! = 1*1 = 1

4’. 2!=2*1!=2*1=2

3’. 3!=3*2!=3*2=6

2’. 4!=4*3!=4*6=24

1’. 5! = 5*4! = 5*24 = 120
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Let us attempt to incorporate this process into an algorithm. Again, we want
the algorithm to accept a nonnegative integer n as input and to return in a variable
fact the nonnegative integer which is n factorial.

1. ifn=O
2. then fact = 1
3. return

4. else

5. x=n—1

6. find the value of x!. call it y.
7. fact=n*y
8. return

9. endif

This algorithm exhibits the process used to compute n! by the recursive definition.

The key to the algorithm is, of course, line 6, where we are told to “find

the value of x!”. We can view this step as suspending temporarily the execution

of the algorithm with input n on the machine we are now using and then initiating

execution of the same algorithm on a different machine with input x. (That is, n

on the second machine is set to x before beginning to execute the algorithm.) In

the process of computing x factorial, the second machine may call upon yet a

third machine, and so on.

Eventually, the second machine will complete its task. When it has done so,

it has computed the result of x factorial and it then sends that result back to the

first machine. The first machine sets y to the resulting value and resumes execution.

To see that this process will eventually halt, note that at the start of line 6, x

equals n — 1. Each time that the algorithm is executed on a different machine, its

input is one less than the preceding time, so that (since the original input n was a

nonnegative integer) 0 will eventually be input. At that point, the algorithm will

simply calculate the value 1 in the variable fact. This value is returned to a previous

machine in line 6, which asked for the evaluation of 0!. The multiplication of

y (= 1) by n (= 1) is then performed on that previous machine and the result is

returned. This sequence of multiplications and returns continues until the original
n! has been evaluated.

Of course, the assumption of an arbitrary number of machines for the calculation

of a seemingly simple problem is both impractical and unrealistic. In the

next section we examine how to convert this process into a BASIC program that

can be run on a single machine.

We note that it is much simpler and more straightforward to use the iterative

method for evaluation of the factorial function. We present the recursive method

as a simple example to introduce recursion, not as a more effective method of

solving this particular problem. Indeed, all the problems in the first part of this

section can be solved more effectively by iteration. However, later in this section

and in subsequent chapters, we will come across examples which are solved more

easily by recursive methods.
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Multiplication of Natural Numbers

Another example of a recursive definition is the definition of multiplication of

natural numbers. The product a*b, where a and b are positive integers, may be

defined as a added to itself b times. This is an iterative definition. An equivalent
recursive definition is

a*b=a ifb=1

a*b = a*(b_1)+a if b> 1

To evaluate 6*3 by this definition, we must first evaluate 6*2 and then add

6. To evaluate 6*2, we must first evaluate 6*1 and add 6. But 6*1 equals 6, by
the first part of the definition. Thus

6*3 = 6*2+6 = 6*1+6+6 = 6+6+6 = 18

The reader is urged to convert the definition above to a recursive algorithm as a

simple exercise.

Note the pattern that exists in recursive definitions. A simple case of the

term to be defined is defined explicitly (in the case of the factorial, 0! was defined
as 1; in the case of multiplication, a*1 was defined as a). The other cases

are defined by applying some operation to the result of evaluating a simpler case.
Thus, n! is defined in terms of (n — 1)! and a*b in terms of a*(b_ 1). Successive

simplifications of any particular case must eventually lead to the explicitly defined
trivial case. In the case of the factorial function, successively subtracting 1

from n will eventually yield 0. In the case of multiplication, successively subtracting

1 from b will eventually yield 1. If this were not the case, the definition

would be invalid. For example, if we defined

n! = (n+1)!/(n+1)

or

a*b = a*(b+1) — a

we would be unable to determine the values of 5! or 6*3. (You are invited to

attempt to determine these values using the definitions above.) This is true despite
the fact that the two equations are mathematically valid. Continually adding

1 to n or b does not eventually produce an explicitly defined case. Even if 100!
were defined explicitly, how could the value of 101! be determined?

The Fibonacci Sequence

Let us examine a less familiar example. The Fibonacci sequence is the sequence
of integers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . .
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Each element in this sequence after the first two is the sum of the two preceding
elements (e.g., 0 + 1 = 1, 1 + 1 = 2, 1 + 2 = 3,2 + 3 = 5, . .). If we
let fib(O) = 0, fib(1) = 1, and so on, we may define the Fibonacci sequence by
the following recursive definition:

fib(n)=n ifn=Oorl

fib(n) = fib(n —2) + fib(n — 1)if n > = 2

To compute fib(6), for example, we may apply the definition recursively to obtain

fib(6) = fib(4) + fib(5) = fib(2) + fib(3) + fib(5)

= fib(0) + fib(1) + fib(3) + fib(5) = 0 + 1 +fib(3) + fib(5)

= 1 + fib(1) + fib(2) + fib(5)
= 1 + 1 + fib(0) + fib(1) + fib(5) = 2 +0 + 1 + fib(5)
= 3 + fib(3) + fib(4)
= 3 + fib(1) + fib(2) + fib(4) = 3 + 1 + fib(0) + fib(1) + fib(4)
= 4 + 0 + 1 + fib(2) + fib(3)

= 5 + fib(0) + fib(1) + fib(3) = 5 + 0 + 1 + fib(1) + fib(2)
= 6 + 1 +fib(0) +fib(1) = 7 + 0 + 1 = 8

Notice that the recursive definition of the Fibonacci numbers differs from

the recursive definitions of the factorial function and multiplication. The recursive
definition of fib refers to itself twice. For example, fib(6) = fib(4) +fib(5),

so that in computing fib(6), fib must be applied recursively twice. However, part

of the computation of fib(S) involves determining fib(4) so that a great deal of
computational redundancy occurs in applying the definition. In the example

above, fib(3) was computed three separate times. It would have been much more
efficient to “remember” the value of fib(3) the first time it was evaluated and

reuse it each time that it was needed. An iterative method of computing fib(n)
such as the following is much more efficient (the result is placed in the variable
fib):

ifn<= 1
then fib = n
else

lofib = 0

hifib = 1

for i = 2 to n

x = lofib

lofib = hifib

hifib = x + lofib
next I

fib = hifib

endif
return
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Essentially, this algorithm enumerates all the Fibonacci numbers successively in
the variable hi lb.

Compare the number of additions (not including increments of the index
variable i) which are performed in computing fib(6) by this algorithm and by using

the recursive definition. In the case of the factorial function, the same number

of multiplications must be performed in computing n! by the recursive and iterative
methods. The same is true of the number of additions in the two methods of

computing multiplication. However, in the case of the Fibonacci numbers, the

recursive method is far more expensive than its iterative counterpart.

The Binary Search

You may have received the erroneous impression that recursion is a very handy

tool for defining mathematical functions but has no influence in more practical

computing activities. The next example will illustrate an application of recursion

to one of the most common activities in computing—that of searching.

Consider an array of elements in which objects have been placed in some

order. For example, a dictionary or telephone book may be thought of as an array

whose entries are in alphabetical order. A company payroll file may be in the

order of employees’ social security numbers. Suppose that such an array exists

and we wish to find a particular element in it. For example, we wish to look up a

name in a telephone book, a word in a dictionary, or a particular employee in a

personnel file. The process used to find such an entry is called a search. Since

searching is such a common activity in computing, it is desirable to find an efficient

method for performing it. Perhaps the crudest search method is the sequential

or linear search, in which each item of the array is examined in turn, and

compared to the item being searched for until a match occurs. If the list is unordered

and haphazardly constructed, the linear search may be the only way to find

anything in it (unless, of course, the list is first rearranged). However, such a

method would never be used in looking up a name in a telephone book. Rather,

the book is opened to a random page and the names on that page are examined.

Since the names are ordered alphabetically, such an examination would determine

whether the search should continue in the first or second part of the book.

Let us apply this idea to searching an array. If the array contains only one

element, the problem is trivial. Otherwise, compare the item being searched for
with the item at the middle of the array. If they are equal, the search has been

completed successfully. If the middle element is greater than the item being

searched for, the search process is repeated in the first half of the array (since if
the item appears anywhere it must appear in the first half); otherwise, the process
is repeated in the second half. Note that each time a comparison is made, the

number of elements remaining to be searched is divided in half. For large arrays,

this method is superior to the sequential search, in which each comparison reduces
the number of elements remaining to be searched by only one. Because of
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the division of the array to be searched into two equal parts, this search method is
called the binary search.

Notice that we have quite naturally defined a binary search recursively. If
the item being searched for is not equal to the middle element of the array, the
instructions are to search a subarray using the same method. Thus the search
method is defined in terms of itself with a smaller array as input. We are sure that
the process will terminate because the input arrays become smaller and smaller,
and the search of a one element array can be found nonrecursively since the middle

element of such an array is its only element.
We now present a recursive algorithm to search a sorted array a for an element
x between a(low) and a(high). The algorithm places in a variable binsrch an

index of a such that a(binsrch) = x, if such an index exists between low and

high. If x is not found in that portion of the array, binsrch is set to 0. (We assume
that low is greater than zero.)

1. iflow>high
2. then binsrch = 0

3. return

4. endif

5. mid = int((low + high)/2)

6. if x = a(mid
7. then binsrch = mid

8. else if x <a(mid)
9. then search for x in a(low) to a(mid— 1)

10. else search for x in a(mid + 1) to a(high)
11. endif

12. endif
13. return

Since the possibility of an unsuccessful search is included (i.e., the element

may not exist in the array), the trivial case has been altered somewhat. A search

on a one-element array (when low = high) is not defined directly as the appropriate
index. Instead, that element [the element a(mid), where mid = low

= high j is compared to the item being searched for. If the two items are not
equal, the search continues in the “first” or “second” half—each of which contains

no elements. This trivial case of no elements is indicated by the condition

low > high and its result is defined directly as 0.

Let us apply this algorithm to an example. Suppose that the array a contains
the elements 1, 3, 4, 5, 17, 18, 31, 33 in that order and we wish to search for 17

(i.e., n = 17) between item 1 and item 8 (i.e., low = 1, high = 8). Applying

the algorithm, we have:

Line 1: Is low > high? It is not, so continue with line 5.

Line 5: mid = int((1±8)/2) = 4.
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Line 6: Is x = a(4)? 17 is not equal to 5, so execute the else clause.

Line 8: Is x <a(4)? 17 is not less than 5, so perform the else clause at
line 10.

Line 10: Repeat the algorithm with low = mid+ 1 = 5 and
high = high = 8 (i.e., search the upper half of the array).

Line 1: Is 5 > 8? No, so continue with line 5.

Line 5: mid = int((5+8)/2) = 6.

Line 6: Is x = a(6)? 17 does not equal 18, so execute the else clause.

Line 8: Is x <a(6)? Yes, since 17 < 18, so execute the then clause.

Line 9: Repeat the algorithm with low = low = 5 and
high = mid — 1 = 5. We have isolated x between the fifth
and the fifth elements of a.

Line 1: Is 5 > 5? No, so continue with line 5.

Line 5: mid = int((5+5)/2) = 5.

Line 6: Since a(S) = 17, binsrch is set to 5. 17 is indeed the fifth

element of the array.

Note the pattern of calls to and returns from the algorithm. A diagram tracing

this pattern appears in Figure 5.1.1. The solid arrows indicate the flow of

control through the algorithm and the recursive calls. The dotted lines indicate
returns.

Let us examine how the algorithm works in searching for an item that does

Ifl\
Line 1

Line 5

Line 6

Line 8 _________________

Out ‘4 Line 1

Line 5

I
Line6

Line 8
_______________

Answer Line 1

Line 5

Line 6

- (Answer is found)

Answer

Figure 5.1.1 A diagrammatic representation of the binary search algorithm.
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not appear in the array. Assume the array a as in the previous example and assume
that we are searching for x = 2.

Line 1: Is low > high? 1 is not greater than 8, so continue with line 5.

Line 5: mid = int((1+8)/2) = 4.

Line 6: Is x = a(4)? 2 does not equal 5, so execute the else clause.

Line 8: Is x < a(4)? Yes, 2 < , so perform the then clause.

Line 9: Repeat the algorithm with low = low = 1 and
high = mid — 1 = 3. If 2 appears in the array, it must appear
between a(1) and a(3) inclusive.

Line 1: Is 1 > 3? No, continue with line 5.

Line 5: mid = int((1+3)/2) = 2.

Line 6: Is 2 = a(2)? No, execute the else clause.

Line 8: Is 2 < a(2)? Yes, since 2 < 3. Perform the then clause.

Line 9: Repeat the algorithm with low = low = 1 and
high = mid— 1 = 1. If x exists in a, it must be the first
element.

Line 1: Is 1 > 1? No, continue with line 5.

Line 5: mid = int((1 + 1)12) = 1.

Line 6: Is 2 = a(1)? No, execute the else clause.

Line 8: Is 2 < a(1)? 2 is not less than 1, so perform the else clause.

Line 10: Repeat the algorithm with low = mid+ 1 = 2 and
high = high = 1.

Line 1: Is low > high? 2 is greater than 1, so binsrch is 0. The item 2
does not exist in the array.

This example illustrates the value of recursion in problem solving. While a recursive
solution may be more expensive than an iterative solution, it is often easier

to discover the recursive solution by identifying a trivial case and formulating the
solution of a complex case in terms of one or more simpler cases. Once the recursive

solution has been formulated, a recursive algorithm can be developed quite
naturally. As we shall see in the next section, a program can be developed for
such a recursive algorithm using a few simple techniques. Although this program
may be quite complex, it can often be simplified to produce a more efficient iterative

solution. In the next section we examine how to implement a recursive algorithm
as a BASIC program and how to simplify that program subsequently.

For now, however, let us give one more example of developing a solution to a
problem by use of recursion.

The Towers of Hanoi Problem

Let us look at another problem that can be solved logically and elegantly by use
of recursion. This is the “Towers of Hanoi” problem, whose initial setup is
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shown in Figure 5.1.2. Three pegs, A, B, and C, exist. Four disks with different
diameters are placed on peg A so that a larger disk is always below a smaller
disk. The object is to move the four disks to peg C using peg B as auxiliary in a
series of steps. Only the top disk on any peg may be moved to any other peg in
each step, and a larger disk may never rest on a smaller one. See if you can produce

a solution. Indeed, it is not even apparent that a solution exists.
Let us see if we can develop a solution. Instead of focusing our attention on

a solution for four disks, let us consider the general case of n disks. Suppose that
we had a solution for n — 1 disks and we could state a solution for n disks in terms

of the solution for n — 1 disks. Then the problem would be solved. This is true

because in the trivial case of one disk (continually subtracting 1 from n will eventually

produce 1), the solution is simple: Merely move the single disk from peg A
to peg C. Therefore, we will have developed a recursive solution if we can state a
solution for n disks in terms of n — 1. See if you can find such a relationship. In
particular, for the case of four disks, suppose that we knew how to move the top
three disks from peg A to another peg without violating the rules. How could we
then complete the job of moving all four? Recall that there are three pegs available.

Suppose that we could move three disks from peg A to peg C. Then we
could just as easily move them to B, using C as auxiliary. This would result in the
situation depicted in Figure 5.1.3(a). We could then move the largest disk from A
to C [Figure 5.1. 3(b)j and finally apply the solution for three disks a second time
to move the three disks from B to C, using the now empty peg A as an auxiliary
[Figure 5.1 .3(c)j. Thus we may state a recursive solution to the Towers of Hanoi
problem as follows:

To move n disks from A to C, using B as auxiliary:

1. If n = 1, then move the single disk from A to C and stop.

2. Move the top n — 1 disks from A to B, using C as auxiliary.

3. Move the remaining disk from A to C.

4. Move the n — 1 disks from B to C, using A as auxiliary.

A B C

Figure 5.1.2 The initial setup of the Towers of Hanoi.
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(c)

Figure 5.1.3 Recursive solution to the Towers of Hanoi.

We are sure that this method will produce a correct solution for any value of

n. If n = 1, step 1 will result in the correct solution. If n = 2, we know that we

already have a solution for n — 1 = 1, SO that steps 2 and 4 will perform correctly.

Similarly, when n = 3, we have already produced a solution for n — 1 = 2,

so that steps 2 and 4 can be performed. In this fashion, we can show that the

solution works for n = 1, 2, 3, 4, 5, . . up to any value for which we desire a

solution. Notice that we developed the solution by identifying a trivial case

lB

B

(a)

B

(b)

C
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(n = 1) and a solution for a general complex case (n) in terms of a simpler case
(n—i).

How can this solution be converted into an algorithm? We are no longer
dealing with a mathematical function such as factorial, but rather with concrete

actions such as “move a disk.” How are we to represent such actions algorithmically?

The problem is not completely specified. What are its inputs? What are its

outputs to be? Whenever you are told to write an algorithm, you must receive

specific instructions as to exactly what the algorithm is expected to do. A problem
statement such as “Solve the Towers of Hanoi problem” is quite insufficient.

What is usually meant when such a problem is specified is that not only the

algorithm but also the inputs and outputs must be designed so that they correspond

reasonably to the problem description. The design of inputs and outputs is
an important phase of a solution and should be given as much attention as the rest

of a program. There are two reasons for this. The first is that the user (who must

ultimately evaluate and pass judgment on your work) will not see the elegant

method you incorporated in your algorithm but will struggle mightily to decipher

the output or to adapt input data to your particular input conventions. The failure

to agree early on input and output details has been the cause of much grief to

programmers and users alike. The second reason is that a slight change in the

input or output format may make the algorithm much simpler to design.

Let us, then, proceed to design the inputs and outputs for this algorithm. At

first glance it appears that the only input needed is the value of n, the number of

disks. A reasonable form for the output would be a list of statements such as

move disk nnn from peg yyy to peg zzz

where nnn is the number of the disk to be moved and yyy and zzz are the names of

the pegs involved. The action to be taken for a solution would be to perform each

of the output statements in the order in which it appears in the output.

The programmer then decides to write an algorithm towers (he or she is

purposely vague about the inputs at this point) to print the output noted above.
The algorithm would be invoked by

towers (inputs)

Let us assume that the user will be satisfied to name the disks i, 2, 3, . . . , n

and the pegs A, B, and C. What should the input variables to towers be? Clearly,
they should include n, the number of disks to be moved. This not only includes

information about how many disks there are but also what their names are. The
programmer then notices that in the recursive algorithm, it is necessary to move

n — i disks using a recursive call to towers. Thus, on the recursive call, the first
input variable to towers will be n — i. But this implies that the top n — i disks are
numbered 1, 2, 3, . . . , n — 1 and that the smallest disk is numbered i. This is a

good example of programming convenience determining problem representation.
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There is no a priori reason for labeling the smallest disk 1; logically, the largest
disk could have been labeled 1 and the smallest disk n. However, since it leads to

a simpler and more direct approach, we will choose to label the disks so that the
smallest disk has the smallest number.

What are the other input variables to towers? At first glance, it might appear
that no additional input variables are necessary since the pegs are named A, B,
and C by default. However, a closer look at the recursive solution leads us to the

realization that on the recursive calls disks will be moved not from A to C using B
as auxiliary but rather from A to B using C (step 2) or from B to C using A (step
4). We therefore include three additional input variables in towers. The first,
source, represents the peg from which we are removing disks; the second, dest,

represents the peg to which we will take the disks; and the third, aux, represents

the auxiliary peg. This situation is one which is quite typical of recursive routines;
additional input variables are necessary to handle the recursive call situation.

We already saw one example of this in the binary search algorithm, where
the input variables low and high were necessary despite the fact that the initial
call will always have low equal to 1 and high equal to the size of the array being

searched. Thus our particular Towers of Hanoi problem would be solved by calling

towers(4, ‘‘A’’, ‘‘C’’, ‘‘B’’)

The complete algorithm to solve the Towers of Hanoi problem, closely following
the original recursive solution, may be written as follows:

subroutine towers (n, source, dest, aux)

‘initially in our example, source is A, dest is C, and aux is B
‘if only one disk, make the move and return
if n = 1

then print “move disk 1 from peg” ; source; “to peg” ; dest
return

endif

‘move top n — 1 disks from A to B, using C as auxiliary

towers (n — 1, source, aux, dest)

‘move remaining disk from A to C

print” move disk” ; n; “from peg” ; source; “to peg” ; dest

‘move n — 1 disks from B to C, using A as auxiliary

towers (n — 1, aux, dest, source)
return

Trace the actions of the algorithm above when it inputs the value 4 for n,
“A” for source, “C” for dest, and “B” for aux. Be careful to keep track of the

changing values of the input variables source, aux, and dest. Verify that it produces
the following output:
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move disk 1 from peg A to peg B

move disk 2 from peg A to peg C

move disk 1 from peg B to peg C

move disk 3 from peg A to peg B

move disk 1 from peg C to peg A

move disk 2 from peg C to peg B

move disk 1 from peg A to peg B

move disk 4 from peg A to peg C

move disk 1 from peg B to peg C

move disk 2 from peg B to peg A

move disk 1 from peg C to peg A

move disk 3 from peg B to peg C

move disk 1 from peg A to peg B

move disk 2 from peg A to peg C

move disk 1 from peg B to peg C

Verify that the solution above actually works and does not violate any of the
rules.

Properties of Recursive Definitions or Algorithms

Let us summarize what is involved in a recursive definition or algorithm. One

important requirement for a recursive algorithm to be correct is that it not generate

an infinite sequence of calls on itself. Clearly, any algorithm that does generate

such a sequence will never terminate. For at least one input or group of

inputs, a recursive process p must be defined in terms that do not involve p.

There must be a “way out” of the sequence of recursive calls. In the examples of

this section, the nonrecursive portions of the definitions were

Factorial: 0! = 1

Multiplication: a* 1 = a

Fibonacci sequence: fib(O) = 0 fib(1) = 1

Binary search: if low> high then binsrch = 0

if x = a(mid) then binsrch = mid
Towers of Hanoi: if n = 1 then print “move disk 1 from peg” ; source;

“to peg” ; dest

Without such a nonrecursive exit, no recursive function can ever be computed.

The second ingredient of a recursive definition or algorithm is to be able to

represent a complex case in terms of a simpler one. In the examples of this section

these representations were

Factorial: n! = — 1)! for n > 0

Multiplication: a*b = a*(b — 1) + a for b > 1

Fibonacci sequence: fib(n) = fib(n — 1) + fib(n —2) for n > = 2

Binary search: search for x in a(low) to a(mid— 1) for x < a (mid)

search for x in a(mid + 1) to a(high) for x> a (mid)
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Towers of Hanoi: towers(n — 1 ,source,aux,dest) and

towers(n — 1 ,aux,dest,source) for n > 1

Any instance of a recursive definition or invocation of a recursive algorithm
must contain a general representation of a complex case in terms of a simpler one
and must eventually reduce to some manipulation of one or more simple, nonrecursive

cases.

EXERCISES

1. Write iterative and recursive algorithms to evaluate a * b by using addition, where a

and b are nonnegative integers.

2. Let a be an array of integers. Present recursive algorithms to compute:

(a) The maximum element of the array

(b) The minimum element of the array

(c) The sum of the elements of the array

(d) The product of the elements of the array

(e) The average of the elements of the array

3. Evaluate each of the following, using both the iterative and recursive definitions.

(a) 6! (b) 9!

(c) 100* 3 (d) 6*4

(e) fib(10) (I) fib(1 1)

4. Assume that an array of 10 integers contains the elements

1, 3, 7, 15, 21, 22, 36, 78, 95, 106

Use the recursive binary search to find each of the following items in the array (if they

exist).

(a) 1 (b) 20 (c) 36 (d) 200

5. Write an iterative version of the binary search algorithm. (Hint: Modify the values of

low and high directly.)

6. Ackerman’s function is defined recursively on the nonnegative integers as follows:

a(m,n) = n+1 ifm = 0

a(m,n) = a(m— 1, 1) if m <>0, n = 0

a(m,n) = a(m — 1, a(m,n — 1)) if m <>0, n <>0

(a) Using the definition above, show that a(2,2) = 7.

(b) Prove that a(m,n) is defined for all nonnegative integers m and n.

(c) Can you find an iterative method of computing a(m, n)?

7. Count the number of additions necessary to compute fib(n) for 0 <= n <= 10 by

the iterative and recursive methods. Does any pattern emerge?
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8. If an array contains n elements, what are the maximum number of recursive calls made

by the binary search algorithm?

9. Develop recursive algorithms to do the following.

(a) Find the sum of all the integers in a linked linear list.

(b) Reverse a linked linear list so that the first element is last, the second is next to

last, and so on.

2. BASIC IMPLEMENTATION OF RECURSIVE ALGORITHMS

In this section we examine the mechanisms used to implement recursion. Some

computer languages (such as Algol, Pascal, and Pill) allow recursive programs,

so that a subroutine may, indeed, call itself. Other languages (such as BASIC,

FORTRAN, and COBOL) do not have recursion built in as a language mechanism.

Therefore, to implement a recursive solution in such a language, it is necessary

to simulate mechanisms for implementing recursion using nonrecursive

techniques. A problem such as the Towers of Hanoi whose solution can be derived

and stated quite simply using recursive techniques can be programmed in

these languages by simulating the recursive solution using more elementary operations.

If we know that the recursive solution is correct (and it is often fairly easy

to prove such a solution correct) and we have established techniques for converting

a recursive solution to a nonrecursive one, we can create a correct solution in

a nonrecursive language. It is not an uncommon occurrence for a programmer to

be able to state a solution to a problem in the form of a recursive algorithm. The

ability to generate a nonrecursive solution from this algorithm is indispensable

when using a language that does not support recursion.

Let us examine the recursive algorithm for the factorial function more closely

to determine why it cannot be implemented in BASIC directly. We repeat the

algorithm for that process:

1. ifn=O
2. then fact = 1

3. return

4. else

5. x=n—1

6. find the value of x!. call it y.
7. fact=n*y

8. return

9. endif

In presenting this algorithm in Section 1, we described its operation as temporarily

suspending itself on its current machine when it reached line 6 (the recursive

call), and beginning execution on a new machine, with the input variable
n on the second machine initialized to the value of x on the first machine. The

reason for this conceptualization was that, in BASIC, there is only a single van-
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able named n. Therefore, if n were reset to x on the first machine, its old value

would be lost forever. But once the value of x! has been computed, the old value

of n is required again (in line 7) so that it can be multiplied by the value of x! to

yield the value of n!. Therefore, several values of n must be maintained simultaneously,

one for each concurrent recursive call. The easiest way to conceptualize

this is to think of each recursive execution as executing on its own machine. In

that case, it is perfectly reasonable to have several variables named n, one on
each machine.

However, we note that at any single instant, we must have access to only a

single copy of n—that copy which exists within the current call. That is, only one

of our “machines” is active at any time. The others are waiting for the active

machine to complete its calculation of factorial and return its result. Furthermore,

once a cursive call has terminated, the values of its variables are no longer required.

This description suggests the use of a stack to keep the successive generations

of variables. Each item on the stack represents a new machine executing a

recursive call and consists of the variables of the algorithm executing on the new

machine. Each time that a recursive routine is entered, a new allocation of its

variables is pushed on top of the stack. Any reference to a variable in that routine

is through the current top of the stack. When the routine returns, the stack is

popped, the top allocation is freed, and the previous allocation becomes the current

stack top to be used for referencing variables. This represents a machine,

having computed its factorial value and returned that value to the previous machine

and halting execution as the previous machine resumes execution.

Figure 5.2.1 contains a series of snapshots of the stacks for the variables n,

x, and y as execution of the fact algorithm proceeds. Initially, the stacks are empty,

as illustrated by Figure 5.2.1(a). After the first call on fact by the calling procedure,

the situation is as shown in Figure 5.2.1(b), with n = 4. Copies of the

variables x and y exist but are not initialized. Since n does not equal 0, x is set to

3 and fact(3) is called [Figure 5.2. 1(c)1. The new value of n again does not equal

0, 50 x is set to 2 and fact(2) is called [Figure 5.2.1 (d)1. This continues until n

equals 0 [Figure 5.2. 1(f)1. At that point, the value 1 is returned from the call to

fact(0). Execution resumes from the point at which fact(0) was called, which is

the assignment of the returned value to the copy of y declared in fact(1). This is

illustrated by the status of the stack shown in Figure 5.2.1(g), where the variables

allocated for fact(0) have been freed and y is set to 1.

The statementfact = n*y is then executed, multiplying the top values of n

and y to obtain 1, and returning this value tofact(2) [Figure 5.2. 1(h)1. This process

is repeated twice more, until finally the value of y infact(4) equals 6 [Figure

5.2.1(j)]. The statement fact = ny is executed one more time. The product 24

is returned to the calling routine.

Note that each time a recursive routine returns, it returns to the point immediately

following the point from which it was called. Thus the recursive call to

fact(3) returns to the assignment of the result toy within fact(4), but the recursive
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(i) set y to 2! (j) set y to 3! (k) return the value of 4!

Recursion Chap. 5

Figure 5.2.1 The stack at various times during execution. (An asterisk indicates an uninitialized

value.)

call to fact(4) returns to the statement in the calling routine or the main program
from which it was invoked.

Note that as we have presented the implementation of recursion, all three
variables (n, x, and y) used by the recursive algorithm are stacked. However, it is

only necessary to stack n. To see why this is so, recall the reason for using a

stack in the first place. It is necessary to push the old value of n on a stack because
that old value will be required after we return from the recursive invocation

in which the value of n is reset. This illustrates that both of the following two
conditions must be true in order to require that a variable be stacked:

1. The variable must have been assigned a value before a recursive invocation

takes place. (n has been assigned such a value by virtue of its being an input

variable to the algorithm.)

(a) (Initially). (b) fact (4).

n x y

(c) fact (3).

n x y

(d) fact (2).
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(e) fact (1). (f) fact (0). (g) set y to 0! (h) set y to 1!

n x y n x y n x y
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2. The value assigned before the recursive invocation must be used within the

algorithm after the recursive invocation. (The value of n that has been input
is used in line 7.)

To determine whether or not x and y must be stacked, we must examine
whether or not both these conditions are true for these two variables. In the case

of x, condition 1 is most certainly true. x is assigned a value in line 5, before the
recursive invocation of line 6. However, condition 2 is not true for x. Nowhere in

lines 7—9 is any use made of the previous value of x. Therefore, the value of x

can be modified by the recursive invocation without stacking the old value, since

that old value is never used again.

In the case of y, we have a different situation. y was never assigned a value

before the recursive invocation. It is not an input variable, nor is it given a value
in lines 1—5. Therefore, y does not meet condition 1 and does not have to be

stacked. (In fact, even if y were given a value in lines 1—5, it would still not have

to be stacked, since it does not meet condition 2 either. Although the value of y is

used in line 7, that value is the one that was assigned in line 6 after the recursive
invocation. To meet condition 2, the value that must be used after the recursive

invocation must be one which was assigned to the variable before that invocation.)

To verify the fact that x and y need not be stacked, review the actions of the

algorithm with n = 4 as depicted in Figure 5.2.1, but ignoring the stacks for x

and y. Assume single variables x and y whose values are modified regardless of

recursive invocations. Of course, n is still stacked. Notice that executing the algorithm

under this model yields the same results as when x and y were stacked.

Factorial in BASIC

We have just described the action of the recursive factorial algorithm using a

stack to represent the successive allocations of the variables. By using a stack,
we should therefore be able to mimic these actions in BASIC. However, one

problem remains. Many versions of BASIC do not allow a subroutine to call

itself. That is, the group of statements executed following the execution of a
GOSUB statement and before the execution of a RETURN statement may not

contain a GOSUB to another statement within that group. Other versions of
BASIC do not impose (or do not enforce) this restriction, but have other restrictions

(which we discuss shortly) which severely limit the usefulness of such a

GOSUB. Thus it may not be possible or practical to implement a recursive call
by executing a GOSUB to the recursive routine since the GOSUB is contained

within the group of statements making up the subroutine. In the interest of clarity

of presentation, however, we will ignore all such restrictions for the moment and

present a method to implement the recursive factorial algorithm in BASIC by actually
using recursive GOSUBs.

We make one further modification from the illustration of Figure 5.2.1.
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Rather than using the top of the stack as the current value of the variable N, we

use a separate variable CN, which is pushed onto and popped from the stack that
contains all the previous values of this variable. The stack itself is kept in an

array PARAM and is declared by

10 MXSTACK = 50

20 DIM PARAM(MXSTACK)

The subroutine push (at statement 1000) accepts CN and pushes its value onto the

stack; the subroutine pop (at statement 2000) pops the stack and sets the variable

POPS to the popped value. The simulated factorial routine, called simfact, begins

by initializing the stack to empty, CN to the input value N, and pushes a dummy

data area onto the stack to reflect the initial call from the main program. (This is

necessary so that the final return to the main program does not find the stack

empty.) A recursive call is implemented by pushing CN onto the stack, resetting

CN to the new input value and executing a GOSUB. A return is implemented by

popping the stack onto CN and executing a RETURN. The output of the routine

is kept in the variable SIMFACT.

10000 ‘subroutine simfact

10010 ‘inputs: N

10020 ‘outputs: SIMFACT

10030 ‘locals: CM POPS, TP, X, Y

10040 ‘initialization

10050 TP = 0: ‘the stack is initially empty

10060 CN = N

10070 ‘push a dummy data area onto the stack

10080 GOSUB 1000: ‘subroutine push accepts CN

10090 ‘this is the beginning of the simulated routine

10100 IF CN = 0 THEN SIMFACT = 1: GOTO 10190:

‘lines 1 —2 of the algorithm

10110 X = CN—1

10120 ‘call fact recursively (line 6)

10130 GOSUB 1000: ‘subroutine push
10140 CN = X

10150 GOSUB 10090: ‘the actual call

10160 ‘return to this point after the recursive call

10170 Y = SIMFACT: ‘second half of line 6
10180 SIMFACT = CN*Y: ‘line 7

10190 ‘the following is a simulation of the return in lines 3 and 8

10200 GOSUB 2000: ‘subroutine pop sets the variable POPS
10210 CN = POPS

10220 RETURN: ‘to line 10160 or the main program
10230 ‘endsub
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You are invited to trace through the actions of this routine for N = 4 to see

how it mirrors the actions of the recursive algorithm.

The Call/Return Mechanism

Now that we have seen how to manage multiple allocations of variables in recursive
algorithms, we turn to the question of the recursive call/return mechanism

and how it can be simulated. We must do this because many versions of BASIC

prohibit recursive calls such as the one in line 10150 of the preceding program.
This call is recursive because between 10090 (which is the target of the GOSUB)

and line 10220 (which is the RETURN), the program may execute line 10150

again (which is a GOSUB to the same group of statements.) Other versions of

BASIC permit such a call, but limit the nesting depth of subroutine calls. This
nesting depth equals the number of GOSUB statements that have been executed

whose corresponding RETURN statements have not yet been executed. The nesting

depth of most programs stays safely below this maximum, since the nesting

depth is always less than the number of subroutines contained in the program.
(Indeed, it is rare for the nesting depth to equal this number since one routine
directly calls many others, so that one subroutine will have returned before another

is called.) But a program containing a recursive routine can easily exceed the

nesting depth if it is called with a large input because the routine repeatedly calls
itself. Thus there are situations where the use of direct recursion in BASIC is not

possible.

If a GOSUB is prohibited as a means of implementing recursion, we must
find some other mechanism. To discover a method of doing this, let us examine

how an ordinary GOSUB and RETURN are implemented. When a subroutine is

called, it must eventually return control to the statement following the GOSUB.
This means that a record must be maintained of this location, called the return

address. If several subroutines have been called but have not yet returned, a return

address must be maintained for each one. Thus if the main program executes

GOSUB xxx, the subroutine at xxx executes GOSUB yyy, and the subroutine at

yyy executes GOSUB zzz, then three return addresses are maintained: the location

lz of the statement following GOSUB zzz to which the subroutine at zzz must

return, the location ly of the statement following GOSUB yyy to which the subroutine

at yyy must return, and the location lx of the statement following GOSUB
xxx to which the subroutine at xxx must return.

These return addresses can be maintained in a stack. A GOSUB pushes the

address of its following statement on the return address stack and branches (executes

a GOTO) to its target. When GOSUB xxx is executed, lx is pushed onto the

stack and we branch to xxx. When GOSUB yyy is executed, ly is pushed on top of

lx and we branch to yyy. Finally, when GOSUB zzz is executed, lz is pushed on

top of ly and lz and we branch to zzz. Figure 5.2.2(a) illustrates this situation and

the corresponding return address stack.
When a subroutine executes a RETURN, the return address stack is popped
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GOSUB YYY

GOSUB XXX LY

LX GOSUBZZZ

LZ

END RETURN RETURN RETURN

Main program Subroutine XXX Subroutine YYY Subroutine ZZZ

LX Return address stack

(c)

Figure 5.2.2 (continued).

and a branch is executed to the return address popped off the stack. Thus when

the subroutine at zzz executes RETURN, lz is popped off the stack and the program
branches to lz, which follows GOSUB zzz in the subroutine at yyy. This is

illustrated in Figure 5.2.2(b). When this routine returns in turn, ly is popped and
the program branches to ly, following GOSUB yyy in the subroutine at xxx [Figure

5.2.2(c)]. Then this rQutine returns by popping lx from the stack and branching
to lx following G0S1413 xxx. Note that the return address for a routine is not

determined by that routine but by the routine that calls it. The same routine may
be called from several different locations in several different routines and the return

address is determined by the location from which it is called.

The same mechanism can be used by a recursive call and return. We can

consider the data area that must be pushed onto a stack in simulating a recursive

call and popped from the stack in simulating a recursive return as containing a

return address as well as the values of program variables that must be preserved.

How can we manipulate return addresses in BASIC? We cannot access the

actual addresses themselves or push statement numbers onto a stack. Instead, we
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use a variable called a return indicator whose integer value indicates the location

to which the routine must return. For example, the factorial function can return to

one of two locations: the assignment of X! to Y or to the statement in the program
that initially invoked fact.

Suppose that a variable CRETADDR, used as a return indicator, can assume
the value 1 or 2. The value 1 indicates that the current invocation of the

recursive routine is the initial invocation and that, upon completion, the routine
is to return to the main program. Upon initial entry to the factorial routine,
CRETADDR is therefore set to 1. The value 2 indicates that the current invocation

is a recursive invocation that is to return to the previous invocation. When
the routine calls itself recursively, the value of CRETADDR is saved on a stack.

Thus when the called invocation returns, that previous value of CRETADDR can

be restored, thereby enabling the calling routine to return to the proper location.
After the current value of CRETADDR has been stacked, CRETADDR is reset to

2, indicating that the new invocation is a recursive one. Indeed, we can view the

return indicator as an implicit input variable of the recursive algorithm, to be

used in effecting its return. Thus we require, in addition to the stack of variables,

a stack of return indicators. This stack can be declared by

30 DIM RETADDR (MXSTACK)

Note that a single TP value can be used for both the PARAM and RETADDR

stacks since both stacks are pushed and popped at the same time: in simulating a
recursive call and a recursive return. Alternatively, and closer to reality, the two

stacks can be viewed as a single stack of data areas, each containing two elements

or fields: a saved parameter value and a saved return indicator value. There
is also a current data area, consisting of the variables CN and CRETADDR. Thus

we can use a single specially designed push routine which accepts the current
data area (CN and CRETADDR) and pushes it onto the stack, and a single specially

designed pop routine which pops a data area from the stack into the current
data area.

Thus the simulation of the recursive factorial call consists of the statements

10135 ‘save the old parameter values on the stack

10140 GOSUB 1000: ‘subroutine push

10145 ‘initialize the new input values

10150 CN = X

10160 CRETADDR = 2: ‘the simulated call is to return to the

‘previous invocation

10165 ‘simulate the actual recursive call

10170 GOTO. . .: ‘the start of the simulated routine

The simulation of the return from the recursive factorial routine consists of setting

the variable SIMFACT to the result of the factorial computation and then

executing
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We now present the complete simulation of the recursive factorial routine:

10000 ‘subroutine simfact

10010 ‘inputs:N

10020 ‘outputs: SIMFACT

10030 ‘locals: CN, CRETADDR, TP, X, Y

10040 ‘initialization

10050 TP = 0: ‘the stack is initially empty

10060 CN = N

10070 CRETADDR =

10080 ‘push a dummy data area onto the stack

10090 GOSUB 1000: ‘subroutine push accepts CN and CRETADDR

‘this is the beginning of the simulated routine10100

IF CN = 0 THEN SIMFACT = 1: GOTO 10210: ‘return10110

X = CN-1

‘califact recursively

GOSUB 1000: ‘subroutine push
CN = X

CRETADDR = 2

GOTO 1010010170

‘return to this point after the recursive call10180

Y = SIMFACT10190

SIMFACT = CN * y10200

‘the following is the simulation of the return10210

I = CRETADDR10220

GOSUB 2000: ‘subroutine pop resets CN and CRETADDR10230

IF I = 1 THEN RETURN: ‘to the main program10240

IF I = 2 THEN GOTO 10180: ‘the point following the recursive call10250

‘endsub10260

We adopt the convention that the code to simulate a return (statements

102 10—10250) is always placed at the end of the routine. Any return that must be

executed within the body of the routine (such as in statement 10110) is simulated

by transferring control to this block of code.

Although this routine is fairly complex, it has been derived by a direct application
of a mechanical process which can be applied to any recursive algorithm.

Later in this section we will see how to simplify the complex routine and

10220 I = CRETADDR:

10230 GOSUB 2000:

10240 IF I = 1 THEN RETURN:

10250 IF I = 2 THEN GOTO...: ‘the point following the recursive call

‘save the current return indicator

‘subroutine pop resets CN and CRETADDR
‘to the main routine

10120

10130

10140

10150

10160
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make it more straightforward.

For completeness, we also present the routines push and pop as required by
simfact:

1000 ‘subroutine push
1010 ‘inputs: CN, CRETADDR, MXSTACK, TP

1020 ‘outputs: PARAM, RETADDR, TP
1030 ‘locals: none

1040 IF TP = MXSTACK THEN PRINT “STACK OVERFLOW”: STOP

1050 TP = TP + 1

1060 PARAM(TP) = CN

1070 RETADDR(TP) = CRETADDR

1080 RETURN

1090 ‘endsub

2000 ‘subroutine pop

2010 ‘inputs: PARAM, RETADDR, TP

2020 ‘outputs: CN, CRETADDR, TP

2030 ‘locals: EMPTY

2040 GOSUB 3000: ‘subroutine empty sets the variable EMPTY

2050 IF EMPTY = TRUE THEN PRINT “STACK UNDERFLOW”: STOP

2060 CN = PARAM(TP)

2070 CRETADDR = RETADDR(TP)

2080 TP = TP — 1

2090 RETURN

2100 ‘endsub

The Towers of Hanoi in BASIC

Let us now look at a more complex example of recursion, the Towers of Hanoi

problem presented in Section 1, and simulate its recursion to produce a nonrecursive

BASIC program. We present again the recursive algorithm of Section 1.

‘subroutine towers (n, source, dest, aux)

‘initially, in our example, source is A, dest is C, and aux is B

‘if only one disk, make the move and return
if n = 1

then print” move disk 1 from peg” ; source; “to peg” ; dest
return

endif

‘move top n — 1 disks from source to aux, using dest as auxiliary

towers (n — 1, source, aux, dest)

‘move remaining disk from source to dest

print” move disk” ; n; “from peg” ; source; “to peg” ; dest

‘move n — 1 disks from aux to dest, using source as auxiliary

towers (n — 1, aux, dest, source)

return
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Make sure that you understand the problem and the recursive solution before proceeding.

If you do not, reread the last portion of Section 1.
There are four input variables in this subroutine, each of which is subject to

change in a recursive call. Therefore, the data area must contain elements representing

all four. There are three possible points to which the subroutine returns
on various calls: the calling program and the statements following the two recursive

calls. Therefore, the return indicator can assume three possible values. The

return indicator is encoded as an integer (either 1, 2, or 3) within each data area.

The following is a sample main program with a nonrecursive simulation of
towers. We can use the variables CSOURCE, CAUX, and CDEST as the current

values of the algorithm variables source, aux, and dest. This means that program

variables beginning with the letter C are strings, so that the current values of N
and the return address are named NC and ZRETADDR (instead of CN and CRETADDR

as in the factorial example). Similarly, the stacks for the disk variables

are named PSOURCE, PDEST, and PAUX, reserving P as an initial letter for

string variables, so that the stacks for N and the return address are named
NPARAM and RETADDR.

100 ‘main program

110 DEFSTRA,C,D,P,S

120 DIM NPARAM (50): ‘stack for values of N

130 DIM PSOURCE (50): ‘stack for values of SOUR CE

140 DIM PDEST (50): ‘stack for values of DEST

150 DIM PAUX(50): ‘stack for values of AUX

160 DIM RETADDR(50): ‘stack for return indicators

170 INPUT N

180 SOURCE = “A”

190 DEST = “C”

200 AUX=”B”

210 GOSUB 10000: ‘subroutine simtowers

220 END

230

240

250

1000 ‘subroutine push goes here

2000 ‘subroutine pop goes here

10000 ‘subroutine simtowers

10010 ‘inputs: AUX, DEST, N, SOURCE

10020 ‘outputs: none

10030 ‘locals: CAUX, CDEST, CSOURCE, CTEMP, NC, TP, ZRETADDR

10040 ‘initialization

10050 TP = 0
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10060 ‘set the input variables and the return address of the current

10070 ‘data area to their proper values
10080 NC = N: ‘the current value of N
10090 CSOURCE = SOURCE: ‘the current value of SOURCE
10100 CDEST = DEST: ‘the current value of DEST
10110 CAUX = AUX: ‘the current value of AUX
10120 ZRETADDR = 1: ‘the current return indicator

10130 ‘push dummy data area onto stack

10140 GOSUB 1000: ‘subroutine push pushes NC, CSOURCE, CDEST, CAUX,

10170

10180

10190

10200

10210

10220

10230

10240 GOTO 10150

10250

10260

10270

10280

10290

10300

10310

10320

10330

10340 GOTO 10150

10350 ‘return to this point from the second recursive call

10360 ‘simulation of a return
10370 I = ZRETADDR

10380 GOSUB 2000: ‘subroutine pop resets the variables NC, CSOURCE,

10390 IF I = 1 THEN RETURN

10400 IF I = 2 THEN GOTO 10250

10410 IF I = 3 THEN GOTO 10350

10420 ‘endsub

‘and ZRITADDR onto the stack

10150 ‘this is the beginning of the simulated routine
10160 IF NC = 1 THEN PRINT” MOVE DISK 1 FROM PEG” ; CSOURCE;

“TO PEG” ; CDEST: GOTO 10360

‘this is the first recursive call
GOSUB 1000: ‘subroutine push
NC = NC — 1

CTEMP = CAUX: ‘interchange CAUX and CDEST
CAUX = CDEST

CDEST = CTEMP

ZRETADDR = 2

‘we return to this point from the first recursive call

PRINT “MOVE DISK “; NC; “ FROM PEG “; CSOURCE;” TO PEG “;

CDEST

‘this is the second recursive call

GOSUB 1000: ‘subroutine push
NC = NC — 1

CTEMP = CSOURCE: ‘interchange CAUX and CSOURCE
CSOURCE = CAUX

CAUX = CTEMP

ZRETADDR = 3

‘CDEST, CAUX, TP, and ZRETADDR
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Improving the Simulating Routines

There are a number of techniques which we can frequently use to simplify simulations
of recursion. In our discussion of the simulation of the factorial routine,

we have already come across one of these techniques: not all variables of a recursive

algorithm need be stacked. We now examine some additional techniques

which can eliminate some of the complexity of recursive invocation and reduce
or even eliminate the need for the return indicator stack.

Let us reexamine the second simulation of the recursive factorial algorithm.

There is only one textual recursive call of the factorial routine (in algorithm line 6

and program statements 10130—10170), so there is only one return address within

simfact (at statement 10180). The other return address is to the main routine

which originally called simfact. But suppose that a dummy data area had not been

stacked upon initialization of the simulation. Then a data area is placed on the

stack only in simulating a recursive call. When the stack is popped in returning
from a recursive call, that area is removed from the stack. However, when an

attempt is made to pop the stack in simulating a return to the main procedure, an

underfiow will occur. We can test for this underfiow by using popandtest rather

than pop, and when it does occur we can return directly to the outside calling

routine rather than through a return indicator. This means that one of the return

addresses can be eliminated. Since this leaves only a single possible return address,

it need not be placed on the stack.

Thus the current data area has been reduced to contain the single variable

CN and the stack to the single array PARAM. The program is now quite compact

and comprehensible.

10000 ‘subroutine simfact

10010 ‘inputs:N

10020 ‘outputs: SIMFACT
10030 ‘locals: CN, TP, UND, X, Y

10040 ‘initialization

10050 TP = 0

10060 CN = N

10070 ‘this is the beginning of the simulated routine

10080 IF CN = 0 THEN SIMFACT = 1: GOTO 10170: ‘return

10090 X=CN—1

10100 ‘call fact recursively

10110 GOSUB 1000: ‘subroutine push accepts CN

10120 CN = X

10130 GOTO 10070

10140 ‘return to this point after the recursive call
10150 Y = SIMFACT

10160 SIMFACT = CN*Y
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10170 ‘statements 10180—10200 simulate the return

10180 GOSUB 4000: ‘subroutine popandtest resets CN and UND

10190 IF UND = FALSE THEN GOTO 10140: ‘the point after the recursive
‘call

10200 IF UND = TRUE THEN RETURN: ‘to the main program

10210 ‘endsub

Note that we have indented statements 10090—10120 and 10150—10180 to

illustrate that the program actually consists of two loops, although we did not

originally design it that way. We will explain the significance of this shortly.

Eliminating GOTO

Although the program above is certainly simpler than the preceding one, it is still

far from an “ideal” program. If you were to look at the program without having

seen its derivation, it is doubtful that you could identify it as computing the factorial
function. The statements:

10130 GOTO 10070

and

10190 IF UND = FALSE THEN GOTO 10140

are particularly irritating since they interrupt the flow of thought at a time that

one might otherwise come to an understanding of what is happening. Let us see if

we can transform this program into a still more readable version.

The two variables X and CN are assigned values from each other and are

never in use simultaneously, so they may be combined and referred to as one

variable X. A similar statement may be made about the variables SIMFACT and

Y, which can be combined and referred to as the single variable Y, which is assigned

to the output variable SIMFACT only upon return to the main program.

Performing these transformations leads to the following version of simfact:

10000 ‘subroutine simfact

10010 ‘inputs:N

10020 ‘outputs: SIMFACT

10030 ‘locals: TP, UND, X, Y

10040 ‘initialization

10050 TP = 0

10060 X=N

10070 ‘this is the beginning of the simulated routine

10080 IF X = 0 THEN Y = 1: GOTO 10150: ‘return

10090 ‘callfact recursively

10100 GOSUB 1000: ‘subroutine push accepts X

10110 X = X—1

10120 GOTO 10070
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10130 ‘return to this point after the recursive call
10140 Y=X*Y

10150 ‘the following is a simulation of the return
10160 GOSUB 4000: ‘subroutine popandtest resets X and UND
10170 IF UND = TRUE THEN SIMFACT = Y: RETURN

10180 GOTO 10130: ‘return to the point following the recursive call
10190 ‘endsub

We are now beginning to approach a readable program. The program consists

of two loops:

1. The subtraction loop, which consists of statements 10070—10 120.

This loop is exited when X = 0, at which point Y is set to 1 and execution

proceeds to the statement labeled 10150.

2. The multiplication loop, which begins at 10130 and ends with GOTO 10130

at statement 10180. This loop is exited when the stack has been emptied and

underfiow occurs, at which point a return is executed.

Let us examine these two loops more closely. X starts off at the value of the

input parameter N and is reduced by 1 each time the subtraction loop is repeated.

Each time X is set to a new value, the old value of X is saved on the stack. This

continues until X is 0. Thus after the first loop has been executed, the stack contains,

from top to bottom, the integers 1 to N.

The multiplication loop merely removes each of these values from the stack

and sets Y to the product of the popped value and the old value of Y. Since we

know what the stack contains at the start of the multiplication loop, why bother

popping the stack? We can use those values directly. We can eliminate the stack

and the first loop entirely and replace the multiplication loop with a loop that

multiplies Y by each of the integers from 1 to N in turn. The resulting program is

10000 ‘subroutine simfact

10010 ‘inputs:N

10020 ‘outputs: SIMFACT

10030 ‘locals: X,Y

10040 Y = 1

10050 FORX=1TON

10060

10070 NEXT X

10080 SIMFACT = Y

10090 RETURN

10100 ‘endsub

But this program is a direct BASIC implementation of the iterative version of the

factorial function as presented in Section 1. The only change is that X varies from
1 to N rather than from N to 1.
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Thus a series of simplifications, beginning with the brute-force simulation

of a recursive algorithm, has brought us to a direct and efficient program for solving

a problem. Although this direct program is apparent for the factorial algorithm,

there are many other problems for which a direct program is not so

apparent but for which a recursive solution is available. The techniques we have

presented form powerful tools for implementing solutions to these problems. We

illustrate the simplification techniques once again for a more complex problem,
Towers of Hanoi.

Simplifying Towers of Hanoi

Let us reexamine the routine simtower presented earlier to solve the Towers of

Hanoi problem.
First, notice that three return indicator values were used: one for each of the

two recursive calls and one for the return to the main program. However, the

return to the main program can be signaled by an underfiow in the stack, exactly

as in the second version of simfact. This leaves two return indicator values. If we

could eliminate one more such value, it would no longer be necessary to stack a

return indicator, since there would be only one point remaining to which control

may be passed if the stack is popped successfully. We focus our attention on the

second recursive call of the algorithm and the following statements:

towers(n — 1, aux, dest, source)
return

The actions that occur in simulating this call are:

1. Push the current data area, Al, onto the stack.

2. Set the parameters in the new current data area, A2, to their respective values:
n — 1, aux, dest, and source.

3. Set the return indicator in the current data area, A2, to indicate the address

of the statement immediately following the call.

4. Branch to the beginning of the simulated routine.

After the simulated routine has completed, it is ready to return. The following
actions occur:

5. Save the return indicator, i, from the current data area A2.

6. Pop the stack and set the current data area to the popped data area, Al.

7. Branch to the statement indicated by the value of i.

But the statement indicated by the value of i is the return statement since

return immediately follows the second recursive call to towers. Thus the next
step is to pop the stack again and return once more. We never again make use of
the information in the current data area Al, since it is immediately destroyed by
popping the stack as soon as it has been restored. Since there is no reason to use
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this data area again, there is no reason to save it on the stack in simulating the

call. Data need be saved on the stack only if they are to be reused. Therefore, in

this case, the call may be simulated simply by

1. Changing the parameters in the current data area to their respective values

2. Branching to the beginning of the simulated routine.

When the simulated routine returns it can return directly to the routine that
called the current version. There is no reason to execute a return to the current

version, only to return immediately to the preceding version. Since there is only
one possible return indicator value left, it is unnecessary to keep it in the data

area, to be pushed and popped with the rest of the data. Whenever the stack is

popped successfully, there is only one address to which a branch can be executed:

the statement following the first call. If an underfiow is encountered, the routine

returns to the calling routine.

Our revised main program and nonrecursive simulation of towers follows:

100 ‘main program
110 DEPSTR A, C, D, P, S

120 DIM NPARAM (50)

130 DIM PSOURCE(50)

140 DIM PDEST(50)

150 DIM PAUX(50)
160 TRUE = 1

170 FALSE = 0

180 INPUT N

190 SOURCE = “A”

200 DEST = “C”

210 AUX = “B”

220 GOSUB 10000: ‘subroutine simtowers

230 END

240

250

260

10000 ‘subroutine simtowers

10010 ‘inputs: AUX, DEST, N, SOURCE

10020 ‘outputs: none
10030 ‘locals: CAUX, CDEST, CSOURCE, CTEMP, NC, TP, UND
10040 ‘initialization

10050 TP = 0

10060 NC = N

10070 CSOURCE = SOURCE

10080 CDEST = DEST

10090 CAUX = AUX
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10100 ‘the simulated routine begins here

10110 IF NC = 1 THEN PRINT “MOVE DISK 1 FROM PEG “; CSOURCE;

“TO PEG “; CDEST: GOTO 10270

10120 ‘simulation of first recursive call
10130 GOSUB 1000: ‘subroutine push
10140 NC=NC—1

10150 CTEMP = CDEST

10160 CDEST = CAUX

10170 CAUX = CTEMP

10180 GOTO 10100

10 190 ‘this is the point of return from the first recursive call
10200 PRINT “MOVE DISK “; NC;” FROM PEG “; CSOURCE;” TO PEG “;

CDEST

10210 ‘simulation of second recursive call
10220 NC = NC — 1

10230 CTEMP = CSOURCE

10240 CSOURCE = CAUX

10250 CAUX = CTEMP

10260 GOTO 10100

10270 ‘simulation of a return

10280 GOSUB 4000: ‘subroutine popandtest sets the variables NC,
‘CSOURCE, CDEST, CAUX, and UND

10290 IF UND = TRUE THEN RETURN: ‘return to main program

10300 ‘otherwise go to the point after the recursive call
10310 GOTO 10190

10320 ‘endsub

Trace through the actions of this program and see how it reflects the actions of

the original recursive version.

Additional Comments

There is one additional point that should be made regarding the implementation
of recursive functions. In our naive implementation of the factorial function, we
used a single variable simfact to contain the result of the factorial evaluation at

each point in the recursive process. The reason this could be done is because it

was never necessary to maintain more than one factorial value, so a single variable

was sufficient. Contrast this with an algorithm for the computation of the
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Fibonacci function with input n which might contain the line

fib =fib(n—2) +fib(n—1)

That is, given a value n for which we wish to compute the Fibonacci function,

first compute the Fibonacci function with the input value n —2, then compute the
Fibonacci function with the input value n — 1, and then add the two values together

and use the sum as the result of the Fibonacci function with input value n. If
we used only a single variable simfib to hold the result of the Fibonacci function,

that variable would be set by the invocation offib(n —2) but would be reset by the
invocation of fib(n — 1), thus destroying the value of fib(n — 2).

It is therefore necessary to implement the recursions as though the algorithm
had been written

x =fib(n—2)

y =fib(n—1)

fib = x+y

In implementing this version, a single variable simfib can be used for the result of

the Fibonacci function since its value for fib(n —2) is saved in the variable x before

it is reset by fib(n — 1). Of course, the variable x would have to be stacked
since a recursive call intervenes between its definition and use. (Note that the

variable y does not meet this criteria and thus need not be stacked.)

Another point to make about recursive algorithms and their implementation

is that errors in such processes are quite common and very difficult to trace. The

reason for this is that a recursive process works by successively invoking itself on

simpler inputs until it reaches an input for which the results are directly defined.

If, however, an invalid input is presented to the process, it may continually attempt

to “simplify” that invalid input without ever reaching the directly defined

input value. For example, if a negative number is input to the factorial function,

the routine might continually subtract 1 and call itself on increasingly negative

numbers, never reaching the number 0 for which the factorial function is directly

defined. However, the cause of the error might be very difficult to determine

since its symptom is the computer running around a loop indefinitely until some

value becomes too negative. It is therefore particularly important for a recursive

routine to guard against invalid inputs. In our example, one should implement the

factorial algorithm as though the statement

if n<O

then print “negative input to factorial function”

stop

endif

were placed at its beginning.
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EXERCISES

1. Suppose that another provision were added to the Towers of Hanoi problem: that one

disk may not rest on another disk which is more than one size larger (e.g., disk 1 may

only rest on disk 2 or on the ground, disk 2 may only rest on disk 3 or on the ground,

etc.). Why does the solution in the text fail to work? What is faulty about the logic that
led to it under the new rules?

2. Prove that the number of moves performed by simtowers in moving n disks equals

2 — 1. Can you find a method of solving the Towers of Hanoi problem in fewer

moves? Either find such a method for some n or prove that none exists.

3. Write a nonrecursive simulation of the recursive binary search procedure, and transform

it into an iterative procedure.

4. Write a nonrecursive simulation offib. Can you transform it into an iterative method?

5. Determine what the following recursive algorithm computes. Write an iterative subroutine

to accomplish the same purpose.

function func(n)

if n = 0

then func = 0

else func = n + func(n — 1)

endif
return

6. The expression mod(m,n) yields the remainder of m upon division by n. Define the

greatest common divisor (gcd) of two integers x and y by

gcd(x,y) = y if y <=x and mod(x,y) = 0

gcd(x,y) = gcd(y,x) if x < y

gcd(x,y) = gcd(y, mod(x,y)) otherwise

Write a BASIC subroutine that simulates a recursive algorithm to compute gcd(x,y).

Find an iterative method for computing this function.

7. Let comm(n,k) represent the number of different committees of k people that can be

formed, given n people to choose from. For example, comm(4,3) = 4 since given

four people A, B, C, and D there are four possible three-person committees: ABC,

ABD, ACD, and BCD. Prove the identity

comm(n,k) = comm(n — 1, k) + comm(n — 1, k — 1)

Write and test a BASIC subroutine that simulates the recursive algorithm to compute
comm(n,k) for n,k > = 1.



Sec. 2 Basic Implementation of Recursive Algorithms 259

8. Define a generalized Fibonacci sequence of flu andfl as the sequence gfib(f 0, fl ,O),

gfib(fO,fl,1), gfib(fO,fl,2), . ., where

gfib(fO,fl ,O) = fO

gfib(fO,fl,1) =fl

gflb(fO,fl,n) = gfib(fO,fl,n—1) + gfib(fOfl,n—2)if n> 1

Write a BASIC subroutine that simulates the recursive algorithm to compute

gfib(fOfl ,n). Find an iterative method for computing this subroutine.

9. An order n matrix is an n X n array of numbers. For example,

(3)

is a 1 x 1 matrix,

(13
8

is a 2 x 2 matrix, and

/i 3 4 6
(2 —5 0 8
3 7 6 4
\2 0 9 —1

is a 4 x 4 matrix. Define the minor of an element x in a matrix as the submatrix

formed by deleting the row and column containing x. In the foregoing example of a
4 x 4 matrix, the minor of the element 7 is the 3 X 3 matrix

/1 4 6

(2 0 8
\2 9 —1

Clearly, the order of a minor of any element is 1 less than the order of the original

matrix. Denote the minor of an element a(i,j) by minor(a(i,j)).

Define the determinant of a matrix a [written det (a)] recursively as follows:

(1) If a is a 1 X 1 matrix (x), then det(a) = x.

(2) If a is of order greater than 1, compute the determinant of a as follows:

(a) Choose any row or column. For each element a(i,j) in this row or column,

form the product

( 1)i+i * a(i,j) * det(minor(a(i,j)))

where i and j are the row and column positions of the element chosen, a(i,j) is

the element chosen, and det(minor(a(i,j))) is the determinant of the minor of

a(i,j).
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(b) det(a) = sum of all these products.

[More concisely, if n is the order of a, then

det(a) = (— 1)’ +J * a(i,j) * det(minor(a(i,j))), for any j

or

det(a) = (— 1)i * a(i,j) * det(minor(a(i,j))), for any i.

Write a BASIC program that will read the matrix A, print A in matrix form, and print

det(A), where det is a subroutine that computes the determinant of a matrix.

3. WRITING RECURSIVE PROGRAMS

In the preceding section we saw how to transform a recursive definition or algorithm

into a BASIC program. It is a much more difficult task to develop a recursive

solution to a problem specification whose algorithm is not supplied. It is not

only the program but also the original definitions and algorithms that must be

developed. In general, when faced with the task of writing a program to solve a

problem, there is no reason to look for a recursive solution. Most problems can

be solved in a straightforward manner using nonrecursive methods. However,

some problems can be solved logically and most elegantly by recursion. In this

section we try to identify some problems that can be solved recursively, develop

a technique for finding recursive solutions, and present some examples.

Let us examine once again the factorial function. Factorial is probably a

prime example of a problem that should not be solved recursively since the iterative

solution is so direct and simple. However, let us examine the elements that

make the recursive solution work. First, we can recognize a large number of distinct

cases to solve. That is, we want to write a program to compute 0!, 1!, 2!,

and so on. We can also identify a “trivial” case for which a nonrecursive solution

can be obtained directly. This is the case of 0!, which is defined as 1. The

next step is to find a method of solving a “complex” case in terms of a “simpler”

case. This will allow reduction of a complex problem to a simpler problem.

The transformation of the complex case to the simpler case should eventually result

in the trivial case. This would mean that the complex case is ultimately defined
in terms of the trivial case.

Let us examine what this means when applied to the factorial function. 4! is

a more “complex” case than 3!. The transformation that is applied to the number
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4 to obtain the number 3 is simply the subtraction of 1. Repeatedly subtracting 1
from 4 eventually results in 0, which is a “trivial” case. Thus if we are able to
define 4! in terms of 3!, and in general n! in terms of (n — 1)!, we will be able to
compute 4! by first working our way down to 0! and then working our way back
up to 4! using the definition of n! in terms of (n — 1)!. In the case of the factorial
function we have such a definition, since

n! =

Thus 4! = 4*3! = 4*3*2! = 4*3*2*1! = 4*3*2*1*0! = 4*3*2*1*1 = 24.

These are the essential ingredients of a recursive algorithm—being able to

define a “complex” case in terms of a “simpler” case and having a directly

solvable (nonrecursive) “trivial” case. Once this has been done, one can develop

a solution to the complex case using the assumption that the simpler case has

already been solved. The recursive algorithm for the factorial function assumes

that (n — 1)! is defined and uses that quantity in computing n!.

Let us see how these ideas apply to other examples of Section 1. In defining

a*b recursively, the case of b = 1 is trivial since in that case, a*b is defined as

a. In general, a*b may be defined in terms of a*(b — 1) by the definition

a*b = a*(b — 1) + a. Again the complex case is transformed into a simpler

case by subtracting 1, eventually leading to the trivial case of b = 1. Here the

recursion is based on the second parameter b alone.
In the case of the Fibonacci function, two trivial cases were defined:

fib(O) = 0 and fib(1) = 1. A complex case, fib(n), is then reduced to two simpler

cases, fib(n —2) and fib(n — 1). It is because of the definition of fib(n) as

fib(n —2) + fib(n — 1) that two trivial cases directly defined are necessary. fib( 1)
cannot be defined asfib(0) + fib( — 1), because the Fibonacci function is not defined

for negative numbers.

The binary search function is an interesting example of recursion. The recursion

is based on the number of elements in the array that must be searched.

Each time the routine is called recursively, the number of elements to be searched

is halved (approximately). The trivial case is the one in which there are either no

elements to be searched or the element being searched for is at the middle of the

array. If low > high, then the first of these two conditions holds and 0 is returned.
If x = a(mid), the second condition holds and mid is returned as the answer.

In the more complex case of high — low + 1 elements to be searched, the

search is reduced to taking place in one of two subregions:

1. The first half of the array from low to mid — 1

2. The second half of the array from mid + 1 to high

Thus a complex case (a large area to be searched) is reduced to a simpler

case (an area to be searched of approximately half the size of the original area).

This eventually reduces to a comparison with a single element [a(mid)j or a

search within an array of no elements.
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Translation from Prefix to Postfix Using Recursion

Let us examine another problem for which the recursive solution is the most direct

and elegant one. This is the problem of converting a prefix expression to

postfix. Prefix and postfix notation were discussed in Chapter 3. Briefly, prefix

and postfix notations are methods of writing mathematical expressions without

parentheses. In prefix notation each operator immediately precedes its operands.

In postfix notation each operator immediately follows its operands. To refresh

your memory, here are a few conventional (infix) mathematical expressions with

their prefix and postfix equivalents:

Infix Prefix Postfix

A+B +AB AB+

A+B*C +A*BC ABC*+

A*(B+C) *A+BC ABC+*

A*B+C +*ABC AB*C+

A+B*C+D

(A+B)*(C+ D_E)*F

— + +A*BCD*EF

**+_+CDEF

ABC*+D+EF*_

AB+CD+E_*F*

The most convenient way to define postfix and prefix is by using recursion.

Assuming only single-letter variables as operands, a prefix expression is a single
letter or an operator followed by two prefix expressions. A postfix expression

may be defined similarly as a single letter or as an operator preceded by two post-

fix expressions. The definitions above assume that all operations are binary (i.e.,

each requires two operands). Examples of such operations are addition, subtraction,

multiplication, division, and exponentiation. It is easy to extend the definitions
of prefix and postfix given above to include unary operations such as

negation or factorial, but in the interest of simplicity we will not do so here. Verify

that each of the prefix and postfix expressions above is valid by showing that

they satisfy the definitions, and make sure that you can identify the two operands
of each operator.

We will put these recursive definitions to use in a moment, but first let us

return to our problem. Given a prefix expression, how can we convert it into a
postfix expression? We can immediately identify a trivial case: If a prefix expression

consists of only a single variable, that expression is its own postfix equivalent.
That is, an expression such as A is valid as both a prefix and a postfix

expression.
Now consider a longer prefix string. If we knew how to convert any shorter

prefix string to postfix, could we convert this longer prefix string? The answer is
yes, with one proviso. Every prefix string longer than a single variable contains
an operator, a first operand, and a second operand (remember that we are assuming

binary operators only). Assume that we are able to identify the first and second
operands, which are necessarily shorter than the original string. We can then

convert the long prefix string to postfix by first converting the first operand to
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postfix, then converting the second operand to postfix and appending it to the end
of the first converted operand, and finally appending the initial operator to the
end of the resultant string. Thus we have developed a recursive algorithm for
converting a prefix string to postfix with the provision that we must specify a
method for identifying the operands in a prefix expression. We can summarize
this algorithm as follows:

1. If the prefix string is a single variable, it is its own postfix equivalent.

2. Let op be the first operator of the prefix string.

3. Find the first operand opndl of the string. Convert it to postfix and call it
postl.

4. Find the second operand opnd2 of the string. Convert it to postfix and call it
post2.

5. The desired string is formed by appending postl , post2, and op.

Before transforming the conversion algorithm into a BASIC program, let us
examine its inputs and outputs. We wish to write a function convert which accepts

a character string. This string represents a prefix expression in which all
variables are single letters and the allowable operators are “+ “, “—“ , “k”,

“I”, and “t”. The function returns a string which is the postfix equivalent of the
prefix input.

Assume the existence of another function find, which accepts a string and a
position and returns an integer which is the length of the longest prefix expression

contained within the input string which starts at that position. For example,
find(’ ‘a + cd”, 1) returns 1, since “a” is the longest prefix string starting at position

1 of the string “a + cd”. find(” + *abcd + gh” , 1) returns 5 since “+ *abc”
is the longest prefix string starting at the beginning of “+ *abcd+gh”;
find(’ ‘a + cd’ ‘ ,2) returns 3 since “+ cd” is the longest prefix string starting at

position 2 of “a + cd”. If no prefix string exists within the input string starting at
the specified position, find returns 0. [For example, find(”* + ab” ,1) and
find(” + *a — c*d’ ‘ ,6) both return 0.1 This function is used to identify the first

and second operands of a prefix operator. Assuming the existence of the function
find, an algorithm for a conversion routine that accepts a prefix string prefix and
sets the variable convert to its postfix equivalent may be written as follows.

function convert(prefix)
if len(prefix) = 1

then ‘check for variable

if prefix is a single letter

then convert = prefix

else print “invalid prefix string”
convert =

endif
return

endif
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‘the prefix string is longer than a single character;

‘extract the operator and the two operand lengths

op = mid$(prefix,1,1)

m = find(prefix,2)

n = find(prefix,m + 2)

if(op is not an operator) or (m = 0) or (n = 0) or (m + n + 1 <>len(prefix))

then print “invalid prefix string”
convert = ““

return

endif

opndl = mid$(prefix,2,m)

opnd2 = mid$(prefix,m+2,n)

post! = convert(opndl)

post2 = convert(opnd2)

convert = post! + post2 + op
return

Note that we are using the convention for presenting a function in pseudo-
code that was introduced at the end of Section 2.1. Under that convention, the

name of the function (in this case convert) is used as its returned value. In a recursive

function, the function definition includes a recursive call.

Note also that several checks have been incorporated into the algorithm to

ensure that the input is a valid prefix string. One of the most difficult classes of

errors to detect are those resulting from invalid inputs and the programmer’s neglect

to check for validity.

We now turn our attention to the function find, which accepts a character

string and a starting position and returns the length of the longest prefix string

which is contained in that input string starting at that position. The word “longest”

in this definition is superfluous since there is at most one substring starting

at a given position of a given string which is a valid prefix expression. We first

show that there is at most one valid prefix expression starting at the beginning of
a string. To see this, note that it is trivially true in a string of length 1. Assume

that it is true for a short string. Then a long string which contains a prefix expression

as an initial substring must begin with either a variable, in which case that

variable is the desired substring, or with an operator. Deleting the initial operator,

the remaining string is shorter than the original string and can therefore have

at most a single initial prefix expression. This expression is the first operand of
the initial operator. Similarly, the remaining substring (after deleting the first operand)

can have only a single initial substring which is a prefix expression. This
expression must be the second operand. Therefore, we have uniquely identified

the operator and operands of the prefix expression starting at the beginning of an

arbitrary string, if such an expression exists. Since there is at most one valid prefix
string starting at the beginning of any string, there is at most one such string
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starting at any position of an arbitrary string. This is obvious when we consider

the substring of the given string starting at the given position.
Notice that this proof has given us a recursive method for finding a prefix

expression in a string. We now incorporate this method into the function find,
which finds the length of the substring of a string prefix beginning at position y
which forms a valid prefix expression:

function find(prefix,x)
if x> len(prefix)

then find = 0
return

endif

first = mid$(prefix,x,1)

if first is a letter

then ‘the first character is the desired postfix substring

find = 1
return

endif

‘find the two operands

mm = find(prefix,x +1)

nn = find(prefix,x + mm +1)

if(mm=O) or (nn=O) or ((mm+nn+ 1) > len(prefix))

then find 0

elsefind = mm+nn+1

endif
return

Make sure that you understand how these algorithms work by tracing their
actions on both valid and invalid prefix expressions. More important, make sure
that you understand how they were developed and how logical analysis led to a
natural recursive solution.

Conversion Programs in BASIC

Let us now present BASIC routines that implement the algorithms above, using
the techniques of the preceding section.

In the function convert, the algorithm variables that must be stacked on the

recursive calls are op, opnd2, and postl, since all of them are assigned a value

before a recursive call which is used afterward. The current values of these algorithm

variables will be maintained in the program variables COP, C2OPND, and

CPST1, and the stacks of their values in previous invocations will be maintained

in the arrays SOP, S2OPND, and SPST1. The value of the algorithm variable

opndl will be maintained in the variable C1OPND, although it does not have to
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be stacked. The value of the algorithm variable post2 will be maintained in the

variable PTFX2. (We use these names because we assume that only the first two

characters of a variable name are significant, a reserved word such as P05 may

not be embedded in a variable name, and that an array and variable cannot have

the same name, although many versions of BASIC do not have these restrictions.

We also assume the statement DEFSTR C,P,S at the beginning of the program so

that we begin all string-variable names with one of these three letters). The top of
the stack will be maintained in the variable TP, and routines push 1 and popandtestl

at statements 1000 and 4000, respectively, will be used to push and pop
from the stack. The output variable of convert will be named PCNVERT (so as

not to conflict with COP and because ON is a reserved word and may not be
embedded in a variable name in many versions of BASIC).

Note that convert contains two recursive calls, neither of which can be eliminated.

Thus although a version of popandtest, rather than pop, is used to maintain

the recursion stack, it is still necessary to keep a return indicator. The current
value of this indicator is kept in the variable ZRETADDR, and the stack of the

previous values in the array RETADDR. Thus push 1 pushes COP, C2OPND,
CPST1, and ZRETADDR onto the stack, and popandtestl resets the values of all

these variables from the stack if the stack is nonempty. popandtestl also sets the

variable UND to TRUE if an underfiow occurs (i.e., the stack is empty and cannot
be popped) and FALSE otherwise. We use the return indicator values 2 and 3

to indicate returns from the first and second recursive calls to convert.

We also use two routines, ltr and optr, at statements 5000 and 6000 to determine

if a character is a letter (operand) or an operator symbol. The character is

input in the variable PP. The variable LTR is set to TRUE if PP is a letter and

FALSE otherwise. The variable OPTR is set to TRUE if PP is an operator symbol
and FALSE otherwise. We also use an auxiliary variable PAUX to hold the

value of the input prefix string so as not to modify the variable PREFIX, which is
the input to the simulating routine. The variable PAUX, rather than PREFIX, is

used as the first input to the find routine.

Thus, assuming the conventions and routines noted above, the BASIC routine

convert may be written as follows:

20000 ‘subroutine convert

20010 ‘inputs: PREFIX

20020 ‘outputs: PCNVERT

20030 ‘locals: COP, CPST1, C1OPND, FIND, ITR, M, N, OPTR,

PAUX, PP, PTFX2, TP, UND, X, ZRETADDR

20040 TP = 0

20050 PAUX PREFIX

20060 IF LEN(PAUX)> 1 THEN GOTO 20120

20070 ‘check for a variable

20080 PP = PAUX

20090 GOSUB 5000: ‘subroutine ltr accepts PP and sets the variable fIR
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20100 IF LTR = TRUE

THEN PCNVERT = PAUX

ELSE PRINT “INVALID PREFIX STRING”: PCNVERT =

20110 GOTO 20410: ‘return from recursive routine

20120 ‘the prefix string consists of an operator and two operands

20130 ‘extract the operator and the two operand lengths

20140 COP = MID$(PAUX, 1,1)
20150 X = 2

20160 GOSUB 30000: ‘subroutine find accepts PAUX and X and sets FIND
20170 M = FIND

20180 X = M+2

20190 GOSUB 30000: ‘subroutine find

20200 N = FIND

20210 PP = COP

20220 GOSUB 6000: ‘subroutine optr accepts PP and sets the variable OPTR

20230 IF OPTR = FALSE OR M = 0 OR N = 0 OR M+N+ 1 <>LEN(PAUX)
THEN PRINT “INVALID PREFIX STRING”:

PSTFX = ““:GOTO 20410

20240 C1OPND = MID$(PAUX,2,M)

20250 C2OPND = MID$(PAUX,M + 2,N)

20260 ZRETADDR = 2: ‘return to point after first recursive call

20270 GOSUB 1000: ‘subroutine push 1 places COP, C2OPND, CPST1,
‘and ZRETADDR on the stack

20280 ‘set the input to the first recursive call
20290 PAUX = C1OPND

20300 GOTO 20060: ‘first recursive call

20310 ‘this is the point of return from the first recursive call
20320 CPST1 = PCNVERT

20330 ‘set up the second recursive call

20340 ZRETADDR = 3: ‘return to point after second recursive call

20350 GOSUB 1000: ‘subroutine push 1
20360 PAUX = C2OPND

20370 GOTO 20060: ‘second recursive call

20380 ‘this is the point of return from the second recursive call
20390 PTFX2 = PCNVERT

20400 PCNVERT = CPST1 + PTFX2 + COP

20410 ‘this is the return from the recursive routine

20420 GOSUB 4000: ‘subroutine popandtestl resets COP, C2OPND,

‘CPST1, ZRETADDR, and UND
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20430 IF UND = TRUE THEN RETURN: ‘to main program
20440 IF ZRETADDR = 2 THEN GOTO 20310

20450 IF ZRETADDR = 3 THEN GOTO 20380

20460 ‘endsub

(You may note that it is not really necessary to stack all the variables COP,
C2OPND, and CPST1 on both recursive calls. Indeed, CPST1 has not been given

a meaningful value before the first recursive call and the value of C2OPND is not
used after the second recursive call. Thus CPST1 need not be stacked on the first

call and C2OPND need not be stacked on the second. Thus it would be possible

to maintain three separate stacks: the first would consist of the arrays SOP and

RETADDR, the second of the array S2OPND, and the third of the array SPST1.

Two different push routines would be needed. The first, used in the first call,

would push COP on the SOP stack, ZRETADDR on the RETADDR stack, and
C2OPND on the S2OPND stack. The second, used in the second call, would

push COP on the SOP stack, ZRETADDR on the RETADDR stack, and CPST1

on the SPST1 stack. Only one popandtest routine is required: It would first pop

the SOP and ZRETADDR stack to determine whether we are returning from the

first or second call, and based on that would pop either S2OPND or SPST1. Although

this might save some space, it does not seem worthwhile in terms of either

machine time or programmer time. You may also note that the variable

PTFX2 may be eliminated and statements 20390 and 20400 combined into the

single statement PCNVERT = CPST1 + PCNVERT + COP.)

In the subroutine find, the algorithm variables that must be stacked on recursive

calls are x and mm (again, x need only be stacked on the first call and mm

need only be stacked on the second, but we will stack them both on both calls).

We use program variables ZX and ZMM for their current values and arrays XX

and MM for their stacks. Note that we use separate stacks for find and convert.

The stack top for find is kept in the variable TTP, and routines push2 and

popandtest2 at statements 1200 and 4200 are used to push and pop from that
stack.

As in the case with convert, find contains two recursive calls, neither of

which can be eliminated, and therefore requires maintaining a return indicator.
The current value of this indicator is in the variable Z2RETADDR and it is

stacked in the array R2RETADDR. Thus push2 pushes ZX, ZMM, and

Z2RETADDR on the stack, and popandtest2 resets these variables from the

stack. Again, we use return indicator values of 2 and 3. find also makes use of
the subroutine ltr described earlier.

30000 ‘subroutine find

30010 ‘inputs: PAUX, X

30020 ‘outputs: FIND

30030 ‘locals: ITR, NN, PFIRST, PP, iT!’, UND, ZRETADDR, ZK

30040 TTP = 0

30050 ZX X



Sec. 3 Writing Recursive Programs 269

30060 IF ZX> LEN(PAUX) THEN FIND = 0: GOTO 30280: ‘return

30070 PFIRST = MID$(PAUX,ZX,1)

30080 PP = PFIRST

30090 GOSUB 5000: ‘subroutine ltr accepts PP and sets the variable IJ’R
30100 IF LTR = TRUE THEN FIND = 1: GOTO 30280: ‘return

30110 ‘find the two operands

30120 ‘prepare for first recursive call
30130 Z2RETADDR = 2

30140 GOSUB 1200: ‘subroutine push2 places ZK, ZMM, and Z2RETADDR
‘on the stack

30150 ‘set input and issue first recursive call
30160 ZX=ZX+1

30170 GOTO 30060: ‘first recursive call

30180 ‘return to this point after first recursive call
30190 ZMM = FIND

30200 ‘prepare for second recursive call
30210 Z2RETADDR = 3

30220 GOSUB 1200: ‘subroutine push2
30230 ZX = ZX + ZMM + 1

30240 GOTO 30060: ‘second recursive call

30250 ‘return to this point after second recursive call

30260 NN = FIND

30270 IFNN = OORZMM = OORZMM+NN+1 >LEN(PAUX)

THEN FIND = 0

ELSE FIND = ZMM + NN + 1

30280 ‘return from the recursive routine

30290 GOSUB 4200: ‘subroutine popandtest2 restores ZK, ZMM,

‘Z2RETADDR, and UND

30300 IF UND = TRUE THEN RETURN: ‘to calling routine
30310 IF Z2RETADDR = 2 THEN GOTO 30180

30320 IF Z2RETADDR = 3 THEN GOTO 30250

30330 ‘endsub

Recursive List Processing

One important application of recursion is in managing complex data structures.

For example, a list of integers may be defined recursively as the null list or a

single node containing an integer and a pointer to another list of integers. Thus a

list containing a single integer qualifies as a list of integers because its only node

contains an integer and a pointer to the null list; a list of two integers has its first

node containing an integer and a pointer to a single-integer list; and a list of n
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integers consists of a first node containing an integer and a pointer to a list of

n — 1 integers.
We can use this recursive definition to design an algorithm, reverse, to reverse
a list 1st so that its last element becomes the first, and so on. The technique

used rests on the observation that the reversal of a null list or a one element list is

the list itself. If the list has more than one element, the reversal can be performed

by reversing the list formed by all the nodes except the first and then appending
the first node to the end of the list.

1. function reverse(lst)

2. if 1st = null

3. then reverse = 1st

4. return

5. endif

6. p = ptrnxt(Ist)

7. if p = null
8. then reverse = 1st

9. return

10. endif

11. q = reverse(p)

12. ptrnxt(lst) = null

13. ptrnxt(p) = 1st

14. reverse = q
15. return

To understand this algorithm, observe that lines 2—10 ensure that the reversal
of the null list or a one-element list is the list itself. The reversal of a two-

element list is illustrated in Figure 5.3.1. Since 1st is not null, p is set to point to

the second node on the list by line 6. This is the situation depicted by Figure

5.3.1(a). Since p is not null, the algorithm resumes at line 11 by calling itself

recursively. (Note that during the recursive call the values of 1st and p are

stacked, 1st is reset to p, p to null, and reverse to p. When the recursive invocation
returns, q is set to reverse, and 1st and p are restored to their former values.)

Since the recursive call is on a one-element list, it returns a pointer to that list

which is stored in the variable q by line 11. 1st and p are unchanged. This is

depicted in Figure 5.3.1(b).

Lines 12 and 13 place the first node of the list at its rear, as depicted in
Figure 5.3.1(c). Finally, lines 14 and 15 return the reversed list. Note that upon

return, 1st points to the same node as it did before the call, but that node is now at
the rear rather than the front of the list. To reset 1st to the first node of the reversed

list, we could execute 1st = reverse(lst).

Figure 5.3. 1(d)—(f) show the reversal of a four-element list. Note that after

return from the recursive call (line 11), p points to the last node on the reversed

sublist, which was formerly the second node on the input list. It would be instructive

for you to trace the recursive invocations in more detail, including the recursion

stack for 1st and p.



(a) After line 6

ist_____j 5 1 I —“1 null
(b) After line 11

q

1st

lst—_* 8 1 j j 2 null
(d) After line 6

1st

1st

p

p

(c) After line 13

p

(e) After line 11

(f) After line 13

Figure 5.3.1 Reversing a list.
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We should note that a nonrecursive algorithm to reverse a list, although not

as intuitive, is fairly straightforward:

function reverse(lst)

if 1st = null
then reverse = 1st

return

endif

p = ptrnxt(lst)

if p = null

then reverse = 1st

return

endif

ptrnxt(lst) = null

q = 1st ‘q is one step behind p

r = ptrnxt(p) ‘r is one step ahead of p
while r <> null do

ptrnxt(p) = q

q=p

p=r

r = ptrnxt(p)

endwhile

ptrnxt(p) = q

reverse = p

return

You are invited to confirm that this algorithm reverses the lists of Figures
5.3.1(a) and (d). You are also invited to write BASIC programs to implement the
recursive and nonrecursive algorithm and to derive one from the other.

Although most recursive algorithms for simple lists can be implemented
nonrecursively without use of a stack, in the next chapter we will be introduced
to more complex data structures where use of recursion is essential.

Recursive Chains

A recursive algorithm need not call itself directly. Rather, it may call itself indirectly,
as in the following example:

‘algorithm a ‘algorithm b

‘call to algorithm b ‘call to algorithm a

‘end of algorithm a ‘end of algorithm b
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In this example, algorithm a calls algorithm b, which may in turn call a, which

may again call b. Thus both a and b are recursive since they indirectly call themselves.
However, the fact that they are recursive is not evident from examining

the body of either of the routines individually. Algorithm a seems to be calling a

separate algorithm b and it is impossible to determine by examining a alone that
it will indirectly call itself.

More than two algorithms may participate in a recursive chain. Thus an
algorithm a may call b, which calls c, . . ., which calls z, which calls a. Each

algorithm in the chain may potentially call itself and is therefore recursive. The
programmer must ensure that the system does not generate an infinite sequence of
recursive calls. Of course, in converting a chain of recursive algorithms into a
BASIC program, the programmer must also ensure that the variables and return

indicators are stacked properly, so that the simulated execution of each RETURN

statement will restore these elements to their proper values.

Recursive Definition of Algebraic Expressions

Let us consider an example of such a recursive chain of algorithms and convert

these algorithms into BASIC programs. Consider the following recursive group
of definitions:

1. An expression is a term followed by a plus sign followed by a term, or a
term alone.

2. A term is a factor followed by an asterisk followed by a factor, or a factor
alone.

3. A factor is either a letter or an expression enclosed in parentheses.

Before looking at some examples, note that none of the three items above is
defined directly in terms of itself. However, each is defined in terms of itself
indirectly. An expression is defined in terms of a term, a term in terms of a factor,

and a factor in terms of an expression. Similarly, a factor is defined in terms
of an expression, which is defined in terms of a term, which is defined in terms
of a factor. Thus the entire set of definitions forms a recursive chain.

Let us now give some examples. The simplest form of a factor is a letter.
Thus A, B, C, Q, Z, and M are all factors. They are also terms, since a term may

be a factor alone. They are also expressions, since an expression may be a term

alone. Since A is an expression, (A) is a factor and therefore a term as well as an
expression. A + B is an example of an expression that is neither a term nor a factor.

(A + B), however, is all three. A*B is a term and therefore an expression, but

it is not a factor. A*B + C is an expression that is neither a term nor a factor.

A*(B + C) is a term and an expression but not a factor.
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Each of the examples above is a valid expression. This can be shown by
applying the definition of an expression to each of them. Consider, however, the
string A + *B. It is neither an expression, a term, nor a factor. It would be instructive

for you to attempt to apply the definitions of expression, term, and factor to
see that none of them describe the string A + *B. Similarly, (A +B*)C and
A + B + C are not valid expressions according to the definitions above.

Let us write an algorithm that reads a character string, prints the string, and
then prints valid if it is a valid expression and invalid if it is not. We will use
three separate functions to recognize expressions, terms, and factors, respectively.

First, however, we present an algorithm for an auxiliary routine getsymb
which has two inputs: str and pos. str contains the input character string and pos
is the position in str of the next character we wish to process. Upon entry to getsymb,

pos is compared to the length of the string. If pos <= len(str), then getsymb
returns the character at position pos of str and 0S is incremented by 1. If

0S > len(str), then getsymb returns a blank.

function getsymb(str,pos)
if pos > len(str)

then getsymb =
else getsymb = mid$(str,pos, 1)

pos = pos + 1
endif
return

The function that recognizes an expression is called expr. It, too, inputs str
and pos. expr returns true if a valid expression begins at position 05 of str and
false otherwise. It also resets pos to the position following the longest expression
it can find. The functionsfactor and term are much like expr except that they are
responsible for recognizing factors and terms, respectively. They also reposition
P05 to the position following the longest factor or term within the string str that
they can find. We can write the algorithm for the main routine as follows:

read str

print str

pos = 1

ok = expr(str,pos)

if ok = true and pos >len(str)

then print “valid”

else print “invalid”

‘The condition can fail for one (or both) of two reasons.

‘If ok is false, there is no valid expression beginning at pos.

‘If pos < len(str), there may be a valid expression starting

‘at the beginning of str but it does not occupy the entire string.

endif
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The algorithms for the functions expr, term, and factor adhere closely to the
definitions given earlier. Each of the routines attempts to satisfy one of the criteria

for the entity being recognized. If one of these criteria is satisfied, true is
returned. If none of these criteria are satisfied, false is returned.

function expr(str,pos)
‘look for a term

ok = term(str,pos)

if ok = false

then expr = false
return

endif

‘look at the next symbol

c = getsymb(str,pos)

ifc <>“+“

then ‘ We have found the longest expression (a single term).

‘Reposition pos so that it refers to the position

‘immediately following the expression.

O5 = O5 — 1

expr = true
return

endif

‘At this point we have found a term and a plus sign.
‘We must look for another term.

ok = term(str,pos)

if ok = true

then expr = true

else expr = false

endif
return

The routine term that recognizes terms is very similar and we present it
without comment.

function term(str,pos)

ok = factor(str, pos)

if ok = false

then term =false

return

endif

c = getsymb(str,pos)

if c <>““

then pos = 05 — 1

term = true

return

endif
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ok = factor(str,pos)

if ok = true
then term = true

else term = false

endif
return

The routine factor recognizes factors and should now be fairly straightforward.
It uses a subroutine ltr which returns true if its character parameter is a

letter and false otherwise.

function factor(str,pos)

c = getsymb(str,pos)
if c <>“(“

then ‘check for a letter

factor = ltr(c)

return

endif

‘the factor is a parenthesized expression

ok = expr(str,pos)

if ok = false

then factor = false
return

endif

c = getsymb(str,pos)

if c <>“)“

then factor = false

else factor = true

endif
return

We note that in each of the three algorithms, expr, term, and factor, the

input variable str is never modified, so it need not be stacked. The input/output

variable pos is modified, but since its modified value is used subsequently by

each of the calling routines (by virtue of its being an output variable), its old
value need not be saved, so it, too, need not be stacked. The variables c and ok

also need not have their values stacked because values assigned to these variables
before a recursive call are never used afterward (note that in this instance, the
recursive call is not to the routine of the same name but to one of the other routines

which might then call the caller). Similarly, the return variables expr, term,

and factor are never given a value before the recursive call, so they need not be
stacked either. Thus we have the unusual situation in which no variables need be

stacked in a recursive routine. It is therefore tempting to implement these routines

using actual recursive gosubs, as presented in the first part of Section 2, so that

we need not stack return indicators either. We now present such a BASIC pro-
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gram. We emphasize, however, that the program will not work under all

BASICs, or might work for simple expressions in which the recursion is not too
complex but not for more complicated expressions.

The following is a complete program that processes an expression according

to the rules above. In implementing the algorithms, we use the variable PS instead
of pos, FCTR instead of factor, XPR instead of expr, and GTSYMB instead

of getsymb.

10 ‘program findexp
20 DEFSTR A, C, S
30 TRUE = 1

40 FALSE = 0

50 PS = 1

60 INPUT STR

70 PRINT STR

80 GOSUB 3000: ‘subroutine expr sets the variable XPR
90 OK = XPR

100 IF OK = TRUE AND PS > LEN(STR) THEN PRINT “VALID”

ELSE PRINT “INVALID”

110 ‘The condition can fail for one (or both) of two reasons.

120 ‘If OK is FALSE, there is no valid expression beginning

130 ‘at PS. If PS <= LEN(STR), there may be a valid

140 ‘expression starting at PS, but it does not occupy the

150 ‘entire string.
160 END

170

180

190

2000 ‘subroutine getsymb

2010 ‘inputs: PS, STR

2020 ‘outputs: GTSYMB, PS
2030 ‘locals: none

2040 IF PS > LEN(STR)

THEN GTSYMB =

ELSE GTSYM = MID$(STR, PS, 1): PS = PS + 1

2050 RETURN

2060 ‘endsub

2070

2080

2090

3000 ‘subroutine expr

3010 ‘inputs: PS, STR

3020 ‘outputs: PS, XPR

3030 ‘locals: C, GTSYMB, OK, TERM
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3040 GOSUB 4000: ‘subroutine term sets the variable TERM

3050 OK = TERM

3060 IF OK = TRUE THEN GOTO 3100

3070 ‘else do stmts 3080—3090

3080 XPR = FALSE

3090 RETURN

3100 GOSUB 2000: ‘subroutine getsymb sets the variable GTSYMB
3110 C = GTSYMB

3120 IF C = “+“ THEN GOTO 3170

3130 ‘else do stmts 3140—3160

3140 PS = PS—i

3150 XPR = TRUE

3160 RETURN

3170 GOSUB 4000: ‘subroutine term

3180 OK = TERM

3190 IF OK = TRUE THEN XPR = TRUE

ELSE XPR = FALSE

3200 RETURN

3210 ‘endsub

3220

3230

3240

4000 ‘subroutine term

4010 ‘inputs: PS, STR

4020 ‘outputs: PS, TERM

4030 ‘locals: C, FCTR, GTSYMB, OK

4040 GOSUB 5000: ‘subroutine factor sets the variable FCTR

4050 OK = FCTR

4060 IF OK = TRUE THEN GOTO 4100

4070 ‘else do stmts 4080—4090

4080 TERM = FALSE

4090 RETURN

4100 GOSUB 2000: ‘subroutine getsymb sets the variable GTSYMB
4110 C = GTSYMB

4120 IF C = “*“ THEN GOTO 4170

4130 ‘else do stmts 4140—4160

4140 PS = PS—i

4150 TERM = TRUE

4160 RETURN

4170 GOSUB 5000: ‘subroutine factor

4180 OK = FCTR
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4190 IF OK = TRUE THEN TERM = TRUE

ELSE TERM = FALSE

4200 RETURN

4210 ‘endsub

4220

4230

4240

5000 ‘subroutine factor

5010 ‘inputs: PS, STR

5020 ‘outputs: FCTR, PS
5030 ‘locals: C, GTSYMB, LTR, OK

5040 GOSUB 2000: ‘subroutine getsymb sets the variable GTSYMB
5050 C = GTSYMB

5060 IF C = “(“ THEN GOTO 5110

5070 ‘else do stmts 5080—5 100

5080 GOSUB 6000: ‘subroutine hr accepts the variable C and sets
‘the variable LTR

5090 FCTR = LTR

5100 RETURN

5110 GOSUB 3000: ‘subroutine expr sets the variable XPR
5120 OK = XPR

5130 IF OK = TRUE THEN GOTO 5170

5140 ‘else do stmts 5150—5160

5150 FCTR = FALSE

5160 RETURN

5170 GOSUB 2000: ‘subroutine gtsymb
5180 C = GTSYMB

5190 IF C = “)“ THEN FCTR = TRUE

ELSE FCTR = FALSE

5200 RETURN

5210 ‘endsub

5220

5230

5240

6000 ‘subroutine hr

6010 ‘inputs: C

6020 ‘outputs: LTR

6030 ‘locals: ALPH, I

6040 ALPH = “ABCDEFGHIJKLMNOPQRSTUVWXYZ”
6050 FORI= 1to26

6060 IF MID$(ALPH, I, 1) = C THEN LTR = TRUE: RETURN
6070 NEXT I

6080 LTR = FALSE

6090 RETURN

6100 ‘endsub
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All three routines are recursive since each may call itself indirectly. For example,

if you trace through the actions of the program findexp for the input string
“(A*B*C*D) + (F*(F) + G)”, you will find that each of the routines expr,
term, and factor calls on itself.

We leave to the reader the implementation of this program without using
recursive GOSUBs, but using a return indicator stack instead.

EXERCISES

1. Define a postfix and prefix expression to include the possibility of unary operators.

Write a program to convert a prefix expression possibly containing the unary negation

operator (represented by the symbol “@“)to postfix.

2. Rewrite the subroutine find in the text so that it is nonrecursive and computes the

length of a prefix string by counting the number of operators and single-letter operands.

3. Write a recursive algorithm and its BASIC simulation which accepts a prefix expression

consisting of binary operators and single-digit integer operands and returns the

value of the expression.

4. Modify the recursive and nonrecursive algorithm reverse of the text to reverse a singly

linked circular list.

5. Write a BASIC subroutine to implement the recursive algorithm reverse presented in

the text. Then simplify the routine so that it does not use a stack.

6. Develop a recursive algorithm to find the sum of all the numbers in an integer list.

7. Rewrite the program findexp so that it does not use recursive GOSUBs.

8. Write a BASIC subroutine that simulates a recursive algorithm to compute the number

of sequences of n binary digits which do not contain two l’s in a row. (Hint:

Compute how many such sequences exist which start with 0, and how many exist

which start with 1.)

9. Write a BASIC program that simulates a recursive algorithm to sort an array A as

follows:

(a) Let K be the index of the middle element of the array.

(b) Sort the elements up to and including A(K).

(c) Sort the elements past A(K).

(d) Merge the two subarrays into a single sorted array.

This method is called a merge sort.

10. Develop a recursive method (and program it) to compute the number of different

ways in which an integer k can be written as a sum, each of whose operands is less

than n.

11. Develop a recursive method (and program it) to print in alphabetical order all possible

permutations of the letters stored in a character array of size n.

12. Write a BASIC subroutine that simulates a recursive algorithm to find the kth smallest

element of an array a of numbers by choosing any element a(i) of a and partitioning

a into those elements smaller than, equal to, and greater than a(i).
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13. The Eight Queens problem is to place eight queens on a chessboard so that no queen

is attacking any other queen. The following is a recursive algorithm to solve the problem.

board is an 8 by 8 array which represents a chessboard. board(i,j) equals true if

there is a queen at position (i,j), and false otherwise. good(board) is a function that

returns true if no two queens on the chessboard are attacking each other and false

otherwise. At the end of the program, the status of board represents a solution to the

problem.

program queens

fori= lto8

forj = 1 to 8

board(i,j) = false

nextj
next i

b = try(1)
end

function try(n)

if n > 8

then try = true
return

else for i = 1 to 8

board(n,i) = true

if good(board) = true and try(n + 1) = true

then try = true
return

else board(n,i) = false

endif
next i

try = false
return

endif

The recursive subroutine try returns true if it is possible, given the board at the time

that it is called, to add queens in rows n through 8 to achieve a solution. try returns

false if there is no solution which has queens at the positions in board that already

contain true. If true is returned, the subroutine also adds queens in rows n through 8

to produce a solution. Implement these algorithms and verify that the program produces
a solution.

[The idea behind the solution is as follows: board represents the global situation

during an attempt to find a solution. The next step toward finding a solution is

chosen arbitrarily (place a queen in the next untried position in row n) and recursively

test whether it is possible to produce a solution which includes that step. If it is, return.

If it is not, backtrack from the attempted next step [board(n,i) = false] and try

another possibility. This method is called backtracking.]
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14. A 10 x 10 array maze of 0’s and 1 ‘s represents a maze in which a traveler must find

a path from maze(1 , 1) to maze(l0, 10). The traveler may move from a square into any

adjacent square in the same row or column, but may not skip over any squares or

move diagonally. In addition, the traveler may not move into any square that contains

a 1. maze(1 ,1) and maze(10,10) contain 0’s. Write a routine that accepts such a maze

and either prints a message that no path through the maze exists, or prints a list of

positions representing a path from (1,1) to (10,10).

15. Convert the following recursive program scheme into an iterative version which does

not use a stack. fin) is a function that returns a logical value based on the value of n,

and g(n) is a function that returns a value of the same type as n without modifying n.

subroutine rec(n)

if not fin)
then

‘any group of statements

‘which do not change the value of n

rec(g(n))

endif
return

Generalize your result to the case in which rec is a function.

16. Letfin) be a logical-valued function and g(n) and h(n) be functions that return a value

of the same type as n without modifying n. Let (stmts) represent any group of statements

that do not modify the value of n. Show that the recursive algorithm rec is

equivalent to the iterative algorithm iter:

subroutine rec(n)

if not fin)

then (stmts)

rec(g(n))

rec(h(n))

endif
return

subroutine iter(n)

push(s,n)

while not empty(s) do

n = pop(s)

if notf(n)

then (stmts)

push(s,h(n))

push(s,g(n))

endif
endwhile

return
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Show that the if statement in iter can be replaced by the ioop

while fin) = false do

(stmts)

push(s,h(n))

n = g(n)
endwhile
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Trees

In this chapter we focus our attention on a data structure that has been found to be

extremely useful in many applications—the tree. We define different forms of

this data structure and show how they can be represented in BASIC and how they

can be applied to solving a wide variety of problems.

1. BINARY TREES

A binary tree is a finite set of elements which is either empty or contains a single

element called the root of the tree and whose remaining elements are partitioned
into two disjoint subsets each of which is itself a binary tree. These two subsets

are called the left and right subtrees of the original tree. Each element of a binary
tree is called a node of the tree.

A conventional method of picturing a binary tree is shown in Figure 6.1.1.
This tree consists of nine nodes with A as its root. Its left subtree is rooted at B

and its right subtree is rooted at C. This is indicated by the two branches emanating

from A: to B on the left and to C on the right. The absence of a branch indicates

an empty subtree. For example, the left subtree of the binary tree rooted at

C and the right subtree of the binary tree rooted at E are both empty. The binary

trees rooted at D, G, H,and I have empty right and left subtrees.

Figure 6.1.2 illustrates some structures which are not binary trees. Be sure

that you understand why each of them is not a binary tree as defined above.

If A is the root of a binary tree and B is the root of its left or right subtree, A

is said to be the father of B and B is said to be the left or right son of A. A node

284
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Figure 6.1.1 A binary tree.

that has no sons (such as D, G, H, or I of Figure 6.1.1) is called a leaf. Node nl
is an ancestor of node n2 (and n2 is a descendant of nl) if ni is either the father

of n2 or the father of some ancestor of n2. For example, in the tree of Figure
6.1.1, A is an ancestor of G and H is a descendant of C, but E is neither an

ancestor nor a descendant of C. A node n2 is a left descendant of node ni if n2 is

either the left son of ni or a descendant of the left son of nl. A right descendant

may be defined in a similar manner. Two nodes are brothers if they are sons of
the same father.

If every nonleaf node in a binary tree has nonempty right and left subtrees,
the tree is termed a strictly binary tree. Thus the tree of Figure 6.1.3 is strictly

binary, while that of Figure 6.1.1 is not (because nodes C and E have one son

each). A strictly binary tree with n leafs always contains 2n — 1 nodes. The proof
of this fact is left as an exercise for the reader.

The level of a node in a binary tree may be defined as follows. The root of
the tree has level 0 and the level of any other node in the tree is 1 more than the

level of its father. For example, in the binary tree of Figure 6.1.1, node E is at
level 2 and node H is at level 3. The depth of a binary tree is the maximum level

of any leaf in the tree. This equals the length of the longest path from the root to
any leaf. Thus the depth of the tree of Figure 6.1.1 is 3. A complete binary tree
of level n is one in which each node at level n is a leaf and in which each node at

level less than n has nonempty left and right subtrees. Figure 6.1.4 illustrates a
complete binary tree of level 3.

We also define an almost complete binary tree as a binary tree for which
there is a nonnegative integer k such that

1. Each leaf in the tree is either at level k or at level k + 1.

2. If a node in the tree has a right descendant at level k + 1, then all of its left
descendants which are leafs are also at level k + 1.

The strictly binary tree of Figure 6.1.5(a) is not almost complete since it contains
leafs at levels 1, 2, and 3, thereby violating condition 1. The strictly binary tree
of Figure 6. 1.5(b) satisfies condition 1 since every leaf is either at level 2 or at
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Figure 6.1.3 A strictly binary tree.

level 3. However, condition 2 is violated since A has a right descendant at level 3

(J) but also has a left descendant which is a leaf at level 2 (E). The strictly binary
tree of Figure 6.1.5(c) satisfies both conditions 1 and 2 and is therefore an almost

complete binary tree. The binary tree of Figure 6.1.5(d) is also an almost complete

binary tree but is not strictly binary since node E has a left son but not a

right son. (We should note that many texts refer to such a tree as a “complete

binary tree” rather than as an “almost complete binary tree.” Still other texts use

the term “complete” or “fully binary” to refer to the concept which we call

“strictly binary.” We use the terms “strictly binary,” “complete,” and “almost
complete” as we have defined them here.)

The nodes of an almost complete binary tree can be numbered so that the
root is assigned the number 1, a left son is assigned twice the number assigned its
father, and a right son is assigned one more than twice the number assigned its

father. Figure 6.1.5(e) illustrates the numbering of the nodes of the tree of Figure

6.1.5(c). Under this numbering scheme each node in an almost complete binary
tree is assigned a unique number which defines the node’s position within the

Figure 6.1.4 A complete binary tree of level 3.
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tree. An almost complete strictly binary tree with n leafs has 2n — 1 nodes, as

does any other strictly binary tree with n leafs. An almost complete binary tree
with n leafs which is not strictly binary has 2n nodes. There are two distinct almost

complete binary trees with n leafs, one of which is strictly binary and one of
which is not. For example, the trees of Figure 6.1.5(c) and (d) are both almost
complete and have five leafs; however, the tree of Figure 6.1.5(c) is strictly binary,

whereas that of Figure 6.1.5(d) is not. There is only a single almost complete
binary tree with n nodes. This tree is strictly binary if and only if n is odd. Thus
the tree of Figure 6. 1.5(c) is the only almost complete binary tree with nine nodes
and is strictly binary because 9 is odd, while the tree of Figure 6.1.5(d) is the
only almost complete binary tree with 10 nodes and is not strictly binary because
10 is even.

Operations on Binary Trees

There are a number of primitive operations that can be applied to a binary tree. If

p is a pointer to a node nd of a binary tree, the function info(p) returns the contents

of nd. The functions left(p), right(p), father(p), and brother(p) return pointers

to the left son of nd, the right son of nd, the father of nd, and the brother of

nd, respectively. These functions return the null pointer if nd has no left son,

right son, father, or brother. Finally, the logical functions isleft(p) and isright(p)

return the value true if nd is a left or right son, respectively, of some other node

in the tree, and false otherwise.

Note that the functions isleft(p), isright(p), and brother(p) can be implemented

using the functions left(p), right(p), and father(p). isleft may be implemented
as follows:

function isleft(p)

q = father(p)

if q = null

then isleft = false ‘p points to the root

else if left(q) = p

then isleft = true

else isleft = false

endif

endif

return

isright may be implemented in a similar manner, or by calling isleft. brother(p)
may be implemented using isleft or isright as follows:
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function brother(p)

if father(p) = null

then brother = null ‘p points to the root

else if isleft(p)

then brother = right (father(p))

else brother = left(father(p))

endif

endif
return

In constructing a binary tree, the operations maketree, setleft, and setright
are useful. The function maketree(x) creates a new binary tree consisting of a
single node with information field x and returns a pointer to that node. setleft(p,x)
accepts a pointer p to a binary tree node nd with no left son and an item x. It

creates a new left son of nd with information field x. setright(p,x) is analogous to
setleft except that it creates a right son of nd.

Applications of Binary Trees

A binary tree is a useful data structure when two-way decisions must be made at
each point in a process. For example, suppose that we want to find all duplicates
in a list of numbers. One way of doing this is to compare each number with all
those that precede it. However, this involves a large number of comparisons. The

number of comparisons can be reduced by using a binary tree. The first number is
read and placed in a node which is established as the root of a binary tree with
empty left and right subtrees. Each successive number in the list is then compared

to the number in the root. If it matches, we have a duplicate. If it is smaller,

the process is repeated with the left subtree, and if it is larger, the process is
repeated with the right subtree. This continues until either a duplicate is found or

an empty subtree is reached. When an empty subtree is reached, the number is
placed into a new node at that position in the tree. An algorithm for doing this
follows.

‘read the first number and insert it into a single-node binary tree

read number

tree = maketree(number)

while there are numbers left in the input do

read number

q = tree

p = tree

while (q <> null) and (number <> info(p)) do

p=q

if number < info(p)

then q = left(p)

else q = right(p)

endif

endwhile
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if number = info(p)

then print number, “is a duplicate”

else if number < info(p)

then setleft(p, number)

else setright (p, number)

endif

endif
endwhile

Figure 6.1.6 illustrates the tree that would be constructed from the input

14 15 4 9 7 18 3 5 16 4 20 17 9 14 5

The output would indicate that 4, 9, 14, and 5 are duplicates.

Another common operation is to traverse a binary tree, that is, to pass
through the tree, enumerating each of its nodes once. We may simply wish to

print the contents of each node as we enumerate it, or we may wish to process it

in some other fashion. In either case, we speak of visiting the nodes of a binary
tree.

The order in which the nodes of a linear list are visited in a traversal is

clearly from first to last. However, there is no such “natural” linear order for the

nodes of a tree. Thus different orderings are used for traversal in different cases.
We shall define three of these traversal methods. In each of these methods, nothing

need be done to traverse an empty binary tree. The methods will all be defined

recursively so that traversing a binary tree involves visiting the root and

traversing its left and right subtrees. The only difference among the methods is

the order in which these three operations are performed.

To traverse a nonempty binary tree in preorder (also known as depth-first

order), we perform the following three operations:

Figure 6.1.6 A binary tree constructed for finding duplicates.
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1. Visit the root.

2. Traverse the left subtree in preorder.

3. Traverse the right subtree in preorder.

To traverse a nonempty binary tree in inorder or symmetric order:

1. Traverse the left subtree in inorder.

2. Visit the root.

3. Traverse the right subtree in inorder.

To traverse a nonempty binary tree in postorder:

1. Traverse the left subtree in postorder.

2. Traverse the right subtree in postorder.

3. Visit the root.

Preorder: ABDGCEHIF
Inorder: DGBAHEICF
Postorder: GDBHIEFCA

Preorder: ABCEIFJDGHKL
Inorder: EICFJBGDKHLA
Postorder: IEJFCGKLHDBA

Figure 6.1.7 Binary trees and their
traversals.
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Figure 6.1.7 illustrates two binary trees and their traversals in preorder, inorder,
and postorder.

Many algorithms and processes that use binary trees proceed in two phases.
The first phase builds a binary tree and the second phase traverses the tree. As an
example of such an algorithm, consider the following sorting method. Given a
list of numbers in an input file, we wish to print them in ascending order. As we
read the numbers, they can be inserted into a binary tree such as the one of Figure
6.1.6. However, unlike the previous algorithm which was used to find duplicates,

duplicate values are also placed in the tree. When a number is compared to
the contents of a node in the tree, a left branch is taken if the number is smaller

than the contents of the node and a right branch if it is greater or equal to the
contents of the node. Thus if the input list is

14 15 4 9 7 18 3 5 16 4 20 17 9 14 5

the binary tree of Figure 6.1.8 is produced. Such a binary tree has the property
that the contents of each node in the left subtree of a node n are less than the

contents of n, and the contents of each node in the right subtree of n are greater
than or equal to the contents of n. Thus, if the tree is traversed in inorder (left,

root, right), the numbers are printed in ascending order. (You are asked to prove

Figure 6.1.8 A binary tree constructed for sorting.
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this as an exercise.) The use of binary trees in sorting and searching will be discussed

further in Chapters 8 and 9.

Let us denote the operation of traversing a binary tree in inorder and printing
the contents of each of its nodes by intrav(tree). Then the sorting algorithm

may be written as follows:

read number

tree = maketree(number)

while there are numbers left in the input do
read number

q = tree

while q <> null do

p=q

if number < info(p)

then q = left(p)

else q = right(p)

endif
endwhile

if number < info(p)

then setleft(p, number)

else setright(p,number)

endif
endwhile

‘traverse the tree

intrav(tree)

As another application of binary trees, consider the following method of

representing an expression containing operands and binary operators by a strictly

binary tree. The root of such a binary tree contains an operator which is to be

applied to the results of evaluating the expressions represented by the left and

right subtrees. A node representing an operator has two nonempty subtrees, while

a node representing an operand has two empty subtrees. Figure 6.1.9 illustrates

some expressions and their tree representations. Note that parentheses are not required

in the tree since the tree structure defines the order of operations.

Let us see what happens when these binary trees are traversed. Traversing

such a tree in preorder means that the operator (the root) will precede its two

operands (the subtrees). Thus a preorder traversal should yield the prefix form of

the expression. (For definitions of the prefix and postfix forms of an arithmetic

expression, see Sections 3.3 and 5.3.) This is indeed the case. Traversing the

binary trees of Figure 6.1.9 yields the prefix forms

+A*BC [Figure 6.1.9(a)]
*+44BC’ [Figure 6.1.9(b)]
+A* _BCtD*EF [Figure 6.1.9(c)]
t+A*BC* +ABC [Figure 6.1.9(d)]



(d) (A+B*C)t((A+B)*C)

Figure 6.1.9 Expressions and their binary tree representation.

(a) A +B * C (b) (A +B)* C

(c) A +(B-C)*Dt(E*F)
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Similarly, traversing such a binary tree in postorder places the operator after

its two operands so that a postorder traversal produces the postfix form of the
expression. Thus postorder traversals of the binary trees of Figure 6.1.9 yield the
postfix forms

ABC* + [Figure 6.1.9(a)]
AB + C* [Figure 6.1.9(b)]
ABC_DEF*t*+ [Figure 6.1.9(c)]

ABC* +AB + C*t [Figure 6.1.9(d)]

What happens when such binary trees are traversed in inorder? Since the

root (operator) is visited after the nodes of the left subtree (the first operand) and

before the nodes of the right subtree (the second operand), we might expect an

inorder traversal to yield the infix form of the expression. Indeed, if the binary

tree of Figure 6.1.9(a) is traversed, the infix expression A + B*C is obtained.

However, since the binary tree does not contain parentheses, an expression

whose infix form requires parentheses to override explicitly the conventional precedence

rules cannot be retrieved by a simple inorder traversal. The inorder traversals

of the trees of Figure 6.1.9 yield the expressions

A +B*C [Figure 6.1.9(a)]
A+B*C [Figure 6.1.9(b)]

A +B — C*DtE*F [Figure 6.1.9(c)]

A+B*CtA+B*C [Figure 6.1.9(d)]

which are correct except for parentheses.

EXERCISES

1. Prove that the root of a binary tree is an ancestor of every node in the tree except
itself.

2. Prove that a node of a binary tree has at most one father.

3. How many ancestors does a node at level n in a binary tree have? Prove your answer.

4. What are the maximum number of nodes at level n in a binary tree?

5. Write an algorithm to determine if a binary tree is

(a) strictly binary.

(b) complete.

(c) almost complete.

6. Prove that a strictly binary tree with n leafs contains 2n — 1 nodes.

7. Given a strictly binary tree with n leafs, let level(i) for i between 1 and n equal the

level of the ith leaf. Prove that the sum of 1/2 level (‘) for all i between 1 and n equals 1.
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8. Prove that the nodes of an almost complete binary tree with n nodes can be numbered

from 1 to n in such a way that the number assigned to the left son of the node numbered

i is 2i and the number assigned to the right son of the node numbered i is 2i + 1.

9. Two binary trees are similar if they are both empty or if they are both nonempty,

their left subtrees are similar, and their right subtrees are similar. Write an algorithm

that determines if two binary trees are similar.

10. Two binary trees are mirror similar if they are both empty or if they are both non-

empty and the left subtree of each is mirror similar to the right subtree of the other.

Write an algorithm that determines if two binary trees are mirror similar.

11. Write algorithms to determine whether or not one binary tree is similar or mirror similar

(see Exercises 9 and 10) to some subtree of another.

12. Develop an algorithm to find duplicates in a list of numbers without using a binary

tree. If there are n distinct numbers in the list, how many times must two numbers be

compared for equality in your algorithm? What if all n numbers are equal?

13. Write an algorithm that accepts a pointer to a binary tree representing an expression

and returns the infix version of the expression which contains only those parentheses

that are necessary.

2. BINARY TREE REPRESENTATIONS

In this section we examine various methods of implementing binary trees in BASIC

and present routines that build and traverse binary trees. We also present

some applications of binary trees.

Node Representation of Binary Trees

As in the case of list nodes, tree nodes may be implemented as array elements.

Typically, each node would contain INFO, LEFT, RIGHT, and FTHER fields.

(We use FTHER rather than FATHER to avoid conflict with the variable FALSE

under those versions of BASIC in which only the first two characters of a variable

name are significant.) The LEFT, RIGHT, and FTHER fields of a node

point to the node’s left son, right son, and father, respectively. We may declare

10 MXNODE = 500

20 DIM INFO(MXNODE)

30 DIM LEFT(MXNODE)

40 DIM RIGHT(MXNODE)

50 DIM FTHER(MXNODE)

Under this representation, the operations info(p), left(p), right(p), and fat her(p)
would be implemented by direct references to INFO(P), LEFT(P), RIGHT(P),
and FTHER(P).
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Alternatively, nodes may be represented by

10 MXNODE = 500

20 DIM INFO(MXNODE)

30 DIM PTR(MXNODE,3)

40 LEFT=1

50 RIGHT = 2

60 FTHER=3

Under this representation, the operations info(p), left(p), right(p), and father(p)
would be implemented by references to INFO(P), PTR(P,LEFT),
PTR(P,RIGHT), and PTR(P,FTHER). We use this implementation in the remainder

of this section.

The operations isleft(p), isright(p), and brother(p) can be implemented in
terms of the operations left(p), right(p), andfather(p), as described in the preceding

section. To implement isleft and isright more efficiently, we can include an
additional field ISLEFT containing the value TRUE (or 1) if that node is a left

son of some other node and the value FALSE (or 0) if it is a right son of some

other node or the root of the tree. Of course, the root is uniquely identified by a

null (zero) value in its FTHER field. Alternatively, these operations may be implemented
by setting the sign of the FTHER field negative if the node is a left son

or positive if it is a right son and using the BASIC SGN function. The pointer to a
node’s father is then given by the absolute value of the FTHER field. To implement

brother(p) more efficiently, we can include an additional BROTHER field
in each node.

We create an available list from which we can obtain binary tree nodes by

70 AVAIL = 1

80 FOR I = 1 TO MXNODE -1

90 PTR(I,LEFT) = I + 1

100 NEXT I

110 PTR(MXNODE,LEFT) = 0

The routines getnode and freenode are straightforward and are left as exercises.
Note that the available list is not a binary tree but a linear list whose nodes are

linked together by the LEFT field. We call this representation the node implementation
of a binary tree.

Under the node implementation, the maketree operation, which allocates a

node and sets it as the root of a binary tree with empty left and right subtrees, can
be implemented as follows. (In maketree and in the following subroutines, we do
not indicate explicitly that the variables MXNODE, INFO, PTR, AVAIL, LEFT,

RIGHT, and FTHER may be inputs and outputs, since that is implied by the binary
tree context.)
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13000 ‘subroutine maketree

13010 ‘inputs: X

13020 ‘outputs: MAKETREE
13030 ‘locals: GTNODE, PX

13040 GOSUB 1000: ‘subroutine getnode sets the variable GTNODE
13050 PX = GTNODE

13060 INFO(PX) = X

13070 PTR(PX,LEFT) = 0

13080 PTR(PX,RIGHT) = 0

13090 PTR(PX,FTHER) = 0

13100 MAKETREE = PX

13110 RETURN

13120 ‘endsub

The subroutine setleft sets a node with contents X as the left son of node(P).

14000 ‘subroutine setleft

14010 ‘inputs: P, X

14020 ‘outputs: none

14030 ‘locals: MAKETREE, QX

14040 IF P = 0 THEN PRINT “VOID INSERTION”: STOP

14050 IF PTR(P, LEFT) <>0 THEN PRINT “INVALID INSERTION”: STOP

14060 GOSUB 13000: ‘subroutine maketree sets the variable MAKETREE

14070 QX = MAKETREE

14080 PTR(P,LEFT) = QX

14090 PTR(QX, FTHER) = P

14100 RETURN

14110 ‘endsub

The routine setright, which creates a right son of node(P) with contents X, is
similar and is left as an exercise for the reader.

It is not always necessary to use FTHER, LEFT, and RIGHT fields. If a

tree is always traversed in downward fashion (from the root to the leafs), the

father operation is never used; in that case, a FTHER field is unnecessary. Similarly,

if a tree is always traversed in upward fashion (from the leafs to the root),

the left and right operations are never used and LEFT and RIGHT fields are not

needed. It would still be possible to perform the isleft and isright operations by

using a signed pointer in the FTHER field, as discussed earlier; a right son contains

a positive FTHER value and a left son contains a negative FTHER value. Of
course, the routines maketree, setleft, and setright must be suitably modified for

these representations. We generally assume that all three fields (FTHER, LEFT,

and RIGHT) are present, but you may wish to conserve space by eliminating
those that are unnecessary in a particular situation.
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The following program uses a binary tree to find duplicate numbers. It
closely follows the algorithm of Section 1.

10 ‘program dup
20 DEFINTA,F,I,L,M,P,Q,R,T

30 ‘establish the set of tree nodes

40 MXNODE = 500: ‘maximum number of nodes
50 DIM INFO(MXNODE), PTR(MXNODE,3)
60 LEFT=1

70 RIGHT = 2

80 FTHER = 3

90 ‘initialize the available list

100 AVAIL = 1

110 FOR I = 1 TO MXNODE -1

120 PTR(I,LEFT) = I + 1

130 NEXT I

140 PTR(MXNODE,LEFT) = 0

150 ‘initialize the tree from the first input value
160 READ X

170 GOSUB 13000: ‘subroutine maketree sets the variable MAKETREE

180 TREE = MAKETREE

190 ‘begin looking for duplicates
200 READ NUMBER

210 IF NUMBER = —99 THEN STOP

220 PPNTR = TREE

230 QPNTR = TREE

240 ‘travel down the tree

250 IF QPNTR = 0 OR NUMBER = INFO(PPNTR) THEN GOTO 290

260 PPNTR = QPNTR

270 IF NUMBER < INFO(PPNTR) THEN QPNTR = PTR(PPNTR,LEFT)

ELSE QPNTR = PTR(PPNTR,RIGHT)

280 GOTO 250

290 ‘if the number is in the tree, it is a duplicate
300 IF NUMBER = INFO(PPNTR)

THEN PRINT NUMBER; “IS A DUPLICATE”: GOTO 200

310 ‘otherwise, insert the number into the tree

320 X = NUMBER

330 P = PPNTR

340 ‘call either setleft (at 14000) or setright (at 15000); both accept P and X
350 IF NUMBER < INFO(PPNTR) THEN GOSUB 14000

ELSE GOSUB 15000

360 GOTO 200
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370 END

500 DATA...

Almost Complete Array Representation
of Binary Trees

Recall from Section 1 that the nodes of an almost complete binary tree can be

numbered in such a way that the number assigned a left son is twice the number

assigned its father and the number assigned a right son is one more than twice the

number assigned its father. To represent an almost complete binary tree, we do

not need father, left, or right links. Instead, the node assigned the number p is the

implicit father of the nodes assigned the numbers 2p and 2p + 1. A tree with n

leafs is represented by an array info of size 2n —1 if the tree is strictly binary and

of size 2n if it is not. A pointer to a node is therefore an integer between 1 and

2n. The root of the tree is at position 1, so that tree equals 1. The left son of the

node at position p is at position 2p and its right son is at position 2p + 1. Thus

left(p) may be translated into 2p and right(p) into 2p + 1. Similarly, given a left

son at position p, its right brother may be found at p + 1. father(p) may be computed

by truncating the value of p12 to an integer. p points to a left son if and only

if it is a multiple of 2. Thus the test for whether p points to a left son (the isleft

subroutine) is to check whether or not 2*int(p/2) equals p. Figure 6.2.1 illustrates

arrays that represent the almost complete binary trees of Figure 6.1.5(c) and (d).

We can extend this array representation of almost complete binary trees to

an array representation of binary trees generally. We do this by identifying an

almost complete binary tree which contains the binary tree that is to be represented.

Figure 6.2.2(a) illustrates two (non-almost-complete) binary trees and Figure

6.2.2(b) illustrates the smallest almost complete binary trees that contain them.

Finally, Figure 6.2.2(c) illustrates the array representations of these almost complete

binary trees, and by extension, of the original binary trees.

Under this representation, an array element is allocated whether or not it

serves to contain a node of a tree. We must, therefore, flag unused array elements

as null tree nodes. This may be accomplished by one of two methods. One method

is to place a special value in the positions of the array that represent null tree

nodes. This special value should be invalid as the information content of a legitimate

tree mode. For example, in a tree containing positive numbers, a null node

may be indicated by a negative number. Alternatively, we may declare a parallel

array, flag, containing the value 1 in positions corresponding to actual tree nodes

and 0 in positions corresponding to null tree nodes.

We now present the program that uses a binary tree to find duplicate numbers

in an input list using the latter representation of binary trees, together with

the routines maketree and setleft.



INFO:EA :: :: :
(a)

(b)

Figure 6.2.1 Array representation of almost complete binary trees.
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(c) Array representations

Figure 6.2.2

(a) Two binary trees

(b) Almost complete extensions
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10 ‘program dup2
20 MXNODE = 500

30 DIM INFO(MXNODE), FLAG(MXNODE)

40 READ X

50 GOSUB 13000: ‘subroutine maketree initializes the tree root

60 READ NUMBER

70 IF NUMBER = —99 THEN STOP

80 PPNTR = 1

90 QPNTR = 1

100 IF QPNTR > MXNODE THEN GOTO 150

110 IF FLAG(QPNTR) = 0 OR NUMBER = INFO(PPNTR)

THEN GOTO 150

120 PPNTR = QPNTR

130 IF NUMBER < INFO(PPNTR) THEN QPNTR = 2 * PPNTR

ELSE QPNTR = 2 * PPNTR + 1

140 GOTO 100

150 ‘if the number is in the tree, it is a duplicate
160 IF NUMBER = INFO(PPNTR)

THEN PRINT NUMBER; “IS A DUPLICATE”: GOTO 60

170 ‘otherwise, insert the number into the tree

180 X = NUMBER

190 P = PPNTR

200 ‘call either setleft or setright
210 IF NUMBER < INFO(PPNTR) THEN GOSUB 14000

ELSE GOSUB 15000

220 GOTO 60

230 END

500 DATA

13000 ‘subroutine maketree

13010 ‘inputs: X

13020 ‘outputs: none (the tree is always rooted at node 1)
13030 ‘locals: II

13040 FOR II = 2 to MXNODE

13050 FLAG(II) = 0

13060 NEXT II

13070 INFO(1) = X

13080 FLAG(1) = 1

13090 RETURN

13100 ‘endsub
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14000 ‘subroutine setleft

14010 ‘inputs: P,X

14020 ‘outputs: none
14030 ‘locals: PX

14040 PX = 2*P

14050 IF PX < 1 OR PX > MXNODE

THEN PRINT “ARRAY OVERFWW”: STOP

14060 IF FLAG(PX) <>0 THEN PRINT “INVALID INSERTION”: STOP

14070 INFO(PX) = X

14080 FLAG(PX) = 1

14090 RETURN

14100 ‘endsub

15000 ‘subroutine setright

Note that under this implementation, the routine maketree is used to initialize

the arrays INFO and FLAG to represent a tree with a single node. The variable

MAKETREE is unnecessary since under this representation the single binary

tree represented by INFO and FLAG is always rooted at node 1. That is the reason

PPNTR is initialized to 1 in statement 80. Note also that under this representation

it is always necessary to check that the array bound (MXNODE) has not

been exceeded whenever we move down the tree (see statements 100 and 14050).

Choosing a Binary Tree Representation

Which representation of binary trees is preferable? There is no general answer to

this question. The almost complete array representation is somewhat simpler, although

it is necessary to ensure that all pointers are within the array bounds. The

almost complete array representation clearly saves storage space for trees that are

known to be almost complete, since it eliminates the need for the arrays LEFT,

RIGHT, and F1’HER, and does not even require a FLAG array. It is also space

efficient for trees which are only a few nodes short of being almost complete, or

when nodes are successively eliminated from a tree that is initially almost complete,

although a FLAG array might then be required.

However, the almost complete array representation can be used only in a

context in which only a single tree is required, or where the number of trees needed

is fixed in advance. Even when this number is known, separate arrays are

required for each tree; unused space in one array cannot be utilized for a tree

housed in another array. Further, separate routines (e.g., maketree, setleft, etc.)

would be required for each tree unless large arrays or variables indicating the

appropriate array are transmitted as inputs and outputs. By contrast, the node representation

requires LEFT, RIGHT, and FTHER arrays (although we have seen

that one or two of these may be eliminated in specific situations) but allows much

more flexible use of the collection of nodes. In the node representation, a node

may be placed at any location in any tree, whereas in the almost complete array
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representation a node can be utilized only if it is needed at a specific location in a

specific tree. Thus the node representation is preferable in the general, dynamic

situation of many trees of unpredictable shape.

The program that finds duplicates is a good illustration of the trade-offs involved.

The program dup, which utilized the node representation of binary trees,

required LEFT and RIGHT arrays in addition to INFO. (The array FTHER was

not really necessary in that program.) dup2, which utilized the almost complete
binary representation, required only an additional array FLAG (and this, too,

could have been eliminated if only positive numbers or integers were allowed in

the input so that a null tree node could be represented by a specific negative or

noninteger INFO value). The almost complete array representation could be used

for this example because only a single tree was required. However, dup2 might

not work for as many input cases as dup. For example, suppose that the input was

in ascending order. Then the tree that is formed has all null left subtrees (you are

invited to verify that this is the case by simulating the programs for such input).

In this case the only elements of INFO that are occupied in dup2 are 1, 3, 7, 15,

and so on (each position is 1 more than twice the previous one). If the value of

MXNODE is kept at 500, a maximum of only 16 distinct ascending numbers can

be accommodated in the input (the last one will be at position 255). This can be
contrasted with dup, which permits any 500 distinct numbers in any order before

it runs out of space.

Traversing Binary Trees

The methods for traversing binary trees are best described by recursive algorithms
that mirror the traversal definitions. The three algorithms pretrav, intrav,

and postrav print the contents of a binary tree in preorder, inorder, and postorder,

respectively. The input variable to each algorithm is a pointer to the root node of

a binary tree.
subroutine pretrav(tree)

if tree = null
then return

endif

print info(tree)

pretrav(left(tree))

pretrav(right(tree))
return

subroutine intrav(tree)

if tree = null

then return

endif

intrav(left (tree))

print info(tree)

intrav(right(tree))

return
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subroutine postrav(tree)

If tree = null
then return

endif

post rav(left(tree))

postrav(right(tree))

print info(tree)
return

The reader is invited to simulate the actions of these algorithms on the trees of
Figures 6.1.7 and 6.1.8.

Of course, BASIC routines to perform these traversals must explicitly perform
the necessary stacking and unstacking. For example, a BASIC routine to

traverse in inorder a binary tree using the node representation may be written as
follows. (We use STMAX as the maximum stack size so as not to conflict with
MXNODES and MAKETREE.)

16000 ‘subroutine intrav

16010 ‘inputs: TREE

16020 ‘outputs: none

16030 ‘locals: EMPTY, P, POPS, SITEM, STMAX, TP, X
16040 ‘declare the recursion stack

16050 STMAX = 500

16060 DIM SITEM(STMAX)

16070 TP = 0

16080 P = TREE: ‘begin at the tree root

16090 ‘travel down left branches as far as possible saving pointers to nodes passed
16100 IF P = 0 THEN GOTO 16150

16110 X=P

16120 GOSUB 1000: ‘subroutine push pushes X onto the stack
16130 P = PTR(P,LEFT)

16140 GOTO 16100

16150 ‘check if finished

16160 GOSUB 3000: ‘subroutine empty sets the variable EMPTY
16170 IF EMPTY = TRUE THEN RETURN

16 180 ‘at this point the left subtree is empty, visit the root

16190 GOSUB 2000: ‘subroutine pop sets the variable POPS
16200 P = POPS

16210 PRINT INFO(P)

16220 ‘traverse the right subtree

16230 P = PTR(P,RIGHT)
16240 GOTO 16090

16250 ‘endsub
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The nonrecursive routines to traverse a binary tree in postorder and preorder

as well as the nonrecursive traversal of binary trees using the almost complete

array representation are left as exercises for the reader.

Threaded Binary Trees

Since traversing a binary tree is such a common operation, it would be helpful to

find a more efficient method to perform the operation. Let us examine the routine

intrav to discover the reason a stack is needed. The stack is popped when P

equals null (0 under the node implementation). This happens in one of two cases:

one case is when the loop consisting of statements 16090—16140 is exited after

having been executed one or more times. This implies that the program has traveled

down left branches until it reached a null pointer, stacking each node as it

was passed. Thus the top element of the stack is the value of P before it became

0. If an auxiliary pointer Q is kept one step behind P, the value of Q can be used

directly and need not be popped.

The other case in which P is 0 is when the loop consisting of statements

16090—16140 is skipped entirely. This occurs after reaching a node with an empty

right subtree, executing statement 16230 [P = PTR(P,RIGHT)J, which may

set P to 0, and returning to statement 16090 and then to 16150. At this point, we

would have lost our way were it not for the stack whose top points to the node

whose left subtree was just traversed. Suppose, however, that instead of a null

pointer, a node with an empty right subtree contained a pointer to the node which

would be on top of the stack at that point in the algorithm. Then there would no

longer be a need for the stack, since the node points directly to its inrder successor.

Such a pointer is called a thread and must be differentiable from a tree pointer,

which is used to link a node to its left or right subtree. Figure 6.2.3 shows the

binary trees of Figure 6.1.7 with threads replacing null pointers in nodes with

empty right subtrees. The threads are drawn with dotted lines to differentiate

them from tree pointers. Note that the rightmost node in each tree still has a null

right pointer since it has no inorder successor. Such trees are called right in-

threaded binary trees.

How can threads be represented in the BASIC implementation of binary

trees? In the node implementation, a thread can be represented by a negative value

of PTR(P,RIGHT). The absolute value of a negative PTR(P,RIGHT) is the

index of the node which is the inorder successor of node(P). The sign of

PTR(P, RIGHT) indicates whether its absolute value represents a thread (minus)

or a pointer to a nonempty subtree (plus).



/

Figure 6.2.3 Right in-threaded binary trees.
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Under this implementation, the following routine traverses a right in-threaded
binary tree in inorder:

16000 ‘subroutine intrav2

16010 ‘inputs: TREE

16020 ‘outputs: none

16030 ‘locals: P, Q

16040 P = TREE

16050 ‘travel down left links keeping Q behind P

16060 Q = 0

16070 IF P = 0 THEN GOTO 16110

16080 Q=P

16090 P = PTR(P,LEFT)

16100 GOTO 16070

16110 IF Q = 0 THEN RETURN: ‘check if finished

16120 PRINT INFO(Q)

16130 P = PTR(Q,RIGHT)

16140 IF P > = 0 THEN GOTO 16050: ‘if node(Q) has a right subtree, traverse it

16150 ‘follow the thread to Q’s inorder successor

16160 Q = —P

16170 PRINT INFO(Q)

16180 P = PTR(Q,RIGHT)

16190 GOTO 16140

16200 ‘endsub

Under the almost complete array implementation of binary trees, the FLAG
array can be used to contain threads. As before, FLAG(I) equals 0 if I does not
represent a node. If I represents a node with a right son, FLAG(I) equals 1 and its
right son is at 2*1 + 1. However, if I represents a node with no right son,
FLAG(I) contains the negative of the index of its inorder successor. (Note that
we must use negative numbers to allow us to distinguish a node with a right son
from a node whose inorder successor is the root of the tree.) If I is the rightmost
node of the tree, so that it has no inorder successor, FLAG(I) can contain the

value —(MXNODE + 1). We leave the implementation of traversal algorithms
for this representation as an exercise for the reader.

In a right in-threaded binary tree, the inorder successor of any node can be
found efficiently. Such a tree can also be constructed in a straightforward manner.

Under the node representation, the function maketree remains unchanged
from the unthreaded version and the routines setleft and setright are as follows:

14000 ‘subroutine setleft

14010 ‘inputs:P,X

14020 ‘outputs: none

14030 ‘locals: GTNODE, QX
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14040 IF P = 0 THEN PRINT “VOID INSERTION”: STOP

14050 IF PTR(P,LEFT) <>0 THEN PRINT “INVALID INSERTION”: STOP

14060 GOSUB 10000: ‘subroutine getnode sets the variable GTNODE

‘to point to a newly allocated node

14070 QX = GTNODE

14080 INFO(QX) = X

14090 PTR(P,LEFT) = QX

14100 PTR(QX,RIGHT) = — P: ‘the inorder successor of node(QX) is node(P)

14110 PTR(QX,LEFT) = 0

14120 PTR(QX,FTHER) = P
14130 RETURN

14140 ‘endsub

15000 ‘subroutine setright

15010 ‘inputs: P, X

15020 ‘outputs: none

15030 ‘locals: GTNODE, QX, RX
15040 IF P = 0 THEN PRINT “VOID INSERTION”: STOP

15050 IF PTR(P,RIGHT) > 0 THEN PRINT “INVALID INSERTION”: STOP

15060 GOSUB 10000: ‘subroutine getnode sets the variable GTNODE

‘to point to a newly allocated node

15070 QX = GTNODE

15080 INFO(QX) = X

15090 RX = PTR(P,RIGHT): ‘save the inorder successor of node(P)

15100 PTR(P,RIGHT) = QX

15110 PTR(QX,LEFT) = 0

15120 PTR(QX,RIGHT) = RX: ‘the inorder successor of node(QX) is the

‘previous successor of node(P)

15130 PTR(QX,FTHER) = P
15140 RETURN

15150 ‘endsub

We leave to the reader to provide appropriate maketree, setleft, and setright routines

for right in-threaded binary trees under the almost complete array implementation.

A left in-threaded binary tree may be defined similarly as one in which

each null left pointer is altered to contain a thread to that node’s inorder predecessor,

and an in-threaded binary tree may be defined as a binary tree which is both

left in-threaded and right in-threaded. However, left in-threading does not yield

the advantages of right in-threading. We may also define right and left prethreaded

binary trees, in which null right and left pointers of nodes are replaced by their

preorder successors and predecessors, respectively. A right prethreaded binary

tree may be traversed efficiently in preorder without the use of a stack. A right in-

threaded binary tree may also be traversed in preorder without the use of a stack.

The traversal algorithms are left as exercises for the reader.
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Heterogeneous Binary Trees

Often, the information contained in different nodes of a binary tree do not all

have the same attributes. For example, in representing a binary expression with

numerical operands, we may wish to use a binary tree whose leafs contain numbers

but whose nonleaf nodes contain characters representing operators. Figure

6.2.4(a) illustrates such a binary tree. To represent such a tree in BASIC, we may

place a pointer in the INFO field of each node. This pointer is an index into an

array of the type appropriate for that node. For example, if the node is to represent

an integer, the pointer in its INFO field is to an element of an integer array.

Each tree node must also contain within itself an indication of the type of object

to which its INFO field points. Figure 6.2.4(b) shows such a representation of the

binary tree in Figure 6.2.4(a). The figure shows two arrays: OPER to hold the

possible operators, and NUM to hold operands. Each tree node contains two

fields (in addition to left, right, and father pointers). The first is a character that

represents the type of the node. If this character is “N”, the node represents an

operand and the second field in the node is the position of the operand in the

array NUM. If this character is “0”, the node represents an operator and the

second field is the position of the operator in the array OPER. In this example we

may preinitialize an array of characters containing the five arithmetic operations

and use an additional array to contain the operands.

(a)

Figure 6.2.4 Binary tree representing 3 + 4 * (6—7)15 + 3.
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DEFSTR 010

DIM INFO(500): ‘points into the array NUM or OPER20

DIM OTYPE(500): ‘ “N” = operand “0” = operator30

DIM PTR(500,3)40

LEFT = 1

RIGHT = 2

FTHER = 3

DIM OPER(5): ‘holds operators80

OPER(1) =90

OPER(2) =100

OPER(3) =110

OPER(4) = “I”120

OPER(5) =130

DIM NUM(500): ‘holds operands140

Note that only one copy of each operator exists in OPER (since all the operators
to be used are known in advance), but that several copies of an operand (e.g., 3)

OPER

r z z E

NUM iiiELi

(b)

Figure 6.2.4 (continued)

50

60

70
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may exist in NUM (since the number of possible operands is too large to keep

permanently only one copy of each in an array. Further, it may be too much work

to search the entire array to determine the location of an operand that is already

present within the array.)

Alternatively, we may represent the operators by a sthng OPER initialized

to “+ — ‘/t” and use the MID$ function to extract the appropriate operator. Another

option would be to use the INFO portion of the node to contain, depending

on the contents of OTYPE, either the numerical operand itself or a pointer to the

proper operator in OPER (provided that all the operands and the intermediate results

are integer). Thus the space needed for NUM would be saved. Yet another

option is to store both the operators and operands in character-string form in the

INFO portion of the node, and use the VAL function to convert an operand to
numeric form. This would make both OPER and NUM unnecessary.

Let us write a BASIC subroutine evbtree which accepts a pointer to a tree

representing a binary expression and calculates the value of the expression represented
by the tree. It uses the auxiliary subroutine apply. The first input variable

of apply is a character representing an operator and the last two are numbers
which are two operands. The subroutine apply returns a number that is the result

of applying the operator to the two operands.

evbtree may best be defined recursively as an algorithm for a function that

accepts a pointer to such a tree, evaluates the left and right subtrees, and then

applies the operator of the root to the two results. We use the first representation

described above. However, we note that a separate field OTYPE is unnecessary

since a node contains an operand if and only if it is a leaf. Thus the test whether

node(p) contains an operand is equivalent to whether ptr(p,left) equals null.

function evbtree(tree)

if ptr(tree,left) = null

then ‘the expression is a single operand
evbtree = num(info(tree))
return

else ‘evaluate the left subtree

frsoper = evbtree(ptr(tree,left))

‘evaluate the right subtree

secoper = evbtree(ptr(tree, right))

‘extract the operator

osymb = oper(info(tree))

‘apply the operator and return the result

evbtree = apply(osymb,frsoper, secoper)
return

endif

Using the techniques of Chapter 5, we may now implement this algorithm

as a BASIC program.
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21000 ‘subroutine evbtree

21010 ‘inputs: TREE

21020 ‘outputs: EVBTREE

21030 ‘locals: APPLY, CFRSOPER, CPARAM, CRETADDR, FRSOPER, I,

OSYMB, PARAM, Qi, Q2, RETADDR, SECOPER

21040 ‘define the recursion stack; each stack element consists of

‘a tree pointer parameter, a return address indicator,

‘and a value for the first operand

21050 DIM PARAM(50), RETADDR(50), FRSOPER(50)

21060 TP = 0: ‘initialize the stack to empty

2 1070 ‘push an initial record onto the stack

21080 CPARAM = TREE: ‘CPARAM is the current tree pointer parameter
21090 CRETADDR = 1: ‘CRETADDR is the current return address

‘indicator.

21 100 ‘1 represents a return to the main program

2 represents a return after the first recursive call

‘3 represents a return after the second recursive call

21110 CFRSOPER = 0: ‘CFRSOPER is the current first operand

‘initialized to the dummy value 0
21120 GOSUB 1000: ‘subroutine push saves CPARAM, CRETADDR,

‘and CFRSOPER on the stack

21130 ‘beginning of simulated recursive routine

21140 ‘statements 21160—21210 traverse the left side of the

‘tree until a leaf (operand) is found

21150 ‘when a leaf is found, return its operand value in the

‘variable EVBTREE

21160 IF PTR(CPARAM,LEFT) = 0

THEN EVBTREE = NUM(INFO(CPARAM)): GOTO 21380

21170 ‘simulation of the recursive call evbtree(ptr(tree,left))

21180 GOSUB 1000: ‘subroutine push

21190 CRETADDR = 2

21200 CPARAM = PTR(CPARAM,LEFT)

21210 GOTO 21130

21220 ‘return to this point after evaluating evbtree(ptr(tree,left))

21230 CFRSOPER = EVBTREE

21240 ‘the first operand has been found; compute the

‘second operand by calling evbtree(ptr(tree,right))

21250 GOSUB 1000: ‘subroutine push

21260 CRETADDR = 3

21270 CPARAM = PTR(CPARAM,RIGHT)

21280 GOTO 21130
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21290 ‘return to this point after evaluating evbtree(ptr(tree,right))
21300 SECOPER = EVBTREE

21310 ‘apply the operator to the two operands

21320 OSYMB = OPER(INFO(CPARAM)): ‘operator

21330 Qi = CFRSOPER: ‘first operand

21340 Q2 = SECOPER: ‘second operand

21350 GOSUB 6000: ‘subroutine apply accepts OSYMB, Q1, and

‘Q2 and sets the variable APPLY
21360 EVBTREE = APPLY

21370 ‘simulate a return from the evaluation of evbtree(tree) when tree

‘points to an operator node

21380 ‘simulation of a return from evbtree
21390 I = CRETADDR: ‘save the current return address

21400 GOSUB 2000: ‘subroutine pop pops the stack and restores the
‘variables CPARAM, CRETADDR, and CFRSOPER

21410 IF I = 1 THEN RETURN

2 1420 IF I = 2 THEN GOTO 21220

21430 IF I = 3 THEN GOTO 21290

21440 ‘endsub

Note that not all of the variables used in the algorithm (e.g., secoper) are stored

in the stack; variables are stacked only if their values may be changed by a subsequent
recursive call.

EXERCISES

1. Write a BASIC subroutine that accepts a pointer to a node and returns TRUE if that

node is the root of a valid binary tree and FALSE otherwise.

2. Write a BASIC subroutine that accepts a pointer to a node of a binary tree and returns

the level of the node in the tree.

3. Write a BASIC subroutine (for both representations presented in this section) that

accepts a pointer to a binary tree and creates a new binary tree which is the mirror

image of the first (i.e., all left subtrees are now right subtrees, and vice versa; see

Exercises 6.1.10 and 6.1.11).

4. Write BASIC subroutines that convert a binary tree represented solely by a FTHER

array (in which a left son’s FTHER field contains the negative of the pointer to its

father and a right son’s FTHER contains a pointer to its father) to its representation

using LEFT and RIGHT arrays, and vice versa.

5. Write a BASIC program to perform the following experiments. Generate 100 distinct

random numbers. As each number is generated, insert it into an initially empty binary

tree so that all numbers in a left subtree of a node are smaller than the number in the

node, which is in turn smaller than the numbers in the right subtree of the node.
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When all 100 numbers have been inserted, print the level of the leaf with largest level
and the level of the leaf with smallest level. Repeat this process 50 times. Print a
table with a count of how many of the 50 runs resulted in a difference between the
maximum and minimum leaf level of 1, 2, 3, and so on.

6. Write a BASIC subroutine that accepts two pointers to non-root nodes in a binary tree
and returns a pointer to the youngest common ancestor of the two nodes.

7. Write BASIC subroutines to traverse a binary tree in preorder and postorder using the
node representation.

8. Write BASIC subroutines to traverse a binary tree in inorder, preorder, and postorder
using the almost complete array representation.

9. Write a BASIC subroutine to create a binary tree given
(a) The preorder and inorder traversals of that tree.

(b) The preorder and postorder traversals of that tree.

Each subroutine should accept two character strings as inputs. The tree created
should contain a single character in each node.

10. How do you account for the similarity between the nonrecursive subroutine for in-

order traversal presented in this section and the nonrecursive routine to solve the
Towers of Hanoi problem of Section 5.2?

11. An index of a textbook consists of major terms, ordered alphabetically, each of
which is accompanied by a set of page numbers and a set of subterms. The subterms

are printed on successive lines following the major term and are arranged alphabetically
within the major term. Each subterm is accompanied by a set of page numbers.
Design a data structure to represent such an index and write a BASIC program

to print an index from data as follows. Each input line begins with an M (major term)
or an S (subterm). An M line contains an M followed by a major term followed by an
integer n (possibly zero) followed by n page numbers where the major term appears.
An S line is similar except that it contains a subterm rather than a major term. The

input lines appear in no particular order except that each subterm is considered to be a
subterm of the major term that last precedes it. There may be many input lines for a

single major term or subterm (all page numbers appearing on any line for a particular
term should be printed with that term).

The index should be printed with one term on a line followed by all the pages
on which the term appears, in ascending order. Major terms should be printed in alphabetical

order. Subterms should appear in alphabetical order immediately following
their major term. Subterms should be indented beneath their major term.

The set of major terms should be organized as a binary tree. Each node in the
tree contains (in addition to left and right pointers and the major term itself) pointers
to two other binary trees. One of these represents the set of page numbers in which
the major term occurs and the other represents the set of subterms of the major term.
Each node on a subterm binary tree contains (in addition to left and right pointers and

the subterm) a pointer to a binary tree representing the set of page numbers in which
the subterm occurs.

12. Define a ternary tree and extend to it the concepts of the preceding two sections.
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3. AN EXAMPLE: THE HUFFMAN ALGORITHM

Consider the following problem. Suppose that we have an alphabet of n symbols
and a long message consisting of symbols from this alphabet. We wish to encode
the message as a long bit sthng (we define a bit to be either 0 or 1) as follows.

Assign a bit string code to each symbol of the alphabet. Then concatenate (string
together) the individual codes of the symbols making up the message to produce
an encoding for the message. For example, suppose that the alphabet consists of
the four symbols A, B, C, D and that codes are assigned to these symbols as
follows:

Symbol Code

A 010

B 100

C 000

D 111

The message ABACCDA would then be encoded as 010100010000000111010.
However, such an encoding would be inefficient since 3 bits are used for each

symbol, so that 21 bits are needed to encode the entire message. Suppose that a
2-bit code is assigned to each symbol, as follows:

Symbol Code

A 00

B 01

C 10

D 11

Then the code for the message would be 00010010101100, which requires only
14 bits. We wish to find a code that minimizes the length of the encoded message.

Let us reexamine the example above. Each of the letters B and D appears
only once in the message, while the letter A appears three times. Thus if a code is
chosen in which the letter A is assigned a shorter bit string than the letters B and
D, the length of the encoded message would be small. This is because the short

code (representing the letter A) would appear more frequently than the long code.
Indeed, codes can be assigned as follows:

Symbol Frequency Code

A 3 0

B 1 110

C 2 10

D 1 111
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Using this code, the message ABACCDA is encoded as 01 10010101110, which

requires only 13 bits. In very long messages that contain symbols which appear
very infrequently, the savings are substantial. Ordinarily, codes are not constructed

on the basis of the frequency of the occurrence of characters within a

single message alone, but on the basis of their frequency within a whole set of
messages. The same code set is used for each message. For example, if messages
consist of English words, the known relative frequency of occurrence of the letters

of the alphabet in the English language would be used.

Note that if variable-length codes are used, the code for one symbol may

not be a prefix of the code for another. This must be true if the decoding is to

proceed from left to right. If the code for a symbol x, c(x), were a prefix of the
code of a symbol y, c(s), then when c(x) is encountered it is unclear whether it

represents the symbol x or whether it is the first part of c(y).

In our example the bit sthng for a message is scanned from left to right. If a

0 is encountered as the first bit, the symbol is an A; otherwise, it is a B, C, or D

and the next bit is examined. If the second bit is a 0, the symbol is a C; otherwise,
it must be a B or a D and the third bit must be examined. If the third bit is a

0, the symbol is a B; if it is a 1, the symbol is a D. As soon as the first symbol

has been identified, the process is repeated starting at the next bit to find the second
symbol.

This suggests a method for developing an optimal encoding scheme given

the frequency of occurrence of each symbol in a message. Find the two symbols
that appear least frequently. In our example, these are B and D. The last bit of
their codes will differentiate between them: 0 for B and 1 for D. Combine these

two symbols into the single symbol BD, whose code represents the knowledge

that a symbol is either a B or a D. The frequency of occurrence of this new symbol
is the sum of the frequencies of its two constituent symbols. Thus the frequency

of BD is 2. There are now three symbols: A (frequency 3), C (frequency

2), and BD (frequency 2). Again choose the two symbols with smallest frequency:
C and BD. The last bit of their codes will differentiate between them: 0 for C

and 1 for BD. The two symbols are then combined into the single symbol CBD
with frequency 4. There are now only two symbols remaining: A and CBD.
These are combined into the single symbol ACBD. The last bits of the codes for A
and CBD will differentiate between them: 0 for A and 1 for CBD.

The symbol ACBD now contains the entire alphabet; it is assigned the null

bit string of length zero as its code. This means that at the start of the decoding,

before any bits have been examined, it is certain that any symbol is contained in

ACBD. The two symbols that comprise ACBD (A and CBD) are assigned the

codes 0 and 1, respectively. If a 0 is encountered, the encoded symbol is an A; if

a 1 is encountered, it is a C, B, or D. Similarly, the two symbols that constitute

CBD (C and BD) are assigned the codes 10 and 11, respectively. The first bit
indicates that the symbol is one of the constituents of CBD and the second bit

indicates whether it is a C or a BD. The symbols that comprise BD (B and D) are

then assigned the codes 110 and 111. By this process, symbols that appear fre
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quently in the message are assigned shorter codes than symbols that appear infrequently.

The action of combining two symbols into one suggests the use of a strictly

binary tree. Each leaf node represents a symbol of the original alphabet. Each

nonleaf node represents an aggregate of the symbols in its descendant leaf nodes.

Figure 6.3. 1(a) shows the binary tree constructed using the preceding example.
Each node in the illustration contains a symbol and its frequency. Figure 6.3.1(b)

shows the binary tree constructed by this method for the alphabet and frequency

table of Figure 6.3.1(c). Such trees are called Huffman trees, after the discoverer

of this encoding method.

Once a Huffman tree is constructed, the code of any symbol in the alphabet

can be determined by starting at the leaf which represents that symbol and climbing

up to the root. The code is initialized to the null string. Each time a left

branch is climbed, 0 is appended to the left of the code; each time a right branch

is climbed, 1 is appended to the left of the code.

The info portion of a tree node contains the frequency of the occurrence of

the symbol represented by that node. The inputs to the algorithm are n, the number

of symbols in the original alphabet, and frqncy, an array of size at least n

such that frqncy(i) is the relative frequency of the ith symbol. The algorithm is to

assign values to an array code of size at least n so that code(i) contains the code

assigned to the ith symbol. The algorithm also constructs an array pstn of size at

least n such that pstn(i) points to the node representing the ith symbol. This array

is necessary to identify the point in the tree from which to start in constructing the

code for a particular symbol in the alphabet. The isleft operation introduced earlier
can be used once the tree has been constructed as we climb the tree in order to

determine whether 0 or 1 should be placed at the front of the code.

Using these routines, we may outline Huffman’s algorithm as follows. (The

set rootnodes contains pointers to the roots of partial binary trees which are not

yet left or right subtrees.)

rootnodes = the empty set
‘construct a node for each symbol

fori= lton

p = maketree(frqncy(i))

pstn(i) = p

add p to rootnodes
next i

‘construct the tree

while rootnodes contains more than one item do

p1 = the element in rootnodes with smallest info value

remove p1 from rootnodes

p2 = the element in rootnodes with smallest info value

remove p2 from rootnodes



322 Trees Chap. 6

‘combine p1 and p2 as branches of a single tree

p = maketree(info(pl) + info(p2))

set p1 and p2 as the sons of node(p)

add p to rootnodes
endwhile

‘the tree is now constructed; use it to find codes

root = the single element in rootnodes

fori= lton

code(i) =

p = pstn(i)

‘travel up the tree

while p <> root do

if isleftp)

then code(i) = “0” + code(i)

else code(i) = “1” + code(i)

endif

p = father(p)
endwhile

next i

Note that the Huffman tree is strictly binary. Thus if there are n symbols in

the alphabet, the Huffman tree (which has n leafs) can be represented by an array

of nodes of size 2n — 1. Since the amount of storage needed for the tree is known,

it may be allocated in advance. We also note that the Huffman tree is traversed
from the leafs to the root. This means that LEFT and RIGHT fields are not needed;

a FTHER field alone is sufficient to represent the tree structure. The sign of

the FTHER field can be used to determine if a node is a left or right son, while its

absolute value is the pointer to the node’s father. A left son holds a negative

FTHER value; a right son holds a positive FTHER value. The nodes of the tree

are therefore declared by

80 DIM INFO(2*N — 1), FTHER(2*N — 1)

Let us write a program to encode the characters of a message using Huff-

man’s algorithm. The input ot the program consists of a number N, which is the
number of symbols in the alphabet followed by a set of N pairs, each of which

consists of a symbol and its relative frequency. The program first constructs a

string ALPHA, which consists of all the symbols in the alphabet, and an array
CODE such that CODE(I) is the code assigned to the Ith symbol in ALPHA. The

program then prints each character, its relative frequency, and its code. Note that

it is unnecessary to construct the array PSTN since node(I) represents the Ith
symbol of the alphabet under this representation.

10 ‘program findcode

20 ‘the statement CLEAR 100 is required on TRS-80 microcomputers
30 DEFSTRA,C,S

40 DEFINTF,I,J,N,P,Q,T
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50 TRUE = 1

60 FALSE = 0

70 READ N

80 DIM CODE(N), FRQNCY(N)

90 DIM INFO(2*N — 1), FTHER(2*N — 1)

100 FOR I = 1 TO 2*N — 1: ‘initialize arrays
110 INFO(I) = 0

120 FTHER(I) = 0

130 NEXT I

140 FOR I = 1 TO N: ‘initialize alphabet and frequencies
150 READ SYMB, FRQNCY(I)

160 ALPHA = ALPHA + SYMB

170 NEXT I

180 ‘build the Huffman tree
190 FORI=1TON

200 INFO(I) = FRQNCY(I)

210 NEXT I

220 FOR I = N + 1 TO 2*N —1

230 ‘I is the next available node; search all previous nodes for

‘the two root nodes P1 and P2 with smallest frequencies
240 Ji = 9999

250 J2 = 9999

260 P1=0

270 P2=0

280 FORQ=1TOI—1

290 IF FTHER(Q) = 0

THEN IF INFO(Q) <Ji

THEN P2=P1: J2 = Ji: P1 =Q: Ji =INFO(Q)

ELSE IF INFO(Q)<J2 THEN P2= Q: J2 = INFO(Q)

300 NEXT Q

310 P = I: ‘allocate node(P)

320 INFO(P) = J1+J2

330 ‘set P1 to the left subtree of P and P2 to the right subtree
340 FTHER(P1) = —P

350 FTHER(P2) = P

360 NEXT I

370 ‘extract the codes from the tree
380 FORI=1TON

390 CODE(I) =

400 P=I

410 IF FTHER(P) = 0 THEN GOTO 450

420 IF FTHER(P) <0 THEN CODE(I) = “0” + CODE(I)

ELSE CODE(I) = “1” + CODE(I)
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430 p = ABS(FTHER(P))

440 GOTO 410

450 NEXT I

460 FORI=1TON

470 PRINT MID$(ALPHA,I, 1), INFO(I), CODE(I)
480 NEXT I

490 END

800 DATA...

The reader is referred to Section 9.4, which suggests further improvements

to this program. We leave to the reader the coding of the subroutine encode. This

subroutine accepts the string ALPHA and the array CODE constructed in the program

above and a message MSGE and returns the bit-string encoding of the message.

Given the encoding of a message and the Huffman tree used in constructing

the code, the original message can be recovered as follows. Begin at the root of

the tree. Each time a 0 is encountered, move down a left branch, and each time a

1 is encountered, move down a right branch. Repeat this process until a leaf is

encountered. The next character of the original message is the symbol that corresponds

to that leaf. See if you can decode 1110100010111011 using the Huffman

tree of Figure 6.3.1(b).

In order to decode, it is necessary to travel from the root of the tree down to
its leafs. This means that the fields LEFT and RIGHT are needed to hold the left

and right sons of a particular node. It is straightforward to construct the arrays

LEFT and RIGHT from the array FTHER. Alternatively, the arrays LEFT and

RIGHT can be constructed directly from the frequency information for the symbols

of the alphabet using an approach similar to that used in constructing the

array FTHER. (Of course, if the trees are to be identical, the symbol/frequency

pairs must be presented in the same order under the two methods.) We leave

these algorithms, as well as the decoding algorithm, as exercises for the reader.

EXERCISES

1. Write a BASIC subroutine encode. The subroutine accepts the string ALPHA and the

array CODE produced by the programfindcode in the text and a message MSGE. The

subroutine outputs the Huffman encoding of that message.

2. Write a BASIC subroutine decode that accepts the string ALPHA produced by the

program findcode in the text, arrays LEVI’ and RIGHT used to represent a Huffman

tree, and a string MSGE. The subroutine should output the Huffman decoding of
MSGE.
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3. Is it possible to have two different Huffman trees for a set of symbols with given frequencies?

Either give an example where two such trees exist or prove that there is only

a single such tree.

4. Define a Fibonacci binaiy tree of order n as follows: If n = 0 or n = 1, the tree

consists of a single node. If n > 1, the tree consists of a root, with the Fibonacci binary

tree of order n — 1 as the left subtree and the Fibonacci binary tree of order n —2 as

the right subtree.

(a) Write a BASIC subroutine that returns a pointer to the Fibonacci binary tree of
order n.

(b) Is such a tree strictly binary?

(c) What is the number of leafs in the Fibonacci binary tree of order n?

(d) What is the depth of the Fibonacci binary tree of order n?

5. Given a binary tree t, its extension is defined as the binary tree e(t) formed from t by

adding a new node at each null left and right pointer in t. The new nodes are called

external nodes and the original nodes are called internal nodes. e(t) is called an extended

binary tree.

(a) Prove that an extended binary tree is strictly binary.

(b) If t has n nodes, how many nodes does e(t) have?

(c) Prove that all leafs in an extended binary tree are external nodes.

(d) Write a BASIC subroutine that extends a binary tree t.

(e) Prove that any strictly binary tree with more than one node is an extension of one

and only one binary tree.

(f) Write a BASIC subroutine that accepts a pointer to a strictly binary tree II containing

more than one node and deletes nodes from ti creating a binary tree t2

such that ti = e(t2).

(g) Show that the complete binary tree of order n is the nth extension of the binary

tree consisting of a single node.

6. Given a strictly binary tree t in which the n leafs are labeled as nodes 1 through n, let

level(i) be the level of node i and letfrq(i) be an integer assigned to node i. Define the

weighted path length of t as the sum of frq(i)*level(i) over all leafs of t.

(a) Write a BASIC subroutine to compute the weighted path length given fields frq

and fiher.

(b) Show that the Huffman tree is the strictly binary tree with minimum weighted path

length if frq(i) is interpreted as frqncy(i).

4. REPRESENTING LISTS AS BINARY TREES

There are several operations that can be performed on a list of elements. Included

among these operations are adding a new element to the front or rear of the list,

deleting the existing first or last elements of the list, retrieving the kth element or

the last element of the list, inserting an element following or preceding a given
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element, deleting a given element, and deleting the predecessor or successor of a

given element. Building a list with given elements is an additional operation

which is frequently required.

Depending on the representation chosen for a list, some of these operations

may or may not be possible with varying degrees of efficiency. For example, a

list may be represented by successive elements in an array or as nodes in a linked

structure. Inserting an element following a given element is relatively efficient in

a linked list (involving modifications to a few pointers aside from the actual insertion)
but relatively inefficient in an array (involving moving all subsequent

elements in the array one position). However, finding the kth element of a list is

far more efficient in an array (involving only the computation of an offset) than in

a linked structure (which requires passing through the first k— 1 elements). Similarly,

it is not possible to delete a specific element in a singly linked linear list

given only a pointer to that element and it is only possible to do so inefficiently in

a singly linked circular list (by traversing the entire list to reach the previous element,

and then performing the deletion). The same operation, however, is quite

efficient in a doubly linked (linear or circular) list.

In this section we introduce a tree representation of a linear list in which the

operations of finding the kth element of a list and deleting a specific element are

relatively efficient. It is also possible to build a list with given elements using this

representation. We also consider briefly the operation of inserting a single new
element.

A list may be represented by a binary tree as illustrated in Figure 6.4.1.

Figure 6.4.1(a) shows a list in the usual linked format, while Figure 6.4.1(b) and

(c) show two binary tree representations of the list. Elements of the original list

are represented by leafs of the tree (shown as squares in the figure), while nonleaf

nodes of the tree (shown as circles in the figure) are present as part of the internal

tree structure. Associated with each leaf node are the contents of the corresponding

list element. Associated with each nonleaf node is a count representing the

number of leafs in the node’s left subtree. (Although this count can be computed

from the tree structure, it is maintained as a data element to avoid recomputing its
value each time it is needed.) The elements of the list in their original sequence

are assigned to the leafs of the tree in the inorder sequence of the leafs. Note from

Figure 6.4.1 that several binary trees can represent the same list.

Finding the kth Element of a List

To justify using so many extra tree nodes to represent a list, we present an algonthm
to find the kth element of a list represented by a tree. Let tree point to the

root of the tree, and let lcount(p) represent the count associated with the nonleaf
node pointed to by p [lcount(p) is the number of leafs in the tree rooted at

node (left(p))j. The following algorithm sets the variable find to point to the leaf

containing the kth element of the list. The algorithm maintains a variable r containing

the number of list elements remaining to be counted. r is initialized to k at
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Figure 6.4.1 A list and two corresponding binary trees.
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the beginning of the algorithm. At each nonleaf node p the algorithm determines
from the values of r and lcount(p) whether the desired leaf is located in the left or

right subtree. If the leaf is in the left subtree, the algorithm proceeds to that sub-

tree without modifying the value of r. If the desired leaf is in the right subtree,

the algorithm proceeds to that subtree after reducing the value of r by the value of

lcount(p).

r=k

p = tree

while p is not a leaf node do

if r <= lcount(p)

then p = left(p)

else r = r — lcount(p)

p = right(p)

endif
endwhile

find = p

Figure 6.4.2(a) illustrates finding the fifth element of a list in the tree of

Figure 6.4. 1(b), while Figure 6.4.2(b) illustrates finding the eighth element in

the tree of Figure 6.4.1(c). The dashed line represents the path taken by the algorithm

down the tree to the appropriate leaf. We indicate the value of r (the remaining

number of elements to be counted) next to each node that is encountered

by the algorithm.

We note that the number of tree nodes examined in finding the kth list element

is less than or equal to one more than the depth of the tree (the longest path

in the tree from the root to a leaf). Thus four nodes are examined in Figure

6.4.2(a) in finding the fifth element of the list and also in Figure 6.4.2(b) in finding

the eighth element. If a list is represented as a linked structure, four nodes are

traversed [i.e., the operation p = next(p) would be performed four timesj in

finding the fifth element of a list and seven nodes are traversed in finding the

eighth element. Although this is not a very impressive saving, consider a list with

1000 elements. A binary tree of depth 10 is sufficient to represent such a list.

Thus, finding the kth element (regardless of whether k was 3, 253, 708, or 999)

using a binary tree would require examining no more than 11 nodes. Since the

number of leafs of a binary tree increases as 2 raised to the power of its depth,

such a tree represents a relatively efficient data structure for finding the kth element
of a list.

Deleting an Element

How can an element be deleted from a list represented by a tree? The deletion

itself is relatively easy. It involves only resetting to null a left or right pointer in

the father of the deleted node dn. However, to enable subsequent accesses, the



r

(b)

Figure 6.4.2 Finding the mth element in a tree-represented list.

r 1

r

r 1

(a)

r

r =3

329



330 Trees Chap. 6

counts in all ancestors of dn may have to be modified. The modification consists

of reducing Icount by 1 in each node nd of which dn was a left descendant, since
the number of leafs in the left subtree of nd is 1 fewer. At the same time, if the

brother of dn is a leaf, it can be moved up the tree to take the place of its father.

We can then move that node up even farther if it has no brother in its new position.

This may reduce the depth of the resulting tree, making subsequent accesses
slightly more efficient.

We may therefore present an algorithm to delete a leaf pointed to by p from
a tree (and thus an element from a list) as follows. (The line numbers at the left

are for future reference.)

1. ifp = tree
2. then tree = null

3. freenode(p)
4. return

5. endif

6. f = father(p)

7. ‘remove node(p) and set b to point to its brother

8. ifp=left(f)
9. then left(f) = null

10. b = right(f)
11. lcount(f) = lcount(f) —1
12. else right(f) = null
13. b = left(f)

14. endif

15. if node(b) is a leaf
16. then ‘move the contents of node(b) up to its father and free node(b)
17. info(f) = info(b)
18. left(f) = null
19. right(f) = null
20. lcount(f) = 0

21. freenode(b)

22. endif

23. freenode(p)

24. ‘climb up the tree

25. q=f

26. while q <> tree do
27. f = father(q)
28. if q = left(f)
29. then ‘the deleted leaf was a left descendant of node(f)
30. lcount(f) = lcount(f)— 1
31. b = right(f) ‘node(b) is the brother of node(q)
32. else b = left(f) ‘node(b) is the brother of node(q)
33. endif
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34. if b = null and node(q) is a leaf
35. then ‘move up the contents of node(q)

‘to its father and free node(q)
36. info(f) = info(q)
37. left(f) = null
38. right(f) = null
39. lcount(f) = 0
40. freenode(q)

41. endif
42. q=f

43. endwhile

44. return

Figure 6.4.3 illustrates the results of this algorithm for such a tree in which the

nodes C, D, and B are deleted in that order. Make sure that you follow the actions

of the algorithm on these examples. Note that the algorithm maintains a

zero count in leaf nodes for consistency, although the count is not required for

such nodes. Note also that the algorithm never moves up a nonleaf node even if

this could be done. [For example, the father of A and B in Figure 6.4.3(b) has not

been moved up.j We can easily modify the algorithm to do this (the modification

is left to the reader), but have not done so, for reasons that will become apparent
shortly.

This algorithm involves inspection of up to two nodes (the ancestor of the
node being deleted and that ancestor’s brother) at each level. Thus the operation

of deleting the kth element of a list represented by a tree (which involves finding
the element and then deleting it) requires a number of node accesses approximately

equal to three times the tree depth. Whereas deletion from a linked list

requires accesses to only three nodes (the node preceding and following the deleted
node as well as the deleted node), deleting the kth element requires a total of

k +2 accesses (k—i of which are to locate the node preceding the kth). For large
lists, therefore, the tree representation is more efficient.

Similarly, we can compare the efficiency of tree-represented lists favorably

with array-represented lists. If an n-element list is kept sequentially in the first n
elements of an array, finding the kth element involves only a single array access,
but deleting it requires shifting the n — k elements that had followed the deleted

element. If gaps are allowed in the array so that deletion can be implemented
efficiently (by setting a flag in the array position of the deleted element without
shifting any subsequent elements), finding the kth element requires at least k array

accesses. The reason for this is that it is no longer possible to know the array

position of the kth element in the list since gaps may exist among the elements in

the array. [We should note, however, that if the order of the elements in the list is
irrelevant, the kth element in an array can be deleted efficiently by overwriting it

with the element in position n (the last element) and adjusting the count to n—i.
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Figure 6.4.3 The deletion algorithm.

332



Sec. 4 Representing Lists as Binary Trees 333

However, it is unlikely that we would want to delete the kth element from a list in

which the order is irrelevant since then there would be no significance in the kth
element over any of the others.]

Inserting a new kth element into a tree-represented list (between the (k— 1)st

and the previous kth) is also a relatively efficient operation. The insertion consists
of locating the kth element, replacing it with a new nonleaf node which has a leaf
containing the new element as its left son and a leaf containing the old kth element

as its right son, and adjusting appropriate counts among its ancestors. We

leave the details to the reader. (We should note, however, that repeatedly adding

a new kth element by this method would cause the tree to become highly unbalanced,

so that the branch containing the kth element becomes disproportionately

long compared to the other branches. This means that the efficiency of finding
the kth element is not as great as it would be in a balanced tree in which all

branches are approximately the same length. The reader is encouraged to find a

“balancing” strategy which would alleviate this problem. Despite this problem,

if insertions into the tree are made randomly so that it is equally likely for an

element to be inserted at any given position, the resulting tree remains fairly balanced

and finding the kth element remains efficient.)

Implementing Tree-Represented Lists in BASIC

The BASIC implementations of the search and deletion algorithms are straightforward

using the node representation of binary trees. However, such a representation

requires INFO, LCOUNT, FTHER, LEFT, and RIGHT fields for each tree

node, while a list node requires only INFO and NXT fields. Coupled with the

fact that the tree representation requires approximately twice as many nodes as a

linked list, this space requirement may make the tree representation impractical.

However, under the almost complete array representation, the space requirements

are not nearly so great. If we assume that no insertions are required
and that the initial list size is known, we can set aside an array to hold an almost

complete strictly binary tree representation of the list. As we shall soon show, it

is always possible to construct such a binary tree representation of a list. Once the
tree has been constructed, the only fields that are required are INFO, LCOUNT,

and a field FLAG which indicates whether or not an array element represents an

existing or a deleted tree node. Also, as we have noted before, LCOUNT is required

only for the nonleaf nodes of the tree. It is also possible to eliminate the

need for the FLAG field at some expense to efficiency (see Exercises 6 and 7).

Thus we assume the declarations (given N elements in the list)

10 DEFSTRE

30 DIM EINFO(2*N_ 1): ‘the list contains string elements

40 DIM LCOUNT(N —1): ‘for nonleaf nodes only

50 DIM FLAG(2*N_ 1): ‘whether or not node(I) is in the tree
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A nonleaf node can be recognized by an EINFO value equal to the null string

(“). father(p), left(p), and right(p) can be implemented in the usual way as

INT(P/2), 2*P, and 2*P + 1, respectively.
A BASIC routine to find the Kth element follows:

1000 ‘subroutine findelement

1010 ‘inputs: EINFO, K, LCOUNT

1020 ‘outputs: FIND
1030 ‘locals: P, R
1040 R = K

1050 P = 1

1060 IF EINFO(P) <>“ “THEN GOTO 1090

1070 IF R <= LCOUNT(P) THEN P = 2*P

ELSE R = R—LCOUNT(P): P = 2*P+ 1

1080 GOTO 1060

1090 FIND = P

1100 RETURN

1110 ‘endsub

The BASIC routine to delete the leaf pointed to by P using an almost complete

tree representation is somewhat simpler than the algorithm given above. We

can ignore all assignments of null (lines 2, 9, 18, 19, 37, and 38) since pointers

are not used. We can also ignore all assignments of zero to an Icount field (lines

20 and 39) since such an assignment is part of the conversion of a nonleaf node to

a leaf. However, in our BASIC representation, leaf nodes do not contain an

LCOUNT field, as noted earlier. A node can be recognized as a leaf (lines 15 and

34) by a nonnull EINFO value, and the pointer B as null (line 34) by a zero value

for FLAG(B). Freeing a node (lines 3, 21, and 40) is accomplished by setting its
FLAG field to zero.

2000 ‘subroutine delete

2010 ‘inputs: EINFO, FLAG, LCOUNT, P

2020 ‘outputs: EINFO, FLAG, LCOUNT

2030 ‘locals: B, F, Q

2040 IF P = 1 THEN FLAG(P) = 0: RETURN: ‘algorithm lines 1—5

2050 F = INT(P/2): ‘algorithm line 6

2060 IF F = P/2 THEN B = 2*F+ 1: LCOUNT(F) = LCOUNT(F)— 1

ELSE B = 2*F: ‘algorithm lines 7—14

2070 IF EINFO(B) <> ““THEN EINFO(F) = EINFO(B): FLAG(B) = 0:

‘algorithm lines 15—22

2080 FLAG(P) = 0: ‘algorithm line 23

2090 Q = F: ‘algorithm line 25
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2100 IF Q = 1 THEN RETURN

2110 F = INT(Q/2): ‘algorithm line 27
2120 IF F = Q/2 THEN LCOUNT(F) = LCOUNT(F)— 1: B = 2*F+ 1

ELSE B = 2*F: ‘algorithm lines 27—33
2130 IF FLAG(B) = 0 AND EINFO(Q) <>““

THEN EINFO(F) = EINFO(Q): FLAG(Q) = 0:

‘algorithm lines 34—41
2140 Q = F: ‘algorithm line 42
2150 GOTO 2100

2160 ‘endsub

Our use of the almost complete array representation explains the reason for
not moving a nonleaf node without a brother farther up in a tree during deletion.
Such a moving-up process would involve copying the contents of all nodes in the
subtree within the array, whereas it involves modifying only a single pointer if

the node representation is used.

Constructing a Tree-Represented List

We now return to the claim that given a list of n elements, it is possible to construct

an almost complete strictly binary tree representing the list. We have already

seen in Section 1 that it is possible to construct an almost complete strictly
binary tree with n leafs and 2n —1 nodes. The leafs of such a tree occupy nodes
numbered n through 2n —1. If d is the smallest integer such that 2” is greater or

equal to n, then d is equal to the depth of the tree and 2” is the number assigned to
the first node on the bottom level of the tree. The first elements of the list are

assigned to nodes numbered 2” through 2n —1 and the remainder (if any) to nodes

numbered n through 2d_ 1. We can therefore assign elements of the list to the

EINFO fields of tree leafs in this sequence, and assign the null string to the

EINFO fields of nonleaf nodes numbered 1 through n—i. It is also a simple matter
to initialize the FLAG field to 1 in all nodes numbered from 1 to 2n— 1.

Initializing the values of the LCOUNT array is more difficult. Two methods

can be used: one involving more time and a second involving more space. In the
first method, all LCOUNT fields are initialized to zero. Then the tree is climbed
from each leaf to the tree root in turn. Each time a node is reached from its left

son, one is added to its LCOUNT field. After this process is performed for each
leaf, the LCOUNT values have been properly assigned. The following routine

uses this method to construct a tree from a list of input data:

3000 ‘subroutine buildtree

3010 ‘inputs: N

3020 ‘outputs: EINFO, FLAG, LCOUNT
3030 ‘locals: D, F, I, P, POWER, SIZE
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3040 ‘compute the tree depth D and the value of 2tD
3050 D = 0

3060 POWER = 1: ‘POWER is 2W

3070 IF POWER > = N THEN GOTO 3110

3080 D=D+l

3090 POWER = POWER*2

3100 GOTO 3070

3110 ‘assign the elements of the list and the flags

‘and initialize LCOUNT to zero in all nonleafs
3120 SIZE = 2*N_1

3130 FOR I = POWER TO SIZE

3140 READ EINFO(I)

3150 FLAG(I) = 1

3160 NEXT I

3170 FOR I = N TO POWER—i

3180 READ EINFO(I)

3190 FLAG(I) =

3200 NEXT I

3210 FORI= 1TON—i

3220 FLAG(I) = 1

3230 LCOUNT(I) = 0

3240 EINFO(I) =

3250 NEXT I

3260 ‘set the LCOUNT fields

3270 FOR I = N TO SIZE: ‘begin from each leaf to the root
3280 P=I

3290 IF P = 1 THEN GOTO 3340

3300 F = INT(P/2)

3310 IF F = P/2 THEN LCOUNT(F) = LCOUNT(F) + 1

3320 P=F

3330 GOTO 3290

3340 NEXT I

3350 RETURN

3360 ‘endsub

The second method uses an additional array RCOUNT to hold the number

of leafs in the right subtree of each nonleaf node. This field as well as the
LCOUNT field is set to 1 in each nonleaf which is the father of two leafs. Additionally,

if N is odd, so that there is a node [numbered INT(N/2)] which is the

father of a leaf and a nonleaf node, LCOUNT in that node is set to 2 and

RCOUNT to 1. The algorithm then goes through the remaining array elements in
reverse order, setting LCOUNT in each node to the sum of LCOUNT and
RCOUNT in the node’s left son and RCOUNT to the sum of LCOUNT and
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RCOUNT in the node’s right son. A BASIC routine to implement this technique
follows:

3000 ‘subroutine buildtree

3010 ‘inputs: N

3020 ‘outputs: EINFO, FLAG, LCOUNT

3030 ‘locals: D, I, NN, POWER, SIZE

3040 ‘compute the tree depth D and the value of 2tD
3050 D = 0

3060 POWER = 1: ‘POWER is 2tD

3070 IF POWER > = N THEN GOTO 3110

3080 D=D+1

3090 POWER = POWER*2

3100 GOTO 3070

3110 ‘assign the elements of the list and the flag
3120 SIZE = 2*N_1

3130 FOR I = POWER TO SIZE

3140 READ EINFO(I)

3150 FLAG(I) = 1

3160 NEXT I

3170 FOR I = N TO POWER—i

3180 READ EINFO(I)

3190 FLAG(I) = 1

3200 NEXT I

3210 ‘set the LCOUNT and RCOUNT fields in the leafs’ fathers

3220 ‘assume a declaration DIM RCOUNT(N— 1)

3230 NN = INT(N/2)
3240 FOR I = NN TO N -

3250 LCOUNT(I) =

3260 RCOUNT(I) = 1

3270 FLAG(I) =

3280 EINFO(I) =

3290 NEXT I

3300 IF NN <>N/2 THEN LCOUNT(NN) = 2

3310 I = NN—i

3320 IF I = 0 THEN RETURN

3330 LCOUNT(I) = LCOUNT(2*I) + RCOUNT(2*I)

3340 RCOUNT(I) = LCOUNT(2*I +1) + RCOUNT(2*I +1)

3350 FLAG(I) =

3360 EINFO(I) =

3370 I = I—i

3380 GOTO 3320

3390 ‘endsub
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Note that RCOUNT is not listed as an output of buildtree since it is not

needed once the tree is built; it is only used internally to set the value of

LCOUNT properly. In fact, if a FLAG field is used, it can be used to hold the

RCOUNT value as the values of LCOUNT are being set and then reset to 1 after

all LCOUNT values have been computed. This would eliminate the need for a

separate RCOUNT array. However, as we noted earlier and in the exercises, the

FLAG field is not really required, so this technique does involve additional space

requirements.

We also note that we did not actually require the value of D, so statements

3050 and 3080 can be omitted in both of the routines above. They were included

to make the routines more comprehensible.

The Josephus Problem Revisited

The Josephus problem of Section 4.4 is a perfect example of the utility of the

binary tree representation of a list. In that problem it was necessary to repeatedly

find the Mth next element of a list and then delete that element. These are operations

that can be performed efficiently in a tree-represented list.

If C equals the number of elements currently in a list, the position of the

Mth node following the node in position K that has just been deleted is given by

one more than the remainder obtained on dividing K—2 + M by C. For example,
if a list has five elements and the third element is deleted, and we wish to find the

fourth element following the deleted element, then C = 4, K = 3, and M = 4.

The remainder obtained on dividing K—2 + M (which equals 5) by C (which

equals 4 after the deletion) is 1, so that the element is in position 2. (After deleting
element 3, we count elements 4, 5, 1, and 2.) We can therefore write a BASIC

routine follower to find the Mth node following a node in position K which

has just been deleted and reset K to its position. The routine calls the routine

findelement presented earlier.

4000 ‘subroutine follower

4010 ‘inputs: C, EINFO, K, LCOUNT, M

4020 ‘outputs: FIND, K
4030 ‘locals: D1, D2, J
4040 J = K—2+M

4050 Dl = J/C

4060 D2 = INT(D1)

4070 K = J_D2*C+1

4080 GOSUB 1000: ‘subroutine findelement sets the variable FIND

4090 RETURN

4100 ‘endsub
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A program to read the number of people in the circle, the number of the

count, and the names of the people, and to determine the order in which the people
are eliminated from the circle follows:

10 ‘program josephus

20 DEFSTR E

30 READ N, M: ‘number of people and the count

40 DIM EINFO(2*N_ 1), LCOUNT(N— 1), FLAG(2*N_ 1)

50 GOSUB 3000: ‘subroutine buildtree initializes EINFO, LCOUNT, FLAG

60 K = N + 1: ‘initially we have “deleted” the (N + 1)st person

70 C = N: ‘initially there are N people in the list

80 ‘repeat until only one person left

90 IF C = 1 THEN GOTO 160

100 GOSUB 4000: ‘subroutine follower sets FIND and resets K

110 P = FIND

120 PRINT EINFO(P)

130 GOSUB 2000: ‘subroutine delete accepts P

140 C=C—1

150 GOTO9O

160 PRINT EINFO(1)

170 END

1000 ‘routines buildtree, follower, findelement, and delete go here

9000 DATA...

EXERCISES

1. Prove that under the numbering scheme of Section 1, the leftmost node at level n in an

almost complete strictly binary tree is assigned the number 2.

2. Prove that the depth of an almost complete strictly binary tree is the smallest integer d

such that 2d is greater than or equal to the number of leafs.

3. In an almost complete binary tree that is not strictly binary, which of the statements in
Exercises 1 and 2 remain true?

4. Prove that the extension (see Exercise 6.3.5) of an almost complete binary tree is almost

complete.

5. For what values of n and m is the solution to the Josephus problem given in this section

faster in execution than the solution given in Section 4.4? Why is this so?

6. Explain how we can eliminate the need for a FLAG field if we elect not to move up a

newly created leaf with no brother.
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7. Explain how we can eliminate the need for a FLAG field if we set LCOUNT to —1 in

a nonleaf node which is converted to a leaf node, and reset EINFO to “ “ in a deleted
node.

8. Show how to represent a linked list as an almost complete binary tree in which each

list element is represented by one tree node and no additional tree nodes are required.

Write a BASIC routine to return a pointer to the Kth element of such a list.

5. TREES AND THEIR APPLICATIONS

In this section we consider general trees and their representations. We also investigate

some of their applications.

A tree is a finite nonempty set of elements in which one element is called

the root and the remaining elements are partitioned into a number of disjoint subsets,
each of which is itself a tree. Each element in a tree is called a node of the

tree.

Figure 6.5.1 illustrates some trees. Each node is the root of a tree with zero

or more subtrees. A node with no subtrees is a leaf. We use the terms father,

son, ancestor, descendant, level, and depth in the same sense that we used them

for binary trees. Two nodes that have the same father are brothers. We also define

the degree of a node in a tree as the number of its sons. Thus in Figure

6.5.1(a), node C has degree 0 (and is therefore a leaf), node D has degree 1, node

B has degree 2, and node A has degree 3. There is no upper limit on the degree of
a node.

Let us compare the trees of Figure 6.5.1(a) and (c). They are equivalent as
trees. Each has A as its root and three subtrees. One of those subtrees has root C

with no subtrees, another has root D with a single subtree rooted at G, and the

third has root B with two subtrees rooted at E and F. The only difference between

the two illustrations is the order in which the subtrees are arranged. The definition

of a tree makes no distinction among subtrees of a general tree as opposed to

the case of a binary tree, where a distinction is made between the left and right
subtrees. An ordered tree is defined as a tree in which the subtrees of each node

form an ordered set. Thus, in an ordered tree, we may speak of the first, second,

or last son of a particular node. The first son of a node in an ordered tree is often
called the oldest son of that node and the last son is called the youngest. Although

the trees of Figure 6.5. 1(a) and (c) are equivalent as unordered trees, they

are different as ordered trees. In the remainder of this chapter we use the word

“tree” to refer to “ordered tree.” A forest is an ordered set of ordered trees.

The question arises as to whether a binary tree is a tree. Every binary tree

except for the empty binary tree is indeed a tree. However, not every tree is binary

since a tree node may have more than two sons, whereas a binary tree node

may not. Even a tree whose nodes have at most two sons is not necessarily a

binary tree. This is because an only son in a general tree is not designated as
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Figure 6.5.1 Examples of trees.
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being a “left” or a “right” son, whereas in a binary tree, every son must be

either a “left” son or a “right” son. In fact, although a nonempty binary tree is a

tree, the designations of left and right have no meaning within the context of a

tree (except perhaps to order the two subtrees of those nodes with two sons). A

nonempty binary tree is a tree each of whose nodes has a maximum of two sub-

trees which have the added designation of “left” or “right.”

BASIC Representations of Trees

An ordered tree can be represented in BASIC by means of an array of tree nodes.
However, what should the structure of each individual node be? In the representation

of a binary tree, each node contains an information field and three pointers

to its two sons and its father. But how many pointers should a tree node contain?

The number of sons of a node is variable and may be as large or as small as

desired. If we arbitrarily declare

10 DIM INFO(500)

20 DIM FTHER(500)

30 DIM SN(500,20)

then we are limiting the number of sons a node may have to a maximum of 20.

(We do not use the name SON for the array of sons since it contains the keyword

ON and is therefore illegal in some versions of BASIC.) Although it is true that,

in most cases, this will be sufficient, it is inadequate when it is necessary to create

dynamically a node with 21 or 100 sons. Far worse than this remote possibility

is the fact that 20 units of storage are reserved in each node in the tree even

though a node may actually have only one or two (or even zero) sons. This is a

tremendous waste of space.
One alternative is to link all the sons of a node together in a linear list. Thus

the set of available nodes might be declared as follows:

10 DIM INFO(500)

20 DIM FTHER(500)

30 DIM SN(500)
40 DIM NXT(500)

SN(P) points to the oldest son of node(P) and NXT(P) points to the next younger
brother of node(P). Of course, the FTHER field may be omitted if all traversals

are from a node to its sons. Even if it is necessary to go from the sons to the

father, the FTHER field can be omitted by placing a pointer to the father in the
NXT field of the youngest son instead of leaving it null. A negative value can
indicate that the NXT field in this node is a pointer to the node’s father rather
than to its brother, and the absolute value of the NXT field yields the actual

pointer. This is similar to the representation of threads in binary trees. Figure
6.5.2 illustrates the representations of the trees of Figure 6.5.1 assuming that no
access from a son to a father is required.



SN INFO NXT

(a)

(b)

(c)

Figure 6.5.2 Tree representations.
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Note that under this implementation, each tree node contains two pointers,
SN and NXT. If we think of SN as corresponding to the left pointer of a binary

tree node and NXT as corresponding to its right pointer, this method actually

represents a general ordered tree by a binary tree. We may view this binary tree

as the original tree tilted 45 degrees counterclockwise with all father-to-son links

removed except for those between a node and its oldest son, and with links added

between each node and its next younger brother. Figure 6.5.3 illustrates the binary

trees corresponding to the trees of Figure 6.5.1
In fact, a binary tree may be used to represent an entire forest, since the

NXT pointer in the root of a tree can be used to point to the next tree of the

forest. Figure 6.5.4 illustrates a forest and its corresponding binary tree.

Tree Traversals

The traversal methods for binary trees induce corresponding traversal methods

for forests. The preorder, inorder, or postorder traversals of a forest may be defined

as the preorder, inorder, or postorder traversals of its corresponding binary
tree. If a forest is represented as a set of nodes with sn and nxt pointers as given

above, a recursive algorithm to print the contents of its nodes in inorder may be
written as follows:

subroutine intrav(p)

if p = null

then return

endif

intrav(sn(p))

print info(p)

intrav(nxt(p))

return

Algorithms for preorder and postorder traversals are similar.

These traversals of a forest may also be defined directly as follows:

Preorder

1. Visit the root of the first tree in the forest.

2. Traverse in preorder the forest formed by the subtrees of the first tree, if
any.

3. Traverse in preorder the forest formed by the remaining trees in the forest,
if any.

Inorder

1. Traverse in inorder the forest formed by the subtrees of the first tree in the
forest, if any.

2. Visit the root of the first tree.

3. Traverse in inorder the forest formed by the remaining trees in the forest, if
any.



Figure 6.5.3 Binary trees corresponding to trees of Figure 6.5.1.

(a)

(b)

(c)
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Figure 6.5.4 A forest and its corresponding binary tree.

(a)
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Postorder

1. Traverse in postorder the forest formed by the subtrees of the first tree in the
forest, if any.

2. Traverse in postorder the forest formed by the remaining trees in the forest,
if any.

3. Visit the root of the first tree in the forest.

The nodes of the forest in Figure 6.5.4(a) may be listed in preorder as ABC
DEFGHIJKLMPRQNO, in inorder as BDEFCAIJKHGRPQMNOL, and in post-
order as FEDCBKJIHRQPONMLGA. Let us call a traversal of a binary tree a
binary traversal, and a traversal of an ordered general tree a general traversal.

General Expressions as Trees

An ordered tree may be used to represent a general expression in much the same
way that a binary tree may be used to represent a binary expression. Since a node
may have any number of sons, nonleaf nodes need not represent only binary operators

but can represent operators with any number of operands. Figure 6.5.5
illustrates two expressions and their tree representations. The symbol “%“ is

used to represent unary negation to avoid confusing it with binary subtraction,

which is represented by a minus sign. A function reference such asf(G,H,I,J) is
viewed as the operatorf applied to the operands G,H,I, and J.

A traversal of the trees of Figure 6.5.5 in preorder results in the strings
* % + AB — +Clog + D !EfGHIJandq + ABsinC*X + YZ, respectively.

These are the prefix versions of those two expressions. Thus we see
that a preorder general traversal of an expression tree produces its prefix expression.

Inorder general traversal yields the respective strings A B + % C D E

+ log + G H I Jf — * and A B + C sin X Y Z + * q, which are the postfix
versions of the two expressions.

The fact that an inorder general traversal yields a postfix expression might

be surprising at first glance. However, the reason for it becomes clear upon examination
of the transformation that takes place when a general ordered tree is

represented by a binary tree. Consider an ordered tree in which each node has
zero or two sons. Such a tree is shown in Figure 6.5.6(a) and its binary tree

equivalent in Figure 6.5.6(b). A binary traversal of the binary tree of Figure
6.5.6(b) is the same as a general traversal of the ordered tree of Figure 6.5.6(a).
However, a tree such as the one in Figure 6.5.6(a) may be considered as a binary

tree in its own right, rather than as an ordered tree. Thus it is possible to perform
a binary traversal (rather than a general traversal) directly on the tree of Figure
6.5.6(a). Beneath that figure are the binary traversals of that tree, while beneath
Figure 6.5.6(b) are the binary traversals of the tree in that figure which are the
same as the general traversals of the tree of Figure 6.5.6(a).

Note that the preorder binary traversals of the two trees are the same. Thus
if a preorder binary traversal of a tree representing a binary expression yields the



(b)q(A + B, sin(C), I * (Y + Z))

Figure 6.5.5 Tree representation of an arithmetic expression.

(a) —(A +B)*(C+log(D +E!)—f(G,H,I,J))
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Figure 6.5.6

Preorder: + * AB + * CDE

Inorder: AB*CD*E++

Postorder: BADCE * + * +

(a)

Preorder: + * AB + * CDE

Inorder: A*B+C*D+E

Postorder: AB * CD * E + +
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prefix of the expression, the preorder general traversal of a tree representing a

general expression that happens to have only binary operators yields the prefix
form of the expression as well. However, the postorder binary traversals of the
trees are not the same. Instead, the inorder binary traversal of the second (which

is the same as the inorder general traversal of the first) is the same as the post-

order binary traversal of the first. Thus the inorder general traversal of an ordered
tree representing a binary expression is equivalent to the postorder binary traversal

of the binary tree representing that expression, which yields postfix.
Suppose that it is desired to evaluate an expression whose operands are all

numerical constants. Such an expression can be represented in BASIC by a tree

whose nodes are defined by

10 DIM INFO(500)
20 DIM SN(500)

30 DIM NXT(500)

The SN and NXT pointers are used to link together the nodes of a tree as previously

illustrated. Since a node may contain information that may be either a number

(operand) or a character string (operator), the information portion of the node
points to either an element in an array OPER of operators or an element in an

array NUM of operands. These arrays are declared by

10 DEFSTR 0

20 DIM OPER(20)

30 DIM NUM(500)

in which we assume a maximum of 20 different operators and 500 operands. As

in the case of binary expression trees, operand and operator nodes may be distinguished

from each other since operands are leafs and therefore have null SN
fields, while operators are nonleafs.

We wish to write a BASIC subroutine evtree which accepts a pointer to

such a tree and returns the value of the expression represented by that tree. The

routine evbtree presented in Section 2 performs a similar operation on binary expression
trees. evbtree utilizes a subroutine apply which accepts an operator symbol

and two numerical operands and returns the numerical result of applying the

operator to the operands. However, in the case of a general expression we cannot
use such a function since the number of operands (and hence the number of arguments)

varies with the operator. We therefore introduce a new variation of the
subroutine apply which accepts a pointer to an expression tree that contains a
single operator and its numerical operands and returns the result of applying the
operator to its operands. For example, the result of calling the routine apply with
input variable P pointing to the tree in Figure 6.5.7 is 24. If the root of the tree
that is passed to evtree represents an operator, each of its subtrees must be replaced

by tree nodes representing the numerical results of their evaluation so that
the subroutine apply may be called. As the expression is evaluated, the tree nodes
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SN INFO NXT

3 null

null 2 null

OPER “+“ “—“ I ““ I “ I “i” 1

NUM 4 6

Figure 6.5.7 An expression tree.

representing operands must be freed and operator nodes must be converted to operand
nodes. Note that this means that evtree, unlike evbtree, destroys the expression

tree in the course of evaluating it.

We now present a routine replace, which accepts a pointer to an expression

tree and replaces the tree with a single tree node containing the numerical result

of the expression’s evaluation, replace is most naturally developed as a recursive
algorithm, which can then be transformed into a BASIC routine using the methods

of Chapter 5. The algorithm calls upon the operation apply discussed above

and the operation newop. newop accepts an operand, inserts the operand into the

array num, and returns a pointer to that position of num. Thus newop creates a

new operand.

subroutine replace(pp)

q = sn(pp)
if q = null

then return

endif

NXT

INFO NXT
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‘traverse the list of sons, replacing each operator by its result

while q <> null do

if sn(q) <>null

then replace(q)

endif

q = nxt(q)
endwhile

‘all the sons are now operands

‘find the result of applying the operator in the tree root to its

‘operands and replace the operator by the result

info(pp) = newop(apply(pp))
‘free all the sons of the tree root

rl = sn(pp)

sn(pp) = null
while rl <>null do

r2 = r1

ri = nxt(rl)

freenode(r2)

endwhile

return

The following are BASIC versions of replace and newop.

23000 ‘subroutine replace
23010 ‘inputs: PP

23020 ‘outputs: none
23030 ‘locals: APPLY, CPARAM, CQ, CRETADDR, FRNODE, I, NWOP,

PARAM, PX, QQ, Ri, R2, RETADDR, TP

23040 ‘define the recursion stack; each stack position contains a tree

‘pointer parameter, a value for the variable q in the

‘recursive algorithm, and a return address
23050 DIM PARAM(50), RETADDR(50), QQ(50)
23060 TP = 0: ‘initialize the stack to empty

23070 ‘push an initial record onto the stack

23080 CPARAM = 0: ‘CPARAM is the current tree pointer
23090 CRETADDR = 0: ‘CRETADDR is the current return address

‘1 represents a return to the calling program

‘2 represents a return after the recursive call

23100 CQ = 0: ‘CQ is a pointer to a son of CPARAM corresponding

‘to the variable q in the algorithm
23110 GOSUB 1000: ‘subroutine push

23120 ‘initialize variables to their values from the external call
23130 CPARAM = PP

23140 CRETADDR = 1
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23150 ‘begin the body of replace

23160 CQ = SN(CPARAM)

23170 IF CQ 0 THEN GOTO 23440: ‘return

23180 ‘simulation of the first while loop

23190 IF CQ = 0 THEN GOTO 23290
23200 IF SN(CQ) = 0 THEN GOTO 23270

23210 ‘simulation of the recursive call replace(q)
23220 GOSUB 1000: ‘subroutine push
23230 CPARAM = CQ

23240 CRETADDR 2

23250 GOTO 23150

23260 ‘return here after a recursive call
23270 CQ = NXT(CQ)

23280 GOTO 23190

23290 ‘all the sons of node(CPARAM) are now operands
23300 PX = CPARAM

23310 GOSUB 6000: ‘subroutine apply accepts PX and
‘sets the variable APPLY

23320 X = APPLY

23330 GOSUB 24000: ‘subroutine newop accepts X and
‘sets the variable NWOP

23340 INFO(CPARAM) = NWOP

23350 ‘free the sons of the tree node

23360 Ri = SN(CPARAM)

23370 SN(CPARAM) = 0
23380 IF Ri = 0 THEN GOTO 23440: ‘return

23390 R2 = Ri

23400 Ri = NXT(R1)

23410 FRNODE = R2

23420 GOSUB 12000: ‘subroutine freenode accepts the variable FRNODE

23430 GOTO 23380

23440 ‘simulation of return from replace
23450 I CRETADDR

23460 GOSUB 2000: ‘subroutine pop pops the stack and resets the

‘variables CPARAM, CRETADDR, and CQ
23470 IF I = 1 THEN RETURN

23480 IF I 2 THEN GOTO 23260: ‘return after recursive call within

‘replace
23490 ‘endsub
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24000 ‘subroutine newop

24010 ‘inputs: LAST, NUM, X

24020 ‘outputs: LAST, NUM, NWOP
24030 ‘locals: none

24040 ‘the variable LAST (which is initialized when the tree is built)

‘holds the last position in the array NUM which is occupied;

‘increase LAST and insert the operand X
24050 LAST = LAST + 1

24060 IF LAST> 500 THEN PRINT “TOO MANY OPERANDS”: STOP

24070 NUM(LAST) = X

24080 NWOP = LAST

24090 RETURN

24 100 ‘endsub

[Note that the contents of the array NUM are always added to but never compacted.
If we are in a context which builds a single tree and evaluates it and then

builds another tree while reusing NUM, this is feasible. However, if many trees
are being built and evaluated simultaneously so that an arbitrary number of trees
exist at any point, NUM will quickly overflow. A solution would be to let LAST
point to the first unused element in NUM and each unused element would contain

a pointer to the next unused element. The routine freenode would be responsible
for adding newly freed elements of NUM to this available list and newop would
execute LAST = NUM(LAST) rather than executing LAST = LAST + 1 before

the insertion. The main program would initialize LAST to 1 and NUM(I) to
1+1 foralll.]

The routine evtree may now be written as follows:

22000 ‘subroutine evtree

22010 ‘inputs: TREE

22020 ‘outputs: EVTREE

22030 ‘locals: FRNODE, PP, QQ

22040 PP = TREE

22050 GOSUB 23000: ‘subroutine replace

22060 QQ = INFO(TREE)

22070 EVTREE = NUM(QQ)
22080 FRNODE = TREE

22090 GOSUB 12000: ‘subroutine freenode

22100 RETURN

22110 ‘endsub

Other Tree Operations

In constructing a tree there are several operations which are frequently used. One

of these is setsons, which accepts a node of a tree that has no sons and a linear list

of nodes linked together through the NXT field. setsons establishes the nodes in

the list as the sons of the node in the tree. The BASIC routine to implement this
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operation is straightforward. (We assume that no father pointers are needed so

that the FTHER field is eliminated and the NXT pointer in the youngest node is

null. The routines would be slightly more complex and less efficient if this were
not the case.)

22000 ‘subroutine setsons

22010 ‘inputs: Q, LST

22020 ‘outputs: none

22030 ‘locals: none

22040 IF Q = 0 THEN PRINT “VOID INSERTION”: STOP

22050 IF SN(Q) <>0 THEN PRINT “INVALID INSERTION”: STOP

22060 SN(Q) = LST

22070 RETURN

22080 ‘endsub

Another common operation is addson, where Q points to a node in a tree

and it is desired to add a node containing X as the youngest son of node(Q). The

BASIC routine to implement addson is as follows. The routine calls the auxiliary
routine getnode, which removes a node from the available list and returns a

pointer to it.

23000 ‘subroutine addson

23010 ‘inputs: Q, X

23020 ‘outputs: none

23030 ‘locals: GTNODE, P, R

23040 IF Q = 0 THEN PRINT “INVALID INSERTION”: STOP
23050 R = 0

23060 P = SN(Q)

23070 IF P = 0 THEN GOTO 23110

23080 R=P

23090 P = NXT(P)

23100 GOTO 23070

23110 GOSUB 1000: ‘subroutine getnode sets the variable GTNODE
23120 P = GTNODE

23130 INFO(P) = X

23140 NXT(P) = 0

23150 IF R = 0 THEN SN(Q) = P

ELSE NXT(R) = P

23160 RETURN

23 170 ‘endsub

Note that in order to add a new son to a node, the list of existing sons must

be traversed. Since adding a son is a common operation, a representation is often

used which makes this operation more efficient. Under this alternative representation,

the list of sons is ordered from youngest to oldest rather than vice versa.

Thus SN(Q) points to the youngest son of node(Q), and NXT(Q) points to its
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next older brother. Under this representation the routine addson may be written
as follows:

23000 ‘subroutine addson

23010 ‘inputs: Q, X

23020 ‘outputs: none

23030 ‘locals: GTNODE, P

23040 IF Q = 0 THE PRINT “INVALID INSERTION”: STOP

23050 GOSUB 1000: ‘subroutine getnode sets the variable GTNODE

23060 P = GTNODE

23070 INFO(P) = X

23080 NXT(P) = SN(Q)

23090 SN(Q) = P

23100 RETURN

23110 ‘endsub

EXERCISES

1. How many distinct trees can be constructed with n nodes?

2. How many distinct trees can be constructed with n nodes and maximum level m?

3. Prove that if m pointer fields are set aside in each node of a general tree to point to a

maximum of m sons, and if the number of nodes in the tree is n, then the number of

null son pointer fields is n(m— 1) + 1.

4. If a forest is represented by a binary tree as in the text, show that the number of null

right links is 1 greater than the number of nonleafs of the forest.

5. Define the breadth-first order of the nodes of a general tree as the root followed by all

nodes on level 1, followed by all nodes on level 2, and so on. Within each level, the

nodes should be ordered so that children of the same father appear in the same order as

they appear in the tree, and if ni and n2 have different fathers, ni appears before n2 if

the father of ni appears before the father of n2. Extend the definition to a forest. Write

a BASIC program to traverse a forest represented as a binary tree in breadth-first order.

6. Consider the following method of transforming a general tree gt into a strictly binary

tree bt. Each node of gt is represented by a leaf of bt. If gt consists of a single node,

then bt consists of a single node. Otherwise, bt consists of a new root node and a left

subtree lt and a right subtree rt. lt is the strictly binary tree formed recursively from the

oldest subtree of gt, and rt is the strictly binary tree formed recursively from gt without

its oldest subtree. Write a BASIC routine to convert a general tree into such a strictly

binary tree.

7. Write a BASIC routine compute which accepts a pointer to a tree representing an expression

with constant operands and sets the variable COMPUTE to the result of evaluating

the expression without destroying the tree.
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8. Write a BASIC program to convert an infix expression into an expression tree. Assume

that all nonbinary operators precede their operands. Let the input expression be

represented as follows: an operand is represented by the character “N” followed by a

number, an operator by the character “T” followed by a character representing the

operator, and a function by the character “F” followed by the name of the function.

9. Consider the definition of an expression, term, and factor given at the end of Section

5.3. Given a string of letters, plus signs, asterisks, and parentheses which form a valid

expression, a parse tree can be formed for the string. Such a tree is illustrated in Figure

6.5.8 for the string “(A +B)*(C +D)”. Each node in such a tree represents a

substring and contains a letter (E for expression, T for term, F for factor, or S for

symbol) and two integers. The first is the position within the input string where the

substring represented by that node begins, and the second is the length of the sub-

string. (The substring represented by each node is shown below that node in the figure.)

The leafs are all S nodes and represent single symbols of the original input. The

root of the tree must be an E node. The sons of any non-S node n represent the substrings

that make up the grammatical object represented by n. Write a BASIC routine

that accepts such a string and constructs a parse tree for it.

6. AN EXAMPLE: GAME TREES

One application of trees is to game playing by computer. We illustrate this application

by writing a BASIC program to determine the “best” move in tic-tac-toe

from a given board position. Assume that there is a function evaluate which accepts

a board position and an indication of a player (X or 0) and returns a numerical

value which represents how “good” the position seems to be for that player

(the larger the value returned by evaluate, the better the position). Of course, a

winning postion yields the largest possible value and a losing position yields the

smallest. An example of such an evaluation function for tic-tac-toe is the number

of rows, columns, and diagonals remaining open for one player minus the number

remaining open for his opponent (except that the value 9 would be returned

for a position that wins, and —9 for a position that loses). This function does not

“look ahead” to consider any possible board positions that might result from the

current position—it merely evaluates a static board position.

Given a board position, the best next move could be determined by considering

all possible moves and resulting positions. That move which results in the

board position with the highest evaluation should be selected. However, such an

analysis does not necessarily yield the best move, as can be seen from Figure

6.6.1. This figure illustrates a position and the five possible moves which X can

make from that position. Applying the evaluation function described above to the

five resulting positions yields the values shown. Four moves yield the same maximum

evaluation, although three of them are distinctly inferior to the fourth. (The

fourth position yields a certain victory for X, while the other three can be drawn

by 0.) In fact, the move that yields the smallest evaluation is as good as or better
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than the moves that yield a higher evaluation. Such a static evaluation function is
not good enough to predict the outcome of the game. Although a better evaluation

function could easily be produced for the game of tic-tac-toe (even if it were

by the brute-force method of listing all positions and the appropriate response),

most games are too complex for static evaluators to determine the best response.

Suppose that it were possible to look ahead several moves. Then the choice

of a move could be improved considerably. Define the look ahead level as the
number of future moves to be considered. Starting at any position, it is possible

to construct a tree of the possible board positions that may result from each

move. Such a tree is called a game tree. The game tree for the opening tic-tac-toe

position with a look-ahead level of 2 is illustrated in Figure 6.6.2 (Actually, other
positions do exist, but because of symmetry considerations, these are effectively

the same as the positions shown.) Note that the maximum level (called the depth)
of the nodes in such a tree is equal to the look-ahead level.

Let us designate the player who must move at the root’s game position as
plus and his opponent as minus. We attempt to find the best move for plus from

the root’s game position. The remaining nodes of the tree may be designated as

plus nodes or minus nodes, depending upon which player must move from that
node’s position. Each node of Figure 6.6.2 is marked as a plus or minus node.

Suppose that the game positions of all the sons of a plus node have been
evaluated for player plus. Then, clearly, plus should choose the move that yields
the maximum evaluation. Thus the value of a plus node to player plus is the maximum

of the values of its sons. On the other hand, once plus has made his move,

minus will select the move that yields the minimum evaluation for player plus.
Thus the value of a minus node to player plus is the minimum of the values of its
sons.

Therefore, to decide the best move for player plus from the root, the positions
in the leafs must be evaluated for player plus using a static evaluation function.

These values are then moved up the game tree by assigning to each plus
node the maximum of its sons’ values and to each minus node the minimum of its

sons’ values on the assumption that minus will select the move that is worst for
plus. The value assigned to each node of Figure 6.6.2 by this process is indicated

in that figure immediately below the node. The move that plus should select, giv
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+

Figure 6.6.3 Computing 0’s reply.

en the board position in the root node, is the one that maximizes its value. Thus

the opening move for X should be the middle square, as illustrated in Figure

6.6.2. Figure 6.6.3 illustrates the determination of 0’s best reply. Note that the
designation of “plus” and “minus” depends on whose move is being calculated.
Thus, in Figure 6.6.2, X is designated as plus, while in Figure 6.6.3, 0 is designated

as plus. In applying the static evaluation function to a board position, the

value of the position to whichever player is designated as plus is computed. This
method is called the minimax method because, as the tree is climbed, the maximum

and minimum functions are applied alternately.

The best move for a player from a given position may be determined by first
constructing the game tree and applying a static evaluation function to the leafs.

These values are then moved up the tree by applying the minimum and maximum

at minus and plus nodes, respectively. Each node of the game tree must include a
representation of the board and an indication of whether the node is a plus node

or a minus node. An array of nodes may be defined by

10 DEFSTR B

20 DIM BOARD(500,3,3)

30 DIM TURN(500)

40 DIM SN(500)

50 DIM NXT(500)

BOARD(P,ROW,COL) has the value “X”, “0”, or” “, depending on whether

the square in row ROW and column COL of the board position in node(P) is
occupied by either of the players or is unoccupied. TURN(P) has the value 1 or

+

—4

ox o x 0 0 X0 0 0 0

x x xx x x xx x x

x x x

—2 —3 —2 —3 —4 —3 —4 —3
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—1, depending on whether node(P) is a plus or minus node, respectively. The
remaining two fields of a node are used to position the node within the tree.
SN(P) points to the oldest son of node(P), while NXT(P) points to its next younger

brother. We assume that an available list of nodes has been established and

that appropriate getnode and freenode routines have been written.
The BASIC routine nextmove accepts three inputs, BRD, DEPTH, and XO,

and computes the best next move. BRD is a 3 by 3 array representing the current

board position. DEPTH is the desired look-ahead level. XO is an indication of
whose move is being computed (“X” or “0”). nextmove outputs the array B,
which represents the best board position that can be achieved by a particular player

from position BRD. nextmove uses two auxiliary routines, buildtree and best-
branch. The routine buildtree builds the game tree whose root contains the board

position BRD and returns a pointer to that root. The routine bestbranch accepts a
pointer ND to a node and computes the value of two output variables: HIGH,
which is a pointer to the son of node(ND) representing the best move, and
VLUE, which is the evaluation of that move using the minimax technique. We

will present these two routines shortly. In all the routines of this section we do
not list explicitly the arrays BOARD, TURN, SN, or NXT as inputs or outputs,
although most of the routines use them as such.

2000 ‘subroutine nextmove

2010 ‘inputs: BRD, DEPTH, XO

2020 ‘outputs: B

2030 ‘locals: COL, ND, ROW

2040 GOSUB 3000: ‘subroutine buildtree sets the variable TREE

2050 ND = TREE

2060 GOSUB 6000: ‘subroutine bestbranch sets the variable HIGH

2070 FOR ROW = 1 TO 3

2080 FOR COL = 1 TO 3

2090 B(ROW,COL) = BOARD(HIGH,ROW,COL)

2100 NEXT COL

2110 NEXT ROW

2120 RETURN

2130 ‘endsub

The function buildtree returns a pointer to the root of a game tree. It accepts
two variables: BRD, representing a board position, and DEPTH, representing the
depth of a tree to be constructed. buildtree sets the variable TREE to point to a
newly constructed tree of proper depth with BRD as the board position in its root.
buildtree uses the auxiliary routine getnode, which removes a node from the
available list and returns a pointer to it. It also uses a routine expand, which accepts

P, a pointer to a node in a game tree, and DEPTH, the depth of the game
tree that is to be constructed. expand produces the subtree rooted at P to the proper

depth.
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3000 ‘subroutine buildtree

3010 ‘inputs: BRD, DEPTH

3020 ‘outputs: TREE

3030 ‘locals: COL, P, ROW

3040 GOSUB 1000: ‘subroutine getnode sets the variable GTNODE

3050 TREE = GTNODE: ‘initialize the root of the tree
3060 FOR ROW = 1 to 3

3070 FOR COL = 1 to 3

3080 BOARD(TREE,ROW,COL) = BRD(ROW,COL)

3090 NEXT COL

3100 NEXT ROW

3110 TURN(TREE) = 1: ‘the root is a plus node by definition

3120 SN(TREE) = 0

3130 NXT(TREE) = 0

3140 P = TREE

3150 GOSUB 4000: ‘subroutine expand creates the rest of the game tree
3160 RETURN

3170 ‘endsub

expand may be implemented by calling upon an auxiliary recursive algorithm

expand2 which accepts an additional input variable, level, whose value is

the level of node(P) in the tree. expand2 generates all board positions that may be

obtained from the board position of node(P) and establishes them as the sons of P
in the game tree. expand2 then calls itself recursively using each of these sons as

an input in turn until the desired depth is reached. expand2 uses an auxiliary routine
generate which accepts P and returns a pointer to a list of nodes containing

the board positions that can be obtained from the board contained in node(P).
This list is linked together by the NXT field. We leave the coding of generate as
an exercise for the reader. We now present a recursive algorithm for expand, followed

by a BASIC routine to implement that algorithm.

subroutine expand(p,depth)
level = 0 ‘the level of node(p)

expand2(p,level,depth)
return

subroutine expand2(p,level,depth)

if level = depth

then ‘p is already at the maximum level
return

endif

q = generate(p)

sn(p) = q
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‘traverse the list of nodes

whileq <>Odo

turn(q) = —turn(p)

sn(q) = 0

expand2 (q,level+ 1,depth)

q = nxt (q)
endwhile

return

There are several points to consider about this implementation before presenting
its BASIC version. First, since the BASIC program is not itself recursive,

there is no need for a separate routine expand2. The values of the variable level of

the algorithm (maintained in a stack of the same name in the program, together
with its current value, CLEVEL) is initialized and pushed and popped within the

routine expand itself.

It is also necessary to note that the game tree program includes two recursive
simulations; one is in the routine expand, as discussed, and the other is in the

routine bestbranch, to be presented shortly. Each of these routines require its
own, separate recursion stacks. Therefore, two separate sets of stack manipulation

routines are also required. For this reason, we assume the existence of routines
push 1 and popl (at statements 10000 and 20000, respectively) to be called

by expand, and push2 and pop2 (at 11000 and 21000) to be called by bestbranch.

In addition, since neither routine calls the other, they can share a single array,
RETADDR, to hold the two return address stacks. If this were not the case, two

separate arrays would be required. (Actually, the remaining recursion stacks can

be shared as well, but this would create some confusion regarding their names
and the names of the variables that hold their current values.) Therefore, we assume

that the array RETADDR is dimensioned in the main program, to be shared
by both routines.

We may now present the BASIC implementation of expand:

4000 ‘subroutine expand
4010 ‘inputs: DEPTH, MAXSTACK, P

4020 ‘outputs: none
4030 ‘locals: CLEVEL, CP, CQ, CRETADDR, 1, P1, Q, TP

4040 ‘define a recursion stack; each stack position I contains a tree

‘pointer P1(I), the level of that tree node LEVEL(I) and the
‘value Q(I) of the variable CQ; the return address stack RETADDR
‘is DiMensioned in the main program.

4050 DIM P1(MAXSTACK), LEVEL(MAXSTACK), Q(MAXSTACK)
4060 TP = 0

4070 CRETADDR = 1

4080 CP = P

4090 CLEVEL = 0

4100 CQ = 0
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4110 GOSUB 10000: ‘subroutine push 1

4120 ‘if C’LEVEL = DEPTH then CF is already at the maximum level
4130 IF CLEVEL = DEPTH THEN GOTO 4300

4140 GOSUB 5000: ‘subroutine generate accepts CP and sets the variable
‘GNERATE

4150 CQ = GNERATE

4160 SN(CP) = CQ

4170 IF CQ = 0 THEN GOTO 4300
4180 ‘if CQ <> 0 then traverse the list of nodes
4190 TURN(CQ) = —TURN(CP)

4200 SN(CQ) = 0

4210 ‘simulation of the recursive call expand2(q,level + 1, depth)
4220 GOSUB 10000: ‘subroutine pushi
4230 CP = CQ

4240 CLEVEL = CLEVEL + 1

4250 CRETADDR = 2

4260 GOTO 4120

4270 ‘return point for the recursive call
4280 CQ = NXT(CQ)

4290 GOTO 4170

4300 ‘simulation of return from EXPAND
4310 I = CRETADDR

4320 GOSUB 20000: ‘subroutine popi
4330 IF I = 1 THEN RETURN

4340 IF I = 2 THEN GOTO 4270

4350 ‘endsub

Once the game tree has been created, bestbranch evaluates the nodes of the

tree. When a pointer to a leaf is passed to bestbranch, it calls a routine evaluate,

which statically evaluates the board position of that leaf for the player whose

move we are determining. The coding of evaluate is left as an exercise. When a

pointer to a nonleaf is passed to bestbranch, the routine calls itself recursively on

each of its sons and then assigns the maximum of its sons’ values to the nonleaf if

it is a plus node, and the minimum if it is a minus node. bestbranch also keeps

track of which son yielded this minimum or maximum value.
If TURN(P) is —1, then node(P) is a minus node and it is to be assigned the

minimum of the values assigned to its sons. If, however, TURN(P) is + 1,

node(P) is a plus node and its value should be the maximum of the values assigned
to the sons of node(P). If min(x,y) is the minimum of x and y, and

max(x,y) is their maximum, then min(x,y) = —max(—x, —y) (you are invited to

prove this as a trivial exercise). Thus the correct maximum or minimum can be

found as follows. In the case of a plus node, compute the maximum; in the case

of a minus node, compute the maximum of the negatives of the values and then

reverse the sign of the result. These ideas are incorporated into bestbranch. When
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the value of a son of node (ND) is computed, it is multiplied by TURN(ND)
(either 1 or —1, depending on whether ND is a plus or a minus node). If that
result is greater than the largest result obtained from the other sons of ND, that
son is established as the next move after ND. To obtain the value of that move to

the player being evaluated, we again multiply by TURN(ND), effectively computing

either the minimum or maximum as appropriate.

The input variables to bestbranch are ND, a pointer to the tree node whose

best next move we are determining, and XO, which represents the player for

whom we are evaluating the best next move. The output variables HIGH and
VLUE are, respectively, a pointer to that son of node(ND) which maximizes or
minimizes its value and the value of that son which then becomes the value of

node(ND).

A recursive algorithm for bestbranch is given below, followed by the BASIC

implementation.

subroutine bestbranch(nd,xo)

if sn(nd) = 0
then vlue = evaluate(nd,xo)

high = nd
return

endif
‘determine the value of the oldest son

p = sn(nd)

bestbranch(p,xo) ‘sets vlue to the value of node(p)

‘The variable tvlue is used to hold the highest value of all sons

‘examined so far, and temp is used to point to the son that produces

‘that value; initialize these so that the oldest son represents the best
‘move of all sons examined so far.

tvlue = turn(nd) * vlue

temp = p

‘traverse the remaining sons and reset tvlue and temp.

p = nxt(p)

while p <>0 do

bestbranch(p,xo) ‘sets vlue to the value of node(p)

v2 = turn(nd) * vlue

if v2 > tvlue
then tvlue = v2

temp = p

endif

p = nxt(p)

endwhile

vlue = turn(nd) * tvlue

high = temp

return
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The BASIC implementation of bestbranch now follows. We assume the
declaration DEFSTR X and that the BASIC routine evaluate accepts CND and
XO and sets EVLUATE.

6000 ‘subroutine bestbranch

6010 ‘inputs: MAXSTACK, ND, XO

6020 ‘outputs: HIGH, VLUE

6030 ‘locals: CND, CP, CRETADDR, I, NSTACK, PSTACK, TEMP, TSTACK,

TVLUE, V2, VSTACK

6040 ‘define the recursion stack; each stack position I, contains a tree

‘pointer NSTACK (I) and values for the variables CP, TVLUE, and

‘TEMP (these values are PSTACK(I), VSTACK(I) and RSTACK(I),

‘respectively); the return address stack RETADDR is DiMensioned in

‘the main program

6050 DIM NSTACK(MAXSTACK), PSTACK(MAXSTACK)

6060 DIM TSTACK(MAXSTACK), VSTACK(MAXSTACK)

6070 ‘push an initial record on the stack

6080 CRETADDR = 1

6090 CND = ND

6100 CP = 0

6110 TEMP = 0

6120 TVLUE = 0

6130 GOSUB 11000: ‘subroutine push2

6140 ‘fSN(CND) = 0 then the node is a leaf; call evaluate at 7000

6150 IF SN(CND) = 0 THEN GOSUB 7000: VLUE = EVLUATE: HIGH = CND:

GOTO 6410

6160 ‘the node is not a leaf; traverse its sons

6170 CP = SN(CND)

6180 ‘simulation of the first recursive call bestbranch(p,xo)

6190 GOSUB 11000: ‘subroutine push2

6200 CND = CP

6210 CRETADDR = 2

6220 GOTO 6140

6230 ‘return point after the first recursive call

6240 ‘f CND is a minus node, multiply by —1

6250 TVLUE = TURN(CND)*VLUE

6260 TEMP = CP

6270 CP = NXT(CP)

6280 IF CP = 0 THEN GOTO 6390

6290 ‘simulation of the second recursive call bestbranch(p,xo)

6300 GOSUB 11000: ‘subroutine push2

6310 CND = CP

6320 CRETADDR = 3

6330 GOTO 6140
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6340 ‘return point after the second recursive call
6350 V2 = TURN(CND)*VLUE

6360 IF V2> TVLUE THEN TVLUE = V2: TEMP = CP

6370 CP = NXT(CP)

6380 GOTO 6280

6390 VLUE = TURN(CND)*TVLUE

6400 HIGH = TEMP

6410 ‘simulation of a return from bestbranch
6420 I = CRETADDR

6430 GOSUB 21000: ‘subroutine pop2
6440 IF I = 1 THEN RETURN

6450 IF I = 2 THEN GOTO 6230

6460 IF I = 3 THEN GOTO 6340

6470 ‘endsub

EXERCISES

1. Write the BASIC routines generate and evaluate as described in the text.

2. Rewrite the programs of this and the preceding section under the implementation in

which each tree node includes a field FTHER, which contains a pointer to its father.

Under which implementation are the programs more efficient?

3. Modify the routine bestbranch in the text so that the nodes of the tree are freed when

they are no longer needed.

4. Combine the processes of building the game tree and evaluating its nodes into a single

process so that the entire game tree need not exist at any one time and nodes are freed

when no longer necessary.

5. Modify the program of Exercise 3 so that if the evaluation of a minus node is greater

than the minimum of the values of its father’s older brothers, the program does not

bother expanding that minus node’s younger brothers, and if the evaluation of a plus

node is less than the maximum of the values of its father’s older brothers, the program

does not bother expanding that plus node’s younger brothers. This method is called the

alpha-beta minimax method. Explain why it is correct.

6. The game of kalah is played as follows. Two players each have seven holes, six of

which are called pits and the seventh a kalah. These are arranged according to the

following diagram.

Player 1

K PPPPPP

PPPPPP K

Player 2
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Initially, there are six stones in each pit and no stones in either kalah, so the opening

position looks like this:

0 666666

666666 0

The players alternate turns, each turn consisting of one or more moves. To make a

move, a player chooses one of his nonempty pits. The stones are removed from that pit

and are distributed counterclockwise into the pits and into that player’s kalah (the opponent’s

kalah is skipped), one stone per pit, until there are no stones remaining. For

example, if player 1 moves first, a possible opening move might result in the following

board position:

1 777770

666666 0

If a player’s last stone lands in his own kalah, the player gets another move. If the last

stone lands in one of his own pits which is empty, that stone and the stones in the

opponent’s pit directly opposite are removed and placed in the player’s kalah. The

game ends when either player has no stones remaining in his pits. At that point, all of

the stones in his opponent’s pits are placed in the opponent’s kalah and the game ends.

The player with the most stones in his kalah is the winner. Write a program that accepts

a kalah board position and an indication of whose turn it is and produces that

player’s best move.

7. How would you modify the ideas of the tic-tac-toe program to compute the best move

in a game that contains an element of chance, such as backgammon?

8. Why have computers been programmed to play perfect tic-tac-toe but not perfect chess
or checkers?

9. The game of nim is played as follows. Some number of sticks are placed in a pile.

Two players alternate in removing either one or two sticks from the pile. The player to
remove the last stick is the loser. Write a BASIC routine to determine the best move in

nim.
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Graphs and Their Applications

In this chapter we consider a new data structure—the graph. We define some
terms associated with graphs and show how to implement graphs in BASIC. We
also present several applications of graphs.

1. GRAPHS

A graph consists of a set of nodes (or vertices) and a set of arcs. Each arc in a
graph is specified by a pair of nodes. Figure 7.1.1(a) illustrates a graph. The set
of nodes is {A,B,C,D,E,F,G,H} and the set of arcs is {(A,B), (A,D), (A,C),
(C,D), (C,F), (E,G), (A,A)}. If the pairs of nodes that make up the arcs are ordered

pairs, the graph is said to be a directed graph (or digraph). Figure
7.1.1(b), (c), and (d) illustrate three digraphs. The arrows between nodes represent

arcs. The head of each arrow represents the second node in the ordered pair
of nodes making up an arc, while the tail of each arrow represents the first node
in the pair. The set of arcs for the graph of Figure 7.1.1(b) is {<A ,B>,
<A,C>,<A,D>,<C,D>,<F,C>,<E,G>,<A,A>}. We use parentheses to indicate

an unordered pair and angled brackets to indicate an ordered pair. In the
remainder of this chapter we restrict our attention to digraphs.

Note that a graph need not be a tree [Figure 7.1.1(a), (b), and (d)] but that a
tree must be a graph, where we may consider the pointer from a father to a son as

an arc of the graph [Figure 7.1.1(c)]. Note also that a node need not have any
arcs associated with it [node H in Figure 7.1.1(a) and (b)1.

370
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A node n is incident to an arc x if n is one of the two nodes in the ordered

pair of nodes that comprise x. (We also say that x is incident to n.) The degree of

a node is the number of arcs incident to it. The indegree of a node n is the number

of arcs that have n as the head and the outdegree of n is the number of arcs

that have n as the tail. For example, node A in Figure 7.1.1(d) has indegree 1,

outdegree 2, and degree 3. A node n is adjacent to a node m if there is an arc
from m to n.

o

(a)

o O\
7

3

17

(b) Figure 7.1.2 Relations and graphs.
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A relation R on a set A is a set of ordered pairs of elements of A. If <x,y>
is a member of a relation R, then x is said to be related to y in R. For example,
if A is the set {3,5,6,8,10,17}, the set {<3,10>,<5,6>,<5,8>,

<6,17>, <8,17>, <10, 17>} is a relation on A. This particular relation may be
described by saying that x is related to y if x and y are in A, x is less than y, and
the remainder obtained by dividing y by x is odd. <8,17> is a member of this
relation since 8 is smaller than 17 and the remainder on dividing 17 by 8 is 1,
which is odd. A relation may be represented by a graph in which the nodes represent

the underlying set and the arcs represent the ordered pairs of the relation.
Figure 7.1.2(a) illustrates the graph representing the relation described above.

A value may be associated with each arc of a graph as in Figure 7.1.2(b). In
that figure, the value associated with each arc is the remainder obtained by dividing

the integer at the head of the arc by the integer at the tail. Such a graph, in
which a value is associated with each arc, is called a weighted graph or a net
work. The value associated with an arc is called its weight.

We identify several primitive operations which are useful in dealing with
graphs. The operation join (a,b) adds an arc from node a to node b if one does
not already exist. joinwt (a,b,x) adds an arc from node a to node b with weight x
in a weighted graph. remv(a,b) and remvwt(a,b,x) remove an arc from a to b if
one exists (remvwt also sets x to its weight). Although we may also want to add

or delete nodes from a graph, we postpone a discussion of these possibilities until
a later section. The function adjacent(a,b) returns true if node b is adjacent to
node a, andfalse otherwise.

A path of length k from node a to node b is defined as a sequence of k + 1
nodes n1, n2, . . . n,1 such that n1 = a, k+ 1 = b, and adjacent(n,, n, + 1) is
true for all i between 1 and k. If for some integer r, a path of length k exists
between a and b, then there is a path from a to b. A path from a node to itself is
called a cycle. If a graph contains a cycle, it is cyclic; otherwise, it is acyclic.

Consider the graph of Figure 7.1.3. There is a path of length 1 from A to C,
two paths of length 2 from B to G, and a path of length 3 from A to F. There is no
path from B to C. There are cycles from B to B, from F to F, and from H to H.
Be sure that you can find all paths of length less than 9 and all cycles in the
figure.

BASIC Representation of Graphs

Let us now turn to the question of how to represent a graph in BASIC. Suppose
that the number of nodes in the graph is constant; that is, arcs may be added or
deleted but nodes may not. A graph with five nodes could then be declared as
follows:

10 N = 5

20 DIM INFO(N)

30 DIM ADJ(N,N)
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Ø%Ø
C) 0 0

Figure 7.1.3

Each node of the graph is represented by an integer between 1 and N and

the array element INFO(I) represents the information associated with node I. The

value of ADJ(I,J) is either TRUE or FALSE (i.e., 1 or 0), depending on whether

or not node J is adjacent to node I. The two-dimensional array ADJ is called an

adjacency matrix. The order of such an adjacency matrix is defined as the number

of nodes in the underlying graph (which equals N). In the case of a weighted

graph, each arc can also be assigned information in a two-dimensional array declared

by
40 DIM WEIGHT(N,N)

Frequently, the nodes of an unweighted graph are numbered from 1 to N
and no information is associated with them. We are then interested only in the

existence of arcs between nodes; we are not concerned with any other information

about either the nodes or the arcs. In such cases, the graph could be declared

simply by
20 DIM ADJ(N,N)

In effect, the graph is totally described by its adjacency matrix. We present the

code for the primitive operations described above in the case where a graph is

described by its adjacency matrix.

1000 ‘subroutine join
1010 ‘inputs: ADJ, Ni, N2
1020 ‘outputs: ADJ
1030 ‘locals: none

1040 ‘add an arc from node Ni to N2

1050 ADJ(N1, N2) = TRUE

1060 RETURN

1070 ‘endsub
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2000 ‘subroutine remv

2010 ‘inputs: ADJ, Ni, N2

2020 ‘outputs: ADJ
2030 ‘locals: none

2040 ‘delete an arc from node Ni to node N2 if one exists

2050 ADJ(N 1, N2) = FALSE
2060 RETURN

2070 ‘endsub

3000 ‘subroutine adjacent

3010 ‘inputs: ADJ, Ni, N2

3020 ‘outputs: AJACENT
3030 ‘locals: none

3040 ‘tests whether there is an arc from node Ni to node N2

3050 IF ADJ(Ni ,N2) = TRUE THEN AJACENT = TRUE

ELSE AJACENT = FALSE

3060 RETURN

3070 ‘endsub

A weighted graph with a fixed number of nodes may be declared by

20 DIM ADJ(N,N)
30 DIM WEIGHT(N,N)

The routine joinwt, which adds an arc from Ni to N2 with weight WT, may be
coded as follows:

4000 ‘subroutine joinwt

4010 ‘inputs: ADJ, WEIGHT, Ni, N2, WT

4020 ‘outputs: ADJ, WEIGHT

4030 ‘locals: none

4040 ADJ(N1, N2) = TRUE

4050 WEIGHT(N 1, N2) = WT

4060 RETURN

4070 ‘endsub

The routine remvwt is left to the reader as an exercise.

Path Matrices

There are two binary operations which are useful in dealing with values that are
either true or false. These operations, and and or, are called logical operations.
If x and y are variables with the values true or false, then x and y is true if and

only if both x and y are true; otherwise, it is false. x or y is true if and only if
either or both of x and y are true. Thus x or y is false if and only if both x and y
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are false. The and operation is called conjunction and the or operation is called
disjunction.

Let us assume that a graph of n nodes is completely described by its adjacency
matrix, adj (i.e., no data are associated with the nodes and the graph is not

weighted). Consider the logical expression adj(i,k) and adj(k,j). Its value is true
if and only if the values of both adj(i,k) and adj(k,j) are true, which implies that
there is an arc from node i to node k and an arc from node k to node j. Thus

adj(i,k) and adj(kj) equals true if and only if there is a path of length two from i

toj passing through k.

Now consider the expression

(adj(i, 1) and adj(1 ,j)) or (adj(i,2) and adj(2,j)) or.
or (adj(i,n) and adj(n,j))

The value of this expression is true if and only if there is a path of length 2 from

node i to node j either through node 1 or through node 2, . . . , or through node

n. This is the same as saying that the expression evaluates to true if and only if
there is some path of length 2 from node i to node j. Consider a two-dimensional

array adj2 such that adj2(ij) is the value of the expression above. adj2 is called

the path matrix of length 2 for the graph. The value of adj2(ij) indicates whether
or not there is a path of length 2 between i and j. If you are familiar with matrix

multiplication, you may realize that adj2 is the product of adj with itself, with

numerical multiplication replaced by conjunction and addition replaced by disjunction.
adj2 is said to be the Boolean product of adj with itself.

Figure 7.1.4 illustrates this process. Figure 7.1.4(a) depicts a graph and its

adjacency matrix in which true is represented by 1 and false is represented by 0.

Figure 7.1.4(b) is the Boolean product of that matrix with itself and is thus the

path matrix of length 2 for the graph. Convince yourself that a 1 appears in row i,
column j of the matrix of Figure 7.1.4(b) if and only if there is a path of length 2

from node i to node j in the graph.
Similarly, define adj3, the path matrix of length 3, as the Boolean product

of adj2 with adj. adj3(ij) equals true if and only if there is a path of length 3 from
I toj. In general, to compute the path matrix of length 1, form the Boolean product

of the path matrix of length 1—i with the adjacency matrix. Figure 7.1.5 illustrates
the matrices adj3 and adj4 of the graph in Figure 7.1.4(a).

We may write a routine prod, which computes the Boolean product C of an
array A with an array B, as follows. A is assumed to be of size Al by A2, B is
assumed to be of size Bi by B2, and C is assumed to be of size Al by B2.

6000 ‘subroutine prod
6010 ‘inputs: A, Al, A2, B, B1, B2

6020 ‘outputs: C
6030 ‘locals: CIJ, II, JJ, KK
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A 0

B 0

CO

DO

E 0

00 1

00 1

00 1

00 1

000

(b) adj2

Figure 7.1.4

A B CD E

A 000 1 1

B 000 1 1

C 000 1 1

DO 000 1

E 000 1 0

(a) adj3

A B CD E

0 0 0 1 1

0 0 0 1 1

0 0 0 1 1

0 0 0 1 0

0 0 0 0 1

IF A2 <>B1 THEN PRINT “PRODUCT CANNOT BE FORMED” : STOP6040

FORII = 1TOA16050

FORJJ= 1TOB2

CIJ = FALSE

FORKK= 1TOA2

IF A(II,KK) = TRUE AND B(KK,JJ) = TRUE

THEN CIJ = TRUE

We may also write a routine that accepts an adjacency matrix, ADJ, its order

N, and a positive integer K and computes the matrix ADJK in the array variable
APROD, as follows:

7000 ‘subroutine adjprod
7010 ‘inputs: ADJ, K, N
7020 ‘outputs: APROD

NEXT KK

C(II,JJ) = CIJ

NEXT JJ

NEXT II6130

RETURN6140

‘endsub6150

A B C D E

A 0 0 1 1 0

B 0 0 1 0 0

C 0 0 0 1 1

D 0 0 0 0 1

E 0 0 0 1 0

(a) adj

H
B C D E

0

A

B

C

D

E

(b) adj4

Figure 7.1.5

6060

6070

6080

6090

6100

6110

6120
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7030 ‘locals: A, Al, A2, B, Bl, B2, C, I, J, NUM

7040 ‘initialize B and C to ADJ

7050 FORI=1TON

7060 FORJ=1TON

7070 B(I,J) = ADJ(I,J)

7080 C(I,J) = ADJ(I,J)

7090 NEXT J

7100 NEXT!

7110 ‘initialize the other inputs to the subroutine prod
7120 Al = N

7130 A2 = N

7140 Bl = N

7150 B2 = N

7160 ‘call prod K— 1 times
7170 NUM =

7180 IF NUM = K THEN GOTO 7280

7190 ‘setAtoC

7200 FORI=1TON

7210 FORJ= ltoN

7220 A(I,J) = C(I,J)

7230 NEXTJ

7240 NEXT I

7250 GOSUB 6000: ‘subroutine prod sets C equal to the Boolean

‘product of A and B
7260 NUM = NUM + 1

7270 GOTO 7180

7280 ‘setAPRODtoC

7290 FORI=1TON

7300 FORJ=1TON

7310 APROD(I,J) = C(I,J)
7320 NEXTJ

7330 NEXT!

7340 RETURN

7350 ‘endsub

Transitive Closure

Assume that we want to know whether a path of length 3 or less exists between

two nodes of a graph. If such a path exists between nodes i and j, it must be of

length 1, 2, or 3. If there is a path of length 3 or less between nodes i and j, the
value of
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adj(i, j) or adj2(i, j) or adj3(i, j)

must be true. Figure 7.1.6 shows the matrix formed by oring the matrices adj,
adj2, and adj3. This matrix contains the value true (represented by the value 1 in
the figure) in row i, columnj if and only if there is a path of length 3 or less from
node i to node j.

Suppose we wish to construct a matrix path such that path(i, j) equals true if
and only if there is some path from node i to node j (of any length). Clearly,

path(i, j) = adj(i, j) or adj2(i, j) or.

However, the equation above cannot be used in computing path since the process

that it describes is an infinite one. However, if the graph has n nodes, it must be
true that

path(i, j) = adj(i, j) or adj2(i, j) or. . . or adjn (i, J).

This is because if there is a path of length m > n from i toj (such as i, i2,i3,

m, j), there must be another path from i to j of length less than or equal to

n. To see why this is so, note that since there are only n nodes in the graph, at

least one node k must appear in the path twice. The path from i to j can be shortened

by removing the cycle from k to k. This process is repeated until no two

nodes in the path (except possibly i and j) are equal and therefore the path is of

length n or less. Figure 7.1.7 illustrates the matrix path for the graph of Figure

7.1.4(a). The matrix path is often called the transitive closure of the matrix adj.

We may write a BASIC routine that accepts an adjacency matrix ADJ and

computes its transitive closure PATH. This routine uses the auxiliary routine

prod.

‘subroutine transciose5000

‘inputs: ADJ, N5010

‘outputs: PATH5020

‘locals: A, Al, A2, B, Bl, B2, C, I, J, R5030

‘we assume a prior declaration5040

‘DIM A(N,N), B(N,N), C(N,N), PATH(N,N)5050

0

0

0

0

0

0

0

0

A B CD E

A

B

C

D

E

0

0

0

0

0

A

A 0

B 0

CO

DO

E 0

B CD E

O 1 1 1

0 1 1 1

00 1 1

00 1 1

00 1 1

Figure 7.1.6 Figure 7.1.7 path = adj or

a4j2 or adj3 or adj4 or adj5.
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5060 FORI=1TON

5070 FORJ=1TON

5080 C(I,J) = ADJ(I,J)

5090 PATH(I,J) = ADJ(I,J)

5100 B(I,J) = ADJ(I,J)

5110 NEXTJ

5120 NEXT I

5130 Al = N: ‘the variables Al, A2, Bl, B2 are used by the routine prod
5140 A2 = N

5150 Bl = N

5160 B2 = N

5170 FORR=1TON—1

5180 ‘R represents the number of times ADJ has been multiplied by

‘itself to obtain C
5190 ‘at this point PATH represents all paths of length R or less
5200 ‘reset C to the Boolean product of C and ADJ by setting A to C,

‘and calling the subroutine prod to reset C to the product of
‘A and B

5210 FORI=1TON

5220 FORJ=1TON

5230 A(I,J) = C(I,J)

5240 NEXT J

5250 NEXT I

5260 GOSUB 6000: ‘subroutine prod sets C equal to the Boolean

‘product of A and B
5270 ‘set PATH to PATH OR C

5280 FORI=1TON

5290 FORJ=1TON

5300 IF C(I,J) = TRUE THEN PATH(I,J) = TRUE

5310 NEXTJ

5320 NEXT!

5330 NEXTR

5340 RETURN

5350 ‘endsub

We can make some improvement in the efficiency of this program in many practical
cases by checking whether PATH remains unchanged after a repetition of

the FOR loop consisting of statements 5170—5330. However, in the interests of
clarity and simplicity, we do not include this check.

Warshall’s Algorithm

The method described above is quite inefficient. Let us see if we can find a more

efficient method of computing path. Let us define the matrix path,, such that
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pathk(i, j) equals true if and only if there is a path from node i to node j which

does not pass through any nodes numbered higher than k (except, possibly, for i
and j themselves). How can the value of pathk+ 1(i,j) be obtained from pathk?

Clearly, for any i or j such that path,, (ij) = true, pathk+ 1(i, J) must equal true

(why?). The only situation in which pathk+ 1(i, J) can equal true while pathk (ij)

equals false is if there is a path from i toj passing through node k + 1 but there is
no path from i to j passing through only nodes 1 through k. But this means that
there must be a path from ito k + 1 passing through only nodes 1 through k and a

similar path from k + 1 to j. Thus pat h,,+ 1(i, f) = true if and only if one of the
following two conditions holds:

1. path,(i, j) = true

2. pathk(i,k + 1) = true and pathk(k + 1 ,j) = true

This means that pathk+ 1(i, j) equals pathk(i, j) or (pat h,,(i,k + 1) and

pathk (k + 1,j)). An algorithm to obtain the matrix pathk from the matrix pathk_1
based on this observation follows:

fori= lton

forj = 1 to n

pathk(i, j) = pathk_ 1(i, j) or (pathk_ 1(i,k) and pathk_ 1(k, j))

nextj

next i

This may be logically simplified and made more efficient as follows:

pathk = pathk_1
fori= lton

if pathk_ 1(i,k)
then forj = 1 to n

pathk(i, j) = pathk_ 1(i, j) orpathk_ 1(k, j)
nextj

endif
next i

Clearly, patho (i,j) = adj(i,j) since the only way to go from node ito nodej
without passing through any other nodes is to go directly from i toj. Further,
path (i, j) = path(i, j) since any path from node ito nodej passes through nodes
numbered from 1 to n. The following BASIC routine may therefore be used to

compute the transitive closure.

4000 ‘subroutine transclose

4010 ‘inputs:ADJ,N

4020 ‘outputs: PATH

4030 ‘locals: I, J, K
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4040 ‘PATH is initialized to ADJ

4050 FORI=1TON

4060 FORJ = 1TON

4070 PATH(I,J) = ADJ(I,J)

4080 NEXT J

4090 NEXT I

4100 FORK=1TON

4110 ‘compute successive values of PATH
4120 FORI=1TON

4130 IF PATH(I,K) = FALSE THEN GOTO 4170

4140 FORJ=1TON

4150 IF PATH(K,J) = TRUE THEN PATH(I,J) = TRUE

4160 NEXTJ

4170 NEXT!

4180 NEXT K

4190 RETURN

4200 ‘endsub

This method of finding the transitive closure is often called Warshall’s algorithm,
after its discoverer.

EXERCISES

1. For the graph of Figure 7.1.1:

(a) Find its adjacency matrix.

(b) Find its path matrix using powers of the adjacency matrix.

(c) Find its path matrix using Warshall’s algorithm.

2. Draw a digraph to correspond to each of the following relations on the integers from

1 to 12:

(a) x is related to y if x—y is evenly divisible by 3.

(b) xis related toy if x+ lO’y <x’y.

(C) x is related to y if the remainder on division of x by y is 2.

Compute the adjacency and path matrices for each of these relations.

3. A node n 1 is reachable from a node n2 in a graph if n 1 equals n2 or there is a path

from n2 to ni. Write a BASIC subroutine reach which accepts an adjacency matrix

adj and two integers i and j, and determines if node fin the digraph is reachable from

node I.

4. Write BASIC routines which, given an adjacency matrix and two nodes of a graph,

compute

(a) The number of paths of a given length existing between the two nodes.

(b) The total number of paths existing between the two nodes.

(c) The length of the shortest path between the two nodes.
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5. A relation on a set S (and its corresponding digraph) is reflexive if every element of S
is related to itself.

(a) What must be true of a digraph if it represents a reflexive relation?

(b) Give an example of a reflexive relation and draw its corresponding digraph.

(c) What must be true of the adjacency matrix of a reflexive digraph?

(d) Write a BASIC routine that accepts an adjacency matrix and determines if the

digraph represents a reflexive relation.

6. A relation on a set of S (and its corresponding digraph) is irreflexive if no element of
S is related to itself.

(a) What must be true of a digraph if it represents an irreflexive relation?

(b) Give an example of an irreflexive relation and draw its corresponding digraph.

(c) Does there exist a relation that is neither reflexive nor irreflexive? (See Exercise 5.)

(d) What must be true of the adjacency matrix of an irreflexive digraph?

(e) Write a BASIC routine that accepts an adjacency matrix and determines if the

digraph it represents is irreflexive.

7. A relation on a set S (and its corresponding digraph) is symmetric if for any two

elements x and y in S such that x is related to y, y is also related to x.

(a) What must be true of a digraph if it represents a symmetric relation?

(b) Give an example of a symmetric relation and draw its digraph.

(c) What must be true of the adjacency matrix of a symmetric digraph?

(d) Write a BASIC routine that accepts an adjacency matrix and determines if the

digraph it represents is symmetric.

8. A relation on a set S (and its corresponding digraph) is antisymmetric if for any two

distinct elements x and y in S such that x is related to y, y is not related to x.

(a) What must be true of a digraph if it represents an antisymmetric relation?

(b) Give an example of an antisymmetric relation and its digraph.

(c) Does there exist a relation that is both symmetric and antisymmetric? (See Exercise

7.)

(d) What must be true of the adjacency matrix of an antisymmetric digraph?

(e) Write a BASIC routine that accepts an adjacency matrix and determines if the

digraph it represents is antisymmetric.

9. A relation on a set S (and its corresponding digraph) is transitive if for any three

elements x, y, and z in S such that if x is related to y and y is related to z, it is also true
that x is related to z.

(a) What must be true of a digraph if it represents a transitive relation?

(b) Give an example of a transitive relation and draw its digraph.

(c) What must be true of the Boolean product of the adjacency matrix of a transitive

digraph with itself?

(d) Write a BASIC routine that accepts an adjacency matrix and determines if the

digraph it represents is transitive.

(e) Prove that the transitive closure of any digraph is transitive.

(f) Prove that the smallest transitive digraph which includes all nodes and arcs of a

given digraph is the transitive closure of that digraph.
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10. Given a digraph, prove that it is possible to renumber its nodes so that the resultant

adjacency matrix is lower triangular (see Exercise 1.2.13) if and only if the digraph is

acyclic. Write a BASIC program lowtri which accepts an adjacency matrix ADJ of an

acyclic graph and creates a lower triangular adjacency matrix LTADJ which represents

the same graph. The program should also set the values of a one-dimensional

array PERM of size N so that PERM(I) is set to the new number assigned to the node
that was numbered I in the matrix ADJ.

2. A FLOW PROBLEM

In this section we consider a real-world problem and illustrate a solution that uses

a weighted graph. There are a number of formulations of this problem whose

solutions carry over to a wide range of applications. We present one such formulation
here and refer the reader to the literature for alternative versions.

Assume a water pipe system as in Figure 7.2.1(a). Each arc represents a

pipe and the number above each arc represents the capacity of that pipe in gallons

per minute. The nodes represent points at which pipes are joined and water is

transferred from one pipe to another. Two nodes, S and T, are designated as a
source of water and a user of water (or a sink), respectively. This means that

water originating at S must be carried through the pipe system to T. Water may

flow through a pipe in only one direction (pressure-sensitive valves may be used

to prevent water from flowing backward) and there are no pipes entering S or

leaving T A weighted directed graph, as in Figure 7.2.1(a), is an ideal data
structure to model the situation.

We would like to maximize the amount of water flowing from the source to

the sink. Although the source may be able to produce water at a prodigious rate

and the sink may be able to consume water at a comparable rate, the pipe system

may not have the capacity to carry it all from the source to the sink. Thus the

limiting factor of the entire system is the pipe capacity. Many other real-world

problems are similar in nature. The system could be an electrical network, a railway
system, a communications network, or any other distribution system in

which one wants to maximize the amount of an item being delivered from one

point to another.

Define a capacity function, c(a,b), where a and b are nodes, as follows: if

adjacent (a,b) is true (i.e., if there is a pipe from a to b), then c(a,b) is the capacity
of the pipe from a to b. If there is no pipe from a to b, then c(a,b) = 0. At

any point in the operation of the system, a given amount of water (possibly 0)
flows through each pipe. Define a flow function, f(a,b), where a and b are

nodes, as 0 if b is not adjacent to a, and as the amount of water flowing through
the pipe from a to b otherwise. Clearly,f(a,b) 0 for all nodes a and b. Furthermore,

f(a,b) c(a,b) for all nodes a and b, since a pipe may not carry more

water than its capacity. Let v be the amount of water that flows through the system

from S to T. Then the amount of water leaving S through all pipes equals the
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3

(a) A flow problem.

(b) A flow function.

0.

(c) A flow function.

Figure 7.2.1
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amount of water entering T through all pipes and both these amounts equal v.

This can be stated by the equality

f(S,x) = v = f(x,T)
x€nodes x€nodes

No node other than S can produce water, and no node other than T can absorb
water. Thus the amount of water leaving any node other than S or T is equal

to the amount of water entering that node. This can be stated by

f(x,y) = f(y,x) for all nodes x S, T.

y € nodes y € nodes

Define the inflow of a node x as the total flow entering x and the ouWow as the
total flow leaving x. The conditions above may be rewritten as

outflow(S) = inflow(T) = v
inflow(x) = outflow(x) for all x S,T

Several flow functions may exist for a given graph and capacity function.

Figure 7.2.1(b) and (c) illustrate two possible flow functions for the graph of Figure

7.2.1(a). Make sure that you understand why both of them are valid flow

functions and why both satisfy the equations and inequalities above.

We wish to find a flow function that maximizes the value of v, the amount

of water going from S to T. Such a flow function is called optimal. Clearly, the

flow function of Figure 7.2.1(b) is better than the one of Figure 7.2.1(c), since v

equals 7 in the former but only 5 in the latter. See if you can find a flow function

that is better than the one of Figure 7.2.1(b).

One valid flow function can be achieved by settingf(a,b) to 0 for all nodes

a and b. Of course, this flow function is least optimal since no water flows from

S to T. It may be possible to improve a given flow function so that the flow from

S to T is increased. However, the improved version must satisfy all the conditions

for a valid flow function. In particular, if the flow entering any node (except for S

or T) is increased or decreased, the flow leaving that node must be increased or

decreased correspondingly. The strategy for producing an optimal flow function

is to begin with the zero flow function and to improve upon it successively until

an optimal flow function is produced.

Improving a Flow Function

Given a flow functionf, there are two ways to improve upon it. One way consists

of finding a path S = x1, x2, . . . , x, = T from S to T such that the flow along
each arc in the path is strictly less than its capacity [i.e. , f(xk —1, Xk) < C(Xk —1, Xk)
for all k between 2 and n]. The flow can be increased on each arc in such a path
by the minimum value of C(Xk 1, Xk) —f(xk 1’ Xk) for all k between 2 and n [so
that when the flow has been increased along the entire path there is at least one
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arc <Xk 1, Xk> in the path for which f(xkl ,Xk) = C(Xk -1, Xk) and through which
the flow may not be increased].

This may be illustrated by the graph of Figure 7.2.2(a), which gives the
capacity and the current flow, respectively, for each arc. There are two paths
from S to T with positive flow [(S,A,C,T) and (S,B,D,T)]. However, each of
these paths contains one arc (<A,C> and <B,D>) in which the flow equals the
capacity. Thus the flow along these paths may not be improved. However, the
path (S,A ,D ,T) is such that the capacity of each arc in the path is greater than its
current flow. The maximum amount by which the flow can be increased along
this path is 1 since the flow along arc <D,T> cannot exceed 3. The resulting
flow function is shown in Figure 7.2.2(b). The total flow from S to T has been
increased from 5 to 6. To see that the result is still a valid flow function, note that

for each node (except T) whose inflow is increased, the outflow is increased by
the same amount.

Are there any other paths whose flow can be improved? In this example,
you should satisfy yourself that there are not. However, given the graph of Figure

7.2.2(a) we could have chosen to improve the path (S,B,A,D,T). The resulting

flow function is illustrated in Figure 7.2.2(c). This function also provides for a
net flow of 6 from S to T and is therefore neither better nor worse than the flow

function of Figure 7.2.2(b).

Even if there is no path whose flow may be improved, there may be another

method of improving the net flow from the source to the sink. This is illustrated

by Figure 7.2.3. In Figure 7.2.3(a) there is no path from S to T whose flow may

be improved. But if the flow from X to Y is reduced, the flow from X to T can be

increased. To compensate for the decrease in the inflow to Y, the flow from S to
Y could be increased. The result of the entire process is an increase in the net

flow from S to T. The flow from X to Y can be redirected to T as shown in Figure

7.2.3(b) and the net flow from S to T can thereby be increased from 4 to 7.

We may generalize this second method as follows. Suppose that there is a

path from S to some node y, a path from some node x to T, and a path from x to y

with positive flow. Then the flow along the path from x to y may be reduced and

the flows from x to T and from S to y may be increased by the same amount. This

amount is the minimum of the flow from x to y and the differences between capacities

and flows in the paths from S to y and x to T.

These two methods may be combined by proceeding through the graph from

S to T as follows. The amount of water emanating from S to T can be increased

by any amount (since we have assumed no limit on the amount that can be produced

by the source) only if the pipes from S to T can carry the increase. Suppose

that the pipe capacity from S to x allows the amount of water entering x to be

increased by an amount a. Then if a node y is adjacent to x (i.e., there is an arc

<x,y>), the amount of water emanating from x to T can be increased by the

minimum of a and the unused capacity of arc <x,y>. This is an application of
the first method. Similarly, if node x is adjacent to some node y (i.e., there is an

arc <y,x>), the amount of water emanating from y toward T can be increased by
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Figure 7.2.2 Increasing the flow in a graph.



Sec. 2 A Flow Problem 389

C
(a)

(b)

Figure 7.2.3 Increasing the flow in a graph.

the minimum of a and the existing flow from y to x. This can be done by reducing
the flow from y to x as in the second method. The resultant decrease in inflow to

x can be remedied since the capacity from S to x allows an increase in inflow to x

of up to a. Proceeding in this fashion from S to T, the amount by which the flow
to T may be increased can be determined.

Define a semipath from S to T as a sequence of nodes S = x, x2,. . . , x, = T
such that, for all 1 < i n, either <x,_i, x1> or <x1, x1_1 > is an arc. Using
the technique above, we may describe an algorithm to discover a semipath from S
to T such that the flow to each node in the semipath may be increased. This is

done by building on already recognized partial semipaths from S. If the last node

in a recognized partial semipath from S is x, the algorithm considers extending it
to any node y such that either <x,y> or <y,x> is an arc. The partial semipath is

extended to y only if the extension can be made in such a way that the inflow to y

can be increased. Once a partial semipath has been extended to a node y, that
node is removed from consideration as an extension of some other partial semipath.

(This is because at this point we are trying to discover a single semipath
from S to T.) The algorithm, of course, keeps track of the amount by which the
inflow to y may be increased and whether its increase is due to consideration of
the arc <x,y> or <y,x>.
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This process continues until some partial semipath from S has been completed
by extending it to T. The algorithm then proceeds backward along that

semipath, adjusting all flows until S is reached. (This will be illustrated shortly
with an example.) The entire process is then repeated in an attempt to discover

yet another such semipath from S to T. When no partial semipath may be successfully

extended, the flow cannot be increased and the existing flow is optimal.
(You are asked to prove this as an exercise.)

An Example

Let us illustrate this process with an example. Consider the arcs and capacities of
the weighted graph of Figure 7.2.4. We begin by assuming a flow of 0 and attempt

to discover an optimal flow. Figure 7.2.4(a) illustrates the initial situation.

The two numbers along each arc represent the capacity and current flow, respectively.

We may extend a semipath from S to (S,X) and (S,Z), respectively. The

flow from S to X may be increased by 4 and the flow from S to Z may be increased

by 6. The semipath (S,X) may be extended to (S,X,W) and (S,X,Y) with
corresponding increases of flow to W and Y of 3 and 4, respectively. The semi-

path (S,X,Y) may be extended to (S,X,Y,T) with an increase of flow to T of 4.

[Note that at this point we could have chosen to extend (S,X,W) to (S,X,W,T).
Similarly, we could have extended (S,Z) to (S,Z,Y) rather than (S,X) to (S,X,W)

and (S,X,Y). These decisions are arbitrary.]

Since we have reached T by the semipath (S,X,Y,T) with a net increase of 4,

we increase the flow along each forward arc of the semipath by this amount. The

results are depicted in Figure 7.2.4(b).

We now repeat the process above with the flow of Figure 7.2.4(b). (S) may

be extended to (S,Z) only, since the flow in arc <S,X> is already at capacity.
The net increase to Z through this semipath is 6. (S,Z) may be extended to

(S,Z,Y), yielding a net increase of 4 to Y. (S,Z,Y) cannot be extended to

(S,Z, Y,T), since the flow in arc <Y,T> is at capacity. However, it can be extended
to (S,Z,Y,X) with a net increase to node X of 4. (Note that since this semipath

includes a backward arc <Y,X>, it implies a possible reduction in the flow from

X to Y of up to 4.) The semipath (S,Z,Y,X) may be extended to (S,Z,Y,X,W) with
a net increase of 3 (the unused capacity of <X,W>) to W. This semipath may
then be extended to (S,Z,Y,X,W,T) with a net increase of 3 in the flow to T. Since

we have reached T with an increase of 3, we proceed backward along this semipath.
Since <W,T> and <X,W> are forward arcs, their flow may each be increased

by 3. Since <Y,X> is a backward arc, the flow along <X,Y> is reduced
by 3. Since <Z,Y> and <S,Z> are forward arcs, their flow may be increased by
3. This results in the flow shown in Figure 7.2.4(c).

We then attempt to repeat the process. (S) may be extended to (S,Z) with an
increase of 3 to Z, (S,Z) may be extended to (S,Z,Y) with an increase of 1 to Y,
and (S,Z,Y) may be extended to (S,Z,Y,X) with an increase of 1 to X. However,
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Figure 7.2.4 Producing an optimum flow.
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since arcs <S,X>, <Y,T>, and <X,W> are at capacity, no semipath may be

extended further and an optimum flow has been found. Note that this optimum

flow need not be unique. Figure 7.2.4(d) illustrates another optimum flow for the
same graph, which was obtained from Figure 7.2.4(a) by considering the semi-
paths (S,X,W,T) and (S,Z,Y,T).

The Algorithm and Program

Given a weighted graph (an adjacency matrix and a capacity matrix) with a
source S and a sink T, the algorithm to produce an optimum flow function for that

graph may be outlined as follows:

1. initialize the flow function to 0 at each arc

2. attempt to find a semipath from S to T which increases the flow to T by a > 0

3. if a semipath cannot be found then return

4. increase the flow to each node (except S) in the semipath by a

5. goto step 2

Of course, the heart of the algorithm lies in step 2. Once a node has been

placed on a partial semipath, it can no longer be used to extend a different semi-

path. Thus the algorithm uses an array opath such that opath(node) is true or

false depending on whether or not node is on some semipath. It also needs an

indication of which nodes are at the ends of partial semipaths so that such partial

semipaths can be extended by adding adjacent nodes. epath(node) indicates

whether or not node is at the end of a partial semipath. For each node on a semi-

path, the algorithm must keep track of what node precedes it on that semipath and

the direction of the arc. precede(node) points to the node that precedes node on

its semipath and forward(node) has the value true if and only if the arc is from

precede(node) to node. improve(node) indicates the amount by which the flow to

node may be increased along its semipath. The algorithm that attempts to find a

semipath from S to T along which the flow may be increased may be written as

follows. [We assume that c(x,y) is the capacity of the arc from x to y and that

f(x,y) is the current flow from x to y.J

set epath(node) and opath(node) to false for all nodes

epath(S) = true

opath(S) = true

‘compute maximum flow from S which the arcs can carry

improve(S) = sum of c(S,node) over all nodes node

while (opath(T) = false) and (there exists a node nd such that epath(nd) = true) do

epath(nd) = false
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while there exists a node i such that (adjacent(nd, i) = true

and opath(i) = false and f(nd,i) < c(nd,i)) do

‘the flow from nd to i may be increased; place i on the semipath

opath(i) = true

epath(i) = true

precede(i) = nd

forward(i) = true

temp = c(nd,i) — f(nd,i)

if improve(nd < temp

then improve(i) = improve(nd)

else improve(i) = temp

endif
endwhile

while there exists a node i such that (adjacent(i,nd) = true

and opath(i) = false and f(i,nd)>O) do

‘the flow from i to nd may be decreased; place i on the semipath

opath(i) = true

epath(i) = true

precede(i) = nd

forward(i) = false

if improve(nd <f(i,nd

then improve(i) = improve(nd)

else improve(i) = f(i,nd)

endif
endwhile

endwhile

if opath(T) = true

then we have found a semipath from S to T

else the flow is already optimal

endif

Once a semipath from S to T has been found, the flow may be increased
along that semipath (line 4 above) by the following algorithm:

a = improve(T)
nd = T

whilend<> Sdo

pd = precede(nd)

if forward(nd) = true

then f(pd,nd) = flpd,nd) + a

else f(nd,pd) = f(nd,pd) — a

endif

nd = pd
endwhile
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This method of solving the flow problem is known as the Ford—Fulkerson algorithm,
after its discoverers.

Let us now convert these algorithms into a BASIC routine maxflow where

the array CAP is an input variable representing a capacity function defined on a

weighted graph and declared by

20 DIM CAP (N,N): ‘N is the number of nodes in the graph

S and T are inputs representing the source and sink, the two-dimensional array
FLOW is an ouput variable representing the maximum flow function, and

TTLFLOW is an output variable representing the amount of flow from S to T
under the flow function represented by FLOW.

The previous algorithms may be converted easily into BASIC programs.
Two arrays EPATH and OPATH whose elements hold the values TRUE or

FALSE are required as well as two integer arrays PRECEDE and IMPROVE.

The array forward of the algorithm may be combined with the array precede to

produce the BASIC array PRECEDE, in which PRECEDE(ND) is positive or
negative depending on whetherforward(nd) is true or false in the algorithm. The

absolute value of PRECEDE(ND) is the node that precedes ND on a semipath.
Similarly, the question of whether J is adjacent to I can be answered by checking
whether or not CAP(I,J) = 0.

We present the routine here as a straightforward implementation of the algorithms.

1000 ‘subroutine maxflow

1010 ‘inputs: CAP, N, S, T

1020 ‘outputs: FLOW, TTLFLOW

1030 ‘locals: A, EPATH, I, IMPROVE, J, K, ND, OPATH, PD, PRECEDE
1040 ‘initialize

1050 FORI=1TON

1060 FORJ=1TON

1070 FWW(I,J) = 0

1080 NEXT J

1090 NEXT I

1100 TTLFWW = 0

1110 ‘attempt to find a semipath from S to T

1120 IMPROVE(S) = 0
1130 FORK=1TON

1140 EPATH(K) = FALSE

1150 OPATH(K) = FALSE

1160 IMPROVE(S) = IMPROVE(S) + CAP(S,K)

1170 NEXT K

1180 EPATH(S) = TRUE
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1190 OPATH(S) = TRUE

1200 IF OPATH(T) = TRUE THEN GOTO 1400: ‘a semipath has been found
1210 FORND=1TON

1220 IF EPATH(ND) = TRUE THEN GOTO 1250

1230 NEXT ND

1240 GOTO 1400

1250 EPATH(ND) = FALSE

1260 FOR I = 1 TO N: ‘combine the two ioops of the algorithm into one
1270 IF OPATH(I) = TRUE OR FWW(ND,I) = CAP(ND,I)

THEN GOTO 1330

1280 OPATH(I) = TRUE

1290 EPATH(I) = TRUE

1300 PRECEDE(I) = ND

1310 TEMP = CAP(ND,I) — FWW(ND,I)

1320 IF IMPROVE(ND) <TEMP THEN IMPROVE(I) = IMPROVE(ND)

ELSE IMPROVE(I) = TEMP

1330 IF OPATH(I) = TRUE OR FWW(I,ND) = 0 THEN GOTO 1380

1340 OPATH(I) = TRUE

1350 EPATH(I) = TRUE

1360 PRECEDE(I) = -ND

1370 IF IMPROVE(ND) < FWW(I,ND)

THEN IMPROVE(I) = IMPROVE(ND)

ELSE IMPROVE(I) = FWW(I,ND)

1380 NEXT I

1390 GOTO 1200

1400 ‘if no semipath has been found, the flow is optimal

1410 IF OPATH(T) = FALSE THEN RETURN

1420 A = IMPROVE(T)
1430 flLFWW = flLFWW + A

1440 ND = T

1450 IF ND = S THEN GOTO 1110: ‘attempt to find another semipath from S to T
1460 PD = PRECEDE(ND)

1470 IF PD > 0 THEN FWW(PD,ND) = FWW(PD,ND) + A

ELSE PD = —PD : FLOW(ND,PD) = FWW(ND,PD) — A

1480 ND = PD

1490 GOTO 1450

1500 ‘endsub

For large graphs with many nodes, the arrays IMPROVE and EPATH

may be prohibitively expensive in terms of space. Furthermore, a search through
all nodes to find one such that EPATH(ND) = TRUE may be very inefficient

in terms of time. An alternative solution might be to note that the
value of IMPROVE is required only for those nodes ND such that
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EPATH(ND) = TRUE. Those graph nodes that are at the end of semipaths may

be kept in a list whose nodes are declared by

10 DIM GRAPHNODE(100)

20 DIM IMPROVE(100)

30 DIM NXT(100)

When a node that is at the end of a semipath is required, remove the first element

from the list. We can similarly dispense with the array PRECEDE by maintaining

a separate list of nodes for each semipath. However, this suggestion is of dubious

value in saving space since almost all nodes will be on some semipath. You are
invited to write the routine maxflow as an exercise, using these suggestions to

save time and space.

EXERCISES

1. Find the maximum flows for the graphs in Figure 7.2.1 using the Ford—Fulkerson

method (the capacities are shown next to the arcs).

2. Given a graph and a capacity function as in this section, define a cut as any set of

nodes x containing S but not T. Define the capacity of the cut x as the sum of the

capacities of all the arcs leaving the set x minus the sum of the capacities of all the arcs

entering x.

(a) Show that for any flow functionf, the value of the total flow v is less than or equal

to the capacity of any cut.

(b) Show that equality in part (a) is achieved when the flow is maximum and the cut

has minimum capacity.

3. Prove that the Ford—Fulkerson algorithm produces an optimum flow function, using

the statements of Exercise 2.

4. Rewrite the routine maxflow using a linked list to contain nodes at the end of semi-

paths, as suggested in the text.

5. Assume that in addition to a capacity for every arc, there is also a cost function, cost.

cost is the cost of each unit of flow from node a to node b. Modify the program of the

text to produce the flow function that maximizes the total flow from source to sink at

the lowest cost (i.e., if there are two flow functions, both of which produce the same

maximum flow, choose the one with the least cost).

6. Assuming a cost function as in Exercise 5, write a program to produce the maximum

cheapest flow, that is, a flow function such that the total flow divided by the cost of

the flow is greatest.

7. A probabilistic directed graph is one in which a probability function associates a probability

with each arc. The sum of the probabilities of all arcs emanating from any node

is 1. Consider an acyclic probabilistic digraph representing a tunnel system. A man is

placed at one node in the tunnel. At each node, he chooses to take a particular arc to
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another node with probability given by the probability function. Write a program to

compute, for each node of the graph, the probability that the man passes through that

node. What if the graph were cyclic?

8. Write a BASIC program that reads the following information about an electrical network:

(a) N, the number of wires in the network,

(b) the amount of current entering through the first wire and leaving through the Nth,

(c) the resistance of each of the wires 2 through N-i,

(d) a set of ordered pairs <I,J> indicating that wire I is connected to wire J and that

electricity flows through wire I to wire J.

The program should compute the amount of current flowing through each of wires 2

through N-i by applying Kirchhoff’s law and Ohm’s law. Kirchhoff’s law states that

the amount of current flowing into a junction equals the amount leaving a junction.

Ohm’s law states that if two paths exist between two junctions the sum of the currents

times the resistances over all wires in the first path is equal to the sum of the currents

times the resistances over all the wires in the second path.

3. THE LINKED REPRESENTATION OF GRAPHS

The adjacency matrix representation of a graph is frequently inadequate because

it requires advance knowledge of the number of nodes. If a graph must be constructed

in the course of solving a problem, or if it must be updated dynamically

as the program proceeds, a new matrix must be created for each addition or deletion

of a node. This is extremely dificult in BASIC and prohibitively inefficient,

especially in a real-world situation, where a graph may have 100 or more nodes.

Further, even if a graph has very few arcs, so that the adjacency matrix (and the

weight matrix for a weighted graph) consists mostly of zeros, space must be reserved

for every possible arc between two nodes whether or not such an arc exists.

If the graph contains n nodes, a total of n2 locations must be used.

As you might expect, the remedy is to use a linked structure, allocating and

freeing nodes from an available pool. This is similar to the methods used to represent

dynamic binary and general trees. In the linked representation of trees,

each allocated node corresponds to a tree node. This is possible because each tree

node is the son of only one other tree node and is therefore contained in only a

single list of sons. However, in a graph an arc may exist between any two graph

nodes. It is possible to keep an adjacency list for every node in a graph (such a

list contains all nodes adjacent to a given node) and a node might find itself on

many different adjacency lists (one for each node to which it is adjacent). But this

requires that each allocated node contain a variable number of pointers, depending

on the number of nodes to which it is adjacent. This solution is clearly impractical,

as we saw in attempting to represent general trees with nodes

containing pointers to each of its sons.

An alternative is to construct a multilinked structure in the following way.
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The nodes of the graph (hereafter referred to as graph nodes) are represented by a
linked list of header nodes. Each such header node contains three fields: info,

nxtnode, and arcptr. If p points to a header node representing a graph node a,
then info(p) contains any information associated with graph node a. nxtnode(p) is
a pointer to the header node representing the next graph node in the header node
list, if any. Each header node is at the head of a list of nodes of a second type
called list nodes or arc nodes. This list is called the adjacency list. Each node on

an adjacency list represents an arc of the graph. arcptr(p) points to the adjacency
list of nodes representing the arcs emanating from the graph node a.

Each node on an adjacency list contains two fields: ndptr and nexarc. If q

points to a list node representing an arc <a,b>, ndptr(q) is a pointer to the header
node representing the graph node b. nexarc(q) points to a list node representing
the next arc emanating from graph node a, if any. Each list node is contained

in a single adjacency list representing all arcs emanating from a given graph
node. The term allocated nodes is used to refer to both header and list nodes of a

multilinked structure representing a graph.

Figure 7.3.1 illustrates this representation. If each graph node carries some
information but (since the graph is not weighted) the arcs do not, two types of
allocated nodes are needed: one for header nodes (graph nodes) and the other for

adjacency list nodes (arcs). These are illustrated in Figure 7.3.1(a). Each header

node contains an info field and two pointers. The first of these is to the adjacency

list of arcs emanating from the graph node, and the second is to the next header
node in the list of graph nodes. Each arc node contains two pointers, one to the

next arc node in the adjacency list and the other to the header node representing

the graph node that terminates the arc. Figure 7.3.1(b) depicts a graph and

7.3.1(c) its linked representation.
Note that header nodes and list nodes have different formats and must be

represented by different sets of BASIC variables, which in turn necessitates keeping

two distinct available lists. Even in the case of a weighted graph in which
each list node contains an info field to hold the weight of an arc, if the information

in the header nodes is not numeric, two different node formats may be necessary.
However, for simplicity we modify the representation slightly and make the

assumption that both header and list nodes have the same format, each containing

two pointers and a single integer information field. These nodes are declared by

10 MAXNODES = 100

20 DIM INFO(MAXNODES)

30 DIM PNT(MAXNODES)

40 DIM NXT(MAXNODES)

If P points to a header node, node(P) represents a graph node A. INFO(P)

represents the information associated with the graph node A, NXT(P) points to
the next graph node in the list of graph nodes, and PNT(P) points to the first list

node representing an arc emanating from A. If P points to a list node, node(P)

represents an arc <A ,B>, INFO(P) represents the weight of the arc, NXT(P)
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points to the next arc emanating from A in the adjacency list of A, and PNT(P)
points to the header node representing the graph node B. We use this implementation

in the remainder of this section and assume the existence of routines

getnode and freenode.

We now present the implementation of the primitive graph operations using
the linked representation. The subroutine joinwt accepts two pointers P and Q to
two header nodes and creates an arc between them with weight WT. If an arc

already exists between the nodes, the weight of that arc is set to WT.

1000 ‘subroutine joinwt
1010 ‘inputs: P,Q, WT
1020 ‘outputs: none
1030 ‘locals: GTNODE, R, R2

1040 ‘search the list of arcs emanating

‘from node(P) for an arc to node(Q)

1050 R2 = 0

1060 R = PNT(P)

1070 IF R = 0 THEN GOTO 1120

1080 IF PNT(R) = Q THEN INFO(R) = WT: RETURN

1090 R2=R

1100 R = NXT(R)

1110 GOTO 1070

1120 ‘an arc from node(P) to node(Q) does not exist

‘such an arc must be created

1130 GOSUB 6000: ‘subroutine getnode sets the variable GTNODE

1140 R = GTNODE

1150 PNT(R) = Q

1160 NXT(R) = 0

1170 INFO(R) = WT

1180 IF R2 = 0 THEN PNT(P) = R

ELSE NXT(R2) = R

1190 RETURN

1200 ‘ensub

We leave the implementation of the operation join for an unweighted graph as an
exercise for the reader. The subroutine remv accepts two pointers P and Q to two
header nodes and removes the arc between them, if one exists.

2000 ‘subroutine remv

2010 ‘inputs: P, Q

2020 ‘outputs: none

2030 ‘locals: FRNODE, R, R2

2040 R2 = 0

2050 R = PNT(P)
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2060 IF R = 0 THEN RETURN: ‘no arc exists from node(P) to node(Q)

2070 IF PNT(R) <>Q THEN R2 = R: R = NXT(R): GOTO 2060

2080 ‘PNT(R) equals Q so that

‘R points to an arc from node(P) to node(Q)

2090 IF R2 = 0 THEN PNT(P) = NXT(R)

ELSE NXT(R2) = NXT(R)
2100 FRNODE = R

2110 GOSUB 7000: ‘subroutine freenode accepts the variable FRNODE
2120 RETURN

2130 ‘endsub

We leave the implementation of the operation remvwt, which sets X to the weight

of the arc from the graph node represented by node(P) to the graph node represented

by node(Q) in a weighted graph and then removes the arc from the graph,
as an exercise for the reader.

The subroutine adjacent accepts two pointers P and Q to two header nodes
and determines whether node(Q) is adjacent to node(P).

3000 ‘subroutine adjacent

3010 ‘inputs: P, Q

3020 ‘outputs: AJACENT
3030 ‘locals: R

3040 R = PNT(P)

3050 IF R = 0 THEN GOTO 3090

3060 IF PNT(R) = Q THEN AJACENT = TRUE: RETURN

3070 R = NXT(R)

3080 GOTO 3050

3090 AJACENT = FALSE

3100 RETURN

3110 ‘endsub

Another useful subroutine is findnode, which returns a pointer to a header
node with information field X if such a header node exists, and returns the null

pointer (0) otherwise.

4000 ‘subroutine findnode

4010 ‘inputs: GRAPH, X

4020 ‘outputs: FINDNODE

4030 ‘locals: PP

4040 PP = GRAPH

4050 IF PP = 0 THEN FINDNODE = PP: RETURN

4060 IF INFO(PP) = X THEN FINDNODE = PP: RETURN

4070 PP = NXT(PP)

4080 GOTO 4050

4090 ‘endsub
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The subroutine addnode adds a node with information field X to a graph

and returns a pointer to that node.

5000 ‘subroutine addnode

5010 ‘inputs: GRAPH, X

5020 ‘outputs: ADDNODE, GRAPH

5030 ‘locals: GTNODE, PP

5040 GOSUB 6000: ‘subroutine getnode sets the variable GTNODE
soso PP = GTNODE

5060 INFO(PP) = X

5070 PNT(PP) = 0

5080 NXT(PP) = GRAPH

5090 GRAPH = PP

5100 ADDNODE = PP

5110 RETURN

5120 ‘endsub

The reader should be aware of another important difference between the adjacency

matrix representation and the linked representation of graphs. Implicit in

the matrix representation is the ability to traverse a row or column of the matrix.

Traversing a row is equivalent to identifying all arcs emanating from a given

node. This can be done efficiently in the linked representation by traversing the

list of arc nodes starting at a given header node. Traversing a column of an adjacency

matrix, however, is equivalent to identifying all arcs that terminate at a

given node; there is no corresponding method for accomplishing this under the

linked representation. Of course, the linked representation could be modified to

include two lists emanating from each header node: one for the arcs emanating

from the graph node and the other for the arcs terminating at the graph node.

However, this would require allocating two nodes for each arc, thus increasing

the complexity of adding or deleting an arc. Alternatively, each arc node could

be placed on two lists. In this case, an arc node would contain four pointers: one

to the next arc emanating from the same node, one to the next arc terminating at

the same node, one to the header node at which it terminates, and one to the

header node from which it emanates. A header node would contain three pointers:

one to the next header node, one to the list of arcs emanating from it, and one

to the list of arcs terminating at it. The programmer must, of course, choose from

among these representations by examining the needs of the specific problem and

considering both time and storage efficiency. We invite the reader to write a routine

remvnode, which accepts two pointers, GRAPH and P, and removes a header

node pointed to by P from a graph pointed to by GRAPH using the various

graph representations that we have outlined above. Of course, when a node is

removed from a graph, all arcs emanating and terminating at that node must also

be removed. In the linked representation that we have presented there is no easy

way of removing a node from a graph since the arcs terminating at the node cannot

be obtained directly.
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An Application to Scheduling

Let us now consider an application using the linked representation of graphs.

Suppose that a chef in a diner receives an order for a fried egg. The job of frying

an egg can be decomposed into a number of distinct subtasks:

Get egg Crack egg Get grease

Grease pan Heat grease Pour egg into pan

Wait until egg is done Remove egg

Some of these tasks must precede others (e.g., “get egg” must precede

“crack egg”). Others may be done simultaneously (e.g., “get egg” and “heat

grease”). The chef wishes to provide the quickest service possible and is assumed

to have an unlimited number of assistants. The problem is to assign tasks

to the assistants so as to complete the job in the least possible time.

Although this example may seem frivolous, it is typical of many real-world

scheduling problems. A large computer system may schedule jobs to minimize

turnaround time; a compiler may schedule machine language operations to minimize

execution time; a plant manager may organize an assembly line to minimize

production time; and so on. All of these problems are closely related and can be

solved by the use of graphs.

Let us represent the foregoing problem as a graph. Each node of the graph

represents a subtask and each arc <x,y> represents the requirement that subtask

y cannot be performed until subtask x has been completed. This graph G is shown

in Figure 7.3.2.

Consider the transitive closure of G. The transitive closure is the graph T

such that <x,y> is an arc of T if and only if there is a path from x to y in G. This

transitive closure is shown in Figure 7.3.3.

In the graph T, an arc exists from node x to node y if and only if subtask x

must be performed before subtask y. Note that neither G nor T can contain a cycle

since if a cycle existed from a node x to itself, subtask x could not be performed

until after subtask x had been completed. This is clearly an impossible situation

in the context of the problem.

Since G does not contain a cycle, there must be at least one node in G which

A B C D E

Figure 7.3.2 The graph G.
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has no predecessors. To see this, suppose that every node in the graph did have a

predecessor. In particular, let us choose a node z which has a predecessor y. y

cannot equal z or the graph would have a cycle from z to itself. Since every node

has a predecessor, y must also have a predecessor x which is not equal to either y

or z. Continuing in this fashion, a sequence of distinct nodes

z,y,x, w, v, U,

is obtained. If any two nodes in this sequence were equal, a cycle would exist

from that node to itself. However, the graph contains only a finite number of

nodes, so that eventually, two of the nodes must be equal. This is a contradiction.

Thus there must be at least one node without a predecessor.

In the graphs of Figures 7.3.2 and 7.3.3, the nodes A and F do not have

predecessors. Since they have no predecessors, the subtasks which they represent

may be performed immediately and simultaneously without waiting for any other

subtasks to be completed. Every other subtask must wait until at least one of

these is completed. Once these two subtasks have been performed, their nodes

and any incident arcs can be removed from the graph. Note that the resulting

graph does not contain any cycles since nodes and arcs have been removed from

a graph which originally contained no cycles. Therefore, the resulting graph must

also contain at least one node with no predecessors. In the example, B and H are

two such nodes. Thus the subtasks B and H may be performed simultaneously in

the second time period.

Continuing in this fashion, we find that the minimum time in which the egg

can be fried is six time periods (assuming that every subtask takes exactly one

time period) and that a maximum of two assistants need be employed, as follows:

Figure 7.3.3 The graph T.
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The process above can be outlined as follows:

Time period Assistant 1 Assistant 2

1 Get egg Get grease
2 Crack egg Grease pan
3 Heat grease
4 Pour egg into pan
5 Wait until done

6 Remove egg

Step 1. Read the precedences and construct the graph.

Step 2. Use the graph to determine subtasks that can be done simultaneously.

Let us refine each of these two steps. Two crucial decisions must be made

in refining step 1. The first is to decide the format of the input; the second is to

decide on the representation of the graph. Clearly, the input must contain indications

of which subtasks must precede others. The most convenient way to represent

these requirements is by ordered pairs of subtasks; each input line contains

the names of two subtasks where the first subtask on a line must precede the second.

Of course, the data must be valid in the sense that no subtask may precede

itself (no cycles are permitted in the graph). Only those precedences that are implied

by the data and the transitive closure of the resulting graph are assumed to

hold. A subtask may be represented by a character string such as “GET EGG” or

by a number. We choose to represent subtasks by character strings so that the

input data reflect the real-world situation as closely as possible. If the number of

subtasks at the start of execution is known, an adjacency matrix in which each

element is initialized to the value false could be used to represent the graph. As

each precedence is read, the value true could be inserted in the matrix at an appropriate

position. However, let us assume that this information is unavailable at

the start of execution and that it is necessary to provide for an arbitrary number of

nodes. For this reason the linked representation of a graph is used.

What information should be kept with each node of the graph? Clearly, the

name of the subtask that the node represents is needed for output purposes. This

name will be kept as a character string. The remaining information depends on

how the graph is used. This will become apparent only after step 2 is refined.

Here is a good example of how the various parts of a program outline interact

with each other to produce a single unit.

Step 2 can be refined into the following algorithm:

while the graph is not empty do

determine which nodes have no predecessors

output this group of nodes with an indication that they

can be performed simultaneously in the next time period
remove these nodes and their incident arcs from the graph

endwhile
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How can it be determined which nodes have no predecessors? One method

is to maintain a count field in each node containing the number of nodes that

precede it. Note that we are not interested in which nodes precede a given node—
only in how many. If the count of a node is 0, that node is known to have no

predecessors and may be placed on an output list. Each time a node x is output,

its adjacency list of arcs must be traversed and the count field decremented in
every node adjacent to x. During each simulated time period, the list of nodes

remaining in the graph is traversed, in a search for those whose count field is 0

and which may now be output. Thus the refinement of step 2 may be rewritten as
follows:

period = 1

while graph <> null do

‘initialize the output list to empty

output = null

‘traverse the graph searching for nodes which may be placed on the output list

p = graph

while p <= null do

if count(p) = 0

then remove node(p) from the list of graph nodes and place it on the output list

endif

set p to the next graph node
endwhile

if output = null

then error—every node in the graph has a predecessor and therefore the graph

contains a cycle
stop

endif

print period

‘traverse the output list

p = output

while p <>nulldo

print info(p)

traverse the list of arcs emanating from node(p), reducing the count of each

terminating node by 1 and freeing each arc node as it is encountered

q = next node in output list

freenode(p)

p=q

endwhile

period = period + 1

endwhile
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Note in the example that it is possible to delete nodes from the linked representation

efficiently only because the only nodes deleted are those with no predecessors.
Thus deleted nodes have no arcs terminating in them.

The BASIC Program

At this point in the refinement of step 2, we can indicate the structure of the
nodes that we shall need. The header nodes which represent graph nodes contain
the following fields:

SUBTASK the name of the subtask represented by this node
COUNP the number of predecessors of this graph node
ARCPTR a pointer to the list of arcs emanating from this node
NXTNODE a pointer to the next node in the graph or in the output list

Each list node representing an arc contains two pointer fields:

NDPTR a pointer to its terminating node
NEXARC a pointer to the next arc in the adjacency list

Thus two types of nodes are required: one to represent graph nodes and one

to represent arcs. Using the array representation of lists, these may be declared

by

30 DEFSTR S

40 NMAX = 100: ‘maximum number of nodes

50 DIM SUBTASK(NMAX)

60 DIM COUNT(NMAX)

70 DIM ARCPTR(NMAX)

80 DIM NXTNODE(NMAX)

90 AMAX = 200: ‘maximum number of arcs

100 DIM NDPTR(AMAX)

110 DIM NEXARC(AMAX)

Of course, there are two available lists (pointed to by NAVAIL and

AAVAIL and two sets of routines (getnode, freenode and getarc, freearc) to allocate

and free allocated nodes. We also assume the existence of a function find,

which searches a list of graph nodes pointed to by GRAPH for one such node

whose SUBTASK field equals STASK. If no such graph node exists, find allocates

a new graph node ND and sets SUBTASK(ND) to STASK, COUNT(ND)

to 0, and ARCPTR(ND) to 0. find then adds ND to the list of graph nodes. In

either case, find returns a pointer to the graph node containing STASK. The routine

join described above (but modified to account for the formats of our nodes) is
also used.

We may now write a BASIC scheduling program:
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10 ‘program schedule

20 ‘the statement CLEAR 100 is required on TRS-80 microcomputers
30 DEFSTR S

40 NMAX = 100

50 DIM SUBTASK(NMAX)

60 DIM COUNT(NMAX)

70 DIM ARCPTR(NMAX)

80 DIM NXTNODE(NMAX)

90 AMAX = 200

100 DIM NDPTR(AMAX)

110 DIM NEXARC(AMAX)

120 ‘initialize the available lists

130 NAVAIL = 1

140 AAVAIL = 1

150 FOR I = 1 TO NMAX — 1

160 NXTNODE(I) = I + 1

170 NEXT I

180 NXTNODE(NMAX) = 0

190 FOR I = 1 TO AMAX — 1

200 NEXARC(I) = I + 1

210 NEXT I

220 NEXARC(AMAX) = 0

230 GRAPH = 0

240 ‘construct the graph

250 ‘read a precedence and place the arc representing it into the graph
260 READ S 1TASK, S2TASK
270 IF S1TASK = “FINISH” THEN GOTO 380

280 STASK = S1TASK

290 GOSUB 1000: ‘subroutine find sets the variable FIND to point to

‘the graph node whose SUB TASK field equals STASK
300 P=FIND

310 STASK = S2TASK

320 GOSUB 1000: ‘subroutine find

330 Q = FIND

340 GOSUB 1500: ‘subroutine join accepts P and Q
350 ‘increment the count of the terminal node
360 COUNT(Q) = COUNT(Q) + 1

370 GOTO 250

380 ‘the graph has been constructed
390 PERIOD = 1

400 IF GRAPH = 0 THEN GOTO 780

410 OTPT = 0: ‘OTPT is a pointer to the output list
420 P = GRAPH

430 Q=0

440 ‘Q remains one node behind P during traversal
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450 IF P = 0 THEN GOTO 550

460 R = NXTNODE(P)

470 IF COUNT(P) <>0 THEN Q = P: GOTO 530

480 ‘remove graphnode(P)from the graph
490 IF Q = 0 THEN GRAPH = R

ELSE NXTNODE(Q) = R

500 ‘place graphnode(P) on the output list
510 NXTNODE(P) = OTPT

520 OTPT=P

530 P=R

540 GOTO 450

550 IFOTPT=0

THEN PRINT “ERROR IN INPUT- GRAPH CONTAINS A CYCLE”:

STOP

560 PRINT “PERIOD”, PERIOD

570 ‘traverse the output list
580 P=OTPT.

590 IF P = 0 THEN GOTO 760

600 PRINT SUBTASK(P)

610 ‘traverse arcs emanating from graphnode(P)
620 Q = ARCPTR(P)

630 IF Q = 0 THEN GOTO 710

640 T = NDPTR(Q)

650 COUNT(T) = COUNT(T) — 1

660 R = NEXARC(Q)

670 FRARC = Q

680 GOSUB 2000: ‘subroutine freearc accepts the variable FRARC
690 Q=R

700 GOTO 630

710 R = NXTNODE(P)

720 FRNODE = P

730 GOSUB 2500: ‘subroutine freenode accepts the variable FRNODE
740 P=R

750 GOTO 590

760 PERIOD = PERIOD + 1

770 GOTO 400

780 END

900 DATA...

1000 ‘subroutine find

1500 ‘subroutine join

2000 ‘subroutine freearc

2500 ‘subroutine freenode
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Improving the Program

Although the program above is correct, it is highly inefficient. See if you can

spot the reason for this before reading further. Consider the fact that in a typical

real-world situation, there may be hundreds of subtasks, yet no more than three

or four of them can be performed in a single time period. Thus the entire program

may require 100 or more time periods to complete. This means that the loop consisting

of statements 400—770 is repeated many times. Each time it is repeated,

the entire list of 50 graph nodes (on the average) must be traversed in order to

locate the few whose COUNT field is 0. (This average of 50 assumes that the

graph initially has 100 nodes. Justify this estimate as an exercise.) This is very
inefficient.

As each time period is simulated, those nodes whose subtasks can be performed

in the next time period can be identified. This can be done when the

COUNT in a node is reduced by 1 and becomes 0. At that point, why not remove

the node from the list of graph nodes and place it on a new list of those nodes that

can be output in the next time period? Then, in the next time period, this new list

can be traversed to produce the output, so that the entire graph need not be

searched for nodes with a COUNT field of 0. The reader is encouraged at this

point to discover the reason for not using this seemingly simple system.
Consider the method that would be used to remove a node from the list of

graph nodes. Since this list is a linear linked list, we cannot remove a node from

it unless we have a pointer to its predecessor on the list. However, when we identify

a node with zero count from the arc which it terminates, we have a pointer

only to that node itself and not to its predecessor on the list of graph nodes. In

order to reach the predecessor we have to traverse the list from its beginning,

which is the source of the original inefficiency.

There are several possible solutions to this problem. One possible solution

is deferred to Example 9.4.2, at which point we will have introduced the concepts

necessary for its implementation. Another solution, which the thoughtful

reader should have discovered, is to link the graph nodes in a doubly linked list

rather than in a singly linked linear list so that a node’s predecessor is accessible

directly from the node itself, instead of through a traversal of the entire list from

its beginning.

Although the graph nodes are linked in a doubly linked list, the output list

may remain a singly linked linear list, since it actually behaves like a stack, for

which a linear list is sufficient. After performing step 1, which creates the graph,

the doubly linked list of graph nodes is traversed once in order to initialize the

output list to contain those graph nodes which initially have no predecessors. As

each time period is subsequently simulated, the output list created in the previous

time period is traversed, the subtask represented by each node in the list is output,

the counts in the graph nodes adjacent to each node in the output list are

reduced, and if the count in an adjacent node becomes zero, that adjacent node is

placed in the output list for the next period. This means that two output lists are
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needed: one for the current period, which was created in the previous period and
is now being traversed, and one that is being created in the current period and
will be traversed in the next.

The refinement of step 2 under this implementation may be outlined as follows:

‘traverse the list of graph nodes and place all nodes

‘with zero count on the initial output list
p = graph
output = null

while p <> null do

q nextnode(p)

if count(p) = 0

then remove node(p) from the graph list

place node(p) on the output list
endif

p=q

endwhile

‘simulate the time periods

period = 1

while output <> null do

print period

‘initialize the output list for the next period
nextout = null

‘traverse the output list

p = output

while p <> null do

print info(p)

‘traverse the list of arcs emanating from node(p)

r = arcptr(p)
while r <> null do

‘reduce the count in the terminating node

t = nodeptr(r)

count(t) = count(t) — 1

if count(t) = 0

then remove node(t) from the graph

‘add node(t) to the nextout list

nextnode(t) = nextout
nextout = t

endif
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rr = nextarc(r)

freearc(r)
r = rr

endwhile

q nextnode(p)

freenode(p)

p=q

endwhile

output = nextout

period = period + 1

endwhile

if graph <> null

then error—there is a cycle in the graph

stop

endif

In order to accommodate the pointers of the doubly linked list, the graph

nodes must include an extra field PREVNODE, containing a pointer to the previous

graph node in the list. The graph nodes can therefore be declared:

40 NMAX = 100

50 DIM SUBTASK(NMAX)

60 DIM COUNT(NMAX)

70 DIM ARCPTR(NMAX)

80 DIM PREVNODE(NMAX)

90 DIM NXTNODE(NMAX)

The available list of graph nodes and the two output lists need not be doubly
linked, so that the contents of PREVNODE are irrelevant for nodes on these lists.

The routine find must be suitably modified to accommodate doubly linked lists.
The routine join is used as well. We may write a BASIC program for the scheduling

problem using our improved algorithm as follows:

10 ‘program schedule (improved)
20 ‘the statement CLEAR 100 is required on TRS-80 microcomputers
30 DEFSTR S

40 NMAX = 100: ‘maximum number of nodes

50 DIM SUBTASK(NMAX)

60 DIM COUNT(NMAX)

70 DIM ARCPTR(NMAX)

80 DIM PREVNODE(NMAX)

90 DIM NXTNODE(NMAX)

100 AMAX = 200: ‘maximum number of arcs

110 DIM NDPTR(AMAX)

120 DIM NEXARC(AMAX)
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130 ‘initialize the available lists

140 NAVAIL = 1

150 FOR I = 1 TO NMAX — 1

160 NXTNODE(I) = I + 1

170 NEXT I

180 NXTNODE(NMAX) = 0

190 AAVAIL = 1

200 FOR I = 1 TO AMAX — 1

210 NEXARC(I) = I + 1

220 NEXT I

230 NEXARC(AMAX) = 0

240 ‘construct the graph
250 GRAPH = 0

260 READ S1TASK, S2TASK

270 IF S1TASK = “FINISH” THEN GOTO 380

280 ‘the subroutine find will adjust all necessary forward and

‘backward pointers and the count field in adding a graph node

‘with SUB TASK field STASK to the doubly linked list of graph nodes
290 STASK = S1TASK

300 GOSUB 1000: ‘subroutine find sets the variable FIND

310 P = FIND

320 STASK = S2TASK

330 GOSUB 1000: ‘subroutine find

340 Q = FIND

350 GOSUB 1500: ‘subroutine join accepts P and Q
360 COUNT(Q) = COUNT(Q) + 1

370 GOTO 260

380 ‘traverse the list of graph nodes and place all graph nodes

‘with zero count on the output list
390 OTPT = 0

400 P = GRAPH

410 IF P = 0 THEN GOTO 540

420 Q = NXTNODE(P)

430 IF COUNT(P) <>0 THEN GOTO 510

440 ‘remove graphnode(P) from the graph list
450 R = PREVNODE(P)

460 IF Q <>0 THEN PREVNODE(Q) = R

470 IF R = 0 THEN GRAPH = Q

ELSE NXTNODE(R) = Q

480 ‘place node(P) on the output list
490 NXTNODE(P) = OTPT

500 OTPT=P

510 ‘go on to the next graph node
520 P=Q

530 GOTO 410
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540 ‘simulate the time periods
550 PERIOD = 1

560 IF OTPT = 0 THEN GOTO 950

570 PRINT “PERIOD”, PERIOD

580 ‘initialize the output list for the next period,

‘and traverse the current output list
590 NEXOT = 0

600 P = OTPT

610 IF P = 0 THEN GOTO 910

620 PRINT SUBTASK(P)

630 ‘traverse arcs emanating from node(P)
640 R = ARCPTR(P)

650 IF R = 0 THEN GOTO 850

660 ‘reduce count in the terminating node
670 T = NDPTR(R)

680 COUNT(T) = COUNT(T) — 1

690 IF COUNT(T) <>0 THEN GOTO 790

700 ‘once the subtask represented by node (P) has been

‘performed the subtask represented by node(T) may be performed
710 ‘remove graphnode(T) from the graph list
720 V = NXTNODE(T)

730 W = PREVNODE(T)

740 IF V <>0 THEN PREVNODE(V) = W

750 IF W <>0 THEN NXTNODE(W) = V

ELSE GRAPH = V

760 ‘place node(T) on the new output list
770 NXTNODE(T) = NEXOT

780 NEXOT = T

790 ‘free arcnode(R) and continue traversing the list of

‘arc nodes emanating from graphnode(P)
800 RR = NEXARC(R)

810 FRARC = R

820 GOSUB 2000: ‘subroutine freearc accepts the variable FRARC
830 R=RR

840 GOTO 650

850 ‘continue traversing the output list
860 Q = NXTNODE(P)

870 FRNODE = P

880 GOSUB 2500: ‘subroutine freenode accepts the variable FRNODE

890 P=Q

900 GOTO 610
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910 ‘reset the output list for the next period
920 OTPT = NEXOT

930 PERIOD = PERIOD + 1

940 GOTO 560

950 IF GRAPH <>0 THEN PRINT “ERROR - GRAPH CONTAINS A CYCLE”

960 END

970 DATA...

1000 ‘subroutine find

1500 ‘subroutine join

2000 ‘subroutine freearc

2500 ‘subroutine freenode

EXERCISES

1. Implement a graph using linked lists so that each header node heads two lists: one

containing the arcs emanating from the graph node and the other containing the arcs

terminating at the graph node.

2. Implement a graph so that the lists of header nodes and arc nodes are circular.

3. Implement a graph using a list of adjacency lists. Under this representation, a graph of

n nodes consists of n header nodes, each containing an integer from 1 to n and a pointer.

The pointer is to a list of list nodes each of which contains the node number of a node

adjacent to the node represented by the header node.

4. There may be more than one way to organize a set of subtasks in a minimum number

of time periods. For example, the subtasks in Figure 7.3.2 may be completed in six

time periods in one of three different methods:

Period Method 1 Method 2 Method 3

1 A,F F A,F

2 B,H A,H H

3 1 B,1 B,1

4 C C C

5 D D D

6 E E E

Write a program that will generate all possible methods of organizing the subtasks in

the minimum number of time periods.
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5. Consider the graph of Figure 7.3.4. The program schedule outputs the following organization
of tasks:

Time Subtasks

1 A,B,C

2 D,E

3 F

4 G

This requires three assistants (for time period 1). Can you find a method of organizing

the subtasks so that only two assistants are required at any time period, yet the entire

job can be accomplished in the same four time periods? Write a program that organizes

subtasks so that a minimum number of assistants are needed to complete the

entire job in the minimum number of time periods.

6. If there is only one worker available, it will take k time periods to complete an entire

job, where k is the number of subtasks. Write a program to list a valid order in which

the worker can perform the tasks. Note that this program is simpler than schedule,

since an output list is not needed; as soon as the COUNT field reaches 0 the task may

be output. The process of converting a set of precedences into a single linear list in

which no later element precedes an earlier one is called a topological sort.

7. A PERT network is a weighted acyclic directed graph in which each arc represents an

activity and its weight represents the time needed to perform that activity. If arcs

<A,B> and <B,C> exist in the network, the activity represented by arc <A,B> must

be completed before the activity represented by <B,C> can be started. Each node x of

the network represents a time at which all activities represented by arcs terminating at

x can be completed.

(a) Write a BASIC routine that accepts a representation of such a network and assigns

to each node x the earliest time that all activities terminating in that node can be

completed. Call this quantity et(x). [Hint: Assign time 0 to all nodes with no preFigure

7.3.4
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Figure 7.3.5 Some PERT networks.

decessors. If all predecessors of a node x have been assigned times, then et(x) is

the maximum over all predecessors of the sum of the time assigned to a predecessor

and the weight of the arc from that predecessor to x.]

(b) Given the assignment of times in part (a), write a BASIC routine that assigns to

each node x the latest time that all activities terminating in x can be completed

without delaying the completion of all the activities. Call this quantity lt(x). [Hint:

Assign time et(x) to all nodes x with no successors. If all successors of a node x

have been assigned times, lt(x) is the minimum over all successors of the difference

between the time assigned to a successor and the weight of the arc from x to

the successor.]

(C) Prove that there is at least one path in the graph from a node with no predecessors

to a node with no successors such that et(x) = 11(x) for every node x on the path.

Such a path is called a critical path.
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(d) Explain the significance of a critical path by showing that reducing the time of the

activities along every critical path reduces the earliest time by which the entire job

can be completed.

(e) Write a BASIC routine to find all critical paths in a PERT network.

(f) Find the critical paths in the networks of Figure 7.3.5.

8. Write a BASIC program that accepts a representation of a PERT network as given

above and computes the earliest time in which the entire job can be finished if as many

activities as possible may be performed in parallel. The program should also print the

starting and ending time of each activity in the network. Write another BASIC program

to schedule the activities so that the entire job can be completed at the earliest

possible time subject to the constraint that at most m activities can be performed in

parallel.
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Sorting

Sorting and searching are among the most common ingredients of programming

systems. In the first section of this chapter we discuss some of the overall considerations
involved in sorting. In the remainder of the chapter we discuss some of

the more common sorting techniques and the advantages or disadvantages of one

technique over another. In Chapter 9 we discuss searching and some applications.

1. GENERAL BACKGROUND

The concept of an ordered set of elements is one which has considerable impact
on our daily lives. Consider, for example, the process of finding a telephone
number in a telephone directory. This process, called a search, is simplified considerably

by the fact that the names in the directory are listed in alphabetical order.
Consider the trouble you might have in attempting to locate a telephone

number if the names were listed in the order in which the customers placed their
phone orders with the telephone company. In such a case, the names might as
well have been entered in random order. Since the entries are sorted in alphabetical

rather than in chronological order, the process of searching is simplified. Or,
consider the case of someone searching for a book in a library. Because the books

are shelved in a specific order (Library of Congress, Dewey Decimal System,
etc.), each book is assigned a specific position relative to the others and can be
retrieved in a reasonable amount of time (if it is there). Or, consider a set of

numbers sorted sequentially in a computer’s memory. As we shall see in Chapter

419
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9, it is usually easier to find a particular element of that set if the numbers are

maintained in sorted order. In general, a set of items is kept sorted in order either

to produce a report (to simplify manual retrieval of information, as in a telephone
book or a library shelf) or to make machine access to data more efficient.

We now present some basic terminology. A file of size n is a sequence of n
items r(1), r(2), . . . , r(n). Each item in the file is called a record. (The use of

the term “file” in this context differs from its standard BASIC usage.) A key,

k(i), is associated with each record r(i). The key is usually (but not always) a

field of the entire record. The file is said to be sorted on the key if i <j implies

that k(i) precedes k(j) in some ordering on the keys. In the example of the telephone

book, the file consists of all the entries in the book. Each entry is a record.

The key upon which the file is sorted is the name field of the record. Each record

also contains fields for an address and a telephone number.

A sort can be classified as being internal if the records that it is sorting are

in main memory, or external if some of the records that it is sorting are in auxiliary
storage. We restrict our attention to internal sorts.

It is possible for two records in a file to have the same key. A sorting technique

is called stable if for all records i and j such that k(i) = k(j), if r(i) precedes
r(j) in the original file then r(i) precedes r(j) in the sorted file.

A sort takes place either on the records themselves or on an auxiliary table

of pointers. For example, consider Figure 8.1.1(a), in which a file of five records

is shown. If the file is sorted in increasing order on the numeric key shown, the

resulting file is as shown in Figure 8.1.1(b). In this case the actual records themselves
have been sorted

Suppose, however, that the amount of data stored in each of the records in

the file of Figure 8.1.1(a) is so large that the overhead involved in moving the

actual data is prohibitive. In this case an auxiliary table of pointers may be used,

so that these pointers are moved instead of the actual data, as shown in Figure
8.1.2. (This is called sorting by address.) The table in the center is the file and

Key Other fields

4 DDD

2 BBB

1 AAA

5 EEE

3 ccc

1 AAA

2 BBB

3 ccc

4 DDD

5 EEE

Record 1

Record 2

Record 3

Record 4

Record S

File File

(a) Original file. (b) Sorted file.

Figure 8.1.1 Sorting actual records.
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Original Sorted

pointer pointer
table table

Record 1

Record 2

Record 3 1

Record 4

Record 5 3

Figure 8.1.2 Sorting by using an auxiliary table of pointers.

the table at the left is the initial table of pointers. The entry in position j in the

table of pointers points to record j. During the sorting process, the entries in the

pointer table are adjusted so that the final table is as shown at the right. Originally,

the first pointer was to the first entry in the file; upon completion the first
pointer is to the fourth entry in the table. Note that none of the original file entries

are moved. In most of the programs in this chapter we illustrate techniques of

sorting actual records. The extension of these techniques to sorting by address is

straightforward and will be left as an exercise for the reader. (Actually, for the

sake of simplicity, in the examples presented in this chapter we sort only the
keys; we leave to the reader to modify the programs to sort full records.)

Because of the relationship between sorting and searching, the first question
to ask in any application is whether a file should be sorted. Sometimes, there is
less work involved in searching a set of elements for a particular one than first to
sort the entire set and then to extract the desired element. On the other hand, if

frequent use of the file is required for the purpose of retrieving specific elements,
it might be more efficient to sort the file. This is because the overhead of successive

searches may far exceed the overhead involved in sorting the file once and
subsequently retrieving elements from the sorted file. Thus it cannot be said that

it is more efficient either to sort or not to sort. The programmer must make a
decision based on individual circumstances. Once a decision to sort has been

made, other decisions must be made, including what is to be sorted and what

methods are to be used. There is no one sorting method that is universally superior

to all others. The programmer must carefully examine the problem and the

desired results before deciding these very important questions.

Efficiency Considerations

As we shall see in this chapter, there are a great number of methods that can be
used to sort a file. The programmer must be aware of several interrelated and

often conflicting efficiency considerations to make an intelligent choice as to

File

4 DDD

2 BBB

AAA

EEE

ccc
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which sorting method is most appropriate to a particular problem. Three of the
most important of these considerations include: the length of time which must be
spent by the programmer in coding a particular sorting program, the amount of

machine time necessary for running the program, and the amount of space necessary
for the program.

If a file is small, sophisticated sorting techniques designed to minimize

space and time requirements are usually worse or only marginally better in

achieving efficiencies than are simpler, generally less efficient methods. Similarly,
if a particular sorting program is to be run only once and there is sufficient

machine time and space in which to run it, it would be ludicrous for a programmer
to spend days investigating the best methods of obtaining the last ounce of

efficiency. In such cases, the amount of time that must be spent by the programmer
is properly the overriding consideration in determining which sorting method

to use. However, a strong word of caution must be inserted. Programming time is

never a valid excuse for using an incorrect program. A sort that is run only once
may be able to afford the luxury of an inefficient technique, but it cannot afford

an incorrect one. The presumably sorted data may be used in an application in
which the assumption of ordered data is crucial.

However, a programmer must be able to recognize the fact that a particular
sort is inefficient and must be able to justify its use in a particular situation. Too
often, programmers take the easy way out and code an inefficient sort which is

then incorporated into a larger system in which the sort is a key component. The

designers and planners of the system are then surprised at the inadequacy of their

creation. To maximize his or her efficiency, a programmer must be knowledgeable

of a wide range of sorting techniques and be cognizant of the advantages and

disadvantages of each, so that when the need for a sort arises, he or she can supply
the one that is most appropriate for the particular situation.

This brings us to the other two efficiency considerations: time and space.

As in most computer applications, the programmer must often optimize one of
these at the expense of the other. In considering the time necessary to sort a file
of size n, we do not concern ourselves with actual time units, as these will vary
from one machine to another, from one program to another, and from one set of

data to another. Rather, we are interested in the corresponding change in the
amount of time required to sort a file induced by a change in the file size n. Let us
see if we can make this concept more precise. We say that y is proportional to x

if the relation between y and x is such that multiplying x by a constant multiplies
y by that same constant. Thus, if y is proportional to x, doubling x will double y
and multiplying x by 10 will multiply y by 10. Similarly, if y is proportional to x,
doubling x will multiply y by 4 and multiplying x by 10 will multiply y by 100.

Often we do not measure the time efficiency of a sort by the number of time

units required but by the number of critical operations performed. Examples of
such critical operations are key comparisons (i.e., the comparisons of the keys of
two records in the file to determine which is greater), movement of records or

pointers to records, or interchanges of two records. The critical operations chosen
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are those that take the most time. For example, a key comparison may be a complex

operation, especially if the keys themselves are long or the ordering among
keys is nontrivial. Thus a key comparison requires much more time than say, a

simple increment of an index variable in a for-next loop. Also, the number of

simple operations required is usually pioportional to the number of key comparisons.
For this reason, the number of key comparisons is a useful measure of a

sort’s time efficiency.

There are two ways to determine the time requirements of a sort, neither of

which yields results that are applicable to all cases. One method is to go through
a sometimes intricate and involved mathematical analysis of various cases (e.g.,

best case, worst case, average case). The result of this analysis is often a formula

giving the average time (or number of operations) required for a particular sort as

a function of the file size n. (Actually, the time requirements of a sort depend on
factors other than the file size; however, we concern ourselves here only with the

dependence on the file size.) Suppose that such a mathematical analysis on a particular

sorting program results in the conclusion that the program takes
.0 in2 + iOn time units to execute. The first and fourth columns of Figure 8.1.3

show the time needed by the sort of various values of n. You will notice that for

small values of n, the quantity iOn (third column of Figure 8.1.3) overwhelms

the quantity .0 in2 (second column). This is because the difference between n2

and n is small for small values of n and is more than compensated for by the

difference between 10 and .01. Thus, for small values of n, an increase in n by a

factor of 2 (e.g., from 50 to 100) increases the time needed for sorting by approximately
that same factor of 2 (from 525 to 1100). Similarly, an increase in n by a

factor of 5 (e.g., from iO to 50), increases the sorting time by approximately 5
(from 101 to 525). However, as n becomes larger, the difference between n2 and

n increases so quickly that it eventually more than compensates for the difference

between 10 and .01. Thus when n equals 1000, the two terms contribute equally

to the amount of time needed by the program. As n becomes even larger, the term
.Oin2 overwhelms the term iOn and the contribution of the term iOn becomes

almost insignificant. Thus, for large values of n, an increase in n by a factor of 2

(e.g., from 50,000 to 100,000) results in an increase in sorting time of approxi(

a+b)
n a0.01n2 blOn a+b

10 1 100 101 1.01

50 25 500 525 0.21

100 100 1,000 1,100 0.11

500 2,500 5,000 7,500 0.03

1,000 10,000 10,000 20,000 0.02

5,000 250,000 50,000 300,000 0.01

10,000 1,000,000 100,000 1,100,000 0.01

50,000 25,000,000 500,000 25,500,000 0.01

100,000 100,000,000 1,000,000 101,000,000 0.01

500,000 2,500,000,000 5,000,000 2,505,000,000 0.01

Figure 8.1.3
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mately 4 (from 25.5 million to 101 million), and an increase in n by a factor of 5

(e.g., from 10,000 to 50,000) increases the sorting time by approximately a factor

of 25 (from 1.1 million to 25.5 million). Indeed, as n becomes larger and

larger, the sorting time becomes more closely proportional to n2, as is clearly

illustrated by the last column of Figure 8.1.3. Because of this, we say that the

time for such a sort is on the order of n2, written 0(n2). Thus for large n the time

required by the sort is almost proportional to n2. Of course, for small values of n,

the sort may exhibit drastically different behavior (as in Figure 8.1.3), a situation

that must be taken into account in analyzing its efficiency.

Using this concept of the order of a sort, we can compare various sorting

techniques and classify them as being “good” or “bad” in general terms. One

might hope to discover the “optimal” sort, which is 0(n); unfortunately, however,

it can be shown that no such generally useful sort exists. Most of the classical

sorts we shall consider have time requirements which range from 0(n log n) to

0(n2). [The logarithm of a number n to the base m is the number of times m must

be multiplied by itself to obtain n and is written logm n. Thus logio 1000 is 3 since

10*10*10 = 10 equals 1000 and log2 1000 is slightly less than 10 since 2’°

equals 1024. You are asked to show as an exercise that the base of the logarithm
is irrelevant in determining the order of an 0(n log n) sort.J In the former, multiplying

the file size by 100 will multiply the sorting time by less than 200; in the

latter, multiplying the file size by 100 multiplies the sorting time by a factor of

10,000. Figure 8.1.4 shows the comparison of n log n with n2 for a range of

values of n. It can be seen from the figure that for large n, as n increases, n2

increases at a much more rapid rate than n log n. However, a sort should not be

selected simply because it is 0(n log n). The relation of the file size n and the

other terms comprising the actual sorting time must be known. In particular,

terms that play an insignificant role for large values of n may play a very dominant
role for small values of n. All of these considerations must be considered

before an intelligent sort selection can be made.

A second method of determining time requirements of a sorting technique is

to run the program and measure its efficiency (either by measuring absolute time

units or the number of operations performed). In order to use such results in meafl

n1og1n
______

I x 101 lOx 101 lOx 102

5x101 8.5x101 2.5x103

I x 102 2.Ox 102 lOx 10

5x102 1.3x103 2.5x105
1 x i03 3.0 x 1.0 x 106
5 x i0 1.8 x 10 2.5 x
1x104 4.0x104 l.0x108

5x104 2.3x105 2.5x109

I x i05 5.0 x IO 1.0 x 1010

5x105 2.8x106 2.5x1011

1x106 6.0x106 1.OxlO’2

5 x 106 3.3 x IO 2.5 x IO’ Figure 8.1.4 A comparison of n log n
1 x IO 7.Ox i07 lOx 1014 andn2forvariousvaluesofn.
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suring the efficiency of a sort, the test must be run on “many” sample files.

Even when such statistics have been gathered, the application of that sort to a
specific file may not yield results that follow the general pattern. Peculiar attributes

of the file in question may make the sorting speed deviate significantly. In
the sorts of the subsequent sections we shall give an intuitive explanation as to
why a particular sort is classified as 0(n2) or O(n log n); we leave mathematical
analysis and sophisticated testing of empirical data as exercises for the ambitious
reader.

In most cases, the time needed by a sort depends on the original sequence of
the data. For some sorts, input data that are almost in sorted order can be completely

sorted in time 0(n), while input data that is in reverse order need time

which is 0(n2). For other sorts the time required is 0(n log n) regardless of the

original order of the data. Thus, if we have some knowledge about the original

sequence of the data, we can make a more intelligent decision as to which sorting

method to select. On the other hand, if we have no such knowledge, we may

wish to select a sort based on the worst possible case or based on the “average”

case. In any event, the only general comment that can be made about sorting

techniques is that there is no “best” general sorting technique. The choice of a

sort must, of necessity, depend on the specific circumstances.

Once a particular sorting technique has been selected, the programmer

should do his or her best to make the program as efficient as possible. In many

programming applications it is often necessary to sacrifice efficiency for the sake

of clarity. With sorting, the situation is usually the opposite. Once a sorting program

has been written and tested, the programmer’s chief goal is to improve its

speed, even if it becomes less readable. The reason for this is that a sort may

account for the major part of a program’s efficiency, so that any improvement in

sorting time significantly affects overall efficiency. Another reason is that a sort

is often used quite frequently, so that a small improvement in its execution speed

saves a great deal of computer time. It is usually a good idea to remove subroutine

calls, especially from inner loops, and to replace them with the code of the

subroutine in line, since the call-return mechanism of a language can be prohibitively

expensive in terms of time. In many of the programs we do not do this, so

as not to obfuscate the intent of the program with huge blocks of code. Also, the

call-return mechanism in BASIC is more efficient than in many other languages.
This is because in BASIC the call-return is handled by a transfer with a return

address; parameter transmission is accomplished by explicit assignment statements.

Under our conventions for passing parameters in BASIC, we might wish

to avoid even the explicit assignment of parameters, especially array parameters.

Thus it may be more efficient to duplicate subroutine code to operate directly on

the different arguments rather than to repeatedly assign arguments to subroutine

input variables and output variables to arguments. In other languages, a subroutine

call may involve the assignment of storage to local variables, an activity that

sometimes requires a call to the operating system.
Space constraints are usually less important than time considerations. One
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of the reasons for this is that, for most sorting programs, the amount of space
needed is closer to 0(n) than to 0(n2). A second reason is that if more space is

required, it can almost always be found in auxiliary storage. Of course, the usual

relationship between time and space holds for sorting algorithms; that is, those

programs that require less time usually require more space, and vice versa.

In the remaining sections we investigate some of the more popular sorting

techniques and indicate some of their advantages and disadvantages.

EXERCISES

1. Choose any sorting technique with which you are familiar.

(a) Write a program for the sort.

(b) Is the sort stable?

(c) Determine the time requirements of the sort as a function of the file size, both

mathematically and empirically.

(d) What is the order of the sort?

(e) At what file size does the most dominant term begin to overshadow the others?

2. Show that if a sort is O(n log2 n), it is also O(n logio n), and vice versa.

3. Suppose that a time requirement is given by the formula a*n2 + b*n*log2 n, where a

and b are constants. Answer the following questions by both proving your results

mathematically and writing a program to validate the results empirically.

(a) For what values of n (expressed in terms of a and b) does the first term dominate
the second?

(b) For what value of n (expressed in terms of a and b) are the two terms equal?

(c) For what values of n (expressed in terms of a and b) does the second term dominate
the first?

4. Show that any process which sorts a file can be extended to find all duplicates in the
file.

5. A sort decision tree is a binary tree that represents a sorting method based on comparisons.

Figure 8.1.5 illustrates such a decision tree for a file of three elements. Each

nonleaf of such a tree represents a comparison between two elements. Each leaf represents

a completely sorted file. A left branch from a nonleaf indicates that the first key

was smaller than the second; a right branch indicates that it was larger. (We assume

that all the elements in the file have distinct keys.) For example, the tree of Figure

8.1.5 represents a sort on three elements, x(1), x(2), x(3), which proceeds as follows.

Comparex(1) tox(2). If x(1) <x(2), comparex(2) withx(3), and if x(2) <x(3), the

sorted order of the file is x(1), x(2), x(3); otherwise, if x(1) <x(3), the sorted order is

x(1), x(3), x(2), and if x(1)> x(3), the sorted order is x(3), x(1), x(2). If x(1) > x(2),

proceed in a similar fashion down the right subtree.

(a) Show that a sort decision tree which never makes a redundant comparison [i.e.,

never compares x(i) and x(j) if the relationship between x(i) and x(j) is knownj has
n! leafs.
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(b) Show that the depth of such a decision tree is at least log2(n!).

(c) Show that n” n! (n/2)’2, so that the depth of such a tree is O(n log n).

(d) Explain why this proves that any sorting method which uses comparisons on a file

of size n must make at least O(n log n) comparisons.

6. Given a sort decision tree for a file as in Exercise 5, show that if the file contains some

equal elements, the result of applying the tree to the file (where either a left or right

branch is taken whenever two elements are equal) is a sorted file.

7. Extend the concept of the binary decision tree of Exercises 5 and 6 to a ternary tree

which includes the possibility of equality. It is desired to determine which elements of

the file are equal, in addition to the order of the distinct elements of the file. How

many comparisons are necessary?

8. Show that if k is the smallest integer greater than or equal to n + log2n — 2, then k

comparisons are necessary and sufficient to find the largest and second largest elements
of a set of n distinct elements.

9. How many comparisons are necessary to find the largest and smallest of a set of n
distinct elements?

2. EXCHANGE SORTS

Bubble Sort

The first sort we present is probably the most widely known among beginning
students of programming—the bubble sort. One of the characteristics of this sort
is that it is easy to understand and program. Yet of all the sorts we shall consider,
it is probably the least efficient.

In each of the subsequent examples, x is an array of integers of which the
first n are to be sorted so that x(i) x(j) for 1 i <j n. It is straightforward

Figure 8.1.5 A decision tree for a file of 3 elements.
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to extend this simple format to one that is used in sorting n records, each with a

subfield key k. In BASIC this could be done by maintaining the other fields of the
record in separate arrays. Whenever an operation is performed on k(i), the corresponding

operation would be performed on each of the other fields. Comparisons,

of course, would be applied only to the key field.

The basic idea underlying the bubble sort is to pass through the file sequentially

several times. Each pass consists of comparing each element in the file with

its successor [x(i) with x(i + 1)1 and interchanging the two elements if they are not

in proper order. Consider the following file:

25 57 48 37 12 92 86 33

The following comparisons are made on the first pass:

x(1) with x(2) (25 with 57) no interchange
x(2) with x(3) (57 with 48) interchange
x(3) with x(4) (57 with 37) interchange
x(4) with x(5) (57 with 12) interchange
x(5) with x(6) (57 with 92) no interchange
x(6) with x(7) (92 with 86) interchange
x(7) with x(8) (92 with 33) interchange

Thus, after the first pass, the file is in the order

25 48 37 12 57 86 33 92

Notice that after this first pass, the largest element (in this case 92) is in its proper
position within the array. In general, x(n — i + 1) will be in its proper position
after iteration i. The method is called the bubble sort because each number slowly
“bubbles” up to its proper position. After the second pass the file is

25 37 12 48 57 33 86 92

Notice that 86 has now found its way to the second highest position. Since each
iteration places a new element into its proper position, a file of n elements requires

no more than n — 1 iterations.

The complete set of iterations is the following:

iteration 0 (original file) 25 57 48 37 12 92 86 33
iteration 1 25 48 37 12 57 86 33 92

iteration 2 25 37 12 48 57 33 86 92

iteration 3 25 12 37 48 33 57 86 92

iteration 4 12 25 37 33 48 57 86 92

iteration 5 12 25 33 37 48 57 86 92

iteration 6 12 25 33 37 48 57 86 92

iteration 7 12 25 33 37 48 57 86 92

On the basis of the discussion above we could proceed to code the bubble

sort. However, there are some obvious improvements to the method. First, since
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all the elements in positions greater than or equal to n — I + 1 are already in proper
position after iteration i, they need not be considered in succeeding iterations.
Thus on the first pass n — 1 comparisons are made, on the second pass n —2 comparisons,

and on the (n — 1)th pass only one comparison is made [between x(1)
and x(2)1. Therefore, the process speeds up as it proceeds through successive
passes.

We have shown that n — 1 passes are sufficient to sort a file of size n.

However, in the sample file of eight elements above, the file was sorted after five

iterations, making the last two iterations unnecessary. In order to eliminate unnecessary
passes we must be able to detect the fact that the file is already sorted.

But this is a simple task since in a sorted file, no interchanges are made on any

pass. By keeping a record of whether or not any interchanges are made in a given

pass it can be determined whether further passes are necessary. Under this method,
if the file can be sorted in fewer than n — 1 passes, the final pass makes no

interchanges.

Using these improvements, we present the routine bubble, which accepts

two variables X and N. X is an array of numbers and N is an integer representing

the number of elements to be sorted. (N may be less than the upper bound of X.)

5000 ‘subroutine bubble

5010 ‘inputs: N, X

5020 ‘outputs: X

5030 ‘locals: J, P, PASS, SWITCH
5040 ‘initialization

5050 SWITCH = TRUE

5060 FOR PASS = 1 TO N — 1: ‘outer ioop controls

‘the number of passes

5070 IF SWITCH = FALSE THEN RETURN

5080 ‘else do stmts 5090—5 130

5090 SWITCH = FALSE: ‘initially no interchanges

‘have been made on this pass
5100 FOR J = 1 to N — PASS: ‘inner loop controls

‘each individual pass
5110 IFX(J) > X(J +1)

THEN SWITCH = TRUE:

HOLD = X(J): X(J) = X(J + 1): X(J +1) = HOLD

5120 ‘elements were out of order

‘an interchange is necessary
5130 NEXTJ

5140 NEXT PASS

5150 RETURN

5160 ‘endsub

What can be said about the efficiency of the bubble sort? In the case of a

sort that does not include the two improvements outlined above, the analysis is
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simple. There are n — 1 passes and n — 1 comparisons on each pass. Thus the total
number of comparisons is (n — 1)*(n — 1) = n2 — 2n + 1, which is 0(n2).

Of course, the number of interchanges depends on the original order of the file.
However, the number of interchanges cannot be greater than the number of comparisons.

It is likely that it is the number of interchanges rather than the number

of comparisons which takes up the most time in the algorithm’s execution.
Let us see how the improvements that we introduced affect the speed of

the bubble sort. The number of comparisons on iteration i is n — i. Thus, if there
are k iterations, the total number of comparisons is (n — 1) +
(n — 2) + (n — 3) ++ (n — k), which equals (2kn — k2 — k)/2.
It can be shown that the average number of iterations, k, is 0(n), so that the entire

formula is still 0(n2), although the constant multiplier is smaller than before.
However, there is additional overhead involved in testing and initializing the

variable SWITCH (once per pass) and setting it to TRUE (once for every interchange).

The only redeeming features of the bubble sort are that it requires little additional

space (one additional record to hold the temporary value for interchanging
and several simple integer variables) and that it is 0(n) in the case that the file is
completely sorted (or almost completely sorted). This follows from the observation

that only one pass of n — 1 comparisons (and no interchanges) is necessary to
establish that a sorted file is sorted.

There are some other ways to improve the bubble sort. One of these is to
observe that the number of passes necessary to sort the file is the largest distance

by which a number must move “down” in the array. In our example, for instance,

33, which starts at position 8 in the array, ultimately finds its way to position
3 after five iterations. The bubble sort can be speeded up by having

successive passes go in opposite directions so that the small elements move

quickly to the front of the file in the same way that the large ones move to the

rear. This reduces the required number of passes. This version is left as an exercise.

Quicksort

The next sort we consider is the partition exchange sort (or quicksort). Let x be
an array and n the number of elements in the array to be sorted. Choose an element

a from a specific position within the array [e.g., a can be chosen as the first

element so that a = x(1)1. Suppose the elements of x are rearranged so that a is
placed into position j and the following conditions hold:

1. Each of the elements in positions 1 through j — 1 is less than or equal to a.

2. Each of the elements in positions j + 1 through n is greater than or equal to
a.
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Notice that if these two conditions hold for a particular a and j, then a is the jth

smallest element of x, so that a remains in positionj when the array is completely

sorted. (You are asked to prove this fact as an exercise.) If the process above is

repeated with the subarrays x(1) through x(j — 1) and x(j + 1) through x(n) and
any subarrays created by the process in successive iterations, the final result is a
sorted file.

Let us illustrate the quicksort with an example. If an initial array is given as

25 57 48 37 12 92 86 33

and the first element (25) is placed in its proper position, the resulting array is

12 25 57 48 37 92 86 33

At this point, 25 is in its proper position in the array (x(2)), each element
below that position (12) is less than or equal to 25, and each element above that

position (57, 48, 37, 92, 86, and 33) is greater than or equal to 25. Since 25 is in

its final position, the original problem has been decomposed into the problem of

sorting the two subarrays

(12) and (57 48 37 92 86 33)

Nothing need be done to sort the first of these subarrays; a file of one element

is already sorted. To sort the second subarray, the process is repeated and
the subarray is further subdivided. The entire array may now be viewed as

12 25 (57 48 37 92 86 33)

where parentheses enclose the subarrays that are yet to be sorted. Repeating the
process on the subarray x(3) through x(8) yields

12 25 (48 37 33) 57 (92 86)

and further repetitions yield

12 25 ( 37 33 ) 48 57 (92 86)

12 25 ( 33 ) 37 48 57 (92 86)

12 25 33 37 48 57 (92 86)

12 25 33 37 48 57 (86) 92

12 25 33 37 48 57 86 92

Note that the final array is sorted.

By this time you should have noticed that the quicksort may be defined

most conveniently as a recursive procedure. We may outline an algorithm

quick(lb,ub) to sort all elements in an array x between positions lb and ub (lb is
the lower bound, ub the upper bound) as follows:
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if lb > ub
then return ‘array is sorted

endif

rearrange (lb,ub,j) ‘rearrange the elements of the subarray such that one of the

‘elements (possibly x(lb)) is now at x(j) (j is an output

‘parameter) and:

‘1. x(i) x(j) for lb i <j

‘2. x(i) > (j) forj < i ub

‘x(j) is now at its final position

quick(lb,j — 1) ‘recursively sort the subarray between positions lb and

i—i

quick(j + 1 ,ub) ‘recursively sort the subarray

‘between positions j + 1 and ub

There are now two problems. We must produce a mechanism to implement

rearrange and produce a method to implement the entire process nonrecursively.

The object of rearrange is to allow a specific element to find its proper position

with respect to the others in the subarray. Note that the manner in which

this rearrangement is performed is irrelevant to the sorting method. All that is

required by the sort is that the elements be partitioned properly. In the example

above, the elements in each of the two subfiles remain in the same relative order

as they appear in the original file. However, such a rearrangement method is relatively

inefficient to implement.

One way to effect a rearrangement efficiently is the following. Let

a = x (ib) be the element whose final position is sought. (No appreciable efficiency

is gained by selecting the first element of the subarray as the one that is

inserted into its proper position; it merely makes some of the programs easier to

code.) Two pointers, up and down, are initialized to the upper and lower bounds

of the subarray, respectively. At any point during execution, each element in a

position above up is greater than or equal to a and each element in a position

below down is less than or equal to a. The two pointers up and down are moved

toward each other in the following fashion. Execution begins by increasing the

pointer down one position at a time until x(down) > a. At that point the pointer

up is decreased one position at a time until x(up) a. If up is still greater than

down, we proceed to interchange x(down) with x(up). The process is repeated

until up down, at which point x(up) is interchanged with x(lb) (which equals a),

whose final position was sought, and the value of j is set to the position up.

We illustrate this process on the sample file, showing the positions of up

and down as they are adjusted. The direction of the scan is indicated by an arrow

at the pointer being moved. An asterisk indicates that an interchange is made.
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a = x(lb) = 25

downê up

25 57 48 37 12 92 86 33

down up

25 57 48 37 12 92 86 33

down •up
25 57 48 37 12 92 86 33

down •up
25 57 48 37 12 92 86 33

down •up
25 57 48 37 12 92 86 33

down up

25 57 48 37 12 92 86 33

down up

25 12 48 37 57 92 86 33 *

downê up

25 12 48 37 57 92 86 33

down up

25 12 48 37 57 92 86 33

down •up
25 12 48 37 57 92 86 33

down •up
25 12 48 37 57 92 86 33

•up,down
25 12 48 37 57 92 86 33

up down

25 12 48 37 57 92 86 33

up down

12 25 48 37 57 92 86 33 *

At this point 25 is in its proper position (position 2), every element to its left is

less than or equal to 25, and every element to its right is greater than or equal
to 25. We could now proceed to sort the two subarrays (12) and

(48 37 57 92 86 33) by applying the same method.
An algorithm to implement the subroutine rearrange is as follows (x, ib,

and ub are input variables, and j and x are output variables):

a = x (Ib) ‘a is the element whose final

‘position is sought

up = ub

down = lb

while down < up do

while x(down) <= a do

down = down + 1 ‘move down up the array

endwhile
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while x(up) > a do

up = up — 1 ‘move up down the array
endwhile

if down < up

then interchange x(down) and x(up)

endif
endwhile

x(lb) = x(up) ‘x(up) is interchanged

x(up) = a ‘with x(lb) = a

j= up

Note that if k equals ub—ib +1, so that we are rearranging a subarray of size

k, the subroutine uses k key comparisons [of x(down) with a and x(up) with alto

perform the partition.

A program segment for rearrange follows:

6000 ‘subroutine rearrange

6010 ‘inputs: LB, UB, X

6020 ‘outputs: J, X

6030 ‘locals: A, DOWN, TEMP, UP

6040 A = X(LB)
6050 UP = UB

6060 DOWN = LB

6070 ‘move up the array

6080 IF X(DOWN) > A THEN GOTO 6110
6090 DOWN = DOWN + 1

6100 IF DOWN < UP THEN GOTO 6080

6110 ‘move down the array

6120 IF X (UP) <= A THEN GOTO 6150
6130 UP=UP—l

6140 GOTO 6120

6150 IF DOWN < UP THEN TEMP = X(DOWN): X(DOWN) = X(UP):

X(UP) = TEMP: GOTO 6070

6160 X(LB) = X(UP)

6170 X(UP) = A

6180 J = UP

6190 RETURN

6200 ‘endsub

Note that the routine is a slightly modified version of the algorithm to ensure

correctness when DOWN equals N, the (possibly) last element of the array. The
routine can be made slightly more efficient by eliminating some of the redundant
tests. You are asked to do this as an exercise.
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While the recursive quicksort algorithm is relatively clear in terms of what

it accomplishes and how, recursion is not available in BASIC. In addition, it is

desirable to avoid the overhead of subroutine calls in programs such as sorts

in which execution efficiency is a significant consideration. The recursive calls

to QUICK can easily be eliminated by using a stack as in Chapter 5. Once

rearrange has been executed, the current parameters to QUICK are no longer

needed, except in computing the arguments to the two subsequent recursive calls.

Thus instead of stacking the current parameters upon each recursive call, we can

compute and stack the new parameters for each of the two recursive calls. Under

this approach, the stack at any point contains the lower and upper bounds of all

subarrays that must yet be sorted. Furthermore, since the second recursive call

immediately precedes the return to the calling program (as in the Towers of Hanoi

problem), it may be eliminated entirely and replaced with a branch. Finally,

since the order in which the two recursive calls are made is irrelevant in this problem,

we elect in each case to stack the larger subarray and process the smaller

subarray immediately. As we will explain shortly, this technique keeps the size
of the stack to a minimum.

We may now code a program to implement the quicksort. As in the case of

bubble, the input variables are the array X and the number of elements of X we

wish to sort, N. The subroutine pushbounds pushes LB and UB onto the stack,

popbounds pops them from the stack, and empty determines if the stack is empty.

5000 ‘subroutine quicksort
5010 ‘inputs: N, X

5020 ‘outputs: X
5030 ‘locals: J, LB, SITEM, TEMP, TP, UB
5040 TP = 0: ‘initialize the stack

5050 LB = 1

5060 UB = N

5070 GOSUB 1000: ‘subroutine pushbounds pushes LB and UB onto the stack

5080 ‘repeat as long as there are any unsorted subarrays on the stack

5090 GOSUB 3000: ‘subroutine empty sets the variable EMPTY
5100 IF EMPTY = TRUE THEN RETURN

5110 GOSUB 2000: ‘subroutine popbounds pops LB and UB off the stack
5120 IF UB <= LB THEN GOTO 5090

5130 ‘process the next subarray by rearranging and splitting it into two
5140 GOSUB 6000: ‘subroutine rearrange sets the variable J
5150 ‘stack the larger subarray
5160 IF J-LB > UB-J THEN TEMP = UB: UB = J — 1: GOSUB 1000:

LB = J + 1: UB = TEMP: GOTO 5120

5170 ‘stack lower subarray and

‘process upper subarray
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5180 ‘else do stmts 5 190—5240, stack upper subarray
5190 TEMP = LB

5200 LB=J+l

5210 GOSUB 1000: ‘subroutine pushbounds
5220 ‘process lower subarray
5230 UB=J—l

5240 LB = TEMP

5250 GOTO 5120

5260 ‘endsub

6000 ‘subroutine rearrange

The routines rearrange, empty, popbounds, and pushbounds could be inserted

in line for maximum efficiency. Trace the action of quicksort on the sample
file.

How efficient is the quicksort? Assume that the file size n is a power of 2,

say n = 2m, so that m = log2n. Assume also that the proper position for x(lb)

always turns out to be the exact middle of the subarray. In that case there will be

approximately n comparisons (actually n — 1) on the first pass, after which the

file is split into two subfiles each of size n/2 approximately. For each of these two

files there are approximately n/2 comparisons, and a total of four files each of

size n/4 are formed. Each of these files requires n/4 comparisons, yielding a total

of n/8 subfiles. After halving the subfiles m times, there are n files of size 1.

Thus the total number of comparisons for the entire sort is approximately.

n + 2*(n/2) + 4*(n/4) + 8*(n/8) + . . . + n*(n/n)

or

n+n+n+n+...+n (mterms)

comparisons. There are m terms because the file is subdivided m times. Thus the

total number of comparisons is O(n*m) or O(n log n) [recall that m = log2n)J.

Thus if the properties above describe the file, the quicksort is O(n log n), which

is relatively efficient.

The analysis above assumes that the original array and all the resulting

subarrays are unsorted, so that x(lb) always finds its proper position at the middle

of the subarray. Suppose that the conditions above do not hold and the original
array is sorted (or almost sorted). If, for example, x(lb) is in its correct position,
the original file is split into subfiles of sizes 0 and n — 1. If this process continues,

a total of n — 1 subfiles are sorted, the first of size n, the second of size

n — 1, the third of size n —2, and so on. Assuming k comparisons to rearrange
a file of size k, the total number of comparisons to sort the entire file is

which is 0(n2). Similarly, if the original file is sorted in descending order, the
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final position of x(lb) is ub and the file is again split into two subfiles which are
heavily unbalanced (sizes n — 1 and 0). Thus the quicksort has the seemingly

absurd property that it works best for files that are “completely unsorted” and

worst for files that are completely sorted. The situation is precisely the opposite
for the bubble sort, which works best for sorted files and worst for unsorted files.

The analysis for the case where the file size is not an integral power of 2 is similar
but slightly more complex; the results, however, remain the same. It can be

shown that on the average (over all files of size n), the quicksort makes O(n log n)

comparisons. Even the worst-case efficiency can be improved by using the techniques
of Exercise 11.

The space requirements for the quicksort depend on the number of nested
recursive calls or on the size of the stack. Clearly, the stack can never grow larger

than the number of elements in the original file. How much smaller than n the

stack grows depends on the number of subfiles generated and on their sizes. The
size of the stack is somewhat contained by always stacking the larger of the two

subarrays and applying the routine to the smaller of the two. This guarantees that
all smaller subarrays are subdivided before larger subarrays, giving the net effect

of having fewer elements on the stack at any given time. The reason for this is

that a smaller subarray will be divided fewer times than a larger subarray. Of

course, the larger subarray will ultimately be processed and subdivided, but this

will occur after the smaller subarrays have already been sorted and therefore removed
from the stack.

EXERCISES

1. Prove that the number of passes necessary in the bubble sort of the text before the file

is in sorted order (not including the last pass, which detects the fact that the file is

sorted) equals the largest distance by which an element must move from a larger index

to a smaller index.

2. Rewrite the program bubble so that successive passes go in opposite directions. (This

is known as the cocktail shaker sort.)

3. Prove that in the sort of Exercise 2, if two elements are not interchanged during two

consecutive passes in opposite directions, they are in their final position.

4. A sort by counting is performed as follows. Declare an array count and set count(i) to

the number of elements which are less than or equal to x(i). Then place x(i) in position

count(i) of an output array. (However, beware of the possibility of equal elements.)

Write a routine to sort an array x of size n using this method.

5. Assume that a file contains integers between a and b, with many numbers repeated

several times. A distribution sort proceeds as follows. Declare an array number of

size b — a + 1 and set number(i — a + 1) to the number of times that integer i appears

in the file. Then reset the values in the file appropriately. Write a routine to sort

an array x of size n containing integers between a and b by this method.
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6. The odd-even transposition sort proceeds as follows. Pass through the file several

times. On the first pass, compare x(i) with x(i + 1) for all odd i. On the second pass,

compare x(i) with x(i + 1) for all even i. Each time that x(i) > x(i + 1), interchange

the two. Continue alternating in this fashion until the file is sorted.

(a) What is the condition for the termination of the sort?

(b) Write a BASIC routine to implement the sort.

(c) On the average, what is the efficiency of this sort?

7. Rewrite the program for the quicksort by starting with the recursive algorithm and

applying the methods of Chapter 5 to produce a nonrecursive version.

8. Under what circumstances can statement 6100 in the rearrange routine be changed
from

6100 IF DOWN < UB THEN GOTO 6080

to

6100 GOTO 6080

Which version is more efficient, and why?

9. Can statements 6080—6100 of the subroutine rearrange be changed from

6080 IF X(DOWN) > A THEN GOTO 6110
6090 DOWN = DOWN + 1

6100 IF DOWN < UB THEN GOTO 6080

to

6080 DOWN = DOWN + 1

6090 IF DOWN < UB

THEN IF X(DOWN) <= A THEN GOTO 6080

What are the advantages andlor disadvantages of this change?

10. Modify the quicksort program of the text so that if a subarray is small, the bubble sort

is used. Determine, by actual computer runs, how small the subarray should be so

that this mixed strategy will be more efficient than an ordinary quicksort.

11. Modify rearrange so that the middle value of x(lb), x(ub), and x(int((ub + lb)/2)) is

used to partition the array. In what cases is the quicksort using this method more
efficient than the version of the text? In what cases is it less efficient?

12. Evaluate the efficiency of each of the following sorting methods with respect to time

and space considerations.

(a) The bubble sort using n — 1 passes, in which every pass goes through all the
elements of the file.

(b) The bubble sort in which each pass makes one fewer comparison than the preceding

pass.

(c) The bubble sort of the text, as modified in Exercise 2.

(d) The counting sort of Exercise 4.

(e) The distribution sort of Exercise 5.
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(I’) The odd-even transposition sort of Exercise 6.

(g) The quicksort as modified in Exercise 10.

(h) The quicksort as modified in Exercise 11.

13. (a) Rewrite the routines for the bubble sort and the quicksort as presented in the text

and the sorts of Exercise 12 so that a record is kept of the actual number of comparisons

and the actual number of interchanges made.

(b) Write a random-number generator (or use an existing one if your computer has

one) that generates integers between 0 and 9999.

(c) Using the generator of part (b), generate several files of size 10, size 100, and

size 1000. Apply the sorting routines of part (a) to measure the time requirements
for each of the sorts on each of the files.

(d) Measure the results of part (c) against the theoretical values presented in this section.

Do they agree? If not, explain. In particular, rearrange the files so that they

are completely sorted and in reverse order and see how the sorts behave with

these inputs.

3. SELECTION AND TREE SORTING

Straight Selection Sort

A selection sort is one in which successive elements are selected from the file

and placed in their proper position. The following program is an example of a

straight selection sort. The largest number is first placed in the Nth position, the

next largest is placed in position N — 1, and so on.

5000 ‘subroutine select

5010 ‘inputs: N, X

5020 ‘outputs: X

5030 ‘locals: I, IDX, J, LARGE

5040 FOR I = N TO 2 STEP — 1

5050 ‘place the largest number of X(1) through X(I)
‘into LARGE and its index into IDX

5060 LARGE = X(1)

5070 IDX = 1

5080 FORJ=2T01

5090 IF X(J) > LARGE THEN LARGE = X(J): IDX = J

5100 NEXTJ

5110 X(IDX) = X(I)

5120 X(I) = LARGE: ‘place LARGE into position I

5130 NEXT I

5140 RETURN

5150 ‘endsub



440 Sorting Chap. 8

This sort is also known as the push-down sort.

Analysis of the straight selection sort is straightforward. The first pass

makes n — 1 comparisons, the second pass makes n — 2, and so on. Therefore,
there is a total of

(n— l)+(n—2)+(n—3)+ ... + 1 =n*(n_ 1)/2

comparisons, which is 0(n2). The number of interchanges is always n — 1 (unless

a test is added to prevent the interchanging of an element with itself). There

is little additional storage required (except to hold a few temporary variables).

The sort may therefore be categorized as 0(n2), although it is faster than the bubble

sort. There is no improvement if the input file is completely sorted or unsorted

since the testing proceeds to completion without regard to the makeup of the

file. Despite the fact that it is simple to code, it is unlikely that the straight selection

sort would be used on any files but those for which n is small.

Binary Tree Sorts

In the remainder of this section we illustrate several selection sorts that utilize

binary trees. Before we do that, however, let us analyze the binary tree sort of

Section 6.1. The reader is advised to review that sort before proceeding.

The method involves scanning each element of the input file and placing it

into its proper position in a binary tree. To find the proper position of an element,

y, a left or right branch is taken at each node depending on whether y is less than

the element in the node or greater than or equal to it. Once each input element is

in its proper position in the tree, the sorted file can be retrieved by an inorder

traversal of the tree. We present the algorithm for this sort, modifying it to accommodate

the input as a preexisting array. Translating the algorithm to a BASIC

routine is straightforward.

‘establish the first element as root

tree = maketree(x(l))

‘repeat for each successive element

for i = 2 to n

y = x(i)

q = tree

p=q
‘travel down the tree until a leaf is reached

while p <> null do

q=p

if y < infop)

then p left(p)

else p = right(p)

endif

endwhile
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if y < info(q)

then setleft(q,y)

else setright(q,y)

endif
next i

‘the tree is built, traverse it in inorder

intrav(tree)

In order to convert the algorithm above into a subroutine to sort an array, it

is necessary to revise intrav so that visiting a node involves placing the contents

of the node into the next position of the original array.

The relative efficiency of this method depends on the original order of the

data. If the original array is completely sorted (or sorted in reverse order), the

resulting tree appears as a sequence of only right (or left) links, as in Figure

8.3.1. In this case the insertion of the first node requires no comparisons, the

second node requires two comparisons, the third node three comparisons, and so

on. Thus the total number of comparisons is

which is 0(n2).

2+3+...+n=n*(n+1)/2_1

Original data:

4 8 12 17 26

(a)

Original data:

26 17 12 8 4

(b)

Number of comparisons: 14 Number of comparisons: 14

Figure 8.3.1
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Original data:

12 8 17 4 26

(a)

Figure 8.3.2

Original data:

17 8 12 4 26

(b)

On the other hand, if the data in the original array are organized so that

approximately half the numbers following any given number a in the array are
less than a and half are greater than a, trees such as those in Figure 8.3.2 result.

In such a case, the depth of the resulting binary tree is the smallest integer d
greater than or equal to log2(n + 1) — 1. The number of nodes at any level 1 (except

possibly for the last) is 2’ and the number of comparisons necessary to place

a node at level 1 (except when 1 = 0) is 1 + 1. Thus the total number of comparisons
is between

d + 21(1 + 1)

d

and 21(1 + 1)

It can be shown (mathematically inclined readers might be interested in proving
this fact as an exercise) that the resulting sums are O(n log n).

Of course, once the tree has been created, time is expended in traversing it.
(Note that if the tree is threaded as it is created, the traversal time is sharply reduced.)

This sort requires that one tree node be reserved for each array element.

Depending on the method used to implement the tree, space may be required for
tree pointers and threads, if any.

Tournament Sort

The next tree sort we consider is frequently called the tournament sort because

its actions mirror those of a tournament where participants compete against each

Number of comparisons: 10 Number of comparisons: 10
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other to determine the best player. (This sort is also called the tree selection sort.)
Consider a tournament that determines the best player from the set {Ed, Gail,
Keith, George, Jack, Pat, Barbara, Frank}. The outcome of the tournament can
be represented by a binary tree, as in Figure 8.3.3. Each leaf of the tree represents

a player in the tournament. Each nonleaf node represents the results of a
game between the players represented by its two sons. In Figure 8.3.3(a) it is
clear that Gail is the tournament champion.

But suppose that it is also desired to determine the second-best player. Pat is
not necessarily the second-best player despite the fact that he played Gail in the
championship game. To determine the second-best player, it would be necessary
for Keith (who lost to Gail in the quarter finals) to play George (who lost to Gail
in the semifinals) and the winner of that match to play Pat.

Let us indicate that a player has been declared a winner by placing an asterisk
in the leaf node corresponding to that player. Clearly, if a node is marked

with an asterisk, its player does not participate in any future runoffs. If both sons
of a node contain an asterisk, those sons both represent players who have completed

the tournament, and therefore the father node is also marked with an asterisk

and no longer participates in further runoffs. If only one son of a node is
marked with an asterisk, the player represented by the other son is moved up to
the father node. For example, when the leaf containing Gail in Figure 8.3.3(a) is
marked with an asterisk, the name Keith is moved up to replace Gail in the father
of that leaf. The tournament is then replayed from that point, with George playing

Keith (George wins) and George playing Pat (Pat wins), thus yielding the tree
of Figure 8.3.3(b). Pat is indeed the second-best player. This process may be
continued [Figure 8.3.3(c) illustrates that George is third best] until all the nodes
of the tree are marked with asterisks.

The same technique is used in the tournament sort. Each of the original elements
is assigned to a leaf node of a binary tree. The tree is constructed in bottom-up
fashion from the leaf nodes to the root as follows. Choose two leaf nodes

and establish them as the sons of a newly created father node. The content of the

father node is set to the larger of the two numbers represented by its sons. This

process is repeated until either one or zero leafs remain. If one remains, move the

node itself up to the previous level. Now repeat this process with the newly created

father nodes (plus the possible node that had no partner in the previous repetition)

until the largest number is placed in the root node of a binary tree whose
leafs contain all the numbers of the original file. The contents of this root node

may then be output as the largest element. The leaf node containing the value at

the root is then replaced with a number smaller than any in the original file (this
corresponds to marking it with an asterisk). The contents of all its ancestors are

then recomputed from the leafs to the root. This process is repeated until all the

original elements have been output.



(a)

(b)

(c)

Figure 8.3.3 A tournament.

444
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Figure 8.3.4(a) shows the initial tree using the file presented in the last section:

25 57 48 37 12 92 86 33

After 92 is output, the tree is transformed as in Figure 8.3.4(b), where 92
has been replaced by — 1 and 86 is moved up to the root position. Note that it is
necessary to recompute the contents of those nodes which were ancestors of the
original leaf node that contained 92. Figure 8.3.4(c) shows the tree after 57 has

moved up to the root. Note that — 1 is used as the smallest value in this example,

since the numbers being sorted are all positive. The reader is asked to complete
the process until all the elements of the original file have been output.

Before writing a program to implement the tournament sort, we must decide

how to implement the tree in BASIC. The linked array representation of Section
6.2 could be used. However, the efficiency of the program can be improved by

using the representation in which an almost complete binary tree is represented as

an array. In this representation, if index i references a node, then left(i) is referenced
by index 2*i, right(i) is referenced by 2*i + 1, and father(i) is referenced

by int(i/2). To simplify the coding, we use a complete binary tree. In such a tree,
only those nodes at the maximum level are leafs. Such a tree with eight leafs is

illustrated in Figure 8.3.4. In general, the number of leafs in a complete binary

tree is a power of 2. If the original file is of size n which is not a power of 2, the

number of leafs is the smallest power of 2 greater than n and the extra leafs are
initialized to — 1.

A second question is what should the contents of the tree nodes be? Suppose

that we allow the tree nodes to contain the actual items to be sorted, as in Figure

8.3.4. Then when the root is output, the leaf node corresponding to that root element

must be replaced by a very small number and the contents of all its ancestors

must be readjusted. But in order to locate the leaf node corresponding to the

root, given only the root, it is necessary to travel from the root down to the leaf

making a comparison at each level. Furthermore, this process must be repeated

for each new root node. It would certainly be more efficient if it were possible to

proceed directly from the root to the leaf that corresponds to its contents. We

therefore construct the complete binary tree in the following way. Each leaf contains

an element of the original array x. Each nonleaf node contains the index of

the leaf node corresponding to the array element which the nonleaf node represents.
If the content of a leaf node i, tree(i), is moved up to a nonleaf node j,

tree(j) is set to i (the index in the tree of the leaf node corresponding to the element)
rather than tree(i) (the actual element itself). The content of a nonleaf node

(which is the index of the appropriate leaf node) is subsequently moved up the
tree directly. Thus if i is a leaf node, tree(i) contains the actual element that node

i represents; if i is a nonleaf node, tree(i) references the index of a leaf node and

hence tree(tree(i)) references the actual element that node i represents.
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(a)

Output: 92

(b)

86

(c)

Figure 8.3.4
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For example, the array tree representing the tree of Figure 8.3.4(a) is initialized
as follows. (Nodes 8 through 15 are leafs, nodes 1 through 7 are non-

leafs.)

i lree(i)

1 13

2 9

3 13

4 9

5 10

6 13

7 14

8 25

9 57

10 48

11 37

12 12

13 92

14 86

15 33

We may now code the sort routine (assuming that n > 1) as follows:

5000 ‘subroutine tournament

5010 ‘inputs: N, X

5020 ‘outputs: X

5030 ‘locals: I, K, SIZE, SMALL, TREE

5040 SIZE = 1

5050 SMALL = — 9999

5060 IF SIZE <N THEN SIZE = SIZE * 2: GOTO 5060

5070 ‘SIZE is the number of leafs necessary in the complete binary tree
5080 ‘the number of nodes is 2* SIZE — 1

5090 ‘assume that the array TREE has been dimensioned to size at least
‘2*SIZE — 1

5100 GOSUB 6000: ‘subroutine initialize

5110 ‘initialize creates the initial tree as described in the text

5120 ‘now that the tree is constructed, repeatedly place the element

‘represented by the root in the next lower position in the array X
‘and readjust the tree
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5130 FOR K = N TO 2 STEP — 1

5140 I = TREE(1): ‘I is the index of the leaf node

‘corresponding to the root
5150 X(K) = TREE(I): ‘place element referenced by root

‘in position K
5160 TREE(I) = SMALL

5170 GOSUB 7000: ‘subroutine readjust

‘readjusts the tree based on the

‘new contents of TREE(I)
5180 NEXT K

5190 X(1) = TREE(TREE(1))

5200 RETURN

5210 ‘endsub

We now present the routines initialize and readjust. Note that the level directly

above the leafs must be treated differently than the other levels.

6000 ‘subroutine initialize

6010 ‘inputs: N, SIZE, SMALL, X

6020 ‘outputs: TREE

6030 ‘locals: J, K

6040 ‘initialize leafs of tree corresponding to array elements
6050 FORJ=1TON

6060 TREE (SIZE + J — 1) = X(J)

6070 NEXT J

6080 ‘initialize remaining leafs
6090 FOR J = SIZE + N TO 2*SIZE — 1

6100 TREE(J) = SMALL

6110 NEXTJ

6120 ‘compute upper levels of the tree

6130 ‘the level directly above the leafs is treated separately
6140 FOR J = SIZE TO 2*SIZE — 1 STEP 2

6150 IF TREE(J) > = TREE(J + 1) THEN TREE(INT(J/2)) = J

ELSE TREE(INT(J/2)) = J + 1

6160 NEXTJ

6170 ‘compute the remaining levels

6180 K = INT (SIZE/2)
6190 IF K <= 1 THEN RETURN

6200 FOR J = K TO 2*K — 1 STEP 2

6210 IF TREE(TREE(J)) > = TREE(TREE(J + 1))

THEN TREE(INT(J/2)) = TREE(J)

ELSE TREE(INT(J/2)) = TREE(J + 1)

6220 NEXT J

6230 K = INT(K12)

6240 GOTO 6190

6250 ‘endsub
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7000 ‘subroutine readjust

7010 ‘inputs: I

7020 ‘outputs: TREE
7030 ‘locals: J

7040 ‘now that TREE(I) has a new value (SMALL) we adjust all its ancestors

7050 ‘adjust the father node

7060 IF INT(112) = 112 THEN TREE (INT(I/2)) = I + 1

ELSE TREE(INT(112)) = I — 1
7070 ‘advance to the root

7080 I = INT(I/2)
7090 IF I <= 1 THEN RETURN

7100 ‘set J to the brother of!
7110 IF INT(1J2) = 112 THEN J = I + 1

ELSE J = I — 1

7120 IF TREE(TREE(I)) > TREE(TREE(J)) THEN TREE(INT(112)) = TREE(I)

ELSE TREE(INT(112) = TREE(J)

7130 I = INT(112)

7140 GOTO 7090

7150 ‘endsub

Measuring the time and space requirements of this sort is straightforward.
Observe that after the initial tree has been created and the root has been output, d
comparisons are required to readjust the tree and move a new element to the root
position, where d is the depth of the tree. Since d is approximately log2(n + 1)
and n — 1 adjustments must be made to the tree, the number of comparisons is
approximately (n — 1)log2 (n + 1), which is 0(n log n). Of course, comparisons

are made in creating the initial tree, but the number of such comparisons is
0(n) and is therefore dominated by the 0(n log n) term.

The space requirements, in addition to temporary values, are the
2*size — 1 memory units reserved for the array tree, where size is the smallest
integral power of 2 which is greater than or equal to n. Since we insisted on a
complete binary tree in this program, there may be much wasted space if, for
example, the value of n is 33 or 129. Of course, if a linked implementation of
trees is used, additional space is required for the links.

Heapsort

Although the program above appears to be relatively efficient in all cases, it does
have a serious shortcoming which is easy to remove. The upper levels of the tree
contain pointers, while the actual data are kept only at the lowest level. As a byproduct

of this, many nodes carry duplicate information on several levels of the
tree. Because of this, there is considerable work involved in bringing an element
from the leaf to the root. Much of this work is unnecessary in the later stages of
the sort when most of the leafs (and indirectly, many of the upper levels) contain
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the value SMALL, causing unnecessary comparisons to be made.

This drawback may be remedied by the heapsort. In this sort, only one

node is reserved for each of the elements in the original file.This serves to eliminate

the large amount of space allocated in the tournament sort and the redundant

comparisons of the later stages of that sort. In fact, the original array x is used as

a workspace for the sort, so that extra space is required only for temporary variables.

Define a heap of size n as an almost complete binary tree of n nodes such

that the content of each node is less than or equal to the content of its father. If

the array implementation of an almost complete binary tree is used, as was done

in the implementation of the tournament sort, this condition reduces to the inequality

for all j between 1 and n:

info(j) info(k) for k = int(j/2)

It is clear from this definition of a heap that the root of the tree (or the first element

of the array) is the largest element in the heap. Assuming that the routine

createheap(i) creates a heap of size i consisting of the first i elements of the array

x, a sorting method could be implemented as follows:

fori = nto2step — 1

createheap(i)

interchange x(1) and x(i)
next i

As we shall see, however, it is not necessary to create the entire heap anew on

each iteration; we can readjust the heap that was created on the preceding iteration

so that it remains a heap even after the interchange. Thus the heapsort consists

of the following algorithm.

createheap(n)

for i = n to 2 step — 1

interchange x(1) and x(i)

create a heap of order i — 1 by readjusting the position of x(1)
next i

We must consider two problems: how to create the original heap and how to

adjust the intermediate heaps. To create the original heap, start with a heap of

size 1 consisting of x(1) alone and try to create a heap of size 2 consisting of x(1)

and x(2). This can be accomplished quite easily by interchanging x(2) and x(1) if

x(1) is less than or equal to x(2). In general, in order to create a heap of size I by

inserting node i into an existing heap of size i — 1, compare node i with its father.

If node i is greater, interchange the two and change i to point to the father.

Repeat this process until the content of the father of node I is greater than or equal

to the content of node I or until i is the root of the heap. Thus an algorithm to

create a heap of order k may be written as follows:
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for node = 2 to k ‘insert x(node) into heap
= node

j = int(i/2) ‘j is father of i

while (i> 1) and (x(j) <= x(i)) do

interchange x(i) and x(j)

= j ‘advance up the tree

j = int(i/2) ‘j is father of i
endwhile

next node

To solve the second problem of finding the proper place for x(1) in a tree
which satisfies the requirements of a heap (except for the root), initialize i to 1
and repeatedly interchange the content of node i with the content of the larger of
its two sons as long as its content is not larger than those of both its sons, resetting

i to point to the larger son. The algorithm to readjust the heap of order k may
be written as follows:

i1

‘compute the larger of i’s two sons and place in j

j=2

if(k > = 3) and (x(3) > x(2))

thenj = 3

endif

while (j <= k) and (x(j) > x(i)) do

interchange x(i) and x(j)

i =j

‘set jto the larger of i’s sons

j = 2*i

if (I + 1 <= k) and (x(j + 1) > x(j))

thenj = j + 1

endif

endwhile

At this point, we should note that this algorithm cannot be implemented directly
as written. If the condition j <= k in the while loop is false, subsequent

evaluation of x(j) > x(i) may result in x(j) being out of bounds. Thus the implementation
of the compound conditional of the while loop will have to proceed in

two steps. Similarly, the last if statement will have to be implemented as

fj+1<= k
then if x(j + 1) >x(j)

thenj = j + 1
endif

endif

because we must again ensure that the references to x(j + 1) and x(j) are within
array bounds. Failure to consider such possibilities is a frequent source of program

failure.
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Figure 8.3.5 illustrates the creation of a heap of size 8 from the original file:

25 57 48 37 12 92 86 33

The dotted lines in that figure indicate that two elements have been interchanged.

Figure 8.3.6 illustrates the adjustment of the heap as x(1) is moved to its

proper position in the original array until all the elements of the heap are pro-

Figure 8.3.5 Creating a heap of size 8.



x(1)

(c) The heap of x(1) to x(7) is readjusted.

(b) x(1) and x(8) are interchanged.

(e) The heap of x( 1) to x(6) is readjusted. (f) x( 1) and x(6) are interchanged.

Figure 8.3.6 Adjusting a heap.

(a) Original tree.

(d) x( I) and x(7) are interchanged.

453



(g) The heap of x(1) to x(5) is readjusted. (h) x(1) and x(5) are interchanged.

(i) The heap of x( 1) to x(4) is readjusted. (j) x( 1) and x(4) are interchanged.

(k) The heap of x(1) to x(3) is readjusted. (1) x(1) and x(3) are interchanged.

Figure 8.3.6 (continued).

454
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(m) The heap of x(1) to x(2) is readjusted. (n) x(1) and x(2) are interchanged. The array is sorted.

cessed. Note that after an element has been “removed” from the heap it retains
its position in the array; it is merely ignored in subsequent processing. Note also
that the transformations in Figure 8.3.6 illustrate a tournament in which, after an
element is inserted into a father node, the sons below it advance up the tree to
take their proper position. This eliminates the redundant nodes and the redundant
tests of the tournament sort.

In the program below we implement the heapsort. The statements of the

program mirror the description above except that not all the interchanges called
for are made immediately. The value whose correct position is being sought is

kept in a temporary variable y. Advances up or down the tree are made by adjusting

pointers.

We present the program to implement the heapsort. N is assumed to be
greater than or equal to 3.

5000 ‘subroutine heap
5010 ‘inputs: N, X
5020 ‘outputs: X
5030 ‘locals: I, J, K, Y

5040 ‘create initial heap
5050 FORK=2TON

5060 ‘insert X(K) into existing heap of size K — 1
5070 I=K

5080 Y = X(K)

5090 J = INT(112): ‘J is father of!

x(1)

x(2)

x(5)

Figure 8.3.6 (continued).



456 Sorting Chap. 8

5100 IF J <= 0 THEN GOTO 5160

5110 IF Y <= X(J) THEN GOTO 5160

5120 X(I) = X(J)

5130 I=J

5140 J = INT(112)

5150 GOTO 5100

5160 X(I) = Y

5170 NEXT K

5180 ‘we remove X(1) and place it in its proper position in the

‘array; we then adjust the heap
5190 FOR K = N TO 2 STEP — 1

5200 Y = X(K)

5210 X(K) = X(1)

5220 ‘readjust the heap of order K — 1; move Y down the heap to

‘its proper position
5230 1=1

5240 J=2

5250 IF (K — 1 > = 3) AND (X(3) > X(2)) THEN J = 3

5260 ‘J is the larger son of! in the heap of size K — 1
5270 IF J > K — 1 THEN GOTO 5340

5280 IF X(J) <= Y THEN GOTO 5340

5290 X(I) = X(J)

5300 I=J

5310 J=2*I

5320 IF J + 1 <= K — 1 THEN IF X(J + 1) > X(J) THEN J = J + 1

5330 GOTO 5260

5340 X(I) = Y

5350 NEXT K

5360 RETURN

5370 ‘endsub

To analyze the heapsort, note that a complete binary tree with n nodes

(where n is 1 less than a power of 2) has log2(n + 1) levels. Thus if each element

in the array were a leaf, requiring it to be filtered through the entire tree both

while creating and adjusting the heap, the sort would still be O(n log n). However,

clearly not every element must pass through the entire tree. Thus while the

sort is O(n log n), the multipliers are not as large as those for the tournament sort.

The worst case for the heapsort is O(n log n); but it is not very efficient for small

n. (Why?) The space requirement for the heapsort (aside from array indices) is

only one additional record (Y) to hold the temporary for switching, provided that

the array implementation of an almost complete binary tree is used.

EXERCISES

1. Explain why the straight selection sort is more efficient than the bubble sort.
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2. Consider the following quadratic selection sort. Divide the n elements of the file into

/h groups of elements each. Find the largest element of each group and insert it

into an auxiliary array. Find the largest of the elements in this auxiliary array. This is

the largest element of the file. Then replace this element in the array by the next largest

element of the group from which it came. Again find the largest element of the

auxiliary array. This is the second largest element of the file. Repeat the process until

the file has been sorted. Write a BASIC routine to implement a quadratic selection sort

as efficiently as possible.

3. Rewrite the tournament sort of this section, using linked allocation to store the binary
tree.

4. Modify the routines of the tournament sort so that nonleafs as well as leafs contain the

actual elements of the original file. When the content of the root is output, move down
the tree to find the leaf whose ancestors must be modified.

5. Modify the routine readjust of the tournament sort so that when the content of a leaf is

set to small, the content of its brother (rather than the index of its brother) is moved up

the tree. (Note that under this modification, a nonleaf may contain the index of a non-

leaf. For example, the array tree for the tree of Figure 8.3.4(c) would be as follows:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

tree(i) 9 9 7 9 10 12 33 25 57 48 37 12 —1 —1 33

tree(6) and tree(7) both contain actual values and tree(3) contains the index of a non-

leaf.) Why is this method more efficient?

6. Modify the tournament sort in the following ways. When the initial tree is created and

the content of a leaf node is moved up, the content of the leaf is immediately changed

to small. When the content of a nonleaf is moved up, the winner between its two sons

is moved up to take its place. Each time the root of the tree is output, move up its

largest son, then move up the largest son of that son, and so on, until the value small is

moved up.

7. Use the technique of the tournament sort to merge n input files, each of which is sorted

in ascending order, into a single output file, as follows. The tree is maintained so that

the key represented by each node is the smaller of the keys of its two sons. Each leaf is

designated as an input area for a single file. An auxiliary routine inp(i) reads the next

input value from the ith input file into the appropriate leaf. When all the elements of

file i have been input, inp(i) returns a value larger than any value in all input fields. An

auxiliary routine writeroot outputs the element in the tree root into the output file.

Each node of the tree contains an element and the input file number from which the

element came. An element is contained in only a single node of the tree at any time.

When an element is moved from a node nd to its father, another element is moved

from below to nd. When an element is moved up from a leaf, the routine inp is called

with the appropriate parameter to read a new input value into the leaf.

8. Define an almost complete ternary tree as a tree in which every node has at most three

sons and such that the nodes can be numbered from 1 to n so that the sons of node(i)
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are node(3*i — 1), node(3*i), and node(3*i + 1). Define a ternary heap as an almost

complete ternary tree in which the content of each node is greater than or equal to

the contents of all its descendants. Write a sorting routine similar to the heapsort using

a ternary heap.

9. Write a routine combine(x) that accepts an array x in which the subtrees rooted at x(2)

and x(3) are heaps and which modifies the array x so that it represents a single heap.

4. INSERTION SORTS

Simple Insertion

An insertion sort is one that sorts a set of records by inserting records into an

existing sorted file. An example of a simple insertion sort is the following subroutine:

5000 ‘subroutine insert

5010 ‘inputs: N, X

5020 ‘outputs: X

5030 ‘locals: I, K

5040 ‘initially X(1) may be thought of as a sorted file of one element.

‘after each repetition of the following loop, the elements X(1)

‘through X(K) are in order
5050 FORK=2TON

5060 ‘insert X(K) into the sorted file
5070 Y = X(K)

5080 ‘move down one position all numbers greater than Y
5090 FOR I = K — 1 TO 1 STEP — 1

5100 IF Y > = X(I) THEN GOTO 5130

5110 X(I + 1) = X(I)

5120 NEXT!

5130 ‘insert Y at proper position
5140 X(I+1)=Y

5150 NEXT K

5160 RETURN

5170 ‘endsub

If the initial file is sorted, only one comparison is made on each pass, so

that the sort is 0(n). If the file is initially sorted in the reverse order, the sort is

0(n2) since the total number of comparisons is

(n_1)+(n_2)+...+3+2+1=(n_1)*n/2

which is 0(n2). However, the simple insertion sort is still usually better than the
bubble sort. The closer the file is to sorted order, the more efficient the simple

insertion sort becomes. The average number of comparisons in the simple insertion

sort (by considering all possible permutations of the input array) is also
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0(n2). The space requirements for the sort consist of only one temporary variable
y.

The speed of the sort can be improved somewhat by using a binary search
(see Section 5.1, 5.2, and 9.1) to find the proper position for x(k) in the sorted
file x(1), . . ., x(k — 1). This reduces the total number of comparisons from
0(n2) to 0(n log n). However, even if the correct position i for x(k) is found in
0(log n) steps, each of the elements x(i + 1), . . ., x(k — 1) must be moved
one position. The latter operation performed n times requires 0(n2) replacements.
Unfortunately, therefore, the binary search technique does not significantly improve

the overall time requirements of the sort.
Another improvement to the simple insertion sort can be made by using list

insertion. In this method there is an array link of pointers, one for each of the
original array elements. Initially, link(i) = i + 1 for 1 i < n and
link(n) = 0. Thus the array may be thought of as a linear list pointed to by an
external pointer first initialized to 1. To insert the kth element, the linked list is
traversed until the proper position for x(k) is found, or until the end of the list is
reached. At that point x(k) can be inserted into the list by merely adjusting the list
pointers without shifting any elements in the array. This reduces the time required

for insertion but not the time required for searching for the proper position.
The space requirements are also increased because of the extra link array.

The number of comparisons is still 0(n2), although the number of replacements
in the link array is 0(n). You are asked to code both the binary insertion sort and
the list insertion sort as exercises.

Shell Sort

More significant improvement can be achieved by using the shell sort (or diminishing

increment sort), named after its discoverer. This method sorts separate

subfiles of the original file. These subfiles contain every kth element of the original
file. The value of k is called an increment. For example, if k is 5, the subfile

consisting of x(1), x(6), x(1 1), . . . is first sorted. Five subfiles, each containing
one-fifth of the elements of the original file, are sorted in this manner. These are
(reading across)

subfile 1 x(1) x(6) x(11)

subfile 2 x(2) x(7) x(12)

subfile 3 x(3) x(8) x(13)

subfile 4 x(4) x(9) x(14)

subfile 5 x(5) x(1O) x(15)

In general, the ith element of the jth subfile is x((i — 1)*5 + j). If a different

increment k is chosen, the k subfiles are divided so that the ith element of the jth
subfile is x((i — 1)*k + j).

After the first k subfiles are sorted (usually by simple insertion), a new
smaller value of k is chosen and the file is again partitioned into a new set of
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subfiles. Each of these larger subfiles is sorted and the process is repeated yet
again with an even smaller value of k. Eventually, the value of k is set to 1 so that

the subfile consisting of the entire file is sorted. A decreasing sequence of increments

is fixed at the start of the entire process. The last value in this sequence
must be 1.

For example, if the original file is

25 57 48 37 12 92 86 33

and the sequence (5,3,1) is chosen, then the following subfiles are sorted on each
iteration.

first iteration (increment = 5)

(x(1), x(6))

(x(2), x(7))

(x(3), x(8))

(x(4))

(x(5))

second iteration (increment = 3)

(x(1), x(4), x(7))

(x(2), x(5), x(8))

(x(3), x(6))

third iteration (increment = 1)

(x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8))

Figure 8.4.1 illustrates the Shell sort on this sample file. The lines underneath

each array join individual elements of the separate subfiles. Each of the

subfiles is sorted using the simple insertion sort.

We present below a routine to implement the Shell sort. In addition to the

standard parameters X and N, it requires an array INCRMNTS, containing the
diminishing increments of the sort, and NUMINC, the number of elements in the

array INCRMNTS.

5000 ‘subroutine shell

5010 ‘inputs: INCRMNTS, N, NUMINC, X

5020 ‘outputs: X

5030 ‘locals: I, J, K, SPAN

5040 FOR I = 1 TO NUMINC

5050 SPAN = INCRMNTS(I): ‘SPAN is the size of the increment

5060 FOR J = SPAN + 1 TO N

5070 ‘insert element X(J) into its proper position within

‘its subfile

5080 Y = X(J)
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5090 FOR K = J — SPAN TO 1 STEP — SPAN

5100 IF Y> =X(K) THEN GOTO 5130

5110 X(K+SPAN) = X(K)

5120 NEXT K

5130 X(K+SPAN)=Y

5140 NEXTJ

5150 NEXT!

5160 RETURN

5170 ‘endsub

Be sure that you can trace the actions of this program on the sample file of
Figure 8.4.1. Notice that on the last iteration where SPAN equals 1 the sort reduces

to a simple insertion.
The idea behind the Shell sort is a simple one. We have already noted that

the simple insertion sort is highly efficient on a file that is in almost sorted order.
It is also important to realize that when the file size n is small, an 0(n2) sort is
often more efficient than an 0(n log n) sort. The reason for this is that 0(n2) sorts

are generally quite simple to program and involve very few actions other than
comparisons and replacements on each pass. Because of this low overhead, the

constant of proportionality is rather small. An 0(n log n) sort is generally quite

complex and employs a large number of extra operations on each pass in order to

reduce the work of subsequent passes. Thus its constant of proportionality is largOriginal

25 57 48 37 12 92 86 33

file

Pass 1 25 57 48 37 12 92 86 33

increment 5

Pass2 25 57 33 37 12 92 86 48

increment = I I

I I I

Pass 3 25 12 33 37 48 92 86 57

incrementl j 1 1 1 1 1 1 I

Sorted 12 25 33 37 48 57 86 92

file

Figure 8.4.1
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er. When n is large, n2 overwhelms n log n, so that the constants of proportionality
do not play a major role in determining the faster sort. However, when n is

small, n2 is not much larger than n log n, so that a large difference in those constants
often causes an 0(n2) sort to be faster.

Since the first increment used by the Shell sort is large, the individual sub-
files are quite small, so that the simple insertion sorts on those subfiles are fairly
fast. Each sort of a subfile causes the entire file to be more nearly sorted. Thus,

although successive passes of the Shell sort use smaller increments and therefore
deal with larger subfiles, those subfiles are almost sorted due to the actions of
previous passes. Thus the insertion sorts on those subfiles are also quite efficient.
In this connection, it is significant to note that if a file is partially sorted using an
increment k and is subsequently partially sorted using an increment j, the file remains

partially sorted on the increment k. That is, subsequent partial sorts do not
disturb earlier ones.

The efficiency analysis of the Shell sort is mathematically involved and beyond

the scope of this book. The actual time requirements for a specific sort
depends on the number of elements in the array incrmnts and on their actual values.

It has been shown that the order of the Shell sort can be approximated by
0(n(log n)2) if an appropriate sequence of increments is used. One requirement
that is intuitively clear is that the elements of incrmnts should be relatively prime
(i.e., have no common divisors other than 1). This guarantees that successive
iterations intermingle subfiles so that the entire file is indeed almost sorted when

the increment equals 1 on the last iteration.

Address Calculation Sort

As a final example of sorting by insertion, consider the following technique,
called sorting by address calculation (sometimes called sorting by hashing). In

this method a function f is applied to each key. The result of this function determines
into which of several subfiles the record is to be placed. The function

should have the property that if x <y, thenf(x) <f(s). Such a function is called
order-preserving. Thus all of the records in one subfile will have keys which are

less than or equal to the keys of the records in another subfile. An item is placed

into a subfile in correct sequence by using any sorting method; simple insertion is
often used. After all of the items of the original file have been placed into sub-
files, the subfiles may be concatenated to produce the sorted result.

For example, consider again the sample file:

25 57 48 37 12 92 86 33

Let us create 10 subfiles, one for each of the 10 possible first digits. Initially,
each of these subfiles is empty. An array of pointersf(9) having a lower bound of

0 and an upper bound 9 is declared, where f(i) points to the first element in the

file whose first digit is i. [Most versions of BASIC assign array indices starting at
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f(O) = null

f(1) [ 12 null

f(2) 25

f(3) LE’L 37 null

f(4) 0 48 j null 1

f(5) 57 null

f(6) = null

f(7) = null

f(8) — — 86 null 1

f(9) f 92 J null
Figure 8.4.2 Address calculation sort.

0. In those versions of BASIC where this is not so, it is necessary to declare the

array f(10) and adjust all index references by adding 1 or by usingf(10) in place

of f(0).] After scanning the first element (25), it is placed into the file headed by
f(2). Each of the subfiles is maintained as a sorted linked list of the original array
elements. After processing each of the elements in the original file, the subfiles
appear as in Figure 8.4.2.

We present a routine to implement the address calculation sort. The routine

assumes an array of two-digit numbers and uses the first digit of each number to
assign that number to a subfile. The routine uses the subroutine place to insert Z

into its proper position in the ordered list LST.

5000 ‘subroutine addr

5010 ‘inputs: N, X

5020 ‘outputs: X

5030 ‘locals: AVAIL, F, I, INFO, J, LST, P, PTRNXT, Z
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5040 DIM INFO(N), PTRNXT(N)

5050 DIM F(9):

‘initialize available list5060

AVAIL = 15070

FORI = 1TON—15080

PTRNXT(I) = I + 1

NEXT I5100

PTRNXT(N) = 05110

‘initialize pointers5120

FOR I = 0 TO 95130

F(I) = 0

NEXT I5150

FORI = 1TON5160

‘we successively insert each element into its respective

‘subfile using list insertion

Z = X(I)

FIRST = INT (Z/10): ‘find the first digit of a two-digit number
‘search the linked list

LST = F(FIRST)

GOSUB 8000:

NEXT I5260

‘copy numbers back into the array X5270

1=05280

FOR J = 0 TO 95290

P = F(J)

IF P = 0 THEN GOTO 5360

1=1+1

X(I) = INFO(P)

P = PTRNXT(P)

GOTO 5310

NEXT J5360

RETURN5370

‘endsub5380

‘F(I) points to the first

‘element in the file whose first digit is I.

5090

5140

5170

5180

5190

5200

5210

5220

5230

5240

5250 F(FIRST) = LST:

‘subroutine place inserts Z into its proper

‘position in the linked list pointed to by LST.

‘place inputs: AVAIL, INFO, LST, PTRNXT, Z

‘place outputs: AVAIL, PTRNXT

‘and possibly LST

‘this statement is necessary in the case

‘where place modifies LST

5300

5310

5320

5330

5340

5350

8000 ‘subroutine place
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The space requirements of the address calculation sort are approximately 2n

(used by the arrays INFO and PTRNXT) plus some header nodes and temporary

variables. Note that if the original data are given in the form of a linked list rather

than as a sequential array, it is not necessary to maintain both the array X and the

linked structure consisting of INFO and PTRNXT.
To evaluate the time requirements for the sort, note the following. If the n

original elements are approximately uniformly distributed over the rn subfiles and

the value of n/rn is approximately 1, the time of the sort is nearly 0(n), since the

function assigns each element to its proper file and little extra work is required to
place the element within the subfile itself. On the other hand, if n/rn is much

larger than 1, or if the original file is not uniformly distributed over the rn sub-

files, a significant amount of work is required to insert an element into its proper
subfile, and the time is therefore closer to 0(n2).

EXERCISES

1. The two-way insertion sort is a modification of the simple insertion sort as follows. A

separate output array of size n is set aside. This output array acts as a circular structure,

as in Section 4.1. x(1) is placed into the middle element of the array. Once a

contiguous group of elements are in the array, room for a new element is made by

shifting all smaller elements one step to the left or all larger elements one step to the

right. The choice of which shift to perform depends on which would cause the smallest

amount of shifting. Write a BASIC subroutine to implement this technique.

2. The merge insertion sort proceeds as follows:

Step 1: For all odd i between 1 and n — 1, compare x(i) with x(i + 1). Place the

larger in the next position of an array large and the smaller in the next

position of an array small. If n is odd, place x(n) in the last position of

the array small. [large is of size int(n/2); small is of size int(n/2) or

int(n/2) + 1, depending on whether n is even or odd.]

Step 2: Sort the array large using merge insertion recursively. Whenever an element

large(j) is moved to large(k), small(j) is also moved to small(k).

[At the end of this step, large(i) large(i + 1) for all i less than int(n/2)

and small(i) large(i) for all i less than or equal to int(n/2) .1

Step 3: Copy small( 1) and all the elements of large into x( 1) through

x(int(n/2)+ 1).

Step 4: Define the integer num(i) as (2’ +1 + ( 1)’)/3. Beginning with i = 1

and proceeding by 1 while num(i) int(n/2) + 1, insert the elements

small(num(i + 1)) down to small(num(i) + 1) into x in turn using binary

insertion. [For example, if n = 20, the successive values of num are:
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num(1) = 1, num(2) = 3, and num(3) = 5, num(4) = 11, which

equals int(n/2) + 1. Thus the elements of small are inserted in the following

order: small(3), small(2); then small(S), small(4); then

small(1O), small(9), small(8), small(7), small(6). In this example, there

is no small(1 1).]

Write a BASIC subroutine to implement this technique.

3. Modify the quicksort of Section 2 so that it uses a simple insertion sort when a subfile

is below some size s. Determine by experiments what value of s should be used for

maximum efficiency.

4. Prove that if a file is partially sorted using an increment j in the Shell sort, it remains

partially sorted on that increment even after it is partially sorted on another increment,
k.

5. Explain why it is desirable to choose all the increments of the Shell sort so that they

are relatively prime.

6. Find the number (in terms of file size n) of comparisons and interchanges performed

by each of the sorting methods listed below for the following files.

(1) A sorted file

(2) A file that is sorted in reverse order (i.e., from largest to smallest)

(3) A file in which the elements x(1), x(3), x(5),. . . are the smallest elements and are

in sorted order and in which the elements x(2), x(4), x(6), . . . are the largest elements

and are in reverse sorted order [i.e., x(1) is the smallest, x(2) is the largest,

x(3) is next to the smallest, x(4) is the next to the largest, etc.].

(4) A file in which x(1) through x(int(n/2)) are the smallest elements and are sorted

and in which x(int(n/2) + 1) through x(n) are the largest elements and are in reverse
sorted order

(5) A file in which x(1), x(3), x(5), . . . are the smallest elements in sorted order and

in which x(2), x(4), x(6), . . are the largest elements in sorted order

(a) The simple insertion sort.

(b) The insertion sort using a binary search.

(c) The list insertion sort.

(d) The two-way insertion sort of Exercise 1.

(e) The merge insertion sort of Exercise 2.

(I) The Shell sort using increments 2 and 1.

(g) The Shell sort using increments 3, 2, and 1.

(h) The Shell sort using increments 8, 4, 2, and 1.

(1) The Shell sort using increments 7, 5, 3, and 1.

(j) The address calculation sort presented in the text.

7. Under what circumstances would you recommend the use of each of the following
sorts over the others?

(a) Shell sort of this section

(b) Heapsort of Section 3

(c) Quicksort of Section 2
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8. Detennine which of the following sorts is most efficient?

(a) The simple insertion sort of this section

(b) The straight selection sort of Section 3

(c) The bubble sort of Section 2

5. MERGE AND RADIX SORTS

Merge Sorts

Merging is the process of combining two or more sorted files into a third sorted

file. An example of a routine that accepts two sorted arrays A and B of AN and

BN elements, respectively, and merges them into a third array C containing CN

elements is the following:

5000 ‘subroutine mergearr

5010 ‘inputs: A, AN, B, BN, CN

5020 ‘outputs: C

5030 ‘locals: APNT, BPNT, CPNT
5040 IFAN+BN>CN

THEN PRINT “ARRAY BOUNDS INCOMPATIBLE”:

STOP

5050 ‘APNT, BPNT, and CPNT are indicators of how far we are in arrays

‘A, B, and C, respectively
5060 APNT = 1

5070 BPNT = 1

5080 CPNT = 1

5090 IF APNT> AN OR BPNT> BN THEN GOTO 5130

5100 IF A (APNT) <B(BPNT)

THEN C(CPNT) = A(APNT): APNT = APNT + 1

ELSE C(CPNT) = B(BPNT): BPNT = BPNT + 1

5110 CPNT = CPNT + 1

5120 GOTO 5090

5130 ‘copy any remaining elements from A to C
5140 IF APNT> AN THEN GOTO 5190

5150 C(CPNT) = A(APNT)

5160 CPNT = CPNT + 1

5170 APNT = APNT + 1

5180 GOTO 5130

5190 ‘copy any remaining elements from B to C
5200 IF BPNT > BN THEN GOTO 5250

5210 C(CPNT) = B(BPNT)

5220 CPNT = CPNT + 1

5230 BPNT = BPNT + 1

5240 GOTO 5190

5250 RETURN

5260 ‘endsub
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We can use this technique to sort a file in the following way. Divide the file
into n subfiles of size 1 and merge adjacent (disjoint) pairs of files. We then have
approximately n/2 files of size 2. Repeat this process until there is only one file
remaining of size n. Figure 8.5.1 illustrates how this process operates on a sample

file. Each individual file is contained in brackets.

Original
(251 [57] [48] [37] [12] [92] [86] [33]

P aSS
(25 57] [37 48] (12 92] [33 86]

P aSS
[25 37 48 57] [12 33 86 92]

Pass
[12 25 33 37 48 57 86 92]

Figure 8.5.1 Successive passes of the merge sort.

We present a routine to implement the description above of a straight
merge sort. An auxiliary array XAUX of size N is required to hold the results of
merging two subarrays of X. The variable SIZE contains the size of the subarrays
being merged. Since at any time the two files being merged are both subarrays of
X, lower and upper bounds are required to indicate the subfiles of X being
merged. ALO and AHI represent the lower and upper bounds of the first file and
BLO and BHI represent the lower and upper bounds of the second file, respectively.

APNT and BPNT are used to reference elements of the source files being
merged and CPNT indexes the destination file XAUX. The routine follows:

5000 ‘subroutine msort

5010 ‘inputs: N, X

5020 ‘outputs: X

5030 ‘locals: AHI, ALO, APNT, BHI, BLO, BPNT, CPNT, SIZE, XAUX

5040 ‘assume the existence of a declaration DIM XAUX(N)

5050 SIZE = 1: ‘merge files of size 1

5060 IF SIZE> = N THEN GOTO 5480

5070 ALO = 1: ‘initialize lower bound of first file

5080 CPNT = 1: ‘CPNT is index for auxiliary array
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5090 IF ALO + SIZE> N THEN GOTO 5350: ‘check if there is only one

‘subfile left
5100 ‘compute remaining indices
5110 BLO = ALO + SIZE

5120 AHI=BLO—1

5130 IF BLO + SIZE — 1 <N THEN BHI = AHI + SIZE

ELSE BHI = N

5140 ‘proceed through the two subfiles
5150 APNT = ALO

5160 BPNT = BLO

5170 IF APNT> AHI OR BPNT> BHI THEN GOTO 5220

5180 ‘enter smaller into array XAUX
5190 IF X(APNT) <= X(BPNT)

THEN XAUX(CPNT) = X(APNT): APNT = APNT + 1

ELSE XAUX(CPNT) = X(BPNT): BPNT = BPNT + 1

5200 CPNT = CPNT + 1

5210 GOTO 5170

5220 ‘at this point one of the subfiles has been exhausted

‘insert any remaining portions of the other file
5230 IF APNT> AHI THEN GOTO 5280

5240 XAUX(CPNT) = X(APNT)

5250 APNT = APNT + 1

5260 CPNT = CPNT + 1

5270 GOTO 5230

5280 IF BPNT> BHI THEN GOTO 5330

5290 XAUX(CPNT) = X(BPNT)

5300 BPNT = BPNT + 1

5310 CPNT = CPNT + 1

5320 GOTO 5280

5330 ALO = BHI + 1: ‘advance ALO to start of next pair of files
5340 GOTO 5090

5350 ‘copy any remaining single file
5360 APNT = ALO

5370 IF CPNT > N THEN GOTO 5420

5380 XAUX(CPNT) = X(APNT)

5390 CPNT = CPNT + 1

5400 APNT = APNT + 1

5410 GOTO 5370

5420 ‘adjust X and SIZE
5430 FOR APNT = 1 TO N

5440 X(APNT) = XAUX(APNT)

5450 NEXT APNT

5460 SIZE = SIZE * 2

5470 GOTO 5060

5480 RETURN

5490 ‘endsub
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There is one deficiency in the procedure described above which is easily

remedied if the program is to be practical for sorting large arrays. Instead of

merging each set of files into the auxiliary array XAUX and then recopying the

array XAUX into X, alternate merges can be performed from X to XAUX and
from XAUX to X. We leave this modification as an exercise for the reader.

The time required for the sort is O(n log n), since there are obviously no

more than log2n passes. The sort, however, does require an auxiliary array
XAUX into which the merged files can be stored.

There are two modifications of the procedure above which can result in

more efficient sorting. The first of these is the natural merge. In the straight

merge, the files are all the same size (except perhaps for the last file). We can,

however, exploit any order that may already exist among the elements and let the

subfiles be defined as the longest subarrays of increasing elements. You are
asked to code such a routine as an exercise.

The second modification uses linked allocation instead of sequential allocation.

By adding a single pointer field to each record, the need for the second array

XAUX can be eliminated. This can be done by explicitly linking together each

input and output subfile. The modification can be applied to both the straight
merge and the natural merge. You are asked to implement these in the exercises.

Radix Sort

The next sorting method that we consider is called the radix sort. This sort is
based on the values of the actual digits in the positional representations of the
numbers being sorted. For example, the number 235 in decimal notation is written

with a 2 in the hundreds position, a 3 in the tens position, and a 5 in the units
position. The larger of two such integers of equal length can be determined as
follows. Start at the most significant digit and advance through the least significant

digits as long as the corresponding digits in the two numbers match. The
number with the larger digit in the first position in which the digits of the two
numbers do not match is the larger of the two numbers. Of course, if all the digits
of both numbers match, the numbers are equal.

We can write a sorting routine based on the method described above.. Using
the decimal base, for example, the numbers can be sorted into 10 groups based
on their most significant digit. (For simplicity, we assume that all the numbers
have the same number of digits by padding with leading zeros, if necessary.)
Thus every element in the “0” group is less than every element in the “1” group
all of whose elements are less than every element in the “2” group, and so on.
We can then sort within the individual groups based on the next significant digit.
We repeat this process until each subgroup has been subdivided so that the least
significant digits are sorted. At this point the original file has been sorted. (Note
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that the division of a subfile into groups with the same digit in a given position is

similar to the rearrange operation in the quicksort, in which a subfile is divided

into two groups based on comparison with a particular element.) This method is

sometimes called the radix-exchange sort: its coding is left as an exercise for the
reader.

Let us now consider an alternative to the method described above. It is apparent

from the discussion above that considerable bookkeeping is involved in

constantly subdividing files and distributing their contents into subfiles based on

particular digits. It would certainly be easier if we could process the entire file as

a whole rather than deal with many individual files.

Suppose that we perform the following actions on the file for each digit,

beginning with the least significant digit and ending with the most significant digit.

Take each number in the order in which it appears in the file and place it into

one of 10 queues, depending on the value of the digit currently being processed.

Then restore each queue to the original file starting with the queue of numbers

with a 0 digit and ending with the queue of numbers with a 9 digit. When these

actions have been performed for each digit, starting with the least significant and

ending with the most significant, the file is sorted. This sorting method is called
the radix sort.

Notice that this scheme sorts on the less significant digits first. Thus when

all the numbers are sorted on a more significant digit, numbers which have the

same digit in that position but different digits in a less significant position are
already sorted on the less significant position. This allows processing of the entire

file without subdividing the files and keeping track of where each subfile begins
and ends. Figure 8.5.2 illustrates this sort on the sample file

25 57 48 37 12 92 86 33

Be sure that you can follow the actions depicted in the two passes of Figure
8.5.2.

We can therefore outline an algorithm to sort in the above fashion as follows:

for k = least significant digit to most significant digit
fori= lton

y = x(i)

j = kth digit ofy

place y at rear of queue(j)
next i

forqu = Oto9

place elements of queue(qu) in next sequential position of x

next qu
next k
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Original file
25 57 48 37 12 92 86 33

Queues based on least significant digit.

Front Rear

queue (0)

queue (1)

queue (2) 12 92

queue (3) 33

queue (4)

queue (5) 25

queue (6) 86

queue (7) 57 37

queue (8) 48

queue (9)

After first pass:

12 92 33 25 86 57 37 48

Queues based on most significant digit.

Front Rear

queue (0)

queue(1) 12

queue (2) 25

queue (3) 33 37

queue (4) 48

queue (5) 57

queue (6)

queue (7)

queue (8) 86

queue (9) 92

Sorted file: 12 25 33 37 48 57 86 92

Figure 8.5.2 Illustration of the radix sort.

We now present a program that implements the foregoing sort on rn-digit
numbers. In order to save a considerable amount of work in processing the

queues (especially in the step where we return the queue elements to the original
file), we write the program using linked allocation. If the initial input to the subroutine

is an array, that input is first converted into a linear linked list; if the

original input is already in linked format, this step is not necessary and, in fact,
space is saved. This is the same situation as in the subroutine addr (address calculation

sort) of Section 8.4. As in previous programs, we do not make any internal
calls to subroutines but rather perform their actions in place. We again make

use of the zeroth element of BASIC arrays.

5000 ‘subroutine radix

5010 ‘inputs: M, N, X

5020 ‘outputs: X

5030 ‘locals: FIRST, FRNT, I, INFO, JTEMP, K, P, PTRNXT, Q, REAR, Y
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5040 ‘assume global declarations DIM INFO(N), PTRNXT(N),

‘FRNT(9), REAR (9)

5050 ‘FRNT(I) and REAR (I) define the front and rear of the Ith queue,

‘for all values of I between 0 and 9
5060 ‘initialize linked list

5070 FORI=1TON—1

5080 INFO(I) = X(I)

5090 PTRNXT(I) = I + 1

5100 NEXT I

5110 INFO(N) = X(N)

5120 PTRNXT(N) = 0

5130 FIRST = 1: ‘FIRST points to the head of the linked list

5140 ‘assume that we have M-digit numbers
5150 FORK=1TOM

5160 ‘initialize queues
5170 FORI=0T09

5180 REAR(I) = 0

5190 FRNT(I) = 0

5200 NEXT I

5210 ‘process each element on the list
5220 IF FIRST = 0 THEN GOTO 5330

5230 p = FIRST

5240 FIRST = PTRNXT(FIRST)

5250 Y = INFO(P)

5260 ‘extract Kth digit and assign it to J
5270 JTEMP = INT(Y / 10 t (K — 1))
5280 J = JTEMP — 10*INT(JTEMP/10)

5290 Q = REAR(J)

5300 IF Q = 0 THEN FRNT(J) = P

ELSE PTRNXT(Q) = P

5310 REAR(J) = P

5320 GOTO 5220

5330 ‘At this point each record is in its proper queue based on

‘digit K. We now form a single list of all the queue elements
5340 ‘find the first element
5350 FORJ=0T09

5360 IF FRNT(J) <>0 THEN GOTO 5380

5370 NEXTJ

5380 FIRST = FRNT(J)

5390 ‘link up the remaining queues
5400 IF J> 9 THEN GOTO 5480: ‘check iffinished
5410 ‘find next element
5420 FORI=J+1T09

5430 IF FRNT(I) <>0 THEN GOTO 5450

5440 NEXT I
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5450 IF I <= 9 THEN P = I: PTRNXT(REAR(J)) = FRNT(I)

5460 J=I

5470 GOTO 5400

5480 PTRNXT(REAR(P)) = 0

5490 NEXT K

5500 ‘copy back to original array

5510 FORI=1TON

5520 X(I) = INFO(FIRST)

5530 FIRST = PTRNXT(FIRST)

5540 NEXT I

5550 RETURN

5560 ‘endsub

The time requirements for the radix sorting method clearly depend on the
number of digits (m) and the number of elements in the file (n). Since the outer
loop FOR K = 1 to M . . . is traversed m times (once for each digit) and the
inner loop n times (once for each element in the file), the sort is approximately
O(m*n). Thus the sort is reasonably efficient if the number of digits in the keys is
not too large. It should be noted, however, that many machines have the hardware

facilities to order digits of a number (particularly if they are in binary) much
more rapidly than they can execute a compare of two full keys. Therefore, it is
not reasonable to compare the O(m*n) estimate with some of the other results we
arrived at in this chapter. Note also that if the keys are dense (i.e., if almost every
number that can possibly be a key is actually a key), then m approximates log n,
so that O(m*n) approximates O(n log n). The sort does require space to store
pointers to the fronts and rears of the queues in addition to an extra field in each
record to be used as a pointer in the linked lists. If the number of digits is large, it
is sometimes more efficient to sort the file by first applying the radix sort to the
most significant digits and then using straight insertion on the rearranged file. In
cases where most of the records in the file have differing most significant digits,
this process eliminates wasteful passes on the least significant digits.

EXERCISES

1. Write an algorithm for a routine merge(x,lbl ,ubl ,ub2) which assumes that x(lbl)

through x(ubl) and x(ubl + 1) through x(ub2) are sorted and which merges the two

into x(lbl) through x(ub2).

2. Consider the following recursive version of the merge sort, which uses the routine

merge of the previous exercise. It inputs the array x, the constant 1, and the variable n.

Rewrite the routine by eliminating recursion and simplifying. How does the resulting

routine differ from the one in the text?
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subroutine msort2x, Ib, ub)

if lb <> ub

then mid = int((ub+lb)/2)

msort2(x,lb,mid)

msort2(x,mid+ 1 ,ub)

merge(x,lb,mid, ub)

endif
return

3. Let a(l1 ,12) be the average number of comparisons necessary to merge two sorted arrays

of length 11 and 12, respectively, where the elements of the arrays are chosen at

random from among 11 +12 elements.

(a) What are the values of a(l1 ,O) and a(O,12)?

(b) Show that for 11 > 0 and 12 > 0, a(l1 ,12) is equal to

(11/(11 +12))*(1 +a(l1 — 1,12))+(12/(l1 +12))*(1 +a(l1,12— 1)). (Hint: Express

the average number of comparisons in terms of the average number of comparisons

after the first comparison.)

(C) Show that a(l1,12) equals (11*12*(11 +12+2))/((l1 + 1)*(12+ 1)).

(d) Verify the formula in part (c) for two arrays, one of size 2 and one of size 1.

4. Consider the following method of merging two arrays a and b into c. Perform a binary

search for b(1) in the array a. If b(1) is between a(i) and a(i + 1), output a(1) through

a(i) to the array c, then output b(1) to the array c. Next, perform a binary search

for b(2) in the subarray a(i + 1) to a(la) (where Ia is the number of elements in the

array a) and repeat the output process. Repeat this procedure for every element of the

array b.

(a) Write a BASIC routine to implement this method.

(b) In which cases is this method more efficient than the method of the text? In which
cases is it less efficient?

5. Consider the following method (called binary merging) of merging two sorted arrays

a and b into c. Let Ia and lb be the number of elements of a and b, respectively, and

assume that Ia lb. Divide a into lb + 1 approximately equal subarrays. Compare

b(1) with the smallest element of the second subarray of a. If b(1) is smaller, then find

a(i) such that a(i) b(1) a(i + 1) by a binary search in the first subarray. Output all

elements of the first subarray up to and including a(i) into c, and then output b(1) into

c. Repeat this process with b(2), b(3), . . ., b(j), where b(j) is found to be larger than

the smallest element of the second subarray. Output all remaining elements of the first

subarray and the first element of the second subarray into c. Then compare b(j) to the

smallest element of the third subarray of a, and so on.

(a) Write a program to implement the binary merge.

(b) Show that if Ia = Ib, the binary merge acts like the merge described in the text.

(C) Show that if lb = 1, the binary merge acts like the merge of Exercise 4.

6. Determine the number of comparisons (as a function of n and m) which are performed

in merging two ordered files a and b of sizes n and m, respectively, by each of the

following merge methods, on each of the following sets of ordered files:
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(1) Merge Methods:

(a) The merge method presented in the text

(b) The merge of Exercise 4

(c) The binary merge of Exercise 5

(2) Sets of Files:

(a) m = n and a(i) < b(i) < a(i + 1) for all i

(b) m = n and a(n) <b(1)

(c) m = n and a(int(n/2)) < b(1) <b(m) < a(int(n/2) + 1)

(d) n = 2*m and a(i) < b(i) <a(i + 1) for all i between 1 and m

(e) n = 2*m and a(m+i) < b(i) <a(m+i+1) for all i between 1 and m

(f) n = 2*m and a(2*i) < b(i) <a(2*i + 1) for all i between 1 and m

(g) m = 1 and b(1) = a(int(n/2))

(h) m = 1 and b(1) <a(1)

(i) m = 1 anda(n) <b(1)

7. Generate two randomly sorted files of size 100 and merge them by each of the methods

of Exercise 6, keeping track of the number of comparisons made. Do the same for

two files of size 10 and two files of size 1000. Repeat the experiment 10 times. What

do the results indicate about the average efficiency of the merge methods?

8. Write a routine that sorts a file by first applying the radix sort to the most significant r

digits (where r is a given constant) and then uses straight insertion to sort the entire

file. This eliminates excessive passes on low-order digits, which may not be necessary.

9. Write a program that prints all sets of six positive integers al, a2, a3, a4, a5,and a6
such that

al a2 a3 20

al <a4 aS a6 20

and the sum of the squares of a 1, a2, and a3 equals the sum of the squares of a4, aS,

and a6. (Hint: Generate all possible sums of three squares, and use a sorting procedure

to find duplicates.)
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Searching

In this chapter we consider the problem of searching through large amounts of

data to find one particular piece of information. As we shall see, certain methods
of organizing data make the search process more efficient. Since searching is

such a common task in computing, a knowledge of these methods goes a long

way toward making a good programmer.

1. BASIC SEARCH TECHNIQUES

Before we consider specific search techniques, let us define some terms. A table
or a file is a group of elements, each of which is called a record. (We are using
the terms “file” and “record” here in their general sense. They should not be
confused with the same terms as they refer to specific BASIC constructs.) Associated

with each record is a key which is used to differentiate among different
records. The association between a record and its key may be simple or complex.
In the simplest form, the key is a field within the record contained at a specific
offset from the start of the record. Such a key is called an internal key or an
embedded key. In other cases, the key is the relative position of the record within
a file or there is a separate table of keys which includes pointers to the records.
Such keys are called external keys. For each file there is at least one set of keys
(possibly more) that is unique (i.e., no two records in the file have the same key

value). Such a key is called a primary key. For example, if the file is stored as an
array, the index within the array of an element is a unique external key for that

477
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element. However, since any field of a record can serve as the key in a particular

application, keys need not always be unique. For example, in a file of names and

addresses, if the state is used as the key for a particular search, it will probably

not be unique, since there may be two records with the same state in the file.

Such a key is called a secondary key. Some of the algorithms we present assume

unique keys, while others allow for multiple keys. When adopting an algorithm

for a particular application the programmer should know whether the keys are

unique and make sure that the algorithm is appropriate.

A search algorithm is an algorithm that accepts an argument a and tries to

locate a record whose key is a. The algorithm may return the entire record or,

more commonly, it may return a pointer to that record. A successful search is

often called a retrieval. However, it is possible that the search for a particular
argument in a table is unsuccessful; that is, there is no record in the table with

that argument as its key. In such a case, the algorithm may return a special “null

record” or a null pointer. More commonly, such a condition causes an error or

sets a flag to a particular value which indicates that the record is missing. Very

often, if a search is unsuccessful it may be desirable to add a new record with the

argument as its key. An algorithm that does this is called a search and insertion
algorithm.

In some cases it is desirable to insert a record with primary key key into a

file without first searching for another record with the same key. Such a situation
could arise if it had already been determined that no such record already exists in

the file. In subsequent discussions we investigate and comment upon the relative

efficiency of various algorithms. In such cases, the reader should note whether
the comments refer to a search, to an insertion, or to a search and insertion.

Note that we have said nothing about the manner in which the table or file is

organized. It may be an array of records, a linked list, a tree, or even a graph.

Because different search techniques may be suitable for different table organizations,

a table is often designed with a specific search technique in mind. The

table may be contained completely in memory, completely in auxiliary storage,
or it may be divided between the two. Clearly, different search techniques are

necessary under these different assumptions. Searches in which the entire table is

constantly in main memory are called internal searches, while those in which

most of the table is kept in auxiliary storage (such as disk or tape) are called
external searches. As with sorting, we discuss only internal searching, and leave

it to the reader to investigate the extremely important topic of external searching.

Sequential Searching

The simplest form of a search is the sequential search. This search is applicable
to a table that is organized as either an array or a linked list. Let us assume that k

is an array of n keys and r an array of records such that k(i) is the key of r(i). Let

us also assume that key is a search argument. We wish to set the variable search
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to the smallest integer i such that k(i) = key, if such an i exists, and 0 otherwise.
The algorithm for doing this is as follows:

fori= lton

if key = k(i)
then search =

return

endif
next i

search = 0

return

The algorithm examines each key in turn. Upon finding one that matches the
search argument, its index (which acts as a pointer to its record) is returned. If no
match is found, 0 is returned.

This algorithm can easily be modified to add a record rec with key key to
the table, if key is not already in the table. The following statements replace the
last two statements above.

n = n + 1 ‘increase the table size

k(n) = key ‘insert the new key and

r(n) = rec ‘record

search= n

return

Note that if insertions are made using only the revised algorithm, then

no two records can have the same key. When this algorithm is implemented in

BASIC, we must ensure that increasing n by 1 does not make its value go beyond

the upper bound of the array. To use a sequential insertion search on an array,

sufficient storage must have been previously allocated for the array.

Storing a table as a linked list has the advantage that the size of the table can

be increased dynamically as needed. Let us assume that the table is organized as

a linear linked list pointed to by table and linked by a pointer field nxt. Then

assuming that k, r, key, and rec as before, the sequential insertion search for a
linked list may be written as follows:

q = null

p = table

while (p <> null) do

if kp) = key

then search = p
return

endif

q=p

p = nxt(p)
endwhile
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‘record must be inserted

s = getnode

k(s) = key

r(s) = rec

nxt(s) = null

if q = null
then table = s

else nxt(q) = s

endif
search = s

return

Another advantage of storing a table as a linked list rather than an array is

that it is easier to delete a record from a linked list. Deleting an element from an

array requires moving half the elements in the array on the average. (Why?)

One method of improving the efficiency of deleting a record from an array

is to add a field flag(i) to each record. Initially, when there is no record in position

i, flag(i) is off. When a record is inserted at position i, the flag is turned on.

When the record at position i is deleted, its flag is turned off. New records are

inserted at the end of the array. If there are a substantial number of insertions, all

the space in the array is soon exhausted. If an attempt is made to insert a new

record when there is no more room in the array, the array is condensed by overwriting

all records whose flags are off. This yields an array that contains all valid

records at the beginning, and room for new records at the end. The new record

may then be inserted. (Of course, one must be certain that no other programs

depend on the locations of the records, as their locations have now been

changed.) If the records do not have to be maintained in the order in which they

were inserted, deletion can be accomplished simply by replacing the record to be

deleted with the last record in the array and reducing by one the number of sequential

positions currently occupied by the file.

There is another method that avoids the necessity of periodically condensing
the array but also entails lowered efficiency in individual insertions. In this

method an insertion involves traversing the array sequentially, looking for a record

that has been flagged as deleted. The new record is inserted over the first
record whose flag is off. Yet another method is to link together all flagged records.

This does not require any extra space since the information content of a

deleted record is irrelevant and can therefore be overwritten by a pointer to the
next deleted record. This available list of records can be maintained as a stack to

make insertion into the list more efficient. However, these methods are not possible
if the records must be maintained in order of insertion. Further, if an insertion

is performed only after a search, no efficiency gains result from these methods
since the entire table must be searched for an existing record with the same key.
We leave the development of these ideas into algorithms and programs as exercises

for the reader.
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Efficiency of Sequential Searching

How efficient is a sequential search? Let us examine the number of comparisons

that must be made by a sequential search in searching for a given key. If we

assume no insertions or deletions, so that we are searching through a table of

constant size n, the number of comparisons depends on where the record with the

argument key appears in the table. If the record is the first one in the table, only

one comparison is performed; if the record is the last one in the table, n comparisons

are necessary. If it is equally likely for the argument to appear at any given

table position, a successful search will take (on the average) (n + 1)12 comparisons,

and an unsuccessful search will take n comparisons. In any case, the number

of comparisons is 0(n).

However, it is usually the case that some arguments are presented to the

search algorithm more often than others. For example, in the files of a college

registrar, the records of a senior who is applying for transcripts for graduate

school, or of a freshman whose high school average is being updated, are more

likely to be called for than are those of the average sophomore and junior. Similarly,

the records of scofflaws and tax cheats are more likely to be retrieved from
the files of a motor vehicles bureau or the Internal Revenue Service than are those

of a law-abiding citizen. (As we shall see later in this chapter, these examples are

unrealistic because it is unlikely that a sequential search would be used for such

large files; but for the moment, let us assume that a sequential search is being

used.) Then, if frequently accessed records are placed at the beginning of the file,

the average number of comparisons is sharply reduced since the most commonly
accessed records take the least amount of time to retrieve.

Let us assume that p(i) is the probability that record i is retrieved. [p(i)
is a number between 0 and 1 such that if m retrievals are made from the file,

m*p(i) of them will be for record i.] Let us also assume that

p(l) + p(2) + . . . + p(n) = 1, so that there is no possibility that an argument

key is missing from the table. Then the average number of comparisons that

are made in searching for a record is

p(l) + 2*p(2) + 3*p(3) + . . + n*p(n)

Clearly, this number is minimized if

p(l) p(2) p(3) . . p(n)

(Why?). Thus, given a large stable file, reordering the file in order of decreasing

probability of retrieval achieves a greater degree of efficiency each time that the

file is searched. Of course, this method implies that an extra field p is kept with

each record, which gives the probability of accessing that record, or that p can be

computed based on some other information in each record.

Reordering a List for Maximum Search Efficiency

If many insertions and deletions are to be performed on a table, a list structure is

preferable to an array. However, even in a list it would be better to maintain the
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relationship

p(l) p(2) p(3) . . . p(n)

to provide for efficient sequential searching. This can be done most easily if a

new item is inserted into the list at its proper place. This means that if prob is the
probability that a record with a given key will be the search argument, that record
should be inserted between records r(i) and r(i + 1), where i is such that

p(i) prob p(i+ 1)

Unfortunately, the probabilities p(i) are rarely known in advance. Although
it is quite common for certain records to be retrieved more often than others, it is

almost impossible to identify those records in advance. Also, the probability that

a given record will be retrieved may change over time. To use the example of the

college registrar given earlier, a student begins as a freshman (high probability of

retrieval) and then becomes a sophomore and a junior (low probability) before

becoming a senior (high probability). Thus it would be helpful to have an algorithm

which would continually reorder the table so that more frequently accessed
records would drift to the front, while less frequently accessed records would
drift to the back.

Several methods can be used to accomplish this. One of these is known as

the move-to-front method and is efficient only for a table that is organized as a

list. In this method, whenever a search is successful (i.e., when the argument is

found to match the key of a record in the list), the retrieved record is removed

from its current location in the list and is placed at the head of the list. Another

method is the transposition method, in which a successfully retrieved record is

interchanged with the record that immediately precedes it. We present an algorithm

to implement the transposition method on a table stored as a linked list. The

algorithm sets the variable search to point to the retrieved record, or the null

pointer if the record is not found. As before, key is the search argument, k and r

are the tables of keys and records. table is a pointer to the first node of the list.

p = table

q = null ‘q is one step behind p

s = null ‘s is two steps behind p
while (o <>null) do

if k(p) = key

then ‘We have found the record. Transpose
‘the records pointed to by p and q.
if q = null

then ‘We have found the key at the first position

‘in the table so that no transposition is necessary
search = p
return

endif
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nxt(q) = nxt(p)

nxtp) = q

ifs = null

then table = p

else nxt(s) = p

endif

search = p
return

endif

s=q

q=p

p = nxt(p)

endwhile

search = null

return

We leave the implementation of the transposition method for an array and
the move-to-front method for both an array and a list as exercises for the reader.

Both of these methods are based on the observed phenomenon that a record

that has been retrieved is likely to be retrieved again. By advancing such records
toward the front of the table, subsequent retrievals are more efficient. The rationale

behind the move-to-front method is that since the record is likely to be retrieved
again, it should be placed at the position within the table at which such

retrieval will be most efficient. However, the counterargument for the transposition
method is that a single retrieval does not yet imply that the record will be

retrieved frequently. Placing it at the front of the table reduces search efficiency
for all the other records that formerly preceded it. By advancing a record only
one position each time that it is retrieved, we ensure that it will advance to the

front of the list only if it is retrieved frequently. Indeed, it has been shown that,

in general, the transposition method eventually yields more efficient searches
than the move-to-front method for lists in which the probability of accessing a
particular element remains constant over time. However, the transposition method

takes longer than the move-to-front method to achieve its maximum efficiency.

Thus a mixed strategy, in which move-to-front is used initially to reorder the
list rapidly, and then transposition is used to maintain the list in nearly optimal
order, may be recommended.

Another advantage of the transposition method over the move-to-front
method is that it can be applied efficiently to tables stored in array form as well as
to list-structured tables. Transposing two elements in an array is a rather efficient
operation, while moving an element from the middle of an array to its front involves

(on the average) moving half the array. (However, in this case the average
number of moves is not so large since the element to be moved most often comes
from the first portion of the array.)
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Searching an Ordered Table

If a table is stored in ascending or descending order of the record keys, there are

several techniques that can be used to improve the efficiency of searching. This is

especially true if the table is of fixed size. One immediately obvious advantage in

searching a sorted file over searching an unsorted file is in the case where a record

with the argument key is absent from the file. In the case of an unsorted file,

n comparisons are needed to detect this fact. In the case of a sorted file, assuming

that the argument keys are uniformly distributed over the range of keys in the

file, only (n + 1)/2 comparisons (on the average) are needed. This is because we

know that a record with a given key is missing from a file that is sorted in ascending

order of keys as soon as we encounter a key in the file which is greater than

the argument.

Suppose that it is possible to collect a large number of retrieval requests

before any of them are processed. For example, in many applications a response

to a request for information may be deferred to the next day. In such a case, all

requests in a specific day may be collected and the actual searching may be done

overnight, when no new requests are coming in. If both the table and the list of

requests are sorted, the sequential search can proceed through both concurrently

beginning the search for each additional requested element at the point where the

last search ended. Thus it is not necessary to search through the entire table for

each retrieval request. In fact, if there are many such requests uniformly distributed

over the entire table, each request will require only a few lookups (if the

number of requests is less than the number of table entries) or perhaps only a

single comparison (if the number of requests is greater than the number of table

entries). In such situations sequential searching is probably the best method to
use.

Because of the simplicity and efficiency of sequential processing on sorted

files, it may be worthwhile to sort a file before searching for keys in it. This is

especially true in the situation described in the preceding paragraph, where we
are dealing with a “master” file and a large “transaction” file of requests.

The Indexed Sequential Search

There is another technique to improve search efficiency for a sorted file, but it
involves an increase in the amount of space required. This method is called the
indexed sequential search method. An auxiliary table, called an index, is set
aside in addition to the sorted file itself. Each element in the index consists of a

key kindex and a pointer to the record in the file that corresponds to kindex. The
elements in the index, as well as the elements in the file, must be sorted on the

key. If the index is one-eighth the size of the file, then every eighth record of the
file is represented initially in the index. This is illustrated by Figure 9. 1 . 1.
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Index

xndex

k r

(Key) (Record)

8

14

26

38

72

115

306

321

329

387

409

512

540

567

583

592

602

611

618

741

798

811

814

876

Figure 9.1.1 An indexed sequential file.

The algorithm used for searching an indexed sequential file is straightforward.

Let r, k, and key be defined as before, let kindex be the array of the keys in
the index and let pindex be the array of pointers within the index to the actual

records in the file. We assume that the file is stored as an array, that n is the size
of the file, and that indxsze is the size of the index.

i=1

while (i <= indxsze) and (kindex(i) <= key) do
i=i+1

endwhile

‘set lowlim to the lowest possible position of the item in the table

if i = 1
then lowlim = 1

else lowlim = pindex(i — 1)

endif
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‘set hilim to the highest possible position of the item in the table

if i = indxsze + 1
then hilim = n

else hilim = pindex(i) — 1

endif

‘search the table between positions lowlim and hilim

forj = lowlim to hilim

if k(j) = key

then search = j
return

endif

nextj
search = 0

return

Note that in the case of multiple records with the same key, the algorithm above

does not necessarily return a pointer to the first such record in the table.

The real advantage of the indexed sequential method is that the items in the

table can be examined sequentially if all the records in the file must be accessed,

yet the search time for a particular item is sharply reduced. A sequential search is
performed on the smaller index rather than on the larger table. Once the correct

index has been found, a second sequential search is performed on a small portion
of the record table itself.

The use of an index is applicable to a sorted table stored as a linked list, as

well as to one stored as an array. Use of a linked list implies a larger space overhead

for pointers, although insertions and deletions can be performed much more

readily. A mixed implementation, in which all records between two adjacent index

entries are maintained in a separate small table which also contains a pointer
to the next such small table, can also be used.

If the table is so large that even the use of an index does not achieve sufficient

efficiency (either because the index is large in order to reduce sequential

searching in the table, or because the index is small so that adjacent keys in the
index are far from each other in the table), a second-level index can be used. The

second-level index acts as an index to the primary index which points to entries in
the sequential table. This is illustrated in Figure 9.1.2.

Deletions from an indexed sequential table can be made most easily by flagging
deleted entries. In sequential searching through the table, deleted entries are

ignored. Note that if an element is deleted, then even if its key is in the index,

nothing need be done to the index; only the original table entry is flagged.
Insertion into an indexed sequential table is more difficult since there may

not be room between two already existing table entries, thus necessitating a shift
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table
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Figure 9.1.2 Use of a secondary index.
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in a large number of table elements. However, if a nearby item has been flagged
in the table as deleted, then only a few items need be shifted and the deleted item

can be overwritten. This may in turn necessitate alteration of the index, if an item

pointed to by an index element is shifted. Generally, when a table is initialized,

empty records are dispersed through the table to leave room for insertion. An

alternative method is to keep an overflow area at some other location and link

together any inserted records. However, this would require an extra pointer field

in each record of the original table. A possible remedy to this problem is to include

only a single pointer after each group of records, insert the new record in its

proper place, and shift any records past the inserted record forward one position.

If the last record in the group is shifted, it is placed in the overflow area pointed

to by the single pointer in the group. You are asked to explore these possibilities
as an exercise.

The Binary Search

The most efficient method of searching an ordered array without the use of auxiliary
indices or tables is the binary search. You should be familiar with this search

technique from Sections 5.1 and 5.2. Basically, the argument is compared with
the key of the middle element of the table. If they are equal, the search ends
successfully; otherwise, either the upper or lower half of the table must be
searched in a similar manner.

In Chapter 5 it was noted that the binary search can best be defined recursively.
As a result, a recursive definition, a recursive algorithm, and a simulated

recursive program were presented for the binary search. However, the large overhead
that is associated with recursion makes it inappropriate for use in practical

situations in which efficiency is a prime consideration. We therefore present the
following nonrecursive version of the binary search algorithm:

low = 1

hi = n

while (low <= hi) do

mid = mt ((low + hi)/2)

if key = k(mid)
then search = mid

return

endif

if key < k(mid
then hi = mid — 1

else low = mid + 1

endif
endwhile

search = 0

return
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Each comparison in the binary search reduces the number of possible candidates
by a factor of 2. Thus the maximum number of key comparisons that will

be made is approximately log2n. [Actually, it is 2log2n since in BASIC two key
comparisons are made each time through the loop: key = k(mid) and key <

k(mid). However, in assembly language or in FORTRAN using an arithmetic IF
statement, only one comparison is made.] Thus we may say that the binary
search algorithm is O(log n).

Note that the binary search may be used in conjunction with the indexed

sequential table organization mentioned earlier. Instead of searching the index
sequentially, a binary search can be used. The binary search can also be used in
searching the main table once two boundary records are identified. However, the

size of this table segment is likely to be small enough so that a binary search is

not more advantageous than a sequential search.
Unfortunately, the binary search algorithm can be used only if the table is

stored as an ordered array. This is because it makes use of the fact that the indices

of array elements are consecutive integers. For this reason the binary search is
practically useless in situations where there are many insertions or deletions, so

that an array structure is inappropriate.

EXERCISES

1. Modify the search and insertion algorithms of this section so that they become update

algorithms. If an algorithm finds an i such that key = k(i), then change the value of

r(i) to rec.

2. Implement the sequential search and the sequential search and insertion algorithms in

BASIC for both arrays and linked lists.

3. Compare the efficiency of searching an ordered sequential table of size n and searching

an unordered table of the same size for the key key:

(a) If no record with key is present.

(b) If one record with key key is present and only one is sought.

(c) If more than one record with key key is present and it is desired to find only the

first one.

(d) If more than one record with key key is present and it is desired to find them all.

4. Assume that an ordered table is stored as a circular list with two external pointers:

table and other. table always points to the node containing the record with the smallest

key. other is initially equal to table, but is reset each time a search is performed to

point to the record that is retrieved. If a search is unsuccessful, other is reset to table.

Write a BASIC routine that accepts TABLE, OTHER, and KEY, implements this

method, resets the variable OTHER as described, and sets the variable SEARCH to

point to a retrieved record or a null pointer if the search is unsuccessful. Explain how

keeping the pointer OTHER can reduce the average number of comparisons in a

search.
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5. Consider an ordered table implemented as an array or as a doubly linked list so that

the table can be searched sequentially either backward or forward. Assume that a

single pointer p points to the last record successfully retrieved. The search always

begins at the record pointed to by p but may proceed in either direction. Write routines

for an array and a doubly linked list to retrieve a record with key key and to

modify p accordingly. Compare the numbers of key comparisons in both the successful

and unsuccessful cases with those of the method of Exercise 4, where the table

may be scanned in only one direction but the scanning process may start at one of two

points.

6. Modify the indexed sequential search so that in the case of multiple records with the

same key, it returns the first such record in the table.

7. Consider the following BASIC implementation of an indexed sequential file:

10 DIM INDX(100,2)
20 KINDEX = 1

30 PINDEX = 2

40 DIM TABLE (1000,3)

50 K = 1

60 R = 2

70 FLAG = 3

Write a BASIC routine create that initializes such a file from input data. Each input

line contains a key and a record. The input is sorted in ascending key order. Each

index entry corresponds to 10 table entries. FLAG is set to TRUE in an occupied

table entry and to FALSE in an unoccupied entry. Two of every 10 table entries are

left unoccupied, to allow for future growth.

8. Given an indexed sequential file as in Exercise 7, write a BASIC routine search to

print the record in the file with key KEY if it is present and an indication that the

record is missing if no record with that key exists. (How can you ensure that an unsuccessful

search is as efficient as possible?) Also, write routines insert to insert a

record REC with key KEY and delete to delete the record with key KEY.

9. Consider the following version of the binary search, which assumes a special element

k(0) which is smaller than every possible key:

mid = int((n + 1)12)

len = int(n12)

finish = false

while (key <> k(mid)) and (finish = false) do

if key < k(mid

then mid = int(mid — (len + 1)12)

else mid = int(mid + (len + 1)12)

endif
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if len = 1

then finish = true

else len = int(len/2)

endif
endwhile

if key = k(mid)
then search = mid

else search = 0

endif

return

Prove that this algorithm is correct. What are the advantages and/or disadvantages of

this method over the method presented in the text?

10. The following search algorithm on a sorted array is known as the Fibonaccian search

because of its use of Fibonacci numbers. (For a definition of Fibonacci numbers and

the fib function, see Section 5.1.)

j=1

while fib(j) <n + 1 do

j=j+ 1
endwhile

mid = n — fib(j — 2) + 1

fl = fib(j — 2)

J2 = fib(j — 3)

finish = false

while (key <> k(mid)) and (finish = false) do

if (mid <= 0) or (key> k(mid)

then if fl = 1

then finish = true

else mid = mid + J2

fl =fl -f2

J2=f2-fl

endif

else if J2 = 0

then finish = true

else mid = mid — f2

t=fl-J2

fl=f2

J2=t

endif

endif
endwhile

if finish

then search = 0

else search = mid

endif
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Explain how this algorithm works. Compare the number of key comparisons with the

number used by the binary search.

11. Modify the binary search of the text so that in the case of an unsuccessful search, it

returns the index i such that k(i) <key < k(i + 1). If key < k(1), then it returns 0,

and if key > k(n), then it returns n. Do the same for the searches of Exercises 9 and
10.

2. TREE SEARCHING

In the preceding section we discussed search operations on a file that is organized
either as an array or as a list. In this section we consider several ways of organizing

files as trees and some associated searching algorithms.

In Sections 6.1 and 8.3 we presented a method of using a binary tree to

store a file in order to make sorting the file more efficient. In that method, all the
left descendants of a node with key key have keys that are less than key and all the

right descendants have keys that are greater than or equal to key. The inorder

traversal of such a binary tree yields the file in ascending key order.
Such a tree may also be used as a binary search tree. Using binary tree notation,
the algorithm for searching for the key key in such a tree is as follows. (We

assume that each node contains four fields: k, which holds the record’s key value;

r, which holds the record itself; and left and right, which are pointers to the sub-
trees.)

p = tree

while p <>null do

if key = k(p)

then search = p

return

endif

if key < k(p)

then p = left(p)

else p = right(p)

endif

endwhile

search = null

return

Note that the binary search of Section 1 actually uses a sorted array as an

implicit binary search tree. The middle element of the array can be thought of as
the root of the tree, the lower half of the array (all of whose elements are less than

the middle element) can be considered the left subtree, and the upper half (all of

whose elements are greater than the middle element) can be considered the right
subtree.

A sorted array can be produced from a binary search tree by traversing the
tree in inorder and inserting each element sequentially into the array as it is visit-
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ed. On the other hand, there are many binary search trees that correspond to a

given sorted array. Viewing the middle element of the array as the root of a tree

and viewing the remaining elements recursively as left and right subtrees produces

a relatively balanced binary search tree [Figure 9.2.1 (a)1. Viewing the first
element of the array as the root of a tree and each successive element as the right

son of its predecessor produces a very unbalanced binary tree [Figure 9.2. 1(b)1.
The advantage of using a binary search tree over a sorted array is that a tree

enables search, insertion and deletion operations to be performed efficiently. If

an array is used, an insertion or deletion requires that approximately half of the

elements of the array be moved (Why?). Insertion or deletion in a search tree, on
the other hand, requires that only a few pointers must be adjusted.

Inserting into a Binary Search Tree

The following algorithm searches a binary tree and inserts a new record into the
tree if the search is unsuccessful. (We assume the existence of a routine make-

tree, which accepts a value and constructs and returns a pointer to a binary tree

consisting of a single node whose information field contains that value. This routine

is described in Section 6.1. However, in our particular version, we assume

that maketree inputs two values, a record and a key.)

q = null

p = tree

while p <> null do

if key = k(p)

then search = p

return

endif

q=p

if key < k(p)

then p = left(p)

else p = right(p)

endif

endwhile

v = maketree(rec,key)

if q = null

then tree = v

else if key <k(q)

then left(q) = v

else right(q) = v

endif

endif

search = v

return
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(a)

Figure 9.2.1 A sorted array and two of its binary tree representations.
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Figure 9.2.1 (continued).
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Note that after a new record is inserted, the tree retains the property of being
sorted in an inorder traversal.

Deleting from a Binary Search Tree

We now present an algorithm that deletes a node with key key from a binary

search tree and leaves the tree as a binary search tree. There are three cases to

consider. If the node to be deleted has no sons, it may be deleted without further

adjustment to the tree. This is illustrated in Figure 9.2.2(a). If the node to be

deleted has only one subtree, its only son can be moved up to take its place. This
is illustrated in Figure 9.2.2(b). If, however, the node p to be deleted has two

subtrees, its inorder successor s (or its inorder predecessor) must take its place.
The inorder successor cannot have a left subtree (since if it did, a left descendant

would be the inorder successor of p). Thus the right son of s can be moved up to

take the place of s. This is illustrated in Figure 9.2. 2.(c), where the node with

key 12 replaces the node with key 11 and is replaced, in turn, by the node with
key 13.

In the following algorithm, if no node with key key exists in the tree, the

tree is left unchanged.

p = tree

q = null

‘Search for the node with key key. Set p to point to

‘the node and q to its father, if any.

while (p <> null) and (k(p) <>key) do

q=p

if key < k(p)

then p = left(p)

else p = right(p)

endif
endwhile

if p = null

then ‘the key does not exist in the tree.

‘leave the tree unchanged.
return

endif

‘Set the variable v to the node that will replace node(p).
‘First two cases: the node to be deleted has at most one son.

if leftp) = null

then v = right(p)

else if right(p) = null

then v = left(p)

else ‘Third case: node(p) has two sons. Set v to the

‘inorder successor of p and t to the father of v.



(b) Deleting node with key 5.

I>

13

(c) Deleting node with key 11.

(a) Deleting node with key 15.

Figure 9.2.2 Deleting nodes from a binary search tree.
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t=p

v = right(p)

s = left(v) ‘s is the left son of v

while s <> null do

1= V

V=s

s = left(v)
endwhile

‘At this point, v is the inorder successor of p

if t<>p

then ‘p is not the father of v and v = left(t)

‘Remove node(v) from its current position and

‘replace it with the right son of node(v).

left(t) = right(v)

‘Adjust the sons of v to be the sons of p

right(v) = right(p)

endif

left(v) = left(p)

endif

endif

‘Insert node(v) into the position formerly occupied by node(p)

if q = null

then ‘node(p) was the root of the tree
tree = v

else if p = left(q)

then left(q) = v

else right(q) = v

endif

endif

freenode(p)
return

Efficiency of Binary Tree Search

As we have already seen in Section 8.3 (see Figures 8.3.1 and 8.3.2), the time

required to search a binary search tree varies between O(log n) and 0(n), depending

on the structure of the tree. If elements are inserted into the tree by the insertion

algorithm presented above, the structure of the tree depends on the order in

which the records are inserted. If the records are inserted in sorted (or reverse)

order, the resulting tree will contain all null left (or right) links, so that the tree

search reduces to a sequential search. If, however, the records are inserted so that

half the records inserted after any given record r with key k have keys smaller
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than k and half have keys greater than k, a balanced tree is achieved in which

approximately log2n key comparisons are sufficient to retrieve an element.

(Again, it should be noted that examining a node in our insertion algorithm requires

two comparisons: one for equality and the other for less than. However, in

machine language and in some compilers, these can be combined into a single

comparison.)

If the records are presented in random order (i.e., any permutation of the n

elements is equally likely), balanced trees will result more often than not, so that

on the average, the search time remains O(log n). However, the constant of proportionality

will be greater on the average than in the specific case of an evenly
balanced tree.

All of the preceding assumes that it is equally likely for the search argument
to equal any key in the table. However, in actual practice it is usually the case
that some records are retrieved very often, some moderately often, and some are

almost never retrieved. Suppose that records are inserted into the tree so that a
more commonly accessed record precedes one that is not so frequently accessed.
Then the most frequently retrieved records will be nearer the root of the tree, so

that the average successful search time will be reduced. (Of course, this assumes

that reordering the keys in order of reduced frequency of access does not seriously

unbalance the binary tree, since if it did, the reduced number of comparisons

for the most frequently accessed records might be offset by the increased number

of comparisons for the vast majority of records.)
If the elements to be retrieved form a constant set, with no insertions or

deletions, it may pay to set up a binary search tree which makes subsequent
searches more efficient. For example, consider the binary search trees of Figure
9.2.3. Both the trees of Figure 9.2.3(a) and (b) contain three elements, Ki, K2,
and K3, where Ki < K2 < K3, and are valid binary search trees for that set.

However, a retrieval of K3 requires two comparisons in Figure 9.2.3(a) but requires

only one comparison in Figure 9.2.3(b). Of course, there are still other
valid binary search trees for this set of keys.

The number of key comparisons necessary to retrieve a record is equal to

the level of that record in the binary search tree plus 1. Thus a retrieval of K2
requires one comparison in the tree of Figure 9.2.3(a) but requires three comparisons

in the tree of Figure 9.2.3(b). An unsuccessful search for an argument lying

immediately between two keys a and b requires as many key comparisons as the

maximum number of comparisons required by successful searches for either a or
b. (Why?) This is equal to 1 plus the maximum of the levels of a or b. For example,

a search for a key lying between K2 and K3 requires two key comparisons in

Figure 9.2.3(a) and three comparisons in Figure 9.2.3(b), while a search for a
key greater than K3 requires two comparisons in Figure 9.2.3(a), but only one
comparison in Figure 9.2.3(b).

Suppose that p1, p2, and p3 are the probabilities that the search argument

equals K!, K2, and K3, respectively. Suppose also that qO is the probability that
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(a) Expected number of comparisons:

2p1 + p2 + 2p3 + 2q0 + 2q1 + 2q2 + 2q3

(b) Expected number of comparisons:

2p1 +3p2+p3+2q0+3q1 +3q2+q3 Figure 9.2.3 Two binary search trees.

the search argument is less than Ki, qi is the probability that it is between Ki

and K2, q2 is the probability that it is between K2 and K3, and q3 is the probability

that it is greater than K3. Then p1 + p2 + p3 + qO + ql + q2 +

q3 = 1. The expected number of comparisons in a search is the sum of the products

of the probability that the argument has a given value times the number of

comparisons required to retrieve that value, where the sum is taken over all possible

search argument values. For example, the expected number of comparisons in

searching the tree of Figure 9.2.3(a) is

2pl +p2 + 2p3 + 2q0 + 2q1 + 2q2 + 2q3

while the expected number of comparisons in searching the tree of Figure

9.2.3(b) is

2pl + 3p2 +p3 + 2q0 + 3q1 + 3q2 + q3

This expected number of comparisons can be used as a measure of how “good”

a particular binary search tree is for a given set of keys and a given set of probabilities.

Thus, for the probabilities listed below on the left, the tree of Figure

9.2.3(a) is more efficient; for the probabilities listed on the right, the tree of Figure

9.2.3(b) is more efficient.
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p1=.1 p1=.1

p2=.3 p2=.l

p3=.l p3=.3

qO=.1 qO=.1

ql=.2 ql=.1

q2=.1 q2=.1

q3=.1 q3=.2

Expected number for 9.2.3(a) = 1.7 Expected number for 9.2.3(a) = 1.9

Expected number for 9.2.3(b) = 2.4 Expected number for 9.2.3(b) = 1.8

A binary search tree that minimizes the expected number of comparisons for

a given set of keys and probabilities is called optimum. Although an algorithm to

produce such a tree may be very expensive, the tree that it produces yields efficiencies

in all subsequent searches. Unfortunately, however, it is rare that the

probabilities of the search arguments are known in advance.

Balanced Trees

As noted above, if the probability of searching for a key in a table is the same for

all keys, a balanced binary tree yields the most efficient search. Unfortunately,

the search and insertion algorithm presented above does not ensure that the tree

remains balanced—the degree of balance is dependent on the sequence in which

keys are inserted into the tree. We would like to have an efficient search and

insertion algorithm which maintains the search tree as a balanced binary tree.

Let us first define more precisely the notion of a “balanced” tree. The

height of a binary tree is the maximum level of its leafs (this is also sometimes

known as the depth of the tree). For convenience, the height of a null tree is

defined as — 1. The balance of a node in a binary tree is defined as the height of

its left subtree minus the height of its right subtree. A balanced binary tree

(sometimes called an AVL tree) is a binary tree in which the absolute value of the

balance of each node is less than or equal to 1. Figure 9.2.4(a) illustrates a balanced

binary tree. Each node in a balanced binary tree has a balance of 1, — 1, or

0, depending on whether the height of its left subtree is greater than, less than, or

equal to the height of its right subtree. The balance of each node is indicated in

Figure 9.2.4(a).

Suppose that we are given a balanced binary tree and use the search and

insertion algorithm above to insert a new node p into the tree. Then the resulting

tree may or may not remain balanced. Figure 9.2.4(b) illustrates all possible insertions

that may be made to the tree of Figure 9.2.4(a). Each insertion that

yields a balanced tree is indicated by a B. The unbalanced insertions are indicated

by a U and are numbered from 1 to 12. It is easy to see that the tree becomes

unbalanced only if the newly inserted node is a left descendant of a node that

previously had a balance of 1 [this occurs in cases Ui through U8 in Figure
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(a)

U2

(b)

Figure 9.2.4 A balanced binary tree and possible additions.
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9.2.4(b)j or if it is a right descendant of a node that previously had a balance of

— 1 (cases U9 through U12). In Figure 9.2.4(b), the youngest ancestor that becomes
unbalanced in each insertion is indicated by the numbers contained in

three of the nodes.

Let us examine further the subtree rooted at the youngest ancestor to become
unbalanced as a result of an insertion. We illustrate the case where the balance

of this subtree was previously 1, leaving the other case to the reader. Figure
9.2.5 illustrates this case. Let us call the unbalanced node A. Since A had a balance

of 1, its left subtree was nonnull; we may therefore designate its left son as

B. Since A is the youngest ancestor of the new node to become unbalanced, node

B must have had a balance of 0. (You are asked to prove this fact as an exercise.)

Thus node B must have had (before the insertion) left and right subtrees of equal

height n (where possibly n = — 1). Since the balance of A was 1, the right sub-
tree of A must also have been of height n.

There are now two cases to consider, illustrated by Figure 9.2.5(a) and (b).

In Figure 9.2.5(a) the newly created node is inserted into the left subtree of B,

changing the balance of B to 1 and the balance of A to 2. In Figure 9.2.5(b) the

newly created node is inserted into the right subtree of B, changing the balance of

B to — 1 and the balance of A to 2. To maintain a balanced tree, it is necessary to

perform a transformation on the tree so that

1. The inorder traversal of the transformed tree is the same as for the original

tree (i.e., the transformed tree remains a binary search tree).
2. The transformed tree is balanced.

Consider the trees of Figure 9.2.6. The tree of Figure 9.2.6(b) is said to be

a right rotation of the tree rooted at A of Figure 9.2.6(a). Similarly, the tree of
Figure 9.2.6(c) is said to be a left rotation of the tree rooted at A of Figure
9.2.6(a).

An algorithm to implement a left rotation of a subtree rooted at p is as follows:

q = right(p)
hold = left(q)

left(q) = p
right (p) = hold

Let us call this operation leftrotation(p). rightrotation(p) may be defined
similarly. Of course, in any rotation the value of the pointer to the root of the
subtree being rotated must also be changed to point to the new root. [In the case
of the left rotation above, this new root is node(q).J Note that the order of the

nodes in an inorder traversal is preserved under both right and left rotation. It

therefore follows that any number of rotations (left or right) can be performed on
an unbalanced tree in order to obtain a balanced tree, without disturbing the order
of the nodes in an inorder traversal.

Let us now return to the trees of Figure 9.2.5. Suppose that a right rotation



A

(b)

Figure 9.2.5 Initial insertion; all balances are prior to insertion.

B

(a)

A

B
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Figure 9.2.6 Simple rotation on a tree.

is performed on the subtree rooted at A in Figure 9.2.5(a). The resulting tree is
shown in Figure 9.2.7(a). Note that the tree of Figure 9.2.7(a) yields the same

inorder traversal as that of Figure 9.2.5(a) and is also balanced. Also, since the

height of the subtree of Figure 9.2.5(a) was n +2 before the insertion and the

height of the subtree of Figure 9.2.7(a) is n +2 after the insertion and rebalancing,

the balance of each ancestor of node A in the original tree remains undisturbed.

Thus, replacing the subtree of Figure 9.2.5(a) with its right rotation of
Figure 9.2.7(a) guarantees that a balanced binary search tree is maintained.

Let us now turn to the tree of Figure 9.2.5(b), where the newly created node

is inserted into the right subtree of B. Let C be the right son of B. (There are three

(a) Original tree (b) Right rotation.

(c) Left rotation.
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Figure 9.2.7 After rebalancing; all balances are after insertion.

cases: C may be the newly inserted node, in which case n = — 1, or the newly

inserted node may be in the left or right subtree of C. Figure 9.2.5(b) illustrates
the case where it is in the left subtree; the analysis of the other cases is analogous.)

Suppose that a left rotation on the subtree rooted at B is followed by a
right rotation on the subtree rooted at A. Figure 9.2.7(b) illustrates the resulting

tree. Verify that the inorder traversals of the two trees are the same and that the
tree of Figure 9.2.7(b) is balanced. The height of the tree in Figure 9.2.7(b) is

n +2, which is the same as the height of the tree in Figure 9.2.5(b) before the

insertion and rebalancing, so that the balance in all ancestors of A is unchanged.

(a)

B A

(b)
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Therefore, by replacing the tree of Figure 9.2.5(b) with that of Figure 9.2.7(b)
whenever it occurs after insertion, a balanced search tree is maintained.

Let us now present an algorithm to search and insert into a nonempty balanced
binary tree. Each node of the tree contains five fields: k and r, which hold

the key and record, respectively; left and right, which are pointers to the left and
right subtrees, respectively; and bal, whose value is 1, —1, or 0, depending on
the node’s balance. In the first part of the algorithm, if the desired key is not
found in the tree, a new node is inserted into the binary search tree without regard

to balance. This first phase also keeps track of the youngest ancestor, ya, which
may become unbalanced upon insertion. The algorithm makes use of the function
maketree described above and routines rightrotation and lefirotation, each of

which accept a pointer to the root of a subtree and perform the desired rotation.

‘part i: search and insert into the binary tree
s = null

p = tree

v = null

ya = p

‘ya points to the youngest ancestor that may become unbalanced.

‘v points to the father of ya, and s points to the father of p.

while p <> null do

if key = k(p)

then search = p
return

endif

if key < k(p)

then q = left(p)

else q = right(p)

endif

if q <> null

then if bal(q) <>0

then v = p

ya = q

endif

endif

s=p

p=q

end while

‘insert a new record

q = maketree (rec,key)

bal(q) = 0

if key < k(s)

then left(s) = q

else right(s) = q

endif
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‘the balance on all nodes between node(ya) and node(q) must be changed from 0
if key <k(ya)

then s = left(ya)

else s = right(ya)

endif

p=s

while p <> qdo

if key < k(p)

then bal(p) = 1

p = left(p)

else bal(p) = —1

p = right(p)

endif
endwhile

‘part ii: ascertain whether or not the tree is unbalanced.

‘If it is, q is the newly inserted node, ya is its youngest

‘unbalanced ancestor, v is the father of ya, and s is the

‘son of ya in the direction of the imbalance.

if key < k(ya)
then imbal = 1

else imbal = —1

endif

if bal(ya) = 0
then ‘Another level has been added to the tree.

‘The tree remains balanced.

bal(ya) = imbal

search = q
return

endif

if bal(ya) <> imbal

then ‘The added node has been placed in the opposite direction of the imbalance.
‘The tree remains balanced.

bal(ya) = 0

search = q
return

endif

‘part iii: the additional node has unbalanced the tree.

‘Rebalance it by performing the required rotations

‘and then adjust the balances of the nodes involved.
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if bal(s) = imbal

then ‘ya and s have been unbalanced in the same direction;

‘see Figure 9.2.5(a), where ya = A and s = B

p=s

if imbal = 1

then rightrotation(ya)

else leftrotation(ya)

endif

bal(ya) = 0

bal(s) = 0

else ‘ya and s are unbalanced in opposite directions;

‘see Figure 9.2.5(b) where ya = A and s = B

if imbal = 1

then p = right(s)

left rotation(s)

left(ya) = p

rightrotation(ya)

else p = left(s)

rightrotation(s)

right(ya) = p

leftrotation(ya)

endif

‘Adjust bal field for involved nodes

if bal(p) = 0

then ‘p was the inserted node

bal(ya) = 0

bal(s) = 0

else if bal(p) = imbal

then ‘See Figure 9.2.5(b) and 9.2.7(b)

bal(ya) = — imbal

bal(s) = 0

else ‘See Figures 9.2.5(b) and 9.2.7(b)
‘but assume that the new node was inserted into 73

bal(ya) = 0

bal(s) = imbal

endif

endif

bal(p) = 0

endif

‘Adjust the pointer to the rotated subtree; v is the father of ya

if v = null

then tree = p

else if ya = right(v)

then right(v) = p

else left(v) = p

endif

endif
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search = q
return

The algorithm to delete a node from a balanced binary search tree while
maintaining its balance is even more complex and is left as an exercise.

Digital Search Trees

Another method of using trees to expedite searching is to form a general tree
based on the symbols of which the keys are comprised. For example, if the keys
are integers, each digit position determines one of 10 possible sons of a given
node. A forest representing one such set of keys is illustrated in Figure 9.2.8. If
the keys consist of alphabetic characters, each letter of the alphabet determines a
branch in the tree. Note that every leaf node contains the special symbol eok,

which represents the end of a key. Such a leaf node must also contain a pointer to
the record that is being stored.

If a forest is represented by a binary tree, as in Section 6.5, each node of the
binary tree contains three fields: symbol, which contains a symbol of the key;
son, which is a pointer to the node’s oldest son in the original tree; and brother,
which is a pointer to the node’s next younger brother in the original tree. The first
tree in the forest is pointed to by an external pointer tree and the roots of the other
trees in the forest are linked together in a linear list by the brother field. The son
field of a leaf in the original forest points to a record; the concatenation of all the

symbols in the path of nodes from the root to the leaf in the original forest is the

key of the record. We make two further stipulations which will speed up the

search and insertion process for such a tree. Each list of brothers is arranged in
the binary tree in ascending order of the symbol field. The symbol eok is considered

to be larger than any other.
Using this binary tree representation, we may present an algorithm to search

and insert into such a nonempty digital tree. key is the key for which we are
searching and arec is a pointer to record that we wish to insert if key is not found.
We also let key(i) be the ith symbol of the key. If the key has n symbols, we also

assume that key(n + 1) equals eok. The algorithm uses the getnode operation to
allocate a new tree node when necessary. The algorithm sets search to the pointer
to the record that is being sought.

p = tree

father = null ‘father is the fathei of p

fori= lton+1

q = null ‘q points to the older brother of p

while (p <> null) and (sym.bol(p) <key(i)) do

q=p

p = brother(p)

endwhile
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if (p = null) or (symbol(p) > key (i))

then ‘insert the ith symbol of the key

s= getnode

symbol(s) = key(i)

brother(s) = p

if tree = null
then tree = s

else if q <> null

then brother(q) = s

else if father = null
then tree = s

else son(father) = s

endif

endif

endif

‘insert the remaining symbols of the key

forj = iton+1

if key) = eok

then son(s) = arec

search = son(s)
return

endif

father = s

s = getnode

symbol(s) = key(j + 1)

son(father) = s

brother(s) = null

nextj

endif

‘at this point symbol(p) equals key(i)

if key(i) = eok

then search = son(p)
return

else father = p

p = son(p)

endif
next i

Note that by keeping the table of keys as a general tree, we need search only
a small list of sons to find whether a given symbol appears at a given position
within the keys of the table. However, it is possible to make the tree even smaller

by eliminating those nodes from which only a single leaf can be reached. For
example, in the keys of Figure 9.2.8, once the symbol “7” is recognized, the
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only key that can possibly match is 768. Similarly, upon recognizing the two

symbols “1” and “9”, the only matching symbol is 195. Thus the forest of Figure
9.2.8 can be abbreviated to the one of Figure 9.2.9. In that figure, a box

indicates a key, while a circle indicates a tree node. A dashed line is used to

indicate a pointer from a tree node to a key.
There are some significant differences between the trees of Figures 9.2.8

and 9.2.9. In Figure 9.2.8, a path from a root to a leaf represents an entire key,
so there is no need to repeat the key itself. In Figure 9.2.9, however, a key may
be recognized only by its first few symbols. In those cases where the search is
made for a key that is known to be in the table, then upon finding a leaf, the

record corresponding to that key can be accessed. If, however, as is more likely,

it is not known whether the key is present in the table, it must be confirmed that
the key is indeed correct. Thus the entire key must be kept in the record as well.
Furthermore, a leaf node in the tree of Figure 9.2.8 can be recognized because it

contains eok. Thus its son pointer need not be null but can be used instead to

point to the record which that leaf represents. However, a leaf node of Figure

9.2.9 may contain any symbol. Thus in order to use the son pointer of a leaf to

point to the record, an extra flag is required in each node to indicate whether or

not the node is a leaf. We leave the representation of the forest of Figure 9.2.9

and the implementation of a search-and-insert algorithm for it as an exercise for
the reader.

The tree representation of a table of keys is efficient when each node has
relatively few sons. For example, in Figure 9.2.9 only one node has as many as

six (out of a possible 10) sons, while most nodes have only one, two, or three

sons. Thus the process of searching through the list of sons to match the next
symbol in the key is relatively efficient. However, if the set of keys is dense

within the set of all possible keys (i.e., if almost any possible combination of

symbols actually appears as a key), then most nodes will have a large number of

sons and the cost of the search process becomes prohibitive. For example, if the

files of the Internal Revenue Service were keyed by social security number, the

cost of a digital tree search would be prohibitive.

Tries

A modification of the digital tree proves to be quite efficient when the set of keys
in the table is dense. Instead of storing the table as a tree, the table is stored as a
two-dimensional array. Each row of the array represents one of the possible symbols

that may appear in the key and each column represents a node in a digital
tree. Each entry in the array is a pointer to either another column in the array or to
a key and its record. In searching for a key key, key(1) is used to index the first
column of the array. The entry that is found at row key(1) and column 1 is either
a pointer to a key and record, in which case there is only one key in the table that
begins with the symbol key(1) or it is a pointer to another column of the array,
say column j. Column j represents all keys in the table that begin with key(1).
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key(2) is used as a row number to index column jto determine either the only key

in the table beginning with key(1) and key(2), or the column representing all keys
in the table beginning with those two symbols. Similarly, each column in the
array represents the set of all keys that begin with the same initial symbols. Such
an array is called a trie (from the word retrieval).

Figure 9.2.10 illustrates a trie containing the keys of Figures 9.2.8 and
9.2.9. A pointer to a key and its corresponding record is indicated by an unparenthesized

number which is the actual key, while a pointer to a column is indicated

by a parenthesized number. In an actual implementation, an extra flag would be
required to differentiate between these two types of pointers.

For example, suppose that a search is to be made for a record whose key is
274, in the trie of Figure 9.2.10. In this case, key(1) = 2, key(2) = 7, and
key(3) = 4. key(1) is used to index column 1. Row 2 of column 1 points to column

4; thus column 4 represents all keys whose first character is 2. key(2) is then
used to index column 4. Row 7 of column 4 points to column 9; thus column 9

represents all keys whose first two characters are 2 and 7, respectively. key(3) is
then used to index column 9, in which row 4 contains the key 274. At this point

the search is successful. Actually, since the array that forms the trie is dynamic
(columns must be added as new records are inserted), a trie is best implemented

as a general tree in which each node has a fixed number of sons. Each node of the

general tree represents a column of the trie.

You will note that the trie of Figure 9.2.10 contains a large amount of unused
space. This is because the set of keys in this example is not dense, so that

there are many digits at many positions which do not appear in a key. If the set of
keys is dense, most of the entries in the trie will be filled. The reason that a trie is

2 3 4 5 6 7 8 9 10 11 12 13 14

0 180 207

1 (2) (5) 281

2 (4) 226

3 307 217493

4 (7) 274 284

5 185 285

6 1867 2796 286

7 768 (9) (6) 287

8 (3) (11) 278 288

9 195 294 (8) (10)

eok 217 2174 21749 27 279

Figure 9.2.10 A the.
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so efficient is that for each symbol of the key, only a single table lookup rather
than a list traversal need be performed.

EXERCISES

1. Write an efficient insertion algorithm for a binary search tree to insert a new record

whose key is known not to exist in the tree.

2. Show that it is possible to obtain a binary search tree in which only a single leaf

exists, even if the elements of the tree are not inserted in strictly ascending or descending

order.

3. Verify by simulation that if records are presented to the binary tree search and insertion

algorithm in random order, the number of key comparisons will be O(log n).

4. Prove that every n-node binary search tree is not equally likely (assuming that items

are inserted in random order), and that balanced trees are more probable than

straight-line trees.

5. Write an algorithm to delete a node from a binary tree which replaces the node with

its inorder predecessor rather than its inorder successor.

6. Suppose that the nodes of a binary search tree are defined as follows:

10 DIM INFO (100,2)

20 K=1

30 R=2

40 DIM PTR(100,2)

50 LEFT=1

60 RIGHT = 2

INFO (I,K) and INFO (I,R) contain the key and record of node I, and PTR (I,LEFT)

and PTR (I,RIGHT) are pointers to the node’s left and right sons, respectively. Write

a BASIC routine sinsert to search and insert a record REC with key KEY into a binary

search tree pointed to by TREE.

7. Write a BASIC routine sdelete to search and delete a record with key KEY from a

binary search tree pointed to by TREE implemented as in Exercise 6. If such a record

is found, the routine returns the value of its R field; if it is not found, the routine

returns 0.

8. Write a BASIC routine delete to delete all records with keys between KEY1 and

KEY2 (inclusive) from a binary search tree whose nodes are declared as in Exercises

6 and 7.

9. Consider the search trees of Figure 9.2.11.

(a) How many permutations of the integers 1 through 7 would produce the binary

search trees of Figure 9.2.11(a), (b), and (c), respectively? The tree is constructed

by inserting each element of the permutation in turn into a tree that is initially

null.
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Figure 9.2.11

(a)

(b)
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(b) How many permutations of the integers 1 through 7 would produce binary search

trees that are similar to the trees of Figure 9.2.11(a), (b), and (c), respectively?

(See Exercise 6.1.6.)

(c) How many permutations of the integers 1 through 7 would produce binary search

trees with the same number of nodes at each level as the trees of Figure

9.2.11(a), (b), and (c), respectively?

(a)

(b)

(c)

Figure 9.2.12 A 3-2 tree.
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(d) Find an assignment of probabilities to the first seven positive integers as search

arguments which makes each of the trees of Figure 9.2.11(a), (b), and (c) optimum.

10. A 3-2 tree is one in which each node has two or three sons and contains either one or

two keys. If a node has two sons, it contains one key. All keys in the left subtree are

less than that key, and all keys in the right subtree are greater than that key. If a node

has three sons, it contains two keys. All keys in the left subtree are less than the left

key, which is less than all keys in the middle subtree. All keys in the middle subtree

are less than the right key, which is less than all keys in the right subtree. Figure

9.2.12(a) illustrates such a tree. (The 2 or 3 subtrees of a leaf are all null.)

(d)

(e)

(f)

Figure 9.2.12 (continued).
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FIgure 9.2.13 A B-tree of order 5.
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A key is inserted into such a tree as follows. First, find the leaf into which the

key would be inserted if there were no limit to the number of keys to a node. For

example, Figure 9.2.12(b) illustrates the key 25 inserted into a leaf, while Figure

9.2.12(c) illustrates the key 40 inserted into a leaf. The tree of Figure 9.3.12(b) is a

valid 3-2 tree, so that the key 25 has been properly inserted. Figure 9.2.12(c) is not a

valid 3-2 tree, since one node contains 3 keys. In this case, the insertion process

continues by moving the middle one of the 3 keys into the father node and splitting

the other two keys into two separate nodes, as shown in Figure 9.2.12(d). Since the

resulting tree is a 3-2 tree, the insertion process terminates. Figure 9.2.12(e) illustrates

the 3-2 tree that finally results from an insertion of the key 16 into the tree of

Figure 9.2.12(d), and Figure 9.2.12(f) illustrates the tree that results from an insertion

of the key 85 into the tree of Figure 9.2.12(e). Develop a BASIC implementation

of 3-2 trees and write search and insertion and deletion algorithms for them.

11. A B-tree of order m is a generalization of the 3-2 tree of Exercise 10. Such a tree is

defined as a general tree that satisfies the following properties:

(1) Each node contains at most m — 1 keys.

(2) Each node except for the root contains at least int((m — 1)12) keys.

(3) The root has at least two sons, unless it is a leaf.

(4) All leafs are on the same level.

(5) A nonleaf node with n keys has n + 1 sons.

Figure 9.2.13 illustrates a B-tree of order 5. Note that each node may be thought of as
an ordered set

(pi, k1,p2, k2, . . . , k_i,p)

where p, is a pointer (possibly null, if the node is a leaf) and k, is a key. All keys in

the node pointed to by p, are between k,_1 and k, and k1 <k2 < . . . <k1 within
each node.

(a) Develop an algorithm to search and insert into a B-tree of order m.

(b) Convert your algorithm in part (a) into a BASIC program.

(C) Why are B-trees particularly useful in external searching?

3. HASHING

In the preceding two sections, we assumed that the record being sought was

stored in a table and that it was necessary to pass through some number of keys

before finding the desired one. The organization of the file (sequential, indexed

sequential, binary tree, etc.) and the order in which the keys are inserted determine

the number of keys that must be inspected before obtaining the desired one.

Obviously, the efficient search techniques are those which minimize the number

of these comparisons. Optimally, we would like to have a table organization in
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which there are no unnecessary comparisons. Let us see if such a table organization
is feasible.

If each key is to be retrieved in a single access, the location of the record

within the table can depend only on the key; it may not depend on the locations of

other keys as in a tree. The most efficient way to organize such a table is as an

array; that is, each record is stored at a specific offset from the base address of

the table. If the record keys are integers, the keys themselves can be used as indices

to the array.

Let us consider an example of such a system. Suppose that a manufacturing

company has an inventory file consisting of 100 parts, each part having a unique

two-digit part number. Then the obvious way to store this file is to declare an

array:

10 DIM PART (99)

where PART (I) (and possibly additional fields indexed by I) represents the record
whose part number is I. (Here, and in the remainder of this section, we are

assuming that the lower bound of the array is 0.) In this situation, the part numbers

are keys which are used as indices to the array. Even if the company stocks
fewer than 1000 parts, the same structure can be used to maintain the inventory
file (provided that the keys are still two digits). Although many locations in

PART would then correspond to nonexistent keys, this waste is offset by the advantage

of direct access to each of the existent parts.
Unfortunately, however, such a system is not always practical. For example,

suppose that the company has an inventory file of more than 100 items and

the key to each record is a seven-digit part number. To use direct indexing using

the entire seven-digit key, an array of 100 million elements would be required.

This clearly wastes an unacceptably large amount of space, since it is extremely

unlikely that a company stocks more than a few thousand parts.

What is necessary is some method of converting a key into an integer within
a limited range. Ideally, no two keys should be converted into the same integer.

Unfortunately, such an ideal method usually does not exist. Let us attempt to
develop methods that come close to the ideal and determine what action to take
when the ideal is not achieved.

Let us reconsider the example of a company with an inventory file in which

each record is keyed by a seven-digit part number. Suppose that the company has

fewer than 1000 parts and that there is only a single record for each part. Then an

array of 1000 elements is sufficient to contain the entire file. The array is indexed

by an integer between 0 and 999 inclusive. The last three digits of the part number
are used as the index for that part’s record in the array. This is illustrated in

Figure 9.3.1. Note that two keys which are relatively close to each other numerically,

such as 4618396 and 4618996, may be farther from each other in the table

than two keys which are widely separated numerically, such as 0000991 and
9846995. This is because only the last three digits of the key are used in determining

the position of a record.



Sec. 3 Hashing 523

A function that transforms a key into a table index is called a hash function.
If h is a hash function and key is a key, then h(key) is called the hash of key and is
the index at which a record with key key should be placed. If we let mod(x,y)
represent the remainder obtained on dividing x by y, the hash function in the example

above is h(key) = mod(key, 1000). The values that h produces should cover
the entire set of indices in the table. For example, the function mod(x, 1000)

can produce any integer between 0 and 999, depending on the value of x. As we
shall see shortly, it is a good idea for the table size to be somewhat larger than the
number of records that are to be inserted. This is illustrated in Figure 9.3.1,
where several positions in the table are unused.

The method above has one flaw. Suppose that two keys ki and k2 are such
that h(kl) = h(k2). Then when a record with key ki is entered into the table, it is
inserted at position h(kl). But when k2 is hashed, the position obtained is the
position at which the record with key ki is stored. Clearly, two records cannot
occupy the same position. Such a situation called a hash collision or a hash
ckish. A hash clash occurs in the inventory example of Figure 9.3.1 if a record

key recordPosition

0

2

3

395

396

397

398

399

400

401

990

991

992

993

994

995

996

997

998

999

4618396

4957397

1286399

=z

.

0000990

0000991

1200992

0047993

9846995

4618996

4967997

0001999
Figure 9.3.1 Part records stored in

an array.
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with key 0596397 is added to the table. We will explore shortly how to resolve

such a situation. However, it should be noted that a good hash function is one

that minimizes collisions and spreads the records uniformly throughout the table.

That is why it is desirable to have the array size larger than the number of actual

records. The larger the range of the hash function, the less likely it is that two

keys will yield the same hash value. Of course, this involves a space/time tradeoff.

Leaving empty spaces in the array is space inefficient but it reduces the necessity

of resolving hash clashes and is therefore more time efficient.

Resolving Hash Clashes by Open Addressing

Let us consider what would happen if we wanted to enter a new part number
0596397 into the table of Figure 9.3.1. Using the hash function mod(key, 1000),

we find that h(0596397) = 397 and that the record for that part belongs in position

397 of the array. However, position 397 is already occupied since the record

with key 4957397 is in that position. Therefore, the record with key 0596397
must be inserted elsewhere in the table.

The simplest method of resolving hash clashes is to place the record in the

next available position in the array. In Figure 9.3.1, for example, since position

397 is already occupied, the record with key 0596397 is placed in location 398,

which is still open. Once that record has been inserted, another record, which
hashes to either 397 (such as 8764397) or 398 (such as 2194398), is inserted at

the next available position, which is 400.

This technique is called linear probing and is an example of a general method

for resolving hash clashes called rehashing or open addressing. In general, a

rehash function, rh, accepts one array index and produces another. If array location

h(key) is already occupied by a record with a different key, rh is applied to

the value of h(key) to find another location where the record may be placed. If

position rh(h(key)) is also occupied, it, too, is rehashed to see if rh(rh(h(key))) is

available. This process continues until an empty location is found. Thus we may

write a search and insertion algorithm using hashing as follows. We assume a

hash function h and a rehash function rh. The special value nulikey is used to

indicate an empty record, and index is used to indicate the index of the inserted
record.

= h(key) ‘hash the key

while (k(i) <>key) and (k(i) <> nulikey) do

= rh(i) ‘we must rehash

endwhile

if k(i) = nulikey

then ‘insert the record into the empty position

k(i) = key

r(i) = rec

endif

index =

return
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In the example of Figure 9.3.1, h(key) is the function mod(key, 1000) and

rh(i) is the function mod(i + 1,1000) (i.e., the rehash of any index is the next

sequential position in the array, except that the rehash of 999 is 0).

Let us examine the algorithm more closely to see if we can determine the

properties of a “good” rehash function. In particular, we focus our attention on
the loop, since the number of iterations determines the efficiency of the search.
The loop can be exited in one of two ways: Either i is set to a value such that k(i)
equals key (in which case the record is found) or i is set to a value such that k(i)

equals nulikey (in which case an empty position is found and the record may be
inserted).

It may happen, however, that the loop may execute forever. There are two

possible reasons for this. First, the table may be full, so that it is impossible to

insert any new records. This situation can be detected by keeping a count of the
number of records in the table. When the count is equal to the table size, no additional

positions are examined.

However, it is possible for the algorithm to loop infinitely even if there are

some (or even many) empty positions. Suppose, for example, that the function

rh(i) = mod(i + 2,1000) is used as a rehash function. Then any key that hashes

into an odd integer rehashes into successive odd integers, and any key that hashes

into an even integer rehashes into successive even integers. Consider the situation

in which all odd positions of the table are occupied and all the even ones are

empty. Despite the fact that half the positions of the array are empty, it is impossible

to insert a new record whose key hashes into an odd integer. Of course, it is

unlikely that all the odd positions are occupied while none of the even positions
are. However, if the rehash function rh(i) = mod(i + 200,1000) is used, each

key can be placed in only one of five places [since mod(x, 1000) =

mod(x + 1000,1000)] and it is quite possible for these five places to be full while

much of the table is empty.

One property of a good rehash function is that for any index i, the successive

rehashes rh(i), rh(rh(i)), . . cover as many of the integers between 0 and

m — 1 (where m is the number of elements in the table) as possible (ideally, all of

them). The rehash function rh(i) = mod(i +1,1000) has this property. In fact,
any function rh(i) = mod(i + c,m) where c is a constant value such that c and m

are relatively prime (i.e., they cannot both be divided evenly by a single integer

other than 1) produce successive values that cover the entire table. You are invited

to confirm this fact by choosing some examples; the proof is left as an exercise.

There is another measure of the suitability of a rehash function. Consider

the case of the rehash function mod(i + 1 ,m). Assuming that the hash function

produces indices which are uniformly distributed over the interval 0 through

m — 1 [i.e., it is equally likely that h(key) is any particular integer in that range],

then initially, when the entire array is empty, it is equally likely that a random

record will be placed at any given empty position within the array. However,
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once entries have been inserted and several hash clashes have been resolved, this

is no longer true. For example, in Figure 9.3.1 it is five times as likely for a

record to be inserted at position 994 than at position 401. This is because any

record whose key hashes into 990, 991, 992, 993, or 994 will be placed in 994,

while only a record whose key hashes into 401 will be placed in that location.

This phenomenon, where two keys that hash into different values compete with

each other in successive rehashes, is called clustering.

The same phenomenon occurs in the case of the rehash function

rh(i) = mod(i + c,m). For example, if m = 1000, c = 21, and positions 10,

31, 52, 73, and 94 are all occupied, any record whose key is any one of these five

integers will be placed at location 115. In fact, any rehash function that depends

solely on the index to be rehashed causes clustering.

One way to eliminate clustering is to use double hashing, which involves

the use of two hash functions, hi (key) and h2(key). hi, which is known as the

primary hash function, is used first to determine the position at which the record

should be placed. If that position is occupied, the rehash function rh(i) =

mod(i + h2(key),m) is used successively until an empty location is found. As long

as h2(keyl) does not equal h2(key2), records with keys keyi and key2 do not

compete for the same set of locations. This is true despite the possibility that

hi(keyi) may indeed equal hi(key2). The rehash function depends not only on

the index to be rehashed but also on the original key. Note that the value h2(key)

does not have to be recomputed for each rehash—it need be computed only once

for each key that must be rehashed. Optimally, therefore, one should choose

functions hi and h2 which distribute the hashes and rehashes uniformly over the

interval 0 to m — i and also minimize clustering. Such functions are not always

easy to find.

Another approach is to allow the rehash function to depend on the number

of times that the function is applied to a particular hash value. In this approach,

rh is a function of two arguments. rh(i,j) yields the rehash of the integer i if the

key is being rehashed for the jth time. One example is rh(i,j) = mod(i +j,m).

The first rehash yields rh 1 = rh(h(key), 1) = mod(h(key) + i ,m), the second

yields rh2 = mod(rhi + 2,m), the third yields rh3 = mod(rh2 + 3,m), and so
on.

Resolving Hash Clashes by Chaining

There are several reasons why rehashing may not be an adequate method to deal
with hash clashes. First, it assumes a fixed table size. If the number of records

grows beyond that size, it is impossible to insert them without allocating a larger

table and recomputing the hash values of the keys of all records already in the

table using a new hash function. Furthermore, it is difficult to delete a record

from such a table. For example, suppose that record ri is at position p. To add a

record r2 whose key k2 hashes into p, it must be inserted into the first free position

from among rh(p), rh(rh(p)), . . . Suppose that ri is then deleted so that

position p becomes empty. A subsequent search for record r2 begins at position
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h(k2), which is p. But since that position is now empty, the search process may

erroneously conclude that record r2 is absent from the table.

One possible solution to this problem is to mark a deleted record as “deleted”

rather than “empty” and to continue searching whenever a “deleted” position
is encountered in the course of a search. But this is feasible only if there are

a small number of deletions; otherwise, an unsuccessful search would require a

search through the entire table because most positions will be marked “deleted”
rather than “empty.”

Another method of resolving hash clashes is called chaining and involves

keeping a linked list of all records whose keys hash into the same value. Suppose

that the hash function produces values between 0 and m — 1. Then an array of

header nodes of size m, called buckets, is declared. bucket(i) points to the list of

all records whose keys hash into i. In searching for a record, the list head that

occupies position i in the bucket array is accessed and the list that it initiates is
traversed. If the record is not found, it is inserted at the end of the list. Figure

9.3.2 illustrates chaining. We assume a 10-element array and that the hash function

is mod(key, 10). The keys in that figure are presented in the order

75 66 42 192 91 40 49 87 67 16 417 130 372 227

We may write a search and insertion algorithm using chaining with a hash

function h and a bucket array bucket and nodes that contain three fields: k for the

key, r for the record, and nxt as a pointer to the next node in the list.

= h(key)
q = null

p = bucket(i)
while p <> null do

if k(p) = key
then search = p

return

endif

q=p

p = nxt(p)
endwhile

‘the key has not been found, insert a new record

s = getnode

k(s) = key

r(s) = rec

nxt(s) = null

if q = null

then bucket(i) = s

else nxt(q) = s

endif
search = s

return
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Deleting a node from a table that is constructed by hashing and chaining involves
simply removing a node from a linked list. A deleted node has no effect on the

efficiency of the search algorithm; the algorithm continues as though the node
had never been inserted. Note that the lists may be reordered dynamically for
more efficient searching by the methods of Section 1.

The primary disadvantage of chaining is the extra space that is required for
buckets and pointers. However, the initial array is usually smaller in schemes that
use chaining than in those that use rehashing. This is because under chaining it is

less catastrophic if the entire array becomes full—it is always possible to allocate
more nodes and add them to the various lists. Of course, if the lists become very

long, the whole purpose of hashing—direct addressing and resultant search efficiency—is
defeated.

Choosing a Hash Function

Let us now turn to the question of how to choose a good hash function. Clearly,

the function should produce as few hash clashes as possible; that is, it should

spread the keys uniformly over the possible array indices. Of course, unless the

keys are known in advance, it cannot be determined whether a particular hash

function will disperse them properly. However, although it is rare to know the

keys before selecting a hash function, it is fairly common to know some properties

of the keys which will affect their dispersal.

For example, the most common hash function (which we have used in the

examples of this section) uses the division method, in which an integer key is

divided by the table size and the remainder is taken as the hash value. This is the

hash function h(key) = mod(key,m). Suppose, however, that m equals 1000 and

that all the keys end in the same three digits (e.g., the last three digits of a part

number might represent a plant number, and the program is being written for that

plant). Then the remainder on dividing by 1000 will yield the same value for all

the keys, so that a hash clash will occur for each record except the first. Clearly,

given such a collection of keys, a different hash function should be used. It has
been found that the best results with the division method are achieved when the

table size m is prime (i.e., m is not divisible by any positive integer other than 1
and m.)

In another hash function, known as the midsquare method, the key is multiplied

by itself and the middle few digits (the exact number depends on the number
of digits allowed in the index) of the square are used as the index. If the

square is considered as a decimal number, the table size must be a power of 10,
while if it is considered as a binary number, the table size must be a power of 2.



530 Searching Chap. 9

(The reason the number is squared before extracting middle digits is that all digits

in the original number contribute in determining the middle digits of the square.)

The folding method breaks up a key into several segments which are added or

exclusive ored together to form a hash value. For example, suppose that the internal

bit-string representation of a key is 010111001010110 and 5 bits are allowed

in the index. The three bit strings 01011, 10010, and 10110 are exclusive

ored to produce 01111, which is 15 as a binary integer. (The exclusive or of two

bits is 1 if the two bits are different, and 0 if they are the same.)

There are many other hash functions, each with its own advantages and disadvantages,

depending on the set of keys to be hashed. One consideration in

choosing a hash function is efficiency of calculation; it does no good to be able to

find an object on the first try if that try takes longer than several tries in an alternative
method.

If the keys are not integers, they must be converted into integers before applying
one of the hash functions described above. There are several ways to do

this. For example, for a character string the internal bit representation of each

character can be interpreted as a binary number. One disadvantage of this is that

the bit representations of all the letters or digits tend to be very similar on most

computers. If the keys consist of letters alone, the index of each letter in the alphabet
can be used to create an integer. Thus the first letter of the alphabet (A) is

represented by the digits 01, while the fourteenth (N) is represented by the digits

14. The key “HELLO” is represented by the integer 0805121215. Once an integer

representation of a character string exists, the folding or midsquare method

can be used to reduce it to manageable size.

EXERCISES

1. Implement the function mod(x,y) in BASIC.

2. Write a BASIC routine search that searches a hash table, TBLE, for a record with key

KEY. The routine inputs an integer key and a table declared by

10 MAXTBLE = 99

20 DIM TBLE(MAXTBLE,3)

30 K=1

40 R=2

50 F=3

TBLE(I,K) and TBLE(I,R) are the Ith key and record, respectively. TBLE(I,F) equals

FALSE if the Ith table position is empty and TRUE if it is occupied. The routine returns

a number in the range 0 to MAXTBLE if a record with key KEY is present in the

table. If no such record exists, the function returns — 1. Assume the existence of a

hashing routine h and a rehashing routine rh both of which produce integers in the

range 0 to MAXTBLE.
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3. Write a BASIC routine sinsert to search and insert into a hash table as in Exercise 2.

4. Develop a mechanism for detecting when all possible rehash positions of a given key

have been searched. Incorporate this method into the routines search and sinsert of
Exercises 2 and 3.

5. Suppose that a key is equally likely to be any integer between a and b. Suppose that

the midsquare hash method is used to produce a binary integer between 0 and 2k — 1.

Is the result equally likely to be any integer within that range? Why?

6. Given a BASIC routine that implements a hash function, h(key), for a table of size rn:

(a) Write a BASIC simulation program to determine each of the following quantities

after . 8rn random keys have been generated. The keys should be random six-digit

integers.

(1) The precentage of integers between 0 and rn — 1 that do not equal h(key) for

some generated key

(2) The percentage of integers between 0 and rn — 1 that equal h(key) for more than

one generated key

(3) The maximum number of keys that hash into a single value between 0 and
rn-i

(4) The average number of keys that hash into values between 0 and rn — 1, not

including those values into which no key hashes

(b) Run the program to test the uniformity of each of the following hash functions:

(i) h(key) = rnod(key,rn) for rn a prime

(2) h(key) = mod(key,rn)forrnapowerof2

(3) The folding method using exclusive or to produce 5-bit indices, where rn = 32

(4) The midsquare method using decimal arithmetic to produce four-digit indices,
where m = 10000

7. If a hash table contains rn positions, and n records currently occupy the table, then the

load factor is defined as n/rn. Show that if a hash function uniformly distributes keys

over the rn positions of the table and if If is the load factor of the table, then (n — i)*lf/2

of the n keys in the table collided upon insertion with a previously entered key.

8. Assume that n random positions of an rn-element hash table are occupied, using hash

and rehash functions that are equally likely to produce any index in the table. What is

the average number of comparisons needed to insert a new element in terms of rn and

n? Explain why linear probing does not satisfy this condition.

4. EXAMPLES AND APPLICATIONS

In this section we examine several problems, some of which were discussed in

previous chapters, to see how the search techniques of this chapter can be applied
to make the solutions more efficient. We examine some trade-offs in time and

space among various solutions and show how searching plays an important role

in problem solving.
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Example 9.4.1: The Huffman Algorithm

Our first example is the Huffman algorithm of Section 6.3. Readers are asked to

reread that section to refamiliarize themselves with the problem and the solution

presented therein.

We focus our attention on the program findcode, especially on the loop that

searches for the nodes with smallest FREQ value, controlled by the code

FOR I = N + 1 TO 2*N — 1. The nodes of a strictly binary tree with N leafs are

represented by the integers between 1 and 2*N — 1. The array FTHER contains

pointers to the fathers of the nodes in the tree, and the array INFO contains the
information associated with the nodes.

We begin with INFO(I) defined for I between 1 and N and with FTHER(I)

equal to 0 for all I. That is, we are given frequencies for the original symbols,

each of which is a root of its own single-element binary tree. These nodes are to

be combined into a single binary tree. The unoccupied nodes (from N + 1 through

2*N — 1) are thought of as an available list of nodes. The algorithm proceeds

through this available list in sequence, setting each node as the father of two previously
allocated nodes.

In choosing two previously allocated nodes to set as the sons of a newly

allocated node, the program searches the set of nodes without fathers for the two

nodes with the smallest FREQ values. We reproduce the section of code that accomplishes

this. I is the index of the newly allocated node, P1 and P2 are set to

point to the two nodes that are found by the search process, and Ji and J2 are the

relative frequencies of node(P1) and node(P2), respectively.

240 J1 = 9999

250 J2 = 9999

260 P1 = 0

270 P2 = 0

280 FORQ=1TOI—1

290 IF FTHER(Q) = 0

THEN IF INFO(Q) <ii

THEN P2 = P1: J2 = ii: P1 = Q: ii = INFO(Q)

ELSE IF INFO(Q) <J2 THEN P2 = Q:J2 = INFO(Q)

300 NEXT Q

Once the two nodes P1 and P2 are identified, they are set as the sons of node I by
the code

310 P = I: ‘allocate node(P)

320 INFO(P) = ii + J2: ‘compute the frequency of the new node

330 ‘set P1 to the left subtree of P and P2 to the right subtree

340 FTHER(P1) = — P

350 FTHER(P2) = P
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The search process is inefficient because each time a new node is allocated, all

the previous nodes must be examined in searching for the two root nodes with the

smallest frequency.

The first improvement that can be made is to keep a separate list of root
nodes [i.e., nodes Q such that FTHER(Q) = 0]. If this is done, we need not

search through all allocated nodes—only through those which have no father.

Also, the test for whether FTHER(Q) equals 0 can be eliminated from the loop.

These benefits are not without disadvantages: extra space is required for the

pointers that link together the list of root nodes, and extra time is required to add

or delete an element from this list. These are the general disadvantages that must

be faced in moving from an array to a list representation: in an array, elements

are ordered implicitly, whereas in a list they must be linked explicitly. (However,

in this case it is possible to use the FTHER field of all root nodes to link together

the list. In the interest of clarity, we do not pursue this possibility here but leave
it as an exercise for the reader.)

Thus we may add a variable FIRSTROOT and an array NXTROOT defined
by

10 DIM NXTROOT(2*N_ 1)

NXTROOT(I) is undefined if I is not a root node. If I is a root node,

NXTROOT(I) is the next root node after I on the list of root nodes. If I is the last

root node on the list, NXTROOT(I) equals 0. FIRSTROOT is the index of the
first root node on the list. These variables are initialized as follows:

100 FIRSTROOT = 1

110 FORI=1TON—1

120 NXTROOT(I) = 1+1

130 NEXT!

140 NXTROOT(N) = 0

The search may then be rewritten as follows. K remains one step behind P
in traversing the list of root nodes. Ki and K2 are set to the nodes immediately
preceding P1 and P2, respectively, on the list of root nodes. Their values will be
used when we remove the nodes P1 and P2 from the list.

300 ii = 9999

310 J2 = 9999

320 P1 = 0

330 P2 = 0

340 Ki = 0

350 K2 = 0

360 K = 0

370 P = FIRSTROOT

380 IF P = 0 THEN GOTO 440
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390 ‘else traverse the list of root nodes
400 IF INFO(P) <J1

THEN P2=P1: J2=J1: P1 =P: J1 =INFO(P): K2=K1: K1 =K

ELSE IF INFO(P) <J2 THEN P2= P: J2 = INFO(P): K2 = K
410 K=P

420 p = NXTROOT(P)

430 GOTO 380

440

The code to remove nodes P1 and P2 from the list of root nodes, insert them

into the binary tree, and insert the new root node I into the list of root nodes

becomes more complex. The following code performs these tasks, inserting I in
place of P2 and removing P1 from the list entirely.

440 ‘insert I into the binary tree
450 FTHER(P1) = —I
460 FTHER(P2) = I

470 INFO(I) = J 1 + J2

480 ‘replace node (P2) in the list of root nodes by I

490 NXTROOT(I) = NXTROOT(P2)

500 IF K2 = 0 THEN FIRSTROOT = I

ELSE NXTROOT (K2) = I

510 IF NXTROOT(I) = P1 THEN K1 = I

520 ‘remove node(P1)from the list of root nodes

530 IF K1 = 0 THEN FIRSTROOT = NXTROOT(P1)

ELSE NXTROOT (K1) = NXTROOT(P1)

This code can be simplified somewhat and made more efficient if the list of root

nodes is maintained as a circular list. We leave this implementation as an exercise
for the reader.

Further efficiency will be realized if the list of root nodes is kept sorted,

ordered by increasing values of the INFO field. Then the search for the two nodes

of smallest frequency is eliminated—they are the first two nodes on the list. Thus

the entire search loop can be replaced by the two statements

300 P1 = FIRSTROOT

310 P2 = NXTROOT(P1)

However, to keep the list sorted, the N original symbols must first be sorted

using one of the sorting techniques of Chapter 8. Also, each time a new node I is

inserted into the list of root nodes, it must be inserted into its proper position. The

code to insert I into the binary tree and the ordered root node list therefore be-
comes
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320 ‘insert node(I) into the binary tree

330 FTHER(P1) = —I

340 FTHER(P2) = I

350 INFO(I) = INFO(P1) + INFO(P2)

360 ‘remove node(P1) and node(P2)from the root
‘node list and insert into that list

370 FIRSTROOT = NXTROOT(P2)
380 K = 0

390 p = FIRSTROOT

400 IF P = 0 THEN GOTO 450

410 IF INFO(P) > = INFO(I) THEN GOTO 450

420 K=P

430 P = NXTROOT(P)

440 GOTO 400

450 IF K = 0 THEN FIRSTROOT = I

ELSE NXTROOT(K) = I

460 NXTROOT(I) = P

Thus the search process has been moved from the first step (finding the two
nodes with lowest frequency) to the second (inserting a new node into its proper
place). However, in the second step it is not necessary to search through the entire

list of root nodes, but rather only until the proper position for the new node is
found. Whether or not this is appreciably faster depends on the initial distribution
of frequencies. For example, if the initial frequencies are successive integers
starting at N, every new root node allocated will have to be placed at the end of
the list. In most cases, however, the search time is reduced by a factor of 2.

This saving must be weighed against the cost of initially sorting the N original
symbols, which may be quite expensive. As N becomes larger and the saving

in search time becomes more worthwhile, the cost of sorting increases. We leave
it to the reader to determine which method is more efficient for various values of

N.

EXERCISES

1. Rewrite the program implementing the Huffman algorithm with the list of root nodes

kept as an unordered circular list.

2. Implement the Huffman algorithm using an ordered list of root nodes using various

sort techniques of Chapter 8 to create initially the ordered list.

3. How does the efficiency of the implementations in Exercise 2 vary depending on the

distribution of initial frequencies? Can you find a distribution of initial frequencies

such that a newly allocated node is always placed at the end of the root node list? Can

you find a distribution such that a newly allocated node is always placed at the front of

the list? Explain.
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4. Modify the Huffman program so that the FTHER field is used to link together all root

nodes. The NXTROOT field is no longer necessary.

Example 9.4.2: A Scheduling Problem

Our next example of the application of search techniques is the scheduling problem

of Section 7.3. Again, you should reread that section to refamiliarize yourself

with the problems and the solutions presented therein.

The primary search problem of the scheduling algorithm is to search

through the nodes of a graph represented by a linked data structure. This search

takes place at two distinct points in the solution presented in Section 7.3. (We are

now focusing our attention on the first solution presented in Section 7.3, in which

a singly linked list is used for the graph nodes. This solution is presented in that

section as the first BASIC program named schedule.)

1. When a precedence relationship is input, indicating that task S1TASK

must be performed before task S2TASK, an arc must be drawn from S1TASK to

S2TASK. All the nodes in the graph must be searched for nodes with contents

S1TASK and S2TASK, respectively. If no nodes with contents S1TASK or

S2TASK exist, they must be allocated and added to the list of graph nodes. This

search and insertion is performed by the routine find, which is called twice from

within the loop consisting of statements 250—370. (Actually an immediate saving

in efficiency would result if the list of graph nodes were traversed only once for

each pair of input tasks to search for both S 1TASK and S2TASK simultaneously.)

2. In the output phase of the program (the loop consisting of statements

400—770), the entire list of graph nodes must be searched during each time period
to find those nodes whose COUNT field is 0. These nodes are removed from the

graph and placed on another list from which they are subsequently printed. As

noted in Section 7.3, the only reason that this search is necessary is because a

node cannot be removed from a singly linked list without a pointer to its predecessor.

This prevents us from placing a node on the output list at the time that its

count is reduced to 0, because at that time, we have a pointer only to the node

itself and not to its predecessor. One way to eliminate this search, as noted in

Section 7.3, is to keep the list of graph nodes as a doubly linked list so that a

node contains a pointer to its predecessor as well as to its successor.

A careful analysis of the program schedule yields the interesting observation

that there is no reason whatever to keep the graph nodes in a list except to

perform the two searches noted above. The list of graph nodes is never traversed

for any reason other than to search for particular nodes at one of the two points.

But since searching an unordered linear list is very inefficient, another way of

organizing the graph nodes should improve the search efficiency significantly

with no adverse effect on the remainder of the program.

What data structure shall we use to represent the graph nodes? In adding

new nodes to the graph (point 1 above), it must be possible to access a graph
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node from the string which names the task that it represents. Thus the SUBTASK

field of the graph node acts as the key to the record, which is the node itself. The
most direct way to access a node from its key is by using a hash function. If a

hashing method is to be used, we must determine how to handle hash clashes.
This consideration leads directly into the issue of the number of graph nodes that
are to be allowed. If hash clashes are resolved by rehashing, the number of graph
nodes is limited to the number of positions in the hash table. On the other hand, if
collisions are resolved by chaining, an unlimited number of graph nodes is permitted.

Since an array implementation was used in Section 7.3, we will adhere to
that implementation and use rehashing to resolve collisions. The set of graph

nodes is declared by

30 DEFSTR S

40 NMAX = 100

50 DIM SUBTASK (NMAX)

60 DIM COUNT(NMAX)

70 DIM ARCPTR(NMAX)

80 DIM NXTNODE(NMAX)

The graph nodes are no longer linked together on a list; the pointer NXTNODE in
each node is not used until the node is placed into an output list.

We assume the existence of a hash function hash which transforms a character

string into an integer between 1 and 100 and a rehash function rehash which
accepts an integer in the same range and returns an integer in that range. Then the
routinefind, to search and insert a node into the graph, can be written as follows:

1000 ‘subroutine find

1010 ‘inputs: STASK

1020 ‘outputs: FIND

1030 ‘locals: CNT, HASH, I, INDEX, J, REHASH

1040 GOSUB 8000: ‘subroutine hash accepts STASK and sets the variable HASH
1050 I = HASH

1060 IF SUBTASK(I) = ““THEN SUBTASK(I) = STASK: COUNT(I) = 0:

FIND = I: RETURN

1070 IF SUBTASK(I) = STASK THEN FIND = I: RETURN

1080 CNT = 0

1090 INDEX = I

1100 GOSUB 9000: ‘subroutine rehash accepts INDEX and sets the variable REHASH

1110 J = REHASH

1120 IF J = I OR CNT = NMAX THEN GOTO 1180

1130 IF SUBTASK(J) = ““THEN SUBTASK(J) = STASK: COUNT(J) = 0:

FIND = J: RETURN

1140 IF SUBTASK(J) = STASK THEN FIND = J: RETURN

1150 INDEX = J
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1160 CNT = CNT + 1

1170 GOTO 1100

1180 PRINT “ERROR — “; STASK;

“CANNOT BE INSERTED INTO THE GRAPH”

1190 STOP

1200 ‘endsub

By using this find function the input ioop can be rewritten with very few changes
from the way it appears in Section 7.3.

By representing a graph using a hash table, the first search problem has
been solved. Let us see how we can solve the second. We first note that when a

node is identified as a candidate for output (i.e., when its COUNT field becomes
0), it can be placed on the output list. However, it is no longer necessary to remove

it from the list of graph nodes since there is no list of graph nodes. Since

the input phase and the output phase of the program are separate and no new

nodes are added in the course of processing, it is unnecessary to delete any nodes
from the hash table. (If it were necessary to delete nodes, chaining would be preferable

to rehashing as the method for resolving hash clashes.) Thus our second
problem, which was the necessity to traverse the entire set of graph nodes in order

to remove a particular node, does not exist.
We may therefore write a revised version of the scheduling program as follows:

10 ‘program schedule (revised)
20 DEFSTR S

30 NMAX = 100

40 DIM SUBTASK(NMAX)

50 DIM COUNT(NMAX)

60 DIM ARCPTR (NMAX)

70 DIM NXTNODE(NMAX)

80 AMAX = 200

90 DIM NDPTR(AMAX)

100 DIM NEXARC(AMAX)

110 AAVAIL = 1

120 FOR I = 1 TO AMAX - 1

130 NEXARC(I) = I + 1

140 NEXT I

150 NEXARC(AMAX) = 0

160 ‘construct the graph

170 READ S1TASK, S2TASK
180 IF S1TASK = “FINISH” THEN GOTO 280

190 STASK = S1TASK

200 GOSUB 1000: ‘subroutine find sets the variable FIND

210 P = FIND
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220 STASK = S2TASK

230 GOSUB l000:’subroutine find

240 Q = FIND

250 GOSUB 1500: ‘subroutine join accepts P and Q
260 COUNT(Q) = COUNT(Q) + 1

270 GOTO 170

280 ‘the graph has been constructed

‘traverse the hash table and place all graph nodes

‘with zero count on the output list

290 OTPT = 0: ‘OTPT points to the output list
300 FOR P = 1 TO NMAX

310 IF SUBTASK(P) = ““THEN GOTO 330

320 IF COUNT(P) = 0 THEN NXTNODE(P) = OTPT: OTPT = P

330 NEXT P

340 ‘simulate the time periods
350 PERIOD = 1

360 IF OTPT = 0 THEN GOTO 630

370 PRINT “PERIOD”, PERIOD

380 ‘initialize output list for next period
390 OPNX = 0

400 ‘traverse the output list
410 P=OTPT

420 IF P = 0 THEN GOTO 590

430 PRINT SUBTASK(P)

440 ‘traverse arcs emanating from graphnode(P)
450 R = ARCPTR(P)

460 IF R = 0 THEN GOTO 570

470 RR = NEXARC(R)

480 ‘reduce count in terminating node
490 T = NDPTR(R)

500 COUNT(T) = COUNT(T) - 1

510 ‘if the count of node(T) is 0, place it on next period’s output list
520 IF COUNT(T) = 0 THEN NXTNODE(T) = OPNX: OPNX = T

530 FRARC = R

540 GOSUB 2000: ‘subroutine freearc accepts the variable FRARC

550 R=RR

560 GOTO 460

570 P = NXTNODE(P)

580 GOTO 420

590 ‘reset output list for the next period
600 OTPT = OPNX

610 PERIOD = PERIOD + 1

620 GOTO 360

630 END

700 DATA...
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1000 ‘subroutine find

1500 ‘subroutine join

2000 ‘subroutine freearc

Two points should be noted in passing. Because the list of graph nodes has

been eliminated, it is no longer possible to test for cycles. Further, if chaining is

used to resolve hash clashes, the list of all graph nodes whose contents hash into

the same value must be linked together by their NXTNODE field. Thus we again

have the problem of removing a graph node from a list before inserting it into the

output list. This can be solved by using doubly linked lists, as indicated in Section

7.3, or by adding another field to each node, as in Exercise 2. An alternative

method is to traverse the list of all nodes hashing to the same value from the

initial hash bucket. This list should be relatively short and therefore would not

involve the same overhead as would a search through the entire list of graph
nodes.

EXERCISES

1. Rewrite the program schedule of Section 7.3 so that the two list traversals represented

by calls to the subroutine find in the input loop are combined into a single traversal

represented by in-line code.

2. One possible solution to the problem of traversing the list of graph nodes to find those

whose COUNT field is 0 is to add another field OUNXT to each graph node, and use

it to to link together nodes on the output list. This makes it unnecessary to remove a

node from the graph list in order to place it on the output list. Implement this solution

as a BASIC program.

3. Modify the program schedule in this section so that it detects cycles in the original

graph.

Example 9.4.3: An Airline Reservation System

Our next example is the application of search techniques to an airline reservation

system. Consider the problem of programming an airline reservation system. The

input consists of a control group containing flight data used to initialize the system,

followed by a passenger group containing data on passenger reservations.

The control group consists of one input line containing a single number (representing

the number of flights available that day) followed by a set of input lines
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(one for each flight) each of which contains a flight number and the seating capacity
for that flight. A sample control group is illustrated in Figure 9.4.1(a).

Once this control group has been read, a separate line is read for each passenger
request for service. The requests may be of three types: reservation, cancellation,

or inquiry. The type of each request is indicated by the word
RESERVE, CANCEL, or INQUIRE. A request for a reservation or a cancellation
is accompanied by a passenger name and a flight number. An inquiry is accompanied

by a passenger name only. (We assume that a passenger inquires about all

the flights on a particular journey, but may cancel one particular leg of the journey.)
A sample set of data for a passenger request group is shown in Figure

9.4.1(b).

We are to write a program that processes these two groups of inputs. For

each passenger service request, a message describing the action taken is to be
printed. Before we proceed with the example, a word of caution is necessary.

Because a real-world reservation system must store huge quantities of information,
the data are usually kept in an external file system. Thus such a system must

be programmed using external search techniques which are not discussed in this

text. Furthermore, a large portion of such a system consists of systems programs

to handle remote terminals accessing the common data base. That type of programming

is also beyond the scope of this text.

Before designing a program, the requirements of the problem must be defined

more precisely. In particular, it must be determined what action is to be
taken for each of the possible passenger requests. In the case of a reservation, the
passenger is to be placed on a flight list for the flight if the flight is not full. If the

DATA 4

DATA 153 10

DATA 097 50

DATA 860 175

DATA 214 95

(a) Flight control group for airline problem

DATA “RESERVE” “JOAN DOE” 097

DATA “RESERVE” “JOE JACKSON” 153

DATA “INQUIRE” “JOE JACKSON”

DATA “CANCEL” “JOAN DOE” 097

(b) Passenger request group for airline problem

Figure 9.4.1
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flight is full, the passenger is to be placed on a waiting list so that he or she will
be placed on the flight if there are any cancellations. In the case of a cancellation,
the passenger is to be deleted from the flight list if he or she is currently booked

on the flight, and the first passenger from the waiting list (if any) is to be placed
on the flight list. If the canceled passenger is on the waiting list, he or she must
be removed from it. Finally, in the case of an inquiry, a list of all flights on

which the passenger is either booked or waiting is to be printed.
Now that we have defined the actions to be taken for the various requests,

we may consider the data organizations that will be necessary. Because the number

of flights is fixed, the basic flight data will be maintained in a set of arrays.
Such basic information includes the flight number, the flight capacity, and other

items that do not relate to the reservations of specific passengers. In addition, two

lists are required for each flight: a list of passengers currently booked on the

flight, and a waiting list for the flight. The passenger list has no restrictions as to

where a passenger may be inserted or deleted. The waiting list, however, should
be a queue, so that if a cancellation occurs, the first person on the waiting list will

be the first to be given a seat on the flight. However, we must also have the

capability of deleting a passenger from the middle of the waiting list (in case of a
cancellation). For each flight in the system, it will be necessary to retain pointers
to each of the two lists. Let us see what searches are required by this data organization

to service our requests.

For a reservation request, a sequential search must be performed on the array

of flight numbers and then the name must be added to a passenger list or a

waiting queue. The sequential array search (which is performed by locating the

index of the flight within the array of flight numbers) is inefficient but not overly
so if the number of flights is small. To improve the speed of the search, the

flights could be stored in an array sorted by flight number, allowing the use of a

binary search. The insertion into the appropriate list is a single operation that involves

no searching. Thus the reservation operation can be said to be moderately

efficient under this organization.
For a cancellation request, a sequential search must be performed on the

array of flight numbers and then one or two sequential searches must be performed

through the passenger list and the waiting list. These sequential searches
are fairly inefficient.

An inquiry is the least efficient operation under the organization described
above. A sequential search through every single passenger list and many waiting

lists must be performed in searching for a particular name.
To print the passenger list and waiting list for a particular flight, the array of

flight numbers must be searched sequentially to locate the flight. Then the two
lists for the flight must be traversed. Any implementation of this operation is fairly

efficient, since the list traversals are part of the problem specification. We

leave the coding of the airline reservation system using the list structures described
above as an exercise for the reader.

We would like to develop data structures that will improve the efficiency of
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a cancellation and an inquiry. To eliminate the sequential array search for a flight

number, the table of flights may be kept as a binary search tree as described in
Section 2. Whether or not the tree should be balanced depends on the number of
flights, the order in which they appear in the input, and the frequency with which

searches are made for a particular flight. The question here is whether the efficiency
of searching a balanced tree is worth the extra work involved in inserting

elements into such a tree. If there are n flights, keeping them as a tree rather than
as an array reduces the search time from 0(n) to 0(log n). We leave the coding of
the main program (which inserts the flights into the tree) and a subroutine tree-

search (which returns a pointer to the node which represents flight with flight
number F in the tree pointed to by TREE) as exercises for the reader.

What information should each flight node contain? In addition to the two

list pointers mentioned above, it is also necessary to include left and right tree
pointers. (If a balanced binary tree is used, a field containing the balance is also

needed.) It is still necessary to have a passenger list emanating from each flight
node so that the list may be traversed in constructing a passenger roster. However,

since cancellations involve accessing a passenger node through the passenger

name, the passenger list must be doubly linked to make it possible to delete a

passenger node given only a pointer to that node. Similarly, it is necessary to

have doubly linked waiting lists, which must be organized as queues so that the

first passenger placed on the waiting list will be the first to get a seat in case of a

cancellation. An indication of the capacity and current passenger count on each
flight is also needed. Thus we may declare a flight node by

30 MAX = 100

40 DIM NUMFLT(MAX): ‘flight number

50 DIM FLIGHT(MAX,2): CAPACITY = 1: COUNT = 2: ‘info on each flight

60 DIM PSLST(MAX): ‘pointer to passenger list

70 DIM WAITLST(MAX,2): FRNT = 1: REAR = 2: ‘pointers to waiting list

80 DIM PTRTREE (MAX,2): LFT = 1: RGHT = 2: ‘tree pointers

In order to make cancellations and inquiries more efficient, it must be possible

to access a passenger node directly from the passenger name rather than by

traversing a passenger list. In order to do this, the entire passenger list is kept as a

hash table. Since it must be possible to remove passengers from a passenger list

in case of a cancellation, and since it is not known how many passengers there

will be, hash clashes are resolved by chaining rather than by rehashing.

Each passenger node contains the passenger name as well as three pointers:

one to the next node on the same passenger list, one to the previous node on the

same passenger list, and one to the next node which hashes into the same value.

One of these pointer fields doubles as a pointer to the next available free node (if

the passenger node is on the available list). It is also necessary to keep an indication

in the passenger node of which flight list a particular passenger is associated

with and whether he or she is booked or waiting for that flight. This is necessary

so that when making an inquiry of the flights that a particular passenger is on, the
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appropriate messages can be printed directly from the passenger node. Note that
this information is unnecessary if a passenger node is accessed only through a

flight node rather then directly through its hash. We may therefore declare a passenger
node by

70 MPASS = 1000: ‘maximum number of passenger nodes

80 DIM ZPASS(MPASS): ‘passenger name

90 DIM PFLT(MPASS): ‘flight number of passenger

100 DIM BOOK(MPASS): ‘TRUE if booked, FALSE if waiting

110 DIM PASSPTR(MPASS,3): NXTPASS = 1: PREVPASS = 2: HASHNXT = 3

Actually, there is much more information associated with each passenger, such

as address, phone number, special meal information, and so on, but we ignore
these details here.

Our next decision is one that is crucial in many searching applications—

choosing a key for our records. We use the passenger name as the key. Applying

a hash function hash to a passenger name yields an index of a bucket array. The

entry at that index is a pointer to a list of passenger nodes (linked together by the

HASHNXT field) all of whose passenger names hashed into the same index.

When a search is made for a specific passenger name on a specific flight (as in a

cancellation), the passenger name is hashed and this list is traversed searching for

the entry for that particular name. All reservations for a given passenger are on

the same list. This means that there may be multiple records with the same key,

which almost guarantees that hash clashes will occur. Thus the cancellation operation

is somewhat inefficient since the chain must be searched sequentially. (The

same inefficiency occurs when information is requested about a specific passenger

on a specific flight.)

A possible solution to this inefficiency is to combine the passenger name

field and the flight number as a single key. Then, when searching for a specific

passenger on a specific flight, the combination can be hashed directly. However,

in the present situation, such an extended key is impractical. In processing an

inquiry for the list of all flights for a given passenger, it would be highly inefficient

to combine the given passenger name with every possible flight number to

produce a set of keys for hashing. Rather, the passenger name alone is hashed to

access to list of all the flights on which the name appears (this list might also

contain extraneous nodes representing other passengers whose names happen to

hash into the same value, but these nodes can be skipped). The number of flights

on which an average passenger is booked is small enough so that in the case of a

cancellation, it does not present an overhead significant enough to outweigh the

alternative overhead in case of inquiry. This illustrates a general phenomenon in

choosing a search key: Placing more information in a key makes it easier to find a

very specific item but more difficult to satisfy a general query.
Let us now examine the bucket table. The number of entries in this table

should be slightly larger (about 10%) than the number of passenger names kept at

any one time. This avoids long lists of names hashing into the same index. The
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size of the table should also be a prime number since it has been found that taking

a remainder upon division by a prime number yields a good distribution of hash

values. We arbitrarily assume approximately 900 different passenger names and

1000 passenger nodes to allow for a passenger booked or waiting on several

flights (this is very small for a real system) and declare the bucket table by

120 DIM TBLE(1009): ‘hash table

We now present two of the routines that satisfy service requests, leaving the
main program and the other routines for the reader as exercises. The first routine,

cancel, accepts a passenger name and a flight number and removes the passenger’s
reservation from that flight. We assume the following declarations:

20 DEFSTR Z

30 MAX = 100

40 DIM NUMFLT(MAX): ‘flight numbers

50 DIM FLIGHT(MAX,2): CAPACITY = 1: COUNT = 2: ‘info on each flight

60 DIM PSLST(MAX): ‘pointer to passenger list

70 DIM WAITLST(MAX,2): FRNT = 1: REAR = 2: ‘pointers to waiting list

80 DIM PTRTREE(MAX,2): LFT = 1: RGHT = 2: ‘tree pointers

90 MPASS = 1000: ‘maximum number of passenger nodes

100 DIM ZPASS(MPASS): ‘passenger name

110 DIM PFLT(MPASS): ‘flight number of passenger

120 DIM BOOK (MPASS): ‘TRUE if booked, FALSE if waiting

130 DIM PASSPTR(MPASS,3): NXTPASS = 1: PREVPASS = 2: HASHNXT = 3:

‘pointers between passenger nodes

140 DIM TBLE(1009): ‘hash table
150 NULL = 0

160 TRUE = 1

170 FALSE = 0

We also assume the routines hash and treesearch described above, and the existence

of an auxiliary list manipulation routine at line 7000 called delete, which

accepts two pointers XPTR and Y, the first to a flight node and the second to a

passenger node and deletes node(Y) from either the passenger list or waiting

queue [depending on the value of BOOK (Y)] emanating from the node(XPTR)

without freeing node(Y). In addition, we use the routinefreenode, which accepts

a pointer, FRNODE, to a passenger node and returns the node to the available
list.

3000 ‘subroutine cancel

3010 ‘inputs: F, ZNAM: ‘flight number and passenger name

3020 ‘outputs: none
3030 ‘locals: FPTR, FRNODE, R, 5, T, V, XPTR, Y

3040 ‘find the flight node
3050 GOSUB 5000: ‘subroutine treesearch sets the variable FPTR

3060 IF FPTR = 0 THEN PRINT “ILLEGAL FLIGHT NUMBER”: RETURN
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3070 ‘hash the passenger name and search the hash list

3080 GOSUB 6000: ‘subroutine hash accepts ZNAM and sets the variable H
3090 R = 0

3100 S = TBLE(H)

3110 ‘search the passenger list of flights using the hash list
3120 IF S = 0 THEN GOTO 3170

3130 IF ZPASS (5) = ZNAM AND PFLT(S) = F

THEN GOTO 3180

3140 R=S

3150 5 = PASSPTR(S ,HASHNXT)

3160 GOTO 3120

3170 PRINT “NO SUCH PASSENGER FOR THAT FLIGHT”: RETURN

3180 ‘at this point, S points to the passenger node.

‘remove the passenger node pointed to by S from the hash table

3190 IF R = 0 THEN TBLE(H) = PASSPTR(S,HASHNXT)

ELSE PASSPTR(R,HASHNXT) = PASSPTR(S ,HASHNXT)

3200 ‘remove the passenger node from the passenger or waiting list
3210 XPTR = FPTR

3220 Y = S

3230 GOSUB 7000: ‘subroutine delete deletes passenger node pointed to

‘by Yfrom flight pointed to by XPTR

3240 ‘the passenger node was on the waiting list

3250 IF BOOK(S) = FALSE

THEN PRINT ZNAM: “DELETED FROM WAITING LIST OF FLIGHT”; F:
GOTO 3420

3260 ‘else do stmts 3270—3410

3270 ‘node was on the passenger list

3280 PRINT ZNAM; “DELETED FROM FLIGHT”; F

3290 T = WAITLST(FPTR,FRNT)

3300 IF T = 0 THEN FLIGHT (FPTR,COUNT) = FLIGHT(FPTR,COUNT) — 1:
GOTO 3420

3310 ‘remove first passenger from waiting list and insert into ‘passenger list
3320 XPTR = FPTR

3330 Y = T

3340 GOSUB 7000: ‘subroutine delete

3350 BOOK(T) = TRUE

3360 V = PSLST(FPTR)

3370 PSLST(FPTR) = T

3380 PASSPTR(T,PREVPASS) = 0

3390 PASSPTR(T,NXTPASS) = V

3400 IF V <> 0 THEN PASSPTR(V,PREVPASS) = T

3410 PRINT ZPASS(T); “NOW BOOKED ON FLIGHT”; F

3420 ‘free passenger node and return to the available list
3430 FRNODE = S
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3440 GOSUB 1000: ‘subroutine freenode accepts FRNODE
3450 RETURN

3460 ‘endsub

The next routine we present is for an inquiry. We wish to list all flights on

which a given passenger name appears. It is straightforward.

4000 ‘subroutine inquire

4010 ‘inputs: ZNAM

4020 ‘outputs: none

4030 ‘locals: H, S

4040 PRINT ZNAM; “FOUND ON FOLWWING FLIGHTS”:

4050 GOSUB 6000: ‘subroutine hash accepts ZNAM and sets the variable H

4060 S = TBLE(H)

4070 ‘search through the flights using pointers in hash table
4080 IF S = 0 THEN GOTO 4130

4090 IF ZNAM <>ZPASS(S) THEN GOTO 4110

4100 IF BOOK(S) = TRUE

THEN PRINT “BOOKED ON”; PFLT(S)

ELSE PRINT “WAITING FOR”; PFLT(S)

4110 5 = PASSPTR(S,HASHNXT)

4120 GOTO 4080

4130 PRINT “END OF LIST”

4140 RETURN

4150 ‘endsub

EXERCISES

1. Write a BASIC program that implements the airline reservation system in which the

passenger lists and the waiting lists are maintained as linear lists.

2. Write a BASIC program that reads a flight control group as described in the text and

builds a binary search tree of flight nodes. Modify your routine to build a balanced

binary tree.

3. Write a BASIC routine treesearch as described in the text.

4. Write the routine delete described in the text.

5. Write a BASIC program that accepts a passenger name and cancels all reservations

and waiting-list entries for that passenger. What field would you change in the passenger

node to make this operation more efficient? Rewrite the routines of this section

under the modified representation.

6. Write a BASIC routine that accepts a passenger name and flight number and reserves a

seat for the passenger on the flight or puts him or her on the waiting list if the flight is
full.
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infix to postfix conversion, 143

inflow, 386

info(p) function, 289, 297

information, 1, 165

inorder, 292, 310, 344, 496

inorder traversal, 492, 503

input parameter, 66, 80

input-restricted deque, 163

insafter, 175, 178, 181, 185, 202

insert, 154, 155, 160, 174, 182, 185, 194, 202, 512

insertion, 486, 493, 521

insertion sort, 458

insertleft, 212

integer, 8, 9, 46

binary, 3, 7, 10, 15

decimal, 3, 16

nonnegative, 3

prime, 73

integer variable, 9

intermediate language, 44

internal, 420

internal key, 477

internal nodes, 325

Internal Revenue Service, 513

internal searches, 478

internal sort, 420

interpretation phase, 44

interpreter, 43

in-threaded binary tree, 311

ilo device control, 7

irreflexive, 383

isleft(p) function, 289

isright(p) function, 289

iteration, 58

iterative, 223

J

join, 373

joinwt, 373

Josephus problem, 204, 220, 338

K

kalah, 368

key, 420, 477

embedded, 477

external, 477

internal, 477

key (cont.)

primary, 477

secondary, 478

Kirchhoff’s law, 397

L

last-in, first-out, 110

last-in, last-out, 154

leaf, 285, 312, 321, 324, 340, 443, 447, 449, 456, 510

left, 163

left descendant, 285

left in-threaded, 311

left(p) function, 289, 297

left rotation, 503

left son, 284

left subtree, 284

LEN function, 22

length, 376

level, 285, 340, 359, 442, 448, 456, 499

Library of Congress, 419

lifo, 110, 154

linear linked list, 165, 202, 220, 298, 410

linear probing, 524

linear search, 228

line numbers, 45

lines, 45

linked list, 164, 174

BASIC implementation, 178

linear, 165

noninteger, 184

traversal, 174

use of in simulation, 189

list header, 185

list insertion, 459, 466

list nodes, 398

list operations, 177

in BASIC, 183

list processing, using recursion, 269
lists:

deleting an element of, 329

doubly linked, 410, 540

finding the kth element of, 327

represented as arrays, 331

represented as binary trees, 325

singly linked, 410

load factor, 531

local variables, 64

location, 7

logarithm, 424

logical data, 56

logical expressions, 58

logical operations, 58, 375

logical value, 56

logical variables, 57

logical view of data, 23

logic error, 92

long integers, 207, 212

look ahead level, 359
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loop, 58

lower bound, 18

lower triangular array, 32

M

machine instructions, 43

machine language, 174, 499

maketree, 290, 298, 299

mantissa, 5, 16

mathematical analysis, 423

matrix, 259, 374

determinant of, 259

minor of, 259

order of, 259

maze, 482

mean, 197

meaningful variable names, 82

median, 30

memory, 7

merge, 458, 475

merge insertion sort, 465

merge sort, 280, 467

microcomputers, 43

Microsoft BASIC, 15, 16, 46

midsquare method, 529

minimax method, 361

alpha-beta, 368

minor, 259

minus nodes, 359

mirror similar, 297

mirror similar binary trees, 297

mode, 30

modularity, 81

modularization, 121

modules, 81, 121

MOVE operation, 10

move-to-front, 482

MO YE VAR operation, 11, 17

multi-dimensional arrays, 25, 39

multilist, 217

circular, 218

doubly linked, 218

linear, 218

singly linked, 218

multiplication of natural numbers, 226, 236

multiuser computer system, 197

N

native data types, 7, 9, 46

natural merge sort, 470

n-dimensional arrays, 26

negative binary numbers, 4

nested IF, 54, 55

nesting depth, 114, 243

network, 373, 384, 397, 416

PERT, 416

next address, 165

nim, 369

node, 165, 167, 178, 180, 284, 340, 370, 532

node implementation of binary trees, 298

nodes, 375, 379, 384, 396, 398

nonhomogeneous array, 32

noninteger lists, 184

nonnegative integers, 3

normally distributed, 198

null, 165

null list, 165

null pointer, 165

0

object code, 44

odd-even transpositional sort, 438

Ohm’s law, 397

oldest son, 340

one-dimensional array, 17

implementation, 20

ON ERROR statement, 30

ones-complement notation, 4

O notation, 424

open addressing, 524

operand, 10, 136, 294, 350

operations, logical, 375

operator, 136, 294, 347, 350

optimal, 386

optimal sort, 424

optimum, 501

optimum flow, 392

order, 374, 424, 521

chronological, 419

random, 419

ordered pair, 370

ordered table, 484

ordered tree, 340, 342

order-n matrix, 259

order-preserving, 462

OR operation, 56, 375

outdegree, 372

outflow, 386

output parameter, 66, 80

output-restricted deque, 163

overflow, 4, 123, 156, 172

overflow area, 488

p

parameter, 65

input, 66, 80

output, 66, 80

parentheses nesting, 113

parenthesis count, 114

parse tree, 358

partial derivative, 221

partition exchange sort, 430

Pascal, 34, 238

path, 373, 379, 380, 381, 387, 389

path matrix, 375, 376

perfect number, 73

personal computers, 44

PERT network, 416
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physical view of data, 23

pits, 368

place, 178, 183

PL/I, 34, 238

plus nodes, 359

pointer, 165

polynomial, 221

pop, 112, 117, 121, 124, 164, 170, 177, 185, 201

popandtest, 122, 126

postfix, 136, 262, 294

postflx expression:

BASIC implementation, 140

evaluation, 139

postorder, 292, 296, 306, 347

precedence, 137, 144, 146, 296, 405

default, 138

precedence rules, 146

precision, 5, 46

prefix, 136, 262, 294

prefix to postfix, BASIC implementation, 265

prefix to postfix using recursion, 262

preorder, 291, 317, 344

prethreaded binary tree, 311

primary hash function, 526

primary index, 486

primary key, 477

prime numbers, 73

primitive data types, 46

primitive operations:

array, 17

list, 167

queue, 154

stack, 112

tree, 289

printers, 7

probabilistic, 396

probability distribution, 197

production time, 403

program average, 19

program bank, 192

program college, 77

program correctness, 92

program design, 81

program development, 74

program dup, 300

program dup2, 304

program evaluate, 141

program fmndcode, 322

program findexp, 277

program josephus, 205, 339

programming techniques, 74

program posçfix, 149

program printroots, 63

program readability, 86

program reliability, 30, 91

program schedule, 407, 412, 538

program scope, 131, 133

program sort, 67

program table, 70

proportional, 422

pseudocode, 48

push, 112, 170, 177, 185

push-down sort, 440

pushandtest, 124

pushdown list, 113

Pythagorean theorem, 98

Q

quadratic selection sort, 456

queue, 154, 182, 202, 542

as lists in BASIC, 182

BASIC implementation, 155, 162, 182

circular list implementation, 202

linked list implementation, 173

quicksort, 430

R

radix-exchange sort, 471

radix sort, 470

railway system, 384

range, 18, 23

rational numbers, 34

reachable, 382

real numbers, 5, 7

reals, 46

double-precision, 46

single-precision, 46

rear, 154

record, 34, 420, 477

recursion, 222, 251, 260, 314, 364, 488

recursive algorithms:

BASIC implementation, 238

factorial function, 238

recursive chains, 272

recursive definition, 222, 224

algebraic expressions, 273

binary search, 229

factorial, 222

fibonacci sequence, 227

multiplication of natural numbers, 226

properties of algorithms, 236

Towers of Hanoi, 232

recursive list processing, 269

reduced rational numbers, 35

reflexive, 382

rehash function, 524

rehashing, 524, 537

relation, 373, 382, 383

relatively prime, 462, 466

remarks, 45

remove, 155, 160, 161, 173, 183, 185, 196

REM statement, 45

remv, 373

remvleft, 163

remvright, 163

remvwt, 373, 401
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reorder amount, 199

reorder period, 199

reorder point, 199

repetitive flow, 58

report, 420

representation, 14

reserved words, 8, 46

retrieval, 478

return address, 243

in BASIC, 245

return indicator, 246

RETURN statement, 63, 243

reusing variable names, 95

reverse, 270, 272

right, 163

right descendant, 285

right in-threaded, 308

right(p) function, 289, 297

right rotation, 503

right son, 284

right subtree, 284

RND function, 197

root, 284, 296, 314, 321, 340, 344, 359, 445, 449

rotation, 503

row-major order, 31

S

scheduling, 403, 536

scope nesting, 127

search, 228

search algorithm, 478

search and insertion algorithm, 478
searches:

binary, 488, 542

external, 478

Fibonaccian, 491

indexed sequential, 484

internal, 478

sequential, 228, 478, 542

tree, 492

searching, 419, 477

secondary index, 486

secondary key, 478

seed, 197

selection sort, 439

semantics, 48

semipath, 389

sequential file, 521

sequential flow, 51

sequential insertion search, 479

sequential search, 228, 478, 542

setleft, 290, 299

setright, 290, 299

setsons, 354

shell sort, 459

signaling the end of data, 87

similar, 297

similar binary trees, 297

simple insertion sort, 458

simple statements, 50

simulation, 189

event-driven, 191

simulation of recursion, 241

single-precision real numbers, 16

single-precision reals, 46

sink, 384

social security number, 513

software, 7

software implementation, 9

son, 324, 340, 342, 344, 354, 359, 397, 443, 510, 519,

532

sort, optimal, 424

sort decision tree, 426

sorting, 293, 419

sorting by address, 420
sorts:

address calculation, 462

binary tree, 440

bubble, 427, 435

cocktail shaker, 437

counting, 437

diminishing increment, 459

distribution, 437

exchange, 427

heapsort, 449

insertion, 458

merge, 467

merge insertion, 465

natural merge, 470

odd-even transposition, 438

partition exchange, 430

push-down, 440

quadratic selection, 456

quicksort, 430

radix, 470

radix-exchange, 471

selection, 439

shell, 459

simple insertion, 458

straight merge, 468

straight selection, 439

topological, 416

tournament, 443, 450, 457

tree, 439

tree selection, 443

two-way insertion, 465

source, 384

source code, 43

space, 430, 456, 459, 465, 474

spaghetti code, 84

stable, 420

stack, 108, 136, 164, 200, 239, 364, 410

abstract concept, 108

array representation, 118

BASIC representation, 118

circular list implementation, 200

linked list implementation, 169

primitive operations, 112
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stack (cont.)

top, 108

stacktop, 113

standard deviation, 197

statements, 45

compound, 50

executable, 50

simple, 50

storage, 7

store operation, 17, 39

straight merge sort, 468

straight selection sort, 439

strictly binary tree, 285, 296, 325, 532

strictly lower triangular array, 32

strings, 46

string storage, 47

structure (see also data structure):

abstract data, 18

composite, 17

STR$ function, 141

subroutine addnode, 402

subroutine addnum, 208, 216

subroutine addr, 463

subroutine addson, 355, 356

subroutine adjacent, 375, 401

subroutine adjprod, 377

subroutine apply, 142

subroutine arrive, 195

subroutine avg, 79

subroutine bestbranch, 367

subroutine bubble, 429

subroutine buildtree, 335, 337, 363

subroutine cancel, 545

subroutine cbr, 69, 70

subroutine compare, 214

subroutine concat, 204

subroutine convert, 266

subroutine delafter, 181, 203

subroutine delete, 211, 334

subroutine depart, 196

subroutine empty, 120, 159, 182

subroutine equal, 37, 42

subroutine evbtree, 315

subroutine evtree, 354

subroutine expand, 364

subroutine expr, 277

subroutine extract, 41

subroutine factor, 279

subroutine find, 268, 537

subroutine findelement, 334

subroutine findnode, 401

subroutine follower, 338

subroutine freelist, 203

subroutine freenode, 181

subroutine getnode, 180

subroutine getsymb, 277

subroutine heap, 455
subroutine initialize, 448

subroutine inquire, 547

subroutine insafter, 181

subroutine insert, 161, 182, 202, 458

subroutine insertright, 211

subroutine intray, 306, 307, 344

subroutine intrav2, 310

subroutine join, 374

subroutine joinwt, 375, 400

subroutine ltr, 279

subroutine maketree, 299, 304

subroutine maxflow, 394

subroutine mergearr, 467

subroutine msort, 468

subroutine newop, 353

subroutine nextmove, 362

subroutine oppsignadd, 215

subroutine place, 184

subroutine pop, 121, 201, 248

subroutine popandtest, 122

subroutine postrav, 307

subroutine prcd, 150

subroutine pretrav, 306

subroutine prod, 376

subroutine push, 123, 124, 201, 248

subroutine quicksort, 435

subroutine radix, 472

subroutine readjust, 448

subroutine rearrange, 434

subroutine reduce, 37, 39

subroutine remove, 160, 183

subroutine remv, 375, 400

subroutine replace, 352

subroutine rmovandtest, 160

subroutines, 62

subroutine select, 439

subroutine setleft, 299, 304, 310

subroutine setright, 311

subroutine setsons, 355

subroutine shell, 460

subroutine simfact, 242, 247, 251, 252, 253

subroutine simtowers, 249, 255

subroutine sort, 79

subroutine sqprnt, 63

subroutine stacktop, 125

subroutine store, 40

subroutine swap, 65, 67

subroutine term, 278

subroutine tournament, 447

subroutine transclose, 379, 381

subscript errors, 28

subscripts, 26

subtree, 284

symmetric, 383

symmetric array, 30

symmetric order, 292

syntax errors, 95

T

table, 477

tasks, 403
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term, 273

ternary computer, 16

ternary decision tree, 427

ternary digit, 16

ternary heap, 457

ternary tree, 317

testing, 94, 99

bottom-up, 102

top-down, 102

then clause, 53

thread, 308

threaded binary trees, 308

three-dimensional arrays, 25

3-2 tree, 519

tic-tac-toe, 358

top, 108

top-down, 81

top-down testing, 102

topological sort, 416

tournament sort, 443, 450, 457

Towers of Hanoi, 231, 236, 248, 254, 258

BASIC implementation, 248

trailer method, 87

transitive, 383

transitive closure, 378, 381, 403

translation phase, 44

transposition, 482
traversals:

binary, 347

binary tree, 291, 306, 308

forest, 344

general, 347

inorder, 292, 306, 344, 492, 503

linked list, 174

postorder, 292, 307, 347

preorder, 291, 306, 344

trees, 343

tree operations, 354

tree-represented lists:

BASIC implementation, 333

construction of, 335

trees, 284, 340, 370, 426

BASIC representation, 342

digital search, 510

general, 510, 515

strictly binary, 532

3-2, 519

tree searching, 492

tree selection sort, 443

tree sort, 439

tree traversals, 344

tridiagonal array, 32

tries, 513

tnt, 16

TRS 80 Level II, 9, 45, 46, 53

tunnel system, 396

turnaround time, 403

two-dimensional arrays, 22, 513

twos-complement notation, 4, 15, 57

two-way insertion sort, 465

type declaration, 9

type declaration character, 47

type specification, 9

U

unary negation, 347

unary operators, 280

underfiow, 113, 122, 155, 160, 170

uniformly distributed random variable, 198

upper bound, 18

upper triangular array, 32

user, 384

V

VAL function, 141, 314

value, 7

variable:

character-string, 9

integer, 9

variable-length codes, 319

variable name, 8

variables, 45

varying-length character string, 11

vertices, 370

visiting, 291

w

warning message, 14

Warshall’s algorithm, 380, 382

weight, 373

weighted graph, 373, 390, 397

weighted path length, 325

WHILE statement, 58

words, 7

Y

youngest ancestor, 503

youngest son, 340
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