

Concurrent Patterns and Best
Practices

Build scalable apps with patterns in multithreading,
synchronization, and functional programming

Atul S. Khot

BIRMINGHAM - MUMBAI

Concurrent Patterns and Best Practices
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Denim Pinto
Content Development Editor: Nikhil Borkar
Technical Editor: Divya Vadhyar
Copy Editor: Muktikant Garimella
Project Coordinator: Ulhas Kambali
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Disha Haria
Production Coordinator: Nilesh Mohite

First published: September 2018

Production reference: 1260918

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78862-790-0

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packtpub.com

Contributors

About the authors
Atul S. Khot is a self-taught programmer and has written software programmes in C and
C++. Having extensively programmed in Java and dabbled in multiple languages, these
days, he is increasingly getting hooked on Scala, Clojure, and Erlang. Atul is a frequent
speaker at software conferences and a past Dr. Dobb's product award judge. He was the
author of Scala Functional Programming Patterns and Learning Functional Data Structures and
Algorithms, published by Packt Publishing.

About the reviewer
Anubhava Srivastava is a Lead Engineer Architect with more than 22 years of systems
engineering and IT architecture experience. He has authored the book Java 9 Regular
Expressions published by Packt Publishing. He's an active contributor to Stackoverflow and
figures in its top 0.5% overall reputation. As an open source evangelist he actively
contributes to various open source development and some popular computer
programming Q&A sites like Stack Overflow with a reputation/score of more than 170k.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Concurrency – An Introduction 7
Concurrency in a breeze 8

The push for concurrency 9
The MapReduce pattern 11
Fault tolerance 12

Time sharing 13
Two models for concurrent programming 14

The message passing model 15
Coordination and communication 17
Flow control 19
Divide and conquer 21
The concept of state 22

The shared memory and shared state model 24
Threads interleaving – the need for synchronization 25
Race conditions and heisenbugs 28
Correct memory visibility and happens-before 29
Sharing, blocking, and fairness 30
Asynchronous versus synchronous executions 32
Java's nonblocking I/O 33

Of patterns and paradigms 34
Event-driven architecture 36
Reactive programming 38
The actor paradigm 39
Message brokers 41
Software transactional memory 43
Parallel collections 44

Summary 45

Chapter 2: A Taste of Some Concurrency Patterns 46
A thread and its context 47
Race conditions 49

The monitor pattern 54
Thread safety, correctness, and invariants 55

Sequential consistency 57
Visibility and final fields 58

Double-checked locking 59
Safe publication 61
Initializing a demand holder pattern 62

Explicit locking 63

Table of Contents

[ii]

The hand-over-hand pattern 67
Observations – is it correct? 71

The producer/consumer pattern 73
Spurious and lost wake-ups 77

Comparing and swapping 80
Summary 83

Chapter 3: More Threading Patterns 85
A bounded buffer 87

Strategy pattern – client polls 90
Strategy – taking over the polling and sleeping 91
Strategy – using condition variables 93

Reader or writer locks 95
A reader-friendly RW lock 96
A fair lock 101

Counting semaphores 104
Our own reentrant lock 106
Countdown latch 108

Implementing the countdown latch 112
A cyclic barrier 113
A future task 117
Summary 120

Chapter 4: Thread Pools 121
Thread pools 122

The command design pattern 124
Counting words 125
Another version 127
The blocking queue 128
Thread interruption semantics 131

The fork-join pool 132
Egrep – simple version 132
 Why use a recursive task? 133
Task parallelism 137
Quicksort – using fork-join 139

The ForkJoinQuicksortTask class 140
The copy-on-write theme 144
In-place sorting 146

The map-reduce theme 147
Work stealing 148
Active objects 151

Hiding and adapting 152
Using a proxy 153

Summary 156

Chapter 5: Increasing the Concurrency 157

Table of Contents

[iii]

A lock-free stack 157
Atomic references 158
The stack implementation 159

A lock-free FIFO queue 162
How the flow works 165
A lock-free queue 166

Going lock-free 166
The enque(v) method 167
The deq() method 170
Concurrent execution of the enque and deque methods 172

The ABA problem 173
Thread locals 173
Pooling the free nodes 174
The atomic stamped reference 177

Concurrent hashing 179
The add(v) method 181

The need to resize 183
The contains(v) method 185

The big lock approach 185
The resizing strategy 186

The lock striping design pattern 188
Summary 191

Chapter 6: Functional Concurrency Patterns 193
Immutability 194

Unmodifiable wrappers 195
Persistent data structures 197
Recursion and immutability 199

Futures 200
The apply method 201

by-name parameters 202
Future – thread mapping 204
Futures are asynchronous 205
Blocking is bad 209
Functional composition 211

Summary 214

Chapter 7: Actors Patterns 215
Message driven concurrency 216

What is an actor? 218
Let it crash 219
Location transparency 220
Actors are featherlight 221

State encapsulation 222
Where is the parallelism? 223
Unhandled messages 225
The become pattern 226

Table of Contents

[iv]

Making the state immutable 228
Let it crash - and recover 230
Actor communication – the ask pattern 233

Actors talking with each another 234
Actor communication – the tell pattern 238
The pipeTo pattern 240

Summary 241

Other Books You May Enjoy 242

Index 245

Preface
Thank you for purchasing this book! We live in a concurrent world and concurrent
programming is an increasingly valuable skill.

I still remember the Aha! moment when I understood how UNIX shell pipeline works. I fell
headlong in love with Linux and the command line and tried out many combination filters
(a filter is a program reading from standard input and writes to standard output) connected
via pipes. I was amazed by the creativity and power brought about by the command line. I
was working with concurrent programs.

Then, there was a change of project and I was thrown headlong into writing code using the
multithreaded paradigm. The language was C or C++, which I loved deeply; however, to
my surprise I found that it was a herculean effort to maintain a legacy code base, written in
C/C++ that was multithreaded. The shared state was managed in a haphazard way and a
small mistake could throw us into a debugging nightmare!

Around that time, I came to know about object oriented (OO) design patterns and some
multithreaded patterns as well. For example, we wanted to expose a big in-memory data
structure safely to many threads. I had read about the Readers/Writer lock pattern, which
used smart pointers (a C++ idiom) and coded a solution based on it.

Voila! It just worked. The concurrency bugs simply disappeared! Furthermore, the pattern
made it very easy to reason about threads. In our case, a writer thread needed infrequent
but exclusive access to the shared data structure. The reader threads just used the structure
as an immutable entity—and look mom, no locks!

No locks! Well, well, well... this was something new! As the locks disappeared, so did any
possibility of deadlocks, races, and starvation! It felt just great!

There was a lesson I learned here! Keep learning about design patterns and try to think
about the design problem at hand - in terms of patterns. This also helped me reason better
about the code! Finally, I had an inkling of how to tame the concurrency beast!

Design patterns are reusable design solutions for common design problems. The design
solutions are design patterns. Your problem domain may vary, that is, the business logic
you need to write will be applicable to solving the business problem at hand. However,
once you apply the pattern, things just fall in place, more or less!

Preface

[2]

For example, when we code using the OO paradigm, we use the Gang Of Four (GOF)
design patterns (http:/ ​/ ​wiki. ​c2. ​com/ ​?​DesignPatternsBook). This famous book provides
us a catalog of design problems and their solutions. The strategy pattern is used by people
in various contexts—the pattern though remains the same.

Some years later, I moved to the Java world and used the executor service to structure my
code. It was very easy to develop the code and it worked without any major problem for
months (There were other issues, but no data races and no nightmarish debugging!).

Subsequently, I moved to the functional world and started writing more and more Scala.
This was a new world with immutable data structures as the norm. I learned about a very
different paradigm; Scala's Futures and Akka Actors gave a whole different perspective.
I could feel the power these tools give you as a programmer. Once you pass the learning
curve (admittedly a little daunting at the beginning), you are equipped to write a lot safer
concurrent code which is also a lot easier to reason about.

The book you are reading talks of many concurrent design patterns. It shows the rationale
behind these patterns and highlights the design theme.

Who this book is for
You should have done some Java programming and ideally have played with
multithreaded Java programs. Ideally you should have some familiarity with the gang of
four (GoF) design patterns. You should also be comfortable running Java programs via
maven.

This book will take you to the next level while showing you the design theme behind many
concurrency patterns. This book hopes to help developers who want to learn patterns to
build scalable and high performing apps.

What this book covers
Chapter 1, Concurrency - An Introduction, provides an introduction to concurrent
programming. As you will see, concurrency is a world in itself. You will look at Unix
processes and the pipes and filters for concurrency pattern. The chapter covers an overview
of concurrent programming. You probably know some of this material already.

http://wiki.c2.com/?DesignPatternsBook
http://wiki.c2.com/?DesignPatternsBook
http://wiki.c2.com/?DesignPatternsBook
http://wiki.c2.com/?DesignPatternsBook
http://wiki.c2.com/?DesignPatternsBook
http://wiki.c2.com/?DesignPatternsBook
http://wiki.c2.com/?DesignPatternsBook
http://wiki.c2.com/?DesignPatternsBook
http://wiki.c2.com/?DesignPatternsBook
http://wiki.c2.com/?DesignPatternsBook
http://wiki.c2.com/?DesignPatternsBook
http://wiki.c2.com/?DesignPatternsBook
http://wiki.c2.com/?DesignPatternsBook

Preface

[3]

Chapter 2, A Taste of Some Concurrency Patterns, covers some essential basic concepts. The
essence of the Java Memory Model is introduced. You will also look at race conditions and
problems arising out of the shared state model. You will get a taste of the first concurrency
pattern—hand-over-hand locking.

Chapter 3, More Threading Patterns, covers explicitly synchronizing the mutable state and
the monitor pattern. You will see how this approach is fraught with problems. We wrap up
with a detailed look at the Active Object design pattern.

Chapter 4, Thread Pools, covers how threads communicate via the producer/consumer
pattern. The concept of thread communication is introduced. Then, the Master/Slave design
pattern is explained. The chapter wraps up with another look at the map-reduce pattern as
a special case of the fork-join pattern.

Chapter 5, Increasing the Concurrency, talks about the building blocks. Things such as
blocking queues, bounded queues, latches, FutureTask, semaphores, and barrier are
discussed. We talk about being live and safety. Finally, we describe immutability and how
immutable data structures are inherently thread safe.

Chapter 6, Functional Concurrency Patterns, introduces futures and talks about its monadic
nature. We cover the transformation and monad patterns and illustrate how futures
compose. We also look at promises.

Chapter 7, Actors Patterns, introduces the Actor paradigm. We recall the Active Object
again and then explain the actor paradigm—especially the no explicit locks nature of
things. We discuss patterns such as ask versus tell, the become pattern (and stressing
immutability), pipelining, and half sync or half async. We discuss these patterns and
illustrate them via example code.

To get the most out of this book
To get the most out of this book, you should have a decent level of Java programming
knowledge. It is assumed that you know the basics of Java threading. Here I cover the
essential aspects as a refresher. Having worked through some Java threading examples
would be definite plus. You should also be comfortable using maven, the Java build tool.

Using an IDE of your choice IntelliJ Idea, Eclipse or Netbeans would be helpful - but is not
strictly necessary. To illustrate the functional concurrency patterns - the last two chapters
use Scala. The code uses basic Scala constructs. It would be good to go through an
introductory Scala tutorial - and you should be good to go.

Preface

[4]

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Concurrent- ​Patterns- ​and-​Best- ​Practices. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

http://www.packt.com
http://www.packt.com/support
http://www.packt.com/support
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

A block of code is set as follows:

html, body, #map {
 height: 100%;
 margin: 0;
 padding: 0
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email customercare@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Preface

[6]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Concurrency – An Introduction

–What are concurrency and parallelism? Why should we study them? In this chapter, we
will look at the many aspects of the concurrent programming world. The chapter starts
with a brief overview of parallel programming and why we need it. We cover ground
pretty fast here, touching upon the basic concepts.

As two major forces, huge data size and fault tolerance drive concurrent programming. As we
go through this chapter, some of our examples will touch upon some clustered computing
patterns, such as MapReduce. Application scaling is an extremely important concept for
today's developer. We will look at how concurrency helps applications scale. Horizontal
scaling (https:/​/ ​stackoverflow. ​com/ ​questions/ ​11707879/ ​difference- ​between- ​scaling-
horizontally-​and- ​vertically- ​for- ​databases) is the magic behind today's massively
parallel software systems.

Concurrency entails communication between the concurrent entities. We will look at two
primary concurrency models: message passing and shared memory. We will describe the
message passing model using a UNIX shell pipeline. We will then describe the shared
memory model and show how explicit synchronization creates so many problems.

A design pattern is a solution to a design problem in context. Knowledge of the
catalog of patterns helps us to come up with a good design for specific problems. This book
explains the common concurrency design pattern.

We will wrap up the chapter by looking at some alternative ways of achieving concurrency,
namely the actor paradigm and software transactional memory.

In this chapter, we will cover the following topics:

Concurrency
Message passing model
Shared memory and shared state model
Of patterns and paradigms

https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases
https://stackoverflow.com/questions/11707879/difference-between-scaling-horizontally-and-vertically-for-databases

Concurrency – An Introduction Chapter 1

[8]

For complete code files you can visit https:/ ​/ ​github. ​com/
PacktPublishing/ ​Concurrent- ​Patterns- ​and-​Best- ​Practices

Concurrency in a breeze
We start with a simple definition. When things happen at the same time, we say that things
are happening concurrently. As far as this book is concerned, whenever parts of an
executable program run at the same time, we are dealing with concurrent programming.
We use the term parallel programming as a synonym for concurrent programming.

The world is full of concurrent occurrences. Let's look at a real-life example. Say that there
are a certain number of cars driving on a multilane highway. In the same lane, though, cars
need to follow other cars, the ones that are already ahead of them. A road lane, in this case,
is a resource to be shared.

When a toll plaza is built, however, things change. Each car stops in its lane for a minute or
two to pay the toll and collect a receipt. While the toll attendant is engaged with the car,
other cars behind it need to queue up and wait. However, a toll plaza has more than one
payment gate. There are attendants at each gate, attending to different cars at the same
time. If there are three attendants, each serving one gate, then three cars could pay the toll
at the same point in time; that is, they can get serviced in parallel, as shown in the following
diagram:

https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices

Concurrency – An Introduction Chapter 1

[9]

Note that the cars queuing up at the same booth get serviced in sequence. At any given
time, a toll attendant can service only one car, so others in the queue need to wait for their
turn.

It would be really odd to see a toll booth with just one gate! People wouldn't be served in
parallel. Strictly sequential processing of toll charges would make life unbearable for the
frequent traveler.

Even when there are multiple gates and an abnormally large influx of cars (say on
vacations), each gate becomes a bottleneck; there are far fewer resources for servicing the
workload.

The push for concurrency
Let's come back to the software world. You want to listen to some music at the same
time that you are writing an article. Isn't that a basic need? Oh yes, and your mail program
should also be running so that you get important emails in time. It is difficult to imagine life
if these programs don't run in parallel.

As time goes by, software is becoming bigger and demand for faster CPUs is ever
increasing; for example, database transactions/second are increasing in number. The data
processing demand is beyond the capabilities of any single machine. So a divide and
conquer strategy is applied: many machines work concurrently on different data partitions.

Another problem is that chip manufacturers are hitting limits on how fast they can make
chips go! Improving the chip to make the CPU faster has inherent limitations. See http:/ ​/
www.​gotw.​ca/​publications/ ​concurrency- ​ddj.​htm for a lucid explanation of this problem.

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

Concurrency – An Introduction Chapter 1

[10]

Today's big data systems are processing trillions of messages per second, and all using
commodity hardware (that is, the hardware you and me are using for our day-to-day
development)—nothing fancy, like a supercomputer.

The rise of the cloud has put provisioning power in the hands of almost everyone. You
don't need to spend too much upfront to try out new ideas—just rent the processing
infrastructure on the cloud to try out the implementation of the idea. The following
diagram shows both scaling approaches:

The central infrastructure design themes are horizontal versus vertical scaling. Horizontal
scaling essentially implies the use of a distributed concurrency pattern; it's cost effective,
and a prominent idea in the big data world. For example, NoSQL databases (such as
Cassandra), analytics processing systems (such as Apache Spark), and message brokers
(such as Apache Kafka) all use horizontal scaling, and that means distributed and
concurrent processing.

Concurrency – An Introduction Chapter 1

[11]

On the other hand, installing more memory or processing power in a single computer is a
good example of vertical scaling. See https:/ ​/​www. ​g2techgroup. ​com/ ​horizontal- ​vs-
vertical-​scaling- ​which- ​is- ​right- ​for- ​your-​app/ ​ for a comparison between the two
scaling approaches.

We will look at two common concurrency themes for horizontally scaled systems:
MapReduce and fault tolerance.

The MapReduce pattern
The MapReduce pattern is an example of a common case where concurrency is needed. The
following diagram shows a word frequency counter; given a huge text stream of trillions of
words, we need to see how many times every word occurs in the text. The algorithm is
super simple: we keep the running count of each word in a hash table, with the word as
the key and the counter as the value. The hash table allows us to quickly look up the next
word and increment the associated value (counter).

Given the size of the input text, one single node does not have the memory for the entire
hash table! Concurrency provides a solution, using the MapReduce pattern, as shown in the
following diagram:

https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/
https://www.g2techgroup.com/horizontal-vs-vertical-scaling-which-is-right-for-your-app/

Concurrency – An Introduction Chapter 1

[12]

The solution is divide and conquer: we maintain a distributed hash table and run the same
algorithm, suitably adapted for a cluster.

The master node reads—parses—the text and pushes it to a set of slave processing nodes.
The idea is to distribute the text in such a way that one word is processed by one slave node
only. For example, given three processing nodes, as shown in the preceding diagram, we
would divide rangewise: push nodes starting with the characters {a..j} to node 1, {k..r}
to node 2 and the rest—{s..z}—onto node 3. This is the map part (distribution of work).

Once the stream is exhausted, each slave node sends its frequency result back to the master,
which prints the result.

The slave nodes are all doing the same processing concurrently. Note that the algorithm
would run faster if we add, more slave nodes; that is, if we scale it horizontally.

Fault tolerance
Another common approach is to build in intentional redundancy to provide fault
tolerance; for example, big data processing systems, such as Cassandra, Kafka, and
ZooKeeper, can't afford to go down completely. The following diagram shows how
concurrently replicating the input stream protects against any one slave node going down.
This pattern is commonly used by Apache Kafka, Apache Cassandra, and many other
systems:

The right side of the diagram shows redundant machines on which a data stream
is replicated.

Concurrency – An Introduction Chapter 1

[13]

In case any one node goes down (hardware failure), other redundant nodes take its place,
thus ensuring that the system as a whole is never down.

Time sharing
In the real world, we also perform a number of tasks concurrently. We attend to a task and
then if another task also needs our attention, we switch to it, attend to it for a while, and
then go back to the first task. Let's look at a real-world example of how an office
receptionist deals with their tasks.

When you visit any office, there is usually a receptionist who receives you and asks for
your business. Say that, just as they are asking about who you need to meet, the office
buzzer rings. They take the call, say "hello," speak for a while, and then ask you to wait for
a second. Once the call is finished, they resume talking to you. These actions are shown in
the following diagram:

The receptionist is sharing her time among all the parties interested in talking to her. She is
working in a way so that everyone gets a slice of her time.

Concurrency – An Introduction Chapter 1

[14]

Now, keeping the toll plaza and the receptionist in mind, replace the toll operators with a
CPU core and the cars with tasks, and you get a fairly good mental model of today's
concurrent hardware. If we increase the number of toll operators from three to six, we will
increase the number of cars getting serviced in parallel (at the exact same time) to six. A
pleasant side effect is that the queued cars will also spread out, and every car will get
serviced faster. The same holds true when we execute a concurrent program. Hence, things
are faster overall.

Just as the receptionist is doing multiple things at the same time, such as time sharing
between the visitors, a CPU shares time with processes (running programs). This is how
concurrency gets supported on a single CPU.

Two models for concurrent programming
Concurrency implies that multiple tasks are happening in parallel to achieve a common
goal. Just like communication with a group, we need to communicate and coordinate with
the concurrently executing entities.

For example, let us say that we present the previously mentioned word frequency counter
via a UI functionality. A user uploads a huge file and clicks the start button, resulting in a
long-running MapReduce job. We need to distribute the work among the slaves. To send
the workload, we need a way to communicate with them. The following diagram shows the
various streams of communications that are required in this system:

If the user changes their mind and aborts the job, we need to communicate the stop
message to each concurrent entity, as any further processing is futile.

Concurrency – An Introduction Chapter 1

[15]

There are two prominent models for concurrent communications: message passing and shared
memory. The preceding diagram shows a message passing model.

We will first discuss the message passing model, using the celebrated UNIX shell pipeline
as an example. Next, we will see the shared memory approach in depth and the problems
that are associated with it.

The message passing model
Before we dive into the details of the message passing model, we will look at a bit of basic
terminology.

When an executable program runs, it is a process. The shell looks up the executable, talks to
the operating system (OS) using system calls, and thereby creates a child process. The OS
also allocates memory and resources, such as file descriptors. So, for example, when you
run the find command (the executable lives at /usr/bin/find), it becomes a child
process whose parent process is the shell, as shown in the following diagram:

Concurrency – An Introduction Chapter 1

[16]

In case you don't have the pstree command, you could try the ptree command instead.
The ps --forest command will also work to show you the tree of processes.

Here is a UNIX shell command recursively searching a directory tree for HTML files
containing a word:

 % find . -type f -name '*.html' | xargs egrep -w Mon /dev/null
./Untitled.html:Mon Jun 5 10:23:38 IST 2017
./Untitled.html:Mon Jun 5 10:23:38 IST 2017
./Untitled.html:Mon Jun 5 10:23:38 IST 2017
./Untitled.html:Mon Jun 5 10:23:38 IST 2017

We see a shell pipeline in action here. The find command searches the directory tree
rooted at the current directory. It searches for all files with the .html extension and
outputs the filenames to standard output. The shell creates a process from the find
command and another process for the xargs command. An active (running) program is
called a process. The shell also arranges the output of the find command to go to the input
of the xargs command via a pipe.

The find process is a producer here. The list of files it produces is consumed by
the xargs command. xargs collects a bunch of filenames and invokes egrep on them.
Lastly, the output appears in the console. It is important to note that both the processes are
running concurrently, as shown in the following diagram:

Concurrency – An Introduction Chapter 1

[17]

Both these processes are collaborating with each other, so our goal of recursively searching
the directory tree is achieved. One process is producing the filenames. The other is
searching these files. As these are running in parallel, we start getting the results as soon
as there are some qualifying filenames. We start getting results faster, which means the
system is responsive.

Quiz: What would happen if both these processes ran one after another?
How would the system arrange that the result of the find command is
communicated to the xargs command?

Just as in real life, collaboration needs communication. The pipe is the mechanism that
enables the find process to communicate with the xargs process. The pipe acts both as a
coordinator and as a communication mechanism.

Coordination and communication
We need to make sure that when the find process has nothing more to report, which
means that it has found all the qualifying filenames, egrep should also stop!

Similarly, if any of the processes in the pipeline quits for any reason, then the entire
pipeline should stop.

For example, here is a pipeline that computes the factorial of 1,000:

% seq 1000 | paste -s -d '*' | bc
40238726007709377354370243392300398571937486421071463254379991042993\
85123986290205920442084869694048004799886101971960586316668729948085\
.... rest of the output truncated

The pipeline has three filters: seq, paste, and bc. The seq command just prints numbers
from 1 to 1,000 and puts them in the console. The shell arranges things so that the output
gets fed into the pipe that is consumed by the paste filter.

The paste filter now joins all the lines with the * delimiter. It just does that little bit, and
outputs the line to standard output, as shown in the following screenshot:

Concurrency – An Introduction Chapter 1

[18]

The paste command writes to the console; the shell has arranged the output to go into a
pipe again. At the other end, the consumer is bc. The bc command or filter is capable of
arbitrary precision arithmetic; in simpler terms, it can perform very large computations.

When the seq command exits normally, this triggers an EOF (end of file) on the pipe. This
tells paste that the input stream has nothing more to read, so it does the joining, writes the
output on the console (which is going to a pipe really), and quits in turn.

This quitting results in an EOF for the bc process, so it computes the multiplication, prints
the result to the standard output, which is really a console, and finally quits. This is an
ordered shutdown; no more work needs to be done, so exit and relinquish the computing
resources for other concurrent processes, if there are any. The melodramatic term for this
marker is poison pill. See https:/ ​/ ​dzone. ​com/​articles/ ​producers- ​and- ​consumers- ​part- ​3
for more information.

At this point, the pipeline processing is done and we get back to the shell prompt again, as
shown in the following diagram:

Unbeknownst to all the filters participating in the pipeline, the parent shell has arranged for
this coordination. This ability of the framework to be composed of smaller parts without the
parts themselves being aware of the composition is a great design pattern, called pipes and
filters. We will see how composition is one central theme, yielding robust concurrent
programs.

What happens when the seq process produces numbers way too fast? Would the
consumer (paste in this case) get overwhelmed? Aha, no! The pipeline also has an implicit
flow control built into it. This is yet another central theme, called back-pressure, where the
faster producer (or consumer) is forced to wait so the slower filter catches up.

Let's next look at this flow control mechanism.

https://dzone.com/articles/producers-and-consumers-part-3
https://dzone.com/articles/producers-and-consumers-part-3
https://dzone.com/articles/producers-and-consumers-part-3
https://dzone.com/articles/producers-and-consumers-part-3
https://dzone.com/articles/producers-and-consumers-part-3
https://dzone.com/articles/producers-and-consumers-part-3
https://dzone.com/articles/producers-and-consumers-part-3
https://dzone.com/articles/producers-and-consumers-part-3
https://dzone.com/articles/producers-and-consumers-part-3
https://dzone.com/articles/producers-and-consumers-part-3
https://dzone.com/articles/producers-and-consumers-part-3
https://dzone.com/articles/producers-and-consumers-part-3
https://dzone.com/articles/producers-and-consumers-part-3
https://dzone.com/articles/producers-and-consumers-part-3
https://dzone.com/articles/producers-and-consumers-part-3
https://dzone.com/articles/producers-and-consumers-part-3
https://dzone.com/articles/producers-and-consumers-part-3
https://dzone.com/articles/producers-and-consumers-part-3
https://dzone.com/articles/producers-and-consumers-part-3

Concurrency – An Introduction Chapter 1

[19]

Flow control
The wonderful idea behind the previously mentioned pipeline is that the find producer
and the xargs consumer don't know each other. That is, you could
compose any filters using pipes. This is the celebrated pipes and filters design pattern in
action. The shell command line gives you a framework that enables you to compose any
filters together into a pipeline.

What does it give us? You can reuse the same filter in unexpected and creative ways to get
your work done. Each filter just needs to follow a simple protocol of accepting input on file
descriptor 0, writing output to file descriptor 1, and writing errors to descriptor 2.

You can refer to a UNIX shell programming guide for more information on descriptors and
related ideas. My personal favorite is UNIX Power Tools, 3rd Ed. by Jerry Peek et al.

Flow control means we are trying to regulate the flow of something. When you tell someone
to talk slowly so that you can follow their meaning, you are trying to control the flow of
words.

Flow control is essential in ensuring that the producer (such as a fast speaker) does
not overwhelm the consumer (such as a listener). In the example we have been working on,
the find process could produce filenames faster; the egrep process might need more time
to process each file. The find producer works at its own pace, and does not care about a
slow consumer.

If the pipe gets full because of the slower consumption by xargs, the output call by
find is blocked; that is, the process is waiting, and so it can't run. This pauses find until
the consumer has finally found the time to consume some filenames and the pipe has some
free space. It works the other way around as well. A fast consumer blocks an empty pipe.
Blocking is a process-level mechanism, and find (or any other filter) does not know it is
blocking or unblocking.

Concurrency – An Introduction Chapter 1

[20]

The moment a process starts running, it will perform its computation for the find filter,
ferret out some filenames, and output these to the console. Here is a simplified state
diagram , showing a process's life cycle:

What is this scheduled state? As mentioned, a running process could get blocked waiting for
some I/O to happen, and thus it cannot use the CPU. So it is put on the back burner for a
while, and other processes, waiting their turn, are given a chance to run. Drawing a parallel
with the previously mentioned receptionist scenario, the receptionist can ask us to be seated
and wait a while, and then move on to the next guest in the queue.

The other idea is that the process has run its allocated slice of time, so other processes should
now get a chance, too. In this case, even though the process can run and utilize the CPU, it
is moved back to the scheduled state, and can run again once other processes have used their
run slices. This is preemptive multitasking we have here, which makes it a fair world to live
in! Processes need to run so that useful work can happen. Preemptive scheduling is an idea
to help each process get a slice of CPU time.

However, there is another notion that could throw a spanner into this scheme of things. A
process with a higher priority is given preference over lower priority processes.

A real-world example should help make this clear. While driving on roads, when we see an
ambulance or a police car with a screaming siren, we are required to make way for them.
Similarly, a process executing a piece of business logic may need more priority than the
data backup process.

Concurrency – An Introduction Chapter 1

[21]

Divide and conquer
GNU parallel (https:/ ​/​www. ​gnu. ​org/ ​software/ ​parallel/ ​) is a tool for executing
commands in parallel on one or more nodes. The following diagram shows a simple run
where we generate 10 text files and zip them (using the gzip command) in parallel. All the
available cores are used to run gzip , thereby reducing the overall processing time:

The core principle at work is divide and conquer. We see the same principle again and again:
a parallelizable job is split into pieces, each of which is processed in parallel (thereby
overlapping processing and reducing the time). The parallel command also allows you
to distribute long-running jobs on different nodes (machines), thereby allowing you to
harness the idle (possibly unused) cores to process jobs quickly.

https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/

Concurrency – An Introduction Chapter 1

[22]

The concept of state
The communication depicted in the preceding section could be looked at as message
passing; find is passing on the filename as a message to the egrep process, or seq is
passing messages (numbers) to the paste process. Generally speaking, a producer is
sending messages to the consumer for consuming, as shown in the following diagram:

As shown in the preceding diagram, each process has its own state by design, and this state
is hidden from other processes. The processes communicate with explicit messaging
channels, in the same way that a pipe directs the flow of water.

This notion of state is very important to understand the various upcoming concurrency
patterns. We could look at the state as data in a certain stage of processing. For example, the
paste process could be using program counters to generate the numbers. It could also be
writing the numbers to the standard output (file descriptor 1; by default, the console). At
the same time, the paste process is processing its input and writing data to its standard
output. Both processes do not care about each other's state; in fact, they don't even know
anything about the other process.

Concurrency – An Introduction Chapter 1

[23]

The real world is full of encapsulated states. The following diagram shows an example:

It defeats common sense to share the state (the need to buy milk) with the postal department
employee. It is useless for him to know it, and it could create confusion.

Likewise, the employee will be going about his daily tasks and has a state of his own. Why
do we, as consumers, need to know the internal details (state) of how he is going to manage
his work (dispatch this big stack of letters)? The world is concurrent, and the various entities
in it also hide unnecessary details from each other to avoid confusion. If we don't hide the
internal details (that is, the state), it would create havoc.

We could ask whether there is a global shared memory. If there is, then we could use it as a
message channel. Using a shared data structure of our choice, the producer could put the
data in it for subsequent consumption; that is, the memory is used as a channel of
communication.

Concurrency – An Introduction Chapter 1

[24]

The shared memory and shared state model
What if we write a multithreaded program to achieve the same result? A thread of
execution is a sequence of programming instructions, scheduled and managed by the operating
system. A process could contain multiple threads; in other words, a process is a container for
concurrently executing threads, as shown in the following diagram:

As shown in the preceding diagram, multiple threads share the process memory. Two
concurrently running processes do not share memory or any other resources, such as file
descriptors. In other words, different concurrent processes have their own address
space, while multiple threads within the same process share their address space. Each
thread also has a stack of its own. This stack is used for returning after a process call.
Locally scoped variables are also created on the stack. The relationships between these
elements are shown in the following diagram:

Concurrency – An Introduction Chapter 1

[25]

As shown in the preceding diagram, both the threads communicate via the process's global
memory. There is a FIFO (first in first out) queue in which the producer thread t1 enters
the filenames. The consumer thread, t2, picks up the queue entries as and when it can.

What does this data structure do? It works on a similar principle as the aforementioned
pipe. The producer can produce items as fast or slow as it can. Likewise, the consumer
thread picks the entries from the queue as needed. Both work at their own pace, without
caring or knowing of each other.

Exchanging information this way looks simpler. However, it brings with it a host of
problems. Access to the shared data structure needs to be synchronized correctly. This is
surprisingly hard to achieve. The next few sections will deal with the various issues that
crop up. We will also see the various paradigms that shy away from the shared state model
and tilt towards message passing.

Threads interleaving – the need for
synchronization
The way threads get scheduled to run is within the realm of the operating system. Factors
such as the system load, the number of processes running at a time on the machine, make
thread scheduling unpredictable. A good example is a seat in a movie hall.

Concurrency – An Introduction Chapter 1

[26]

Let's say that the movie that is playing is a big crowd-puller. We need to follow a protocol;
we book a ticket by reserving a seat. The following diagram shows the rules that are based
around the ticket booking system:

What if the booking is erroneously given to two people at the same time? The result would
be chaotic, as both would rightfully try to go and occupy the seat at the same time.

There is a certain framework at work to make sure this situation does not happen in
practice. The seat is shared among interested people and one person needs to book it in
advance.

Likewise, threads need to lock a resource (that is, a shared, mutable data structure). The
problem is with explicit locking. If the onus of correctly synchronizing is with the
application, then someone, someday may forget to do it right and all hell will break loose.

To illustrate the need for correct synchronization, the following diagram shows an integer
variable shared between two threads:

Concurrency – An Introduction Chapter 1

[27]

As shown in the preceding diagram, if the interleaving happens to be right, things may
work as expected. Otherwise, we will have a lost update to deal with.

Instead, just like a movie ticket acting as a lock, every Java object has a lock. A thread
acquires it, performs the state mutations, and unlocks. This entire sequence is a critical
section. If your critical section needs to mutate a set of objects, you need to lock each one
separately.

Generally, the advice is to keep the critical section as small as possible. We will discuss the
reason in the next section.

Concurrency – An Introduction Chapter 1

[28]

Race conditions and heisenbugs
The lost update is an example of a race condition. A race condition means that the
correctness of the program (the way it is expected to work) depends on the relative timing
of the threads getting scheduled. So sometimes it works right, and sometimes it does not!

This is a situation that is very hard to debug. We need to reproduce a problem to investigate
it, possibly running it in a debugger. What makes it hard is that the race condition cannot
be reproduced! The sequence of interleaved instructions depends on the relative timing of
events that are strongly influenced by the environment. Delays are caused by other running
programs, other network traffic, OS scheduling decisions, variations in the processor's clock
speed, and so on. A program containing a race condition may exhibit different behavior, at
different times.

A heisenbug and race conditions are explained in the diagram:

These are heisenbugs—essentially nondeterministic and hard to reproduce. If we try
debugging a heisenbug by attaching a debugger, the bug may disappear!

There is simply no way to debug and fix these. There is some tooling support, such as the
tha tool (https:/​/ ​docs. ​oracle. ​com/ ​cd/ ​E37069_ ​01/ ​html/ ​E54439/ ​tha- ​1.​html) and helgrind
(http:/​/​valgrind. ​org/ ​docs/ ​manual/ ​drd- ​manual. ​html); however, these are language or
platform specific, and don't necessarily prove the absence of races.

Clearly, we need to avoid race conditions by design, hence the need to study concurrency
patterns and this book.

https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
https://docs.oracle.com/cd/E37069_01/html/E54439/tha-1.html
http://valgrind.org/docs/manual/drd-manual.html
http://valgrind.org/docs/manual/drd-manual.html
http://valgrind.org/docs/manual/drd-manual.html
http://valgrind.org/docs/manual/drd-manual.html
http://valgrind.org/docs/manual/drd-manual.html
http://valgrind.org/docs/manual/drd-manual.html
http://valgrind.org/docs/manual/drd-manual.html
http://valgrind.org/docs/manual/drd-manual.html
http://valgrind.org/docs/manual/drd-manual.html
http://valgrind.org/docs/manual/drd-manual.html
http://valgrind.org/docs/manual/drd-manual.html
http://valgrind.org/docs/manual/drd-manual.html
http://valgrind.org/docs/manual/drd-manual.html
http://valgrind.org/docs/manual/drd-manual.html
http://valgrind.org/docs/manual/drd-manual.html
http://valgrind.org/docs/manual/drd-manual.html
http://valgrind.org/docs/manual/drd-manual.html

Concurrency – An Introduction Chapter 1

[29]

Correct memory visibility and happens-before
There is yet another problem that could come up with incorrect synchronization: incorrect
memory visibility. The synchronized keyword prevents the execution of critical sections by
more than one thread. The synchronized keyword also makes sure the thread's local
memory syncs up correctly with the shared memory, as shown in the following diagram:

What is this local memory? Note that on a multicore CPU, each CPU has a cache for
performance reasons. This cache needs to be synced with the main shared memory.
The cache coherence needs to be ensured so that each thread running on a CPU has the right
view of the shared data.

As shown in the preceding diagram, when a thread exits a synchronized block, it issues
a write barrier, thereby syncing the changes in its cache to the shared memory. On the other
hand, when a thread enters a synchronized block, it issues a read barrier, so its local cache is
updated with the latest changes in the shared memory.

Note that this is again not easy. In fact, very seasoned programmers were tripped up when
they proposed the double-checked locking pattern. This seemingly brilliant optimization was
found to be flawed in light of the preceding memory synchronization rules.

Concurrency – An Introduction Chapter 1

[30]

For more information on this botched optimization attempt, take a look at https:/ ​/​www.
javaworld.​com/​article/ ​2074979/ ​java- ​concurrency/ ​double- ​checked- ​locking- ​-​clever- ​-
but-​broken.​html.

However, Java's volatile keyword guarantees correct memory visibility. You don't
need to synchronize just to ensure correct visibility. This keyword also guarantees ordering,
which is a happens-before relationship. A happens-before relationship ensures that any
memory writes done by a statement are visible to another statement, as shown in the
following code:

private int i = 0;
private int j = 0;
private volatile boolean k = false;
// first thread sets values
i = 1;
j = 2;
k = true;

All the variable values will be set to have a happens-before relationship because of the
volatile that is being set. This means that after the variable k is set, all the previous changes
are guaranteed to have happened! So the value of the i and j variables are guaranteed to be
set, as shown in the following snippet:

 // second thread prints them
System.out.println("i = " + i + ", j = " + j + ", k = " + k) // the i and j
values will have been flushed to memory

The volatile keyword, however, does not guarantee atomicity. See http:/ ​/​tutorials.
jenkov.​com/​java- ​concurrency/ ​volatile. ​html for more information.

Sharing, blocking, and fairness
Just like the process life cycle, threads also have a life cycle. The following figure shows the
various thread states. It shows three threads, t1, t2, and t3, in the Runnable, Running, and
Timed Wait states. Here is a brief explanation of each state:

New: When a Thread object is just created. The thread is not alive, as yet.
Runnable: When the start() function is called on the thread object, its state is
changed to runnable. As shown in the following diagram, a thread
scheduler kicks in to decide when to schedule this thread to be run.

https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
https://www.javaworld.com/article/2074979/java-concurrency/double-checked-locking--clever--but-broken.html
http://tutorials.jenkov.com/java-concurrency/volatile.html
http://tutorials.jenkov.com/java-concurrency/volatile.html
http://tutorials.jenkov.com/java-concurrency/volatile.html
http://tutorials.jenkov.com/java-concurrency/volatile.html
http://tutorials.jenkov.com/java-concurrency/volatile.html
http://tutorials.jenkov.com/java-concurrency/volatile.html
http://tutorials.jenkov.com/java-concurrency/volatile.html
http://tutorials.jenkov.com/java-concurrency/volatile.html
http://tutorials.jenkov.com/java-concurrency/volatile.html
http://tutorials.jenkov.com/java-concurrency/volatile.html
http://tutorials.jenkov.com/java-concurrency/volatile.html
http://tutorials.jenkov.com/java-concurrency/volatile.html
http://tutorials.jenkov.com/java-concurrency/volatile.html
http://tutorials.jenkov.com/java-concurrency/volatile.html
http://tutorials.jenkov.com/java-concurrency/volatile.html
http://tutorials.jenkov.com/java-concurrency/volatile.html

Concurrency – An Introduction Chapter 1

[31]

Running: Eventually, the thread scheduler picks one of the threads from the
runnable thread pool and changes its state to Running. This is when the the
thread starts executing. The CPU starts the execution of this thread.
Blocked: The thread is waiting for a monitor lock. As noted previously, for a
shared resource such as a mutable memory data structure, only the thread can
access/read/mutate it. While a thread has the lock, other threads will be blocked.
Waiting: Wait for another thread to perform an action. Threads commonly block
while doing I/O.
Timed Wait: The thread waits for an event for a finite amount of time.
Terminated: The thread is dead and cannot go back to any other state.

A thread goes back to the Runnable state once the event it waited for happens:

As shown in the preceding diagram, a blocking thread is expensive and wasteful. Why is
this so? Remember, a thread is a resource itself. Instead of a thread that is just blocked and
doing nothing, it would be far more optimal to employ it for processing something else.
Wouldn't it be good to allocate the thread to do something useful?

Keeping the critical sections small is one way to be fair to all threads. No thread holds the
lock for a long time (although this is can be altered).

Could we avoid blocking the thread and instead use it for something else? Well, that brings
us to the theme of asynchronous versus synchronous executions.

Concurrency – An Introduction Chapter 1

[32]

Asynchronous versus synchronous executions
Blocking operations are bad, as they waste resources. By blocking, we mean operations that
take a long time to complete. Synchronous execution allows tasks to execute in a sequence,
waiting for the current operation to complete before starting with the next. For example,
making a phone call is synchronous. We dial the number, wait for the person on other side
to say "hello," and then proceed with the conversation.

On the other hand, posting a letter is done asynchronously. One does not post a letter and
block for its response. We post it and then go our own way, doing other stuff. Some time in
the future, we can expect a response (or an error if the letter could not be delivered).

As another example, some restaurants give you a lunch token. You pay for lunch and get a
token, which is a promise that you will get to eat in the near future. If there is a big queue at
the counter, you may occupy yourself with something else in the meantime and then try
again later.

This is an asynchronous model.

Imagine what would happen in a case where there is no token system in place. You pay and
then just wait for your turn to be served, blocked while users at the front of the queue are
served.

Coming back to the software world, file and network I/O are blocking. So are database calls
using blocking drivers, as shown in the following diagram:

Concurrency – An Introduction Chapter 1

[33]

Instead of blocking and wasting the thread doing nothing, we could look at the workflow
as a mix of unblocking and blocking tasks. We would then handle a blocking task using a
future: an abstraction that will complete eventually and call us back with the results or an
error.

This is a change in the paradigm, where we start thinking of designing our tasks differently
and representing them using higher-level abstractions, such as a future (which we discussed
previously), and not deal with the threads directly. Actors are another abstraction over
threads, that is, another paradigm.

Futures offer composability. They are monads. You can create a pipeline of future operations
to perform higher-level computations, as we will soon see in an upcoming chapter.

Java's nonblocking I/O
Java NIO (New IO) is a nonblocking I/O API for Java. This NIO is an alternative to the
standard Java I/O API. It provides abstractions such as channels, buffers, and selectors. The
idea is to provide an implementation that can use the most efficient operations provided by
the operating system, as shown in the following screenshot:

Concurrency – An Introduction Chapter 1

[34]

A channel is just a bidirectional I/O stream. A single thread can monitor all the channels an
application has opened. Data arriving at any channel is an event, and the listening thread is
notified of its arrival.

The selector uses event notification: a thread can then check whether the I/O is complete
without any need for blocking. A single thread can handle multiple concurrent connections.

This translates into two primary benefits:

Overall, you would need fewer threads. As a thread has a memory footprint, the
memory management would have less overhead.
Threads could do something useful when there is no I/O. This opens up the
possibility of optimization, as threads are a valuable resource.

The Netty framework (https:/ ​/​netty. ​io/ ​) is an NIO-based client-server framework. The
Play framework is a high-performance, reactive web framework based on Netty.

Of patterns and paradigms
Moving away from explicit state management is a very prominent theme in programming.
We always need a higher level of abstraction over the shared state model. As explained
earlier, explicit locking does not cut it.

The various concurrency patterns that we will study in this book try to stay away from
explicit locking. For example, immutability is a major theme, giving us persistent data
structures. A persistent data structure performs a smart copy on a write, thereby avoiding
mutation altogether, as shown in the following diagram:

https://netty.io/
https://netty.io/
https://netty.io/
https://netty.io/
https://netty.io/
https://netty.io/
https://netty.io/
https://netty.io/

Concurrency – An Introduction Chapter 1

[35]

As shown in the preceding diagram, the original linked list has three elements, {1, 2, 3}. The
head element of the list has the value 1. Thread T1 starts counting the number of elements
in the list.

At any point in time, thread T2 can prepend an element to the original list. This should not
disturb the world of thread T1; it should still see the original list as it is. In other words, T1's
version of the list as it sees it is preserved. Any change in the list creates a new version of
the data structure. As all the versions live as long as they are needed (that is,
are persistent), we don't need any locking.

Similarly, thread T2 removes the first two elements. This is achieved by just setting its head
to the third element; again, this doesn't disturb the state as seen by T1 and T2.

This is essentially copy-on-write. Immutability is a cornerstone of functional programming
languages.

Concurrency – An Introduction Chapter 1

[36]

A typical concurrency pattern is an active object. For example, how would you consume a
legacy code base from multiple threads? The code base was written without any parallelism
in mind, the state is strewn around, and it is almost impossible to figure out.

A brute-force approach could be to just wrap up the code in a big God object. Each thread
could lock this object, use it, and relinquish the lock. However, this design would hurt
concurrency, as it means that other threads would simply have to wait! Instead, we could
use an active object, as shown in the following diagram:

To use this active object, a proxy sits in between the caller threads and the actual code base.
It converts each invocation of the API into a runnable and puts it in a blocking queue (a
thread-safe FIFO queue).

There is just one thread running in the God object. It executes the runnables on the queue
one by one, in contrast to how a typical Java object method is invoked (passively). Here, the
object itself executes the work placed on the queue, hence the term active object.

The rest of this chapter describes the many patterns and paradigms, that have evolved over
the years, and are used in order to avoid the explicit locking of the shared state.

Event-driven architecture
Event-driven programming is a programming style in which code executes in response to an
event, such as a keypress or a mouse click. In short, the flow of a program is driven by
events.

Concurrency – An Introduction Chapter 1

[37]

GUI programming is an example of event-driven programming. For example, X Windows
(driving most of your Linux GUI) processes a series of XEvents. Every keypress, mouse
button press or release, and mouse movement generates a series of events. If you are on
Linux, there is a command called xev. Running it via Terminal spawns a window. When
moving a mouse over the window or pressing some keys, you can see the events that are
generated.

Here is a capture of the xev program on my Linux laptop:

You can plug in a callback, which gets triggered upon the reception of such an event. For
example, an editor program could use keypress events to update its state (resulting in its
documents being edited). Traditional event-driven programming could create a
complex callback flow, thereby making it hard to figure out the control flows in the code.

Event-driven architecture (EDA) helps in decoupling a system's modules. Components
communicate using events, which are encapsulated in messages. A component that emits an
event does not know anything about the consumers. This makes EDA extremely loosely
coupled. The architecture is inherently asynchronous. The producer is oblivious of the
consumers of the event messages. This process is shown in the following diagram:

Concurrency – An Introduction Chapter 1

[38]

Given one thread and an event loop, with the callbacks executing quickly, we have a nice
architecture. How does all this relate to concurrency? There could be multiple event loops
running on a pool of threads. Thread pooling is an essential concept, as we will see in the
upcoming chapters.

As we have seen, an event loop manages events. The events are passed on to an installed
handler, where they are processed. The handler can react to an event in two ways: either it
succeeds or it fails. A failure is passed to the event loop again as another event. The handler
for the exception decides to react accordingly.

Reactive programming
Reactive programming is a related programming paradigm. A spreadsheet is an excellent
example of a reactive application. If we set a formula and change any column value, the
spreadsheet program reacts and computes the new result columns.

A message-driven architecture is the foundation of Reactive applications. A message-driven
application may be event-driven, actor-based, or a combination of the two.

The following is a diagram of observable composition:

Concurrency – An Introduction Chapter 1

[39]

Composable event streams make event handling easier to understand. Reactive Extensions
(Rx) is a framework that provides composable observables. At the heart of this framework
is the observer pattern, with a functional flavor. The framework allows us to compose
multiple observables. The observers are given the resulting event stream in an
asynchronous fashion. For more information, see http:/ ​/​reactivex. ​io/​intro. ​html.

Function of composition is shown in the following code:

This Scala code shows five standalone methods. Each method is converted to a function
and then collected in a variable, list. The reduceRightcall iterates over this list and
composes all the functions into a bigger one, f.

The f("hello") call shows that the composition has worked!

The actor paradigm
All this concurrent programming is tricky. What is the correct synchronization and
visibility? What if we could go back to our simpler sequential programming model and let
the platform handle concurrency for us?

http://reactivex.io/intro.html
http://reactivex.io/intro.html
http://reactivex.io/intro.html
http://reactivex.io/intro.html
http://reactivex.io/intro.html
http://reactivex.io/intro.html
http://reactivex.io/intro.html
http://reactivex.io/intro.html
http://reactivex.io/intro.html
http://reactivex.io/intro.html
http://reactivex.io/intro.html

Concurrency – An Introduction Chapter 1

[40]

Look at the following diagram:

Actors are the abstraction over threads. We write our code using the message passing model
only. The only way of talking to an actor is by sending it a message.

Looking back at our UNIX shell model, the concurrency is there, but we don't deal with it
directly. Using actors, we write code as if it were for a sequential message processor.

Concurrency – An Introduction Chapter 1

[41]

We need to be aware of the underlying threading model, though. For example, we should
always use the tell and not the ask pattern, as shown in the picture. The tell pattern is where
we send a message to an actor and then forget about it, that is, we don't block for an
answer. This is essentially the asynchronous way of doing things:

An actor is a lightweight entity (threads are heavyweight). The creation and destruction of
actors, monetarily speaking, is similar to the creation and destruction of Java objects. Just as
we don't think of the cost while designing a UNIX pipeline (we focus largely on getting our
job done), actors give us the same freedom.

Actors also allow us to add supervision and restart capabilities, thereby allowing us to write
robust, resilient systems. This is the let it crash philosophy.

Actors are pretty old as a design; the paradigm was tried and tested in the Telecom domain
using the Erlang language.

We will be looking at the actor model and the Akka library in detail in an upcoming
chapter.

Message brokers
A message broker is an architectural pattern for enabling application integrations via a
message-driven paradigm. You can, for example, make a Python application and integrate
it with another that is written in C (or Java). Integrations are vital to an enterprise where
different applications are made to cooperate with each other.

Concurrency – An Introduction Chapter 1

[42]

Concurrent processing is obviously implied here. As the producers and consumers are
completely decoupled (they don't even know if the others exist), the producer and
consumer applications could even run on different machines, thereby overlapping the
processing and increasing the overall throughput:

Decoupling is really a central concept when you start thinking about concurrent systems.
Designing systems consisting of loosely coupled component systems gives us many
benefits. For example, we could reuse the components, which allows us to cut down on
development and maintenance costs. It also paves the way for enabling greater
concurrency.

What happens when a consumer produces messages too fast? The messages will be
buffered in the broker. This essentially means there is an inherent flow control mechanism at
work here. A slow consumer can consume at its own pace. Likewise, the producer can
produce messages at its own (faster) pace. As both are oblivious of each other, the overall
system works smoothly.

Concurrency – An Introduction Chapter 1

[43]

Software transactional memory
The idea of database transactions is also based around concurrent reads and writes. A
transaction embodies an atomic operation, which means that either all or none of the steps in
the operation are completed. If all the operations are completed, the transaction succeeds;
otherwise, the transaction aborts. The software transactional memory is a concurrency control
mechanism on similar lines. It, again, is a different paradigm, an alternative to lock-based
synchronization.

Just like a database transaction, a thread makes modifications and then tries to commit the
changes. Of course, if some other transaction wins, we roll back and retry. If there is an
error, the transaction aborts and we retry again.

This scheme of things is called optimistic locking, wherein we don't care about other possible
concurrent transactions. We just make changes and hope the commit succeeds. If it fails, we
keep trying until it eventually succeeds.

What are the benefits? We get increased concurrency, as there is no explicit locking, and all
threads keep progressing; only in the case of a conflict will they retry.

STM simplifies our understanding of multithreaded programs. This, in turn, helps make
programs more maintainable. Each transaction can be expressed as a single-threaded
computation, as shown in the following diagram. We don't have to worry about locking at
all:

Concurrency – An Introduction Chapter 1

[44]

Composability is a big theme: lock-based programs do not compose. You cannot take two
atomic operations and create one more atomic operation out of them. You need to
specifically program a critical section around these. STM, on the other hand, can wrap these
two operations inside a transaction block, as shown in the preceding diagram.

Parallel collections
Say that I am describing some new and exciting algorithm to you. I start telling you about
how the algorithm exploits hash tables. We typically think of such data structures as all
residing in memory, locked (if required), and worked upon by one thread.

For example, take a list of numbers. Say that we want to sum all these numbers. This
operation could be parallelized on multiple cores by using threads.

Now, we need to stay away from explicit locking. An abstraction that works
concurrently on our list would be nice. It would split the list, run the function on each
sublist, and collate the result in the end, as shown in the following diagram. This is the
typical MapReduce paradigm in action:

Concurrency – An Introduction Chapter 1

[45]

The preceding diagram shows a Scala collection that has been parallelized in order to use
concurrency internally.

What if the data structure is so large that it cannot all fit in the memory of a single machine?
We could split the collection across a cluster of machines instead.

The Apache Spark framework does this for us. Spark's Resilient Distributed Dataset
(RDD) is a partitioned collection that spreads the data structure across cluster machines,
and thus can work on huge collections, typically to perform analytical processing.

Summary
So, this was a whirlwind tour of the world of concurrency, dear reader. It served more as a
memory refresher for many of the things you probably knew already.

We saw that concurrency is very common in the real world, as well as in the software
world. We looked at the message passing and shared memory models, and saw how many
common themes drive these two models.

If the shared memory model uses explicit locking, a host of problems emerge. We discussed
race conditions, deadlocks, critical sections, and heisenbugs.

We wrapped up with a discussion of asynchronicity, the actor paradigm, and the software
transactional memory. Now that we have all this background knowledge, in the next
chapter, we will look at some core concurrency patterns. Stay tuned!

2
A Taste of Some Concurrency

Patterns
In the previous chapter, we touched upon the problem of races. We have race conditions in
real life too! The next example is a little hypothetical. People don't miss one another that
much, given the technology available these days. However, let's pretend we don't have this
technology (I know it's hard to imagine it—let's just pretend for a while though). Let's say
it's a Friday and I come home, planning to go for dinner and a movie. I call my wife and
daughter, and they reach the movie theater a little ahead of time. However, while driving
back home, I get caught in the Friday evening rush and get delayed in traffic. Because I'm
running so late, my wife decides to take a stroll and decides to call on a friend working
nearby for a cozy chat.

Meanwhile, I arrive at the movie theater, park my car and rush to the movie theater.
However, my wife is nowhere to be seen so I decide to check the nearby diner.

By the time I'm in the diner, my wife arrives at the movie theater and doesn't find me there.
So, she decides to check the parking lot.

This could go on and on and we could end up missing our Friday movie and dinner in the
process. But, thanks to the cell phone, we can easily synchronize our movements and meet
each other in time for the movie.

In this chapter, we will look at a thread's context. Understanding this concept is central to
understanding the way Java's concurrency works. We start by looking at the singleton
design pattern and the problem of a shared state. However, let's look at some background
information first.

For complete code files you can visit https:/ ​/ ​github. ​com/
PacktPublishing/ ​Concurrent- ​Patterns- ​and-​Best- ​Practices

https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices

A Taste of Some Concurrency Patterns Chapter 2

[47]

A thread and its context
 As we saw in Chapter 1, Concurrency – An Introduction, a process is a container for threads.
A process has executable code and global data; all threads share these things with other
threads of the same process. As the following diagram shows, the binary executable code is
read-only. It can be freely shared by threads as there is nothing mutable there.

The global data is mutable though and, as shown in the diagram, this is the source of
concurrency bugs! Most of the techniques and patterns we will study in this book are ways
to avoid such bugs.

Threads of the same process run concurrently. How is this achieved, given there is just one
set of registers? Well, here's the answer: the thread context. This context helps a thread keep
its runtime information independent of another thread. The thread context holds the
register set and the stack.

The following diagram shows the various pieces:

A Taste of Some Concurrency Patterns Chapter 2

[48]

 When the scheduler preempts a running thread, it backs up the thread context—that is to
say, it saves the contents of the CPU registers and the stack. Next, it chooses another
runnable thread and loads its context instead, meaning it restores the thread register's
contents as they were the last time (its stack is as it was the last time, and so on) and
resumes executing the thread.

What about the executable binary code? Processes running the same code can share the
same piece because the code will not change during runtime. (For example, the code for
shared libraries is shared across processes.)

Here are some simple rules to understand the thread safety aspect of the state, as
represented by various variables:

As shown, the final and local variables (including function arguments) are always thread
safe. You don't need any locks to protect them. The final variables are immutable (that is,
read-only) so there is no question of multiple threads changing the value at the same time.

Final Variables also enjoy a special status with respect to visibility. We will cover what this
means in detail, later. Mutable Static and Instance Variables are unsafe! If these are not
protected, we could easily create Race Conditions.

A Taste of Some Concurrency Patterns Chapter 2

[49]

Race conditions
Let's start by looking at some concurrency bugs. Here is a simple example of incrementing
a counter:

public class Counter {
 private int counter;
 public int incrementAndGet() {
 ++counter;
 return counter;
}

This code is not thread-safe. If two threads are running using the same object concurrently,
the sequence of counter values each gets is essentially unpredictable. The reason for this is
the ++counter operation. This simple-looking statement is actually made up of three
distinct operations, namely read the new value, modify the new value, and store the new
value:

As shown in the preceding diagram, the thread executions are oblivious of each other, and
hence interfere unknowingly, thereby introducing a lost update.

A Taste of Some Concurrency Patterns Chapter 2

[50]

The following code illustrates the singleton design pattern. To create an instance
of LazyInitialization is expensive in terms of time and memory. So, we take over
object creation. The idea is to delay the creation till its first use, and then create just one
instance and reuse it:

package chapter02;

public class LazyInitialization {
 private LazyInitialization() { } // force clients to use the factory
method
 // resource expensive members—not shown
 private volatile static LazyInitialization instance = null;

 public static LazyInitialization getInstance() {
 if(instance == null)
 instance = new LazyInitialization();
 return instance;
 }
}

When we want to take over instance creation, a common design trick is to make the
constructor private, thereby forcing the client code to use our public factory method,
getInstance().

Singleton and factory method are two of the many creational design patterns
from the famous Gang Of Four (GOF) book. These patterns help us force
design decisions, for example, in this case making sure we only ever have
only a single instance of a class. The need for singletons is pretty
common; a classic example of a singleton is a logging service. Thread
pools are also expressed as singletons (we will be looking at thread pools
in an upcoming chapter). Singletons are used as sentinel nodes in tree data
structures, to indicate terminal nodes. A tree could have thousands of
nodes holding various data items. However, a terminal node does not
have any data (by definition), and hence two instances of a terminal node
are exactly the same. This property is exploited by making the terminal
node a singleton. This brings about significant memory savings. While
traversing the tree, writing conditionals to check whether we have hit a
sentinel node is a snap: you just compare the reference of the sentinel
node. Please see https:/ ​/ ​sourcemaking. ​com/ ​design_ ​patterns/ ​null_
object for more information. Scala's None is a null object.

https://sourcemaking.com/design_patterns/null_object
https://sourcemaking.com/design_patterns/null_object
https://sourcemaking.com/design_patterns/null_object
https://sourcemaking.com/design_patterns/null_object
https://sourcemaking.com/design_patterns/null_object
https://sourcemaking.com/design_patterns/null_object
https://sourcemaking.com/design_patterns/null_object
https://sourcemaking.com/design_patterns/null_object
https://sourcemaking.com/design_patterns/null_object
https://sourcemaking.com/design_patterns/null_object
https://sourcemaking.com/design_patterns/null_object
https://sourcemaking.com/design_patterns/null_object
https://sourcemaking.com/design_patterns/null_object
https://sourcemaking.com/design_patterns/null_object

A Taste of Some Concurrency Patterns Chapter 2

[51]

On the first call of the getter method, we create and return the new instance. For
subsequent calls, the same instance is returned, thereby avoiding expensive construction:

A Taste of Some Concurrency Patterns Chapter 2

[52]

Why do we need to declare the instance variable as a volatile? Compilers are allowed to
optimize our code. For example, the compiler may choose to store the variable in a
register. When another thread initializes the instance variable, the first thread could have a
stale copy:

A Taste of Some Concurrency Patterns Chapter 2

[53]

Putting a volatile there solves the problem. The instance reference is always kept up to
date using a Store Barrier after writing to it, and a Load Barrier before reading from it. A
store barrier makes all CPUs (and threads executing on them) aware of the state change:

Similarly, a Load Barrier makes all CPUs read the latest value, thereby avoiding the stale
state issue. See https:/ ​/​dzone. ​com/ ​articles/ ​memory- ​barriersfences for more
information.

The code suffers from a race condition. Both threads check the condition, but sometimes, the
first thread has not completed initializing the object. (Remember, it is an expensive object to
initialize, and that is why we are going through all this rigmarole in the first place.)
Meanwhile, the second thread gets scheduled, takes the reference and starts using it—that
is to say, it starts using a partially constructed instance, which is a buggy state of affairs!

How is this partially constructed instance possible? The JVM can rearrange instructions, so
the actual result won't change, but the performance will improve.

When the LazyInitialization() expression is being executed, it can first allocate
memory, return the reference to the allocated memory location to the instance variable, and
then start the initialization of the object. As the reference is returned before the constructor
has had a chance to execute, it results in an object whose reference is not null; however, the
constructor is not done yet.

https://dzone.com/articles/memory-barriersfences
https://dzone.com/articles/memory-barriersfences
https://dzone.com/articles/memory-barriersfences
https://dzone.com/articles/memory-barriersfences
https://dzone.com/articles/memory-barriersfences
https://dzone.com/articles/memory-barriersfences
https://dzone.com/articles/memory-barriersfences
https://dzone.com/articles/memory-barriersfences
https://dzone.com/articles/memory-barriersfences
https://dzone.com/articles/memory-barriersfences
https://dzone.com/articles/memory-barriersfences
https://dzone.com/articles/memory-barriersfences
https://dzone.com/articles/memory-barriersfences

A Taste of Some Concurrency Patterns Chapter 2

[54]

As a result of executing the partially initialized object, mysterious exceptions may result,
and they are pretty hard to reproduce! Have a look at the following condition:

Race conditions such as this are essentially unpredictable. The times when threads are
scheduled depend on external factors. Most of the times, the code will work as expected;
however, once in a while, things will go wrong. And, as noted earlier, how can you debug
that?

The debugger won't help; we need to make sure the race cannot happen by design. Enters
the monitor pattern.

The monitor pattern
The operation we saw previously of incrementing a counter has the following steps:

/* the counter case */
read existing counter value // should not be stale
increment the value
write it back

/* singleton case */
if (instance == null)
 create the object and return its reference

A Taste of Some Concurrency Patterns Chapter 2

[55]

else
 return the instance

These steps should be atomic, that is, indivisible; either a thread executes all of these
operations or none of them. The monitor pattern is used for making such a sequence of
operations atomic. Java provides a monitor via its synchronized keyword:

public class Counter {
 private int counter;
 public synchronized int incrementAndGet() {
 ++counter;
 return counter;
 }
}

As shown, the counter code is now thread-safe. Every Java object has a built-in lock, also
known as an intrinsic lock. A thread entering the synchronized block acquires this lock. The
lock is held till the block executes. When the thread exits the method (either because it
completed the execution or due to an exception), the lock is released:

The synchronized blocks are reentrant: the same thread holding the lock can reenter the
block again. If this were not so, as shown in the previous diagram, a deadlock would result.
The thread itself would not proceed, as it will wait for the lock (held by itself in the first
place) to be released. Other threads obviously will be locked out, thereby bringing the
system to a halt.

A Taste of Some Concurrency Patterns Chapter 2

[56]

Thread safety, correctness, and invariants
An invariant is a good vehicle for knowing the correctness of the code. For example, for a
singly linked list we could say that there is at most one non-null node whose next pointer is null:

In the preceding diagram, the first part shows a singly linked list, with the invariant
established. We add a node, with a value of 15, just before the last node, with a value of 19.
While the insertion algorithm is in the middle of adjusting the pointer links, the second part
shows the state before it has set the next pointer of node c to null.

Whether we assume a sequential, single-threaded model or a multi-threaded model, the
code invariants should hold.

Explicit synchronization opens up the possibility of exposing the system state with violated
invariants. For the linked list example previously shown, we have to synchronize all the
states of the data structure, to make sure the invariants hold all the time.

A Taste of Some Concurrency Patterns Chapter 2

[57]

Let's say there is a size() method counting the list nodes. While the first thread is at the
second snapshot (in the middle of inserting the node), if another thread gets access to the
second snapshot and calls size(), we have a nasty bug. Just once in a while, the size()
method would return 4, instead of the expected 5, and how debuggable is that?

Sequential consistency
Another tool for learning more about concurrent objects is Sequential
Consistency. Consider the following execution flow:

As shown in the preceding diagram, we read and understand code by assuming the value
of x is 1 while evaluating the assignment to p. We start at the top and work down; it is so
intuitive, and obviously correct.

The left-side execution is sequentially consistent, as we see the result of earlier steps
completed while evaluating the later steps.

However, the Java memory model does not work quite this way under the hood. Though
hidden from us, things are not that linear, as the code is optimized for performance.
However, the run time works to make sure our expectations are met; everything's fine in
the single-threaded world.

Things are not so rosy when we introduce threads. This is shown on the right-hand side in
the previous diagram. There is no guarantee that thread T2 will read the correct, latest
value of the x variable , while evaluating p.

The locking mechanism (or volatile) guarantees correct visibility semantics.

A Taste of Some Concurrency Patterns Chapter 2

[58]

Visibility and final fields
As we know, final fields are immutable. Once initialized in the constructor, final fields
cannot be changed afterward. A final field is also visible to other threads; we don't need
any mechanism such as locking or a volatile for this to happen:

As shown in the preceding diagram, both threads share the fv static field. The a field is
declared final and is initialized to a value of 9 in the constructor. In the extractVal()
method, the correct value of a is visible to other threads.

The bfield, however, enjoys no such guarantees. As it is declared neither final not
volatile—and there being no locking present—we cannot say anything definite regarding
the value of b, as seen by other threads.

A Taste of Some Concurrency Patterns Chapter 2

[59]

There is one catch though, final fields should not leak out of the constructor:

As shown, before the constructor execution completes the this reference is leaked out to the
constructor of someOtherServiceObj. There could be another thread concurrently
using someOtherServiceObj. It uses this object and, indirectly, the FinalVisibility
class instance.

As the constructor of FinalVisibility is not done yet, the value of the final field, a, is not
visible to this other thread, thereby introducing a heisenbug.

See http:/​/​www.​javapractices. ​com/ ​topic/ ​TopicAction. ​do? ​Id=​252 for more information
and a discussion on leaking references out of constructors.

Double-checked locking
Using intrinsic locking, we can write a thread-safe version of the singleton.

Here it is:

public synchronized static LazyInitialization getInstance() {
 if(instance == null)
 instance = new LazyInitialization();
 return instance;
}

http://www.javapractices.com/topic/TopicAction.do?Id=252
http://www.javapractices.com/topic/TopicAction.do?Id=252
http://www.javapractices.com/topic/TopicAction.do?Id=252
http://www.javapractices.com/topic/TopicAction.do?Id=252
http://www.javapractices.com/topic/TopicAction.do?Id=252
http://www.javapractices.com/topic/TopicAction.do?Id=252
http://www.javapractices.com/topic/TopicAction.do?Id=252
http://www.javapractices.com/topic/TopicAction.do?Id=252
http://www.javapractices.com/topic/TopicAction.do?Id=252
http://www.javapractices.com/topic/TopicAction.do?Id=252
http://www.javapractices.com/topic/TopicAction.do?Id=252
http://www.javapractices.com/topic/TopicAction.do?Id=252
http://www.javapractices.com/topic/TopicAction.do?Id=252
http://www.javapractices.com/topic/TopicAction.do?Id=252
http://www.javapractices.com/topic/TopicAction.do?Id=252
http://www.javapractices.com/topic/TopicAction.do?Id=252
http://www.javapractices.com/topic/TopicAction.do?Id=252
http://www.javapractices.com/topic/TopicAction.do?Id=252
http://www.javapractices.com/topic/TopicAction.do?Id=252

A Taste of Some Concurrency Patterns Chapter 2

[60]

As the method is synchronized, only one thread can execute it at any time. If multiple
threads are calling getInstance() multiple times, the method could quickly become a
bottleneck. Other threads competing for the access to method will block waiting for the
lock, and won't be able to do anything productive in the meantime. The liveness of the
system will suffer; this bottleneck could adversely affect the concurrency of the system.

This prompted the development of the double-checked locking pattern, as illustrated by the
following code snippet:

public class LazyInitialization {
 private LazyInitialization() {
 } // force clients to use the factory method
 // resource expensive members—not shown

 private volatile static LazyInitialization instance = null;

 public static LazyInitialization getInstance() {
 if (instance == null) {
 synchronized (LazyInitialization.class) {
 if (instance == null) {
 instance = new LazyInitialization();
 }
 }
 return instance;
 }
}

This is smart thinking: the locking ensures the safe creation of the actual instance. Other
threads will either get a null or the updated instance value—due to the volatile keyword.
You can see as follows, the code is still broken:

A Taste of Some Concurrency Patterns Chapter 2

[61]

Pause a moment to study the code. There is a time window after the first check, where a
context switch can happen. Another thread gets a chance and enters the synchronized
block. We are synchronizing on a lock variable here: the class lock. The second check is
synchronized and is executed by only one thread; let's say it's null. The thread owning the
lock then goes ahead and creates the instance.

 Once it exits the block and carries on with its execution, the other threads gain access to the
lock one by one. They purportedly find the instance is fully constructed, so they use the fully
constructed object. What we are trying to do is safely publish the shared instance variable.

Safe publication
When one thread creates a shared object (as in this case), other threads will want to use it
too. The term here is that the creator thread publishes the object as ready for use other
threads.

The problem is that just making the instance variable volatile does not guarantee that
other threads get to see a fully constructed object. The volatile works for the instance
reference publication itself, but not for the referent object (in this case the
LazyInitialization object) if it contains mutable members. We could get partially
initialized variables in this case:

A Taste of Some Concurrency Patterns Chapter 2

[62]

When the LazyInitialization constructor exits, all final fields are guaranteed to be visible
to other threads accessing them. See https:/ ​/​www. ​javamex. ​com/ ​tutorials/
synchronization_​final. ​shtml for more on the relationship between the final keyword
and safe publication.

Using the volatile keyword does not guarantee the safe publication of mutable objects. You can
find a discussion regarding this here: https:/ ​/​wiki. ​sei. ​cmu. ​edu/ ​confluence/ ​display/
java/​CON50J.
+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+

of+the+members+of+the+referenced+object.

Next comes a design pattern that simplifies the lazy creation of our instance, without
needing all this complexity.

Initializing a demand holder pattern
So, we seem to be in a fix. On one hand, we don't want to pay for needless synchronization.
On the other hand, the double-checked locking is broken, possibly publishing a partially
constructed object.

The following code snippet shows the lazy loaded singleton. The resulting code is simple and
does not depend on subtle synchronization semantics. Instead, it exploits the class loading
semantics of the JVM:

public class LazyInitialization {
 private LazyInitialization() {
 }
 // resource expensive members—not shown

 private static class LazyInitializationHolder {
 private static final LazyInitialization INSTANCE = new
LazyInitialization();
 }

 public static LazyInitialization getInstance() {
 return LazyInitializationHolder.INSTANCE;
 }
}

The getInstance() method uses a static class, LazyInitializationHolder. When the
getInstance() method is first invoked, the static class is loaded by the JVM.

https://www.javamex.com/tutorials/synchronization_final.shtml
https://www.javamex.com/tutorials/synchronization_final.shtml
https://www.javamex.com/tutorials/synchronization_final.shtml
https://www.javamex.com/tutorials/synchronization_final.shtml
https://www.javamex.com/tutorials/synchronization_final.shtml
https://www.javamex.com/tutorials/synchronization_final.shtml
https://www.javamex.com/tutorials/synchronization_final.shtml
https://www.javamex.com/tutorials/synchronization_final.shtml
https://www.javamex.com/tutorials/synchronization_final.shtml
https://www.javamex.com/tutorials/synchronization_final.shtml
https://www.javamex.com/tutorials/synchronization_final.shtml
https://www.javamex.com/tutorials/synchronization_final.shtml
https://www.javamex.com/tutorials/synchronization_final.shtml
https://www.javamex.com/tutorials/synchronization_final.shtml
https://www.javamex.com/tutorials/synchronization_final.shtml
https://www.javamex.com/tutorials/synchronization_final.shtml
https://wiki.sei.cmu.edu/confluence/display/java/CON50J.+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+of+the+members+of+the+referenced+object
https://wiki.sei.cmu.edu/confluence/display/java/CON50J.+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+of+the+members+of+the+referenced+object
https://wiki.sei.cmu.edu/confluence/display/java/CON50J.+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+of+the+members+of+the+referenced+object
https://wiki.sei.cmu.edu/confluence/display/java/CON50J.+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+of+the+members+of+the+referenced+object
https://wiki.sei.cmu.edu/confluence/display/java/CON50J.+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+of+the+members+of+the+referenced+object
https://wiki.sei.cmu.edu/confluence/display/java/CON50J.+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+of+the+members+of+the+referenced+object
https://wiki.sei.cmu.edu/confluence/display/java/CON50J.+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+of+the+members+of+the+referenced+object
https://wiki.sei.cmu.edu/confluence/display/java/CON50J.+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+of+the+members+of+the+referenced+object
https://wiki.sei.cmu.edu/confluence/display/java/CON50J.+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+of+the+members+of+the+referenced+object
https://wiki.sei.cmu.edu/confluence/display/java/CON50J.+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+of+the+members+of+the+referenced+object
https://wiki.sei.cmu.edu/confluence/display/java/CON50J.+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+of+the+members+of+the+referenced+object
https://wiki.sei.cmu.edu/confluence/display/java/CON50J.+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+of+the+members+of+the+referenced+object
https://wiki.sei.cmu.edu/confluence/display/java/CON50J.+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+of+the+members+of+the+referenced+object
https://wiki.sei.cmu.edu/confluence/display/java/CON50J.+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+of+the+members+of+the+referenced+object
https://wiki.sei.cmu.edu/confluence/display/java/CON50J.+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+of+the+members+of+the+referenced+object
https://wiki.sei.cmu.edu/confluence/display/java/CON50J.+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+of+the+members+of+the+referenced+object
https://wiki.sei.cmu.edu/confluence/display/java/CON50J.+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+of+the+members+of+the+referenced+object
https://wiki.sei.cmu.edu/confluence/display/java/CON50J.+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+of+the+members+of+the+referenced+object
https://wiki.sei.cmu.edu/confluence/display/java/CON50J.+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+of+the+members+of+the+referenced+object
https://wiki.sei.cmu.edu/confluence/display/java/CON50J.+Do+not+assume+that+declaring+a+reference+volatile+guarantees+safe+publication+of+the+members+of+the+referenced+object

A Taste of Some Concurrency Patterns Chapter 2

[63]

Now the Java Language Specification (JLS) ensures that the class initialization phase is
sequential. All subsequent concurrent executions will return the same and correctly
initialized instance, without needing any synchronization.

The pattern exploits this feature to completely avoid any locks and still achieve correct lazy
initialization semantics!

Singletons are often rightly criticized as representing the global state. However, as we saw,
their functionality is needed at times, and the pattern is a nice, reusable solution, that is to
say, a concurrency design pattern.

You can also use an enum for creating singletons; please see https:/ ​/​dzone. ​com/​articles/
java-​singletons-​using- ​enum for more on this design technique.

Explicit locking
The synchronized keyword is an intrinsic locking mechanism. It is pretty convenient,
there are a couple of limitations as well. We cannot interrupt a thread waiting for an
intrinsic lock, for example. There is also no way to time out the wait while acquiring the
lock.

There are use cases where these capabilities are needed; at such times, we use explicit
locking. The Lock interface allows us to overcome these limitations:

ReentrantLock duplicates the functionality of the synchronized keyword. A thread
already holding it can acquire it again, just like with synchronized semantics. Memory
visibility and mutual exclusion guarantees are the same in both cases.

https://dzone.com/articles/java-singletons-using-enum
https://dzone.com/articles/java-singletons-using-enum
https://dzone.com/articles/java-singletons-using-enum
https://dzone.com/articles/java-singletons-using-enum
https://dzone.com/articles/java-singletons-using-enum
https://dzone.com/articles/java-singletons-using-enum
https://dzone.com/articles/java-singletons-using-enum
https://dzone.com/articles/java-singletons-using-enum
https://dzone.com/articles/java-singletons-using-enum
https://dzone.com/articles/java-singletons-using-enum
https://dzone.com/articles/java-singletons-using-enum
https://dzone.com/articles/java-singletons-using-enum
https://dzone.com/articles/java-singletons-using-enum
https://dzone.com/articles/java-singletons-using-enum
https://dzone.com/articles/java-singletons-using-enum
https://dzone.com/articles/java-singletons-using-enum

A Taste of Some Concurrency Patterns Chapter 2

[64]

Additionally, ReentrantLock gives us a non-blocking tryLock() and interruptible locking.

Using ReentrantLock puts the onus on us; we need to make sure the lock is released via all
return paths; even in the case of exceptions.

Such explicit locking lets us control lock granularity; here, we can see an example of a
concurrent set data structure, implemented using a sorted linked list:

public class ConcurrentSet {

Where, the concurrent set holds a linked list of Node nodes; the definition of it is as follows:

private class Node {
 int item;
 Node next;

 public Node(int i) {
 this.item = i;
 }
}

The Node class represents a node of the linked list. Here is the default constructor:

public ConcurrentSet() {
 head = new Node(Integer.MIN_VALUE);
 head.next = new Node(Integer.MAX_VALUE);
}

The following diagram shows the state after constructor execution is complete:

A Taste of Some Concurrency Patterns Chapter 2

[65]

As shown, the default constructor initializes an empty set, a linked list of two nodes. The
head node always holds the minimum value (Integer.MIN_VALUE), and the last node
contains the maximum (Integer.MAX_VALUE). Using such sentinel nodes is a common
algorithm design technique, which simplifies the rest of the code, as we will soon see:

private Node head;
private Lock lck = new ReentrantLock();

ConcurrentSet also has a field named lck, which is initialized to ReentrantLock. Here
is our add method:

private boolean add(int i) {
 Node prev = null;
 Node curr = head;

 lck.lock();

 try {
 while (curr.item < i) {
 prev = curr;
 curr = curr.next;
 }
 if (curr.item == i) {
 return false;
 } else {
 Node node = new Node(i);
 node.next = curr;
 prev.next = node;
 return true;
 }
 } finally {
 lck.unlock();
 }
}

The add(int) method starts by acquiring the lock. As the list is a set, all elements are
unique and the elements are stored in ascending order.

Next is the lookUp(int) method:

private boolean lookUp(int i) {
 Node prev = null;
 Node curr = head;

 lck.lock();

 try {

A Taste of Some Concurrency Patterns Chapter 2

[66]

 while (curr.item < i) {
 prev = curr;
 curr = curr.next;
 }
 if (curr.item == i) {
 return true;
 }
 return false;
 } finally {
 lck.unlock();
 }
}

The lookUp(int) method searches our set, and if it finds the argument element, it returns
true; otherwise, it returns false. Finally, here is the remove(int) method. It juggles the
next pointers so the node containing the element is removed:

private boolean remove(int i) {
 Node prev = null;
 Node curr = head;

 lck.lock();

 try {
 while (curr.item < i) {
 prev = curr;
 curr = curr.next;
 }
 if (curr.item == i) {
 prev.next = curr.next;
 return true;
 } else {
 return false;
 }
 } finally {
 lck.unlock();
 }
}

A Taste of Some Concurrency Patterns Chapter 2

[67]

The problem is we are using coarse-grained synchronization: we are holding a global lock.
If the set holds a big number of elements, only one thread at a time can be doing either an add,
remove, or lookup. The execution is essentially sequential:

The synchronization is obviously correct. The code is easier to understand! However, due to
its being coarse-grained, if many threads are contending for the lock, they end up waiting for
it. The time that could be spent doing productive work is instead spent on waiting! The lock
is a bottleneck.

The hand-over-hand pattern
The coarse-grained synchronization explained in the previous section, hurts concurrency.
Instead of locking the list as a whole, we could improve things by locking both the previous
and the current node. If a thread follows this while traversing the list, thereby doing a hand-
over-hand locking, it allows other threads to concurrently work on the list as shown here:

private class Node {
 int item;
 Node next;
 private Lock lck = new ReentrantLock();

 private Node(int i) {
 this.item = i;
 }

A Taste of Some Concurrency Patterns Chapter 2

[68]

 private void lock() {
 lck.lock();
 }

 private void unlock() {
 lck.unlock();
 }
}

Note that we are talking about lock a node—this entails removing our global lock—and
instead creating a lock field in the node itself. We provide two primitives, lock() and
unlock(), for readable code:

A Taste of Some Concurrency Patterns Chapter 2

[69]

The add(int) method, rewritten to use this pattern, is shown as follows:

private boolean add(int i) {
 head.lock();
 Node prev = head;

 try {
 Node curr = prev.next;

 curr.lock();

 try {
 while (curr.item < i) {
 prev.unlock();
 prev = curr;
 curr = curr.next;
 curr.lock();
 }
 if (curr.item == i) {
 return false;
 } else {
 Node node = new Node(i);
 node.next = curr;
 prev.next = node;
 return true;
 }
 } finally {
 curr.unlock();
 }
 } finally {
 prev.unlock();
 }
}

As before, we need to protect the locking with a try or finally. So, in the case of an
exception, releasing the lock is guaranteed:

A Taste of Some Concurrency Patterns Chapter 2

[70]

The previous code snippet explains the various concurrent scenarios. Here is the
remove(int) method:

private boolean remove(int i) {
 head.lock();
 Node prev = head;

 try {
 Node curr = prev.next;

 curr.lock();

 try {
 while (curr.item < i) {
 prev.unlock();
 prev = curr;
 curr = curr.next;
 curr.lock();
 }
 if (curr.item == i) {
 prev.next = curr.next;
 return true;
 }
 return false;

A Taste of Some Concurrency Patterns Chapter 2

[71]

 } finally {
 curr.unlock();
 }
 } finally {
 prev.unlock();
 }
}

The remove(int) method works on the same lines. The code balances the trade off—it
unlocks as soon as possible but makes sure it holds both the prev and curr node locks—to
eliminate any possibility of a race condition:

public static void main(String[] args) {
 FGConcurrentSet list = new FGConcurrentSet();

 list.add(9);
 list.add(1);
 list.add(1);
 list.add(9);
 list.add(12);
 list.add(12);

 System.out.println(list.lookUp(12));
 list.remove(12);
 System.out.println(list.lookUp(12));
 System.out.println(list.lookUp(9));
}
// prints true, false, true

This code is a test driver; note that it is single threaded. Writing a multi-threaded driver, by
spawning off two or more threads sharing the concurrent set, will help you understand the
code better. Writing the lookUp(int) method is similar to the add and remove method;
both are left as exercises for the reader.

Observations – is it correct?
Why does this code and the hand-over-hand pattern work? Here is some reasoning that
helps us establish confidence about the code. For example, while managing multiple locks,
avoiding deadlocks is a challenge. How does the previous code help us avoid deadlocks?

A Taste of Some Concurrency Patterns Chapter 2

[72]

Let's say thread T1 calls the add() method, and at the same time, thread T2 calls
remove(). Could the situation shown in the following diagram arise?

This code guarantees that a deadlock situation is impossible! We make sure the locks are always
acquired in order, beginning from the head node. Hence, the locking order shown can't
possibly happen.

A Taste of Some Concurrency Patterns Chapter 2

[73]

 What about two concurrent add(int) calls? Let's say the set holds {9, 22, 35} and T1 adds
10. At the same time T2 adds 25:

As shown, there is always a common node—and hence a common lock—that needs to be
acquired by two (or more) threads, as by definition only one thread can win, forcing the
other thread(s) to wait.

It's hard to see how we could have used Java's intrinsic locking (the synchronized keyword)
to implementing the hand-over-hand pattern. Explicit locking gives us more control and
allows us to implement the pattern easily.

The producer/consumer pattern
In the previous chapter, we saw that threads need to cooperate with one another to achieve
significant functionality. Cooperation entails communication; ReentrantLock allows a
thread to signal to other threads. We use this mechanism to implement a Concurrent FIFO
queue:

public class ConcurrentQueue {
 final Lock lck = new ReentrantLock();
 final Condition needSpace = lck.newCondition();

A Taste of Some Concurrency Patterns Chapter 2

[74]

 final Condition needElem = lck.newCondition();
 final int[] items;
 int tail, head, count;

 public ConcurrentQueue(int cap) {
 this.items = new int[cap];
 }

The class holds a reentrant lock in its lck field. It also has two conditions, namely
needSpace and needElem. We will see how these are used. The queue elements are stored
in an array named items:

The head points to the next element to be consumed. Similarly, the tail points to an
empty slot where we store a new element. The constructor allocates an array of capacity
named cap:

public void push(int elem) throws InterruptedException {
 lck.lock();

 try {
 while (count == items.length)
 needSpace.await();
 items[tail] = elem;
 ++tail;
 if (tail == items.length)
 tail = 0;
 ++count;

A Taste of Some Concurrency Patterns Chapter 2

[75]

 needElem.signal();
 } finally {
 lck.unlock();
 }
}

There is some subtlety here. Let's first understand the simple stuff. A producer thread tries
to push items into the queue. It starts off by acquiring the lck lock. The rest of the method
code executes under this lock. The tail variable holds the index of the next slot where we
could store the new number. The following code pushes a new element to the queue:

 items[tail] = elem;
 ++tail;

If we have used up all the array slots, tail wraps back to 0:

if (tail == items.length)
 tail = 0;
++count;

The count variable holds the current count of elements available for consumption. As we
have produced one more element, count is incremented.

Next, let's look at the concurrency aspect, shown in the following diagram:

A Taste of Some Concurrency Patterns Chapter 2

[76]

As the items array, has a finite capacity (it can hold at most cap elements), we need to deal
with the possibility that the queue is full. The producer needs to wait for a consumer to pick
one or more elements from the queue.

This waiting is accomplished by calling await() on the needSpace condition variable. It
is important to realize that the thread is made to wait and that the lock— lck— is released;
these two are atomic operations.

Let's say that someone has consumed one or more items from the queue (we will soon see
how in the pop() method). When this happens, the producer thread wakes up with the lock
acquired. Lock acquisition is imperative for the rest of the code to work correctly:

public int pop() throws InterruptedException {
 lck.lock();

 try {
 while (count == 0)
 needElem.await();
 int elem = items[head];
 ++head;
 if (head == items.length)
 head = 0;
 --count;
 needSpace.signal();
 return elem;
 } finally {
 lck.unlock();
 }
}

A Taste of Some Concurrency Patterns Chapter 2

[77]

The pop method works along similar lines. Except for the popping logic, it is a mirror
image of the push method:

The consumer thread pops an element off the queue using the following lines:

int elem = items[head];
++head;

The head is then moved to the next available element (if any):

if (head == items.length)
 head = 0;
--count;

Note that, just like the tail variable, we keep rewinding the head. We decrement the count
as the number of available elements is now reduced by one.

Spurious and lost wake-ups
Why do we need to acquire the lock first? Off course, the count variable is a shared state
between the producers and consumers.

A Taste of Some Concurrency Patterns Chapter 2

[78]

There is one more reason though: we need to call await after acquiring the lck lock.As
mentioned at https:/ ​/​docs. ​oracle. ​com/ ​cd/​E19455- ​01/ ​806- ​5257/ ​sync- ​30/​index.
html, the following situation can occur:

As shown, there is no lock held, so the signal is lost. There is no one to wake up, so the signal
is lost. For correct signal semantics, await() needs to be locked.

It is also imperative to check for the condition in a loop. In other words, after the thread
wakes up, it must retest the condition before proceeding further. This is required to handle
spurious and lost wake-ups:

public int pop() throws InterruptedException {
 lck.lock();

 try {
 /* while (count == 0) */
 if (count == 0) // we need a loop here
 needElem.await();
 int elem = items[head];
...

https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/sync-30/index.html

A Taste of Some Concurrency Patterns Chapter 2

[79]

If we use the if condition, there is an insidious bug waiting to spring up. Due to arcane
platform efficiency reasons, the await() method can return spuriously (without any
reason)!

When waiting upon a condition, a spurious wake-up is permitted to occur, in general, as a
concession to the underlying platform semantics. This has little practical impact on most
application programs, as a condition should always be waited upon in a loop, testing the
state predicate that is being waited for. An implementation is free to remove the possibility
of spurious wake-ups, but it is recommended that application programmers always assume
that they can occur and so always wait in a loop.

A quote from the relevant Java documentation at the mentioned link is as follows:

https:/​/​docs.​oracle. ​com/ ​javase/ ​8/ ​docs/ ​api/ ​java/ ​util/ ​concurrent/ ​locks/ ​Condition.
html

Here is the possible buggy scenario:

As shown, if we test the condition in a loop, a producer thread always wakes up, checks
again, and then proceeds with the correct semantics.

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html

A Taste of Some Concurrency Patterns Chapter 2

[80]

Comparing and swapping
Locks are expensive; a thread that is blocked while trying to acquire the lock is suspended.
Suspending and resuming threads is pretty expensive. Instead, we could use a CAS
(Compare And Set) instruction to update a concurrent counter.

A CAS operation works on the follows:

The variable's memory location (x)
The expected value (v) of the variable
The new value (nv) that needs to be set

The CAS operation automatically updates the value in x to nv, but only if the existing value in x
matches v; otherwise, no action is taken.

In both cases, the existing value of x is returned. For each CAS operation, the following
three operations are performed:

Get the value1.
Compare the value2.
Update the value3.

The three operations specified are executed as single, atomic machine instructions.

When multiple threads attempt the CAS operation, only one thread wins and updates the
value. However, other threads are not suspended. The threads for whom the CAS operation
failed can reattempt the update.

A Taste of Some Concurrency Patterns Chapter 2

[81]

The big advantage is that context switches are completely avoided:

As shown, a thread keeps looping and trying to win by attempting a CAS operation. The
call takes the current value and the new value, and returns true only when the update
succeeds! If some other thread won, the loop repeats, thereby trying again and again.

The CAS update operation is atomic, and more importantly it avoids the suspension (and
the subsequent resumption) of a thread. Here, we use CAS to implement a flavor of our
own locking:

A Taste of Some Concurrency Patterns Chapter 2

[82]

The getAndSet() method tries to set the new value and returns the previous one. So, if the
previous value was false and we managed to set it to true (remember that compare and set is
atomic), we have acquired a lock.

As shown in the previous diagram, the CAS operation is used to implement locking by
extending the lock interface without blocking any threads! However, when multiple threads
contend for the lock, thereby resulting in a higher contention, the performance deteriorates.

A Taste of Some Concurrency Patterns Chapter 2

[83]

This is why, threads are running on a core. Each core has a cache. This cache stores a copy
of the lock variable. The getAndSet() call causes all cores to invalidate cached copies of the
lock. So, as we have more threads and more such spinning locks, there is too much
unnecessary cache invalidation:

The previous code improves things by spinning (that is to say, waiting for the lock) using
the cached variable, b. When the value of b becomes false (thereby implying unlocking), the
while loop breaks. Now, a getAndSet() call is made in order to acquire the lock.

Summary
We began this chapter by looking at race conditions and saw the need for synchronization,
in real life situations as well as in concurrent code. We had a detailed look at race
conditions and saw the role that the volatile keyword plays.

Next, we looked at the singleton pattern, which represents a program's global state. We saw
how to safely share the state using monitors. We also correct visibility semantics and looked
at an optimization called double-checked locking. We also saw how the initialization on demand
holder design pattern resolves these problems.

We looked at a use case, a concurrent set implementation, using sorted linked lists. Using
locks could lead to coarse-grained locking. Though semantically correct, this scheme allows
only a single thread, and this could hurt concurrency.

A Taste of Some Concurrency Patterns Chapter 2

[84]

The solution was to use the hand-over-hand design pattern. We studied it in depth, thereby
understanding how explicit locking can give us a better solution, preserving the correctness
and also improving the concurrency.

Finally, we covered the producer/consumer design pattern. We saw how conditions are used
by threads for communication. We covered the subtlety involved in correctly using the
conditions.

So, we have covered a lot of ground here, dear reader. Now, look at more design patterns in
the next chapter.

3
More Threading Patterns

In this chapter, we will look at more synchronization patterns. We will start with a detailed
look at bounded buffers. We will look at different design approaches, such as client-
throwing exceptions and polling. We will see how to make the writer sleep when the
buffer is full (and how to make the reader sleep when the buffer is empty), and this makes
for an elegant client contract.

We will also look at readers or writers lock, a primitive synchronization to allow either
multiple concurrent readers or a single writer. The idea is to increase the system's
concurrency with correctly preserved concurrency semantics. We will look at two
variations—reader-friendly locks and fair locks.

Next, we will discuss counting semaphores; these are used for implementing resource
pooling. We will see how easily can we implement this construct.

We also implement a version of our own: ReentrantLock.

The chapter wraps up with a look at countdown latches, cyclic barriers, and future tasks.

More Threading Patterns Chapter 3

[86]

The following is a general outline of the various patterns we will cover in this chapter:

We always acquire a lock; this makes sure that the following statement is checking for some
precondition executes atomically. We will then check some preconditions specific to the
algorithm, and if they are not met, we release the lock and wait. As shown in preceding
diagram, these two actions are performed atomically.

Subsequently, the state of things changes, as another thread makes a substantial change to
the program state, and broadcasts a signal.

Upon the receipt of this signal, the sleeping thread wakes up. Note that there could be more
than one waiting thread. One or more of these wake up, acquire the lock, and recheck the
condition. Again, both these operations are atomic.

We have seen in the previous chapter why this rechecking is needed. The thread then
proceeds with the rest of the method logic. Hence, we shall be addressing the following
topics:

Bounded buffers
Client-throwing exceptions and polling
Readers or writers lock
Reader-friendly locks
Fair locks
Counting semaphores
ReentrantLock

More Threading Patterns Chapter 3

[87]

Countdown latches
Cyclic barriers
Future tasks

For complete code files you can visit https:/ ​/ ​github. ​com/
PacktPublishing/ ​Concurrent- ​Patterns- ​and-​Best- ​Practices

A bounded buffer
A bounded buffer is one with a finite capacity. You can only buffer a certain amount of
elements in it. When there is no more space left to store the elements, the producer threads
putting the elements wait for someone to consume some of the elements.

On the other hand, the consumer threads cannot take elements from an empty buffer. In
such cases, the consumer thread will need to wait for someone to insert elements into the
buffer.

Here comes the code, which we will explain as we go:

public abstract class Buffer {
 private final Integer[] buf;
 private int tail;
 private int head;
 private int cnt;

The elements are stored in an array of integers, buf:

https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices

More Threading Patterns Chapter 3

[88]

As shown in the preceding diagram, the field tail points to the next empty position to put
the element in. In the provided diagram, three elements were inserted and none were
taken. The first element to be consumed is 2, which resides at the index 0 of the internal
array. This is the index we hold in the head field. The value of count is 3; as the array
capacity is 5, the buffer is not full:

protected Buffer(int capacity) {
 this.buf = new Integer[capacity];
 this.tail = 0;
 this.head = 0;
 this.cnt = 0;
}

The preceding snippet shows the constructor; it allocates the array and initializes the buf
field with the array reference. The fields tail, head, and cnt are all initialized to 0:

protected synchronized final void putElem(int v) {
 buf[tail] = v;
 if (++tail == buf.length)
 tail = 0;
 ++cnt;
}

The put method, as shown here, puts a new element into the buffer:

What should we do when the buffer is full? One design choice is to throw an exception.
Another design choice is to wait till some thread consumes one or more elements:

protected synchronized final Integer getElem() {
 Integer v = buf[head];
 buf[head] = null;
 if (++head == buf.length)
 head = 0;

More Threading Patterns Chapter 3

[89]

 --cnt;
 return v;
}

Once we take an element from the buffer, we put a null in a slot, marking it as empty. The
get() method could leave the buffer empty. This is shown in the following diagram:

The following are two helper methods:

public synchronized final boolean isBufFull() {
 return cnt == buf.length;
 }

 public synchronized final boolean isBufEmpty() {
 return cnt == 0;
 }
} // The buffer class completes here

When the count, cnt, equals the buffer length (5, in our example), the buffer is full. This is
checked by the isBufFull() method. The isBufEmpty() method, likewise, checks the
cnt field, which is 0 when the buffer is empty.

Whether to throw an error or to make the caller wait is a strategy. This is an example of a
strategy pattern.

More Threading Patterns Chapter 3

[90]

Strategy pattern – client polls
The following shows a design that throws an error when the buffer is empty and a get call
is made, or full when a put call is made:

public class BrittleBuffer extends Buffer {
 public BrittleBuffer(int capacity) {
 super(capacity);
 }

The constructor override just passes on the initial capacity to the superclass super:

public synchronized void put(Integer v) throws BufFullException {
 if (isBufFull())
 throw new BufFullException();
 putElem(v);
}

If the buffer is full when we execute a put(v) call, then we throw an error, a runtime
exception, BufFullException:

public synchronized Integer get() throws BufEmptyException {
 if (isBufEmpty())
 throw new BufEmptyException();
 return getElem();
}

If the buffer is empty when we execute a get() call, we throw an error,
BufEmptyException, which is a runtime exception again. The onus of handling these
exceptions is now with the client of this code:

More Threading Patterns Chapter 3

[91]

As shown in the preceding diagram, the client code needs to keep polling, to take an
element from a buffer. If the buffer is not empty, things proceed well; however, when the
buffer is empty, we catch the exception and keep repeating the call till we succeed.

There are two problems with this approach. Firstly, the client is using exceptions for flow
control. We are using exceptions as sophisticated GOTO statements. The code is also harder
to read; the actual element processing is hidden within all the exception handling.

See https:/​/​web. ​archive. ​org/ ​web/ ​20140430044213/ ​http:/ ​/​c2.​com/ ​cgi- ​bin/ ​wiki?
DontUseExceptionsForFlowControl for more on this topic.

Secondly, what is a good amount of time for the thread to sleep? There is no clear answer
here. This is essentially telling us to try an alternative design, so let's look at that next.

Strategy – taking over the polling and sleeping
The following version makes it somewhat easier for the client to use our interface:

public class BrittleBuffer2 extends Buffer {
 public BrittleBuffer2(int capacity) {
 super(capacity);
 }

 public void put(Integer v) throws InterruptedExcecption {
 while (true) {
 synchronized (this) {
 if (!isBufFull()) {
 putElem(v);
 return;
 }
 }
 Thread.sleep(...);
 }
 }

https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl
https://web.archive.org/web/20140430044213/http://c2.com/cgi-bin/wiki?DontUseExceptionsForFlowControl

More Threading Patterns Chapter 3

[92]

The put(Integer) method is an improvement, when compared to the previous
version. We still have the polling; however, it is no longer part of the client's contract. We
hide the polling from the client and make it simpler for them:

There is a subtlety we should be aware of, as shown in the diagram given; the method is not
synchronized. If we sleep in a synchronized method, other threads will never get the lock!

It would be a deadlock situation, as no other thread would be able to proceed; the state
won't change and the infinite loop will keep checking a condition that will never be true.

The solution is to use the synchronized (this) idiom, which allows us to inspect the buffer
state in a thread-safe way. If the condition is not met, the lock is released just before the
sleep call. This ensures that other threads can proceed with the state change, and, as a
result, the overall system would clock in progress:

public Integer get() throws InterruptedException {
 while (true) {
 synchronized (this) {
 if (!isBufEmpty())
 return getElem();
 }
 Thread.sleep(...);
 }
}

The get method is also used along similar lines. We hide the polling from the client.
However, how long to sleep is still an issue.

More Threading Patterns Chapter 3

[93]

Strategy – using condition variables
The problem of coming up with the right sleep time is tricky. There is no one value that fits
all the situations. If instead, we don't use polling, and go for an alternate solution, it would
be the best of both worlds!

Polling is busy waiting. We keep checking, which is unproductive, and running these
checks takes time and CPU cycles. We will see how staying away from polling is a general
theme in concurrent programming. We will revisit this theme again when we discuss the
actor paradigm and the tell versus ask pattern.

So, here goes the CappedBuffer class:

public class CappedBuffer extends Buffer {
 public CappedBuffer(int capacity) {
 super(capacity);
 }

The preceding code is similar to other strategies; no surprises in the following either:

public synchronized void put(Integer v) throws InterruptedException {
 while (isBufFull()) {
 wait();
 }
 putElem(v);
 notifyAll();
}

The put(v) method is super simple. The following diagram shows the subtle points about
the code:

More Threading Patterns Chapter 3

[94]

The important snippet is this:

while (isBufFull()) {
 wait();
}

Note that the condition is checked inside a synchronized method. As a synchronized method
implies an implicit lock, we are checking the condition in a thread-safe fashion.

Either the thread woke up from pending on a buffer that was full or the buffer was not full.
We reach the putElem(v) statement. At this point, we surely know that there is at least one
element to consume. We broadcast this fact to other possibly pending threads on an empty
buffer:

public synchronized Integer get() throws InterruptedException {
 while (isBufEmpty()) {
 wait();
 }
 Integer elem = getElem();
 notifyAll();
 return elem;
}

The get() method is on the same lines:

while (isBufEmpty()) {
 wait();
}

If the buffer is empty, the thread is made to wait. After passing the condition, as we know
this is the only thread executing the getElem() call, the following line is thread-safe:

 Integer elem = getElem();

We are guaranteed to get a non-null element:

notifyAll();
return elem;

Finally, we notify all the pending threads on the buffer-full condition and tell them that
there is at least one free space to insert an element. Now, the element is returned.

More Threading Patterns Chapter 3

[95]

Reader or writer locks
A readers–writer (RW) or shared-exclusive lock is a primitive synchronization that allows
concurrent access for read-only operations, as well as exclusive write operations. Multiple
threads can read the data concurrently, but for writing or modifying the data, an
exclusive lock is needed.

A writer has exclusive access for writing data. Till the current writer is done, other writers
and readers will be blocked. There are many cases where data is read more often than it is
written.

The following code shows how we use the locks to provide concurrent access to a Java
Map<K, V>. The code synchronizes the internal map, using an RW lock:

public class RWMap<K, V> {
 private final Map<K, V> map;
 private final ReadWriteLock lock = new ReadWriteLock();
 private final RWLock r = lock.getRdLock();
 private final RWLock w = lock.getWrLock();

 public RWMap(Map<K, V> map) {
 this.map = map;
 }

 public V put(K key, V value) throws InterruptedException {
 w.lock();
 try {
 return map.put(key, value);
 } finally {
 w.unlock();
 }
 }

 public V get(Object key) throws InterruptedException {
 r.lock();
 try {
 return map.get(key);
 } finally {
 r.unlock();
 }
 }

 public V remove(Object key) throws InterruptedException {
 w.lock();
 try {
 return map.remove(key);

More Threading Patterns Chapter 3

[96]

 } finally {
 w.unlock();
 }
 }

 public void putAll(Map<? extends K, ? extends V> m) throws
InterruptedException {
 w.lock();
 try {
 map.putAll(m);
 } finally {
 w.unlock();
 }
 }

 public void clear() throws InterruptedException {
 w.lock();
 try {
 map.clear();
 } finally {
 w.unlock();
 }
 }
}

The get method uses a reader lock; this allows any number of reader threads to
concurrently access the map field. On the other hand, if a thread needs to update the
map—it acquires a writer lock.

The writer lock ensures that the writer thread has exclusive access to the map. This preserves
the thread safety, and still ensures increased read concurrency.

However, the lock needs to be fair, too! We will soon see what this means—read on...

A reader-friendly RW lock
RW locks can give priority to readers (read-friendly) or writers (write-friendly). We will see
how concurrency and starvation aspects come up during the design.

More Threading Patterns Chapter 3

[97]

The following diagram shows the ReadWriteLock class:

The readers field is an int—it represents the number of readers at any given instance of time.
On the other hand, the writer field is a boolean—there can be only one writer, or there can
be multiple readers—so a boolean suffices. We synchronize on an external lock, represented
by the lck field.

The following diagram shows the design of the reader and writer locks,
RdLock and WrLock. These are the inner classes of ReadWriteLock. The ReadWriteLock
class will be used by the application code to acquire read and write locks; it is a facade:

More Threading Patterns Chapter 3

[98]

A facade is a design pattern from the GoF book. It is used to hide the
complexity of the system, so it is easier to use. For example, when we
order pizza over the phone, we talk to a salesperson at the pizza outlet.
They will take the order, charge the card, and, within some time, it is
delivered to us. We are thereby hidden from all the complexities of pizza-
making. The sales representative is a facade for us. They hide all the
complexity and facilitate the pizza-buying process. A facade is also a
facilitator.

As shown in the preceding diagram, the RdLock design firstly makes sure it is the
only thread, as implied by the lck.lock() statement. If there is already a writer active, the
reader thread relinquishes the lock, lck, and waits for the writer to release the lock:

while (writer) {
 condition.await();
}
readers++;

More Threading Patterns Chapter 3

[99]

 Either way, when the reader passes this check (either there is no writer or the reader
woke up as a result of the writer unlocking and resumes), it increments the number of
reader fields in the system.

Releasing an RdLock is also similar:

readers--;
if (readers == 0) {
 condition.signalAll();
}

The reader count is decremented. If this were the last reader, it would try to wake up
pending writer fields, if there were any!

This is a read-friendly RwLock; it allows for maximum read concurrency, but in the case of
high-contention can starve writers. There is nothing to stop a flood of readers from starving
the writers. Writer threads would starve, as the lock cannot be acquired as long as there is
at least one reader thread.

The following diagram shows the writer lock, WrLock. We again make sure that the lock,
lck, is acquired, thereby making sure there is only ever one writer checking and fiddling
with the internal state:

More Threading Patterns Chapter 3

[100]

The following is a snippet:

while (readers > 0 || writer) {
 condition.await();
}
writer = true;

It makes sure that the writer sleeps if there are one or more readers, or another writer. In
that case, the writer thread is put to sleep, as seen in the previous chapter; this also
atomically releases the lock, lck, associated with the condition.

 Once the precondition is established, where either all readers or the writer have released
the lock—the writer turns the writer flag on. Note that the condition wake-up semantics
ensure that the writer will always wake up with the lock held.

This makes sure that the flag is updated in a thread-safe manner, and that completes the
locking call.

Unlocking the write lock is shown in the following snippet:

writer = false;
condition.signalAll();

The flag is just turned off, and the wake-up call is issued for any possible pending readers
or writers, so they can try their luck acquiring the lock:

More Threading Patterns Chapter 3

[101]

The preceding diagram shows reader barging. This happens when the reader threads keep
acquiring the lock; the writer may not get any chance to write—even though it came earlier.
This is a read-friendly lock and could be unfair to the writer threads.

This is starvation—the writer could be kept waiting forever, thereby starving it of the lock.

A fair lock
The following code shows an implementation that is fair to the writer. If the writer
demanded the lock earlier, it gets it.

First come the facade changes:

public class FairReadWriteLock {
 int readersIn, readersOut;
 boolean writer;
 Lock lck;
 Condition condition;
 RWLock rdLock, wrLock;

 public FairReadWriteLock() {
 readersIn = readersOut = 0;
 writer = false;
 lck = new ReentrantLock();
 condition = lck.newCondition();
 rdLock = new RdLock();
 wrLock = new WrLock();
 }

 public RWLock getRdLock() {
 return rdLock;
 }

 public RWLock getWrLock() {
 return wrLock;
 }

The code is mostly identical to the previous version. The notable thing is that we have
replaced the readers field with two fields, readersIn and readersOut.

More Threading Patterns Chapter 3

[102]

The following diagram shows how the design works toward a fairer write lock:

The reader lock method, as before, waits to see whether the writer flag is on. However, as
noted, the writer being on could also mean that a writer is pending. In that case, the reader
waits.

Otherwise, the reader continues and increments the readersIn field. The unlock method,
on the other hand, increments the readersOut field. Note that the readersOut variable
will always be less than or equal to the readersIn variable:

while (readersIn != readersOut) {
 condition.await();
}

When the two match, it means that the thread is the last reader unlocking the RwLock. So, it
signals the condition, thereby awakening any pending writers:

More Threading Patterns Chapter 3

[103]

The design allows the writer to have a go, if it came earlier. This is shown in the following
diagram:

More Threading Patterns Chapter 3

[104]

Due to the way things are structured, T2 is waiting longer than T3. The moment T1 releases
the reader lock, T2 gets a chance to set the writer flag. This holds all the prospective readers,
in this case, T3, from acquiring the reader lock and, as a result, the writer can proceed.

Counting semaphores
Concurrent applications usually have a pool of resources. For example, we have thread
pooling and connection pooling. Creating and destroying such a connection as we go is costly.
Instead, a pool is created, and whenever the app needs a resource, it goes and asks the pool.

The pool is configured to hold a certain number of these resources. For example, 20 database
connections or 355 threads. When the demand is high, the pool could get exhausted. Unless
some resources are released, the requesting thread should be put to sleep:

A semaphore would come, handy in implementing such scenarios. The semaphore is
initialized with an initial capacity, cap, representing the configured pool size:

More Threading Patterns Chapter 3

[105]

The following listing shows a semaphore implementation:

public class Semaphore {
 private final int cap;
 private int count;
 private final Lock lck;
 private final Condition condition;

 public Semaphore(int cap) {
 this.cap = cap;
 count = 0;
 lck = new ReentrantLock();
 condition = lck.newCondition();
 }

 public void acquire() throws InterruptedException {
 lck.lock();
 try {
 while (count == cap) {
 condition.await();
 }
 count++;
 } finally {
 lck.unlock();
 }

More Threading Patterns Chapter 3

[106]

 }

 public void release() {
 lck.lock();
 try {
 count--;
 condition.signalAll();
 } finally {
 lck.unlock();
 }
 }

}

The interesting part is the snippet where the lock is granted:

 while (count == cap) {
 condition.await();
 }
 count++;

Till the count reaches the capacity, we keep granting the request. At some point, the count
equals the capacity. This means that the pool is exhausted:

 count--;
 condition.signalAll();

When a thread releases a connection, the condition is signalled, so the pending thread(s)
wake up and try getting the pool resource.

Our own reentrant lock
The following code shows how we could implement the reentrant lock ourselves. The code
shows the reentrancy semantics, too. We just show the lock and unlock method:

public class YetAnotherReentrantLock {
 private Thread lockedBy = null;
 private int lockCount = 0;

The class has two fields—a lockedBy thread reference and a lockcount—which are used
to track how many times the thread recursively locked itself:

private boolean isLocked() {
 return lockedBy != null;
}

More Threading Patterns Chapter 3

[107]

private boolean isLockedByMe() {
 return Thread.currentThread() == lockedBy;
}

The preceding snippet shows two helper methods. Using such helpers help make the code
more readable:

public synchronized void lock() throws InterruptedException {
 while (isLocked() && !isLockedByMe()) {
 this.wait();
 }
 lockedBy = Thread.currentThread();
 lockCount++;
}

Here is a pictorial analysis of the lock() method:

Keep in mind the lock semantics—the lock is granted if and only if it's in a released state!
Otherwise, some other thread holds the lock, so the thread needs to wait.

Ownership is tracked using the thread reference. As no two threads can have the same
object reference, this works fine:

public synchronized void unlock() {
 if (isLockedByMe()) {
 lockCount--;
 }
 if (lockCount == 0) {
 lockedBy = null;
 this.notify();
 }
}

More Threading Patterns Chapter 3

[108]

The unlock() call is symmetrical. The following is the client contract:

As many times the lock is entered (via the lock() method) you need to unlock them (via
the unlock() method) an equal number of times:

The try and finally functions we used previously ensure this contract. However, the
program flow goes out, and the finally clause makes sure that both of these times match:

 if (lockCount == 0) {
 lockedBy = null;
 this.notify();
 }

If the thread has released the lock correctly, as described previously, the lockCount
variable will be decremented back to 0. We reset the lockBy field to null, thereby releasing
the lock, and broadcast the availability of the lock to other possibly pending threads.

Countdown latch
A latch is yet another synchronizer. It acts as a gate—threads wait for the gate to open; once
the gate— that is—the latch opens, all threads enter it:

More Threading Patterns Chapter 3

[109]

Why do we need latches? A latch is used to ensure that, unless some essential, precursor
activity has happened, other activities wait for it. Let's look at a real-life example:

The preceding diagram shows how running a race happens on a nice evening. All the
players need to assemble at the starting point and wait for the whistle to blow. Once the
whistle goes, the players start running, and the race starts.

More Threading Patterns Chapter 3

[110]

The starting point is the place of rendezvous: everyone needs to come and wait there for the
important activity of the whistle blowing. We can't even imagine a race without it!

So, the runners are threads, the whistle being blown is a one-time activity, such as
initialization, and the goal post is, again, an application-specific goal each thread is trying
to complete.

The following code shows the latch in action:

import java.util.concurrent.CountDownLatch;

public class AppCountDownLatch {
 public static void main(String[] args) throws InterruptedException {
 CountDownLatch latch = new CountDownLatch(3);

We have a main program, using a countdownlatch from Java's threading library. The
latch is initialized to 3:

Runnable w1 = createWorker(3000, latch, "W1");
Runnable w2 = createWorker(2000, latch, "W2");
Runnable w3 = createWorker(1000, latch, "W3");

We create three runnables, w1, w2, and w3. Each runnable is sent the millisecond it needs to
sleep, a name to identify it, and the latch.

The general idea is that every thread will put down the latch, once it is done with its
processing. In this case, it is just sleeping for some time! We start off all three threads as
follows:

new Thread(w1).start();
new Thread(w1).start();
new Thread(w1).start();

latch.await(); // await it to open
System.out.println("We are done");

We need to make sure all these threads complete before the main thread exits. So, we wait for
the latch to open, that is, we wait for all the threads to complete their respective processing:

private static Runnable createWorker(int delay, CountDownLatch latch,
String w1) {
 return new Runnable() {
 @Override
 public void run() {
 try {
 Thread.sleep(delay);
 latch.countDown(); // decrement the latch

More Threading Patterns Chapter 3

[111]

 System.out.println(Thread.currentThread().getName()
 + " done with processing");
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 };
}

As expected, the "We are done" message comes last, making sure all threads are done. The
following is a pictorial representation:

More Threading Patterns Chapter 3

[112]

Here, the one-time event is the completion of all the processing threads. Whichever thread
decrements the latch to 0 opens it, so the main thread can continue. All it does here is print
the done message, and then it exits.

Implementing the countdown latch
We can implement the latch as follows. We call the class, MyCountDownLatch:

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

public class MyCountDownLatch {
 private int cnt;
 private ReentrantLock lck;
 private Condition cond;

The field cnt holds the latch count. By now, the fields lck and cond should be very
familiar to you. These are used to implement the synchronization semantics:

public MyCountDownLatch(int cnt) {
 this.cnt = cnt;
 lck = new ReentrantLock();
 cond = lck.newCondition();
}

The constructor initializes the latch count, cnt, and the lck and cond variables. The cond
variable needs to be associated with the lock, lck:

public void await() throws InterruptedException {
 lck.lock();
 try {
 while (cnt != 0) {
 cond.await();
 }

 } finally {
 lck.unlock();
 }
}

More Threading Patterns Chapter 3

[113]

The await() method checks whether the count, cnt, has gone down to 0. If so, the latch is
open, and the method returns. If the count is non-zero, the calling thread is put to sleep,
and the lock, lck, is released:

public void countDown() {
 lck.lock();
 try {
 --cnt;
 if (cnt == 0) {
 cond.signalAll();
 }
 } finally {
 lck.unlock();
 }
}

Finally, the countDown() method acquires the lock and decrements the count, cnt. If the
count reaches 0, a broadcast happens on the condition variable.

This wakes up the pending threads (if any) waiting in the await() method.

A cyclic barrier
A cyclic barrier is one more synchronization mechanism where all threads need to wait at a
point before any can proceed.

A real-life example should make it clear. Three long-time friends happen to be in the same
city on business, and they plan to have dinner together, and then go and see a movie, just to
relive old times.

One of them is going to take a car, and they happen to be the nearest to the restaurant. So,
they arrive quickly and wait at the venue. The other buddies are taking a train and a bus,
respectively, so everyone waits for the other(s) to arrive.

More Threading Patterns Chapter 3

[114]

Once everyone arrives, the dinner can begin. This agreement of waiting upon other buddies
to join, and then only begin the fun, is a barrier:

After the dinner is over, and as people eat at different rates, not everyone finishes at the
same time. So, again, they wait (barrier), and then, once everyone is done, they go to the
movie.

A barrier is very much like a countdown latch, with the only difference being that all
threads instead wait for their other buddy threads to complete.

The following diagram shows a process divided up into phases. Each phase is worked upon
by multiple threads. When all are done with their allotted task, the group moves on to the
next phase:

More Threading Patterns Chapter 3

[115]

Here is the example code showing a barrier in action:

public class AppCyclicBarrier {
 public static void main(String[] args) throws BrokenBarrierException,
InterruptedException {
 Runnable barrierAction = new Runnable() {
 public void run() {
 System.out.println("BarrierAction 1 executed ");
 }
 };

 CyclicBarrier barrier = new CyclicBarrier(3, barrierAction);

More Threading Patterns Chapter 3

[116]

We create a barrier and install a barrierAction, a runnable that gets called when all
threads have awaited on the barrier:

 Runnable w1 = createWorker(barrier);
 Runnable w2 = createWorker(barrier);

 new Thread(w1).start();
 new Thread(w2).start();

 barrier.await();
 System.out.println("Done");
}

We have two threads, with runnables w1 and w2. The main thread spawns them and then
waits at the barrier:

private static Runnable createWorker(final CyclicBarrier barrier) {
 return new Runnable() {

 @Override
 public void run() {
 try {
 Thread.sleep(1000);
 System.out.println("Waiting at barrier");
 try {
 barrier.await();
 } catch (BrokenBarrierException e) {
 e.printStackTrace();
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 }
 };
}

Each worker thread just sleeps, prints a message, and then waits at the barrier. Once
everyone has arrived (after they have done their respective processing), the barrier opens,
and all threads proceed to completion.

Implementing your own version of barriers is left as an exercise.

More Threading Patterns Chapter 3

[117]

A future task
A future task is essentially an asynchronous construct. As its name signifies, it is a wrapper
for some expensive computation whose result will be available sometime in the future. Once
the computation is completed, it returns the result via a get() method call.

 As listed and shown in the figure, the future task have three states:

Waiting to run1.
Running 2.
Completed 3.

When we try to obtain a result from the future task, the behavior depends on which state it
is in. If it is not completed yet, the thread calling get() sleeps till the computation is done,
and the result is available. There is also an overloaded get(long timeout, TimeUnit
unit) method that avoids waiting forever. So, task get(5L, TimeUnit.SECONDS) would
wait for only five seconds. If the method does not return within the time prescribed, a
TimeOutException will be thrown.

The following code shows the future task in action:

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;

public class AppFutureTask {
 private static FutureTask<String> createAFutureTask() {
 final Callable<String> callable = new Callable<String>() {

More Threading Patterns Chapter 3

[118]

 @Override
 public String call() throws InterruptedException {
 Thread.sleep(4000);
 return "Hello World";
 }
 };
 return new FutureTask<String>(callable);
}

The createAFutureTask() method creates a future task, where the expensive
computation is represented by a callable.

This callable's call() method makes the thread sleep for four seconds, and then returns a
string result. We wrap this computation in a future task and return it:

private static void timeTheCall(final FutureTask<String> future) throws
ExecutionException, InterruptedException {
 long startTime = System.currentTimeMillis();
 System.out.println(future.get());
 long stopTime = System.currentTimeMillis();
 long elapsedTime = stopTime - startTime;
 System.out.println("Elapsed time " + elapsedTime);
}

The preceding method is just a handy helper; it times the future.get() method
invocations:

More Threading Patterns Chapter 3

[119]

As shown in the preceding image, the first time we call the future.get() method
(invoked as a result of the timeTheCall(future) method), the future is in the running
state. So, the result is not available as of yet. So, the first call takes a long time to finish.

The second and subsequent calls, however, complete instantly, as the future is in the
completed state. The result is readily available and so is returned quickly:

 public static void main(String[] args) throws ExecutionException,
InterruptedException {

 final FutureTask<String> future = createAFutureTask();
 final Thread thread = new Thread(future);
 thread.start();

 timeTheCall(future);
 timeTheCall(future);
 timeTheCall(future);
 }
}

The shown method is a driver that creates the future and starts the asynchronous
computation:

More Threading Patterns Chapter 3

[120]

As shown in the preceding diagram, when we call get on a future in the waiting or running
state, the call completes in 4,003 milliseconds. The thread sleeps for 4,000 milliseconds, and
the rest of the processing takes three milliseconds. The other two get calls complete
instantly. The call completes so fast that millisecond granularity is not enough to catch it.

Your times may vary a bit. However, the overall behavior should be the same.

Writing a future implementation is left as an exercise.

Summary
We saw many primitive synchronizations in this chapter. We started with the bounded
buffer and saw how it prevents an overloaded application from running out of memory.
The client contract is realized using reentrant locks.

Next, we discussed the readers-writer locking; this is the pattern that increases read
concurrency. We also looked at counting semaphores, countdown latches, barriers, and
future tasks. We will be looking at the applications of these primitives in the upcoming
chapters.

Resource pooling is realized using counting semaphores. For example, database connection
pooling and thread pooling allow an application to pool and use resources efficiently.

Thread pools offer the same benefit for thread management. java.util.concurrent
provides a flexible thread pool implementation as part of the executor framework.

We will take a detailed look at thread pooling in the next chapter.

4
Thread Pools

In this chapter, we will be looking at more patterns for staying away from explicit locking
and state management. The theme is to let us focus on the business logic and the rest of the
boilerplate of explicit thread creation and management handled by a framework.

This set of design patterns yields robust code as we reuse tried and tested, well-proven
library code. We start with thread pooling as a major step toward focusing on our business
logic as tasks. The pooling patterns give us a facility to run these tasks concurrently.

Firstly, we will cover the need for thread pools and the notion of a task. A task is a
manifestation of the command design pattern, decoupling the task definition from its
execution. We then look at ExecutorService, the pooling facility given by Java's threading
library. Blocking queues are at the heart of this implementation. We will use the blocking
queues to home grow our own pooling implementation.

Fork-Join is a major pooling implementation that appeared in Java 7. This is a dynamic
thread pool that takes into account the number of cores and the task load. This is also the
default dispatcher for the actor systems we will cover in subsequent chapters.

We will look at this API and see the important concept of work stealing.

Finally, we look at the active object design pattern in depth. We will wrap up with a
discussion and code implementation of this design pattern.

So, we will be discussing the following topics:

More patterns for staying away from explicit locking and state management
Thread pooling— need and notion
Executor service
Fork-join
Active object design pattern

Thread Pools Chapter 4

[122]

For complete code files you can visit https:/ ​/ ​github. ​com/
PacktPublishing/ ​Concurrent- ​Patterns- ​and-​Best- ​Practices

Thread pools
What are thread pools? Why do we need these? Let's take a real-life example, consider a bus
terminal that has a certain number of buses in the pool. The buses are added once to the
pool and then are reused as required to serve various routes.

Why does the bus terminal work this way? Why don't they buy buses as needed and
discard (sell them) as per their demand? To buy a bus, you need to shell out money. There
is an additional cost for maintaining them!

So, the designers take a call, take into account the average travelers using the service, arrive
at a certain number of buses, and reuse them as much as possible to maximize the return on
investment:

https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices

Thread Pools Chapter 4

[123]

Drawing a parallel, threads are expensive to create. So, we need to limit the number of
threads in an application. Every thread has a stack of its own, which takes up memory.
Each Java thread maps to an operating system thread. Thus, creation involves a system
call, which is expensive. See this stack overflow link for more information.

What is the alternative? Instead of spawning a new thread, we can use a thread pool.

Multi-threaded servers typically use thread pools. Each client connection hitting at the
server is wrapped as a task and serviced via a thread pool. Java 5 comes with built-in
thread pools in the java.util.concurrent package.

The following code shows such a pool in action. A client thread delegates a task to the
service, which executes it in the background:

public static void main(String[] args) {
 ExecutorService executorService = Executors.newFixedThreadPool(10);

 executorService.execute(new Runnable() {
 public void run() {
 System.out.println("Hey pool!");
 }
 });

 executorService.shutdown();
}

The ExecutorService is an interface. It sends the task to the pool; an ideal pool thread
picks up and executes the task. This diagram shows what happens behind the scenes:

https://stackoverflow.com/questions/5483047/why-is-creating-a-thread-said-to-be-expensive

Thread Pools Chapter 4

[124]

How is the task shared, though? There must be a thread-safe channel via which the main
thread sends over the task to the pool thread.

The channel is a blocking queue; tasks are enqueued by the client(s) and are dequeued
by the threads in the pool. An ideal thread picks up the inserted task and executes it. Other
idle threads in the pool will wait for new tasks to come.

This diagram shows this in action:

The pool is shown to have four threads. Each thread picks up the tasks and gets busy
executing them. The last task waits in the queue for a thread to free up!

The command design pattern
What do we mean by decoupling a task definition from its execution? This is a very
important theme. Here is a real-life example.

The upper part of the following diagram shows how a typical dine-in restaurant food order
is processed. The customer places the order with the server, who notes it down. The order is
then passed on to the kitchen for execution, that is, preparing the food dishes.

Once the food is ready, it is served to the customer. Note that the customer really does not
know (or care), where the kitchen is located or who really prepared the dish for them! This
is decoupling in action. The customer does not know who made the dish, just that the dish is
made nice and tasty, and the kitchen chef does not know which customer the dish is being
made for!

Thread Pools Chapter 4

[125]

The chef tries to make all dishes tasty and within a certain time frame, and that is all
they worry about:

The preceding diagram also shows how the command pattern works when applied to
thread pools and draws a parallel with the restaurant entities.

A client thread corresponds to the customer. It creates a runnable as a
command (whose run method expresses the task). This corresponds to the jotted-down
food order. The task is inserted into a First-In/First-Out queue. The queue roughly
corresponds to the server.

The kitchen corresponds to a thread pool; a thread is like a chef who works on the runnable
command. Eventually, the result is computed, which corresponds to the food. The result is
routed back to the client thread.

Counting words
The following is the ubiquitous word-counting program. It reads a text file and counts the
number of words in it. For simplicity, words are strings separated with a white space.

Thread Pools Chapter 4

[126]

The driver reads each line and sends it to the thread pool. Each thread counts the words by
incrementing a shared count variable. This code snippet shows the starting part. We will
discuss the code piecemeal to see how everything fits together:

public class WordCount {
 final static AtomicLong count = new AtomicLong();

Next, comes a helper method that reads a file and returns a Stream<String>. This is a
boilerplate function we use for other versions of the program too:

private static Stream<String> readLines(String fileName) {
 Path path = null;
 Stream<String> lines = null;
 try {
 path =
Paths.get(Thread.currentThread().getContextClassLoader().getResource(fileNa
me).toURI());
 lines = Files.lines(path);
 } catch (URISyntaxException | IOException e) {
 throw new RuntimeException(e);
 }
 return lines;
}

As shown in the preceding code, the file is read from the resources folder and a stream of
the lines is returned. The following code snippet shows how the driver reads the lines and
passes each to the thread pool:

Thread Pools Chapter 4

[127]

We have a threadpool of four threads. We install a runnable that just splits the line and
increments the count field. Once the stream is done, we close the stream and the
executorService.

The waitTermination(...) call waits for all the pool threads to finish execution.

Another version
The aforementioned version is updating the count variable, which is a shared global
state. What if each thread returns its count and the upper layer could sum that up instead?

The problem with this approach is that, you cannot return a value from the run() method.
The method that cannot return anything is declared as a void.

In such cases, the Callable interface comes in handy. The following version uses a list of
callables, upon completion, and each callable returns a future:

The future helps avoid blocking. We fire off all the computations, and then finally call each
future's get() method. This method could block (if the computation is a long-running one).

Thread Pools Chapter 4

[128]

The following code shows the future-based version:

As it stands, the code does not sum up the counts. Rather, it shows the individual word
count of each line. This allows us to verify that the callable or future combination works as
expected.

The blocking queue
The blocking code implements a thread pool; we just show the relevant part that is
changing; namely, the pool implementation used is our own.

The driver is mostly unchanged from what we mentioned previously:

public static void main(String[] args) {
 MyThreadPool threadPool = new MyThreadPool(4, 20);
 Stream<String> lines = readLines("input.txt");

 lines.forEach(line -> {
 try {
 threadPool.execute(new Runnable() {
 @Override
 public void run() {

Thread Pools Chapter 4

[129]

 final String[] words = line.split(" ");
 count.getAndAdd(words.length);
 }
 });
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 });
 lines.close();
 threadPool.stop();
 System.out.println("count = " + count);
}

Let's dissect the MyThreadPool class. We use an ArrayBlockingQueue to pass the tasks to
the pool. Go through the following line:

taskQueue = new ArrayBlockingQueue(maxNumOfTasks);

It initializes the queue to hold a certain number of items (its capacity), which is 20 in our
driver code. If some producer tries to put more than the queue capacity, then the producer
blocks it.

Limiting the number of tasks keeps the queue in control. We have seen this theme earlier:
the producer is made to wait, in case the queue is full:

Thread Pools Chapter 4

[130]

We use a MyPoolThread class, which subclasses the Thread class. Once the threads are
added to the pool, each thread's start() method is called:

Note the doStop() method; we set the isDone flag to true and then interrupt the thread!
Note carefully that just setting the flag is not enough. The thread is probably waiting on the
queue for any future work and none is going to come (as the doStop() method was
invoked).
Note the overridden run() method:

public void run() {
 while (!isDone()) {
 try {
 Runnable runnable = (Runnable) taskQueue.take();
 runnable.run();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The method keeps looping, taking a task off the queue and invoking its run method. The
loop is exited upon the isDone flag being set to true.

Thread Pools Chapter 4

[131]

It is possible that the thread is waiting in the take() call and could conceivably wait
forever; it will never see the change of the flag value!

This is why we need to interrupt the thread at the time we set the flag, as follows:

public synchronized void doStop() {
 isDone = true;
 this.interrupt(); //break pool thread out of dequeue() call.
}

 The thread throws an InterruptedException, breaks out of the taskQueue.take()
method, notes the flag change, and exits the run() method.

This cleans up the thread, and the pool exits cleanly.

Thread interruption semantics
The interrupt() method cancels the current thread operation. The operation needs to be
designed for interruption, though!

One common example of such an operation is the Thread.sleep(...) method. The
following code shows how a sleeping thread is woken up using the interrupt() method:

public class ThreadInterruption {
 public static void main(String[] args) throws InterruptedException {
 Runnable r = new Runnable() {
 @Override
 public void run() {
 try {
 Thread.sleep(40000);
 } catch (InterruptedException e) {
 System.out.println("I was woken up!!!");;
 }
 System.out.println("I Am done");
 }
 };
 Thread t = new Thread(r);
 t.start();
 t.interrupt();
 Thread.sleep(1000);
 }
}

The run() method just sleeps for 40 seconds (the quantum is in milliseconds). The main
thread spawns the sleeping thread and then interrupts it.

Thread Pools Chapter 4

[132]

As noted before, the sleep() method is aware of interruptions, it wakes up accordingly,
prints a message, and exits.

The reason we should never ignore interruption should be clear by now. If we ignore the
interruption for our thread pool, the pool thread will keep on waiting forever!

The fork-join pool
Java 7 introduced a specialized executor service, namely, the fork-join API. It dynamically
manages the number of threads, based on the available processors, and other parameters
such as the number of concurrent tasks. It also employs an important pattern, work
stealing—we will soon discuss this.

Egrep – simple version
Let's see the fork-join API in action. We will look at two examples to understand how the
API works. The idea is to find a word in a text file. The driver class is EgrepWord:

public class EgrepWord {
 private final static ForkJoinPool forkJoinPool = new ForkJoinPool();

The principal theme in the fork-join API is a recursive task. The following class extends a
parameterized RecursiveTask—on a List<String>. The following snippet shows the
constructor that accepts a line of text and the word to search for:

private static class WordFinder extends RecursiveTask<List<String>> {
 final String line;
 final String word;

 private WordFinder(String line, String word) {
 this.line = line;
 this.word = word;
}

The driver comes next. It reads a file from the resource folder, and, assuming it is a text file,
it goes and searches for the given word in it:

public static void main(String[] args) {
 Stream<String> lines = readLines("input.txt");
 List<WordFinder> taskList = new ArrayList<>();
 lines.forEach(line ->taskList.add(new WordFinder(line, "is")));
 List<String> result = new ArrayList<>();
 for (final WordFinder task : invokeAll(taskList)) {

Thread Pools Chapter 4

[133]

 final List<String> taskResult = (List<String>) task.join();
 result.addAll(taskResult);
 }
 for(String r: result) {
 System.out.println(r);
 }

}

The following diagram shows the central concepts:

The task is defined in terms of the WordFinder class. We will create a list of such tasks in
the taskList variable. When invokeAll is called on this task list, all the tasks are forked,
that is, they are executed by the pool threads.

Finally, all the task results are printed on a standard output. This prints all the lines in
which we found the string in.

 Why use a recursive task?
The tasks could fork more subtasks themselves . To look at this aspect, let's extend the
preceding egrep program to allow a recursive grep—given a directory, the program will
recursively find all occurrences of the word in all the files in the directory tree.

Thread Pools Chapter 4

[134]

We change the previous code suitably, as shown here:

public class EgrepWord1 {
 private final static ForkJoinPool forkJoinPool = new ForkJoinPool();

 private static class WordFinder extends RecursiveTask<List<String>> {

 final File file;
 final String word;

 private WordFinder(File file, String word) {
 this.file = file;
 this.word = word;
 }

The task works on two kinds of files: if it is a directory, the task enters the directory
and spawns off more subtasks to process each child entry (these, in turn, could be directories
themselves):

@Override
protected List<String> compute() {
 if (file.isFile()) {
 return grepInFile(file, word);
}

If the file is really a text file, the grepInFile(...) method finds the word in the file. The
helper method is shown as follows:

else {
 final File[] children = file.listFiles();
 if (children != null) {

If the file is not a directory, then the listFiles() method returns a null. This case is
shown as follows when the traversal hits the mypipe file which is a fifo (created using the
mkfifo command), we then skip the entire processing:

Thread Pools Chapter 4

[135]

Otherwise, it is a directory. The directory itself could be empty. In that case, the children
array will also be empty. This is as given by the File.listFiles(...) contract. Again,
in this case, we skip the subtask processing. This case is shown here:

Having checked these boundary conditions, we proceed to the nested processing of the
directory:

List<ForkJoinTask<List<String>>> tasks = Lists.newArrayList();
List<String> result = Lists.newArrayList();
for (final File child : children) {

If the for loop is entered, the directory is not empty. The following diagram helps see this in
context:

Thread Pools Chapter 4

[136]

The following code snippet is the heart of it:

if (child.isFile()) {
 List<String> taskResult = grepInFile(child, word);
 result.addAll(taskResult);
} else {
 tasks.add(new WordFinder(child, word));
}

If the child is a file, we just do the grep processing, and accumulate the result.

The following diagram helps us see how the tasks and subtasks are processed:

Could we simplify the following snippet?

if (child.isFile()) {
 List<String> taskResult = grepInFile(child, word);
 result.addAll(taskResult);
} else {
 tasks.add(new WordFinder(child, word));
}

Thread Pools Chapter 4

[137]

This is left as an exercise for the reader.

Finally, there is the grep processing; it is super simple. We create a stream of lines from the
file:

private List<String> grepInFile(File file, String word) {
 final Stream<String> lines = readLines(file);
 final List<String> result = lines
 .filter(x -> x.contains(word))
 .map(y -> file + ": " + y)
 .collect(Collectors.toList());

 return result;
}

The stream is filtered based on whether the line contains the given word. For all such lines,
it tacks on the filename and then generates the list using the stream's collect method:

public static void main(String[] args) throws URISyntaxException {
 final Path dir1 = getResourcePath("dir1");
 final List<String> result = forkJoinPool.invoke(new
WordFinder(dir1.toFile(), "in"));

 for(String r: result) {
 System.out.println(r);
 }
}

The provided driver code drives the code and prints the result on the console.

Task parallelism
The fork-join is a parallel design pattern. We set up and execute it so that execution branches
off in parallel when we encounter a directory. The result is joined (merged) with the higher
level.

Thread Pools Chapter 4

[138]

It is the divide-and-conquer strategy at work here. The following diagram shows the
generalized theme (pattern) at work:

Fork-join will fit nicely to any processing that is amenable to the previous task or the
subtask division.

One famous example of divide and conquer algorithms is quicksort. This famous algorithm
sorts an array by dividing it up into two halves, using a median value. For more
information on quicksort, please refer to https:/ ​/​www. ​geeksforgeeks. ​org/​quick- ​sort/
. This diagram shows the essence of this algorithm:

https://www.geeksforgeeks.org/quick-sort/
https://www.geeksforgeeks.org/quick-sort/
https://www.geeksforgeeks.org/quick-sort/
https://www.geeksforgeeks.org/quick-sort/
https://www.geeksforgeeks.org/quick-sort/
https://www.geeksforgeeks.org/quick-sort/
https://www.geeksforgeeks.org/quick-sort/
https://www.geeksforgeeks.org/quick-sort/
https://www.geeksforgeeks.org/quick-sort/
https://www.geeksforgeeks.org/quick-sort/
https://www.geeksforgeeks.org/quick-sort/
https://www.geeksforgeeks.org/quick-sort/
https://www.geeksforgeeks.org/quick-sort/

Thread Pools Chapter 4

[139]

When the elements in the array are small, that is, around 100 or less, then the divide and
conquer algorithm does not yield any benefits. In that case, we could sort the array using
either a selection sort or an insertion sort.

The quicksort algorithm is amenable to a fork-join design. Could you spot the fork and join
points? Give it a thought before you read on...

Quicksort – using fork-join
The following code snippet shows the driver for the quicksort implementation using the
fork-join API. We use an array of 1,000 elements as input.

The array is populated using random numbers:

public class QuickSortForkJoin {
 public static final int NELEMS = 1000;
 public static void main(String[] args) {
 ForkJoinPool forkJoinPool = new ForkJoinPool();
 Random r = new Random();

 int[] arr = new int[NELEMS];
 for (int i = 0; i < arr.length; i++) {
 int k = r.nextInt(NELEMS);
 arr[i] = k;
 }
 ForkJoinQuicksortTask forkJoinQuicksortTask = new

Thread Pools Chapter 4

[140]

ForkJoinQuicksortTask(arr,0, arr.length - 1);
 final int[] result = forkJoinPool.invoke(forkJoinQuicksortTask);
 System.out.println(Arrays.toString(result));
 }
}

The following expression generates a random number between the 0 .. NELEMS (0 is
inclusive, while NELEMS is exclusive):

int k = r.nextInt(NELEMS);
arr[i] = k;

 We kick off the sorting by constructing an instance of a ForkJoinQuicksortTask class:

ForkJoinQuicksortTask forkJoinQuicksortTask = new
ForkJoinQuicksortTask(arr);

The constructor expects to be given the array. As we need to sort all of the array, the
constructor can figure out its low and high bounds, which are 0 and arr.length-1:

final int[] result = forkJoinPool.invoke(forkJoinQuicksortTask);
System.out.println(Arrays.toString(result));

The result obtained by invoking the fork-join processing is printed to the console. We use a
helper method of the Arrays class to print the sorted array contents.

The ForkJoinQuicksortTask class
The class extends the RecursiveTask, as needed by the contract of the fork join API. The
class joins and returns an array of int as follows:

class ForkJoinQuicksortTask extends RecursiveTask<int[]> {
 public static final int LIMIT = 100;
 int[] arr;
 int left;
 int right;

 public ForkJoinQuicksortTask(int[] arr) {
 this(arr, 0, arr.length-1);
 }

 public ForkJoinQuicksortTask(int[] arr, int left, int right) {
 this.arr = arr;
 this.left = left;
 this.right = right;
 }

Thread Pools Chapter 4

[141]

As noted in the previous code, quicksort does not work too well on small arrays (when
the number of elements is less than or equal to 100). The LIMIT constant defines the
number of these elements when we stop the divide and conquer and fall back to other
methods to sort the small array:

public static final int LIMIT = 100;

The array is partitioned around a pivot element, so that all elements less than the pivot
element are to the left of it. Elements that are to the right of the pivot element are greater or
equal to it. The essence of the pivot method is shown in the following diagram:

Taking a paper and pencil, and working out a trace of the partition() method would
help you understand how the method works...

The method is shown here:

int partition(int[] a, int p, int r) {
 int i = p - 1;
 int x = a[r];
 for (int j = p; j < r; j++) {
 if (a[j] < x) {
 i++;
 swap(a, i, j);
 }
 }
 i++;
 swap(a, i, r);
 return i;
}

Thread Pools Chapter 4

[142]

The swap method is just a helper method, which uses a temp variable to sort two elements
of the array:

 void swap(int[] a, int p, int r) {
 int t = a[p];
 a[p] = a[r];
 a[r] = t;
 }

 private boolean isItASmallArray() {
 return right - left <= LIMIT;
 }
}

Given all of this background, let's look at the compute() method, which is the meat of our
fork-join processing:

@Override
protected int[] compute() {
 if (isItASmallArray()) {
 Arrays.sort(arr, left, right + 1);
 return arr;
 } else {
 List<ForkJoinTask<int[]>> tasks = Lists.newArrayList();
 int pivotIndex = partition(arr, left, right);

 int[] arr0 = Arrays.copyOfRange(arr, left, pivotIndex);
 int[] arr1 = Arrays.copyOfRange(arr, pivotIndex + 1, right + 1);

 tasks.add(new ForkJoinQuicksortTask(arr0));
 tasks.add(new ForkJoinQuicksortTask(arr1));

 int[] result = new int[]{arr[pivotIndex]};
 boolean pivotElemCopied = false;
 for (final ForkJoinTask<int[]> task : invokeAll(tasks)) {
 int[] taskResult = task.join();
 if (!pivotElemCopied) {
 result = Ints.concat(taskResult, result);
 pivotElemCopied = true;
 } else {
 result = Ints.concat(result, taskResult);
 }
 }
 return result;
 }
}

Thread Pools Chapter 4

[143]

The if clause calls the isItASmallArray(), checks whether the array is too small, and
should instead fall back on other sorting methods. If it is, we just sort it
using Arrays.sort(...) to keep it simple:

if (isItASmallArray()) {
 Arrays.sort(arr, left, right + 1);
 return arr;
 }

The else clause is more interesting. We create a list of recursive fork join tasks, all held in
the tasks list:

else {
 List<ForkJoinTask<int[]>> tasks = Lists.newArrayList();
 int pivotIndex = partition(arr, left, right);

The array is partitioned into two and the pivotIndex is returned. The following line
adds the two subarrays as fork join tasks:

int[] arr0 = Arrays.copyOfRange(arr, left, pivotIndex);
int[] arr1 = Arrays.copyOfRange(arr, pivotIndex + 1, right + 1);

tasks.add(new ForkJoinQuicksortTask(arr0));
tasks.add(new ForkJoinQuicksortTask(arr1));

We create two new subarrays by copying the appropriate ranges. This helps us use the
Ints.concat(...) method to concatenate two arrays in the join phase. The
Ints.concat(...) method comes from Google's excellent Guava library.

Why are we doing all of this? You guessed right: we are setting up the stage to sort both
these subarrays in parallel. The remaining lines, as shown ahead, join the sorted subarrays:

int[] result = new int[]{arr[pivotIndex]};
boolean pivotElemCopied = false;
for (final ForkJoinTask<int[]> task : invokeAll(tasks)) {
 int[] taskResult = task.join();
 if (!pivotElemCopied) {
 result = Ints.concat(taskResult, result);
 pivotElemCopied = true;
 } else {
 result = Ints.concat(result, taskResult);
 }
}
return result;

Thread Pools Chapter 4

[144]

We initialize the result variable as a single array element holding the pivot element. We
append the pivot element to the first sorted array as a result. Next, we append the second
sorted array to the result, giving us a complete sorted array.

The copy-on-write theme
Note that we do not change the source array; the sort does not happen in place. The input
array is not modified; we instead return a sorted copy of the input array. The following
line copies the subarray:

int[] arr0 = Arrays.copyOfRange(arr, left, pivotIndex);

The code then passes it on for further sorting. If we make sure never to mutate the data
structure in place, then we don't need to synchronize it. Any number of threads can read it
freely, knowing well in advance that no one can ever change it!

You may change the driver code to see this in action:

System.out.println(Arrays.toString(arr)); // [240, 565, 485, 357, 437,
316...
System.out.println(Arrays.toString(result)); // [0, 0, 1, 2, 4, 7, 8, 8,
10...

Of course, the previous scheme allocates many arrays. It would be easier to copy the entire
array and then do the sort in place. The following diagram shows the scheme in action:

Thread Pools Chapter 4

[145]

We need to balance a trade-off while making the array immutable, and we need to copy just
enough so that unnecessary copying is avoided. In this case, of course, we have no option
but to copy the entire array. However, as we will soon see, an immutable link list can offer
a very efficient prepend operation, using structural sharing:

Thread Pools Chapter 4

[146]

Using immutable data structures to represent a program state increases
concurrency—threads do not have to synchronize, resulting in less contention and fewer
bugs due to incorrect synchronization.

It also makes for easier reasoning about the programming flow.

In-place sorting
The following code shows an in-place version of quick sorting using the fork-join API. The
following code also shows the relevant snippet and outline. The complete code is available
in this book's code repository:

public class InPlaceFJQuickSort {

 public static final int NELEMS = 1000;

 public static void main(String[] args) {
 ForkJoinPool forkJoinPool = new ForkJoinPool();
 Random r = new Random();

 int[] arr = new int[NELEMS];
 for (int i = 0; i < arr.length; i++) {
 int k = r.nextInt(NELEMS);
 arr[i] = k;
 }

 ForkJoinQuicksortAction forkJoinQuicksortAction = new
ForkJoinQuicksortAction(arr,0, arr.length - 1);
 forkJoinPool.invoke(forkJoinQuicksortAction);
 System.out.println(Arrays.toString(arr)); // The array is sorted, in
place
 }
}

The driver class uses the workhorse class, ForJoinQuickSortAction, which extends
RecursiveAction. The overridden compute(...) method has a return type of void. This
suits us nicely, as we need not return anything! The forked task changes the array in place.
The class starts, as shown here:

class ForkJoinQuicksortAction extends RecursiveAction {

Thread Pools Chapter 4

[147]

The following snippet shows the compute(...) method:

@Override
protected void compute() {
 if (isItASmallArray()) {
 Arrays.sort(arr, left, right + 1);
 } else {
 int pivotIndex = partition(arr, left, right);
 ForkJoinQuicksortAction task1 = new ForkJoinQuicksortAction(arr,
left, pivotIndex - 1);
 ForkJoinQuicksortAction task2 = new ForkJoinQuicksortAction(arr,
pivotIndex + 1, right);
 task1.fork();
 task2.compute();
 task1.join();
 }
}

The method is much simpler. We fork the left partition, so it is handled by a different
thread, and compute the right partition. The line just waits for the left partition to get
sorted. Other methods remain the same and hence are not shown. Using the in-
place sorting version by copying the array is left as an exercise:

task1.join();

The map-reduce theme
We are essentially distributing work across different threads. As we have already seen, the
join step reduces (collates) the subresults into a single result. Map and reduce computations
in various garbs essentially work on the same principle.

The ubiquitous example is a word-count program. We have a stream of words (with all
punctuations stripped off), and we try to count the frequency of each word—how many
times it occurs in the stream.

Thread Pools Chapter 4

[148]

The following diagram shows how we could use a hash table to compute the frequencies:

The hash table is a shared data structure among different threads. The algorithm is simple:

 key <- hash(word)
 if (key is present in the hash table) {
 increment associated count
 } else {
 put key in the table - and initialize the associated count to 1
}

As we are concurrent, the idea is to deal with multiple words concurrently. The previous
algorithm should be running in multiple threads, each responsible for a subsection of the hash
table.

The join step just iterates over the hash table and outputs the frequencies. In the next
chapter, we will see how such a hash table could be designed and you will be introduced to
the lock-striping design pattern.

Work stealing
ExecuterService is an interface, and the ForkJoinPool is one implementation of it. This
pool will look for the available CPU and create that many worker threads. The load is then
distributed evenly across each thread.

Thread Pools Chapter 4

[149]

The tasks are distributed to each thread using a thread-specific deque. The following diagram
shows each thread having its own buffer of tasks. The buffer is a deque—a data structure
that allows pushing and popping from either end of the buffer:

The deque allows threads to employ work stealing. It could happen that some tasks are
computation heavy, and, as a result, the processing threads might take longer. On the other
hand, other pool threads might get lighter tasks and won't have any work left to do.

The free threads could steal the task from the deque of some overloaded, random thread.
This design makes for the efficient handling of tasks. The following code shows how the
pool thread works. The thread is represented by the,TaskStealingThread class:

import java.util.Deque;
import java.util.Random;

public class TaskStealingThread extends Thread {
 final Deque<Runnable>[] arrTaskQueue;
 final Random rand;

Thread Pools Chapter 4

[150]

 int myId;

 public TaskStealingThread(Deque<Runnable>[] arrTaskQueue, Random rand)
{
 this.arrTaskQueue = arrTaskQueue;
 this.rand = rand;
 }

As shown in the preceding code, the field arrTaskQueue is an array of deques. The field
rand is used to generate the random index, which is used to index into arrTaskQueue. The
myId field holds an index for this thread's deque in arrTaskQueue:

The preceding diagram helps to see how the stealing works. There are two levels of nested
while loops. The first is a deliberate infinite loop. It keeps the pool thread alive (meaning it
will only quit on an interrupt, when the pool shuts down):

@Override
public void run() {
 int myId = (int) getId();
 Deque<Runnable> myTaskQueue = arrTaskQueue[myId];
 Runnable task = null;
 if (!myTaskQueue.isEmpty()) {
 task = myTaskQueue.pop();
 }

Thread Pools Chapter 4

[151]

The preceding code gets the deque corresponding to this thread instance. It tries to get a
new task by popping the deque:

while(true) {

The first (infinite) loop starts off:

while (task != null) {
 task.run();
 task = myTaskQueue.removeFirst();
}

If the task is not null, this means that the thread has enough tasks to work on. So, it keeps
taking tasks from the queue and runs them:

while (task == null) {
 Thread.yield();
 int stealIndex = rand.nextInt(arrTaskQueue.length);
 if (!arrTaskQueue[stealIndex].isEmpty()) {
 task = arrTaskQueue[stealIndex].removeLast();
 }
}

As the preceding diagram shows us, the task could be null as our task queue is exhausted.
So, we enter the second while loop with the intent of stealing work. However, we need to
call yield() here so other threads get a chance to run first. Note that we prefer the thread
owning the queue to run its assigned tasks if possible.

The stealIndex variable is set to one random location (0 .. arrTaskQueue.length()-1).
We keep looking at the task queues of other pool threads and try taking a task from one of
them.

Once we take the task and run it, we fall back to check our own queue first. If the thread
has got work assigned to it, it goes back again, running tasks in its own queue.

The cycle continues—thereby interweaving work stealing with normal task processing.

Active objects
Here is a classic problem given a piece of legacy code written without any threading
consideration. How do we make it thread-safe?

Thread Pools Chapter 4

[152]

The following class illustrates this problem:

private class LegacyCode {
 int x;
 int y;

 public LegacyCode(int x, int y) {
 this.x = x;
 this.y = y;
 }
 // setters and getters are skipped
 // they are there though

There are two methods, m1() and m2(), which change the instance state in some way. Here
is the m1() method:

public void m1() {
 setX(9);
 setY(0);
}

It sets the x field to 9 and the y field to 0:

public void m2() {
 setY(0);
 setX(9);
}

 The m2() method does the opposite: it sets x to 0 and y to 9.

If we try to make this class concurrent, using threads, you know we need to carefully
synchronize access to all shared states. Of course, any legacy code has many other
ramifications—side effects, exceptions, shared data structures, and so on.

It would indeed be a herculean effort to correctly synchronize all the changes. This is a case
when we could resort to the big lock solution.

Hiding and adapting
The solution is to provide controlled access to the legacy code. For example, we could hide
the legacy code as a private instance and provide delegate methods:

public class WrapperObject {
 private LegacyCode legacyCode;

 public synchronized void m1() {

Thread Pools Chapter 4

[153]

 legacyCode.m1();
 }
 ...

The WrapperObject class's intrinsic lock is used to synchronize across threads. This will
make it thread-safe, but the concurrency will get serialized. The thread contention would be
a major issue:

The strategy works, but could we do better? It seems as if active objects are what the doctor
ordered.

Using a proxy
This pattern beautifully exploits the proxy design pattern. There is a blocking queue that
acts as a task queue. Here is its declaration:

private BlockingQueue<Runnable> queue = new
LinkedBlockingQueue<Runnable>();

private Thread processorThread;

Thread Pools Chapter 4

[154]

The following method starts a single consumer thread, which consumes from the task
queue. It is just a thread and a runnable. The thread is tracked in a field called
processorThread:

public void startTheActiveObject() {
 processorThread = new Thread(new Runnable() {

 @Override
 public void run() {

The run() method runs forever till the thread is interrupted. Upon interruption, a message
is printed and the processor thread exits. The method starts the thread and exits:

while (true) {
 try {
 queue.take().run();
 } catch (InterruptedException e) {
 // terminate
 System.out.println("Active Object Done!");
 break;
 }
 }
 }
});
processorThread.start();
}

The proxy encodes the logic as a runnable and puts it on the queue as a task! The following shows
a proxy to the wrapped method:

private void invokeLegacyOp1() throws InterruptedException {
 queue.put(new Runnable() {
 @Override
 public void run() {
 legacyCode.m1();
 legacyCode.m2();
 }
 });
}

The other methods are also similar:

private void invokeLegacyOp2() throws InterruptedException {
 queue.put(new Runnable() {
 @Override
 public void run() {
 legacyCode.m2();
 legacyCode.m1();

Thread Pools Chapter 4

[155]

 }
 });
}

The following diagram helps us understand how the pieces fit together and the pattern is
realized:

The following is a driver: it exercises all the previous machinery. We create the wrapper
object and call the methods, oblivious to the fact that the methods are really proxies!

We verify that the methods run as the relevant messages are printed on the console:

public static void main(String[] args) throws InterruptedException {
 WrapperObject wrapperObject = new WrapperObject();
 wrapperObject.startTheActiveObject();

 wrapperObject.invokeLegacyOp1();
 wrapperObject.invokeLegacyOp2();

 Thread.sleep(5000);
 wrapperObject.stop();

Thread Pools Chapter 4

[156]

}

private void stop() {
 thread.interrupt();
}

Finally, we stop the processor thread by calling the stop() method. This method
simply interrupts the thread, which prints a suitable farewell message and exits!

So, we have now seen how the interruption semantics work.

Summary
Thread creation, scheduling, and destruction—all of these are costly—and they take a
substantial amount of computation. Creating threads on demand and destroying them once
they have finished their tasks is an inefficient way to organize a multi-threaded
computation.

Thread pools are used to solve this problem. Each thread in the pool repeatedly waits for
a task, a short-lived unit of computation. The thread is reused, executes a task, and then
goes back to the pool to await the next one.

We implemented our own thread pool and used it to exercise the driver. Then, we had a
detailed look at the fork-join API and studied how it uses work stealing.

We looked at the active object design pattern next, showing you how the idea is to hide the
internal concurrency using a proxy.

We also touched upon the map-reduce theme and introduced concurrent hashing. We will
be taking a closer look at this fascinating data structure in the next chapter! Stay tuned.

5
Increasing the Concurrency

This chapter covers the various strategies for increasing the concurrency of data structures.
We will look at the lock-free variants of stacks and queues. These lock-free versions
use compare and swap (CAS) instead of explicit synchronization. This is a complex
programming model, and as we will soon see, it requires extreme caution and deep
analysis to make sure there are no subtle concurrency bugs, such as the ABA problem. The
ABA problem is also described in this chapter, along with a strategy that can be used to
deal with it effectively.

This chapter will also cover commonly used data structures, such as the following:

Concurrent stacks
Queues
Hash tables

Finally, we will have a look at hash tables, which are used to efficiently implement a set
abstraction. A set holds unique elements and needs to cater for a fast lookup operation,
whether a value is present in the set or not. First, we will look at the solution for this using
explicit locking and the lock striping design pattern to increase the concurrency.

For complete code files you can visit https:/ ​/ ​github. ​com/
PacktPublishing/ ​Concurrent- ​Patterns- ​and-​Best- ​Practices

A lock-free stack
As noted in the introduction, lock-free algorithms are more complicated than equivalent
lock-based ones. Essentially, the principle behind them is based on making atomic changes
to a single variable while maintaining data consistency.

https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Concurrent-Patterns-and-Best-Practices

Increasing the Concurrency Chapter 5

[158]

A last in, first out (LIFO) stack is a very common data structure in programming. We will
use a singly linked list to represent the stack abstraction. Each node of the list holds a value
and a pointer to the next node, if there is another one; otherwise, it will hold null. The
pointer is an atomic reference.

Atomic references
AtomicReference is just like an AtomicInteger, where multiple threads can update the
reference without causing any inconsistencies. To update such a reference, we use its
compareAndSet method. This method internally uses a CAS (compare and swap) instruction.
See chapter 3, More Threading Patterns, for a refresher on CAS if you need to jog your
memory.

The following snippet shows an atomic reference in action:

public class TryAtomicReference {
 public static void main(String[] args) {
 String firstRef = "Reference Value 0";

 AtomicReference<String> atomicStringReference =new
AtomicReference<String>(firstRef);
 System.out.println(atomicStringReference.compareAndSet(firstRef,
"Reference Value 1"));
 System.out.println(atomicStringReference.compareAndSet(firstRef,
"Reference Value 2"));

 System.out.println(atomicStringReference.get());
 }
}

Upon running the program, the output is as follows:

true
false
Reference Value 1

The atomicReference variable is of the AtomicReference type. It is initialized with a
reference to a string value, Reference Value 0.

As shown in the preceding output, the first compareAndSet call succeeds. We replace the
value with Reference Value 1. However, the second call fails, as shown by false in the
output.

Increasing the Concurrency Chapter 5

[159]

It fails, as the internal reference is no more firstRef. We have already replaced it with a
new reference value, and as a result, there is a mismatch.

Finally, we print the contained value, which clearly shows that setting the value
to Reference Value 2 has failed.

Fixing this error is left as a trivial exercise for you.

The stack implementation
The lock-free stack is a singly linked list of node elements. In this arrangement, a
node contains a value and a link to the next element. The implementation uses atomic
references to maintain the top of the stack. The push method allocates a new node whose
next field is set to the current top of the stack, and then uses CAS to try to change the top, to
make it the new top node. Once this CAS attempt succeeds, the push operation completes.
In case the CAS fails, we retry again. This implies a while loop, as shown in the code
snippet on from the following diagram.

Similar logic exists for the pop method to remove nodes from the stack.

No matter whether the CAS succeeds or fails, the stack is always in a consistent state. The
following diagram shows the overall arrangement of things:

Increasing the Concurrency Chapter 5

[160]

The following code shows the node definition. Note that the next links are normal
Java references. The Node class is shown in the following code:

private static class Node <E> {
 public final E item;
 public Node<E> next;
 public Node(E item) {
 this.item = item;
 }
}

The following code shows the stack class and the push method. The top is a field that is
an AtomicReference:

public class LockFreeStack <T> {
 AtomicReference<Node<T>> top = new AtomicReference<Node<T>>();
 public void push(T item) {
 Node<T> newHead = new Node<T>(item);
 Node<T> oldHead;
 do {
 oldHead = top.get();
 newHead.next = oldHead;
 } while (!top.compareAndSet(oldHead, newHead));
 }

The newHead variable points to the node that we are trying to insert and that we want to
become the new top of the stack. The oldHead variable is the existing Node reference,
which is the current top of the stack.

We try to set the newHead, expecting the oldHead to be the old value. The do-while loop
takes care of the CAS failing. If another thread came-in between and changed the top, our
assumption of the oldHead as being top of the stack will be false. Remember the CAS
semantics: if the value is changed, the CAS succeeds and returns true; in the case of a
failure, it returns false. This arrangement is shown in the following diagram:

Increasing the Concurrency Chapter 5

[161]

The loop is exited when the CAS succeeds. Note the negation on the conditional.

The pop method comes next, as shown in the following code:

public T pop() {
 Node<T> oldHead;
 Node<T> newHead;
 do {
 oldHead = top.get();
 if (oldHead == null)
 return null;
 newHead = oldHead.next;
 } while (!top.compareAndSet(oldHead, newHead));
 return oldHead.item;
}

The reasoning is similar to the push method: we are changing the value of the top field.
The only difference is that we are removing and returning an element from the list instead
of adding to it!

Increasing the Concurrency Chapter 5

[162]

A lock-free FIFO queue
A FIFO (first in, first out) queue is a data structure where the elements are popped out in
the same order in which they were inserted. This is in contrast to a stack, where the order is
LIFO (last in, first out). In case you need to refresh your memory of these terms, head
to https:/​/​www.​geeksforgeeks. ​org/ ​queue- ​data- ​structure/ ​.

One obvious way for making a queue safer is to use a single lock to make it thread-safe. We
could use either an explicit lock (a ReentrantLock) or an intrinsic lock by just making the
methods synchronized.

This will, of course, work; however, it will hurt concurrency. At any point, only one thread
will be able to push or pop the queue.

Our goal is to increase the concurrency while at the same time ensuring thread safety.
Could we allow two threads, one producing elements to the queue and another consuming
elements from it?

The following class shows a thread-safe and bounded FIFO queue using two locks. One
lock is used to protect the insertion (the enqueuing of elements) and another lock takes
elements from the queue (dequeuing of elements).

The following is a diagrammatic representation of the design:

https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/
https://www.geeksforgeeks.org/queue-data-structure/

Increasing the Concurrency Chapter 5

[163]

The following class shows the implementation:

public class ThreadSafeQueue<T> {
 protected class Node {
 public T value;
 public volatile Node next;
 public Node(T value) {
 this.value = value;
 this.next = null;
 }
 }

 private ReentrantLock enqLock, deqLock;
 Condition notEmptyCond, notFullCond;
 AtomicInteger size;
 volatile Node head, tail;
 final int capacity;

We have two conditions to deal with: an empty and a full queue, respectively. The size
field keeps track of the number of queue elements. In the following code, we will see how
its value is used to signal the correct condition variable. Finally, the head and tail
variables are volatile. Refer to chapter 2, A Taste of Some Concurrency Patterns, for more
information on volatile variables.

The following snippet shows the constructor. The queue will hold cap elements at
maximum:

public AThreadSafeQueue(int cap) {
 capacity = cap;
 head = new Node(null);
 tail = head;
 size = new AtomicInteger(0);
 enqLock = new ReentrantLock();
 deqLock = new ReentrantLock();
 notFullCondition = enqLock.newCondition();
 notEmptyCondition = deqLock.newCondition();
}

The following method shows the element insertion:

public void enq(T x) throws InterruptedException {
 boolean awakeConsumers = false;
 enqLock.lock();
 try {
 while (size.get() == capacity)
 notFullCond.await();
 Node e = new Node(x);

Increasing the Concurrency Chapter 5

[164]

 tail.next = e;
 tail = e;
 if (size.getAndIncrement() == 0)
 awakeConsumers = true;
 } finally {
 enqLock.unlock();
 }
 if (awakeConsumers) {
 deqLock.lock();
 try {
 notEmptyCond.signalAll();
 } finally {
 deqLock.lock();
 }
 }
}

We take the enqLock and then check whether the queue is full. When the number of
enqueued elements equals the queue capacity, the caller needs to wait.

If so, the caller waits on the notFullCond condition. As noted in Chapter 3, More
Threading Patterns, a condition variable and lock go hand in hand. The
condition.await() call releases the lock and goto to wait for the condition to become
true. In this case, the condition required is that there should be at least one empty slot to
put the new element in to.

 When someone uses deque (pop) to take an element off the queue, it signals the condition
variable. Condition variables are communication mechanisms between threads.

Finally, when the enqLock is released, one element has been added to the queue. If the
queue is empty, and we have just produced this element, the consumers should be told.
The following lines of code mark the flag:

if (size.getAndIncrement() == 0)
 awakeConsumers = true;

 The getAndIncrement() method of an atomic integer increments the variable and returns its
previous value. So, if the size were 0, there could possibly be sleeping consumers, waiting
for elements to appear.

As we have just produced an element, we signal the consumers (if there are any) to inform
them about the new element. The deq() method to pop an element off the queue is shown
in the following queue:

public T deq() throws InterruptedException {
 T result;

Increasing the Concurrency Chapter 5

[165]

 boolean awakeProducers = false;
 deqLock.lock();
 try {
 while (size.get() == 0)
 notEmptyCond.await();
 result = head.next.value;
 head = head.next;
 if (size.getAndDecrement() == capacity)
 awakeProducers = true;
 } finally {
 deqLock.unlock();
 }
 if (awakeProducers) {
 enqLock.lock();
 try {
 notFullCond.signalAll();
 } finally {
 enqLock.unlock();
 }
 }
 return result;
}

The logic is similar to the enq() method. This method just checks the opposite condition,
the queue being full. If so, it awakes any blocked producers, notifying them that there is
space available in the queue.

The head node is a sentinel node. Its value is meaningless. Once we pop a node, it becomes a
sentinel.

How the flow works
There are two locks, and though the head and tail fields are volatile, we know that a
volatile field just ensures that the latest value of the variable is read. There is no guarantee
against race conditions due to lost updates, though.

If you look carefully, you'll notice that the enq(v) method does not refer to the head field
at all! Similarly, the deq() method never uses the tail field. This ensures that we do not
change these in any erroneous ways.

Next, we have two locks again (this point bears stressing). What happens when the enq()
method is in the middle of adding an element? The deq() thread could come and pop a
half-initialized node. What prevents this?

Increasing the Concurrency Chapter 5

[166]

This is impossible because of the way the logic is structured. The following is the relevant
enq() method snippet again:

while (size.get() == capacity)
 notFullCond.await();
 Node e = new Node(x);
 tail.next = e;
 tail = e;
 if (size.getAndIncrement() == 0)
 awakeConsumers = true;

There are two cases: the size is 0 or it is nonzero. In the first case, any consumer will be
blocked and explicitly awakened after the element is produced completely in the queue.

On the other hand, if the size is nonzero, then there is at least one element to consume. This
means that the producer and consumer threads differ by at least one element. Hence, when
the enq() thread is producing the element, the deq() thread correctly pops off the head
element.

A lock-free queue
We will now discuss creating a queue implementation without using any locks whatsoever!
Before diving into this pattern, we need to understand one important element—the atomic
reference.

Going lock-free
Given that this is an introduction to the AtomicReference, the following code is a
concurrent queue implementation that doesn't use any explicit locking. The following
snippet shows the class definition:

public class NoLocksQueue<T> {
 protected class Node {
 public T value;
 public AtomicReference<Node> next;

 public Node(T value) {
 this.value = value;
 this.next = new AtomicReference<>(null);
 }
 }

 volatile AtomicReference<Node> head, tail;

Increasing the Concurrency Chapter 5

[167]

This queue is unbounded. Note the absence of any capacity field. The node has a value
and the next pointer, which is an AtomicReference. Both the head and tail are also
atomic references, and these are volatile. The constructor is as follows:

public NoLocksQueue() {
 final Node sentinel = new Node(null);
 head = new AtomicReference<>(sentinel);
 tail = new AtomicReference<>(sentinel);
}

The following diagram shows the state of things just after the constructor completes. This
essentially signifies an empty queue, as shown in the following diagram:

The sentinel node's value is meaningless.

The enque(v) method
The enque(v) method is shown in the following code. Note the enveloping while(true)
loop—our changes may fail because of competing threads:

public void enque(T v) {
 Node myTailNode = new Node(v);
 while (true) {
 Node currTailNode = tail.get();
 Node next = currTailNode.next.get();
 if (next == null) {
 if (currTailNode.next.compareAndSet(next, myTailNode)) {

Increasing the Concurrency Chapter 5

[168]

 tail.compareAndSet(currTailNode, myTailNode);
 return;
 }
 } else {
 tail.compareAndSet(currTailNode, next);
 }
 }
}

The execution flows are rather subtle. Let's take them one by one, hold on, and you will
understand. Let us take the case of only one thread enqueuing an element, with no other
thread enqueuing or dequeuing elements. Let us also say that the queue is empty. See the
preceding diagram and that the queue is also empty when the constructor execution is
complete. This scenario is depicted in the following diagram:

Increasing the Concurrency Chapter 5

[169]

As shown in the preceding diagram, we use the AtomicReference. We also use the
compareAndSet(...) call to change values. As shown in the previous section, this call
could fail, as some other thread could have raced ahead and made the change before us.
However, as we have assumed that there is just one thread, this call will succeed, and we
will have added an element to the queue.

For the next scenario, let us add two competing threads, both trying to enqueue an element,
as shown in the following diagram:

As shown in the preceding diagram, we have two competing threads, each trying to
enqueue an element. Their executions interleave, as shown in the following code:

Thread T2 sets tail.next variable to the new node (the tail is not set yet)
Thread T1 sets the local next variable to the new node (just enqueued by
T2)

This makes T1 take the else path—either T1 or T2 could set the tail variable. One
attempt would succeed and the other would fail (you should check for yourself why this
would be the case).

As a result, the element is enqueued correctly.

Increasing the Concurrency Chapter 5

[170]

The third scenario is when both threads read the correct tail.next value as null, as
shown in the following diagram:

In this case, one wins, and the other loops back (remember the while loop?) and retries.
Try it out with more than two threads; draw some diagrams like the previous one and
convince yourself that it works in all cases.

The deq() method
The deq() method for popping an element off the queue comes next. It too relies on
carefully orchestrating the compareAndSet primitive to achieve thread safety. Note that if
the queue is empty, the method throws an exception. You can see the details of this
arrangement in the following code:

public T deque() {
 while (true) {
 Node myHead = head.get();
 Node myTail = tail.get();
 Node next = myHead.next.get();
 if (myHead == head.get()) {
 if (myHead == myTail) {
 if (next == null) {
 throw new QueueIsEmptyException();
 }
 tail.compareAndSet(myTail, next);
 } else {
 T value = next.value;
 if (head.compareAndSet(myHead, next))

Increasing the Concurrency Chapter 5

[171]

 return value;
 }
 }
 }
}

Let's trace the execution of this method. Let's assume that there is just one thread to begin
with. If the queue is empty, all three if statements return true (please see the previous
empty queue method diagram), and the method throws an exception.

Let's now say that the queue is not empty, and there is still just one thread. In that case,
the first != last (note that an empty queue only has the sentinel node, with both the
head and tail's next value pointing at it!) and the else clause execute, as shown in the
following diagram:

As shown in the preceding diagram, the head is changed correctly as there is assumed to
be just one dequeuing thread! Things work well for the sequential execution,which is the
simplest case!

Increasing the Concurrency Chapter 5

[172]

Now, let's add two threads to the mix, as shown in the following diagram:

Consider an interleaving scenario, where both threads reach the else clause at the same
time. Both are competing for the same value, and the correct semantics should ensure that
any one thread should get this value. The other thread should retry!

The correct semantics are guaranteed by the compareAndSet(...) call. One thread will
succeed and the next one will fail as the old value of head won't be equal to the stale first
value! As this is happening inside a loop, the thread for which the
compareAndSet(...) returned false will retry.

Concurrent execution of the enque and deque methods
Armed with all of this knowledge, let's now tackle the more complex case—namely, two
threads, one enqueuing and one dequeuing at the same time! A conflict is possible if a node
is just enqueued, but before the tail is updated! Let's look at the following code:

public T deque() {
 while (true) {
 Node myHead = head.get();

Increasing the Concurrency Chapter 5

[173]

 Node myTail = tail.get();
 Node next = myHead.next.get();
 if (myHead == head.get()) {
 if (myHead == myTail) {
 if (next == null) {
 throw new QueueIsEmptyException();
 }
 tail.compareAndSet(myTail, next);

The first == last condition can succeed; however, the next == null condition may
not be true! How is this possible? It is possible because of the following code from the
enque() method:

if (next == null) {
 if (last.next.compareAndSet(next, myTailNode)) {

In this case, the deque() method will advance the head node, and leave the enque()
thread alone to update the tail.

Working out such scenarios in the abstract, before they happen, will help us understand the
code at a deeper level.

The ABA problem
A CAS, in essence, asks "Is the value of V still A?", and updates it to a new value if the
answer is yes. If we plan to manage the pool of nodes ourselves, then the ABA problem
could hit us. However, let's look at one more basic concept—the thread local.

Thread locals
The ThreadLocal class allows us to create variables that are owned by threads. As there is
an explicit ownership, you don't need any synchronization.

The following code shows how thread locals work:

public class TryThreadLocal {
 public static class MyRunnable implements Runnable {
 private int state;
 private ThreadLocal<Integer> threadLocal;
 public MyRunnable(int state) {
 this.state = state;
 this.threadLocal = new ThreadLocal<Integer>();
 }
 @Override

Increasing the Concurrency Chapter 5

[174]

 public void run() {
 this.threadLocal.set(state);
 for (int i = 0; i < 25; ++i) {
 final Integer v = threadLocal.get();
 System.out.println("Thread " + Thread.currentThread().getId() + ",
value = " + v);
 threadLocal.set(v + 1);
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e) {
 // nothing
 }
 }
 }
 }

 public static void main(String[] args) throws InterruptedException {
 MyRunnable sharedRunnableInstance = new MyRunnable(6);
 Thread thread1 = new Thread(sharedRunnableInstance);
 Thread thread2 = new Thread(sharedRunnableInstance);

 thread1.start();
 thread2.start();

 thread1.join(); //wait for thread 1 to terminate
 thread2.join(); //wait for thread 2 to terminate
 }
}

The runnable instance has a state variable—when the threads start running, both put the
starting value in a thread local. Both threads loop for a while, incrementing and printing
the thread local variable.

Running the code shows two threads incrementing their local variable, without interfering
with each other.

Pooling the free nodes
Going back to the lock-free queue example, we might want to manage our own pool of
nodes by recycling them. When the sentinel is moved, instead of the node getting garbage
collected, we add it to a pool, thereby making the overall memory management more
efficient.

Increasing the Concurrency Chapter 5

[175]

Each thread could maintain its own list of free nodes—you guessed right—in a thread pool.
The following diagram shows the design:

When the thread enqueues, it picks a node from this local pool. When it dequeues, it adds
the node back to the free list. In the case that the pool is empty, the thread will allocate a
new node using the new operator, as before. Adding and removing nodes from the pool
does not need to be synchronized, as the list is stored in a thread local!

If a thread, on average, performs the same amount of enqueuing and dequeuing, then this
design would work very well. However, if we use just the AtomicReference, then there is
a nasty bug—the ABA problem.

Increasing the Concurrency Chapter 5

[176]

Given the preceding queuing strategy—and given the following queue state—with three
nodes, the following sequence will take place:

The T1 thread dequeues and is about to CAS the head from x (the old value) to y (the new
value), but before it is able to CAS, it is preempted, and the T2 thread is run.

The T2 thread dequeues nodes y and z, thereby adding both x and y to the local pool's free
list. Node x is enqueued back and is again dequeued, thereby becoming a sentinel node.
This scenario is shown in the following diagram:

Increasing the Concurrency Chapter 5

[177]

Now, the T1 thread wakes up and starts running. As shown in the preceding diagram, T1
performs a CAS and succeeds, as the old value x is once more the sentinel! The head now
points at y, which is already in the free pool!

This is where the name ABA comes from, as the reference changes from A (x) to B (y and z)
to A(x) again! The T1 thread is oblivious to all these changes happening in the interim, and
works on an outdated state of things! A plain atomic reference does not cut it here—the
solution is to make it aware of these changes using an AtomicStampedReference instead!

The atomic stamped reference
The following code illustrates an AtomicStampedReference. It is an AtomicReference
coupled with a stamp—a variable that is incremented upon every update of the variable:

public class TryAtomicStampedReference {
 public static void main(String[] args) {
 String firstRef = "Reference Value 0";
 int stamp1 = 0;

Increasing the Concurrency Chapter 5

[178]

 AtomicStampedReference<String> atomicStringReference =new
AtomicStampedReference<String>(firstRef,
stamp1);

 String newRef = "Reference Value 1";
 int newStamp = stamp1 + 1;

 boolean r = atomicStringReference.compareAndSet(firstRef, newRef,
stamp1, newStamp);
 System.out.println("r: " + r);

 r = atomicStringReference.compareAndSet(firstRef, "new string",
newStamp, newStamp + 1);
 System.out.println("r: " + r);

 r = atomicStringReference.compareAndSet(newRef, "new string", stamp1,
newStamp + 1);
 System.out.println("r: " + r);

 r = atomicStringReference.compareAndSet(newRef, "new string", newStamp,
newStamp + 1);
 System.out.println("r: " + r);
 }
}

We have a string Reference Value 0 stored in an AtomicStampedReference, along
with a stamp, whose value is 0. Next, we try to update the value to Reference Value
1 and the stamp 0. As both the value and stamp expectations match, the value is changed.
The stamp is also updated to 1.

The second attempt fails as the old value does not match with the current value in the
variable. Next, we update the old value, but pass in an outdated stamp, so that update
attempt also fails.

Lastly, we pass in the correct old value and the old stamp—as a result, the value is changed
successfully.

When we run the program, the following is the console output:

r: true
r: false
r: false
r: true

Increasing the Concurrency Chapter 5

[179]

To solve the ABA problem illustrated here, we could use this kind of stamped reference!
We will leave you to think about the ABA problem using the
AtomicStampedReference as an exercise.

Concurrent hashing
 A hash table is typically implemented as an array. Each array entry is a list of one or
more items. A hash function maps values to indices in this array. Each Java object has
a hashCode() method that gives an integer for an object. This number's modulo to the array
length gives us an index into this array.

For any operation to add, remove, or check whether the set contains an item, we first index
into the array (or table), and then perform the rest of the processing.

The basic idea is that, given a table and a hash function, we provide the contains(key),
add(key, value), and remove(key) methods, with a constant average time.

The following diagram shows how a typical hash table works:

The key is run through a hash function (f()). The resulting modulo of the hash function to
the number of entries gives us a hash—that is, an offset into the table.

We use the hash table to represent a hash set. A set contains unique elements.

The following list shows the method contracts:

The add(v) method tries to add the element to the set. If the v value is already
present, then the method just returns false. Otherwise, the method inserts the
value and returns true.

Increasing the Concurrency Chapter 5

[180]

The contains(v) method returns true if the set contains v; otherwise, it
returns false.
The remove(v) method tries to removes the v element from the set. If the value
is found, it is removed and the method returns true. Otherwise, it returns
false.

The following HashSet<T> class shows our abstraction:

public abstract class HashSet<T> {
 final static int LIST_LEN_THRESHOLD = 100;
 protected List<T>[] table;
 protected AtomicInteger size;
 protected AtomicBoolean needsToResize;

 public HashSet(int capacity) {
 size = new AtomicInteger(0);
 needsToResize = new AtomicBoolean(false);
 for (int i = 0; i < capacity; ++i) {
 table[i] = new ArrayList<>();
 }
 }

The class uses a list to represent the hash table. Each element of this list is a list itself. We
initialize each element to an empty list.

Note that this class is abstract. The strategy of how to synchronize a shared state is left open
for the derived classes.

The following diagram shows the initialization pictorially:

Increasing the Concurrency Chapter 5

[181]

The add(v) method
The add(v) method comes next, as shown in the following code. Note that it uses the
lock(x) and unlock(x) methods, which are abstract:

public boolean add(T x) {
 boolean result = false;
 lock(x);
 try {
 int bucket = x.hashCode() % table.length;
 if (!table[bucket].contains(x)) {
 table[bucket].add(x);
 result = true;
 size.incrementAndGet();
 if (table[bucket].size() >= LIST_LEN_THRESHOLD)
 needsToResize.set(true);
 }
 } finally {
 unlock(x);
 }
 if (shouldResize())
 resize();
 return result;
}

The idea is simple. First, we acquire the lock on the mutable state—the table—by calling the
lock(x) method. Read on to see why we pass in the x element to the lock() and
unlock() methods.

The following line computes the bucket for the x element, by taking its hash code modulo
to the table size:

int bucket = x.hashCode() % table.length;

Next, it tries to add the element into the list that is held in the array index, bucket:

if (!table[bucket].contains(x)) {
 table[bucket].add(x);
 result = true;
 size++;
}

Increasing the Concurrency Chapter 5

[182]

The table[bucket] is an array list. We look up the element in the list. If it is present, we
cannot add it again (remember the uniqueness guarantee?), so we return false. Otherwise,
we add the element to the list, increase the size instance field to reflect the fact that the set
has got one more element, and return true.

The following diagram will help us understand this operation. The set already holds {e1, e2,
e3, e4}, and we are trying to add e5. Let's say that e5.hashCode() gives 12, and 12 % of 5
gives us 2. So, we index into the table at index 2 and append element e5 to the list that is
found there:

The method ends with a finally—as noted in earlier chapters, wrapping the code in a try
or finally will make sure that the lock is released, no matter how the execution returns.
You can wrap the code in this way, as shown in the following code:

 } finally {
 unlock(x);
 }
 if (shouldResize())
 resize();
 return result;
}

Increasing the Concurrency Chapter 5

[183]

Both the shouldResize() and resize() methods are abstracts. The mechanics of when
and how to resize is left with derived classes.

The need to resize
Why do we need this resizing? Note that each bucket holds a list of elements. If far too
many elements hash to the same bucket, we would end up searching a very
long, unsorted list, resulting in degraded performance. The complexity of searching an
element in an unsorted list is O(n).

See https:/​/​www. ​studytonight. ​com/ ​data- ​structures/ ​time- ​complexity- ​of- ​algorithms
for a refresher on algorithm complexities.

The complexity involved in algorithm searches is shown in the following diagram:

https://www.studytonight.com/data-structures/time-complexity-of-algorithms
https://www.studytonight.com/data-structures/time-complexity-of-algorithms
https://www.studytonight.com/data-structures/time-complexity-of-algorithms
https://www.studytonight.com/data-structures/time-complexity-of-algorithms
https://www.studytonight.com/data-structures/time-complexity-of-algorithms
https://www.studytonight.com/data-structures/time-complexity-of-algorithms
https://www.studytonight.com/data-structures/time-complexity-of-algorithms
https://www.studytonight.com/data-structures/time-complexity-of-algorithms
https://www.studytonight.com/data-structures/time-complexity-of-algorithms
https://www.studytonight.com/data-structures/time-complexity-of-algorithms
https://www.studytonight.com/data-structures/time-complexity-of-algorithms
https://www.studytonight.com/data-structures/time-complexity-of-algorithms
https://www.studytonight.com/data-structures/time-complexity-of-algorithms
https://www.studytonight.com/data-structures/time-complexity-of-algorithms
https://www.studytonight.com/data-structures/time-complexity-of-algorithms
https://www.studytonight.com/data-structures/time-complexity-of-algorithms
https://www.studytonight.com/data-structures/time-complexity-of-algorithms
https://www.studytonight.com/data-structures/time-complexity-of-algorithms
https://www.studytonight.com/data-structures/time-complexity-of-algorithms
https://www.studytonight.com/data-structures/time-complexity-of-algorithms
https://www.studytonight.com/data-structures/time-complexity-of-algorithms

Increasing the Concurrency Chapter 5

[184]

The idea is to redistribute the elements by reallocating the buckets array to twice its
capacity and rehashing all the elements again. This will ensure more of a uniform
distribution of elements to all bucket lists. Upon a resize, a (desirable) restructuring
happens, as shown in the following diagram:

Now, as most lists have sort of similar lengths, the lookup will not degenerate.

When do we decide to use resize()? This is a policy decision, implemented by
the shouldResize() method in the subclass.

As shown in the preceding diagram, we would resize when any one bucket list becomes too
long—that is, when its length exceeds a certain global threshold.

Increasing the Concurrency Chapter 5

[185]

The contains(v) method
The contains(v) method searches for an element in the hash set. If the element is found,
the contains(v) method returns true; otherwise, it returns false. The method is shown
in the following code:

public boolean contains(T x) {
 lock(x);
 try {
 int myBucket = x.hashCode() % table.length;
 return table[myBucket].contains(x);
 } finally {
 unlock(x);
 }
}

We have already seen the mechanics of this. There are two steps involved:

Compute the hash to arrive at the bucket index.1.
Each array entry holds a linked list. We search in the linked list using2.
its contains(x) method.

Now, as the background is nicely laid out and under our belt, let us look at the various
strategies and patterns to expose this hash set in a thread-safe manner.

The big lock approach
Our first design, the big lock design, allows only one thread at a time! The following class
illustrates this:

public class BigLockHashSet<T> extends HashSet<T> {
 final Lock lock;
 final int LIST_LEN_THRESHOLD = 100;

 public BigLockHashSet(int capacity) {
 super(capacity);
 lock = new ReentrantLock();
}

Increasing the Concurrency Chapter 5

[186]

As shown in the preceding code, the class is a subclass of HashSet<T> and uses a
ReentrantLock. As noted earlier, a reentrant lock is one that allows the owner thread to
reacquire it. The LIST_LEN_THRESHOLD constant is used in the shouldResize() method
that is described in the next section.

The lock() and unlock() methods are overridden, and they just ignore the x parameter.
The methods are shown in the following code:

@Override
protected void unlock(T x) {
 lock.unlock();
}

@Override
protected void lock(T x) {
 lock.lock();
}

As shown in the preceding code, this implementation just locks and unlocks the reentrant
lock; it does not make any use of the element that is passed in!

The resizing strategy
As noted earlier, we resize the hash set when any one list becomes too long—that is, when
it crosses a threshold. The following code shows both of these methods:

private boolean recheck() {
 for (List<T> list : table) {
 if (list.size() >= LIST_LEN_THRESHOLD) {
 return true;
 }
 }
 return false;
}

@Override
protected boolean shouldResize() {
 return needsToResize.get();
}

Increasing the Concurrency Chapter 5

[187]

The shouldResize() method just returns the value of the needsToResize flag. The
recheck() method just iterates over all the lists and compares their lengths against the
threshold. Next comes the actual resize() method:

@Override
protected void resize() {
 lock.lock();
 try {
 if (shouldResize() && recheck()) {
 int currCapacity = table.length;
 int newCapacity = 2 * currCapacity;
 List<T>[] oldTable = table;
 table = (List<T>[]) new List[newCapacity];
 for (int i = 0; i < newCapacity; ++i)
 table[i] = new ArrayList<>();
 for (List<T> list : oldTable) {
 for (T elem : list) {
 table[elem.hashCode() % table.length].add(elem);
 }
 }
 }
} finally {
 lock.unlock();
 }
}

In the resize() method, we acquire the lock and then call shouldResize() again! It is
possible that some other thread could have done the resizing, as there is a time window
between the different calls.

If we need to resize, we allocate a new table of twice the capacity of the original one. We
iterate all the elements of the original table and rehash and reinsert the elements into the
new table.

Why do we need the recheck() method call? It could have been the case that, between our
calling add and performing the resize, some other thread might have done the resizing, so
we check once that the resizing conditions are holding well before performing the resize.

Increasing the Concurrency Chapter 5

[188]

The lock striping design pattern
What is the problem with the resizing strategy? It hurts concurrency. We have actually
reduced the affair to a strictly sequential execution, which is a bottleneck. As a goal, we
should strive for allowing more concurrency threads to work on the hash set, which still
ensures thread safety!

The following diagram shows two concurrent adds. As both the threads work on separate
shared mutable states, we could allow both of them the access:

Two (or more) threads could be adding elements to different buckets, while at the same time
other threads could be searching the hash set.

The lock striping pattern allows us to do just that. The following diagram shows how the
pattern works:

Increasing the Concurrency Chapter 5

[189]

Instead of a single lock, we maintain an array of locks. The following code shows the
algorithm:

x <- compute the hash for the element
lock(x % length of locks array) // 5 for the above diagram
insert the element for the list at (x % length of table) // 10 for the
above

The following is the code for this arrangement:

public class LockStripedHashSet<T> extends HashSet<T> {
 final Lock[] locks;

 public LockStripedHashSet(int capacity) {
 super(capacity);
 locks = new Lock[capacity];
 for (int i = 0; i < locks.length; ++i) {

Increasing the Concurrency Chapter 5

[190]

 locks[i] = new ReentrantLock();
 }
 }

The number of locks in the locks array is initially equal to the capacity (the number of
buckets in the hash table). However, as the resizing happens, we just reallocate the buckets
array and table as before, but we do not reallocate the locks array.

So, as the number of elements in the hash set grows, the locks go on covering more buckets
and elements, as shown in the following code:

@Override
protected void lock(T x) {
 locks[x.hashCode() % locks.length].lock();
}

@Override
protected void unlock(T x) {
 locks[x.hashCode() % locks.length].unlock();
}

As noted in the preceding algorithm, the element hash code is used to refer to a lock. The
lock and unlock methods use the hash to reach the lock that is associated with the
element.

The reason that both the lock and unlock methods accept the element that is being hashed
is that the earlier version did not make any use of it, but this version needs the element for
the locking to work. This is shown in the following code:

@Override
protected void resize() {
 for (Lock lck: locks) {
 lck.lock();
 }
 try {
 if (shouldResize() && recheck()) {
 int oldCapacity = table.length;
 int newCapacity = 2 * oldCapacity;
 List<T>[] oldTable = table;
 table = (List<T>[]) new List[newCapacity];
 for (int i = 0; i < newCapacity; ++i)
 table[i] = new ArrayList<>();
 for (List<T> bucket : oldTable) {
 for (T x : bucket) {
 table[x.hashCode() % table.length].add(x);
 }
 }

Increasing the Concurrency Chapter 5

[191]

 }
 needsToResize.set(false);
 } finally {
 for (Lock lck: locks) {
 lck.unlock();
 }
 }
}
private boolean recheck() {
 for (List<T> list : table) {
 if (list.size() >= LIST_LEN_THRESHOLD) {
 return true;
 }
 }
 return false;
}

The important thing to remember is that we require all the locks to do the resizing. This is
needed to ensure that we have exclusive access to the table and all the lists that are needed
to reallocate the table and redistribute all the elements.

What about any possible deadlocks? What if two or more threads call resize()? Note that
we always lock the locks array in order. As noted in earlier chapters, acquiring the locks in
order prevents any deadlocks.

What if another thread already owns the lock, possibly reading or writing in the list? In that
case, the resizing will wait for the thread to free up the lock.

Summary
This chapter covered some well-known patterns in concurrent programming. We focused
on how to increase the concurrency of data structures, allowing multiple threads to make
progress. Using implicit (or explicit) synchronization is a bottleneck, so we explored the
alternatives.

We looked at lock-free data structures, using the compare and set (CAS) primitive provided
by Java's concurrent library. We implemented a lock-free LIFO stack and then the more
involved lock-free queue. We looked at and compared both variants of the queue: a lock-
based queue and a lock-free queue.

Increasing the Concurrency Chapter 5

[192]

Lock-free algorithms are more complex than their lock-synchronized counterparts. We
looked at the AtomicReference, the basis for these CAS-based algorithms. We also looked
at the kind of situation where the ABA problem happens, and how the
AtomicStampedReference solves it.

Finally, we looked at hashing and how the lock striping concurrency pattern helps us to
increase the concurrency for hash tables.

Armed with all this knowledge, let's look at immutability and functional programming,
and how this exciting paradigm helps us write better concurrent programs. Stay tuned!

6
Functional Concurrency

Patterns
In the shared state model, problems start cropping up due to state being a mutable one. We
learned how hard it becomes to correctly synchronize the thread state, keeping in mind the
ability to work with correctness, starvation, and deadlocks.

In this chapter, we will look at concurrency patterns, largely from a functional perspective.
Functional Programming (FP) is a functional paradigm and a cornerstone of FP is
immutability. We will use Scala to study this aspect. Immutable data structures use
structural sharing and persistent data structures to ensure performance along with safety
guarantees.

We will also look at future abstraction as a representation of asynchronous
computation. Asynchronous computations use threads in an optimum way. A Scala future
is also a monad, offering composability.

Here is what this chapter will cover:

Immutability
Futures

This coverage should prepare us well to understand the actor paradigm, coming up in the
next chapter.

Functional Concurrency Patterns Chapter 6

[194]

Immutability
Immutable objects are thread-safe. When an object is immutable, you cannot make changes
to the object. Many threads can read the object at the same time and when a thread needs to
change a value, it creates a modified copy. For example, Java strings are immutable.
Consider the following code snippet:

import java.util.HashSet;
import java.util.Set;

public class StringsAreImmutable {
 public static void main(String[] args) {
 String s = "Hi friends!";
 s.toUpperCase();
 System.out.println(s);

 String s1 = s.toUpperCase();
 System.out.println(s1);

 String s2 = s1;
 String s3 = s1;
 String s4 = s1;

 Set set = new HashSet<String>();
 set.add(s);
 set.add(s1);
 set.add(s2);
 set.add(s3);

 System.out.println(set);
 }
}

Running the code gives the following output:

Hi friends!
 HI FRIENDS!
 [Hi friends!, HI FRIENDS!]

When we invoke the toUpperCase() method on the string variable s, as the output
shows, there is no mutation happening in place. As a result, the first call result is lost. The
next invocation stores the result into another variable, s1, which contains the uppercase
string, as expected. Adding s2 and s3 does not change anything as we have already added
s1. (Note that a Set always hold unique elements).

Functional Concurrency Patterns Chapter 6

[195]

The following diagram shows the conceptual pooling and sharing of objects:

As shown in the preceding figure, Java strings are pooled. As the strings are immutable,
they can be readily shared. As shown, all s1, s2, s3, and s4 variables refer to the same
string object in memory. When we invoke the toUpperCase() method, we get another,
modified copy of the string. The benefits of this copy-on-write scheme are obvious. Threads
can modify strings without worrying about thread safety. As the code shows, due to the
immutability guarantee, strings can readily become members of a set. There is no danger of
someone changing the object without our knowledge and violating the contract set.
(See https:/​/​www. ​programcreek. ​com/ ​2013/ ​09/ ​java- ​hashcode- ​equals- ​contract- ​set-
contains/​ for more information.)

Immutability helps create programs that are easier to understand.

Unmodifiable wrappers
The following code shows Java's unmodifiable collections—a way to grow immutability on
mutable collections. This is an example of the decorator pattern (https:/ ​/​sourcemaking.
com/​design_​patterns/ ​decorator/ ​java/ ​1):

package com.concurrency.book.chapter07;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class UnmodifiableWrappers {

 public static List<Integer> createList(Integer... elems) {

https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://www.programcreek.com/2013/09/java-hashcode-equals-contract-set-contains/
https://sourcemaking.com/design_patterns/decorator/java/1
https://sourcemaking.com/design_patterns/decorator/java/1
https://sourcemaking.com/design_patterns/decorator/java/1
https://sourcemaking.com/design_patterns/decorator/java/1
https://sourcemaking.com/design_patterns/decorator/java/1
https://sourcemaking.com/design_patterns/decorator/java/1
https://sourcemaking.com/design_patterns/decorator/java/1
https://sourcemaking.com/design_patterns/decorator/java/1
https://sourcemaking.com/design_patterns/decorator/java/1
https://sourcemaking.com/design_patterns/decorator/java/1
https://sourcemaking.com/design_patterns/decorator/java/1
https://sourcemaking.com/design_patterns/decorator/java/1
https://sourcemaking.com/design_patterns/decorator/java/1
https://sourcemaking.com/design_patterns/decorator/java/1
https://sourcemaking.com/design_patterns/decorator/java/1
https://sourcemaking.com/design_patterns/decorator/java/1

Functional Concurrency Patterns Chapter 6

[196]

 List<Integer> list = new ArrayList<>();
 for(Integer i : elems) {
 list.add(i);
 }
 return Collections.unmodifiableList(list);
 }

 public static void main(String[] args) {
 List<Integer> readOnlyList = createList(1, 2, 3);
 System.out.println(readOnlyList);
 readOnlyList.add(4);
 }
}

The createList() method creates, fills up, and wraps up the ArrayList , which is
a mutable collection . This way of writing code makes sure that we don't leak the mutable
list inadvertently. The original, mutable list is a backing object. The wrapper controls
operations on this backing object.

We create a list and print its content. As this is a read operation, it succeeds. The decorator,
readOnlyList, forwards any read calls on to the mutable object. However, when we try to
mutate the list, we get an exception:

The output is as follows:

[1, 2, 3]
 Exception in thread "main" java.lang.UnsupportedOperationException
 at java.util.Collections$UnmodifiableCollection.add(Collections.java:1055)
 at
com.concurrency.book.chapter07.UnmodifiableWrappers.main(UnmodifiableWrappe
rs.java:20)

Functional Concurrency Patterns Chapter 6

[197]

Note that this wrapping make only the list immutable. In the example code, the list contains
integers, which themselves are immutable. However, if we had a list of mutable
objects—they themselves are mutable. See https:/ ​/​stackoverflow. ​com/ ​questions/
37446594/​when-​creating- ​an- ​immutable- ​class- ​should- ​collections- ​only- ​contain-
immutable-​obje for information.

We need to make both the collection and its elements immutable. This would ensure that
the data structure is thread safe for all kinds of access. In the following Scala code, both of
these requirements are met.

If you need to change the contents, you first need to copy the list and then change the
contents while the new list is being created. Won't this hurt performance? Let us look at
some functional Scala code and try to understand the performance.

Persistent data structures
The term persistence does not mean disk persistence. The term refers to multiple versions
of the same data structure being maintained. The multiple versions come into existence due
to copy-on-write semantics, any unused versions are garbage collected.

The following code shows an immutable Scala list and the append(elem) and
prepend(elem) methods. Note that both of these methods need to copy and create a
modified version of the data structure.

Both methods are recursive. The code does not use any mutable iterators at all. For a
prepend operation, we pattern match against the list and if the list is empty, we create a
new list with a single element.

The interesting part is when the list is not empty. We just tack the new element at the head
of the list. This creates a new version of the data structure; the original list is structurally
shared between both the versions. The algorithmic complexity of this operation is O(1):

package com.concurrency.book.chapter07

object ListOps extends App {

 def prepend(elem: Int, list: List[Int]) = list match {
 case Nil => List(elem)
 case _ => elem :: list
 }

 def append(elem: Int, list: List[Int]): List[Int] = list match {
 case Nil => List(elem)

https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje
https://stackoverflow.com/questions/37446594/when-creating-an-immutable-class-should-collections-only-contain-immutable-obje

Functional Concurrency Patterns Chapter 6

[198]

 case x :: xs => x :: append(elem, xs)
 }

 val list = List(1, 2, 3)
 println(prepend(0, list))
 println(append(4, list))

}

The prepend operation is shown in the following diagram:

The append operation, on the other hand, has to copy all of the list. When we are
appending to a read-only list, structural sharing is not possible as each node's next pointer
gets changed. The reason is seen in the following diagram:

Functional Concurrency Patterns Chapter 6

[199]

The complexity for an append is O(n) due to all the nodes getting copied. This is the reason
we try avoiding list appends. If the list is too large, there will be too much copying. While
designing programs, we need to look at this algorithmic aspect carefully while ensuring
thread safety.

Recursion and immutability
In Scala, whenever you use a collection, by default it is an immutable collection. These are
auto imported and are ready to use. There are mutable collections too, however, you have
to specifically import them:

scala> val list = List(1,2,3)
 list: List[Int] = List(1, 2, 3)
 scala> list.append(4)
<console>:14: error: value append is not a member of List[Int]
list.append(4)
scala> import scala.collection.mutable.ListBuffer
 scala> val list1 = ListBuffer(1, 2, 3)
list1: scala.collection.mutable.ListBuffer[Int] = ListBuffer(1, 2, 3)
scala> list1.append(4)
scala> list1
res3: scala.collection.mutable.ListBuffer[Int] = ListBuffer(1, 2, 3, 4)

To keep track of iterations, we use recursion to implement traversal and looping. This style
avoids any mutable state such as counters. Recursion can lead to stack overflow issues
though.

Functional Concurrency Patterns Chapter 6

[200]

The following code snippet shows a tail recursive implementation of a program that counts
elements in an immutable list:

package com.concurrency.book.chapter07

import scala.annotation.tailrec

object CountListElems extends App {

 def count(l: List[Int]): Int = {

 @tailrec
 def countElems(list: List[Int], count: Int): Int = list match {
 case Nil => count
 case x :: xs => countElems(xs, count + 1)
 }

 countElems(l, 0)
 }

 println(count(List(1, 2, 3, 4, 5)))
 println(count((1 to 100000).toList))
}

The code uses the accumulator idiom to implement a tail recursive version. Tail Recursion
Optimization (TCO) kicks in to avoid the stack overflow issues. The @tailrec Scala
annotation makes sure the code is really tail recursive.
See https://alvinalexander.com/scala/fp-book/tail-recursive-algorithms for more
information on this topic.

As we will see from now on, a mutable state is avoided. We will instead use immutability
all along.

Futures
If a thread blocks, for example, a thread waiting for an I/O operation to complete, this is
wasteful. The following diagram shows a thread using a blocking API call for getting a
response from a web service over the network. The sequential execution model needs to
wait as the flow cannot proceed otherwise. On the other hand, asynchronous execution
does not block the calling thread. A future is used for expressing such asynchronous
computations. The following diagram shows how it works:

https://alvinalexander.com/scala/fp-book/tail-recursive-algorithms

Functional Concurrency Patterns Chapter 6

[201]

As shown, a future is a placeholder. It will eventually contain the response or can timeout if
the call takes too long to complete.

How does the calling thread work with the future though?

The apply method
A future is a trait in the scala.concurrent package, which has an accompanying
companion object. This companion provides the apply method, the signature of which is as
follows:

 def apply[T](body: => T)(implicit executor: ExecutionContext):
Future[T]

The body: => T syntax is a by-name parameter. This is a curried form of the method.
See https:/​/​dzone. ​com/ ​articles/ ​understanding- ​currying- ​scala for more on this
technique.

https://dzone.com/articles/understanding-currying-scala
https://dzone.com/articles/understanding-currying-scala
https://dzone.com/articles/understanding-currying-scala
https://dzone.com/articles/understanding-currying-scala
https://dzone.com/articles/understanding-currying-scala
https://dzone.com/articles/understanding-currying-scala
https://dzone.com/articles/understanding-currying-scala
https://dzone.com/articles/understanding-currying-scala
https://dzone.com/articles/understanding-currying-scala
https://dzone.com/articles/understanding-currying-scala
https://dzone.com/articles/understanding-currying-scala
https://dzone.com/articles/understanding-currying-scala
https://dzone.com/articles/understanding-currying-scala
https://dzone.com/articles/understanding-currying-scala
https://dzone.com/articles/understanding-currying-scala

Functional Concurrency Patterns Chapter 6

[202]

Implicit parameters are like normal parameters. You can explicitly specify them as normal
parameters. You can also choose not to specify them. In this case, the Scala compiler
searches for a value in the surrounding scope.

by-name parameters
The following code explains the construct:

package com.concurrency.book.chapter07

object Eval extends App {
 def eagerEval(b: Boolean, ifTrue: Unit, ifFalse: Unit) =
 if (b)
 ifTrue
 else
 ifFalse

 def delayedEval(b: Boolean, ifTrue: => Unit, ifFalse: => Unit) =
 if (b)
 ifTrue
 else
 ifFalse

 eagerEval(9 == 9, println("9 == 9 is true"), println("9 == 9 is
false"))
 println("---------")
 delayedEval(9 == 9, println("9 == 9 is true"), println("9 == 9 is
false"))
 delayedEval(9 != 9, println("9 == 9 is true"), println("9 == 9 is
false"))
}

The intent of the code is to simulate conditional execution. If the method's first argument is
true, we wish to evaluate the second argument. Otherwise, we evaluate the third
argument. Here is the output:

9 == 9 is true
 9 == 9 is false

 9 == 9 is true
 9 == 9 is false

As shown, for the eagerEval(...) method, both arguments are evaluated at the call
site. This defeats the intent—the second method, delayedEval(...), uses Scala's by-
name parameters. Note the => placed after the type and colon.

Functional Concurrency Patterns Chapter 6

[203]

The body parameter is a by-name parameter. The code passed in is invoked from the
Future.apply(...) method:

The following code shows how a thread uses a future by using its apply method:

package com.concurrency.book.chapter07

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global

object WorkingWithAFuture extends App {
 Future { println("Hello, world!") }
 println("How are things?")
 Thread.sleep(2000)
}

The output is shown as follows:

How are things?
Hello, world!

Note that the future block's output was printed after the main thread's output. It could be
the other way around also—so essentially futures execute in a non-deterministic fashion.

For this particular run on my machine, the thread running the future was scheduled to run
after the main thread. The main thread created the future. It did not wait for it (this makes
it asynchronous) and then continued running its logic which was to print a message. The
future's thread executes next, prints its message, and the future exits.

Why do we need sleep at the end? Let us look at how futures map to threads in the next
section.

Functional Concurrency Patterns Chapter 6

[204]

Future – thread mapping
The last part of the apply(...) method is an implicit execution context. An execution
context is something that can execute a future. It is essentially a thread pool. A future is run
on a thread from this pool. If you recall the discussion of thread pools from chapter 4,
Thread Pools, you shall remember the fork join thread pool.
Scala provides a global ExecutionContext which uses a ForkJoinPool. You don't have
to worry about tasks anymore though, the global ExecutionContext takes the future
computation and wraps it in a fork join task.
The following code shows how an execution context makes it simple to map a future to a
thread: as the preceding diagram shows, an execution context decides how to map a future
to a thread and run it. The following code uses the global execution context:

package com.concurrency.book.chapter07

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global

object FutWithDefaultContext extends App {

 Future {
 Thread.sleep(2000)
 println("Hello, world!")
 }
 println("How are things?")
}

The output is as follows:

How are things?

Whatever happened to the future? The problem is the default execution context runs your
futures on daemon threads. Java's daemon threads don't stop a JVM from exiting.
(See https:/​/​stackoverflow. ​com/ ​questions/ ​2213340/ ​what- ​is- ​a-​daemon- ​thread- ​in-
java for a refresher on daemon threads.)

https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java
https://stackoverflow.com/questions/2213340/what-is-a-daemon-thread-in-java

Functional Concurrency Patterns Chapter 6

[205]

That made the last Thread.sleep(...) call necessary to the main thread. The main
thread needs to sleep for a few seconds to allow the daemon thread running the future to
complete.

In the following code snippet, we will use an execution context with non-daemon threads:

package com.concurrency.book.chapter07

import java.util.concurrent.Executors

import scala.concurrent.{ExecutionContext, Future}

object FutWithMyContext extends App {
 implicit val execContext =
ExecutionContext.fromExecutor(Executors.newCachedThreadPool)

 Future {
 Thread.sleep(2000)
 println("Hello, world!")
 }
 println("How are things?")
}

newCachedThreadPool is used instead. This makes the future run on a non-daemon
thread. As a result, the future completes successfully and you get the desired output.

When the threads in newCachedThreadPool are not used for 60 seconds, they are
terminated. If you wait for a minute, you will see that the program terminates. Here is the
output:

How are things?
 Hello, world!

Given this background, let us look at how multiple futures overlap the execution.

Futures are asynchronous
Whenever we think of a program flow, we have a mental model—statements execute one
after another. The flow waits for the current computation to complete before it starts
working with the next statement. The following diagrams compare three computations.

Functional Concurrency Patterns Chapter 6

[206]

The first diagram shows three sequential computations, with only one computation
executing at any time. The latency of an operation is the time spent after the request is fired
and before the response is obtained. As each computation has a certain latency, the overall
latency of the result computation is equal to all three latencies added together:

The following diagram shows the same computations expressed via an asynchronous flow.
All three requests are fired at the same time, without waiting for each other to complete.
Only when the overall result is computed do we need all three values. However, now, as
the latencies of the three operations overlap, the overall latency is the maximum of all three
computations:

The following program simulates calls to external services.
The longRunningMethod method sleeps for a specified number of seconds. We will try to
time the sequential invocations of this method:

package com.concurrency.book.chapter07

Functional Concurrency Patterns Chapter 6

[207]

object SynchronousExecution extends App {

 def longRunningMethod(i: Int) = {
 Thread.sleep(i * 1000)
 i
 }

 val start = System.currentTimeMillis()

 val result = longRunningMethod(2) + longRunningMethod(2) +
longRunningMethod(2)

 val stop = System.currentTimeMillis()

 println(s"Time taken ${stop - start} ms")

 println(result)

 Thread.sleep(7000)
}

When we run the program, the output is around 6 seconds, as shown:

Time taken 6001 ms
 6

This is hardly surprising, as all three calls sleep for 2 seconds each. The overall latency adds
up. The next code snippet shows the same computation, expressed using futures:

package com.concurrency.book.chapter07

import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration._
import scala.concurrent.{Await, Future}

object AsynchronousComputation extends App {

 def longRunningMethod(i: Int) = Future{
 Thread.sleep(i * 1000)
 i
 }

 val start = System.currentTimeMillis()

 val f1 = longRunningMethod(2)
 val f2 = longRunningMethod(2)
 val f3 = longRunningMethod(2)

Functional Concurrency Patterns Chapter 6

[208]

 val f4: Future[List[Int]] = Future.sequence(List(f1, f2, f3))

 val result = Await.result(f4, 4 second)

 println(result.sum)

 val stop = System.currentTimeMillis()
 println(s"Time taken ${stop - start} ms")

 Thread.sleep(4000)
 }

The output is as follows:

6
 Time taken 2297 ms

Wait a second! What is that Future.sequence method? The Future.sequence(...)
method takes a list of futures and converts that to a future of list values. The following
diagram should make it clear:

Functional Concurrency Patterns Chapter 6

[209]

The sequence operation returns another future. We await for all futures to complete and
then get back the list, packed with all result values.

Blocking is bad
Some APIs are inherently blocking ones. For example, JDBC does not have a non-blocking
API. In such cases, there is a provision to hint the blocking context to create more threads.

The following code illustrates the problem:

package com.concurrency.book.chapter07

import scala.concurrent.duration.Duration
import scala.concurrent.{Await, Future}
import scala.concurrent.ExecutionContext.Implicits.global

object BlockingFutures extends App {
 val start = System.currentTimeMillis()

 val listOfFuts = List.fill(16)(Future {
 Thread.sleep(2000)
 println("-----")
 })

 listOfFuts.map(future => Await.ready(future, Duration.Inf))

 val stop = System.currentTimeMillis()
 println(s"Time taken ${stop - start} ms")
 println(s"Total cores = ${Runtime.getRuntime.availableProcessors}")
}

We create a list of 16 futures. Each future's computation sleeps for 2 seconds and then
prints a string. By default, the threads in the default execution context are equal to the
number of cores available.

We use a Scala idiom to create a list with 16 futures. Here is a Scala REPL
session, to illustrate the idiom:

scala> val random = new scala.util.Random()
random: scala.util.Random = scala.util.Random@3d98d138

scala> val rndNumList = List.fill(16)(random.nextInt(20))
rndNumList: List[Int] = List(18, 1, 19, 5, 5, 4, 18, 4,
8, 14, 8, 2, 2, 3, 16, 16)

Functional Concurrency Patterns Chapter 6

[210]

Next, we await the future execution. Once all futures complete, we print the time taken.

The output is as follows:

 delay

delay
...
Time taken 8291 ms
Total cores = 4

As four threads block due to the sleep() call, the rest of the futures don't get any threads
to run on. As there are four batches, we get each blocking for 2 seconds.

Now change the code as follows:

import scala.concurrent.{Await, Future, blocking}
// rest of the code, as before...
blocking {
 Thread.sleep(2000)
 println("-----")
}
// rest of the code as before

We have just wrapped up the blocking piece inside the blocking method invocation.
When you run the code next, the delay is gone:

 // 12 more lines
 Time taken 2337 ms
 Total cores = 4

The blocking method made the global execution context spawn additional threads when
it detected that there were not sufficient threads to do the work.

Functional Concurrency Patterns Chapter 6

[211]

Functional composition
In functional programming, simpler values are composed into more complex ones by using
higher-order functions. These higher-order functions are called combinators. For example,
the map method on a collection produces a new collection containing elements from the
original collection, mapped with a specified function.

The following code shows a validation pipeline created using Scala's Try monad. All of the
checks execute one after another. If any of the checks fail, the pipeline processing stops—as
in other checks down the line are skipped:

package com.concurrency.book.chapter07

import scala.util.{Failure, Success, Try}

object TryAsAMonad extends App {
 def check1(x: Int) = Try {
 x match {
 case _ if x % 2 == 0 => x
 case _ => throw new RuntimeException("Number needs to be even")
 }
 }

 def check2(x: Int) = Try {
 x match {
 case _ if x < 1000 => x
 case _ => throw new RuntimeException("Number needs to be less than
1000")
 }
 }

 def check3(x: Int) = Try {
 x match {
 case _ if x > 500 => x
 case _ => throw new RuntimeException("Number needs to be greater than
500")
 }
 }

 val result = for {
 a <- check1(400)
 b <- check2(a)
 c <- check3(b)
 } yield "All checks ran just fine"

 result match {
 case Success(s) => println(s)

Functional Concurrency Patterns Chapter 6

[212]

 case Failure(e) => println(e)
 }
}

We have composed validations together, resulting in a pipeline. The following diagram
shows the composition:

Note that we are stringing together these operations using Scala's for comprehension,
which is just syntactic sugar for a succession of flatMap calls, terminating with a map. The
following listing shows the lengthy and hard-to-read version:

val result = check1(400).flatMap(a => check2(a).
 flatMap(b => check3(b).map(c => "All checks ran just fine")))

 A future is also a monad. The following code shows how we could use for
comprehensions for manipulating them:

package com.concurrency.book.chapter07

import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.{Await, Future}
import scala.concurrent.duration._

object FutureWithForComprehension extends App {

 def longRunningMethod(i: Int) = Future{
 Thread.sleep(i * 1000)
 i
 }

 val start = System.currentTimeMillis()

 val f1 = longRunningMethod(2)

Functional Concurrency Patterns Chapter 6

[213]

 val f2 = longRunningMethod(2)
 val f3 = longRunningMethod(2)

 val f4: Future[Int] = for {
 x <- f1
 y <- f2
 z <- f3
 } yield (x + y + z)

 val result = Await.result(f4, 4 second)

 println(result)

 val stop = System.currentTimeMillis()
 println(s"Time taken ${stop - start} ms")

 Thread.sleep(4000)
}

Running this code gives the following output:

6
 Time taken 2334 ms

This is as expected. Note that the futures need to be started outside of the
comprehension. Let us change the code a bit, as shown:

// Don't use this version...
val f4: Future[Int] = for {
 x <- longRunningMethod(2)
 y <- longRunningMethod(2)
 z <- longRunningMethod(2)
} yield (x + y + z)

Lo and behold! The Await call is TimeoutException:

Exception in thread "main" java.util.concurrent.TimeoutException: Futures
timed out after [4 seconds]
 at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:255)
 ...

The problem is we have got all of the futures executing sequentially! Till the first future
completes, the second is not even started. Writing down the de-sugared version of the
comprehension clarifies the issue:

val f4 = longRunningMethod(2).flatMap(x => longRunningMethod(2).
 flatMap(y => longRunningMethod(2).map(z => x + y + z)))

Functional Concurrency Patterns Chapter 6

[214]

As seen,when the first future does not complete, its flatMap() method is not called. The
time adds up and we get a timeout.

Summary
We looked at two important themes in this chapter. An immutable value is never changed
once it is constructed. Immutability rules out, by design, any shared state issue as you
cannot change the values. Immutable code makes for increased thread safety. Copy-on-
write is used when a thread needs to modify an immutable data structure. We looked at
persistent data structures, which are multiple versions (copies) of the same data structure.
Structural sharing helps ensure algorithmic performance.

Next, we looked at Scala's futures, an abstraction used to express asynchronous
computations. We saw how futures map with threads, and how to avoid blocking the
underlying thread. Futures allows for functional composition—a functional design pattern
for creating processing pipelines.

With all this know-how, let's now look at the Actor paradigm. Stay tuned!

7
Actors Patterns

In the preceding chapter, we discussed functional concurrency patterns using various code-
examples. In this chapter, we will discuss actors patterns and functionality with the help of
various code-examples.

In Chapter 1, Concurrency – An Introduction, we looked at two major paradigms for
designing concurrent systems. The shared state paradigm requires careful state
management. We provided reasons for using locks for safely sharing the state—we have to
be aware of visibility and consistency issues.

Locking makes state manipulations atomic. However, this approach could result in locking
bottlenecks. As an alternative, we took a look at lock-free data structures. However, lock-free
structures are inherently complex.

In this chapter, we will take a look at the message-driven paradigm for creating concurrent
programs. The shared state goes away. Instead, actors encapsulate the state, and the only
way to change the state is via sending a message to it.

Actors Patterns Chapter 7

[216]

Message driven concurrency
The following listing shows our first actor-based program in action. We show a single actor,
living in an actor system and we talk to this actor by sending messages. These messages land
in the actor's mailbox and each message is processed sequentially, one at a time:

package com.concurrency.book.chapter08

import akka.actor.{Actor, ActorLogging, ActorSystem, Props}

class MyActor extends Actor {

 override def receive: PartialFunction[Any, Unit] = {
 case s: String => println(s"<${s}>")
 case i: Int => println(i+1)
 }

}

object MyActor extends App {
 def props() = Props(new MyActor)

 val actorSystem = ActorSystem("MyActorSystem")

 val actor = actorSystem.actorOf(MyActor.props(), name = "MyActor")

 actor ! "Hi"
 actor ! 34

 case class Msg(msgNo: Int)

 actor ! Msg(3)

 actor ! 35

 actorSystem.terminate()
}

We have an actor, named MyActor, which lives in an actor system named MyActorSystem.
We create the actor and hold its actorReference in the actor variable.

Next, we send messages to the actor, using the asynchronous message send method,
curiously named as !. This ! operator is called as tell operator. This is a fire & forget
calling mechanism. We keep firing messages, without waiting for any replies.

Actors Patterns Chapter 7

[217]

We send four messages, Hi, 34, Msg(3), and 35:

The actor has a receive method, where the messages received are processed. We process
all strings and all integers.

 The receive method returns a partial function object of the PartialFunction[Any,
Unit] type. If the partial function is defined, that is, if the pattern match succeeds, the
message is processed by the matching block. Otherwise, the message is discarded.

If we run the code, we get the following output:

<Hi>
 35
 36

Note that the Msg(3) message is ignored, as there is no pattern match for it.

Actors Patterns Chapter 7

[218]

What is an actor?
An actor has state, behavior, a mailbox, child actors, and a parent, which is also a supervisor. The
only way to send messages to an actor is via its actor reference. An actor system contains
actors and a thread pool on which the actors are dispatched:

Let's consider a software development company. It is instructive to equate people in the
company with the actor model. Let's consider the following three people (actors): a
manager, a senior developer reporting to him, and a junior developer reporting to the
senior manager.

An actor reference is the equivalent of an email ID. A person could be in the office (co-
located) or traveling and you can still send a message to them using their email ID. They can
also reply back to the sender.

The state is equivalent to the thoughts of any of these people. It is well encapsulated within
the person. The junior developer is supervised by the senior developer, who, in turn, is
supervised by the manager.

The mailbox is a todo list. The manager may assign work as and when it comes to the
senior developer, that is, send messages using some form of collaboration tool such as Jira.
The developer will take up each task from the todo list and start working on it.

Actors Patterns Chapter 7

[219]

 In the actor code example, some of these entities are very much at play. You cannot see the
mailbox directly in the code. It is working behind the scenes, keeping the message
processing loop running.

The following line initializes the variable actor with an actor reference. As we use type
inference in Scala, we won't see the type explicitly written:

val actor = actorSystem.actorOf(MyActor.props(), name = "MyActor")

However, the line really means the following:

val actor: ActorRef = actorSystem.actorOf(MyActor.props(), name =
"MyActor")

So, the actor variable is an actor reference. Let's take a look at what this actor reference
provides.

Let it crash
An actor reference encapsulates the actual actor object reference. The idea is to insulate the
callers if the actor crashes and restarts. We will soon take a look at an example of this actor
resurrection. The following figure shows the let-it-crash philosophy:

Actors Patterns Chapter 7

[220]

If anything goes wrong with the actor, the philosophy is let it crash. The actor's
supervisor, which is also its parent, replaces the actual JVM object with another copy of the
same actor. That is the reason a client does not hold the JVM object reference, and instead
uses a proxy—ActorRef.

This is an example of a proxy design pattern. Check out https:/ ​/​www. ​geeksforgeeks. ​org/
proxy-​design-​pattern/ ​ for more information on this topic.

Location transparency
You should be able to redeploy actors so that some of them run on different machines. Co-
located actors run on the same machine. While you are developing, co-location would work
well. However, you may need to horizontally scale the production deployment. Refer to
Chapter 1, Concurrency – An Introduction, for an explanation of horizontal scaling.

The following diagram shows how an actor reference helps maintain Location
transparency:

https://www.geeksforgeeks.org/proxy-design-pattern/
https://www.geeksforgeeks.org/proxy-design-pattern/
https://www.geeksforgeeks.org/proxy-design-pattern/
https://www.geeksforgeeks.org/proxy-design-pattern/
https://www.geeksforgeeks.org/proxy-design-pattern/
https://www.geeksforgeeks.org/proxy-design-pattern/
https://www.geeksforgeeks.org/proxy-design-pattern/
https://www.geeksforgeeks.org/proxy-design-pattern/
https://www.geeksforgeeks.org/proxy-design-pattern/
https://www.geeksforgeeks.org/proxy-design-pattern/
https://www.geeksforgeeks.org/proxy-design-pattern/
https://www.geeksforgeeks.org/proxy-design-pattern/
https://www.geeksforgeeks.org/proxy-design-pattern/
https://www.geeksforgeeks.org/proxy-design-pattern/
https://www.geeksforgeeks.org/proxy-design-pattern/

Actors Patterns Chapter 7

[221]

The idea is to deploy actors remotely—the code sending messages should work the
same. As long as the actor is reachable, the code should remain unaffected. The location
transparency is one major factor for using the actor reference. We can deploy the actors
anyway we see fit—one machine is not the boundary. We could easily use a cluster instead.

Actors are featherlight
As we have seen earlier, threads are costly to create, and they also tear down. So, we use
thread pools, and reuse threads for various tasks. Actors, on the other hand, have a very
light memory footprint. You can create millions of actors.

Here is an example: we create 10000 actors of the MyActor class and send each actor a
message. The message is a number, which will help us ensure that these actors were indeed
created:

package com.concurrency.book.chapter08

import akka.actor.ActorSystem
import com.concurrency.book.chapter08.MyActor.actorSystem

object ThousandsOfActors extends App {
 val actorSystem = ActorSystem("MyActorSystem")

 (1 to 10000).
 map(k => k -> actorSystem.actorOf(MyActor.props(), name =
s"MyActor${k}")).
 foreach { case (k, actor) => actor ! k }

 Thread.sleep(14000)
 actorSystem.terminate()
}

We have a range of numbers—1 to 10000. We map over each number and create an actor
corresponding to each number in the collection. So, in all, we created 10000 actors. We
generate a list of tuples—each tuple is a pair—of the form (num, actorRef).

Finally, we will send the number as a message to actorRef with the following output:

11
 9
 13
 15
 7
 10
... // you will find 9999, 10000 somewhere

Actors Patterns Chapter 7

[222]

Try to modify the program to print the actor name and the thread it runs on.

State encapsulation
What do we mean by state encapsulation? In object-oriented programming, we use a class
and its private variables. For example, as long as the public APIs of the class work as per
the contract, the class internals don't matter to the outside world. Similarly, how an actor
does its work should not matter to anyone, as long as the task is completed as expected.

Here is an example:

package com.concurrency.book.chapter08

import akka.actor.{Actor, ActorSystem, Props}

class CountMessagesActor extends Actor with ActorLogging {

 var cnt = 0

 override def receive: PartialFunction[Any, Unit] = {
 case s: String =>
 cnt += 1
 println(s"${cnt} <${s}>")
 case i: Int =>
 cnt += 1
 println(s"${cnt} ${i + 1}")
 }

}

object CountMessagesActor extends App {
 def props() = Props(new CountMessagesActor())

 val actorSystem = ActorSystem("MyActorSystem")

 val actor = actorSystem.actorOf(CountMessagesActor.props(), name =
"CountMessagesActor")

 actor ! "Hi"
 actor ! 34

 case class Msg(msgNo: Int)

 actor ! Msg(3)

 actor ! 35

Actors Patterns Chapter 7

[223]

 actorSystem.terminate()
}

We have a shared mutable state in the form of a count variable. The variable keeps track of
the total number of messages received and processed till now. As indicated by var, the
variable is mutable and represents the state of the actor. If we run the code, we will note the
following output:

2 <Hi>
3 35
4 36

As you see, there is no way we can change the variable from outside. We need to send a
message to the actor, and it is up to the actor to change the state the way it thinks is
appropriate.

Where is the parallelism?
Where is the concurrency in all this? Where are threads? We showed a thread pool before
this. Why don't we see threads anywhere? Actors are higher abstractions and are run over
threads. The following listing shows how the actors are dispatched to run using threads:

package com.concurrency.book.chapter08

import akka.actor.{Actor, ActorLogging, ActorRef, ActorSystem, Props}

class Make5From1Actor(actor: ActorRef) extends Actor with ActorLogging {
 override def receive: Receive = {
 case s =>
 log.info(s"Received msg $s")
 (0 to 4).foreach(p => actor ! s)
 }
}

class Make3From1Actor(actor: ActorRef) extends Actor with ActorLogging {
 override def receive: Receive = {
 case s =>
 log.info(s"Received msg $s")
 (0 to 2).foreach(p => actor ! s)
 }
}

object MultipleActorsHittingOneActor extends App {
 val actorSystem = ActorSystem("MyActorSystem")

Actors Patterns Chapter 7

[224]

 val actor = actorSystem.actorOf(CountMessages.props(0), name =
"CountMessagesActor")

 def props5From1() = Props(new Make5From1Actor(actor))
 def props3From1() = Props(new Make3From1Actor(actor))

 val actor1 = actorSystem.actorOf(props5From1(), name = "Actor5From1")
 val actor2 = actorSystem.actorOf(props3From1(), name = "Actor3From1")

 actor1 ! 34
 actor1 ! "hi"
 actor2 ! 34
 actor2 ! "hi"

 Thread.sleep(1000)
 actorSystem.terminate()
}

We have two actor classes, namely Make3From1 and Make5From1. The first receives a
message and sends it three times to the CountMessages actor. The second one does the
same, however, sends it five times instead.

 These actors also receive a reference in the constructor. This is the actual destination actor
for these messages. So, any message received, in turn, is forwarded to the destination actor.
The following diagram shows the message flow and actor communication:

Actors Patterns Chapter 7

[225]

When we run this code, we will receive the following output (trimmed to show the relevant
information):

[INFO]... Received msg 34
[INFO]... Received msg 34
[INFO]... Received msg 34 - cnt = 1
 ... rest of the output snipped

The preceding output is instructive. All three actors run on three different threads. The
name of the thread is MyActorSystem-akka.actor.default-dispatcher-4.

Also, note how we are mixing the ActorLogging trait. This gives a preconfigured logger
for the actor.

Unhandled messages
When we send a message for which there is no pattern match, the message is discarded.
Here is a code snippet illustrating this behavior:

package com.concurrency.book.chapter08

import akka.actor.{Actor, ActorLogging, ActorRef, ActorSystem, Props}

class UnhandledMsgActor extends Actor with ActorLogging {
 override def receive: Receive = PartialFunction.empty

 override def unhandled(message: Any) = message match {
 case msg: Int => log.info(s"I got ${msg} - don't know what to do with
it?")
 case msg => super.unhandled(msg)
 }
}

object UnhandledMsgActor extends App {
 def props() = Props(new UnhandledMsgActor)

 val actorSystem = ActorSystem("MyActorSystem")

 val actor: ActorRef = actorSystem.actorOf(UnhandledMsgActor.props(), name
= "UnhandledMsgActor")

 actor ! "Hi"
 actor ! 12
 actor ! 3.4

 Thread.sleep(1000)

Actors Patterns Chapter 7

[226]

 actorSystem.terminate()
}

The receive method does nothing. It simply does not handle any messages. If we run the
program, we will note that the unhandled method gets called with the message as an
argument. The following will be the output:

[INFO]... I got 12 - don't know what to do with it?

The unhandled method, in turn, treats any Int messages specially. All other type of
messages are delegated to the super class.

The become pattern
An actor's behavior is defined using the receive method. We can change the behavior of
the actor using an become method on the actor's context object. The following code shows
an example of how we can change an actor's behavior:

package com.concurrency.book.chapter08

import akka.actor.{Actor, ActorLogging, ActorRef, ActorSystem, Props}

class HandlesOnlyFiveMessages extends Actor with ActorLogging {

 var cnt = 0

 def stopProcessing: Receive = PartialFunction.empty

 override def receive: Receive = {
 case i: Int =>
 cnt += 1
 log.info(s"Received msg $i - cnt = ${cnt}")
 if (cnt == 5) context.become(stopProcessing)
 }

}

object HandlesOnlyFiveMessages extends App {
 def props() = Props(classOf[HandlesOnlyFiveMessages])

 val actorSystem = ActorSystem("MyActorSystem")

 val actor: ActorRef =
actorSystem.actorOf(HandlesOnlyFiveMessages.props(), name =
"HandlesOnlyFiveMessagesActor")

Actors Patterns Chapter 7

[227]

 (0 to 10).foreach(x => actor ! x)

 Thread.sleep(1000)

 actorSystem.terminate()

}

There are two methods, receive and stopProcessing. As long as the actor has processed
less than five messages, for each message, a number is incremented and logged. Once the
message count crosses five, the actor changes its behavior to discard all messages. The flow
is shown in the following diagram:

When we run the program, we will receive the following output:

[INFO]... Received msg 0 - cnt = 1
[INFO]... Received msg 1 - cnt = 2
[INFO]... Received msg 2 - cnt = 3
[INFO]... Received msg 3 - cnt = 4
[INFO]... Received msg 4 - cnt = 5

We sent 10 messages using the following snippet:

(0 to 10).foreach(x => actor ! x)

However, all messages after five are discarded by the actor.

Actors Patterns Chapter 7

[228]

Making the state immutable
Since we are using Scala, we naturally prefer immutable variables. We want the counter
variable to be a val variable instead of a var variable.However, in that case, how do you
update the counter?

Again, we use the become pattern. The following is a message counter actor, using an
immutable cnt variable. Note that, in Scala, all method variables are val unless you
explicitly declare them as var.

scala> def m1(p: Int) = p = p + 1
 <console>:11: error: reassignment to val
 def m1(p: Int) = p = p + 1
 ^
 scala>

Interestingly, changing an argument is a code smell in Java too. Refer to
https://softwareengineering.stackexchange.com/questions/245767/is-modifying-an-

incoming-parameter-an-antipattern for more information. Scala anyway does not allow
it, as the preceding snippet shows.

The following program uses this feature, along with the context.become() method to
implement the counter:

package com.concurrency.book.chapter08

import akka.actor.{Actor, ActorLogging, ActorRef, ActorSystem, Props}

class ImmutableCountingActor extends Actor with ActorLogging {

 def process(cnt: Int): PartialFunction[Any, Unit] = {
 case s: String =>
 log.info(s"Received msg $s - cnt = ${cnt+1}")
 context.become(process(cnt+1))
 case i: Int =>
 log.info(s"Received msg $i - cnt = ${cnt+1}")
 context.become(process(cnt+1))
 }

 override def receive: Receive = process(0)
}

object ImmutableState extends App {
 def props() = Props(classOf[ImmutableCountingActor])

 val actorSystem = ActorSystem("MyActorSystem")

https://softwareengineering.stackexchange.com/questions/245767/is-modifying-an-incoming-parameter-an-antipattern
https://softwareengineering.stackexchange.com/questions/245767/is-modifying-an-incoming-parameter-an-antipattern
https://softwareengineering.stackexchange.com/questions/245767/is-modifying-an-incoming-parameter-an-antipattern

Actors Patterns Chapter 7

[229]

 val actor: ActorRef = actorSystem.actorOf(
 ImmutableState.props(), name = "ImmutableCountingActor")

 (0 to 10).foreach(x => actor ! x)

 Thread.sleep(1000)

 actorSystem.terminate()

}

The behavior is changed to reflect the new value of counter. The following single line is all
that is needed to effect the change:

 context.become(process(cnt+1))

This is similar to the way we use recursion in Scala to avoid mutable variables. For
example, here is a Scala code snippet to compute the number of elements in a list:

package com.concurrency.book.chapter08

import scala.annotation.tailrec

object CountElems extends App {

 def size(l: List[Int]) = {

 @tailrec
 def countElems(list: List[Int], count: Int): Int = list match {
 case Nil => count
 case x :: xs => countElems(xs, count+1)
 }

 countElems(l, 0)
 }

 val list = List(1, 2, 3, 4, 5)

 println(size(list))
}

Actors Patterns Chapter 7

[230]

Compare the preceding version with the become pattern. The following diagram shows the
flow:

The preceding diagram provides the following output:

[INFO]... Received msg 0 - cnt = 1
[INFO]... Received msg 1 - cnt = 2
[INFO]... Received msg 2 - cnt = 3
 ...

Let it crash - and recover
We mentioned the resilience aspect of the system. The following code is an example of
how let-it-crash works in Akka. The parent actor is also the supervisor for the child. We can
set it up so that, for every actor that crashes, another actor is resurrected and put in place.

The following code shows how this scheme works:

package com.concurrency.book.chapter08

import akka.actor.SupervisorStrategy.{Escalate, Restart}
import akka.actor.{Actor, ActorKilledException, ActorLogging, ActorRef,
ActorSystem, Identify, OneForOneStrategy, Props}
import akka.util.Timeout

import scala.concurrent.duration._
import scala.concurrent.ExecutionContext.Implicits.global
import akka.pattern.ask
import com.concurrency.book.chapter08.Child.BadMessageException

Actors Patterns Chapter 7

[231]

import scala.concurrent.{Await, Future}

class Child extends Actor with ActorLogging {
 import Child._
 def receive = {
 case i: Int => log.info(s"${i + 1}")
 case _ => throw BadMessageException("Anything other than Int messages
is not supported")
 }
}

object Child {
 def props() = Props(classOf[Child])

 case class BadMessageException(errStr: String) extends RuntimeException
}

class Supervisor extends Actor with ActorLogging {
 val child = context.actorOf(Child.props(), "child")

 def receive = {
 case _: Any => sender ! child
 }

 override val supervisorStrategy =
 OneForOneStrategy(){
 case e: BadMessageException => Restart
 case _ => Escalate
 }
}

object Supervisor extends App {
 val actorSystem = ActorSystem("MyActorSystem")
 implicit val timeout = Timeout(5 seconds)

 def props() = Props(classOf[Supervisor])

 val actor = actorSystem.actorOf(Supervisor.props(), "parent")

 val future = actor ? "hi"

 val child = Await.result(future, 5 seconds).asInstanceOf[ActorRef]

 child ! 1
 child ! 2

 child ! "hi"

Actors Patterns Chapter 7

[232]

 child ! 3

 Thread.sleep(2000)

 actorSystem.terminate()
}

There is an actor hierarchy at work here. The parent actor creates a child actor and puts
supervisorStrategy in place. By default, AKKA stops the actor.

 The child actor accepts only Int messages. For any other messages, it throws a
RunTimeException. (Actually it throws a BadMessageException which extends
RuntimeException). Due to the supervision strategy, the supervisor steps in and recreates the
actor. The flow is shown in the following diagram:

As shown in the following output (trimmed down suitably), the first two messages are
processed normally. Then, we send a string message instead of a number. This results in the
exception. However, we sent one more message, and as seen in the following output, the
message is processed correctly:

[INFO]... [akka://MyActorSystem/user/parent/child] 2
[INFO]... [akka://MyActorSystem/user/parent/child] 3
[ERROR]... [akka://MyActorSystem/user/parent] null
 com.concurrency.book.chapter08.Child$BadMessageException

[INFO]... [akka://MyActorSystem/user/parent/child] 4

Actors Patterns Chapter 7

[233]

One noteworthy thing is we use the actorSystem.actorSelection(actorPath) call to
reach for the child actor reference. Check out
https://doc.akka.io/docs/akka/current/general/addressing.html for more
information on actor paths.

Actor communication – the ask pattern
Actors also need to communicate with each other as they need to collaborate. Just like
people in a company need to talk to each other to work as a team.

A request-response pattern is very common in everyday programming. For example, an
actor can ask another one for some service. The caller needs to wait for this response.

On the other hand, an actor should never block. If an actor blocks, it blocks the underlying
thread, thereby starving the other actors.

The akka.pattern package provides the ask operator, named ?. This operator sends a
message to the target actor. The following code illustrates the use of ask from the main
method of the ActorTestAsk object. The ActorTestAsk class is not an actor:

package com.concurrency.book.chapter08

import akka.actor.{Actor, ActorLogging, ActorSystem, Props}
import akka.util.Timeout
import akka.pattern.ask
import scala.concurrent.duration._

import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.Future

class ActorTestAsk extends Actor with ActorLogging {
 override def receive: Receive = {
 case s: String => sender ! s.toUpperCase
 case i: Int => sender ! (i + 1)
 }
}

object ActorTestAsk extends App {
 def props() = Props(classOf[ActorTestAsk])
 val actorSystem = ActorSystem("MyActorSystem")

 val actor = actorSystem.actorOf(ActorTestAsk.props(), name = "actor1")
 implicit val timeout = Timeout(5 seconds)

 val future = actor ? "hello"

https://doc.akka.io/docs/akka/current/general/addressing.html
https://doc.akka.io/docs/akka/current/general/addressing.html
https://doc.akka.io/docs/akka/current/general/addressing.html

Actors Patterns Chapter 7

[234]

 future foreach println

 Thread.sleep(2000)
 actorSystem.terminate()
}

We define an actor as the instance that receives either a string or an int message and
returns an appropriate response. The main method uses the ask operator to send a string
message to the actor. The result is of the Future[Any] type.

We use the foreach combinator to print the result of the future, whenever it becomes
available. We also need to provide an implicit timeout and an execution context. You can
refer to Chapter 7, Functional Concurrency Patterns, for a quick revision, in case you need
these concepts.

When we run the program, the output is as follows:

HELLO

Next, we will look at how an actor talks to another actor, using the ask pattern.

Actors talking with each another
The earlier snippet showed how a nonactor code used the asked pattern. The upcoming
snippet shows how an actor asks another for some service.

We have two actors. Actor1 receives an Actor2 reference in its constructor. When Actor1
receives a string message, it delegates the message to Actor2.

The Actor2 message processing simulates a delay of one second and then upcases the
argument string and returns it back as shown in the following:

package com.concurrency.book.chapter08

import akka.actor.{Actor, ActorLogging, ActorRef, ActorSystem, Props}
import akka.pattern.ask
import akka.util.Timeout

import scala.concurrent.{Await, Future}
import scala.concurrent.duration._
import scala.util.{Failure, Success}
import scala.concurrent.ExecutionContext.Implicits.global

object Actor1 {
 def props(workActor: ActorRef) = Props(new Actor1(workActor))

Actors Patterns Chapter 7

[235]

}

class Actor1(workActor: ActorRef) extends Actor with ActorLogging {
 override def receive: Receive = {
 case s: String => {
 implicit val timeout = Timeout(20 seconds)

 val future = workActor ? s.toUpperCase
 future onComplete {
 case Success(s) => log.info(s"Got '${s}' back")
 case Failure(e) => log.info(s"Error'${e}'")
 }
 }
 }
}

class Actor2 extends Actor with ActorLogging {
 override def receive: Receive = {
 case s: String => {
 val senderRef = sender() //sender ref needed for closure
 Future {
 val r = new scala.util.Random
 val delay = r.nextInt(500)+10
 Thread.sleep(delay)
 s.toUpperCase
 } foreach { reply =>
 senderRef ! reply
 }
 }
 }
}

object ActorToActorAsk extends App {
 val actorSystem = ActorSystem("MyActorSystem")

 val workactor = actorSystem.actorOf(Props[Actor2], name = "workactor")

 val actor = actorSystem.actorOf(Actor1.props(workactor), name = s"actor")

 val actorNames = (0 to 50).map(x => s"actor${x}")
 val actors = actorNames.map(actorName =>
actorSystem.actorOf(Actor1.props(workactor), name = actorName))

 (actorNames zip actors) foreach { case (name, actor) => actor ! name }

}

Actors Patterns Chapter 7

[236]

To send a response back, Actor2 uses the sender() method. The processing simulates a
random delay between 10 to 500 milliseconds. After this delay, the argument string is
upcased and sent back to the sender, which is Actor1. The important point to note is that
the future task and actors run on different threads! The following figure should help
highlight the problem:

In Scala, a variable closes over the surrounding environment. The following code shows the
issue:

object ClosesOver extends App {
 class Foo {
 def m1(fun: (Int) => Unit, id: Int) {
 fun(id)
 }
 }

 var x = 1

 def addUp(num: Int) = println(num + x)

 val foo = new Foo

Actors Patterns Chapter 7

[237]

 foo.m1(addUp, 1)

 x = 2

 foo.m1(addUp, 1)
}

The addUp() method is closing over the mutable variable x. In Scala, due to Eta
Expansion (refer to https:/ ​/ ​alvinalexander. ​com/ ​scala/ ​fp- ​book/ ​how-​to- ​use- ​scala-
methods-​like-​functions for more information) our method is converted in to a function,
when passed as an argument to Foo.m1.

This function (method) is not pure. It refers to x from the surrounding scope (that is, closes
over it) and when x is changed, the method behavior changes too.

Going back to the actor code, if the future task references the sender() method by the time
it runs, another message from a different actor could be under processing! So, if the future
uses the following line to send back the response, you have got a race to deal with:

sender() ! arg.toUpperCase // Don't do this

In case of a bug, the response would go to a wrong sender!

Instead, we save the sender into a val variable, senderRef, and use that inside the future!

val senderRef = sender() //sender ref needed for closure

To test the program, we create 51 sender actors (Actor1) all sending messages to the same
work actor (Actor2). We generate 51 actor names, and each actor sends its name as a string
message to the work actor.

The output logs the messages. It is easy to verify the message against the actor:

[INFO]... [akka://MyActorSystem/user/actor2] Got 'ACTOR2' back
[INFO]... [akka://MyActorSystem/user/actor1] Got 'ACTOR1' back
[INFO]... [akka://MyActorSystem/user/actor50] Got 'ACTOR50' back
[INFO]... [akka://MyActorSystem/user/actor4] Got 'ACTOR4' back
[INFO]... [akka://MyActorSystem/user/actor0] Got 'ACTOR0' back
[INFO]... [akka://MyActorSystem/user/actor6] Got 'ACTOR6' back

https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions
https://alvinalexander.com/scala/fp-book/how-to-use-scala-methods-like-functions

Actors Patterns Chapter 7

[238]

Try replacing senderRef with sender() and run the (buggy!) program again. See how the
correlation goes for a toss.

Actor communication – the tell pattern
The preceding code seems brittle as we need to think of the correct value for the timeout.
You need a very good guess for how long it will take for the overloaded work actor to
return a response and adjust the timeout value based on it. This is not a full-proof solution.

Instead, we use the tell pattern. The resulting code is simpler, and more importantly, does
not need any timeout, as we don't use the future.

However, instead of sending back the response, we send a new type of message. The result
of the future processing is wrapped into a Result(String) message, which is just a case
class, defined in the companion object of Actor1. It is a recommended practice to define an
actor's messages in its companion object.

Here is the code using the tell pattern:

package com.concurrency.book.chapter08

import akka.actor.{Actor, ActorLogging, ActorRef, ActorSystem, Props}

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global

object Actor1 {
 def props(workActor: ActorRef) = Props(new Actor1(workActor))
 case class Result(s: String)
}

class Actor1(workActor: ActorRef) extends Actor with ActorLogging {
 override def receive: Receive = {
 case s: String => workActor ! s
 case Actor1.Result(s) => log.info(s"Got '${s}' back")
 }
}

class Actor2 extends Actor with ActorLogging {
 override def receive: Receive = {
 case s: String => {
 val senderRef = sender() //sender ref needed for closure
 val arg = s
 Future {
 Thread.sleep(1000)

Actors Patterns Chapter 7

[239]

 Actor1.Result(arg.toUpperCase)
 } foreach { reply =>
 senderRef ! reply
 }
 }
}

object ActorToActorTell extends App {
 val actorSystem = ActorSystem("MyActorSystem")

 val workactor = actorSystem.actorOf(Props[Actor2], name = "workactor")

 val actor = actorSystem.actorOf(Actor1.props(workactor), name = s"actor")

 val actorNames = (0 to 50).map(x => s"actor${x}")
 val actors = actorNames.map(actorName =>
actorSystem.actorOf(Actor1.props(workactor), name = actorName))

 (actorNames zip actors) foreach { case (name, actor) => actor ! name }

 Thread.sleep(14000)

 actorSystem.terminate()

}

The following diagram shows the flow:

The output is similar to the ask version.

Actors Patterns Chapter 7

[240]

The pipeTo pattern
You need the ask pattern at times. For example, the service actor may make a web service
call or fire a database query. The result may be necessary for further processing.

This is shown in the following code:

package com.concurrency.book.chapter08

import akka.actor.{Actor, ActorLogging, ActorRef, ActorSystem, Props}

import scala.concurrent.Future
import akka.pattern.{ask, pipe}
import scala.concurrent.ExecutionContext.Implicits.global

class PipeToActor extends Actor with ActorLogging{
 override def receive: Receive = process(List.empty)

 def process(list: List[Int]): Receive = {
 case x : Int => {
 val result = checkIt(x).map((x, _))
 pipe(result) to self
 }
 case (x: Int, b: Boolean) => log.info(s"${x} is ${b}")
 }

 def checkIt(x: Int): Future[Boolean] = Future {
 Thread.sleep(1000)
 x % 2 == 0
 }
}

object PipeToActor extends App {
 val actorSystem = ActorSystem("MyActorSystem")

 def props() = Props(classOf[PipeToActor])

 val actor = actorSystem.actorOf(PipeToActor.props(), "actor1")

 (1 to 5).foreach(x => actor ! x)

 Thread.sleep(5000)

 actorSystem.terminate()
}

Actors Patterns Chapter 7

[241]

Have a look at the following line:

pipe(result) to self

This takes the result of the future and converts it into another message to self! This message
is processed by the following clause:

case (x: Int, b: Boolean) => log.info(s"${x} is ${b}")

Running the code will give you the following output:

[INFO]... [akka://MyActorSystem/user/actor1] 3 is false
[INFO]... [akka://MyActorSystem/user/actor1] 1 is false
[INFO]... [akka://MyActorSystem/user/actor1] 2 is true
[INFO]... [akka://MyActorSystem/user/actor1] 4 is true
[INFO]... [akka://MyActorSystem/user/actor1] 5 is false

This is an elegant solution, as we again don't need to specify any timeout. We are talking to
a future-based API and converting the result into another message.

Summary
In this chapter, we introduced the actor paradigm. We used a real-world analogy, a
software company and its employees, to correlate various terms used in the paradigm.
There are reasons for using ActorRef as a proxy to refer to an actor. We saw how let it
crash and location transparency are realized due to the ActorRef encapsulation, working as a
proxy to the actual actor reference.

We covered the aspect of actors for state encapsulation. We also saw what actors are and how
they map to threads. Next, we covered some essential and common actors patterns.

The become pattern is used for changing an actor's behavior. We saw how it helps in making
the actor state immutable. Next, we saw how the supervision model works, so if an actor
crashes, another copy is restarted.

Finally, we covered basic actor communication patterns such as ask, tell, and pipeTo.
We also looked at the care needed when we use actors with future tasks.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Learning Concurrency in Kotlin
Miguel Angel Castiblanco Torres

ISBN: 978-1-78862-716-0

Understand Kotlin’s approach to concurrency
Implement sequential and asynchronous suspending functions
Create suspending data sources that are resumed on demand
Explore the best practices for error handling
Use channels to communicate between coroutines
Uncover how coroutines work under the hood

https://www.packtpub.com/application-development/learning-concurrency-kotlin

Other Books You May Enjoy

[243]

Hands-On Concurrency with Rust
Brian L. Troutwine

ISBN: 978-1-78839-997-5

Probe your programs for performance and accuracy issues
Create your own threading and multi-processing environment in Rust
Use coarse locks from Rust’s Standard library
Solve common synchronization problems or avoid synchronization using atomic
programming
Build lock-free/wait-free structures in Rust and understand their
implementations in the crates ecosystem
Leverage Rust’s memory model and type system to build safety properties into
your parallel programs
Understand the new features of the Rust programming language to ease the
writing of parallel programs

https://www.packtpub.com/application-development/hands-concurrency-rust

Other Books You May Enjoy

[244]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
ABA problem
 about 173
 atomic stamped reference 177
 free nodes, pooling 174, 177
 thread locals 173
active objects
 about 151
 adapting 152
 hiding 152
 proxy, using 153, 156
actor paradigm 39, 41
actor
 about 218, 219
 communicating, ask pattern used 233
 communicating, pipeTo pattern used 240
 communicating, tell pattern used 238
 communicating, with each other 234, 237
 crashing 219
 features 221
 location transparency, maintaining 220
apply method
 about 202
 by-name parameters, using 202
ask pattern
 used, for communicating between actors 233
asynchronous model 32
atomic reference 158

B
backing object 196
become pattern
 state, making immutable 228
 used, for changing actors behavior 226
big lock approach
 about 185

 resizing strategy 186
botched optimization attempt
 reference 30
bounded buffer
 about 87, 89
 client polls 90
 condition variables, using 93, 94
 polling 91, 92
 sleeping 91, 92

C
CAS (Compare And Set) 80
client-throwing exceptions 85
combinators 211
composability 44
concurrency
 about 8
 fault tolerance 12
 issue 9
 MapReduce pattern 11
concurrent hashing
 about 179, 180
 add(v) method, using 181, 182
concurrent programming
 models 14
contains(v) method
 using 185
countdown latch
 about 108, 111
 implementing 112
counting semaphores 85
cyclic barrier 113, 116

D
decorator pattern
 reference 195
double-checked locking

[246]

 about 59
 demand holder pattern, initializing 62
 safe publication 61

E
enum
 reference 63
event-driven architecture (EDA) 37
event-driven programming 36
explicit locking
 about 63, 65
 hand-over-hand pattern 67, 70
 observations, checking 71, 73

F
fair lock
 implementing 101, 102, 104
FIFO (first in, first out) queue 25, 162
final fields
 about 58
 visibility 58
fire & forget calling mechanism 216
fork-join pool
 about 132
 egrep 132
 recursive task, using 133, 136, 137
 task parallelism 138, 139
 used, for quicksort implementation 139
future task 117, 120
futures
 about 200
 apply method 201
 as asynchronous 205
 context, blocking 209
 functional composition 211
 thread mapping 204

G
Gang Of Four (GOF) 50
GNU parallel
 reference 21

H
heisenbugs 28

horizontal scaling
 about 10
 reference 7

I
immutable objects
 about 194
 persistent data structures 197
 recursion feature 199
 reference 197
 unmodified wrappers 195

J
Java Language Specification (JLS) 63

L
last in, first out (LIFO) stack 158
Load Barrier 53
lock striping design pattern 157, 188, 190
lock-free FIFO queue
 about 162, 164
 working 165
lock-free queue
 about 166
 concurrent execution, of enque and deque

methods 172
 deq() method, using 170, 172
 enque(v) method, using 167, 169
 using 166
lock-free stack
 about 157
 atomic references 158
 implementing 159, 160
lock-striping design pattern 148

M
map-reduce theme 147
message brokers 41
message driven concurrency
 about 216
 actor 218
 become pattern 226
 let-it-crash, working 230
 parallelism 223

[247]

 state encapsulation 222
 unhandled messages 225
message passing model
 about 15, 16, 17
 communication 17
 concept of state 22, 23
 coordination 17
 divide and conquer 21
 flow control 19, 20
monitor pattern 54

N
Netty framework
 reference 34

O
of pattern 34, 36
operating system (OS) 15

P
paradigms 34, 36
parallel collections 44, 45
pipeTo pattern
 used, for communication between actors 240
poison pill
 reference 18
polling 85
producer/consumer pattern
 about 73, 77
 wake-ups 77

Q
quicksort implementation
 copy-on-write theme 144, 145
 fork-join API, using 139
 ForkJoinQuicksortTask class 140, 143
 in-place sorting 146

R
race conditions
 about 49, 50, 53
 CAS (Compare And Set) instruction 80, 83
 correctness 56
 double-checked locking 61

 explicit locking 63, 65
 invariants 56
 monitor pattern 54
 producer/consumer pattern 73
 thread safety 56
Reactive Extensions (Rx) 39
reactive programming 38, 39
ReactiveX
 reference 39
Readers–Writer (RW) lock
 about 95, 96
 using 96, 98, 101
reentrant lock 106, 108
Resilient Distributed Dataset (RDD) 45
resizing
 need for 183, 184

S
semaphores
 counting 104, 106
sequential consistency tool 57
shared memory and shared state model
 about 24, 25
 asynchronous, versus synchronous executions

32

 blocked state 31
 correct memory visibility 29
 happens-before relationship 29
 heisenbugs 28
 Java's nonblocking I/O 33
 new state 30
 race conditions 28
 runnable state 30
 running state 31
 terminated state 31
 threads, interleaving 25, 27
 Timed Wait state 31
 waiting address 31
Shared-Exclusive lock 95
software transactional memory 43
store barrier 53

T
Tail recursion Optimization (TCO) 200
tell operator 216

tell pattern
 used, for communication between actors 238
thread 24, 48
thread context 47
thread pools
 about 122, 124
 blocking queue 128, 131
 command design pattern 124
 interruption semantics 131
 version 127, 128
 word-counting program 125

thread scheduler
 runnable state 30
time sharing 13

V
vertical scaling
 reference 11

W
work stealing 148, 151

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Concurrency – An Introduction
	Concurrency in a breeze
	The push for concurrency
	The MapReduce pattern
	Fault tolerance

	Time sharing
	Two models for concurrent programming

	The message passing model
	Coordination and communication
	Flow control
	Divide and conquer
	The concept of state

	The shared memory and shared state model
	Threads interleaving – the need for synchronization
	Race conditions and heisenbugs
	Correct memory visibility and happens-before
	Sharing, blocking, and fairness
	Asynchronous versus synchronous executions
	Java's nonblocking I/O

	Of patterns and paradigms
	Event-driven architecture
	Reactive programming
	The actor paradigm
	Message brokers
	Software transactional memory
	Parallel collections

	Summary

	Chapter 2: A Taste of Some Concurrency Patterns
	A thread and its context
	Race conditions
	The monitor pattern
	Thread safety, correctness, and invariants
	Sequential consistency
	Visibility and final fields

	Double-checked locking
	Safe publication
	Initializing a demand holder pattern

	Explicit locking
	The hand-over-hand pattern
	Observations – is it correct?

	The producer/consumer pattern
	Spurious and lost wake-ups

	Comparing and swapping

	Summary

	Chapter 3: More Threading Patterns
	A bounded buffer
	Strategy pattern – client polls
	Strategy – taking over the polling and sleeping
	Strategy – using condition variables

	Reader or writer locks
	A reader-friendly RW lock
	A fair lock

	Counting semaphores
	Our own reentrant lock
	Countdown latch
	Implementing the countdown latch

	A cyclic barrier
	A future task
	Summary

	Chapter 4: Thread Pools
	Thread pools
	The command design pattern
	Counting words
	Another version
	The blocking queue
	Thread interruption semantics

	The fork-join pool
	Egrep – simple version
	 Why use a recursive task?
	Task parallelism
	Quicksort – using fork-join
	The ForkJoinQuicksortTask class
	The copy-on-write theme
	In-place sorting

	The map-reduce theme

	Work stealing
	Active objects
	Hiding and adapting
	Using a proxy

	Summary

	Chapter 5: Increasing the Concurrency
	A lock-free stack
	Atomic references
	The stack implementation

	A lock-free FIFO queue
	How the flow works
	A lock-free queue
	Going lock-free
	The enque(v) method
	The deq() method
	Concurrent execution of the enque and deque methods

	The ABA problem
	Thread locals
	Pooling the free nodes
	The atomic stamped reference

	Concurrent hashing
	The add(v) method
	The need to resize

	The contains(v) method

	The big lock approach
	The resizing strategy

	The lock striping design pattern
	Summary

	Chapter 6: Functional Concurrency Patterns
	Immutability
	Unmodifiable wrappers
	Persistent data structures
	Recursion and immutability

	Futures
	The apply method
	by-name parameters

	Future – thread mapping
	Futures are asynchronous
	Blocking is bad
	Functional composition

	Summary

	Chapter 7: Actors Patterns
	Message driven concurrency
	What is an actor?
	Let it crash
	Location transparency
	Actors are featherlight

	State encapsulation
	Where is the parallelism?
	Unhandled messages
	The become pattern
	Making the state immutable

	Let it crash - and recover
	Actor communication – the ask pattern
	Actors talking with each another

	Actor communication – the tell pattern
	The pipeTo pattern

	Summary

	Other Books You May Enjoy
	Index

