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1
Introduction to Data Structures

1.1 INTRODUCTION
In computer science, a data structure is a particular way of storing data in a 
computer so that it can be used efficiently. Different kinds of data structures are 
suited to various kinds of applications, and some are highly specialized to certain 
tasks. For Example, B-Trees are well suited for implementation of databases, 
while compiler implementations usually use hash tables to look up for identifiers.

Data structures are used almost in every program or software. Data structures 
are generally based on the ability of a computer to fetch and store data at any 
place in its memory, specified by an address- a bit string that can be itself stored 
in memory and manipulated by the program. Thus, the record and array data 
structure are based on computing the address of data items with arithmetic’s 
operation; while the linked list data structures are based on storing address of 
data items within the structure itself.

Definition
• A data structure is a method of representing data; it not only deals with

raw data but also involves the relationship between the data.
• A data structure is defined as a way of representing data in computer

memory.
• Data structure is the structural representation of logical relationships between

elements of data.

1.2 CLASSIFICATION OF DATA STRUCTURE
1. Linear data structure
2. Non-linear data structure
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 3. Primitive and non-primitive data structure
 4. Homogeneous and non-homogeneous data structure

Linear data structure: In linear data structure, data is stored in consecutive 
memory locations i.e., array, linked list, stack and queue.
Non-linear data structure: In non-linear data structure, data is stored in non 
consecutive memory location. A non-linear data structure is mainly used to represent 
data containing a hierarchical relationship between data elements i.e., tree, graph.
Primitive data structures: are the basic data structures and are directly operated 
upon by the machine instructions, which is in a primitive level. These have 
different representations on different computers. They are integer, floating point 
numbers, characters, string constants, etc.
Non-primitive data structures: Is the more complicated data structure on 
structuring of a group of homogeneous or heterogeneous data items. These are 
derived from the primitive data structures. They are array, linked-list, stack, 
queue, graph, tree, files, etc.

Data Structure

Non Primitive Data StructurePrimitive Data Structure

Integer

PointerDouble

Float Character

Linear Data Structure Non Linear Data Structure

Linked List

QueueStackArray Tree Graph

Figure 1 Classification of Data Structure

In homogeneous data structures, the data elements are of same type like array. 
In non-homogeneous data structures, the data elements may not be of same type.

1.3 OPERATION ON DATA STRUCTURE
Create: this is the first operation to create a data.
Inserting: adding new record from the data structure.
Deleting: remove a record from the data structure.
Updating: it changes values of the data structure.
Traversing: access each record exactly once so that certain items in the record 
may be processed.
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Searching: finding the location of the record with a given key value, or finding 
the locations of all records, which satisfy one or more condition in the data.
Sorting: arranging the data elements in some logical order i.e. in ascending 
and descending order.
Merging: combine the two different data elements into a single set of data 
element.

1.4 OVERVIEW OF VARIOUS DATA STRUCTURE
Array
The simplest type of data structure is a linear array and most often it is the only 
data structure that is provided in any programming language. An array can be 
defined as a collection of homogenous elements, in the form of index or value, 
stored in consecutive memory locations. An array always has a predefine size 
and the elements of an array are referenced by means of an index or value. Thus 
an array is a collection of variables of the same data type that share a common 
name. The general syntax of an array is as type variable-name [SIZE].

a [0] a [1] a [2] a [3] a [4]

Stack
A stack is an ordered list elements. Insertion in a stack 
is done using PUSH function and removal from a stack 
is done using POP function. There are only two basic 
operations possible on a stack.

 (i) PUSH: Insert an element or value into a stack.
 (ii) POP: Retrieve an element or value into the stack.

Stack is also called as LIFO (Last-in First-Out).

Queue
A queue is an ordered list in which all insertions 
can take place at one end called the REAR and 
all deletions take place at the other end called the 
FRONT. The two operations that are possible in 
a queue are insertion and deletion. Queue is also 
called FIFO (First-In-First-Out).

Linked list
A linked list is a linear collection of data elements called nodes, where the linear 
order is given by means of pointers. The key here is that every node will have 

A

Push Pop

Top

T

H
L
A

Figure 2: Schematic 
Diagram of Stack

Figure 3: Representation 
of Queue

T

Rear Front

0 1 2 3 4 5 6

A L H A
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two parts: first part contains the information/data and the second part contains 
the link/address of the next node in the list. Memory is allocated for every node 
when it is actually required and will be free when not required.

1

Node: A Memory location allocating using malloc

2 3 4 5

Data Address of Next
Node

Figure 4 Representation of Linked List

Tree
A tree is a non linear data structure. A tree is a finite 
set of one or more nodes such that:

There is a specially designated node called the 
root.

The remaining nodes are partitioned into n>=0 
disjoint sets T1…….Tn where each of these sets 
is a tree. T1….. Tn are called sub-tree of the root.

Graphs
Graph is a general tree with no parent child relationship. In general, a graph G 
may be defined as a finite set V of vertices and a set E of edge pair of connected 
vertices. The notation used is as follows: graph G = (V, E).

Delhi

Mumbai Chennai

Kolkata

Figure 6: Representation of Graph

Advantages and Disadvantages

Data Structure Advantages Disadvantages

array Quick insertion, very fast access if 
index is known.

Slow search, slow deletion, fixed size

Ordered array Quicker search than unsorted array Slow insertion and deletion, fixed size.

T Root

Parent

Child

LA

AH

Figure 5: Representation 
of Tree
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Data Structure Advantages Disadvantages

Stack Provides last-in-first-out access Slow access to other items

Queue Provides first-in-first-out access Slow access to other items

Linked list Quick insertion and deletion Slow search

Binary tree Quick search, insertion, deletion (if 
tree remains balanced)

Deletion algorithm is complex

Red-Black tree Quick search, insertion, deletion. 
Tree always balanced

Complex

2-3-4 tree Quick search, insertion, deletion. 
Tree always balanced. Similar trees 
good for disk storage

Complex

Hash Table very fast access if key known. 
Fast insertion

Slow deletion, access slow if key not 
known, inefficient memory usage

Heap Fast insertion, deletion, access to 
large item

Slow access to other items

Graph Models real world situations Some algorithms are slow and complex

1.5 ALGORITHM
An algorithm is a step-by-step finite sequence of instructions to solve a problem. 
Every algorithm must satisfy the following condition:
Input: zero or more quantities.
Output: at least one quantity is produced.
Definiteness: each instruction is clear and unambiguous.
Finiteness: if we trace out the instructions of an algorithm, then for all cases 
the algorithm will terminate after a finite number of steps.
Effectiveness: every instruction must be sufficiently basic that it can in principle 
be carried out by a person using only pencil and paper.

1.6 APPROACH FOR ALGORITHM DESIGN
There are two basic approaches for designing an algorithm; they are Top-Down 
Approach and Bottom-Up Approach.
Top-Down Approach: A top-down approach (also known as stepwise design and 
in some cases used as a synonym of decomposition) is essentially the breaking 
down of a system to gain insight into its compositional sub-systems in a reverse 
engineering fashion. In a top-down approach an overview of the system is 
formulated, specifying but not detailing any first-level subsystems. Each subsystem 
is then refined in yet greater detail, sometimes in many additional subsystem 
levels, until the entire specification is reduced to base elements. A top-down model 
is often specified with the assistance of “black boxes”, these make it easier to 
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manipulate. However, black boxes may fail to elucidate elementary mechanisms 
or be detailed enough to realistically validate the model. Top down approach 
starts with the big picture. It breaks down from there into smaller segments

Module 1.1

Module 1

Module 1.2

Module 1.2 (B)Module 1.2 (A)Module 1.1 (B)Module 1.1 (A)

Figure 7: Representation of Top down Approach

Bottom-Up Approach: A bottom-up approach is the piecing together of systems 
to give rise to more complex systems, thus making the original systems sub-
systems of the emergent system. Bottom-up processing is a type of information 
processing based on incoming data from the environment to form a perception. 
From a Cognitive Psychology perspective, information enters the eyes in one 
direction (sensory input, or the “bottom”), and is then turned into an image by the 
brain that can be interpreted and recognized as a perception (output that is “built 
up” from processing to final cognition). In a bottom-up approach the individual 
base elements of the system are first specified in great detail. These elements are 
then linked together to form larger subsystems, which then in turn are linked, 
sometimes in many levels, until a complete top-level system is formed. This 
strategy often resembles a “seed” model, by which the beginnings are small but 
eventually grow in complexity and completeness. However, “organic strategies” 
may result in a tangle of elements and subsystems, developed in isolation and 
subject to local optimization as opposed to meeting a global purpose

Module 1.1

Module 1

Module 1.2

Module 1.2 (B)Module 1.2 (A)Module 1.1 (B)Module 1.1 (A)

Figure 8: Representation of Bottom-up Approach
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There are another popular design approaches
 1. Incremental Approach
 2. Divide and Conquer Approach
 3. Greedy Approach
 4. Dynamic Programming Approach
 5. Backtracking Approach
 6. Branch and Bound Approach

 1. Incremental Approach: In this approach every time we increase the index 
to insert the element at proper position. Insertion sort uses an incremental 
approach. Having sorted the sub-array [1…..j-1], insert the single element 
A[j] into its proper place, yielding the sorted sub-array A[1….j].

 2. Divide and Conquer Approach: Divide the original problem into a set of 
sub-problems. Solve every sub-problem individually, recursively. Combine 
the solutions of the sub-problems (top level) into a solution of the whole 
original problem.

 3. Greedy Approach: A greedy algorithm is a mathematical process that looks 
for simple, easy-to-implement solutions to complex, multi-step problems 
by deciding which next step will provide the most obvious benefit. Such 
algorithms are called greedy because while the optimal solution to each 
smaller instance will provide an immediate output, the algorithm doesn’t 
consider the larger problem as a whole. Once a decision has been made, it 
is never reconsidered. Greedy algorithms work by recursively constructing 
a set of objects from the smallest possible constituent parts. Recursion 
is an approach to problem solving in which the solution to a particular 
problem depends on solutions to smaller instances of the same problem. 
The advantage to using a greedy algorithm is that solutions to smaller 
instances of the problem can be straightforward and easy to understand. 
The disadvantage is that it is entirely possible that the most optimal short-
term solutions may lead to the worst possible long-term outcome. Greedy 
algorithms are often used in mobile networking to efficiently route packets 
with the fewest number of hops and the shortest delay possible. They 
are also used in machine learning, business intelligence (BI), artificial 
intelligence (AI) and programming.

 4. Dynamic Approach: Dynamic programming is a technique for efficiently 
computing recurrences by storing partial result. It is a method of solving 
problems exhibiting the properties of overlapping sub-problems and optimal 
sub-structure that takes much less time than naïve methods.

 5. Backtracking Approach: Backtracking is a form of recursion. The usual 
scenario is that you are faced with a number of options, and you must choose 
one of these. After you make your choice you will get a new set of options; 
just what set of options you get depends on what choice you made. This 
procedure is repeated over and over until you reach a final state. If you made 
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a good sequence of choices, your final state is a goal state; if you didn’t, 
it isn’t. Conceptually, you start at the root of a tree; the tree probably has 
some good leaves and some bad leaves, though it may be that the leaves are 
all good or all bad. You want to get to a good leaf. At each node, beginning 
with the root, you choose one of its children to move to, and you keep this 
up until you get to a leaf.

 6. Branch and Bound: In a branch and bound algorithm a given sub-problem, 
which cannot be bounded, has to be divided into at least two new restricted 
sub-problems. Branch and bound algorithms are methods for global 
optimization in non-convex problems.

Analysis of algorithm
The algorithm can be analysed by tracing all step-by-step instructions, reading the 
algorithm for logical correctness, and testing it on some data using mathematical 
techniques to prove it correct. After designing an algorithm, it has to be checked 
and its correctness needs to be predicted; this is done by analysing the algorithm. 
thus, an algorithm analysis measures the efficiency of the algorithm. The 
efficiency of an algorithm can be checked by (i) correctness of an algorithm, 
(ii) implementation of an algorithm, (iii) simplicity of an algorithm (iv) execution 
time and memory requirements of an algorithm.

Types of Analysis
Best Case: The best case complexity of the algorithm is the function defined 
by the minimum number of steps taken on any instance of size n.
Average Case: The average case complexity of the algorithm is the function 
defined by an average number of steps taken on any instance of size n.
Worst Case: The worst case complexity of an algorithm is the function defined 
by the maximum number of steps taken on any instance of size n.

1.7 TIME-SPACE TRADE OFF
For many natural problems, such as sorting or matrix-multiplication, there are 
many choices of algorithms to use, some of which are extremely space-efficient 
and others of which are extremely time-efficient. This is an instance of a general 
phenomenon where one can often save space by recomputing intermediate 
results. Research in time-space trade off lower bounds seeks to prove that, for 
certain problems, no algorithms exist that achieve small space and small time 
simultaneously. In computer science, a space-time or time-memory trade off is a 
way of solving a problem or calculation in less time by using more storage space 
(or memory), or by solving a problem in very little space by spending a long time. 
Most computers have a large amount of space, but not infinite space. Also, most 
people are willing to wait a little while for a big calculation, but not forever. So if 
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your problem is taking a long time but not much memory, a space-time trade off 
would let you use more memory and solve the problem more quickly. Or, if it 
could be solved very quickly but requires more memory than you have, you can 
try to spend more time solving the problem in the limited memory.

Time Complexity
In computer science, the time complexity of an algorithm quantifies the amount 
of time taken by an algorithm to run as a function of the length of the string 
representing the input. The time complexity of an algorithm is commonly expressed 
using big oh notation, which excludes coefficients and lower order terms. When 
expressed this way, the time complexity is said to be described asymptotically, 
i.e., as the input size goes to infinity. Time complexity is commonly estimated 
by counting the number of elementary operations performed by the algorithm, 
where an elementary operation takes a fixed amount of time to perform. Thus 
the amount of time taken and the number of elementary operations performed 
by the algorithm differ by at most a constant factor.

“The time complexity of an algorithm is the amount of time it needs to run 
to completion”. Some of the reasons for studying time complexity are 

 1. We may be interested to know in advance that whether the program will 
provide a satisfactory real time response.

 2. There may be several possible solutions with different time requirements 
or with different time complexity.

Space Complexity
Space complexity is a measure of the amount of working storage an algorithm 
needs. That means how much memory, in the worst case, is needed at any 
point in the algorithm. As with time complexity, we’re mostly concerned with 
how the space needs grow, in big-Oh terms, as the size N of the input problem 
grows. Space Complexity of an algorithm is total space taken by the algorithm 
with respect to the input size. Space complexity includes both Auxiliary space 
and space used by input.

“The space complexity of an algorithm is the amount of memory it needs 
to run to completion”. The space needed by a program consists of following 
components- 

 1. Instructions space - to store executable version of program
 2. Data space - to store all constants, variables etc.
 3. Environment stack space - it is used in case of recursive program 

The total space needed by a program can be divided in two parts- A fixed 
part that is independent of particular problem, and includes instructions space 
for constants, variables and fixed size structure variables A variable part that 
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includes structure variables whose size depends on the particular problem being 
solved dynamically allocated space and the recursion stack space.

1.8 ASYMPTOTIC NOTATION
Big-Oh Notation
We use 0-Notation to give an upper bound on a function, to within constant 
factor. For a given function g(n), we denote by O(g(n)),

O(g(n)) = {f(n): there exit positive constant c and n0 such that: O ≤ f(n) ≤ 
cg(n) for all n ≥ n0 }

Example
Suppose f(n) = 2n2 + 3n + 5. We want to express f(n) as the upper bound of 
some other function.

We can proceed as follows.
f(n) = 2n2 + 3n + 5
≤ 2n2 + 3n2 + 5n2

≤ 10n2

Thus, f(n) = 0(n2), here g(n) = n2 
where c = 10 and n ≥ 1
Note:
f(n) = 0(n2) implies that f(n) = 0(nx) 
for all x ≥ 2
f(n) = c where c is a positive constant, 
then f(n) can be expressed with 
0-notation as f(n) = 0(1)

Omega (Ω) Notation
This is almost the same definition as 
Big-Oh except that “f(n) ≥ g(n)”. This 
makes g(n) a lower bound function 
instead of an upper bound function. 
For a given function g(n), Ω(g(n)) = 
{f(n): there exit positive constants c 
and n0 such that: O ≤ cg(n) ≤ f(n) for 
all n ≥ n0 }

Example
f(n) = n3 + n2 + n + 1 and g(n) = 3n2 

+ 2n + 1
since, f(n) ≥ g(n) for all n ≥ 3
hence, we have f(n) = Ω(g(n)

Figure 9: Graphically Representation of 
Big-Oh Notation

cg(n)

f(n)

f(n) = O(g(n))
n0

n

cg(n)

f(n)

f(n) = Ω(g(n))
n0

n

Figure 10 Graphically Representation of 
Omega (Ω) Notation
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f(n) = 5 log n + 3 log (log n). Let us find the Ω-notation of f(n)
now, f(n) = 5 log n + 3 log (log n)
≥ 5 log n for n ≥ 2
Hence, f(n) = Ω (log n)

Theta (θ) Notation
The lower and upper bound for the function T is provided by the theta notation. 
For a given function g(n), we denote by θ(g(n)) the set of functions as: θ(g(n)) = 
{f(n): it exit positive constants c1, c2 and n0 such that: 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) 
for all n ≥ n0}

Example
Suppose f(n) = 1/2n2 – 3n. we can show 
that f(n) = θ(n2)

Here,we have to find c1, c2 and n0 
such that c1.n2 ≤ f(n) ≤ c2.n2

Let c1 . n2 ≤ 1/2n2 – 3n ≤ c2 . n2

Or c1  ≤ ½ – 3/n ≤ c2 (dividing both 
side by n2)

We see that the above inequality 
holds for n ≥ 7 (thus n0 = 7) and c1 = 
1/14, c2 = 1/2

1.9 DYNAMIC MEMORY ALLOCATION
The process of allocating memory at runtime is known as dynamic memory 
allocation. Library routines known as “memory management functions” are 
used for allocating and freeing memory during execution of a program. These 
functions are defined in stdlib.h.

Function Description 

malloc() allocates requested size of bytes and returns a void pointer pointing to the first 
byte of the allocated space

calloc() allocates space for an array of elements, initialize them to zero and then return a 
void pointer to the memory

free releases previously allocated memory

realloc modify the size of previously allocated space

Memory Allocation Process
Global variables, static variables and program instructions get their memory in 
permanent storage area whereas local variables are stored in area called Stack. 

c1 g(n)

c2 g(n)

f(n)

f(n) = θ(g(n))
n0

n

Figure 11: Graphically Representation 
of Theta (θ) Notation



12 Data Structure Using C

The memory space between these two regions is known as Heap area. This 
region is used for dynamic memory allocation during execution of the program. 
The size of heap keeps changing.

Local Variable Stack}
} Heap

Permanent
Storage

area

Global Variable

Static
Variable

Program
Instructions

Free memory

Allocating block of Memory
malloc ():
malloc () function is used for allocating block of memory at runtime. This 
function reserves a block of memory of given size and returns a pointer of type 
void. This means that we can assign it to any type of pointer using typecasting. 
If it fails to locate enough space it returns a NULL pointer.

Example using malloc ():
int *x;
x = (int*) malloc (50 * sizeof (int));      //memory space allocated to variable x
free (x); //releases the memory allocated to variable x

calloc():
calloc() is another memory allocation function that is used for allocating memory 
at runtime. calloc function is normally used for allocating memory to derived 
data types such as arrays and structures. If it fails to locate enough space it 
returns a NULL pointer.

Example using calloc () :
struct employee
{
char *name;
int salary;
};
typedef struct employee emp;
emp *e1;
e1 = (emp*)calloc(30,sizeof(emp));
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realloc ():
realloc () changes memory size that is already allocated to a variable.

Example using realloc () :
int *x;
x = (int*)malloc(50 * sizeof(int));
x = (int*)realloc(x,100); //allocated a new memory to variable x

Diffrence between malloc() and calloc()

calloc() malloc()

calloc() initializes the allocated memory with 
0 value.

malloc() initializes the allocated memory with 
garbage values.

Number of arguments is 2 Number of argument is 1

Syntax :
(cast_type *)calloc(blocks, size_of_block);

Syntax :
(cast_type *)malloc(Size_in_bytes);

POINTS TO REMEMBER
 1. A data structure is a particular way of sorting and organizing data either in 

computer’s memory or on the disk storage so that it can be used efficiently.
 2. There are two types of data structure: primitive and non-primitive data 

structure.
 3. Primitive data structures are the fundamental data types which are supported 

by a programming language.
 4. Non-primitive data structures are those data structures which are created 

using primitive data structure.
 5. Non-primitive data structures can further be classified into two categories: 

linear and non-linear data structure.
 6. In the elements of a data structures are stored in a linear or sequential order, 

then it is a linear data structure. However, if the elements of a data structure 
are not stored in sequential order, then it is a non-linear data structure.

 7. An array is a collection of similar data elements which are stored in 
consecutive memory locations.

 8. A linked list is a linear data structure consisting of a group of elements 
called nodes which together represent a sequence.

 9. A stack is a last-in-first-out (LIFO) data structure in which insertion and deletion 
of elements are done at only one end, which is known as the top of the stack.

 10. A queue is a first-in-first-out (FIFO) data structure in which the element that 
is inserted first is the first to be taken out. The elements in a queue are added 
at one end called the rear and removed from the other end called the front.
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 11. A tree is a non-linear data structure which consists of a collection of nodes 
arranged in a hierarchical tree structure. The simplest form of a tree is a 
binary tree. A binary tree consists of a root node and left and right sub-tree, 
where both sub-trees are also binary trees.

 12. A graph is often viewed as a generalization of the tree structure.
 13. An algorithm is basically a set of instructions that solve a problem.
 14. The time complexity of an algorithm is basically the running time of the 

program as a function of the input size.
 15. The space complexity of an algorithm is the amount of computer memory 

required during the program execution as a function of the input size.
 16. The worst-case running time of an algorithm is an upper bound on the 

running time for any input.
 17. The average-case running time specifies the expected behavior of the 

algorithm when the input is randomly drawn from a given distribution.
 18. The efficiently of an algorithm is expressed in terms of the number of 

elements that has to be processed and the type of the loop that is being used.

EXERCISES
 1. Define Data Structure and also write down the difference between primitive 

data structure and non-primitive data structure?
 2. Name various Data Structures. Explain them briefly?
 3. What are the various operations to be performed on Data Structures?
 4. What is an algorithm? Explain with the help of suitable example the time 

and space analysis of an algorithm?
 5. Explain the different ways of analysis of algorithm?
 6. Distinguish between time and space complexity?
 7. What do you understand by best, worst and average case analysis of an 

algorithm?
 8. What do you understand by time-space trade off?
 9. Explain the concept of Big-Oh Notation, Omega (Ω) Notation and Theta (θ) 

Notation?

MULTIPLE CHOICE QUESTION
 1. Which data structure is defined as a collection of similar data elements?

 (a) Arrays
 (c) Trees

 (b) Linked list
 (d) Graphs

 2. The data structure used in hierarchical data model is
 (a) Array
 (c) Tree

 (b) Linked list
 (d) graph
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 3. In a stack, insertion is done at
 (a) Top
 (c) Rear

 (b) Front
 (d) mid

 4. The position in a queue from which an element is deleted is called as
 (a) Top
 (c) Rear

 (b) Front
 (d) mid

 5. Which data structure has fixed size?
 (a) Arrays
 (c) Trees

 (b) Linked lists
 (d) graphs

 6. If top=max-1, then that the stack is
 (a) Empty
 (c) Contains some data

 (b) Full
 (d) None of these

 7. Which among the following is a LIFO data structure?
 (a) Stacks
 (c) Queues

 (b) Linked list
 (d) graphs

 8. Which data structure is used to represent complex relationships between 
the nodes?

 (a) Arrays
 (c) Trees

 (b) Linked lists
 (d) graphs

 9. Examples of linear data structures include
 (a) Arrays
 (c) Queue

 (b) Stacks
 (d) All of these

 10. Th running time complexity of a linear algorithm is given as
 (a) O(1)
 (c) O(n log n)

 (b) O(n)
 (d) O(n2)

 11. Which notation provides a strict upper bound for f(n)?
 (a) Omega notation
 (c) Small o notation

 (b) Big O notation
 (d) Theta notation

 12. Which notation comprises a set of all functions h(n) that are greater than 
or equal to cg(n) for all values of n ≥ n0

 (a) Omega notation
 (c) Small o notation

 (b) Big O notation
 (d) Theta notation

 13. Function in o(n) notation is
 (a) 10 n2

 (c) N2/100
 (b) N1.9

 (d) N2
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TRUE OR FALSE
 1. Trees and graphs are the examples of linear data structures.
 2. Queues is a FIFO data structure.
 3. Trees can represent any kind of complex relationship between the nodes.
 4. The average-case running time of an algorithm is an upper bound on the 

running time for any input.
 5. Array is an abstract data types.
 6. Array elements are stored in consecutive memory locations.
 7. The pop operation adds an element to the top of a stack.
 8. Graphs have a purely parent-to-child relationship between their nodes.
 9. The worst-case running time of an algorithm is a lower bound on the 

running time for any input.
 10. In top-down approach, we start with designing the most basic or concrete 

modules and then proceed towards designing higher-level modules.

FILL IN THE BLANKS
 1. __________ is an arrangement of data either in the computer’s memory 

or on the disk storage.
 2. __________ are used to manipulate the data contained in various data 

structures.
 3. In ____________, the elements of a data structure are stored sequentially.
 4. ___________ of a variable specifies the set of values that the variable can take.
 5. A tree is empty if ______________
 6. Abstract means __________
 7. The time complexity of an algorithm is the running time given as a function 

of ________
 8. _______ analysis guarantees the average performance of each operation 

in the worst case.
 9. The elements of an array are referenced by an ___________.
 10. __________ is used to store the address of the topmost element of a stack.
 11. The _________ operation returns the value of the topmost element of a stack.
 12. An overflow occurs when____________.
 13. __________ is a FIFO data structure.
 14. The elements in a queue are added at __________ and remove from 

__________.
 15. If the elements of a data structure are stored sequentially, then it is a 

__________.
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2
Introduction to Array

2.1 ARRAY
Arrays are most frequently used in programming. Mathematical problems like 
matrix, algebra, etc can be easily handled by arrays. An array is a collection of 
similar/homogenous data elements described by a single name. Each element of 
an array is referenced by a variable or value, called index. If an element of an 
array is referenced by single subscript, then the array is known as one-dimensional 
array or linear array. If an element of an array is referenced by two subscripts, 
then the array is known as two-dimensional array. The arrays whose elements 
are referenced by two or more subscripts are called multi-dimensional arrays.

Definition
An array can be defined as the combination of homogenous elements with 
consecutive index numbers and successive memory locations. The values of an 
array are called elements of that array. The general syntax of an array is

<<Data type >> variable name [size];
Example of one-dimensional array
Int arr [5] = {11, 22, 33, 44, 55};
Char arr [5] = “Talha”;
Float arr [5] = {10.5, 20.5, 30.5, 40.5, 50.5}

The data type contained in the array could be int, char, float etc and the 
size indicates the maximum number of elements that can be stored inside the 
array. So, when we declare an array, we will have to assign a type as well as 
size. For example, when we want to store 5 integer values, then we can use the 
following declaration.

int arr [5]
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By this declaration we are declaring arr to be an array, which is supposed 
to contain in all 5 integer values.

arr [0]   arr[1]     arr[2]       arr[3]       arr[4]

2.2 ONE-DIMENSIONAL ARRAY
This type of array represents and store data in linear form. It is also called 
single dimensional array. One-dimensional array is a set of ‘n’ finite number 
of similar/homogenous data elements. The elements of the array are referenced 
respectively by an index set consisting of ‘n’ consecutive memory locations. The 
elements of the array are stored respectively in successive memory locations. 
Sets of ‘n’ numbers are called the length or size of an array. The elements of an 
array “arr” can be denoted in C Programming language as: A[0], A[1], A[2], 
A[3],. ......A[n-1]. The number ‘n ’in A [n] is called a subscript or an index and 
A[n] is called a subscript variable. If ‘n’ is 8, then the array elements are stored 
in memory A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7].

Name    a[0]    a[1]  a[2]  a[3]   a[4]   a[5]   a[6]   a[7]

Data 12 45 32 23 17 49 5 11

Address 1000 1002 1004 1006 1008 1010 1012 1014
Figure 1: I-D int Array memory arrangement

Write a program to insert element in a Single Dimensional Array

#include<stdio.h>
void main()
{
int a[4],i,pos,data;
printf (“Enter the number”);
for(i=0;i<=3;i++)
{
scanf(“%d”,&a[i]);
}
printf(“Enter the position”);
scanf(“%d”,&pos);
printf(“Enter the Data”);
scanf(“%d”,&data);
for(i=2;i>=pos;i--)
{
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a[i+1]=a[i];
}
a[pos]=data;
printf(“The Final Array is\n”);
for(i=0;i<4;i++)
{
printf(“%d\t”,a[i]);
}
}
Output
Enter the number 5
3
5
Enter the position2
Enter the Data12
The Final Array is

 5 3 12 5
Write a program to Delete element in a Single Dimension Array
#include<stdio.h>
void main()
{
int a[5],i,pos,data;
printf(“Enter the number”);
for(i=0;i<4;i++)
{
scanf(“%d”,&a[i]);
}
printf(“Enter the position”);
scanf(“%d”,&pos);
for(i=pos;i<4;i++)
{
a[i]=a[i+1];
}
printf(“The Final Array is\n”);
for(i=0;i<3;i++)
{
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printf(“%d\t”,a[i]);
}
}
Output
Enter the number6
3
12
4
Enter the position2
The Final Array is

 6 3 4
Write a program to find out Maximum and Minimum value in single 

dimension array
#include<stdio.h>
void main()
{
int a[10],i,max,min;
printf(“Enter the number of Array\n”);
for(i=0;i<10;i++)
{
scanf(“%d”,&a[i]);
}
printf(“The Array Elements Is:-\n”);
for(i=0;i<10;i++)
{
printf(“%d\t”,a[i]);
}
max=a[0];
for(i=1;i<10;i++)
{
if(a[i]>max)
max=a[i];
}
min=a[0];
for(i=1;i<10;i++)
{
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if(a[i]<min)
min=a[i];
}
printf(“\n The Maximum Value is:- %d”, max);
printf(“\n The Minimum Value is:- %d”, min);
}
Output
Enter the number of Array
12
3
21
33
40
-10
5
8
2
45
The Array Elements Is:-

 12 3 21 33 40 -10 5 8 2 45
The Maximum Value is:- 45
The Minimum Value is:- -10

2.3 OPERATIONS ON ARRAY
Various operations that can be performed on an array are:

 1. Traversing.
 2. Sorting.
 3. Searching.
 4. Insertion.
 5. Deletion
 6. Merging.

Traversing
Traversing is the process of visiting each element of the array exactly once, 
starting from first element upto the last element. A simple algorithm is below.
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Algorithm
Steps:

 1. i = L
 2. while i ≤ U do
 3. process (A[i])
 4. i = i + 1
 5. end while
 6. stop

Sorting
This operation is performed on an array in a specified order (ascending or 
descending). The given algorithm is used to store the element of an integer 
array in ascending order.

Algorithm
Steps:

 1. i = U
 2. while i ≥ L do
 3. j = L
 4. while j > i do
 5. if (A[j], A[j+1]) = FALSE
 6. swap (A[j], A[j+1])
 7. end if
 8. j = j + 1
 9.  end while
 10. i = i - 1
 11. end while
 12. stop

Searching
This operation is applied to search an element in an array. A simple algorithm 
is as below.

Algorithm
Steps:

 1. i = L, found = 0, location = 0 //found=0 means data is not found in the list
 2. while (i ≤ U) and (found = 0) do
 3. if Compare (A[i], Key) = TRUE then
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 4. found = 1
 5. location = i
 6. else
 7. i = i + 1
 8. end if
 9. end while
 10. if found = 0 then
 11. print “search is unsuccessful”
 12. else
 13. print “Search is successful”
 14.  end if
 15. Return
 16. stop

Insertion
This operation is used to insert an element into an array into a particular location. 
A simple algorithm is given below.

Algorithm
Steps:

 1. if A[U] ≠ NULL then
 2. print “array is full”
 3. exit
 4. else
 5. i = U
 6. while i > location do
 7. A[i] = A[i - 1]
 8. i = i - 1
 9. End while
 10. A[location] = Key
 11. End if
 12. Stop

Deletion
This operation is used to delete a particular element from an array. The element 
will be deleted by overwriting it with its subsequent element. A simple algorithm 
is as shown.
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Algorithm
Steps:

 1. if n=0 then array is underflow and stop
 2. read data as element to be deleted
 3. read location at where deletion will be made
 4. k=LB
 5. repeat step 6 while a(k) ≠ data
 6. k=k+1
 7. repeat step 8 while k< UB
 8. a(k)=a(k+1)
 9. k=k+1
 10. a(UB)=NULL
 11. UB=UB-1
 12. Stop

Merging
This operation is use to merge two sorted array and create a third array in the 
sorted order. A simple algorithm is as given.

Note:
LBA: lower bound of array_1
UBA: upper bound of array_1
LBB: lower bound of array_2
UBB: upper bound of array_2

Algorithm
Steps:

 1. i=LBA, J=LBB, K=0
 2. repeat step 3 to 4 while I ≤ UBA and I ≤ UBB
 3. if A(i) < B(j) then
 4. c(k)=A(i)
 5. i=i+1
 6. else
 7. c(k) = A(i)
 8. j=j+1
 9. k=k+1
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 10. repeat step 11 while i ≤ UBA
 11. c(k)=A(i)
 12. i=i+1
 13. k=k+1
 14. repeat step 15 while j ≤ UBB
 15. c(k) = B(j)
 16. j=j+1
 17. k=k+1
 18. Stop

2.4 REPRESENTATION OF ONE-DIMENSION IN MEMORY
Actual Address of the

1st element of the array
is known as

Base Address (B)
Here it is 1100

Actual Address
in the Memory

Address with respect to
the array (Subsript)

Elements

Memory space acquired 
by every element in the

Array is called
Width (W)

Here it is 4 bytes

1100

Lower Limit/Bound
of Subscript (LB)

0

15 7 11 44 93 20

1 2 3 4 5

1104 1108 1102 1106 1120

Calculation in single (one Address) Dimension Array

Let A be a 1-D array with n elements. As array are stored in consecutive 
memory location, the system need not keep track of the address of every element 
of A, but needs to keep track of the address of 1st element only, denoted by: base 
address (A). The address of a particular element in a 1-D array is given below:

Address of element a[k]=B+W*K
Where B=base address
W= size of each element of the array
K= address of the element.

 Q1. Suppose the base address of the 1st element of the array is 5000 and 
each element of the array occupies 2 bytes in the memory, then address 
of 5th element of a 1-D array a[20] will be given as:

Solution: apply the formula
Address of element a[k] = B + W * K
Base address=5000
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W=2
K=5
A [5] = 5000 + 2 * 5
=5000 + 10
=5010

 Q2. Suppose the base address of the 1st element of the array is 200 and each 
element of the array occupies 4 bytes in the memory, then address of 
6th element of a 1-D array a[20] will be given as:

Solution: Apply the formula
Address of element a[k] = B + W * K
Base address=200
W=4
K=6
A [6] = 200 + 4 * 6
=200 + 24
=224

2.5 TWO-DIMENSIONAL ARRAY
While storing the elements of a 2-D 
array in memory, these are allocated 
in contiguous memory locations. 
Therefore, a 2-D array must be linearized 
so as to enable their storage. There are 
two alternatives to achieve linearization: 
Row-Major and Column-Major.

The general syntax of two-
dimensional array is:

<<Data_type>> array-name [size1][size2];

2.6  IMPLEMENTATION OF 2-D (DIMENSION) ARRAY IN 
MEMORY

The elements of a 2-D array are stored in computer’s memory row-by-row or 
column-by-column. If the array is stored as row-by-row, it is called row-major 
order. If the array is stored as column-by-column, it is called column-major 
order. A 2-D array can be implemented in a computer programming language 
in two ways:

 1. Row-Major Implementation
 2. Column-Major Implementation

8 6 5 4

2 1 9 7

3 6 4 2

Column Index

0

1

2

R
ow

 In
d

ex

Two-Dimensional Array

0 1 2 3
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Row-Major Implementation
Row major ordering assigns successive 
elements moving across the rows and then 
down the columns to successive memory 
locations. The mapping is best described by 
the diagram.

Row major ordering is the method 
employed by most high level programming 
languages including Pascal, C, Ada Modula-2 
etc. It is very easy to implement and easy to 
use in machine language (especially within a 
debugger such as CodeView). The conversion 
from a two-dimensional structure to a linear 
array is very intuitive.

 1. Address of element in Row-Major Implementation
Address of element a[i] [j]=B + W ( n (i - L1) + (j - L2))
Where B=base address
W=size of each array element
n=number of column (i.e., U2 - L2 + 1)
L1=lower bound of row
L2=lower bound of column
U2=upper bound of a column

 Q1. A 2-D array defined as A [4.....6, 1.....4] required 4 bytes of storage space 
for each element. If the array is stored in row major, then calculate 
the address of element at location A [5, 2]. Base address is 100.

Solution: Apply the formula
Address of element a[i][j]=B + W ( n (i - L1) + (j - L2))
B=100, W=4, i=5, j=2, L1=4, L2=1, U2=4
Calculate n=U2 – L2 +1
=4-1+1
=4
Address of A[5,2]=100 + 4 ( 4 (5 - 4) + (2 - 1))
=100 + 4 (4 * 1 + 1)
=100 + 20
=120

 Q2. Calculate the address of Y [4,3] in a 2-D array Y[-1....6, -1....5] stored 
in row major order in the main memory. Suppose the base address 
to be 200 and that each element required 4 bytes of storage.

00

0

1

1

1

2

2

2

3

3

3
15 A [3,3]

Memory

A:array[0..3,0..3] of char,

14 A [3,2]
13 A [3,1]
12 A [3,0]
11 A [2,3]
10 A [2,2]
9 A [2,1]
8 A [2,0]
7 A [1,3]
6 A [1,2]
5 A [1,1]
4 A [1,0]
3 A [0,3]
2 A [0,2]
1 A [0,1]
0 A [0,0]

4 5 6 7

8 9 10 11

12 13 14 15
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Solution: Apply the formula
Address of element a[i][j]=B + W ( n (i - L1) + (j - L2))
B=200, w=4,i=4,j=3,L1=-1,L2=-1, U2=5
Calculate n=U2 - L2 + 1
=5- (-1) + 1
=7
Address of Y [4,3]=200 + 4( 7 (4 - (-1) + (3 - (-1))
=200+4(7 * 5 + 4)
=200+4 * 39
=200 + 156
=356

 Q3. Each element of an array ABC [15][45] requires 4 bytes of storage. 
Suppose base address of ABC is 2000, calculate the location of ABC 
[5][5] when the array is stored in row major order?

Solution: Apply the formula
Address of element a[i][j]=B + W ( n (i - L1) + (j - L2))
B=2000, w=4, n=45, i=5, L1=0, j=5, L2=0
n=number of column, therefore n=45
Address of ABC [5][5]=2000+4 (45(5-0)+(5-0))
=2000+4(225+5)
=2000+920
=2920

 Q4. Give an array X [6][6] whose base address is 100. Calculate the 
location X [2][5] if each element occupies 4 bytes and array is stored 
row-wise?

Solution: Apply the formula
Address of element a[i][j]=B + W ( n (i - L1) + (j - L2))
B=100, w=4, n=6, i=2, j=5, L1=0, L2=0
n=number of column, therefore n=6
Address of X [2][5]=100+4(6(2-0)+(5-0))
=100+4(12+5)
=100+68
=168

1. Address of element in Column-Major Implementation
Column major ordering is the other function frequently used to compute the 
address of an array element. FORTRAN and various dialects of BASIC (e.g. 
Microsoft) use this method to index arrays. In row major ordering the right most 
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index increased fast as you moved through consecutive memory locations. In 
column major ordering the left most index increases the fastest.

Address of element a[i][j]=B + W ( m (j - L2)+(i-L1))
Where B=base address
W=size of each array element
m=number of row (i.e., U1 – L1 + 1)
L1=lower bound of row
L2=lower bound of column
U1=upper bound of a row

 Q1. A 2-D array defined as A[4.....6, 1.....4] required 4 bytes of storage space 
for each element. If the array is stored in column major, then calculate 
the address of element at location A[5,2]. Base address is 100.

Solution: Apply the formula
Address of element a[i][j]=B + W ( m (j - L2)+(i-L1))
B=100, w=4, m=3, i=5, j=2, L1=4, L2=1
m=U1-L1+1
=6-4+1
=3
Address of element A [5][2] = 100 + 4 ( 3 (2 - 1) + (5 - 4)
=100 + 4 * 4
=100 + 16
=116

 Q2. Calculate the address of Y [4,3] in a 2-D array Y[-1....6, -1....5] stored 
in column major order in the main memory. Suppose the base address 
to be 200 and that each element required 4 bytes of storage.

Solution: Apply the formula
Address of element Y[i][j]=B + W ( m (j - L2)+(i-L1))
B=200, w=4, m=7, i=4, j=3, L1=-1, L2=-1
m=U1-L1+1
=6-(-1)+1
=7
Address of element Y [4][3] = 200 + 4 ( 7 ( 3 - (-1) + (4 - (-1))
=200 + 4 * 33
=200 + 132
332



32 Data Structure Using C

 Q3. Each element of an array ABC [15][45] requires 4 bytes of storage. 
Suppose base address of ABC is 2000, calculate the location of ABC 
[5][5] when the array is stored in column major order?

Solution: Apply the formula
Address of element Y[i][j]=B + W ( m (j - L2)+(i-L1))
B=2000, w=4, m=15, i=5, j=5, L1=0, L2=0
m=number of row, therefore m=15
Address of ABC [5][5] = 2000 + 4 ( 15 ( 5 – 0 ) + ( 5 - 0))
=2000 + 4 *80
=2000 + 320
=2320

 Q4. Give an array X [6][6] whose base address is 100. Calculate the location 
X[2][5] if each element occupies 4 bytes and array is stored column-wise?

Solution: Apply the formula
Address of element Y[i][j]=B + W ( m (j - L2)+(i-L1))
B=100, w=4, m=6, i=2,j=5, L1=0, L2=0
m=number of row, therefore m=6
Address of ABC [2][5] = 100 + 4 ( 6 ( 5 – 0 ) + ( 2 - 0))
=100 + 4 * 32
=100 + 128
=228

2.7 SPARSE MATRICES
There are special types of matrices in which most of the elements are “0s” 
(Zeros). That is, if lot of elements from a matrix have a value 0 then the matrix 
is known as a sparse matrix.

There is no clear definition of when a matrix is sparse and when it is not, but 
it is a concept, which we can all recognise intuitively. If the matrix is sparse, 
we must consider an alternate way of representing it rather than the normal 
row-major or column-major arrangement. This is because a sparse matrix is a 
matrix containing very few non-zero elements. If the user stores the entire matrix 
including zero elements then there is wastage of storage space.

Consider a 1000 × 1000 matrix have 5 non-zero elements per row then the 
non-zero percentage of the matrix can be calculated as:

5 × non-zero element
×1000 rows ×100%Row

1000 × 1000 element

æ öì üï ï ÷çï ï ÷çï ï ÷ç ÷í ýç ÷çï ï ÷çï ï ÷÷çï ïè øî þ

   = 0.005% non-zero elements
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Thus, to represent this 1000 x 1000 matrix in memory only 0.005% of the 
memory is required. So, significant storage and computational saving can be 
realised by using sparse storage and solution techniques.

There are two types of representing sparse matrices.

 1. Array Representation.
 2. Linked List Representation.

2.8 ARRAY REPRESENTATION OF A SPARSE MATRIX
In the array representation of a sparse matrix, only the non-zero elements are 
stored so that storage space can be reduced. Each non-zero element in the sparse 
matrix is represented as Row, Column, and Value. For this, a two-dimension 
array containing 3 columns can be used. The first column is for storing the 
row numbers, the second column is for storing the column numbers and the 
third column represents the value corresponding to the non-zero element at 
row, column in the first two columns. For example, consider the following 
sparse matrix.

2 0 0 0
0 1 0 0
0 4 3 0
0 0 6 0

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

The above matrix can be represented as

Row Column Value 

0 0 2

1 1 1

2 1 4

2 2 3

3 2 6

The structure declaration for array is as:
#define MAX 50;
struct triplet {
int row;
int column;
int element;
} sparse_matrix[MAX];
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The maximum number of non-zero elements in sparse matrix is defined by 
constant MAX. The array representation will use [2 * (n + 1) * size of (int) + 
n * size of (T)] bytes of memory where n is the number of non-zero bytes and 
T is the data type of elements.

Linked List Representation of a Sparse Matrix
Representing a sparse matrix as an array of 3-tuples. When carry out addition 
or multiplication, we need to know the number of non-zero terms in each of the 
sparse matrices. As a result, it is not possible to predict the size of the resultant 
matrix before hand. So instead of an array, we can represent the sparse matrix 
in the form of a linked list. In the linked list representation a separate list is 
maintained for each column as well as each row of the matrix, i.e., if the matrix 
is of size 4 x 4, then there would be 4 lists for 4 columns and 4 lists for 4 rows. 
A node in a list stores the information about the non-zero element of the sparse 
matrix. The head node for a column list stores the column number, a pointer to 
the node which comes first in the column and a pointer to the next column head 
node. A head node for a row list stores, a pointer to the node, which comes first 
in the row list, and a pointer to the next row head node.

Example: Show through appropriate data structure representation of 
the following 4 x 4 sparse matrix.

0 0 11 0
12 0 0 0
0 4 0 0
0 0 0 25

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç - ÷ç ÷ç ÷ç ÷ç -è ø

Solution: The given 4 x 4 sparse matrix can be represented in array is:

Row Column Value 

0 2 11

1 0 12

2 1 -4

3 3 -25

And the linked list representation is:
Example: Let A be N x N sparse matrix array. Write algorithm for the 

following:

 (i) Find the number NUM of non-zero element 
in A.

 (ii) Find the product PROD of the diagonal elements 
  ( a11, a22,. ......, ann)

4 4 4

1

2

3

4

3 11 X

1 12 X

2 -4 X

4 -25 X
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Solution:

 (i) The algorithm finds the number of non-zero elements in Matrix A.
Steps:
 1. Set k=0
 2. Repeat for i = 0 to N – 1
 3. Repeat for j = 0 to N – 1
 4. if A[i,j] ≠ 0
 5. then k = k+1
 6. print “ number of non-zero elements”, k
 7. stop
 (ii) The algorithm finds the product of diagonal elements.
Steps:

 1. PROD = 1
 2. Repeat for i = 0 to N – 1
 3. Repeat for j = 0 to N – 1
 4. if (i ≠ j)
 5. then PROD = PROD * A[i,j]
 6. print “PROD”
 7. stop

2.9 ADVANTAGES AND DISADVANTAGES OF ARRAYS
Advantages of Arrays
 1. It is used to represent multiple data items of same type by using only single 

name.
 2. It can be used to implement other data structures like linked lists, stacks, 

queues, trees, graphs etc.
 3. 2D arrays are used to represent matrices.

Disadvantages of Arrays
 1. The dimension of an array is determined at the moment the array is created, 

and cannot be changed later on.
 2. The array occupies an amount of memory that is proportional to its size, 

independently of the number of elements that are actually of interest.
 3. If we want to keep the elements of the collection ordered, and insert a new 

value in its correct position, or remove it, then, for each such operation we 
may need to move many elements (on the average, half of the elements 
of the array); this is very inefficient.
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POINTS TO REMEMBER
 1. An array is a collection of elements of the same data type.
 2. The elements of an array are stored in consecutive memory locations and 

are referenced by an index.
 3. The index specifies an offset from the beginning of the array to the element 

being referenced.
 4. Declaring an array means specifying three parameters: data type, name, 

and its size.
 5. The length of an array is given by the number of elements stored in it.
 6. The name of an array is a symbolic reference to the address of the first byte 

of the array. Therefore, whenever we use the array name, we are actually 
referring to the first byte of that array.

 7. A two-dimensional array is specified using two subscripts where the first 
subscript denotes the row and the second subscript denotes the column of 
the array.

 8. Using two-dimensional arrays, we can perform the different operations 
on matrices: transpose, addition, subtraction, multiplication.

 9. A multi-dimensional array is an array of arrays.
 10. Multi-dimensional arrays can be stored in either row major order or column 

major order.

EXERCISES
 1. What is an array? How is it represented in memory?
 2. What are the uses of an array? What is an ordered array?
 3. Write short notes on (i) Row-Major Implementation (ii) Column-Major 

Implementation?
 4. Write a C function to insert an element in order stored in an array?
 5. How address calculation is done in the array? Derive the formula for two-

dimensional, three-dimensional and N-dimensional array?
 6. What do you understand by multi-dimensional array? How they are 

represented in memory?
 7. For a single-dimensional array if the base address is 1500. Find 5th index 

elements address. If a data stored in this array needs only 2 byte?

MULTIPLE CHOICE QUESTION
 1. If an array is declared as arr[] = {1,3,5,7,9}; then what is the value of 

sizeof (arr[3])?
 (a) 1
 (c) 3

 (b) 2
 (d) 8
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 2. If an array is declared as arr[] = {1,3,5,7,9}; then what is the value of 
arr[3]?

 (a) 1
 (c) 9

 (b) 7
 (d) 5

 3. If an array is declared as double arr[50]; how many bytes will be allocated 
to it?

 (a) 50
 (c) 200

 (b) 100
 (d) 400

 4. If an array is declared as int arr[50], how many elements can it hold?
 (a) 49
 (c) 51

 (b) 50
 (d) 0

 5. If an array is declared as int arr[5][5], how many elements can it store?
 (a) 5
 (c) 10

 (b) 25
 (d) 0

 6. Given an integer array arr[]; the ith element can be accessed by writing
 (a) *(arr+i)
 (c) arr[i]

 (b) *(i+arr)
 (d) all of these

TRUE OR FALSE
 1. An array is used to refer multiple memory locations having the same 

name.
 2. An array name can be used as a pointer.
 3. A loop is used to access all the elements of an array.
 4. An array stores all its data elements in non-consecutive memory locations.
 5. Lower bound is the index of the last element in an array.
 6. Merger array contains contents of the first array followed by the contents 

of the second array.
 7. It is possible to pass an entire array as a function argument.
 8. arr[i] is equivalent to writing *(arr+i)
 9. Array name is equivalent to the address of its last element.
 10. mat[i][j] is equivalent to *(*mat + i)+j).
 11. An array contains elements of the same data type.
 12. When an array is passed to a function, C passes the value for each element.
 13. A two-dimensional array contains data of two different types.
 14. The maximum number of dimensional that an array can have is 4.
 15. By default, the first subscript of the array is zero.
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FILL IN THE BLANKS
 1. Each array element is assessed using a ___________.
 2. The elements of an array are stored in ____________ memory locations.
 3. An n-dimensional array contains ___________ subscripts.
 4. Name of the array acts as a _____________
 5. Declaring an array means specifying the ___________, _______ and 

__________
 6. _______ is the address of the first element in the array.
 7. Length of an array is given by the number of ___________
 8. A multi-dimensional array, in simple terms, is an _____________
 9. An expression that evaluates to an ___________ value may be used as an 

index.
 10. arr[3] = 10; initializes the __________ element of the array with value 

10.
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3
Linked List

3.1 INTRODUCTION
An array is a very useful data structure provided in programming languages. 
However, it has some limitations.

 1. Memory storage space is wasted, as the memory remains allocated to 
the array throughout the program execution even few nodes are stored. 
Because additional nodes are still reserved and their storage can’t be used 
for any purpose.

 2. The size of array can’t be changed after its declaration i.e., its size has to 
be known at compilation time.

These limitations can be overcomed by using linked list data structure. 
Linked list is the most commonly used data structure used to store similar 
type of data in memory. The elements of a linked list are not stored in adjacent 
locations as in arrays. In array, once memory space is allocated it cannot 
be extended. That is why this type of data structure is called static data 
structure. In Linked list memory space allocated for the elements of the list 
can be extended at any time. That is why this type of data structure is called 
dynamic data structure.

A linked list is an ordered collection of finite homogeneous data elements 
called nodes where the linear order is maintained by means of links or pointers. 
That is, each node is divided into two parts: the first part contains the information 
of the node and the second part contains the link to the next node.

Information Link to the next node

Figure: structure of a node
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3.2 REPRESENTATION OF LINKED LIST IN MEMORY
There are two ways to represent a linked list in memory:

 1. Static representation using array.
 2. Dynamic representation using free pool of storage

1. Static Representation
In static representation of a single linked list, two arrays are maintained: one 
array for information and other for links. Two parallel arrays of equal size are 
allocated which should be sufficient to store the entire linked list. The static 
representation of the linked list is shown in figure:

Info

130

1

2

3

4

5

6

7

8

9

99

Memory
Location

.

.

.
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19

82

14
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X

02

.

.

.

.

.

.

.

.

Next

Figure Static Representation of a Single Linked List using Arrays

2. Dynamic Representation
The efficient way of representing a linked list is using free pool of storage. In 
this method, there is a memory, which is nothing but a collection of free memory 
spaces, and a memory manager (a program). During the creation of linked list, 
whenever a node is required, the request is placed to the memory manager; memory 
manager will then search the memory for the block requested and if found grants 
a desired block to the caller. Again, there is also another program called garbage 
collection, whenever a node is no more in use; it returns the unused node to the 
memory. Such a memory management is known as dynamic memory management.

In this section, we will study the following:

 1. Single Linked List.
 2. Circular Linked List.
 3. Double Linked List.
 4. Circular Double Linked List.
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3.3 SINGLE LINKED LIST
In a single linked list each node contains only one link which points to the next 
subsequent node in the list. In other words, each node has a single pointer to 
the next node and in the last node a NULL pointer representing that there are 
no more nodes in the linked list.

10 20 30 40

3.4 OPERATIONS ON A SINGLE LINKED LIST
There are various operations possible on a single linked list.

 (a) Traversing the linked list.
 (b) Inserting a node into the linked list.
  • Insert at beginning.
  • Insert at end
  • Insert at particular location
 (c) Deleting a node into the linked list.
  • Delete at beginning.
  • Delete at end.
  • Delete at particular location.
 (d) Merging of two linked list into a single linked list.
 (e) Searching for an element in the linked list.
 (f) Sorting the node in the linked list
 (g) Reverse a linked list.

a. Traversing the Linked List
Suppose a single linked list is in memory and we want to traverse the list in 
order to process each node at least once. Our approach is to traverse the list 
starting from the first node to the last node of the list.

10 20 30 40

   Start
Figure Traversing a Single Linked List

Algorithm
Steps

 1. Start
 2. Hold the address of the first node.
 3. Set node = start  // initialize pointer variable called node
 4. While node ≠ NULL
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 5. Repeat steps 6 and 7
 6. Process info [node] // apply process to info [node]
 7. Set node = next [node] // move pointer to next node
 8. Stop
Program: Create a Single Linked List and Display all Nodes

#include<stdio.h>
#include<stdlib.h>
struct node
{
int info;
struct node *next;
};
void create (struct node*);
void display (struct node*);
void main ()
{
struct node *next;
node=(struct node*)malloc(sizeof(struct node));
if(node==NULL)
{
printf(“\n out of memory space”);
exit(0);
}
create ()
display ();
}
void create (struct node * next)
{
char ch;
int i=1;
printf(“\n enter the value of %d node”, i);
scanf (“%d”, &node->info);
node->next=NULL;
i=i+1;
printf (\n Press ‘E’ key to exit and Press ‘Y’ key to continue: ”);
ch=getchar ();
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while (ch!=’N’)
{
node->next=(struct node*)malloc(sizeof (struct node));
if(node->next==NULL)
{
printf (“\n out of memory space”);
exit(0);
}
node=node->next;
printf (“\n enter the value %d node”, i);
scanf(%d”, &node->info)
node->next=NULL;
i=i+1;
printf (\n Press ‘E’ key to exit and Press ‘Y’ key to continue”);
ch=getchar ();
}
}
void display (struct node *next)
{
printf(“\n value of nodes in the list are as follows:\n”);
while(node!=NULL)
{
printf(“%d”, node->info);
node=node->next;
}
}

Output

Enter the value node: 10
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 20
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 30
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 40
Press ‘E’ key to exit and Press ‘Y’ key to continue: E
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value of nodes in the list are as follows:
10 20 30 40

b. Insert a node into the linked list
The insertion operation is used to add an element in an existing linked list. The 
list may be ordered or unordered. For ordered linked list, the ordering may be 
in increasing or decreasing order of the information field. An attempt to insert 
an element at appropriate place in an ordered list requires us to compare the 
information filed of each node till the end of the list and insert at that place.

b. (i) Insert at Beginning

10

Start

20 30 40

Figure Before Insertion

10

Start

20 30 40

5

Figure After Insertion (x = 5)

Algorithm
Steps

 1. Start
 2. Holds the address of the first node.
 3. Create a new node named as temp/node
 4. If node = NULL then
 5. write “out of memory space” and
 6. exit
 7. set info [node] = x //copies new data into new node
 8. set next [node] = start // new node now points to first node
 9. set start = node
 10. stop

Program: Insert a node at the beginning

#include<stdio.h>
#include<stdlib.h>
struct node
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{
int info;
struct node *next;
};
struct node *start;
void insert (struct node *);
void create (struct node*);
void display (struct node*);
void main ()
{
char ch=’1’;
struct node *next;
node=(struct node*)malloc(sizeof(struct node));
if(node==NULL)
{
printf(“\n out of memory space”);
exit(0);
}
printf(“\n Creation of a Linked List\n”);
create (node)
while (ch!=’3’)
{
printf (\n 1. Insert at Beg”);
printf(“\n 2. Display”);
printf(“\n 3. Exit”);
printf(“\n Enter your choice”);
ch=getchar();
switch(ch)
{
case ‘1’:
insert(node);
node=start;
start=NULL;
break;
case ‘2’:
display (node);
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break;
case ‘3’:
break;
default:
printf(“\n Wrong Choice”);
}
}
}
void create (struct node * next)
{
char ch;
int i=1;
printf(“\n enter the value of %d node”, i);
scanf (“%d”, &node->info);
node->next=NULL;
i=i+1;
printf (\n Press ‘E’ key to exit and Press ‘Y’ key to continue: ”);
ch=getchar ();
while (ch!=’N’)
{
node->next=(struct node*)malloc(sizeof (struct node));
if(node->next==NULL)
{
printf (“\n out of memory space”);
exit(0);
}
node=node->next;
printf (“\n enter the value %d node”, i);
scanf(%d”, &node->info)
node->next=NULL;
i=i+1;
printf (\n Press ‘E’ key to exit and Press ‘Y’ key to continue”);
ch=getchar ();
}
}
void insert (struct node *next)
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{
struct node *curr;
curr=(struct node*)malloc(sizeof(struct node));
if(curr==NULL)
{
printf(“\n Out of memory”);
exit(0);
}
curr->next=node;
printf(“\n Input the First Node Information:”);
scanf(“%d”, &curr->info);
start=curr;
}
void display (struct node *next)
{
printf(“\n value of nodes in the list are as follows:\n”);
while(node!=NULL)
{
printf(“%d”, node->info);
node=node->next;
}
}

Output

Enter the value node: 10
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 20
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 30
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 40
Press ‘E’ key to exit and Press ‘Y’ key to continue: E

 1. Insert at Beg
 2. Display
 3. Exit
Enter your choice: 2
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value of nodes in the list are as follows:
10 20 30 40

 1. Insert at Beg
 2. Display
 3. Exit
Enter your choice: 1
Input the First Node Information: 50

 1. Insert at Beg
 2. Display
 3. Exit
Enter your choice: 2
value of nodes in the list are as follows:
50 10 20 30 40

 1. Insert at Beg
 2. Display
 3. Exit
Enter your choice: 3

b. (ii) Insert at End

10

End

20 30 40

Figure Before Insertion

10

End

20 30 40

50

Figure After Insertion

Algorithm
Steps

 1. Start
 2. Holds the address of the first node.
 3. Create a new node named as temp/node
 4. If node = NULL then
 5. Write “out of memory space” and
 6. Exit
 7. Set info [node] = x  // copies new data into new node
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 8. Set next [node] = NULL
 9. Set curr = start
 10. Repeat step 11 and 12 while curr ≠ NULL
 11. Set prev = curr
 12. Set curr = next[curr]
 13. End of step 10 loop
 14. Set next [prev] = node
 15. Stop
Program: Insert a node at the End

#include<stdio.h>
#include<stdlib.h>
struct node
{
int info;
struct node *next;
};
void insert (struct node *);
void create (struct node*);
void display (struct node*);
void main ()
{
char ch=’1’;
struct node *next;
node=(struct node*)malloc(sizeof(struct node));
if(node==NULL)
{
printf(“\n out of memory space”);
exit(0);
}
printf(“\n Creation of a Linked List\n”);
create (node)
while (ch!=’3’)
{
printf (\n 1. Insert at End”);
printf(“\n 2. Display”);
printf(“\n 3. Exit”);
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printf(“\n Enter your choice”);
ch=getchar();
switch(ch)
{
case ‘1’:
insert(node);
break;
case ‘2’:
display (node);
break;
case ‘3’:
break;
default:
printf(“\n Wrong Choice”);
}
}
}
void create (struct node * next)
{
char ch;
int i=1;
printf(“\n enter the value of %d node”, i);
scanf (“%d”, &node->info);
node->next=NULL;
i=i+1;
printf (\Press ‘E’ key to exit and Press ‘Y’ key to continue: ”);
ch=getchar ();
while (ch!=’N’)
{
node->next=(struct node*)malloc(sizeof (struct node));
if(node->next==NULL)
{
printf (“\n out of memory space”);
exit(0);
}
node=node->next;
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printf (“\n enter the value %d node”, i);
scanf(%d”, &node->info)
node->next=NULL;
i=i+1;
printf (\n Press ‘E’ key to exit and Press ‘Y’ key to continue”);
ch=getchar ();
}
}
void insert (struct node *next)
{
struct node *curr;
while (node->next!=NULL)
node=node->next;
curr=(struct node*)malloc(sizeof(struct node));
if(curr==NULL)
{
printf(“\n Out of memory”);
exit(0);
}
curr->next=NULL;
node->next=curr;
printf(“\n Input the Last Node Information:”);
scanf(“%d”, &curr->info);
}
void display (struct node *next)
{
printf(“\n value of nodes in the list are as follows:\n”);
while(node!=NULL)
{
printf(“%d”, node->info);
node=node->next;
}
}

Output

Enter the value node: 10
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
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Enter the value node: 20
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 30
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 40
Press ‘E’ key to exit and Press ‘Y’ key to continue: E

 1. Insert at End
 2. Display
 3. Exit
Enter your choice: 2
value of nodes in the list are as follows:
10 20 30 40

 1. Insert at End
 2. Display
 3. Exit
Enter your choice: 1
Input the Last Node Information: 50

 1. Insert at End
 2. Display
 3. Exit
Enter your choice: 2
value of nodes in the list are as follows:
10 20 30 40 50

 1. Insert at End
 2. Display
 3. Exit
Enter your choice: 3

b. (iii) Insert at particular location

10 20 30 40

Figure Before Insertion

10 20 30 40

50

Figure After Insertion (loc = 3, x = 50)
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Algorithm
Steps
 1. Start
 2. Holds the address of the first node
 3. Set curr = start
 4. Create a new node named as temp/node
 5. If node = NULL then
 6. Write “out of memory space” and
 7. Exit
 8. Set info [node] = x    // copies new data into new node
 9. Set next [node] = Curr
 10. Read loc
 11. Set i = 1
 12. Repeat steps 13 to 15 while curr ≠ NULL and i < loc
 13. Set prev = curr
 14. Set curr = next[curr]
 15. Set i = i+1
 16. End of step 11 loop
 17. If curr = NULL then
 18. Write “position not found” and
 19. Exit
 20. Set next [prev] = node
 21. Set next [node] =curr
 22. Stop
Program: Insert a node at particular location

#include<stdio.h>
#include<stdlib.h>

struct node
{
int info;

struct node *next;
};
struct node *start;
void insert (struct node *);
void create (struct node*);
void count(struct node*);
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void display (struct node*);

void main ()
{
char ch=’1’;
struct node *next;
node=(struct node*)malloc(sizeof(struct node));
if(node==NULL)
{
printf(“\n out of memory space”);
exit(0);
}
start=node;
printf(“\n Creation of a Linked List\n”);
create (node)
while (ch!=’3’)
{
printf (\n 1. Insert at Particular Location”);
printf(“\n 2. Display”);
printf(“\n 3. Exit”);
printf(“\n Enter your choice”);
ch=getchar();
switch(ch)
{
case ‘1’:
insert(node);
node=start;
break;
case ‘2’:
display (node);
break;
case ‘3’:
break;

default:
printf(“\n Wrong Choice”);
}
}
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}

void create (struct node * next)
{
char ch;
int i=1;
printf(“\n enter the value of %d node”, i);
scanf (“%d”, &node->info);
node->next=NULL;
i=i+1;
printf (\n Press ‘E’ key to exit and Press ‘Y’ key to continue: ”);
ch=getchar ();
while (ch!=’N’)
{
node->next=(struct node*)malloc(sizeof (struct node));
if(node->next==NULL)
{
printf (“\n out of memory space”);
exit(0);
}
node=node->next;
printf (“\n enter the value %d node”, i);
scanf(%d”, &node->info)
node->next=NULL;
i=i+1;
printf (\n Press ‘E’ key to exit and Press ‘Y’ key to continue”);
ch=getchar ();
}
}
void insert (struct node *next)
{
int loc, c=0,i=1;
struct node *curr, *prev;
printf(“\n Enter the location at which node will be Insert”);
scanf(“%d”, &loc);
c=count(node);
if(loc>c)
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{
printf(“\n Enter the location exceed the number of node”);
return;
}
curr=(struct node*)malloc(sizeof(struct node));
if(curr==NULL)
{
printf(“\n Out of memory space”);
exit(0);
}
while(i<loc)
{
prev=node;
node=node->;
i=i+1;
}
printf(“\n Input the Node Information at %d Location:”, loc);
scanf(“%d”, &curr->info);
if(loc==1)
start=curr;
else
prev->next=curr;
curr->next=node;
}
int count(struct node *next)
{
int i=0;
while(node!=NULL)
{
i=i+1;
node=node->next;
}
return i;
}
void display (struct node *next)
{
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printf(“\n value of nodes in the list are as follows:\n”);
while(node!=NULL)
{
printf(“%d”, node->info);
node=node->next;
}
}

Output

Enter the value node: 10
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 20
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 30
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 40
Press ‘E’ key to exit and Press ‘Y’ key to continue: E

 1. Insert at Particular Location
 2. Display
 3. Exit
Enter your choice: 2
value of nodes in the list are as follows:
10 20 30 40

 1. Insert at Particular Location
 2. Display
 3. Exit
Enter your choice: 1
Enter the location at which node will be Insert: 3
Input the Node Information at 3 Location: 50

 1. Insert at Particular Location
 2. Display
 3. Exit
Enter your choice: 2
value of nodes in the list are as follows:
10 20 50 30 40

 1. Insert at Particular Location
 2. Display
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 3. Exit
Enter your choice: 3

c. Deleting a node into the linked list
The deletion operation is used to delete an element from a single linked list, 
one should remember the following points.

 • If the list is empty, deletion is not possible.
 • If the list contains only one node, after deletion the list will be empty.
 • If the node is deleted, the memory space for the deleted node is 

de-allocated.
 • If beginning node is deleted start should point to the next node 

automatically.

c. (i) Deletion at beginning

10

Start

20 30 40

Figure Before Deletion

Start 20 30 40

Figure After Deletion

Algorithm
Steps

 1. Start
 2. Holds the address of the first node.
 3. Set temp = start
 4. If start = NULL then
 5. Write “UNDERFLOW” and
 6. Exit
 7. Set start = next [start]
 8. Free the space associated with temp
 9. Stop

Program: Delete a node at the beginning
#include<stdio.h>
#include<stdlib.h>
struct node
{
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int info;
struct node *next;
};
struct node *start;
void delete (struct node *);
void create (struct node*);
void display (struct node*);
void main ()
{
char ch=’1’;
struct node *next;
node=(struct node*)malloc(sizeof(struct node));
if(node==NULL)
{
printf(“\n out of memory space”);
exit(0);
}
printf(“\n Creation of a Linked List\n”);
create (node)
while (ch!=’3’)
{
printf (\n 1. Delete at Beg”);
printf(“\n 2. Display”);
printf(“\n 3. Exit”);
printf(“\n Enter your choice”);
ch=getchar();
switch(ch)
{
case ‘1’:
delete(node);
node=start;
start=NULL;
break;
case ‘2’:
display (node);
break;
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case ‘3’:
break;
default:
printf(“\n Wrong Choice”);
}
}
}
void create (Struct node *next)
{
char ch;
int i=1;
printf(“\n enter the value of %d node”, i);
scanf (“%d”, &node->info);
node->next=NULL;
i=i+1;
printf (\n Press ‘E’ key to exit and Press ‘Y’ key to continue:”);
ch=getchar ();
while (ch!=’N’)
{
node->next=(struct node*)malloc(sizeof (struct node));
if(node->next==NULL)
{
printf (“\n out of memory space”);
exit(0);
}
node=node->next;
printf (“\n enter the value %d node”, i);
scanf(%d”, &node->info)
node->next=NULL;
i=i+1;
printf (\n Press ‘E’ key to exit and Press ‘Y’ key to continue”);
ch=getchar ();
}
}
void delete(struct node *next)
{
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struct node *temp;
temp=node;
node=node->next;
free(temp);
start=node;
}
void display (struct node *next)
{
if(node==NULL)
{
printf(“\n List is Empty”);
return;
}
printf(“\n value of nodes in the list are as follows:\n”);
while(node!=NULL)
{
printf(“%d”, node->info);
node=node->next;
}
}

Output

Enter the value node: 10
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 20
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 30
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 40
Press ‘E’ key to exit and Press ‘Y’ key to continue: E

 1. Delete at Beg
 2. Display
 3. Exit
Enter your choice: 2
value of nodes in the list are as follows:
10 20 30 40
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 1. Delete at Beg
 2. Display
 3. Exit
Enter your choice: 1

 1. Delete at Beg
 2. Display
 3. Exit
Enter your choice: 2
value of nodes in the list are as follows:
20 30 40

 1. Delete at Beg
 2. Display
 3. Exit
Enter your choice: 3

c. (ii) Deletion at end

20 30

End

4010

Figure Before Deletion

10 20

End

30

Figure After Deletion

Algorithm
Steps

 1. Start
 2. Holds the address of the first node
 3. Set node = start
 4. Set temp = start
 5. If node = NULL then
 6. Write “UNDERFLOW” and
 7. Exit
 8. Repeat steps 9 and 10 while next [node] ≠ NULL
 9. Set temp = node
 10. Set node = next [node]
 11. End of step 8 loop
 12. Set next [temp] = NULL



Chapter 3 Linked List 63

 13. Free the apace associated with node
 14. Stop

Program: Delete a node at the End

#include<stdio.h>
#include<stdlib.h>
struct node
{
int info;
struct node *next;
};
struct node *start;
void delete (struct node *);
void create (struct node*);
void display (struct node*);
void main ()
{
char ch=’1’;
struct node *next;
node=(struct node*)malloc(sizeof(struct node));
if(node==NULL)
{
printf(“\n out of memory space”);
exit(0);
}
printf(“\n Creation of a Linked List\n”);
create (node)
while (ch!=’3’)
{
printf (\n 1. Delete at End”);
printf(“\n 2. Display”);
printf(“\n 3. Exit”);
printf(“\n Enter your choice”);
ch=getchar();
switch(ch)
{
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case ‘1’:
start=node
delete(node);
node=start;
break;
case ‘2’:
display (node);
break;
case ‘3’:
break;
default:
printf(“\n Wrong Choice”);
}
}
}
void create (struct node * next)
{
char ch;
int i=1;
printf(“\n enter the value of %d node”, i);
scanf (“%d”, &node->info);
node->next=NULL;
i=i+1;
printf (\n Press ‘E’ key to exit and Press ‘Y’ key to continue: ”);
ch=getchar ();
while (ch!=’N’)
{
node->next=(struct node*)malloc(sizeof (struct node));
if(node->next==NULL)
{
printf (“\n out of memory space”);
exit(0);
}
node=node->next;
printf (“\n enter the value %d node”, i);
scanf(%d”, &node->info)
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node->next=NULL;
i=i+1;
printf (\n Press ‘E’ key to exit and Press ‘Y’ key to continue”);
ch=getchar ();
}
}
void delete(struct node *next)
{
struct node *prev;
if(node->next==NULL)
{
free(node);
start=NULL;
return;
}
while(node->next!=NULL)
{
prev=node;
node=node->next;
}
prev->next=NULL;
free(node);
void display (struct node *next)
{
if(node==NULL)
{
printf(“\n n List is Empty”);
return;
}
printf(“\n value of nodes in the list are as follows:\n”);
while(node!=NULL)
{
printf(“%d”, node->info);
node=node->next;
}
}
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Output

Enter the value node: 10
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 20
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 30
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 40
Press ‘E’ key to exit and Press ‘Y’ key to continue: E

 1. Delete at End
 2. Display
 3. Exit
Enter your choice: 2

value of nodes in the list are as follows:
10 20 30 40

 1. Delete at End
 2. Display
 3. Exit
Enter your choice: 1

 1. Insert at End
 2. Display
 3. Exit
Enter your choice: 2

value of nodes in the list are as follows:
10 20 30

 1. Delete at End
 2. Display
 3. Exit
Enter your choice: 3

c. (iii) Deletion at particular location

10 20 30 40

Figure Before Deletion

10 20 30 40

Figure After Deletion (loc = 2, value=20)
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Algorithm
Steps
 1. Start
 2. Holds the address of the first node.
 3. Set node = start
 4. Set temp = start
 5. If node = NULL then
 6. Write “UNDERFLOW” and
 7. Exit
 8. Set i = 1
 9. Read loc
 10. Repeat steps 11 to 13 while node ≠ NULL and i < loc
 11. Set temp = node
 12. Set node = next [node]
 13. Set i = i +1
 14. End of step 10 loop
 15. If node = NULL then
 16. Write “position not found” and
 17. Exit
 18. Set next [temp] = next [node]
 19. Free the space associated with node
 20. Stop
Program: Delete a node at particular location

#include<stdio.h>
#include<stdlib.h>
struct node
{
int info;
struct node *next;
};
struct node *start;
void delete (struct node *);
void create (struct node*);
void count(struct node*);
void display (struct node*);
void main ()
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{
char ch=’1’;
struct node *next;
node=(struct node*)malloc(sizeof(struct node));
if(node==NULL)
{
printf(“\n out of memory space”);
exit(0);
}
start=node;
printf(“\n Creation of a Linked List\n”);
create (node)
while (ch!=’3’)
{
printf (\n 1. Delete at Particular Location”);
printf(“\n 2. Display”);
printf(“\n 3. Exit”);
printf(“\n Enter your choice”);
ch=getchar();
switch(ch)
{
case ‘1’:
delete(node);
node=start;
break;
case ‘2’:
display (node);
break;
case ‘3’:
break;
default:
printf(“\n Wrong Choice”);
}
}
}
void create (struct node * next)
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{
char ch;
int i=1;
printf(“\n enter the value of %d node”, i);
scanf (“%d”, &node->info);
node->next=NULL;
i=i+1;
printf (\n Press ‘E’ key to exit and Press ‘Y’ key to continue: ”);
ch=getchar ();
while (ch!=’N’)
{
node->next=(struct node*)malloc(sizeof (struct node));
if(node->next==NULL)
{
printf (“\n out of memory space”);
exit(0);
}
node=node->next;
printf (“\n enter the value %d node”, i);
scanf(%d”, &node->info)
node->next=NULL;
i=i+1;
printf (\n Press ‘E’ key to exit and Press ‘Y’ key to continue”);
ch=getchar ();
}
}
void delete (struct node *next)
{
int loc, c=0,i=1;
struct node *prev;
printf(“\n Enter the location at which node will be Delete”);
scanf(“%d”, &loc);
c=count(node);
if(loc>c)
{
printf(“\n Enter the location exceed the number of node”);
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return;
}
while (i<loc)
{
prev=node;
node=node->next;
i=i+1;
}
if(loc==1)
start=node->next;
else
prev->next=node->next;
free(node);
}
int count(struct node *next)
{
int i=0;
while(node!=NULL)
{
i=i+1;
node=node->next;
}
return i;
}
void display (struct node *next)
{
if(node==NULL)
{
printf(“\n n List is Empty”);
return;
}
printf(“\n value of nodes in the list are as follows:\n”);
while(node!=NULL)
{
printf(“%d”, node->info);
node=node->next;
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}
}

Output

Enter the value node: 10
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 20
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 30
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 40
Press ‘E’ key to exit and Press ‘Y’ key to continue: E

 1. Delete at Particular Location
 2. Display
 3. Exit
Enter your choice: 2
value of nodes in the list are as follows:
10 20 30 40

 1. Insert at Particular Location
 2. Display
 3. Exit
Enter your choice: 1
Enter the location at which node will be Insert: 2

 1. Delete at Particular Location
 2. Display
 3. Exit
Enter your choice: 2
value of nodes in the list are as follows:
10 30 40

 1. Insert at Particular Location
 2. Display
 3. Exit
Enter your choice: 3

d. Merging of two linked list into a single linked list
Two linked lists are available in memory, it is required to merge two linked list 
into a single linked list. To obtain the merged linked list, it is necessary to link 
the last node of the first linked list to the first node of the second linked list.
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List_1
10 20

List_2
30 40

Figure Before Merge

List
10 20 30 40

Figure After Merge

Algorithm
Steps

 1. Set node_1 = list_1
 2. Create a new node named as list
 3. If list = NULL then
 4. Write “out of memory space” and
 5. Exit
 6. Set info [list] = info [node_1]
 7. Set next [list] = NULL
 8. Set node_1 = next [node_1]
 9. Set node = list
 10. Repeat steps 11 to 19 while node_1 ≠ NULL
 11. Create a new node named as curr
 12. If curr = NULL then
 13. Write “out of memory space” and
 14. Exit
 15. Set info [curr] = info [node_1]
 16. Set next [curr] = NULL
 17. Set node_1 = next [node_1]
 18. Set next [node] = curr
 19. Set node = curr
 20. End of step 10 loop
 21. Set node_2 = list_2
 22. Repeat steps 23 to 29 while node_2 ≠ NULL
 23. If curr = NULL then
 24. Write “out of memory space” and
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 25. Exit
 26. Set info [curr] = info [node_2]
 27. Set next _2 = next [node_2]
 28. Set next [node] = curr
 29. Set node = curr
 30. End of step 22 loop
 31. Stop
Program: Merging of two single linked list

#include<stdio.h>
#include<stdlib.h>
struct node
{
int info;
struct node *next;
};
struct node *start;
void create (struct node *);
void merge (struct node*, struct node*, struct node*);
void display (struct node*);
void main ()
{
char ch=’1’;
struct next *node1, *node2, node3;
node1=(struct node*)malloc(sizeof(struct node));
if(node1==NULL)
{
printf(“\n out of memory space”);
exit(0);
}
node2=(struct node*)malloc(sizeof(struct node));
if(node2==NULL)
{
printf(“\n out of memory space”);
exit(0);
}
node3=(struct node*)malloc(sizeof(struct node));



74 Data Structure Using C

if(node3==NULL)
{
printf(“\n out of memory space”);
exit(0);
}
Printf(“\n Create of First Linked List”);
Create(node1);
Printf(“\n Create of Second Linked List”);
Create(node2);
Merge(node1, node2, node3);
Printf(“\n Value of Nodes in First Linked List is:”);
Display(node1);
Printf(“\n Value of Nodes in Second Linked List is:”);
Display(node2);
Printf(“\n Value of Nodes in Merged Linked List is:”);
Display(node3);
void create (struct node * next)
{
char ch;
int i=1;
printf(“\n enter the value of %d node”, i);
scanf (“%d”, &node->info);
node->next=NULL;
i=i+1;
printf (\n Press ‘E’ key to exit and Press ‘Y’ key to continue: ”);
ch=getchar ();
while (ch!=’N’)
{
node->next=(struct node*)malloc(sizeof (struct node));
if(node->next==NULL)
{
printf (“\n out of memory space”);
exit(0);
}
node=node->next;
printf (“\n enter the value %d node”, i);
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scanf(%d”, &node->info)
node->next=NULL;
i=i+1;
printf (\n Press ‘E’ key to exit and Press ‘Y’ key to continue”);
ch=getchar ();
}
}
void merge (struct node node1*, struct node node2*, struct node node3*);
{
node3->info=node1->info;
node3->next=NULL;
node1=node1->next;
while(node1!=NULL)
{
node3->next=(struct node*)malloc(sizeof(struct node));
if(node3->==NULL)
{
printf(“\n out of memory space”);
exit(0);
}
node3=node3->next;
node3->info=node1->info;
node1=node1->next;
node3->next=NULL;
}
while(node2!=NULL)
{
node3->next=(struct node*)malloc(sizeof(struct node));
if(node3->next==NULL)
{
printf(“\n out of memory space”);
exit(0);
}
node3=node3->next;
node3->info=node2->info;
node2=node2->next;
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node3->next=NULL;
}
}
void display (struct node *next)
{
while(node!=NULL)
{
printf(“%d”, node->info);
node=node->next;
}
}

Output

Create First Linked List
Enter the value node: 10
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 20
Press ‘E’ key to exit and Press ‘Y’ key to continue: E
Create Second Linked List
Enter the value node: 30
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 40
Press ‘E’ key to exit and Press ‘Y’ key to continue: E
Value of Nodes in First Linked List is:
10 20
Value of Nodes in Second Linked List is:
30 40
Value of Nodes in Merged Linked List is:
10 20 30 40

e. Searching for an element in the linked list
Searching means finding a value in a given linked list. Suppose we have a linked 
list and we want to search for a value, say 30. If the value is present in the linked 
list, it will return the location otherwise it will display a message “element not 
found in the linked list”

10

Start

20 30 40

Figure searching an element (say 30)
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Algorithm
Steps

 1. Start
 2. Holds the address of the first element
 3. Set node = start
 4. Set count = 1
 5. Read item
 6. Repeat steps 7 to 11 while node ≠ NULL
 7. If item = info [node] then
 8. Write “element found at position”, count and then exit
 9. End of step 7 if structure
 10. Set count = count + 1
 11. Set node = next [node]
 12. End of step 6 loop
 13. Write “element not found”
 14. Stop

Program: Searching a Node in a Single Linked List

#include<stdio.h>
#include<stdlib.h>
struct node
{
int info;
struct node *next;
};
void create (struct node *);
void search (struct node*);
void display (struct node*);
void main ()
{
struct node *next;
char ch=’1’;
node=(struct node*)malloc(sizeof(struct node));
if(node==NULL)
{
printf(“\n out of memory space”);
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exit(0);
}
create(node);
while (ch!=’3’)
{
printf (\n 1. Search”);
printf(“\n 2. Display”);
printf(“\n 3. Exit”);
printf(“\n Enter your choice”);
ch=getchar();
switch(ch)
{
case ‘1’:
search(node);
break;
case ‘2’:
display (node);
break;
case ‘3’:
break;
default:
printf(“\n Wrong Choice”);
}
}
}
void create (struct node * next)
{
char ch;
int i=1;
printf(“\n enter the value of %d node”, i);
scanf (“%d”, &node->info);
node->next=NULL;
i=i+1;
printf (\n Press ‘E’ key to exit and Press ‘Y’ key to continue: ”);
ch=getchar ();
while (ch!=’N’)
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{
node->next=(struct node*)malloc(sizeof (struct node));
if(node->next==NULL)
{
printf (“\n out of memory space”);
exit(0);
node=node->next;
printf (“\n enter the value %d node”, i);
scanf(%d”, &node->info)
node->next=NULL;
i=i+1;
printf (\n Press ‘E’ key to exit and Press ‘Y’ key to continue”);
ch=getchar ();
}
}
void search(struct node *next)
{
int x, i=1;
printf(“\n enter the value of a node to be search”);
scanf(%d”, &x);
while(node!=NULL)
{
if(node->info==x)
{
printf(“\n Searched element %d is at location:”, x,i);
return;
}
i=i+1;
printf(“\n Searched element %d is not found in the list”, x);
}
void display (struct node *next)
{
printf(“\n value of nodes in the list are as follows:\n”);
while(node!=NULL)
{
printf(“%d”, node->info);
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node=node->next;
}
}

Output

Enter the value node: 10
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 20
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 30
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 40
Press ‘E’ key to exit and Press ‘Y’ key to continue: E

 1. Search
 2. Display
 3. Exit
Enter your choice: 2
10 20 30 40

 1. Search
 2. Display
 3. Exit
Enter your choice: 1
Enter the value of a node to be searched: 30
Searched element 30 is at location: 3

 1. Search
 2. Display
 3. Exit
Enter your choice: 1
Enter the value of a node to be searched: 15
Searched element 15 is not found in the list

 1. Search
 2. Display
 3. Exit
Enter your choice: 3

f. Sorting the node in the linked list
Sorting is arranging the linked list in ascending or descending order.
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30 40 10 20

Figure Before sorting

10 20 30 40

Figure After sorting (sorting of node values in ascending order)

Algorithm
Steps

 1. Start
 2. Holds the address of the first node
 3. Set node = start
 4. Repeat steps 5 to 14 while next [node] ≠ NULL
 5. Set ptr = next [node]
 6. Repeat steps 7 to 12 while ptr ≠ NULL
 7. If info [node] > info [ptr] then
 8. Set temp = info [node]
 9. Set info [node] = info [ptr]
 10. Set info [ptr] = temp
 11. End of step 7 if structure
 12. Set ptr = next [ptr]
 13. End of step 6 loop
 14. Set node = next [node]
 15. End of step 4 loop
 16. Stop

Program: Sorting the values in a Single Linked List

#include<stdio.h>
#include<stdlib.h>
struct node
{
int info;
struct node *next;
};
void create (struct node *);
void sort (struct node*);
void display (struct node*);
void main ()



82 Data Structure Using C

{
struct node *next;
node=(struct node*)malloc(sizeof(struct node));
if(node==NULL)
{
printf(“\n out of memory space”);
exit(0);
}
create(node);
printf(“\n Values of nodes in the list is:”);
display(node);
sort(node);
printf(“value of nodes in the list after sorting is:”);
display(node);
}
void create (struct node * next)
{
char ch;
int i=1;
printf(“\n enter the value of %d node”, i);
scanf (“%d”, &node->info);
node->next=NULL;
i=i+1;
printf (\n Press ‘E’ key to exit and Press ‘Y’ key to continue: ”);
ch=getchar ();
while (ch!=’N’)
{
node->next=(struct node*)malloc(sizeof (struct node));
if(node->next==NULL)
{
printf (“\n out of memory space”);
exit(0);
}
node=node->next;
printf (“\n enter the value %d node”, i);
scanf(%d”, &node->info)
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node->next=NULL;
i=i+1;
printf (\n Press ‘E’ key to exit and Press ‘Y’ key to continue”);
ch=getchar ();
}
}
void sort (struct node *next)
{
struct node *index1, *index2;
int temp;
for(index1=node; index1->next!=NULL;index1=index1->next)
{
for(index2=index1->next;index2!=NULL;index2=index2->next)
{
if(index1->info>index2->info)
{
temp=index1->info;
index1->info=index2->info;
index2->info=temp;
}
}
}
}
void display (struct node *next)
{
while(node!=NULL)
{
printf(“%d”, node->info);
node=node->next;
}
}

Output
Enter the value node: 30
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 40
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
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Enter the value node: 10
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 20
Press ‘E’ key to exit and Press ‘Y’ key to continue: E
Values of nodes in the list is:
30 40 10 20
value of nodes in the list after sorting is:
10 20 30 40

g. Reverse a linked list
Reverse of the linked list will do the following things:

 1. First node will become the last node of linked list.
 2. Last node will become the first node of linked list and now start will point 

to it.
 3. Link of 2nd node will point to 1st node, link of 3rd node will point to 

second node and so on.
 4. Link of last node will point to the previous node of last node in linked list.

10 20 30 40

Figure Before Reverse a Linked List (Original)

40 30 20 10

Figure After Reverse a Linked List

Algorithm
Steps

 1. Start
 2. Holds the address of the first node
 3. Set curr = start
 4. If next [curr] = NULL then
 5. Exit
 6. Set prev = next [curr]
 7. Set next [curr] = NULL
 8. Repeat steps 9 to 12 while next [prev] ≠ NULL
 9. Set ptr = next [prev]
 10. Set next [prev] = curr
 11. Set curr = prev
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 12. Set prev = ptr
 13. End of step 8 loop
 14. Set next [prev] = curr
 15. Set start = prev
 16. Stop

Program: Reverse a Linked List

#include<stdio.h>
#include<stdlib.h>
struct node
{
   int data;
   struct node *next;
}*head;
void insert_data(int value)
{
    struct node *var,*temp;
    temp=head;
    var=(struct node *)malloc(sizeof(struct node));
    var->data=value;
    if(head==NULL)
    {
        head=var;
        head->next=NULL;
    }
    else
    {
         while(temp->next!=NULL)
         {
              temp=temp->next;
         }
         var->next=NULL;
         temp->next=var;
    }
}
void reverse_list()
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{
    struct node *temp,*temp1,*var;
    temp=head;
    var=NULL;
    while(temp!=NULL)
    {
         temp1=var;
         var=temp;
         temp=temp->next;
         var->next=temp1;
    }
    head=var;
}
void display()
{
    struct node *var;
    var=head;
    printf(“\nlist of elments are \n”);
    while(var!=NULL)
    {
         printf(“%d-> “,var->data);
         var=var->next;
    }
    printf(“NULL”);
}
int main()
{
    int i,value;
    char ch=’y’;
    head=NULL;
    printf(“\n 1.)  Insert node”);
    printf(“\n 2.)  display the list”);
    printf(“\n 3.)  reverse the nodes”);
    printf(“\n 4.)  exit”);
    while(ch==’y’)
    {
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         printf(“\nChoose to do operation :”);
         scanf(“%d”,&i);
         switch(i)
         {
             case 1 :
             {
             printf(“\nEnter the data to be inserted in node “);
             scanf(“%d”,&value);
             insert_data(value);
             display();
             break;
             }
             case 2 :
             {
             display();
             break;
             }
             case 3 :
             {
             reverse_list();
             display();
             break;
             }
             case 4 :
             {
             exit(0);
             break;
             }
        }
   }
}
Output

 1. Insert node
 2. display the list
 3. reverse the nodes
 4. exit
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Choose to do operation :1
Enter the data to be inserted in node 10
list of elments are
10-> NULL
Choose to do operation :1
Enter the data to be inserted in node 20
list of elements are
10-> 20-> NULL
Choose to do operation :1
Enter the data to be inserted in node 30
list of elments are
10-> 20-> 30-> NULL
Choose to do operation :1
Enter the data to be inserted in node 40
list of elments are
10-> 20-> 30-> 40-> NULL
Choose to do operation :2
list of elments are
10-> 20-> 30-> 40-> NULL
Choose to do operation :3
list of elments are
40-> 30-> 20-> 10-> NULL
Choose to do operation :4

3.5 CIRCULAR LINKED LIST
Circular Linked List is little more complicated linked data structure. In the 
circular linked list we can insert elements anywhere in the list whereas in the 
array we cannot insert element anywhere in the list because it is in the contiguous 
memory. In the circular linked list the previous element stores the address of the 
next element and the last element stores the address of the starting element. The 
elements points to each other in a circular way which forms a circular chain. 
The circular linked list has a dynamic size which means the memory can be 
allocated when it is required. Circular linked list is a linked list where all nodes 
are connected to form a circle. There is no NULL at the end. A circular linked 
list can be a singly circular linked list or doubly circular linked list.

10

Start End

20 30 40

Figure Circular Linked List
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3.6 OPERATIONS IN A CIRCULAR LINKED LIST
There are various operations possible on a Circular Linked List.

 (a) Creation of a circular linked list.
 (b) Insertion of a node
 (c) Deletion of a node

a. Creation of Circular Linked List
Creation of Circular Linked List is same as Single Linked List. Only one thing 
is needed that here last node will always point to first node instead of NULL.

10

Start End

20 30 40

Figure: Circular Linked List

Algorithm
Steps

 1. start
 2. ptr = ptr->start
 3. start=start->link
 4. read info
 5. first=first->ptr
 6. ch=’Y’
 7. repeat steps 8 to 13 while ch=’Y’
 8. curr=curr->link
 9. start=start->link
 10. read info
 11. ptr=ptr->curr
 12. ptr=ptr->curr
 13. press<Y/N> for more node information
 14. link=link->first
 15. stop

void create()
{
struct node *ptr, *curr;
char ch;
ptr=(struct node *) malloc (sizeof (struct node));
printf(“ Input First Node Information”);
scanf(“%d”, &ptr->info);
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first=ptr;
do
{
curr= (struct node *) malloc (sizeof (struct node));
printf(“Input Second Node Information”);
scanf(“%d”, &curr->info);
ptr->link=curr;
ptr=curr;
printf(“Press <Y/N>for more Node Information”);
ch=getchar();
}
while (ch=’Y’);
ptr->link=first;
}

b. (i) Insertion of a Node (At Beg)

10

Start Last

20 30 40

Figure Before Insert

10

Start

Last

20

50

30 40

Figure After Insert value = 50

Algorithm
Steps

 1. start
 2. if start=NULL then
 3. print “OVERFLOW” and then
 4. stop
 5. ptr=ptr->start
 6. start=start->link
 7. read info
 8. curr=curr->first



Chapter 3 Linked List 91

 9. repeat steps 10 while curr->link!=first
 10. curr=curr->link
 11. ptr->link=first
 12. first=ptr
 13. curr->link=first
 14. stop

void insertatbeg()
{
struct node *ptr;
ptr=(struct node *) malloc (sizeof (struct node));
if(ptr==NULL)
{
printf(“OVERFLOW\n”);
return;
}
printf (“Input New Node Information”);
scanf(“%d”, &ptr->info);
curr=first;
while(curr->link!=first)
{
curr=curr->link;
}
ptr->link=first;
first=ptr;
curr->link=first;
}

b. (ii) Insertion of a Node (At End)
10

Start Last

20 30 40

Figure Before Insert

10

Start

Last

20

50

30 40

Figure After Insert value = 50
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Algorithm
Steps

 1. start
 2. if start=NULL then
 3. print “OVERFLOW” and then
 4. stop
 5. ptr=ptr->start
 6. start=start->link
 7. read info
 8. curr=curr->link
 9. repeat step 10 while curr->link!=first
 10. curr=curr->link
 11. curr->link=ptr
 12. ptr->link=first
 13. stop

void insertatend()
{
struct node *ptr, *curr;
ptr=(struct node *) malloc (sizeof (struct node));
if(ptr==NULL)
{
printf(“OVERFLOW\n”);
return;
}
printf (“Input New Node Information”);
scanf(“%d”, &ptr->info);
curr=first;
while(curr->link!=first)
curr=curr->link;
curr->link=ptr;
ptr->link=first;
}

c. Deletion from Circular Linked List
Deletion from circular linked list is little bit different from single linked list.
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c. (i) Deletion of a Node (At Beg)

10

Start Last

20 30 40

Figure Before Deletion

10

Start Last

20 30 40

Figure After Deletion node whose value is 10

Algorithm
Steps

 1. start
 2. if first=NULL then
 3. print “UNDERFLOW” and then
 4. stop
 5. curr=curr->first
 6. repeat step 7 while curr->link!=first
 7. curr=curr->link
 8. ptr=ptr->first
 9. first=ptr->link
 10. curr->link=first
 11. ptr->link=avail
 12. avail=avail->ptr
 13. stop

void deleteatbeg()
{
struct node *ptr, *curr;
if (first==NULL)
{
printf(“\n UNDERFLOW”);
return;
}
curr=first
while(curr->link!=first)
curr=curr->link
ptr=first;
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first=ptr->link
curr->link=first;
free(ptr);
}

c. (ii) Deletion of a Node (At End)

10

Start Last

20 30 40

Figure Before Deletion

10

Start Last

20 30 40

Figure After Deletion node whose value = 40

Algorithm
Steps

 1. start
 2. if first=NULL then
 3. print “UNDERFLOW” and then
 4. stop
 5. curr->link=first
 6. repeat step 4 while curr->link!=first
 7. ptr=curr
 8. curr=curr->link
 9. ptr->link=first
 10. curr->link=avail
 11. stop

void deleteatend()
{
struct node *ptr, *curr;
if (first==NULL)
{
printf(“\n UNDERFLOW”);
return;
}
curr=first
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while(curr->link!=first)
{
ptr=curr;
curr=curr->link;
}
ptr->link=first;
free(ptr);
}

Program: Implement Circular Linked List

#include<stdio.h>
#include<stdlib.h>
typedef struct Node
{
 int data;
 struct Node *next;
}node;
void insert(node *pointer, int data)
{
 node *start = pointer;
 while(pointer->next!=start)
 {
 pointer = pointer -> next;
 }
 pointer->next = (node *)malloc(sizeof(node));
 pointer = pointer->next;
 pointer->data = data;
 pointer->next = start;
}
int find(node *pointer, int key)
{
 node *start = pointer;
 pointer = pointer -> next;
 while(pointer!=start)
 {
  if(pointer->data == key)
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  {
  return 1;
  }
  pointer = pointer -> next;
 }
 return 0;
}
void delete(node *pointer, int data)
{
 node *start = pointer;
  while(pointer->next!=start && (pointer->next)->data != data)
 {
  pointer = pointer -> next;
 }
 if(pointer->next==start)
 {
  printf(“Element %d is not present in the list\n”,data);
  return;
 }
 node *temp;
 temp = pointer -> next;
 pointer->next = temp->next;
 free(temp);
 return;
}
void print(node *start,node *pointer)
{
 if(pointer==start)
 {
  return;
 }
 printf(“%d-> “,pointer->data);
  print(start,pointer->next);
}
int main()
{
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 node *start,*temp;
 int query;
 start = (node *)malloc(sizeof(node));
 temp = start;
 temp -> next = start;
 while(1)
 {
 printf(“1. Insert\n”);
 printf(“2. Delete\n”);
 printf(“3. Print\n”);
 printf(“4. Find\n”);
 printf(“5. Exit\n”);
 scanf(“%d”,&query);
  if(query==1)
  {
   int data;
    printf(“\nEnter the data:-”);
   scanf(“%d”,&data);
   insert(start,data);
  }
  else if(query==2)
  {
     int data;
     printf(“\nEnter the data:-”);
     scanf(“%d”,&data);
     delete(start,data);
  }
  else if(query==3)
  {
     printf(“The list is “);
     print(start,start->next);
     printf(“\n”);

  }
  else if(query==4)
  {

     int data;
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     printf(“\nEnter the data:-”);
     scanf(“%d”,&data);
     int status = find(start,data);
     if(status)
     {
   printf(“Element Found\n”);
     }
     else
     {
   printf(“Element Not Found\n”);
     }
  }
     if(query==5)
     {
   exit(0);
     }
 }
}

Output
 1. Insert
 2. Delete
 3. Print
 4. Find
 5. Exit

 1
Enter the data:-2
 1. Insert
 2. Delete
 3. Print
 4. Find
 5. Exit

 1
Enter the data:-3
 1. Insert
 2. Delete
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 3. Print
 4. Find
 5. Exit

 1
Enter the data:-4
 1. Insert
 2. Delete
 3. Print
 4. Find
 5. Exit

 1
Enter the data:-5
 1. Insert
 2. Delete
 3. Print
 4. Find
 5. Exit

 3
The list is 2-> 3-> 4-> 5->
 1. Insert
 2. Delete
 3. Print
 4. Find
 5. Exit

 2
Enter the data:-4
 1. Insert
 2. Delete
 3. Print
 4. Find
 5. Exit

 3
The list is 2-> 3-> 5->
 1. Insert
 2. Delete
 3. Print
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 4. Find
 5. Exit

 5

3.7 DOUBLE LINKED LIST
In a single linked list one can move starting from the first node to any node in 
one direction from left-to-right. This is why, a single linked list is also called 
as a one way linked list. On the other hand, a double linked list is a two way 
linked list because one can move in both direction (left-to-right or right-to-left). 
A two way linked list is a linear collection of data elements called nodes, where 
each node is divided into three parts:

 (a) A pointer field prev which contains the location of the preceding node in 
the list.

 (b) An information field info which contains the data.
 (c) A pointer field next which contains the location of the next node in the 

list.

Prev Info Next

Figure Double linked list

The pointer prev of the first node and next of the last node contain the value 
NULL i.e. they do not store the address of any other node. This indicates the 
beginning and end of the list respectively. The advantage of a double linked list 
over a single linked list is that traversal is possible in both directions. This makes 
it an ideal data structure for applications like database and word processors in 
which moving in both directions is necessary.

3.8 OPERATIONS IN A DOUBLE LINKED LIST
There are a various operations possible on a Doubly Linked List.

 1. Traversing a double linked list.
 2. Insertion of a node

 (a) Insert at Beginning
 (b) Insert at End
 (c) Insert at a particular location

 3. Deletion of a node
 (a) Delete at Beginning
 (b) Delete at End
 (c) Delete at a particular location
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1. Traversing a double linked list
We want to traverse the list in order to process each node exactly once. Our aim 
is to traverse the list starting from the first node to the end of the list. Consider 
a pointer type variable curr that points to the node currently being processed 
next [curr] points to the next node.

Start End

40302010

Figure Traversing a Double Linked List

Algorithm
Steps

 1. Start
 2. Holds the address of the first node
 3. Set node = start   //initialize pointer variable node
 4. Repeat steps 5 and 6 while node ≠ NULL
 5. Process info [node]  // apply process to info [node]
 6. Set node = next [node]  // move pointer to next node
 7. End of step 4 loop
 8. Stop

Program: Create a Double Linked List

#include<stdio.h>
#include<stdlib.h>
struct dllnode
{
int info;
struct dllnode *prev;
struct dll *next;
};
void create (struct dllnode *);
void display(struct dllnode *);
void main()

{
struct dllnode *node;
node=(struct dllnode *)malloc(sizeof(struct dllnode));
if(node==NULL)
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{
printf(“\n out of memory”);
exit(0);
}
create(node);
display(node);
}
void create (struct dllnode *node)
{
struct dllnode *curr;
char ch;
int i=1;
printf(“\n Enter the value of %d node:”, i);
scanf(“%d”, &node->info);
node->prev=NULL;
node->next=NULL;
i=i+1;
printf(“\n Press ‘E’ key to exit and Press ‘Y’ key to continue:”);
ch=getchar();
while(ch!=’N’)
{
curr=(struct dllnode *)malloc(sizeof(struct dllnode));
if(curr==NULL)
{
printf(“\n Out of memory”);
exit(0);
}
node->next=curr;
curr->prev=node;
node=node->next;
printf(“\n Enter the value of %d node:”, i);
scanf(“%d”, &node->info);
node->next=NULL;
printf(“\n Press ‘E’ key to exit and Press ‘Y’ key to continue:”);
ch=getchar();
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i=i+1;
}
}

void display(struct dllnode*node)
{
struct dllnode *temp;
printf(“\n Value of Nodes in the List is Forward Direction”);
while(node!=NULL)
{
temp=node;
printf(“%d”, node->info);
node=node->next;
}
printf(“\n Value of Nodes in the List is Reverse Direction”);
node=temp;
while(node!=NULL)
{
printf(“%d”, node->info);
node=node->prev;
}
}

Output

Enter the value node: 10
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 20
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 30
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 40
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Press ‘E’ key to exit and Press ‘Y’ key to continue: E
Value of Nodes in the List in Forward Direction:
10 20 30 40
Value of Nodes in the List in Reverse Direction:
40 30 20 10
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2. Insertion of a node in a double linked list
The insertion is used to add an element in a double linked list. The following 
points should be remembered before making insert operation.

 (a) Create a new node.
 (b) If the list is empty, insert the node in the list and update the previous and 

next pointer field of the node
 (c) If the node is to be inserted at the beginning, insert the node and adjust 

the previous and next pointer field of the node.

a. Insert at Beginning

Start End

40302010

Figure Before Insert

40302010

50

Start

Figure After Insert ( x= 50)

Algorithm
Steps

 1. Start
 2. Holds the address of the first node
 3. Create a new node name as temp/node
 4. If node = NULL then
 5. Write “out of memory space” and
 6. Exit
 7. Set info [node] = x  //copies new data into new node
 8. Set next [node] = start // new node now points to original first node
 9. Set prev [node] = NULL
 10. Set prev [start] = node
 11. Set start = node
 12. Stop

Program: Insert a Node at the Beginning of a Double Linked List

#include<stdio.h>



Chapter 3 Linked List 105

#include<stdlib.h>
struct dllnode
{
int info;
struct dllnode *prev;
struct dll *next;
};
struct dllnode *start;
void create (struct dllnode *);
void insert(struct dllnode *);
void display(struct dllnode *);
void main()
{
struct dllnode *node;
char ch=’1’;
node=(struct dllnode *)malloc(sizeof(struct dllnode));
if(node==NULL)
{
printf(“\n out of memory”);
exit(0);
}
start=node;
create(node);
while(ch!=’3’)
{
printf(“\n 1. Insert at Beg”);
printf(“\n 2. Display”);
printf(“\n 3. Exit”);
printf(“\n Enter your choice:”);
ch=getchar();
switch(ch)
{
case ‘1’:
insert(node);
node=start;
break;
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case ‘2’:
display(node);
break;
case ‘3’:
break;
default:
printf(“Wrong Choice”);
}
}
}
void create (struct dllnode *node)
{
struct dllnode *curr;
char ch;
int i=1;
printf(“\n Enter the value of %d node:”, i);
scanf(“%d”, &node->info);
node->prev=NULL;
node->next=NULL;
i=i+1;
printf(“\n Press ‘E’ key to exit and Press ‘Y’ key to continue:”);
ch=getchar();
while(ch!=’N’)
{
curr=(struct dllnode *)malloc(sizeof(struct dllnode));
if(curr==NULL)
{
printf(“\n Out of memory”);
exit(0);
}
node->next=curr;
curr->prev=node;
node=node->next;
printf(“\n Enter the value of %d node:”, i);
scanf(“%d”, &node->info);
node->next=NULL;
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printf(“\n Press ‘E’ key to exit and Press ‘Y’ key to continue:”);
ch=getchar();
i=i+1;
}
}
void insert (struct dllnode *node)
{
struct dllnode *curr;
curr=(struct dllnode *)malloc(sizeof(struct dllnode));
if(curr==NULL)
{
printf(“\n Out of Memory”);
exit(0);
}
printf(“\n Enter the Value to be Insert:”);
scanf(“%d”, &curr->info);
curr->prev=NULL;
curr->next=node;
node->prev=curr;
node=curr;
start=node;
}
void display(struct dllnode*node)
{
struct dllnode *temp;
printf(“\n Value of Nodes in the List is Forward Direction”);
while(node!=NULL)
{
temp=node;
printf(“%d”, node->info);
node=node->next;
}
printf(“\n Value of Nodes in the List is Reverse Direction”);
node=temp;
while(node!=NULL)
{
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printf(“%d”, node->info);
node=node->prev;
}
}

Output

Enter the value node: 10
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 20
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 30
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 40
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Press ‘E’ key to exit and Press ‘Y’ key to continue: E

 1. Insert at Beg
 2. Display
 3. Exit
Enter Your Choice: 2
10 20 30 40
Value of Nodes in the List is Forward Direction:
10 20 30 40
Value of Nodes in the List is Reverse Direction:
40 30 20 10

 1. Insert at Beg
 2. Display
 3. Exit
Enter Your Choice:1
50

 1. Insert at Beg
 2. Display
 3. Exit
Value of Nodes in the List is Forward Direction:
50 10 20 30 40
Value of Nodes in the List is Reverse Direction:
40 30 20 10 50
Enter Your Choice: 3
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b. Insert at End

40302010

EndStart

Figure Before Insert

40302010

50

Start

End

Figure After Insert (x = 50)

Algorithm
Steps

 1. Start
 2. Holds the address of the first node
 3. Create a new node named as temp/node
 4. If node = NULL then
 5. Write “out of memory space” and
 6. Exit
 7. Set info [node] = x   //copies new data into new node
 8. Set next [node] = NULL
 9. Set curr = start
 10. Repeat steps 11 and 12 while curr ≠ NULL
 11. Set prev = curr
 12. Set curr = next [curr]
 13. End of step 10 loop
 14. Set next [prev] = node
 15. Set prev [node] = prev
 16. Stop
Program: Insert a Node at the End of a Double Linked List

#include<stdio.h>
#include<stdlib.h>

struct dllnode
{
int info;
struct dllnode *prev;
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struct dll *next;
};
void create (struct dllnode *);
void insert(struct dllnode *);
void display(struct dllnode *);
void main()
{
struct dllnode *node;
char ch=’1’;
node=(struct dllnode *)malloc(sizeof(struct dllnode));
if(node==NULL)
{
printf(“\n out of memory”);
exit(0);
}
create(node);
while(ch!=’3’)
{
printf(“\n 1. Insert at End”);
printf(“\n 2. Display”);
printf(“\n 3. Exit”);
printf(“\n Enter your choice:”);
ch=getchar();
switch(ch)
{
case ‘1’:
insert(node);
break;
case ‘2’:
display(node);
break;
case ‘3’:
break;
default:
printf(“Wrong Choice”);
}



Chapter 3 Linked List 111

}
}
void create (struct dllnode *node)
{
struct dllnode *curr;
char ch;
int i=1;
printf(“\n Enter the value of %d node:”, i);
scanf(“%d”, &node->info);
node->prev=NULL;
node->next=NULL;
i=i+1;
printf(“\n Press ‘E’ key to exit and Press ‘Y’ key to continue:”);
ch=getchar();
while(ch!=’N’)
{
curr=(struct dllnode *)malloc(sizeof(struct dllnode));
if(curr==NULL)
{
printf(“\n Out of memory”);
exit(0);
}
node->next=curr;
curr->prev=node;
node=node->next;
printf(“\n Enter the value of %d node:”, i);
scanf(“%d”, &node->info);
node->next=NULL;
printf(“\n Press ‘E’ key to exit and Press ‘Y’ key to continue:”);
ch=getchar();
i=i+1;
}
}
void insert (struct dllnode *node)
{
struct dllnode *curr;
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curr=(struct dllnode *)malloc(sizeof(struct dllnode));
if(curr==NULL)
{
printf(“\n Out of Memory”);
exit(0);
}
curr->next=NULL;
printf(“\n Enter the Value to be Insert:”);
scanf(“%d”, &curr->info);
node->next=curr
curr->prev=node;
}
void display(struct dllnode*node)
{
struct dllnode *temp;
printf(“\n Value of Nodes in the List is Forward Direction”);
while(node!=NULL)
{
temp=node;
printf(“%d”, node->info);
node=node->next;
}
printf(“\n Value of Nodes in the List is Reverse Direction”);
node=temp;
while(node!=NULL)
{
printf(“%d”, node->info);
node=node->prev;
}
}

Output

Enter the value node: 10
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 20
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
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Enter the value node: 30
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 40
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Press ‘E’ key to exit and Press ‘Y’ key to continue: E

 1. Insert at End
 2. Display
 3. Exit
Enter Your Choice: 2
10 20 30 40
Value of Nodes in the List is Forward Direction:
10 20 30 40
Value of Nodes in the List is Reverse Direction:

 40 30 20 10
 1. Insert at End
 2. Display
 3. Exit
Enter Your Choice:1
50

 1. Insert at End
 2. Display
 3. Exit
Value of Nodes in the List is Forward Direction:
10 20 30 40 50
Value of Nodes in the List is Reverse Direction:
50 40 30 20 10
Enter Your Choice: 3

c. Insert at a particular location

40302010

Start End

Figure Before Insert

40302010

50

Figure After Insert (loc = 3, x = 50)
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Algorithm
Steps

 1. Start
 2. Holds the address of the first node
 3. Create a new node named as temp/node
 4. If node = NULL then
 5. Write “out of memory space” and
 6. Exit
 7. Set info [node] = x   //copies new data into new node
 8. Set next [node] = NULL
 9. Set curr = start
 10. Read loc
 11. Set i = 1
 4. Repeat steps 12 to 14 while curr ≠ NULL and i < loc
 12. Set prev = curr
 13. Set curr = next [curr]
 14. Set i = i+1
 15. End of step 17 loop
 16. If curr = NULL then
 17. Write “position not found” and
 18. Exit
 19. Set next [prev] = node
 20. Set prev [node] = prev
 21. Set next [node] = curr
 22. Set prev [ curr] = node
 23. Stop

Program: Insert a Node at a Particular Location in a Double Linked List

#include<stdio.h>
#include<stdlib.h>
struct dllnode
{
int info;
struct dllnode *prev;
struct dll *next;
};
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struct dllnode *start;
void create (struct dllnode *);
void insert(struct dllnode *);
int count(struct dllnode *);
void display(struct dllnode *);
void main()
{
struct dllnode *node;
char ch=’1’;
node=(struct dllnode *)malloc(sizeof(struct dllnode));
if(node==NULL)
{
printf(“\n out of memory”);
exit(0);
}
start=node;
create(node);
while(ch!=’3’)
{
printf(“\n 1. Insert at Particular Location”);
printf(“\n 2. Display”);
printf(“\n 3. Exit”);
printf(“\n Enter your choice:”);
ch=getchar();
switch(ch)
{
case ‘1’:
insert(node);
node=start;
break;
case ‘2’:
display(node);
break;
case ‘3’:
break;
default:
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printf(“Wrong Choice”);
}
}
}
void create (struct dllnode *node)
{
struct dllnode *curr;
char ch;
int i=1;
printf(“\n Enter the value of %d node:”, i);
scanf(“%d”, &node->info);
node->prev=NULL;
node->next=NULL;
i=i+1;
printf(“\n Press ‘E’ key to exit and Press ‘Y’ key to continue:”);
ch=getchar();
while(ch!=’N’)
{
curr=(struct dllnode *)malloc(sizeof(struct dllnode));
if(curr==NULL)
{
printf(“\n Out of memory”);
exit(0);
}
node->next=curr;
curr->prev=node;
node=node->next;
printf(“\n Enter the value of %d node:”, i);
scanf(“%d”, &node->info);
node->next=NULL;
printf(“\n Press ‘E’ key to exit and Press ‘Y’ key to continue:”);
ch=getchar();
i=i+1;
}
}
void insert (struct dllnode *node)



Chapter 3 Linked List 117

{
struct dllnode *curr;
int loc, c=0, i=1;
printf(“\n Enter the location at which node will be inserted:”);
scanf(“%d”, &loc);
c=count(node);
if(loc>c)
{
printf(“\n Entered location Exceeds the Number of Nodes”);
return;
}
curr=(struct dllnode *)malloc(sizeof(struct dllnode));
if(curr==NULL)
{
printf(“\n Out of Memory”);
exit(0);
}
while(i<loc)
{
node=node->next;
i=i+1;
}
printf(“\n Input the Node value at %d location:”, loc);
scanf(“%d”, &curr->info);
if(loc==1)
{
curr->next=node;
curr->prev=NULL;
node->prev=curr;
start=curr;
}
else
{
node->prev->next=curr;
curr->prev=node->prev;
curr->next=node;



118 Data Structure Using C

node->prev=curr;
}
}
int count(struct dllnode *node)
{
int i=0;
while(node!=NULL)
{
i=i+1;
node=node->next;
}
return i;
}
void display(struct dllnode*node)
{
struct dllnode *temp;
printf(“\n Value of Nodes in the List is Forward Direction”);
while(node!=NULL)
{
temp=node;
printf(“%d”, node->info);
node=node->next;
}
printf(“\n Value of Nodes in the List is Reverse Direction”);
node=temp;
while(node!=NULL)
{
printf(“%d”, node->info);
node=node->prev;
}
}

Output

Enter the value node: 10
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 20
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Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 30
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 40
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Press ‘E’ key to exit and Press ‘Y’ key to continue: E

 1. Insert at Particular Location
 2. Display
 3. Exit
Enter Your Choice: 2
10 20 30 40
Value of Nodes in the List is Forward Direction:
10 20 30 40
Value of Nodes in the List is Reverse Direction:

 40 30 20 10
 1. Insert at Particular Location
 2.  Display
 3. Exit
Enter Your Choice:1
Enter the location at which node will be inserted:3
Input the Node value at 3 location: 50

 1. Insert at Particular Location
 2. Display
 3. Exit
Value of Nodes in the List is Forward Direction:
10 20 50 30 40
Value of Nodes in the List is Reverse Direction:
40 30 50 20 10
Enter Your Choice: 3

3. Deletion of a node
The deletion operation is used to delete an element from a double linked list. 
Before performing deletion one should remember the following points.

 (a) If the list is empty, deletion is not possible
 (b) If the list contains one node after deletion the list will be empty
 (c) If the node to be deleted is not found, display a message “node not found”
 (d) If the node is deleted, the memory space for the deleted node is de-allocated.
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a. Delete at Beginning

40302010

Start End

Figure Before Deletion

40302010

Start End

Figure After Delete the First Node

Algorithm
Steps

 1. Start
 2. Holds the address of the first node
 3. Set temp = start
 4. If start = NULL then
 5. Write “UNDERFLOW” and
 6. Exit
 7. Set start = next [start]
 8. Set prev [start] = NULL
 9. Free the space associated with temp
 10. Stop

Program: Delete a Node from the Beginning of a Double Linked List

#include<stdio.h>
#include<stdlib.h>
struct dllnode
{
int info;
struct dllnode *prev;
struct dll *next;
};
struct dllnode *start;
void create (struct dllnode *);
void delete(struct dllnode *);
void display(struct dllnode *);
void main()
{
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struct dllnode *node;
char ch=’1’;
node=(struct dllnode *)malloc(sizeof(struct dllnode));
if(node==NULL)
{
printf(“\n out of memory”);
exit(0);
}
start=node;
create(node);
while(ch!=’3’)
{
printf(“\n 1. Delete at Beg”);
printf(“\n 2. Display”);
printf(“\n 3. Exit”);
printf(“\n Enter your choice:”);
ch=getchar();
switch(ch)
{
case ‘1’:
delete(node);
node=start;
break;
case ‘2’:
display(node);
break;
case ‘3’:
break;
default:
printf(“Wrong Choice”);
}
}
}
void create (struct dllnode *node)
{
struct dllnode *curr;



122 Data Structure Using C

char ch;
int i=1;
printf(“\n Enter the value of %d node:”, i);
scanf(“%d”, &node->info);
node->prev=NULL;
node->next=NULL;
i=i+1;
printf(“\n Press ‘E’ key to exit and Press ‘Y’ key to continue:”);
ch=getchar();
while(ch!=’N’)
{
curr=(struct dllnode *)malloc(sizeof(struct dllnode));
if(curr==NULL)
{
printf(“\n Out of memory”);
exit(0);
}
node->next=curr;
curr->prev=node;
node=node->next;
printf(“\n Enter the value of %d node:”, i);
scanf(“%d”, &node->info);
node->next=NULL;
printf(“\n Press ‘E’ key to exit and Press ‘Y’ key to continue:”);
ch=getchar();
i=i+1;
}
}
void delete (struct dllnode *node)
{
struct dllnode *temp;
if(node!=NULL)
{
temp=node;
node=node->next;
node->prev=NULL;
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start=node;
free(temp);
}
}
void display(struct dllnode*node)
{
struct dllnode *temp;
if(node==NULL)
{
printf(“\n Empty”);
return;
}
printf(“\n Value of Nodes in the List is Forward Direction”);
while(node!=NULL)
{
temp=node;
printf(“%d”, node->info);
node=node->next;
}
printf(“\n Value of Nodes in the List is Reverse Direction”);
node=temp;
while(node!=NULL)
{
printf(“%d”, node->info);
node=node->prev;
}
}

Output

Enter the value node: 10
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 20
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 30
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 40
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Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Press ‘E’ key to exit and Press ‘Y’ key to continue: E

 1. Delete at Beg
 2. Display
 3. Exit
Enter Your Choice: 2
10 20 30 40
Value of Nodes in the List in Forward Direction:
10 20 30 40
Value of Nodes in the List is Reverse Direction:
 40 30 20 10

 1. Delete at Beg
 2. Display
 3. Exit
Enter Your Choice:1
10

 1. Delete at Beg
 2. Display
 3. Exit
Enter Your Choice: 2
Value of Nodes in the List is Forward Direction:
20 30 40
Value of Nodes in the List is Reverse Direction:
40 30 20
Enter Your Choice: 3

b. Delete at End

40302010

Start End

Figure Before Deletion

40302010

Start End

Figure After Delete the Last Node

Algorithm
Steps

 1. Start
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 2. Holds the address of the first node
 3. Set node = start
 4. Set temp = start
 5. If node = NULL then
 6. Write “UNDERFLOW” and
 7. Exit
 8. Repeat steps 9 and 10 while next [node] ≠ NULL
 9. Set temp = node
 10. Set node = next [node]
 11. End of step 8 loop
 12. Set next [temp] = NULL
 13. Free the space associated with node
 14. Stop

Program: Delete a Node at the End of a Double Linked List

#include<stdio.h>
#include<stdlib.h>
struct dllnode
{
int info;
struct dllnode *prev;
struct dllnode *next;
};
struct dllnode *start;
void create (struct dllnode *);
void delete(struct dllnode *);
void display(struct dllnode *);
void main()
{
struct dllnode *node;
char ch=’1’;
node=(struct dllnode *)malloc(sizeof(struct dllnode));
if(node==NULL)
{
printf(“\n out of memory”);
exit(0);
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}
start=node;
create(node);
while(ch!=’3’)
{
printf(“\n 1. Delete at End”);
printf(“\n 2. Display”);
printf(“\n 3. Exit”);
printf(“\n Enter your choice:”);
ch=getchar();
switch(ch)
{
case ‘1’:
delete(node);
node=start;
break;
case ‘2’:
display(node);
break;
case ‘3’:
break;
default:
printf(“Wrong Choice”);
}
}
}
void create (struct dllnode *node)
{
struct dllnode *curr;
char ch;
int i=1;
printf(“\n Enter the value of %d node:”, i);
scanf(“%d”, &node->info);
node->prev=NULL;
node->next=NULL;
i=i+1;
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printf(“\n Press ‘E’ key to exit and Press ‘Y’ key to continue:”);
ch=getchar();
while(ch!=’N’)
{
curr=(struct dllnode *)malloc(sizeof(struct dllnode));
if(curr==NULL)
{
printf(“\n Out of memory”);
exit(0);
}
node->next=curr;
curr->prev=node;
node=node->next;
printf(“\n Enter the value of %d node:”, i);
scanf(“%d”, &node->info);
node->next=NULL;
printf(“\n Press ‘E’ key to exit and Press ‘Y’ key to continue:”);
ch=getchar();
i=i+1;
}
}
void delete (struct dllnode *node)
{
struct dllnode *temp;
if(node->next==NULL)
{
temp=node;
node=node->next;
start=node;
free(temp);
return;
}
while(node->next!=NULL)
node=node->next;
temp=node;
node=node->prev;
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node->next=NULL;
free(temp);
}
void display(struct dllnode*node)
{
struct dllnode *temp;
if(node==NULL)
{
printf(“\n Empty”);
return;
}
printf(“\n Value of Nodes in the List is Forward Direction”);
while(node!=NULL)
{
temp=node;
printf(“%d”, node->info);
node=node->next;
}
printf(“\n Value of Nodes in the List is Reverse Direction”);
node=temp;
while(node!=NULL)
{
printf(“%d”, node->info);
node=node->prev;
}
}

Output
Enter the value node: 10
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 20
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 30
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 40
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
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Press ‘E’ key to exit and Press ‘Y’ key to continue: E
 1. Delete at End
 2. Display
 3. Exit
Enter Your Choice: 2
Value of Nodes in the List in Forward Direction:
10 20 30 40
Value of Nodes in the List in Reverse Direction:
40 30 20 10

 1. Delete at End
 2. Display
 3. Exit
Enter Your Choice: 1
Value of Nodes in the List is Forward Direction:
10 20 30
Value of Nodes in the List is Reverse Direction:
30 20 10

 1. Delete at End
 2. Display
 3. End
Enter Your Choice: 3

c. Delete at a particular location

40302010

Start End

Figure Before Deletion

Start End

40302010

Figure After Deletion (loc = 2, x =20)

Algorithm
Steps

 1. Start
 2. Holds the address of the first node
 3. Set node = start
 4. If node = NULL then
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 5. Write “UNDERFLOW” and
 6. Exit
 7. Set i = 1
 8. Read loc
 9. If loc = 1 then node = NULL and
 10. Exit
 11. Repeat steps 12 and 13 while node ≠ NULL and i < loc
 12. Set temp = node
 13. Set node = next [node]
 14. Set i = i+1
 15. End of step 11 loop
 16. If node = NULL then
 17. Write “position not found” and
 18. Exit
 19. Set next [temp] = next [node]
 20. Set prev [next[node]] = temp
 21. Free the space associated with node
 22. Stop
Program: Delete a Node at a Particular Location in a Double Linked List

#include<stdio.h>
#include<stdlib.h>
struct dllnode
{
int info;
struct dllnode *prev;
struct dllnode *next;
};
struct dllnode *start;
void create (struct dllnode *);
void delete(struct dllnode *);
int count(struct dllnode *);
void display(struct dllnode *);
void main()
{
struct dllnode *node;
char ch=’1’;
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node=(struct dllnode *)malloc(sizeof(struct dllnode));
if(node==NULL)
{
printf(“\n out of memory”);
exit(0);
}
start=node;
create(node);
while(ch!=’3’)
{
printf(“\n 1. Delete at a Particular Location”);
printf(“\n 2. Display”);
printf(“\n 3. Exit”);
printf(“\n Enter your choice:”);
ch=getchar();
switch(ch)
{
case ‘1’:
delete(node);
node=start;
break;
case ‘2’:
display(node);
break;
case ‘3’:
break;
default:
printf(“Wrong Choice”);
}
}
}
void create (struct dllnode *node)
{
struct dllnode *curr;
char ch;
int i=1;
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printf(“\n Enter the value of %d node:”, i);
scanf(“%d”, &node->info);
node->prev=NULL;
node->next=NULL;
i=i+1;
printf(“\n Press ‘E’ key to exit and Press ‘Y’ key to continue:”);
ch=getchar();
while(ch!=’N’)
{
curr=(struct dllnode *)malloc(sizeof(struct dllnode));
if(curr==NULL)
{
printf(“\n Out of memory”);
exit(0);
}
node->next=curr;
curr->prev=node;
node=node->next;
printf(“\n Enter the value of %d node:”, i);
scanf(“%d”, &node->info);
node->next=NULL;
printf(“\n Press ‘E’ key to exit and Press ‘Y’ key to continue:”);
ch=getchar();
i=i+1;
}
}
void delete(struct dllnode *node)
{
struct dllnode *temp;
int loc, c=0, i=1;
printf(“\n Enter the location at which node will be deleted:”);
scanf(“%d”, &loc);
c=count(node);
if(loc>c)
{
printf(“\n Enter location Exceeds the Number of Nodes”);
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return;
}
if(loc==1)
{
temp=node;
node=node->next;
if(node!=NULL)
node->prev=NULL;
free(temp);
start=node;
return;
}
while(i<loc)
{
node=node->next;
i=i+1;
}
temp=node;
node=node->prev;
node->next=temp->next;
temp->next->prev=node;
free(temp);
}
int count(struct dllnode *node)
{
int i=0;
while(node!=NULL)
{
i=i+1;
node=node->next;
}
return i;
}
void display(struct dllnode*node)
{
struct dllnode *temp;
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if(node==NULL)
{
printf(“\n Empty”);
return;
}
printf(“\n Value of Nodes in the List is Forward Direction”);
while(node!=NULL)
{
temp=node;
printf(“%d”, node->info);
node=node->next;
}
printf(“\n Value of Nodes in the List is Reverse Direction”);
node=temp;
while(node!=NULL)
{
printf(“%d”, node->info);
node=node->prev;
}
}

Output
Enter the value node: 10
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 20
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 30
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Enter the value node: 40
Press ‘E’ key to exit and Press ‘Y’ key to continue: Y
Press ‘E’ key to exit and Press ‘Y’ key to continue: E

 1. Delete at Particular Location
 2. Display
 3. Exit
Enter Your Choice: 2
Value of Nodes in the List is Forward Direction:
10 20 30 40
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Value of Nodes in the List is Reverse Direction:
40 30 20 10

 1. Delete at Particular Location
 2. Display
 3. Exit
Enter Your Choice: 1
Enter the location at which node will be deleted: 2

 1. Delete at Particular Location
 2. Display
 3. Exit
Enter Your Choice: 2
Value of Nodes in the List is Forward Direction:
10 30 40
Value of Nodes in the List is Reverse Direction:
40 30 10
Enter Your Choice: 3

Program: Write a Program to Implement a Double Linked List

#include<stdio.h>
#include<stdlib.h>
struct node
{
 struct node *previous;
 int data;
 struct node *next;
}*head, *last;
void insert_begning(int value)
{
 struct node *var,*temp;
 var=(struct node *)malloc(sizeof(struct node));
 var->data=value;
 if(head==NULL)
 {
  head=var;
  head->previous=NULL;
  head->next=NULL;
  last=head;
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 }
 else
 {
  temp=var;
  temp->previous=NULL;
  temp->next=head;
  head->previous=temp;
  head=temp;
 }
}
void insert_end(int value)
{
 struct node *var,*temp;
 var=(struct node *)malloc(sizeof(struct node));
  var->data=value;
 if(head==NULL)
 {
  head=var;
  head->previous=NULL;
  head->next=NULL;
  last=head;
 }
 else
 {
  last=head;
  while(last!=NULL)
  {
    temp=last;
    last=last->next;
  }
 last=var;
 temp->next=last;
 last->previous=temp;
 last->next=NULL;
 }
}
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int insert_after(int value, int loc)
{
 struct node *temp,*var,*temp1;
 var=(struct node *)malloc(sizeof(struct node));
 var->data=value;
  if(head==NULL)
 {
  head=var;
  head->previous=NULL;
  head->next=NULL;
 }
 else
 {
  temp=head;
  while(temp!=NULL && temp->data!=loc)
  {
   temp=temp->next;
  }
  if(temp==NULL)
  {
   printf(“\n%d is not present in list “,loc);
  }
  else
  {
  temp1=temp->next;
  temp->next=var;
  var->previous=temp;
  var->next=temp1;
  temp1->previous=var;
  }
 }
 last=head;
 while(last->next!=NULL)
 {

 

 last=last->next;
 }
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}
int delete_from_end()
{
 struct node *temp;
 temp=last;
 if(temp->previous==NULL)
 {
  free(temp);
  head=NULL;
  last=NULL;
  return 0;
 }
 printf(“\nData deleted from list is %d \n”,last->data);
 last=temp->previous;
 last->next=NULL;
 free(temp);
 return 0;
}
void display()
{
 struct node *temp;
 temp=head;
 if(temp==NULL)
 {
  printf(“List is Empty”);
 }
 while(temp!=NULL)
 {
  printf(“%d-> “,temp->data);
  temp=temp->next;
 }
}
int main()
{
 int value, i, loc;
 head=NULL;
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 printf(“Select the choice of operation on link list”);
 printf(“\n1.) insert at begning\n2.) insert at end\n3.) insert at middle”);
 printf(“\n4.) delete from end\n5.) display list\n6.) exit”);
 while(1)
 {

 

 printf(“\n\nenter the choice of operation you want to do”);
  scanf(“%d”,&i);
  switch(i)
  {
   case 1:
   {
   printf(“enter the value you want to insert in node”);
   scanf(“%d”,&value);
   insert_begning(value);
   display();
   break;
   }
   case 2:
   {
   printf(“enter the value you want to insert in node at last”);
   scanf(“%d”,&value);
   insert_end(value);
   display();
   break;
   }
   case 3:
   {
   printf(“after which data you want to insert data”);
   scanf(“%d”,&loc);
   printf(“enter the data you want to insert in list”);
   scanf(“%d”,&value);
   insert_after(value,loc);
   display();
   break;
   }
  

 
case 4:
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   {
   delete_from_end();
   display();
   break;
   }
   case 5:
   {
   display();
   break;
   }
   case 6:
   {
   exit(0);
   break;
   }
 }
}
printf(“\n\n%d”,last->data);
display();

}

Output

Select the choice of operation on link list
 1. insert at begning
 2. insert at end
 3. insert at middle
 4. delete from end
 5. display list
 6. exit
enter the choice of operation you want to do 1
enter the value you want to insert in node 2
2->
enter the choice of operation you want to do 2
enter the value you want to insert in node at last 3
2-> 3->
enter the choice of operation you want to do 1
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enter the value you want to insert in node 4
4-> 2-> 3->
enter the choice of operation you want to do 3
after which data you want to insert data 12
enter the data you want to insert in list 2

12 is not present in list 4-> 2-> 3->

enter the choice of operation you want to do 3
after which data you want to insert data 2
enter the data you want to insert in list 12
4-> 2-> 12-> 3->

enter the choice of operation you want to do 4

Data deleted from list is 3
4-> 2-> 12->

enter the choice of operation you want to do 4

Data deleted from list is 12
4-> 2->

enter the choice of operation you want to do 5
4-> 2->

enter the choice of operation you want to do 6

3.9 CIRCULAR DOUBLE LINKED LIST
The main motive for consideration to implement a circular double linked is to 
simplify the insertion and deletion operations performed. In this list, the left 
link of the left most node contains the address of the right most node and the 
right link of the right most node contains the address of the left most node.

10 20 30 40

Figure Circular Double Linked List

3.10 OPERATIONS ON CIRCULAR DOUBLE LINKED LIST
 1. Insertion Operation

 (a) Insert at Beg
 (b) Insert at End
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 2. Deletion Operation
 (a) Delete at Beg
 (b) Delete at End

1. Insertion Operation
a. Insertion at Beginning

10 20 30 40

Figure Before Insertion at Beginning

10 20 30 40

50

Figure After Insertion at Beginning (Say=50)

Algorithm
Steps

 1. start
 2. if avail=NULL then
 3. print message “OVERFLOW” and then
 4. stop
 5. ptr←avail
 6. avial←rightptr
 7. avail←leftptr
 8. read info
 9. ptr←leftptr (first)
 10. rightptr ←first
 11. leftptr←ptr
 12. leftptr←ptr
 13. rightptr←ptr
 14. first←ptr
 15. stop
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struct node *insertatbeg(struct node *start)
{
struct node *newnode, *ptr;
int num;
printf(“\n Enter the Data”);
scanf(“%d”, &num);
newnode=(struct node *)malloc(sizeof(struct node));
newnode->data=num;
ptr=start;
while(ptr->next!=start)
ptr=ptr->next;
newnode->prev=ptr;
ptr->next=newnode;
newnode->next=start;
start->prev=newnode;
start=newnode;
return start;
}

b. Insertion at End

10 20 30 40

Figure Before Insertion at End

50

10 20 30 40

Figure After Insertion at End (Say=50)

Algorithm
Steps

 1. start
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 2. if avail=NULL then
 3. print message “OVERFLOW” and then
 4. stop
 5. ptr←avail
 6. avail←leftptr
 7. avail←rightptr
 8. read info
 9. ptr←leftptr (first)
 10. rightptr←ptr
 11. leftptr←ptr
 12. rightptr←first
 13. leftptr←ptr
 14. stop

struct node *insertatend(struct node *start)
{
struct node *ptr, *newnode;
int num;
printf(“\n Enter the Data”);
scanf(“%d”, &num);
newnode=(struct node *)malloc(sizeof(struct node));
newnode->data=num;
ptr=start;
while(ptr->next!=start)
ptr=ptr->next;
ptr->next=newnode;
newnode->prev=ptr;
newnode->next=start;
start->prev=newnode;
return start;
}

2. Delete Operation
a. Deletion at Beg

10 20 30 40

Figure Before Deletion at Beginning
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10 20 30 40

Figure After Deletion at Beginning (Say=10)

Algorithm
Steps

 1. start
 2. if first=NULL then
 3. print message “UNDERFLOW” and then
 4. stop
 5. ptr←first
 6. ptr←rightptr (first)
 7. currptr←leftptr (first)
 8. leftptr←currptr
 9. rightptr←ptr
 10. first←ptr
 11. leftptr←avail
 12. rightptr←avail
 13. avail=ptr
 14. stop

struct node *deleteatbeg(struct node *start)
{
struct node *ptr;
ptr=start;
while(ptr->next!=start)
ptr=ptr->next;
ptr->next=start->next;
tmp=start;
start=start->next;
start->prev=ptr;
free(tmp);
return start;
}
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b. Deletion at End

10 20 30 40

Figure Before Deletion at End

10 20 30 40

Figure After Deletion at End (Say=40)

Algorithm
Steps

 1. Start
 2. If first=NULLthen
 3. Print message “UNDERFLOW” and then
 4. Stop
 5. ptr←leftptr (first)
 6. currptr←leftptr
 7. leftptr ←currptr
 8. rightptr (currptr) ←first
 9. leftptr←avail
 10. rightptr←avail
 11. avail←ptr
 12. stop

struct node *deleteatend(struct node *start)
{
struct node *tmp;
tmp=start;
while(tmp->next!=start)
tmp=tmp->next;
tmp->prev->next=start;
start->prev=tmp->prev;
free(tmp);
return start;
}
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Program: Write a Program to implement a Circular Double Linked List

#include<stdio.h>
#include<stdlib.h>
struct node
{
struct node *next;
int data;
struct node *prev;
};
struct node *start=NULL;
struct node *create(struct node *);
struct node *display(struct node *);
struct node *insertatbeg(struct node *);
struct node *insertatend(struct node *);
struct node *deleteatbeg(struct node *);
struct node *deleteatend(struct node *);

void main()
{
char ch=’1’;
while (ch!=’7’)
{
printf(“\n 1. Create a Circular Double Linked List”);
printf(“\n 2. Display a Circular Double Linked List”);
printf(“\n 3. Insert at Beg”);
printf(“\n 4. Insert at End”);
printf(“\n 5. Delete at Beg”);
printf(“\n 6. Delete at End”);
printf(“\n 7. Exit”);
printf(“\n Enter Your Choice:”);
ch=getchar();

switch(ch)
{
case ‘1’:
start=create(start);
printf(“\n Circular Double Linked List”);
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break;

case ‘2’:
start=display(start);
break;
case ‘3’:
start=insertatbeg(start);
break;

case ‘4’:
start=insertatend(start);
break;

case ‘5’:
start=deleteatbeg(start);
break;

case ‘6’:
start=deleteatend(start);
break;

case ‘7’:
break;

default:
printf(“\n Wrong Choice”);
}
}
}
struct node *create(struct node *start)
{
int num;
printf(“\n Enter -1 to Last”);
printf(“\n Enter the Data”);
scanf(“%d”, &num);
while(num!=-1)
{
if(start==NULL)
{
newnode=(struct node*)malloc(sizeof(struct node));
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newnode->prev=NULL;
newnode->info=num;
newnode->next=start;
start=newnode;
}
else
{
newnode=(struct node*)malloc(sizeof(struct node));
newnode->data=num;
ptr=start;
while(ptr->next!=start)
ptr=ptr->next;
newnode->prev=ptr;
ptr->next=newnode;
newnode->next=start;
start->prev=newnode;
}
printf(“\n Enter the Data:”);
scanf(“%d”, &num);
}
return start;
}
struct node*display(struct node *start)
{
struct node *ptr;
ptr=start;
while(ptr->next!=start)
{
printf(“%d”, ptr->data);
ptr=ptr->next;
}
printf(“%d”,ptr->data);
return start;
}
struct node *insertatbeg(struct node *start)
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{
struct node *newnode, *ptr;
int num;
printf(“\n Enter the Data”);
scanf(“%d”, &num);
newnode=(struct node *)malloc(sizeof(struct node));
newnode->data=num;
ptr=start;
while(ptr->next!=start)
ptr=ptr->next;
newnode->prev=ptr;
ptr->next=newnode;
newnode->next=start;
start->prev=newnode;
start=newnode;
return start;
}
struct node *insertatend(struct node *start)
{
struct node *ptr, *newnode;
int num;
printf(“\n Enter the Data”);
scanf(“%d”, &num);
newnode=(struct node *)malloc(sizeof(struct node));
newnode->data=num;
ptr=start;
while(ptr->next!=start)
ptr=ptr->next;
ptr->next=newnode;
newnode->prev=ptr;
newnode->next=start;
start->prev=newnode;
return start;
}
struct node *deleteatbeg(struct node *start)
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{
struct node *ptr;
ptr=start;
while(ptr->next!=start)
ptr=ptr->next;
ptr->next=start->next;
tmp=start;
start=start->next;
start->prev=ptr;
free(tmp);
return start;
}

struct node *deleteatend(struct node *start)
{
struct node *tmp;
tmp=start;
while(tmp->next!=start)
tmp=tmp->next;
tmp->prev->next=start;
start->prev=tmp->prev;
free(tmp);
return start;
}

Header linked list
The header linked list is a special type of linked list where a special Header Node 
is inserted at the beginning of the list. The header node contains the address 
of first node in the linked list. The start pointer does not contain the address of 
actual first node of the list but it holds the address of header node. In this case, 
the header node is like a dummy node, it is also known as sentinel node.

Header Node

 

Here is the function in C to create a header node linked list.

#include<stdio.h>
struct node



152 Data Structure Using C

{
int data;
struct node *next;
};
struct node *start=NULL;
struct node create(struct node *);
struct node *display(struct node *);
void main()
{
------------------
------------------
------------------
------------------
}
struct node *create(struct node *start)
{
struct node *tmp, &ptr;
int data;
printf(“\n Enter -1 to end”);
printf(“Enter the Information”);
scanf(“%d”, &data);
while (data!=-1)
{
tmp=(struct node*)malloc(sizeof(struct node));
tmp->info=data;
tmp->next=NULL;
if(start==NULL)
{
start=(struct node*)malloc(sizeof(struct node));
start->next=tmp;
}
else
{
ptr=start;
while(ptr->next!=NULL)
ptr=ptr->next;
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ptr->next=tmp;
}
printf(“\n Enter the information”);
scanf(“%d”, &data);
}
return start;
}
struct node *display(struct node *start)
{
struct node *ptr;
ptr=start;
while(ptr!=NULL)
{
printf(“%d”, ptr->data);
ptr=ptr->next;
}
return start;
}

3.11 APPLICATIONS OF LINKED LIST
One useful application of linear linked list is in the representation of polynomial 
expression. We can use linked list to represent polynomial expression and for 
arithmetic operations also.

Applications of Doubly linked list can be
 1. A great way to represent a deck of cards in a game.
 2. The browser cache which allows you to hit the BACK button (a linked 

list of URLs)
 3.  Applications that have a Most Recently Used (MRU) list (a linked list of 

file names)
 4.  A stack, hash table, and binary tree can be implemented using a doubly 

linked list.
 5. Undo functionality in Photoshop or Word (a linked list of state)

3.12 DIFFERENCE BETWEEN LINKED LISTS AND ARRAYS
Similar data element can be stored in memory with the use of array or a linked list.
Arrays are easy to understand but they have the following limitations:
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 1. The size of arrays cannot be increased or decreased during execution.
 2. The elements in an array are stored in contiguous memory locations.
 3. The operations like insertion of a new element in an array or deletion of 

an existing element after the specified position.

Linked list can be used to overcome these limitations.

 1. A linked list can grow or shrink during the execution of program.
 2. There is no problem of shortage of memory as the nodes are stored in 

different memory locations.
 3. In different operations like insertion and deletion no shifting of nodes is 

required.

POINTS TO REMEMBER
 1. A linked list is a linear collection of data elements called as nodes in which 

linear representation is given by links from one node to another.
 2. Linked list is a data structure which can be used to implement other data 

structures such as stacks, queues, and their variations.
 3. Before we insert a new node in linked lists, we need to check for overflow 

condition, which occurs when no free memory cell is present in the 
system.

 4. Before we delete a node from a linked list, we must first check for underflow 
condition which occurs when we try to delete a node from a linked list 
that is empty.

 5. In a circular linked list, the last node contains a pointer to the first node 
of the list.

 6. A doubly linked list is a linked list which contains a pointer to the next 
as well as the previous node in the sequence. Therefore, it consists of 
three parts: data, a pointer to the next node, and a pointer to the previous 
node.

 7. The previous field of the first node and the next field of the last node 
contains NULL.

 8. A header linked list is a special type of linked list which contains a header 
linked list Start will not point to the first node of the list but start will 
contains the address of the header node.

MULTIPLE CHOICE QUESTION

 1. A linked list is a
 (a) Random access structure
 (c) Both a & b

 (b) Sequential access structure
 (d) None of these
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 2. An array is a
 (a) Random access structure
 (c) Both a & b

 (b) Sequential access structure
 (d) None of these

 3. Linked list is used to implement data structures like
 (a) Stacks
 (c) Trees

 (b) Queues
 (d) All of these

 4. Which type of linked list contains a pointer to the next as well as the 
previous node in the sequence?

 (a) Singly linked list
 (c) Doubly linked list

 (b) Circular linked list
 (d) All of these

 5. Which type of linked list does not store NULL in next field?
 (a) Singly linked list
 (c) Doubly linked list

 (b) Circular linked list
 (d) All of these

 6. Which type of linked list stores the address of the header node in the next 
field of the last node?

 (a) Singly linked list
 (c) Doubly linked list

 (b) Circular linked list
 (d) Circular header linked list

 7. Which type of linked list can have four pointers per node?
 (a) Circular doubly linked list
 (c) Header linked list

 (b) Multi-linked list
 (d) Doubly linked list

TRUE OR FALSE
 1. A linked list is a linear collection of data elements.
 2. A linked list can grow and shrink during run time.
 3. A node in a linked list can point to only one node at a time.
 4. A node in a singly linked list can reference the previous node.
 5. A linked list can store only integer values.
 6. Linked list is a random access structure.
 7. Deleting a node from a doubly linked list is easier than deleting it from a 

singly linked list.
 8. Every node in a linked list contains an integer part and a pointer.
 9. Start stores the address of the first node in the list.
 10. Underflow is a condition that occurs when we try to delete a node from a 

linked list that is empty.
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FILL IN THE BLANKS
 1. ___________ is used to store the address of the first free memory location.
 2. The complexity to insert a node at the beginning of the linked list is 

________.
 3. The complexity to delete a node from the end of the linked list 

is___________.
 4. Inserting a node at the beginning of the doubly linked list needs to modify 

_______ pointer.
 5. Inserting a node in the middle of the singly linked list needs to modify 

_____ pointers.
 6. Inserting a node at the end of the circular linked list needs to modify 

_________ pointers.
 7. Inserting a node at the beginning of the circular doubly linked list needs 

to modify _________ pointers.
 8. Deleting a node from the beginning of the singly linked list needs to modify 

______ pointers.
 9. Deleting a node from the middle of the doubly linked list needs to modify 

_________ pointers.
 10. Deleting a node from the end of a circular linked list needs to modify 

________ pointers.
 11. Each element in a linked list is known as a ________.
 12. First node in the linked list is called the _______.
 13. Data elements in a linked list are known as __________.
 14. Overflow occurs when ________.
 15. In a circular linked list, the last node contains a pointer to the ________ 

node of the list.

EXERCISES
 1. What is Linked List? How it is different from array? Write the different 

types of linked list?
 2. Write a C function to reverse a Single Linked List?
 3. Write a C function to reverse a Double Linked List?
 4. Suppose DATA_1 is a list in memory. Write a algorithm which copies 

DATA_1 into a list DATA_2.
 5. How a linked list can be used to represent a polynomial of type

  6x2y2 – 4xy2 + 8xy +7y2

 6. What is the advantage of a header node in a linked list?
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 7. Write a C function that removes all duplicate elements from a single linked 
list?

 8. Write a C function to find the nth node in a single linked list?
 9. Write a C function to count the total number of nodes in a single linked 

list?
 10. Write a C function to merge two sorted single linked list?
 11. Write a C function that removes the first element of a single linked list 

and adds it to the end of the list?
 12. Write a C function to delete a node from a circular linked list?
 13. Write a C function that concatenates two circular linked lists, producing 

a single circular linked list?
 14. Write a C function to multiply two polynomial?
 15. Write a C function to add two polynomial?
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4
Stack

4.1 INTRODUCTION
Stack is a specialized data storage structure (Abstract data type). It has two 
main functions-push and pop. Insertion in a stack is done using push function 
and removal from a stack is done using pop function. Stack allows access to 
only the last element inserted hence, an item can be inserted or removed from 
the stack from one end called the top of the stack. It is therefore, also called 
Last-In-First-Out (LIFO) list. Stack has three properties:

 (a) Capacity stands for the maximum number of elements stack can hold.
 (b) Size stands for the current size of the stack.
 (c) Elements are the array of elements.

The Linear data structure such as array and a linked list allows us to delete 
and insert an element at any place in the list, either at the beginning or at the 
end or even in the middle. However, sometimes it is required to permit the 
addition or deletion of elements only at one end. That is either at the beginning 
or at the end. Stack and queue are two types of data structures in which the 
addition or deletion of an element is done at end, rather than in the middle. A 
stack is a linear data structure in which all insertions and deletions are made 
at one end, called the top of the stack. It is very useful in many applications 
such as:

 • We see stack (pile) of plates in restaurant, stack of books in bookshop. 
 • Even a packet of papers is also a stack of paper-sheet. A book is also a 

stack of written papers.
 • When anybody takes a plate from a stack of plates, he takes it from the 

top.
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Definition
A stack is an ordered collection of homogeneous data elements where the insertion 
and deletion operations occur at only one end. This end is often known as top of 
the stack. Here, the last element inserted will be top of the stack. Since deletion 
is done from the same end, last element inserted will be 
the first element to be removed out from the stack and so 
on. That is why the stack is also called Last-in-First-Out 
(LIFO).

Initially, when stack is created using arrays the size 
is fixed, the stack base remains fixed while the stack top 
increase the position. So, most frequently accessible element 
in the stack is the top and the last accessible elements are 
the bottom of the stack.
4.2 OPERATIONS ON THE STACK
A stack is generally implemented with two basic operations such as PUSH and 
POP.

 1. PUSH Operation
 2. POP Operation

1. PUSH Operation
The process of adding a new element to the 
top of the stack is called push operation. 
Pushing an element in the stack invoke 
adding of element at the top. Suppose, after 
inserting an element max size is reached, 
i.e., stack is full. This situation is called  the 
stack overflow condition. At this point the 
stack top is present at the highest location 
of the stack. Initially the stack is empty and 
it has one pointer i.e., TOP.

Algorithm for PUSH Operation
Steps:

 1. start
 2. if top==maxsize–1 then
 3. print message “stack is OVERFLOW 

and then
 4. stop
 5. read data
 6. top=top+1

Value_5

PUSH POP

Value_4

Value_3

Value_2

Value_1

Value_5

Value_4

Value_3

Value_2

Value_1

4
3
2
1
0

4

1) Push ‘T’

PUSH OPERATION
Initially stock 

is empty

3
2
1
0-TopT

4

3) Push ‘L’

3
2-Top
1
0T

A

L

4

6) Push ‘S’

3
2
1
0T

A

L
H
A

4

4) Push ‘H’

3-Top
2
1
0T

A

L
H

4-Top

5) Push ‘A’

3
2
1
0T

A

L
H
A

4

2) Push ‘A’

3
2
1-Top
0T

A

Top=0 Top=Top*1
       =0*1
       =0

Top=Top+1
       =0+1
       =1

Top=Top+1
       =1+1
       =2

Top=Top+1
       =2+1
       =3
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       =3+1
       =4

Top=Top+1
       =4+1
       =5 (Over�ow)

 Figure shows the stack insertion 
(PUSH) operations.
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 7. stack[top]=data
 8. stop

2. POP Operation
The process of deleting an element from the top of the stack is called pop operation. 
After every pop operation the stack is decremented by 1. Finally, when all the 
elements are deleted, top points to bottom of the stack. When the stack is empty, it 
is not possible to delete any element and this situation is called the stack underflow. 
Thus, if there is no element on the 
stack and the Pop operation is 
performed then this will result into 
UNDERFLOW condition.

Algorithm for POP Operation
Steps:

 1. start
 2. if top==–1 then
 3. print message 

“UNDERFLOW” and then
 4. stop
 5. stack [top]=data
 6. top=top–1
 7. stop

4.3 IMPLEMENTATION OF STACK
A stack can be implemented in array or linked list
 1. Array Implementation of the Stacks
A stack is an ordered collection of items and C language already contains a data 
type that is an ordered collection of items such as array. A stack and an array 
are two entirely different things. The number of elements in an array is fixed 
and is assigned by the declaration for the array. A stack on the other hand, is 
fundamentally a dynamic object whose size is constantly changing as items 
are popped and pushed. However, although an array cannot be a stack, it can 
be home of a stack.

Program: write a program to implement Stack Operation using array
#include<stdio.h>
#include<stdlib.h>
#define MAX_SIZE 5
int stack[MAX_SIZE];
void push();
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 Figure below shows the stack deletion  
(POP) operations
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int pop();
void traverse();
int is_empty();
int top_element();
int top = -1;
void main()
{
int element, choice;
while(1)
{
printf(“Stack Operations.\n”);
printf(“1. Insert into stack (Push operation).\n”);
printf(“2. Delete from stack (Pop operation).\n”);
printf(“3. Print top element of stack.\n”);
printf(“4. Check if stack is empty.\n”);
printf(“5. Traverse stack.\n”);
printf(“6. Exit.\n”);
printf(“Enter your choice.\n”);
scanf(“%d”,&choice);
switch ( choice )
{
case 1:
if ( top == MAX_SIZE - 1 )
printf(“Error: Overflow\n\n”);
else
{
printf(“Enter the value to insert.\n”);
scanf(“%d”,&element);
push(element);
}
break;
case 2:
if ( top == -1 )
printf(“Underflow.\n\n”);
else
{
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element = pop();
printf(“Element removed from stack is %d.\n”, element);
}
break;
case 3:
if(!is_empty())
{
element = top_element();
printf(“Element at the top of stack is %d\n\n”, element);
}
else
printf(“Stack is empty.\n\n”);
break;
case 4:
if(is_empty())
printf(“Stack is empty.\n\n”);
else
printf(“Stack is not empty.\n\n”);
break;
case 5:
traverse();
break;
case 6:
exit(0);
}
}
}
void push(int value)
{
top++;
stack[top] = value;
}
int pop()
{
int element;
if ( top == -1 )



164 Data Structure Using C

return top;
element = stack[top];
top--;
return element;
}
void traverse()
{
int d;
if ( top == - 1 )
{
printf(“Stack is empty.\n\n”);
return;
}
printf(“There are %d elements in stack.\n”, top+1);
for ( d = top ; d >= 0 ; d-- )
printf(“%d\n”, stack[d]);
printf(“\n”);
}
int is_empty()
{
if ( top == - 1 )
return 1;
else
return 0;
}
int top_element()
{
return stack[top];
}

Output
Stack Operations.

 1. Insert into stack (Push operation).
 2. Delete from stack (Pop operation).
 3. Print top element of stack.
 4. Check if stack is empty.
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 5. Traverse stack.
 6. Exit.

Enter your choice.
1
Enter the value to insert.
2
Stack Operations.

 1. Insert into stack (Push operation).
 2. Delete from stack (Pop operation).
 3. Print top element of stack.
 4. Check if stack is empty.
 5. Traverse stack.
 6. Exit.

Enter your choice.
1
Enter the value to insert.
3
Stack Operations.

 1. Insert into stack (Push operation).
 2. Delete from stack (Pop operation).
 3. Print top element of stack.
 4. Check if stack is empty.
 5. Traverse stack.
 6. Exit.

Enter your choice.
1
Enter the value to insert.
4
Stack Operations.

 1. Insert into stack (Push operation).
 2. Delete from stack (Pop operation).
 3. Print top element of stack.
 4. Check if stack is empty.
 5. Traverse stack.
 6. Exit.

Enter your choice.
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1
Enter the value to insert.
5
Stack Operations.

 1. Insert into stack (Push operation).
 2. Delete from stack (Pop operation).
 3. Print top element of stack.
 4. Check if stack is empty.
 5. Traverse stack.
 6. Exit.

Enter your choice.
5
There are 4 elements in stack.
5
4
3
2
Stack Operations.

 1. Insert into stack (Push operation).
 2. Delete from stack (Pop operation).
 3. Print top element of stack.
 4. Check if stack is empty.
 5. Traverse stack.
 6. Exit.

Enter your choice.
2
Element removed from stack is 5.
Stack Operations.

 1. Insert into stack (Push operation).
 2. Delete from stack (Pop operation).
 3. Print top element of stack.
 4. Check if stack is empty.
 5. Traverse stack.
 6. Exit.

Enter your choice.
5
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There are 3 elements in stack.
4
3
2
Stack Operations.

 1. Insert into stack (Push operation).
 2. Delete from stack (Pop operation).
 3. Print top element of stack.
 4. Check if stack is empty.
 5. Traverse stack.
 6. Exit.

Enter your choice.
6

2. Linked List Implement of a Stack
The stack can be implemented as a linked list in which the top of the stack is 
represented by the first item in the list. The first element inserted into the stack 
is pointed out by the second element, the second element by the third and so 
on. In general the (n-1) th element is pointed out by the nth element.

10 20 30 40

Top
In linked list implementation, the stack does not need to be of fixed size. There 

can be any number of elements or nodes in the stack. The second advantage of 
linked list method is that insertion and deletion operation do not involve more 
data movements. The other advantage of this method is that memory space is 
not wasted, because memory space is allocated only when the users wants to 
push an element into the stack. To implement a push, we create a new node in 
the list and attach it as the new first element. To implement a POP, we advance 
the Top of the stack to the second item in the first
Program: write a program to implement Stack Operation using Linked List

#include<stdio.h>
#include<stdlib.h>
void push();
void pop();
void display();
struct node
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{
int info;
struct node *link;
}*top;
void main()
{
int i,ch,num;
top=NULL;
printf(“Select the choice of operation on Stack”);
printf(“\n1.) Push\n2.) Pop”);
printf(“\n3.) display Stack\n4.) exit”);
while(1)
{
  printf(“\n\nenter the choice of operation you want to do”);
  scanf(“%d”,&i);
  switch(i)
  {
  case 1:
  {
   printf(“enter the value you want to insert in Stack”);
   scanf(“%d”,&num);
   push(num);
   break;
   }
  case 2:
  {
   pop();
   break;
  }
  case 3:
  {
  display();
  break;
  }
  case 4:
  {
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  exit(0);
  }
  default:printf(“wrong choice”);
  }
}
}
void push(int a)
{
struct node *temp;
temp=(struct node *)malloc(sizeof(struct node));
temp->info=a;
temp->link=top;
top=temp;
}
void display()
{
struct node *temp;
temp=top;
if(temp==NULL)
{
  printf(“List is Empty”);
}
while(temp!=NULL)
{
  printf(“%d-> “,temp->info);
  temp=temp->link;
}
printf(“NULL”);
}
void pop()
{
struct node *temp;
if(top==NULL)
printf(“LIST IS EMPTY”);
else
{
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temp=top;
printf(“%d->”,temp->info);
top=top->link;
free(temp);
}
}

Output
Select the choice of operation on Stack

 1. Push
 2. Pop
 3. Display Stack
 4 Exit

enter the choice of operation you want to do 1
enter the value you want to insert in Stack 2
enter the choice of operation you want to do 1
enter the value you want to insert in Stack 3
enter the choice of operation you want to do 1
enter the value you want to insert in Stack 4
enter the choice of operation you want to do 1
enter the value you want to insert in Stack 5
enter the choice of operation you want to do 3
5-> 4-> 3-> 2-> NULL

4.4 APPLICATIONS OF STACK
Various applications of stack are known. A classical application in a compiler 
design is the evaluation of arithmetic expression; here the compiler uses a 
stack to translate an input arithmetic expression into its corresponding object 
code. Some machines are also known which use built-in stack hardware 
called stack machine. Another important application of a stack is during 
the execution of recursive programs; some programming languages use 
stacks to run recursive programs. One important feature of any programming 
language is the binding of memory variables. Such binding is determined 
by the scope rules.

 1. Checking the validity of an Arithmetic Expression
 2. Polish Notation
 3. Recursion
 4. Tower of Hanoi
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1. Checking the Validity of an Arithmetic Expression
An arithmetic expression consists of operands and operators. Operands are 
variables or constants and operators are of various types. With the help of stack, 
we can check the validity of an arithmetic expression.

 • Whenever an opening parenthesis is encountered, it is pushed on to the 
stack.

 • Whenever a closing parenthesis is encountered, the stack is examined.
 • If the stack is empty, the closing parenthesis does not have an opening 

parenthesis and the expression is therefore invalid.
 • If the stack is not empty, we POP the stack and check whether the popped 

item corresponds to the closing parenthesis.
 • If a match occurs, we continued. Otherwise the expression is invalid.
 • When the end of the expression is reached, the stack must be empty; 

otherwise one or more opening parenthesis does not have corresponding 
closing parenthesis and the expression is invalid.

Example
[(P + Q) - {R + S} ] - [T + U]

Symbol Scanned Stack

[ [

( [,(

P [,(

+ [,(

Q [,(

) [

- [

{ [,{

R [,{

+ [,{

S [,{

} [

]

-

[ [

T [
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Symbol Scanned Stack

+ [

U [

]

The stack is empty at the end, so the expression is valid.
2. Polish Notation
An arithmetic expression can be represented in various forms such as prefix, 
infix, postfix. The prefixes “pre”, “in”, and “post” refer to the relative position 
of the operator with respect to its operands.

Prefix: +PQ (operator before its operands)
Infix: P+Q (operator in the middle of its operands)
Postfix: PQ+ (operator after its operands)
The set of rules must be applied to expressions in order to determine the final 

value. These rules include precedence, BODMAS and associatively.
Table: Precedence and associatively of operator

Operator Precedence Associatively

-(unary), + (unary), NOT 6 --

^ (exponentiation) 6 Right to Left

* (multiplication), / (division) 5 Left to Right

+ (addition), -(subtraction) 4 Left to Right

<, <=, < >, >= 3 Left to Right

AND 2 Left to Right

OR, XOR 1 Left to Right

Convert Infix to postfix form
Infix to postfix conversion

Scan through an expression, getting one token at a time.
 1. Fix a priority level for each operator.
 2. If the token is an operand, do not stack it. Pass it to the output. 
 3. If token is an operator or parenthesis, do the following:

 a. Pop the stack until you find a symbol of lower priority number than 
the current one. An incoming left parenthesis will be considered to 
have higher priority than any other symbol. A left parenthesis on the 
stack will not be removed unless an incoming right parenthesis is 
found. The popped stack elements will be written to output.

 b. Stack the current symbol.
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 c. If a right parenthesis is the current symbol, pop the stack down to 
(and including) the first left parenthesis. Write all the symbols 
except the left parenthesis to the output (i.e. write the operators to 
the output).

 d. After the last token is read, pop the remainder of the stack and write 
any symbol (except left parenthesis) to output.

Q1. P + Q - R
Solution: (PQ+) - R  where X=PQ+
X - R
XR-
Put the value of X, we get
PQ + R-

Q2. P * Q + R / S
Solution: P*Q + RS/  where X=RS/
P*Q+X
PQ* +X where Y=PQ*
Y+X
YX+
Put the value of X and Y, we get
P Q * R S / +

Q3. (P + Q) * R / S + T ^ U / V
Solution: (PQ+) * R/S+T^U/V  where A=PQ+
A * R / S + (T U ^) / V  where B=TU^
A * R / S + B / V
A * (R S /) + B / V  where C=RS/
A * C + (B V /)  where D=BV/
A * C + D
(A C *) + D  where E=AC*
E+ D
E D +
Put the values of A, B, C, D, E, we get
AC * D +
PQ + C * D +
PQ + RS / * BV / +
PQ+ RS / * TU^ V / +



174 Data Structure Using C

Conversion of an infix expression to postfix expression
Suppose an arithmetic expression written in infix notation. Besides operands and 
operators, Arithmetic Expression may also contain left and right parenthesis. 
Suppose that Arithmetic Expression consists only of Exponentiations (^), 
multiplication (*), division (/), additions (+), subtractions (-). We also assumed 
that operators on the same level, including exponentiations are performed from 
left to right. This algorithm transforms the infix expression Arithmetic Expression  
into its equivalent postfix expression.
Algorithm

Steps:
 1. start
 2. infix_to_postfix(Arithmetic Expression)
 3. push ( ‘(‘ )  //push left parenthesis  

‘(‘ on to stack
 4. repeat steps 5 to 27 while stack is not empty
 5. set value = Arithmetic Expression.scan_ch()  //scan the symbol from  

infix expression
 6. if (value = operand)
 7. write (“value”)  //write symbol into the  

output expression
 8. end of step 6 if structure
 9. if (value = ‘(‘ )
 10. push (value) //push symbol ‘(‘ to the stack
 11. end of step 9 if structure
 12. if (value = operator)
 13. x = pop()
 14. if precedence (x) ≥ precedence (value)
 15. repeat steps 16 and 17 while (precedence (x) ≥ precedence (value))
 16. write x
 17. x = pop()
 18. end of step 15 loop
 19. end of step 14 if structure
 20. end of step 12 if structure
 21. push (x)
 22. push (value)
 23. if (value = ‘)’ )
 24. x = pop()
 25. repeat steps 26 and 27 while x ≠ ‘(‘
 26. write (x)
 27. x = pop()
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 28. end of step 25 loop
 29. end of step 23 if structure
 30. end of step 4 loop
 31. stop

Example: Consider the following arithmetic infix expression Arithmetic Expression 
AE: P + (Q * R – (S / T ^ U) * V) * W)

Symbol Scanned Stack Expression (Postfix)

P ( P

+ ( + P

( ( + ( P

Q ( + ( P Q

* ( + ( * P Q

R ( + ( * P Q R

- ( + ( - P Q R *

( ( + ( - ( P Q R *

S ( + ( - ( P Q R * S

/ ( + ( - ( / P Q R * S

T ( + ( - ( / P Q R * S T

^ ( + ( - ( / ^ P Q R * S T

U ( + ( - ( / ^ P Q R * S T U

) ( + ( - P Q R * S T U ^ /

* ( + ( - * P Q R * S T U ^ /

V ( + ( - * P Q R * S T U ^ / V

) ( + P Q R * S T U ^ / V * -

* ( + * P Q R * S T U ^ / V * -

W ( + * P Q R * S T U ^ / V * - W

) P Q R * S T U ^ / V * - W * +

Program: Write a program to convert infix expression to postfix 
expression

#include<stdio.h>
#include<ctype.h>
#include<string.h>
int top=-1,i=0,l;
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char infix[50],stk[50],a;
void postfix(char);
int p(char);
void main()
{
 printf(“Enter infix expression:-”);
 gets(infix);
 l=strlen(infix);
 infix[l]=’#’;
 stk[++top]=’#’;
 printf(“Postfix Expression:-”);
 while(infix[i]!=’#’)
 {
 if(isalpha(infix[i]))
 printf(“%c”,infix[i]);
 else
 postfix(infix[i]);
 i++;
 }
 while((top!=-1)&&(stk[top]!=’#’))
 printf(“%c”,stk[top--]);
}
void postfix(char a)
{
switch(a)
{
 case ‘(‘:stk[++top]=a;
 break;
 default:
 if(a==’)’)
 {
 while(stk[++top]!=’)’)
 printf(“%c”,stk[--top]);
 }
 else if(stk[++top]==’(‘)
 stk[++top]=a;
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 else if(p(a)>p(stk[top]))
 stk[++top]=a;
 else
 {
 while(p(stk[top])>p(a))
 printf(“%c “,stk[top--]);
 stk[++top]=a;
 }
}
}
int p(char a)
{
switch(a)
{
 case ‘^’:
 return 3;
 break;
 case ‘/’:
 case ‘*’:
 return 2;
 break;
 case ‘+’:
 case ‘-’:
 return 1;
 break;
 default:
 return 0;
}
}

Output
Enter infix expression:- p+(q*r-(s/t^u)*v)*w
Postfix Expression:- pqr*stu^/v*-w*+
Enter infix expression:- a+b-c*d/f
Postfix Expression:- abcdf/*-+

 a. Convert infix expression into postfix expression in a tabular form
The steps involved to convert the infix expression into postfix expression
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 1. Add the Unique symbol “#” into stack.
 2. Scan the symbol of array infix one by one from left to right.
 3. If symbol is left parenthesis “(“then add it to the stack.
 4. If symbol is operand then add it to array postfix.
 5. If symbol is operator then pop the operators which have same precedence 

or higher precedence than the operator which occurred.
 6. Add the popped operator to array postfix.
 7. Add the scanned symbol operator into stack.
 8. If symbol is right parenthesis “)” then pop all the operators from stack 

until left parenthesis “(“ in stack.
 9. Remove left parenthesis “(“from stack.
 10. If symbol is “#” then pop all the symbols from stack and add them to array 

postfix except “#”.
 11. Repeat the same steps until “#” comes in scanning array infix.

Evaluation of postfix expression
Assume: PN is an expression in postfix notation

Algorithm
Steps:

 1. start
 2. eval_postfix(PN)
 3. append a right parenthesis ‘)’ at the end of the postfix expression
 4. set value = PN.scan_ch() //scan the symbol from postfix expression
 5. repeat steps 6 to 16 while value ≠ ‘)’
 6. if value = operand
 7. push (value) //operand is pushed in to the stack
 8. end of step 6 if structure
 9. if value = operator
 10. set a = pop() // a is the second operands of the current operator
 11. set b = pop() // b is the first operands of the current operator
 12. set op = value
 13. set result =b op a
 14. push (result)
 15. end of step 9 if structure
 16. set value = PN.scan_ch()
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 17. end of step 5 loop
 18. set result = pop
 19. write “result”
 20. stop

Example:
P * (Q + R ^ S) – T ^ U * (V / W)

Scanned Symbol Operator in Stack Postfix Expression

P # P

* # * P

( # * ( P

Q # * ( P Q

+ # * ( + P Q

R # * ( + P Q R

^ # * ( + ^ P Q R

S # * ( + ^ P Q R S

) # * P Q R S ^ +

- # - P Q R S ^ + *

T # - P Q R S ^ + * T 

^ # - ^ P Q R S ^ + * T

U # - ^ P Q R S ^ + * T U

* # - * P Q R S ^ + * T U ^

( # - * ( P Q R S ^ + * T U ^

V # - * ( P Q R S ^ + * T U ^ V

/ # - * ( / P Q R S ^ + * T U ^ V

W # - * ( / P Q R S ^ + * T U ^ V W

) # - * P Q R S ^ + * T U ^ V W /

# P Q R S ^ + * T U ^ V W / * -

Example: Evaluate postfix form: 5,9,8 + 4,6 * + 7 - *

Scanned Symbol Stack

5 5

9 5,9

8 5,9,8

+ 5,17 

4 5 17,4
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Scanned Symbol Stack

6 5,17,4,6

* 5,17,24 

+ 5,41

7 5,41,7

- 5,34

* 170

 b. Convert Infix to Prefix Form
Q1. P*Q+C
Solution: *PQ+C where X=*PQ
X+C
+XC
Put the values of X, we get
+*PQC
Q2. P/Q^R+S
Solution: P/^QR+SX=^QR ( Exponentiation is having higher precedence 

than / that is the reason exponentiation operation is performed first.)
P/X+S
/PX+S where Y=/PX
Y+S
+YS
Put the values of X and Y, we get
+/PXS
+/P^QRS
Q3. (P-Q/R)*(S*T-U)
Solution: (P-/QR)*(S*T-U) where X=/QR
(P-X)*(S*T-U)
-PX*(*ST-U) where Y=*ST, Z=-PX
Z*(Y-U)
Z*-YU where W=-YU
Z*W
*ZW
Put the value of X, Y, Z and W, we get
*-PXW
*-P/QR-YU
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*-P/QR-*STU
Algorithm
Arithmetic Expression in infix notation. Two stacks are used, push(stk1, x) 
means adding an item x to stack stk s1, pop(stk1) means removing the top most 
element from the stack stk1.

Steps:

 1. start
 2. infix_to_prefix(Arithmetic Expression)
 3. initially add a left parenthesis ‘(‘ at the beginning of the infix expression 

Arithmetic Expression.
 4. push (stk1, ‘)’)
 5. set item = Arithmetic Expression.reverseorder scan_ch() //scan the 

symbol from Arithmetic Expression in right to left
 6. repeat steps 7 to 28 while stk1 is not empty
 7. if item = operand
 8. push (stk2, item)
 9. end of step 7 if structure
 10. if item = ‘)’
 11. push (stk1,item)
 12. end of step 10 if structure
 13. if item = operator
 14. set x = pop(stk1)
 15. if precedence(x)>precedence(item)
 16. repeat steps 17 and 18 while precedence (x)> precedence(item)
 17. push (stk2, x)
 18. set x = pop(stk1)
 19. end of step 16 while loop
 20. end of step 15 if structure
 21. push(stk1, x)
 22. push(stk1, item)
 23. end of step 13 if structure
 24. if item = ‘(‘
 25. set x = pop(stk1)
 26. repeat steps 27 and 28 while x ≠ ‘)’
 27. push (stk2, x)
 28. set x = pop(stk1)
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 29. end of step 26 while loop
 30. end of step 24 if structure
 31. end of step 6 loop
 32. repeat step 33 and 34 while stack stk2 is not empty
 33.  set x = pop(stk2)
 34. write “x”
 35. end of step 32 loop
 36. stop

Program: write a program to convert infix expression to prefix expression
#include<stdio.h>
#include<ctype.h>
#include<string.h>
int top=-1,t=-1;
char infix[20],sym[20],inf[20],pre[20];
void prefix(char);
int p(char);
void main()
{
 int l,i=0;
 printf(“\n Convert Infix to Prefix Expression\n”);
 printf(“Enter infix expression:- “);
 gets(infix);
 l=strlen(infix);
 while(i<l)
 {
 inf[i+1]=infix[i];
 i++;
 }
 inf[0]=’(‘;
 sym[++t]=’)’;
 i=strlen(inf)-1;
 while(i!=0)
 {
 if(isalpha(inf[i]))
 pre[++top]=inf[i];
 else
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 prefix(inf[i]);
 i--;
 }
 while((t!=-1)&&(sym[t]!=’)’))
 pre[++top]=sym[t--];
 printf(“Prefix Expression:- “);
 while(top!=-1)
 printf(“%c”, pre[top--]);
}
void prefix(char a)
{
 switch(a)
 {
 case ‘)’:
 sym[++t]=a;
 break;
 default:
 if(a==’(‘)
 {
 while(sym[++t]!=’)’)
 pre[++top]=sym[t--];
 t--;
 }
 else if(a==’)’)
 sym[++t]=a;
 else if(p(a)>p(sym[t]))
 sym[++t]=a;
 else
 {
 while(p(a)<p(sym[t]))
 pre[++top]=sym[t--];
 sym[++t]=a;
 }
 }
}
int p(char a)
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{
 switch(a)
 {
 case ‘^’:
 return 3;
 break;
 case ‘/’:
 case ‘*’:
 return 2;
 break;
 case ‘+’:
 case ‘-’:
 return 1;
 break;
 default:
 return 0;
 }
}

Output
Convert Infix to Prefix Expression
Enter infix expression:- a+b-c*d/e
Prefix Expression:- -+ab/*cde

 c. Convert infix expression into prefix expression in a tabular form
The steps involved to convert the infix expression into prefix expression
 1. Reverse the input string.
 2. Examine the next element in the input
 3. If it is operand, add it to output string
 4. If it is closing parenthesis, push it on stack
 5. If it is operator, then

 (a) If stack is empty, push operator on stack
 (b) If the top of stack is closing parenthesis, push operator on stack
 (c) If it has same or higher priority than the top of stack, push operator 

on stack
 (d) Else pop the operator from the stack and add it to output string

 6. If it is an opening parenthesis, pop operators from stack and add them to 
output string until a closing parenthesis is encountered. Pop and discard 
the closing parenthesis
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 7. If there is more input then go to step 2
 8. If there is no more input, unstuck the remaining operators and add them 

to output string
 9. Reverse the output string.

Evaluation of prefix Expression
PN is an expression in prefix notation

Algorithm
Steps:

 1. start
 2. eval_prefix(PN)
 3. append a left parenthesis ‘(‘ at the beginning of the prefix expression
 4. set item = PN.reverseorderscan_ch() //scan the symbol from PN in 

right to left
 5. repeat steps 6 to 16 while item = ‘(‘
 6. if item = operand
 7. push(item) //operand is pushed into the stack
 8. end of step 6 if structure
 9. if item = operator
 10. set a = pop() // a is the first operand of the current operator
 11. set b = pop() // b is the second operand of the current operator
 12. set op = item
 13. set result = a op b
 14. push (result)
 15. end of step 9 if structure
 16. set item = PN.reverseorderscan_ch()
 17. end of step 5 loop
 18. set result = pop()
 19. write “result”
 20. stop

Example:
Suppose we want to convert: P + Q * R * ( S * T ^ U + V ) – W + X into prefix 
form.

Reverse expression is: X + W - ) V + U ^ T * S ( * R * Q + P
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Symbol Scanned Stack stk1 Stack stk2

X ) X

+ ) + X

W ) + X W

- ) + - X W

) ) + - ) X W

V ) + - ) X W V

+ ) + - ) + X W V

U ) + - ) + X W V U

^ ) + - ) + ^ X W V U

T ) + - ) + ^ X W V U T

* ) + - ) + * X W V U T ^

S ) + - ) + * X W V U T ^ S

( ) + - X W V U T ^ S * +

* ) + - * X W V U T ^ S * +

R ) + - * X W V U T ^ S * + R

* ) + - * * X W V U T ^ S * + R

Q ) + - * * X W V U T ^ S * + R Q

+ ) + - + X W V U T ^ S * + R Q * *

P ) + - + X W V U T ^ S * + R Q * * P

X W V U T ^ S * + R Q * * P + - +

POP all the symbol of stack 
stk2 and print the result: + - + 
P * * Q R + * S ^ T U V W X

Suppose we want to convert 3*4(3-2)+6*(5-2) into prefix form. Reverse 
expression is:

)2-5(*6+)2-3(4*3

Symbol Scanned Stack Contents (Top on Right) Prefix Expression (Right toLeft)

) )

2 ) 2

- ) 2

5 ) 2 5

( Empty 2 5-

* * 2 5 – 2 5 – 6
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Symbol Scanned Stack Contents (Top on Right) Prefix Expression (Right toLeft)

6 * 2 5 – 6 *

+ + 2 5 – 6 *

) + ) 2 5 – 6 * 2

2 + ) 2 5 – 6 * 2

- + ) - 2 5 – 6 * 2 3

3 + ) - 2 5 – 6 * 2 3 -

( + 2 5 – 6 * 2 3 -

/ + / 2 5 – 6 * 2 3 – 4

4 + / 2 5 – 6 * 2 3 – 4

* + / * 2 5 – 6 * 2 3 – 4 2

3 + / * 2 5 – 6 * 2 3 – 4 2

Empty 2 5 – 6 * 2 3 – 4 2 * / +

Reverse the output 
string is: 

2 5 – 6 * 2 3 – 4 2 * / +

4.5 RECURSION
Recursion can be defined as a process in which a function calls itself with reduced 
input and has a base condition to stop the process, i.e., in order to solve a problem 
recursively, two conditions must be satisfied. First, the problem must be written in a 
recursive form, and second, the problem statement must include a stopping condition.

Definition: A function is said to be recursively defined, if a function containing 
either a Call statement to itself or a Call statement to a second function that may 
eventually result in a Call statement back to the original function.

A recursive function must have the following properties:

 1. There must be certain criteria, called base criteria for which the function 
does not call itself.

 2. Each time the function does call itself (directly or indirectly); the argument 
of the function must be close to a base value.

Principles  of  Recursion
Recursion is implemented through the use of functions. A function that contains 
a function call to itself or a function call to a second function which eventually 
calls the first function, is known as a recursive function.

Two important conditions must be satisfied by any recursive function

 1. Each time a function calls itself it must be closer, in some sense to a solution.
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 2. There must be a decision criterion for stopping the process or computation.
For designing the good recursive program we must make certain assumptions 

such as:

 (a) Base case: Base case is the terminating condition for the problem while 
designing any recursive function.

 (b) If Conditions: If condition in the recursive algorithm defines the terminat-
ing condition.

 (c) When a recursive program is subjected for execution function calls will 
not be executed immediately.

 (d) The initial parameter input value pushed on to the stack.
 (e) Each time a function is called a new set of local variable and formal 

parameters are again pushed on to the stack and execution starts from 
the beginning of the function using changed new value. This process is 
repeated till a base condition (stopping condition) is reached.

 (f) Once a base condition or stopping condition is reached the recursive func-
tion calls popping elements from stack and returns a result to the previous 
values of the function.

 (g) A sequence or returns ensures that the solution to the original problem is 
obtained.

Advantages and Disadvantages of Recursion
Advantages

 1. We can create a simple and easy version of programs using recursion.
 2. Always recursion will be written in the name of recursive definition. It 

can be translated into C code very easily.
 3. We can avoid initialisation of variable inside the functions, but iterative 

solutions are required to be initialised.
 4. Some specific applications are meant for recursion such as Binary tree 

traversal; tower of Hanoi etc. can be easily understood.

Disadvantages

 1. It occupies lot of memory: When function is called outside or called within, 
the function stores formal parameters local variables and returns address 
to confirm function are working well. Apart from this, it stores function 
variables separately.

 2. It consumes more time to get desired result: After matching the base 
condition, the function should restore the most recently saved parameters, 
local variables, and return address. This operation spends lot of time during 
pushing and popping the necessary items from the stack.
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 3. Function execution is slower than iterative method because of the overhead 
of calling functions repeatedly.

Comparison of Iteration and Recursion
Any iterative function consists of four parts.

 1. Initialisation: The decision parameter is set to an initial value or more 
precisely, the loop variable is initialised, other pre-defined variables are 
also initialised.

 2. Decision: The decision parameter is used to determine whether further 
looping is necessary. The loop variable is compared and based on the 
outcome, the loop is executed again.

 3. Computation: Necessary computation is performed within the loop.
 4. Update: The decision parameter is updated and transfer is made to the 

next iteration. The loop variable is incremented/decremented.
For a recursive function.

 1. Initialisation: The variables in the form of arguments are passed on to 
the function.

 2. Decision: The argument values are used to determine whether further 
recursive calls are required.

 3. Computation: Necessary computation is performed using the local variables 
and the parameters at the current depth.

 4. Update: The update is done so that the variables can be used for further 
recursive calls.

S.No Iteration Recursion

1 Iterative Instructions –are loop based 
repetitions of a process

Recursive function – is a function that is 
partially defined by itself

2 Iteration uses repetition structure Recursion Uses selection structure

3 An infinite loop occurs with itera-
tion if the loop-condition test never 
becomes false

Infinite recursion occurs if the recursion step 
does not reduce the problem in a manner that 
converges on some condition.

4 Iteration terminates when the loop-
condition fails

Recursion terminates when a base case is 
recognized

5 Iteration does not use stack so it’s 
faster than recursion

Recursion is usually slower then iteration due 
to overhead of maintaining stack

6 Iteration consume less memory Recursion uses more memory than iteration

7 Infinite looping uses CPU
cycles repeatedly

Infinite recursion can crash the system

8 Iteration makes code longer Recursion makes code smaller
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Recursion Through Stack
Some programming language like ‘C’ provides the facility of recursive function. 
So we can use it very easily. But in other language also we can provide recursion 
technique with stack implementation whenever the situation arises for recursion 
implementation. Even we can convert recursive function in ‘C’ into non - recursive 
function through stack implementation. We will see this approach in graph 
traversal where we use Depth first traversal using recursion as well as stack 
implementation. We have a need to do following things for using recursion 
through stack implementation.

 1. One stack for each parameter of function.
 2. Only one stacks for return address.
 3. One stack for each local variable of function.

As a simple example, let us consider the case of calculation of the factorial 
value for an integer n.

n! = n * (n - 1) * (n - 2) * (n - 3) *........ * 3 * 2 * 1
The last expression is the recursive description of the factorial whereas the 

first is the iterative definition.

Algorithm
Steps:

 1. start
 2. if n = 0 then
 3. fact = 1
 4. else
 5. fact = n * fact (n-1)
 6. end if
 7. return (fact)
 8. stop

Program: Find the factorial of any given number with the help of recursion
#include <stdio.h>
void main()
 {
  int n, val;
  printf (“Enter the number”);
 scanf(“%d”, &n);
 if (n < 0)
  printf (“Factorial not possible \n”);
 else
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  if (n == 0)
   printf (“factorial of Zero is 1\n”);
  else   {
   val = fac (n, 1)
   printf (“factorial of %d” = %d\n”, n, val);  }
}

fac (int n, int fact)  {
  if (n = = 1)
  return fact;
else
 fac (n - 1, n * fact);   }
Output
Enter the number: 5
Factorial of 5 = 120

4.6 TOWER OF HANOI
Another complex recursive problem is that of towers of Hanoi. The problem 
has a historical basis in the ritual of the ancient Tower of Brahma. In this type 
of problems, recursion may be the only solution. In this problem, there are n 
disks of different sizes and there are three poles X, Y and T. Each disk has a 
hole in the centre. The problem of Tower of Hanoi is to move the disk from one 
pillar to another with the help of a temporary pillar. Suppose two pillars are X 
and Y. we want to move the disk from X to Y with the help of Temp pillar (T).

The rules for the movement of disks are as follows:

 (i) Only one disk may be moved at a time.
 (ii) A larger disk must never be stacked above a smaller one.
 (iii) One and only one extra needle could be used for intermediate storage of disks.

For n = 1:
X

X Y

T Y

For n = 2:

 1. X→T
 2. X→Y
 3. T→Y
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X

Initial

T Y

X T Y

X Y

X T Y

X Y

X T Y

T Y

For n = 3:

 1. X→Y
 2. X→T
 3. Y→T
 4. X→Y
 5. T→X
 6. T→Y
 7. X→Y

X T Y
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Initial
X T Y

X Y

X T Y

X T

X T Y

Y T

X T Y

X Y

X T Y

T X

X T Y

T Y

X T Y

X Y
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The formula for finding the number of steps it takes to transfer n disk from 
X to Y is 2n-1

Number of disks (n) Number of moves

1
21-1

= 2 - 1
=1

2
22-1

= 4 - 1
=3

3
23-1

= 8 – 1
=7

4
24-1

= 16 – 1
=15

POINTS TO REMEMBER
 1. A stack is a linear data structure in which elements are added and remove only 

from one end, which is called the top. Hence, a stack is called a LIFO data 
structure as the element that is inserted last is the first one to be taken out.

 2. In the computer’s memory, stacks can be implemented using either linked 
lists or single arrays.

 3. Infix, prefix, and postfix notations are three different but equivalent notations 
of writing algebraic expressions.

 4. In postfix notation, operators are placed after the operands, whereas in 
prefix notation, operators are placed before the operands.

 5. Postfix notations are expression that is scanned from left to right. If the 
character is an operands, it is pushed onto the stack. Else, if it is an operator, 
then the top two values are popped from the stack and the operator is 
applied on these values. The result is then pushed onto the stack.

 6. Multiple stacks means to have more than one stack in the same array of 
sufficient size.

MULTIPLE CHOICE QUESTIONS
 1. Stack is a

 (a) LIFO
 (c) FILO

 (b) FIFO
 (d) LILO

 2. Which function places an element on the stack?
 (a) Pop()
 (c) Peek()

 (b) Push()
 (d) Isempty()
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 3. Disks piled up one above the other represent a
 (a) Stack
 (c) Linked list

 (b) Queue
 (d) array

 4. Reverse polish notation is the other name of
 (a) Infix expression
 (c) Postfix expression

  (b) Prefix expression
 (d) Algebraic expression

TRUE OF FALSE
 1. Pop () is used to add an element on the top of the stack.
 2. Postfix operation does not allow the rules of operator precedence.
 3. Recursive follows a divide-and-conquer technique to solve problems.
 4. Using a recursive function takes more memory and time to execute.
 5. Recursion is more of a bottom-up approach to problem solving.
 6. An indirect recursive function if it contains a call to another function which 

ultimately calls it.
 7. The peeks operation displays the topmost value and deletes it from the stack.
 8. In a stack, the element that was inserted last is the first one to be taken out.
 9. Underflow occurs when top=max-1.
 10. Overflow can never occurs in case of multiple stacks.

FILL IN THE BLANKS
 1. ________ is used to convert an infix expression into a postfix expression.
 2. _________ is used in a non-recursive implementation of a recursive 

algorithm.
 3. The storage requirement of a linked stack with n elements is _________.
 4. Underflow takes when ____________.
 5. The order of evaluation of a postfix expression is from ___________.
 6. Whenever there is a pending operation to be performed, the function becomes 

______ recursive.
 7. A function is said to be ____________ recursive if it explicitly calls 

itself.

EXERCISES
 1. What do you understand by stack overflow and underflow?
 2. How does a stack implement using linked list?
 3. How does a stack implement using array?
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 4. The following sequence of operation is done on an empty stack: PUSH 
‘S’, PUSH ‘S’, PUSH ‘T’, PUSH ‘U’, POP, POP,PUSH ‘A’, PUSH ‘L’, 
PUSH ‘G’, POP, PUSH ‘C’, PUSH ‘A’, PUSH ‘B’, POP, POP. Show the 
stack configuration after each operation?

 5. Convert the following infix expression to postfix expression:
 (a) A – B + C
 (b) A * B + C / D
 (c) (A - B) + C * D / E - C
 (d) (A * B) + (C / D) - (D + E)
 (e) ((A - B) + D / ((E + F) * G))
 (f) 14 / 7 * 3 – 4 + 9 / 2

 6. Convert the following infix expression to prefix expression:
 (a) A – B + C
 (b) A * B + C / D
 (c) (A - B) + C * D / E - C
 (d) (A * B) + (C / D) - (D + E)
 (e) ((A - B) + D / ((E + F) * G))
 (f) 14 / 7 * 3 – 4 + 9 / 2

 7. Differentiate between an iterative function and a recursive function?
 8. Explain the Tower of Hanoi problem?
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5
Queues

5.1 INTRODUCTION
Queues arise quite naturally in the computer for solution of many problems. 
Perhaps the most common occurrence of a queue in Computer Applications is 
for the scheduling of jobs. The name “queue” likely comes from the everyday 
use of the term. A real time example for a queue is people standing in a queue 
for billing in a shop, railway ticket counter, entry point in the shopping mall, etc. 
The first person in the queue will be the first person to get the service. Similarly 
the first element inserted in the queue will be the first one that will be retrieved 
and hence a queue is also called the First-in-First-out (FIFO).

Queue is a linear list which has two ends, one for insertion of elements 
and other for deletion of elements. The first end is called ‘Rear’ and the later 
is called ‘Front’. Elements are inserted from Rear End and Deleted from Front 
End. Queues are called First-In-First-Out(FIFO) List, since the first element in 
a queue will be the first element out of the queue.

It is a homogeneous collection of elements in which new elements are added 
at one end called rear, and the existing elements are deleted from other end 
called front.

Push operation will insert (or add) an element to queue, at the rear end, by 
incrementing the array index. Pop operation will delete (or remove) from the 
front end by decrementing the array index and will assign the deleted value to 
a variable. Total number of elements present in the queue is front-rear+1, when 
implemented using arrays.

Example: Suppose we have an empty queue, with 8 memory cells:

0 1 2 3 4 5 6 7
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Front=-1
Rear=-1
Insert S, T, A, L, H, A:

0 1 2 3 4 5 6 7

S T A L H A

Front=0 Rear=5
Delete S:

0 1 2 3 4 5 6 7

T A L H A

Front=1 Rear=5

5.2 REPRESENTATION OF QUEUES
Queues, being the linear data structure, can be represented by using both arrays 
and linked lists.

1. Queue Using Array
Array is data structure that stores a fixed number of elements. One of the major 
limitations of an array is that its size should be fixed prior to using it. But the 
size of the Queue keeps on changing as the elements are either removed from 
the front end or added at the rear end. Thus, if queue is implemented using 
arrays, we must be sure that the exact number of elements we want to store in 
the queue, because we have to declare the size of the array at design time or 
before the processing starts.

Operation on Queue using Array
 (a) Insertion (Rear)
 (b) Deletion (Front)

Algorithm for queue insertion
Steps

 1. start
 2. check overflow condition

if rear=max–1 then
write “OVERFLOW” and then
stop

 3. read data

D

Rear

before

after

Front

Rear Front

Queue Enqueue

D

C B A

C B A
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 4. if front=0 then
 5. queue[rear]=data
 6. rear=rear+1
 7. stop

Algorithm for queue deletion
Steps

 1. start
 2. check underflow condition

if Front==–1 then
write “UNDERFLOW” and then
stop

 3. if front=rear then
 4. queue[front]=-1
 5. front=0
 6. front==front+1
 7. stop

Program: write a program to implement a queue using array

#include<stdio.h>
#define MAX 7
void insert(int);
int del();
int queue[MAX], rear=0, front=0;
void display();
void main()
{
int choice, token;
printf(“1.Insert”);
printf(“\n2.Delete”);
printf(“\n3.show or display”);
while(1)
{
printf(“\nEnter your choice for the operation: “);
scanf(“%d”,&choice);
switch(choice)

D

Rear

before

after

Front

Rear Front

dequeue

Queue
QueueDequeue

D

C B A

C B

A
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{
 case 1:insert(token);
display();
break;
case 2:token=del();
printf(“\nThe token deleted is %d”,token);
display();
break;
case 3:display();
break;
default:printf(“Wrong choice”);
break;
}
}
}
void display()
{
int i;
printf(“\nThe queue elements are:”);
for(i=rear;i<front;i++)
{
printf(“%d “,queue[i]);
}
}
void insert(int token)
{
char a;
if(rear==MAX)
{
printf(“\nQueue full”);
return;
}
else
{
printf(“\nEnter the token to be inserted:”);
scanf(“%d”,&token);
 queue[front]=token;
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front=front+1;
}
}
int del()
{
int t;
if(front==rear)
{
printf(“\nQueue empty”);
return 0;
}
rear=rear+1;
t=queue[rear-1];
return t;
}

Output

1. Insert
2. Delete
3. show or display
Enter your choice for the operation: 1
Enter the token to be inserted:2
The queue elements are:2
Enter your choice for the operation: 1

Enter the token to be inserted:3

The queue elements are:2 3
Enter your choice for the operation: 1

Enter the token to be inserted:4

The queue elements are:2 3 4
Enter your choice for the operation: 1

Enter the token to be inserted:5

The queue elements are:2 3 4 5
Enter your choice for the operation: 3

The queue elements are:2 3 4 5
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Drawback of queues: One major drawback of representing a queue by 
using array is that a fixed amount of storage remains allocated even when the 
structure is actually using small amount or possibly no storage at all.
 2. Queue using linked list
To represent queue using linked list each node is divided into two parts

 (i) Info: which holds the data element
 (ii) Next: which holds the address of the next node

Apart from that we need two more variables

 (i) Front: which holds the address of the first node
 (ii) Rear: which holds the address of the last node

Under the linked list representation of queue two pointers named as front 
and rear are used. However a special attention is required when the last element 
is removed from a queue, in that case rear must also set to NULL.

10 20 30 40

Front Rear
The structure of a node will be as
struct node
{
int info;
struct node *next;
}
struct node *front, *rear;

Program: write a program to implement a queue using linked list
#include<stdio.h>
#include<stdlib.h>
void insert();
void delete();
void display();
struct node
{
int info;
struct node *link;
}*rear=NULL,*front=NULL;
void main()
{
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int i,ch,num;
printf(“Select the choice of operation on Queue”);
printf(“\n1.) Insert\n2.) Delete”);
printf(“\n3.) display Queue\n4.) exit”);
while(1)
{
 printf(“\n\nenter the choice of operation you want to do “);
 scanf(“%d”,&i);
 switch(i)
 {
  case 1:
  insert();
  break;
  case 2:
  delete();
  break;
  case 3:
  display();
  break;
  case 4:
  exit(0);
  default:printf(“wrong choice”);
 }
}
}
void insert()
{
int num;
struct node *temp;
printf(“enter the value you want to insert in Queue “);
scanf(“%d”,&num);

temp=(struct node *)malloc(sizeof(struct node));
temp->info=num ;
temp->link=NULL;
if(front==NULL)
front=temp;
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else
rear->link=temp;
rear=temp;
}
void display()
{
struct node *temp;

temp=front;
if(temp==NULL)

{
 printf(“List is Empty”);
}
while(temp!=NULL)
{
 printf(“%d-> “,temp->info);
 temp=temp->link;
}
printf(“NULL”);
}
void delete()
{
struct node *temp;
if(front==NULL)
printf(“LIST IS EMPTY”);
else
{
temp=front;
printf(“%d->”,temp->info);
front=front->link;
free(temp);
}
}

Output
Select the choice of operation on Queue
1. Insert
2. Delete
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3. display Queue
4. exit
enter the choice of operation you want to do 1
enter the value you want to insert in Queue 2
enter the choice of operation you want to do 1
enter the value you want to insert in Queue 3
enter the choice of operation you want to do 1
enter the value you want to insert in Queue 4
enter the choice of operation you want to do 3
2-> 3-> 4-> NULL
enter the choice of operation you want to do 2
2->
enter the choice of operation you want to do 3
3-> 4-> NULL

Types of Queue
 1. Circular Queue
 2. Double Ended Queue (DE-QUEUE)
 3. Priority Queue

5.3 CIRCULAR QUEUE
Circular queue is a linear data structure. It follows FIFO 
principle. In circular queue the last node is connected 
back to the first node to make a circle. Elements are 
added at the rear end and the elements are deleted at 
front end of the queue.

In circular queues the elements cq[0], cq[1], cq[2]....
cq[n-1] is represented in a circular way. A circular queue 
is one in which the insertion of a new element is done 
at the very first location of the queue if the last location at the queue is full.

After inserting an element at last 
location cq[7], the next element will be 
inserted at the very first location (i.e., 
cq[0]). At any time the position of the 
element to be inserted will be calculated 
by the relation Rear = {(Rear+1) % 
SIZE}. After deleting an element from 
circular queue the position of the front 

Rear

Front

20
1

2

34

5

6

7 0

4050
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RearFront
1

2

0
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end is calculated by the relation Front ={ (Front+1) % SIZE}. After locating 
the position of the new element to be inserted, rear, compare it with front. If 
(rear==front), the queue is full and cannot be inserted any more. when front==-1 
and rear ==-1, circular queue is empty.

Algorithm Insert an element in circular queue
Steps

 1. start
 2. check overflow condition

if(front==0 && rear==max-1) || (front==rear+1)) then
write “OVERFLOW” and then
stop

 3. read data to insert
 4. if(front==-1)

front=0
rear=0

 5. if(rear=max-1) then
rear=0
else
rear=rear+1

 6. cq[rear]=data
 7. stop

Algorithm Delete an element in circular queue
Steps

 1. start
 2. check underflow condition

if(front=-1) then
write “UNDERFLOW” and then
stop

 3. if(front==rear) then // circular queue has only one element
cq[front]=0
front=-1
rear=-1

 4. if(front=max-1)
front=0
else
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front=front+1

 5. stop

Program: Write a program to implement a circular queue

#include<stdio.h>
#define max 5
int front,rear,q[max];
void enqueue();
void dequeue();
void qdisplay();
void main()
{

 int c;
front=rear=-1;
do
{
 printf(“\n 1: Insert\n 2: deletion\n 3: display\n 4: exit\n enter choice:”);
 scanf(“%d”,&c);
 switch(c)
{
 case 1: enqueue();break;
 case 2: dequeue();break;
 case 3: qdisplay();break;
 case 4: printf(“program Ends\n”);break;
 default: printf(“wrong choice\n”);break;
 }

}while(c!=4);
}
void enqueue()
{
 int x;
 if((front==0&&rear==max-1)||(front==rear+1))
 {
 printf(“Queue is overflow\n”);
 return;
}
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if(front==-1)
{
 front=rear=0;
}
else
{
 if(rear==max-1)
{
 rear=0;
}
else
{
 rear++;
}
}
 printf(“\nenter the no:\n”);
 scanf(“%d”,&x);
 q[rear]=x;
 printf(“%d successfully inserted\n”,x);
 return;
}
 void dequeue()
{
 int y;
 if(front==-1)
{
 printf(“q is underflow\n”);return;
}
 y=q[front];
 if(front==rear)
{
 front=rear=-1;
}
else
{
 if(front==max-1)
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{
front=0;
}
else
{
front++;
}
}
 printf(“%d successfully deleted\n”,y);
return;
}
 void qdisplay()
{
int i,j;
 if(front==rear==-1)
{
 printf(“q is empty\n”);return;
}
 printf(“elements are :\n”);
 for(i=front;i!=rear;i=(i+1)%max)
{
 printf(“%d\n”,q[i]);
}
 printf(“%d\n”,q[rear]);
return;
}

Output
1:insert
2:deletion
3:display
4:exit
enter choice:1
enter the no:
2
2 successfully inserted
1:insert
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2:deletion
3:display
4:exit
enter choice:1
enter the no:
3
3 successfully inserted
1:insert
2:deletion
3:display
4:exit
enter choice:1
enter the no:
4
4 successfully inserted
1:insert
2:deletion
3:display
4:exit
enter choice:1
enter the no:
5
5 successfully inserted
1:insert
2:deletion
3:display
4:exit
enter choice:3
elements are :
2
3
4
5
1:insert
2:deletion
3:display
4:exit
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enter choice:2
2 successfully deleted
1:insert
2:deletion
3:display
4:exit
enter choice:3
elements are :
3
4
5
1:insert
2:deletion
3:display
4:exit
enter choice:4
program ends

Example:
Consider the following queue characters, where queue is a circular array which 
is allocated 6 memory cells:

Front=2, Rear=4, Circular Queue: __, T, A, L, __, __
Do the following operation and show the front and rear position after each 

operation?
 (i) H is added to the queue.
 (ii) Two letters are deleting.
 (iii) Three times A are added.
 (iv) Two letters are deleting.
 (v) T is added to the queue.
 (vi) One letter is deleted.
 (vii) S is added to the queue.
 (viii) One letter is deleted.
Solution:
Initially

1 2 3 4 5 6

T A L

Front=2 Rear=4
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H is added

1 2 3 4 5 6

T A L H

Front=2 Rear=5

Two Letters are deleting

1 2 3 4 5 6

L H

Front=4     Rear=5
Three times A are added

1 2 3 4 5 6

A A L H A

Rear=2 Front=4

Two letters are deleted

1 2 3 4 5 6

A A A

Rear=2 Front=6

T is added

1 2 3 4 5 6

A A T A

Rear=3 Front=6

One letter is deleted

1 2 3 4 5 6

A A T

Front=1 Rear=3

S is added

1 2 3 4 5 6

A A T S

Front=1 Rear=4
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One letter is deleted

1 2 3 4 5 6

A T S

Front=2 Rear=4

5.4 DOUBLE ENDED QUEUE (DE-QUEUE)
Another type of queue is called de-queue. In de-queue, both insertion and deletion 
operations are performed at either end of the queue. That is, we can insert an 
element from rear end or the front end. Also deletion is possible from either 
both ends.

RearFront

Insertion
Deletion

Insertion
Deletion

Figure Structure of a De-Queue

Types of De-queue
De-queue can be of two types

 1. Input-restricted dequeue
 2. Output-restricted dequeue

1. Input-restricted dequeue
In input-restricted dequeue, element can be added at only one end but we can 
delete the element from both ends.

Deletion

Insertion

Deletion

Figure Input Restricted DeQueue

2. An Output-restricted
An output-restricted dequeue is a dequeue where deletions take place at only 
one end but insertion at both ends.

Deletion

Insertion

Insertion

Figure Output Restricted Dequeue

The two possibilities that must be considered while inserting or deleting 
elements into the queue are:

 (a) When an attempt is made to insert an element into a dequeue which is 
already full, an overflow occurs.
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 (b) When an attempt is made to delete an element from a dequeue which is 
empty, underflow occurs.

The four possible operation performed on dequeue is:

 (i) Add an element at the rear side.
 (ii) Add an element at the front side.
 (iii) Delete an element from the front side.
 (iv) Delete an element from the rear side.

Algorithm to implement a double ended queue
Steps

 1. Start
 2. Initialise and declare the variable
 3. Enter your choice
 4. If choice is ENQUEUE at FRONT then

 (i) Check if dequeue is full.
 (ii) Else check for FRONT at first position.
 (iii) Else decrement the FRONT position.

 5. If choice is ENQUEUE at REAR then
 (i) Check if dequeue is full
 (ii) Else check for REAR at last position.
 (iii) Else increment the REAR position.

 6. If choice is DEQUEUE at FRONT then
 (i) Check if dequeue is empty.
 (ii) Else check for dequeue contains only one element
 (iii) Else increment the FRONT position.

 7. If choice is DEQUEUE at REAR then
 (i) Check if dequeue is empty
 (ii) Else check for dequeue contains only one element.
 (iii) Else decrement the REAR position.

 8. Stop

Algorithm (Insertion)
 1. Insert an Element at the Right side of the Dequeue

Steps

1. start
2. input the data to be insert
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3. if (left == 0 && right == max - 1) || (left == right + 1))
message “OVERFLOW” and then
stop

4. if (left == - 1)
left = right = 0
else
if (right == max - 1)
left = 0
else
right = right + 1

5. queue[right] = data
6. stop

 2. Insert an Element at the left side of the Dequeue
Steps

1. start
2. input the data to be insert
3. if (left == 0 && right == max - 1) || (left == right + 1))

message “OVERFLOW” and then
stop

4. if (left == - 1)
left = right = 0
else
if (left == 0)
left = max - 1
else
left = left - 1

5. queue[left] = data
6. stop

Algorithm (Deletion)
 1. Delete an Element at the Right side of the Dequeue

Steps

1. start
2. if (left == -1)
3. message “UNDERFLOW” and then
4. stop
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5. data = q[right]
6. if(left == right)
7. left = right = - 1

else
if(right == 0)
right = max - 1
else
right = right + 1

8. stop
 2. Delete an Element at the Right side of the Dequeue

Steps

1. Start
2. if (left == -1)
3. message “UNDERFLOW” and then
4. stop
5. data = q[left]
6. if(left == right)
7. left = right = - 1

else
if(left == max - 1)
left = 0
else
left = left + 1

8. stop

5.5 PRIORITY QUEUE
A priority queue is another type of queue structure in which elements can be 
inserted or deleted based on the priority. A priority queue is a data structure in 
which each element has been assigned a value called the priority of the element 
and an element can be inserted or deleted not only at the end but at any position 
on the queue (included middle). A priority queue is a collection of elements 
such that each element has been assigned an explicit or implicit priority and 
such that the order in which elements are deleted and processed comes from 
the following rules:

B

3

E

3

A

2

D

2

F

2

C

1

G
Ø

1

Figure General structure of priority queue
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Rule 1:
An element of higher priority is processed before any element of lower 
priority.
Rule 2:
Two elements with the same priority are processed to the order in which they 
were inserted to the queue.

Types of Priority Queues
There are two types of priority queues:

 1. Ascending Priority queue
 2. Descending priority queue.

1. Ascending priority queue elements can be inserted in an ascending 
order. But, while deleting elements from the queue a small element can 
only to be deleted first.

2. Descending priority queue elements are inserted in descending order 
but while deleting elements from the queue a largest element should 
be deleted first.

Representation of the Priority Queue
There are various ways of maintaining a priority queue. These are:

 • One way linked list.
 • Multiple queues, one for each priority.
 • Maximum or minimum heap.

One way List Representation
In this representation each node of the linked list will have three fields.

 1. A Priority Number PN
 2. An information field INFO
 3. A link to next node LINK.

Priority Info Link

Figure Structure of a node in priority queue

Operation in priority queue

1. Add operation
2. Delete operation
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Add operation in priority queue
Add operation in priority queue is same as the insert operation in sorted linked 
list. Here, we insert the new node element on the basis of priority. The new 
node element will be inserted before the element which has less priority than 
new node element.

3    info2    info2    info1     info

Figure Before add

2    info

3    info2    info2    info1    info

Figure After add ( whose priority is 2)

Delete operation in priority queue
A priority queue must at least support the following operations:

Pull Highest Priority Element: Remove the element from the queue that 
has the highest priority, and return it. This is also known as “pop element(Off)”, 
“get_maximum_element” or “get_front(most)_element”. Some conventions 
reverse the order of priorities, considering lower values to be higher priority, 
so this may also be known as “get_minimum_element”, and is often referred 
to as “get-min” in the literature. This may instead be specified as separate 
“peek_at_highest_priority_element” and “delete_element” functions, which can 
be combined to produce “pull_highest_priority_element”.

3    info2    info2    info1    info

Figure Before delete

3    info2    info2    info

start

1    info

Figure After delete

Program: write a program to implement a priority queue

#include <stdio.h>
#include <stdlib.h>
#define MAX 5
void insert(int);
void delete(int);
void create();
void check(int);
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void display_pqueue();
int pri_que[MAX];
int front,rear;
void main()
{
 int n, ch;
 printf(“\n1 - Insert an element into queue”);
 printf(“\n2 - Delete an element from queue”);
 printf(“\n3 - Display queue elements”);
 printf(“\n4 - Exit”);
 create();
 while (1)
{
 printf(“\nEnter your choice : “);
 scanf(“%d”, &ch);
 switch (ch)
{
case 1:
 printf(“\nEnter value to be inserted : “);
 scanf(“%d”,&n);
 insert(n);
 break;
case 2:
 printf(“\nEnter value to delete : “);
 scanf(“%d”,&n);
 delete(n);
 break;
case 3:
 display_pqueue();
 break;
case 4:
 exit(0);
 default:
 printf(“\nChoice is incorrect, Enter a correct choice”);
}
}
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}
void create()
{
front = rear = -1;
}
void insert(int data)
{
if (rear >= MAX - 1)
{
 printf(“\nQueue overflow no more elements can be inserted”);
 return;
}
if ((front == -1) && (rear == -1))
{
front++;
rear++;
 pri_que[rear] = data;
 return;
}
else
 check(data);
 rear++;
}
void check(int data)
{
int i,j;
 for (i = 0; i <= rear; i++)
{
 if (data >= pri_que[i])
{
 for (j = rear + 1; j > i; j--)
{
 pri_que[j] = pri_que[j - 1];
}
 pri_que[i] = data;
 return;
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}
}
 pri_que[i] = data;
}
void delete(int data)
{
int i;
if ((front==-1) && (rear==-1))
{
 printf(“\nQueue is empty no elements to delete”);
return;
}
 for (i = 0; i <= rear; i++)
{
if (data == pri_que[i])
{
 for (; i < rear; i++)
{
 pri_que[i] = pri_que[i + 1];
}
 pri_que[i] = -99;
 rear--;
if (rear == -1)
front = -1;
return;
}
}
 printf(“\n%d not found in queue to delete”, data);
}
void display_pqueue()
{
if ((front == -1) && (rear == -1))
{
 printf(“\nQueue is empty”);
return;
}
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for (; front <= rear; front++)
{
 printf(“ %d “, pri_que[front]);
}
front = 0;
}

Output
1 - Insert an element into queue
2 - Delete an element from queue
3 - Display queue elements
4 - Exit
Enter your choice : 1
Enter value to be inserted : 2
Enter your choice : 1
Enter value to be inserted : 4
Enter your choice : 1
Enter value to be inserted : 6
Enter your choice : 1
Enter value to be inserted : 8
Enter your choice : 1
Enter value to be inserted : 10
Enter your choice : 3
10 8 6 4 2
Enter your choice : 2
Enter value to delete : 6
Enter your choice : 3
10 8 4 2
Enter your choice : 4

5.6 APPLICATIONS OF QUEUES
Some of the applications of queues are as follows:

 1. There are several algorithms that use queues to solve problems easily. For 
example, BFS traversing of a binary tree etc.

 2. Round-robin technique for processor scheduling is implemented using queues.
 3. When the jobs are submitted to a network printer, they are arranged in 

order of arrival. i.e., jobs sent to a printer are placed on a queue.
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 4. Every real-life line is queue. For example, lines at ticket counters at cinema 
halls, railway stations, bus stands etc., are queues because the service i.e., 
ticket is provided on first come first served (FIFO) basis.

5.7 DIFFERENCE BETWEEN STACK AND QUEUE

S.No Stack Queue

1
Stack is an ordered list where all inser-
tions and deletions are performed at one 
end called top

Queue is an ordered list where insertion 
are performed at rear side and deletion are 
performed at front side

2 Stack follow LIFO rule Queue follow FIFO rule

3 Stack is full when top = MAXSIZE - 1 Queue is full when rear = MAXSIZE - 1

4 Stack is empty when top = - 1 Queue is empty when front ==-1

5 To insert an element into the stack; top is 
increment by 1. i.e. top = top + 1

To insert an element into the queue; rear is 
increment by 1. i.e. rear = rear + 1

6 To delete an element from the stack; top 
is decrement by 1. i.e. top = top - 1

To delete an element from the queue; front 
is decrement by 1. i.e. front = front + 1

POINTS TO REMEMBER
 1. A queue is a FIFO data structure in which the element that is inserted first 

is the first one to be taken out.
 2. The elements in a queue are added at one end called the rear and removed 

from the other end called the front.
 3. In the computer memory, queues can be implemented using arrays and 

linked list.
 4. In a circular queue, the first index comes after the last index.
 5. A priority queue is a data structure in which each element is assigned a 

priority. The priority of the elements will be used to determine the order 
in which the elements will be processed.

 6. A de-queue is a list in which elements can be inserted or deleted at either 
end. It is also known as a head-tail linked list because elements can be 
added to or removed from the front (head) or back (tail).

MULTIPLE CHOICE QUESTIONS
 1. A line in a grocery store represents a

 (a) stack
 (c) linked list

 (b) queue
 (d) array

 2. In a queue, insertion is done at
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 (a) rear
 (c) back

 (b) front
 (d) top

 3. The function that deletes values from a queue is called
 (a) enqueue
 (c) pop

 (b) dequeue
 (d) peek

 4. Typical time requirement for operations on queues is
 (a) O (1)
 (c) O (log n)

 (b) O (n)
 (d) O (n2)

 5. The circular queue will be full only when
 (a) FRONT = MAX-1 and REAR = MAX-1
 (b) FRONT = 0 and REAR = MAX-1
 (c) FRONT = MAX-1 and REAR = 0
 (d) FRONT = 0 and REAR = 0

TRUE OR FALSE
 1. A queue stores elements in a manner such that the first element is at the 

beginning of the list and the last element is at the end of the list.
 2. Elements in a priority queue are processed sequentially.
 3. In a linked queue, a maximum of 100 elements can be added.
 4. Conceptually a linked queue is same as that of a linear queue.
 5. The size of a linked queue cannot change during run time.
 6. In a priority queue, two elements with the same priority are processed on 

FCFS basis.
 7. Output-restricted dequeue allows deletions to be done only at one end of 

the dequeue, while insertion can be done at both the ends.

FILL IN THE BLANKS
 1. New nodes are added at _______ of the queue.
 2. ___________ allows insertion of elements at either ends but not in the 

middle.
 3. The typical time requirement for operations in a linked queue is ___________.
 4. In _____________, insertions can be done only at one end, while deletions 

can be done from both the ends.
 5. Dequeue is implemented using ____________.
 6. _________________ are appropriate data structures to process batch 

computer programs submitted to the computer centre.
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 7. _________ are appropriate data structures to process a list of employees 
having a contract for a seniority system for hiring and firing.

EXERCISES
 1. Define priority queue and its applications?
 2. Why do we use multiple queues?
 3. Consider the queue : __, A,B,C,D,E,__,__,__,__
  Front=1 and Rear=5
  Do the following operation

 (i) Add F
 (ii) Delete two letters
 (iii) Add G, H
 (iv) Delete four letters
 (v) Add I

 4. Consider the dequeue: __, A,B,C,D,E,__,__,__,__
  Left=1 and Right=5
  Do the following operation

 (i) Add F on the left
 (ii) Add G on the right
 (iii) Add H on the right
 (iv) Delete two letters from left
 (v) Add I on the right
 (vi) Add J on the left
 (vii) Delete two letters from right

 5. Write a program to implement a priority queue using array?
 6. Write a program to implement circular queue using array?
 7. Define input restricted and output restricted queue with the help of suitable 

example?
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6
Trees

6.1 INTRODUCTION
So far we have studied about array, stack, queue 
and linked lists, which are known as linear data 
structures. These are termed as linear because the 
elements are arranged in a linear fashion. There are 
many applications in real life situations that make 
use of non-linear data structure such as trees and 
graphs. Tree is a data structure which allows you 
to associate a parent-child relationship between 
various pieces of data and thus allows us to arrange 
our records, data and files in a hierarchical fashion. Consider a tree representing 
your family structure.

6.2 BASIC TERMINOLOGY RELATED TO TREE
Node: Each element of a tree is called a node. This is the main component 

of any tree structure. It stores the actual data along with links to other nodes.
Root: A root is a specially designated node in a tree. Root is a node which 

has no parent. There can be only one root in a tree.
Parent: The parent of a node is the immediate predecessor of that node.
Child: The immediate successors of a node are called child nodes. A child 

which is placed at the left side is called the left child and a child which is placed 
at the right side is called the right child.

Degree of Node: The number of sub-trees of a node in a given tree is called 
degree of that node. Sub tree represents descendents of a node.

Terminal Node: A node with degree zero is called a terminal node or 
a leaf.

T Root

Parent

Child

LA

BH

Figure: General Tree
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Non-Terminal Node: Any node except the root node whose degree is not 
zero is called non-terminal node.

Level: The entire tree structured is levelled in such a way that the root node 
is always at level 0. Then, its immediate children at level 1, and their immediate 
children at level 2 and so on. In general, if a node is at level n, then its children 
will be at level n+1.

T

U

L

Level 0

Level 1

Level 2

A

DH M

Edge: Edge represents a path between two nodes or a line between two nodes.
Path: Path is a sequence of consecutive edges from the source node to the 

destination node.
Depth: Depth is the length of the path from the root node to certain node.

Root

Leaf = node with no subnodes

Depth = 0

Height = 5

Depth = 4

Depth = 3

Depth = 2

Depth = 1

Height: Height of a tree is equal to the maximum level of any node in the 
tree. The height of the tree in above example is “5”.

Ancestor and Descendant: An ancestor is any element which is connected 
further up in the hierarchy tree – no matter how many levels higher.

AAncestor

Ancestor

Ancestor

Ancestor

Ancestor

B

D

I J K L

C

E F G H

E, B and A are ancestors of I
C and A are ancestors of H
Descendant: A descendant refers to any element that is connected lower 

down the hierarchy tree – no matter how many levels lower.
E has one descendant – I
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C has 4 descendants – H, J, K and L
G has no descendants
Forest: A forest is a disjoint union of trees. A set of disjoint (or forests) is 

obtained by deleting the root and the edges connecting the root node to nodes 
at level 1. We have already seen that every node of a tree is the tree of some 
sub-tree. Therefore, all the sub-trees immediately below a node form a forest. 
A forest can also be defined as an ordered set of zero or more general trees. 
While a general tree must have a root, a forest on the other hand may be empty 
because by definition it is a set, and sets can be empty.

6.3 BINARY TREES
A binary tree is made of nodes, where each node contains a “left” reference, 
a “right” reference, and a data element. The topmost node in the tree is called 
the root.

Every node (excluding a root) in a tree is connected by a directed edge from 
exactly one another node, this node is called a parent. On the other hand, each 
node can be connected to arbitrary number of nodes, called children. Nodes with 
no children are called leaves, or external nodes. Nodes which are not leaves are 
called internal nodes. Nodes with the same parent are called siblings.

E F

A

B C

D

Fig: Binary Tree

6.4 TERMINOLOGY RELATED TO BINARY TREE
Parent: If N is any node in tree T that has left successor S1 and right successor 

S2, then N is called the parent of S1, and S2, Correspondingly S1 and S2 are 
called the left child and the right child of N. Every node other than the root 
node has a parent.

Level number: Every node in a binary tree is assigned a level number. The 
root node is defined to be at level 0.The left and the right child or the root node 
have a level number 1. Similarly, every node is at one level higher than its parents.
So all child nodes are defined to have level number as parent’s level number + 1.

Degree of a node: It is equal to the number of children that a node has. The 
degree of a leaf node is zero.

Sibling: All nodes that are at the same level and share the same parent are 
called siblings.
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Leaf node: A node that has no children is called a leaf node or a terminal node.
Similar binary trees: Two binary trees T and T/

 are said to be similar if 
both these trees have the same structure.

Copies: Two binary trees T and T’ are said to be copies if they have similar 
structure and if they have same content at the corresponding nodes.

Edge: It is the line connecting a node n to any of its successors. A binary 
tree of n nodes has exactly n-1 edges because every node except the root node 
is connected to its parent via an edge.

Path: A sequence of consecutive edges.
Depth: The depth of a node N is given as the length of the path from the 

root R to the node N.
Height of a tree: It is the total number of nodes on the path from the root 

node to the deepest node in the tree. A tree with only a root node has a height of 1.

6.5 PROPERTIES OF BINARY TREES
 1. The number of external nodes in binary tree is equal to number of internal 

nodes+1.
 2. The number of external nodes is at least h+1, where h is the height of the 

tree, and at most 2h.
 3. The height h, of a binary tree with n nodes is at least logn+1 and at most n.
 4. A binary tree with n nodes has exactly n-1 edges.

6.6 TYPES OF BINARY TREES
 1. Strictly Binary Tree
 2. Extended Binary Tree (2-Tree)
 3. Complete Binary Tree
 4. Almost Completed Binary Tree

1. Strictly Binary Tree
A binary tree is a finite set of elements that 
is either empty or is partitioned into three 
disjoint subsets. The first subset contains a 
single element called the root of the tree. The 
other two subsets are themselves binary trees, 
called the left and right subtrees of the original 
tree. Below given tree consists of 7 nodes and 
the root node is node A. Its left subtree is rooted 
at B and its right subtree is rooted at C. This 
is indicated by the two branches emanating 
from A to B on the left and A to C on the right. 

A

B C

F G

E
D

Fig: Strictly Binary Tree



Chapter 6 Trees 231

The absence of a branch indicates an empty subtree.  If every internal node (non 
terminal node) has its non empty left and right children then it is called strictly 
binary tree. In other words, if every non leaf node in a binary tree has non empty 
left and right sub-trees, the tree is termed as strictly binary tree.

Here, every internal node A, B, E has two non empty left and right children 
hence, it is strictly binary tree.
Properties
 1. A strictly binary tree with n non leaf nodes has n+1 leaf node.
 2. A strictly binary tree with n leaf nodes always has 2n-1 nodes.

2. Extended Binary Tree (2-Tree)
If in a binary tree, each empty sub-tree is 
replaced by a special node then the resulting 
tree is extended binary tree or 2-tree. So we 
can convert a binary tree to an extended binary 
tree by adding special nodes to leaf nodes and 
nodes that have only one child. The special 
nodes added to the tree are called external 
nodes and the original nodes of the tree are 
internal nodes. External nodes are shown by 
square and internal nodes by circles.

3. Complete Binary Tree
In computer science, a binary tree is a tree data structure in which each node 
has at most two children, which are referred to as the left child and the right 
child. A binary tree with n nodes and a depth d is a strictly binary tree all of 
whose terminal nodes are at level d. If a binary tree contains m nodes at level 
I, it contains at most 2m nodes at level I+1.

4. Almost Complete Binary Trees
A binary tree of depth d is an almost complete binary tree, if:
 (i) Any node at level less than d-1 has two children.
 (ii) For any node ‘X’ in the tree with a right descendant at level d, X must 

have a left child and every left descendant of X is either a leaf at level d 
or has two childrens.
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Figure: a Figure: b Figure: c

Fig: Extended Binary Tree
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Figure (a), is not almost complete binary tree because it contains leaf nodes 
at level 1, 2 and 3. So, it is violating rule 1. Figure (b), satisfies rule 1, since 
every leaf is either at level 2 or at level 3. However, rule 2 is violating. Since A 
has a right descendant at level 3 (J) but also has a left descendant that is a leaf 
at level 2 (E). Figure (c), satisfies both rules 1 and 2 and is therefore an almost 
complete binary tree.

An almost complete strictly binary tree with n leaves has 2n-1 nodes and 
an almost complete binary tree with n leaves that is not strictly binary has 2n 
nodes. There are two distinct almost complete binary trees with n leaves one 
of which is strictly binary and one of which is not. An almost complete binary 
tree of depth d is intermediate between the complete binary tree of depth d-1 
that contains 2d-1 nodes and the complete binary tree of depth d, which contains 
2d+1 -1 nodes.

6.7 REPRESENTATION OF A BINARY TREE
Binary trees can also be implemented in two ways one is array and the other 
is linked list.

1. Array Representation of Binary Tree
This is also called sequential representation or linear representation or contiguous 
representation based binary trees. We use one-dimensional array to maintain 
the nodes of the binary tree. We’ll store the nodes in the array named tree from 
index 1 onwards. If a node is numbered k then the data of this node is stored 
in tree[k]. The root node is stored in tree [1] and it’s left and right children in 
tree [2] and tree [3] and so on. We have left the index 0 empty for some other 
purpose.

A

B C

G
E

F

K
J

IH

D

0 1 2 3 4 5 6 7 8 9 10 11

A B C D E F G H I J K

2. Linked List Representation of Binary Tree
The binary tree can be represented using dynamic memory allocation of a 
node in a linked list form. In a linked list allocation technique a node in a tree 
contains three fields:
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 (i) Data: it contains the info value.
 (ii) Left link: it contains address of the left sub-tree.
 (iii) Right link: it contains address of the right sub-tree.

When a node has no children, the corresponding pointer fields are NULL. 
Here, first member data is for information field of node, second member is for 
left child of node which points to the structure itself, and it contains the address 
of left child. If node has no left child then it should be NULL. Third member 
is for right child of node which also points to the structure itself; it contains the 
address of right child. If node has no right child it should be NULL. This type of 
representation is dynamic block of memory. They are allocated only on demand.

Left      Info             Right

C

E

A

B

G

D

F

A

CB

ED

F G

Fig: Linked List Representation of Binary Trees. 

Declare structure of tree node
Struct node
{
Int info;
Struct node *left;
Struct node *righ;
};

6.8 TRAVERSING A BINARY TREE
Traversing a binary tree is the process of visiting each node in the tree 
exactly once in a systematic way. Unlike linear data structures in which 
the elements are traversed sequentially, tree is a non-linear data structure 
in which the elements can be traversed in many different ways. There are 
different algorithms for tree traversals. These algorithms differ in the order 
in which the nodes are visited.
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 1. Pre-order Traversal (NLR)
 1. Visiting the root node.
 2. Traversing the left sub-tree of root.
 3. Traversing the right sub-tree of root.

 2. In-order Traversal (LNR)
 1. Traversing the left sub-tree of root.
 2. Visiting the root node
 3. Traversing the right sub-tree of root

 3. Post-order Traversal (LRN)
 1. Traversing the left sub-tree of root
 2. Traversing the right sub-tree of root
 3. Visiting the root node.

 4. Level-order Traversal
In level-order traversal, all the nodes at a level are accessed before going to the 
next level. This algorithm is also called as the traversal algorithm.

Example: let us take a binary tree and apply traversal.

A Preorder : A B D H I E C F J K G
Inorder : H D I B E A J F K C G
Postorder : H I D E B J K F G C A
Level Order : A B C D E F G H I J K

K

F G

C

E

B

D

IH
J

Example: let us take another example of a binary tree and apply each 
traversal.

A Preorder : A B D H E C F I G J K
Inorder : D H B E A I F C J G K
Postorder : H D E B I F J K G C A
LevelOrder : A B C D E F G H I J K

K

F G

C

E

B

D

H
JI

Algorithm for tree traversal
 1. Pre-order Traversal

Steps:
A binary tree is in memory.
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1. Node holds the address of the root node of the tree.
2. Preorder (node)
3. if node ≠ NULL
4. process (node)
5. preorder ( left node)
6. preorder (right node)
7. stop

 2. In-order Traversal.
Steps:
A binary tree is in memory.
1. node hold the address of the root node of the tree.
2. inorder (node)
3. if node ≠ NULL
4. inorder (left node)
5. process (node)
6. inorder (right node)
7. stop

 3. Post-order Traversal.
Steps:
A binary tree is in memory.
1. node hold the address of the root node of the tree.
2. postorder (node)
3. if node ≠ NULL
4. postorder (left node)
5. postorder (right node)
6. process (node)
7. stop

Function for Pre-order traversal.
preorder(struct tree *ptr)
 {
 if (ptr!=NULL)
 {
 printf(“%d”,ptr->head);
 preorder(ptr->l);
 preorder(ptr->r);
 }
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return(0);
 }
Function for Inorder traversal.
inorder(struct tree *ptr)
 {
 If (ptr!=NULL)
 {
 inorder(ptr->l);
 printf(“%d”,ptr->head);
 inorder(ptr->r);
 }
 return(0);
 }
Function for Postorder traversal.
postorder(struct tree *ptr)
 {
  if (ptr!=NULL)
 {
 postorder(ptr->l);
 postorder(ptr->r);
 printf(“%d”,ptr->head);
 }
 return(0);
 }

Program: write a program to Implement Binary Tree and apply Traversal 
like - Preorder, Inorder, Postorder.

#include<stdio.h>
#include<stdlib.h>
struct tree
{
int head;
struct tree *l, *r;
};
struct tree *r,*t;
int ch1,n,flag=0,in;
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void main()
{
 char ch=’y’;
 r=NULL;
 while (ch==’y’)
 {
 printf(“\n 1.Create tree”);
 printf(“\n 2.Traverse In-Order”);
 printf(“\n 3.Traverse Pre-Order”);
 printf(“\n 4.Traverse Post-Order”);
 printf(“\n 5.Exit”);
 printf(“\n Enter chioce”);
 scanf(“%d”,&ch1);
 switch (ch1)

 

{
 case 1:
 if (insert(&r)==0)
 break;
 case 2:
 printf(“\n\n Left,Root,Right”);
 inorder(r);
 break;
 case 3:
 printf(“\n \n Root,Left,Right”);
 preorder(r);
 break;
 case 4:
 printf(“\n\n Left,Right,Root”);
 postorder(r);
 break;
 case 5:
 exit(0);
 default :
 printf(“ Wrong Choice “);
 }// switch close
 }// while close
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} //main close
insert(struct tree **ptr)
{
 if (*ptr==NULL)
 {
 *ptr=malloc (sizeof(struct tree));
 printf(“\n Enter the element “);
 scanf(“%d”,&n);
 (*ptr)->head=n;
 (*ptr)->l=NULL;
 (*ptr)->r=NULL;
 return(0);
 }
//flag=1;}
 else
 printf(“\n1. Left Element”);
 printf(“\n2. Right Element”);
 printf(“\n3. Exit”);
 printf(“\n Enter choice”);
 scanf(“%d”,&in);
 switch(in)
 {
 case 1:
 insert(&(*ptr)->l);
 break;
 case 2:
 insert(&(*ptr)->r);
 break;
 case 3:
 break;
 default:
 printf(“\n Choice is wrong”);
 }// switch closed
 return(0);
} //fun closed
inorder(struct tree *ptr)
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 {
 if(ptr!=NULL)
 {
 inorder(ptr->l);
 printf(“%d”,ptr->head);
 inorder(ptr->r);
 } // if close
 return(0);
 } //fun closed
preorder(struct tree *ptr)
 {
  if (ptr!=NULL)
 {
 printf(“%d”,ptr->head);
 preorder(ptr->l);
 preorder(ptr->r);
 } // if close
 return(0);
 } //fun closed
postorder(struct tree *ptr)
 {
 if (ptr!=NULL)
 {
 postorder(ptr->l);
 postorder(ptr->r);
 printf(“%d”,ptr->head);
 } // if close
 return(0);
 } //fun closed

Output
 1. Create tree
 2. Traverse In-Order
 3. Traverse Pre-Order
 4. Traverse Post-Order
 5. Exit

Enter chioce 1
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Enter the element 4
 1. Create tree
 2. Traverse In-Order
 3. Traverse Pre-Order
 4. Traverse Post-Order
 5. Exit

Enter chioce 1
 1. Left Element
 2. Right Element
 3. Exit

Enter choice1
Enter the element 2

 1. Create tree
 2. Traverse In-Order
 3. Traverse Pre-Order
 4. Traverse Post-Order
 5. Exit

Enter chioce 1
 1. Left Element
 2. Right Ele ment
 3. Exit

Enter choice 2
Enter the element 2

 1. Create tree
 2. Traverse In-Order
 3. Traverse Pre-Order
 4. Traverse Post-Order
 5. Exit

Enter chioce 1
 1. Left Element
 2. Right Element
 3. Exit

Enter choice 12
Choice is wrong

 1. Create tree
 2. Traverse In-Order
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 3. Traverse Pre-Order
 4. Traverse Post-Order
 5. Exit

Enter choice 1
 1. Left Element
 2. Right Element
 3. Exit

Enter choice 2
 1. Left Element
 2. Right Element
 3. Exit

Enter choice 2
Enter the element 4

 1. Create tree
 2. Traverse In-Order
 3. Traverse Pre-Order
 4. Traverse Post-Order
 5. Exit

Enter choice 2
Left, Root, Right 2424

 1. Create tree
 2. Traverse In-Order
 3. Traverse Pre-Order
 4. Traverse Post-Order
 5. Exit

Enter choice 3
Root, Left, Right 4224

 1. Create tree
 2. Traverse In-Order
 3. Traverse Pre-Order
 4. Traverse Post-Order
 5. Exit

Enter choice 4
Left, Right, Root 2424

 1. Create tree
 2. Traverse In-Order
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 3. Traverse Pre-Order
 4. Traverse Post-Order
 5. Exit

Enter choice 5

Non-Recursive Function for Traversal
Non-recursive procedures for tree traversal will be implemented by using 
stack.

1. Pre order Traversal using stack
The procedure for traversing a tree in pre-order non-recursively is as:

Steps:

 (i) Initially pointer (ptr) contains the address of root.
 (ii) PUSH the address of root node on the stack.
 (iii) POP an address from the stack.
 (iv) If the POP address is not NULL

 (a) Traverse the node
 (v) PUSH right child of node on stack
 (vi) PUSH left child of node on stack
 (vii) Repeat steps until the stack is empty.

Non-recursive function for preorder traversal is:
nonrec_preorder(struct node *ptr)
{
stack[++top]=ptr;
while(top!=-1)
 {
 ptr=stack[top--]
 if(ptr!=NULL)
 {
 printf(“%d”, ptr->info);
 stack[++top]=ptr->right;
 stack[++top]=ptr->left;
 }
 }
}
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Example: Consider a binary tree.

A

E
D

F

C

H

B

G

I

Initially set ptr = A, the root of tree. PUSH it and then POP it from the stack.
Since ptr ≠ NULL
Traverse the node A, and PUSH its right child C and left child B node on 

the stack. Now POP the top element B from the stack.

Stack:
B
C

POP the top element B from the stack. B ≠ NULL
Traverse the node B, and PUSH its right child (no right child) and left 

child D on the stack.

Stack:
D
C

POP the top element D from the stack. D ≠ NULL
Traverse the node D, and PUSH its right child H and left child G on the 

stack.

Stack:
G
H
C

POP the top element G from the stack. G ≠ NULL
Traverse the node G and PUSH its right child and left child (no right and 

left child)

Stack:
H
C

POP the top element H from the stack. H ≠ NULL
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Traverse the node H and PUSH its right child I on the stack and its left 
child ( no left child)

Stack:
I
C

POP the top element I from the stack. I ≠ NULL
Traverse the node I and PUSH its right child and left child (no right and 

left child)

C
Stack:
POP the top element C from the stack. C ≠ NULL
Traverse the node C and PUSH its right child F and left child E on the stack.

Stack:
E
F

POP the top element E from the stack.

Stack:
F

Traverse the node E and PUSH its right and left child (no child)
POP the top element from the stack F
Traverse the node F and PUSH its right and left child (no child)
Now, no element in stack, stack is empty.
The Final Pre-order traversal is: A B D G H I C E F

 2. Inorder Traversal using stack
The procedure for traversing a tree in in-order non-recursively is as follows:

Steps:
 (i) repeat step while stack is not empty or pointer (ptr) ≠ NULL
 (ii) if ptr ≠ NULL

 (a) PUSH ptr on the stack
 (b) ptr=left (ptr)

 (iii) If ptr = NULL
 (a) POP the element from the stack
 (b) traverse the node
 (c) ptr=right (ptr)
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Non-recursive function for in-order traversal is:
nonrec_inorder(struct node *ptr)
{
while(top!=-1 || ptr!=NULL)
 {
 if(ptr!=NULL)
 {
 stack[++top]=ptr;
 ptr=ptr->left;
 }
else
 {
 ptr=stack[top--];
 printf(“%d”, ptr->info);
 ptr=ptr->right;
 }
 }
}
Example: Consider a Binary Tree.

A

E F

C

H

B

D

G

I

Initially ptr=root node
Now Ptr =A hence PUSH A on the stack.
Now Ptr=left of node (A) that means element B.
 PUSH B on the stack and ptr moves to left (B) the element stored at left of 
B is D
 PUSH D on the stack and ptr moves to left (D) the element stored at this 
location is G
 PUSH G on the stack and ptr moves to left (G), G doesn’t have any left 
element hence G is NULL.
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After these operations of push; stack would be in the following form:

G

D

B

A

POP the top element from the stack i.e.; the element G.
Traverse the node G and ptr=right (G), i.e; ptr=NULL. Again POP the top 

element from the stack that is element D now pointer ptr points to ptr=right 
(D) i.e; ptr=H.

Traverse the node D
PUSH node H on the stack, and ptr=left(H)=ptr=NULL

H

B

A

Stack:
POP the top element from the stack H
Traverse the node H and ptr= right (H) =ptr=I
PUSH the node I on the stack and ptr= left (I)= ptr=NULL

I

B

A

Stack
POP the top element from the stack I
Traverse the node I and ptr= right (I) = NULL
Again POP the element from the stack B
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Traverse the node B and ptr= right (B)= ptr= NULL

A

POP the top element from the stack A
Traverse the node A and ptr=right(A)=ptr=C
Ptr ≠ NULL, so PUSH the node C on the stack
Now ptr=left(C)=ptr=E
Ptr ≠ NULL, so PUSH the node E on the stack and ptr=left(E)=ptr=NULL

E

C

POP the top element from the stack
Traverse the node E, again POP the top element C from the stack
Traverse the node C and ptr= right(C) = ptr=F
PUSH the node F on the stack and ptr= left (F) = ptr=NULL

POP the top element from the stack
Traverse the node F, ptr= right (F)= ptr= NULL.
Stack is empty
Thus, the final in-order traversal is: G D H I B A E C F
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 3. Postorder traversal using stack
The procedure for traversing a tree in post-order non-recursively is as follows:

Steps:

 (i) initially pointer ptr has the address of root
 (ii) repeat step while ptr!=NULL
 (iii) top=top+1
 (iv) stack[top]=ptr
 (v) if(right(ptr)!=NULL
 (vi) {
 (vii) top=top+1
 (viii) stack[top]=right(ptr)
 (ix) }
 (x) ptr=left(ptr)
 (xi) POP from the stack
 (xii) while (ptr > 0)
 (xiii) {
 (xiv) traverse ptr
 (xv) ptr=stack[top]
 (xvi) top=top-1
 (xvii) }
 (xviii) if ptr < 0 then
 (xix) {
 (xx) ptr=right(ptr)
 (xxi) }
 (xxii) stop

Non-recursive function for post-order traversal is:
nonrec_postorder(struct node *ptr)
{
struct node *stack[30];
int top=-1;
int visited,i, visit[10];
do
{
while(ptr!=NULL)
{
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printf(“%d”, ptr->info);
stack[++top]=ptr;
ptr=ptr->left;
}
if(top!=-1)
{
ptr=stack[top--];
visited=0;
for(i=0;i<top;i++)
if(visit[i]==ptr->right)
{
visited=1
break;
}
if(visited==1)
{
printf(“%d”, ptr->info);
ptr=NULL;
}
else
{
stack[++top]=ptr;
ptr=ptr->right;
visit[ptr]=1;
}
ptr=ptr->right;
}
}
while(top!=-1 || ptr!=NULL);
}

6.9  CREATION OF BINARY TREE WITH THE HELP OF 
TRAVERSAL

There are two different ways of creating binary tree:

 1. pre-order and in-order traversal
 2. post-order and in-order traversal
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1. Creation of binary tree from pre-order and in-order traversal.
The general rule for creating a binary tree is as follows:

Rule 1: scan the pre-order traversal from left to right
Rule 2: for each node scanned, locate its position in in-order traversal. 

Assume the scanned node be X.
Rule 3: the node X preceding X in inorder from its left sub-tree and nodes 

succeeding it from right sub-tree.
Rule 4: repeat rule 1 for each symbol in the pre-order.
Example: Draw a binary tree of the following given orders
Pre-order: A B D H E C F G
In-order: D H B E A F C G
Solution:
Pre-order: A B D H E C F G
In-order: D H B E A F C G
Step 1: In pre-order traversal root is the first node. So, A is the root 

node of the binary tree.
Step 2: We can find the node of left sub-tree and right sub-tree with in-order 

sequence.
Nodes which are left sub-tree: D H B E
Nodes which are right sub-tree: F C G
Step 3: The left child of the root node will be the first node 

in the pre-order sequence after root node A. Hence, node B is 
the left child of A. Similarly, the right child of root A will be 
the first node after nodes of left sub-tree in pre-order sequence. 
Hence, node C is the right child of A.

Nodes which are left sub-tree: D H E
Nodes which are right sub-tree: F G
Step 4: In in-order sequence, node D and node H are on 

the left side of B and E is on the right side of B. So node D 
and node H form left sub-tree and node E will be in the right 
sub-tree of node B.

Nodes which are left sub-tree: D H
Nodes which are right sub-tree: F G
Step 5: In in-order sequence node F is on the left of 

node C and node G is on the right side of node C. So node 
F will be in left sub-tree of node C and node G in right 
sub-tree of node C.

Nodes which are left sub-tree: D H

A

Root

A

CB

A

C

E

B

A

F G

C

E

B
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Step 6: again, in pre-order traversal node D is 
coming before node H. Hence node D is the root of 
left sub-tree of node B. To find out whether node H 
is in left or right sub-tree of node D. Now, we look 
at in-order sequence node H in right side of node D. 
So, node H will be in right sub-tree of node D. Thus, 
the final binary tree is.

Example: Draw a binary tree
Pre-order: F A E K C D H G B
In-order: E A C K F H D B G
Solution:
Root node is F

Nodes which are in left sub-tree: E A C K
Nodes which are in right sub-tree: H D B G
Now, apply the previous steps, we got the final tree.

 2. Creation of binary tree from post-order and in-order traversal.
The general rule for creating a binary tree is as follows:

Rule 1: scan the post-order traversal from right to left.
Rule 2: for each node scanned locate its position in in-order traversal. Assume 

the scanned node be X.
Rule 3: the node preceding X in in-order from its left sub-tree and nodes 

succeeding it from right sub-tree.
Example: Draw a binary tree
Post-order: H D I E B J F K L G C A
In-order: H D B I E A F J C K G L
Solution:
Post-order: H D I E B J F K L G C A
In-order: H D B I E A F J C K G L
Step 1: In post-order traversal root is the last node. Hence, node A is 

the root of the binary tree.
Nodes which are in left sub-tree: H D B I E
Nodes which are in right sub-tree: F J C K G L
Step 2: Now right child of node A will be the node which 

comes just before, node A i.e. node C and left child of node 
A will be the first node before nodes of right sub-tree in post-
order traversal, node B.

Nodes which are in left sub-tree: H D I E
Nodes which are in right sub-tree: F J K G L

A

F G

C

E

B

D

H

F

A D

H G

B

CE

K

A

A

CB
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Step 3: Now look at post-order traversal, node just 
before B is E, so node E is the right child of B and node 
just before C is G hence node G is right child of node 
C and node D is the first node before the nodes of right 
sub-tree of node B. Hence node D is the left child of 
node B and node F is the first node before nodes of right 
sub-tree of node C. Hence, node F is left child of node C.

Now from in-order traversal node H is the 
left of node D hence it is left child of node D, 
node I is to the left of node E, hence it is left 
child of node E. Node J is to the right of node 
F, Hence it is right child of node F, node K is 
to the left of node G and node L to the right 
of node G, Hence node K is left child of node 
G and node L is right child of node G.

We got the final tree.
Converting algebraic expression into binary tree
The arithmetic expressions represented as binary trees are known as expression 
trees. In this, the root node is operator and the left and right child are operands. 
In case of unary operators the left child is not present and the right child is the 
operand.

Example: Draw the binary tree for the given expression: (A + B) * (C + D)

*

+

DC

+

BA  

Example: Draw the binary tree for the given expression: (A - B) / ((C * 
D) + E)

/

E

+

*

DC

—

BA

6.10 BINARY SEARCH TREE
A binary search tree is a binary tree. Such a tree can be represented by a linked 
data structure in which each node is an object. In addition to a key field, each 
node contains left, right and parent that points to the nodes corresponding to 
its left child, right child and its parent respectively.

A

F G

C

E

B

D

A

KK

F G

C

E

B

D

H JI
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Every element has a key.

 1. The key in the left sub-tree are smaller than the root.
 2. The key in the right sub-tree are greater than the root.
 3. The left and right sub-trees are also binary search tree.

Example: create a binary search tree for the following numbers:
40 25 70 22 35 60 80 90 10 30

40

90

80

70

60

30

35

25

22

10

6.11 OPERATIONS IN BINARY SEARCH TREE
 1. Traversal in Binary Search Tree
 2. Searching in a Binary Search Tree
 3. Finding nodes with Minimum and Maximum Values
 4. Insertion in a Binary Search Tree
 5. Deletion in a Binary Search Tree

1. Traversal in Binary Search Tree
Binary search tree is a binary tree so the traversal methods given for binary 
tree apply here.

48

36
56

65

70

8568
32

30

20

258

Pre-order : 48 30 20 8 25 36 32 65 56 70 68 85
In-order : 8 20 25 30 32 36 48 56 65 68 70 85
Post-order : 8 25 20 32 36 30 56 68 85 70 65 48

2. Searching in a Binary Tree
Start at the root node and move down the tree. To search a node in the tree, 
first the data element is compared with the value at the root node. If the data 
element is found there, then the search is successful. If the data element is less 
than the key in the root, then the search is performed in the left sub-tree. If the 
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data element is greater than the key in the root, then the search is performed in 
the right sub-tree.
Search 25

 (i) Compare 25 with 48
 (ii) 25 < 48, move to left child
 (iii) Now, compare 25 with 30
 (iv) 25 < 30, move to left child
 (v) Now, compare 25 with 20
 (vi) 25 > 20, move to right child
 (vii) 25 found

Search 50
 (i) Compare 50 with 48
 (ii) 50 > 48, move to right child
 (iii) Now, compare 50 with 65
 (iv) 50 < 65, move to left child
 (v) Now, compare 50 with 56
 (vi) 50 < 56, move to left child

 (vii) NULL

 (viii) 50 Not found
3. Finding nodes with Minimum and Maximum Values
To find minimum valued node in a binary search tree start at the root and move 
along the leftmost path until we get a node with no left child.

To find maximum valued node start at the root and move along the rightmost 
path until we get a node with no right child.
4. Insertion in a Binary Tree
To insert an element in a binary tree start at the root node and compare the value 
to be inserted with the value at root node and take following actions.

 (i) If the value to be inserted is equal to the value at the root node then there 
is nothing to be done as duplicate values are not allowed.

 (ii) If the value to be inserted is less than the value of the node then we move 
to left child.

 (iii) If the value to be inserted is greater than the value of the node then we 
move to right child.

Insert 28
 (i) Compare 28 with 48
 (ii) 28 < 48, move to left child



Chapter 6 Trees 255

 (iii) Now, compare 28 with 30
 (iv) 28 < 30, move to left child
 (v) Now, compare 28 with 20
 (vi) 28 > 20, move to right child
 (vii) Now, compare 28 with 25
 (viii) 28 > 25, move to the right child
 (ix) NULL right child
 (x) Insert at right child of 25

48

36
56

65

70

8568
32

30

20

258

28

5. Deletion in a Binary Search Tree
Deletion of a node from a binary search tree depends on the number of its 
children. There are three cases that can occur.

Case 1: Node has no child, i.e. it is a leaf node.
Case 2: Node has exactly one child.
Case 3: Node has exactly two children.
Case 1: To delete a leaf node, the link to node is replaced by NULL. If the 

node is left child of its parent then the left link of its parent is set to NULL and 
if the node is right child of its parent then the right link of its parent is set to 
NULL. Then the node is de-allocated using free ().

To delete 20, the left link of node 30 is set to NULL.

48

56

65

Deletion of node 20
30

20

48

56

65
30

Case 2: In this case, the node to be deleted has only one child. After deletion 
this single child takes the place of the deleted node. For this we just change the 
appropriate pointer of the parent node so that after deletion it points to the child 
of deleted node. After this, the node is de-allocated using free ().
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To delete node 65 from the below given tree. Node 65 is the right child of its 
parent node 48, so the single child 56 takes the place of 65 by becoming the right 
child of 65.

Case 3: This is the case when the node to be deleted has two children. Here 
we have to find the in-order successor of the node. The data of the in-order 
successor is copied to the node and then the in-order successor is deleted from 
the tree. In-order successor of a node is the node that comes just after that node 
in the in-order traversal of the tree.

Here node having the key 48 is to be deleted from the tree. In inorder 
successor node is having the key 56. So the data of node is copied to node and 
now node 48 has to be deleted from the tree.

48

56

65

Deletion of 48 
30

20

56

20

6530

6.12 HUFFMAN’S TREE
Suppose, we are given n nodes and their weights the Huffman algorithm is used to 
find a tree with a minimum-weighted path length.The process essentially begins by 
merging (or adding up the values) of two smallest weights among given n valued 
nodes and hence leads to the creation of a new node, such that the new node’s weight 
is equal to the sum of the merged childrens weight.This process is repeated until the 
tree has only one node. Such a tree with only one node is known as the Huffman tree.

The Huffman’s algorithm can be implemented using a priority queue. Huffman 
tree is built from bottom up rather than top down i.e the creation of trees start 
from leaf nodes and proceeds upwards.

Huffman Algorithm
 1. Suppose, there are n weights w1, w2, w3... wn.

 2. Take two minimum weights among the n given 
weights. suppose w1 and w2 are two minimum 
weights then sub-tree will be:

 3. Now the remaining weights will be w1+w2, w3, w4,. .......,wn

 4. Create all sub-trees till the last weight.
Example: let us take 7 elements with weights and create an extended binary 

tree by using Huffman Algorithm.

Nodes A B C D E F G

Weight 15 10 5 3 7 12 25

W1 + W2 

W1 W2 
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Solution:
Step 1: take two nodes with minimum weights i.e, 5 and 3 

and add up their weights to form new node
Now the remaining weighted elements in the list are:

 15 10 8 7 12 25

Step 2: take two nodes among the newly created nodes 
with minimum weights i.e, 8 and 7 and add up their weights 
to form new node.

Now the remaining elements in the list are:

 15 10 15 12 25

Step 3: take two nodes with minimum weights i.e, 10 and 
12 among this newly created list of nodes and add up their 
weights to form new node.

Now the remaining elements in the list are:

 15 22 15 25

Step 4: take two nodes with minimum weights i.e, 
15 and 15 among this newly created list of nodes and 
add up their weights to form new node.

Now the remaining elements in the list are:

 30 22 25

Step 5: take two nodes with minimum weights i.e, 22 and 
25 among the newly created list of nodes and add them up 
for the creation of new node.

Now the remaining elements in the list are:

 30 47

Step 6: take two nodes with minimum weights i.e, 30 and 47 and add 
them up, this leads to the creation of new node.

22

10 12

47

25

8

3 5

15

7

30

15

77

Figure: Huffman Tree

8

3 5

8

3 5

7

15

22

10 12

8

3 5

7

15
15

30

22

10 12

47

25
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6.13 APPLICATIONS OF HUFFMAN’S TREE
The Huffman algorithm is used to perform the encoding and decoding of a long 
message consisting of a set of symbols. Suppose, we want to send a message  
that there are two options either it sends data as fixed size or to send it as variable 
length size. Assume a collection of data items A1, A2, A3.................An are to be 
coded by means of strings of bits. One way to do this is to code each item by an 
r-bit string where, 2n-1 < n ≤ 2r for example a 48 character set is frequently coded 
in memory by using 6-bit strings. One cannot use 5-bit strings since 25<48<26. 
Now, we discuss a coding technique using variable-length string that is based 
on the Huffman tree for weighted data item.

Huffman coding
Huffman follows a bottom-up approach. Procedure is as follows:

 1. Form the frequency list of all the symbols in the descending order.
 2. Locate the two symbols in the list with the lowest frequencies. Frequencies 

referred as weights.
 3. Create a parent node for these two nodes whose weight is equal to the sum 

of weights of two child nodes.
 4. Remove the two children from the list and add newly created parent node 

of the list along with the weight.
Example:

Symbol Weight
A 19
E 11
I 9
O 7
U 7

53 (Root) (34 + 19)

A E I O U

34 (20 + 14)

20 (11 + 9)

19 11 9 7 7

14 (7 + 7)
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Thus, by using this method or technique the codes for all the symbols are 
given in the following table.

6.14 THREADED BINARY TREE
Consider the linked list representation of any binary tree, we notice that half 
of the entries in the pointer field left and right will contain NULL entries. This 
space may be more efficiently used by replacing the NULL entries by special 
pointers called Threads which point to the nodes higher in the tree. Such tree 
are called threaded binary tree.

In computer memory, an extra field called tag or flag is used to distinguish 
a thread from a normal pointer. Tree can be threaded using one-way threading 
or two-way threading. In a one-way threading a thread will appear in the right 
field of the node and will point to the successor node in the in-order traversal of 
tree. In two-way threading of tree a thread will appear in the left field of a node 
and will point to the preceding node in the in-order traversal of tree.

 1. The Right NULL pointer of each node can be replaced by a thread to the 
successor of that node under in-order traversal called a right thread and 
the tree will be called as a right threaded tree.

A

C
B

GFED

H

Figure: Right Threaded Binary Tree

 2. The left NULL pointer of each node can be replaced by a thread to the 
predecessor of that node under in-order traversal called a left threaded and 
the tree will be called as a left threaded tree.

A

C
B

GFED

H

Figure: Left Threaded Binary Tree

 3. Both left and right NULL pointers can be used to point to predecessor and 
successor of that node, respectively, under in-order traversal. Such a tree 
is called a fully threaded tree.
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A

C
B

GFED

H

Figure: Fully Threaded Binary Tree

6.15 TRAVERSING IN A THREADED BINARY TREE
 1. In-order traversal in Threaded Binary Tree
 2. Pre-order traversal in Threaded Binary Tree

1. In-order traversal in Threaded Binary Tree:
If the tree is right threaded then we can traverse it in in-order without the use 
of stack or recursion. In in-order traversal the left most node of the tree is 
traversed first of all. So, first we traverse the leftmost node of the tree and then 
we find the in-order successor of each node and traverse it. As we know that 
the right most node of the tree is the last node in in-order traversal and its right 
pointer is a thread pointing to the header node, hence we will stop when we 
reach header node.

inorder()
{
struct node *ptr;
if(head->leftptr==head)
{
printf(“tree is empty”);
return;
}
ptr=head->leftptr;
while(ptr->left==link)
ptr=ptr->leftptr;
printf(“%d”, ptr->info);
while(1)
{
ptr=inordersuccessor(ptr);
if(ptr==head)
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break;
printf(“%d”, ptr->info);
}
}

2. Pre-order traversal in Threaded Binary Tree:
In pre-order traversal we will start traversing from the left child of the header 
node. If the node has a left child then that left child will be traversed, otherwise 
if the node has a right child, then that right child will be traversed. If the node 
has neither left nor right child then with the help of right threads we will reach 
that in-order successor of the node which has a right sub-tree. Now, this sub-tree 
will be traversed as pre-order.

preorder()
{
struct node *ptr;
if(head->leftptr=head)
{
printf(“tree is empty”);
return;
}
ptr=head->leftptr;
while(ptr!=head)
{
printf(“%d”, ptr->info);
if(ptr->left==link)
ptr=ptr->leftptr;
else
if(ptr->rightptr==link)
ptr=ptr->rightptr;
else
{
while(ptr!=head && ptr->right==thread)
ptr=ptr->rightptr;
if(ptr!=head)
ptr=ptr->rightptr;
}
}
}
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Insertion in a Threaded Binary Tree
The new node will be inserted as a leaf node so its left and right pointers both 
will be threads.

temp->leftptr=thread;
temp->rightptr=thread;

Case 1: When the tree is empty
When the tree is empty the left pointer of the head node is a thread pointing to 
it. We will insert the new node as the left child of header node. So now the left 
pointer of the head will be a link pointing to the new node. We know that the 
left pointer of first node in in-order traversal and the right pointer of last node 
in in-order traversal are threads pointing to the header node. Here, we have 
only one node which is the first and the last node so it’s left right pointers will 
be threads pointing to the header node.

head->left=link;
head->leftptr=temp;
temp->leftptr=head;
temp->rightptr=head;

Case 2: When the new node inserted is the left child of its parent
The thread of new node will point to its in-order predecessor and successor. 
The node which was in-order predecessor of the parent is now the in-order 
predecessor of this node. The in-order successor of this node is its parent.

temp->leftchild=parent->leftchild;
temp->rightchild=parent;

The parent of new node has a thread in its left pointer pointing to its 
predecessor, but after insertion its left pointer will be a link pointing to the 
new node.

parent->left=link;
parent->rightchild=temp;

Case 3: When the new node inserted is the right child of its parent
The node which was in-order successor of the parent is now the in-order successor 
of this node. The in-order predecessor of this node is its parent. So, the left and 
right threads of the new node will be:

temp->leftptr=parent;
temp->rightptr=parent->child;

The parent of new node had a thread in its right pointer pointing to its successor, 
but after insertion its right pointer will be link pointing to the new node.
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parent->right=link;
parent->rightchild=temp;

Deletion from a Threaded Binary Tree
There are three possibilities while performing deletion operation in threaded 
binary tree.
Case 1: Node to be deleted is root node
If the node to be deleted is the root node of the tree then the tree will become 
empty after its deletion so then left pointer of head will be a thread pointing to it.

head->left=thread;
head->leftptr=head;

If the node to be deleted is a left leaf node then the left pointer of parent 
will become a thread pointing to its in-order predecessor. Initially, its in-order 
predecessor was its left child but now its in-order predecessor will be that node 
which was predecessor of its left child.

parent->left=thread;
parent->leftptr=loc->leftptr;

If the node to be deleted is a right leaf node then the right pointer of parent 
will become a thread pointing to its in-order successor. Initially, its in-order 
successor was its right child but now its in-order successor will be that node 
which was successor of its right child.

paren->right=thread;
parent->rightptr=loc->rightptr;

Case 2: Node to be deleted has one child.
Delete the node as in binary search tree. Find the in-order successor and in-order 
predecessor of the node to be deleted.

successor=inordersucessor(loc);
predecessor=inorderpredecessor(loc);

If the node has right sub-tree then put the predecessor of the node in the left 
pointer of its successor.

if(loc->right==link)
successor->leftptr=predecessor;

If node has left sub-tree then put the successor of the node in the right pointer 
of its predecessor.

if(loc->left==link)
predecessor-rightptr=successor;
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Case 3: Node to be deleted has two children
First, we will find the in-order successor of node and then copy the information 
of this in-order successor into node. After this in-order successor node is deleted 
using either case 1 or case 2.

6.16 AVL TREE
The first balanced binary search tree was the AVL tree. The AVL tree is a binary 
search tree that has an additional balance condition. This balance condition 
must be easy to maintain and ensures that the depth of the tree is O (log N). 
The simplest idea is to require that the left and right sub–trees have the same 
height. This balance condition ensures that the depth of the tree is logarithmic, 
but it is too restrictive because it is too difficult to insert new items while 
maintaining balance.

AVL is a height balance tree. A height balanced tree is one in which the 
difference in the height of the two sub-trees for any node is less than or equal 
to some specified amount. In AVL tree, the height difference may be no more 
than 1. In fact, for an AVL tree it will never be greater than 1.

Balance Factor
To implement an AVL tree each node must contain a balance factor, which 
indicates its states of balance relative to its sub-trees: Height of left sub-tree – 
Height of right sub-tree.

Then the balance factors in a balanced tree can have values of - 1, 0 or 1. 
For an AVL tree, the value of the balance factor of any node is -1, 0, or 1. If it 
is other than these three values then the tree is not balanced or it is not an AVL 
tree. If the value of the balance factor of any node is -1, then the height of the 
right sub-tree of that node is one more than the height of its left sub-tree. If the 
value of the balance factor of any node is 0 then the heights of its left and right 
sub-tree is exactly the same. If the value of the balance factor of any node is 
1 then the height of the left sub tree of that node is one more than height of its 
right sub-tree.

6.17 ROTATIONS OF AVL TREE

 (i) Left-to-Left rotation (LL Rotation)
 (ii) Right-to-Right rotation (RR Rotation)
 (iii) Left-to-Right rotation (LR Rotation)
 (iv) Right-to-Left rotation (RL Rotation)
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1. Left-to-Left rotation (LL Rotation)
The new node x is inserted in the left sub-tree of left sub-tree of A whose balance 
factor becomes + 2 after insertion. To rebalance the search tree, it is rotated to left.

Example:

LL Rotation

Balanced sub-tree

Unbalanced sub-tree

Rebalanced sub-tree

h h

h + 2 h+2

A
+1 

B
0

A
+2 

B 
+1

C 
0

B 
0

A 
1

C 
1

A 
+1

B
0 AR

BL

A 
+1

B
0

BR
BRBL

BL

Figure: Balance sub-tree    Figure: Unbalanced sub-tree (height of 
BL increased to height h+1)

Now Apply LL Rotation to the above given unbalanced sub-tree

B
0 

h+2
A
0 

BL

BL

BR AR

Figure: Rebalanced sub-tree (Height of sub-tree B remains h+1)

2. Right-to-Right rotation (RR Rotation)
The new node x is inserted in the right sub-tree of right sub-tree of A whose 
balance factor becomes + 2 after insertion. To rebalance the search tree, it is 
rotated.
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RR Rotation
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Figure: Balance sub-tree Figure: Rebalanced sub-tree  Figure:  Unbalanced 
sub-tree

RR Rotation
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A
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A
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B
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A
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B
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A
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Figure: Balanced sub-tree   Figure:  Unbalanced sub-tree (height of BR 
increased to height h+1)

Apply RR Rotation

h+2

B
0

A
0

AL BL

BR

Figure: Rebalanced sub-tree (Height of sub-tree B remains h+1)

3. Left-to-Right rotation (LR Rotation)
In this, unbalance occurred due to the insertion in the right sub–tree of the left 
child of the root node. So, this is known as left to right insertion. LR rotation 
involves two rotations for the manipulation in pointers. In other words, it is used 
when the new node is inserted in the right sub-tree of left sub-tree of a node A.

LR Rotation

A
+1

A
+2

B
0 B

0
A
0

C
0

C
0

B
-1

Figure: Balanced sub-tree  Figure: Rebalanced sub-tree 
Figure: Unbalanced sub-tree
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Rotation 1 : The left sub-tree (CL) of the right child (C) of the left child (B) 
of pivot node (A) becomes the right sub-tree of the left child (B). The left child 
(B) of the pivot node (A) becomes the left child of C.

A
+1

A
+2

C
+1

B
-1

B
0

BL BL

CL CL

CL

CR CR

AR

C
0

Figure: Balanced sub-tree Figure:  Unbalanced sub-tree (height  
of CL increased to height h+1)

Apply R1 Rotation

A
-1

B
0

BL CL CR AR

C
0

Figure: Rebalanced sub-tree

Rotation 2: The right sub-tree (CR) of the left child (C) of the left child (B) of 
the pivot node becomes the left sub-tree of A and A becomes the right child of C.

B
-1 B

+1

C
-1

A
+2

C
0

A
0Apply R2 Rotation

BL

BL

CL

CL

CR

CR

AR

AR

Figure:  Unbalanced sub-tree (height  Figure: Rebalanced sub-tree 
of CR increased to height h+1)

4. Right-to-Left rotation (RL Rotation)
In this, unbalance occurred due to the insertion in the left sub-tree of the right 
child of the root node. This is known as right-to-left rotation. RL Rotation is the 
mirror image of LR–Rotation. Here there are two rotations for the manipulation 
of pointers. They are the following:
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B
0

RL Rotation

A
-1

A
-2

B
+1

C
0

C
0

A
0

B
0

Figure: Balanced sub-tree Figure: Rebalanced sub-tree
Figure: Unbalanced sub-tree

Rotation 1 : The left sub-tree (CL) of the left child (C) of the right child 
(B) of the root node becomes the right sub-tree of A.
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B
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C
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Figure: Balanced Tree Figure:  Unbalanced sub-tree (height 
of CL increased to height h+1)

Apply R1 Rotation
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C
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A
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CLAL CR BR

Figure: Rebalanced sub-tree

Rotation 2: The right sub-tree (CR) of the left child (C) of the right child 
(B) of root node (A) becomes the left sub-tree of B and the right child (B) of 
the root node becomes the right child of C
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Apply R2 Rotation
A
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AL

AL

CR

CR

CR BR
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Figure:  Unbalanced sub-tree (height  Figure: Rebalanced sub-tree 
of CR increased to height h+1)
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6.18 INSERTION IN AN AVL TREE
We can insert a new node in an AVL tree by finding its appropriate position 
similar to that of the binary search tree. But insertion of a new node involves 
certain overheads since the tree may become unbalanced due to the increase 
in its height.

 1. If the data item with key ‘k’ is inserted into empty AVL tree, then the node 
with key ‘k’ is set to be the root node. In this case, the tree node. In this 
case, the tree is height balanced.

 2. If tree contains only single node, i.e., root node, then the insertion of the 
node with key ‘k’ depends upon its value. If the value of ‘k’ is less than 
the key value of the root then it is inserted to the left of the root otherwise 
right of the root. In this case the tree is height Balanced.

 3. If on inserting the node with key ‘k’ the height of the right sub-tree of the 
root has increased.

 4. If on inserting a node with key ‘k’ the height of the left sub-tree of the 
root is increased i.e.,

 (a) Height of the right sub-tree of the left sub-tree of the root node is 
increased.

 (b) Height of the left sub-tree of the root node is increased.
Example: insertion of the following keys in an AVL tree
55 66 77 15 11 33 22 35 25 44 88 99
Solution:

Insert 55: 55
0 

 Insert 66: 55
-1 

66
0

Insert 77:

55
-2 

RR Rotation

66
-1

66
0

55
0

77
077

0

Insert 15:
66
+1

55
+1

77
0

15
0
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Insert 11:
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+2
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0

LL Rotation
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Insert 33:

LR Rotation
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Insert 22:
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Insert 25:  RL Rotation

15
-2

22
0

33
0

77
0

66
-1

66
-1

35
0

11
0

25
0

35
0

77
0

55
+2

55
+1

11
0

33
+1

15
+1

22
-1

25
0



Chapter 6 Trees 271

6.19 DELETION IN AN AVL TREE
The deletion of a node from an AVL tree is exactly the same as the deletion of 
a node from the BST. The sequence of steps to be followed in deleting a node 
from an AVL tree is as follows:

 1. Initially, the AVL tree is searched to find the node to be deleted.
 2. The procedure used to delete a node in an AVL tree is the same as deleting 

the node in the binary search tree.
 3. After deletion of the node, check the balance factor of each node.
 4. Rebalance the AVL tree if the tree is unbalanced. For this, AVL rotations 

are used.
Example: consider the AVL tree given in figure and deletes some nodes 

from it one by one:

20

10 40

30 50

Delete node 50 Delete node 40

20
-1
20
-1 20

-1

40
+1

10
0 10

0

30
0

30
0

6.20 RED-BLACK TREE
A red-black tree is a binary search tree in which every node has a colour which 
is either red or black. Recall that an extended binary tree is a tree in which all 
NULL links are replaced by special nodes that are called external nodes. The 
properties of a red-black tree are as follows:

Property 1: The colour of a node is either red or black.
Property 2: The colour of the root node is always black.
Property 3: All leaf nodes are black.
Property 4: Every red node has both the children coloured in black.
Property 5: Every simple path from a given node to any of its leaf nodes has 

an equal number of black nodes.
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All paths from a node n to any external node will have same number of black 
nodes. If a path from root to external node has all the black nodes, then it will 
be the longest possible path. Since, black height of root node is k, each path will 
have k black nodes. Therefore, the total nodes in shortest possible path will be 
k and total nodes in longest possible path will be 2k. Thus, we see that no path 
in a red-black tree can be more than twice another node is at most 2log2 (n+1).

6.21 INSERTION A NODE IN A RED-BLACK TREE
The insertion operations start in the same way as we add a new node in the 
binary search tree. However, in a binary search tree, we always add the new 
node as a leaf, while in a red-black tree, leaf node contain no data. So instead 
of adding the new node as a leaf node, we add a red interior node that has two 
black leaf nodes. Remember that the colour of the new node is red and its leaf 
nodes are coloured in black. Once a new node is added, it may violate some 
property of the red-black tree. So in order to restore their property, we check 
for certain cases and restore depending on the case that turns up after insertion. 
Before learning these cases in detail, first let us discuss certain important terms 
that will be used.

 (i) Grandparent node (G) of a node n refers to the parent of n’s parent (P).
 (ii) Uncle node (U) of a node n refers to the sibling of n’s parents (P).

When we insert a new node in a red-black tree, note the following points:

 1. All leaf nodes are always black. So property 3 always holds true.
 2. Property 4 (both children of every red node are black) is threatened 

only by adding a red node, repainting a black node red, or a rotation.
 3. Property 5 (all paths from any given node to its leaf nodes has equal 

number of black nodes) is threatened only by adding a black node, 
repainting a red node black, or a rotation.

Case 1: The new node n is added as the root of the tree
In this case, n is repainting black, as the root of the tree is always black. 

Since n adds one black node to every path at once.
Case 2: The new node’s parent P is black
In this case, both children of every red node are black, so property 4 is not 

invalidated. Property 5 is also not threatened. This is because the new node n 
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has two black leaf children, but because n is red, the paths through each of its 
children have same number of black nodes. In the following cases, it is assumed 
that n has a grandparent node G, because its parent P is red, and if it were the 
root, it would be black. Thus, n also has an uncle node U, irrespective of whether 
U is a leaf node or an internal node.

Case 3: If both the Parent (P) and the Uncle (U) are red
In this case, property 5 which says all paths from any given node to its leaf 

nodes have an equal number of black nodes is violated. In order to restore property 
5, both node (P and U) are repainting black and the grandparent G is repainted red. 
Now, the new red node n has a black parent. Since, any path through the parent or 
uncle must pass through the grand parent, the number of black nodes on these paths 
has not changed. However, the grandparent G may now violate property 2 which 
says that the root node is always black or property 4 which states that both children 
of every red node are black. Property 4 will be violated when G has a red parent.

P

G

U

N

Case 4: the parent P is red but the uncle U is black and n is the right 
child of P and P is the left child of G

In this case, a left rotation is done to switch the roles of the new node n 
and its parent P. After the rotation, we have re-labelled n and P and then, case 
5 is called to deal with the new node’s parent. This is done because property 
4 which says both children of every red node should be black is still violated.

P

G

UNP

G

U

N

Case 5: The parent P is red but the uncle U is black and the new node 
n is the left child of P, and P is the left child of its parent G.

In this case, a right rotation on G the grandparent of n is performed. After this 
rotation, the former parent P is now the parent of both the new node n and the 
former grandparent G. We know that the colour of G is black because otherwise 
its former child P could not have been red, so now switch the colours of P and 
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G so that the resulting tree satisfies property 4 which states that both children 
of a red node are black. Note that in case n is the right child of P and P is the 
right child of G, we perform a left rotation.

P

G

U

NP

G

U

N

6.22 DELETING A NODE FROM RED-BLACK TREE
We start deleting a node from a red-black tree in the same way as we do in case 
of a binary search tree. In this section, we will assume that we are deleting a node 
with at most one non-leaf child, which we will call its child. In this case node has 
both leaf children, and then let one of them is its child. While deleting a node, 
if its colour is red, then we can simply replace it with its child, which must be 
black. All paths through the deleted node will simply pass through one less red 
node, and both the deleted node’s parent and child must be black, so none of the 
properties will be violated. Another simple case is when we delete a black node 
that has a red child. In this case, property 4 and property 5 could be violated, 
so to restore them, just repaint the deleted node’s child with black. However, a 
complex situation arises when both the node to be deleted as well as its child is 
black. In this case, we begin by replacing the node to be deleted with its child.

Case 1: n is the new root
In this case, we have removed one black node from every path, and the new 

root is black, so none of the properties are violated.
Case 2: Sibling S is red
In this case, interchange the colours of P and S, and then rotate left at P. In 

the resultant tree, S will become n’s grandparent.

P

N

P

S

S

SL SLSR

SRN

Case 3: P, S and S’s Children are Black
In this case, simply repaint S with red. In the resultant tree, all the paths 

passing through S will have one less black node. Therefore, all the paths that 
pass through P now have one fewer black nodes than the paths that do not pass 
through P, so property 5 is still violated.
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P

N

P

S S

SL SL
SR SR

N

Case 4: S and S’s Children are black, but P is red
In this case, we interchange the colours of S and P. Although this will not affect 

the number of black nodes on the paths going through S, it will add one black node 
to the paths going through n, making up for the deleted black node on those paths.

P

N

P

S S

SL SL
SR SR

N

Case 5: n is the left child of P and S is black, S’s left child is red and 
right child is black

In this case, perform a right rotation at S. After the rotation, S’s left child 
become S’s parent and n’s new sibling. Also interchange the colours of S and 
its new parent.

S S

SSL SR

SR

Case 6: S is black, S’s right child is red, and n is the left child of its parent P
In this case, a left rotation is done at P to make S the parent of P and S’s 

right child. After the rotation, the colours of P and S are interchanged and S’s 
right child is coloured black.

P

N

P

S

S

SR

SRN
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6.23 APPLICATIONS OF RED-BLACK TREE
Red-black trees are efficient binary search tree, as they offer worst case time 
guarantee for insertion, deletion and search operations. Red-black trees are not 
only valuable in time-sensitive applications such as real-time applications, but 
are also preferred to be used as a building block in other data structures which 
provides worst-case guarantee.

B-Tree and its Variants
All the data structures discussed so far favour data stored in the internal memory 
and hence support internal information retrieval. However, to favour retrieval 
and manipulation of data stored in external memory viz., storage devices such 
as disks etc. There is a need for some special data structures such as M-way 
search trees B-trees and B+ trees.

Why do we need another tree structure?
 1. In database programs, the data is too large to fit in memory; therefore, it 

is stored on secondary storage (disks or tapes).
 2. Disk access is very expensive; the disk I/O operation takes milliseconds 

while CPU operation takes nanoseconds i.e; CPU is one million times faster.
 3. When dealing with external storage the disk accesses dominate the running 

time.
 4. Balance binary search trees (AVL & Red-Black) have good performance 

if the entire data can fit in the main memory.
 5. These trees are not optimised for external storage and require many disk 

accesses, thus give poor performance for very large data.
 6. Data is transfered to and from the disk in blocks.
 7. To reduce disk accesses.
 (a) Reduce tree height by increasing the number of children of a node.
 (b) Store multiple records in a block on the disk.
 8. To achieve above goals we use Multi way (M-way) search tree, which is 

a generalisation of BST, binary search tree.

25  62

12  19 32  39 73  84

3    5

15  17

21  23

34  37

45  5130  31 69  71 90  94

75  79

Figure: 4-way Search Tree
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6.24 MULTI-WAY SEARCH TREES
M-way search trees are generalised versions of binary search trees. The goal of 
m-way search tree is to minimise the accesses while retrieving a key from a file. 
However, an M-way search tree of height h calls for O (h) number of accesses 
for an insert, delete, and retrieval operation. Hence, it pays to ensure that the 
height h is close to log m (n+1), because the number of elements in an M-way 
search tree of height h ranges from a minimum of h to a maximum of Mh-1. 
This implies that an M-way search tree of n elements ranges from a minimum 
of height of log m(n+1) to a maximum height of n. Therefore, there arises the 
need to maintain balanced M-way search trees.

Trees having (m-1) keys and m children are called M-way search trees. A 
binary tree is 2-way tree. It means that it has m-1=2-1=1 key (here m=2) in 
every node and it can have maximum of two children. A binary tree also called 
an M-way tree of order 3 is a tree in which key values could be either 1 or 2.

 1. In an M-way tree all the nodes 
have degree < m.

 2. The keys in each node are in 
ascending order k1< k2 <ki

 3. The key Ki is larger than keys in sub-tree pointed by Pi and smaller than 
keys in sub tree pointed by Pi+1

 4. The sub-trees are the M-way trees.
Searching a Multi-Way Tree
Searching for a key in an M-way search tree is similar to that of binary search 
trees. The procedure is as follows.
 1. If the key is less than k1 and k2 then the search is continued in M-way 

search tree pointed to by pointer p1

 2. If the key lies between k1 and k2 than the search is continued in M-way 
search tree pointed to p2

 3. If the key lies between k2 and k3 then the search is continued in M-way 
search tree pointed to by pointer p3

 4. If the key is greater than kq-1 then search is continued in M-way search 
tree pointed by p q

The steps are carried on recursively till either the key is found or the M-way 
search tree is empty.

18   44    76   198

7     12 80   92   145 250

8     10 78 148 150 175  180 250  270  300

3    6

9   20  41

18 23  37 50  64  71
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Insertion in an Multi-Way Search Tree
To insert a new element into an M-way search tree, we proceed in the same way 
as one would in order to search an element. To insert 9 into the 5-way search 
tree shown in figure, we proposed to search for 9 and find that we fall off the 
tree at the node [8, 10]. Since the node has only two keys and a 5-way search 
tree can accommodate upto 4 keys in a single node. 9 is inserted into the node.

18   44    76   198

7     12 80   92   145 250

8     10 78

9

148 150 175  180 250  270  300

Deletion in Multi-Way Search Tree
Let K be a key to be deleted from the M-way search tree. To delete the key we 
proceed as one would to search for the key. Suppose the node accommodating 
the key is as follows.

 1. If (Ai=Aj = NULL) then delete K.
 2. If (Ai ≠ NULL, Aj = NULL) then choose the largest of the key elements K’ 

in the child node pointed to by Ai delete the key K’ and replace K by K’. 
Obviously deletion of K’ may call for subsequent replacements and therefore 
deletions in similar manner, to enable the key K’ moves up the tree.

 3. If (Ai = NULL, Aj ≠ NULL) then choose the smallest of the key elements 
K’’ from the sub tree pointed to by Aj delete “K’’ and replace K by “K’’. 
Again deletion of “K’’ may trigger subsequent replacements and deletions 
to enable key “K’’ move up the tree.

 4. If (Ai ≠ NULL, Aj ≠ NULL) then choose the largest of the key elements 
K’ in the sub tree pointed to by Ai or the smallest of the key elements “K” 
from the sub tree pointed by Aj to replace K. As mentioned before to move 
K’ or K’’ up the tree it may call for subsequent replacements and deletions.

To delete 175, we search for 175 and we get that in the leaf node [148, 
150, 175, 180] where it is present. Hence, both Ai=NULL, Aj=NULL. So, We 
therefore, delete 175 and the node becomes [148, 150, 180].

18   44    76   198

7     12 80   92   145 250

8     10 78 148    150 250  270  300

.
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6.25 B TREE
In Multi-Way search tree, so many nodes have left sub tree but no right sub-
tree. Similarly they have right sub-tree but no left sub tree. Insertion of key also 
increases the height of tree. As we know that the access time in tree is totally 
dependent on level of tree. So our aim is to minimise the access time which 
can be though balanced tree only. So we have a need to take all the leaf nodes 
at same level and non leaf nodes should not contain the empty sub-tree. So for 
an order where k<=n-1. For balancing the tree each node should contain n/2 
keys. So the B- tree of order n can be defined as:
 1. Each node has at least n/2 and maximum n non- empty children.
 2. All leaf nodes will be at same level.
 3. All leaf nodes can contain maximum n-1 keys.
 4. All non-leaf nodes can contain m-1 keys where m is the number of children 

for that node.
 5. Keys in non-leaf node will divide the left and right sub tree where value 

of left sub-tree keys will be less and value of right sub-tree keys will be 
more than that particular key.

A balanced order-n, multi-way search tree in which non root node contains at 
least [(n-1)/2] keys is called a B-tree of order n. A B-tree of order n is also called 
an n-(n-1) tree or an (n-1)-n tree. That is each node in the tree has a maximum 
of n-1 keys and n children thus, a 4-5 tree is a B-tree of order 5, as is a 5-4 tree. 
In particular, a 2-3 (or 3-2) tree is the most elementary nontrivial B- tree with 
one or two keys per node and two or three sons per node.

In discussing B-trees, the word ‘’order’’ is used differently by different 
authors. It is common to find the order of a B-tree defined as the minimum 
number of keys in a non-root node. i.e., (n-1)/2 and the degree of a B-tree to 
mean the maximum number of keys in a node i.e., n-1. A B-tree is a rooted tree 
having the following properties:

 1. Every node x has the following fields:
 (a) n [x] the number of keys currently stored in order x.
 (b) The n[x] keys themselves stored in non decreasing order, so, that key1 

[x] ≤ key2 [x] ≤. .......key n[x][x]
 (c) Leaf [x], a Boolean value is TRUE if x is a leaf and FALSE if x is an 

internal node.
 2. Each internal node x also contains n[x]+1 pointers c1[x], C2[x]....Cn[x]+1 

[x] to its children. Leaf nodes have no children, so their Ci fields are under 
fined.

 3. The Keys keyi [x] separate the range of keys stored in each sub tree: if Ki 
is any key stored in the sub tree with root Ci[x] then. K1 ≤ key1[x] ≤ k2 ≤ 
key2 [x] ≤. ......... ≤ key n[x] [x] ≤ key n[x] + 1.
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 4. All leaves have the same depth, which is the tree’s height h.
 5. There are lower and upper bounds on the number of keys a node can 

contain. These bounds are expressed in terms of a fixed integer i ≥ 2 called 
the minimum degree of the B-tree:

 (a) Every node other than the root must have at least t-1 key. Every internal 
node other than the root has at-least t children. If the tree is non empty, 
the root must have at-least one key.

 (b) Every node can contain at most 2t-1 key. Therefore, an internal node 
can have atmost 2t children. We say that a node is full if it contains 
exactly 2t-1 keys.

6.26 INSERTION IN B-TREE
The insertion of key in a B-tree requires first traversal in B-tree. Through traversal 
it will find that key to be inserted is already existing or not. Suppose key does 
not exist in tree then through traversal it will reach leaf node. Now we have 
two cases for inserting the key.

 1. Node is not full
 2. Node is already full

If the leaf node in which the key is to be inserted is not full, then the insertion 
is done in the node. A node is said to be full if it contains a maximum of (m-1) 
keys, given the order of the B-tree to be m. If the node were to be full, then 
insert the key in order into the existing set of keys in the node, split the node at 
its median into two nodes at the same level, pushing the median, and element 
up by one level. Note that the split nodes are only half full. Accommodate the 
median element in the parent node if it is not full. Otherwise repeat the same 
procedure and this may even call for rearrangement of the keys in the root node 
or the formation of a new root itself.

Example: Insert these numbers in a B-Tree of order 5.
20, 80, 55, 15, 116, 39, 76, 124, 103, 48, 200, 98, 175, 235, 28, 114, 132, 164

Solution:

Insert 20: 20

Insert 80: 20 80
Insert 55: after insertion of 55, the keys in node will be sorted.

20 55 80
Insert 15: after insertion of 15, the keys in node will be sorted.

15 20 55 80
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Insert 116: 15 20 55 80 116

After insertion of 116, node is full, it splitted into two nodes, 55 is the median 
key so it will go in parent node but root node is splitted so it will become root.

15 20

55

80 116

Insert 39:

15 20 39

55

80 116

Insert 76:

15 20 39

55

8076 116

Insert 124:

15 20 39

55

8076 116 124

Insert103: After insertion of 103, node is full; it splitted into two nodes, 103 
is the median key so it will go in parent node.

15 20 39

55

8076 116 124

103

Insert 48:

15 20 39 48

55

8076 116 124

103

Insert 200:

15 20 39 48

55

8076 116 124 200

103

Insert 98:

15 20 39 48

55

80 9876 116 124 200

103

Insert 175: After insertion of 175, node is full; it splitted into two nodes, 
124 is the median key so it will go in parent node
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15 20 39 48

55

8076 11698 200175

103 124

Insert 235:

15 20 39 48

55

8076 11698 200 235175

103 124

Insert 28: After insertion of 28, node is full; it splitted into two nodes, 28 is 
the median key so it will go in parent node.

23548

28 12455 103

76 80 98 116 20017515 20 39

Insert 114:

48

28 12455 103

76 80 98 114 23520017515 20 39 116

Insert 132:

28 12455 103

76 80 23520017515 20 4839 98 114 116 132

Insert 164: After insertion of 164, node is full; it splitted into two nodes, 
116 is the median key so it will go in parent node. Here root is already full, so 
it splitted in two nodes, 103 is the median key so it will become the new root.

76 8015 20 4839 235200175

12411628 55

103

98 114 116 132

6.27 DELETION IN B-TREE
Deletion of key also requires first traversal in B-tree, after reaching on particular 
node, two cases may occur.

 1. Node is leaf node
 2. Node is non-leaf node
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For the first case suppose node has more than minimum number of keys 
then it can be easily deleted. But suppose it has only minimum number of 
keys then first key of the adjacent node will go to the parent node and key 
in parent node which is partitioning will be combined together in one node. 
Suppose, now parent has also less than the minimum number of keys then 
the thing will be repeated until it will get the node which has more than the 
minimum number of keys. For the second case key will be deleted and its 
predecessor and successor key have minimum number of keys then the nodes 
of predecessor and successor keys will be combined. Thus, while removing a 
key from a leaf node, if the node contains more than the minimum number of 
elements, then key can be easily removed. However, if the leaf node contains 
just the minimum number of elements, then scout for an element from either 
the left sibling node or right sibling node to fill the vacancy. If the left sibling 
node has more than the minimum number of keys. Pull the largest key up into 
the parent node and move down the intervening entry from the parent node to 
the leaf node where the key is to be deleted. Otherwise, pull the smallest key 
of the right sibling node to the parent node and move down the intervening 
parent element to the leaf node.

If both the sibling nodes have only minimum number of entries, then create 
a new leaf node out of the two leaf nodes and the intervening element of the 
parent node, ensuring that the total number does not exceed the maximum limit 
for a node. If while borrowing the intervening element from the parent node, it 
leaves the number of keys in the parent node to be below the minimum number, 
then we propagate the process upwards ultimately resulting in a reduction of 
height of the B-tree.

Deletion of key from B-Tree

Deletion of key
from non leaf node 

Deletion of key from leaf node

Replace the key by its
successor, and delete
the successor which
will always be in the
leaf node 

Keys in node
> Min 

Keys in left
sibling > Min 

Keys in right
sibling > Min 

Delete the key and
shift the other keys
of the node if needed 

Borrow from
right sibling 

Borrow from
left sibling 

Combine the node
with left or right sibling 
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Example: Let us take a B-Tree of order 5

76 8015 20 4839 235200175

12411628 55

103

98 114 116 132

Delete 175: here 175 are in leaf node, so delete it from only leaf node.

12411628 55

76 8015 20 4839

103

98 114 116 132 235200

Delete 55: here 55 are in non leaf node. So first it will be deleted from the 
node and then the element of right side child will come in the node

12411628 76

15 20 4839

103

98 114 116 132 23520080

Delete 39: here first 39 will be deleted from leaf node then left side element 
in the parent node will come in leaf node and then last element of the left side 
node of the parent node will come in parent node.

12411620 76

15 20 4828

103

98 114 116 132 23520080

6.28 APPLICATION OF B-TREE
The main application of a B- tree is the organisation of a huge collection of records 
into a file structure. The organisation should be in such a way that any record 
in it can be searched very efficiently i.e., insertion, deletion and modification 
operations can be carried out perfectly and efficiently.

6.29 B+ TREES
The B-tree structure is the standard organisation for indexes in a database 
system. There are several variations of the B-tree, most well known being 
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the B* tree and B+ tree. The B-tree guarantees at least 50% storage utilisation 
that is at any given time, the tree has each of nodes at least 50% full. The B+ 
tree is a slightly different data structure, which in addition to indexed access, 
also allows sequential data processing and stores all data in the lowest level 
of the tree.

One of the major drawbacks of the B-tree is the difficulty of traversing 
the keys sequentially. B+ tree retains the rapid random access property of the 
B-tree, while also allowing rapid sequential access. In the B+ tree, all keys are 
maintained in leaves and keys are replicated in non-leaf nodes to define the 
paths for locating individual records. The leaves are linked together to provide 
a sequential path for traversing the keys in the tree. The B+ tree is called a 
balanced tree because every path from the root node to leaf node is the same 
length. A balance tree means that all searches for individual values require the 
same number of nodes to be read from the disk.

B+ Tree

 (i) is a structure of nodes linked by pointers
 (ii) is anchored by a special node called the root and bounded by leaves
 (iii) has a unique path to each leaf, and all paths are of equal length
 (iv) store keys only at leaves, and stores reference values in other, internal 

node
 (v) guides key search, via the reference values from the root to the leaves

B+ tree of order M (M>3) is a M-ary tree with the following 
properties:

 (i) The data items are stored at leaves.
 (ii) The root is either a leaf or has between two and M children.
 (iii) Node

 (a) The (internal node (non leaf) stores up to M-1 keys (redundant) to 
guide the searching; key i represents the smallest key in sub tree i+1.

 (b) All nodes (except the root) have between [M/2] and M children.
 (iv) Leaf:

 (a) A leaf has between [L/2] and L data items, for some L (usually L < < 
M, but we will assume M=L in most examples).

 (b) All leaves are at the same depth.
 (v) Less disk accesses due to fewer levels in the tree.
 (vi) B+ tree provides faster sequential access of data.
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76 8015 20 4839 235200175

12411628 55

103

98 114 116 132

 Sequence
 Set

As we can see in the figure, the leaves have been connected to from a linked 
list of keys in sequential order. The B+ Tree has two parts the first part is the 
index set that constitutes interior nodes and the second part is the sequential 
set that constitutes leaves.

B+ Tree Structure
B+ Tree consists of two parts:

Index Set

 (i) Provide indexes for fast access of data.
 (ii) Consist of internal nodes that store only key & sub tree pointers.

Sequence Set

 (i) Consists of leaf nodes that contain data pointers.
 (ii) Provides efficient sequential access of data (using doubly linked list).

Searching key in a B+ Tree

 (i) Start from the root
 (ii) If an internal node is reached
 (iii) Search KEY among the keys in that node
 (iv) Linear search of binary search
 (v) If KEY ≤ smallest key, follow the leftmost child pointer down
 (vi) If KEY > largest key, follow the rightmost child pointer down
 (vii) If Ki ≤ KEY Kj, follow the child pointer between Ki and Kj

 (viii) If a leaf is reached
 (ix) Search KEY among the keys stored in that leaf
 (x) linear search or binary search
 (xi) If found, return the corresponding record; otherwise report not found.
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Insertion into a B+ Tree
In order to insert a key into a B+ Tree, first a B+ Tree search is performed to 
find the correct location for the key. Actually, the procedure to insert a new key 
value into a B+ Tree is almost as for B - Tree. The sequence to steps required 
to insert a node in a B+ Tree are as follows:

 1. The search operation is used to find the leaf node in which the value of 
node has to be inserted.

 2. If the key value already exists in a leaf node, no more insertion is needed. 
Else if the said key value does not exist, insert the value in the leaf node 
in an ordered fashion.

 3. When a node is split, the middle key is retained in the leaf half-node as 
well as being promoted to the father.

Deletion from a B+ Tree
The sequence of steps required to delete a key value from the B+ Tree is as 
follows:

 1.  Search the B+ Tree for the key value.
 2. If the key value is in the B+ Tree, remove it from the tree as that of B Tree.
 3. When a key value is deleted from a leaf there is no need to delete that 

key from the index set of the key. That key value still can direct searches 
to proper leaves, since it is still a valid separator between the keys in the 
nodes below.

Difference between B-Tree and B+ Tree

S.No B-Tree B+ Tree

1 Data pointers are stored in all 
nodes.

Data printers are stored only in leaf nodes 
(sequential set).

2 Search can end at any node. Search always ends at leaf node.

3 No redundant keys. Redundant keys may exist.

4 Slow sequential access. Efficient sequential access.

5 Higher trees. Flatter trees. No data pointers in index set 
nodes.

6.30 APPLICATION OF TREES
 1. Trees are used to store simple as well as complex data. 
 2. Integer value, character value and complex data means a structure or a 

record.
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 3. Trees are often used for implementing other types of data structures like 
hash tables, sets, and maps.

 4. A self-balancing tree, Red-black tree is used to kernel scheduling, to pre-
empt massively multi-processor computer operating system use.

 5. Another variation of tree, B+ trees is prominently used to store tree structures 
on disc. They are used to index a large number of records.

 6. B-trees are also used for secondary indexes in databases, where the index 
facilitates a select operation to answer some range criteria.

 7. Trees are an important data structure used for compiler construction.
 8. Trees are also used in database design.
 9. Trees are used in file system directories.
 10. Trees are also widely used for information storage and retrieval in symbol 

tables.

POINTS TO REMEMBER
 1. A tree is a data structure which is mainly used to store hierarchical data. A 

tree is recursively defined as collection of one or more nodes is designated 
as the root of the tree and the remaining nodes can be partitioned into 
non-empty sets each of which is a sub-tree of the root.

 2. In a binary tree, every node has zero, one, or at the most two successors. 
A node that has no successors is called a leaf node or a terminal node. 
Every node other than the root node has a parent.

 3. The degree of a node is equal to the number of children that a node has. 
The degree of a leaf node is zero. All nodes that are at the same level and 
share the same parent are called siblings.

 4. Two binary trees having a similar structure are said to be copies if they 
have the same content at the corresponding nodes.

 5. A binary tree of n nodes has exactly n-1 edges. The depth of a node N is 
given as the length of the path from the root R to the node N. the depth of 
the root node is zero

 6. A binary tree of height h has at least h nodes and at most 2h-1 nodes.
 7. In a complete binary tree, every level (except possibly the last) is completely 

filled and nodes appears as far left as possible.
 8. The height of the binary tree with n nodes is at least log2 (n+1) and at 

most n. in-degree of a node is the number of edges arriving at that node. 
The root node is the only node that has an in-degree equal to zero.

 9. A binary search tree, also known as an ordered binary tree, is a variant 
of binary tree in which all the nodes in the left sub-tree have a value less 
than that of the root node and all the nodes in the right sub-tree have a 
value either equal to or greater than the root node.
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 10. The average running time of a search operation is o (log2 n). However, 
in the worst case, a binary search tree will take o (n) time to search an 
element from the tree.

 11. An AVL tree is a self-balanced tree which is also known as a height-balanced 
with it, which is calculated by subtracting the height of the right sub-tree 
from the height of the left sub-tree. In a height balanced tree, every node 
has a balanced factor of either 0, 1 or –1.

 12. A red-black tree is a self-balancing binary search tree which is also called 
as a “symmetric binary B-Tree”. Although a red-black tree is complex, 
it has good worst case running time for its operations and is efficient 
to use, as searching, insertion, and deletion can all be done in o (log n) 
time.

 13. In a two-way threaded tree, also called a double threaded tree, threads will 
appear in both the left and the right field of the node.

 14. An M-way search tree has M-1 values per node and M sub-trees. In such 
a tree, M is called the degree of the tree. M-way search tree consists of 
pointers to M sub-trees and contains M-1 keys, where M > 2.

 15. A B-Tree of order M can have a maximum of M-1 keys and M pointers 
to its sub-trees. A B-Tree may contains a large number of key values and 
pointers to its sub-trees.

 16. A B+Tree is a variant of B-Tree which stores sorted data in a way that 
allows for efficient insertion, retrieval, and removal of records, each of 
which is identified by a key. B+Tree record data at the leaf level of the 
tree; only keys are stored in interior nodes.

MULTIPLE CHOICE QUESTIONS
 1. Degree of a leaf node is

 (a) 0
 (c) 2 

 (b) 1
 (d) 3

 2. The depth of root node is
 (a) 0
 (c) 2

 (b) 1
 (d) 3

 3. A binary tree of height h has at least h nodes and at most _______ nodes.
 (a) 2h
 (c) 2h+1

 (b) 2h
 (d) 2h – 1

 4. Pre-order traversal is also called
 (a) depth first
 (c) level order

 (b) breath first
 (d) in-order
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 5. The Huffman algorithm can be implemented using a
 (a) dequeue
 (c) priority queue

 (b) queue
 (d) none of these

 6. Total number of nodes at the nth level of a binary tree can be given as
 (a) 2n
 (c) 2n+1

 (b) 2n
 (d) 2n-1

 7. In the worst case, a binary search tree will take how much time to search 
an element?

 (a) o (n)
 (c) o (n2)

 (b) o (log n)
 (d) o (n log n)

 8. How much time does an AVL tree take to perform search, insert, and delete 
operations in the average case as well as the worst case?

 (a) o (n)
 (c) o (n2)

 (b) o (log n)
 (d) o (n log n)

 9. When the left sub-tree of the tree is one level higher than that of the right 
sub-tree, then the balance factor is

 (a) 0
 (c) -1

 (b) 1
 (d) 2

 10. Which rotation is done when the new node is inserted in the right sub-tree 
of the right sub-tree of the critical node?

 (a) LL
 (c) RL

 (b) LR
 (d) RR

 11. When a node N is accessed it is splayed to make it the
 (a) Root node
 (c) Child node

 (b) Parent node
 (d) Sibling node

 12. Every internal node of an M-way search tree consists of pointers to M 
sub-trees and contains how many keys?

 (a) M
 (c) 2

 (b) M -1
 (d) M + 1

 13. Every node in a B Tree has at most ______ children.
 (a) M
 (c) 2

 (b) M -1
 (d) M + 1

 14. Which data structure is commonly used to store a dictionary?
 (a) Binary Tree
 (c) Trie

 (b) Splay Tree
 (d) Red-Black Tree
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 15. In M-way search tree, M stands for
 (a) Internal nodes
 (c) degree of node

 (b) External nodes
 (d) leaf nodes

 16. In best case, searching a value in a binary search tree may take.
 (a) O (n)
 (c) O (log n)

 (b) O (n log n)
 (d) O (n2)

TRUE OR FALSE
 1. Nodes that branch into child nodes are called parent nodes.
 2. The size of a tree is equal to the total number of nodes.
 3. A leaf node does not branch out further.
 4. A node that has no successors is called the root node.
 5. A binary tree of n nodes has exactly n -1 edges.
 6. Every node has a parent.
 7. The Huffman coding algorithm uses a variable length code table.
 8. The internal path length of a binary tree is defined as the sum of all path 

lengths summed over each path from the root to an external node.
 9. In a binary search tree, all the nodes in the left sub-tree have a value less 

than that of the root node.
 10. If we take two empty binary search trees and insert the same elements but 

in a different order, then the resultant trees will be the same.
 11. When we insert a new node in a binary search tree, it will be added as an 

internal node.
 12. Mirror image of a binary search tree is obtained by interchanging the left 

sub-tree with the right sub-tree at every node of the tree.
 13. If the thread appears in the right field, then it will point to the in-order 

successor of the node.
 14. If the node to be deleted is present in the left sub-tree of A, then R rotation 

is applied.
 15. Height of an AVL tree is limited to o (log n).
 16. Critical node is the nearest ancestor node on the path from the root to the 

inserted node whose balance factor is -1, 0, or 1.
 17. RL rotation is done when the new node is inserted in the right sub-tree of 

the right sub-tree of the critical node.
 18. In a red-black tree, some leaf nodes can be red.
 19. All leaf nodes in the B Tree are at the same level.
 20. A B+ tree stores data only in the i-nodes.
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 21. B tree stores unsorted data.
 22. Every node in the B-tree has at most (maximum) m-1 children.
 23. The leaf nodes of a B tree are often linked to one another.
 24. B+ tree stores redundant search key.
 25. A trie is an ordered tree data structure.
 26. A trie uses more space as compared to a binary search tree.
 27. External nodes are called index nodes.

FILL IN THE BLANKS
 1. Parent node is also known as the _________ node.
 2. Size of a tree is basically the number of __________ in the tree.
 3. The maximum number of nodes at the kth level of a binary tree is __________.
 4. In a binary tree, every node can have a maximum of ________ successors.
 5. Nodes at the same level that share the same parent are called ___________.
 6. Two binary trees are said to be copies if they have similar ________ and 

________.
 7. The height of a binary tree with n nodes is at least _______ and at most 

______.
 8. A binary tree T is said to be an extended binary tree if ___________.
 9. _________ traversal algorithm is used to extract a prefix notation from 

an expression tree.
 10. In a Huffman tree, the code of a character depends on __________.
 11. ________ is also called a fully threaded binary tree.
 12. To find the node with the largest value, we will find the value of the right 

most node of the __________.
 13. If the threaded appears in the right field, then it will point to the __________ 

of the node.
 14. The balance factor of a node is calculated by __________.
 15. Balance factor -1 means ___________.
 16. Searching an AVL tree takes __________ time.
 17. _________ rotation is done when the new node is inserted in the left sub-

tree of the left sub-tree of the critical node.
 18. In a red-black tree, the colour of the root node is ______ and the colour 

of leaf node is ___________.
 19. The zig operation is done when___________.
 20. In splay trees, rotation is analogous to _______ operation.
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 21. An M-way search tree consists of pointers to __________ sub-trees and 
contains ______ keys.

 22. A B-Tree of order __________ can have a maximum of ___________ 
keys and m pointers to its sub-trees.

 23. Every node in the B-Tree except the root node and leaf nodes have at least 
_______ children.

 24. In ___________ data is stored in internal or leaf nodes.
 25. A balanced tree that has height O (log N) always guarantees ________ 

time for all three methods.

EXERCISES
 1. How many binary trees are possible with 4 nodes?
 2. Prove that the root of a binary tree is an ancestor of every node in the tree 

except itself?
 3. Prove that a strictly binary tree with n leaves contains 2n-1 nodes?
 4. Write a C function to traverse a binary tree in pre-order and post-order?
 5. Prove that the leftmost node at level n in an almost complete strictly binary 

tree is assigned the number 2n?
 6. Find the binary tree for the following expression:

Expression: (2x-3y)(4a+2b)3

 7. Write a C function that finds height of a binary tree?
 8. A binary tree has 9 nodes. The in-order and pre-order traversal of tree 

yields the following sequences of nodes:
In-order: E A C K F H D B G
Pre-order: F A E K C D H G B

 9. Write a short node on threaded binary tree?
 10. Explain the concept of a tree. Discuss its applications?
 11. Explain the concept of a binary search tree. Discuss its various operations 

in binary search tree?
 12. How many nodes will a complete binary tree with 32 nodes have in the 

last level? What will be the height of the tree?
 13. How is an AVL tree better than a binary search tree?
 14. How does a red-black tree perform better than a binary search tree?
 15. Discuss the properties of a Red-Black tree. Explain the insertion and deletion 

cases?
 16. Create a binary search tree with the data given below:

98, 2, 48, 12, 56, 32, 4, 67, 23, 87, 23, 55, 46
Insert 21, 39, 45, 54 and 63 into the tree
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Delete values 23, 56, 2 and 45 from the tree

 17. Create an AVL tree using the given data:
50, 40, 35, 58, 48, 42, 60, 30, 33, 25

 18. Suppose the following list of numbers is inserted into an empty binary 
search tree.
20, 10, 18, 4, 8, 5, 13, 16, 17, 1, 27. Draw the final tree?

 19. Difference between the B-Tree and B+ Tree?
 20. Create a B-Tree of order 5

3, 14, 7, 1, 8, 5, 11, 17, 13, 6, 23, 12, 20, 26, 4, 16, 18, 24, 25, 19

 21. Create a B-Tree of order 5
10, 70, 60, 20, 110, 40, 80, 130, 100, 50, 190, 90, 180, 240, 30, 120, 140, 160

 22. Create a Huffman tree with following numbers
16, 11, 7, 20, 25, 5, 16

 23. Consider the following algebraic expressions:
 (i) (A + B) * (C - D) / E
 (ii) A* (B + C) + D / (E - F)
 (iii) (A + B) / (C * D) – F / G
Draw trees for these expressions and apply traversal.

 24. Draw binary search tree from the in-order and pre-order traversal
In-order: B E D A C H F G
Pre-order: A B D E C F H G

 25. Draw binary search tree from the in-order and post-order traversal
In-order: J F C I H A B D G E
Post-order: J F I H C G D E B A
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7
Graphs

7.1 INTRODUCTION
A graph is another important non-linear data structure. Graphs are data structures 
which have wide range of applications in real life like airlines, analysis of 
electrical circuits, source, destination networks, finding shortest routes, flow 
chart of a program, statistical analysis etc.

Definition
Definitions: Graph, Vertices, Edges
Define a graph G = (V, E) by defining a pair of sets:
 1. V = a set of vertices
 2. E = a set of edges

Edges:
 • Each edge is defined by a pair of vertices
 • An edge connects the vertices that defines it
 • In some cases, the vertices can be the same

Vertices:
 • Vertices are also called nodes
 • Denote vertices with labels

Representation:
 • Represent vertices with circles, perhaps containing a label
 • Represent edges with lines between circles

Example:
 • V = {A,B,C,D}
 • E = {(A,B),(A,C),(A,D),(B,D),(C,D)}

A

B

C

n
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Motivation
Many algorithms use a graph representation to represent data or the problem 
to be solved

Examples:

 • Cities with distances between
 • Roads with distances between intersection points
 • Course prerequisites
 • Network
 • Social networks
 • Program call graph and variable dependency graph

7.2 BASIC TERM RELATED TO GRAPH
Graph Classifications
There are seveal common kinds of graphs

 • Weighted or unweighted
 • Directed or undirected
 • Cyclic or acyclic

Choose the kind required for problem and determined by data. We examine 
each below

Kinds of Graphs: Weighted and Unweighted
 • Graphs can be classified by whether or not their edges have weights
 • Weighted graph: edges have a weight

 • Weight typically shows cost of traversing
 • Example: weights are distances between cities

 • Unweighted graph: edges have no weight
 • Edges simply show connections
 • Example: course prerequisites

Kinds of Graphs: Directed and Undirected
 • Graphs can be classified by whether or their edges have direction

 • Undirected Graphs: each edge can be traversed in either direction
 • Directed Graphs: each edge can be traversed only in a specified direction

Undirected Graphs
 • Undirected Graph: no implied direction on edge between nodes
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 • The example from above is an undirected 
graph

 • In diagrams, edges have no direction (i.e. 
they are not arrows)

 • Can traverse edges in either directions
 • In an undirected graph, an edge is an unordered pair

 • Actually, an edge is a set of 2 nodes, but for simplicity we write it 
with parents

 • For example, we write (A, B) instead of {A, B}
 • Thus, (A,B) = (B,A), etc
 • If (A,B) ∈ E then (B,A) ∈ E

 • Formally: ∀ u,v ∈ E, (u,v)=(v,u) and u ≠ v
 • A node normally does not have an edge to itself

Directed Graphs
 • Digraph: A graph whose edges are directed (i.e. have a direction)

 • Edge drawn as arrow
 • Edge can only be traversed in direction of 

arrow
 • Example: E = {(A,B), (A,C), (A,D), (B,C), 

(D,C)}
 • Examples: courses and prerequisites, program 

call graph
 • In a digraph, an edge is an ordered pair

 • Thus: (u,v) and (v,u) are not the same edge
 • In the example, (D,C) ∈ E, (C,D) ∉ E
 • What would edge (B,A) look like? Remember (A,B) ≠ (B,A)

 • A node can have an edge to itself (eg (A,A) is valid)

Subgraph
 • If graph G=(V, E)

 • Then Graph G’=(V’,E’) is a subgraph of G if V› ⊆ V and E’ ⊆ E 

Degree of a Node
 • The degree of a node is the number of edges the node is used to define
 • Can also define in-degree and out-degree

 • In-degree: Number of edges pointing to a node

A

B

C

n

A

B

C

n
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 • Out-degree: Number of edges pointing from a node
 • Where are the in- and out-degree of the example?

Graphs: Terminology Involving Paths
 • Path: sequence of vertices in which each pair of successive vertices is 

connected by an edge
 • Cycle: a path that starts and ends on the same vertex
 • Simple path: a path that does not cross itself

 • That is, no vertex is repeated (except first and last)
 • Simple paths cannot contain cycles

 • Length of a path: Number of edges in the path
 • Sometimes the sum of the weights of the edges

Cyclic and Acyclic Graphs
 • A Cyclic graph contains cycles

 • Example: roads (normally)
 • An acyclic graph contains no cycles.
 • Examples - Are these cyclic or acyclic?

A

B

C

n A

B

C

n

Connected and Unconnected Graphs and Connected Components
 • An undirected graph is connected if every pair of vertices has a path 

between it
 • Otherwise it is unconnected
 • Give an example of a connected graph

 • An unconnected graph can be broken into connected components
 • A directed graph is strongly connected if every pair of vertices has a path 

between them, in both directions

Trees and Minimum Spanning Trees
 • Tree: undirected, connected graph with no cycles

 • If G=(V, E) is a tree, how many edges in G?
 • Spanning tree: a spanning tree of G is a connected subgraph of G that is 

a tree
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 • Minimum spanning tree (MST): a spanning tree with minimum weight
 • Spanning trees and minimum spanning tree are not necessarily unique
 • We will look at two famous MST algorithms: Prim’s and Kruskal’s

Data Structures for Representing Graphs
 • Two common data structures for representing graphs:

 • Adjacency lists
 • Adjacency matrix

Adjacency List Representation

 • Each node has a list of adjacent nodes

 • Example (undirected graph):
 • A: B, C, D
 • B: A, D
 • C: A, D
 • D: A, B, C

 • Example (directed graph):
 • A: B, C, D
 • B: D
 • C: Nil
 • D: C

 • Weighted graph can store weights in list

 • Space: Θ(V + E) (ie |V| + |E|)

 • Time:
 • To visit each node that is adjacent to node u: Θ(degree(u))
 • To determine if node u is adjacent to node v: Θ(degree(u))

Adjacency Matrix Representation
 • Adjacency Matrix: 2D array containing weights on edges

 • Row for each vertex
 • Column for each vertex
 • Entries contain weight of edge from row vertex to column vertex
 • Entries contain ∞ (i.e. Integer’last) if no edge from row vertex to 

column vertex
 • Entries contain 0 on diagonal (if self edges not allowed)

A

B

C

n

A

B

C

n
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 • Example undirected graph (assume self-edges not allowed):

 A B C D
A 0 1 1 1
B 1 0 ∞ 1
C 1 ∞ 0 1
D 1 1 1 0

 • Example directed graph (assume self-edges allowed):

 A B C D
A ∞ 1 1 1
B ∞ ∞ ∞ 1
C ∞ ∞ ∞ ∞
D ∞ ∞ 1 ∞

 • Can store weights in cells
 • Space: Θ(V2)
 • Time:

 • To visit each node that is adjacent to node u: Θ(V)
 • To determine if node u is adjacent to node v: Θ(1)

7.3 REPRESENTATION OF GRAPH
There are two standard methods in common use, which differ fundamentally in 
the choice of abstract data types used, and there are several variations depending 
on the implementation of the abstract data type.

 1. Sequential or Matrix Representation
 2. Linked List Representation

7.4 MATRIX REPRESENTATION
The graphs can be represented as matrices. There are three most commonly 
used matrices.

 (i) Adjacency Matrix
 (ii) Incidence Matrix
 (iii) Path Matrix

(i) Adjacency Matrix
The adjacency matrix is a matrix with one row and one column for each vertex. 
The values of matrix elements are either 0 or 1. The value of 1 for each row i 
and column j implies that edge (vi, vj) exists. A value of 0 indicates that there 

A

B

C

n

A

B

C

n
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is no edge between vertices vi and vj. In other words, we can say that if graph 
G consists of v1, v2,. ........, vn vertices then the adjacency matrix A = a[i][j] of 
the graph G is the n x n matrix and can be defined as:

a[i][j] =   1 if vi is adjacent to vj, that is, if there is an edge between vi and vj

  0 if there is no edge between vi and vj

Example:
Let us take a directed graph

V1

V4 V3

V2

The corresponding adjacency matrix for this directed graph will be:

v1 v2 v3 v4
v1 0 1 0 1
v2 1 0 1 1
v3 0 0 0 1
v4 1 0 1 0

Let us take an undirected graph

V1

V3 V4

V2

The corresponding adjacency matrix for this graph will be:

v1 v2 v3 v4
v1 0 1 1 1
v2 1 0 1 1
v3 1 1 0 1
v4 1 1 1 0

The matrix contains entries of only 0 and 1, so the matrix is called a bit matrix 
or Boolean matrix. When on constructing an adjacency matrix for a graph, one 
must follow the following points:
 (a) Adjacency matrix A does not depend on the ordering of the vertex of a 

graph G, that is, different ordering of the vertices may result in a different 
adjacency matrix. One can obtain the same matrix by interchanging rows 
and columns.
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 (b) If graph G is undirected then the adjacency matrix of G will be symmetric. 
That is [aij] = [aji] for every i and j

(ii) Incidence matrix
The incidence matrix consists of a row for every 
vertex and a column for every edge. The values of 
the matrix are -1, 0 or 1. The kth edge is (vi, vj), kth 
column has a value 1 in the ith row, -1 in the jth row 
and 0 otherwise. For example, let us consider the 
following graph.

The adjacent matrix A of the above graph G is as follows:

v1 v2 v3 v4
v1 0 0 0 1

A= v2 1 0 1 1
v3 1 0 0 1
v4 0 0 1 0

Consider the powers A, A2, A3,. .... of the adjacency matrix A of a graph G.
Let ak (i, j) = the ij entry in the matrix Ak. Observe that ak (i, j) = aij gives the 

number of paths of length 1 from node vi to vj. Let A be the adjacency matrix of 
a graph G. Then ak(i, j) the ij entry in the matrix ak, gives the number of paths 
length k from vi to vj.

Consider the previous graph, whose adjacency matrix A is given above. The 
powers A, A2, A3, A4,. ........ of the matrix A are as follows:

v1 v2 v3 v4
v1 0 0 1 0

A2= v2 1 0 1 2
v3 0 0 1 1
v4 1 0 0 1

v1 v2 v3 v4
v1 1 0 0 1

A3= v2 1 0 2 2
v3 1 0 1 1
v4 0 0 1 1

v1 v2 v3 v4
v1 0 0 1 1

A4= v2 2 0 2 3
v3 1 0 1 2
v4 1 0 1 1

V2

V3 V4

V1
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Accordingly, in particular, there is a path of length 2 from v4 to v1, there are 
two paths of length 3 from v2 to v3 and there are three paths of length 4 from 
v2 to v4.

Suppose we now define the matrix Br as follows
Br = A + A2 + A3 + A4 +. ............. + Ar

Then the ij entry of the matrix Br, gives the number of paths of length r or 
less from node vi to vj.
(iii) Path Matrix
Let G be a simple directed graph with n vertices v1, v2,…. Vn. An n x n matrix 
P [Pij] is defined as follows:

Pij = 1 if there is a path from vi to vj

 0 otherwise
Suppose there is a path from vi to vj then there must be simple path from vi 

to vj when vi ≠ vj or there must be a cycle from vi to vj when vi = vj.
The path matrix P of a given graph G can be obtained from its adjacency 

matrix by following steps:
 1. From the adjacency matrix of A, we can determine whether there exists 

an edge from one vertex to another.
 2. Find An for some possible integer n.
 3. Add the matrices A, A2, A3, ….. An.
 4. Now path matrix p can be obtained from Bn as follows:
  Pij =1 if and only if there is a non-zero element in the I, j entry of the matrix 

Bn

Since G has only m nodes, such a simple path must have length m-1 or less, 
or such a cycle must have length m or less. This means that there is a non zero 
ij entry in the matrix Bm.

Let A be the adjacency matrix and P = [Pij] be the path matrix of a diagraph G. 
Then pij = 1 if and only if there is a non zero number in the ij entry of the matrix.

Bm = A + A2 + A3 +. ......... + Am

Consider the following graph with m=4 nodes. 
Adding the matrix A, A2, A3, A4, we obtain the 
following matrix B4 and replacing the non zero 
entries in B4 by 1, we obtain the path matrix P of 
the graph G:

v1 v2 v3 v4
v1 1 0 2 3

B4= v2 5 0 6 5
v3 3 0 3 5
v4 2 0 3 3





V2

V3 V4

V1
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v1 v2 v3 v4
v1 1 0 1 1

P = v2 1 0 1 1
v3 1 0 1 1
v4 1 0 1 1

Examine the matrix P; we see that the node v2 is not reachable from any 
of the nodes. Recall that a directed graph G is said to be strongly connected if 
for any pair of nodes u and v in G, there are both a path from u and v and path 
from v to u. Accordingly G is strongly connected if and only if the path matrix 
P of G has no zero entries.

The adjacency matrix A and the path matrix P of a graph G may be viewed 
as logical Boolean matrices, where 0 represent false and 1 represents true. Thus, 
the logical operations of ∧ (AND) and ∨ (OR) may be applied to the entries of 
A and P. The values of ∧ and ∨ appears in the table:

∧ 0 1 ∨ 0 1
0 0 1 0 0 0
1 1 1 1 0 1

AND Or

7.5 LINKED LIST REPRESENTATION
Let G be a directed graph with m nodes. The linked representation will contain 
two lists:

 (i) A node list called “node”
 (ii) An edge list called “edge”

Node List
Each element in the list node will correspond to a node in G and it will be a 
record of the form:

Node Next Adj

Here node will be the name or key value of the node, next will be a pointer 
to the next node in the list node and adj will be a pointer to the first element in 
the adjacency list of the node, which maintained in the list edge. The blank area 
indicates that there may be other information in the record such as the in-degree 
of node, the out-degree of the node, the status of the node during the execution 
of an algorithm and so on. Node is an array of records containing fields such 
as name, indeg, outdeg, status, etc.

Edge List
Each element in the list edge will correspond to an edge of G and will be a 
record of the form;
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destination link

The field destination will point to the location in the list Node of the destination 
or terminal nodes in the same adjacency list. The link field will link together the 
edges with the same initial node, the nodes in the same adjacency list. The blank 
area indicates that there may be other information in the record corresponding 
to the edge, such as a field edge containing the labelled data of the edge when 
G is a labelled graph, a field weight containing the weight of the edge when G 
is a weighted graph and so on.

Node Adjacent List
1 2, 3, 4

2 3

3

4 3, 5

5 3

 Graph “G”    Adjacent lists of G

3

1

Node list Edge list

2

4

5

2

3

53

3

3 3

7.6 TRAVERSING A GRAPH
As we know that traversing is visiting each node in some systematic approach. 
Graph is represented by its nodes and edges. There are two graph traversal methods:
 1. Breadth First Search (BFS) Using Queue
 2. Depth First Search (DFS) Using Stack

In BFS, we use queue for keeping nodes, which will be used for next processing 
and in DFS, we use stack, which keeps the node for next processing.

1. Breadth first search using queue
This Graph traversal technique uses queue for traversing all the nodes of the 
graph. In this, first we take any node as a starting node then we take all the 

1 4

32

5
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nodes adjacent to that starting node. We maintain the status of visited node in 
array so that no node can be traversed again.

Let us take a graph and apply BFS to it.
Vertex Adjacency List

A B, C, D

B D, E

C D

D E

E

Take the node A as the starting node and start the traversal of the given 
graph.

First we traverse node A, then we traverse all adjacent nodes to node A, i.e., 
B,C, D. Now we traverse all nodes adjacent to B, then all the nodes adjacent 
to D, E

Now we traverse all nodes adjacent to C, then all the nodes adjacent to D. 
Now we traverse all nodes adjacent to D, then all the nodes adjacent to E now 
the traversal is: A, B, C, D, E

This was the traversal when we take node A as the starting node.
BFS through Queue
Take an array queue which will be used to keep the unvisited neighbours of the 
node. Take a Boolean array visited which will have value true if the node has 
been visited and will have value false if the node has not been visited.

Initially queue is empty and front = -1 and rear = -1
initially visited [i] = false where i =1 to n, n is total number of nodes.

Procedure
 1. Insert starting node into the queue
 2. Delete front element from the queue and insert all its unvisited neighbours 

into the queue at the end, and traverse them. Also make the value of visited 
array true for these nodes.

 3. Repeat step 2 until the queue is empty.
Suppose the source vertex is A. Then following steps will illustrate the BFS:
Step 1: Initially push A to the queue.

0 1 2 3 4
A

Front = 0
Rear = 0

A B

DC

E
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Step 2: Remove the front element A from the queue by incrementing front 
= front + 1 and display it. Then push all the neighbouring vertices of A to the 
queue by incrementing rear = rear + 1.

0 1 2 3 4
B C D

  Front = 1  Rear = 3

Traversed node = A

Step 3: Remove the front element B from the queue by incrementing front 
= front + 1 and display it. Then push all the neighbouring vertices of B to the 
queue by incrementing rear = rear + 1.

0 1 2 3 4
C D E

  Front = 2 Rear = 4

Traversed node = A, B

Step 4: Remove the front element C from the queue by incrementing front 
= front + 1 and display it. Then push all the neighbouring vertices of C to the 
queue by incrementing rear = rear + 1, if it is not in queue, D is already in 
queue, ignore it.

0 1 2 3 4
D E

  Front = 3 Rear = 4

Traversed node = A, B, C

Step 5: Again the process is repeated remove the front element D of the 
queue and add the neighbouring vertex if it is not present in the queue.

0 1 2 3 4
E

  Front = 4 Rear = 4

Traversed node = A, B, C, D
Step 6: Again the process is repeated until front > rear, i.e., remove the 

front element E of the queue and add the neighbouring vertex if it is present 
in the queue.

0 1 2 3 4

  Rear Front
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Traversed node = A, B, C, D, E
So, A, B, C, D, E is the BFS traversal of the graph.

Program: Write a Program to Implement Breadth First Search 
Traversal.

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
void input();
void output();
int db(int);
void bfs();
int d,a[10],jj,ii,ti,b1,fi,ri;
char ch[10];
struct b
{
 char node[10];
 struct b *left,*right;
} *temp, *root=NULL,*t,*q[25];
void main()
{
input();
output();
}
void input()
{
 int n,m,r,i,f;
 printf(“Enter the no of depth:-”);
 scanf(“%d”,&d);
  n=pow(2,d+1)-1;
 for(i=1;i<=n;i++)
 {
  printf(“Enter the %d node name:-”,i);
  scanf(“%s”,ch);
  temp=(struct b *)malloc(sizeof(struct b));
  strcpy(temp->node,ch);
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  temp->left=NULL;
  temp->right=NULL;
  if(root==NULL)
  {
  root=temp;
  }
  else
  {
  t=root;
  r=db(i);
  for(f=1;f<r;f++)
  {
  if(a[f]==0)
  {
  t=t->left;
  }
  else
  {
  t=t->right;
  }
  }
 if(a[r]==0)
 {
 t->left=temp;
 }
 else
 {
 t->right=temp;
 }
 }
 }
}
 void output()
 {
 t=root;
 printf(“\n Enter the name Goal:-”);



312 Data Structure Using C

 scanf(“%s”,ch);
 bfs(t);
 }
 int db(int n)
 {
 int ji=0;
 while(n!=0)
 {
 a[ji++]=n%2;
 n=n/2;
 }
 for(ii=0,b1=ji-1;ii<b1;ii++,b1--)
 {
 ti=a[ii];
 a[ii]=a[b1];
 a[b1]=ti;
 }
 ji--;
 }
void bfs(struct b *t)
{
  int yes=0,index;
  fi=0;
  ri=1;
  q[fi]=t;
  printf(“\n Breadth First search:-\n”);
  while(fi<ri)

 {
  t=q[fi++];
  printf(“%s”,t->node);
  if(strcmp(t->node,ch)==0)
  {
  yes=1;
  index=fi;
  }
  if(t->left!=NULL)
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  {
  q[ri++]=t->left;
  }
  if(t->right!=NULL)
  {
  q[ri++]=t->right;
  }
  }
  if(yes==1)
  printf(“\n Goal State Are Present at Node %d”,index);
  else
  printf(“\n Goal State Are Not Present”);
}

Output
Enter the no of depth:-3
Enter the 1 node name:-A
Enter the 2 node name:-B
Enter the 3 node name:-C
Enter the 4 node name:-D
Enter the 5 node name:-E
Enter the 6 node name:-F
Enter the 7 node name:-G
Enter the 8 node name:-H
Enter the 9 node name:-I
Enter the 10 node name:-J
Enter the 11 node name:-K
Enter the 12 node name:-L
Enter the 13 node name:-M
Enter the 14 node name:-N
Enter the 15 node name:-O

Enter the name Goal:-N

Breadth First search:-
ABCDEFGHIJKLMNO
Goal State Are Present at Node 14
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2. Depth first search using stack
The Depth First Search (DFS) as its name suggest, is to search deeper in the 
graph. Given a input graph G= (V, E) and a source vertex S, from where the 
searching starts. First we visit the starting node, and then we travel through each 
node along a path, which begins at S. That is, we visit a neighbour vertex of S 
and again a neighbour of a neighbour of S and so on. DFS also works on both 
directed as well as on undirected graphs.

Depth first search using stack
Depth first Search technique uses stack. Take an array STACK, which will be 
used to keep the unvisited neighbours of the node. Take another Boolean array 
VISITED, which will have value TRUE if the node has been visited and will 
have FALSE if the node has not been visited.

Initially stack is empty and TOP = -1.
Initially VISITED [i] = FALSE where i = 1, n is total number of nodes

Procedure
 1. Push starting node into the stack.
 2. Pop an element from the stack, if it has not been traversed then traverse it, 

if it has already been traversed then just ignore it. After traversing make 
the value of visited array true for this node.

 3. Now push all the unvisited adjacent nodes of the popped element on stack. 
Push the element even if it is already on the stack.

 4. Repeat steps 3 and 4 until stack is empty.
Vertex Adjacency List

A B, C, D

B D, E

C D

D

E D

Step 1: Push node A into stack

A

Now, Top = 0 and STACK = A.

Step 2: POP node A from stack and traverse it
So, Traversed node = A and VISITED [A] = TRUE
Now, push all the unvisited adjacent nodes B, C, D of the popped element 

on the stack.

A B

DC

E
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D

C

B

Now TOP = 2 and STACK = B, C, D
Traversal = A
Step 3: Pop the element node D from the stack, and push all its unvisited 

adjacent nodes. There is no adjacent node. So, Traversed node = D
VISITED [D] = TRUE

C

B

TOP = 1, STACK = B, C
Traversal = A, D
Step 4: POP the element C from the stack, traverse it and push all its unvisited 

adjacent nodes. Here node D is adjacent node of C but it is visited node. So, 
Traversed node = C

VISITED [C] = TRUE

B

TOP = 0, STACK = B
Traversal = A, D, C

Step 5: POP the element B from the stack, traverse it and push all its unvisited 
adjacent nodes i.e., node E. Traversed node = B

VISITED [B] = TRUE

E

TOP = 0, STACK = E
Traversal = A, D, C, B
Step 6: POP the element E from the stack, traverse it and push all its unvisited 

adjacent nodes. No node is here.
Traversed node = E
VISITED [E] = TRUE

TOP = -1, STACK = EMPTY
Traversal = A, D, C, B, E
Since the stack is empty, so we will stop our process.
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Program: Write a Program to Implement Depth First Search Traversal.

#include<conio.h>
#include<stdio.h>
#include<string.h>
#include<malloc.h>
#include<math.h>
void input();
void output();
int db(int);
void DFS(struct tree *);
struct tree
{
 char node[10];
 struct tree *left,*right;
} *temp, *root=NULL,*t,*s[25];
int d,a[10],jj,ii,ti,b,top;
char ch[10];
void main()
{
clrscr();
input();
output();
getch();
}
void input()
{
 int n,m,r,i,f;
 printf(“Enter the no of depth:-”);
 scanf(“%d”,&d);
 n=pow(2,d+1)-1;
 for(i=1;i<=n;i++)
 {
  printf(“Enter the %d node name:-”,i);
  scanf(“%s”,ch);
  temp=(struct tree *)malloc(sizeof(struct tree));
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  strcpy(temp->node,ch);
  temp->left=NULL;
  temp->right=NULL;
  if(root==NULL)
  {
  root=temp;
  }
  else
  {
  t=root;
  r=db(i);
  for(f=1;f<r;f++)
  {
  if(a[f]==0)
  {
  t=t->left;
  }
  else
  {
  t=t->right;
  }
 }
 if(a[r]==0)
 {
 t->left=temp;
 }
 else
 {
 t->right=temp;
 }
 }
 }
 }
 void output()
 {
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 t=root;
 printf(“\n Enter the name Goal:-”);
 scanf(“%s”,ch);
 DFS(t);
 }
 int db(int n)
 {
 int ji=0;
 while(n!=0)
 {
 a[ji++]=n%2;
 n=n/2;
 }
 for(ii=0,b=ji-1;ii<b;ii++,b--)
 {
 ti=a[ii];
 a[ii]=a[b];
 a[b]=ti;
 }
 ji--;
 return ji;
 }

void DFS(struct tree *t)
 {
  int yes=0,top=1;
  s[top]=t;
  printf(“\n Depth First search:-\n”);
  while(top>0)
  {
  t=s[top];
  top--;
  printf(“%s”,t->node);
  if(strcmp(t->node,ch)==0)
  {
  yes=1;

 }
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  if(t->left!=NULL)
  {
  s[++top]=t->left;
  }
  if(t->right!=NULL)
  {
  s[++top]=t->right;
  }
  }
  if(yes==1)
  printf(“\n Goal State Are Present”);
  else
  printf(“\n Goal State Are Not Present”);
 }

Output

Enter the no of depth:-2
Enter the 1 node name:-A
Enter the 2 node name:-B
Enter the 3 node name:-C
Enter the 4 node name:-D
Enter the 5 node name:-E
Enter the 6 node name:-F
Enter the 7 node name:-G

Enter the name Goal:-E

Depth First search:-
ACGFBED
Goal State Are Present

7.7 SPANNING TREE
A spanning tree is a subset of Graph G, which has all the vertices covered with 
minimum possible number of edges. Hence, a spanning tree does not have cycles 
and it cannot be disconnected.

By this definition we can draw a conclusion that every connected & undirected 
Graph G has at least one spanning tree. A disconnected graph does not have any 
spanning tree, as it cannot span to all its vertices.
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A

Graph G

Spanning Trees

B

A

B

C

A

BC

A

BCC

We found three spanning trees off one complete graph. A complete undirected 
graph can have maximum nn-2 number of spanning trees, where n is the number 
of nodes. In addressed example, n is 3, hence 33−2 = 3 spanning trees are possible.

General properties of spanning tree
We now understand that one graph can have more than one spanning trees. 
Below are few properties is spanning tree of given connected graph G −

 • A connected graph G can have more than one spanning tree.
 • All possible spanning trees of graph G, have same number of edges and 

vertices.
 • Spanning tree does not have any cycle (loops)
 • Removing one edge from spanning tree will make the graph disconnected 

i.e. spanning tree is minimally connected.
 • Adding one edge to a spanning tree will create a circuit or loop i.e. spanning 

tree is maximally acyclic.

Mathematical properties of spanning tree
 • Spanning tree has n-1 edges, where n is number of nodes (vertices)
 • From a complete graph, by removing maximum e-n+1 edges, we can 

construct a spanning tree.
 • A complete graph can have maximum nn-2 number of spanning trees.

So, we can conclude here that spanning trees are subset of a connected Graph 
G and disconnected Graphs do not have spanning tree.

Application of Spanning Tree
Spanning tree is basically used to find minimum paths to connect all nodes in 
a graph. Common application of spanning trees is −

 • Civil Network Planning
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 • Computer Network Routing Protocol
 • Cluster Analysis

Let’s understand this by a small example. Consider city network as a huge 
graph and now plan to deploy telephone lines such a way that in minimum lines 
we can connect to all city nodes. This is where spanning tree comes in the picture.

7.8 MINIMUM SPANNING TREE (MST)
In a weighted graph, a minimum spanning tree is a spanning tree that has 
minimum weight that all other spanning trees of the same graph. In real world 
situations, this weight can be measured as distance, congestion, traffic load or 
any arbitrary value denoted to the edges.

Minimum Spanning-Tree Algorithm
We shall learn about two most important spanning tree algorithms here −

 • Krukshal’s Algorithm
 • Prim’s Algorithm

Both are greedy algorithms.

7.9 KRUKSHAL’S ALGORITHM
This algorithm creates a forest of trees. Initially the forest consists of n single 
node trees and no edges. That is, in the method initially we take n district trees 
for all nodes of the graph. At each step, we add one edge, so that it joins two 
trees together.

 1. Initially construct a separate tree for each node in a graph.
 2. Edges are placed in a priority queue, we take edges in ascending order. 

We can use a heap for the priority queue.
 3. Until we have added n-1 edges.

 (a) Extract the cheapest edge from the queue.
 (b) If it forms a cycle, reject it

  else
  add it to the forest.

 4. Whenever we insert an edge, two trees will be joined, every step will have 
joined two trees in the forest together so that at the end, there will be only 
one tree.

In this method, first we examine all the edges one-by-one starting from 
the smallest edge. To decide whether the selected edge should be included in 
the spanning tree or not, we will examine the two nodes connecting the edge. 
If the two nodes belong to the same tree then we will not include the edge in 
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the spanning tree, since the two nodes are in the same tree, they are already 
connected and adding these edges would result in a cycle. So we will insert an 
edge in the spanning tree only if its nodes are in different trees.

Now, we will see how to decide whether two nodes are in the same tree or 
not. For this, we need a UNION - FIND structure.

To understand the UNION - FIND structure, we need to look at a partition 
of a set.

 (a)  Every element of the set belongs to one of the sets in the partition.
 (b)  No element of the set belongs to more than one of the sub-sets.
 (c)  Every element of a set belongs to one and only one of the sets of a 

partition.
A partition of a set may be thought of as a set of equivalence classes. Each 

sub-set of the partition contains a set of equivalent elements. For each subset, 
we denote one element as the representative of that sub-set. Each element in the 
sub-set is, somehow, equivalent and represented by the representative. When 
we add elements to the sub-set, we arrange that all the elements point to their 
representative. Initially, each node is its own representative. As the initial pairs 
of nodes are joined to form a tree, the representative pointer of one of the nodes 
is made to point to the other, which becomes the representative of the tree. As 
trees, are joined the representative pointer of the representative of one of them 
is set to point to any element of the other. Let x denote an object, we wish to 
support the following operations.

 1. MAKE - SET (x) creates a new set whose only member is pointed to by x.
 2. FIND - SET (x) returns a pointer to the representative of the set containing x.
 3. UNION (x, y) unites the dynamic sets that contain x and y, say Sx and Sy 

into a new set that is the union of these two sets. The representative of 
the resulting set is some member of Sx U Sy. Since we require the sets in 
the collection to be disjoint, we “destroy” sets Sx and Sy removing them 
from the collection.

MST - KRUSKAL (G, W)
 1. A = ø
 2. for each vertex v V[G]

 do MAKE-SET (v)
 3. sort the edges of E into increasing order by weight w.
 4. for each edge (u,v) E taken in increasing order.

 do if FIND-SET (u) ≠ FIND-SET (v)
 then A = A U {u, v}
 UNION (u, v)

 5. return A.
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Consider a graph
Edge Weight
V1, V3 3

V3, V2 3

V2,V1 4

V2, V4 5

V4, V3 8

V3, V6 9

V5,V7 10

V5, V6 11

V4,V7 12

V7, V6 14

V2, V5 18

Solution:
Step 1: Initial Step

V1

V2

V4

V3

V7

V6V5

Step 2: take V1, V3 edge, minimum weight 3

V1

V2

V4

V3
3

V7

V6V5

Step 2: take V3, V2 edge, minimum weight 3

V1
4 3

3

5 8

18 9

12

11

10 14

V2

V4

V3

V7

V6V5
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V1

V2

V4

V3
3

3

V7

V6V5

Step 3: take V2, V1 edge, this cannot be added, because it forms a cycle, 
reject it.

Step 4: take V2, V4 edge, minimum weight 5

V1

V2

V4

V3
3

3

5

V7

V6V5

Step 5: take V4, V3 edge, this cannot be added, because it forms a cycle, 
reject it.

Step 6: take V3, V6 edge, minimum weight 9

V1

V2

V4

V3
3

3

5

9

V7

V6V5

Step 7: take V5, V7 edge, minimum weight 10
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V1

V2

V4

V3
3

3

5

9

10

V7

V6V5

Step 8: take V5, V6 edge, minimum weight 11

V1

V2

V4

V3
3

3

5

9

10

11

V7

V6V5

Step 9: take V4, V7 edge, this cannot be added, because it forms a cycle, 
reject it

Step 10: take V7, V6 edge, this cannot be added, because it forms a cycle, 
reject it

Step 11: take V2, V5 edge, this cannot be added, because it forms a cycle, 
reject it

The edge that belong to minimum spanning tree
{(V1,V3), (V3,V2), (V2,V4), (V3,V6), (V5,V7), (V5,V6)}
Weight of the minimum spanning tree: 3+3+5+9+10+11
The total cost of a minimum spanning tree is 41

Program: Write a Program to implement a minimum spanning tree from 
Kruskal’s Algorithm

#include<stdio.h>
#define MAX 20
struct edge
{
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int u, v, weight;
struct edge *link;
}* front = NULL

int father [MAX]   //Holds father of each node
struct edge tree[MAX]  //will contain the edge of spanning tree
int n;    //denote total number of nodes in the graph
int weight_tree = 0  //weight of the spanning tree
int count = 0   //denote number of edge include in the tree

void make_tree();
void insert_tree(int i, int j, int weight);
void insert_priority_queue(int i, int j, int weight);
struct edge *del_priority_queue();
main()
{
int i;
create_graph();
make_tree();
printf(“Edges to be included in spanning tree are:”);
for(i=0;i<=count;i++)
{
printf(“%d->”, tree[i].u);
printf(“%d->”, tree[i].v);
}
printf(“Weight of this minimum spanning tree is”, weight_tree);
}
create_graph()
{
int i, weight, maxedge, origin, destination;
printf(“Enter number of nodes:”);
scanf(“%d”, &n);
maxedge = n*(n-1)/2;
for(i=1;i<=maxedge;i++)
{
printf(“Enter edge %d(0 0 to quit):”, i);
scanf(“%d %d”, &origin, &destination);
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if((origin == 0) && (destination ==0))
break;
printf(“Enter weight for this edge:”);
scanf(“%d”, &weight);
if(origin > n || destination > n || origin <=0 || destination <=0)
{
printf(“Invalid Edge”);
i--;
}
else
insert_priority_queue(origin, destination, weight);
}
if(i < n-1)
{
printf(“Spanning tree is not possible”);
exit (1);
}
}
void make_tree()
{
struct edge *temp;
int node1, node2, root_n1, root_n2;
while(count < n-1) //loop till n-1 edges included in the tree
{
temp = del_priority_queue();
node1 = temp->u;
node2 = temp->v;
printf(“n1 = %d”, node1);
printf(n2 = %d”, node2);
while(node1 > 0)
{
root_n1 = node1;
node1 = father[node];
}
while(node2 > 0)
{
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root_n2 = node2;
node2 = father[node];
}
printf(“rootn1 = %d”, root_n1);
printf(rootn2 = %d”, root_n2);
if(root_n1!=root_n2)
{
insert_tree(temp->u, temp->v, temp->weight);
weight_tree = weight_tree + temp->weight;
father[root_n2] = root_n1;
}
}
}
void insert_tree(int i, int j, int weight)
{
printf(“This edge inserted in the spanning tree”);
count++;
tree[count].u=i;
tree[count].v=j;
tree[count].weight=weight;
}
void insert_priority_queue(int i, int j, int weight)
{
struct edge *temp, *q;
temp = (struct edge*) malloc(sizeof(struct edge));
temp->u=i;
temp->v=j;
temp->weight=weight;
if(front ==NULL || temp->weight < front->weight)
{
temp->link = front;
front = temp;
}
else
{
q=front;
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while(q->link!=NULL && q->link->weight <=temp->weight)
q=q->link;
temp->link = q->link;
q->link = temp;
if(q->link == NULL) //edge to be added at the end
temp->link = NULL;
}
}
struct edge *del_priority_queue()
{
struct edge *temp;
temp = front;
printf(“Edge processed is %d->%d %d\n”, temp->u, temp->v, temp->weight);
front = front->link;
return temp;
}

7.10 PRIM’S ALGORITHM
In this, we start with any node and add the other node in spanning tree on the 
basis of weight of edge connecting to that node. Suppose, we start the node ‘N’ 
then we have a need to all the connecting edges and which edge has minimum 
weight. Then, we will add that edge and node to the spanning tree. Suppose, if 
two nodes N1 and N2 are in spanning tree and both have edge connecting to an 
edge. Which has minimum weight will be added in spanning tree.

The main idea of Prim’s algorithm is similar to that of Dijkstra’s algorithm 
for finding shortest path in a given graph. Prim’s algorithm has the property 
that the edges in the set A from a single tree. We begin with some vertex u in 
a given graph G = ( V, E), defining the initial set of vertices A. Then, in each 
iteration, we choose a minimum weight edge (u, v) connecting a vertex v in the 
set A to the vertex u outside set A. Then vertex u is brought into A. This process 
is repeated until a spanning tree is formed. Like Krushal’s algorithm, here too, 
the important fact about MSTs is we always choose the smallest - weight edge 
joining a vertex inside set A to the one outside the set A.

MST-Prim (G, w, r)

 1. for each u v[G]
 2. do key[u] = ∞
 3. π[u] = NIL
 4. key [r] = 0
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 5. Q = V[G]
 6. while Q ≠ 0
 7. do u = EXTRACT-MIN (Q)
 8. for each v Adj[u]
 9. do if v Q and w (u, v) < key [v]
 10. then π [u] = u
 11. key[v] = w(u, v)

Solution
Step 1:
Suppose the starting vertex is V1
Edges, which have exactly one end belonging to the partial minimal spanning 

tree
{(V1, V2),(V1, V3)}
The edge chosen based on the minimal spanning tree 

(V1,V3)

Step 2: set of vertices in the minimal spanning tree (V1, V3)
Edges, which have exactly one end belonging to the partial minimal spanning 

tree
{(V1, V2), (V2, V3),(V3, V4),(V3, V6)}
The edge chosen based on the minimal spanning tree 

(V2, V3)

Step 3: set of vertices in the minimal spanning tree 
(V1, V2, V3)

Edges, which have exactly one end belonging to the 
partial minimal spanning tree

{(V3, V4), (V3, V6),(V2, V4),(V2, V5)}
The edge chosen based on the minimal spanning tree 

(V2, V4)

Step 4: set of vertices in the minimal spanning tree 
(V1, V2, V3, V4)

Edges, which have exactly one end belonging to the 
partial minimal spanning tree

{(V3, V6), (V2, V5),(V4, V7)}
The edge chosen based on the minimal spanning 

tree (V3, V6)

Step 5: set of vertices in the minimal spanning tree (V1, V2, V3, V4, V6)

V1
4 3

3

5 8

18 9

12

11

10 14

V2

V4

V3

V7

V6V5

V1

V3

3

V1

V2 V3
3

3

V1

V2

V4

V3
3

3

5

V1

V2

V4

V3
3

3

5

9

V6
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Edges, which have exactly one end belonging to the 
partial minimal spanning tree

{(V2, V5), (V4, V7), (V5, V6), (V6, V7)}
The edge chosen based on the minimal spanning 

tree (V5, V6)

Step 6: set of vertices in the minimal spanning tree 
(V1, V2, V3, V4, V5, V6)

Edges, which have exactly one end belonging to the 
partial minimal spanning tree

{(V4, V7), (V6, V7), (V5, V7)}
The edge chosen based on the minimal spanning 

tree (V5, V7)
The edge that belong to minimum spanning tree
{(V1, V3), (V2, V3), (V2, V4), (V3, V6), (V5, V6), 

(V5, V7)}
Weight of the minimum spanning tree 

3+3+5+9+11+10
The total cost of a minimum spanning tree is 41

Program: Write a Program to Implement Minimum Spanning Tree for 
Prim’s Algorithm.

#include<stdio.h>
int a,b,u,v,n,i,j,ne=1;
int visited[10]={0},min,mincost=0,cost[10][10];
void main()
{
printf(“\n Enter the number of nodes:”);
scanf(“%d”,&n);
printf(“\n Enter the adjacency matrix:\n”);
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
{
scanf(“%d”,&cost[i][j]);
if(cost[i][j]==0)
cost[i][j]=99;
}
visited[1]=1;
printf(“\n”);

V1

V2

V4

V3
3

3

5

9

11
V6V5

V1

V2

V4

V3
3

3

5

9

11

10

V6V5

V7
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while(ne<n)
{
    for(i=1,min=99;i<=n;i++)
     for(j=1;j<=n;j++)
     if(cost[i][j]<min)
     if(visited[i]!=0)
     {
      min=cost[i][j];
      a=u=i;
      b=v=j;
      }
if(visited[u]==0 || visited[v]==0)
{
printf(“\n Edge %d:(%d %d) cost:%d”,ne++,a,b,min);
mincost+=min;
visited[b]=1;
}
cost[a][b]=cost[b][a]=99;
}
printf(“\n Minimun cost=%d”,mincost);
}

Output

Enter the number of nodes:3
Enter the adjacency matrix:
1
2
1
2
3
2
1
2
1
Edge 1:(1 3) cost:1
Edge 2:(1 2) cost:2
Minimun cost=3
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7.11 SHORTEST PATHS (DIJKSTRA’S ALGORITHM)
A path from source vertex s to t is shortest path from s to t if there is path from 
s to t with lower weights. In a shortest paths problem, we are given a weighted 
directed graph G = (V, E) with weight function w: E→R mapping edges to real 
- valued weights. The weight of path p = < V0, V1. ..... Vm > is the sum of the 
weights of its constituent edges.

 k
w(p) = ∑ w(Vi-1, Vi) i=1

We define the shortest path weight from u to v by
δ(u,v) = min (w(p): u→v)

Dijkstra’s algorithm
Dijkstra’s algorithm, named after its discover, Dutch computer scientist Edsger 
Dijkstra, is a greedy algorithm that solve the single-source shortest path problem 
for a directed graph G = (V,E) with non-negative edge weights, i.e., we assume 
that w(u,v) > each edge (u,v) E.

Dijkstra’s algorithm maintains a set S of vertices whose final shortest - path 
weights from the source s have already been determined. That is, for all vertices 
v E S, we have d[v] = (s,v). The algorithm repeatedly selects the vertex u E V- S 
with the minimum shortest - path estimate, insert u into S, and relaxes all edges 
leaving u. We maintain a priority queue Q that contains all the vertices in v -s, 
keyed by their d values. Graph G is represented by adjacency lists.

 1. INITIALIZE - SINGLE - SOURCE (G, s)
 2. S - 0
 3. Q - V[G]
 4. While Q = 0
 5. do u - EXTRACT - MIN (Q)
 6. S - S U {u}
 7. for each vertex vE Adj [u]
 8. do RELAX (u, v, w)

V1
8

5
2 7

3

4 9

4

4 16

8

5

5

2
6

V4 V5 V6

V8

V2

V7

V3
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The procedure is as:

 1. Initially make source node permanent and make it the current working 
node. All other nodes are made temporary.

 2. Examine all the temporary neighbours of the current working node and after 
checking the condition for minimum weight, relabel the required nodes.

 3. From all the temporary nodes, find out the node which has minimum value of 
distance, make this node permanent and now this is our current working node.

 4. Repeat steps 2 and 3 until destination node is made permanent.
Suppose the source node is V1
V1 is the current working node.

Node Destination Precedence Status
V1 0 0 Permanent
V2 ∞ 0 Temporary
V3 ∞ 0 Temporary
V4 ∞ 0 Temporary
V5 ∞ 0 Temporary
V6 ∞ 0 Temporary
V7 ∞ 0 Temporary
V8 ∞ 0 Temporary

V1
8

5
2 7

3

4 9

4

4 16

8

5

5

2
6

V4 V5 V6

V8

V2

V7

V3

Now we will check the adjacent nodes of V1, which are temporary also. 
Here, V2,V3,V4 are adjacent to V1 and are temporary.

V2.distance > V1.distance + distance (V1,V2) ∞ > 0 + 8 relabel V2
V3.distance > V1.distance + distance (V1,V3) ∞ > 0 + 2 relabel V3
V4.distance > V1.distance + distance (V1,V4) ∞ > 0 + 7 relabel V4
Now we will change the precedence and distance of V2, V3, V4

Node Destination Precedence Status
V1 0 0 Permanent
V2 8 V1 Temporary
V3 2 V1 Temporary
V4 7 V1 Temporary
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Node Destination Precedence Status
V5 ∞ 0 Temporary
V6 ∞ 0 Temporary
V7 ∞ 0 Temporary
V8 ∞ 0 Temporary

Now from all the temporary nodes find out the node that has the smallest distance 
from source i.e. smallest value of distance. V3 has the smallest value of distance in 
all temporary nodes so make it permanent and now V3 is our current working node.

V1
8

5
2 7

3

4 9

4

4 16

8

5

5

2
6

V4 V5 V6

V8

V2

V7

V3

Adjacent nodes of V3 are V4, V7 both are temporary.
V4.distance > V3.distance + distance (V3,V4) 7 > 2 + 7 relabel V4
V7.distance > V3.distance + distance (V3,V7) ∞ > 2 + 3 relabel V3
Now we will change the precedence and distance of V4 and V7.

Node Destination Precedence Status
V1 0 0 Permanent
V2 8 V1 Temporary
V3 2 V1 Permanent
V4 6 V3 Temporary
V5 ∞ 0 Temporary
V6 ∞ 0 Temporary
V7 5 V3 Temporary
V8 ∞ 0 Temporary

Now from all the temporary nodes V7 has smallest value of distance so 
make it permanent and now V7 is our current working node.

V1
8

5
2 7

3

4 9

4

4 16

8

5

5

2
6

V4 V5 V6

V8

V2

V7

V3



336 Data Structure Using C

Adjacent nodes of V7 are V3,V4,V5, since V3 is permanent we will not 
relabel it.

V4.distance < V7.distance + distance (V7,V4) 6 < 5 + 3 don’t relabel V4
V5.distance > V7.distance + distance (V7,V5) ∞ > 5 + 4 relabel V5

Now precedence and distance of V5 will be changed.

Node Destination Precedence Status
V1 0 0 Permanent
V2 8 V1 Temporary
V3 2 V1 Permanent
V4 6 V3 Temporary
V5 9 V7 Temporary
V6 ∞ 0 Temporary
V7 5 V3 Permanent
V8 ∞ 0 Temporary

Now from all temporary nodes V4 has smallest value of distance so make 
it permanent. Now V4 is the current working node.

V1
8

5
2 7

3

4 9

4

4 16

8

5

5

2
6

V4 V5 V6

V8

V2

V7

V3

Adjacent nodes of V4 are V5, V1. Node V1 is already permanent, so we 
will check for V5 only.

V5.distance < V4.distance + distance (V4,V5) 9 < 6 + 9 don’t relabel V5

Node Destination Precedence Status
V1 0 0 Permanent
V2 8 V1 Temporary
V3 2 V1 Permanent
V4 6 V3 Permanent
V5 9 V7 Temporary
V6 ∞ 0 Temporary
V7 5 V3 Permanent
V8 ∞ 0 Temporary
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Now from all temporary nodes V2 has smallest value of distance so make 
it permanent. Now V2 is our current working node.

V1
8

5
2 7

3

4 9

4

4 16

8

5

5

2
6

V4 V5 V6

V8

V2

V7

V3

An adjacent node of V2 is V6.
V6.distance < V2.distance + distance (V2, V6) ∞ > 8 + 16 relabel V6

Now precedence and distance of V6 will be changed.

Node Destination Precedence Status
V1 0 0 Permanent
V2 8 V1 Permanent
V3 2 V1 Permanent
V4 6 V3 Permanent
V5 9 V7 Temporary
V6 24 V2 Temporary
V7 5 V3 Permanent
V8 ∞ 0 Temporary

Now from all temporary nodes V5 has smallest value of distance, so make 
it permanent, now V5 is our current working node.

V1
8

5

2 7

3

4 9

4

4 16

8

5

5

2
6

V4 V5 V6

V8

V2

V7

V3

Adjacent nodes of V5 are V6, V8.
V6.distance < V5.distance + distance (V5, V6) 24 > 9 + 5 relabel V6
V8.distance < V5.distance + distance (V5, V8) ∞ > 9 + 8 relabel V8
Now precedence and distance of V6 and V8 will be changed.



338 Data Structure Using C

Node Destination Precedence Status
V1 0 0 Permanent
V2 8 V1 Permanent
V3 2 V1 Permanent
V4 6 V3 Permanent
V5 9 V7 Permanent
V6 14 V5 Temporary
V7 5 V3 Permanent
V8 17 V5 Temporary

Now from all temporary nodes V6 has smallest value of distance so make it 
permanent. Since V6 is our destination node and it has been made permanent, 
so we will stop our process.

V1
8

5
2 7

3

4 9

4

4 16

8

5

5

2
6

V4 V5 V6

V8

V2

V7

V3

We can find out the shortest path from the last table. Start from the destination 
node and keep on seeing the predecessors until we get source node as a predecessor.

Predecessor of V6 is V5
Predecessor of V5 is V7
Predecessor of V7 is V3
Predecessor of V3 is V1
So the path is V1—V3—V7—V5—V6

Program: Write a program to find the shortest path between two node in 
graph using Dijkshtra Algorithm.

#include<stdio.h>
#define MAX 10
#define TEMP 0
#define PERM 1
#define infinity 9999

struct node
{
int predecessor
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int dist;
int status;
};

int adj[MAX][MAX];
int n;
void main()
{
int i, j;
int source, dest;
int path[MAX];
int shortest_distance, count;

create graph();
printf(“The adjacency matrix is:”);
display();

while (1)
{
printf(“Enter source node (0 to quit):”);
scanf(“%d”, &source);
printf(“Enter destination node(0 to quit):”);
scanf(“%d”, &dest);

if(source==0 || dest==0)
exit (1);
count = findpath(source, dest, path, & shortest_distance);
if(shortest_distance!=0)
{
printf(“Shortest distance is :”, shortest_distance);
printf(“Shortest path is:”);
for(i=count; i>1;i--)
printf(“%d->”, path[i]);
printf(“%d”, path[i]);
printf(“\n”);
}
else
printf(“There is no path from source to destination node:”);
}
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}

create graph()
{
int i, max_edge, origion, dest, weight;
printf(“Enter number of vertices:”);
scanf(“%d”, &n);
max_edge=n*(n-1);
for(i=1;i<=max_edge;i++)
{
printf(“Enter edge %d(0 0 to quit):”,i);
scanf(“%d %d”, &origion, &dest);
if((origion==0 && (dest==0))
break;
printf(“Enter weight for this edge:”);
scanf(“%d”, &weight);
if(origion > n || dest > n || origion <=0 || dest <=0)
{
printf(“invalid edge”);
i--;
}
else
adj[origion][dest]=weight;
}
}

display()
{
int i, j;
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
printf(“%3d”, adj[i][j]);
printf(“\n”);
}
}

int findpath(int s, int d, int path[MAX], int *sdist)
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{
struct node state[MAX];
int i, min, count=0, current, newdist, u, v;
*sdist=0;
for(i=1;i<=n;i++)
{
state[i].predecessor=0;
state[i].dist=infinity;
state[i].status=TEMP;
}

state[s].predecessor=0;
state[s].dist=0;
state[s].status=PERM;

current=s;
while(current!=d)
{
for(i=1;i<=n;i++)
{
if(adj[current][i]>0 && state[i].status==TEMP)
{
newdist=state[current].dist +adj[current][i];
if(newdist <state[i].dist)
{
state[i].predecessor=current;
state[i].dist=newdist;
}
}
}

min=infinity;
current=0;
for(i=1;i<=n;i++)
{
if(state[i].status==TEMP & state[i].dist<min)
{
min=state[i].dist;
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current=i;
}
}

if(current==0)
return 0;
state[current].status=PERM;
}

while(current!=0)
{
count++;
path[count]=current;
current=state[current].predecessor;
}
for(i=count;i>1;i--)
{
u=path[i];
v=path[i-1];
*sdist+=adj[u][v];
}
return (count);
}

7.12 WARSHALL’S ALGORITHM
Let G be a directed graph with n nodes, V1, V2,. ....... Vn. Suppose we want 
to find the path matrix P of the graph G. Warshall gave an algorithm for this 
purpose that is much more efficient than calculating the powers of the adjacency 
matrix A.

First we define n square Boolean matrices P0, P1,. .......... Pn as follows. Let 
Pk[i][j] denote the ij entry of the matrix Pk. Then we define:

Pk[i][j] =    1 if there is a simple path from Vi to Vj which does not use any 
other nodes except possibly V1, V2,. ........Vk.

       0.otherwise

In other words:
P0 [i][j] = 1 if there is an edge from Vi to Vj

P1 [i][j] =  1 if there is a simple path from Vi to Vj which does not use any 
other nodes except possible V1.









Chapter 7 Graphs 343

P2 [i][j] =  1 if there is a simple path from Vi to Vj which does not use any 
other nodes except possible V1 and V2.

............    ........................................................................................

............    ........................................................................................

First observe that the matrix P0 = A, the adjacency matrix of G. Furthermore, 
since G has only n nodes, the last matrix Pn = P, the path matrix of G.

Warshall observed that Pk[i][j] = 1 can occur only if one of the following 
two cases occurs:

 1. There is a simple path from Vi to Vj which does not use any other nodes 
except possibly V1, V2,. ......... Vk-1; hence Pk-1[i][j] = 1

Vi →......... →Vj

 2. There is a simple path from Vi to Vk and a simple path from Vk to Vj where 
each path does not use other nodes except possibly V1, V2,. ......Vk-1; hence 
Pk-1[i][j] = 1 and Pk-1[k][j] = 1

Vi →......... →Vk →.......... →Vj

Accordingly, the elements of the matrix Pk can be obtained by
Pk[i][j] = Pk-1[i][j] ∧ (Pk-1[i][j] ∧ Pk-1[k][j])
Where we use the logical operations ∧ (AND) and ∨ (OR). In other words, 

we can obtain each entry in the matrix Pk by looking at only three entries in the 
matrix Pk-1. Warshall’s algorithm is as follows:

Algorithm
A directed graph G with n nodes is maintained in memory by its adjacency 
matrix A. This algorithm finds the Boolean path matrix P of the graph G.

 1. Repeat steps 2 and 3 for i, j = 0, 1,. ..... n-1  //initializes P
 2. If A[i][j] = 0 then set P[i][j] = 0
 3. Else set P[i][j]
 4. End of step1 loop
 5. Repeat steps 6 to 8 for k = 0, 1,. ..... n-1  //updates P
 6. Repeat steps 7 to 8 for i = 0, 1,. ...... n-1
 7. Repeat step 8 for j = 0, 1,. ....... n-1
 8. Set P[i][j] = P[i][j] ∨ (P[i][k] ∧ P[k][j])
 9. End of step 5 loop
 10. End of step 3 loop
 11. End of step 2 loop
 12. Stop
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Example: let us take a graph and find out the values of P0, P1, P2, P3, P4

V1

V3V4

V2

Solution
The first matrix P0 is the adjacency matrix

v1 v2 v3 v4
v1 0 1 0 1

P0 = v2 1 0 1 1
v3 0 0 0 1
v4 1 0 1 0

Now we have to find P1

Now wherever P0[i][j] = 1  P1[i][j] = 1
If P0[i][j] = 0 then see P0[i][1] and P0[1][j], if both are 1 then P1[i][j] = 1

v1 v2 v3 v4
v1 0 1 0 1

P1 = v2 1 1 1 1
v3 0 0 0 1
v4 1 1 1 1

Similarly P2

v1 v2 v3 v4
v1 1 1 1 1

P2 = v2 1 1 1 1
v3 0 0 0 1
v4 1 1 1 1

Similarly P3

v1 v2 v3 v4
v1 1 1 1 1

P3 = v2 1 1 1 1
v3 0 0 0 1
v4 1 1 1 1
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Similarly P4

v1 v2 v3 v4
v1 1 1 1 1

P4 = v2 1 1 1 1
v3 1 1 1 1
v4 1 1 1 1

Here P0 is the adjacency matrix and P4 is the path matrix of the graph.

Program: Write a program to find path matrix by Warshall’s Algorithm

#include<stdio.h>
#define MAX 20

main()
{
int i,j,k,n;
int weighted_adj[MAX][MAX], adj[MAX][MAX], path[MAX][MAX];
printf(“enter the number of vertices”);
scanf(“%d”, &n);
printf(“Enter weighted adjacency matrix:”);
for(i=0;i<n;i++)
for(j=0;j<n;j++)
scanf(“%d”, &weighted_adj[i][j]);
printf(“The weighted adjacency matrix is:”);
display(weighted_adj,n);

//change weighted adjacency matrix into Boolean adjacency matrix
for(i=0;i<n;i++)
for(j=0;j<n;j++)
if(weighted_adj[i][j] ==0)
adj[i][j] = 0;
else
adj[i][j] = 1;
printf(“The adjacency matrix is:”);
display(adj,n);
for(i=0;i<n;i++)
for(j=0;j<n;j++)
path[i][j]=adj[i][j];
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for(k=0;k<n;k++)
{
printf(“P %d is:”, k);
display(path,n);
for(i=0;i<n;i++)
for(j=0;j<n;j++)
path[i][j]=(path[i][j] || (path[i][k] && path[k][j]));
}
printf(“Path matrix P %d of the given graph is:”, k);
display(path,n);
}

display(int matrix[MAX][MAX],int n)
{
int i,j;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
printf(“%3d”, matrix[i][j]);
printf(“\n”);
}
}

7.13  MODIFIED WARSHALL’S ALGORITHM  
(SHORTEST PATH)

Let G be a directed graph with n nodes V0,V1,.......Vn-1, suppose G is weighted; 
that is, suppose each edge e in G is assigned a non-negative number w(e) called 
the weighted or length of the edge e. Then may be maintained in memory by 
its weight matrix W= [Wij], defined as follows:

Wij =    w(e)    if there is an edge from Vi to Vj

    0       if there is no edge from Vi to Vj

The path matrix P tells us whether or not there are path between the nodes. 
Now we want to find a matrix Q which will tell us the lengths of the shortest 
paths between the nodes or, more exactly, a matrix Q = [qij] where qij = length 
of a shortest path from Vi to Vj

Next we describe a modification of Warshall’s algorithm which finds us the 
matrix Q. Here we define a sequence of matrices Q0,Q1,......Qn (the previous 
described matrices P0,P1,......Pn) whose entries are defined as follows:


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Qk[i][j] = the smaller of the length of the preceding path from Vi to Vj 
or the sum of the lengths of the preceding paths from Vi to Vk and from 
Vk to Vj.

More exactly,
Qk[i][j] = min (Qk-1[i][j], Qk-1[i][k] + Qk-1[k][j])
The initial matrix Q0 is the same as the weight 

matrix W except that each 0 in W is replaced by ∞ or 
a very, very large number. The final matrix Qn will be 
the desired matrix Q.

Example: let us take a graph and find out the values 
of Q0, Q1, Q2, Q3, Q4

Solution
Weighted adjacency matrix for this graph is

V1 V2 V3 V4
V1 0 2 0 9

W = V2 3 0 4 7
V3 0 6 0 2
V4 14 0 4 0

V1 V2 V3 V4
V1 ∞ 2 0 9

Q0 = V2 3 ∞ 4 7
V3 ∞ 6 ∞ 2
V4 14 ∞ 4 ∞

V1 V2 V3 V4
V1 -- V1V2 -- V1V4
V2 V2V1 -- V2V3 V2V4
V3 -- V3V2 -- V3V4
V4 V4V1 -- V4V3 --

After including node V1 (k=1)

V1 V2 V3 V4
V1 ∞ 2 0 9

Q1 = V2 3 5 4 7
V3 ∞ 6 ∞ 2
V4 14 16 4 23

V1

V3

3

2

4

7 4 614 9

2

V4

V2
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V1 V2 V3 V4
V1 -- V1V2 -- V1V4
V2 V2V1 V2V1V2 V2V3 V2V4
V3 -- CB -- V3V4
V4 V4V1 V4V1V2 V4V3 V4V1V4

After including node V2 (k=2)
V1 V2 V3 V4

V1 5 2 6 9
Q2 = V2 3 5 4 7

V3 9 6 10 2
V4 14 16 4 23

V1 V2 V3 V4
V1 V1V2V1 V1V2 V1V2V3 V1V4
V2 V2V1 V2V1V2 V2V3 V2V4
V3 V3V2V1 V3V2 V3V2V3 V3V4
V4 V4V1 V4V1V2 V4V3 V4V1V4

After including node V3 (k=3)
V1 V2 V3 V4

V1 5 2 6 8
Q3 = V2 3 5 4 6

V3 9 6 10 2
V4 13 10 4 6

V1 V2 V3 V4
V1 V1V2V1 V1V2 V1V2V3 V1V2V3V4
V2 V2V1 V2V1V2 V2V3 V2V3V4
V3 V3V2V1 V3V2 V3V2V3 V3V4
V4 V4V3V2V1 V4V3V2 V4V3 V4V3V4

After including node V4 (k=4)
V1 V2 V3 V4

V1 5 2 6 8
Q4 = V2 3 5 4 6

V3 9 6 6 2
V4 13 10 4 6
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V1 V2 V3 V4
V1 V1V2V1 V1V2 V1V2V3 V1V2V3V4
V2 V2V1 V2V1V2 V2V3 V2V3V4
V3 V3V2V1 V3V2 V3V4V3 V3V4
V4 V4V3V2V1 V4V3V2 V4V3 V4V3V4

Q1 (1, 3) = Minimum [Q0 (1, 3), Q0 (1, 1) + Q0 (1, 3)]
  = Minimum (∞, ∞)
  = ∞
Q1 (2, 2) = Minimum [Q0 (2, 2), Q0 (2, 1) + Q0 (1, 2)]
  = Minimum (∞, 3+2)
  = 5
Q2 (3, 1) = Minimum [Q1 (3, 1), Q1 (3, 2) + Q1 (2, 1)]
  = Minimum (∞, 6+3)
  = 9
Q3 (1, 4) = Minimum [Q2 (1, 4), Q2 (1, 3) + Q2 (3, 4)]
  = Minimum (9, 6+2)
  = Minimum (9, 8)
  = 8
Q4 (3, 3) = Minimum [Q3 (3, 3), Q2 (3, 4) + Q2 (4, 3)]
  = Minimum (10, 2+4)
  = Minimum (10, 6)
  = 6

Program: Write a program to modified Warshall’s Algorithm to find 
shortest path matrix

#include<stdio.h>
#define infinity 9999
#define MAX 20

main()
{
int i,j,k,n;
int adj[MAX][MAX], path[MAX][MAX];
printf(“enter the number of vertices”);
scanf(“%d”, &n);
printf(“Enter weighted matrix:”);
for(i=0;i<n;i++)
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for(j=0;j<n;j++)
scanf(“%d”, &adj[i][j]);
printf(“The weighted matrix is:”);
display(adj, n);

//replace all zero entries of adjacency matrix with infinity
for(i=0;i<n;i++)
for(j=0;j<n;j++)
if(adj[i][j] ==0)
path[i][j] = infinity;
else
path[i][j]=adj[i][j];
for(k=0;k<n;k++)
{
printf(“Q %d is:”, k);
display(path,n);
for(i=0;i<n;i++)
for(j=0;j<n;j++)
path[i][j]=minimum(path[i][j], path[i][k] + path[k][j]);
}
printf(“Shortest Path matrix Q %d is:”, k);
display(path,n);
}

minimum (int a,int b)
{
if(a<=b)
return a;
else
return b;
}

display(int matrix[MAX][MAX],int n)
{
int i,j;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
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printf(“%7d”, matrix[i][j]);
printf(“\n”);
}
}

7.14 APPLICATIONS OF GRAPH
Graphs are constructed for various types of application such as:

 1. In circuit networks where points of connection are drawn as vertices and 
component wires become the edges of the graph.

 2. In transport networks where stations are drawn as vertices and routes 
become the edges of the graph.

 3. In maps that draw cities/state/regions as vertices and adjacency relations 
as edge.

 4. In program flow analysis where procedures or modules are treated as 
vertices and calls to these procedures are drawn as edges of the graph.

 5. Once we have a graph of a particular concept, they can be easily used for 
finding shortest paths, project planning, etc.

 6. In flow charts or control-flow graphs, the statements and conditions in a 
program are represented as nodes and the flow of control is represented 
by the edges.

 7. In state transition diagram, the nodes are used to represent states and the 
edges represent legal moves from one state to the other.

 8. Graphs are also used to draw activity network diagrams. These diagrams are 
extensively used as a project management tool to represent the interdependent 
relationships between groups, steps, and tasks that have a significant impact 
on the project.

 9. An activity network diagram also known as an arrow diagram or a 
PERT is used to identify time sequences of events which are pivotal 
to objectives. It is also helpful when a project has multiple activities 
which need simultaneous management. Activity network diagrams help 
the project development team to create a realistic project schedule by 
drawing graphs that exhibit.

POINTS TO REMEMBER
 1. A graph is basically a collection of vertices also called nodes and edges 

that connect these vertices.
 2. A graph in which there exists a path between any two of its nodes is called 

a connected graph. An edge that has identical end-points is called a loop. 
The size of a graph is the total number of edges in it.
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 3. The out-degree of a node is the number of edges that originate at u.
 4. The in-degree of a node is the number of edges that terminates at u. A node 

u is known as a sink if it has a positive in-degree but a zero out-degree.
 5. A transitive closure of a graph is constructed to answer reachability questions.
 6. A vertex v of G is called an articulation points if removing v along with 

the edges incidents to v result in a graph that has at least two connected 
components.

 7. Breadth first search is a graph search algorithm that begins at the root node 
and explores all the neighbouring nodes. Then for each of those nearest 
nodes, the algorithm explores their unexplored neighbour nodes, and so 
on, until it finds the goal.

 8. The depth first search algorithm progresses by expanding the starting node 
of G and thus going deeper and deeper until a goal node is found, or until 
a node that has no children is encountered.

 9. A spanning tree of a connected, undirected graph G is a sub-graph of G 
which is a tree that connects all the vertices together.

 10. Kruskal’s algorithm is an example of a greedy algorithm, as it makes the locally 
optimal choice at each stage with the hope of finding the global optimum.

 11. Dijkstra’s algorithm is used to find the length of an optimal path between 
two nodes in a graph.

MULTIPLE CHOICE QUESTIONS
 1. An edge that has identical end-points is called a

 (a) Multi-path
 (c) Cycle

 (b) Loop
 (d) Multi-edge

 2. The total number of edges containing the node u is called
 (a) in-degree
 (c) degree

 (b) out-degree
 (d) none of these

 3. A graph in which there exists a path between any two of its nodes is called
 (a) complete graph
 (c) diagraph

 (b) connected graph
 (d) in-degree graph

 4. The number of edges that originates at u are called
 (a) in-degree
 (c) degree

 (b) out-degree
 (d) source

 5. The memory use of an adjacency matrix is
 (a) o (n)
 (c) o (n3)

 (b) o (n2)
 (d) o (log n)
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 6. The term optimal can means
 (a) shortest
 (c) fastest

 (b) cheapest
 (d) all of these

 7. How many articulation vertices does a biconnected graph contains?
 (a) 0
 (c) 2

 (b) 1
 (d) 3

TRUE OR FALSE
 1. Graph is a linear data structure.
 2. In-degree of a node is the number of edges leaving that node.
 3. The size of a graph is the total number of vertices in it.
 4. A sink has a zero in-degree but a positive out-degree.
 5. The space complexity of depth first search is lower than that of breadth 

first search.
 6. A node is known as a sink if it has a positive out-degree but the in- 

degree = 0.
 7. A directed graph that has no cycles is called a directed acyclic graph.
 8. A graph G can have many different spanning trees.
 9. Kruskal’s algorithm is an example of a greedy algorithm.

FILL IN THE BLANKS
 1. _________ has a zero degree.
 2. In-degree of a node is the number of edges that _________ at u.
 3. Adjacency matrix is also known as a ___________.
 4. A path p is known as a __________ path if the edge has the same 

end-points.
 5. A graph with multiple edges and/ or a loop is called a __________.
 6. Vertices that are a part of the minimum spanning tree T are called.
 7. A __________ of a graph is constructed to answer reachability 

questions.
 8. An ________ is a vertex v of G if removing v along with the edges incident 

to v results in a graph that has at least two connected components.
 9. A ________ graph is a connected graph that is not broken into disconnected 

pieces by deleting any single vertex.
 10. An edge is called a __________ if removing that edge results in a 

disconnected graph.
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EXERCISES
 1. Explain the relationship between a linked list structure and a diagraph?
 2. Define graph? Explain its key term?
 3. How are graphs represented inside a computer’s memory? Which method 

do you prefer and why?
 4. Explain the graph traversal algorithms in detail with the help of suitable 

example?
 5. Differentiate between BFS and DFS?
 6. Define spanning tree? When is a spanning tree called a minimum spanning 

tree? Take a weighted graph of your choice and find out its minimum 
spanning tree?

 7. Write short notes on Prim’s, Kruskal and Dijkstra Algorithm?
 8. Briefly discuss Warshall’s Algorithm. Also, discuss its modify version?
 9. Write a program to create and print a graph?
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8
Searching and Sorting

8.1 INTRODUCTION
The process of finding the location of a specific data item or record with a 
given key value or finding the locations of all records, which satisfy one or 
more conditions in a list, is called “Searching”. If the item exists in the given 
list then search is said to be successful otherwise if the element if not found in 
the given list then search is said to be unsuccessful.

 1. External searching
 2. Internal searching

External searching means searching the records using keys where there are 
many records which reside in files stored on disks. Internal searching means 
searching the records using keys where there are less number of records residing 
entirely within the computer’s main memory.

There are many different searching algorithms. The algorithm that one chooses 
generally depends on the way information in DATA is arranged. Following are 
the three important searching techniques:

 • Linear or Sequential Searching
 • Binary Searching
 • Interpolation Search

The time required for a search operation depends on the complexity of the 
searching algorithm. Basically, we have to consider three cases when we search 
for a particular element in the list.

 1. Best Case: The best case is that in which the element is found during the 
first comparison.

 2. Worst Case: The worst case is that in which the element is found only at 
the end i.e., in the last comparison.
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 3. Average Case: The average case is that in which the element is found in 
comparisons more than best case but less than worst case.

8.2 LINEAR OR SEQUENTIAL SEARCHING
Suppose DATA is a linear array with n elements. Given no other information 
about DATA. The most intuitive way to search for a given ITEM in DATA is 
to compare ITEM with each element of DATA one-by-one. That is, first we 
test whether DATA (1) = ITEM, and then we test whether DATA (2) = ITEM, 
and so on. This method which traverses DATA sequentially to locate ITEM, 
is called linear search or sequence search. Each element of an array is read 
one-by-one sequentially and it is compared with the desired element. A search 
will be unsuccessful if all the elements are read and the desired element is not 
found. Linear search is the least efficient search technique among the quantity 
dependent search techniques. This technique should be chosen for searching 
the records when the records are stored without considering the order or when 
the storage medium lacks the direct access facility. Some important points are:

 • It is the simplest way for finding an element in a list.
 • It searches the element sequentially in a list, no matter whether list is 

sorted or unsorted.
 • In case of sorted list the search is started from 1st element and continue 

until the desired element is found or the element whose value is smaller 
than the value being searched.

 • If the list is unsorted searching started from 1st location and continued 
until the element is found or the end of the list is reached.

Algorithm
Let A be an array of n elements, A(1), A(2), A(3),...... A(n) and let “data” is the 
element to be searched. Then this algorithm will find the location “loc” of data 
in array A. Set loc = -1, if the search is unsuccessful.
 1. Input an array A of n element and “data” to be searched and initialise loc 

= -1.
 2. Initialise i =0: and repeat through step 3 if (i<n) by incrementing i by one.
 3. If (data = A [i])

 (a) Loc = i
 (b) GOTO step 4

 4. If (loc >0)
  Print “data is found and searching is successful”
  Else
  Print “data is found and searching is unsuccessful”
 5. Exit
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Drawbacks
 • It is a very slow process.
 • It is used only for small amount of data.
 • It is a very time consuming method

Program: Write a Program to implement Linear Search using array.

#include<stdio.h>
void main()
{
int a[5],i,flag=0,m;
printf(“Enter the number of Array elements \n”);
for(i=0;i<5;i++)
{
scanf(“%d”,&a[i]);
}
printf(“The Array Elements are:-\n”);
for(i=0;i<5;i++)
{
printf(“%d\t”,a[i]);
}
printf(“\n Enter the number to be searched: “);
scanf(“%d”,&m);
for(i=0;i<5;i++)
{
if(a[i]==m)
{
flag=1;
break;
}
}
if(flag==1)
printf(“Element Found at position %d “,i);
else
printf(“Element Not Found”);
}
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Output

Enter the number of Array Elements
12
34
4
67
23
The Array Elements are:-
12 34 4 67 23
Enter the number to be searched: 34
Element Found at position 1

8.3 BINARY SEARCH
If we place our items in an array and sort those in either ascending or descending 
order. Then we can obtain much better performance with an algorithm called 
binary Search.

General Idea about Binary Search Algorithm
 1. Find the middle element of the array.
 2. Compare the middle element with the data to be searched, and then there 

are following three cases.
 (a) If it is a desired element, then search is successful.
 (b) If it is less than desired data, then search only the first half of the array, 

i.e., the elements which come to the left side of the middle element.
 (c) If it is greater than the desired data, then search only the second half of 

the array, i.e., the elements which come to the right side of the middle 
element.

Algorithm
 1. Input an array A of elements and “data” to be searched.
 2. LB = 0, UB=n; mid = int (LB + UB)/2
 3. Repeat steps 4 and 5 while (LB< = UB) and (A [mid]! = data)
 4. If (data < A [mid])
    UB = mid-1
   Else
    LB = mid+1
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 5. Mid = int (LB + UB)/2
 6. If (A[mid] == data)

Print “the data is found”
  Else

Print “the data is not found”
 7. Exit

Example: Suppose an array A [7] whose elements are

5 8 15 25 30 40 55
0 1 2 3 4 5 6

Suppose data = 30
Solution: Following steps are used if we use binary search to search a data 

= 30 in the above array.
Here n = 6
So, LB = 0, UB = 6
 mid = (0+6) = 3 i.e., A[mid] = A[3] = 25

2
Since, A[3] < data i.e., 25 < 30.
So, reinitialise the variable LB as LB = mid +1
i.e., LB = 3+1 =4
Now,  mid = 4+6 = 5

2
i.e.,  A[mid] = A [5] = 40
Now, data < A [mid] i.e., 30 < 40
So reinitialise the variable UB = mid -1 = 5-1 =4
Now, LB =4 and UB =5
So, mid = 4+5 = 9 = 4 i.e., A[4] = 30
 2 2
Since (A[mid] = data) i.e., 30 = 30
Thus searching is successful and 30 is found in the given array

Program: Write a program to implement Binary Search using array.

#include<stdio.h>
void main()
{
int a[10],i,n,m,c=0,l,u,mid;
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printf(“Enter the size of an array: “);
scanf(“%d”,&n);
printf(“Enter the elements in ascending order: “);
for (i=0;i<n;i++)
{
scanf(“%d”,&a[i]);
}
printf(“Enter the number to be searched: “);
scanf(“%d”,&m);
l=0,u=n-1;
while(l<=u)  {

mid=(l+u)/2;
if(m==a[mid])

{
c==1;
break;
}

else if(m<a[mid]) {
u=mid-1; }

else
l=mid+1;
}

if(c==1)
printf(“Element found.”);
else
printf(“Element not found.”);
}

Output
Enter the size of an array: 6
Enter the elements in ascending order:
2
4
6
8
10
12
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Enter the number to be search: 10
Element found.

8.4 INTERPOLATION SEARCH
Another technique for searching an ordered array is called interpolation search. 
This method is even more efficient than binary search, if the elements are 
uniformly distributed (or sorted) in an array A.

In a binary search, the search space is always divided in two parts to guarantee 
logrithmic time; however, when we search for “Arham” in the phone book, 
we do not start in the middle - we start towards the front and work from there. 
That is the idea of an interpolation search. Instead of cutting the search space 
by a fixed half, we cut it by an amount that seems most likely to succeed. This 
amount is determined by interpolation.

Consider an array A of elements and the elements are uniformly distributed. 
Initially, as in binary search, low is set to 0 and high is set to n-1.

Now we are searching an element key in an array between A[low] and 
A[high]. The key would be expected to be at mid.

Mid = low + (high - low) * ((key - A[low]/A[high] - A[low]))
If key is lower than A [mid], reset high to mid -1; else reset low to mid +1. 

Repeat the process until the key is found or low > high.

Algorithm
Suppose A be array of sorted elements and key is the elements to be searched 
and low represents the lower bound of the array and high represents higher 
bound of the array.

 1. Input a sorted array of n elements and the key to be searched.
 2. Initialise low = 0 and high = n-1
 3. Repeat the steps 4 through 7 until if (low < high)
 4. Mid = low + (high - low) * ((key - A[low])/A[high] - A[low])
 5. If (key == A(mid)

 print “key is found”

 6. If (key < A[mid])
 high = mid +1
else if (key > A[mid])
 low = mid +1
else
 print “ The key is not in the array and Exit”

 7. STOP
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Example 14.2: Let us consider 7 numbers as 4, 15, 20, 35, 45, 55, 65
Solution: Suppose we are searching 45 from the given array
Here n=7, key= 45, low = 0, high = n -1 = 6

mid = 0 +(6 - 0) X {(45 - 4)/(65 - 4)}
= 0 + 6 X (41/61) = 4.032

Consider only the integer part of the mid i.e., mid = 4.
Now the statement if (key = = A[mid]) gives the following output
Key = = A[mid]. i.e; key== A [4]
i.e; A [4] = 45.
Hence  45 = 45
Thus, key is found.

8.5 SORTING TECHNIQUES
Sorting is nothing but storage of data in some order; it can be in ascending or 
descending order. The term Sorting comes into picture with the term Searching. 
There are so many things in our real life that we need to search, like a particular 
record in database, roll numbers in merit list, a particular telephone number, 
any particular page in a book etc.

Sorting arranges data in a sequence which makes searching easier. Every 
record which is going to be sorted will contain one key. Based on the key the 
record will be sorted. For example, suppose we have a record of students, every 
such record will have the following data:

 • Roll No.
 • Name
 • Age
 • Class

Here Student roll no. can be taken as key for sorting the records in ascending 
or descending order. Now suppose we have to search a Student with roll no. 15, 
we don’t need to search the complete record we will simply search between the 
Students with roll no. 10 to 20.

Sorting Efficiency
There are many techniques for sorting. Implementation of particular sorting 
technique depends upon situation. Sorting techniques mainly depends on two 
parameters. First parameter is the execution time of program, which means time 
taken for execution of program. Second is the space, which means space, taken 
by the program.

The efficiency of data handling can often be substantially increased if the 
data are sorted
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Types of Sorting
 1. Bubble sort
 2. Insertion Sort
 3. Selection sort
 4. Merger Sort
 5. Heap Sort
 6. Quick sort
 7. Radix Sort

The sorting problem is to arrange a sequence of records so that values of 
their key fields form a non-decreasing sequence. That is, given records r1, r2,.....
rn, with key values k1, k2,....kn, respectively, we must produce the same records 
in an order ri1, ri2, rin, such that ki1 ≤ ki2 ≤. ..≤ kin

8.6 BUBBLE SORT
Also called as sinking sort
Bubble sort, is a simple sorting algorithm. Comparing two items at a time and 
swapping them if they are in the wrong order. Pass through the list is repeated 
until no swaps are needed, which means the list is sorted. The idea applied for 
the bubble sort is as follows:

 (a) Suppose if the array contains n elements, then (n-1) iterations are required 
to sort this array.

 (b) First compare the 1st and 2nd element of array, if 1st element < 2nd element 
then compare the 2nd element with 3rd element.

 (c) If 2nd element > 3rd element, then interchange the value of 2nd and 3rd elements.
 (d) Now compare the value of 3rd element with 4th element, if 3rd element > 

4th element then interchange the value of 3rd and 4th elements.
 (e) Similarly n-1th element is compared with nth element.
 (f) Now the highest value element is reached at the nth position.

The bubble sort is generally considered to be the most inefficient sorting 
algorithm in common usage.

Algorithm
Bubble sort (A)

 1. start
 2. for i= 1 to length [A]
 3. for j= length [A] to i+1
 4. if A[j] < A[j-1]
 5. exchange (A[j], A[j-1])
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Example: let us take the element and apply bubble sort technique.

5 1 6 2 4 3

Solution:
Pass 1:

 (a) Compare 1st element and 2nd element, 5>1, interchange

5 1 6 2 4 3

Now the elements are as follows:

1 5 6 2 4 3

 (b) Compare 2nd element and 3rd element, 5 < 6, no interchange.
 (c) Compare 3rd and 4th element, 6>2 interchange

1 5 6 2 4 3

Now the elements are as follows:

1 5 2 6 4 3

 (d) Compare 4th and 5th element, 6> 4, interchange

1 5 2 6 4 3

Now the element areas follows:

1 5 2 4 6 3

 (e) Compare 5th and 6th element, 6>3, interchange.

1 5 2 4 6 3

Now the element are as follows:

1 5 2 4 3 6

After the Pass 1, the elements are as follows:

1 5 2 4 3 6

Pass 2:
 (a) Compare 1st and 2nd element, 1<5, no interchange.
 (b) Compare 2nd and 3rd element, 5>2, interchange.

1 5 2 4 3 6

Now the elements are as follows:

1 2 5 4 3 6
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 (c) Compare 3rd and 4th element, 5>4, interchange.

1 2 4 5 3 6

Now the elements are as follows:

1 2 4 5 3 6

 (d) Compare 4th and 5th element, 5>3, interchange.

Now the elements are as follows:

1 2 4 3 5 6

After the Pass 2, the element are as follows:

1 2 4 3 5 6

Pass3:

 (a) Compare 1st and 2nd element,1<2, no interchange.
 (b) Compare 2nd and 3rd element,2<4 no interchange.
 (c) Compare 3rd and 4th element, 4>3, interchange.

1 2 4 3 5 6

Now the elements are as follows:

1 2 3 4 5 6

So, final sorted elements are

1 2 3 4 5 6

Program: Write a program to implement a bubble sort using array

#include <stdio.h>
int main()
{
int array[100], n, c, d, swap;
printf(“Enter number of elements\n”);
scanf(“%d”, &n);
printf(“Enter %d integers\n”, n);
for (c = 0; c < n; c++)
scanf(“%d”, &array[c]);
for (c = 0 ; c < ( n - 1 ); c++)
{
 for (d = 0 ; d < n - c - 1; d++)
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{
 if (array[d] > array[d+1])
 {
  swap = array[d];
  array[d] = array[d+1];
  array[d+1] = swap;
  }
 }
}
printf(“Sorted list in ascending order:\n”);
for ( c = 0 ; c < n ; c++ )
printf(“%d\t”, array[c]);
return 0;
}

Output

Enter number of elements
8
Enter 8 integers
44
55
33
88
77
22
11
66
Sorted list in ascending order:
11 22 33 44 55 66 77 88

8.7 INSERTION SORT
It is a simple Sorting algorithm which sorts the array by shifting elements one 
by one. Following are some of the important characteristics of Insertion Sort.

 1. It has one of the simplest implementation
 2. It is efficient for smaller data sets, but very inefficient for larger lists.
 3. Insertion Sort is adaptive, that means it reduces its total number of steps 

if given a partially sorted list, hence it increases its efficiency.
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 4. It is better than Selection Sort and Bubble Sort algorithms.
 5. Its space complexity is less but like Bubble Sort, insertion sort also requires 

a single additional memory space.
 6. It is Stable, as it does not change the relative order of elements with equal 

keys

Algorithm
Insertion sort (A)

 1. start
 2. for j=2 to length [A]
 3. do key = A[j]
 4. i = j-1
 5. while i > 0 and A[i] > key
 6. do A[i+1]=A[i]
 7. i = i - 1
 8. A[i+1] = key

Step 1: array [0] is already sorted because of only one element.
Step 2: array [1] is inserted before or after array [0]
So array [0], array [1] are sorted
Step 3:  array [2] is inserted before array [0], in between array [0] and array 

[1] or after array [1]
So array [0], array [1], array [2] are sorted
Step 4: array [3] is inserted in its proper place in array
So array [0], array [1], array [2], array [3] are sorted
And so on.............................
Finally, array [n-1] is inserted into its proper place in array
So array [0], array [1], array[2],. .............................., array [n-1] are sorted.

Example: let us take the element and apply insertion sort technique.

30 20 35 14 90 25 32
Solution:
Step1: 20<30, interchange the elements, we get

20 30 35 14 90 25 32

Step 2: 30<35, no need to interchange the elements

20 30 35 14 90 25 32

Step 3: 14 is less than 35, 30, 20 so insert 14 before 20, we get
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14 20 30 35 90 25 32

Step 4: 90>35, no need to interchage the elements

14 20 30 35 90 25 32

Step 5: 25 is less than 90, 35, 30, so insert 25 before 30

14 20 25 30 35 90 32

Step 6: 32 is less than 90, 35, therefore insert 32 before 35, we get

14 20 25 30 32 35 90

Hence the array is sorted

Program: Write a program to implement an insertion sort using array
#include <stdio.h>
int main()
{
  int n, array[10], c, d, t;
  printf(“Enter number of elements\n”);
  scanf(“%d”, &n);
  printf(“Enter %d integers\t”, n);
  for (c = 0; c < n; c++)
{
  scanf(“%d”, &array[c]);
}
  for (c = 1 ; c <= n - 1; c++)
{
  d = c;
  while ( d > 0 && array[d] < array[d-1])
 {
      t=array[d];
      array[d]=array[d-1];
      array[d-1]=t;
      d--;
  }
}
printf(“Sorted list in ascending order:\n”);
for (c = 0; c <= n - 1; c++)
{
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   printf(“%d\t”, array[c]);
}
return 0;
}

Output

Enter number of elements
7
Enter 7 integers
30 20 35 14 90 25 32
Sorted list in ascending order:
14 20 25 30 32 35 90

8.8 SELECTION SORT
The idea of selection sort is rather simple: we repeatedly find the next largest 
(or smallest) element in the array and move it to its final position in the sorted 
array. Assume that we wish to sort the array in increasing order, i.e., the smallest 
element at the beginning of the array and the largest element at the end. We begin 
by selecting the largest element and moving it to the highest index position; we 
can do this by swapping the element at the highest index and the largest element. 
We then reduce the effective size of the array by one element and repeat the 
process on the smaller sub-array.

Let us take an array of elements. First you will search the position of smallest 
element from array [0]. ......... array[n-1]. Then you will interchange that smallest 
element with array [0]. Now you will search the position of the second smallest 
element from array [1]. ........ array [n-1], then interchange that smallest element 
with array [1], and so on.....

Algorithm
Selection sort (A)

 1. start
 2. n=length[A]
 3. for j=1 to n-1
 4. smallest=j
 5. for i=j+1 to n
 6. if A[i] < A[smallest]
 7. then smallest=i
 8. exchange (A[j], A[smallest])
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Steps
 1. Search the smallest element from array [0]........ array[n-1]
 2. Interchange array [0] with smallest element.
 3. Result: array [0] is sorted.
 4. Again search the second smallest element from array[1]..... array[n-1]
 5. Interchange array [1] with second smallest element.
 6. Result: array [0], array [1] is sorted.
 7. Repeat these steps until we get the array in sorted order.

How Selection Sorting Works
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1
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5

After 1st
pass
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After 4th
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3
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6
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In the first pass, the smallest element found is 1, so it is placed at the first 
position, then leaving first element, smallest element is searched from the rest of 
the elements, 3 is the smallest, so it is then placed at the second position. Then 
we leave 1 and 3, from the rest of the elements, we search for the smallest and 
put it at third position and keep doing this, until array is sorted.

Program: Write a program to implement a selection sort using array

#include <stdio.h>
int main()
{
   int array[100], n, c, d, position, swap;
   printf(“Enter number of elements\n”);
   scanf(“%d”, &n);
   printf(“Enter %d integers\n”, n);
   for ( c = 0 ; c < n ; c++ )
   scanf(“%d”, &array[c]);
   for ( c = 0 ; c < ( n - 1 ) ; c++ )
   {
      position = c;
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      for ( d = c + 1 ; d < n ; d++ )
      {
         if ( array[position] > array[d] )
            position = d;
      }
      if ( position != c )
      {
         swap = array[c];
         array[c] = array[position];
         array[position] = swap;
      }
   }
   printf(“Sorted list in ascending order:\n”);
   for ( c = 0 ; c < n ; c++ )
   printf(“%d\t”, array[c]);
   return 0;
}

Output

Enter number of elements
6
Enter 5 integers
3 6 1 8 4 5
Sorted list in ascending order:
1 3 4 5 6 8

8.9 MERGE SORT
Merge sort is a sorting algorithm that uses the idea of divide and conquers approach. 
The procedure MERGE SORT (A, p, r) sorts the elements in the sub array A [p....r]. 
If p ≤ r the sub array has at most one element and is therefore already sorted. 
Otherwise, the divide step simply computes an index q that partitions A [p.....r] into 
two sub arrays: A [p.....q], containing [n/2] elements, and A [q+1....r] containing [n/2] 
elements. To sort the entire sequence A=(A[1],A[2],....A[n]) we call MERGE - SORT 
(A,1, length[A]) where once again length [A]=n. If we look at the operation of the 
procedure bottom-up when n is a power of two, the algorithm consists of merging 
pairs of 1 item sequence to form sorted sequences of length 2, merging pairs of 
sequences of length 2 to form sorted sequences of length 4, and so on, until two 
sequences of length n/2 are merged to form the final sorted sequence of length n.
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Algorithm
MERGE-SORT (A, p, r)

 1. start
 2. if p < r
 3. then q = (p + r) / 2
 4. MERGE-SORT(A, p, q)
 5. MERGE-SORT(A, q+1, r)
 6. MERGE(A, p, q, r)

MERGE (A, p, q, r)

 1. N1 = q – p + 1
 2. N2 = r - q
 3. create arrays L[1......n1+1] and R[1......n2+1]
 4. for i=1 to n1

 5. do L[i] = A[p + i - 1]
 6. for j = 1 to n2

 7. do R[j] = A[q + j]
 8. L[n1 + 1] = ∞
 9. R[n2 + 1] = ∞
 10. i = 1
 11. j = 1
 12. for k = p to r
 13. do if L[i] ≤ R[j]
 14. then A[K] = L[i]
 15. i = i + 1
 16. else A[k] = R[j]
 17. j = j + 1
Example: let us take a list of element and apply merge sort technique

194 34 12 756 54 1 88 55 897 23 96 33

Solution:
Step 1: merge the two unsorted pairs in a single sorted pair. Initially we 

have pair size 1. Merge these pair of size 1 into pairs of size 2.
194 1234 54756 1 88 55 897 23 96 33

Sorted pair
34 12194 1756 5554 88 23 33897 96
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Step 2: similarly merge the pairs of size 2 into pair of size 4
34 194 12 756 1 54 55 88 23 897 33 96

Sorted pair
12 34 194 756 1 54 55 88 23 89733 96

Step 3: merge the pairs of size 4 into a pair of 8 in sorted fashion
1 12 34 54 55 88 194 756 23 897 33 96

Step 4: merge two pairs into a single pair
1 12 23 33 34 54 55 88 96 194 756 897
Now the sorted list is:
1 12 23 33 34 54 55 88 96 194 756 897

Program: Write a program to implement a merge sort using array

#include<stdio.h>
#define MAX 50
void mergeSort(int arr[],int low,int mid,int high);
void partition(int arr[],int low,int high);
void main()
{
    int merge[MAX],i,n;
    printf(“Enter the total number of elements: \n”);
    scanf(“%d”,&n);
    printf(“Enter the elements which to be sort: \n”);
    for(i=0;i<n;i++)
    {
         scanf(“%d”,&merge[i]);
    }
    partition(merge,0,n-1);
    printf(“After merge sorting elements are: \n”);
    for(i=0;i<n;i++)
    {
         printf(“%d  “,merge[i]);
    }
}
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void partition(int arr[],int low,int high)
{
    int mid;
    if(low<high)
    {
         mid=(low+high)/2;
         partition(arr,low,mid);
         partition(arr,mid+1,high);
         mergeSort(arr,low,mid,high);
    }
}
void mergeSort(int arr[],int low,int mid,int high)
{
    int i,m,k,l,temp[MAX];
    l=low;
    i=low;
    m=mid+1;
    while((l<=mid)&&(m<=high))
    {
         if(arr[l]<=arr[m])
         {
             temp[i]=arr[l];
             l++;
         }
         else
         {
             temp[i]=arr[m];
             m++;
         }
         i++;
    }
    if(l>mid)
    {
         for(k=m;k<=high;k++)
         {
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             temp[i]=arr[k];
             i++;
         }
    }
    else
    {
         for(k=l;k<=mid;k++)
         {
             temp[i]=arr[k];
             i++;
         }
    }
    for(k=low;k<=high;k++)
    {
         arr[k]=temp[k];
    }
}

Output

Enter the total number of elements:
12
Enter the elements which to be sort:
194 34 12 756 54 1 88 55 897 23 96 33
After merge sorting elements are:
1 12 23 33 34 54 55 88 96 194 756 897

8.10 HEAP SORT
Heap sort was invented by John Williams and uses the approach just opposite 
to selection sort. The selection sorts find the smallest element among n elements, 
then the smallest element among n-1 elements and so on, until the end of the 
array where as heap sort finds the largest element and puts it at the end of the 
array, then the second largest item is found and this process is repeated for all 
other elements. Before discussing heap sort, we will begin by defining a new 
structure, the heap. We can define minimum heap and maximum heap. A max 
(or min) heap is a complete binary tree with the property that the value at each 
node is at least as large as (or as small as) the values of its children (if they 
exist). This is called Heap property. A heap is complete balanced binary tree 
in which each node satisfies the heap property and every leaf is of depth d or 
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d-1. The definition of a max heap implies that one of the largest elements is 
at the root of the heap. If the elements are distinct, then the root contains the 
largest element.

We do following steps for heap sorting

 1. Replace the root with last node of heap tree
 2. Keep the last node (now root) at the proper position, it means do the delete 

operation in heap tree but here deleted node is root.

Example: Let us take a heap tree and apply heap tree sorting algorithm

0 1

72 64 65 56 32 46 54 29 48

2 3 4 5 6 7 8

72

64

29

65

4656 32 54

48

Solution:
Step 1:

0

48 64 65 56 32 46 54 29 72

1 2 3 4 5 6 7 8

48

64 65

4656 32 54

29

Now the root is at the position of last node and last node at the position of 
root. Here left and right child of 48 is 64 and 65.

65

64 48

4656 32 54

29
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Here right child of 48 is 54, which is greater than 48, hence replace it with 54.

65

64 54

4656 32 48

29

Now the elements of heap tree in array are as:
0 1 3 4 5 6 7 8

65 64 54 56 32 46 48 29 72

Now 29 is the last node. So replace it with root 65 and do the same operation.
Step 2:

64

56 54

4629 32 48

0 1 3 4 5 6 7 8

64 56 54 29 32 46 48 65 72

Step 3: same as step 1 and step 2

56

48 54

4629 32

0 1 2 3 4 5 6 7 8

56 48 54 29 32 46 64 65 72

Step 4:

54

48 46

29 32

0 1 2 3 4 5 6 7 8

54 48 46 29 32 56 64 65 72
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Step 5:

48

32 46

29

0 1 2 3 4 5 6 7 8

48 32 46 29 54 56 64 65 72

Step 6:

48

32 46

0 1 2 3 4 5 6 7 8

46 32 29 48 54 56 64 65 72

Step 7:

32

29

0 1 2 3 4 5 6 7 8

32 29 46 48 54 56 64 65 72

Step 8:

29

0 1 2 3 4 5 6 7 8

29 32 46 48 54 56 64 65 72

Now all the numbers are in sorted order
Program: Write a program Implement heap sort

#include<stdio.h>
void main()
{
int a[20],i,j,temp,n,root,c;
printf(“Enter size of array : “);
scanf(“%d”,&n);
printf(“Enter element in array : “);
for(i=0;i<n;i++)
scanf(“%d”,&a[i]);
for(i=1;i<n;i++)
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{
c=i;
 do
 {
 root=(c-1)/2;
 if(a[root]<a[c])
 {
 temp=a[root];
 a[root]=a[c];
 a[c]=temp;
 } 
 c=root;
 }while(c!=0);
}
printf(“Heap array : “);
for(i=0;i<n;i++)
printf(“ %d”,a[i]);
for(j=n-1;j>=0;j--)
{
temp=a[0];
a[0]=a[j];
a[j]=temp;
root=0;
 do
 {
 c=2*root+1;
 if(a[c]<a[c+1] && c<j-1)
 c++;
 if(a[root]<a[c] && c<j)
 {
 temp=a[root];
 a[root]=a[c];
 a[c]=temp;
 }
 root=c;
 }while(c<j);
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}
printf(“\n\n\a\a\a\aSorted array : “);
for(i=0;i<n;i++)
printf(“ %d”,a[i]);
}

Output

Enter size of array : 8
Enter element in array : 72
64
65
56
32
46
54
29
48
Heap array : 72 64 65 56 32 46 54 29 48
Sorted array : 29 32 46 48 54 56 64 65 72

8.11 QUICK SORT
C.A.R. Hoare implements quick sort by divide and conquer method. That means 
divide the big problem into two small problems and then those two small problems 
into small ones and so on. To Quick sort, we divide the original list into two 
sub lists. We choose the item from list called key or pivot from which all the 
left side of elements are smaller and all the right side of elements are greater 
than that element. So we can create two lists, one list on the left side of pivot 
element and the second list is on light side of the pivot. Thus, quick sort works 
by partitioning a given array A[p.......r] into two non-empty sub-arrays A[p.....q] 
and A[q+1......r] such that every key in A[p......q] is less than or equal to every 
key in A[q+1......r]. Then the two sub-arrays are stored by recursive calls to 
quick sort. The exact position of the partition depends on the given array and 
index q is computed as a part of the partitioning procedure.

Algorithm
Quick SORT (A, p, r)

 1. if p < r then
 2. q = PARTITION (A, p, r)
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 3. QUICK-SORT (A, p, q-1)
 4. QUICK-SORT (A, q+1, r)

Note that to sort entire array, the initial call is quick sort (A, 1, length [A]) as 
a first step, quick sort choose as pivot one of the items in the array to be sorted. 
Then array is partitioned on either side of the pivot. Elements that are less than 
or equal to pivot will move towards the left and elements that are greater than 
or equal to pivot will move towards the right.

Partitioning the Array

Algorithm
PARTITION (A, p, r)

 1. x = A[r]
 2. i = p - 1
 3. for j = p to r - 1
 4. do if A[j] ≤ x
 5. then i = i + 1
 6. exchange A[i] = A[j]
 7. exchange A[i + 1] = A [r]
 8. return i + 1

 1. All the elements on the left side of pivot should be smaller or equal to the 
pivot.

 2. All the elements on the right side of pivot should be greater than or equal 
to pivot.

The process for sorting the elements through quick sort is as:

 1. Take the first element of list as pivot.
 2. Place pivot at the proper place in list.
 3. For placing the pivot at proper place we have a need to do the following 

process:
 (a) Compare the pivot element one by one right to left for getting the 

element which has value less than pivot element.
 (b) Interchange the element with pivot element.
 (c) Now the comparison will start from the interchanged element position 

from left to right for getting the element which has higher value than 
pivot.

 (d) Repeat the same process until pivot is at its proper position.

Example: Let us take list of element and process through quick sort

46 27 6 57 70 86 40 63 93 17 80 66
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Solution:
Taking 46 as pivot, we have to start comparison from right to left.
Pivot value: 46
Smallest value less than pivot: 17
Interchange it with pivot
17 27 6 57 70 86 40 63 93 46 80 66

Now the comparison will start from 17, left to right
Value greater than pivot: 57
Interchange it with pivot
17 27 6 46 70 86 40 63 93 57 80 66

Now the comparison will start from 57, right to left
Smallest value less than pivot: 40
Interchange it with pivot
17 27 6 40 70 86 46 63 93 57 80 66

Now the comparison will start from 40, left to right
Value greater than pivot: 70
Interchange it with pivot
17 27 6 40 46 86 70 63 93 57 80 66

Sub-array1: 17 27 6 40
Pivot value: 46
Sub-array2: 86 70 63 93 57 80 66

Now we have a need to do the same process for sub-arrays and at the end 
all the elements of list will be at its proper position.

Now all the element in sorted order:
6 17 27 40 46 57 63 66 70 80 86 93

Program: Write a program to Implement a quick sort

#include<stdio.h>
void quicksort(int [10],int,int);
int main()
{
int x[20],size,i;
printf(“Enter size of the array: “);
scanf(“%d”,&size);
printf(“Enter %d elements: “,size);
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for(i=0;i<size;i++)
scanf(“%d”,&x[i]);
quicksort(x,0,size-1);
printf(“Sorted elements: \n”);
for(i=0;i<size;i++)
printf(“ %d”,x[i]);
return 0;
}
void quicksort(int x[10],int first,int last)
{
int pivot,j,temp,i;
 if(first<last)
 {
pivot=first;
i=first;
j=last;
while(i<j)
  {
while(x[i]<=x[pivot]&&i<last)
i++;
while(x[j]>x[pivot])
j--;
if(i<j)
  {
temp=x[i];
x[i]=x[j];
x[j]=temp;
}
}
temp=x[pivot];
x[pivot]=x[j];
x[j]=temp;
quicksort(x,first,j-1);
quicksort(x,j+1,last);
 }
}
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Output

Enter size of the array: 12
Enter 12 elements:
46
27
6
57
70
86
40
63
93
17
80
66
Sorted elements:
6 17 27 40 46 57 63 66 70 80 86 93

8.12 RADIX SORT
This sort is based on the values of the actual digits in the positional representations 
of the numbers being sorted. For example, the number 475 in decimal notation 
is written with a 4 in the hundred position, a 7 in the tens position, and a 5 in 
the unit position. The larger of the two such integer of equal length can be 
determined as follows: start at the most significant digit and advance through 
the least significant digits as long as the corresponding digits in the two numbers 
match. The number with the larger digit in the first position in which the digits 
of the two numbers do not match is the larger of the two numbers. Of course, 
if all the digits of both numbers match, the numbers are equal. To sort decimal 
numbers, we need ten buckets, since the base or radix is ten. These buckets are 
numbered 0,1,2,3,4,5,6,7,8,9.

 Example: let us take number in unsorted order and sort them by applying 
radix sort.
235 126 211 347 499 569 330 165
Solution:
Step 1: Take these numbers on the basis of unit digit
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Numbers 0 1 2 3 4 5 6 7 8 9

235 235

126 126

211 211

347 347

499 499

569 569

330 330

165 165

After step 1, numbers are: 330 211 235 165 126 347 499 569
Step 2: Take these numbers on the basis of tens digit

Numbers 0 1 2 3 4 5 6 7 8 9

330 330

211 211

235 235

165 165

126 126

347 347

499 499

569 569

After step 2, numbers are: 211 126 330 235 347 165 569 499
Step 3: Take these numbers on the basis of hundred

Numbers 0 1 2 3 4 5 6 7 8 9

211 211

126 126

330 330

235 235

347 347

165 165

569 569

499 499
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After step 3, numbers are: 126 165 211 235 330 347 499 569
Now the sorted numbers are: 126 165 211 235 330 347 499 569

Algorithm
RADIX SORT

 1. start
 2. radix (a, n)
 3. set large = largest element in the array
 4. set num = total number of digits in the array
 5. set digit = num
 6. set pass = 1
 7. repeat steps 8 to 15 while ≤ num
 8. initialize buckets
 9. set i = 0
 10. repeat steps 11 to 13 while i ≤ n-1
 11. set l = pass-1 position of number a[i]
  // 0th position of number 123
 12. put the number a[i] into bucket l
 13. set i = i+1
 14. end of step 10 loop
 15. set pass = pass+1
 16. end of step 7 loop
 17. write all the numbers from the bucket in order
 18. stop

Program: Write a program to implement a radix sort

#include<stdio.h>
#include<conio.h>
int largest (int arr[], int n);
void radixsort(int arr[], int n)
void main()
{
int arr[20], i, n;
printf(“enter the number of element in the array:”);
scanf(“%d”, &n);
printf(“enter the elements of the array”);
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for(i=0;i<n;i++)
{
scanf(“%d”, &arr[i]);
}
radixsort(arr,n);
printf(“sorted array is:”);
for(i=0;i<n;i++)
printf(“%d \t”, arr[i]);
getch();
}
int largest(int arr[], int n)
{
int large = arr[0], i;
for (i=1;i<n;i++)
{
if(arr[i]>large)
large=arr[i];
}
return large;
}
void radixsort(int arr[], int n)
{
int bucket[10][10], bucketcount[10];
int i,j,k,remainder,number_of_position=0,division=1,large,pass;
large=largest(arr,n);
while(large>0)
{
number_of_position++;
large/=10;
}
for(pass=0;pass<number_of_position;pass++)
{
for(i=0;i<20;i++)
bucketcount[i]=0;
for(i=0;i<n;i++)
{



388 Data Structure Using C

//sort the number according to the digit
remainder=(arr[i]/divisor)%10;
bucket[remainder][bucketcount[remainder]]=arr[i];
bucketcount[remainder]+=1
}
//collect the numbers after pass
i=0;
for(k=0;k<20;k++)
{
for(j=0;j<bucketcount[k];j++)
{
arr[i]=bucket[k][j];
i++;
}
}
divisor*=10;
}
}

Output

enter the number of element in the array:8
enter the elements of the array:
235
126
211
347
499
569
330
165
sorted array is:
126
165
211
235
330
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347
499
569

Table: Best, Average, Worst case Complexity

Algorithm Time Complexity Space 
Complexity

Best Case Average Case Worst Case

Bubble Sort Ω(n) Θ(n^2) O(n^2) O(1)

Insertion Sort Ω(n) Θ(n^2) O(n^2) O(1)

Selection Sort Ω(n^2) Θ(n^2) O(n^2) O(1)

Merge Sort Ω(n log(n)) Θ(n log(n)) O(n log(n)) O(n)

Heap Sort Ω(n log(n)) Θ(n log(n)) O(n log(n)) O(1)

Quick Sort Ω(n log(n)) Θ(n log(n)) O(n^2) O(log(n))

Radix Sort Ω(nk) Θ(nk) O(nk) O(n+k)

POINTS TO REMEMBER
 1. Searching refers to finding the position of a value in a collection of values.
 2. In bubble sorting, consecutive adjacent pairs of elements in the array are 

compared with each other.
 3. Selection sort works by finding the smallest value and placing it in the 

first position.
 4. Insertion sort works by moving the current data element past the already 

sorted values and repeatedly interchanging it with the proceeding value 
until it is in the correct place.

 5. Merge sort is a sorting algorithm that uses the divide, conquer and combine 
algorithm paradigm.

 6. Heap sort an array in two phases. In the first phase, it built a heap of the 
given array. In the second phase, the root element is deleted repeatedly 
and inserted into an array.

 7. Quick sort works by using divide-and-conquer strategy.
 8. Radix sort is a linear sorting algorithm that uses the concept of sorting 

names in alphabetical order.
 9. Linear search works by comparing the value to be searched with every 

element of the array one by one is a sequence until a match is found.
 10. Binary search works efficiently with a sorted list. In this algorithm, the 

value to be searched is compared with the middle element of the array 
segment.
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 11. Internal sorting deals with sorting the data stored in the memory, whereas 
external sorting deals with sorting the data stored in files.

MULTIPLE CHOICE QUESTIONS
 1. The worst case complexity is ______ when compared with the average 

case complexity of a binary search algorithm.
 (a) Equal
 (c) Less

 (b) Greater
 (d) None of these

 2. The complexity of binary search algorithm is
 (a) O (n)
 (c)  O (n log n)

 (b)  O (n2)
 (d) O (log n)

 3. Which of the following cases occurs when searching an array using linear 
search the value to be searched is equal to the first element of the array?

 (a) Worst case
 (c) Best case

 (b) Average case
 (d) Amortized case

 4. A card game player arranges his cards and picks them one by one. With 
which sorting technique can you compare this example?

 (a) Bubble sort
 (c) Merge sort

 (b) Selection sort
 (d) Insertion sort

 5. Which of the following techniques deals with sorting the data stored in 
the computer’s memory?

 (a) Insertion sort
 (c) External sort

 (b) Internal sort
 (d) Radix sort

 6. In which sorting, consecutive adjacent pairs of elements in the array are 
compared with each other?

 (a) Bubble sort
 (c) Merge sort

 (b) Selection sort
 (d) Radix sort

 7. Which term means sorting the two sub-arrays recursively using merge 
sort?

 (a) Divide
 (c) Combine

 (b) Conquer
 (d) All of these

 8. Which sorting algorithm sorts by moving the current data element past the 
already sorted values and repeatedly interchanging it with the preceding 
value until it is in its correct place?

 (a) Insertion sort
 (c) External sort

 (b) Internal sort
 (d) Radix sort
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 9. Which algorithm uses the divide, conquer, and combine algorithmic 
paradigm?

 (a) Selection sort
 (c) Merge sort

 (b) Insertion sort
 (d) Radix sort

 10. Quick sort is faster than
 (a) Selection sort
 (c) Bubble sort

 (b) Insertion sort
 (d) All of these

 11. Which sorting algorithm is also known as tournament sort?
 (a) Selection sort
 (c) Bubble sort

 (b) Insertion sort
 (d) Heap sort

TRUE OR FALSE
 1. Binary search is also called sequential search.
 2. Linear search is performed on a sorted array.
 3. For insertion sort, the best case occurs when the array is already sorted.
 4. Selection sort has a linear running time complexity.
 5. The running time of merge sort in the average case and the worst case is 

o (n log n).
 6. The worst case running time complexity of quick sort is o (n log n).
 7. Heap sort is an efficient and a stable sorting algorithm.
 8. External sorting deals with sorting the data stored in the computer’s memory.
 9. Insertion sort is less efficient than quick sort, heap sort, and merge sort.
 10. The average case of insertion sort has a quadratic running time.
 11. The partitioning of the array in quick sort is done in o (n) time.

FILL IN THE BLANKS
 1. Performance of the linear search algorithm can be improved by using a 

________.
 2. The complexity of linear search algorithm is___________.
 3. Sorting means___________.
 4. ____________ sort shows the best average-case behaviour.
 5. ___________ deals with sorting the data stored in files.
 6. O (n2) is the running time complexity of __________ algorithm.
 7. In the worst case, insertion sort has a __________ running time.
 8. __________ sort uses the divide, conquer, and combine algorithm paradigm.
 9. In the average case, quick sort has a running time complexity of __________.
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 10. The execution time of bucket sort in an average case is __________.
 11. The running time of merge sort in the average and the worst case 

is__________.
 12. The efficiency of quick sort depends on __________.

EXERCISES
 1. Show all the passes using bubble sort with following list:
  234 54 12 76 11 87 32 12 45 67 76
 2. Show all the passes using insertion sort with following list:
  13 33 27 77 12 43 10 432 112 90
 3. Show all the passes using selection sort with following list:
  10 22 65 223 87 343 98 244 543 22 4
 4. Show all the passes using quick sort with following list:
  19 123 43 78 242 98 34 75 135 87 24
 5. Show all the passes using radix sort with following list:
  123 76 456 244 654 865 124 987 222 890
 6. Show all the passes using merge sort with following list
  194 34 12 756 54 1 88 54 897 23 96 34
 7. Which techniques of searching an element in an array would you prefer 

to use in which condition?
 8. Define sorting? What is importance of sorting?
 9. What are the different types of sorting techniques?
 10. Write a program to implement a bubble sort?
 11. Write a program to implement a insertion sort?
 12. Write a program to implement a selection sort?
 13. Write a program to implement a merge sort?
 14. Write a program to implement a heap sort?
 15. Write a program to implement a quick sort?
 16. Write a program to implement a radix sort?
 17. Write a program to implement a merging of two sorted array?
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9
Hashing Techniques

9.1 INTRODUCTION
We have seen different searching techniques where search time basically dependent 
on the number of elements. Sequential search, binary search and all the search 
trees totally depend on number of elements and key comparisons involved. 
Suppose, all the elements are in an array having size n. Let us say all the keys 
are unique and in the range 0 to n-1. Now we are storing the records in array 
based on the key where array index and keys are same. Now we can access the 
record in constant time and comparisons.

9.2 HASH TABLES
Hash tables support one of the most efficient types of searching: hashing. 
Fundamentally, a hash table consists of an array in which data is accessed 
via a special index called a key. The primary idea behind a hash table is to 
establish a mapping between the set of all possible keys and positions in the 
array using a hash function. A hash function accepts a key and returns its 
hash value. Keys vary in type, but coding are always integers. Since both 
computing a hash value and indexing into an array can be performed in 
constant time, the beauty of hashing is that we can use it to perform constant 
time searches. When a hash function can guarantee that no two keys will 
generate the same hash coding, the resulting hash table is said to be directly 
addressed. This is ideal, but direct addressing is rarely possible in practice. 
Typically, the number of entries in a hash table is small relative to the universe 
of possible keys. Consequently, most hash functions map some keys to the 
same position in the table. When two keys map to the same position, they 
collide. A good hash function minimises collisions, but we must still be 
prepared to deal with them.
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9.3 APPLICATIONS OF HASH TABLES
Some applications of hash tables are:

1. Database Systems
Generally, database systems try to optimise between two types of access method: 
sequential and random. Hash tables are an important part of efficient random 
access because they provide a way to locate data in a constant amount of time.
2. Symbol Tables
The tables used by compilers to maintain information about symbols from a 
program. Compilers access information about symbols frequently. Therefore, 
it is important that symbol tables be implemented very efficiently.

3. Tagged Buffers
A mechanism for storing and retrieving data in a machine - independent manner. 
Each data member resides at fixed offset in the buffer. A hash table is stored 
in the buffer so that the location of each tagged member can be ascertained 
quickly. One use of a tagged buffer is sending structured data across a network 
to a machine whose byte ordering and structure alignment may not be same as 
the original host’s. The buffer handles these concerns as the data is stored and 
extracted member by member.

4. Data Dictionaries
Data Structures that support adding, deleting, and searching for data. Although the 
operations of a hash table and a data dictionary are similar, other data structures may 
be used to implement data dictionaries. Using a hash table is particularly efficient.

9.4 HASHING
Hashing is a technique to convert a range of key values into a range of indexes 
of an array. We’re going to use modulo operator to get a range of key values. 
Consider an example of hash table of size 20 with following items stored in it. 
Item are in (key, value) format.

Key_1

Key_1

Key_1

Hash
Function

0

Index Value

Value_1

Value_2

Value_3

Value_4

1

2

3

 • (1,20)
 • (2,70)
 • (42,80)
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 • (4,25)
 • (12,44)
 • (14,32)
 • (17,11)
 • (13,78)
 • (37,98)

S.n. Key Hash Array Index

1 1 1 % 20 = 1 1

2 2 2 % 20 = 2 2

3 42 42 % 20 = 2 2

4 4 4 % 20 = 4 4

5 12 12 % 20 = 12 12

6 14 14 % 20 = 14 14

7 17 17 % 20 = 17 17

8 13 13 % 20 = 13 13

9 37 37 % 20 = 17 17

9.5 HASH FUNCTIONS
A hash function is any function that can be used to map data of arbitrary size 
to data of fixed size. The values returned by a hash function are called hash 
values, hash codes, hash sums, or simply hashes. The intent is that elements 
will be relatively randomly and uniformly distributed. Perfect Hash function 
is a function which, when applied to all the members of the set of items to be 
stored in a hash table, produces a unique set of integers within some suitable 
range. Such function produces no collisions. Good Hash Function minimises 
collisions by spreading the elements uniformly throughout the array. There is no 
magic formula for the creation of the hash function. It can be any mathematical 
transformation that produces a relatively random and unique distribution of 
values within the address space of the storage.

Characteristics of a Good Hash Function
There are four main characteristics of a good hash function:

 1. The hash value is fully determined by the data being hashed.
 2. The hash function uses all the input data.
 3. The hash function “uniformly” distributes the data across the entries set 

of possible hash values.
 4. The hash function generates very different hash values for similar strings.
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Rule 1
If something else besides the input data is used to determine the hash, then the 
hash value is not as dependent upon the input data, thus allowing for a worse 
distribution of the hash values.

Rule 2
If the hash function does not use all the input data, then slight variations to the 
input data would cause an inappropriate number of similar hash values resulting 
in too many collisions.

Rule 3
If the hash function does not uniformly distribute the data across the set of 
possible hash values, a large number of collisions will result, cutting down on 
the efficiency of the hash table.

Rule 4
In real world applications, many data sets contain very similar data elements. 
We would like these data elements to still be distributable over a hash table.

9.6 TYPES OF HASH FUNCTIONS
1. Division Method
Perhaps the simplest of all the methods of hashing is division method hashing 
which states that an integer x is to divide x by M and then to use the remainder 
modulo M. In this case, the hash function is

h(x) = x mod M
Generally, this approach is quite good for just about any value of M. However, 

in certain situations some extra care is needed in the selection of a suitable value 
for M. For example, it is often convenient to make M an even number. But this 
means that h(x) is even if x is even; and h(x) is odd if x is odd. If all possible 
keys are equiprobable, then this is not a problem. However, if we say, even keys 
are more likely than odd keys, the function h(x) =x mod M will not spread the 
hashed values of those keys evenly.

Similarly, it is often tempting to let M be a power of two. e.g., M = 2k  for 
some integer k>1. In this case, the hash function  h(x) =x mod 2k simply extracts 
the bottom k bits of the binary representation of x. While this hash function is 
quite easy to compute, it is not a desirable function because it does not depend 
on all the bits in the binary representation of x.

For these reasons M is often chosen to be a prime number. For example, 
suppose there is a bias in the way the keys are created that makes it more likely 
for a key to be a multiple of some small constant, say two or three. Then making 
M a prime increases the likelihood that those keys are spread out evenly. Also, 
if M is a prime number, the division of x by that prime number depends on all 
the bits of x, not just the bottom k bits, for some small constant k.
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A potential disadvantage of the division method is due to the property that 
consecutive keys map to consecutive hash values:

h (i) = i
h (i+1) = i+1 (mod M)
h (i+2) = i+2 (mod M)

While this ensures that consecutive keys do not collide, it does mean 
that consecutive array locations will be occupied. We will see that in certain 
implementations this can lead to degradation in performance. In the following 
sections we consider hashing methods that tend to scatter consecutive keys. In 
the division method for creating hash functions, we map a key k into one of m 
slots by taking the remainder of k divided by m. That is, the hash function is:

h (k) = k mod m or h(k) = k mod m +1
For example, if the hash table has size m =11 and the key is k = 90, then 

h(k) = 2, since it requires only a single division operation, hashing by division 
is quite fast.
2. Multiplication Method
A very simple variation on the middle-square method that alleviates its deficiencies 
is the so-called, multiplication hashing method. Instead of multiplying the key x 
by itself, we multiply the key by a carefully chosen constant a, and then extract 
the middle k bits from the result. In this case, the hashing function is

( ) ( mod ) .Mh x ax W
W

é ù
ê ú=
ê úë û

What is a suitable choice for the constant a? If we want to avoid the problems that 
the middle-square method encounters with keys having a large number of leading 
or trailing zeroes, then we should choose a that has neither leading nor trailing 0’s.

Furthermore, if we choose an a that is relatively prime to W, then there 
exists another number a’ such that aa’=1 (mod W). In other words, a’ is the 
inverse of a modulo W, since the product of a and its inverse is one. Such a 
number has the nice property that if we take a key x, and multiply it by a to 
get ax, we can recover the original key by multiplying the product again by a’, 
since axa’=aa’x=1x.

There are many possible constants with the desired properties. One possibility 
which is suited for 32-bit arithmetic (i.e., W = 232) is a = 2654435769. The 
binary representation of a is

1001111000110110111100110111001
This number has neither many leading nor trailing zeroes. Also, this value 

of a and W = 232  are relatively prime and the inverse of a modulo W is a’ 

=340573321.
The multiplication method for creating hash functions operates in two steps: 

First, we multiply the key k by a constant A in the range 0 < A < 1 and extract 
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the fractional part of kA. Then we multiply this value by m and take the floor 
of the result. In short, the hash function is:

h (k) = └ m (k A mod 1) ┘
Where “k A mod 1” means the fractional part of KA, that is, k A- └kA┘

3. Mid square Method
We consider a hashing method which avoids the use of division. Since integer 
division is usually slower than integer multiplication, by avoiding division we 
can potentially improve the running time of the hashing algorithm. We can avoid 
division by making use of the fact that a computer does finite-precision integer 
arithmetic. e.g., all arithmetic is done by modulo W where W = 2x, a power of 
two such that w is the word size of the computer.

The middle-square hashing method   works as follows. First, we assume 
that M is a power of two, say M = 2k for some K>=1. Then, to hash an integer 
x, we use the following hash function:

2( ) ( mod .Mh x x W
W

é ù
ê ú=
ê úë û

Notice that since M and W are both powers of two, the ratio W/M = 2x-k is 
also a power of two. Therefore, in order to multiply the term (x2 mod W) by 
M/W we simply shift it to the right by w-k bits! In effect, we are extracting k 
bits from the middle of the square of the key--hence the name of the method.

The middle-square method does a pretty good job when the integer-valued 
keys are equiprobable. The middle-square method also has the characteristic 
that it scatters consecutive keys nicely. However, since the middle-square 
method only considers a subset of the bits in the middle of x2, keys which 
have a large number of leading zeroes will collide. e.g., consider the following 
set of keys:

{ }: / .x x W M+e Z <

This set contains all keys x such that x <2(x-K)/2. For all of these keys h(x) =0.
A similar line of reasoning applies for keys which have a large number of 

trailing zeroes.
Let W be an even power of two. Consider the set of keys

{ }: : .x x n W n+e Z = eZ +

The least significant w/2 bits of the keys in this set are all zero. Therefore, 
the least significant w bits of x2 are also zero and as a result h(x)=0 for all 
such keys.

In mid square method we square the key, after getting number we take some 
digits from the middle of that number as an address. Let us take some 4 digit 
number as a key:
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1228 1384 1481 1024
Now square these keys:

 1228 1384 1481 1024
 1507984 1915456 2193361 1048576
Now take the 3rd and 4th digit from each number and that will be the hash 

address of these keys. Let us assume here table size is 1000. So the hash address 
for keys will be 79, 54, 33 and 85

4. Folding Method
In this method the key is interpreted as an integer using some radix (say 10). 
The integer is divided into segments, each segment except possibly the last 
having the same number of digits. These segments are then added to obtain 
the home address. 
As an example, consider the key 76123451001214. Assume we are dividing 
keys into segments of size 3 digits. The segments for our key are 761, 234, 510, 
012, and 14. The home bucket is 761 + 234 + 510 + 012 + 14 = 1531. 
In a variant of this scheme, the digits in alternate segments are reversed before 
adding. This variant is called folding at the boundaries and the original version 
is called shift folding. Applying the folding at the boundaries method to the 
above example, the segments after digit reversal are 761, 432, 510, 210, and 
14; the home bucket is 761 + 432 + 510 + 210 + 14 = 1927. 

Hash Function for strings
Most of the places strings are used as keys. It can be alphabetic or alphanumeric. 
Best example is the English word dictionary. Every character has some ASCII 
value that can be used for calculation in generating hash key value and that value 
can be used with modulus operation for mapping with hash table. Suppose key 
has alphabetic character. Let us take table size is M (95) and keys is “arham”. 
We can add the ASCII value of each character and then we can apply modulus 
operation on this value as:

 arham = a + r + h + a + m
  = 97+114+104+97+109
  = 521

 H(arham) = 521% 95 = 46
So the key “arham” can be mapped on the 46th position in the hash table.
Second method we can apply is, multiply each character ASCII value by 

127 and add all the values then do the modulus operation. Let us take the key 
“arham” and table size 995.

arham = a x 127 + r x 127 + h x 127 + a x 127 + m x 127
  = 97 x 127 + 114 x 127 + 104 x 127 + 97 x 127 + 109 x 127
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  = 12319 + 14478 + 13208 + 12319 + 13843
  = 66167
After modulus operations:
 H(arham) = 66167% 995
 = 497
We use the value 127 for multiplication because ASCII character has maximum 

value 127. The key “arham” can be mapped on the 497th position in the table.

9.7 COLLISION RESOLUTION TECHNIQUES
Suppose we want to add a new record R with key k to our file F, but suppose 
the memory location address H (k) is already occupied. This situation is called 
collision. That is a collision occurs when more than one keys map to same hash 
value in the hash table.

Types of Collision Resolution Techniques:

 1. Collision resolution by open addressing.
 2. Collision resolution by separate chaining.

The performance of these methods depends on load factor i.e., ratio λ = n/m. 
This is the ratio of the number n of keys in k to the number m of hash addresses. The 
efficiency of a hash function with a collision resolution is measured by the average 
number of probes needed to find the location of the record with a given key k.

9.8 HASHING WITH OPEN ADDRESSING
In open addressing, all elements are stored in the hash table itself. That is, each 
table entry contains either an element of the dynamic set or NIL. When searching 
for an element, we systematically examine table slots until the desired element is 
found or it is clear that the element is not in the table. Thus, in open addressing, 
the load factor can never exceed 1. The advantage of open addressing is that 
it avoids pointers altogether. Instead of following pointers, we compute the 
sequence of slots to be examined. The extra memory freed by not storing pointers 
provides the hash table with a larger number of slots for the same amount of 
memory, potentially yielding fewer collisions and faster retrieval. The process 
of examining the locations in the hash table is called a ‘Probing’. To perform 
insertion using open addressing, we successively examine, or probe, the hash 
table until we find an empty slot in which to put the key.

Three techniques are commonly used to compute the probe sequences 
required for open addressing: Linear probing, quadratic probing and double 
hashing.

1. Linear Probing
Suppose that a key hashes into a position that is already occupied. The simplest 
strategy is to look for the next available position to place the item. Suppose, we 
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have a set of hash codes consisting of {89, 18, 49, 58, and 9} and we need to 
place them into a table of size 10. The following table demonstrates this process.

hash (89, 10) = 9
hash (18, 10) = 8
hash (49, 10) = 9
hash (58, 10) = 8
hash (  9, 10) = 9

After insert 89 After insert 18 After insert 49 After insert 58 After insert 9

0 49 49 49
1 58 58
2 9
3
4
5
6
7
8 18 18 18 18
9 89 89 89 89 89

The first collision occurs when 49 hashes to the same location with index 9. 
Since 89 occupies the A[9], we need to place 49 to the next available position. 
Considering the array as circular, the next available position is 0. That is (9+1) mod 
10. So we place 49 in A[0]. Several more collisions occur in this simple example 
and in each case we keep looking to find the next available location in the array 
to place the element. Now, if we need to find the element, say for example, 49, we 
first compute the hash code (9), and look in A[9]. Since, we do not find it there, 
we look in A[(9+1) % 10] = A[0], we find it there and we are done. So what if 
we are looking for 79? First we compute hashcode of 79 = 9. We probe in A[9], 
A[(9+1)%10]=A[0], A[(9+2)%10]=A[1], A[(9+3)%10]=A[2], A[(9+4)%10]=A[3] 
etc. Since A[3] = null, we do know that 79 could not exists in the set.

2. Quadratic probing
Although linear probing is a simple process where it is easy to compute the next 
available location, linear probing also leads to some clustering when keys are 
computed to closer values. Therefore, we define a new process of Quadratic 
probing that provides a better distribution of keys when collisions occur. In 
quadratic probing,  if the hash value is K, then the next location is computed 
using the sequence K + 1, K + 4, K + 9 etc..

The following table shows the collision resolution using quadratic probing.
hash (89, 10) = 9
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hash (18, 10) = 8
hash (49, 10) = 9
hash (58, 10) = 8
hash (  9, 10) = 9

After insert 89 After insert 18 After insert 49 After insert 58 After insert 9

0 49 49 49
1
2 58 58
3 9
4
5
6
7
8 18 18 18 18
9 89 89 89 89 89

 3. Double Hashing
Double hashing uses the idea of applying a second hash function to the key when 
a collision occurs. The result of the second hash function will be the numbers 
of positions from the point of collision to insert.

There are a couple of requirements for the second function:

 • it must never evaluate to 0
 • must make sure that all cells can be probed

A popular second hash function is: Hash2(key) = R - ( key % R ) where R 
is a prime number that is smaller than the size of the table.

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

49Table Size = 10 elements
Hash1 (key) = key % 10
Hash2 (key) = 7 – (k % 7)

58

69

18

89

Insert keys:89, 18, 49, 58, 69

Hash(89) = 89%10 = 9

Hash(18) = 18%10 = 8

Hash(58) = 58%10 = 8
 = 7– (58 % 7)
 = 5 position from [8]

Hash(69) = 69%10 = 9
 = 7– (69 % 7)
 = 1 position from [9]

Hash(49) = 49%10 = 9 a collision!
 = 7– (49 % 7)
 = 7 position from [9]
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Hashing with Rehashing
Once the hash table gets too full, the running time for operations will start to 
take too long and may fail. To solve this problem, a table at least twice the size 
of the original will be built and the elements will be transferred to the new table.

The new size of the hash table:

 • should also be prime
 • will be used to calculate the new insertion spot (hence the name rehashing)

This is a very expensive operation! O(N) since there are N elements to rehash 
and the table size is roughly 2N. This is ok though since it doesn’t happen that 
often.

The question arises when should the rehashing be applied?
Some possible answers:

 • once the table becomes half full
 • once an insertion fails
 • once a specific load factor has been reached, where load factor is the ratio 

of the number of elements in the hash table to the table size

More Examples for Hashing Concept
Hashing
Hashing can be used to build, search, or delete from a table. The basic idea 
behind hashing is to take a field in a record, known as the key, and convert it 
through some fixed process to a numeric value, known as the hash key, which 
represents the position to either store or find an item in the table. The numeric 
value will be in the range of 0 to n-1, where n is the maximum number of slots 
(or buckets) in the table.

The fixed process to convert a key to a hash key is known as a hash function. 
This function will be used whenever access to the table is needed.

One common method of determining a hash key is the division method of 
hashing. The formula that will be used is:

hash key = key % number of slots in the table

[0] 72
Assume a table with 8 slots: [1]
Hash key = key% table size [2] 18

4 = 36% 8 [3] 43
2 = 18% 8 [4] 36
0 = 72% 8 [5]
3 = 43% 8 [6] 6
6 = 6% 8 [7]
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The division method is generally a reasonable strategy, unless the key happens 
to have some undesirable properties. For example, if the table size is 10 and all 
of the keys end in zero.

In this case, the choice of hash function and table size needs to be carefully 
considered. The best table sizes are prime numbers.

One problem though is that keys are not always numeric. In fact, it’s common 
for them to be strings.

One possible solution: add up the ASCII values of the characters in the string 
to get a numeric value and then perform the division method.

Int hashValue = 0;
for ( int j = 0; j < stringKey.length(); j++ )
hashValue += stringKey[j];
int hashKey = hashValue % tableSize;
The previous method is simple, but it is flawed if the table size is large. For example, 

assume a table size of 10007 and that all keys are eight or fewer characters long.
No matter what the hash function, there is the possibility that two keys could 

resolve to the same hash key. This situation is known as a collision.
When this occurs, there are two simple solutions:

 1. chaining
 2. linear probe (aka linear open addressing)

And two slightly more difficult solutions
 3. Quadratic Probe
 4. Double Hashing

9.9 HASHING WITH CHAINS
When a collision occurs, elements with the same hash key will be chained 
together. A chain is simply a linked list of all the elements with the same hash key.

The hash table slots will no longer hold a table element. They will now hold 
the address of a table element.

[0] 72

10 18

43

36

5

6

15

Hash key = key % table size

4 = 36 % 8
2 = 18 % 8
0 = 72 % 8
3 = 43 % 8
6 = 6 % 8
2 = 10 % 8
5 = 5 % 8
7 = 15 % 8

[1]

[2]

[3]

[4]

[5]

[6]

[7]
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Searching a hash table with chains
Compute the hash key
If slot at hash key is null
Key not found
Else
Search the chain at hash key for the desired key
Endif

Inserting into a hash table with chains
Compute the hash key
If slot at hash key is null
Insert as first node of chain
Else
Search the chain for a duplicate key
If duplicate key
Don’t insert
Else
Insert into chain
Endif
Endif

Deleting from a hash table with chains
Compute the hash key
If slot at hash key is null
Nothing to delete
Else
Search the chain for the desired key
If key is not found
Nothing to delete
Else
Remove node from the chain
Endif
Endif

Hashing with Linear Probe
When using a linear probe, the item will be stored in the next available slot in 
the table, assuming that the table is not already full.
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This is implemented via a linear search for an empty slot, from the point 
of collision. If the physical end of table is reached during the linear search, the 
search will wrap around to the beginning of the table and continue from there.

If an empty slot is not found before reaching the point of collision, the table is full.

[0]

Add the keys 10, 5, and
15 to the previous table.

2 = 10 % 8

5 = 5 % 8

7 = 15 % 8

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Hash key = key % table size

72 72

15

18

43

36

10

6

5

18

43

36

6

A problem with the linear probe method is that it is possible for 
blocks of data to form when collisions are resolved. This is known as 
primary clustering.

This means that any key that hashes into the cluster will require 
several attempts to resolve the collision.

For example, insert the nodes 89, 18, 49, 58, and 69 into a hash 
table that holds 10 items using the division method:

Hashing with Quadratic Probe
To resolve the primary clustering problem, quadratic probing can 
be used. With quadratic probing, rather than always moving one spot, 
move i2 spots from the point of collision, where i is the number of 
attempts to resolve the collision.

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

49

89 % 10 = 9

10 % 10 = 9

49 % 10 = 9 – 1 attempts needed – 12 = 1 spot

58 % 10 = 8 – 3 attempts needed – 32 = 9 spot

69 % 10 = 9 – 2 attempts – 22 = 4 spot

58

69

18

89

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

49

58

69

18

89
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Limitation: atmost half of the table can be used as alternative locations to 
resolve collisions.

This means that once the table is more than half full, it’s difficult to find an 
empty spot. This new problem is known as secondary clustering because elements 
that hash to the same hash key will always probe the same alternative cells.

Hashing with Double Hashing
Double hashing uses the idea of applying a second hash function to the key when 
a collision occurs. The result of the second hash function will be the number of 
positions from the point of collision to insert.

There are a couple of requirements for the second function:

 • it must never evaluate to 0
 • must make sure that all cells can be probed

A popular second hash function is: Hash2(key) = R - ( key % R ) where R 
is a prime number that is smaller than the size of the table.

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

49Table Size = 10 elements
Hash1 (key) = key % 10
Hash2 (key) = 7 – (k % 7)

58

69

18

89

Insert keys:89, 18, 49, 58, 69

Hash(89) = 89%10 = 9

Hash(18) = 18%10 = 8

Hash(58) = 58%10 = 8
 = 7– (58 % 7)
 = 5 position from [8]

Hash(69) = 69%10 = 9
 = 7– (69 % 7)
 = 1 position from [9]

Hash(49) = 49%10 = 9 a collision!
 = 7– (49 % 7)
 = 7 position from [9]

9.10 HASHING WITH REHASHING
Once the hash table gets too full, the running time for operations will start to 
take too long and may fail. To solve this problem, a table at least twice the size 
of the original will be built and the elements will be transferred to the new table.

The new size of the hash table:

 • should also be prime
 • will be used to calculate the new insertion spot (hence the name rehashing)

This is a very expensive operation! O (N) since there are N elements to 
rehash and the table size is roughly 2N. This is ok though since it doesn’t 
happen that often.
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The question arises when should the rehashing be applied?
Some possible answers:

 • once the table becomes half full
 • once an insertion fails
 • once a specific load factor has been reached, where load factor is the ratio 

of the number of elements in the hash table to the table size

Deletion from a Hash Table
The method of deletion depends on the method of insertion. In any of the cases, 
the same hash function(s) will be used to find the location of the element in 
the hash table.

There is a major problem that can arise if a collision occurred when inserting 
-- it’s possible to “lose” an element.

9.11 INDEXED SEARCH TECHNIQUES
This searching technique is useful in searching direct access secondary storage 
devices. The general strategy of an indexed search is that the key is used to 
search the index, find the relative record position of the associated data and 
from there only one access is made to find the data.

Indexed Sequential Search Techniques
The Indexed Sequential Access Method (ISAM) involves considering the 
disk dependent factors of blocking and track size to build a partial index. 
ISAM first identifies the region and then within that region, a sequential 
search is made.

The strategy used to conduct an ISAM search is as follows:

 (a) Search the main memory directory for a key that is greater than or equal 
to the target.

 (b) Follow the corresponding pointer out to the disk and then sequentially 
search until we find a match (success) or the key that the directory main-
tains as the high key within that particular region failure.

For larger files, it may be advantageous to have more than level of this 
directory, structures. In this case, a two level directory structure may be used. 
In a two-level directory structure the entire primary directory should be kept in 
the main memory. The secondary directory should be brought as a single block 
of the disk file and the data records are stored as some n number of records per 
track. The primary directory divides the file into some m regions of records each. 
The pointer field in the primary directory points a record in the sub-directory 
instead of the actual file. Here, the search operation is done as follows:



Chapter 9 Hashing Techniques 411

 (a) The search operation in a primary directory is done in a way to find a 
key which is greater than or equal to the target. Using the corresponding 
pointer field, the sub–directory is searched.

 (b) In the sub–directory also, the search is made such that the key is greater 
than or equal to the target. The corresponding pointer filed is used to ad-
dress a particular record in the actual file.

The search efficiency of the indexed sequential file is based on many factors. 
Some of them are:

 1. To what degree the directory structures are able to subdivide the actual file.
 2. To what degree the directory structure are able to reside in main memory.
 3. The relationship of data records to physical characteristics of the disk such 

as blocking factors, track size and cylinder size.
This searching method is not suitable for a highly volatile file. It requires 

that the data records must be stored in a physically increasing or decreasing key 
order. If there are more records in the overflow area, the search efficiency tends 
to deteriorate. In that case, ISAM is called Intrinsically Slow Access Method. To 
avoid the deterioration problem, the actual file should be reorganized into a new 
file with no overflow. This organization operation cannot be done dynamically. 
It is a time–consuming task. The maintenance problems involved with the ISAM 
structures lead to the development of several dynamic indexing schemes.

POINTS TO REMEMBER
 1. Hash table is a data structure in which keys are mapped to array positions 

by a hash function.
 2. Popular hash function which use numeric keys are division method, 

multiplication method, mid-square method and folding method.
 3. Division method divides x by M and then uses the remainder obtained.
 4. Multiplication method applies the hash function given as h (x) = [m (ka 

mod 1)]
 5. Collision occur when a hash function maps two different keys to the same 

location. Therefore, a method used to solve the problem of collisions, also 
called collision resolution techniques is applied.

 6. Open addressing technique can be implemented using linear probing, 
quadratic probing, double hashing and rehashing.

 7. The storage requirement for a hash table is o (k), where k is the number 
of keys actually used.

MULTIPLE CHOICE QUESTIONS
 1. In a hash table, an element with key k is stored at index
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 (a) k
 (c) h (k)

 (b) log k
 (d) k2

 2. In any hash function, m should be a
 (a) prime number
 (c) even number

 (b) composite number
 (d) odd number

 3. In which of the following hash functions, do consecutive keys map to 
consecutive hash value?

 (a) division method
 (c) folding method

 (b) multiplication method
 (d) mid-square method

 4. The process of examining memory locations in a hash table is called.
 (a) hashing
 (c) probing

 (b) collision
 (d) addressing

 5. Which of the following methods is applied in the Berkeley fast file system 
to allocate free blocks?

 (a) linear probing
 (c) double hashing

 (b) quadratic probing
 (d) rehashing

 6. Which open addressing technique is free from clustering problems?
 (a) linear probing
 (c) double hashing

 (b) quadratic probing
 (d) rehashing

TRUE OR FALSE
 1. Hash table is based on the p of locality of reference.
 2. Binary search takes o (n log n) time to execute.
 3. The storage requirement for a hash table is o (k2), where k is the number 

of keys.
 4. Hashing takes place when two or more keys map to the same memory location.
 5. A good hash function completely eliminates collision.
 6. M should be too close to exact power of 2.
 7. A sentinel value indicates that the location contains valid data.
 8. Linear probing is sensitive to the distribution of input values.
 9. A chained hash table is faster than a simple hash table.

FILL IN THE BLANKS
 1. In a hash table, keys are mapped to array positions by a _________.
 2. ___________ is the process of mapping keys to appropriate locations in 

a hash table.



Chapter 9 Hashing Techniques 413

 3. In open addressing, hash table stores either of two values ______ and 
________.

 4. When there is no free location in the hash table then _____ occurs.
 5. More the number of collisions, higher is the number of ______ to find free 

location ________ which eliminates primary clustering but not secondary 
clustering.

 6. _______ eliminates primary clustering but not secondary clustering.

EXERCISES
 1. Discuss how one can handle overflow in hashing?
 2. Write short notes on Hash Functions?
 3. Define Hashing? Explain with example?
 4. What is Collision? Explain any one collision resolution techniques with example?
 5. What do you understand by hashing? Name two hashing techniques and 

explain them?
 6. Define Hash Function? State different types of hash function, explain them 

with suitable example?
 7. What is clustering in a Hash Table? Describe two methods for collision 

resolution?
 8. Explain open addressing techniques?
 9. Define the following:

 (a) Hash Table
 (c) Hash Function

 (b) Re-hashing
 (d) Hash Table Implementation
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