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Preface

The origins of this book are part of an interesting period of my life. A period that
saw me move from a shy and disorganized young adult, into a software developer
who has toured various parts of the world, and met countless new friends and
colleagues. It all began in December of 2001, nearly five years ago. I started a
project that would later become known as LibTomCrypt, and be used by devel-
opers throughout industry worldwide.

The LibTomCrypt project was originally started as a way to focus my energies
on to something constructive, while also learning new skills. The first year of the
project taught me quite a bit about how to organize a product, document and
support it and maintain it over time. Around the winter of 2002 I was seeking
another project to spread my time with. Realizing that the math performance of
LibTomCrypt was lacking, I set out to develop a new math library.

Hence, the LibTomMath project was born. It was originally merely a set of
patches against an existing project that quickly grew into a project of its own.
Writing the math library from scratch was fundamental to producing a stable and
independent product. It also taught me what sort of algorithms are available to
do operations such as modular exponentiation. The library became fairly stable
and reliable after only a couple of months of development and was immediately
put to use.

In the summer of 2003, I was yet again looking for another project to grow
into. Realizing that merely implementing the math routines is not enough to
truly understand them, I set out to try and explain them myself. In doing so, I
eventually mastered the concepts behind the algorithms. This knowledge is what
I hope will be passed on to the reader. This text is actually derived from the
public domain archives I maintain on my www.libtomcrypt.com Web site.

When I tell people about my LibTom projects (of which there are six) and
that I release them as public domain, they are often puzzled. They ask why I

xv
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did it, and especially why I continue to work on them for free. The best I can
explain it is, “Because I can”–which seems odd and perhaps too terse for adult
conversation. I often qualify it with “I am able, I am willing,” which perhaps
explains it better. I am the first to admit there is nothing that special with what
I have done. Perhaps others can see that, too, and then we would have a society
to be proud of. My LibTom projects are what I am doing to give back to society
in the form of tools and knowledge that can help others in their endeavors.

I started writing this book because it was the most logical task to further my
goal of open academia. The LibTomMath source code itself was written to be easy
to follow and learn from. There are times, however, where pure C source code
does not explain the algorithms properly–hence this book. The book literally
starts with the foundation of the library and works itself outward to the more
complicated algorithms. The use of both pseudo–code and verbatim source code
provides a duality of “theory” and “practice” the computer science students of
the world shall appreciate. I never deviate too far from relatively straightforward
algebra, and I hope this book can be a valuable learning asset.

This book, and indeed much of the LibTom projects, would not exist in its
current form if it were not for a plethora of kind people donating their time,
resources, and kind words to help support my work. Writing a text of significant
length (along with the source code) is a tiresome and lengthy process. Currently,
the LibTom project is five years old, composed of literally thousands of users and
over 100,000 lines of source code, TEX, and other material. People like Mads
Rassmussen and Greg Rose were there at the beginning to encourage me to work
well. It is amazing how timely validation from others can boost morale to continue
the project. Definitely, my parents were there for me by providing room and board
during the many months of work in 2003.

Both Greg and Mads were invaluable sources of support in the early stages
of this project. The initial draft of this text, released in August 2003, was the
project of several months of dedicated work. Long hours and still going to school
were a constant drain of energy that would not have lasted without support.

Of course this book would not be here if it were not for the success of the var-
ious LibTom projects. That success is not only the product of my hard work, but
also the contribution of hundreds of other people. People like Colin Percival, Sky
Schultz, Wayne Scott, J Harper, Dan Kaminsky, Lance James, Simon Johnson,
Greg Rose, Clay Culver, Jochen Katz, Zhi Chen, Zed Shaw, Andrew Mann, Matt
Johnston, Steven Dake, Richard Amacker, Stefan Arentz, Richard Outerbridge,
Martin Carpenter, Craig Schlenter, John Kuhns, Bruce Guenter, Adam Miller,
Wesley Shields, John Dirk, Jean–Luc Cooke, Michael Heyman, Nelson Bolyard,
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Jim Wigginton, Don Porter, Kevin Kenny, Peter LaDow, Neal Hamilton, David
Hulton, Paul Schmidt, Wolfgang Ehrhardt, Johan Lindt, Henrik Goldman, Alex
Polushin, Martin Marcel, Brian Gladman, Benjamin Goldberg, Tom Wu, and
Pekka Riikonen took their time to contribute ideas, updates, fixes, or encourage-
ment throughout the various project development phases. To my many friends
whom I have met through the years, I thank you for the good times and the words
of encouragement. I hope I honor your kind gestures with this project.

I’d like to thank the editing team at Syngress for poring over 300 pages of text
and correcting it in the short span of a single week. I’d like to thank my friends
whom I have not mentioned, who were always available for encouragement and a
steady supply of fun. I’d like to thank my friends J Harper, Zed Shaw, and Simon
Johnson for reviewing the text before submission. I’d like to thank Lance James
of the Secure Science Corporation and the entire crew at Elliptic Semiconductor
for sponsoring much of my later development time, for sending me to Toorcon,
and introducing me to many of the people whom I know today.

Open Source. Open Academia. Open Minds.

Tom St Denis
Toronto, Canada

May 2006
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It’s all because I broke my leg. That just happened to be about the same
time Tom asked for someone to review the section of the book about Karatsuba
multiplication. I was laid up, alone and immobile, and thought, “Why not?” I
vaguely knew what Karatsuba multiplication was, but not really, so I thought I
could help, learn, and stop myself from watching daytime cable TV, all at once.

At the time of writing this, I’ve still not met Tom or Mads in meatspace. I’ve
been following Tom’s progress since his first splash on the sci.crypt Usenet news-
group. I watched him go from a clueless newbie, to the cryptographic equivalent
of a reformed smoker, to a real contributor to the field, over a period of about
two years. I’ve been impressed with his obvious intelligence, and astounded by
his productivity. Of course, he’s young enough to be my own child, so he doesn’t
have my problems with staying awake.

When I reviewed that single section of the book, in its earliest form, I was very
pleasantly surprised. So I decided to collaborate more fully, and at least review
all of it, and perhaps write some bits, too. There’s still a long way to go with it,
and I have watched a number of close friends go through the mill of publication,
so I think the way to go is longer than Tom thinks it is. Nevertheless, it’s a good
effort, and I’m pleased to be involved with it.

Greg Rose
Sydney, Australia

June 2003



Chapter 1

Introduction

1.1 Multiple Precision Arithmetic

1.1.1 What Is Multiple Precision Arithmetic?

When we think of long-hand arithmetic such as addition or multiplication, we
rarely consider the fact that we instinctively raise or lower the precision of the
numbers we are dealing with. For example, in decimal we almost immediately can
reason that 7 times 6 is 42. However, 42 has two digits of precision as opposed to
the one digit we started with. Further multiplications of say 3 result in a larger
precision result 126. In these few examples we have multiple precisions for the
numbers we are working with. Despite the various levels of precision, a single
subset1 of algorithms can be designed to accommodate them.

By way of comparison, a fixed or single precision operation would lose precision
on various operations. For example, in the decimal system with fixed precision
6 · 7 = 2.

Essentially, at the heart of computer–based multiple precision arithmetic are
the same long-hand algorithms taught in schools to manually add, subtract, mul-
tiply, and divide.

1With the occasional optimization.

1
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1.1.2 The Need for Multiple Precision Arithmetic

The most prevalent need for multiple precision arithmetic, often referred to as
“bignum” math, is within the implementation of public key cryptography algo-
rithms. Algorithms such as RSA [10] and Diffie-Hellman [11] require integers of
significant magnitude to resist known cryptanalytic attacks. For example, at the
time of this writing a typical RSA modulus would be at least greater than 10309.
However, modern programming languages such as ISO C [17] and Java [18] only
provide intrinsic support for integers that are relatively small and single precision.

Data Type Range
char −128 . . .127

short −32768 . . .32767
long −2147483648 . . .2147483647

long long −9223372036854775808 . . .9223372036854775807

Figure 1.1: Typical Data Types for the C Programming Language

The largest data type guaranteed to be provided by the ISO C programming
language2 can only represent values up to 1019 as shown in Figure 1.1. On its
own, the C language is insufficient to accommodate the magnitude required for the
problem at hand. An RSA modulus of magnitude 1019 could be trivially factored3

on the average desktop computer, rendering any protocol based on the algorithm
insecure. Multiple precision algorithms solve this problem by extending the range
of representable integers while using single precision data types.

Most advancements in fast multiple precision arithmetic stem from the need
for faster and more efficient cryptographic primitives. Faster modular reduction
and exponentiation algorithms such as Barrett’s reduction algorithm, which have
appeared in various cryptographic journals, can render algorithms such as RSA
and Diffie-Hellman more efficient. In fact, several major companies such as RSA
Security, Certicom, and Entrust have built entire product lines on the implemen-
tation and deployment of efficient algorithms.

However, cryptography is not the only field of study that can benefit from fast
multiple precision integer routines. Another auxiliary use of multiple precision
integers is high precision floating point data types. The basic IEEE [12] standard

2As per the ISO C standard. However, each compiler vendor is allowed to augment the
precision as they see fit.

3A Pollard-Rho factoring would take only 216 time.
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floating point type is made up of an integer mantissa q, an exponent e, and a sign
bit s. Numbers are given in the form n = q · be · −1s, where b = 2 is the most
common base for IEEE. Since IEEE floating point is meant to be implemented
in hardware, the precision of the mantissa is often fairly small (23, 48, and 64

bits). The mantissa is merely an integer, and a multiple precision integer could
be used to create a mantissa of much larger precision than hardware alone can
efficiently support. This approach could be useful where scientific applications
must minimize the total output error over long calculations.

Yet another use for large integers is within arithmetic on polynomials of large
characteristic (i.e., GF (p)[x] for large p). In fact, the library discussed within this
text has already been used to form a polynomial basis library4.

1.1.3 Benefits of Multiple Precision Arithmetic

The benefit of multiple precision representations over single or fixed precision
representations is that no precision is lost while representing the result of an
operation that requires excess precision. For example, the product of two n-
bit integers requires at least 2n bits of precision to be represented faithfully. A
multiple precision algorithm would augment the precision of the destination to
accommodate the result, while a single precision system would truncate excess
bits to maintain a fixed level of precision.

It is possible to implement algorithms that require large integers with fixed
precision algorithms. For example, elliptic curve cryptography (ECC ) is often
implemented on smartcards by fixing the precision of the integers to the maximum
size the system will ever need. Such an approach can lead to vastly simpler
algorithms that can accommodate the integers required even if the host platform
cannot natively accommodate them5. However, as efficient as such an approach
may be, the resulting source code is not normally very flexible. It cannot, at run
time, accommodate inputs of higher magnitude than the designer anticipated.

Multiple precision algorithms have the most overhead of any style of arith-
metic. For the the most part the overhead can be kept to a minimum with careful
planning, but overall, it is not well suited for most memory starved platforms.
However, multiple precision algorithms do offer the most flexibility in terms of the
magnitude of the inputs. That is, the same algorithms based on multiple preci-
sion integers can accommodate any reasonable size input without the designer’s

4See http://poly.libtomcrypt.org for more details.
5For example, the average smartcard processor has an 8–bit accumulator.
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explicit forethought. This leads to lower cost of ownership for the code, as it only
has to be written and tested once.

1.2 Purpose of This Text

The purpose of this text is to instruct the reader regarding how to implement
efficient multiple precision algorithms. That is, to explain a limited subset of the
core theory behind the algorithms, and the various “housekeeping” elements that
are neglected by authors of other texts on the subject. Several texts [1, 2] give
considerably detailed explanations of the theoretical aspects of algorithms and
often very little information regarding the practical implementation aspects.

In most cases, how an algorithm is explained and how it is actually imple-
mented are two very different concepts. For example, the Handbook of Applied
Cryptography (HAC ), algorithm 14.7 on page 594, gives a relatively simple algo-
rithm for performing multiple precision integer addition. However, the description
lacks any discussion concerning the fact that the two integer inputs may be of dif-
fering magnitudes. As a result, the implementation is not as simple as the text
would lead people to believe. Similarly, the division routine (algorithm 14.20, pp.

598 ) does not discuss how to handle sign or the dividend’s decreasing magnitude
in the main loop (step #3 ).

Both texts also do not discuss several key optimal algorithms required, such
as “Comba” and Karatsuba multipliers and fast modular inversion, which we
consider practical oversights. These optimal algorithms are vital to achieve any
form of useful performance in non–trivial applications.

To solve this problem, the focus of this text is on the practical aspects of
implementing a multiple precision integer package. As a case study, the “LibTom-
Math”6 package is used to demonstrate algorithms with real implementations7

that have been field tested and work very well. The LibTomMath library is freely
available on the Internet for all uses, and this text discusses a very large portion
of the inner workings of the library.

The algorithms presented will always include at least one “pseudo-code” de-
scription followed by the actual C source code that implements the algorithm. The
pseudo-code can be used to implement the same algorithm in other programming
languages as the reader sees fit.

6Available at http://math.libtomcrypt.com
7In the ISO C programming language.
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This text shall also serve as a walk-through of the creation of multiple precision
algorithms from scratch, showing the reader how the algorithms fit together and
where to start on various taskings.

1.3 Discussion and Notation

1.3.1 Notation

A multiple precision integer of n-digits shall be denoted as x = (xn−1, . . . , x1, x0)β

and represent the integer x ≡∑n−1
i=0 xiβ

i. The elements of the array x are said to
be the radix β digits of the integer. For example, x = (1, 2, 3)10 would represent
the integer 1 · 102 + 2 · 101 + 3 · 100 = 123.

The term “mp int” shall refer to a composite structure that contains the digits
of the integer it represents, and auxiliary data required to manipulate the data.
These additional members are discussed further in section 2.2.1. For the purposes
of this text, a “multiple precision integer” and an “mp int” are assumed synony-
mous. When an algorithm is specified to accept an mp int variable, it is assumed
the various auxiliary data members are present as well. An expression of the type
variablename.item implies that it should evaluate to the member named “item”
of the variable. For example, a string of characters may have a member “length”
that would evaluate to the number of characters in the string. If the string a
equals hello, then it follows that a.length = 5.

For certain discussions, more generic algorithms are presented to help the
reader understand the final algorithm used to solve a given problem. When an
algorithm is described as accepting an integer input, it is assumed the input is a
plain integer with no additional multiple precision members. That is, algorithms
that use integers as opposed to mp ints as inputs do not concern themselves with
the housekeeping operations required such as memory management. These algo-
rithms will be used to establish the relevant theory that will subsequently be used
to describe a multiple precision algorithm to solve the same problem.

1.3.2 Precision Notation

The variable β represents the radix of a single digit of a multiple precision integer
and must be of the form qp for q, p ∈ Z

+. A single precision variable must be able
to represent integers in the range 0 ≤ x < qβ, while a double precision variable
must be able to represent integers in the range 0 ≤ x < qβ2. The extra radix-
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q factor allows additions and subtractions to proceed without truncation of the
carry. Since all modern computers are binary, it is assumed that q is two.

Within the source code that will be presented for each algorithm, the data
type mp digit will represent a single precision integer type, while the data type
mp word will represent a double precision integer type. In several algorithms
(notably the Comba routines), temporary results will be stored in arrays of double
precision mp words. For the purposes of this text, xj will refer to the j’th digit
of a single precision array, and x̂j will refer to the j’th digit of a double precision
array. Whenever an expression is to be assigned to a double precision variable,
it is assumed that all single precision variables are promoted to double precision
during the evaluation. Expressions that are assigned to a single precision variable
are truncated to fit within the precision of a single precision data type.

For example, if β = 102, a single precision data type may represent a value in
the range 0 ≤ x < 103, while a double precision data type may represent a value
in the range 0 ≤ x < 105. Let a = 23 and b = 49 represent two single precision
variables. The single precision product shall be written as c ← a · b, while the
double precision product shall be written as ĉ ← a · b. In this particular case,
ĉ = 1127 and c = 127. The most significant digit of the product would not fit in
a single precision data type and as a result c 6= ĉ.

1.3.3 Algorithm Inputs and Outputs

Within the algorithm descriptions all variables are assumed scalars of either single
or double precision as indicated. The only exception to this rule is when variables
have been indicated to be of type mp int. This distinction is important, as scalars
are often used as array indicies and various other counters.

1.3.4 Mathematical Expressions

The ⌊ ⌋ brackets imply an expression truncated to an integer not greater than
the expression itself; for example, ⌊5.7⌋ = 5. Similarly, the ⌈ ⌉ brackets imply an
expression rounded to an integer not less than the expression itself; for example,
⌈5.1⌉ = 6. Typically, when the / division symbol is used, the intention is to
perform an integer division with truncation; for example, 5/2 = 2, which will
often be written as ⌊5/2⌋ = 2 for clarity. When an expression is written as a
fraction a real value division is implied; for example, 5

2 = 2.5.
The norm of a multiple precision integer, for example ||x||, will be used to

represent the number of digits in the representation of the integer; for example,
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||123|| = 3 and ||79452|| = 5.

1.3.5 Work Effort

To measure the efficiency of the specified algorithms, a modified big-Oh notation
is used. In this system, all single precision operations are considered to have the
same cost8. That is, a single precision addition, multiplication, and division are
assumed to take the same time to complete. While this is generally not true in
practice, it will simplify the discussions considerably.

Some algorithms have slight advantages over others, which is why some con-
stants will not be removed in the notation. For example, a normal baseline mul-
tiplication (section 5.2.1) requires O(n2) work, while a baseline squaring (section

5.3) requires O(n2+n
2 ) work. In standard big-Oh notation, these would both be

said to be equivalent to O(n2). However, in the context of this text, this is not
the case, as the magnitude of the inputs will typically be rather small. As a re-
sult, small constant factors in the work effort will make an observable difference
in algorithm efficiency.

All algorithms presented in this text have a polynomial time work level; that
is, of the form O(nk) for n, k ∈ Z

+. This will help make useful comparisons in
terms of the speed of the algorithms and how various optimizations will help pay
off in the long run.

1.4 Exercises

Within the more advanced chapters a section is set aside to give the reader some
challenging exercises related to the discussion at hand. These exercises are not
designed to be prize–winning problems, but instead to be thought provoking.
Wherever possible the problems are forward minded, stating problems that will be
answered in subsequent chapters. The reader is encouraged to finish the exercises
as they appear to get a better understanding of the subject material.

That being said, the problems are designed to affirm knowledge of a particular
subject matter. Students in particular are encouraged to verify they can answer
the problems correctly before moving on.

Similar to the exercises as described in [1, pp. ix], these exercises are given
a scoring system based on the difficulty of the problem. However, unlike [1], the
problems do not get nearly as hard. The scoring of these exercises ranges from

8Except where explicitly noted.
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one (the easiest) to five (the hardest). Figure 1.2 summarizes the scoring system
used.

[1] An easy problem that should only take the reader a manner of
minutes to solve. Usually does not involve much computer time
to solve.

[2] An easy problem that involves a marginal amount of computer
time usage. Usually requires a program to be written to
solve the problem.

[3] A moderately hard problem that requires a non-trivial amount
of work. Usually involves trivial research and development of
new theory from the perspective of a student.

[4] A moderately hard problem that involves a non-trivial amount
of work and research, the solution to which will demonstrate
a higher mastery of the subject matter.

[5] A hard problem that involves concepts that are difficult for a
novice to solve. Solutions to these problems will demonstrate a
complete mastery of the given subject.

Figure 1.2: Exercise Scoring System

Problems at the first level are meant to be simple questions the reader can
answer quickly without programming a solution or devising new theory. These
problems are quick tests to see if the material is understood. Problems at the
second level are also designed to be easy, but will require a program or algorithm
to be implemented to arrive at the answer. These two levels are essentially entry
level questions.

Problems at the third level are meant to be a bit more difficult than the first
two levels. The answer is often fairly obvious, but arriving at an exacting solution
requires some thought and skill. These problems will almost always involve devis-
ing a new algorithm or implementing a variation of another algorithm previously
presented. Readers who can answer these questions will feel comfortable with the
concepts behind the topic at hand.

Problems at the fourth level are meant to be similar to those of the level–three
questions except they will require additional research to be completed. The reader
will most likely not know the answer right away, nor will the text provide the exact
details of the answer until a subsequent chapter.

Problems at the fifth level are meant to be the hardest problems relative to
all the other problems in the chapter. People who can correctly answer fifth–level
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problems have a mastery of the subject matter at hand.
Often problems will be tied together. The purpose of this is to start a chain

of thought that will be discussed in future chapters. The reader is encouraged to
answer the follow-up problems and try to draw the relevance of problems.

1.5 Introduction to LibTomMath

1.5.1 What Is LibTomMath?

LibTomMath is a free and open source multiple precision integer library written
entirely in portable ISO C. By portable it is meant that the library does not contain
any code that is computer platform dependent or otherwise problematic to use on
any given platform.

The library has been successfully tested under numerous operating systems,
including Unix9, Mac OS, Windows, Linux, Palm OS, and on standalone hard-
ware such as the Gameboy Advance. The library is designed to contain enough
functionality to be able to develop applications such as public key cryptosystems
and still maintain a relatively small footprint.

1.5.2 Goals of LibTomMath

Libraries that obtain the most efficiency are rarely written in a high level program-
ming language such as C. However, even though this library is written entirely
in ISO C, considerable care has been taken to optimize the algorithm implemen-
tations within the library. Specifically, the code has been written to work well
with the GNU C Compiler (GCC ) on both x86 and ARM processors. Wherever
possible, highly efficient algorithms, such as Karatsuba multiplication, sliding win-
dow exponentiation, and Montgomery reduction have been provided to make the
library more efficient.

Even with the nearly optimal and specialized algorithms that have been in-
cluded, the application programing interface (API ) has been kept as simple as pos-
sible. Often, generic placeholder routines will make use of specialized algorithms
automatically without the developer’s specific attention. One such example is the
generic multiplication algorithm mp mul(), which will automatically use Toom–
Cook, Karatsuba, Comba, or baseline multiplication based on the magnitude of
the inputs and the configuration of the library.

9All of these trademarks belong to their respective rightful owners.
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Making LibTomMath as efficient as possible is not the only goal of the LibTom-
Math project. Ideally, the library should be source compatible with another pop-
ular library, which makes it more attractive for developers to use. In this case,
the MPI library was used as an API template for all the basic functions. MPI was
chosen because it is another library that fits in the same niche as LibTomMath.
Even though LibTomMath uses MPI as the template for the function names and
argument passing conventions, it has been written from scratch by Tom St Denis.

The project is also meant to act as a learning tool for students, the logic being
that no easy-to-follow “bignum” library exists that can be used to teach computer
science students how to perform fast and reliable multiple precision integer arith-
metic. To this end, the source code has been given quite a few comments and
algorithm discussion points.

1.6 Choice of LibTomMath

LibTomMath was chosen as the case study of this text not only because the author
of both projects is one and the same, but for more worthy reasons. Other libraries
such as GMP [13], MPI [14], LIP [16], and OpenSSL [15] have multiple precision
integer arithmetic routines but would not be ideal for this text for reasons that
will be explained in the following sub-sections.

1.6.1 Code Base

The LibTomMath code base is all portable ISO C source code. This means that
there are no platform–dependent conditional segments of code littered throughout
the source. This clean and uncluttered approach to the library means that a
developer can more readily discern the true intent of a given section of source
code without trying to keep track of what conditional code will be used.

The code base of LibTomMath is well organized. Each function is in its own
separate source code file, which allows the reader to find a given function very
quickly. On average there are 76 lines of code per source file, which makes the
source very easily to follow. By comparison, MPI and LIP are single file projects
making code tracing very hard. GMP has many conditional code segments seg-
ments that also hinder tracing.

When compiled with GCC for the x86 processor and optimized for speed, the
entire library is approximately 100KiB10, which is fairly small compared to GMP

10The notation “KiB” means 210 octets, similarly “MiB” means 220 octets.
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(over 250KiB). LibTomMath is slightly larger than MPI (which compiles to about
50KiB), but is also much faster and more complete than MPI.

1.6.2 API Simplicity

LibTomMath is designed after the MPI library and shares the API design. Quite
often, programs that use MPI will build with LibTomMath without change. The
function names correlate directly to the action they perform. Almost all of the
functions share the same parameter passing convention. The learning curve is
fairly shallow with the API provided, which is an extremely valuable benefit for
the student and developer alike.

The LIP library is an example of a library with an API that is awkward to work
with. LIP uses function names that are often “compressed” to illegible shorthand.
LibTomMath does not share this characteristic.

The GMP library also does not return error codes. Instead, it uses a POSIX.1
signal system where errors are signaled to the host application. This happens to
be the fastest approach, but definitely not the most versatile. In effect, a math
error (i.e., invalid input, heap error, etc.) can cause a program to stop functioning,
which is definitely undesirable in many situations.

1.6.3 Optimizations

While LibTomMath is certainly not the fastest library (GMP often beats LibTom-
Math by a factor of two), it does feature a set of optimal algorithms for tasks
such as modular reduction, exponentiation, multiplication, and squaring. GMP
and LIP also feature such optimizations, while MPI only uses baseline algorithms
with no optimizations. GMP lacks a few of the additional modular reduction
optimizations that LibTomMath features11.

LibTomMath is almost always an order of magnitude faster than the MPI
library at computationally expensive tasks such as modular exponentiation. In
the grand scheme of “bignum” libraries, LibTomMath is faster than the average
library and usually slower than the best libraries such as GMP and OpenSSL by
only a small factor.

11At the time of this writing, GMP only had Barrett and Montgomery modular reduction
algorithms.
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New Developments

Since the writing of the original manuscript, a new project, TomsFastMath, has
been created. It is directly derived from LibTomMath, with a major focus on
multiplication, squaring, and reduction performance. It relaxes the portability
requirements to use inline assembly for performance. Readers are encouraged to
check out this project at http://tfm.libtomcrypt.com to see how far perfor-
mance can go with the code in this book.

1.6.4 Portability and Stability

LibTomMath will build “out of the box” on any platform equipped with a modern
version of the GNU C Compiler (GCC ). This means that without changes the
library will build without configuration or setting up any variables. LIP and MPI
will build “out of the box” as well but have numerous known bugs. Most notably,
the author of MPI has recently stopped working on his library, and LIP has long
since been discontinued.

GMP requires a configuration script to run and will not build out of the box.
GMP and LibTomMath are still in active development and are very stable across
a variety of platforms.

1.6.5 Choice

LibTomMath is a relatively compact, well–documented, highly optimized, and
portable library, which seems only natural for the case study of this text. Var-
ious source files from the LibTomMath project will be included within the text.
However, readers are encouraged to download their own copies of the library to
actually be able to work with the library.



Chapter 2

Getting Started

2.1 Library Basics

The trick to writing any useful library of source code is to build a solid foundation
and work outward from it. First, a problem along with allowable solution param-
eters should be identified and analyzed. In this particular case, the inability to
accommodate multiple precision integers is the problem. Furthermore, the solu-
tion must be written as portable source code that is reasonably efficient across
several different computer platforms.

After a foundation is formed, the remainder of the library can be designed
and implemented in a hierarchical fashion. That is, to implement the lowest level
dependencies first and work toward the most abstract functions last. For example,
before implementing a modular exponentiation algorithm, one would implement
a modular reduction algorithm. By building outward from a base foundation
instead of using a parallel design methodology, you end up with a project that is
highly modular. Being highly modular is a desirable property of any project as it
often means the resulting product has a small footprint and updates are easy to
perform.

Usually, when I start a project I will begin with the header files. I define
the data types I think I will need and prototype the initial functions that are
not dependent on other functions (within the library). After I implement these
base functions, I prototype more dependent functions and implement them. The
process repeats until I implement all the functions I require. For example, in
the case of LibTomMath, I implemented functions such as mp init() well before

13
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I implemented mp mul(), and even further before I implemented mp exptmod().
As an example as to why this design works, note that the Karatsuba and Toom-
Cook multipliers were written after the dependent function mp exptmod() was
written. Adding the new multiplication algorithms did not require changes to
the mp exptmod() function itself and lowered the total cost of ownership and
development (so to speak) for new algorithms. This methodology allows new
algorithms to be tested in a complete framework with relative ease (Figure 2.1).

Figure 2.1: Design Flow of the First Few Original LibTomMath Functions.

Only after the majority of the functions were in place did I pursue a less hier-
archical approach to auditing and optimizing the source code. For example, one
day I may audit the multipliers and the next day the polynomial basis functions.

It only makes sense to begin the text with the preliminary data types and
support algorithms required. This chapter discusses the core algorithms of the
library that are the dependents for every other algorithm.

2.2 What Is a Multiple Precision Integer?

Recall that most programming languages, in particular ISO C [17], only have fixed
precision data types that on their own cannot be used to represent values larger
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than their precision will allow. The purpose of multiple precision algorithms is to
use fixed precision data types to create and manipulate multiple precision integers
that may represent values that are very large.

In the decimal system, the largest single digit value is 9. However, by con-
catenating digits together, larger numbers may be represented. Newly prepended
digits (to the left) are said to be in a different power of ten column. That is, the
number 123 can be described as having a 1 in the hundreds column, 2 in the tens
column, and 3 in the ones column. Or more formally, 123 = 1 ·102+2 ·101+3 ·100.
Computer–based multiple precision arithmetic is essentially the same concept.
Larger integers are represented by adjoining fixed precision computer words with
the exception that a different radix is used.

What most people probably do not think about explicitly are the various other
attributes that describe a multiple precision integer. For example, the integer
15410 has two immediately obvious properties. First, the integer is positive; that
is, the sign of this particular integer is positive as opposed to negative. Second,
the integer has three digits in its representation. There is an additional property
that the integer possesses that does not concern pencil-and-paper arithmetic. The
third property is how many digit placeholders are available to hold the integer.

A visual example of this third property is ensuring there is enough space on
the paper to write the integer. For example, if one starts writing a large number
too far to the right on a piece of paper, he will have to erase it and move left.
Similarly, computer algorithms must maintain strict control over memory usage to
ensure that the digits of an integer will not exceed the allowed boundaries. These
three properties make up what is known as a multiple precision integer, or mp int
for short.

2.2.1 The mp int Structure

The mp int structure is the ISO C–based manifestation of what represents a mul-
tiple precision integer. The ISO C standard does not provide for any such data
type, but it does provide for making composite data types known as structures.
The following is the structure definition used within LibTomMath.
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typedef struct {
int used, alloc, sign;
mp digit *dp;
} mp int;

Figure 2.2: The mp int Structure

The mp int structure (Figure 2.2) can be broken down as follows.

• The used parameter denotes how many digits of the array dp contain the
digits used to represent a given integer. The used count must be positive
(or zero) and may not exceed the alloc count.

• The alloc parameter denotes how many digits are available in the array to
use by functions before it has to increase in size. When the used count of a
result exceeds the alloc count, all the algorithms will automatically increase
the size of the array to accommodate the precision of the result.

• The pointer dp points to a dynamically allocated array of digits that repre-
sent the given multiple precision integer. It is padded with (alloc− used)
zero digits. The array is maintained in a least significant digit order. As
a pencil and paper analogy the array is organized such that the rightmost
digits are stored first starting at the location indexed by zero1 in the array.
For example, if dp contains {a, b, c, . . .} where dp0 = a, dp1 = b, dp2 = c,
. . . then it would represent the integer a + bβ + cβ2 + . . .

• The sign parameter denotes the sign as either zero/positive (MP ZPOS)
or negative (MP NEG).

Valid mp int Structures

Several rules are placed on the state of an mp int structure and are assumed to
be followed for reasons of efficiency. The only exceptions are when the structure
is passed to initialization functions such as mp init() and mp init copy().

1. The value of alloc may not be less than one. That is, dp always points to
a previously allocated array of digits.

1In C, all arrays begin at the zero index.
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2. The value of used may not exceed alloc and must be greater than or equal
to zero.

3. The value of used implies the digit at index (used − 1) of the dp array is
non-zero. That is, leading zero digits in the most significant positions must
be trimmed.

(a) Digits in the dp array at and above the used location must be zero.

4. The value of sign must be MP ZPOS if used is zero; this represents the
mp int value of zero.

2.3 Argument Passing

A convention of argument passing must be adopted early in the development
of any library. Making the function prototypes consistent will help eliminate
many headaches in the future as the library grows to significant complexity. In
LibTomMath, the multiple precision integer functions accept parameters from
left to right as pointers to mp int structures. That means that the source (input)
operands are placed on the left and the destination (output) on the right. Consider
the following examples.

mp_mul(&a, &b, &c); /* c = a * b */

mp_add(&a, &b, &a); /* a = a + b */

mp_sqr(&a, &b); /* b = a * a */

The left to right order is a fairly natural way to implement the functions since it
lets the developer read aloud the functions and make sense of them. For example,
the first function would read “multiply a and b and store in c.”

Certain libraries (LIP by Lenstra for instance ) accept parameters the other
way around, to mimic the order of assignment expressions. That is, the destination
(output) is on the left and arguments (inputs) are on the right. In truth, it is
entirely a matter of preference. In the case of LibTomMath the convention from
the MPI library has been adopted.

Another very useful design consideration, provided for in LibTomMath, is
whether to allow argument sources to also be a destination. For example, the
second example (mp add) adds a to b and stores in a. This is an important feature
to implement since it allows the calling functions to cut down on the number of
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variables it must maintain. However, to implement this feature, specific care has
to be given to ensure the destination is not modified before the source is fully
read.

2.4 Return Values

A well–implemented application, no matter what its purpose, should trap as many
runtime errors as possible and return them to the caller. By catching runtime
errors a library can be guaranteed to prevent undefined behavior. However, the
end developer can still manage to cause a library to crash. For example, by passing
an invalid pointer an application may fault by dereferencing memory not owned
by the application.

In the case of LibTomMath the only errors that are checked for are related to
inappropriate inputs (division by zero for instance) and memory allocation errors.
It will not check that the mp int passed to any function is valid, nor will it check
pointers for validity. Any function that can cause a runtime error will return an
error code as an int data type with one of the values in Figure 2.3.

Value Meaning
MP OKAY The function was successful
MP VAL One of the input value(s) was invalid
MP MEM The function ran out of heap memory

Figure 2.3: LibTomMath Error Codes

When an error is detected within a function, it should free any memory it
allocated, often during the initialization of temporary mp ints, and return as soon
as possible. The goal is to leave the system in the same state it was when the
function was called. Error checking with this style of API is fairly simple.

int err;

if ((err = mp_add(&a, &b, &c)) != MP_OKAY) {

printf("Error: %s\n", mp_error_to_string(err));

exit(EXIT_FAILURE);

}

The GMP [13] library uses C style signals to flag errors, which is of question-
able use. Not all errors are fatal and it was not deemed ideal by the author of
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LibTomMath to force developers to have signal handlers for such cases.

2.5 Initialization and Clearing

The logical starting point when actually writing multiple precision integer func-
tions is the initialization and clearing of the mp int structures. These two algo-
rithms will be used by the majority of the higher level algorithms.

Given the basic mp int structure, an initialization routine must first allocate
memory to hold the digits of the integer. Often it is optimal to allocate a suffi-
ciently large pre-set number of digits even though the initial integer will represent
zero. If only a single digit were allocated, quite a few subsequent reallocations
would occur when operations are performed on the integers. There is a trade–
off between how many default digits to allocate and how many reallocations are
tolerable. Obviously, allocating an excessive amount of digits initially will waste
memory and become unmanageable.

If the memory for the digits has been successfully allocated, the rest of the
members of the structure must be initialized. Since the initial state of an mp int
is to represent the zero integer, the allocated digits must be set to zero, the used
count set to zero, and sign set to MP ZPOS.

2.5.1 Initializing an mp int

An mp int is said to be initialized if it is set to a valid, preferably default, state
such that all the members of the structure are set to valid values. The mp init
algorithm will perform such an action (Figure 2.4).
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Algorithm mp init.
Input. An mp int a
Output. Allocate memory and initialize a to a known valid mp int state.

1. Allocate memory for MP PREC digits.
2. If the allocation failed, return(MP MEM )
3. for n from 0 to MP PREC − 1 do

3.1 an ← 0
4. a.sign←MP ZPOS
5. a.used← 0
6. a.alloc←MP PREC
7. Return(MP OKAY )

Figure 2.4: Algorithm mp init

Algorithm mp init. The purpose of this function is to initialize an mp int
structure so that the rest of the library can properly manipulate it. It is assumed
that the input may not have had any of its members previously initialized, which
is certainly a valid assumption if the input resides on the stack.

Before any of the members such as sign, used, or alloc are initialized, the
memory for the digits is allocated. If this fails, the function returns before setting
any of the other members. The MP PREC name represents a constant2 used to
dictate the minimum precision of newly initialized mp int integers. Ideally, it is
at least equal to the smallest precision number you’ll be working with.

Allocating a block of digits at first instead of a single digit has the benefit of
lowering the number of usually slow heap operations later functions will have to
perform in the future. If MP PREC is set correctly, the slack memory and the
number of heap operations will be trivial.

Once the allocation has been made, the digits have to be set to zero, and the
used, sign, and alloc members initialized. This ensures that the mp int will
always represent the default state of zero regardless of the original condition of
the input.

Remark. This function introduces the idiosyncrasy that all iterative loops,
commonly initiated with the “for” keyword, iterate incrementally when the “to”
keyword is placed between two expressions. For example, “for a from b to c do”
means that a subsequent expression (or body of expressions) is to be evaluated

2Defined in the “tommath.h” header file within LibTomMath.
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up to c− b times so long as b ≤ c. In each iteration, the variable a is substituted
for a new integer that lies inclusively between b and c. If b > c occurred, the loop
would not iterate. By contrast, if the “downto” keyword were used in place of
“to,” the loop would iterate decrementally.

File: bn mp init.c

018 /* init a new mp_int */

019 int mp_init (mp_int * a)

020 {
021 int i;

022

023 /* allocate memory required and clear it */

024 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);

025 if (a->dp == NULL) {
026 return MP_MEM;

027 }
028

029 /* set the digits to zero */

030 for (i = 0; i < MP_PREC; i++) {
031 a->dp[i] = 0;

032 }
033

034 /* set the used to zero, allocated digits to the default precision

035 * and sign to positive */

036 a->used = 0;

037 a->alloc = MP_PREC;

038 a->sign = MP_ZPOS;

039

040 return MP_OKAY;

041 }
042

One immediate observation of this initialization function is that it does not
return a pointer to a mp int structure. It is assumed that the caller has already
allocated memory for the mp int structure, typically on the application stack. The
call to mp init() is used only to initialize the members of the structure to a known
default state.

Here we see (line 24) the memory allocation is performed first. This allows
us to exit cleanly and quickly if there is an error. If the allocation fails, the
routine will return MP MEM to the caller to indicate there was a memory error.
The function XMALLOC is what actually allocates the memory. Technically,
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XMALLOC is not a function but a macro defined in tommath.h. By default,
XMALLOC will evaluate to malloc(), which is the C library’s built–in memory
allocation routine.

To assure the mp int is in a known state, the digits must be set to zero. On
most platforms this could have been accomplished by using calloc() instead of
malloc(). However, to correctly initialize an integer type to a given value in a
portable fashion, you have to actually assign the value. The for loop (line 30)
performs this required operation.

After the memory has been successfully initialized, the remainder of the mem-
bers are initialized (lines 34 through 35) to their respective default states. At this
point, the algorithm has succeeded and a success code is returned to the calling
function. If this function returns MP OKAY, it is safe to assume the mp int
structure has been properly initialized and is safe to use with other functions
within the library.

2.5.2 Clearing an mp int

When an mp int is no longer required by the application, the memory allocated
for its digits must be returned to the application’s memory pool with the mp clear
algorithm (Figure 2.5).

Algorithm mp clear.
Input. An mp int a
Output. The memory for a shall be deallocated.

1. If a has been previously freed, then return(MP OKAY ).
2. for n from 0 to a.used− 1 do

2.1 an ← 0
3. Free the memory allocated for the digits of a.
4. a.used← 0
5. a.alloc← 0
6. a.sign←MP ZPOS
7. Return(MP OKAY ).

Figure 2.5: Algorithm mp clear

Algorithm mp clear. This algorithm accomplishes two goals. First, it clears
the digits and the other mp int members. This ensures that if a developer acci-
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dentally re-uses a cleared structure it is less likely to cause problems. The second
goal is to free the allocated memory.

The logic behind the algorithm is extended by marking cleared mp int struc-
tures so that subsequent calls to this algorithm will not try to free the memory
multiple times. Cleared mp ints are detectable by having a pre-defined invalid
digit pointer dp setting.

Once an mp int has been cleared, the mp int structure is no longer in a
valid state for any other algorithm with the exception of algorithms mp init,
mp init copy, mp init size, and mp clear.

File: bn mp clear.c

018 /* clear one (frees) */

019 void

020 mp_clear (mp_int * a)

021 {
022 int i;

023

024 /* only do anything if a hasn’t been freed previously */

025 if (a->dp != NULL) {
026 /* first zero the digits */

027 for (i = 0; i < a->used; i++) {
028 a->dp[i] = 0;

029 }
030

031 /* free ram */

032 XFREE(a->dp);

033

034 /* reset members to make debugging easier */

035 a->dp = NULL;

036 a->alloc = a->used = 0;

037 a->sign = MP_ZPOS;

038 }
039 }
040

The algorithm only operates on the mp int if it hasn’t been previously cleared.
The if statement (line 25) checks to see if the dp member is not NULL. If the
mp int is a valid mp int, then dp cannot be NULL, in which case the if statement
will evaluate to true.

The digits of the mp int are cleared by the for loop (line 27), which assigns a



24 www.syngress.com

zero to every digit. Similar to mp init(), the digits are assigned zero instead of
using block memory operations (such as memset()) since this is more portable.

The digits are deallocated off the heap via the XFREE macro. Similar to
XMALLOC, the XFREE macro actually evaluates to a standard C library func-
tion; in this case, free(). Since free() only deallocates the memory, the pointer
still has to be reset to NULL manually (line 35).

Now that the digits have been cleared and deallocated, the other members are
set to their final values (lines 36 and 37).

2.6 Maintenance Algorithms

The previous sections described how to initialize and clear an mp int structure. To
further support operations that are to be performed on mp int structures (such as
addition and multiplication), the dependent algorithms must be able to augment
the precision of an mp int and initialize mp ints with differing initial conditions.

These algorithms complete the set of low–level algorithms required to work
with mp int structures in the higher level algorithms such as addition, multipli-
cation, and modular exponentiation.

2.6.1 Augmenting an mp int’s Precision

When you are storing a value in an mp int structure, a sufficient number of digits
must be available to accommodate the entire result of an operation without loss
of precision. Quite often, the size of the array given by the alloc member is large
enough to simply increase the used digit count. However, when the size of the
array is too small it must be re-sized appropriately to accommodate the result.
The mp grow algorithm provides this functionality (Figure 2.6).
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Algorithm mp grow.
Input. An mp int a and an integer b.
Output. a is expanded to accommodate b digits.

1. if a.alloc ≥ b, then return(MP OKAY )
2. u← b (mod MP PREC)
3. v ← b + 2 ·MP PREC − u
4. Reallocate the array of digits a to size v
5. If the allocation failed, then return(MP MEM ).
6. for n from a.alloc to v − 1 do

6.1 an ← 0
7. a.alloc← v
8. Return(MP OKAY )

Figure 2.6: Algorithm mp grow

Algorithm mp grow. It is ideal to prevent reallocations from being per-
formed if they are not required (step one). This is useful to prevent mp ints from
growing excessively in code that erroneously calls mp grow.

The requested digit count is padded up to the next multiple of MP PREC
plus an additional MP PREC (steps two and three). This helps prevent many
trivial reallocations that would grow an mp int by trivially small values.

It is assumed that the reallocation (step four) leaves the lower a.alloc digits
of the mp int intact. This is much akin to how the realloc function from the
standard C library works. Since the newly allocated digits are assumed to contain
undefined values, they are initially set to zero.

File: bn mp grow.c

018 /* grow as required */

019 int mp_grow (mp_int * a, int size)

020 {
021 int i;

022 mp_digit *tmp;

023

024 /* if the alloc size is smaller alloc more ram */

025 if (a->alloc < size) {
026 /* ensure there are always at least MP_PREC digits extra on top */

027 size += (MP_PREC * 2) - (size % MP_PREC);

028
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029 /* reallocate the array a->dp

030 *

031 * We store the return in a temporary variable

032 * in case the operation failed we don’t want

033 * to overwrite the dp member of a.

034 */

035 tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);

036 if (tmp == NULL) {
037 /* reallocation failed but "a" is still valid [can be freed] */

038 return MP_MEM;

039 }
040

041 /* reallocation succeeded so set a->dp */

042 a->dp = tmp;

043

044 /* zero excess digits */

045 i = a->alloc;

046 a->alloc = size;

047 for (; i < a->alloc; i++) {
048 a->dp[i] = 0;

049 }
050 }
051 return MP_OKAY;

052 }
053

A quick optimization is to first determine if a memory reallocation is required
at all. The if statement (line 24) checks if the alloc member of the mp int is
smaller than the requested digit count. If the count is not larger than alloc the
function skips the reallocation part, thus saving time.

When a reallocation is performed, it is turned into an optimal request to save
time in the future. The requested digit count is padded upwards to 2nd multiple
of MP PREC larger than alloc (line 25). The XREALLOC function is used
to reallocate the memory. As per the other functions, XREALLOC is actually a
macro that evaluates to realloc by default. The realloc function leaves the base
of the allocation intact, which means the first alloc digits of the mp int are the
same as before the reallocation. All that is left is to clear the newly allocated
digits and return.

Note that the reallocation result is actually stored in a temporary pointer
tmp. This is to allow this function to return an error with a valid pointer. Earlier
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releases of the library stored the result of XREALLOC into the mp int a. That
would result in a memory leak if XREALLOC ever failed.

2.6.2 Initializing Variable Precision mp ints

Occasionally, the number of digits required will be known in advance of an initial-
ization, based on, for example, the size of input mp ints to a given algorithm. The
purpose of algorithm mp init size is similar to mp init except that it will allocate
at least a specified number of digits (Function 2.7).

Algorithm mp init size.
Input. An mp int a and the requested number of digits b.
Output. a is initialized to hold at least b digits.

1. u← b (mod MP PREC)
2. v ← b + 2 ·MP PREC − u
3. Allocate v digits.
4. for n from 0 to v − 1 do

4.1 an ← 0
5. a.sign←MP ZPOS
6. a.used← 0
7. a.alloc← v
8. Return(MP OKAY )

Figure 2.7: Algorithm mp init size

Algorithm mp init size. This algorithm will initialize an mp int structure a
like algorithm mp init, with the exception that the number of digits allocated can
be controlled by the second input argument b. The input size is padded upwards
so it is a multiple of MP PREC plus an additional MP PREC digits. This
padding is used to prevent trivial allocations from becoming a bottleneck in the
rest of the algorithms (Figure 2.7).

Like algorithm mp init, the mp int structure is initialized to a default state
representing the integer zero. This particular algorithm is useful if it is known
ahead of time the approximate size of the input. If the approximation is correct,
no further memory reallocations are required to work with the mp int.

File: bn mp init size.c

018 /* init an mp_init for a given size */
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019 int mp_init_size (mp_int * a, int size)

020 {
021 int x;

022

023 /* pad size so there are always extra digits */

024 size += (MP_PREC * 2) - (size % MP_PREC);

025

026 /* alloc mem */

027 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);

028 if (a->dp == NULL) {
029 return MP_MEM;

030 }
031

032 /* set the members */

033 a->used = 0;

034 a->alloc = size;

035 a->sign = MP_ZPOS;

036

037 /* zero the digits */

038 for (x = 0; x < size; x++) {
039 a->dp[x] = 0;

040 }
041

042 return MP_OKAY;

043 }
044

The number of digits b requested is padded (line 24) by first augmenting it
to the next multiple of MP PREC and then adding MP PREC to the result.
If the memory can be successfully allocated, the mp int is placed in a default
state representing the integer zero. Otherwise, the error code MP MEM will be
returned (line 29).

The digits are allocated and set to zero at the same time with the calloc()
function (line 27). The used count is set to zero, the alloc count is set to the
padded digit count and the sign flag is set to MP ZPOS to achieve a default
valid mp int state (lines 33, 34, and 35). If the function returns successfully,
then it is correct to assume that the mp int structure is in a valid state for the
remainder of the functions to work with.
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2.6.3 Multiple Integer Initializations and Clearings

Occasionally, a function will require a series of mp int data types to be made
available simultaneously. The purpose of algorithm mp init multi (Figure 2.8) is
to initialize a variable length array of mp int structures in a single statement. It
is essentially a shortcut to multiple initializations.

Algorithm mp init multi.
Input. Variable length array Vk of mp int variables of length k.
Output. The array is initialized such that each mp int of Vk is ready to use.

1. for n from 0 to k − 1 do
1.1. Initialize the mp int Vn (mp init)
1.2. If initialization failed then do

1.2.1. for j from 0 to n do
1.2.1.1. Free the mp int Vj (mp clear)

1.2.2. Return(MP MEM )
2. Return(MP OKAY )

Figure 2.8: Algorithm mp init multi

Algorithm mp init multi. The algorithm will initialize the array of mp int
variables one at a time. If a runtime error has been detected (step 1.2 ), all of
the previously initialized variables are cleared. The goal is an “all or nothing”
initialization, which allows for quick recovery from runtime errors (Figure 2.8).

File: bn mp init multi.c

017 #include <stdarg.h>

018

019 int mp_init_multi(mp_int *mp, ...)

020 {
021 mp_err res = MP_OKAY; /* Assume ok until proven otherwise */

022 int n = 0; /* Number of ok inits */

023 mp_int* cur_arg = mp;

024 va_list args;

025

026 va_start(args, mp); /* init args to next argument from caller */

027 while (cur_arg != NULL) {
028 if (mp_init(cur_arg) != MP_OKAY) {
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029 /* Oops - error! Back-track and mp_clear what we already

030 succeeded in init-ing, then return error.

031 */

032 va_list clean_args;

033

034 /* end the current list */

035 va_end(args);

036

037 /* now start cleaning up */

038 cur_arg = mp;

039 va_start(clean_args, mp);

040 while (n--) {
041 mp_clear(cur_arg);

042 cur_arg = va_arg(clean_args, mp_int*);

043 }
044 va_end(clean_args);

045 res = MP_MEM;

046 break;

047 }
048 n++;

049 cur_arg = va_arg(args, mp_int*);

050 }
051 va_end(args);

052 return res; /* Assumed ok, if error flagged above. */

053 }
054

055

This function initializes a variable length list of mp int structure pointers.
However, instead of having the mp int structures in an actual C array, they are
simply passed as arguments to the function. This function makes use of the “...”
argument syntax of the C programming language. The list is terminated with a
final NULL argument appended on the right.

The function uses the “stdarg.h” va functions to step in a portable fashion
through the arguments to the function. A count n of successfully initialized mp int
structures is maintained (line 48) such that if a failure does occur, the algorithm
can backtrack and free the previously initialized structures (lines 28 to 47).
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2.6.4 Clamping Excess Digits

When a function anticipates a result will be n digits, it is simpler to assume this is
true within the body of the function instead of checking during the computation.
For example, a multiplication of a i digit number by a j digit produces a result
of at most i + j digits. It is entirely possible that the result is i + j − 1, though,
with no final carry into the last position. However, suppose the destination had
to be first expanded (via mp grow) to accommodate i + j − 1 digits than further
expanded to accommodate the final carry. That would be a considerable waste of
time since heap operations are relatively slow.

The ideal solution is to always assume the result is i + j and fix up the used
count after the function terminates. This way, a single heap operation (at most)
is required. However, if the result was not checked there would be an excess high
order zero digit.

For example, suppose the product of two integers was xn = (0xn−1xn−2...x0)β .
The leading zero digit will not contribute to the precision of the result. In fact,
through subsequent operations more leading zero digits would accumulate to the
point the size of the integer would be prohibitive. As a result, even though the
precision is very low the representation is excessively large.

The mp clamp algorithm is designed to solve this very problem. It will trim
high-order zeros by decrementing the used count until a non-zero most significant
digit is found. Also in this system, zero is considered a positive number, which
means that if the used count is decremented to zero, the sign must be set to
MP ZPOS.

Algorithm mp clamp.
Input. An mp int a
Output. Any excess leading zero digits of a are removed

1. while a.used > 0 and aa.used−1 = 0 do
1.1 a.used← a.used− 1

2. if a.used = 0 then do
2.1 a.sign←MP ZPOS

Figure 2.9: Algorithm mp clamp

Algorithm mp clamp. As can be expected, this algorithm is very simple.
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The loop in step one is expected to iterate only once or twice at the most. For
example, this will happen in cases where there is not a carry to fill the last position.
Step two fixes the sign for when all of the digits are zero to ensure that the mp int
is valid at all times (Figure 2.9).

File: bn mp clamp.c

018 /* trim unused digits

019 *

020 * This is used to ensure that leading zero digits are

021 * trimed and the leading "used" digit will be non-zero

022 * Typically very fast. Also fixes the sign if there

023 * are no more leading digits

024 */

025 void

026 mp_clamp (mp_int * a)

027 {
028 /* decrease used while the most significant digit is

029 * zero.

030 */

031 while (a->used > 0 && a->dp[a->used - 1] == 0) {
032 --(a->used);

033 }
034

035 /* reset the sign flag if used == 0 */

036 if (a->used == 0) {
037 a->sign = MP_ZPOS;

038 }
039 }
040

Note on line 31 how to test for the used count is made on the left of the &&
operator. In the C programming language, the terms to && are evaluated left to
right with a boolean short-circuit if any condition fails. This is important since
if the used is zero, the test on the right would fetch below the array. That is
obviously undesirable. The parenthesis on line 32 is used to make sure the used
count is decremented and not the pointer “a”.
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Exercises

[1] Discuss the relevance of the used member of the mp int structure.

[1] Discuss the consequences of not using padding when performing allocations.

[2] Estimate an ideal value for MP PREC when performing 1024-bit RSA
encryption when β = 228.

[1] Discuss the relevance of the algorithm mp clamp. What does it prevent?

[1] Give an example of when the algorithm mp init copy might be useful.





Chapter 3

Basic Operations

3.1 Introduction

In the previous chapter, a series of low–level algorithms was established that dealt
with initializing and maintaining mp int structures. This chapter will discuss
another set of seemingly non-algebraic algorithms that will form the low–level
basis of the entire library. While these algorithms are relatively trivial, it is
important to understand how they work before proceeding since these algorithms
will be used almost intrinsically in the following chapters.

The algorithms in this chapter deal primarily with more “programmer” related
tasks such as creating copies of mp int structures, assigning small values to mp int
structures and comparisons of the values mp int structures represent.

3.2 Assigning Values to mp int Structures

3.2.1 Copying an mp int

Assigning the value that a given mp int structure represents to another mp int
structure shall be known as making a copy for the purposes of this text. The
copy of the mp int will be a separate entity that represents the same value as the
mp int it was copied from. The mp copy algorithm provides this functionality
(Figure 3.1).

35



36 www.syngress.com

Algorithm mp copy.
Input. An mp int a and b.
Output. Store a copy of a in b.

1. If b.alloc < a.used then grow b to a.used digits. (mp grow)
2. for n from 0 to a.used− 1 do

2.1 bn ← an

3. for n from a.used to b.used− 1 do
3.1 bn ← 0

4. b.used← a.used
5. b.sign← a.sign
6. return(MP OKAY )

Figure 3.1: Algorithm mp copy

Algorithm mp copy. This algorithm copies the mp int a such that upon
successful termination of the algorithm, the mp int b will represent the same
integer as the mp int a. The mp int b shall be a complete and distinct copy of the
mp int a, meaning that the mp int a can be modified and it shall not affect the
value of the mp int b.

If b does not have enough room for the digits of a, it must first have its precision
augmented via the mp grow algorithm. The digits of a are copied over the digits
of b, and any excess digits of b are set to zero (steps two and three). The used
and sign members of a are finally copied over the respective members of b.

Remark. This algorithm also introduces a new idiosyncrasy that will be used
throughout the rest of the text. The error return codes of other algorithms are
not explicitly checked in the pseudo-code presented. For example, in step one of
the mp copy algorithm, the return of mp grow is not explicitly checked to ensure
it succeeded. Text space is limited so it is assumed that if an algorithm fails it will
clear all temporarily allocated mp ints and return the error code itself. However,
the C code presented will demonstrate all of the error handling logic required to
implement the pseudo-code.

File: bn mp copy.c

018 /* copy, b = a */

019 int

020 mp_copy (mp_int * a, mp_int * b)

021 {
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022 int res, n;

023

024 /* if dst == src do nothing */

025 if (a == b) {
026 return MP_OKAY;

027 }
028

029 /* grow dest */

030 if (b->alloc < a->used) {
031 if ((res = mp_grow (b, a->used)) != MP_OKAY) {
032 return res;

033 }
034 }
035

036 /* zero b and copy the parameters over */

037 {
038 register mp_digit *tmpa, *tmpb;

039

040 /* pointer aliases */

041

042 /* source */

043 tmpa = a->dp;

044

045 /* destination */

046 tmpb = b->dp;

047

048 /* copy all the digits */

049 for (n = 0; n < a->used; n++) {
050 *tmpb++ = *tmpa++;

051 }
052

053 /* clear high digits */

054 for (; n < b->used; n++) {
055 *tmpb++ = 0;

056 }
057 }
058

059 /* copy used count and sign */

060 b->used = a->used;

061 b->sign = a->sign;

062 return MP_OKAY;
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063 }
064

Occasionally, a dependent algorithm may copy an mp int effectively into itself
such as when the input and output mp int structures passed to a function are one
and the same. For this case, it is optimal to return immediately without copying
digits (line 25).

The mp int b must have enough digits to accommodate the used digits of the
mp int a. If b.alloc is less than a.used, the algorithm mp grow is used to augment
the precision of b (lines 30 to 33). To simplify the inner loop that copies the digits
from a to b, two aliases tmpa and tmpb point directly at the digits of the mp ints
a and b, respectively. These aliases (lines 43 and 46) allow the compiler to access
the digits without first dereferencing the mp int pointers and then subsequently
the pointer to the digits.

After the aliases are established, the digits from a are copied into b (lines 49
to 51) and then the excess digits of b are set to zero (lines 54 to 56). Both “for”
loops make use of the pointer aliases, and in fact the alias for b is carried through
into the second “for” loop to clear the excess digits. This optimization allows the
alias to stay in a machine register fairly easy between the two loops.

Remarks. The use of pointer aliases is an implementation methodology first
introduced in this function that will be used considerably in other functions. Tech-
nically, a pointer alias is simply a shorthand alias used to lower the number of
pointer dereferencing operations required to access data. For example, a for loop
may resemble

for (x = 0; x < 100; x++) {
a->num[4]->dp[x] = 0;

}

This could be re-written using aliases as

mp_digit *tmpa;

a = a->num[4]->dp;

for (x = 0; x < 100; x++) {
*a++ = 0;

}

In this case, an alias is used to access the array of digits within an mp int
structure directly. It may seem that a pointer alias is strictly not required, as a
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compiler may optimize out the redundant pointer operations. However, there are
two dominant reasons to use aliases.

The first reason is that most compilers will not effectively optimize pointer
arithmetic. For example, some optimizations may work for the Microsoft Visual
C++ compiler (MSVC) and not for the GNU C Compiler (GCC). Moreover,
some optimizations may work for GCC and not MSVC. As such it is ideal to find
a common ground for as many compilers as possible. Pointer aliases optimize the
code considerably before the compiler even reads the source code, which means
the end compiled code stands a better chance of being faster.

The second reason is that pointer aliases often can make an algorithm simpler
to read. Consider the first “for” loop of the function mp copy() re-written to not
use pointer aliases.

/* copy all the digits */

for (n = 0; n < a->used; n++) {
b->dp[n] = a->dp[n];

}

Whether this code is harder to read depends strongly on the individual. How-
ever, it is quantifiably slightly more complicated, as there are four variables within
the statement instead of just two.

Nested Statements

Another commonly used technique in the source routines is that certain sections
of code are nested. This is used in particular with the pointer aliases to highlight
code phases. For example, a Comba multiplier (discussed in Chapter 6) will
typically have three different phases. First, the temporaries are initialized, then
the columns calculated, and finally the carries are propagated. In this example,
the middle column production phase will typically be nested as it uses temporary
variables and aliases the most.

The nesting also simplifies the source code, as variables that are nested are
only valid for their scope. As a result, the various temporary variables required
do not propagate into other sections of code.

3.2.2 Creating a Clone

Another common operation is to make a local temporary copy of an mp int ar-
gument. To initialize an mp int and then copy another existing mp int into the
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newly initialized mp int will be known as creating a clone. This is useful within
functions that need to modify an argument but do not wish to modify the original
copy. The mp init copy algorithm has been designed to help perform this task
(Figure 3.2).

Algorithm mp init copy.
Input. An mp int a and b
Output. a is initialized to be a copy of b.

1. Init a. (mp init)
2. Copy b to a. (mp copy)
3. Return the status of the copy operation.

Figure 3.2: Algorithm mp init copy

Algorithm mp init copy. This algorithm will initialize an mp int variable
and copy another previously initialized mp int variable into it. As such, this
algorithm will perform two operations in one step.

File: bn mp init copy.c

018 /* creates "a" then copies b into it */

019 int mp_init_copy (mp_int * a, mp_int * b)

020 {
021 int res;

022

023 if ((res = mp_init (a)) != MP_OKAY) {
024 return res;

025 }
026 return mp_copy (b, a);

027 }
028

This will initialize a and make it a verbatim copy of the contents of b. Note
that a will have its own memory allocated, which means that b may be cleared
after the call and a will be left intact.
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3.3 Zeroing an Integer

Resetting an mp int to the default state is a common step in many algorithms.
The mp zero algorithm will be used to perform this task (Figure 3.3).

Algorithm mp zero.
Input. An mp int a
Output. Zero the contents of a

1. a.used← 0
2. a.sign← MP ZPOS
3. for n from 0 to a.alloc− 1 do

3.1 an ← 0

Figure 3.3: Algorithm mp zero

Algorithm mp zero. This algorithm simply resets a mp int to the default
state.

File: bn mp zero.c

018 /* set to zero */

019 void mp_zero (mp_int * a)

020 {
021 int n;

022 mp_digit *tmp;

023

024 a->sign = MP_ZPOS;

025 a->used = 0;

026

027 tmp = a->dp;

028 for (n = 0; n < a->alloc; n++) {
029 *tmp++ = 0;

030 }
031 }
032

After the function is completed, all of the digits are zeroed, the used count is
zeroed, and the sign variable is set to MP ZPOS.
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3.4 Sign Manipulation

3.4.1 Absolute Value

With the mp int representation of an integer, calculating the absolute value is triv-
ial. The mp abs algorithm will compute the absolute value of an mp int (Figure
3.4).

Algorithm mp abs.
Input. An mp int a
Output. Computes b = |a|

1. Copy a to b. (mp copy)
2. If the copy failed return(MP MEM ).
3. b.sign←MP ZPOS
4. Return(MP OKAY )

Figure 3.4: Algorithm mp abs

Algorithm mp abs. This algorithm computes the absolute of an mp int
input. First, it copies a over b. This is an example of an algorithm where the
check in mp copy that determines if the source and destination are equal proves
useful. This allows, for instance, the developer to pass the same mp int as the
source and destination to this function without additional logic to handle it.

File: bn mp abs.c

018 /* b = |a|

019 *

020 * Simple function copies the input and fixes the sign to positive

021 */

022 int

023 mp_abs (mp_int * a, mp_int * b)

024 {
025 int res;

026

027 /* copy a to b */

028 if (a != b) {
029 if ((res = mp_copy (a, b)) != MP_OKAY) {
030 return res;
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031 }
032 }
033

034 /* force the sign of b to positive */

035 b->sign = MP_ZPOS;

036

037 return MP_OKAY;

038 }
039

This fairly trivial algorithm first eliminates non–required duplications (line 28)
and then sets the sign flag to MP ZPOS.

3.4.2 Integer Negation

With the mp int representation of an integer, calculating the negation is also
trivial. The mp neg algorithm will compute the negative of an mp int input
(Figure 3.5).

Algorithm mp neg.
Input. An mp int a
Output. Computes b = −a

1. Copy a to b. (mp copy)
2. If the copy failed return(MP MEM ).
3. If a.used = 0 then return(MP OKAY ).
4. If a.sign = MP ZPOS then do

4.1 b.sign = MP NEG.
5. else do

5.1 b.sign = MP ZPOS.
6. Return(MP OKAY )

Figure 3.5: Algorithm mp neg

Algorithm mp neg. This algorithm computes the negation of an input.
First, it copies a over b. If a has no used digits, then the algorithm returns
immediately. Otherwise, it flips the sign flag and stores the result in b. Note that
if a had no digits, then it must be positive by definition. Had step three been
omitted, the algorithm would return zero as negative.
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File: bn mp neg.c

018 /* b = -a */

019 int mp_neg (mp_int * a, mp_int * b)

020 {
021 int res;

022 if (a != b) {
023 if ((res = mp_copy (a, b)) != MP_OKAY) {
024 return res;

025 }
026 }
027

028 if (mp_iszero(b) != MP_YES) {
029 b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;

030 } else {
031 b->sign = MP_ZPOS;

032 }
033

034 return MP_OKAY;

035 }
036

Like mp abs(), this function avoids non–required duplications (line 22) and
then sets the sign. We have to make sure that only non–zero values get a sign of
MP NEG. If the mp int is zero, the sign is hard–coded to MP ZPOS.

3.5 Small Constants

3.5.1 Setting Small Constants

Often, a mp int must be set to a relatively small value such as 1 or 2. For these
cases, the mp set algorithm is useful (Figure 3.6).
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Algorithm mp set.
Input. An mp int a and a digit b
Output. Make a equivalent to b

1. Zero a (mp zero).
2. a0 ← b (mod β)

3. a.used←
{

1 if a0 > 0
0 if a0 = 0

Figure 3.6: Algorithm mp set

Algorithm mp set. This algorithm sets a mp int to a small single digit
value. Step number 1 ensures that the integer is reset to the default state. The
single digit is set (modulo β) and the used count is adjusted accordingly.

File: bn mp set.c

018 /* set to a digit */

019 void mp_set (mp_int * a, mp_digit b)

020 {
021 mp_zero (a);

022 a->dp[0] = b & MP_MASK;

023 a->used = (a->dp[0] != 0) ? 1 : 0;

024 }
025

First, we zero (line 21) the mp int to make sure the other members are initial-
ized for a small positive constant. mp zero() ensures that the sign is positive and
the used count is zero. Next, we set the digit and reduce it modulo β (line 22).
After this step, we have to check if the resulting digit is zero or not. If it is not,
we set the used count to one, otherwise to zero.

We can quickly reduce modulo β since it is of the form 2k, and a quick binary
AND operation with 2k − 1 will perform the same operation.

One important limitation of this function is that it will only set one digit. The
size of a digit is not fixed, meaning source that uses this function should take that
into account. Only trivially small constants can be set using this function.
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3.5.2 Setting Large Constants

To overcome the limitations of the mp set algorithm, the mp set int algorithm is
ideal. It accepts a “long” data type as input and will always treat it as a 32-bit
integer (Figure 3.7).

Algorithm mp set int.
Input. An mp int a and a “long” integer b
Output. Make a equivalent to b

1. Zero a (mp zero)
2. for n from 0 to 7 do

2.1 a← a · 16 (mp mul2d)

2.2 u← ⌊b/24(7−n)⌋ (mod 16)
2.3 a0 ← a0 + u
2.4 a.used← a.used + 1

3. Clamp excess used digits (mp clamp)

Figure 3.7: Algorithm mp set int

Algorithm mp set int. The algorithm performs eight iterations of a simple
loop where in each iteration, four bits from the source are added to the mp int.
Step 2.1 will multiply the current result by sixteen, making room for four more
bits in the less significant positions. In step 2.2, the next four bits from the source
are extracted and are added to the mp int. The used digit count is incremented
to reflect the addition. The used digit counter is incremented since if any of the
leading digits were zero, the mp int would have zero digits used and the newly
added four bits would be ignored.

Excess zero digits are trimmed in steps 2.1 and 3 by using higher level algo-
rithms mp mul2d and mp clamp.

File: bn mp set int.c

018 /* set a 32-bit const */

019 int mp_set_int (mp_int * a, unsigned long b)

020 {
021 int x, res;

022

023 mp_zero (a);

024
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025 /* set four bits at a time */

026 for (x = 0; x < 8; x++) {
027 /* shift the number up four bits */

028 if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
029 return res;

030 }
031

032 /* OR in the top four bits of the source */

033 a->dp[0] |= (b >> 28) & 15;

034

035 /* shift the source up to the next four bits */

036 b <<= 4;

037

038 /* ensure that digits are not clamped off */

039 a->used += 1;

040 }
041 mp_clamp (a);

042 return MP_OKAY;

043 }
044

This function sets four bits of the number at a time to handle all practical
DIGIT BIT sizes. The addition on line 39 ensures that the newly added in bits
are added to the number of digits. While it may not seem obvious as to why the
digit counter does not grow exceedingly large, it is because of the shift on line 28
and the call to mp clamp() on line 41. Both functions will clamp excess leading
digits, which keeps the number of used digits low.

3.6 Comparisons

3.6.1 Unsigned Comparisons

Comparing a multiple precision integer is performed with the same algorithm used
to compare two decimal numbers. For example, to compare 1, 234 to 1, 264, the
digits are extracted by their positions. That is, we compare 1 · 103 + 2 · 102 + 3 ·
101 +4 ·100 to 1 ·103 +2 ·102 +6 ·101 +4 ·100 by comparing single digits at a time,
starting with the highest magnitude positions. If any leading digit of one integer
is greater than a digit in the same position of another integer, then obviously it
must be greater.
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The first comparison routine that will be developed is the unsigned magnitude
compare, which will perform a comparison based on the digits of two mp int
variables alone. It will ignore the sign of the two inputs. Such a function is useful
when an absolute comparison is required or if the signs are known to agree in
advance.

To facilitate working with the results of the comparison functions, three con-
stants are required (Figure 3.8).

Constant Meaning
MP GT Greater Than
MP EQ Equal To
MP LT Less Than

Figure 3.8: Comparison Return Codes

Algorithm mp cmp mag.
Input. Two mp ints a and b.
Output. Unsigned comparison results (a to the left of b).

1. If a.used > b.used then return(MP GT )
2. If a.used < b.used then return(MP LT )
3. for n from a.used− 1 to 0 do

3.1 if an > bn then return(MP GT )
3.2 if an < bn then return(MP LT )

4. Return(MP EQ)

Figure 3.9: Algorithm mp cmp mag

Algorithm mp cmp mag. By saying “a to the left of b,” it is meant that
the comparison is with respect to a. That is, if a is greater than b it will return
MP GT and similar with respect to when a = b and a < b. The first two steps
compare the number of digits used in both a and b. Obviously, if the digit counts
differ there would be an imaginary zero digit in the smaller number where the
leading digit of the larger number is. If both have the same number of digits, the
actual digits themselves must be compared starting at the leading digit (Figure
3.9).
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By step three, both inputs must have the same number of digits so, it is safe to
start from either a.used− 1 or b.used− 1 and count down to the zero’th digit. If
after all of the digits have been compared and no difference is found, the algorithm
returns MP EQ.

File: bn mp cmp mag.c

018 /* compare magnitude of two ints (unsigned) */

019 int mp_cmp_mag (mp_int * a, mp_int * b)

020 {
021 int n;

022 mp_digit *tmpa, *tmpb;

023

024 /* compare based on # of non-zero digits */

025 if (a->used > b->used) {
026 return MP_GT;

027 }
028

029 if (a->used < b->used) {
030 return MP_LT;

031 }
032

033 /* alias for a */

034 tmpa = a->dp + (a->used - 1);

035

036 /* alias for b */

037 tmpb = b->dp + (a->used - 1);

038

039 /* compare based on digits */

040 for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
041 if (*tmpa > *tmpb) {
042 return MP_GT;

043 }
044

045 if (*tmpa < *tmpb) {
046 return MP_LT;

047 }
048 }
049 return MP_EQ;

050 }
051

The two if statements (lines 25 and 29) compare the number of digits in the
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two inputs. These two are performed before all the digits are compared, since it
is a very cheap test to perform and can potentially save considerable time. The
implementation given is also not valid without those two statements. b.alloc may
be smaller than a.used, meaning that undefined values will be read from b past
the end of the array of digits.

3.6.2 Signed Comparisons

Comparing with sign comparisons is also fairly critical in several routines (divi-
sion, for example). Based on an unsigned magnitude comparison, a trivial signed
comparison algorithm can be written.

Algorithm mp cmp.
Input. Two mp ints a and b
Output. Signed Comparison Results (a to the left of b)

1. if a.sign = MP NEG and b.sign = MP ZPOS then return(MP LT )
2. if a.sign = MP ZPOS and b.sign = MP NEG then return(MP GT )
3. if a.sign = MP NEG then

3.1 Return the unsigned comparison of b and a (mp cmp mag)
4 Otherwise

4.1 Return the unsigned comparison of a and b

Figure 3.10: Algorithm mp cmp

Algorithm mp cmp. The first two steps compare the signs of the two inputs.
If the signs do not agree, then it can return right away with the appropriate
comparison code. When the signs are equal, the digits of the inputs must be
compared to determine the correct result. In step three, the unsigned comparison
flips the order of the arguments since they are both negative. For instance, if
−a > −b then |a| < |b|. Step four will compare the two when they are both
positive (Figure 3.10).
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File: bn mp cmp.c

018 /* compare two ints (signed)*/

019 int

020 mp_cmp (mp_int * a, mp_int * b)

021 {
022 /* compare based on sign */

023 if (a->sign != b->sign) {
024 if (a->sign == MP_NEG) {
025 return MP_LT;

026 } else {
027 return MP_GT;

028 }
029 }
030

031 /* compare digits */

032 if (a->sign == MP_NEG) {
033 /* if negative compare opposite direction */

034 return mp_cmp_mag(b, a);

035 } else {
036 return mp_cmp_mag(a, b);

037 }
038 }
039

The two if statements (lines 23 and 24) perform the initial sign comparison. If
the signs are not equal, then whichever has the positive sign is larger. The inputs
are compared (line 32) based on magnitudes. If the signs were both negative,
then the unsigned comparison is performed in the opposite direction (line 34).
Otherwise, the signs are assumed to be positive and a forward direction unsigned
comparison is performed.
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Exercises

[2] Modify algorithm mp set int to accept as input a variable length array of bits.

[3] Give the probability that algorithm mp cmp mag will have to compare k digits
of two random digits (of equal magnitude) before a difference is found.

[1] Suggest a simple method to speed up the implementation of mp cmp mag based
on the observations made in the previous problem.



Chapter 4

Basic Arithmetic

4.1 Introduction

At this point, algorithms for initialization, clearing, zeroing, copying, comparing,
and setting small constants have been established. The next logical set of algo-
rithms to develop are addition, subtraction, and digit shifting algorithms. These
algorithms make use of the lower level algorithms and are the crucial building block
for the multiplication algorithms. It is very important that these algorithms are
highly optimized. On their own they are simple O(n) algorithms but they can
be called from higher level algorithms, which easily places them at O(n2) or even
O(n3) work levels.

All of the algorithms within this chapter make use of the logical bit shift
operations denoted by << and >> for left and right logical shifts, respectively. A
logical shift is analogous to sliding the decimal point of radix-10 representations.
For example, the real number 0.9345 is equivalent to 93.45%, which is found by
sliding the decimal two places to the right (multiplying by β2 = 102). Algebraically,
a binary logical shift is equivalent to a division or multiplication by a power of
two. For example, a << k = a · 2k while a >> k = ⌊a/2k⌋.

One significant difference between a logical shift and the way decimals are
shifted is that digits below the zero’th position are removed from the number. For
example, consider 11012 >> 1; using decimal notation this would produce 110.12.
However, with a logical shift the result is 1102.

53
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4.2 Addition and Subtraction

In common twos complement fixed precision arithmetic negative numbers are eas-
ily represented by subtraction from the modulus. For example, with 32-bit inte-
gers, a−b (mod 232) is the same as a+(232−b) (mod 232) since 232 ≡ 0 (mod 232).
As a result, subtraction can be performed with a trivial series of logical operations
and an addition.

However, in multiple precision arithmetic, negative numbers are not repre-
sented in the same way. Instead, a sign flag is used to keep track of the sign of the
integer. As a result, signed addition and subtraction are actually implemented as
conditional usage of lower level addition or subtraction algorithms with the sign
fixed up appropriately.

The lower level algorithms will add or subtract integers without regard to
the sign flag. That is, they will add or subtract the magnitude of the integers,
respectively.

4.2.1 Low Level Addition

An unsigned addition of multiple precision integers is performed with the same
long-hand algorithm used to add decimal numbers; that is, to add the trailing
digits first and propagate the resulting carry upward. Since this is a lower level
algorithm, the name will have a “s ” prefix. Historically, that convention stems
from the MPI library, where “s ” stood for static functions that were hidden from
the developer entirely.
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Algorithm s mp add.
Input. Two mp ints a and b
Output. The unsigned addition c = |a|+ |b|.

1. if a.used > b.used then
1.1 min← b.used
1.2 max← a.used
1.3 x← a

2. else
2.1 min← a.used
2.2 max← b.used
2.3 x← b

3. If c.alloc < max + 1 then grow c to hold at least max + 1 digits (mp grow)
4. oldused← c.used
5. c.used← max + 1
6. u← 0
7. for n from 0 to min− 1 do

7.1 cn ← an + bn + u
7.2 u← cn >> lg(β)
7.3 cn ← cn (mod β)

8. if min 6= max then do
8.1 for n from min to max− 1 do

8.1.1 cn ← xn + u
8.1.2 u← cn >> lg(β)
8.1.3 cn ← cn (mod β)

9. cmax ← u
10. if olduse > max then

10.1 for n from max + 1 to oldused− 1 do
10.1.1 cn ← 0

11. Clamp excess digits in c. (mp clamp)
12. Return(MP OKAY )

Figure 4.1: Algorithm s mp add

Algorithm s mp add. This algorithm is loosely based on algorithm 14.7 of
HAC [2, pp. 594], but has been extended to allow the inputs to have different
magnitudes. Coincidentally, the description of algorithm A in Knuth [1, pp. 266]
shares the same deficiency as the algorithm from [2]. Even the MIX pseudo
machine code presented by Knuth [1, pp. 266–267] is incapable of handling inputs
of different magnitudes (Figure 4.1).
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The first thing that has to be accomplished is to sort out which of the two
inputs is the largest. The addition logic will simply add all of the smallest input
to the largest input and store that first part of the result in the destination. Then,
it will apply a simpler addition loop to excess digits of the larger input.

The first two steps will handle sorting the inputs such that min and max hold
the digit counts of the two inputs. The variable x will be an mp int alias for the
largest input or the second input b if they have the same number of digits. After
the inputs are sorted, the destination c is grown as required to accommodate the
sum of the two inputs. The original used count of c is copied and set to the new
used count.

At this point, the first addition loop will go through as many digit positions
as both inputs have. The carry variable µ is set to zero outside the loop. Inside
the loop an “addition” step requires three statements to produce one digit of the
summand. The first two digits from a and b are added together along with the
carry µ. The carry of this step is extracted and stored in µ, and finally the digit
of the result cn is truncated within the range 0 ≤ cn < β.

Now all of the digit positions that both inputs have in common have been
exhausted. If min 6= max, then x is an alias for one of the inputs that has more
digits. A simplified addition loop is then used to essentially copy the remaining
digits and the carry to the destination.

The final carry is stored in cmax, and digits above max up to oldused are
zeroed, which completes the addition.

File: bn s mp add.c

018 /* low level addition, based on HAC pp.594, Algorithm 14.7 */

019 int

020 s_mp_add (mp_int * a, mp_int * b, mp_int * c)

021 {
022 mp_int *x;

023 int olduse, res, min, max;

024

025 /* find sizes, we let |a| <= |b| which means we have to sort

026 * them. "x" will point to the input with the most digits

027 */

028 if (a->used > b->used) {
029 min = b->used;

030 max = a->used;

031 x = a;

032 } else {
033 min = a->used;
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034 max = b->used;

035 x = b;

036 }
037

038 /* init result */

039 if (c->alloc < max + 1) {
040 if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
041 return res;

042 }
043 }
044

045 /* get old used digit count and set new one */

046 olduse = c->used;

047 c->used = max + 1;

048

049 {
050 register mp_digit u, *tmpa, *tmpb, *tmpc;

051 register int i;

052

053 /* alias for digit pointers */

054

055 /* first input */

056 tmpa = a->dp;

057

058 /* second input */

059 tmpb = b->dp;

060

061 /* destination */

062 tmpc = c->dp;

063

064 /* zero the carry */

065 u = 0;

066 for (i = 0; i < min; i++) {
067 /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */

068 *tmpc = *tmpa++ + *tmpb++ + u;

069

070 /* U = carry bit of T[i] */

071 u = *tmpc >> ((mp_digit)DIGIT_BIT);

072

073 /* take away carry bit from T[i] */

074 *tmpc++ &= MP_MASK;



58 www.syngress.com

075 }
076

077 /* now copy higher words if any, that is in A+B

078 * if A or B has more digits add those in

079 */

080 if (min != max) {
081 for (; i < max; i++) {
082 /* T[i] = X[i] + U */

083 *tmpc = x->dp[i] + u;

084

085 /* U = carry bit of T[i] */

086 u = *tmpc >> ((mp_digit)DIGIT_BIT);

087

088 /* take away carry bit from T[i] */

089 *tmpc++ &= MP_MASK;

090 }
091 }
092

093 /* add carry */

094 *tmpc++ = u;

095

096 /* clear digits above oldused */

097 for (i = c->used; i < olduse; i++) {
098 *tmpc++ = 0;

099 }
100 }
101

102 mp_clamp (c);

103 return MP_OKAY;

104 }
105

We first sort (lines 28 to 36) the inputs based on magnitude and determine
the min and max variables. Note that x is a pointer to an mp int assigned to the
largest input, in effect it is a local alias. Next, we grow the destination (38 to 42)
to ensure it can accommodate the result of the addition.

Similar to the implementation of mp copy, this function uses the braced code
and local aliases coding style. The three aliases on lines 56, 59 and 62 represent
the two inputs and destination variables, respectively. These aliases are used to
ensure the compiler does not have to dereference a, b, or c (respectively) to access
the digits of the respective mp int.
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The initial carry u will be cleared (line 65); note that u is of type mp digit,
which ensures type compatibility within the implementation. The initial addition
(lines 66 to 75) adds digits from both inputs until the smallest input runs out of
digits. Similarly, the conditional addition loop (lines 81 to 90) adds the remaining
digits from the larger of the two inputs. The addition is finished with the final
carry being stored in tmpc (line 94). Note the “++” operator within the same
expression. After line 94, tmpc will point to the c.used’th digit of the mp int c.
This is useful for the next loop (lines 97 to 99), which sets any old upper digits to
zero.

4.2.2 Low Level Subtraction

The low level unsigned subtraction algorithm is very similar to the low level un-
signed addition algorithm. The principal difference is that the unsigned subtrac-
tion algorithm requires the result to be positive. That is, when computing a− b,
the condition |a| ≥ |b| must be met for this algorithm to function properly. Keep
in mind this low level algorithm is not meant to be used in higher level algorithms
directly. This algorithm as will be shown can be used to create functional signed
addition and subtraction algorithms.

For this algorithm, a new variable is required to make the description simpler.
Recall from section 1.3.1 that a mp digit must be able to represent the range
0 ≤ x < 2β for the algorithms to work correctly. However, it is allowable that a
mp digit represent a larger range of values. For this algorithm, we will assume
that the variable γ represents the number of bits available in a mp digit (this
implies 2γ > β).

For example, the default for LibTomMath is to use a “unsigned long” for the
mp digit “type” while β = 228. In ISO C, an “unsigned long” data type must be
able to represent 0 ≤ x < 232, meaning that in this case γ ≥ 32.
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Algorithm s mp sub.
Input. Two mp ints a and b (|a| ≥ |b|)
Output. The unsigned subtraction c = |a| − |b|.

1. min← b.used
2. max← a.used
3. If c.alloc < max then grow c to hold at least max digits. (mp grow)
4. oldused← c.used
5. c.used← max
6. u← 0
7. for n from 0 to min− 1 do

7.1 cn ← an − bn − u
7.2 u← cn >> (γ − 1)
7.3 cn ← cn (mod β)

8. if min < max then do
8.1 for n from min to max− 1 do

8.1.1 cn ← an − u
8.1.2 u← cn >> (γ − 1)
8.1.3 cn ← cn (mod β)

9. if oldused > max then do
9.1 for n from max to oldused− 1 do

9.1.1 cn ← 0
10. Clamp excess digits of c. (mp clamp).
11. Return(MP OKAY ).

Figure 4.2: Algorithm s mp sub

Algorithm s mp sub. This algorithm performs the unsigned subtraction of
two mp int variables under the restriction that the result must be positive. That
is, when passing variables a and b the condition that |a| ≥ |b| must be met for
the algorithm to function correctly. This algorithm is loosely based on algorithm
14.9 [2, pp. 595] and is similar to algorithm S in [1, pp. 267] as well. As was the
case of the algorithm s mp add both other references lack discussion concerning
various practical details such as when the inputs differ in magnitude (Figure 4.2).

The initial sorting of the inputs is trivial in this algorithm since a is guaranteed
to have at least the same magnitude of b. Steps 1 and 2 set the min and max
variables. Unlike the addition routine there is guaranteed to be no carry, which
means that the result can be at most max digits in length as opposed to max+1.
Similar to the addition algorithm, the used count of c is copied locally and set to
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the maximal count for the operation.

The subtraction loop that begins on step 7 is essentially the same as the ad-
dition loop of algorithm s mp add, except single precision subtraction is used
instead. Note the use of the γ variable to extract the carry (also known as the

borrow) within the subtraction loops. Under the assumption that two’s comple-
ment single precision arithmetic is used, this will successfully extract the desired
carry.

For example, consider subtracting 01012 from 01002, where γ = 4 and β = 2.
The least significant bit will force a carry upwards to the third bit, which will
be set to zero after the borrow. After the very first bit has been subtracted,
4 − 1 ≡ 00112 will remain, When the third bit of 01012 is subtracted from the
result it will cause another carry. In this case, though, the carry will be forced to
propagate all the way to the most significant bit.

Recall that β < 2γ . This means that if a carry does occur just before the
lg(β)’th bit it will propagate all the way to the most significant bit. Thus, the
high order bits of the mp digit that are not part of the actual digit will either be
all zero, or all one. All that is needed is a single zero or one bit for the carry.
Therefore, a single logical shift right by γ − 1 positions is sufficient to extract the
carry. This method of carry extraction may seem awkward, but the reason for it
becomes apparent when the implementation is discussed.

If b has a smaller magnitude than a, then step 9 will force the carry and copy
operation to propagate through the larger input a into c. Step 10 will ensure that
any leading digits of c above the max’th position are zeroed.

File: bn s mp sub.c

018 /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */

019 int

020 s_mp_sub (mp_int * a, mp_int * b, mp_int * c)

021 {
022 int olduse, res, min, max;

023

024 /* find sizes */

025 min = b->used;

026 max = a->used;

027

028 /* init result */

029 if (c->alloc < max) {
030 if ((res = mp_grow (c, max)) != MP_OKAY) {
031 return res;
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032 }
033 }
034 olduse = c->used;

035 c->used = max;

036

037 {
038 register mp_digit u, *tmpa, *tmpb, *tmpc;

039 register int i;

040

041 /* alias for digit pointers */

042 tmpa = a->dp;

043 tmpb = b->dp;

044 tmpc = c->dp;

045

046 /* set carry to zero */

047 u = 0;

048 for (i = 0; i < min; i++) {
049 /* T[i] = A[i] - B[i] - U */

050 *tmpc = *tmpa++ - *tmpb++ - u;

051

052 /* U = carry bit of T[i]

053 * Note this saves performing an AND operation since

054 * if a carry does occur it will propagate all the way to the

055 * MSB. As a result a single shift is enough to get the carry

056 */

057 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));

058

059 /* Clear carry from T[i] */

060 *tmpc++ &= MP_MASK;

061 }
062

063 /* now copy higher words if any, e.g. if A has more digits than B */

064 for (; i < max; i++) {
065 /* T[i] = A[i] - U */

066 *tmpc = *tmpa++ - u;

067

068 /* U = carry bit of T[i] */

069 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));

070

071 /* Clear carry from T[i] */

072 *tmpc++ &= MP_MASK;
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073 }
074

075 /* clear digits above used (we may not have grown result above) */

076 for (i = c->used; i < olduse; i++) {
077 *tmpc++ = 0;

078 }
079 }
080

081 mp_clamp (c);

082 return MP_OKAY;

083 }
084

085

Like low level addition we “sort” the inputs, except in this case, the sorting
is hard coded (lines 25 and 26). In reality, the min and max variables are only
aliases and are only used to make the source code easier to read. Again, the
pointer alias optimization is used within this algorithm. The aliases tmpa, tmpb,
and tmpc are initialized (lines 42, 43 and 44) for a, b, and c, respectively.

The first subtraction loop (lines 47 through 61) subtracts digits from both
inputs until the smaller of the two has been exhausted. As remarked earlier, there
is an implementation reason for using the “awkward” method of extracting the
carry (line 57). The traditional method for extracting the carry would be to shift
by lg(β) positions and logically AND the least significant bit. The AND operation
is required because all of the bits above the lg(β)’th bit will be set to one after a
carry occurs from subtraction. This carry extraction requires two relatively cheap
operations to extract the carry. The other method is to simply shift the most
significant bit to the least significant bit, thus extracting the carry with a single
cheap operation. This optimization only works on twos complement machines,
which is a safe assumption to make.

If a has a larger magnitude than b, an additional loop (lines 64 through 73) is
required to propagate the carry through a and copy the result to c.

4.2.3 High Level Addition

Now that both lower level addition and subtraction algorithms have been estab-
lished, an effective high level signed addition algorithm can be established. This
high level addition algorithm will be what other algorithms and developers will
use to perform addition of mp int data types.
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Recall from section 5.2 that an mp int represents an integer with an unsigned
mantissa (the array of digits) and a sign flag. A high level addition is actually
performed as a series of eight separate cases that can be optimized down to three
unique cases.

Algorithm mp add.
Input. Two mp ints a and b
Output. The signed addition c = a + b.

1. if a.sign = b.sign then do
1.1 c.sign← a.sign
1.2 c← |a|+ |b| (s mp add)

2. else do
2.1 if |a| < |b| then do (mp cmp mag)

2.1.1 c.sign← b.sign
2.1.2 c← |b| − |a| (s mp sub)

2.2 else do
2.2.1 c.sign← a.sign
2.2.2 c← |a| − |b|

3. Return(MP OKAY ).

Figure 4.3: Algorithm mp add

Algorithm mp add. This algorithm performs the signed addition of two
mp int variables. There is no reference algorithm to draw upon from either [1]
or [2] since they both only provide unsigned operations. The algorithm is fairly
straightforward but restricted, since subtraction can only produce positive results
(Figure 4.3).

Figure 4.4 lists the eight possible input combinations and is sorted to show
that only three specific cases need to be handled. The return code of the unsigned
operations at steps 1.2, 2.1.2, and 2.2.2 are forwarded to step 3 to check for errors.
This simplifies the description of the algorithm considerably and best follows how
the implementation actually was achieved.

Also note how the sign is set before the unsigned addition or subtraction
is performed. Recall from the descriptions of algorithms s mp add and s mp sub
that the mp clamp function is used at the end to trim excess digits. The mp clamp
algorithm will set the sign to MP ZPOS when the used digit count reaches zero.
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Sign of a Sign of b |a| > |b| Unsigned Operation Result Sign Flag

+ + Yes c = a + b a.sign

+ + No c = a + b a.sign

− − Yes c = a + b a.sign

− − No c = a + b a.sign

+ − No c = b− a b.sign

− + No c = b− a b.sign

+ − Yes c = a− b a.sign

− + Yes c = a− b a.sign

Figure 4.4: Addition Guide Chart

For example, consider performing −a + a with algorithm mp add. By the de-
scription of the algorithm the sign is set to MP NEG, which would produce a
result of −0. However, since the sign is set first, then the unsigned addition is per-
formed, the subsequent usage of algorithm mp clamp within algorithm s mp add
will force −0 to become 0.

File: bn mp add.c

018 /* high level addition (handles signs) */

019 int mp_add (mp_int * a, mp_int * b, mp_int * c)

020 {
021 int sa, sb, res;

022

023 /* get sign of both inputs */

024 sa = a->sign;

025 sb = b->sign;

026

027 /* handle two cases, not four */

028 if (sa == sb) {
029 /* both positive or both negative */

030 /* add their magnitudes, copy the sign */

031 c->sign = sa;

032 res = s_mp_add (a, b, c);

033 } else {
034 /* one positive, the other negative */

035 /* subtract the one with the greater magnitude from */
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036 /* the one of the lesser magnitude. The result gets */

037 /* the sign of the one with the greater magnitude. */

038 if (mp_cmp_mag (a, b) == MP_LT) {
039 c->sign = sb;

040 res = s_mp_sub (b, a, c);

041 } else {
042 c->sign = sa;

043 res = s_mp_sub (a, b, c);

044 }
045 }
046 return res;

047 }
048

049

The source code follows the algorithm fairly closely. The most notable new
source code addition is the usage of the res integer variable, which is used to
pass the result of the unsigned operations forward. Unlike in the algorithm, the
variable res is merely returned as is without explicitly checking it and returning
the constant MP OKAY. The observation is this algorithm will succeed or fail
only if the lower level functions do so. Returning their return code is sufficient.

4.2.4 High Level Subtraction

The high level signed subtraction algorithm is essentially the same as the high
level signed addition algorithm.



4.2 Addition and Subtraction 67

Algorithm mp sub.
Input. Two mp ints a and b
Output. The signed subtraction c = a− b.

1. if a.sign 6= b.sign then do
1.1 c.sign← a.sign
1.2 c← |a|+ |b| (s mp add)

2. else do
2.1 if |a| ≥ |b| then do (mp cmp mag)

2.1.1 c.sign← a.sign
2.1.2 c← |a| − |b| (s mp sub)

2.2 else do

2.2.1 c.sign←
{

MP ZPOS if a.sign = MP NEG
MP NEG otherwise

2.2.2 c← |b| − |a|
3. Return(MP OKAY ).

Figure 4.5: Algorithm mp sub

Algorithm mp sub. This algorithm performs the signed subtraction of two
inputs (Figure 4.5). Similar to algorithm mp add there is no reference in either
[1] or [2]. Also this algorithm is restricted by algorithm s mp sub. Figure 4.6 lists
the eight possible inputs and the operations required.

Sign of a Sign of b |a| ≥ |b| Unsigned Operation Result Sign Flag

+ − Yes c = a + b a.sign

+ − No c = a + b a.sign

− + Yes c = a + b a.sign

− + No c = a + b a.sign

+ + Yes c = a− b a.sign

− − Yes c = a− b a.sign

+ + No c = b− a opposite of a.sign

− − No c = b− a opposite of a.sign

Figure 4.6: Subtraction Guide Chart
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Similar to the case of algorithm mp add, the sign is set first before the unsigned
addition or subtraction, to prevent the algorithm from producing −a−−a = −0
as a result.

File: bn mp sub.c

018 /* high level subtraction (handles signs) */

019 int

020 mp_sub (mp_int * a, mp_int * b, mp_int * c)

021 {
022 int sa, sb, res;

023

024 sa = a->sign;

025 sb = b->sign;

026

027 if (sa != sb) {
028 /* subtract a negative from a positive, OR */

029 /* subtract a positive from a negative. */

030 /* In either case, ADD their magnitudes, */

031 /* and use the sign of the first number. */

032 c->sign = sa;

033 res = s_mp_add (a, b, c);

034 } else {
035 /* subtract a positive from a positive, OR */

036 /* subtract a negative from a negative. */

037 /* First, take the difference between their */

038 /* magnitudes, then... */

039 if (mp_cmp_mag (a, b) != MP_LT) {
040 /* Copy the sign from the first */

041 c->sign = sa;

042 /* The first has a larger or equal magnitude */

043 res = s_mp_sub (a, b, c);

044 } else {
045 /* The result has the *opposite* sign from */

046 /* the first number. */

047 c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;

048 /* The second has a larger magnitude */

049 res = s_mp_sub (b, a, c);

050 }
051 }
052 return res;

053 }
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Much like the implementation of algorithm mp add, the variable res is used
to catch the return code of the unsigned addition or subtraction operations and
forward it to the end of the function. On line 39, the “not equal to” MP LT
expression is used to emulate a “greater than or equal to” comparison.

4.3 Bit and Digit Shifting

It is quite common to think of a multiple precision integer as a polynomial in x;
that is, y = f(β) where f(x) =

∑n−1
i=0 aix

i. This notation arises within discussion
of Montgomery and Diminished Radix Reduction, and Karatsuba multiplication
and squaring.

To facilitate operations on polynomials in x as above, a series of simple “digit”
algorithms have to be established. That is to shift the digits left or right and to
shift individual bits of the digits left and right. It is important to note that not
all “shift” operations are on radix-β digits.

4.3.1 Multiplication by Two

In a binary system where the radix is a power of two, multiplication by two arises
often in other algorithms and is a fairly efficient operation to perform. A single
precision logical shift left is sufficient to multiply a single digit by two.
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Algorithm mp mul 2.
Input. One mp int a
Output. b = 2a.

1. If b.alloc < a.used + 1 then grow b to hold a.used + 1 digits. (mp grow)
2. oldused← b.used
3. b.used← a.used
4. r ← 0
5. for n from 0 to a.used− 1 do

5.1 rr ← an >> (lg(β)− 1)
5.2 bn ← (an << 1) + r (mod β)
5.3 r ← rr

6. If r 6= 0 then do
6.1 bn+1 ← r
6.2 b.used← b.used + 1

7. If b.used < oldused− 1 then do
7.1 for n from b.used to oldused− 1 do

7.1.1 bn ← 0
8. b.sign← a.sign
9. Return(MP OKAY ).

Figure 4.7: Algorithm mp mul 2

Algorithm mp mul 2. This algorithm will quickly multiply a mp int by
two provided β is a power of two. Neither [1] nor [2] describes such an algorithm
despite the fact it arises often in other algorithms. The algorithm is set up much
like the lower level algorithm s mp add since it is for all intents and purposes
equivalent to the operation b = |a|+ |a| (Figure 4.7).

Steps 1 and 2 grow the input as required to accommodate the maximum num-
ber of used digits in the result. The initial used count is set to a.used at step 4.
Only if there is a final carry will the used count require adjustment.

Step 6 is an optimization implementation of the addition loop for this specific
case. That is, since the two values being added together are the same, there is no
need to perform two reads from the digits of a. Step 6.1 performs a single precision
shift on the current digit an to obtain what will be the carry for the next iteration.
Step 6.2 calculates the n’th digit of the result as single precision shift of an plus
the previous carry. Recall from Chapter 5 that an << 1 is equivalent to an · 2.
An iteration of the addition loop is finished with forwarding the carry to the next
iteration.
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Step 7 takes care of any final carry by setting the a.used’th digit of the result
to the carry and augmenting the used count of b. Step 8 clears any leading digits
of b in case it originally had a larger magnitude than a.

File: bn mp mul 2.c

018 /* b = a*2 */

019 int mp_mul_2(mp_int * a, mp_int * b)

020 {
021 int x, res, oldused;

022

023 /* grow to accommodate result */

024 if (b->alloc < a->used + 1) {
025 if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
026 return res;

027 }
028 }
029

030 oldused = b->used;

031 b->used = a->used;

032

033 {
034 register mp_digit r, rr, *tmpa, *tmpb;

035

036 /* alias for source */

037 tmpa = a->dp;

038

039 /* alias for dest */

040 tmpb = b->dp;

041

042 /* carry */

043 r = 0;

044 for (x = 0; x < a->used; x++) {
045

046 /* get what will be the *next* carry bit from the

047 * MSB of the current digit

048 */

049 rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));

050

051 /* now shift up this digit, add in the carry [from the previous] */

052 *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;

053



72 www.syngress.com

054 /* copy the carry that would be from the source

055 * digit into the next iteration

056 */

057 r = rr;

058 }
059

060 /* new leading digit? */

061 if (r != 0) {
062 /* add a MSB which is always 1 at this point */

063 *tmpb = 1;

064 ++(b->used);

065 }
066

067 /* now zero any excess digits on the destination

068 * that we didn’t write to

069 */

070 tmpb = b->dp + b->used;

071 for (x = b->used; x < oldused; x++) {
072 *tmpb++ = 0;

073 }
074 }
075 b->sign = a->sign;

076 return MP_OKAY;

077 }
078

This implementation is essentially an optimized implementation of s mp add
for the case of doubling an input. The only noteworthy difference is the use of the
logical shift operator on line 52 to perform a single precision doubling.

4.3.2 Division by Two

A division by two can just as easily be accomplished with a logical shift right, as
multiplication by two can be with a logical shift left.
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Algorithm mp div 2.
Input. One mp int a
Output. b = a/2.

1. If b.alloc < a.used then grow b to hold a.used digits. (mp grow)
2. If the reallocation failed return(MP MEM ).
3. oldused← b.used
4. b.used← a.used
5. r ← 0
6. for n from b.used− 1 to 0 do

6.1 rr ← an (mod 2)
6.2 bn ← (an >> 1) + (r << (lg(β)− 1)) (mod β)
6.3 r ← rr

7. If b.used < oldused− 1 then do
7.1 for n from b.used to oldused− 1 do

7.1.1 bn ← 0
8. b.sign← a.sign
9. Clamp excess digits of b. (mp clamp)
10. Return(MP OKAY ).

Figure 4.8: Algorithm mp div 2

Algorithm mp div 2. This algorithm will divide an mp int by two using
logical shifts to the right. Like mp mul 2, it uses a modified low level addition
core as the basis of the algorithm. Unlike mp mul 2, the shift operations work
from the leading digit to the trailing digit. The algorithm could be written to
work from the trailing digit to the leading digit; however, it would have to stop
one short of a.used−1 digits to prevent reading past the end of the array of digits
(Figure 4.8).

Essentially, the loop at step 6 is similar to that of mp mul 2, except the logical
shifts go in the opposite direction and the carry is at the least significant bit, not
the most significant bit.

File: bn mp div 2.c

018 /* b = a/2 */

019 int mp_div_2(mp_int * a, mp_int * b)

020 {
021 int x, res, oldused;

022

023 /* copy */
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024 if (b->alloc < a->used) {
025 if ((res = mp_grow (b, a->used)) != MP_OKAY) {
026 return res;

027 }
028 }
029

030 oldused = b->used;

031 b->used = a->used;

032 {
033 register mp_digit r, rr, *tmpa, *tmpb;

034

035 /* source alias */

036 tmpa = a->dp + b->used - 1;

037

038 /* dest alias */

039 tmpb = b->dp + b->used - 1;

040

041 /* carry */

042 r = 0;

043 for (x = b->used - 1; x >= 0; x--) {
044 /* get the carry for the next iteration */

045 rr = *tmpa & 1;

046

047 /* shift the current digit, add in carry and store */

048 *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));

049

050 /* forward carry to next iteration */

051 r = rr;

052 }
053

054 /* zero excess digits */

055 tmpb = b->dp + b->used;

056 for (x = b->used; x < oldused; x++) {
057 *tmpb++ = 0;

058 }
059 }
060 b->sign = a->sign;

061 mp_clamp (b);

062 return MP_OKAY;

063 }
064
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4.4 Polynomial Basis Operations

Recall from section 4.3 that any integer can be represented as a polynomial in x as
y = f(β). Such a representation is also known as the polynomial basis [3, pp. 48].
Given such a notation, a multiplication or division by x amounts to shifting whole
digits a single place. The need for such operations arises in several other higher
level algorithms such as Barrett and Montgomery reduction, integer division, and
Karatsuba multiplication.

Converting from an array of digits to polynomial basis is very simple. Consider
the integer y ≡ (a2, a1, a0)β and recall that y =

∑2
i=0 aiβ

i. Simply replace β
with x and the expression is in polynomial basis. For example, f(x) = 8x + 9
is the polynomial basis representation for 89 using radix ten. That is, f(10) =
8(10) + 9 = 89.

4.4.1 Multiplication by x

Given a polynomial in x such as f(x) = anxn + an−1x
n−1 + ... + a0, multiplying

by x amounts to shifting the coefficients up one degree. In this case, f(x) · x =
anxn+1 + an−1x

n + ... + a0x. From a scalar basis point of view, multiplying by x
is equivalent to multiplying by the integer β.
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Algorithm mp lshd.
Input. One mp int a and an integer b
Output. a← a · βb (equivalent to multiplication by xb).

1. If b ≤ 0 then return(MP OKAY ).
2. If a.alloc < a.used + b then grow a to at least a.used + b digits. (mp grow).
3. If the reallocation failed return(MP MEM ).
4. a.used← a.used + b
5. i← a.used− 1
6. j ← a.used− 1− b
7. for n from a.used− 1 to b do

7.1 ai ← aj

7.2 i← i− 1
7.3 j ← j − 1

8. for n from 0 to b− 1 do
8.1 an ← 0

9. Return(MP OKAY ).

Figure 4.9: Algorithm mp lshd

Algorithm mp lshd. This algorithm multiplies an mp int by the b’th power
of x. This is equivalent to multiplying by βb. The algorithm differs from the
other algorithms presented so far as it performs the operation in place instead of
storing the result in a separate location. The motivation behind this change is the
way this function is typically used. Algorithms such as mp add store the result
in an optionally different third mp int because the original inputs are often still
required. Algorithm mp lshd (and similarly algorithm mp rshd) is typically used
on values where the original value is no longer required. The algorithm will return
success immediately if b ≤ 0, since the rest of algorithm is only valid when b > 0
(Figure 4.9).

First, the destination a is grown as required to accommodate the result. The
counters i and j are used to form a sliding window over the digits of a of length b
(Figure 4.10). The head of the sliding window is at i (the leading digit) and the
tail at j (the trailing digit). The loop in step 7 copies the digit from the tail to
the head. In each iteration, the window is moved down one digit. The last loop
in step 8 sets the lower b digits to zero.
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Figure 4.10: Sliding Window Movement

File: bn mp lshd.c

018 /* shift left a certain amount of digits */

019 int mp_lshd (mp_int * a, int b)

020 {
021 int x, res;

022

023 /* if its less than zero return */

024 if (b <= 0) {
025 return MP_OKAY;

026 }
027

028 /* grow to fit the new digits */

029 if (a->alloc < a->used + b) {
030 if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
031 return res;

032 }
033 }
034

035 {
036 register mp_digit *top, *bottom;

037

038 /* increment the used by the shift amount then copy upwards */

039 a->used += b;

040

041 /* top */



78 www.syngress.com

042 top = a->dp + a->used - 1;

043

044 /* base */

045 bottom = a->dp + a->used - 1 - b;

046

047 /* much like mp_rshd this is implemented using a sliding window

048 * except the window goes the otherway around. Copying from

049 * the bottom to the top. see bn_mp_rshd.c for more info.

050 */

051 for (x = a->used - 1; x >= b; x--) {
052 *top-- = *bottom--;

053 }
054

055 /* zero the lower digits */

056 top = a->dp;

057 for (x = 0; x < b; x++) {
058 *top++ = 0;

059 }
060 }
061 return MP_OKAY;

062 }
063

The if statement (line 24) ensures that the b variable is greater than zero since
we do not interpret negative shift counts properly. The used count is incremented
by b before the copy loop begins. This eliminates the need for an additional
variable in the for loop. The variable top (line 42) is an alias for the leading digit,
while bottom (line 45) is an alias for the trailing edge. The aliases form a window
of exactly b digits over the input.

4.4.2 Division by x

Division by powers of x is easily achieved by shifting the digits right and removing
any that will end up to the right of the zero’th digit.
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Algorithm mp rshd.
Input. One mp int a and an integer b
Output. a← a/βb (Divide by xb).

1. If b ≤ 0 then return.
2. If a.used ≤ b then do

2.1 Zero a. (mp zero).
2.2 Return.

3. i← 0
4. j ← b
5. for n from 0 to a.used− b− 1 do

5.1 ai ← aj

5.2 i← i + 1
5.3 j ← j + 1

6. for n from a.used− b to a.used− 1 do
6.1 an ← 0

7. a.used← a.used− b
8. Return.

Figure 4.11: Algorithm mp rshd

Algorithm mp rshd. This algorithm divides the input in place by the b’th
power of x. It is analogous to dividing by a βb but much quicker since it does not
require single precision division. This algorithm does not actually return an error
code as it cannot fail (Figure 4.11).

If the input b is less than one, the algorithm quickly returns without performing
any work. If the used count is less than or equal to the shift count b then it will
simply zero the input and return.

After the trivial cases of inputs have been handled, the sliding window is set
up. Much like the case of algorithm mp lshd, a sliding window that is b digits
wide is used to copy the digits. Unlike mp lshd, the window slides in the opposite
direction from the trailing to the leading digit. In addition, the digits are copied
from the leading to the trailing edge.

Once the window copy is complete, the upper digits must be zeroed and the
used count decremented.

File: bn mp rshd.c

018 /* shift right a certain amount of digits */

019 void mp_rshd (mp_int * a, int b)
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020 {
021 int x;

022

023 /* if b <= 0 then ignore it */

024 if (b <= 0) {
025 return;

026 }
027

028 /* if b > used then simply zero it and return */

029 if (a->used <= b) {
030 mp_zero (a);

031 return;

032 }
033

034 {
035 register mp_digit *bottom, *top;

036

037 /* shift the digits down */

038

039 /* bottom */

040 bottom = a->dp;

041

042 /* top [offset into digits] */

043 top = a->dp + b;

044

045 /* this is implemented as a sliding window where

046 * the window is b-digits long and digits from

047 * the top of the window are copied to the bottom

048 *

049 * e.g.

050

051 b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->

052 /\ | ---->

053 \-------------------/ ---->

054 */

055 for (x = 0; x < (a->used - b); x++) {
056 *bottom++ = *top++;

057 }
058

059 /* zero the top digits */

060 for (; x < a->used; x++) {
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061 *bottom++ = 0;

062 }
063 }
064

065 /* remove excess digits */

066 a->used -= b;

067 }
068

The only noteworthy element of this routine is the lack of a return type since
it cannot fail. Like mp lshd(), we form a sliding window except we copy in the
other direction. After the window (line 60), we then zero the upper digits of the
input to make sure the result is correct.

4.5 Powers of Two

Now that algorithms for moving single bits and whole digits exist, algorithms for
moving the “in between” distances are required. For example, to quickly multiply
by 2k for any k without using a full multiplier algorithm would prove useful.
Instead of performing single shifts k times to achieve a multiplication by 2±k, a
mixture of whole digit shifting and partial digit shifting is employed.
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4.5.1 Multiplication by Power of Two

Algorithm mp mul 2d.
Input. One mp int a and an integer b

Output. c← a · 2b.

1. c← a. (mp copy)
2. If c.alloc < c.used + ⌊b/lg(β)⌋+ 2 then grow c accordingly.
3. If the reallocation failed return(MP MEM ).
4. If b ≥ lg(β) then

4.1 c← c · β⌊b/lg(β)⌋ (mp lshd).
4.2 If step 4.1 failed return(MP MEM ).

5. d← b (mod lg(β))
6. If d 6= 0 then do

6.1 mask ← 2d

6.2 r ← 0
6.3 for n from 0 to c.used− 1 do

6.3.1 rr← cn >> (lg(β)− d) (mod mask)
6.3.2 cn ← (cn << d) + r (mod β)
6.3.3 r ← rr

6.4 If r > 0 then do
6.4.1 cc.used ← r
6.4.2 c.used← c.used + 1

7. Return(MP OKAY ).

Figure 4.12: Algorithm mp mul 2d

Algorithm mp mul 2d. This algorithm multiplies a by 2b and stores the
result in c. The algorithm uses algorithm mp lshd and a derivative of algorithm
mp mul 2 to quickly compute the product (Figure 4.12).

First, the algorithm will multiply a by x⌊b/lg(β)⌋, which will ensure that the
remainder multiplicand is less than β. For example, if b = 37 and β = 228, then
this step will multiply by x leaving a multiplication by 237−28 = 29 left.

After the digits have been shifted appropriately, at most lg(β) − 1 shifts are
left to perform. Step 5 calculates the number of remaining shifts required. If
it is non-zero, a modified shift loop is used to calculate the remaining product.
Essentially, the loop is a generic version of algorithm mp mul 2 designed to handle
any shift count in the range 1 ≤ x < lg(β). The mask variable is used to extract
the upper d bits to form the carry for the next iteration.
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This algorithm is loosely measured as a O(2n) algorithm, which means that if
the input is n-digits, it takes 2n “time” to complete. It is possible to optimize this
algorithm down to a O(n) algorithm at a cost of making the algorithm slightly
harder to follow.

File: bn mp mul 2d.c

018 /* shift left by a certain bit count */

019 int mp_mul_2d (mp_int * a, int b, mp_int * c)

020 {
021 mp_digit d;

022 int res;

023

024 /* copy */

025 if (a != c) {
026 if ((res = mp_copy (a, c)) != MP_OKAY) {
027 return res;

028 }
029 }
030

031 if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
032 if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
033 return res;

034 }
035 }
036

037 /* shift by as many digits in the bit count */

038 if (b >= (int)DIGIT_BIT) {
039 if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
040 return res;

041 }
042 }
043

044 /* shift any bit count < DIGIT_BIT */

045 d = (mp_digit) (b % DIGIT_BIT);

046 if (d != 0) {
047 register mp_digit *tmpc, shift, mask, r, rr;

048 register int x;

049

050 /* bitmask for carries */

051 mask = (((mp_digit)1) << d) - 1;

052
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053 /* shift for msbs */

054 shift = DIGIT_BIT - d;

055

056 /* alias */

057 tmpc = c->dp;

058

059 /* carry */

060 r = 0;

061 for (x = 0; x < c->used; x++) {
062 /* get the higher bits of the current word */

063 rr = (*tmpc >> shift) & mask;

064

065 /* shift the current word and OR in the carry */

066 *tmpc = ((*tmpc << d) | r) & MP_MASK;

067 ++tmpc;

068

069 /* set the carry to the carry bits of the current word */

070 r = rr;

071 }
072

073 /* set final carry */

074 if (r != 0) {
075 c->dp[(c->used)++] = r;

076 }
077 }
078 mp_clamp (c);

079 return MP_OKAY;

080 }
081

The shifting is performed in place, which means the first step (line 25) is to
copy the input to the destination. We avoid calling mp copy() by making sure
the mp ints are different. The destination then has to be grown (line 32) to
accommodate the result.

If the shift count b is larger than lg(β), then a call to mp lshd() is used to
handle all the multiples of lg(β), leaving only a remaining shift of lg(β) − 1 or
fewer bits left. Inside the actual shift loop (lines 61 to 71) we make use of pre–
computed values shift and mask to extract the carry bit(s) to pass into the next
iteration of the loop. The r and rr variables form a chain between consecutive
iterations to propagate the carry.
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4.5.2 Division by Power of Two

Algorithm mp div 2d.
Input. One mp int a and an integer b

Output. c← ⌊a/2b⌋, d← a (mod 2b).

1. If b ≤ 0 then do
1.1 c← a (mp copy)
1.2 d← 0 (mp zero)
1.3 Return(MP OKAY ).

2. c← a

3. d← a (mod 2b) (mp mod 2d)
4. If b ≥ lg(β) then do

4.1 c← ⌊c/β⌊b/lg(β)⌋⌋ (mp rshd).
5. k ← b (mod lg(β))
6. If k 6= 0 then do

6.1 mask ← 2k

6.2 r ← 0
6.3 for n from c.used− 1 to 0 do

6.3.1 rr ← cn (mod mask)
6.3.2 cn ← (cn >> k) + (r << (lg(β)− k))
6.3.3 r ← rr

7. Clamp excess digits of c. (mp clamp)
8. Return(MP OKAY ).

Figure 4.13: Algorithm mp div 2d

Algorithm mp div 2d. This algorithm will divide an input a by 2b and
produce the quotient and remainder. The algorithm is designed much like al-
gorithm mp mul 2d by first using whole digit shifts then single precision shifts.
This algorithm will also produce the remainder of the division by using algorithm
mp mod 2d (Figure 4.13).

File: bn mp div 2d.c

018 /* shift right by a certain bit count

019 (store quotient in c, optional remainder in d) */

020 int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)

021 {
022 mp_digit D, r, rr;
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023 int x, res;

024 mp_int t;

025

026

027 /* if the shift count is <= 0 then we do no work */

028 if (b <= 0) {
029 res = mp_copy (a, c);

030 if (d != NULL) {
031 mp_zero (d);

032 }
033 return res;

034 }
035

036 if ((res = mp_init (&t)) != MP_OKAY) {
037 return res;

038 }
039

040 /* get the remainder */

041 if (d != NULL) {
042 if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
043 mp_clear (&t);

044 return res;

045 }
046 }
047

048 /* copy */

049 if ((res = mp_copy (a, c)) != MP_OKAY) {
050 mp_clear (&t);

051 return res;

052 }
053

054 /* shift by as many digits in the bit count */

055 if (b >= (int)DIGIT_BIT) {
056 mp_rshd (c, b / DIGIT_BIT);

057 }
058

059 /* shift any bit count < DIGIT_BIT */

060 D = (mp_digit) (b % DIGIT_BIT);

061 if (D != 0) {
062 register mp_digit *tmpc, mask, shift;

063
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064 /* mask */

065 mask = (((mp_digit)1) << D) - 1;

066

067 /* shift for lsb */

068 shift = DIGIT_BIT - D;

069

070 /* alias */

071 tmpc = c->dp + (c->used - 1);

072

073 /* carry */

074 r = 0;

075 for (x = c->used - 1; x >= 0; x--) {
076 /* get the lower bits of this word in a temp */

077 rr = *tmpc & mask;

078

079 /* shift the current word and

080 mix in the carry bits from the previous word */

081 *tmpc = (*tmpc >> D) | (r << shift);

082 --tmpc;

083

084 /* set the carry to the carry bits of the current word found above */

085 r = rr;

086 }
087 }
088 mp_clamp (c);

089 if (d != NULL) {
090 mp_exch (&t, d);

091 }
092 mp_clear (&t);

093 return MP_OKAY;

094 }
095

The implementation of algorithm mp div 2d is slightly different than the al-
gorithm specifies. The remainder d may be optionally ignored by passing NULL
as the pointer to the mp int variable. The temporary mp int variable t is used to
hold the result of the remainder operation until the end. This allows d and a to
represent the same mp int without modifying a before the quotient is obtained.

The remainder of the source code is essentially the same as the source code for
mp mul 2d. The only significant difference is the direction of the shifts.
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4.5.3 Remainder of Division by Power of Two

The last algorithm in the series of polynomial basis power of two algorithms is
calculating the remainder of division by 2b. This algorithm benefits from the fact
that in twos complement arithmetic, a (mod 2b) is the same as a AND 2b − 1.

Algorithm mp mod 2d.
Input. One mp int a and an integer b

Output. c← a (mod 2b).

1. If b ≤ 0 then do
1.1 c← 0 (mp zero)
1.2 Return(MP OKAY ).

2. If b > a.used · lg(β) then do
2.1 c← a (mp copy)
2.2 Return the result of step 2.1.

3. c← a
4. If step 3 failed return(MP MEM ).
5. for n from ⌈b/lg(β)⌉ to c.used do

5.1 cn ← 0
6. k ← b (mod lg(β))

7. c⌊b/lg(β)⌋ ← c⌊b/lg(β)⌋ (mod 2k).
8. Clamp excess digits of c. (mp clamp)
9. Return(MP OKAY ).

Figure 4.14: Algorithm mp mod 2d

Algorithm mp mod 2d. This algorithm will quickly calculate the value of
a (mod 2b). First, if b is less than or equal to zero the result is set to zero. If b
is greater than the number of bits in a, then it simply copies a to c and returns.
Otherwise, a is copied to b, leading digits are removed and the remaining leading
digit is trimmed to the exact bit count (Figure 4.14).

File: bn mp mod 2d.c

018 /* calc a value mod 2**b */

019 int

020 mp_mod_2d (mp_int * a, int b, mp_int * c)

021 {
022 int x, res;

023
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024 /* if b is <= 0 then zero the int */

025 if (b <= 0) {
026 mp_zero (c);

027 return MP_OKAY;

028 }
029

030 /* if the modulus is larger than the value than return */

031 if (b >= (int) (a->used * DIGIT_BIT)) {
032 res = mp_copy (a, c);

033 return res;

034 }
035

036 /* copy */

037 if ((res = mp_copy (a, c)) != MP_OKAY) {
038 return res;

039 }
040

041 /* zero digits above the last digit of the modulus */

042 for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1);

043 x < c->used; x++) {
044 c->dp[x] = 0;

045 }
046 /* clear the digit that is not completely outside/inside the modulus */

047 c->dp[b / DIGIT_BIT] &=

048 (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) -

049 ((mp_digit) 1));

050 mp_clamp (c);

051 return MP_OKAY;

052 }
053

We first avoid cases of b ≤ 0 by simply mp zero()’ing the destination in such
cases. Next, if 2b is larger than the input, we just mp copy() the input and return
right away. After this point we know we must actually perform some work to
produce the remainder.

Recalling that reducing modulo 2k and a binary “and” with 2k − 1 are nu-
merically equivalent we can quickly reduce the number. First, we zero any digits
above the last digit in 2b (line 42). Next, we reduce the leading digit of both (line
47) and then mp clamp().
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Exercises

[3] Devise an algorithm that performs a · 2b for generic values of b
in O(n) time.

[3] Devise an efficient algorithm to multiply by small low hamming
weight values such as 3, 5, and 9. Extend it to handle all values
up to 64 with a hamming weight less than three.

[2] Modify the preceding algorithm to handle values of the form
2k − 1.

[3] Using only algorithms mp mul 2, mp div 2, and mp add, create an
algorithm to multiply two integers in roughly O(2n2) time for
any n-bit input. Note that the time of addition is ignored in the
calculation.

[5] Improve the previous algorithm to have a working time of at most

O
(

2(k−1)n +
(

2n2

k

))

for an appropriate choice of k. Again, ignore

the cost of addition.

[2] Devise a chart to find optimal values of k for the previous problem
for n = 64 . . .1024 in steps of 64.

[2] Using only algorithms mp abs and mp sub, devise another method for
calculating the result of a signed comparison.



Chapter 5

Multiplication and Squaring

5.1 The Multipliers

For most number theoretic problems, including certain public key cryptographic
algorithms, the “multipliers” form the most important subset of algorithms of any
multiple precision integer package. The set of multiplier algorithms include integer
multiplication, squaring, and modular reduction, where in each of the algorithms
single precision multiplication is the dominant operation performed. This chapter
discusses integer multiplication and squaring, leaving modular reductions for the
subsequent chapter.

The importance of the multiplier algorithms is for the most part driven by the
fact that certain popular public key algorithms are based on modular exponenti-
ation; that is, computing d ≡ ab (mod c) for some arbitrary choice of a, b, c, and
d. During a modular exponentiation the majority1 of the processor time is spent
performing single precision multiplications.

For centuries, general–purpose multiplication has required a lengthy O(n2)
process, whereby each digit of one multiplicand has to be multiplied against every
digit of the other multiplicand. Traditional long-hand multiplication is based
on this process; while the techniques can differ, the overall algorithm used is
essentially the same. Only “recently” have faster algorithms been studied. First
Karatsuba multiplication was discovered in 1962. This algorithm can multiply two

1Roughly speaking, a modular exponentiation will spend about 40% of the time performing
modular reductions, 35% of the time performing squaring, and 25% of the time performing
multiplications.

91
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numbers with considerably fewer single precision multiplications when compared
to the long-hand approach. This technique led to the discovery of polynomial
basis algorithms [19] and subsequently Fourier Transform based solutions.

5.2 Multiplication

5.2.1 The Baseline Multiplication

Computing the product of two integers in software can be achieved using a triv-
ial adaptation of the standard O(n2) long-hand multiplication algorithm that
schoolchildren are taught. The algorithm is considered an O(n2) algorithm, since
for two n-digit inputs n2 single precision multiplications are required. More specif-
ically, for an m and n digit input m·n single precision multiplications are required.
To simplify most discussions, it will be assumed that the inputs have a comparable
number of digits.

The “baseline multiplication” algorithm is designed to act as the “catch-all”
algorithm, only to be used when the faster algorithms cannot be used. This algo-
rithm does not use any particularly interesting optimizations and should ideally
be avoided if possible. One important facet of this algorithm is that it has been
modified to only produce a certain amount of output digits as resolution. The im-
portance of this modification will become evident during the discussion of Barrett
modular reduction. Recall that for an n and m digit input the product will be at
most n + m digits. Therefore, this algorithm can be reduced to a full multiplier
by having it produce n + m digits of the product.

Recall from section 4.2.2 the definition of γ as the number of bits in the type
mp digit. We shall now extend the variable set to include α, which shall represent
the number of bits in the type mp word. This implies that 2α > 2 · β2. The
constant δ = 2α−2lg(β) will represent the maximal weight of any column in a
product (see 6.2 for more information).
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Algorithm s mp mul digs.
Input. mp int a, mp int b and an integer digs
Output. c← |a| · |b| (mod βdigs).

1. If min(a.used, b.used) < δ then do
1.1 Calculate c = |a| · |b| by the Comba method (see algorithm 5.5).
1.2 Return the result of step 1.1

Allocate and initialize a temporary mp int.
2. Init t to be of size digs
3. If step 2 failed return(MP MEM ).
4. t.used← digs

Compute the product.
5. for ix from 0 to a.used− 1 do

5.1 u← 0
5.2 pb← min(b.used, digs− ix)
5.3 If pb < 1 then goto step 6.
5.4 for iy from 0 to pb− 1 do

5.4.1 r̂ ← tiy+ix + aix · biy + u
5.4.2 tiy+ix ← r̂ (mod β)
5.4.3 u← ⌊r̂/β⌋

5.5 if ix + pb < digs then do
5.5.1 tix+pb ← u

6. Clamp excess digits of t.
7. Swap c with t
8. Clear t
9. Return(MP OKAY ).

Figure 5.1: Algorithm s mp mul digs

Algorithm s mp mul digs. This algorithm computes the unsigned product
of two inputs a and b, limited to an output precision of digs digits. While it may
seem a bit awkward to modify the function from its simple O(n2) description,
the usefulness of partial multipliers will arise in a subsequent algorithm. The
algorithm is loosely based on algorithm 14.12 from [2, pp. 595] and is similar to
Algorithm M of Knuth [1, pp. 268]. Algorithm s mp mul digs differs from these
cited references since it can produce a variable output precision regardless of the
precision of the inputs (Figure 5.1).

The first thing this algorithm checks for is whether a Comba multiplier can
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be used instead. If the minimum digit count of either input is less than δ, then
the Comba method may be used instead. After the Comba method is ruled out,
the baseline algorithm begins. A temporary mp int variable t is used to hold
the intermediate result of the product. This allows the algorithm to be used to
compute products when either a = c or b = c without overwriting the inputs.

All of step 5 is the infamous O(n2) multiplication loop slightly modified to only
produce up to digs digits of output. The pb variable is given the count of digits to
read from b inside the nested loop. If pb ≤ 1, then no more output digits can be
produced and the algorithm will exit the loop. The best way to think of the loops
are as a series of pb × 1 multiplications. That is, in each pass of the innermost
loop, aix is multiplied against b and the result is added (with an appropriate shift)
to t.

For example, consider multiplying 576 by 241. That is equivalent to computing
100(1)(576) + 101(4)(576) + 102(2)(576), which is best visualized in Figure 5.2.

5 7 6
× 2 4 1

5 7 6 100(1)(576)
2 3 6 1 6 101(4)(576) + 100(1)(576)

1 3 8 8 1 6 102(2)(576) + 101(4)(576) + 100(1)(576)

Figure 5.2: Long-Hand Multiplication Diagram

Each row of the product is added to the result after being shifted to the left
(multiplied by a power of the radix ) by the appropriate count. That is, in pass ix
of the inner loop the product is added starting at the ix’th digit of the result.

Step 5.4.1 introduces the hat symbol (e.g., r̂), which represents a double pre-
cision variable. The multiplication on that step is assumed to be a double wide
output single precision multiplication. That is, two single precision variables are
multiplied to produce a double precision result. The step is somewhat optimized
from a long-hand multiplication algorithm because the carry from the addition
in step 5.4.1 is propagated through the nested loop. If the carry were not prop-
agated immediately, it would overflow the single precision digit tix+iy and the
result would be lost.

At step 5.5 the nested loop is finished and any carry that was left over should
be forwarded. The carry does not have to be added to the ix + pb’th digit since
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that digit is assumed to be zero at this point. However, if ix + pb ≥ digs, the
carry is not set, as it would make the result exceed the precision requested.

File: bn s mp mul digs.c

018 /* multiplies |a| * |b| and only computes up to digs digits of result

019 * HAC pp. 595, Algorithm 14.12 Modified so you can control how

020 * many digits of output are created.

021 */

022 int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)

023 {
024 mp_int t;

025 int res, pa, pb, ix, iy;

026 mp_digit u;

027 mp_word r;

028 mp_digit tmpx, *tmpt, *tmpy;

029

030 /* can we use the fast multiplier? */

031 if (((digs) < MP_WARRAY) &&

032 MIN (a->used, b->used) <

033 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
034 return fast_s_mp_mul_digs (a, b, c, digs);

035 }
036

037 if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
038 return res;

039 }
040 t.used = digs;

041

042 /* compute the digits of the product directly */

043 pa = a->used;

044 for (ix = 0; ix < pa; ix++) {
045 /* set the carry to zero */

046 u = 0;

047

048 /* limit ourselves to making digs digits of output */

049 pb = MIN (b->used, digs - ix);

050

051 /* setup some aliases */

052 /* copy of the digit from a used within the nested loop */

053 tmpx = a->dp[ix];

054
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055 /* an alias for the destination shifted ix places */

056 tmpt = t.dp + ix;

057

058 /* an alias for the digits of b */

059 tmpy = b->dp;

060

061 /* compute the columns of the output and propagate the carry */

062 for (iy = 0; iy < pb; iy++) {
063 /* compute the column as a mp_word */

064 r = ((mp_word)*tmpt) +

065 ((mp_word)tmpx) * ((mp_word)*tmpy++) +

066 ((mp_word) u);

067

068 /* the new column is the lower part of the result */

069 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));

070

071 /* get the carry word from the result */

072 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));

073 }
074 /* set carry if it is placed below digs */

075 if (ix + iy < digs) {
076 *tmpt = u;

077 }
078 }
079

080 mp_clamp (&t);

081 mp_exch (&t, c);

082

083 mp_clear (&t);

084 return MP_OKAY;

085 }
086

First, we determine (line 31) if the Comba method can be used since it is faster.
The conditions for using the Comba routine are that min(a.used, b.used) < δ and
the number of digits of output is less than MP WARRAY. This new constant
is used to control the stack usage in the Comba routines. By default it is set to
δ, but can be reduced when memory is at a premium.

If we cannot use the Comba method we proceed to set up the baseline routine.
We allocate the the destination mp int t (line 37) to the exact size of the output
to avoid further reallocations. At this point, we now begin the O(n2) loop.
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This implementation of multiplication has the caveat that it can be trimmed
to only produce a variable number of digits as output. In each iteration of the
outer loop the pb variable is set (line 49) to the maximum number of inner loop
iterations.

Inside the inner loop we calculate r̂ as the mp word product of the two
mp digits and the addition of the carry from the previous iteration. A partic-
ularly important observation is that most modern optimizing C compilers (GCC
for instance) can recognize that an N × N → 2N multiplication is all that is
required for the product. In x86 terms, for example, this means using the MUL
instruction.

Each digit of the product is stored in turn (line 69) and the carry propagated
(line 72) to the next iteration.

5.2.2 Faster Multiplication by the “Comba” Method

One of the huge drawbacks of the “baseline” algorithms is that at the O(n2) level
the carry must be computed and propagated upwards. This makes the nested
loop very sequential and hard to unroll and implement in parallel. The “Comba”
[4] method is named after little known (in cryptographic venues) Paul G. Comba,
who described a method of implementing fast multipliers that do not require
nested carry fix-up operations. As an interesting aside it seems that Paul Barrett
describes a similar technique in his 1986 paper [6] written five years before.

At the heart of the Comba technique is again the long-hand algorithm, except
in this case a slight twist is placed on how the columns of the result are produced.
In the standard long-hand algorithm, rows of products are produced and then
added together to form the result. In the baseline algorithm, the columns are
added together after each iteration to get the result instantaneously.

In the Comba algorithm, the columns of the result are produced entirely in-
dependently of each other; that is, at the O(n2) level a simple multiplication and
addition step is performed. The carries of the columns are propagated after the
nested loop to reduce the amount of work required. Succinctly, the first step of
the algorithm is to compute the product vector ~x as follows:

~xn =
∑

i+j=n

aibj , ∀n ∈ {0, 1, 2, . . . , i + j} (5.1)

where ~xn is the n′th column of the output vector. Consider Figure 5.3, which
computes the vector ~x for the multiplication of 576 and 241.
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5 7 6 First Input

× 2 4 1 Second Input

1 · 5 = 5 1 · 7 = 7 1 · 6 = 6 First pass
4 · 5 = 20 4 · 7 + 5 = 33 4 · 6 + 7 = 31 6 Second pass

2 · 5 = 10 2 · 7 + 20 = 34 2 · 6 + 33 = 45 31 6 Third pass

10 34 45 31 6 Final Result

Figure 5.3: Comba Multiplication Diagram

At this point the vector x = 〈10, 34, 45, 31, 6〉 is the result of the first step
of the Comba multiplier. Now the columns must be fixed by propagating the
carry upwards. The resultant vector will have one extra dimension over the input
vector, which is congruent to adding a leading zero digit (Figure 5.4).

Algorithm Comba Fixup.
Input. Vector ~x of dimension k
Output. Vector ~x such that the carries have been propagated.

1. for n from 0 to k − 1 do
1.1 ~xn+1 ← ~xn+1 + ⌊~xn/β⌋
1.2 ~xn ← ~xn (mod β)

2. Return(~x).

Figure 5.4: Algorithm Comba Fixup

With that algorithm and k = 5 and β = 10 the ~x = 〈1, 3, 8, 8, 1, 6〉 vector is
produced. In this case, 241 · 576 is in fact 138816 and the procedure succeeded. If
the algorithm is correct and, as will be demonstrated shortly, more efficient than
the baseline algorithm, why not simply always use this algorithm?

Column Weight.

At the nested O(n2) level the Comba method adds the product of two single
precision variables to each column of the output independently. A serious obstacle
is if the carry is lost, due to lack of precision before the algorithm has a chance to
fix the carries. For example, in the multiplication of two three-digit numbers, the
third column of output will be the sum of three single precision multiplications.
If the precision of the accumulator for the output digits is less than 3 · (β − 1)2,
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then an overflow can occur and the carry information will be lost. For any m and
n digit inputs the maximum weight of any column is min(m, n), which is fairly
obvious.

The maximum number of terms in any column of a product is known as the
“column weight” and strictly governs when the algorithm can be used. Recall
that a double precision type has α bits of resolution and a single precision digit
has lg(β) bits of precision. Given these two quantities we must not violate:

k · (β − 1)
2

< 2α (5.2)

which reduces to

k ·
(

β2 − 2β + 1
)

< 2α (5.3)

Let ρ = lg(β) represent the number of bits in a single precision digit. By
further re-arrangement of the equation the final solution is found.

k <
2α

(22ρ − 2ρ+1 + 1)
(5.4)

The defaults for LibTomMath are β = 228 and α = 264, which means that k
is bounded by k < 257. In this configuration, the smaller input may not have
more than 256 digits if the Comba method is to be used. This is quite satisfactory
for most applications, since 256 digits would allow for numbers in the range of
0 ≤ x < 27168, which is much larger than most public key cryptographic algorithms
require.
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Algorithm fast s mp mul digs.
Input. mp int a, mp int b and an integer digs
Output. c← |a| · |b| (mod βdigs).

Place an array of MP WARRAY single precision digits named W on the stack.
1. If c.alloc < digs then grow c to digs digits. (mp grow)
2. If step 1 failed return(MP MEM ).

3. pa← MIN(digs, a.used + b.used)

4. Ŵ ← 0
5. for ix from 0 to pa− 1 do

5.1 ty ← MIN(b.used− 1, ix)
5.2 tx← ix− ty
5.3 iy ← MIN(a.used− tx, ty + 1)
5.4 for iz from 0 to iy − 1 do

5.4.1 Ŵ ← Ŵ + atx+iybty−iy

5.5 Wix ← Ŵ (mod β)

5.6 Ŵ ← ⌊ Ŵ/β⌋

6. oldused← c.used
7. c.used← digs
8. for ix from 0 to pa do

8.1 cix ←Wix

9. for ix from pa + 1 to oldused− 1 do
9.1 cix ← 0

10. Clamp c.
11. Return MP OKAY.

Figure 5.5: Algorithm fast s mp mul digs

Algorithm fast s mp mul digs. This algorithm performs the unsigned mul-
tiplication of a and b using the Comba method limited to digs digits of precision
(Figure 5.5).

The outer loop of this algorithm is more complicated than that of the baseline
multiplier. This is because on the inside of the loop we want to produce one
column per pass. This allows the accumulator Ŵ to be placed in CPU registers
and reduce the memory bandwidth to two mp digit reads per iteration.
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The ty variable is set to the minimum count of ix, or the number of digits in
b. That way, if a has more digits than b, this will be limited to b.used− 1. The tx
variable is set to the distance past b.used the variable ix is. This is used for the
immediately subsequent statement where we find iy.

The variable iy is the minimum digits we can read from either a or b before
running out. Computing one column at a time means we have to scan one integer
upwards and the other downwards. a starts at tx and b starts at ty. In each pass
we are producing the ix’th output column and we note that tx + ty = ix. As we
move tx upwards, we have to move ty downwards so the equality remains valid.
The iy variable is the number of iterations until tx ≥ a.used or ty < 0 occurs.

After every inner pass we store the lower half of the accumulator into Wix and
then propagate the carry of the accumulator into the next round by dividing Ŵ
by β.

To measure the benefits of the Comba method over the baseline method, con-
sider the number of operations that are required. If the cost in terms of time of a
multiply and addition is p and the cost of a carry propagation is q, then a baseline
multiplication would require O

(

(p + q)n2
)

time to multiply two n-digit numbers.
The Comba method requires only O(pn2+qn) time; however, in practice the speed
increase is actually much more. With O(n) space the algorithm can be reduced
to O(pn + qn) time by implementing the n multiply and addition operations in
the nested loop in parallel.

File: bn fast s mp mul digs.c

018 /* Fast (comba) multiplier

019 *

020 * This is the fast column-array [comba] multiplier. It is

021 * designed to compute the columns of the product first

022 * then handle the carries afterwards. This has the effect

023 * of making the nested loops that compute the columns very

024 * simple and schedulable on super-scalar processors.

025 *

026 * This has been modified to produce a variable number of

027 * digits of output so if say only a half-product is required

028 * you don’t have to compute the upper half (a feature

029 * required for fast Barrett reduction).

030 *

031 * Based on Algorithm 14.12 on pp.595 of HAC.

032 *

033 */

034 int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
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035 {
036 int olduse, res, pa, ix, iz;

037 mp_digit W[MP_WARRAY];

038 register mp_word _W;

039

040 /* grow the destination as required */

041 if (c->alloc < digs) {
042 if ((res = mp_grow (c, digs)) != MP_OKAY) {
043 return res;

044 }
045 }
046

047 /* number of output digits to produce */

048 pa = MIN(digs, a->used + b->used);

049

050 /* clear the carry */

051 _W = 0;

052 for (ix = 0; ix < pa; ix++) {
053 int tx, ty;

054 int iy;

055 mp_digit *tmpx, *tmpy;

056

057 /* get offsets into the two bignums */

058 ty = MIN(b->used-1, ix);

059 tx = ix - ty;

060

061 /* setup temp aliases */

062 tmpx = a->dp + tx;

063 tmpy = b->dp + ty;

064

065 /* this is the number of times the loop will iterate, essentially

066 while (tx++ < a->used && ty-- >= 0) { ... }
067 */

068 iy = MIN(a->used-tx, ty+1);

069

070 /* execute loop */

071 for (iz = 0; iz < iy; ++iz) {
072 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);

073 }
074

075 /* store term */
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076 W[ix] = ((mp_digit)_W) & MP_MASK;

077

078 /* make next carry */

079 _W = _W >> ((mp_word)DIGIT_BIT);

080 }
081

082 /* setup dest */

083 olduse = c->used;

084 c->used = pa;

085

086 {
087 register mp_digit *tmpc;

088 tmpc = c->dp;

089 for (ix = 0; ix < pa+1; ix++) {
090 /* now extract the previous digit [below the carry] */

091 *tmpc++ = W[ix];

092 }
093

094 /* clear unused digits [that existed in the old copy of c] */

095 for (; ix < olduse; ix++) {
096 *tmpc++ = 0;

097 }
098 }
099 mp_clamp (c);

100 return MP_OKAY;

101 }
102

As per the pseudo–code we first calculate pa (line 48) as the number of digits
to output. Next, we begin the outer loop to produce the individual columns of
the product. We use the two aliases tmpx and tmpy (lines 62, 63) to point inside
the two multiplicands quickly.

The inner loop (lines 71 to 73) of this implementation is where the trade–off
come into play. Originally, this Comba implementation was “row–major,” which
means it adds to each of the columns in each pass. After the outer loop it would
then fix the carries. This was very fast, except it had an annoying drawback. You
had to read an mp word and two mp digits and write one mp word per iteration.
On processors such as the Athlon XP and P4 this did not matter much since the
cache bandwidth is very high and it can keep the ALU fed with data. It did,
however, matter on older and embedded CPUs where cache is often slower and
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often does not exist. This new algorithm only performs two reads per iteration
under the assumption that the compiler has aliased Ŵ to a CPU register.

After the inner loop we store the current accumulator in W and shift Ŵ (lines
76, 79) to forward it as a carry for the next pass. After the outer loop we use the
final carry (line 76) as the last digit of the product.

5.2.3 Even Faster Multiplication

In the realm of O(n2) multipliers, we can actually do better than Comba multi-
pliers. In the case of the portable code, only lg(β) bits of each digit are being
used. This is only because accessing carry bits from the CPU flags is not efficient
in portable C.

In the TomsFastMath2 project, a triple–precision register is used to accumulate
products. The multiplication algorithm produces digits of the result at a time.
The benefit of this algorithm is that we are packing more bits per digit resulting in
fewer single precision multiplications. For example, a 1024–bit multiplication on a
32–bit platform involves 1024 single precision multiplications with TomsFastMath
and 372 == 1369 with LibTomMath (33% more).

2See http://tfm.libtomcrypt.com.
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Algorithm fast mult.
Input. mp int a and mp int b
Output. c← |a| · |b|.

Let c0, c1, c2 be three single precision variables.
Let tmp represent an mp int.
1. Allocate tmp, an mp int of a.used + b.used digits. (mp init size)
2. pa← a.used + b.used
3. for ix from 0 to pa− 1 do

3.1 ty ← MIN(ix, b.used− 1)
3.2 tx← ix− ty
3.3 iy ← MIN(a.used− tx, ty + 1)
3.4 {c2 : c1 : c0} ← {0 : c2 : c1}
3.5 for iz from 0 to iy − 1 do

3.5.1 {c2 : c1 : c0} ← {c2 : c1 : c0}+ atx+izbty−iz

3.6 tmpix ← c0
4. tmp.used← a.used + b.used
5. Clamp tmp
6. Exchange c and tmp
7. Clear tmp

Figure 5.6: Algorithm fast mult

Algorithm fast mult. This algorithm performs a multiplication using the
full precision of the digits (Figure 5.6). It is not strictly part of LibTomMath,
instead this is part of TomsFastMath. Quite literally the TomsFastMath library
was a port of LibTomMath.

The first noteworthy change from our LibTomMath conventions is that we are
indeed using the full precision of the digits. For example, on a 32–bit platform,
a 1024–bit number would require 32 digits to be fully represented (instead of the
37 that LibTomMath would require).

The shuffle in step 3.4 is effectively a triple–precision shift right by the size of
one digit. Similarly, in step 3.5.1, a double–precision product is being accumulated
in the triple–precision array {c2 : c1 : c0}.

The TomsFastMath library gets its significant speed increase over LibTomMath
not only due to the use of full precision digits, but also the fact that the multipliers
are unrolled and use inline assembler. It unrolls the multipliers in steps of 1
through 16, 20, 24, 28, 32, 48 and 64 digits. The unrolling takes considerable
space, but the savings in time from not having all of the loop control overhead is
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significant. The use of inline assembler also lets us perform the inner loop with
code such as the following x86 assembler.

#define MULADD(i, j) \

asm( \

"movl %6,%%eax \n\t" \

"mull %7 \n\t" \

"addl %%eax,%0 \n\t" \

"adcl %%edx,%1 \n\t" \

"adcl $0,%2 \n\t" \

:"=r"(c0), "=r"(c1), "=r"(c2): \

"0"(c0), "1"(c1), "2"(c2), "m"(i), "m"(j) : \

"%eax","%edx","%cc");

This performs the 32×32 multiplication and accumulates it in the 96–bit array
{c2 : c1 : c0}, as required in step 3.5.1. A particular feature of the TomsFastMath
approach is to use these functional macro blocks instead of hand–tuning the im-
plementation for a given platform. As a result, we can change the macro to the
following and produce a math library for ARM processors.

#define MULADD(i, j) \

asm( \

"UMULL r0,r1,%6,%7 \n\t" \

"ADDS %0,%0,r0 \n\t" \

"ADCS %1,%1,r1 \n\t" \

"ADC %2,%2,#0 \n\t" \

:"=r"(c0), "=r"(c1), "=r"(c2) : \

"0"(c0), "1"(c1), "2"(c2), "r"(i), "r"(j) : \

"r0", "r1", "%cc");

In total, TomsFastMath supports four distinct hardware architectures covering
x86, PPC32 and ARM platforms from a relatively consistent code base. Adding
new ports for most platforms is usually a matter of implementing the macros, and
then choosing a suitable level of loop unrolling to match the processor cache.

When fully unrolled, the x86 assembly code achieves very high performance on
the AMD K8 series of processors. An “instructions per cycle” count close to 2 can
be observed through 1024–bit multiplications. This means that, on average, more
than one processor pipeline is actively processing opcodes. This is particularly
significant due to the long delay of the single precision multiplication instruction.
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Unfortunately, while this routine could be adapted to LibTomMath (using a
more complicated right shift in step 3.4), it would not help as we still have to
perform the same number of single precision multiplications. Readers are encour-
aged to investigate the TomsFastMath library on its own to see how far these
optimizations can push performance.

5.2.4 Polynomial Basis Multiplication

To break the O(n2) barrier in multiplication requires a completely different look
at integer multiplication. In the following algorithms the use of polynomial basis
representation for two integers a and b as f(x) =

∑n
i=0 aix

i and g(x) =
∑n

i=0 bix
i,

respectively, is required. In this system, both f(x) and g(x) have n+1 terms and
are of the n’th degree.

The product a · b ≡ f(x)g(x) is the polynomial W (x) =
∑2n

i=0 wix
i. The

coefficients wi will directly yield the desired product when β is substituted for x.
The direct solution to solve for the 2n + 1 coefficients requires O(n2) time and
would in practice be slower than the Comba technique.

However, numerical analysis theory indicates that only 2n + 1 distinct points
in W (x) are required to determine the values of the 2n + 1 unknown coefficients.
This means by finding ζy = W (y) for 2n + 1 small values of y, the coefficients of
W (x) can be found with Gaussian elimination. This technique is also occasionally
referred to as the interpolation technique [20], since in effect an interpolation based
on 2n + 1 points will yield a polynomial equivalent to W (x).

The coefficients of the polynomial W (x) are unknown, which makes finding
W (y) for any value of y impossible. However, since W (x) = f(x)g(x), the equiv-
alent ζy = f(y)g(y) can be used in its place. The benefit of this technique stems
from the fact that f(y) and g(y) are much smaller than either a or b, respectively.
As a result, finding the 2n + 1 relations required by multiplying f(y)g(y) involves
multiplying integers that are much smaller than either of the inputs.

When you are picking points to gather relations, there are always three obvious
points to choose, y = 0, 1, and∞. The ζ0 term is simply the product W (0) = w0 =
a0 · b0. The ζ1 term is the product W (1) = (

∑n
i=0 ai) (

∑n
i=0 bi). The third point

ζ∞ is less obvious but rather simple to explain. The 2n+1’th coefficient of W (x) is
numerically equivalent to the most significant column in an integer multiplication.
The point at ∞ is used symbolically to represent the most significant column–
W (∞) = w2n = anbn. Note that the points at y = 0 and ∞ yield the coefficients
w0 and w2n directly.

If more points are required they should be of small values and powers of two
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Split into n Parts Exponent Notes
2 1.584962501 This is Karatsuba Multiplication.
3 1.464973520 This is Toom-Cook 3-Way Multiplication.
4 1.403677461
5 1.365212389
10 1.278753601
100 1.149426538 Beyond this point Fourier Transforms are used.
1000 1.100270931
10000 1.075252070

Figure 5.7: Asymptotic Running Time of Polynomial Basis Multiplication

such as 2q and the related mirror points (2q)2n · ζ2−q for small values of q. The

term “mirror point” stems from the fact that (2q)
2n · ζ2−q can be calculated in the

exact opposite fashion as ζ2q . For example, when n = 2 and q = 1, the following
two equations are equivalent to the point ζ2 and its mirror.

ζ2 = f(2)g(2) = (4a2 + 2a1 + a0)(4b2 + 2b1 + b0)

16 · ζ 1
2

= 4f(
1

2
) · 4g(

1

2
) = (a2 + 2a1 + 4a0)(b2 + 2b1 + 4b0) (5.5)

Using such points will allow the values of f(y) and g(y) to be independently
calculated using only left shifts. For example, when n = 2 the polynomial f(2q)
is equal to 2q((2qa2) + a1) + a0. This technique of polynomial representation is
known as Horner’s method.

As a general rule of the algorithm when the inputs are split into n parts each,
there are 2n − 1 multiplications. Each multiplication is of multiplicands that
have n times fewer digits than the inputs. The asymptotic running time of this
algorithm is O

(

klgn(2n−1)
)

for k digit inputs (assuming they have the same number

of digits). Figure 5.7 summarizes the exponents for various values of n.

At first, it may seem like a good idea to choose n = 1000 since the exponent is
approximately 1.1. However, the overhead of solving for the 2001 terms of W (x)
will certainly consume any savings the algorithm could offer for all but exceedingly
large numbers.
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Cutoff Point

The polynomial basis multiplication algorithms all require fewer single precision
multiplications than a straight Comba approach. However, the algorithms incur
an overhead (at the O(n) work level) since they require a system of equations to
be solved. This makes the polynomial basis approach more costly to use with
small inputs.

Let m represent the number of digits in the multiplicands (assume both multi-

plicands have the same number of digits). There exists a point y such that when
m < y, the polynomial basis algorithms are more costly than Comba; when m = y,
they are roughly the same cost; and when m > y, the Comba methods are slower
than the polynomial basis algorithms.

The exact location of y depends on several key architectural elements of the
computer platform in question.

1. The ratio of clock cycles for single precision multiplication versus other sim-
pler operations such as addition, shifting, etc. For example on the AMD
Athlon the ratio is roughly 17 : 1, while on the Intel P4 it is 29 : 1. The
higher the ratio in favor of multiplication, the lower the cutoff point y will
be.

2. The complexity of the linear system of equations (for the coefficients of

W (x)) is, generally speaking, as the number of splits grows the complexity
grows substantially. Ideally, solving the system will only involve addition,
subtraction, and shifting of integers. This directly reflects on the ratio pre-
viously mentioned.

3. To a lesser extent, memory bandwidth and function call overhead affect the
location of y. Provided the values and code are in the processor cache, this
is less of an influence over the cutoff point.

A clean cutoff point separation occurs when a point y is found such that all
the cutoff point conditions are met. For example, if the point is too low, there will
be values of m such that m > y and the Comba method is still faster. Finding
the cutoff points is fairly simple when a high–resolution timer is available.

5.2.5 Karatsuba Multiplication

Karatsuba [19] multiplication when originally proposed in 1962 was among the first
set of algorithms to break the O(n2) barrier for general–purpose multiplication.
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Given two polynomial basis representations f(x) = ax + b and g(x) = cx + d,
Karatsuba proved with light algebra [5] that the following polynomial is equivalent
to multiplication of the two integers the polynomials represent.

f(x) · g(x) = acx2 + ((a + b)(c + d)− (ac + bd))x + bd (5.6)

Using the observation that ac and bd could be re-used, only three half–sized
multiplications would be required to produce the product. Applying this algorithm
recursively the work factor becomes O(nlg(3)), which is substantially better than
the work factor O(n2) of the Comba technique. It turns out what Karatsuba did
not know or at least did not publish was that this is simply polynomial basis
multiplication with the points ζ0, ζ∞, and ζ1. Consider the resultant system of
equations.

ζ0 = w0

ζ1 = w2 + w1 + w0

ζ∞ = w2

By adding the first and last equation to the equation in the middle, the term
w1 can be isolated and all three coefficients solved for. The simplicity of this
system of equations has made Karatsuba fairly popular. In fact, the cutoff point
is often fairly low3, making it an ideal algorithm to speed up certain public key
cryptosystems such as RSA and Diffie-Hellman.

3With LibTomMath 0.18 it is 70 and 109 digits for the Intel P4 and AMD Athlon, respectively.
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Algorithm mp karatsuba mul.
Input. mp int a and mp int b
Output. c← |a| · |b|

1. Init the following mp int variables: x0, x1, y0, y1, t1, x0y0, x1y1.
2. If step 2 failed, then return(MP MEM ).

Split the input. e.g. a = x1 · βB + x0
3. B ← min(a.used, b.used)/2
4. x0← a (mod βB) (mp mod 2d)
5. y0← b (mod βB)

6. x1← ⌊a/βB⌋ (mp rshd)
7. y1← ⌊b/βB⌋

Calculate the three products.
8. x0y0← x0 · y0 (mp mul)
9. x1y1← x1 · y1
10. t1← x1 + x0 (mp add)
11. x0← y1 + y0
12. t1← t1 · x0

Calculate the middle term.
13. x0← x0y0 + x1y1
14. t1← t1− x0 (s mp sub)

Calculate the final product.
15. t1← t1 · βB (mp lshd)
16. x1y1← x1y1 · β2B

17. t1← x0y0 + t1
18. c← t1 + x1y1
19. Clear all of the temporary variables.
20. Return(MP OKAY ).

Figure 5.8: Algorithm mp karatsuba mul

Algorithm mp karatsuba mul. This algorithm computes the unsigned
product of two inputs using the Karatsuba multiplication algorithm. It is loosely
based on the description from Knuth [1, pp. 294-295] (Figure 5.8).

To split the two inputs into their respective halves, a suitable radix point must
be chosen. The radix point chosen must be used for both of the inputs, meaning
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that it must be smaller than the smallest input. Step 3 chooses the radix point
B as half of the smallest input used count. After the radix point is chosen, the
inputs are split into lower and upper halves. Steps 4 and 5 compute the lower
halves. Steps 6 and 7 compute the upper halves.

After the halves have been computed the three intermediate half-size products
must be computed. Step 8 and 9 compute the trivial products x0 · y0 and x1 · y1.
The mp int x0 is used as a temporary variable after x1 + x0 has been computed.
By using x0 instead of an additional temporary variable, the algorithm can avoid
an addition memory allocation operation.

The remaining steps 13 through 18 compute the Karatsuba polynomial through
a variety of digit shifting and addition operations.

File: bn mp karatsuba mul.c

018 /* c = |a| * |b| using Karatsuba Multiplication using

019 * three half size multiplications

020 *

021 * Let B represent the radix [e.g. 2**DIGIT_BIT] and

022 * let n represent half of the number of digits in

023 * the min(a,b)

024 *

025 * a = a1 * B**n + a0

026 * b = b1 * B**n + b0

027 *

028 * Then, a * b =>

029 a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0

030 *

031 * Note that a1b1 and a0b0 are used twice and only need to be

032 * computed once. So in total three half size (half # of

033 * digit) multiplications are performed, a0b0, a1b1 and

034 * (a1+b1)(a0+b0)

035 *

036 * Note that a multiplication of half the digits requires

037 * 1/4th the number of single precision multiplications so in

038 * total after one call 25% of the single precision multiplications

039 * are saved. Note also that the call to mp_mul can end up back

040 * in this function if the a0, a1, b0, or b1 are above the threshold.

041 * This is known as divide-and-conquer and leads to the famous

042 * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than

043 * the standard O(N**2) that the baseline/comba methods use.

044 * Generally though the overhead of this method doesn’t pay off

045 * until a certain size (N ~ 80) is reached.
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046 */

047 int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)

048 {
049 mp_int x0, x1, y0, y1, t1, x0y0, x1y1;

050 int B, err;

051

052 /* default the return code to an error */

053 err = MP_MEM;

054

055 /* min # of digits */

056 B = MIN (a->used, b->used);

057

058 /* now divide in two */

059 B = B >> 1;

060

061 /* init copy all the temps */

062 if (mp_init_size (&x0, B) != MP_OKAY)

063 goto ERR;

064 if (mp_init_size (&x1, a->used - B) != MP_OKAY)

065 goto X0;

066 if (mp_init_size (&y0, B) != MP_OKAY)

067 goto X1;

068 if (mp_init_size (&y1, b->used - B) != MP_OKAY)

069 goto Y0;

070

071 /* init temps */

072 if (mp_init_size (&t1, B * 2) != MP_OKAY)

073 goto Y1;

074 if (mp_init_size (&x0y0, B * 2) != MP_OKAY)

075 goto T1;

076 if (mp_init_size (&x1y1, B * 2) != MP_OKAY)

077 goto X0Y0;

078

079 /* now shift the digits */

080 x0.used = y0.used = B;

081 x1.used = a->used - B;

082 y1.used = b->used - B;

083

084 {
085 register int x;

086 register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
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087

088 /* we copy the digits directly instead of using higher level functions

089 * since we also need to shift the digits

090 */

091 tmpa = a->dp;

092 tmpb = b->dp;

093

094 tmpx = x0.dp;

095 tmpy = y0.dp;

096 for (x = 0; x < B; x++) {
097 *tmpx++ = *tmpa++;

098 *tmpy++ = *tmpb++;

099 }
100

101 tmpx = x1.dp;

102 for (x = B; x < a->used; x++) {
103 *tmpx++ = *tmpa++;

104 }
105

106 tmpy = y1.dp;

107 for (x = B; x < b->used; x++) {
108 *tmpy++ = *tmpb++;

109 }
110 }
111

112 /* only need to clamp the lower words since by definition the

113 * upper words x1/y1 must have a known number of digits

114 */

115 mp_clamp (&x0);

116 mp_clamp (&y0);

117

118 /* now calc the products x0y0 and x1y1 */

119 /* after this x0 is no longer required, free temp [x0==t2]! */

120 if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)

121 goto X1Y1; /* x0y0 = x0*y0 */

122 if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)

123 goto X1Y1; /* x1y1 = x1*y1 */

124

125 /* now calc x1+x0 and y1+y0 */

126 if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)

127 goto X1Y1; /* t1 = x1 - x0 */
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128 if (s_mp_add (&y1, &y0, &x0) != MP_OKAY)

129 goto X1Y1; /* t2 = y1 - y0 */

130 if (mp_mul (&t1, &x0, &t1) != MP_OKAY)

131 goto X1Y1; /* t1 = (x1 + x0) * (y1 + y0) */

132

133 /* add x0y0 */

134 if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)

135 goto X1Y1; /* t2 = x0y0 + x1y1 */

136 if (s_mp_sub (&t1, &x0, &t1) != MP_OKAY)

137 goto X1Y1; /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */

138

139 /* shift by B */

140 if (mp_lshd (&t1, B) != MP_OKAY)

141 goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */

142 if (mp_lshd (&x1y1, B * 2) != MP_OKAY)

143 goto X1Y1; /* x1y1 = x1y1 << 2*B */

144

145 if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)

146 goto X1Y1; /* t1 = x0y0 + t1 */

147 if (mp_add (&t1, &x1y1, c) != MP_OKAY)

148 goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */

149

150 /* Algorithm succeeded set the return code to MP_OKAY */

151 err = MP_OKAY;

152

153 X1Y1:mp_clear (&x1y1);

154 X0Y0:mp_clear (&x0y0);

155 T1:mp_clear (&t1);

156 Y1:mp_clear (&y1);

157 Y0:mp_clear (&y0);

158 X1:mp_clear (&x1);

159 X0:mp_clear (&x0);

160 ERR:

161 return err;

162 }
163

The new coding element in this routine, not seen in previous routines, is the
usage of goto statements. The conventional wisdom is that goto statements should
be avoided. This is generally true; however, when every single function call can
fail, it makes sense to handle error recovery with a single piece of code. Lines 62
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to 76 handle initializing all of the temporary variables required. Note how each of
the if statements goes to a different label in case of failure. This allows the routine
to correctly free only the temporaries that have been successfully allocated so far.

The temporary variables are all initialized using the mp init size routine since
they are expected to be large. This saves the additional reallocation that would
have been necessary. Moreover, x0, x1, y0, and y1 have to be able to hold at least
their respective number of digits for the next section of code.

The first algebraic portion of the algorithm is to split the two inputs into their
halves. However, instead of using mp mod 2d and mp rshd to extract the halves,
the respective code has been placed inline within the body of the function. To
initialize the halves, the used and sign members are copied first. The first for
loop on line 96 copies the lower halves. Since they are both the same magnitude,
it is simpler to calculate both lower halves in a single loop. The for loop on lines
102 and 107 calculate the upper halves x1 and y1, respectively.

By inlining the calculation of the halves, the Karatsuba multiplier has a slightly
lower overhead and can be used for smaller magnitude inputs.

When line 151 is reached, the algorithm has completed successfully. The “error
status” variable err is set to MP OKAY so the same code that handles errors
can be used to clear the temporary variables and return.

5.2.6 Toom-Cook 3-Way Multiplication

The 3–Way multiplication scheme, usually known as Toom–Cook, is actually a
variation of the Toom–Cook multiplication [1, pp. 296–299] algorithm. In their
combined approach, multiplication is essentially linearized by increasing the num-
ber of ways as the size of the inputs increase. The 3–Way approach is the poly-
nomial basis algorithm for n = 2, except that the points are chosen such that ζ is
easy to compute and the resulting system of equations easy to reduce. Here, the
points ζ0, 16 · ζ 1

2
, ζ1, ζ2, and ζ∞ make up the five required points to solve for the

coefficients of W (x).
With the five relations Toom-Cook specifies, the following system of equations

is formed.

ζ0 = 0w4 + 0w3 + 0w2 + 0w1 + 1w0

16 · ζ 1
2

= 1w4 + 2w3 + 4w2 + 8w1 + 16w0

ζ1 = 1w4 + 1w3 + 1w2 + 1w1 + 1w0

ζ2 = 16w4 + 8w3 + 4w2 + 2w1 + 1w0

ζ∞ = 1w4 + 0w3 + 0w2 + 0w1 + 0w0
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A trivial solution to this matrix requires 12 subtractions, two multiplications
by a small power of two, two divisions by a small power of two, two divisions by
three, and one multiplication by three. All of these 19 sub-operations require less
than quadratic time, meaning that the algorithm can be faster than a baseline
multiplication. However, the greater complexity of this algorithm places the cut-
off point (TOOM MUL CUTOFF) where Toom-Cook becomes more efficient
much higher than the Karatsuba cutoff point.

Algorithm mp toom mul.
Input. mp int a and mp int b
Output. c← a · b

Split a and b into three pieces. E.g. a = a2β
2k + a1β

k + a0

1. k← ⌊min(a.used, b.used)/3⌋

2. a0 ← a (mod βk)

3. a1 ← ⌊a/βk⌋, a1 ← a1 (mod βk)
4. a2 ← ⌊a/β2k⌋, a2 ← a2 (mod βk)

5. b0 ← a (mod βk)

6. b1 ← ⌊a/βk⌋, b1 ← b1 (mod βk)

7. b2 ← ⌊a/β2k⌋, b2 ← b2 (mod βk)

Find the five equations for w0, w1, ..., w4.
8. w0 ← a0 · b0

9. w4 ← a2 · b2

10. tmp1 ← 2 · a0, tmp1 ← a1 + tmp1, tmp1 ← 2 · tmp1, tmp1 ← tmp1 + a2

11. tmp2 ← 2 · b0, tmp2 ← b1 + tmp2, tmp2 ← 2 · tmp2, tmp2 ← tmp2 + b2

12. w1 ← tmp1 · tmp2

13. tmp1 ← 2 · a2, tmp1 ← a1 + tmp1, tmp1 ← 2 · tmp1, tmp1 ← tmp1 + a0

14. tmp2 ← 2 · b2, tmp2 ← b1 + tmp2, tmp2 ← 2 · tmp2, tmp2 ← tmp2 + b0

15. w3 ← tmp1 · tmp2

16. tmp1 ← a0 + a1, tmp1 ← tmp1 + a2, tmp2 ← b0 + b1, tmp2 ← tmp2 + b2

17. w2 ← tmp1 · tmp2

Continued on the next page.
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Algorithm mp toom mul (continued).
Input. mp int a and mp int b
Output. c← a · b

Now solve the system of equations.
18. w1 ← w4 − w1, w3 ← w3 − w0

19. w1 ← ⌊w1/2⌋, w3 ← ⌊w3/2⌋
20. w2 ← w2 − w0, w2 ← w2 − w4

21. w1 ← w1 − w2, w3 ← w3 − w2

22. tmp1 ← 8 · w0, w1 ← w1 − tmp1, tmp1 ← 8 · w4, w3 ← w3 − tmp1

23. w2 ← 3 · w2, w2 ← w2 − w1, w2 ← w2 −w3

24. w1 ← w1 − w2, w3 ← w3 − w2

25. w1 ← ⌊w1/3⌋, w3 ← ⌊w3/3⌋

Now substitute βk for x by shifting w0, w1, ..., w4.
26. for n from 1 to 4 do

26.1 wn ← wn · β
nk

27. c← w0 + w1, c← c + w2, c← c + w3, c← c + w4

28. Return(MP OKAY )

Figure 5.9: Algorithm mp toom mul

Algorithm mp toom mul. This algorithm computes the product of two
mp int variables a and b using the Toom-Cook approach. Compared to the
Karatsuba multiplication, this algorithm has a lower asymptotic running time
of approximately O(n1.464) but at an obvious cost in overhead. In this descrip-
tion, several statements have been compounded to save space. The intention is
that the statements are executed from left to right across any given step (Figure
5.9).

The two inputs a and b are first split into three k-digit integers a0, a1, a2

and b0, b1, b2, respectively. From these smaller integers the coefficients of the
polynomial basis representations f(x) and g(x) are known and can be used to find
the relations required.

The first two relations w0 and w4 are the points ζ0 and ζ∞, respectively. The
relation w1, w2, and w3 correspond to the points 16 · ζ 1

2
, ζ2 and ζ1, respectively.

These are found using logical shifts to independently find f(y) and g(y), which
significantly speeds up the algorithm.

After the five relations w0, w1, . . . , w4 have been computed, the system they
represent must be solved in order for the unknown coefficients w1, w2, and w3 to be
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isolated. Steps 18 through 25 perform the system reduction required as previously
described. Each step of the reduction represents the comparable matrix operation
that would be performed had this been performed by pencil. For example, step
18 indicates that row 1 must be subtracted from row 4, and simultaneously row 0
subtracted from row 3.

Once the coefficients have been isolated, the polynomial W (x) =
∑2n

i=0 wix
i is

known. By substituting βk for x, the integer result a · b is produced.

File: bn mp toom mul.c

018 /* multiplication using the Toom-Cook 3-way algorithm

019 *

020 * Much more complicated than Karatsuba but has a lower

021 * asymptotic running time of O(N**1.464). This algorithm is

022 * only particularly useful on VERY large inputs

023 * (we’re talking 1000s of digits here...).

024 */

025 int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)

026 {
027 mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;

028 int res, B;

029

030 /* init temps */

031 if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,

032 &a0, &a1, &a2, &b0, &b1,

033 &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
034 return res;

035 }
036

037 /* B */

038 B = MIN(a->used, b->used) / 3;

039

040 /* a = a2 * B**2 + a1 * B + a0 */

041 if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
042 goto ERR;

043 }
044

045 if ((res = mp_copy(a, &a1)) != MP_OKAY) {
046 goto ERR;

047 }
048 mp_rshd(&a1, B);

049 mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
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050

051 if ((res = mp_copy(a, &a2)) != MP_OKAY) {
052 goto ERR;

053 }
054 mp_rshd(&a2, B*2);

055

056 /* b = b2 * B**2 + b1 * B + b0 */

057 if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
058 goto ERR;

059 }
060

061 if ((res = mp_copy(b, &b1)) != MP_OKAY) {
062 goto ERR;

063 }
064 mp_rshd(&b1, B);

065 mp_mod_2d(&b1, DIGIT_BIT * B, &b1);

066

067 if ((res = mp_copy(b, &b2)) != MP_OKAY) {
068 goto ERR;

069 }
070 mp_rshd(&b2, B*2);

071

072 /* w0 = a0*b0 */

073 if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
074 goto ERR;

075 }
076

077 /* w4 = a2 * b2 */

078 if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
079 goto ERR;

080 }
081

082 /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */

083 if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
084 goto ERR;

085 }
086 if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
087 goto ERR;

088 }
089 if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
090 goto ERR;
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091 }
092 if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
093 goto ERR;

094 }
095

096 if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
097 goto ERR;

098 }
099 if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
100 goto ERR;

101 }
102 if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
103 goto ERR;

104 }
105 if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
106 goto ERR;

107 }
108

109 if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
110 goto ERR;

111 }
112

113 /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */

114 if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
115 goto ERR;

116 }
117 if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
118 goto ERR;

119 }
120 if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
121 goto ERR;

122 }
123 if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
124 goto ERR;

125 }
126

127 if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
128 goto ERR;

129 }
130 if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
131 goto ERR;
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132 }
133 if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
134 goto ERR;

135 }
136 if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
137 goto ERR;

138 }
139

140 if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
141 goto ERR;

142 }
143

144

145 /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */

146 if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
147 goto ERR;

148 }
149 if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
150 goto ERR;

151 }
152 if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) {
153 goto ERR;

154 }
155 if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
156 goto ERR;

157 }
158 if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
159 goto ERR;

160 }
161

162 /* now solve the matrix

163

164 0 0 0 0 1

165 1 2 4 8 16

166 1 1 1 1 1

167 16 8 4 2 1

168 1 0 0 0 0

169

170 using 12 subtractions, 4 shifts,

171 2 small divisions and 1 small multiplication

172 */
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173

174 /* r1 - r4 */

175 if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
176 goto ERR;

177 }
178 /* r3 - r0 */

179 if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
180 goto ERR;

181 }
182 /* r1/2 */

183 if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
184 goto ERR;

185 }
186 /* r3/2 */

187 if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
188 goto ERR;

189 }
190 /* r2 - r0 - r4 */

191 if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
192 goto ERR;

193 }
194 if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
195 goto ERR;

196 }
197 /* r1 - r2 */

198 if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
199 goto ERR;

200 }
201 /* r3 - r2 */

202 if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
203 goto ERR;

204 }
205 /* r1 - 8r0 */

206 if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
207 goto ERR;

208 }
209 if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
210 goto ERR;

211 }
212 /* r3 - 8r4 */

213 if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
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214 goto ERR;

215 }
216 if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
217 goto ERR;

218 }
219 /* 3r2 - r1 - r3 */

220 if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
221 goto ERR;

222 }
223 if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
224 goto ERR;

225 }
226 if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
227 goto ERR;

228 }
229 /* r1 - r2 */

230 if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
231 goto ERR;

232 }
233 /* r3 - r2 */

234 if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
235 goto ERR;

236 }
237 /* r1/3 */

238 if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
239 goto ERR;

240 }
241 /* r3/3 */

242 if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
243 goto ERR;

244 }
245

246 /* at this point shift W[n] by B*n */

247 if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
248 goto ERR;

249 }
250 if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
251 goto ERR;

252 }
253 if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
254 goto ERR;
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255 }
256 if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
257 goto ERR;

258 }
259

260 if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
261 goto ERR;

262 }
263 if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
264 goto ERR;

265 }
266 if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
267 goto ERR;

268 }
269 if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
270 goto ERR;

271 }
272

273 ERR:

274 mp_clear_multi(&w0, &w1, &w2, &w3, &w4,

275 &a0, &a1, &a2, &b0, &b1,

276 &b2, &tmp1, &tmp2, NULL);

277 return res;

278 }
279

280

The first obvious thing to note is that this algorithm is complicated. The
complexity is worth it if you are multiplying very large numbers. For example, a
10,000 digit multiplication takes approximately 99,282,205 fewer single precision
multiplications with Toom–Cook than a Comba or baseline approach (a savings of
more than 99%). For most “crypto” sized numbers this algorithm is not practical,
as Karatsuba has a much lower cutoff point.

First, we split a and b into three roughly equal portions. This has been ac-
complished (lines 41 to 70) with combinations of mp rshd() and mp mod 2d()
function calls. At this point, a = a2 · β2 + a1 · β + a0, and similarly for b.

Next, we compute the five points w0, w1, w2, w3, and w4. Recall that w0 and
w4 can be computed directly from the portions so we get those out of the way
first (lines 73 and 78). Next, we compute w1, w2, and w3 using Horner’s method.

After this point we solve for the actual values of w1, w2, and w3 by reducing
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the 5× 5 system, which is relatively straightforward.

5.2.7 Signed Multiplication

Now that algorithms to handle multiplications of every useful dimensions have
been developed, a rather simple finishing touch is required. So far, all of the
multiplication algorithms have been unsigned multiplications, which leaves only a
signed multiplication algorithm to be established.

Algorithm mp mul.
Input. mp int a and mp int b
Output. c← a · b

1. If a.sign = b.sign then
1.1 sign = MP ZPOS

2. else
2.1 sign = MP ZNEG

3. If min(a.used, b.used) ≥ TOOM MUL CUTOFF then
3.1 c← a · b using algorithm mp toom mul

4. else if min(a.used, b.used) ≥ KARATSUBA MUL CUTOFF then
4.1 c← a · b using algorithm mp karatsuba mul

5. else
5.1 digs← a.used + b.used + 1
5.2 If digs < MP ARRAY and min(a.used, b.used) ≤ δ then

5.2.1 c← a · b (mod βdigs) using algorithm fast s mp mul digs.
5.3 else

5.3.1 c← a · b (mod βdigs) using algorithm s mp mul digs.
6. c.sign← sign
7. Return the result of the unsigned multiplication performed.

Figure 5.10: Algorithm mp mul

Algorithm mp mul. This algorithm performs the signed multiplication of
two inputs (Figure 5.10). It will make use of any of the three unsigned multi-
plication algorithms available when the input is of appropriate size. The sign of
the result is not set until the end of the algorithm, since algorithm s mp mul digs
(Figure 5.1) will clear it.
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File: bn mp mul.c

018 /* high level multiplication (handles sign) */

019 int mp_mul (mp_int * a, mp_int * b, mp_int * c)

020 {
021 int res, neg;

022 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;

023

024 /* use Toom-Cook? */

025 #ifdef BN_MP_TOOM_MUL_C

026 if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
027 res = mp_toom_mul(a, b, c);

028 } else

029 #endif

030 #ifdef BN_MP_KARATSUBA_MUL_C

031 /* use Karatsuba? */

032 if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
033 res = mp_karatsuba_mul (a, b, c);

034 } else

035 #endif

036 {
037 /* can we use the fast multiplier?

038 *

039 * The fast multiplier can be used if the output will

040 * have less than MP_WARRAY digits and the number of

041 * digits won’t affect carry propagation

042 */

043 int digs = a->used + b->used + 1;

044

045 #ifdef BN_FAST_S_MP_MUL_DIGS_C

046 if ((digs < MP_WARRAY) &&

047 MIN(a->used, b->used) <=

048 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
049 res = fast_s_mp_mul_digs (a, b, c, digs);

050 } else

051 #endif

052 #ifdef BN_S_MP_MUL_DIGS_C

053 res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */

054 #else

055 res = MP_VAL;

056 #endif

057
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058 }
059 c->sign = (c->used > 0) ? neg : MP_ZPOS;

060 return res;

061 }
062

The implementation is rather simplistic and is not particularly noteworthy.
Line 22 computes the sign of the result using the “?” operator from the C pro-
gramming language. Line 48 computes δ using the fact that 1 << k is equal to
2k.

5.3 Squaring

Squaring is a special case of multiplication where both multiplicands are equal.
At first, it may seem like there is no significant optimization available, but in fact
there is. Consider the multiplication of 576 against 241. In total there will be
nine single precision multiplications performed–1 · 6, 1 · 7, 1 · 5, 4 · 6, 4 · 7, 4 · 5,
2 · 6, 2 · 7, and 2 · 5. Now consider the multiplication of 123 against 123. The nine
products are 3 ·3, 3 ·2, 3 ·1, 2 ·3, 2 ·2, 2 ·1, 1 ·3, 1 ·2, and 1 ·1. On closer inspection
some of the products are equivalent; for example, 3 · 2 = 2 · 3 and 3 · 1 = 1 · 3.

For any n-digit input, there are
(n2+n)

2 possible unique single precision mul-
tiplications required compared to the n2 required for multiplication. Figure 5.11
gives an example of the operations required.

1 2 3
× 1 2 3

3 · 1 3 · 2 3 · 3 Row 0
2 · 1 2 · 2 2 · 3 Row 1

1 · 1 1 · 2 1 · 3 Row 2

Figure 5.11: Squaring Optimization Diagram

Starting from zero and numbering the columns from right to left, you will see
a very simple pattern become obvious. For the purposes of this discussion, let x
represent the number being squared. The first observation is that in row k, the
2k’th column of the product has a (xk)

2
term in it.
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The second observation is that every column j in row k where j 6= 2k is part
of a double product. Every non-square term of a column will appear twice, hence
the name “double product.” Every odd column is made up entirely of double
products. In fact, every column is made up of double products and at most one
square (see the Exercise section).

The third and final observation is that for row k the first unique non-square
term–that is, one that hasn’t already appeared in an earlier row–occurs at column
2k + 1. For example, on row 1 of the previous squaring, column one is part of
the double product with column one from row zero. Column two of row one is a
square, and column three is the first unique column.

5.3.1 The Baseline Squaring Algorithm

The baseline squaring algorithm is meant to be a catch-all squaring algorithm. It
will handle any of the input sizes that the faster routines will not handle.
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Algorithm s mp sqr.
Input. mp int a
Output. b← a2

1. Init a temporary mp int of at least 2 · a.used + 1 digits. (mp init size)
2. If step 1 failed return(MP MEM )
3. t.used← 2 · a.used + 1
4. For ix from 0 to a.used− 1 do

Calculate the square.

4.1 r̂ ← t2ix + (aix)2

4.2 t2ix ← r̂ (mod β)
Calculate the double products after the square.
4.3 u← ⌊r̂/β⌋
4.4 For iy from ix + 1 to a.used− 1 do

4.4.1 r̂ ← 2 · aixaiy + tix+iy + u
4.4.2 tix+iy ← r̂ (mod β)
4.4.3 u← ⌊r̂/β⌋

Set the last carry.
4.5 While u > 0 do

4.5.1 iy ← iy + 1
4.5.2 r̂ ← tix+iy + u
4.5.3 tix+iy ← r̂ (mod β)
4.5.4 u← ⌊r̂/β⌋

5. Clamp excess digits of t. (mp clamp)
6. Exchange b and t.
7. Clear t (mp clear)
8. Return(MP OKAY )

Figure 5.12: Algorithm s mp sqr

Algorithm s mp sqr. This algorithm computes the square of an input using
the three observations on squaring. It is based fairly faithfully on algorithm 14.16
of HAC [2, pp.596-597]. Similar to algorithm s mp mul digs, a temporary mp int
is allocated to hold the result of the squaring. This allows the destination mp int
to be the same as the source mp int (Figure 5.12).

The outer loop of this algorithm begins on step 4. It is best to think of the
outer loop as walking down the rows of the partial results, while the inner loop
computes the columns of the partial result. Steps 4.1 and 4.2 compute the square
term for each row, and steps 4.3 and 4.4 propagate the carry and compute the
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double products.
The requirement that an mp word be able to represent the range 0 ≤ x < 2β2

arises from this very algorithm. The product aixaiy will lie in the range 0 ≤ x ≤
β2 − 2β + 1, which is obviously less than β2, meaning that when it is multiplied
by two, it can be properly represented by an mp word.

Similar to algorithm s mp mul digs, after every pass of the inner loop, the
destination is correctly set to the sum of all of the partial results calculated so far.
This involves expensive carry propagation, which will be eliminated in the next
algorithm.

File: bn s mp sqr.c

018 /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */

019 int s_mp_sqr (mp_int * a, mp_int * b)

020 {
021 mp_int t;

022 int res, ix, iy, pa;

023 mp_word r;

024 mp_digit u, tmpx, *tmpt;

025

026 pa = a->used;

027 if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
028 return res;

029 }
030

031 /* default used is maximum possible size */

032 t.used = 2*pa + 1;

033

034 for (ix = 0; ix < pa; ix++) {
035 /* first calculate the digit at 2*ix */

036 /* calculate double precision result */

037 r = ((mp_word) t.dp[2*ix]) +

038 ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);

039

040 /* store lower part in result */

041 t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));

042

043 /* get the carry */

044 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

045

046 /* left hand side of A[ix] * A[iy] */

047 tmpx = a->dp[ix];
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048

049 /* alias for where to store the results */

050 tmpt = t.dp + (2*ix + 1);

051

052 for (iy = ix + 1; iy < pa; iy++) {
053 /* first calculate the product */

054 r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);

055

056 /* now calculate the double precision result, note we use

057 * addition instead of *2 since it’s easier to optimize

058 */

059 r = ((mp_word) *tmpt) + r + r + ((mp_word) u);

060

061 /* store lower part */

062 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));

063

064 /* get carry */

065 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

066 }
067 /* propagate upwards */

068 while (u != ((mp_digit) 0)) {
069 r = ((mp_word) *tmpt) + ((mp_word) u);

070 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));

071 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

072 }
073 }
074

075 mp_clamp (&t);

076 mp_exch (&t, b);

077 mp_clear (&t);

078 return MP_OKAY;

079 }
080

Inside the outer loop (line 34) the square term is calculated on line 37. The
carry (line 44) has been extracted from the mp word accumulator using a right
shift. Aliases for aix and tix+iy are initialized (lines 47 and 50) to simplify the
inner loop. The doubling is performed using two additions (line 59), since it is
usually faster than shifting, if not at least as fast.

The important observation is that the inner loop does not begin at iy = 0
like for multiplication. As such, the inner loops get progressively shorter as the
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algorithm proceeds. This is what leads to the savings compared to using a multi-
plication to square a number.

5.3.2 Faster Squaring by the “Comba” Method

A major drawback to the baseline method is the requirement for single precision
shifting inside the O(n2) nested loop. Squaring has an additional drawback in that
it must double the product inside the inner loop as well. As for multiplication,
the Comba technique can be used to eliminate these performance hazards.

The first obvious solution is to make an array of mp words that will hold all
the columns. This will indeed eliminate all of the carry propagation operations
from the inner loop. However, the inner product must still be doubled O(n2)
times. The solution stems from the simple fact that 2a + 2b + 2c = 2(a + b + c).
That is, the sum of all of the double products is equal to double the sum of all
the products. For example, ab + ba + ac + ca = 2ab + 2ac = 2(ab + ac).

However, we cannot simply double all the columns, since the squares appear
only once per row. The most practical solution is to have two mp word arrays.
One array will hold the squares, and the other will hold the double products.
With both arrays, the doubling and carry propagation can be moved to a O(n)
work level outside the O(n2) level. In this case, we have an even simpler solution
in mind.
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Algorithm fast s mp sqr.
Input. mp int a
Output. b← a2

Place an array of MP WARRAY mp digits named W on the stack.
1. If b.alloc < 2a.used + 1 then grow b to 2a.used + 1 digits. (mp grow).
2. If step 1 failed return(MP MEM ).

3. pa← 2 · a.used

4. Ŵ1← 0
5. for ix from 0 to pa− 1 do

5.1 Ŵ ← 0
5.2 ty ← MIN(a.used− 1, ix)
5.3 tx← ix− ty
5.4 iy ← MIN(a.used− tx, ty + 1)
5.5 iy ← MIN(iy, ⌊(ty − tx + 1) /2⌋)
5.6 for iz from 0 to iz − 1 do

5.6.1 Ŵ ← Ŵ + atx+izaty−iz

5.7 Ŵ ← 2 · Ŵ + Ŵ1
5.8 if ix is even then

5.8.1 Ŵ ← Ŵ +
`

a⌊ix/2⌋

´2

5.9 Wix ← Ŵ (mod β)

5.10 Ŵ1← ⌊ Ŵ/β⌋

6. oldused← b.used
7. b.used← 2 · a.used
8. for ix from 0 to pa− 1 do

8.1 bix ←Wix

9. for ix from pa to oldused− 1 do
9.1 bix ← 0

10. Clamp excess digits from b. (mp clamp)
11. Return(MP OKAY ).

Figure 5.13: Algorithm fast s mp sqr

Algorithm fast s mp sqr. This algorithm computes the square of an input
using the Comba technique. It is designed to be a replacement for algorithm
s mp sqr when the number of input digits is less than MP WARRAY and less
than δ

2 . This algorithm is very similar to the Comba multiplier, except with a few
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key differences we shall make note of (Figure 5.13).

First, we have an accumulator and carry variables Ŵ and Ŵ1, respectively.
This is because the inner loop products are to be doubled. If we had added the
previous carry in we would be doubling too much. Next, we perform an addition
MIN condition on iy (step 5.5) to prevent overlapping digits. For example, a3 · a5

is equal a5 · a3, whereas in the multiplication case we would have 5 < a.used, and
3 ≥ 0 is maintained since we double the sum of the products just outside the inner
loop, which we have to avoid doing. This is also a good thing since we perform
fewer multiplications and the routine ends up being faster.

The last difference is the addition of the “square” term outside the inner loop
(step 5.8). We add in the square only to even outputs, and it is the square of the
term at the ⌊ix/2⌋ position.

File: bn fast s mp sqr.c

018 /* the gist of squaring...

019 * you do like mult except the offset of the tmpx [one that

020 * starts closer to zero] can’t equal the offset of tmpy.

021 * So basically you set up iy like before then you min it with

022 * (ty-tx) so that it never happens. You double all those

023 * you add in the inner loop

024

025 After that loop you do the squares and add them in.

026 */

027

028 int fast_s_mp_sqr (mp_int * a, mp_int * b)

029 {
030 int olduse, res, pa, ix, iz;

031 mp_digit W[MP_WARRAY], *tmpx;

032 mp_word W1;

033

034 /* grow the destination as required */

035 pa = a->used + a->used;

036 if (b->alloc < pa) {
037 if ((res = mp_grow (b, pa)) != MP_OKAY) {
038 return res;

039 }
040 }
041

042 /* number of output digits to produce */

043 W1 = 0;
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044 for (ix = 0; ix < pa; ix++) {
045 int tx, ty, iy;

046 mp_word _W;

047 mp_digit *tmpy;

048

049 /* clear counter */

050 _W = 0;

051

052 /* get offsets into the two bignums */

053 ty = MIN(a->used-1, ix);

054 tx = ix - ty;

055

056 /* setup temp aliases */

057 tmpx = a->dp + tx;

058 tmpy = a->dp + ty;

059

060 /* this is the number of times the loop will iterate, essentially

061 while (tx++ < a->used && ty-- >= 0) { ... }
062 */

063 iy = MIN(a->used-tx, ty+1);

064

065 /* now for squaring tx can never equal ty

066 * we halve the distance since they approach at a rate of 2x

067 * and we have to round because odd cases need to be executed

068 */

069 iy = MIN(iy, (ty-tx+1)>>1);

070

071 /* execute loop */

072 for (iz = 0; iz < iy; iz++) {
073 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);

074 }
075

076 /* double the inner product and add carry */

077 _W = _W + _W + W1;

078

079 /* even columns have the square term in them */

080 if ((ix&1) == 0) {
081 _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);

082 }
083

084 /* store it */
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085 W[ix] = (mp_digit)(_W & MP_MASK);

086

087 /* make next carry */

088 W1 = _W >> ((mp_word)DIGIT_BIT);

089 }
090

091 /* setup dest */

092 olduse = b->used;

093 b->used = a->used+a->used;

094

095 {
096 mp_digit *tmpb;

097 tmpb = b->dp;

098 for (ix = 0; ix < pa; ix++) {
099 *tmpb++ = W[ix] & MP_MASK;

100 }
101

102 /* clear unused digits [that existed in the old copy of c] */

103 for (; ix < olduse; ix++) {
104 *tmpb++ = 0;

105 }
106 }
107 mp_clamp (b);

108 return MP_OKAY;

109 }
110

This implementation is essentially a copy of Comba multiplication with the
appropriate changes added to make it faster for the special case of squaring. The
innermost loop (lines 72 to 74) computes the products the same way the multi-
plication routine does. The sum of the products is doubled separately (line 77)
outside the innermost loop. The square term is added if ix is even (lines 80 to
82), indicating column with a square.

5.3.3 Even Faster Squaring

Just like the case of algorithm fast mult (Section 5.2.3), squaring can be performed
using the full precision of single precision variables. This algorithm borrows much
from the algorithm in Figure 5.13. Except that, in this case, we will be accumu-
lating into a triple–precision accumulator. Similarly, loop unrolling can boost the
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performance of this operation significantly.
The TomsFastMath library incorporates fast squaring that is a direct port of

algorithm fast s mp sqr. Readers are encouraged to research this project to learn
more.

5.3.4 Polynomial Basis Squaring

The same algorithm that performs optimal polynomial basis multiplication can
be used to perform polynomial basis squaring. The minor exception is that ζy =
f(y)g(y) is actually equivalent to ζy = f(y)2, since f(y) = g(y). Instead of
performing 2n + 1 multiplications to find the ζ relations, squaring operations are
performed instead.

5.3.5 Karatsuba Squaring

Let f(x) = ax + b represent the polynomial basis representation of a number to

square. Let h(x) = (f(x))
2

represent the square of the polynomial. The Karatsuba
equation can be modified to square a number with the following equation.

h(x) = a2x2 +
(

(a + b)2 − (a2 + b2)
)

x + b2 (5.7)

Upon closer inspection, this equation only requires the calculation of three
half-sized squares: a2, b2, and (a + b)2. As in Karatsuba multiplication, this
algorithm can be applied recursively on the input and will achieve an asymptotic
running time of O

(

nlg(3)
)

.
If the asymptotic times of Karatsuba squaring and multiplication are the same,

why not simply use the multiplication algorithm instead? The answer to this arises
from the cutoff point for squaring. As in multiplication, there exists a cutoff point,
at which the time required for a Comba–based squaring and a Karatsuba–based
squaring meet. Due to the overhead inherent in the Karatsuba method, the cutoff
point is fairly high. For example, on an AMD Athlon XP processor with β = 228,
the cutoff point is around 127 digits.

Consider squaring a 200–digit number with this technique. It will be split into
two 100–digit halves that are subsequently squared. The 100–digit halves will not
be squared using Karatsuba, but instead using the faster Comba–based squaring
algorithm. If Karatsuba multiplication were used instead, the 100–digit numbers
would be squared with a slower Comba–based multiplication.
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Algorithm mp karatsuba sqr.
Input. mp int a
Output. b← a2

1. Initialize the following temporary mp ints: x0, x1, t1, t2, x0x0, and x1x1.
2. If any of the initializations on step 1 failed return(MP MEM ).

Split the input. e.g. a = x1βB + x0
3. B ← ⌊a.used/2⌋
4. x0← a (mod βB) (mp mod 2d)
5. x1← ⌊a/βB⌋ (mp lshd)

Calculate the three squares.
6. x0x0← x02 (mp sqr)
7. x1x1← x12

8. t1← x1 + x0 (s mp add)
9. t1← t12

Compute the middle term.
10. t2← x0x0 + x1x1 (s mp add)
11. t1← t1− t2

Compute final product.
12. t1← t1βB (mp lshd)

13. x1x1← x1x1β2B

14. t1← t1 + x0x0
15. b← t1 + x1x1
16. Return(MP OKAY ).

Figure 5.14: Algorithm mp karatsuba sqr

Algorithm mp karatsuba sqr. This algorithm computes the square of an
input a using the Karatsuba technique. It is very similar to the Karatsuba–based
multiplication algorithm with the exception that the three half-size multiplications
have been replaced with three half-size squarings (Figure 5.14).

The radix point for squaring is simply placed exactly in the middle of the digits
when the input has an odd number of digits; otherwise, it is placed just below the
middle. Steps 3, 4, and 5 compute the two halves required using B as the radix
point. The first two squares in steps 6 and 7 are straightforward, while the last
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square is of a more compact form.
By expanding (x1 + x0)2, the x12 and x02 terms in the middle disappear; that

is, (x0−x1)2− (x12 +x02) = 2 ·x0 ·x1. Now if 5n single precision additions and a
squaring of n-digits is faster than multiplying two n-digit numbers and doubling,
then this method is faster. Assuming no further recursions occur, the difference
can be estimated with the following inequality.

Let p represent the cost of a single precision addition and q the cost of a single
precision multiplication both in terms of time4.

5pn +
q(n2 + n)

2
≤ pn + qn2 (5.8)

For example, on an AMD Athlon XP processor, p = 1
3 and q = 6. This implies

that the following inequality should hold.

5n
3 + 3n2 + 3n < n

3 + 6n2

5
3 + 3n + 3 < 1

3 + 6n
13
9 < n

This results in a cutoff point around n = 2. As a consequence, it is actually
faster to compute the middle term the “long way” on processors where multipli-
cation is substantially slower5 than simpler operations such as addition.

File: bn mp karatsuba sqr.c

018 /* Karatsuba squaring, computes b = a*a using three

019 * half size squarings

020 *

021 * See comments of karatsuba_mul for details. It

022 * is essentially the same algorithm but merely

023 * tuned to perform recursive squarings.

024 */

025 int mp_karatsuba_sqr (mp_int * a, mp_int * b)

026 {
027 mp_int x0, x1, t1, t2, x0x0, x1x1;

028 int B, err;

029

030 err = MP_MEM;

4Or machine clock cycles.
5On the Athlon there is a 1:17 ratio between clock cycles for addition and multiplication. On

the Intel P4 processor this ratio is 1:29, making this method even more beneficial. The only
common exception is the ARMv4 processor, which has a ratio of 1:7.
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031

032 /* min # of digits */

033 B = a->used;

034

035 /* now divide in two */

036 B = B >> 1;

037

038 /* init copy all the temps */

039 if (mp_init_size (&x0, B) != MP_OKAY)

040 goto ERR;

041 if (mp_init_size (&x1, a->used - B) != MP_OKAY)

042 goto X0;

043

044 /* init temps */

045 if (mp_init_size (&t1, a->used * 2) != MP_OKAY)

046 goto X1;

047 if (mp_init_size (&t2, a->used * 2) != MP_OKAY)

048 goto T1;

049 if (mp_init_size (&x0x0, B * 2) != MP_OKAY)

050 goto T2;

051 if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)

052 goto X0X0;

053

054 {
055 register int x;

056 register mp_digit *dst, *src;

057

058 src = a->dp;

059

060 /* now shift the digits */

061 dst = x0.dp;

062 for (x = 0; x < B; x++) {
063 *dst++ = *src++;

064 }
065

066 dst = x1.dp;

067 for (x = B; x < a->used; x++) {
068 *dst++ = *src++;

069 }
070 }
071
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072 x0.used = B;

073 x1.used = a->used - B;

074

075 mp_clamp (&x0);

076

077 /* now calc the products x0*x0 and x1*x1 */

078 if (mp_sqr (&x0, &x0x0) != MP_OKAY)

079 goto X1X1; /* x0x0 = x0*x0 */

080 if (mp_sqr (&x1, &x1x1) != MP_OKAY)

081 goto X1X1; /* x1x1 = x1*x1 */

082

083 /* now calc (x1+x0)**2 */

084 if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)

085 goto X1X1; /* t1 = x1 - x0 */

086 if (mp_sqr (&t1, &t1) != MP_OKAY)

087 goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */

088

089 /* add x0y0 */

090 if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)

091 goto X1X1; /* t2 = x0x0 + x1x1 */

092 if (s_mp_sub (&t1, &t2, &t1) != MP_OKAY)

093 goto X1X1; /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */

094

095 /* shift by B */

096 if (mp_lshd (&t1, B) != MP_OKAY)

097 goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */

098 if (mp_lshd (&x1x1, B * 2) != MP_OKAY)

099 goto X1X1; /* x1x1 = x1x1 << 2*B */

100

101 if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)

102 goto X1X1; /* t1 = x0x0 + t1 */

103 if (mp_add (&t1, &x1x1, b) != MP_OKAY)

104 goto X1X1; /* t1 = x0x0 + t1 + x1x1 */

105

106 err = MP_OKAY;

107

108 X1X1:mp_clear (&x1x1);

109 X0X0:mp_clear (&x0x0);

110 T2:mp_clear (&t2);

111 T1:mp_clear (&t1);

112 X1:mp_clear (&x1);
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113 X0:mp_clear (&x0);

114 ERR:

115 return err;

116 }
117

This implementation is largely based on the implementation of algorithm
mp karatsuba mul. It uses the same inline style to copy and shift the input into
the two halves. The loop from line 54 to line 70 has been modified since only one
input exists. The used count of both x0 and x1 is fixed up, and x0 is clamped
before the calculations begin. At this point, x1 and x0 are valid equivalents to
the respective halves as if mp rshd and mp mod 2d had been used.

By inlining the copy and shift operations, the cutoff point for Karatsuba mul-
tiplication can be lowered. On the Athlon, the cutoff point is exactly at the point
where Comba squaring can no longer be used (128 digits). On slower processors
such as the Intel P4, it is actually below the Comba limit (at 110 digits).

This routine uses the same error trap coding style as mp karatsuba sqr. As the
temporary variables are initialized, errors are redirected to the error trap higher
up. If the algorithm completes without error, the error code is set to MP OKAY
and mp clears are executed normally.

5.3.6 Toom-Cook Squaring

The Toom-Cook squaring algorithm mp toom sqr is heavily based on the algo-
rithm mp toom mul, with the exception that squarings are used instead of multi-
plication to find the five relations. Readers are encouraged to read the description
of the latter algorithm and try to derive their own Toom-Cook squaring algorithm.
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5.3.7 High Level Squaring

Algorithm mp sqr.
Input. mp int a
Output. b← a2

1. If a.used ≥ TOOM SQR CUTOFF then
1.1 b← a2 using algorithm mp toom sqr

2. else if a.used ≥ KARATSUBA SQR CUTOFF then
2.1 b← a2 using algorithm mp karatsuba sqr

3. else
3.1 digs← a.used + b.used + 1
3.2 If digs < MP ARRAY and a.used ≤ δ then

3.2.1 b← a2 using algorithm fast s mp sqr.
3.3 else

3.3.1 b← a2 using algorithm s mp sqr.
4. b.sign←MP ZPOS
5. Return the result of the unsigned squaring performed.

Figure 5.15: Algorithm mp sqr

Algorithm mp sqr. This algorithm computes the square of the input us-
ing one of four different algorithms. If the input is very large and has at least
TOOM SQR CUTOFF or KARATSUBA SQR CUTOFF digits, then ei-
ther the Toom-Cook or the Karatsuba Squaring algorithm is used. If neither of
the polynomial basis algorithms should be used, then either the Comba or baseline
algorithm is used (Figure 5.15).

File: bn mp sqr.c

018 /* computes b = a*a */

019 int

020 mp_sqr (mp_int * a, mp_int * b)

021 {
022 int res;

023

024 #ifdef BN_MP_TOOM_SQR_C

025 /* use Toom-Cook? */

026 if (a->used >= TOOM_SQR_CUTOFF) {
027 res = mp_toom_sqr(a, b);



5.3 Squaring 145

028 /* Karatsuba? */

029 } else

030 #endif

031 #ifdef BN_MP_KARATSUBA_SQR_C

032 if (a->used >= KARATSUBA_SQR_CUTOFF) {
033 res = mp_karatsuba_sqr (a, b);

034 } else

035 #endif

036 {
037 #ifdef BN_FAST_S_MP_SQR_C

038 /* can we use the fast comba multiplier? */

039 if ((a->used * 2 + 1) < MP_WARRAY &&

040 a->used <

041 (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
042 res = fast_s_mp_sqr (a, b);

043 } else

044 #endif

045 #ifdef BN_S_MP_SQR_C

046 res = s_mp_sqr (a, b);

047 #else

048 res = MP_VAL;

049 #endif

050 }
051 b->sign = MP_ZPOS;

052 return res;

053 }
054
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Exercises

[3] Devise an efficient algorithm for selection of the radix point to handle inputs
that have different numbers of digits in Karatsuba multiplication.

[2] In section 5.3, we stated, that every column of a squaring is made up
of double products and at most one square is stated. Prove this statement.

[3] Prove the equation for Karatsuba squaring.

[1] Prove that Karatsuba squaring requires O
(

nlg(3)
)

time.

[3] Implement a threaded version of Comba multiplication (and squaring) where you
compute subsets of the columns in each thread. Determine a cutoff point where
it is effective, and add the logic to mp mul() and mp sqr().

[4] Same as the previous, but also modify the Karatsuba and Toom-Cook. You must
increase the throughput of mp exptmod() for random odd moduli in the range
512 . . .4096 bits significantly (> 2x) to complete this challenge.



Chapter 6

Modular Reduction

6.1 Basics of Modular Reduction

Modular reduction arises quite often within public key cryptography algorithms
and various number theoretic algorithms, such as factoring. Modular reduction
algorithms are the third class of algorithms of the “multipliers” set. A number a
is said to be reduced modulo another number b by finding the remainder of the
division a/b. Full integer division with remainder is covered in Section 8.1.

Modular reduction is equivalent to solving for r in the following equation:
a = bq + r where q = ⌊a/b⌋. The result r is said to be “congruent to a modulo
b,” which is also written as r ≡ a (mod b). In other vernacular, r is known as
the “modular residue,” which leads to “quadratic residue”1 and other forms of
residues.

Modular reductions are normally used to create finite groups, rings, or fields.
The most common usage for performance driven modular reductions is in modular
exponentiation algorithms; that is, to compute d = ab (mod c) as fast as possi-
ble. This operation is used in the RSA and Diffie-Hellman public key algorithms,
for example. Modular multiplication and squaring also appears as a fundamental
operation in elliptic curve cryptographic algorithms. As will be discussed in the
subsequent chapter, there exist fast algorithms for computing modular exponen-
tiations without having to perform (in this example) b− 1 multiplications. These
algorithms will produce partial results in the range 0 ≤ x < c2, which can be taken

1That’s fancy talk for b ≡ a2 (mod p).

147
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advantage of to create several efficient algorithms. They have also been used to
create redundancy check algorithms known as CRCs, error correction codes such
as Reed-Solomon, and solve a variety of number theoretic problems.

6.2 The Barrett Reduction

The Barrett reduction algorithm [6] was inspired by fast division algorithms that
multiply by the reciprocal to emulate division. Barrett’s observation was that the
residue c of a modulo b is equal to

c = a− b · ⌊a/b⌋ (6.1)

Since algorithms such as modular exponentiation would be using the same
modulus extensively, typical DSP2 intuition would indicate the next step would
be to replace a/b by a multiplication by the reciprocal. However, DSP intuition
on its own will not work, as these numbers are considerably larger than the pre-
cision of common DSP floating point data types. It would take another common
optimization to optimize the algorithm.

6.2.1 Fixed Point Arithmetic

The trick used to optimize equation 6.1 is based on a technique of emulating float-
ing point data types with fixed precision integers. Fixed point arithmetic would
become very popular, as it greatly optimized the “3D–shooter” genre of games in
the mid 1990s when floating point units were fairly slow, if not unavailable. The
idea behind fixed point arithmetic is to take a normal k-bit integer data type and
break it into p-bit integer and a q-bit fraction part (where p + q = k).

In this system, a k-bit integer n would actually represent n/2q. For example,
with q = 4 the integer n = 37 would actually represent the value 2.3125. To
multiply two fixed point numbers, the integers are multiplied using traditional
arithmetic and subsequently normalized by moving the implied decimal point
back to where it should be. For example, with q = 4, to multiply the integers
9 and 5 they must be converted to fixed point first by multiplying by 2q. Let
a = 9(2q) represent the fixed point representation of 9, and b = 5(2q) represent
the fixed point representation of 5. The product ab is equal to 45(22q), which
when normalized by dividing by 2q produces 45(2q).

2It is worth noting that Barrett’s paper targeted the DSP56K processor.
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This technique became popular since a normal integer multiplication and log-
ical shift right are the only required operations to perform a multiplication of two
fixed point numbers. Using fixed point arithmetic, division can be easily approx-
imated by multiplying by the reciprocal. If 2q is equivalent to one, then, 2q/b is
equivalent to the fixed point approximation of 1/b using real arithmetic. Using
this fact, dividing an integer a by another integer b can be achieved with the
following expression.

⌊a/b⌋ ∼ ⌊(a · ⌊2q/b⌋)/2q⌋ (6.2)

The precision of the division is proportional to the value of q. If the divisor
b is used frequently, as is the case with modular exponentiation, pre-computing
2q/b will allow a division to be performed with a multiplication and a right shift.
Both operations are considerably faster than division on most processors.

Consider dividing 19 by 5. The correct result is ⌊19/5⌋ = 3. With q = 3, the
reciprocal is ⌊2q/5⌋ = 1, which leads to a product of 19, which when divided by
2q produces 2. However, with q = 4 the reciprocal is ⌊2q/5⌋ = 3 and the result of
the emulated division is ⌊3 · 19/2q⌋ = 3, which is correct. The value of 2q must
be close to or ideally larger than the dividend. In effect, if a is the dividend, then
q should allow 0 ≤ ⌊a/2q⌋ ≤ 1 for this approach to work correctly. Plugging this
form of division into the original equation, the following modular residue equation
arises.

c = a− b · ⌊(a · ⌊2q/b⌋)/2q⌋ (6.3)

Using the notation from [6], the value of ⌊2q/b⌋ will be represented by the µ
symbol. Using the µ variable also helps reinforce the idea that it is meant to be
computed once and re-used.

c = a− b · ⌊(a · µ)/2q⌋ (6.4)

Provided that 2q ≥ a, this algorithm will produce a quotient that is either
exactly correct or off by a value of one. In the context of Barrett reduction the
value of a is bound by 0 ≤ a ≤ (b − 1)2, meaning that 2q ≥ b2 is sufficient to
ensure the reciprocal will have enough precision.

Let n represent the number of digits in b. This algorithm requires approxi-
mately 2n2 single precision multiplications to produce the quotient, and another
n2 single precision multiplications to find the residue. In total, 3n2 single precision
multiplications are required to reduce the number.
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For example, if b = 1179677 and q = 41 (2q > b2), the reciprocal µ is equal
to ⌊2q/b⌋ = 1864089. Consider reducing a = 180388626447 modulo b using the
preceding reduction equation. The quotient using the new formula is ⌊(a·µ)/2q⌋ =
152913. By subtracting 152913b from a, the correct residue a ≡ 677346 (mod b)
is found.

6.2.2 Choosing a Radix Point

Using the fixed point representation, a modular reduction can be performed with
3n2 single precision multiplications3. If that were the best that could be achieved.
a full division4 might as well be used in its place. The key to optimizing the
reduction is to reduce the precision of the initial multiplication that finds the
quotient.

Let a represent the number of which the residue is sought. Let b represent
the modulus used to find the residue. Let m represent the number of digits in
b. For the purposes of this discussion we will assume that the number of digits
in a is 2m, which is generally true if two m-digit numbers have been multiplied.
Dividing a by b is the same as dividing a 2m digit integer by an m digit integer.
Digits below the m − 1’th digit of a will contribute at most a value of 1 to the
quotient, because βk < b for any 0 ≤ k ≤ m− 1. Another way to express this is
by re-writing a as two parts. If a′ ≡ a (mod bm) and a′′ = a−a′, then a

b ≡ a′+a′′

b ,

which is equivalent to a′

b + a′′

b . Since a′ is bound to be less than b, the quotient is

bound by 0 ≤ a′

b < 1.
Since the digits of a′ do not contribute much to the quotient the observation

is that they might as well be zero. However, if the digits “might as well be zero,”
they might as well not be there in the first place. Let q0 = ⌊a/βm−1⌋ represent the
input with the irrelevant digits trimmed. Now the modular reduction is trimmed
to the almost equivalent equation

c = a− b · ⌊(q0 · µ)/βm+1⌋ (6.5)

Note that the original divisor 2q has been replaced with βm+1 where in this
case q is a multiple of lg(β). Also note that the exponent on the divisor when
added to the amount q0 was shifted by equals 2m. If the optimization had not been
performed the divisor would have the exponent 2m, so in the end the exponents

3One division and two multiplications require 3n2 single precision multiplications.
4A division requires approximately O(2cn2) single precision multiplications for a small value

of c. See 8.1 for further details.
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do “add up.” Using equation 6.5 the quotient ⌊(q0 ·µ)/βm+1⌋ can be off from the
true quotient by at most two. The original fixed point quotient can be off by as
much as one (provided the radix point is chosen suitably), and now that the lower
irrelevant digits have been trimmed the quotient can be off by an additional value
of one for a total of at most two. This implies that 0 ≤ a−b ·⌊(q0 ·µ)/βm+1⌋ < 3b.
By first subtracting b times the quotient and then conditionally subtracting b once
or twice the residue is found.

The quotient is now found using (m + 1)(m) = m2 + m single precision multi-
plications and the residue with an additional m2 single precision multiplications,
ignoring the subtractions required. In total, 2m2 + m single precision multiplica-
tions are required to find the residue. This is considerably faster than the original
attempt.

For example, let β = 10 represent the radix of the digits. Let b = 9999
represent the modulus, which implies m = 4. Let a = 99929878 represent the value
of which the residue is desired; in this case, q = 8 since 107 < 99992, meaning that
µ = ⌊βq/b⌋ = 10001. With the new observation the multiplicand for the quotient
is equal to q0 = ⌊a/βm−1⌋ = 99929. The quotient is then ⌊(q0 ·µ)/βm+1⌋ = 9993.
Subtract 9993b from a and the correct residue a ≡ 9871 (mod b) is found.

6.2.3 Trimming the Quotient

So far, the reduction algorithm has been optimized from 3m2 single precision
multiplications down to 2m2+m single precision multiplications. As it stands now,
the algorithm is already fairly fast compared to a full integer division algorithm.
However, there is still room for optimization.

After the first multiplication inside the quotient (q0 · µ) the value is shifted
right by m+1 places, effectively nullifying the lower half of the product. It would
be nice to be able to remove those digits from the product to effectively cut down
the number of single precision multiplications. If the number of digits in the
modulus m is far less than β, a full product is not required for the algorithm to
work properly. In fact, the lower m− 2 digits will not affect the upper half of the
product at all and do not need to be computed.

The value of µ is an m-digit number and q0 is an m + 1 digit number. Using
a full multiplier (m + 1)(m) = m2 + m single precision multiplications would
be required. Using a multiplier that will only produce digits at and above the

m − 1’th digit reduces the number of single precision multiplications to m2+m
2

single precision multiplications.
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6.2.4 Trimming the Residue

After the quotient has been calculated it is used to reduce the input. As previously
noted, the algorithm is not exact and can be off by a small multiple of the modulus;
that is, 0 ≤ a − b · ⌊(q0 · µ)/βm+1⌋ < 3b. If b is m digits, the result of reduction
equation is a value of at most m + 1 digits (provided 3 < β) implying that the
upper m− 1 digits are implicitly zero.

The next optimization arises from this very fact. Instead of computing b ·
⌊(q0 ·µ)/βm+1⌋ using a full O(m2) multiplication algorithm, only the lower m + 1
digits of the product have to be computed. Similarly, the value of a can be
reduced modulo βm+1 before the multiple of b is subtracted, which simplifies the
subtraction as well. A multiplication that produces only the lower m + 1 digits

requires m2+3m−2
2 single precision multiplications.

With both optimizations in place the algorithm is the algorithm Barrett pro-
posed. It requires m2 + 2m− 1 single precision multiplications, which are consid-
erably faster than the straightforward 3m2 method.
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6.2.5 The Barrett Algorithm

Algorithm mp reduce.
Input. mp int a, mp int b and µ = ⌊β2m/b⌋, m = ⌈lgβ(b)⌉, (0 ≤ a < b2, b > 1)
Output. a (mod b)

Let m represent the number of digits in b.
1. Make a copy of a and store it in q. (mp init copy)
2. q ← ⌊q/βm−1⌋ (mp rshd)

Produce the quotient.
3. q ← q · µ (note: only produce digits at or above m− 1)
4. q ← ⌊q/βm+1⌋

Subtract the multiple of modulus from the input.
5. a← a (mod βm+1) (mp mod 2d)
6. q ← q · b (mod βm+1) (s mp mul digs)
7. a← a− q (mp sub)

Add βm+1 if a carry occurred.
8. If a < 0 then (mp cmp d)

8.1 q ← 1 (mp set)
8.2 q ← q · βm+1 (mp lshd)
8.3 a← a + q

Now subtract the modulus if the residue is too large (e.g., quotient too small).
9. While a ≥ b do (mp cmp)

9.1 c← a− b
10. Clear q.
11. Return(MP OKAY )

Figure 6.1: Algorithm mp reduce

Algorithm mp reduce. This algorithm will reduce the input a modulo b in
place using the Barrett algorithm. It is loosely based on algorithm 14.42 of HAC
[2, pp. 602], which is based on the paper from Paul Barrett [6]. The algorithm has
several restrictions and assumptions that must be adhered to for the algorithm to
work (Figure 6.1).

First, the modulus b is assumed positive and greater than one. If the modulus
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were less than or equal to one, subtracting a multiple of it would either accomplish
nothing or actually enlarge the input. The input a must be in the range 0 ≤ a < b2

for the quotient to have enough precision. If a is the product of two numbers that
were already reduced modulo b, this will not be a problem. Technically, the
algorithm will still work if a ≥ b2 but it will take much longer to finish. The value
of µ is passed as an argument to this algorithm and is assumed calculated and
stored before the algorithm is used.

Recall that the multiplication for the quotient in step 3 must only produce
digits at or above the m−1’th position. An algorithm called s mp mul high digs
that has not been presented is used to accomplish this task. The algorithm is based
on s mp mul digs, except that instead of stopping at a given level of precision it
starts at a given level of precision. This optimal algorithm can only be used if the
number of digits in b is much smaller than β.

While it is known that a ≥ b · ⌊(q0 · µ)/βm+1⌋, only the lower m + 1 digits
are being used to compute the residue, so an implied “borrow” from the higher
digits might leave a negative result. After the multiple of the modulus has been
subtracted from a, the residue must be fixed up in case it is negative. The invariant
βm+1 must be added to the residue to make it positive again.

The while loop in step 9 will subtract b until the residue is less than b. If
the algorithm is performed correctly, this step is performed at most twice, and on
average once. However, if a ≥ b2, it will iterate substantially more times than it
should.

File: bn mp reduce.c

018 /* reduces x mod m, assumes 0 < x < m**2, mu is

019 * precomputed via mp_reduce_setup.

020 * From HAC pp.604 Algorithm 14.42

021 */

022 int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)

023 {
024 mp_int q;

025 int res, um = m->used;

026

027 /* q = x */

028 if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
029 return res;

030 }
031

032 /* q1 = x / b**(k-1) */

033 mp_rshd (&q, um - 1);
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034

035 /* according to HAC this optimization is ok */

036 if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
037 if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
038 goto CLEANUP;

039 }
040 } else {
041 #ifdef BN_S_MP_MUL_HIGH_DIGS_C

042 if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
043 goto CLEANUP;

044 }
045 #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)

046 if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
047 goto CLEANUP;

048 }
049 #else

050 {
051 res = MP_VAL;

052 goto CLEANUP;

053 }
054 #endif

055 }
056

057 /* q3 = q2 / b**(k+1) */

058 mp_rshd (&q, um + 1);

059

060 /* x = x mod b**(k+1), quick (no division) */

061 if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
062 goto CLEANUP;

063 }
064

065 /* q = q * m mod b**(k+1), quick (no division) */

066 if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
067 goto CLEANUP;

068 }
069

070 /* x = x - q */

071 if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
072 goto CLEANUP;

073 }
074
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075 /* If x < 0, add b**(k+1) to it */

076 if (mp_cmp_d (x, 0) == MP_LT) {
077 mp_set (&q, 1);

078 if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)

079 goto CLEANUP;

080 if ((res = mp_add (x, &q, x)) != MP_OKAY)

081 goto CLEANUP;

082 }
083

084 /* Back off if it’s too big */

085 while (mp_cmp (x, m) != MP_LT) {
086 if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
087 goto CLEANUP;

088 }
089 }
090

091 CLEANUP:

092 mp_clear (&q);

093

094 return res;

095 }
096

The first multiplication that determines the quotient can be performed by only
producing the digits from m − 1 and up. This essentially halves the number of
single precision multiplications required. However, the optimization is only safe if
β is much larger than the number of digits in the modulus. In the source code,
this is evaluated on lines 36 to 44 where algorithm s mp mul high digs is used
when it is safe to do so.

6.2.6 The Barrett Setup Algorithm

To use algorithm mp reduce, the value of µ must be calculated in advance. Ideally,
this value should be computed once and stored for future use so the Barrett
algorithm can be used without delay.
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Algorithm mp reduce setup.
Input. mp int a (a > 1)
Output. µ← ⌊β2m/a⌋

1. µ← 22·lg(β)·m (mp 2expt)
2. µ← ⌊µ/b⌋ (mp div)
3. Return(MP OKAY )

Figure 6.2: Algorithm mp reduce setup

Algorithm mp reduce setup. This algorithm computes the reciprocal µ
required for Barrett reduction. First, β2m is calculated as 22·lg(β)·m, which is
equivalent and much faster. The final value is computed by taking the integer
quotient of ⌊µ/b⌋ (Figure 6.2).

File: bn mp reduce setup.c

018 /* pre-calculate the value required for Barrett reduction

019 * For a given modulus "b" it calculates the value required in "a"

020 */

021 int mp_reduce_setup (mp_int * a, mp_int * b)

022 {
023 int res;

024

025 if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
026 return res;

027 }
028 return mp_div (a, b, a, NULL);

029 }
030

This simple routine calculates the reciprocal µ required by Barrett reduction.
Note the extended usage of algorithm mp div where the variable that would receive
the remainder is passed as NULL. As will be discussed in 8.1, the division routine
allows both the quotient and the remainder to be passed as NULL, meaning to
ignore the value.
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6.3 The Montgomery Reduction

Montgomery reduction5 [7] is by far the most interesting form of reduction in
common use. It computes a modular residue that is not actually equal to the
residue of the input, yet instead equal to a residue times a constant. However, as
perplexing as this may sound, the algorithm is relatively simple and very efficient.

Throughout this entire section the variable n will represent the modulus used
to form the residue. As will be discussed shortly, the value of n must be odd.
The variable x will represent the quantity of which the residue is sought. Similar
to the Barrett algorithm, the input is restricted to 0 ≤ x < n2. To begin the
description, some simple number theory facts must be established.

Fact 1. Adding n to x does not change the residue, since in effect it adds one
to the quotient ⌊x/n⌋. Another way to explain this is that n is (or multiples of

n are) congruent to zero modulo n. Adding zero will not change the value of the
residue.

Fact 2. If x is even, then performing a division by two in Z is congruent to
x · 2−1 (mod n). Actually, this is an application of the fact that if x is evenly
divisible by any k ∈ Z, then division in Z will be congruent to multiplication by
k−1 modulo n.

From these two simple facts the following simple algorithm can be derived.

Algorithm Montgomery Reduction.
Input. Integer x, n and k

Output. 2−kx (mod n)

1. for t from 1 to k do
1.1 If x is odd then

1.1.1 x← x + n
1.2 x← x/2

2. Return x.

Figure 6.3: Algorithm Montgomery Reduction

The algorithm in Figure 6.3 reduces the input one bit at a time using the two
congruencies stated previously. Inside the loop n, which is odd, is added to x if
x is odd. This forces x to be even, which allows the division by two in Z to be
congruent to a modular division by two. Since x is assumed initially much larger

5Thanks to Niels Ferguson for his insightful explanation of the algorithm.
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than n, the addition of n will contribute an insignificant magnitude to x. Let r
represent the result of the Montgomery algorithm. If k > lg(n) and 0 ≤ x < n2,
then the result is limited to 0 ≤ r < ⌊x/2k⌋+ n. At most, a single subtraction is
required to get the residue desired.

Step number (t) Result (x)

1 x + n = 5812, x/2 = 2906

2 x/2 = 1453

3 x + n = 1710, x/2 = 855

4 x + n = 1112, x/2 = 556

5 x/2 = 278

6 x/2 = 139

7 x + n = 396, x/2 = 198

8 x/2 = 99

9 x + n = 356, x/2 = 178

Figure 6.4: Example of Montgomery Reduction (I)

Consider the example in Figure 6.4, which reduces x = 5555 modulo n = 257
when k = 9 (note βk = 512, which is larger than n). The result of the algorithm
r = 178 is congruent to the value of 2−9 · 5555 (mod 257). When r is multiplied
by 29 modulo 257, the correct residue r ≡ 158 is produced.

Let k = ⌊lg(n)⌋+ 1 represent the number of bits in n. The current algorithm
requires 2k2 single precision shifts and k2 single precision additions. At this rate,
the algorithm is most certainly slower than Barrett reduction and not terribly
useful. Fortunately, there exists an alternative representation of the algorithm.

Algorithm Montgomery Reduction (modified I).

Input. Integer x, n and k (2k > n)

Output. 2−kx (mod n)

1. for t from 1 to k do
1.1 If the t’th bit of x is one then

1.1.1 x← x + 2tn

2. Return x/2k.

Figure 6.5: Algorithm Montgomery Reduction (modified I)
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This algorithm is equivalent since 2tn is a multiple of n and the lower k bits of
x are zero by step 2. The number of single precision shifts has now been reduced
from 2k2 to k2 + k, which is only a small improvement (Figure 6.5).

Step number (t) Result (x) Result (x) in Binary

– 5555 1010110110011

1 x + 20n = 5812 1011010110100

2 5812 1011010110100

3 x + 22n = 6840 1101010111000

4 x + 23n = 8896 10001011000000

5 8896 10001011000000

6 8896 10001011000000

7 x + 26n = 25344 110001100000000

8 25344 110001100000000

9 x + 27n = 91136 10110010000000000

– x/2k = 178

Figure 6.6: Example of Montgomery Reduction (II)

Figure 6.6 demonstrates the modified algorithm reducing x = 5555 modulo
n = 257 with k = 9. With this algorithm, a single shift right at the end is the
only right shift required to reduce the input instead of k right shifts inside the
loop. Note that for the iterations t = 2, 5, 6, and 8 where the result x is not
changed. In those iterations the t’th bit of x is zero and the appropriate multiple
of n does not need to be added to force the t’th bit of the result to zero.

6.3.1 Digit Based Montgomery Reduction

Instead of computing the reduction on a bit-by-bit basis it is much faster to
compute it on digit-by-digit basis. Consider the previous algorithm re-written to
compute the Montgomery reduction in this new fashion (Figure 6.7).
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Algorithm Montgomery Reduction (modified II).

Input. Integer x, n and k (βk > n)

Output. β−kx (mod n)

1. for t from 0 to k − 1 do
1.1 x← x + µnβt

2. Return x/βk.

Figure 6.7: Algorithm Montgomery Reduction (modified II)

The value µnβt is a multiple of the modulus n, meaning that it will not change
the residue. If the first digit of the value µnβt equals the negative (modulo β)
of the t’th digit of x, then the addition will result in a zero digit. This problem
breaks down to solving the following congruency.

xt + µn0 ≡ 0 (mod β)
µn0 ≡ −xt (mod β)

µ ≡ −xt/n0 (mod β)

In each iteration of the loop in step 1 a new value of µ must be calculated.
The value of −1/n0 (mod β) is used extensively in this algorithm and should be
precomputed. Let ρ represent the negative of the modular inverse of n0 modulo
β.

For example, let β = 10 represent the radix. Let n = 17 represent the modulus,
which implies k = 2 and ρ ≡ 7. Let x = 33 represent the value to reduce.

The result in Figure 6.8 of 900 is then divided by βk to produce the result
9. The first observation is that 9 6≡ x (mod n), which implies the result is not
the modular residue of x modulo n. However, recall that the residue is actually
multiplied by β−k in the algorithm. To get the true residue the value must be

Step (t) Value of x Value of µ
– 33 –
0 33 + µn = 50 1
1 50 + µnβ = 900 5

Figure 6.8: Example of Montgomery Reduction
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multiplied by βk. In this case, βk ≡ 15 (mod n) and the correct residue is 9 ·15 ≡
16 (mod n).

6.3.2 Baseline Montgomery Reduction

The baseline Montgomery reduction algorithm will produce the residue for any
size input. It is designed to be a catch-all algorithm for Montgomery reductions.
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Algorithm mp montgomery reduce.
Input. mp int x, mp int n and a digit ρ ≡ −1/n0 (mod n).

(0 ≤ x < n2, n > 1, (n, β) = 1, βk > n)

Output. β−kx (mod n)

1. digs← 2n.used + 1
2. If digs < MP ARRAY and m.used < δ then

2.1 Use algorithm fast mp montgomery reduce instead.

Setup x for the reduction.
3. If x.alloc < digs then grow x to digs digits.
4. x.used← digs

Eliminate the lower k digits.
5. For ix from 0 to k − 1 do

5.1 µ← xix · ρ (mod β)
5.2 u← 0
5.3 For iy from 0 to k − 1 do

5.3.1 r̂ ← µniy + xix+iy + u
5.3.2 xix+iy ← r̂ (mod β)
5.3.3 u← ⌊r̂/β⌋

5.4 While u > 0 do
5.4.1 iy ← iy + 1
5.4.2 xix+iy ← xix+iy + u
5.4.3 u← ⌊xix+iy/β⌋
5.4.4 xix+iy ← xix+iy (mod β)

Divide by βk and fix up as required.
6. x← ⌊x/βk⌋
7. If x ≥ n then

7.1 x← x− n
8. Return(MP OKAY ).

Figure 6.9: Algorithm mp montgomery reduce

Algorithm mp montgomery reduce. This algorithm reduces the input x
modulo n in place using the Montgomery reduction algorithm. The algorithm is
loosely based on algorithm 14.32 of [2, pp.601], except it merges the multiplication
of µnβt with the addition in the inner loop. The restrictions on this algorithm
are fairly easy to adapt to. First, 0 ≤ x < n2 bounds the input to numbers in the
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same range as for the Barrett algorithm. Additionally, if n > 1 and n is odd there
will exist a modular inverse ρ. ρ must be calculated in advance of this algorithm.
Finally, the variable k is fixed and a pseudonym for n.used (Figure 6.9).

Step 2 decides whether a faster Montgomery algorithm can be used. It is based
on the Comba technique, meaning that there are limits on the size of the input.
This algorithm is discussed in 7.9.

Step 5 is the main reduction loop of the algorithm. The value of µ is calculated
once per iteration in the outer loop. The inner loop calculates x + µnβix by
multiplying µn and adding the result to x shifted by ix digits. Both the addition
and multiplication are performed in the same loop to save time and memory. Step
5.4 will handle any additional carries that escape the inner loop.

On quick inspection, this algorithm requires n single precision multiplications
for the outer loop and n2 single precision multiplications in the inner loop for a
total n2 + n single precision multiplications, which compares favorably to Barrett
at n2 + 2n− 1 single precision multiplications.

File: bn mp montgomery reduce.c

018 /* computes xR**-1 (mod N) via Montgomery Reduction */

019 int

020 mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)

021 {
022 int ix, res, digs;

023 mp_digit mu;

024

025 /* can the fast reduction [comba] method be used?

026 *

027 * Note that unlike in mul you’re safely allowed *less*

028 * than the available columns [255 per default] since carries

029 * are fixed up in the inner loop.

030 */

031 digs = n->used * 2 + 1;

032 if ((digs < MP_WARRAY) &&

033 n->used <

034 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
035 return fast_mp_montgomery_reduce (x, n, rho);

036 }
037

038 /* grow the input as required */

039 if (x->alloc < digs) {
040 if ((res = mp_grow (x, digs)) != MP_OKAY) {
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041 return res;

042 }
043 }
044 x->used = digs;

045

046 for (ix = 0; ix < n->used; ix++) {
047 /* mu = ai * rho mod b

048 *

049 * The value of rho must be precalculated via

050 * montgomery_setup() such that

051 * it equals -1/n0 mod b this allows the

052 * following inner loop to reduce the

053 * input one digit at a time

054 */

055 mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);

056

057 /* a = a + mu * m * b**i */

058 {
059 register int iy;

060 register mp_digit *tmpn, *tmpx, u;

061 register mp_word r;

062

063 /* alias for digits of the modulus */

064 tmpn = n->dp;

065

066 /* alias for the digits of x [the input] */

067 tmpx = x->dp + ix;

068

069 /* set the carry to zero */

070 u = 0;

071

072 /* Multiply and add in place */

073 for (iy = 0; iy < n->used; iy++) {
074 /* compute product and sum */

075 r = ((mp_word)mu) * ((mp_word)*tmpn++) +

076 ((mp_word) u) + ((mp_word) * tmpx);

077

078 /* get carry */

079 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

080

081 /* fix digit */



166 www.syngress.com

082 *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));

083 }
084 /* At this point the ix’th digit of x should be zero */

085

086

087 /* propagate carries upwards as required*/

088 while (u) {
089 *tmpx += u;

090 u = *tmpx >> DIGIT_BIT;

091 *tmpx++ &= MP_MASK;

092 }
093 }
094 }
095

096 /* at this point the n.used’th least

097 * significant digits of x are all zero

098 * which means we can shift x to the

099 * right by n.used digits and the

100 * residue is unchanged.

101 */

102

103 /* x = x/b**n.used */

104 mp_clamp(x);

105 mp_rshd (x, n->used);

106

107 /* if x >= n then x = x - n */

108 if (mp_cmp_mag (x, n) != MP_LT) {
109 return s_mp_sub (x, n, x);

110 }
111

112 return MP_OKAY;

113 }
114

This is the baseline implementation of the Montgomery reduction algorithm.
Lines 31 to 36 determine if the Comba–based routine can be used instead. Line
47 computes the value of µ for that particular iteration of the outer loop.

The multiplication µnβix is performed in one step in the inner loop. The alias
tmpx refers to the ix’th digit of x, and the alias tmpn refers to the modulus n.
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6.3.3 Faster “Comba” Montgomery Reduction

The Montgomery reduction requires fewer single precision multiplications than a
Barrett reduction; however, it is much slower due to the serial nature of the inner
loop. The Barrett reduction algorithm requires two slightly modified multipliers,
which can be implemented with the Comba technique. The Montgomery reduction
algorithm cannot directly use the Comba technique to any significant advantage
since the inner loop calculates a k × 1 product k times.

The biggest obstacle is that at the ix’th iteration of the outer loop, the value
of xix is required to calculate µ. This means the carries from 0 to ix−1 must have
been propagated upwards to form a valid ix’th digit. The solution as it turns out
is very simple. Perform a Comba–like multiplier, and inside the outer loop just
after the inner loop, fix up the ix + 1’th digit by forwarding the carry.

With this change in place, the Montgomery reduction algorithm can be per-
formed with a Comba–style multiplication loop, which substantially increases the
speed of the algorithm.
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Algorithm fast mp montgomery reduce.
Input. mp int x, mp int n and a digit ρ ≡ −1/n0 (mod n).

(0 ≤ x < n2, n > 1, (n, β) = 1, βk > n)

Output. β−kx (mod n)

Place an array of MP WARRAY mp word variables called Ŵ on the stack.
1. if x.alloc < n.used + 1 then grow x to n.used + 1 digits.

Copy the digits of x into the array Ŵ
2. For ix from 0 to x.used− 1 do

2.1 Ŵix ← xix

3. For ix from x.used to 2n.used − 1 do

3.1 Ŵix ← 0
Eliminate the lower k digits.
4. for ix from 0 to n.used− 1 do

4.1 µ← Ŵix · ρ (mod β)
4.2 For iy from 0 to n.used− 1 do

4.2.1 Ŵiy+ix ← Ŵiy+ix + µ · niy

4.3 Ŵix+1 ← Ŵix+1 + ⌊Ŵix/β⌋
Propagate the rest of the carries upwards.
5. for ix from n.used to 2n.used + 1 do

5.1 Ŵix+1 ← Ŵix+1 + ⌊Ŵix/β⌋
Shift right and reduce modulo β simultaneously.
6. for ix from 0 to n.used + 1 do

6.1 xix ← Ŵix+n.used (mod β)
Zero excess digits and fixup x.
7. if x.used > n.used + 1 then do

7.1 for ix from n.used + 1 to x.used− 1 do
7.1.1 xix ← 0

8. x.used← n.used + 1
9. Clamp excessive digits of x.
10. If x ≥ n then

10.1 x← x− n
11. Return(MP OKAY ).

Figure 6.10: Algorithm fast mp montgomery reduce

Algorithm fast mp montgomery reduce. This algorithm will compute
the Montgomery reduction of x modulo n using the Comba technique. It is on most
computer platforms significantly faster than algorithm mp montgomery reduce
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and algorithm mp reduce (Barrett reduction). The algorithm has the same re-
strictions on the input as the baseline reduction algorithm. An additional two
restrictions are imposed on this algorithm. The number of digits k in the modulus
n must not violate MP WARRAY > 2k + 1 and n < δ. When β = 228, this
algorithm can be used to reduce modulo a modulus of at most 3, 556 bits in length
(Figure 6.10).

As in the other Comba reduction algorithms there is a Ŵ array that stores
the columns of the product. It is initially filled with the contents of x with
the excess digits zeroed. The reduction loop is very similar the to the baseline
loop at heart. The multiplication in step 4.1 can be single precision only, since
ab (mod β) ≡ (a mod β)(b mod β). Some multipliers such as those on the ARM
processors take a variable length time to complete depending on the number of
bytes of result it must produce. By performing a single precision multiplication
instead, half the amount of time is spent.

Also note that digit Ŵix must have the carry from the ix−1’th digit propagated
upwards for this to work. That is what step 4.3 will do. In effect, over the
n.used iterations of the outer loop the n.used’th lower columns all have their
carries propagated forwards. Note how the upper bits of those same words are
not reduced modulo β. This is because those values will be discarded shortly and
there is no point.

Step 5 will propagate the remainder of the carries upwards. In step 6, the
columns are reduced modulo β and shifted simultaneously as they are stored in
the destination x.

File: bn fast mp montgomery reduce.c

018 /* computes xR**-1 == x (mod N) via Montgomery Reduction

019 *

020 * This is an optimized implementation of montgomery_reduce

021 * which uses the comba method to quickly calculate the columns of the

022 * reduction.

023 *

024 * Based on Algorithm 14.32 on pp.601 of HAC.

025 */

026 int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)

027 {
028 int ix, res, olduse;

029 mp_word W[MP_WARRAY];

030

031 /* get old used count */
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032 olduse = x->used;

033

034 /* grow a as required */

035 if (x->alloc < n->used + 1) {
036 if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
037 return res;

038 }
039 }
040

041 /* first we have to get the digits of the input into

042 * an array of double precision words W[...]

043 */

044 {
045 register mp_word *_W;

046 register mp_digit *tmpx;

047

048 /* alias for the W[] array */

049 _W = W;

050

051 /* alias for the digits of x*/

052 tmpx = x->dp;

053

054 /* copy the digits of a into W[0..a->used-1] */

055 for (ix = 0; ix < x->used; ix++) {
056 *_W++ = *tmpx++;

057 }
058

059 /* zero the high words of W[a->used..m->used*2] */

060 for (; ix < n->used * 2 + 1; ix++) {
061 *_W++ = 0;

062 }
063 }
064

065 /* now we proceed to zero successive digits

066 * from the least significant upwards

067 */

068 for (ix = 0; ix < n->used; ix++) {
069 /* mu = ai * m’ mod b

070 *

071 * We avoid a double precision multiplication (which isn’t required)

072 * by casting the value down to a mp_digit. Note this requires
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073 * that W[ix-1] have the carry cleared (see after the inner loop)

074 */

075 register mp_digit mu;

076 mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);

077

078 /* a = a + mu * m * b**i

079 *

080 * This is computed in place and on the fly. The multiplication

081 * by b**i is handled by offsetting which columns the results

082 * are added to.

083 *

084 * Note the comba method normally doesn’t handle carries in the

085 * inner loop In this case we fix the carry from the previous

086 * column since the Montgomery reduction requires digits of the

087 * result (so far) [see above] to work. This is

088 * handled by fixing up one carry after the inner loop. The

089 * carry fixups are done in order so after these loops the

090 * first m->used words of W[] have the carries fixed

091 */

092 {
093 register int iy;

094 register mp_digit *tmpn;

095 register mp_word *_W;

096

097 /* alias for the digits of the modulus */

098 tmpn = n->dp;

099

100 /* Alias for the columns set by an offset of ix */

101 _W = W + ix;

102

103 /* inner loop */

104 for (iy = 0; iy < n->used; iy++) {
105 *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);

106 }
107 }
108

109 /* now fix carry for next digit, W[ix+1] */

110 W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);

111 }
112

113 /* now we have to propagate the carries and
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114 * shift the words downward [all those least

115 * significant digits we zeroed].

116 */

117 {
118 register mp_digit *tmpx;

119 register mp_word *_W, *_W1;

120

121 /* nox fix rest of carries */

122

123 /* alias for current word */

124 _W1 = W + ix;

125

126 /* alias for next word, where the carry goes */

127 _W = W + ++ix;

128

129 for (; ix <= n->used * 2 + 1; ix++) {
130 *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);

131 }
132

133 /* copy out, A = A/b**n

134 *

135 * The result is A/b**n but instead of converting from an

136 * array of mp_word to mp_digit then calling mp_rshd

137 * we just copy them in the right order

138 */

139

140 /* alias for destination word */

141 tmpx = x->dp;

142

143 /* alias for shifted double precision result */

144 _W = W + n->used;

145

146 for (ix = 0; ix < n->used + 1; ix++) {
147 *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));

148 }
149

150 /* zero oldused digits, if the input a was larger than

151 * m->used+1 we’ll have to clear the digits

152 */

153 for (; ix < olduse; ix++) {
154 *tmpx++ = 0;
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155 }
156 }
157

158 /* set the max used and clamp */

159 x->used = n->used + 1;

160 mp_clamp (x);

161

162 /* if A >= m then A = A - m */

163 if (mp_cmp_mag (x, n) != MP_LT) {
164 return s_mp_sub (x, n, x);

165 }
166 return MP_OKAY;

167 }
168

The Ŵ array is first filled with digits of x on line 55, then the rest of the digits
are zeroed on line 60. Both loops share the same alias variables to make the code
easier to read.

The value of µ is calculated in an interesting fashion. First, the value Ŵix is
reduced modulo β and cast to a mp digit. This forces the compiler to use a single
precision multiplication and prevents any concerns about loss of precision. Line
110 fixes the carry for the next iteration of the loop by propagating the carry from
Ŵix to Ŵix+1.

The for loop on line 129 propagates the rest of the carries upwards through the
columns. The for loop on line 146 reduces the columns modulo β and shifts them
k places at the same time. The alias Ŵ actually refers to the array Ŵ starting
at the n.used’th digit, that is Ŵt = Ŵn.used+t.

6.3.4 Montgomery Setup

To calculate the variable ρ, a relatively simple algorithm will be required.
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Algorithm mp montgomery setup.
Input. mp int n (n > 1 and (n, 2) = 1)
Output. ρ ≡ −1/n0 (mod β)

1. b← n0

2. If b is even return(MP VAL)
3. x← (((b + 2) AND 4) << 1) + b
4. for k from 0 to ⌈lg(lg(β))⌉ − 2 do

4.1 x← x · (2− bx)
5. ρ← β − x (mod β)
6. Return(MP OKAY ).

Figure 6.11: Algorithm mp montgomery setup

Algorithm mp montgomery setup. This algorithm will calculate the value
of ρ required within the Montgomery reduction algorithms. It uses a very inter-
esting trick to calculate 1/n0 when β is a power of two (Figure 6.11).

File: bn mp montgomery setup.c

018 /* sets up the montgomery reduction stuff */

019 int

020 mp_montgomery_setup (mp_int * n, mp_digit * rho)

021 {
022 mp_digit x, b;

023

024 /* fast inversion mod 2**k

025 *

026 * Based on the fact that

027 *

028 * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)

029 * => 2*X*A - X*X*A*A = 1

030 * => 2*(1) - (1) = 1

031 */

032 b = n->dp[0];

033

034 if ((b & 1) == 0) {
035 return MP_VAL;

036 }
037

038 x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
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039 x *= 2 - b * x; /* here x*a==1 mod 2**8 */

040 #if !defined(MP_8BIT)

041 x *= 2 - b * x; /* here x*a==1 mod 2**16 */

042 #endif

043 #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))

044 x *= 2 - b * x; /* here x*a==1 mod 2**32 */

045 #endif

046 #ifdef MP_64BIT

047 x *= 2 - b * x; /* here x*a==1 mod 2**64 */

048 #endif

049

050 /* rho = -1/m mod b */

051 *rho = (((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;

052

053 return MP_OKAY;

054 }
055

This source code computes the value of ρ required to perform Montgomery
reduction. It has been modified to avoid performing excess multiplications when
β is not the default 28 bits.

6.4 The Diminished Radix Algorithm

The Diminished Radix method of modular reduction [8] is a fairly clever technique
that can be more efficient than either the Barrett or Montgomery methods for cer-
tain forms of moduli. The technique is based on the following simple congruence.

(x mod n) + k⌊x/n⌋ ≡ x (mod (n− k)) (6.6)

This observation was used in the MMB [9] block cipher to create a diffusion
primitive. It used the fact that if n = 231 and k = 1, an x86 multiplier could
produce the 62-bit product and use the “shrd” instruction to perform a double-
precision right shift. The proof of equation 6.6 is very simple. First, write x in
the product form.

x = qn + r (6.7)

Now reduce both sides modulo (n− k).
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x ≡ qk + r (mod (n− k)) (6.8)

The variable n reduces modulo n − k to k. By putting q = ⌊x/n⌋ and r =
x mod n into the equation the original congruence is reproduced, thus concluding
the proof. The following algorithm is based on this observation.

Algorithm Diminished Radix Reduction.
Input. Integer x, n, k
Output. x mod (n− k)

1. q ← ⌊x/n⌋
2. q ← k · q
3. x← x (mod n)
4. x← x + q
5. If x ≥ (n− k) then

5.1 x← x− (n− k)
5.2 Goto step 1.

6. Return x

Figure 6.12: Algorithm Diminished Radix Reduction

This algorithm will reduce x modulo n− k and return the residue. If 0 ≤ x <
(n−k)2, then the algorithm will loop almost always once or twice and occasionally
three times. For simplicity’s sake, the value of x is bounded by the following simple
polynomial.

0 ≤ x < n2 + k2 − 2nk (6.9)

The true bound is 0 ≤ x < (n− k − 1)2, but this has quite a few more terms.
The value of q after step 1 is bounded by the following equation.

q < n− 2k − k2/n (6.10)

Since k2 is going to be considerably smaller than n, that term will always be
zero. The value of x after step 3 is bounded trivially as 0 ≤ x < n. By step 4, the
sum x + q is bounded by

0 ≤ q + x < (k + 1)n− 2k2 − 1 (6.11)
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x = 123456789, n = 256, k = 3

q ← ⌊x/n⌋ = 482253
q ← q ∗ k = 1446759
x← x mod n = 21
x← x + q = 1446780
x← x− (n− k) = 1446527

q ← ⌊x/n⌋ = 5650
q ← q ∗ k = 16950
x← x mod n = 127
x← x + q = 17077
x← x− (n− k) = 16824

q ← ⌊x/n⌋ = 65
q ← q ∗ k = 195
x← x mod n = 184
x← x + q = 379
x← x− (n− k) = 126

Figure 6.13: Example Diminished Radix Reduction

With a second pass, q will be loosely bounded by 0 ≤ q < k2 after step 2, while
x will still be loosely bounded by 0 ≤ x < n after step 3. After the second pass
it is highly unlikely that the sum in step 4 will exceed n − k. In practice, fewer
than three passes of the algorithm are required to reduce virtually every input in
the range 0 ≤ x < (n− k − 1)2.

Figure 6.13 demonstrates the reduction of x = 123456789 modulo n − k =
253 when n = 256 and k = 3. Note that even while x is considerably larger
than (n − k − 1)2 = 63504, the algorithm still converges on the modular residue
exceedingly fast. In this case, only three passes were required to find the residue
x ≡ 126.

6.4.1 Choice of Moduli

On the surface, this algorithm looks very expensive. It requires a couple of sub-
tractions followed by multiplication and other modular reductions. The usefulness
of this algorithm becomes exceedingly clear when an appropriate modulus is cho-
sen.

Division in general is a very expensive operation to perform. The one exception
is when the division is by a power of the radix of representation used. Division by



178 www.syngress.com

10, for example, is simple for pencil and paper mathematics since it amounts to
shifting the decimal place to the right. Similarly, division by 2 (or powers of 2 ) is
very simple for binary computers to perform. It would therefore seem logical to
choose n of the form 2p, which would imply that ⌊x/n⌋ is a simple shift of x right
p bits.

However, there is one operation related to division of power of twos that is even
faster. If n = βp, then the division may be performed by moving whole digits to
the right p places. In practice, division by βp is much faster than division by 2p

for any p. Also, with the choice of n = βp reducing x modulo n merely requires
zeroing the digits above the p− 1’th digit of x.

Throughout the next section the term restricted modulus will refer to a mod-
ulus of the form βp − k, whereas the term unrestricted modulus will refer to a
modulus of the form 2p − k. The word restricted in this case refers to the fact
that it is based on the 2p logic, except p must be a multiple of lg(β).

6.4.2 Choice of k

Now that division and reduction (steps 1 and 3 of Figure 6.12) have been optimized
to simple digit operations, the multiplication by k in step 2 is the most expensive
operation. Fortunately, the choice of k is not terribly limited. For all intents and
purposes it might as well be a single digit. The smaller the value of k, the faster
the algorithm will be.

6.4.3 Restricted Diminished Radix Reduction

The Restricted Diminished Radix algorithm can quickly reduce an input modulo
a modulus of the form n = βp − k. This algorithm can reduce an input x within
the range 0 ≤ x < n2 using only a couple of passes of the algorithm demonstrated
in Figure 6.12. The implementation of this algorithm has been optimized to avoid
additional overhead associated with a division by βp, the multiplication by k or
the addition of x and q. The resulting algorithm is very efficient and can lead to
substantial improvements over Barrett and Montgomery reduction when modular
exponentiations are performed.
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Algorithm mp dr reduce.
Input. mp int x, n and a mp digit k = β − n0

(0 ≤ x < n2, n > 1, 0 < k < β)
Output. x mod n

1. m← n.used
2. If x.alloc < 2m then grow x to 2m digits.
3. µ← 0
4. for i from 0 to m− 1 do

4.1 r̂ ← k · xm+i + xi + µ
4.2 xi ← r̂ (mod β)
4.3 µ← ⌊r̂/β⌋

5. xm ← µ
6. for i from m + 1 to x.used− 1 do

6.1 xi ← 0
7. Clamp excess digits of x.
8. If x ≥ n then

8.1 x← x− n
8.2 Goto step 3.

9. Return(MP OKAY ).

Figure 6.14: Algorithm mp dr reduce

Algorithm mp dr reduce. This algorithm will perform the Diminished
Radix reduction of x modulo n. It has similar restrictions to that of the Bar-
rett reduction with the addition that n must be of the form n = βm − k where
0 < k < β (Figure 6.14).

This algorithm essentially implements the pseudo-code in Figure 6.12, except
with a slight optimization. The division by βm, multiplication by k, and addition
of x mod βm are all performed simultaneously inside the loop in step 4. The
division by βm is emulated by accessing the term at the m + i’th position, which
is subsequently multiplied by k and added to the term at the i’th position. After
the loop the m’th digit is set to the carry and the upper digits are zeroed. Steps
5 and 6 emulate the reduction modulo βm that should have happened to x before
the addition of the multiple of the upper half.

In step 8, if x is still larger than n, another pass of the algorithm is required.
First, n is subtracted from x and then the algorithm resumes at step 3.
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File: bn mp dr reduce.c

018 /* reduce "x" in place modulo "n" using the Diminished Radix algorithm.

019 *

020 * Based on algorithm from the paper

021 *

022 * "Generating Efficient Primes for Discrete Log Cryptosystems"

023 * Chae Hoon Lim, Pil Joong Lee,

024 * POSTECH Information Research Laboratories

025 *

026 * The modulus must be of a special format [see manual]

027 *

028 * Has been modified to use algorithm 7.10 from the LTM book instead

029 *

030 * Input x must be in the range 0 <= x <= (n-1)**2

031 */

032 int

033 mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)

034 {
035 int err, i, m;

036 mp_word r;

037 mp_digit mu, *tmpx1, *tmpx2;

038

039 /* m = digits in modulus */

040 m = n->used;

041

042 /* ensure that "x" has at least 2m digits */

043 if (x->alloc < m + m) {
044 if ((err = mp_grow (x, m + m)) != MP_OKAY) {
045 return err;

046 }
047 }
048

049 /* top of loop, this is where the code resumes if

050 * another reduction pass is required.

051 */

052 top:

053 /* aliases for digits */

054 /* alias for lower half of x */

055 tmpx1 = x->dp;

056

057 /* alias for upper half of x, or x/B**m */
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058 tmpx2 = x->dp + m;

059

060 /* set carry to zero */

061 mu = 0;

062

063 /* compute (x mod B**m) + k * [x/B**m] inline and inplace */

064 for (i = 0; i < m; i++) {
065 r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;

066 *tmpx1++ = (mp_digit)(r & MP_MASK);

067 mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT));

068 }
069

070 /* set final carry */

071 *tmpx1++ = mu;

072

073 /* zero words above m */

074 for (i = m + 1; i < x->used; i++) {
075 *tmpx1++ = 0;

076 }
077

078 /* clamp, sub and return */

079 mp_clamp (x);

080

081 /* if x >= n then subtract and reduce again

082 * Each successive "recursion" makes the input smaller and smaller.

083 */

084 if (mp_cmp_mag (x, n) != MP_LT) {
085 s_mp_sub(x, n, x);

086 goto top;

087 }
088 return MP_OKAY;

089 }
090

The first step is to grow x as required to 2m digits, since the reduction is
performed in place on x. The label on line 52 is where the algorithm will resume
if further reduction passes are required. In theory, it could be placed at the top
of the function. However, the size of the modulus and question of whether x is
large enough are invariant after the first pass, meaning that it would be a waste
of time.

The aliases tmpx1 and tmpx2 refer to the digits of x, where the latter is offset
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by m digits. By reading digits from x offset by m digits, a division by βm can be
simulated virtually for free. The loop on line 64 performs the bulk of the work
(corresponds to step 4 of algorithm 7.11 ) in this algorithm.

By line 67 the pointer tmpx1 points to the m’th digit of x, which is where the
final carry will be placed. Similarly, by line 74 the same pointer will point to the
m + 1’th digit where the zeroes will be placed.

Since the algorithm is only valid if both x and n are greater than zero, an
unsigned comparison suffices to determine if another pass is required. With the
same logic at line 81 the value of x is known to be greater than or equal to n,
meaning that an unsigned subtraction can be used as well. Since the destination
of the subtraction is the larger of the inputs, the call to algorithm s mp sub cannot
fail and the return code does not need to be checked.

Setup

To set up the Restricted Diminished Radix algorithm the value k = β − n0 is
required. This algorithm is not complicated but is provided for completeness
(Figure 6.15).

Algorithm mp dr setup.
Input. mp int n
Output. k = β − n0

1. k← β − n0

Figure 6.15: Algorithm mp dr setup

File: bn mp dr setup.c

018 /* determines the setup value */

019 void mp_dr_setup(mp_int *a, mp_digit *d)

020 {
021 /* the casts are required if DIGIT_BIT is one less than

022 * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]

023 */

024 *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -

025 ((mp_word)a->dp[0]));

026 }
027

028
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Modulus Detection

Another useful algorithm gives the ability to detect a Restricted Diminished Radix
modulus. An integer is said to be of Restricted Diminished Radix form if all the
digits are equal to β − 1 except the trailing digit, which may be any value.

Algorithm mp dr is modulus.
Input. mp int n
Output. 1 if n is in D.R form, 0 otherwise

1. If n.used < 2 then return(0).
2. for ix from 1 to n.used− 1 do

2.1 If nix 6= β − 1 return(0).
3. Return(1).

Figure 6.16: Algorithm mp dr is modulus

Algorithm mp dr is modulus. This algorithm determines if a value is in
Diminished Radix form. Step 1 rejects obvious cases where fewer than two digits
are in the mp int. Step 2 tests all but the first digit to see if they are equal to
β − 1. If the algorithm manages to get to step 3, then n must be of Diminished
Radix form (Figure 6.16).

File: bn mp dr is modulus.c

018 /* determines if a number is a valid DR modulus */

019 int mp_dr_is_modulus(mp_int *a)

020 {
021 int ix;

022

023 /* must be at least two digits */

024 if (a->used < 2) {
025 return 0;

026 }
027

028 /* must be of the form b**k - a [a <= b] so all

029 * but the first digit must be equal to -1 (mod b).

030 */

031 for (ix = 1; ix < a->used; ix++) {
032 if (a->dp[ix] != MP_MASK) {
033 return 0;

034 }



184 www.syngress.com

035 }
036 return 1;

037 }
038

039

6.4.4 Unrestricted Diminished Radix Reduction

The unrestricted Diminished Radix algorithm allows modular reductions to be
performed when the modulus is of the form 2p − k. This algorithm is a straight-
forward adaptation of algorithm 6.12.

In general, the restricted Diminished Radix reduction algorithm is much faster
since it has considerably lower overhead. However, this new algorithm is much
faster than either Montgomery or Barrett reduction when the moduli are of the
appropriate form.

Algorithm mp reduce 2k.
Input. mp int a and n. mp digit k

(a ≥ 0, n > 1, 0 < k < β, n + k is a power of two)
Output. a (mod n)

1. p← ⌈lg(n)⌉ (mp count bits)
2. While a ≥ n do

2.1 q ← ⌊a/2p⌋ (mp div 2d)
2.2 a← a (mod 2p) (mp mod 2d)
2.3 q ← q · k (mp mul d)
2.4 a← a− q (s mp sub)
2.5 If a ≥ n then do

2.5.1 a← a− n
3. Return(MP OKAY ).

Figure 6.17: Algorithm mp reduce 2k

Algorithm mp reduce 2k. This algorithm quickly reduces an input a mod-
ulo an unrestricted Diminished Radix modulus n. Division by 2p is emulated with
a right shift, which makes the algorithm fairly inexpensive to use (Figure 6.17).

File: bn mp reduce 2k.c

018 /* reduces a modulo n where n is of the form 2**p - d */

019 int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)



6.4 The Diminished Radix Algorithm 185

020 {
021 mp_int q;

022 int p, res;

023

024 if ((res = mp_init(&q)) != MP_OKAY) {
025 return res;

026 }
027

028 p = mp_count_bits(n);

029 top:

030 /* q = a/2**p, a = a mod 2**p */

031 if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
032 goto ERR;

033 }
034

035 if (d != 1) {
036 /* q = q * d */

037 if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
038 goto ERR;

039 }
040 }
041

042 /* a = a + q */

043 if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
044 goto ERR;

045 }
046

047 if (mp_cmp_mag(a, n) != MP_LT) {
048 s_mp_sub(a, n, a);

049 goto top;

050 }
051

052 ERR:

053 mp_clear(&q);

054 return res;

055 }
056

057

The algorithm mp count bits calculates the number of bits in an mp int, which
is used to find the initial value of p. The call to mp div 2d on line 31 calculates
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both the quotient q and the remainder a required. By doing both in a single
function call, the code size is kept fairly small. The multiplication by k is only
performed if k > 1. This allows reductions modulo 2p−1 to be performed without
any multiplications.

The unsigned s mp add, mp cmp mag, and s mp sub are used in place of their
full sign counterparts since the inputs are only valid if they are positive. By using
the unsigned versions, the overhead is kept to a minimum.

Unrestricted Setup

To set up this reduction algorithm, the value of k = 2p − n is required.

Algorithm mp reduce 2k setup.
Input. mp int n
Output. k = 2p − n

1. p← ⌈lg(n)⌉ (mp count bits)
2. x← 2p (mp 2expt)
3. x← x− n (mp sub)
4. k ← x0

5. Return(MP OKAY ).

Figure 6.18: Algorithm mp reduce 2k setup

Algorithm mp reduce 2k setup. This algorithm computes the value of k
required for the algorithm mp reduce 2k. By making a temporary variable x equal
to 2p, a subtraction is sufficient to solve for k. Alternatively if n has more than
one digit the value of k is simply β − n0 (Figure 6.18).

File: bn mp reduce 2k setup.c

018 /* determines the setup value */

019 int mp_reduce_2k_setup(mp_int *a, mp_digit *d)

020 {
021 int res, p;

022 mp_int tmp;

023

024 if ((res = mp_init(&tmp)) != MP_OKAY) {
025 return res;

026 }
027
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028 p = mp_count_bits(a);

029 if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
030 mp_clear(&tmp);

031 return res;

032 }
033

034 if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
035 mp_clear(&tmp);

036 return res;

037 }
038

039 *d = tmp.dp[0];

040 mp_clear(&tmp);

041 return MP_OKAY;

042 }
043

Unrestricted Detection

An integer n is a valid unrestricted Diminished Radix modulus if either of the
following are true.

• The number has only one digit.

• The number has more than one digit, and every bit from the β’th to the
most significant is one.

If either condition is true, there is a power of two 2p such that 0 < 2p−n < β.
If the input is only one digit, it will always be of the correct form. Otherwise, all
of the bits above the first digit must be one. This arises from the fact that there
will be value of k that when added to the modulus causes a carry in the first digit
that propagates all the way to the most significant bit. The resulting sum will be
a power of two.
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Algorithm mp reduce is 2k.
Input. mp int n
Output. 1 if of proper form, 0 otherwise

1. If n.used = 0 then return(0).
2. If n.used = 1 then return(1).
3. p← ⌈lg(n)⌉ (mp count bits)
4. for x from lg(β) to p do

4.1 If the (x mod lg(β))’th bit of the ⌊x/lg(β)⌋ of n is zero then return(0).
5. Return(1).

Figure 6.19: Algorithm mp reduce is 2k

Algorithm mp reduce is 2k. This algorithm quickly determines if a modu-
lus is of the form required for algorithm mp reduce 2k to function properly (Figure
6.19).

File: bn mp reduce is 2k.c

018 /* determines if mp_reduce_2k can be used */

019 int mp_reduce_is_2k(mp_int *a)

020 {
021 int ix, iy, iw;

022 mp_digit iz;

023

024 if (a->used == 0) {
025 return MP_NO;

026 } else if (a->used == 1) {
027 return MP_YES;

028 } else if (a->used > 1) {
029 iy = mp_count_bits(a);

030 iz = 1;

031 iw = 1;

032

033 /* Test every bit from the second digit up, must be 1 */

034 for (ix = DIGIT_BIT; ix < iy; ix++) {
035 if ((a->dp[iw] & iz) == 0) {
036 return MP_NO;

037 }
038 iz <<= 1;

039 if (iz > (mp_digit)MP_MASK) {
040 ++iw;
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041 iz = 1;

042 }
043 }
044 }
045 return MP_YES;

046 }
047

048

6.5 Algorithm Comparison

So far, three very different algorithms for modular reduction have been discussed.
Each algorithm has its own strengths and weaknesses that make having such a
selection very useful. The following table summarizes the three algorithms along
with comparisons of work factors. Since all three algorithms have the restriction
that 0 ≤ x < n2 and n > 1, those limitations are not included in the table.

Method Work Required Limitations m = 8 m = 32 m = 64

Barrett m2 + 2m − 1 None 79 1087 4223

Montgomery m2 + m n must be odd 72 1056 4160

D.R. 2m n = βm − k 16 64 128

In theory, Montgomery and Barrett reductions would require roughly the same
amount of time to complete. However, in practice since Montgomery reduction
can be written as a single function with the Comba technique, it is much faster.
Barrett reduction suffers from the overhead of calling the half precision multipliers,
addition and division by β algorithms.

For almost every cryptographic algorithm, Montgomery reduction is the al-
gorithm of choice. The one set of algorithms where Diminished Radix reduction
truly shines is based on the discrete logarithm problem such as Diffie-Hellman and
ElGamal. In these algorithms, primes of the form βm−k can be found and shared
among users. These primes will allow the Diminished Radix algorithm to be used
in modular exponentiation to greatly speed up the operation.
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Exercises

[3] Prove that the “trick” in algorithm mp montgomery setup actually
calculates the correct value of ρ.

[2] Devise an algorithm to reduce modulo n + k for small k quickly.

[4] Prove that the pseudo-code algorithm “Diminished Radix Reduction”
(Figure 6.12) terminates. Also prove the probability that it will
terminate within 1 ≤ k ≤ 10 iterations.



Chapter 7

Exponentiation

Exponentiation is the operation of raising one variable to the power of another;
for example, ab. A variant of exponentiation, computed in a finite field or ring, is
called modular exponentiation. This latter style of operation is typically used in
public key cryptosystems such as RSA and Diffie-Hellman. The ability to quickly
compute modular exponentiations is of great benefit to any such cryptosystem,
and many methods have been sought to speed it up.

7.1 Exponentiation Basics

A trivial algorithm would simply multiply a against itself b−1 times to compute the
exponentiation desired. However, as b grows in size the number of multiplications
becomes prohibitive. Imagine what would happen if b ∼ 21024, as is the case when
computing an RSA signature with a 1024-bit key. Such a calculation could never
be completed, as it would take far too long.

Fortunately, there is a very simple algorithm based on the laws of exponents.
Recall that lga(a

b) = b and that lga(a
bac) = b+c which are two trivial relationships

between the base and the exponent. Let bi represent the i’th bit of b starting from
the least significant bit. If b is a k-bit integer, equation 7.1 is true.

ab =

k−1
∏

i=0

a2i·bi (7.1)

191
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By taking the base a logarithm of both sides of the equation, equation 7.2 is
the result.

b =

k−1
∑

i=0

2i · bi (7.2)

The term a2i

can be found from the i− 1’th term by squaring the term, since
(

a2i
)2

is equal to a2i+1

. This observation forms the basis of essentially all fast

exponentiation algorithms. It requires k squarings and on average k
2 multiplica-

tions to compute the result. This is indeed quite an improvement over simply
multiplying by a a total of b− 1 times.

While this current method is considerably faster, there are further improve-
ments to be made. For example, the a2i

term does not need to be computed in
an auxiliary variable. Consider the equivalent algorithm in Figure 7.1.

Algorithm Left to Right Exponentiation.
Input. Integer a, b and k

Output. c = ab

1. c← 1
2. for i from k − 1 to 0 do

2.1 c← c2

2.2 c← c · abi

3. Return c.

Figure 7.1: Left to Right Exponentiation

This algorithm starts from the most significant bit and works toward the least
significant bit. When the i’th bit of b is set, a is multiplied against the current
product. In each iteration the product is squared, which doubles the exponent of
the individual terms of the product.

For example, let b = 1011002 ≡ 4410. Figure 7.2 demonstrates the actions of
the algorithm.
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Value of i Value of c
- 1
5 a
4 a2

3 a4 · a
2 a8 · a2 · a
1 a16 · a4 · a2

0 a32 · a8 · a4

Figure 7.2: Example of Left to Right Exponentiation

When the product a32 ·a8 ·a4 is simplified, it is equal to a44, which is the desired
exponentiation. This particular algorithm is called “Left to Right” because it
reads the exponent in that order. All the exponentiation algorithms that will be
presented are of this nature.

7.1.1 Single Digit Exponentiation

The first algorithm in the series of exponentiation algorithms will be an unbounded
algorithm where the exponent is a single digit. It is intended to be used when a
small power of an input is required (e.g., a5). It is faster than simply multiplying
b− 1 times for all values of b that are greater than three.
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Algorithm mp expt d.
Input. mp int a and mp digit b
Output. c = ab

1. g ← a (mp init copy)
2. c← 1 (mp set)
3. for x from 1 to lg(β) do

3.1 c← c2 (mp sqr)

3.2 If b AND 2lg(β)−1 6= 0 then
3.2.1 c← c · g (mp mul)

3.3 b← b << 1
4. Clear g.
5. Return(MP OKAY ).

Figure 7.3: Algorithm mp expt d

Algorithm mp expt d. This algorithm computes the value of a raised to
the power of a single digit b. It uses the left to right exponentiation algorithm
to quickly compute the exponentiation. It is loosely based on algorithm 14.79 of
HAC [2, pp. 615], with the difference that the exponent is a fixed width (Figure
7.3).

A copy of a is made first to allow destination variable c be the same as the
source variable a. The result is set to the initial value of 1 in the subsequent step.

Inside the loop the exponent is read from the most significant bit first down to
the least significant bit. First, c is invariably squared in step 3.1. In the following
step, if the most significant bit of b is one, the copy of a is multiplied against c.
The value of b is shifted left one bit to make the next bit down from the most
significant bit the new most significant bit. In effect, each iteration of the loop
moves the bits of the exponent b upwards to the most significant location.

File: bn mp expt d.c

018 /* calculate c = a**b using a square-multiply algorithm */

019 int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)

020 {
021 int res, x;

022 mp_int g;

023

024 if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
025 return res;
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026 }
027

028 /* set initial result */

029 mp_set (c, 1);

030

031 for (x = 0; x < (int) DIGIT_BIT; x++) {
032 /* square */

033 if ((res = mp_sqr (c, c)) != MP_OKAY) {
034 mp_clear (&g);

035 return res;

036 }
037

038 /* if the bit is set multiply */

039 if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
040 if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
041 mp_clear (&g);

042 return res;

043 }
044 }
045

046 /* shift to next bit */

047 b <<= 1;

048 }
049

050 mp_clear (&g);

051 return MP_OKAY;

052 }
053

Line 29 sets the initial value of the result to 1. Next, the loop on line 31
steps through each bit of the exponent starting from the most significant down
toward the least significant. The invariant squaring operation placed on line 33 is
performed first. After the squaring the result c is multiplied by the base g if and
only if the most significant bit of the exponent is set. The shift on line 47 moves
all of the bits of the exponent upwards toward the most significant location.

7.2 k-ary Exponentiation

When you are calculating an exponentiation, the most time–consuming bottleneck
is the multiplications, which are in general a small factor slower than squaring.
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Recall from the previous algorithm that bi refers to the i’th bit of the exponent b.
Suppose instead it referred to the i’th k-bit digit of the exponent of b. For k = 1
the definitions are synonymous, and for k > 1 algorithm 7.4 computes the same
exponentiation. A group of k bits from the exponent is called a window, a small
window on only a portion of the entire exponent. Consider the modification in
Figure 7.4 to the basic left to right exponentiation algorithm.

Algorithm k-ary Exponentiation.
Input. Integer a, b, k and t

Output. c = ab

1. c← 1
2. for i from t− 1 to 0 do

2.1 c← c2k

2.2 Extract the i’th k-bit word from b and store it in g.
2.3 c← c · ag

3. Return c.

Figure 7.4: k-ary Exponentiation

The squaring in step 2.1 can be calculated by squaring the value c successively
k times. If the values of ag for 0 < g < 2k have been precomputed, this algorithm
requires only t multiplications and tk squarings. The table can be generated with
2k−1− 1 squarings and 2k−1 +1 multiplications. This algorithm assumes that the
number of bits in the exponent is evenly divisible by k. However, when it is not,
the remaining 0 < x ≤ k − 1 bits can be handled with algorithm 7.1.

Suppose k = 4 and t = 100. This modified algorithm will require 109 multipli-
cations and 408 squarings to compute the exponentiation. The original algorithm
would on average have required 200 multiplications and 400 squarings to compute
the same value. The total number of squarings has increased slightly but the
number of multiplications has nearly halved.

7.2.1 Optimal Values of k

An optimal value of k will minimize 2k + ⌈n/k⌉ + n − 1 for a fixed number of
bits in the exponent n. The simplest approach is to brute force search among the
values k = 2, 3, . . . , 8 for the lowest result. Figure 7.5 lists optimal values of k for
various exponent sizes and compares the number of multiplication and squarings
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required against algorithm 7.1.

Exponent (bits) Optimal k Work at k Work with 7.1

16 2 27 24

32 3 49 48

64 3 92 96

128 4 175 192

256 4 335 384

512 5 645 768

1024 6 1257 1536

2048 6 2452 3072

4096 7 4808 6144

Figure 7.5: Optimal Values of k for k-ary Exponentiation

7.2.2 Sliding Window Exponentiation

A simple modification to the previous algorithm is only generate the upper half
of the table in the range 2k−1 ≤ g < 2k. Essentially, this is a table for all values
of g where the most significant bit of g is a one. However, for this to be allowed
in the algorithm, values of g in the range 0 ≤ g < 2k−1 must be avoided.

Figure 7.6 lists optimal values of k for various exponent sizes and compares
the work required against algorithm 7.4.

Exponent (bits) Optimal k Work at k Work with 7.4

16 3 24 27

32 3 45 49

64 4 87 92

128 4 167 175

256 5 322 335

512 6 628 645

1024 6 1225 1257

2048 7 2403 2452

4096 8 4735 4808

Figure 7.6: Optimal Values of k for Sliding Window Exponentiation
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Algorithm Sliding Window k-ary Exponentiation.
Input. Integer a, b, k and t

Output. c = ab

1. c← 1
2. for i from t− 1 to 0 do

2.1 If the i’th bit of b is a zero then
2.1.1 c← c2

2.2 else do

2.2.1 c← c2k

2.2.2 Extract the k bits from (bibi−1 . . . bi−(k−1)) and store it in g.
2.2.3 c← c · ag

2.2.4 i← i− (k − 1) (We assume there is a decrement of i before the loop re–iterates)
3. Return c.

Figure 7.7: Sliding Window k-ary Exponentiation

Similar to the previous algorithm, this algorithm must have a special handler
when fewer than k bits are left in the exponent. While this algorithm requires
the same number of squarings, it can potentially have fewer multiplications. The
pre-computed table ag is also half the size as the previous table.

Consider the exponent b = 1111010110010002 ≡ 3143210, with k = 3 using
both algorithms. The first algorithm will divide the exponent up as the following
five 3-bit words b ≡ (111, 101, 011, 001, 000)2. The second algorithm will break
the exponent as b ≡ (111, 101, 0, 110, 0, 100, 0)2. The single digit 0 in the second
representation is where a single squaring took place instead of a squaring and mul-
tiplication. In total, the first method requires 10 multiplications and 18 squarings.
The second method requires 8 multiplications and 18 squarings.

In general, the sliding window method is never slower than the generic k-ary
method and often is slightly faster (Figure 7.7).

7.3 Modular Exponentiation

Modular exponentiation is essentially computing the power of a base within a finite
field or ring. For example, computing d ≡ ab (mod c) is a modular exponentiation.
Instead of first computing ab and then reducing it modulo c, the intermediate
result is reduced modulo c after every squaring or multiplication operation.



7.3 Modular Exponentiation 199

This guarantees that any intermediate result is bounded by 0 ≤ d ≤ c2−2c+1
and can be reduced modulo c quickly using one of the algorithms presented in
Chapter 7.

Before the actual modular exponentiation algorithm can be written a wrap-
per algorithm must be written. This algorithm will allow the exponent b to be

negative, which is computed as c ≡ (1/a)
|b|

(mod d). The value of (1/a) mod c
is computed using the modular inverse (see Section 9.4). If no inverse exists, the
algorithm terminates with an error.

Algorithm mp exptmod.
Input. mp int a, b and c
Output. y ≡ gx (mod p)

1. If c.sign = MP NEG return(MP VAL).
2. If b.sign = MP NEG then

2.1 g′ ← g−1 (mod c)
2.2 x′ ← |x|

2.3 Compute d ≡ g′x′

(mod c) via recursion.
3. if p is odd OR p is a D.R. modulus then

3.1 Compute y ≡ gx (mod p) via algorithm mp exptmod fast.
4. else

4.1 Compute y ≡ gx (mod p) via algorithm s mp exptmod.

Figure 7.8: Algorithm mp exptmod

Algorithm mp exptmod. The first algorithm that actually performs modu-
lar exponentiation is a sliding window k-ary algorithm that uses Barrett reduction
to reduce the product modulo p. The second algorithm mp exptmod fast per-
forms the same operation, except it uses either Montgomery or Diminished Radix
reduction. The two latter reduction algorithms are clumped in the same expo-
nentiation algorithm since their arguments are essentially the same (two mp ints

and one mp digit) (Figure 7.8).

File: bn mp exptmod.c

019 /* this is a shell function that calls either the normal or Montgomery

020 * exptmod functions. Originally the call to the montgomery code was

021 * embedded in the normal function but that wasted alot of stack space

022 * for nothing (since 99% of the time the Montgomery code would be called)

023 */
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024 int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)

025 {
026 int dr;

027

028 /* modulus P must be positive */

029 if (P->sign == MP_NEG) {
030 return MP_VAL;

031 }
032

033 /* if exponent X is negative we have to recurse */

034 if (X->sign == MP_NEG) {
035 #ifdef BN_MP_INVMOD_C

036 mp_int tmpG, tmpX;

037 int err;

038

039 /* first compute 1/G mod P */

040 if ((err = mp_init(&tmpG)) != MP_OKAY) {
041 return err;

042 }
043 if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
044 mp_clear(&tmpG);

045 return err;

046 }
047

048 /* now get |X| */

049 if ((err = mp_init(&tmpX)) != MP_OKAY) {
050 mp_clear(&tmpG);

051 return err;

052 }
053 if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
054 mp_clear_multi(&tmpG, &tmpX, NULL);

055 return err;

056 }
057

058 /* and now compute (1/G)**|X| instead of G**X [X < 0] */

059 err = mp_exptmod(&tmpG, &tmpX, P, Y);

060 mp_clear_multi(&tmpG, &tmpX, NULL);

061 return err;

062 #else

063 /* no invmod */

064 return MP_VAL;
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065 #endif

066 }
067

068 /* modified diminished radix reduction */

069 #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defin

ed(BN_S_MP_EXPTMOD_C)

070 if (mp_reduce_is_2k_l(P) == MP_YES) {
071 return s_mp_exptmod(G, X, P, Y, 1);

072 }
073 #endif

074

075 #ifdef BN_MP_DR_IS_MODULUS_C

076 /* is it a DR modulus? */

077 dr = mp_dr_is_modulus(P);

078 #else

079 /* default to no */

080 dr = 0;

081 #endif

082

083 #ifdef BN_MP_REDUCE_IS_2K_C

084 /* if not, is it an unrestricted DR modulus? */

085 if (dr == 0) {
086 dr = mp_reduce_is_2k(P) << 1;

087 }
088 #endif

089

090 /* if the modulus is odd or dr != 0 use the montgomery method */

091 #ifdef BN_MP_EXPTMOD_FAST_C

092 if (mp_isodd (P) == 1 || dr != 0) {
093 return mp_exptmod_fast (G, X, P, Y, dr);

094 } else {
095 #endif

096 #ifdef BN_S_MP_EXPTMOD_C

097 /* otherwise use the generic Barrett reduction technique */

098 return s_mp_exptmod (G, X, P, Y, 0);

099 #else

100 /* no exptmod for evens */

101 return MP_VAL;

102 #endif

103 #ifdef BN_MP_EXPTMOD_FAST_C

104 }
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105 #endif

106 }
107

108

To keep the algorithms in a known state, the first step on line 29 is to reject
any negative modulus as input. If the exponent is negative, the algorithm tries
to perform a modular exponentiation with the modular inverse of the base G.
The temporary variable tmpG is assigned the modular inverse of G, and tmpX
is assigned the absolute value of X . The algorithm will call itself with these new
values with a positive exponent.

If the exponent is positive, the algorithm resumes the exponentiation. Line 77
determines if the modulus is of the restricted Diminished Radix form. If it is not,
line 86 attempts to determine if it is of an unrestricted Diminished Radix form.
The integer dr will take on one of three values.

1. dr = 0 means that the modulus is not either restricted or unrestricted
Diminished Radix form.

2. dr = 1 means that the modulus is of restricted Diminished Radix form.

3. dr = 2 means that the modulus is of unrestricted Diminished Radix form.

Line 49 determines if the fast modular exponentiation algorithm can be used. It
is allowed if dr 6= 0 or if the modulus is odd. Otherwise, the slower s mp exptmod
algorithm is used, which uses Barrett reduction.
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7.3.1 Barrett Modular Exponentiation

Algorithm s mp exptmod.
Input. mp int a, b and c
Output. y ≡ gx (mod p)

1. k← lg(x)

2. winsize←

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

2 if k ≤ 7
3 if 7 < k ≤ 36
4 if 36 < k ≤ 140
5 if 140 < k ≤ 450
6 if 450 < k ≤ 1303
7 if 1303 < k ≤ 3529
8 if 3529 < k

3. Initialize 2winsize mp ints in an array named M and one mp int named µ
4. Calculate the µ required for Barrett Reduction (mp reduce setup).
5. M1 ← g (mod p)

Set up the table of small powers of g. First find g2winsize

and then all the multiples of it.
6. k← 2winsize−1

7. Mk ←M1

8. for ix from 0 to winsize− 2 do

8.1 Mk ← (Mk)2 (mp sqr)
8.2 Mk ←Mk (mod p) (mp reduce)

9. for ix from 2winsize−1 + 1 to 2winsize − 1 do
9.1 Mix ←Mix−1 ·M1 (mp mul)
9.2 Mix ←Mix (mod p) (mp reduce)

10. res← 1

Start Sliding Window.
11. mode← 0, bitcnt← 1, buf ← 0, digidx← x.used− 1, bitcpy ← 0, bitbuf ← 0
Continued on next page.
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Algorithm s mp exptmod (continued).
Input. mp int a, b and c
Output. y ≡ gx (mod p)

12. Loop
12.1 bitcnt← bitcnt− 1
12.2 If bitcnt = 0 then do

12.2.1 If digidx = −1 goto step 13.
12.2.2 buf ← xdigidx

12.2.3 digidx← digidx− 1
12.2.4 bitcnt← lg(β)

12.3 y ← (buf >> (lg(β)− 1)) AND 1
12.4 buf ← buf << 1
12.5 if mode = 0 and y = 0 then goto step 12.
12.6 if mode = 1 and y = 0 then do

12.6.1 res← res2

12.6.2 res← res (mod p)
12.6.3 Goto step 12.

12.7 bitcpy ← bitcpy + 1
12.8 bitbuf ← bitbuf + (y << (winsize− bitcpy))
12.9 mode← 2
12.10 If bitcpy = winsize then do

Window is full so perform the squarings and single multiplication.
12.10.1 for ix from 0 to winsize− 1 do

12.10.1.1 res← res2

12.10.1.2 res← res (mod p)
12.10.2 res← res ·Mbitbuf

12.10.3 res← res (mod p)
Reset the window.
12.10.4 bitcpy ← 0, bitbuf ← 0, mode← 1

Continued on the next page.



7.3 Modular Exponentiation 205

Algorithm s mp exptmod (continued).
Input. mp int a, b and c
Output. y ≡ gx (mod p)

No more windows left. Check for residual bits of exponent.
13. If mode = 2 and bitcpy > 0 then do

13.1 for ix form 0 to bitcpy − 1 do
13.1.1 res← res2

13.1.2 res← res (mod p)
13.1.3 bitbuf ← bitbuf << 1
13.1.4 If bitbuf AND 2winsize 6= 0 then do

13.1.4.1 res← res ·M1

13.1.4.2 res← res (mod p)
14. y ← res
15. Clear res, mu and the M array.
16. Return(MP OKAY ).

Figure 7.9: Algorithm s mp exptmod

Algorithm s mp exptmod. This algorithm computes the x’th power of g
modulo p and stores the result in y. It takes advantage of the Barrett reduction
algorithm to keep the product small throughout the algorithm (Figure 7.9).

The first two steps determine the optimal window size based on the number
of bits in the exponent. The larger the exponent, the larger the window size
becomes. After a window size winsize has been chosen, an array of 2winsize

mp int variables is allocated. This table will hold the values of gx (mod p) for
2winsize−1 ≤ x < 2winsize.

After the table is allocated, the first power of g is found. Since g ≥ p is allowed
it must be first reduced modulo p to make the rest of the algorithm more efficient.
The first element of the table at 2winsize−1 is found by squaring M1 successively
winsize − 2 times. The rest of the table elements are found by multiplying the
previous element by M1 modulo p.

Now that the table is available, the sliding window may begin (Figure 7.10).
The following list describes the functions of all the variables in the window.

1. The variable mode dictates how the bits of the exponent are interpreted.

(a) When mode = 0, the bits are ignored since no non-zero bit of the
exponent has been seen yet. For example, if the exponent were simply
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1, then there would be lg(β)− 1 zero bits before the first non-zero bit.
In this case bits are ignored until a non-zero bit is found.

(b) When mode = 1, a non-zero bit has been seen before and a new
winsize-bit window has not been formed yet. In this mode, leading
0 bits are read and a single squaring is performed. If a non-zero bit is
read, a new window is created.

(c) When mode = 2, the algorithm is in the middle of forming a window
and new bits are appended to the window from the most significant bit
downwards.

2. The variable bitcnt indicates how many bits are left in the current digit of
the exponent left to be read. When it reaches zero, a new digit is fetched
from the exponent.

3. The variable buf holds the currently read digit of the exponent.

4. The variable digidx is an index into the exponent’s digits. It starts at the
leading digit x.used− 1 and moves toward the trailing digit.

5. The variable bitcpy indicates how many bits are in the currently formed
window. When it reaches winsize the window is flushed and the appropriate
operations performed.

6. The variable bitbuf holds the current bits of the window being formed.

Step 12 is the window processing loop. It will iterate while there are digits
available form the exponent to read. The first step inside this loop is to extract
a new digit if no more bits are available in the current digit. If there are no bits
left, a new digit is read, and if there are no digits left, the loop terminates.

After a digit is made available, step 12.3 will extract the most significant bit of
the current digit and move all other bits in the digit upwards. In effect, the digit is
read from most significant bit to least significant bit, and since the digits are read
from leading to trailing edges, the entire exponent is read from most significant
bit to least significant bit.

At step 12.5, if the mode and currently extracted bit y are both zero the bit
is ignored and the next bit is read. This prevents the algorithm from having to
perform trivial squaring and reduction operations before the first non-zero bit is
read. Steps 12.6 and 12.7 through 12.10 handle the two cases of mode = 1 and
mode = 2, respectively.
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Figure 7.10: Sliding Window State Diagram

By step 13 there are no more digits left in the exponent. However, there may
be partial bits in the window left. If mode = 2 then a Left-to-Right algorithm is
used to process the remaining few bits.

File: bn s mp exptmod.c

017 #ifdef MP_LOW_MEM

018 #define TAB_SIZE 32

019 #else

020 #define TAB_SIZE 256

021 #endif

022

023 int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmod

e)

024 {
025 mp_int M[TAB_SIZE], res, mu;

026 mp_digit buf;

027 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;

028 int (*redux)(mp_int*,mp_int*,mp_int*);

029

030 /* find window size */

031 x = mp_count_bits (X);

032 if (x <= 7) {
033 winsize = 2;
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034 } else if (x <= 36) {
035 winsize = 3;

036 } else if (x <= 140) {
037 winsize = 4;

038 } else if (x <= 450) {
039 winsize = 5;

040 } else if (x <= 1303) {
041 winsize = 6;

042 } else if (x <= 3529) {
043 winsize = 7;

044 } else {
045 winsize = 8;

046 }
047

048 #ifdef MP_LOW_MEM

049 if (winsize > 5) {
050 winsize = 5;

051 }
052 #endif

053

054 /* init M array */

055 /* init first cell */

056 if ((err = mp_init(&M[1])) != MP_OKAY) {
057 return err;

058 }
059

060 /* now init the second half of the array */

061 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
062 if ((err = mp_init(&M[x])) != MP_OKAY) {
063 for (y = 1<<(winsize-1); y < x; y++) {
064 mp_clear (&M[y]);

065 }
066 mp_clear(&M[1]);

067 return err;

068 }
069 }
070

071 /* create mu, used for Barrett reduction */

072 if ((err = mp_init (&mu)) != MP_OKAY) {
073 goto LBL_M;

074 }
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075

076 if (redmode == 0) {
077 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
078 goto LBL_MU;

079 }
080 redux = mp_reduce;

081 } else {
082 if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
083 goto LBL_MU;

084 }
085 redux = mp_reduce_2k_l;

086 }
087

088 /* create M table

089 *

090 * The M table contains powers of the base,

091 * e.g. M[x] = G**x mod P

092 *

093 * The first half of the table is not

094 * computed except for M[0]=1 and M[1]=g

095 */

096 if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
097 goto LBL_MU;

098 }
099

100 /* compute the value at M[1<<(winsize-1)] by squaring

101 * M[1] (winsize-1) times

102 */

103 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
104 goto LBL_MU;

105 }
106

107 for (x = 0; x < (winsize - 1); x++) {
108 /* square it */

109 if ((err = mp_sqr (&M[1 << (winsize - 1)],

110 &M[1 << (winsize - 1)])) != MP_OKAY) {
111 goto LBL_MU;

112 }
113

114 /* reduce modulo P */

115 if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
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116 goto LBL_MU;

117 }
118 }
119

120 /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)

121 * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)

122 */

123 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
124 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
125 goto LBL_MU;

126 }
127 if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
128 goto LBL_MU;

129 }
130 }
131

132 /* setup result */

133 if ((err = mp_init (&res)) != MP_OKAY) {
134 goto LBL_MU;

135 }
136 mp_set (&res, 1);

137

138 /* set initial mode and bit cnt */

139 mode = 0;

140 bitcnt = 1;

141 buf = 0;

142 digidx = X->used - 1;

143 bitcpy = 0;

144 bitbuf = 0;

145

146 for (;;) {
147 /* grab next digit as required */

148 if (--bitcnt == 0) {
149 /* if digidx == -1 we are out of digits */

150 if (digidx == -1) {
151 break;

152 }
153 /* read next digit and reset the bitcnt */

154 buf = X->dp[digidx--];

155 bitcnt = (int) DIGIT_BIT;

156 }
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157

158 /* grab the next msb from the exponent */

159 y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;

160 buf <<= (mp_digit)1;

161

162 /* if the bit is zero and mode == 0 then we ignore it

163 * These represent the leading zero bits before the first 1 bit

164 * in the exponent. Technically this opt is not required but it

165 * does lower the # of trivial squaring/reductions used

166 */

167 if (mode == 0 && y == 0) {
168 continue;

169 }
170

171 /* if the bit is zero and mode == 1 then we square */

172 if (mode == 1 && y == 0) {
173 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
174 goto LBL_RES;

175 }
176 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
177 goto LBL_RES;

178 }
179 continue;

180 }
181

182 /* else we add it to the window */

183 bitbuf |= (y << (winsize - ++bitcpy));

184 mode = 2;

185

186 if (bitcpy == winsize) {
187 /* ok window is filled so square as required and multiply */

188 /* square first */

189 for (x = 0; x < winsize; x++) {
190 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
191 goto LBL_RES;

192 }
193 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
194 goto LBL_RES;

195 }
196 }
197
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198 /* then multiply */

199 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
200 goto LBL_RES;

201 }
202 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
203 goto LBL_RES;

204 }
205

206 /* empty window and reset */

207 bitcpy = 0;

208 bitbuf = 0;

209 mode = 1;

210 }
211 }
212

213 /* if bits remain then square/multiply */

214 if (mode == 2 && bitcpy > 0) {
215 /* square then multiply if the bit is set */

216 for (x = 0; x < bitcpy; x++) {
217 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
218 goto LBL_RES;

219 }
220 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
221 goto LBL_RES;

222 }
223

224 bitbuf <<= 1;

225 if ((bitbuf & (1 << winsize)) != 0) {
226 /* then multiply */

227 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
228 goto LBL_RES;

229 }
230 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
231 goto LBL_RES;

232 }
233 }
234 }
235 }
236

237 mp_exch (&res, Y);

238 err = MP_OKAY;
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239 LBL_RES:mp_clear (&res);

240 LBL_MU:mp_clear (&mu);

241 LBL_M:

242 mp_clear(&M[1]);

243 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
244 mp_clear (&M[x]);

245 }
246 return err;

247 }
248

Lines 32 through 46 determine the optimal window size based on the length of
the exponent in bits. The window divisions are sorted from smallest to greatest
so that in each if statement, only one condition must be tested. For example, by
the if statement on line 38 the value of x is already known to be greater than 140.

The conditional piece of code beginning on line 48 allows the window size to
be restricted to five bits. This logic is used to ensure the table of precomputed
powers of G remains relatively small.

The for loop on line 61 initializes the M array, while lines 72 and 77 through
86 initialize the reduction function that will be used for this modulus. Next, we
populate (lines 88 through 129) the M table with the appropriate powers of g. At
this point, we are ready to start the sliding window (lines 138 through 144), and
begin processing bits of the exponent.

The first block of code inside the for loop extracts the next digit as required.
We enter this loop initially in the state of requiring the next digit, which is why
bitcnt is initially set to 1. Once we have a digit we can extract the most significant
bit (line 159). If the bit is zero, and we have not seen a non–zero bit yet we jump
to the top of the loop. Otherwise, we either square and loop (lines 171 through
179) or add the bit to the window.

Note on line 176 how we call the reduction function through our callback
pointer redux. Provided the function has a consistent calling interface, it could be
literally any sort of reduction function.

The block of code starting on line 213 is used to handle cases where the window
was not complete. In this case, we use a left–to–right exponentiation on single bits.
Since the windows are small, this will involve doing at most 4 to 7 square–multiply
steps which is acceptable given the runtime of the remainder of the algorithm.
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7.4 Quick Power of Two

Calculating b = 2a can be performed much quicker than with any of the previous
algorithms. Recall that a logical shift left m << k is equivalent to m · 2k. By this
logic, when m = 1 a quick power of two can be achieved.

Algorithm mp 2expt.
Input. integer b

Output. a← 2b

1. a← 0
2. If a.alloc < ⌊b/lg(β)⌋+ 1 then grow a appropriately.
3. a.used← ⌊b/lg(β)⌋+ 1
4. a⌊b/lg(β)⌋ ← 1 << (b mod lg(β))
5. Return(MP OKAY ).

Figure 7.11: Algorithm mp 2expt

Algorithm mp 2expt. This algorithm computes a quick power of two by
setting the desired bit of the result. It is used by various reduction functions such
as Barrett and Montgomery (Figure 7.11).

File: bn mp 2expt.c

018 /* computes a = 2**b

019 *

020 * Simple algorithm which zeroes the int, grows it then just sets one bit

021 * as required.

022 */

023 int

024 mp_2expt (mp_int * a, int b)

025 {
026 int res;

027

028 /* zero a as per default */

029 mp_zero (a);

030

031 /* grow a to accommodate the single bit */

032 if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
033 return res;

034 }
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035

036 /* set the used count of where the bit will go */

037 a->used = b / DIGIT_BIT + 1;

038

039 /* put the single bit in its place */

040 a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);

041

042 return MP_OKAY;

043 }
044
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Exercises

[2] Devise an algorithm to perform square and multiply exponentiation
by reading the exponent from right to left.

[5] Explore the use of exponent recoding (such as signed representations).
Describe situations where it could be beneficial.

[5] Devise an exponentiation algorithm which is does not leak timing information.
Try to avoid using randomization.

[5] Explore the use of vector addition chains. Develop a greedy encoding algorithm
which can beat algorithm s mp exptmod for static (fixed), and then random exponents.



Chapter 8

Higher Level Algorithms

This chapter discusses the various higher level algorithms that are required to
complete a well–rounded multiple precision integer package. These routines are
less performance oriented than the algorithms in Chapters 5, 6, and 7, but are no
less important.

The first section describes a method of integer division with remainder that is
universally well known. It provides the signed division logic for the package. The
subsequent section discusses a set of algorithms that allow a single digit to be the
2nd operand for a variety of operations. These algorithms serve mostly to simplify
other algorithms where small constants are required. The last two sections discuss
how to manipulate various representations of integers; for example, converting
from an mp int to a string of character.

8.1 Integer Division with Remainder

Integer division aside from modular exponentiation is the most intensive algorithm
to compute. Like addition, subtraction, and multiplication, the basis of this algo-
rithm is the long-hand division algorithm taught to schoolchildren. Throughout
this discussion several common variables will be used. Let x represent the divisor
and y represent the dividend. Let q represent the integer quotient ⌊y/x⌋ and let
r represent the remainder r = y− x⌊y/x⌋. The following simple algorithm will be
used to start the discussion (Figure 8.1).

217
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Algorithm Radix-β Integer Division.
Input. integer x and y
Output. q = ⌊y/x⌋, r = y − xq

1. q ← 0
2. n← ||y|| − ||x||
3. for t from n down to 0 do

3.1 Maximize k such that kxβt is less than or equal to y and (k + 1)xβt is greater.
3.2 q ← q + kβt

3.3 y ← y − kxβt

4. r ← y
5. Return(q, r)

Figure 8.1: Algorithm Radix-β Integer Division

As children we are taught this very simple algorithm for the case of β = 10.
Almost instinctively, several optimizations are taught for which their reason of
existing are never explained. For this example, let y = 5471 represent the dividend
and x = 23 represent the divisor.

To find the first digit of the quotient the value of k must be maximized such
that kxβt is less than or equal to y, and simultaneously (k +1)xβt is greater than
y. Implicitly, k is the maximum value the t’th digit of the quotient may have.
The habitual method used to find the maximum is to “eyeball” the two numbers,
typically only the leading digits, and quickly estimate a quotient. By only using
leading digits, a much simpler division may be used to form an educated guess
at what the value must be. In this case, k = ⌊54/23⌋ = 2 quickly arises as a
possible solution. Indeed, 2xβ2 = 4600 is less than y = 5471, and simultaneously
(k + 1)xβ2 = 6900 is larger than y. As a result, kβ2 is added to the quotient
which now equals q = 200, and 4600 is subtracted from y to give a remainder of
y = 841.

This process is repeated to produce the quotient digit k = 3, which makes
the quotient q = 200 + 3β = 230 and the remainder y = 841 − 3xβ = 181.
Finally, the last iteration of the loop produces k = 7, which leads to the quotient
q = 230 + 7 = 237 and the remainder y = 181 − 7x = 20. The final quotient
and remainder found are q = 237 and r = y = 20, which are indeed correct since
237 · 23 + 20 = 5471 is true.
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8.1.1 Quotient Estimation

As alluded to earlier, the quotient digit k can be estimated from only the leading
digits of both the divisor and dividend. When p leading digits are used from both
the divisor and dividend to form an estimation, the accuracy of the estimation
rises as p grows. Technically speaking, the estimation is based on assuming the
lower ||y|| − p and ||x|| − p lower digits of the dividend and divisor are zero.

The value of the estimation may off by a few values in either direction and in
general is fairly correct. A simplification [1, pp. 271] of the estimation technique
is to use t + 1 digits of the dividend and t digits of the divisor, particularly when
t = 1. The estimate using this technique is never too small. For the following
proof, let t = ||y|| − 1 and s = ||x|| − 1 represent the most significant digits of the
dividend and divisor, respectively.

Theorem. The quotient k̂ = ⌊(ytβ + yt−1)/xs⌋ is greater than or equal to

k = ⌊y/(x · β||y||−||x||−1)⌋.
Proof. Adapted from [1, pp. 271]. The first obvious case is when k̂ = β − 1,

in which case the proof is concluded since the real quotient cannot be larger. For
all other cases k̂ = ⌊(ytβ + yt−1)/xs⌋ and k̂xs ≥ ytβ + yt−1 − xs + 1. The latter
portion of the inequality −xs + 1 arises from the fact that a truncated integer
division will give the same quotient for at most xs − 1 values. Next, a series of
inequalities will prove the hypothesis.

y − k̂x ≤ y − k̂xsβ
s (8.1)

This is trivially true since x ≥ xsβ
s. Next, we replace k̂xsβ

s by the previous
inequality for k̂xs.

y − k̂x ≤ ytβ
t + . . . + y0 − (ytβ

t + yt−1β
t−1 − xsβ

t + βs) (8.2)

By simplifying the previous inequality the following inequality is formed.

y − k̂x ≤ yt−2β
t−2 + . . . + y0 + xsβ

s − βs (8.3)

Subsequently,

yt−2β
t−2 + . . . + y0 + xsβ

s − βs < xsβ
s ≤ x (8.4)

which proves that y − k̂x ≤ x and by consequence k̂ ≥ k, which concludes the
proof.
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QED

8.1.2 Normalized Integers

For the purposes of division, a normalized input is when the divisor’s leading digit
xn is greater than or equal to β/2. By multiplying both x and y by j = ⌊(β/2)/xn⌋,
the quotient remains unchanged and the remainder is simply j times the original
remainder. The purpose of normalization is to ensure the leading digit of the
divisor is sufficiently large such that the estimated quotient will lie in the domain
of a single digit. Consider the maximum dividend (β − 1) · β + (β − 1) and the
minimum divisor β/2.

β2 − 1

β/2
≤ 2β − 2

β
(8.5)

At most, the quotient approaches 2β; however, in practice this will not occur
since that would imply the previous quotient digit was too small.
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8.1.3 Radix-β Division with Remainder

Algorithm mp div.
Input. mp int a, b
Output. c = ⌊a/b⌋, d = a− bc

1. If b = 0 return(MP VAL).
2. If |a| < |b| then do

2.1 d← a
2.2 c← 0
2.3 Return(MP OKAY ).

Setup the quotient to receive the digits.
3. Grow q to a.used + 2 digits.
4. q ← 0
5. x← |a|, y ← |b|

6. sign←



MP ZPOS if a.sign = b.sign
MP NEG otherwise

Normalize the inputs such that the leading digit of y is greater than or equal to β/2.
7. norm← (lg(β)− 1)− (⌈lg(y)⌉ (mod lg(β)))
8. x← x · 2norm, y ← y · 2norm

Find the leading digit of the quotient.
9. n← x.used− 1, t← y.used− 1
10. y ← y · βn−t

11. While (x ≥ y) do
11.1 qn−t ← qn−t + 1
11.2 x← x− y

12. y ← ⌊y/βn−t⌋

Continued on the next page.
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Algorithm mp div (continued).
Input. mp int a, b
Output. c = ⌊a/b⌋, d = a− bc

Now find the remainder fo the digits.
13. for i from n down to (t + 1) do

13.1 If i > x.used then jump to the next iteration of this loop.
13.2 If xi = yt then

13.2.1 qi−t−1 ← β − 1
13.3 else

13.3.1 r̂ ← xi · β + xi−1

13.3.2 r̂ ← ⌊r̂/yt⌋
13.3.3 qi−t−1 ← r̂

13.4 qi−t−1 ← qi−t−1 + 1

Fixup quotient estimation.
13.5 Loop

13.5.1 qi−t−1 ← qi−t−1 − 1
13.5.2 t1← 0
13.5.3 t10 ← yt−1, t11 ← yt, t1.used← 2
13.5.4 t1← t1 · qi−t−1

13.5.5 t20 ← xi−2, t21 ← xi−1, t22 ← xi, t2.used← 3
13.5.6 If |t1| > |t2| then goto step 13.5.

13.6 t1← y · qi−t−1

13.7 t1← t1 · βi−t−1

13.8 x← x− t1
13.9 If x.sign = MP NEG then

13.10 t1← y
13.11 t1← t1 · βi−t−1

13.12 x← x+ t1
13.13 qi−t−1 ← qi−t−1 − 1

Continued on the next page.
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Algorithm mp div (continued).
Input. mp int a, b
Output. c = ⌊a/b⌋, d = a− bc

Finalize the result.
14. Clamp excess digits of q
15. c← q, c.sign← sign
16. x.sign← a.sign
17. d← ⌊x/2norm⌋
18. Return(MP OKAY ).

Figure 8.2: Algorithm mp div

Algorithm mp div. This algorithm will calculate the quotient and remainder
from an integer division given a dividend and divisor. The algorithm is a signed
division and will produce a fully qualified quotient and remainder (Figure 8.2).

First, the divisor b must be non-zero, which is enforced in step 1. If the divisor
is larger than the dividend, the quotient is implicitly zero and the remainder is
the dividend.

After the first two trivial cases of inputs are handled, the variable q is set up
to receive the digits of the quotient. Two unsigned copies of the divisor y and
dividend x are made as well. The core of the division algorithm is an unsigned
division and will only work if the values are positive. Now the two values x and
y must be normalized such that the leading digit of y is greater than or equal
to β/2. This is performed by shifting both to the left by enough bits to get the
desired normalization.

At this point, the division algorithm can begin producing digits of the quotient.
Recall that maximum value of the estimation used is 2β − 2

β , which means that
a digit of the quotient must be first produced by another means. In this case, y
is shifted to the left (step 10 ) so that it has the same number of digits as x. The
loop in step 11 will subtract multiples of the shifted copy of y until x is smaller.
Since the leading digit of y is greater than or equal to β/2, this loop will iterate
at most two times to produce the desired leading digit of the quotient.

Now the remainder of the digits can be produced. The equation q̂ = ⌊xiβ+xi−1

yt
⌋

is used to fairly accurately approximate the true quotient digit. The estimation
can in theory produce an estimation as high as 2β− 2

β , but by induction the upper

quotient digit is correct (as established in step 11 ) and the estimate must be less
than β.
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Recall from section 8.1.1 that the estimation is never too low but may be too
high. The next step of the estimation process is to refine the estimation. The loop
in step 13.5 uses xiβ

2 + xi−1β + xi−2 and qi−t−1(ytβ + yt−1) as a higher order
approximation to adjust the quotient digit.

After both phases of estimation the quotient digit may still be off by a value of
one1. Steps 13.6 and 13.7 subtract the multiple of the divisor from the dividend
(similar to step 3.3 of algorithm 8.1) and then add a multiple of the divisor if the
quotient was too large.

Now that the quotient has been determined, finalizing the result is a matter
of clamping the quotient, fixing the sizes, and de-normalizing the remainder. An
important aspect of this algorithm seemingly overlooked in other descriptions such
as that of Algorithm 14.20 HAC [2, pp. 598] is that when the estimations are being
made (inside the loop in step 13.5 ), that the digits yt−1, xi−2 and xi−1 may lie
outside their respective boundaries. For example, if t = 0 or i ≤ 1 then the digits
would be undefined. In those cases, the digits should respectively be replaced with
a zero.

File: bn mp div.c

018 #ifdef BN_MP_DIV_SMALL

019

020 /* slower bit-bang division... also smaller */

021 int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)

022 {
023 mp_int ta, tb, tq, q;

024 int res, n, n2;

025

026 /* is divisor zero ? */

027 if (mp_iszero (b) == 1) {
028 return MP_VAL;

029 }
030

031 /* if a < b then q=0, r = a */

032 if (mp_cmp_mag (a, b) == MP_LT) {
033 if (d != NULL) {
034 res = mp_copy (a, d);

035 } else {
036 res = MP_OKAY;

037 }

1This is similar to the error introduced by optimizing Barrett reduction.



8.1 Integer Division with Remainder 225

038 if (c != NULL) {
039 mp_zero (c);

040 }
041 return res;

042 }
043

044 /* init our temps */

045 if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
046 return res;

047 }
048

049

050 mp_set(&tq, 1);

051 n = mp_count_bits(a) - mp_count_bits(b);

052 if (((res = mp_abs(a, &ta)) != MP_OKAY) ||

053 ((res = mp_abs(b, &tb)) != MP_OKAY) ||

054 ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||

055 ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
056 goto LBL_ERR;

057 }
058

059 while (n-- >= 0) {
060 if (mp_cmp(&tb, &ta) != MP_GT) {
061 if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||

062 ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
063 goto LBL_ERR;

064 }
065 }
066 if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||

067 ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
068 goto LBL_ERR;

069 }
070 }
071

072 /* now q == quotient and ta == remainder */

073 n = a->sign;

074 n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);

075 if (c != NULL) {
076 mp_exch(c, &q);

077 c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;

078 }
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079 if (d != NULL) {
080 mp_exch(d, &ta);

081 d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;

082 }
083 LBL_ERR:

084 mp_clear_multi(&ta, &tb, &tq, &q, NULL);

085 return res;

086 }
087

088 #else

089

090 /* integer signed division.

091 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]

092 * HAC pp.598 Algorithm 14.20

093 *

094 * Note that the description in HAC is horribly

095 * incomplete. For example, it doesn’t consider

096 * the case where digits are removed from ’x’ in

097 * the inner loop. It also doesn’t consider the

098 * case that y has fewer than three digits, etc..

099 *

100 * The overall algorithm is as described as

101 * 14.20 from HAC but fixed to treat these cases.

102 */

103 int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)

104 {
105 mp_int q, x, y, t1, t2;

106 int res, n, t, i, norm, neg;

107

108 /* is divisor zero ? */

109 if (mp_iszero (b) == 1) {
110 return MP_VAL;

111 }
112

113 /* if a < b then q=0, r = a */

114 if (mp_cmp_mag (a, b) == MP_LT) {
115 if (d != NULL) {
116 res = mp_copy (a, d);

117 } else {
118 res = MP_OKAY;

119 }
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120 if (c != NULL) {
121 mp_zero (c);

122 }
123 return res;

124 }
125

126 if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
127 return res;

128 }
129 q.used = a->used + 2;

130

131 if ((res = mp_init (&t1)) != MP_OKAY) {
132 goto LBL_Q;

133 }
134

135 if ((res = mp_init (&t2)) != MP_OKAY) {
136 goto LBL_T1;

137 }
138

139 if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
140 goto LBL_T2;

141 }
142

143 if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
144 goto LBL_X;

145 }
146

147 /* fix the sign */

148 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;

149 x.sign = y.sign = MP_ZPOS;

150

151 /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */

152 norm = mp_count_bits(&y) % DIGIT_BIT;

153 if (norm < (int)(DIGIT_BIT-1)) {
154 norm = (DIGIT_BIT-1) - norm;

155 if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
156 goto LBL_Y;

157 }
158 if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
159 goto LBL_Y;

160 }
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161 } else {
162 norm = 0;

163 }
164

165 /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */

166 n = x.used - 1;

167 t = y.used - 1;

168

169 /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */

170 if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */

171 goto LBL_Y;

172 }
173

174 while (mp_cmp (&x, &y) != MP_LT) {
175 ++(q.dp[n - t]);

176 if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
177 goto LBL_Y;

178 }
179 }
180

181 /* reset y by shifting it back down */

182 mp_rshd (&y, n - t);

183

184 /* step 3. for i from n down to (t + 1) */

185 for (i = n; i >= (t + 1); i--) {
186 if (i > x.used) {
187 continue;

188 }
189

190 /* step 3.1 if xi == yt then set q{i-t-1} to b-1,

191 * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */

192 if (x.dp[i] == y.dp[t]) {
193 q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);

194 } else {
195 mp_word tmp;

196 tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);

197 tmp |= ((mp_word) x.dp[i - 1]);

198 tmp /= ((mp_word) y.dp[t]);

199 if (tmp > (mp_word) MP_MASK)

200 tmp = MP_MASK;

201 q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
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202 }
203

204 /* while (q{i-t-1} * (yt * b + y{t-1})) >

205 xi * b**2 + xi-1 * b + xi-2

206

207 do q{i-t-1} -= 1;

208 */

209 q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;

210 do {
211 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;

212

213 /* find left hand */

214 mp_zero (&t1);

215 t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];

216 t1.dp[1] = y.dp[t];

217 t1.used = 2;

218 if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
219 goto LBL_Y;

220 }
221

222 /* find right hand */

223 t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];

224 t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];

225 t2.dp[2] = x.dp[i];

226 t2.used = 3;

227 } while (mp_cmp_mag(&t1, &t2) == MP_GT);

228

229 /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */

230 if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
231 goto LBL_Y;

232 }
233

234 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
235 goto LBL_Y;

236 }
237

238 if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
239 goto LBL_Y;

240 }
241

242 /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
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243 if (x.sign == MP_NEG) {
244 if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
245 goto LBL_Y;

246 }
247 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
248 goto LBL_Y;

249 }
250 if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
251 goto LBL_Y;

252 }
253

254 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;

255 }
256 }
257

258 /* now q is the quotient and x is the remainder

259 * [which we have to normalize]

260 */

261

262 /* get sign before writing to c */

263 x.sign = x.used == 0 ? MP_ZPOS : a->sign;

264

265 if (c != NULL) {
266 mp_clamp (&q);

267 mp_exch (&q, c);

268 c->sign = neg;

269 }
270

271 if (d != NULL) {
272 mp_div_2d (&x, norm, &x, NULL);

273 mp_exch (&x, d);

274 }
275

276 res = MP_OKAY;

277

278 LBL_Y:mp_clear (&y);

279 LBL_X:mp_clear (&x);

280 LBL_T2:mp_clear (&t2);

281 LBL_T1:mp_clear (&t1);

282 LBL_Q:mp_clear (&q);

283 return res;
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284 }
285

286 #endif

287

288

The implementation of this algorithm differs slightly from the pseudo–code
presented previously. In this algorithm, either of the quotient c or remainder d
may be passed as a NULL pointer, which indicates their value is not desired. For
example, the C code to call the division algorithm with only the quotient is

mp_div(&a, &b, &c, NULL); /* c = [a/b] */

Lines 109 and 113 handle the two trivial cases of inputs, which are division
by zero and dividend smaller than the divisor, respectively. After the two trivial
cases all of the temporary variables are initialized. Line 148 determines the sign
of the quotient, and line 148 ensures that both x and y are positive.

The number of bits in the leading digit is calculated on line 151. Implicitly,
an mp int with r digits will require lg(β)(r − 1) + k bits of precision that when
reduced modulo lg(β) produces the value of k. In this case, k is the number of
bits in the leading digit, which is exactly what is required. For the algorithm
to operate, k must equal lg(β) − 1, and when it does not, the inputs must be
normalized by shifting them to the left by lg(β)− 1− k bits.

Throughout, the variables n and t will represent the highest digit of x and y,
respectively. These are first used to produce the leading digit of the quotient. The
loop beginning on line 184 will produce the remainder of the quotient digits.

The conditional “continue” on line 187 is used to prevent the algorithm from
reading past the leading edge of x, which can occur when the algorithm eliminates
multiple non-zero digits in a single iteration. This ensures that xi is always non-
zero since by definition the digits above the i’th position x must be zero for the
quotient to be precise2.

Lines 215, 216, and 223 through 225 manually construct the high accuracy
estimations by setting the digits of the two mp int variables directly.

8.2 Single Digit Helpers

This section briefly describes a series of single digit helper algorithms that come
in handy when working with small constants. All the helper functions assume the

2Precise as far as integer division is concerned.
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single digit input is positive and will treat them as such.

8.2.1 Single Digit Addition and Subtraction

Both addition and subtraction are performed by “cheating” and using mp set
followed by the higher level addition or subtraction algorithms. As a result, these
algorithms are substantially simpler with a slight cost in performance.

Algorithm mp add d.
Input. mp int a and a mp digit b
Output. c = a + b

1. t← b (mp set)
2. c← a + t
3. Return(MP OKAY )

Figure 8.3: Algorithm mp add d

Algorithm mp add d. This algorithm initiates a temporary mp int with
the value of the single digit and uses algorithm mp add to add the two values
together (Figure 8.3).

File: bn mp add d.c

018 /* single digit addition */

019 int

020 mp_add_d (mp_int * a, mp_digit b, mp_int * c)

021 {
022 int res, ix, oldused;

023 mp_digit *tmpa, *tmpc, mu;

024

025 /* grow c as required */

026 if (c->alloc < a->used + 1) {
027 if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
028 return res;

029 }
030 }
031

032 /* if a is negative and |a| >= b, call c = |a| - b */

033 if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
034 /* temporarily fix sign of a */
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035 a->sign = MP_ZPOS;

036

037 /* c = |a| - b */

038 res = mp_sub_d(a, b, c);

039

040 /* fix sign */

041 a->sign = c->sign = MP_NEG;

042

043 /* clamp */

044 mp_clamp(c);

045

046 return res;

047 }
048

049 /* old number of used digits in c */

050 oldused = c->used;

051

052 /* sign always positive */

053 c->sign = MP_ZPOS;

054

055 /* source alias */

056 tmpa = a->dp;

057

058 /* destination alias */

059 tmpc = c->dp;

060

061 /* if a is positive */

062 if (a->sign == MP_ZPOS) {
063 /* add digit, after this we’re propagating

064 * the carry.

065 */

066 *tmpc = *tmpa++ + b;

067 mu = *tmpc >> DIGIT_BIT;

068 *tmpc++ &= MP_MASK;

069

070 /* now handle rest of the digits */

071 for (ix = 1; ix < a->used; ix++) {
072 *tmpc = *tmpa++ + mu;

073 mu = *tmpc >> DIGIT_BIT;

074 *tmpc++ &= MP_MASK;

075 }
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076 /* set final carry */

077 ix++;

078 *tmpc++ = mu;

079

080 /* setup size */

081 c->used = a->used + 1;

082 } else {
083 /* a was negative and |a| < b */

084 c->used = 1;

085

086 /* the result is a single digit */

087 if (a->used == 1) {
088 *tmpc++ = b - a->dp[0];

089 } else {
090 *tmpc++ = b;

091 }
092

093 /* setup count so the clearing of oldused

094 * can fall through correctly

095 */

096 ix = 1;

097 }
098

099 /* now zero to oldused */

100 while (ix++ < oldused) {
101 *tmpc++ = 0;

102 }
103 mp_clamp(c);

104

105 return MP_OKAY;

106 }
107

108

Unlike the simple description in Figure 8.3, the implementation is more com-
plicated. This is because we want to avoid the cost of building a new mp int
temporary variable just for a simple addition.

First, we handle the case of negative numbers (line 33). If the number is
negative, and sufficiently large, then we subtract instead. After this point, we are
going to add a single digit (line 66), and then propagate the carry upwards (lines
71 through 78).
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Subtraction

The single digit subtraction algorithm mp sub d is essentially the same, except it
uses mp sub to subtract the digit from the mp int.

8.2.2 Single Digit Multiplication

Single digit multiplication arises enough in division and radix conversion that it
ought to be implemented as a special case of the baseline multiplication algorithm.
Essentially, this algorithm is a modified version of algorithm s mp mul digs where
one of the multiplicands only has one digit.

Algorithm mp mul d.
Input. mp int a and a mp digit b
Output. c = ab

1. pa← a.used
2. Grow c to at least pa + 1 digits.
3. oldused← c.used
4. c.used← pa + 1
5. c.sign← a.sign
6. µ← 0
7. for ix from 0 to pa− 1 do

7.1 r̂ ← µ + aixb
7.2 cix ← r̂ (mod β)
7.3 µ← ⌊r̂/β⌋

8. cpa ← µ
9. for ix from pa + 1 to oldused do

9.1 cix ← 0
10. Clamp excess digits of c.
11. Return(MP OKAY ).

Figure 8.4: Algorithm mp mul d

Algorithm mp mul d. This algorithm quickly multiplies an mp int by a
small single digit value. It is specially tailored to the job and has minimal over-
head. Unlike the full multiplication algorithms, this algorithm does not require
any significant temporary storage or memory allocations (Figure 8.4).



236 www.syngress.com

File: bn mp mul d.c

018 /* multiply by a digit */

019 int

020 mp_mul_d (mp_int * a, mp_digit b, mp_int * c)

021 {
022 mp_digit u, *tmpa, *tmpc;

023 mp_word r;

024 int ix, res, olduse;

025

026 /* make sure c is big enough to hold a*b */

027 if (c->alloc < a->used + 1) {
028 if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
029 return res;

030 }
031 }
032

033 /* get the original destinations used count */

034 olduse = c->used;

035

036 /* set the sign */

037 c->sign = a->sign;

038

039 /* alias for a->dp [source] */

040 tmpa = a->dp;

041

042 /* alias for c->dp [dest] */

043 tmpc = c->dp;

044

045 /* zero carry */

046 u = 0;

047

048 /* compute columns */

049 for (ix = 0; ix < a->used; ix++) {
050 /* compute product and carry sum for this term */

051 r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);

052

053 /* mask off higher bits to get a single digit */

054 *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));

055

056 /* send carry into next iteration */

057 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
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058 }
059

060 /* store final carry [if any] and increment ix offset */

061 *tmpc++ = u;

062 ++ix;

063

064 /* now zero digits above the top */

065 while (ix++ < olduse) {
066 *tmpc++ = 0;

067 }
068

069 /* set used count */

070 c->used = a->used + 1;

071 mp_clamp(c);

072

073 return MP_OKAY;

074 }
075

In this implementation, the destination c may point to the same mp int as the
source a, since the result is written after the digit is read from the source. This
function uses pointer aliases tmpa and tmpc for the digits of a and c, respectively.

8.2.3 Single Digit Division

Like the single digit multiplication algorithm, single digit division is also a fairly
common algorithm used in radix conversion. Since the divisor is only a single
digit, a specialized variant of the division algorithm can be used to compute the
quotient.



238 www.syngress.com

Algorithm mp div d.
Input. mp int a and a mp digit b
Output. c = ⌊a/b⌋, d = a− cb

1. If b = 0 then return(MP VAL).
2. If b = 3 then use algorithm mp div 3 instead.
3. Init q to a.used digits.
4. q.used← a.used
5. q.sign← a.sign
6. ŵ ← 0
7. for ix from a.used− 1 down to 0 do

7.1 ŵ ← ŵβ + aix

7.2 If ŵ ≥ b then
7.2.1 t← ⌊ŵ/b⌋
7.2.2 ŵ← ŵ (mod b)

7.3 else
7.3.1 t← 0

7.4 qix ← t
8. d← ŵ
9. Clamp excess digits of q.
10. c← q
11. Return(MP OKAY ).

Figure 8.5: Algorithm mp div d

Algorithm mp div d. This algorithm divides the mp int a by the single
mp digit b using an optimized approach. Essentially, in every iteration of the
algorithm another digit of the dividend is reduced and another digit of quotient
produced. Provided b < β, the value of ŵ after step 7.1 will be limited such that
0 ≤ ⌊ŵ/b⌋ < β (Figure 8.5).

If the divisor b is equal to three a variant of this algorithm is used, which is
mp div 3. It replaces the division by three with a multiplication by ⌊β/3⌋ and
the appropriate shift and residual fixup. In essence, it is much like the Barrett
reduction from Chapter 7.

File: bn mp div d.c

018 static int s_is_power_of_two(mp_digit b, int *p)

019 {
020 int x;

021
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022 for (x = 1; x < DIGIT_BIT; x++) {
023 if (b == (((mp_digit)1)<<x)) {
024 *p = x;

025 return 1;

026 }
027 }
028 return 0;

029 }
030

031 /* single digit division (based on routine from MPI) */

032 int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)

033 {
034 mp_int q;

035 mp_word w;

036 mp_digit t;

037 int res, ix;

038

039 /* cannot divide by zero */

040 if (b == 0) {
041 return MP_VAL;

042 }
043

044 /* quick outs */

045 if (b == 1 || mp_iszero(a) == 1) {
046 if (d != NULL) {
047 *d = 0;

048 }
049 if (c != NULL) {
050 return mp_copy(a, c);

051 }
052 return MP_OKAY;

053 }
054

055 /* power of two ? */

056 if (s_is_power_of_two(b, &ix) == 1) {
057 if (d != NULL) {
058 *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);

059 }
060 if (c != NULL) {
061 return mp_div_2d(a, ix, c, NULL);

062 }
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063 return MP_OKAY;

064 }
065

066 #ifdef BN_MP_DIV_3_C

067 /* three? */

068 if (b == 3) {
069 return mp_div_3(a, c, d);

070 }
071 #endif

072

073 /* no easy answer [c’est la vie]. Just division */

074 if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
075 return res;

076 }
077

078 q.used = a->used;

079 q.sign = a->sign;

080 w = 0;

081 for (ix = a->used - 1; ix >= 0; ix--) {
082 w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);

083

084 if (w >= b) {
085 t = (mp_digit)(w / b);

086 w -= ((mp_word)t) * ((mp_word)b);

087 } else {
088 t = 0;

089 }
090 q.dp[ix] = (mp_digit)t;

091 }
092

093 if (d != NULL) {
094 *d = (mp_digit)w;

095 }
096

097 if (c != NULL) {
098 mp_clamp(&q);

099 mp_exch(&q, c);

100 }
101 mp_clear(&q);

102

103 return res;
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104 }
105

106

Like the implementation of algorithm mp div, this algorithm allows either the
quotient or remainder to be passed as a NULL pointer to indicate the respec-
tive value is not required. This allows a trivial single digit modular reduction
algorithm, mp mod d, to be created.

The division and remainder on lines 85 and 86 can be replaced often by a
single division on most processors. For example, the 32-bit x86 based processors
can divide a 64-bit quantity by a 32-bit quantity and produce the quotient and
remainder simultaneously. Unfortunately, the GCC compiler does not recognize
that optimization and will actually produce two function calls to find the quotient
and remainder, respectively.

8.2.4 Single Digit Root Extraction

Finding the n’th root of an integer is fairly easy as far as numerical analysis is
concerned. Algorithms such as the Newton-Raphson approximation (8.6) series
will converge very quickly to a root for any continuous function f(x).

xi+1 = xi −
f(xi)

f ′(xi)
(8.6)

In this case, the n’th root is desired and f(x) = xn − a, where a is the integer
of which the root is desired. The derivative of f(x) is simply f ′(x) = nxn−1. Of
particular importance is that this algorithm will be used over the integers, not
over a more continuous domain such as the real numbers. As a result, the root
found can be above the true root by few and must be manually adjusted. Ideally,
at the end of the algorithm the n’th root b of an integer a is desired such that
bn ≤ a.
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Algorithm mp n root.
Input. mp int a and a mp digit b
Output. cb ≤ a

1. If b is even and a.sign = MP NEG return(MP VAL).
2. sign← a.sign
3. a.sign←MP ZPOS
4. t2← 2
5. Loop

5.1 t1← t2

5.2 t3← t1b−1

5.3 t2← t3 · t1
5.4 t2← t2− a
5.5 t3← t3 · b
5.6 t3← ⌊t2/t3⌋
5.7 t2← t1− t3
5.8 If t1 6= t2 then goto step 5.

6. Loop

6.1 t2← t1b

6.2 If t2 > a then
6.2.1 t1← t1− 1
6.2.2 Goto step 6.

7. a.sign← sign
8. c← t1
9. c.sign← sign
10. Return(MP OKAY ).

Figure 8.6: Algorithm mp n root

Algorithm mp n root. This algorithm finds the integer n’th root of an
input using the Newton-Raphson approach. It is partially optimized based on the

observation that the numerator of f(x)
f ′(x) can be derived from a partial denominator.

That is, at first the denominator is calculated by finding xb−1. This value can
then be multiplied by x and have a subtracted from it to find the numerator. This
saves a total of b− 1 multiplications by t1 inside the loop (Figure 8.6).

The initial value of the approximation is t2 = 2, which allows the algorithm
to start with very small values and quickly converge on the root. Ideally, this
algorithm is meant to find the n’th root of an input where n is bounded by
2 ≤ n ≤ 5.
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File: bn mp n root.c

018 /* find the n’th root of an integer

019 *

020 * Result found such that (c)**b <= a and (c+1)**b > a

021 *

022 * This algorithm uses Newton’s approximation

023 * x[i+1] = x[i] - f(x[i])/f’(x[i])

024 * which will find the root in log(N) time where

025 * each step involves a fair bit. This is not meant to

026 * find huge roots [square and cube, etc].

027 */

028 int mp_n_root (mp_int * a, mp_digit b, mp_int * c)

029 {
030 mp_int t1, t2, t3;

031 int res, neg;

032

033 /* input must be positive if b is even */

034 if ((b & 1) == 0 && a->sign == MP_NEG) {
035 return MP_VAL;

036 }
037

038 if ((res = mp_init (&t1)) != MP_OKAY) {
039 return res;

040 }
041

042 if ((res = mp_init (&t2)) != MP_OKAY) {
043 goto LBL_T1;

044 }
045

046 if ((res = mp_init (&t3)) != MP_OKAY) {
047 goto LBL_T2;

048 }
049

050 /* if a is negative fudge the sign but keep track */

051 neg = a->sign;

052 a->sign = MP_ZPOS;

053

054 /* t2 = 2 */

055 mp_set (&t2, 2);

056

057 do {
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058 /* t1 = t2 */

059 if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
060 goto LBL_T3;

061 }
062

063 /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */

064

065 /* t3 = t1**(b-1) */

066 if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) {
067 goto LBL_T3;

068 }
069

070 /* numerator */

071 /* t2 = t1**b */

072 if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {
073 goto LBL_T3;

074 }
075

076 /* t2 = t1**b - a */

077 if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {
078 goto LBL_T3;

079 }
080

081 /* denominator */

082 /* t3 = t1**(b-1) * b */

083 if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {
084 goto LBL_T3;

085 }
086

087 /* t3 = (t1**b - a)/(b * t1**(b-1)) */

088 if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {
089 goto LBL_T3;

090 }
091

092 if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
093 goto LBL_T3;

094 }
095 } while (mp_cmp (&t1, &t2) != MP_EQ);

096

097 /* result can be off by a few so check */

098 for (;;) {
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099 if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) {
100 goto LBL_T3;

101 }
102

103 if (mp_cmp (&t2, a) == MP_GT) {
104 if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
105 goto LBL_T3;

106 }
107 } else {
108 break;

109 }
110 }
111

112 /* reset the sign of a first */

113 a->sign = neg;

114

115 /* set the result */

116 mp_exch (&t1, c);

117

118 /* set the sign of the result */

119 c->sign = neg;

120

121 res = MP_OKAY;

122

123 LBL_T3:mp_clear (&t3);

124 LBL_T2:mp_clear (&t2);

125 LBL_T1:mp_clear (&t1);

126 return res;

127 }
128

8.3 Random Number Generation

Random numbers come up in a variety of activities, from public key cryptography
to simple simulations and various randomized algorithms. Pollard-Rho factoring,
for example, can make use of random values as starting points to find factors of a
composite integer. In this case, the algorithm presented is solely for simulations
and not intended for cryptographic use.
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Algorithm mp rand.
Input. An integer b
Output. A pseudo-random number of b digits

1. a← 0
2. If b ≤ 0 return(MP OKAY )
3. Pick a non-zero random digit d.
4. a← a + d
5. for ix from 1 to d− 1 do

5.1 a← a · β
5.2 Pick a random digit d.
5.3 a← a + d

6. Return(MP OKAY ).

Figure 8.7: Algorithm mp rand

Algorithm mp rand. This algorithm produces a pseudo-random integer of
b digits. By ensuring that the first digit is non-zero, the algorithm also guarantees
that the result has at least b digits. It relies heavily on a third-part random number
generator, which should ideally generate uniformly all of the integers from 0 to
β − 1 (Figure 8.7).

File: bn mp rand.c

018 /* makes a pseudo-random int of a given size */

019 int

020 mp_rand (mp_int * a, int digits)

021 {
022 int res;

023 mp_digit d;

024

025 mp_zero (a);

026 if (digits <= 0) {
027 return MP_OKAY;

028 }
029

030 /* first place a random non-zero digit */

031 do {
032 d = ((mp_digit) abs (rand ())) & MP_MASK;

033 } while (d == 0);

034
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035 if ((res = mp_add_d (a, d, a)) != MP_OKAY) {
036 return res;

037 }
038

039 while (--digits > 0) {
040 if ((res = mp_lshd (a, 1)) != MP_OKAY) {
041 return res;

042 }
043

044 if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) {
045 return res;

046 }
047 }
048

049 return MP_OKAY;

050 }
051

8.4 Formatted Representations

The ability to emit a radix-n textual representation of an integer is useful for
interacting with human parties. For example, the ability to be given a string of
characters such as “114585” and turn it into the radix-β equivalent would make
it easier to enter numbers into a program.

8.4.1 Reading Radix-n Input

For the purposes of this text we will assume that a simple lower ASCII map
(Figure 8.8) is used for the values of from 0 to 63 to printable characters. For
example, when the character “N” is read it represents the integer 23. The first
16 characters of the map are for the common representations up to hexadecimal.
After that, they match the “base64” encoding scheme suitably chosen such that
they are printable. While outputting as base64 may not be too helpful for human
operators, it does allow communication via non–binary mediums.
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Value Char Value Char Value Char Value Char
0 0 1 1 2 2 3 3
4 4 5 5 6 6 7 7
8 8 9 9 10 A 11 B
12 C 13 D 14 E 15 F
16 G 17 H 18 I 19 J
20 K 21 L 22 M 23 N
24 O 25 P 26 Q 27 R
28 S 29 T 30 U 31 V
32 W 33 X 34 Y 35 Z
36 a 37 b 38 c 39 d
40 e 41 f 42 g 43 h
44 i 45 j 46 k 47 l
48 m 49 n 50 o 51 p
52 q 53 r 54 s 55 t
56 u 57 v 58 w 59 x
60 y 61 z 62 + 63 /

Figure 8.8: Lower ASCII Map
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Algorithm mp read radix.
Input. A string str of length sn and radix r.
Output. The radix-β equivalent mp int.

1. If r < 2 or r > 64 return(MP VAL).
2. ix← 0
3. If str0 = “-” then do

3.1 ix← ix + 1
3.2 sign←MP NEG

4. else
4.1 sign←MP ZPOS

5. a← 0
6. for iy from ix to sn− 1 do

6.1 Let y denote the position in the map of striy.
6.2 If striy is not in the map or y ≥ r then goto step 7.
6.3 a← a · r
6.4 a← a + y

7. If a 6= 0 then a.sign← sign
8. Return(MP OKAY ).

Figure 8.9: Algorithm mp read radix

Algorithm mp read radix. This algorithm will read an ASCII string and
produce the radix-β mp int representation of the same integer. A minus symbol “-
” may precede the string to indicate the value is negative; otherwise, it is assumed
positive. The algorithm will read up to sn characters from the input and will stop
when it reads a character it cannot map. The algorithm stops reading characters
from the string, which allows numbers to be embedded as part of larger input
without any significant problem (Figure 8.9).

File: bn mp read radix.c

018 /* read a string [ASCII] in a given radix */

019 int mp_read_radix (mp_int * a, const char *str, int radix)

020 {
021 int y, res, neg;

022 char ch;

023

024 /* zero the digit bignum */

025 mp_zero(a);

026
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027 /* make sure the radix is ok */

028 if (radix < 2 || radix > 64) {
029 return MP_VAL;

030 }
031

032 /* if the leading digit is a

033 * minus set the sign to negative.

034 */

035 if (*str == ’-’) {
036 ++str;

037 neg = MP_NEG;

038 } else {
039 neg = MP_ZPOS;

040 }
041

042 /* set the integer to the default of zero */

043 mp_zero (a);

044

045 /* process each digit of the string */

046 while (*str) {
047 /* if the radix < 36 the conversion is case insensitive

048 * this allows numbers like 1AB and 1ab to represent the same value

049 * [e.g. in hex]

050 */

051 ch = (char) ((radix < 36) ? toupper (*str) : *str);

052 for (y = 0; y < 64; y++) {
053 if (ch == mp_s_rmap[y]) {
054 break;

055 }
056 }
057

058 /* if the char was found in the map

059 * and is less than the given radix add it

060 * to the number, otherwise exit the loop.

061 */

062 if (y < radix) {
063 if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) {
064 return res;

065 }
066 if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) {
067 return res;
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068 }
069 } else {
070 break;

071 }
072 ++str;

073 }
074

075 /* set the sign only if a != 0 */

076 if (mp_iszero(a) != 1) {
077 a->sign = neg;

078 }
079 return MP_OKAY;

080 }
081
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8.4.2 Generating Radix-n Output

Generating radix-n output is fairly trivial with a division and remainder algorithm.

Algorithm mp toradix.
Input. A mp int a and an integer r
Output. The radix-r representation of a

1. If r < 2 or r > 64 return(MP VAL).
2. If a = 0 then str = “0” and return(MP OKAY ).
3. t← a
4. str← “”
5. if t.sign = MP NEG then

5.1 str← str+ “-”
5.2 t.sign = MP ZPOS

6. While (t 6= 0) do
6.1 d← t (mod r)
6.2 t← ⌊t/r⌋
6.3 Look up d in the map and store the equivalent character in y.
6.4 str← str + y

7. If str0 =“−” then
7.1 Reverse the digits str1, str2, . . . strn.

8. Otherwise
8.1 Reverse the digits str0, str1, . . . strn.

9. Return(MP OKAY ).

Figure 8.10: Algorithm mp toradix

Algorithm mp toradix. This algorithm computes the radix-r representation
of an mp int a. The “digits” of the representation are extracted by reducing
successive powers of ⌊a/rk⌋ the input modulo r until rk > a. Note that instead of
actually dividing by rk in each iteration, the quotient ⌊a/r⌋ is saved for the next
iteration. As a result, a series of trivial n × 1 divisions are required instead of a
series of n × k divisions. One design flaw of this approach is that the digits are
produced in the reverse order (see 8.11). To remedy this flaw, the digits must be
swapped or simply “reversed” (Figure 8.10).
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Value of a Value of d Value of str
1234 – –
123 4 “4”
12 3 “43”
1 2 “432”
0 1 “4321”

Figure 8.11: Example of Algorithm mp toradix.

Figure 8.11 is an example of the values in algorithm mp toradix at the various
iterations.

File: bn mp toradix.c

018 /* stores a bignum as a ASCII string in a given radix (2..64) */

019 int mp_toradix (mp_int * a, char *str, int radix)

020 {
021 int res, digs;

022 mp_int t;

023 mp_digit d;

024 char *_s = str;

025

026 /* check range of the radix */

027 if (radix < 2 || radix > 64) {
028 return MP_VAL;

029 }
030

031 /* quick out if its zero */

032 if (mp_iszero(a) == 1) {
033 *str++ = ’0’;

034 *str = ’\0’;

035 return MP_OKAY;

036 }
037

038 if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
039 return res;

040 }
041

042 /* if it is negative output a - */

043 if (t.sign == MP_NEG) {
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044 ++_s;

045 *str++ = ’-’;

046 t.sign = MP_ZPOS;

047 }
048

049 digs = 0;

050 while (mp_iszero (&t) == 0) {
051 if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
052 mp_clear (&t);

053 return res;

054 }
055 *str++ = mp_s_rmap[d];

056 ++digs;

057 }
058

059 /* reverse the digits of the string. In this case _s points

060 * to the first digit [exluding the sign] of the number]

061 */

062 bn_reverse ((unsigned char *)_s, digs);

063

064 /* append a NULL so the string is properly terminated */

065 *str = ’\0’;

066

067 mp_clear (&t);

068 return MP_OKAY;

069 }
070

071



Chapter 9

Number Theoretic

Algorithms

This chapter discusses several fundamental number theoretic algorithms such as
the greatest common divisor, least common multiple, and Jacobi symbol computa-
tion. These algorithms arise as essential components in several key cryptographic
algorithms such as the RSA public key algorithm and various sieve–based factoring
algorithms.

9.1 Greatest Common Divisor

The greatest common divisor of two integers a and b, often denoted as (a, b), is
the largest integer k that is a proper divisor of both a and b. That is, k is the
largest integer such that 0 ≡ a (mod k) and 0 ≡ b (mod k) occur simultaneously.

The most common approach [1, pp. 337] is to reduce one operand modulo the
other operand. That is, if a and b are divisible by some integer k and if qa+r = b,
then r is also divisible by k. The reduction pattern follows 〈a, b〉 → 〈b, a mod b〉.

255
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Algorithm Greatest Common Divisor (I).
Input. Two positive integers a and b greater than zero.
Output. The greatest common divisor (a, b).

1. While (b > 0) do
1.1 r ← a (mod b)
1.2 a← b
1.3 b← r

2. Return(a).

Figure 9.1: Algorithm Greatest Common Divisor (I)

This algorithm will quickly converge on the greatest common divisor since the
residue r tends to diminish rapidly (Figure 9.1). However, divisions are relatively
expensive operations to perform and should ideally be avoided. There is another
approach based on a similar relationship of greatest common divisors. The faster
approach is based on the observation that if k divides both a and b, it will also
divide a − b. In particular, we would like a − b to decrease in magnitude, which
implies that b ≥ a.

Algorithm Greatest Common Divisor (II).
Input. Two positive integers a and b greater than zero.
Output. The greatest common divisor (a, b).

1. While (b > 0) do
1.1 Swap a and b such that a is the smallest of the two.
1.2 b← b− a

2. Return(a).

Figure 9.2: Algorithm Greatest Common Divisor (II)

Theorem Algorithm 9.2 will return the greatest common divisor of a and b.
Proof The algorithm in Figure 9.2 will eventually terminate; since b ≥ a the

subtraction in step 1.2 will be a value less than b. In other words, in every iteration
that tuple 〈a, b〉, decrease in magnitude until eventually a = b. Since both a and
b are always divisible by the greatest common divisor (until the last iteration)
and in the last iteration of the algorithm b = 0, therefore, in the second to last
iteration of the algorithm b = a and clearly (a, a) = a, which concludes the proof.
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QED

As a matter of practicality, algorithm 9.1 decreases far too slowly to be useful,
especially if b is much larger than a such that b− a is still very much larger than
a. A simple addition to the algorithm is to divide b− a by a power of some
integer p that does not divide the greatest common divisor but will divide b− a.
In this case, b−a

p is also an integer and still divisible by the greatest common
divisor.

However, instead of factoring b− a to find a suitable value of p, the powers of
p can be removed from a and b that are in common first. Then, inside the loop
whenever b− a is divisible by some power of p it can be safely removed.

Algorithm Greatest Common Divisor (III).
Input. Two positive integers a and b greater than zero.
Output. The greatest common divisor (a, b).

1. k← 0
2. While a and b are both divisible by p do

2.1 a← ⌊a/p⌋
2.2 b← ⌊b/p⌋
2.3 k ← k + 1

3. While a is divisible by p do
3.1 a← ⌊a/p⌋

4. While b is divisible by p do
4.1 b← ⌊b/p⌋

5. While (b > 0) do
5.1 Swap a and b such that a is the smallest of the two.
5.2 b← b− a
5.3 While b is divisible by p do

5.3.1 b← ⌊b/p⌋

6. Return(a · pk).

Figure 9.3: Algorithm Greatest Common Divisor (III)

This algorithm is based on the first, except it removes powers of p first and
inside the main loop to ensure the tuple 〈a, b〉 decreases more rapidly (Figure 9.3).
The first loop in step 2 removes powers of p that are in common. A count, k, is
kept that will present a common divisor of pk. After step 2 the remaining common
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divisor of a and b cannot be divisible by p. This means that p can be safely divided
out of the difference b− a as long as the division leaves no remainder.

In particular, the value of p should be chosen such that the division in step
5.3.1 occurs often. It also helps that division by p be easy to compute. The ideal
choice of p is two since division by two amounts to a right logical shift. Another
important observation is that by step 5 both a and b are odd. Therefore, the
difference b − a must be even, which means that each iteration removes one bit
from the largest of the pair.

9.1.1 Complete Greatest Common Divisor

The algorithms presented so far cannot handle inputs that are zero or negative.
The following algorithm can handle all input cases properly and will produce the
greatest common divisor.
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Algorithm mp gcd.
Input. mp int a and b
Output. The greatest common divisor c = (a, b).

1. If a = 0 then
1.1 c← |b|
1.2 Return(MP OKAY ).

2. If b = 0 then
2.1 c← |a|
2.2 Return(MP OKAY ).

3. u← |a|, v ← |b|
4. k ← 0
5. While u.used > 0 and v.used > 0 and u0 ≡ v0 ≡ 0 (mod 2)

5.1 k← k + 1
5.2 u← ⌊u/2⌋
5.3 v ← ⌊v/2⌋

6. While u.used > 0 and u0 ≡ 0 (mod 2)
6.1 u← ⌊u/2⌋

7. While v.used > 0 and v0 ≡ 0 (mod 2)
7.1 v ← ⌊v/2⌋

8. While v.used > 0
8.1 If |u| > |v| then

8.1.1 Swap u and v.
8.2 v ← |v| − |u|
8.3 While v.used > 0 and v0 ≡ 0 (mod 2)

8.3.1 v ← ⌊v/2⌋
9. c← u · 2k

10. Return(MP OKAY ).

Figure 9.4: Algorithm mp gcd

Algorithm mp gcd. This algorithm will produce the greatest common di-
visor of two mp ints a and b. It was originally based on Algorithm B, of Knuth
[1, pp. 338] but has been modified to be simpler to explain. In theory, it achieves
the same asymptotic working time as Algorithm B, and in practice, this appears
to be true (Figure 9.4).

The first two steps handle the cases where either one or both inputs are zero.
If either input is zero, the greatest common divisor is the largest input or zero if
they are both zero. If the inputs are not trivial, u and v are assigned the absolute
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values of a and b, respectively, and the algorithm will proceed to reduce the pair.
Step 5 will divide out any common factors of two and keep track of the count in

the variable k. After this step, two is no longer a factor of the remaining greatest
common divisor between u and v and can be safely evenly divided out of either
whenever they are even. Steps 6 and 7 ensure that the u and v, respectively, have
no more factors of two. At most, only one of the while loops will iterate since they
cannot both be even.

By step 8 both u and v are odd, which is required for the inner logic. First,
the pair are swapped such that v is equal to or greater than u. This ensures that
the subtraction in step 8.2 will always produce a positive and even result. Step
8.3 removes any factors of two from the difference u to ensure that in the next
iteration of the loop both are again odd.

After v = 0 occurs the variable u has the greatest common divisor of the pair
〈u, v〉 just after step 6. The result must be adjusted by multiplying by the common
factors of two (2k) removed earlier.

File: bn mp gcd.c

018 /* Greatest Common Divisor using the binary method */

019 int mp_gcd (mp_int * a, mp_int * b, mp_int * c)

020 {
021 mp_int u, v;

022 int k, u_lsb, v_lsb, res;

023

024 /* either zero then gcd is the largest */

025 if (mp_iszero (a) == MP_YES) {
026 return mp_abs (b, c);

027 }
028 if (mp_iszero (b) == MP_YES) {
029 return mp_abs (a, c);

030 }
031

032 /* get copies of a and b we can modify */

033 if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
034 return res;

035 }
036

037 if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
038 goto LBL_U;

039 }
040
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041 /* must be positive for the remainder of the algorithm */

042 u.sign = v.sign = MP_ZPOS;

043

044 /* B1. Find the common power of two for u and v */

045 u_lsb = mp_cnt_lsb(&u);

046 v_lsb = mp_cnt_lsb(&v);

047 k = MIN(u_lsb, v_lsb);

048

049 if (k > 0) {
050 /* divide the power of two out */

051 if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
052 goto LBL_V;

053 }
054

055 if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
056 goto LBL_V;

057 }
058 }
059

060 /* divide any remaining factors of two out */

061 if (u_lsb != k) {
062 if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
063 goto LBL_V;

064 }
065 }
066

067 if (v_lsb != k) {
068 if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
069 goto LBL_V;

070 }
071 }
072

073 while (mp_iszero(&v) == 0) {
074 /* make sure v is the largest */

075 if (mp_cmp_mag(&u, &v) == MP_GT) {
076 /* swap u and v to make sure v is >= u */

077 mp_exch(&u, &v);

078 }
079

080 /* subtract smallest from largest */

081 if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
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082 goto LBL_V;

083 }
084

085 /* Divide out all factors of two */

086 if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
087 goto LBL_V;

088 }
089 }
090

091 /* multiply by 2**k which we divided out at the beginning */

092 if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
093 goto LBL_V;

094 }
095 c->sign = MP_ZPOS;

096 res = MP_OKAY;

097 LBL_V:mp_clear (&u);

098 LBL_U:mp_clear (&v);

099 return res;

100 }
101

This function makes use of the macros mp iszero and mp iseven. The former
evaluates to 1 if the input mp int is equivalent to the integer zero; otherwise, it
evaluates to 0. The latter evaluates to 1 if the input mp int represents a non-zero
even integer; otherwise, it evaluates to 0. Note that just because mp iseven may
evaluate to 0 does not mean the input is odd; it could also be zero. The three
trivial cases of inputs are handled on lines 24 through 30. After those lines, the
inputs are assumed non-zero.

Lines 32 and 37 make local copies u and v of the inputs a and b respectively.
At this point, the common factors of two must be divided out of the two inputs.
The block starting at line 44 removes common factors of two by first counting the
number of trailing zero bits in both. The local integer k is used to keep track
of how many factors of 2 are pulled out of both values. It is assumed that the
number of factors will not exceed the maximum value of a C “int” data type1.

At this point, there are no more common factors of two in the two values. The
divisions by a power of two on lines 62 and 68 remove any independent factors of
two such that both u and v are guaranteed to be an odd integer before hitting the

1Strictly speaking, no array in C may have more than entries than are accessible by an “int”
so this is not a limitation.
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main body of the algorithm. The while loop on line 73 performs the reduction
of the pair until v is equal to zero. The unsigned comparison and subtraction
algorithms are used in place of the full signed routines since both values are
guaranteed to be positive and the result of the subtraction is guaranteed to be
non-negative.

9.2 Least Common Multiple

The least common multiple of a pair of integers is their product divided by their
greatest common divisor. For two integers a and b the least common multiple
is normally denoted as [a, b] and numerically equivalent to ab

(a,b) . For example,

if a = 2 · 2 · 3 = 12 and b = 2 · 3 · 3 · 7 = 126, the least common multiple is
126

(12,126) = 126
6 = 21.

The least common multiple arises often in coding theory and number theory.
If two functions have periods of a and b, respectively, they will collide, that is be in
synchronous states, after only [a, b] iterations. This is why, for example, random
number generators based on Linear Feedback Shift Registers (LFSR) tend to use
registers with periods that are co-prime (e.g., the greatest common divisor is 1.).
Similarly, in number theory if a composite n has two prime factors p and q, then
maximal order of any unit of Z/nZ will be [p− 1, q − 1].

Algorithm mp lcm.
Input. mp int a and b
Output. The least common multiple c = [a, b].

1. c← (a, b)
2. t← a · b
3. c← ⌊t/c⌋
4. Return(MP OKAY ).

Figure 9.5: Algorithm mp lcm

Algorithm mp lcm. This algorithm computes the least common multiple of
two mp int inputs a and b. It computes the least common multiple directly by
dividing the product of the two inputs by their greatest common divisor (Figure
9.5).
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File: bn mp lcm.c

018 /* computes least common multiple as |a*b|/(a, b) */

019 int mp_lcm (mp_int * a, mp_int * b, mp_int * c)

020 {
021 int res;

022 mp_int t1, t2;

023

024

025 if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) {
026 return res;

027 }
028

029 /* t1 = get the GCD of the two inputs */

030 if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) {
031 goto LBL_T;

032 }
033

034 /* divide the smallest by the GCD */

035 if (mp_cmp_mag(a, b) == MP_LT) {
036 /* store quotient in t2 such that t2 * b is the LCM */

037 if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
038 goto LBL_T;

039 }
040 res = mp_mul(b, &t2, c);

041 } else {
042 /* store quotient in t2 such that t2 * a is the LCM */

043 if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
044 goto LBL_T;

045 }
046 res = mp_mul(a, &t2, c);

047 }
048

049 /* fix the sign to positive */

050 c->sign = MP_ZPOS;

051

052 LBL_T:

053 mp_clear_multi (&t1, &t2, NULL);

054 return res;

055 }
056
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9.3 Jacobi Symbol Computation

To explain the Jacobi Symbol we will first discuss the Legendre function off which
the Jacobi symbol is defined. The Legendre function computes whether an integer
a is a quadratic residue modulo an odd prime p. Numerically it is equivalent to
equation 9.1.

a(p−1)/2 ≡
−1 if a is a quadratic non-residue.

0 if a divides p.
1 if a is a quadratic residue.

(mod p) (9.1)

Theorem. Equation 9.1 correctly identifies the residue status of an integer a
modulo a prime p.

Proof. Adapted from [21, pp. 68]. An integer a is a quadratic residue if the
following equation has a solution.

x2 ≡ a (mod p) (9.2)

Consider the following equation.

0 ≡ xp−1 − 1 ≡
{

(

x2
)(p−1)/2 − a(p−1)/2

}

+
(

a(p−1)/2 − 1
)

(mod p) (9.3)

Whether equation 9.2 has a solution or not, equation 9.3 is always true. If
a(p−1)/2 − 1 ≡ 0 (mod p), then the quantity in the braces must be zero. By
reduction,

(

x2
)(p−1)/2 − a(p−1)/2 ≡ 0
(

x2
)(p−1)/2 ≡ a(p−1)/2

x2 ≡ a (mod p) (9.4)

As a result there must be a solution to the quadratic equation, and in turn,
a must be a quadratic residue. If a does not divide p and a is not a quadratic
residue, then the only other value a(p−1)/2 may be congruent to is −1 since

0 ≡ ap−1 − 1 ≡ (a(p−1)/2 + 1)(a(p−1)/2 − 1) (mod p) (9.5)

One of the terms on the right-hand side must be zero.
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QED

9.3.1 Jacobi Symbol

The Jacobi symbol is a generalization of the Legendre function for any odd non–

prime moduli p greater than 2. If p =
∏n

i=0 pi, then the Jacobi symbol
(

a
p

)

is

equal to the following equation.

(

a

p

)

=

(

a

p0

)(

a

p1

)

. . .

(

a

pn

)

(9.6)

By inspection if p is prime, the Jacobi symbol is equivalent to the Legendre
function. The following facts2 will be used to derive an efficient Jacobi symbol
algorithm. Where p is an odd integer greater than two and a, b ∈ Z, the following
are true.

1.
(

a
p

)

equals −1, 0 or 1.

2.
(

ab
p

)

=
(

a
p

)(

b
p

)

.

3. If a ≡ b then
(

a
p

)

=
(

b
p

)

.

4.
(

2
p

)

equals 1 if p ≡ 1 or 7 (mod 8). Otherwise, it equals −1.

5.
(

a
p

)

≡
(

p
a

)

· (−1)(p−1)(a−1)/4. More specifically,
(

a
p

)

=
(

p
a

)

if p ≡ a ≡
1 (mod 4).

Using these facts if a = 2k · a′ then

(

a

p

)

=

(

2k

p

) (

a′

p

)

=

(

2

p

)k (

a′

p

)

(9.7)

By fact five,

2See HAC [2, pp. 72-74] for further details.
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(

a

p

)

=
(p

a

)

· (−1)(p−1)(a−1)/4 (9.8)

Subsequently, by fact three since p ≡ (p mod a) (mod a), then

(

a

p

)

=

(

p mod a

a

)

· (−1)(p−1)(a−1)/4 (9.9)

By putting both observations into equation 9.7, the following simplified equa-
tion is formed.

(

a

p

)

=

(

2

p

)k (

p mod a′

a′

)

· (−1)(p−1)(a′−1)/4 (9.10)

The value of
(

p mod a′

a′

)

can be found using the same equation recursively.

The value of
(

2
p

)k

equals 1 if k is even; otherwise, it equals
(

2
p

)

. Using this

approach the factors of p do not have to be known. Furthermore, if (a, p) = 1,
then the algorithm will terminate when the recursion requests the Jacobi symbol
computation of

(

1
a′

)

, which is simply 1.
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Algorithm mp jacobi.
Input. mp int a and p, a ≥ 0, p ≥ 3, p ≡ 1 (mod 2)

Output. The Jacobi symbol c =
“

a
p

”

.

1. If a = 0 then
1.1 c← 0
1.2 Return(MP OKAY ).

2. If a = 1 then
2.1 c← 1
2.2 Return(MP OKAY ).

3. a′ ← a
4. k← 0
5. While a′.used > 0 and a′

0 ≡ 0 (mod 2)
5.1 k← k + 1
5.2 a′ ← ⌊a′/2⌋

6. If k ≡ 0 (mod 2) then
6.1 s← 1

7. else
7.1 r ← p0 (mod 8)
7.2 If r = 1 or r = 7 then

7.2.1 s← 1
7.3 else

7.3.1 s← −1
8. If p0 ≡ a′

0 ≡ 3 (mod 4) then
8.1 s← −s

9. If a′ 6= 1 then
9.1 p′ ← p (mod a′)
9.2 s← s ·mp jacobi(p′, a′)

10. c← s
11. Return(MP OKAY ).

Figure 9.6: Algorithm mp jacobi

Algorithm mp jacobi. This algorithm computes the Jacobi symbol for an
arbitrary positive integer a with respect to an odd integer p greater than three.
The algorithm is based on algorithm 2.149 of HAC [2, pp. 73] (Figure 9.6).

Steps 1 and 2 handle the trivial cases of a = 0 and a = 1, respectively. Step
5 determines the number of two factors in the input a. If k is even, the term
(

2
p

)k

must always evaluate to one. If k is odd, the term evaluates to one if p0 is
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congruent to one or seven modulo eight; otherwise, it evaluates to −1. After the
(

2
p

)k

term is handled, the (−1)(p−1)(a′−1)/4 is computed and multiplied against

the current product s. The latter term evaluates to one if both p and a′ are
congruent to one modulo four; otherwise, it evaluates to negative one.

By step 9 if a′ does not equal one a recursion is required. Step 9.1 computes

p′ ≡ p (mod a′) and will recurse to compute
(

p′

a′

)

, which is multiplied against the

current Jacobi product.

File: bn mp jacobi.c

018 /* computes the jacobi c = (a | n) (or Legendre if n is prime)

019 * HAC pp. 73 Algorithm 2.149

020 */

021 int mp_jacobi (mp_int * a, mp_int * p, int *c)

022 {
023 mp_int a1, p1;

024 int k, s, r, res;

025 mp_digit residue;

026

027 /* if p <= 0 return MP_VAL */

028 if (mp_cmp_d(p, 0) != MP_GT) {
029 return MP_VAL;

030 }
031

032 /* step 1. if a == 0, return 0 */

033 if (mp_iszero (a) == 1) {
034 *c = 0;

035 return MP_OKAY;

036 }
037

038 /* step 2. if a == 1, return 1 */

039 if (mp_cmp_d (a, 1) == MP_EQ) {
040 *c = 1;

041 return MP_OKAY;

042 }
043

044 /* default */

045 s = 0;

046

047 /* step 3. write a = a1 * 2**k */

048 if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
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049 return res;

050 }
051

052 if ((res = mp_init (&p1)) != MP_OKAY) {
053 goto LBL_A1;

054 }
055

056 /* divide out larger power of two */

057 k = mp_cnt_lsb(&a1);

058 if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
059 goto LBL_P1;

060 }
061

062 /* step 4. if e is even set s=1 */

063 if ((k & 1) == 0) {
064 s = 1;

065 } else {
066 /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */

067 residue = p->dp[0] & 7;

068

069 if (residue == 1 || residue == 7) {
070 s = 1;

071 } else if (residue == 3 || residue == 5) {
072 s = -1;

073 }
074 }
075

076 /* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */

077 if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
078 s = -s;

079 }
080

081 /* if a1 == 1 we’re done */

082 if (mp_cmp_d (&a1, 1) == MP_EQ) {
083 *c = s;

084 } else {
085 /* n1 = n mod a1 */

086 if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) {
087 goto LBL_P1;

088 }
089 if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) {
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090 goto LBL_P1;

091 }
092 *c = s * r;

093 }
094

095 /* done */

096 res = MP_OKAY;

097 LBL_P1:mp_clear (&p1);

098 LBL_A1:mp_clear (&a1);

099 return res;

100 }
101

As a matter of practicality the variable a′ as per the pseudo-code is represented
by the variable a1 since the ′ symbol is not valid for a C variable name character.

The two simple cases of a = 0 and a = 1 are handled at the very beginning to
simplify the algorithm. If the input is non-trivial, the algorithm has to proceed
and compute the Jacobi. The variable s is used to hold the current Jacobi product.
Note that s is merely a C “int” data type since the values it may obtain are merely
−1, 0 and 1.

After a local copy of a is made, all the factors of two are divided out and
the total stored in k. Technically, only the least significant bit of k is required;
however, it makes the algorithm simpler to follow to perform an addition. In
practice, an exclusive-or and addition have the same processor requirements, and
neither is faster than the other.

Lines 62 through 73 determine the value of
(

2
p

)k

. If the least significant bit of

k is zero, then k is even and the value is one. Otherwise, the value of s depends
on which residue class p belongs to modulo eight. The value of (−1)(p−1)(a′−1)/4

is computed and multiplied against s on lines 76 through 91.
Finally, if a1 does not equal one, the algorithm must recurse and compute

(

p′

a′

)

.

9.4 Modular Inverse

The modular inverse of a number refers to the modular multiplicative inverse.
For any integer a such that (a, p) = 1 there exists another integer b such that
ab ≡ 1 (mod p). The integer b is called the multiplicative inverse of a which is
denoted as b = a−1. Modular inversion is a well–defined operation for any finite
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ring or field, not just for rings and fields of integers. However, the former will be
the matter of discussion.

The simplest approach is to compute the algebraic inverse of the input; that
is, to compute b ≡ aΦ(p)−1. If Φ(p) is the order of the multiplicative subgroup
modulo p, then b must be the multiplicative inverse of a–the proof of which is
trivial.

ab ≡ a
(

aΦ(p)−1
)

≡ aΦ(p) ≡ a0 ≡ 1 (mod p) (9.11)

However, as simple as this approach may be it has two serious flaws. It requires
that the value of Φ(p) be known, which if p is composite requires all of the prime
factors. This approach also is very slow as the size of p grows.

A simpler approach is based on the observation that solving for the multiplica-
tive inverse is equivalent to solving the linear Diophantine3 equation.

ab + pq = 1 (9.12)

Where a, b, p, and q are all integers. If such a pair of integers 〈b, q〉 exists,
b is the multiplicative inverse of a modulo p. The extended Euclidean algorithm
(Knuth [1, pp. 342]) can be used to solve such equations provided (a, p) = 1.
However, instead of using that algorithm directly, a variant known as the binary
Extended Euclidean algorithm will be used in its place. The binary approach
is very similar to the binary greatest common divisor algorithm, except it will
produce a full solution to the Diophantine equation.

3See LeVeque [21, pp. 40-43] for more information.
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9.4.1 General Case

Algorithm mp invmod.
Input. mp int a and b, (a, b) = 1, p ≥ 2, 0 < a < p.
Output. The modular inverse c ≡ a−1 (mod b).

1. If b ≤ 0 then return(MP VAL).
2. If b0 ≡ 1 (mod 2) then use algorithm fast mp invmod.
3. x← |a|, y ← b
4. If x0 ≡ y0 ≡ 0 (mod 2) then return(MP VAL).
5. B ← 0, C ← 0, A← 1, D ← 1
6. While u.used > 0 and u0 ≡ 0 (mod 2)

6.1 u← ⌊u/2⌋
6.2 If (A.used > 0 and A0 ≡ 1 (mod 2)) or (B.used > 0 and B0 ≡ 1 (mod 2)) then

6.2.1 A← A + y
6.2.2 B ← B − x

6.3 A← ⌊A/2⌋
6.4 B ← ⌊B/2⌋

7. While v.used > 0 and v0 ≡ 0 (mod 2)
7.1 v ← ⌊v/2⌋
7.2 If (C.used > 0 and C0 ≡ 1 (mod 2)) or (D.used > 0 and D0 ≡ 1 (mod 2)) then

7.2.1 C ← C + y
7.2.2 D ← D − x

7.3 C ← ⌊C/2⌋
7.4 D ← ⌊D/2⌋

8. If u ≥ v then
8.1 u← u− v
8.2 A← A− C
8.3 B ← B −D

9. else
9.1 v ← v − u
9.2 C ← C − A
9.3 D ← D −B

Continued on the next page.
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Algorithm mp invmod (continued).
Input. mp int a and b, (a, b) = 1, p ≥ 2, 0 < a < p.
Output. The modular inverse c ≡ a−1 (mod b).

10. If u 6= 0 goto step 6.
11. If v 6= 1 return(MP VAL).
12. While C ≤ 0 do

12.1 C ← C + b
13. While C ≥ b do

13.1 C ← C − b
14. c← C
15. Return(MP OKAY ).

Figure 9.7: Algorithm mp invmod

Algorithm mp invmod. This algorithm computes the modular multiplica-
tive inverse of an integer a modulo an integer b. It is a variation of the extended
binary Euclidean algorithm from HAC [2, pp. 608], and it has been modified
to only compute the modular inverse and not a complete Diophantine solution
(Figure 9.7).

If b ≤ 0, the modulus is invalid and MP VAL is returned. Similarly if both
a and b are even, there cannot be a multiplicative inverse for a and the error is
reported.

The astute reader will observe that steps 7 through 9 are very similar to the
binary greatest common divisor algorithm mp gcd. In this case, the other variables
to the Diophantine equation are solved. The algorithm terminates when u = 0,
in which case the solution is

Ca + Db = v (9.13)

If v, the greatest common divisor of a and b, is not equal to one, then the
algorithm will report an error as no inverse exists. Otherwise, C is the modular
inverse of a. The actual value of C is congruent to, but not necessarily equal
to, the ideal modular inverse, which should lie within 1 ≤ a−1 < b. Steps 12
and 13 adjust the inverse until it is in range. If the original input a is within
0 < a < p, then only a couple of additions or subtractions will be required to
adjust the inverse.
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File: bn mp invmod.c

018 /* hac 14.61, pp608 */

019 int mp_invmod (mp_int * a, mp_int * b, mp_int * c)

020 {
021 /* b cannot be negative */

022 if (b->sign == MP_NEG || mp_iszero(b) == 1) {
023 return MP_VAL;

024 }
025

026 #ifdef BN_FAST_MP_INVMOD_C

027 /* if the modulus is odd we can use a faster routine instead */

028 if (mp_isodd (b) == 1) {
029 return fast_mp_invmod (a, b, c);

030 }
031 #endif

032

033 #ifdef BN_MP_INVMOD_SLOW_C

034 return mp_invmod_slow(a, b, c);

035 #endif

036

037 return MP_VAL;

038 }
039

Odd Moduli

When the modulus b is odd the variables A and C are fixed and are not required
to compute the inverse. In particular, by attempting to solve the Diophantine
Cb + Da = 1, only B and D are required to find the inverse of a.

The algorithm fast mp invmod is a direct adaptation of algorithm mp invmod
with all steps involving either A or C removed. This optimization will halve the
time required to compute the modular inverse.

File: bn fast mp invmod.c

018 /* computes the modular inverse via binary extended euclidean algorithm,

019 * that is c = 1/a mod b

020 *

021 * Based on slow invmod except this is optimized for the case where b is

022 * odd as per HAC Note 14.64 on pp. 610

023 */

024 int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
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025 {
026 mp_int x, y, u, v, B, D;

027 int res, neg;

028

029 /* 2. [modified] b must be odd */

030 if (mp_iseven (b) == 1) {
031 return MP_VAL;

032 }
033

034 /* init all our temps */

035 if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
036 return res;

037 }
038

039 /* x == modulus, y == value to invert */

040 if ((res = mp_copy (b, &x)) != MP_OKAY) {
041 goto LBL_ERR;

042 }
043

044 /* we need y = |a| */

045 if ((res = mp_mod (a, b, &y)) != MP_OKAY) {
046 goto LBL_ERR;

047 }
048

049 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */

050 if ((res = mp_copy (&x, &u)) != MP_OKAY) {
051 goto LBL_ERR;

052 }
053 if ((res = mp_copy (&y, &v)) != MP_OKAY) {
054 goto LBL_ERR;

055 }
056 mp_set (&D, 1);

057

058 top:

059 /* 4. while u is even do */

060 while (mp_iseven (&u) == 1) {
061 /* 4.1 u = u/2 */

062 if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
063 goto LBL_ERR;

064 }
065 /* 4.2 if B is odd then */
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066 if (mp_isodd (&B) == 1) {
067 if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
068 goto LBL_ERR;

069 }
070 }
071 /* B = B/2 */

072 if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
073 goto LBL_ERR;

074 }
075 }
076

077 /* 5. while v is even do */

078 while (mp_iseven (&v) == 1) {
079 /* 5.1 v = v/2 */

080 if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
081 goto LBL_ERR;

082 }
083 /* 5.2 if D is odd then */

084 if (mp_isodd (&D) == 1) {
085 /* D = (D-x)/2 */

086 if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
087 goto LBL_ERR;

088 }
089 }
090 /* D = D/2 */

091 if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
092 goto LBL_ERR;

093 }
094 }
095

096 /* 6. if u >= v then */

097 if (mp_cmp (&u, &v) != MP_LT) {
098 /* u = u - v, B = B - D */

099 if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
100 goto LBL_ERR;

101 }
102

103 if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
104 goto LBL_ERR;

105 }
106 } else {
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107 /* v - v - u, D = D - B */

108 if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
109 goto LBL_ERR;

110 }
111

112 if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
113 goto LBL_ERR;

114 }
115 }
116

117 /* if not zero goto step 4 */

118 if (mp_iszero (&u) == 0) {
119 goto top;

120 }
121

122 /* now a = C, b = D, gcd == g*v */

123

124 /* if v != 1 then there is no inverse */

125 if (mp_cmp_d (&v, 1) != MP_EQ) {
126 res = MP_VAL;

127 goto LBL_ERR;

128 }
129

130 /* b is now the inverse */

131 neg = a->sign;

132 while (D.sign == MP_NEG) {
133 if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
134 goto LBL_ERR;

135 }
136 }
137 mp_exch (&D, c);

138 c->sign = neg;

139 res = MP_OKAY;

140

141 LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);

142 return res;

143 }
144
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9.5 Primality Tests

A non-zero integer a is said to be prime if it is not divisible by any other integer
excluding one and itself. For example, a = 7 is prime since the integers 2 . . . 6 do
not evenly divide a. By contrast, a = 6 is not prime since a = 6 = 2 · 3.

Prime numbers arise in cryptography considerably as they allow finite fields to
be formed. The ability to determine whether an integer is prime quickly has been
a viable subject in cryptography and number theory for considerable time. The
algorithms that will be presented are all probabilistic algorithms in that when
they report an integer is composite it must be composite. However, when the
algorithms report an integer is prime the algorithm may be incorrect.

As will be discussed, it is possible to limit the probability of error so well
that for practical purposes the probability of error might as well be zero. For the
purposes of these discussions, let n represent the candidate integer of which the
primality is in question.

9.5.1 Trial Division

Trial division means to attempt to evenly divide a candidate integer by small prime
integers. If the candidate can be evenly divided, it obviously cannot be prime.
By dividing by all primes 1 < p ≤ √n, this test can actually prove whether an
integer is prime. However, such a test would require a prohibitive amount of time
as n grows.

Instead of dividing by every prime, a smaller, more manageable set of primes
may be used instead. By performing trial division with only a subset of the primes
less than

√
n + 1, the algorithm cannot prove if a candidate is prime. However,

often it can prove a candidate is not prime.
The benefit of this test is that trial division by small values is fairly efficient,

especially when compared to the other algorithms that will be discussed shortly.
The probability that this approach correctly identifies a composite candidate when
tested with all primes up to q is given by 1− 1.12

ln(q) .

At approximately q = 30 the gain of performing further tests diminishes fairly
quickly. At q = 90, further testing is generally not going to be of any practical
use. In the case of LibTomMath the default limit q = 256 was chosen since it is
not too high and will eliminate approximately 80% of all candidate integers. The
constant PRIME SIZE is equal to the number of primes in the test base. The
array prime tab is an array of the first PRIME SIZE prime numbers.



280 www.syngress.com

Algorithm mp prime is divisible.
Input. mp int a
Output. c = 1 if n is divisible by a small prime, otherwise c = 0.

1. for ix from 0 to PRIME SIZE do
1.1 d← n (mod prime tabix)
1.2 If d = 0 then

1.2.1 c← 1
1.2.2 Return(MP OKAY ).

2. c← 0
3. Return(MP OKAY ).

Figure 9.8: Algorithm mp prime is divisible

Algorithm mp prime is divisible. This algorithm attempts to determine
if a candidate integer n is composite by performing trial divisions (Figure 9.8).

File: bn mp prime is divisible.c

018 /* determines if an integers is divisible by one

019 * of the first PRIME_SIZE primes or not

020 *

021 * sets result to 0 if not, 1 if yes

022 */

023 int mp_prime_is_divisible (mp_int * a, int *result)

024 {
025 int err, ix;

026 mp_digit res;

027

028 /* default to not */

029 *result = MP_NO;

030

031 for (ix = 0; ix < PRIME_SIZE; ix++) {
032 /* what is a mod LBL_prime_tab[ix] */

033 if ((err = mp_mod_d (a, ltm_prime_tab[ix], &res)) != MP_OKAY) {
034 return err;

035 }
036

037 /* is the residue zero? */

038 if (res == 0) {
039 *result = MP_YES;

040 return MP_OKAY;
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041 }
042 }
043

044 return MP_OKAY;

045 }
046

The algorithm defaults to a return of 0 in case an error occurs. The values
in the prime table are all specified to be in the range of an mp digit. The table
prime tab is defined in the following file.

File: bn prime tab.c

017 const mp_digit ltm_prime_tab[] = {
018 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,

019 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,

020 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,

021 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,

022 #ifndef MP_8BIT

023 0x0083,

024 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,

025 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,

026 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,

027 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,

028

029 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,

030 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,

031 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,

032 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,

033 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,

034 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,

035 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,

036 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,

037

038 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,

039 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,

040 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,

041 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,

042 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,

043 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,

044 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,

045 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
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046

047 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,

048 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,

049 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,

050 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,

051 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,

052 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,

053 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,

054 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653

055 #endif

056 };
057

Note that there are two possible tables. When an mp digit is 7-bits long, only
the primes up to 127 may be included; otherwise, the primes up to 1619 are used.
Note that the value of PRIME SIZE is a constant dependent on the size of a
mp digit.

9.5.2 The Fermat Test

The Fermat test is probably one the oldest tests to have a non-trivial probability of
success. It is based on the fact that if n is in fact prime, then an ≡ a (mod n) for
all 0 < a < n. The reason being that if n is prime, the order of the multiplicative
subgroup is n−1. Any base a must have an order that divides n−1, and as such,
an is equivalent to a1 = a.

If n is composite then any given base a does not have to have a period that
divides n − 1, in which case it is possible that an 6≡ a (mod n). However, this
test is not absolute as it is possible that the order of a base will divide n − 1,
which would then be reported as prime. Such a base yields what is known as a
Fermat pseudo-prime. Several integers known as Carmichael numbers will be a
pseudo-prime to all valid bases. Fortunately, such numbers are extremely rare as
n grows in size.
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Algorithm mp prime fermat.
Input. mp int a and b, a ≥ 2, 0 < b < a.
Output. c = 1 if ba ≡ b (mod a), otherwise c = 0.

1. t← ba (mod a)
2. If t = b then

2.1 c = 1
3. else

3.1 c = 0
4. Return(MP OKAY ).

Figure 9.9: Algorithm mp prime fermat

Algorithm mp prime fermat. This algorithm determines whether an mp int
a is a Fermat prime to the base b or not. It uses a single modular exponentiation
to determine the result (Figure 9.9).

File: bn mp prime fermat.c

018 /* performs one Fermat test.

019 *

020 * If "a" were prime then b**a == b (mod a) since the order of

021 * the multiplicative sub-group would be phi(a) = a-1. That means

022 * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).

023 *

024 * Sets result to 1 if the congruence holds, or zero otherwise.

025 */

026 int mp_prime_fermat (mp_int * a, mp_int * b, int *result)

027 {
028 mp_int t;

029 int err;

030

031 /* default to composite */

032 *result = MP_NO;

033

034 /* ensure b > 1 */

035 if (mp_cmp_d(b, 1) != MP_GT) {
036 return MP_VAL;

037 }
038

039 /* init t */
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040 if ((err = mp_init (&t)) != MP_OKAY) {
041 return err;

042 }
043

044 /* compute t = b**a mod a */

045 if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) {
046 goto LBL_T;

047 }
048

049 /* is it equal to b? */

050 if (mp_cmp (&t, b) == MP_EQ) {
051 *result = MP_YES;

052 }
053

054 err = MP_OKAY;

055 LBL_T:mp_clear (&t);

056 return err;

057 }
058

9.5.3 The Miller-Rabin Test

The Miller-Rabin test is another primality test that has tighter error bounds
than the Fermat test specifically with sequentially chosen candidate integers. The
algorithm is based on the observation that if n − 1 = 2kr and if br 6≡ ±1, then
after up to k − 1 squarings the value must be equal to −1. The squarings are
stopped as soon as −1 is observed. If the value of 1 is observed first, it means that
some value not congruent to ±1 when squared equals one, which cannot occur if
n is prime.
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Algorithm mp prime miller rabin.
Input. mp int a and b, a ≥ 2, 0 < b < a.
Output. c = 1 if a is a Miller-Rabin prime to the base a, otherwise c = 0.

1. a′ ← a− 1
2. r ← n1
3. c← 0, s← 0
4. While r.used > 0 and r0 ≡ 0 (mod 2)

4.1 s← s + 1
4.2 r ← ⌊r/2⌋

5. y ← br (mod a)
6. If y 6≡ ±1 then

6.1 j ← 1
6.2 While j ≤ (s− 1) and y 6≡ a′

6.2.1 y ← y2 (mod a)
6.2.2 If y = 1 then goto step 8.
6.2.3 j ← j + 1

6.3 If y 6≡ a′ goto step 8.
7. c← 1
8. Return(MP OKAY ).

Figure 9.10: Algorithm mp prime miller rabin

Algorithm mp prime miller rabin. This algorithm performs one trial
round of the Miller-Rabin algorithm to the base b. It will set c = 1 if the al-
gorithm cannot determine if b is composite or c = 0 if b is provably composite.
The values of s and r are computed such that a′ = a− 1 = 2sr (Figure 9.10).

If the value y ≡ br is congruent to ±1, then the algorithm cannot prove if a
is composite or not. Otherwise, the algorithm will square y up to s − 1 times
stopping only when y ≡ −1. If y2 ≡ 1 and y 6≡ ±1, then the algorithm can
report that a is provably composite. If the algorithm performs s − 1 squarings
and y 6≡ −1, then a is provably composite. If a is not provably composite, then it
is probably prime.

File: bn mp prime miller rabin.c

018 /* Miller-Rabin test of "a" to the base of "b" as described in

019 * HAC pp. 139 Algorithm 4.24

020 *

021 * Sets result to 0 if definitely composite or 1 if probably prime.

022 * Randomly the chance of error is no more than 1/4 and often

023 * very much lower.
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024 */

025 int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)

026 {
027 mp_int n1, y, r;

028 int s, j, err;

029

030 /* default */

031 *result = MP_NO;

032

033 /* ensure b > 1 */

034 if (mp_cmp_d(b, 1) != MP_GT) {
035 return MP_VAL;

036 }
037

038 /* get n1 = a - 1 */

039 if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
040 return err;

041 }
042 if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
043 goto LBL_N1;

044 }
045

046 /* set 2**s * r = n1 */

047 if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
048 goto LBL_N1;

049 }
050

051 /* count the number of least significant bits

052 * which are zero

053 */

054 s = mp_cnt_lsb(&r);

055

056 /* now divide n - 1 by 2**s */

057 if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
058 goto LBL_R;

059 }
060

061 /* compute y = b**r mod a */

062 if ((err = mp_init (&y)) != MP_OKAY) {
063 goto LBL_R;

064 }
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065 if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
066 goto LBL_Y;

067 }
068

069 /* if y != 1 and y != n1 do */

070 if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
071 j = 1;

072 /* while j <= s-1 and y != n1 */

073 while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
074 if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
075 goto LBL_Y;

076 }
077

078 /* if y == 1 then composite */

079 if (mp_cmp_d (&y, 1) == MP_EQ) {
080 goto LBL_Y;

081 }
082

083 ++j;

084 }
085

086 /* if y != n1 then composite */

087 if (mp_cmp (&y, &n1) != MP_EQ) {
088 goto LBL_Y;

089 }
090 }
091

092 /* probably prime now */

093 *result = MP_YES;

094 LBL_Y:mp_clear (&y);

095 LBL_R:mp_clear (&r);

096 LBL_N1:mp_clear (&n1);

097 return err;

098 }
099
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Exercises

[3] Devise and implement a method of computing the modular inverse
of multiple numbers at once, by using a single inversion.

[2] Look up and implement the “Almost Inverse” algorithm for
integers. (Hint: Look in the IACR Crypto’95 proceedings.)

[4] Devise and implement a method of generating random primes
that avoids the need for trial division.

[4] Devise and implement a method of generating large primes which
are provably prime. Hint: Use a constructive approach to avoid
the need for primality proof algorithms such as ECCP or AKS.
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