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Computer Arithmetic in Practice: Exercises and Programming is a simple, 
brief introductory volume for undergraduate and graduate students at 
university courses interested in understanding the foundation of computers. 
It is focused on numeric data formats and capabilities of computers to 
perform basic arithmetic operations. It discusses mainly such topics as:   

• Basic concepts of computer architecture  
• Assembly language programming skills  
• Data formats used to express integer and real numbers  
• Algorithms of basic arithmetic operations  
• Short overview of nonlinear functions evaluation  
• Discussion on limited number representation and computer arithmetic  
• Exercises and programming tasks 

This book provides an accessible overview of common data formats used to 
write numbers in programming languages and how the computer performs four 
basic arithmetic operations from the point of view of the processor instruction 
set. The book is primarily didactic in nature, therefore the theoretical infor- 
mation is enriched with many numerical examples and exercises to be solved 
using a ‘sheet of paper and a pencil’. Answers are provided for most of the tasks. 

The theoretical discussed issues are illustrated by listings of algorithms 
presenting the way to implement arithmetic operations in low-level language. 
It allows development the skills of optimal programming, taking into 
consideration the computer architecture and limitations. Creating software 
using low-level language programming, despite the initial difficulties, gives the 
ability to control the code and create efficient applications. This allows for 
effective consolidation of knowledge and acquisition of practical skills required 
at this stage of education, mainly a specialist in the field of information 
technology, electronics, telecommunications, other related disciplines, or at the 
level of general education with introduction to information technology. It may 
be also useful for engineers interested in their own professional development 
and teachers as well.  



Sławomir Gryś is a university professor at Częstochowa 
University of Technology, Poland. He has conducted 
many courses focused on analog electronics, logical 
devices, foundations of computer architecture and 
organization, low-level programming techniques in 
assembly and C languages for embedded systems, image 
processing and recognition. He is the author or co- 
author of several scientific monographs, book chapters, 
academic textbooks, patents and more than 60 papers in 

journals and domestic and international conference proceedings in Poland, 
Germany, Canada and Australia. 



Computer Arithmetic in 
Practice 

Exercises and Programming   

Sławomir Gryś 

https://www.crcpress.com
https://www.crcpress.com


Designed cover image: Shutterstock_587427896  

First edition published 2024 

by CRC Press 

6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 

and by CRC Press 

4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN 

CRC Press is an imprint of Taylor & Francis Group, LLC 

© 2024 Sławomir Gryś 

Reasonable efforts have been made to publish reliable data and information, but the author and publisher 

cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and 

publishers have attempted to trace the copyright holders of all material reproduced in this publication and 

apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright 

material has not been acknowledged please write and let us know so we may rectify in any future reprint. 

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 

transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter 

invented, including photocopying, microfilming, and recording, or in any information storage or retrieval 

system, without written permission from the publishers. 

For permission to photocopy or use material electronically from this work, access www.copyright.com or 

contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750- 

8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk 

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used 

only for identification and explanation without intent to infringe. 

Library of Congress Cataloging-in-Publication Data 
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Preface    

Almost 15 years have passed since the first edition of this book was published in 
Poland by Polish Scientific Publisher PWN with ISBN 9788301151317. The 
book was positively rated by the academic community, both students and 
teachers including students of several universities, on which I had the satisfaction 
with teaching them computer arithmetic as one of the main topics related to 
foundations of the computer architecture. The measure of book popularity may 
be, in my opinion, listing it as ‘further readings’ in the syllabus of many university 
courses related to the computer science as a field of education taught in Poland. I 
really hope that the first edition of book fulfilled its role, which encouraged me to 
start preparation of work on the revised and extended version of a book for a 
wider international audience. This textbook was not aimed to compete with 
classical books, those provide the complete knowledge in this topic and are well 
written, but can be good choice as a first look at topic. The book is rather a 
simple, brief introductory volume for undergraduate and graduate students at 
university courses related to the introduction to computer science. It may be also 
useful for design engineers interested in their own professional development. 

The two topics are highlighted in this textbook: explanation how the 
computers realize some relatively simple arithmetic operations for numbers 
stored in various formats using simple method of ‘paper and pencil’ and its 
realization in low-level programming language considering the features and 
limitations of the instruction list of real microprocessor. The simplest 
possible architecture was chosen to facilitate the understanding the code 
created for real microprocessor. The assembly code presented in this book 
can be freely downloaded from the website (https://routledgetextbooks. 
com/textbooks/instructor_downloads/). The book is primarily didactic in 
its nature, and therefore the presented required theoretical information has 
been illustrated with numerous examples and exercises both in calculation, 
algorithms and coding in assembly language aimed for self-assessment. 
Many examples are giving the occasion for understanding the link between 
theory and practice and expand student’s knowledge and skills. The 
solutions to the exercises are included in Appendix C, except those 
marked with an asterisk character. 

xi 
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This book, compared with the first Polish edition, has been enriched 
with, among other items, the theoretical basis and discussion of selected 
algorithms, the recommendation of the world-wide accepted IEEE P-754 
standard with its all revisions. Completely new topic concerns selected 
methods of computing nonlinear functions. The discussed content was also 
illustrated with more examples. The original text was revised and corrected. 
An update of the content referring to the current state of the art was 
essential improvement. The author has made many efforts to ensure that the 
presentation of the discussed topic is as clear and transparent as much as 
possible. The programs written in assembly codes have been thoroughly 
tested on various combinations of data, but there is no guaranty of correct 
operation for any data. So, they are delivered as is with no claiming option. 
Any comments on book are very welcome and please forward them to the 
one of e-mail addresses, i.e. slawomir.grys@pcz.pl (Częstochowa University 
of Technology) or private slavo5.sg@gmail.com. 

I hope that several features make the textbook accessible for the reader, 
i.e. friendly presentation, numerous examples also implemented in assembly 
code of a real microprocessor, theory well balanced with practice, topics 
limited to the most typical and important for practitioners. 

The book would have not been written and published without interaction 
with many people. The author would like to say ‘many thanks’ to the 
reviewers for their valuable comments. They would certainly contributed to 
improving the quality of our work, its completeness and legibility. Special 
thanks are also due for Editor Ms. Gabriella Williams – Information Security, 
Networking, Communication and Emerging Technologies from CRC Press. 
She was in touch with me from the moment of submitting the textbook 
proposal, reviewing phase and solved all technical and organizational issues 
related to the preparation of the manuscript for publishing. I also wish to 
thank my students for all discussions and comments on presented material 
during common work at university. Support by the Częstochowa University 
of Technology, particularly Faculty of Electrical Engineering, as well as 
excellent workplace and motivation, is acknowledged. This essential support 
is greatly appreciated. Finally, the invaluable understanding of my wonderful 
wife, Agnieszka, and children, Antonina and Aleksander, was indisputable 
condition to the success of this work. The scope of this book is as follows:  

• Chapter 1 presents an overview of the general features and architecture 
of simple microprocessors: main components as ALU, registers, flags, 
stack and instruction set. The 1-bit logical and arithmetical operations 
are shown as being the base for any more complex operations. Assembly 
language and tools, i.e. assembler and linker as needed for obtaining 
machine code ready to run on microprocessor, are discussed. The way to 
create the right code in assembly language avoiding wrong syntax 
causing bugs is done as an introduction for understanding the listings 
given in next chapters. Furthermore, typical file formats such as BIN, 
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HEX and ELF are mentioned and HEX format explained on real 
example.  

• Chapter 2 introduces the way of representation of unsigned and signed 
numbers in fixed point format mainly aimed for integer numbers. The 
fractional part is also considered as requested in some cases. The 
considerations are carried out both for unsigned and signed numbers. 
The following formats are discussed, i.e. natural binary code, 
hexadecimal, unpacked and packed binary coded decimal codes and 
ASCII. For signed numbers the sign-magnitude and 2’s complements 
representation as practical use of complementation theory are 
presented. The methods of conversion from one to another format 
are provided. All formats are illustrated with examples of number and 
conversions by software implementation in assembly code.  

• Chapter 3 discusses the principles of four elementary basic arithmetic 
operations and its realization in assembly language. Operations are 
performed for all formats presented in the previous chapter. Four 
operations, that means, addition, subtraction, multiplication and 
division are exclusively for BIN format as being easy to realize. First 
three of them are discussed also for signed numbers represented in 2’s 
complement format and addition together with subtraction for the 
others, i.e. BCD, ASCII and sign-magnitude. Nonlinear function 
approximation methods are shortly mentioned using iterative 
techniques or simple lookup tables. For some cases, the missing 
arithmetic instructions of real microprocessor were programmatically 
emulated according to ‘filling gaps’ strategy.  

• Chapter 4 deals with number representation in floating-point format 
for expressing the real numbers. Non-normalized numbers are 
introduced. The main topic is a worldwide accepted and applied 
IEEE 754 standard as a hardware independent. Among others, the 
following issues are highlighted: single and double precision, special 
values and exceptions. The changes imposed by IEEE 854 update and 
related to the need of support shorter than single and longer than 
double precision new formats are announced. Additionally, some key- 
value features of a FPU floating point unit as specialized arithmetic 
coprocessor were pointed out. The universal method of conversion to 
another radix is provided.  

• Chapter 5 similarly to Chapter 3 presents the rules for four basic 
arithmetic operations as addition, subtraction, multiplication and 
division illustrated with numerical examples and exercises. The very 
simplified form of a floating-point numbers format was chosen as it 
seemed to be more accurate and readable than a format complying with 
IEEE standard requirements. It was applied to present the arithmetic 
operations implementation in assembly code. The listings are really not 
short but also not too hard to understand and rebuilt for practical 
applications. The normalization and denormalization routines needed 
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for proper operation execution and ensuring that the output number 
will keep the ensured format are pointed too.  

• Chapter 6 is devoted to possible errors due to limited precision of 
number representation. Error magnification caused by error 
propagation is also explained with appropriate examples. This issue 
is important in case of single arithmetic operation and much more for 
algorithms based on multi iterations or matrix operations. The problem 
was only signaled as essential and noteworthy. Unfortunately, no 
universal solution for this issue was proposed so far that could be 
applicable for practice. Ignoring the computer limitations or using 
wrong number format can cause quite freaky incorrect results.  

• Appendixes are aimed to ease reading and understanding the chapters. 
Appendix A presents the range numbers for the assumed number of 
allowed bits. It can be useful in evaluating the minimal number of bits 
needed to express the input numbers or result of arithmetical operation. 
Comparison is performed for numbers with fractional parts both for 
unsigned and signed formats. The binary, 2’s complement and sign- 
magnitude are considered. Appendix B is related to the preview one and 
is limited to formats and numbers of bits, mainly multiples of eight, 
commonly used in high-level languages like Delphi Pascal, C/C++, Java 
and Microsoft Visual Basic. The third, Appendix C, provides the 
solutions to almost all exercises from book chapters. 

The book is attached with three appendixes useful during reading the 
chapters, i.e. range numbers for assumed number of allowed bits, numerical 
data types with ranges in some common high-level languages and solutions 
to almost all exercise. 

Finally, I wish you a pleasant reading, and, what is the most important, a 
self-practice and inspiration for your own software solutions. 

Sławomir Gryś (Author)  
Częstochowa (Poland)  

January 2023  
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Chapter 1 

Basic Concepts of Computer 
Architecture     

1.1 THE 1-BIT LOGICAL AND ARITHMETICAL OPERATIONS 

Let’s look at the dictionary definition of computer cited after: 

< Latin: computare>, electronic digital machine, an electronic device 
designed to process information (data) represented in digital form, 
controlled by a program stored in memory. 

[Encyclopedia online PWN 2023, https://encyklopedia.pwn.pl/] 

an electronic machine that is used for storing, organizing, and finding 
words, numbers, and pictures, for doing calculations, and for con-
trolling other machines. 

[Cambridge Academic Content Dictionary 2023, https://dictionary. 
cambridge.org/dictionary/english/computer] 

a programmable electronic device designed to accept data, perform 
prescribed mathematical and logical operations at high speed, and 
display the results of these operations. 

[https://www.dictionary.com/browse/operation]  

Unfortunately, the above definitions ignore the outstanding achievements of 
many pioneers of the age of mechanical calculating machines; to cite just a 
few names: Schickard, Pascal, Leibniz, Stern, Jacquard, Babbage, linking 
the emergence of the computer with the development of electro-technology 
in the second half of the 20th century. Those interested in the history of the 
evolution of computing machines are encouraged to read [Augarten 1985,  
Ceruzzi 1998, McCartney 1999, Mollenhoff 1988, and Pollachek 1997]. As 
it can be shown, all the computer functions mentioned in the definition (and 
thus the performance of calculations, which is the subject of this book) can 
be realized by limited set of logical functions and data transfers from and to 
computer’s memory. 

DOI: 10.1201/9781003363286-1                                                                   1 
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Information in a computer is expressed by set of distinguishable values, 
sometimes called states. In binary logic, these states are usually denoted by 
symbols {0,1} or {L,H}. The symbols {0,1} are applied much more often 
because it is associated with commonly used numbers used to express 
numerical values, so it will be also used further in this book. The symbols L 
(low) and H (high) are used in digital electronics for describing the theory of 
logic circuit. In physical implementations, they translate into two levels of 
electric voltage, e.g. 0 V and 3.3 V or current 4 mA and 20 mA (so-called 
current loop). In the most cases of computer architectures and communi-
cation technologies, the positive logic is used, where 1 is the distinguished 
state and identical to H. 

The rule of operation of computer is just data processing that means 
convert the input data into output data according to the given algorithm. 
Because any data is represented as a combination of bits, i.e. 0 and 1 states, 
the well-known logical operations can be applied for bit manipulation. 

Let’s start with 1-bit logical operations:  

• inversion (denoted by ‘/’) 
/0 = 1, /1 = 0  

• logical OR (denoted by ‘∪’) 
0 ∪ 0 = 0, 0 ∪ 1 = 1, 1 ∪ 0 = 1, 1 ∪ 1 = 1  

• logical AND (denoted ‘∩’) 
0 ∩ 0 = 0, 0 ∩ 1 = 0, 1 ∩ 0 = 0, 1 ∩ 1= 1  

• logical XOR (denoted by ‘⊕’) 
0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, 1 ⊕ 1 = 0. 

Some additional notes on logical operations are as follows:  

1. Inversion can be treated as complement of value from the set of {0,1}.  
2. Logical OR is equivalent to the function of alternative.  
3. Logical AND is equivalent to the function of conjunction.  
4. Logical XOR for more than two inputs is equivalent to non-parity 

function, e.g. 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1 and 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0. 

It should be mentioned that set of two operations {/,∩} or {/,∪} is sufficient 
to emulate the others. This is because de Morgan’s laws apply as follows:  

• /(A ∩ B) = /A ∪ /B 

and  

• /(A ∪ B) = /(A) ∩ /B 

where A, B – logical inputs 0 or 1. 
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According to the principles given above, the logic gates operate, being the 
smallest logical element for data processing realized as digital electronic 
circuits. Furthermore, the computer can be considered as very complex 
combination of logical gates with feedback loop from outputs to inputs. 
The feedback is needed to realize the influence of stored data on the current 
output results. Hence, in the theory of computation, the computer is now 
an example of sophisticated finite state sequential machine. This topic as 
being as not strictly related to the main book topic will be not continued 
here. 

In addition to logical operations, 1-bit arithmetic operations can be defined:  

• arithmetic sum (denoted ‘+’) 

0 + 0 = {0,0} 0 + 1 = {0,1} 1 + 0 = {0,1} 1 + 1 = {1,0}  

• arithmetic difference (denoted ‘–’) 

0 – 0 = {0,0} 0 – 1 = {1,1} 1 – 0 = {0,1} 1 – 1 = {0,0}  

• arithmetic sum/difference modulo 2 (denoted ‘⊕’) 

0 ⊕ 0 = 0 0 ⊕ 1 = 1 1 ⊕ 0 = 1 1 ⊕ 1 = 0  

• arithmetic multiplication (denoted ‘*’) 

0 ∗ 0 = 0 0 ∗ 1 = 0 1 ∗ 0 = 0 1 ∗ 1 = 1   

Some additional notes about arithmetic operations:  

1. Arithmetic sum returns the result of an operation in the form of a pair 
of bits {carry, result}.  

2. Arithmetic difference returns the result of an operation in the form of 
a pair of bits {borrow, result}.  

3. Arithmetic sum/difference modulo 2 returns an identical result to the 
logical XOR.  

4. Arithmetic multiplication of 1-bit arguments returns identical result 
as logical AND.  

5. The rule of arithmetic multiplication is just a multiplication table for 
binary numbers. Its simplicity undoubtedly draws your attention! 

The presented arithmetic operations can be realized by logical operations, 
and therefore gates, which is an advantage of the zero-one system. The 
described 1-bit operations are the basis for operations on multi-bit argu-
ments. The result of a logical operation is a composite of the results of 1-bit 
logical operations of individual bit pairs. Let’s illustrate it with an example 
as below. 
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Example 1.1: Two arguments 4-bit logical operations: 

/ (1001) = 0110

1100
0110
1110

1101
0001
0001

1101
1001

0100

The practical meaning of logical operations results from their properties. If we 
mark one of the arguments with A and treat the other as the so-called mask, the 
chosen bits can be cleared (value is 0) by a logical AND operation, set (value is 1) 
by a logical OR and inverted by XOR function. These conclusions result from 
the following observations: 

A ⊕ 0 = A A ⊕ 1 = /A A ∪ 0 = A A ∪ 1 = 1 A ∩ 0 = 0 A ∩ 1 = A  

Example 1.2: Use of binary logical operations for bit manipulation: 

a a a a
0 1 1 0
a 1 1 a

a a a a
0 1 1 0
0 a a 0

a a a a
0 1 1 0

a /a /a a

3 2 1 0

3 0

3 2 1 0

2 1

3 2 1 0

3 2 1 0

In the book, the reader will find the exercises for self-assessment. The solutions 
to exercises are attached in Appendix C. 

Exercise 1.1: Determine the result of logical operations: 

a a 0 1
a 1 a 1

? ? ? ?

a a 0 0
1 a 0 a

? ? ? ?

0 1 a a
a 1 1 a

? ? ? ?

3 2

3 1

3 2

2 0

1 0

3 0

Logic and arithmetic operations are not only the domain of computer sci-
ence. They are used by electronics engineers for designing digital systems in 
PLD/FPGA programmable logic structures. The knowledge of Boolean 
algebra, methods of synthesis and analysis of combinatorial and sequential 
circuits is necessary here. This subject is discussed in books on computer 
architecture and organization or digital electronics. If you are interested, 
I refer you to generally known books, e.g. [Null 2018, Tietze 2002 and  
Vladutiu 2012]. For further consideration, is it enough if we will be aware 
that logical and arithmetic operations are performed in hardware by ele-
ment of the processor called the arithmetic logic unit, abbreviated as ALU? 
Modern processors usually are equipped with additional resource, the 
floating-point unit (FPU) working with numbers in floating-point format. 
These topics are discussed in Chapters 4 and 5. 
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1.2 ARCHITECTURE OF SIMPLE MICROPROCESSOR 

The aim of the chapter is to familiarize with the basic elements of the 
processor, which will be referred to in programs showing how to implement 
arithmetic operations. Figure 1.1 shows a simplified structure of a classical 
processor with which popular microcontroller of 8-bit 8051 family is 
compatible. The figure omits such elements which are not important from 
the point of view of the subject matter of this book. These are up/down 
counting timers, serial transceiver/receiver, interrupt controller, etc. 

The primary reason for choosing CPU based on 8051 architecture is its 
simplicity, an ideal feature from a didactic point of view and objectives of 
this book. This core did not lose much its popularity despite many years 
since its release to the market. Today, 8051s are still available as integrated 
circuits offered by many companies and supported by integrated develop-
ment environments, but they are mainly used as silicon-based intellectual 
property cores. These cores, available in the source code of a hardware 
description language (such as VHDL or Verilog) or as an FPGA network 
list, are typically integrated into systems embedded in products such as USB 
flash drives, home appliances, and wireless communication system chips. 
Designers use 8051 silicon IP cores due to their smaller size and lower 
performance compared to 32-bit processors. 

The 8051 microcontrollers were developed by Intel, so it is not surprising 
that the syntax of its instruction list is close to that deserved family of 8086 

Figure 1.1 Simplified architecture of the classical processor.    
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processors, continued to the present day in Intel Core architecture. The dif-
ferences seen from the programmer’s point of interest occur mainly in word 
length, which is related to the width of registers, or the number and variants 
of instructions and resources like registers, internal memories, number of 
execution units, etc. A processor with a complex architecture, on the one 
hand, would provide more possibilities to implement various data formats, 
e.g. storing real or complex numbers and more advanced arithmetic opera-
tions, but probably at the cost of the clarity of the presented content. 

The implementation in code of arithmetic operations presented in the book 
was developed just for the 8051 complying microprocessors. Those can be 
reused as code snippets or ready to use algorithms in the targeted user pro-
grams, after an adaptation to the architecture and list of instructions for 
specific targeted processor. The reader interested in deeply studying the 
architecture details of other processors is referred to [Baer 2010, Blaauw 
1997, Hamacher 2012, Metzger 2007, Patterson 2014 and Stallings 2008]. 

As mentioned, the components shown in Figure 1.1 are common to most 
processors, so it is useful to become familiar with their functions: 

Data buffer – a register that stores data exchanged between the components 
of the processor and external memory or an input-output device. 

Address buffer – a register that stores the address of an external memory 
cell or input-output device. 

Program memory – read only memory for storing the program code. 

Data memory – read and write memory intended for data storage used by 
program. 

Instruction register – a register that stores the instruction code fetched from 
the program memory (is working as a pointer). 

Instruction decoder – translates the instruction to microcode being executed 
by the internal units of processor. 

Control unit – responsible for coordination of data transfer between 
internal units of processor. 

Arithmetic logical unit – performs basic arithmetic and logical operations 
on arguments stored in processor registers or memory and determines flags 
of status register. Operations performed by ALU (of 8051 CPU):  

• logical OR,  
• logical AND,  
• logical XOR,  
• addition (of unsigned and signed numbers),  
• subtraction (of unsigned and signed numbers),  
• correction after BCD addition,  
• unsigned multiplication, 
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• unsigned division,  
• comparison of two sequences of bits,  
• rotations,  
• clearing/setting and inverting selected bits. 

DID YOU KNOW? 

There are usually additional instructions (including jumps/branches) available 
in 32/64-bit processors, e.g. Intel Core family:  

• decimal correction after subtraction,  
• decimal correction after multiplication,  
• decimal correction before division,  
• multiplication of signed numbers,  
• division of signed numbers,  
• comparison of two unsigned/signed numbers,  
• shifting with or without extra bit. 

Their absence in the 8051 is not a relevant problem due to possibility of in 
code emulation.    

The 8051 flags set as a result of arithmetic operations are:  

• overflow (OV or V),  
• carry (C or CY),  
• auxiliary carry (AC or half carry HC). 

The meaning of the specified flags:  

• OV – set when a range overrun occurs for signed numbers in the 2’s 
complement notation after arithmetic addition or subtraction; also 
signals an attempt to divide by zero; for single-byte operations, the 
allowed range for numbers in the 2’s complement code is 
<−128,127>.  

• C – set when there is a carry from the 7th bit to the 8th (out of byte) 
after arithmetic addition or a borrow from the 8th bit to the 7th after 
arithmetic subtraction, signals an out-of-range result for numbers in 
the natural binary and packed BCD systems; also used as an extra bit 
during rotation instruction; for single-byte operations, the allowed 
range for natural binary numbers is <0,255>, and for packed 
BCD <0,99>. 
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• AC – set when there is a carry from 3th to 4th bit (to the next nibble) 
after arithmetic addition or borrow from bit 4th to 3th bit after 
arithmetic subtraction; signals the need to perform correction of result 
for numbers in the packed BCD notation. 

For 8051-compatible microcontrollers, the flags are stored in the PSW 
register presented in Table 1.1. 

The flag can be tested by conditional jump/branch instructions or taken 
as a third input argument by arithmetic operations. The exact relationship 
between the flag and the instruction is presented in the next subchapter 
discussing the 8051-microcontroller instruction list (ISA). 

The meanings of the rest of PSW register flags are as follows:  

• P – determines the parity of the number of ones in the accumulator, 
P = 1 if this is odd and P = 0 if even.  

• F0, PSW.1 – flags of general use.  
• RS1, RS0 – register bank selection flags R0...R7. 

The flags F0, PSW.1 can be used for any purpose, e.g. storing sign bits of 
numbers; they can be tested by conditional jump instructions. 

The flags RS1 and RS0 are considered together because their value 
indicates the number of the active set (bank) of registers R0, R1...R7 
engaged for data transfer. It means that the same register name is associated 
to other internal memory location. Physical memory addresses indicated by 
R0…R7 names depend on current configuration of bits RS1 and RS0 those 
are given in Table 1.2. 

By default, after a microcontroller reset or switch the power on, the RS1 
and RS0 bits are clear to zero, so the name of the R0 register allocated to 
memory cell with address 0, and R1 to the cell with address 1, etc. The bank 

Table 1.1 Bits of the PSW Register          

PSW.7 PSW.6 PSW.5 PSW.4 PSW.3 PSW.2 PSW.1 PSW.0 

C AC F0 RS1 RS0 OV – P 

Table 1.2 Memory Space Allocated for R7...R0 Registers According to RS1 and RS0 Bits      

RS1 RS0 Bank number Memory addresses of internal RAM (as decimals)  

0 0 0  0...7 
0 1 1  8...15 
1 0 2  16...23 
1 1 3  24...31 
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switching mechanism is very useful as it shortens the program code. This 
will be illustrated by the following example. 

Example 1.3: Save the contents of registers R0...R3 in the internal memory in 
order to use them for another task, and then restore their original value after 
finishing the task. The task can be completed in two ways. The first way – using 
the MOV instruction: 

;Let’s assume that the registers R0...R3 of bank 0 contain valid data 

MOV 20h,R0 ;copy the value from R0 bank 0 to the internal memory cell 
at address 20h 

MOV 21h,R1 

MOV 22h,R2 

MOV 23h,R3 

;it is empty space left for the code that uses the R0...R3 bank 0 registers for 
another task 

MOV R0,20h ;copy the value from internal memory cell 20h to R0 bank 0 

MOV R1,21h 

MOV R2,22h 

MOV R3,23h 

The second way – using the bank switching mechanism: 

;Let’s assume that the registers R0...R3 of bank 0 contain valid data 

SETB RS0 ;switch to bank no. 1 

;it is empty space left for the code that uses the R0...R3 bank 0 registers for 
another task 

CLR RS0 ;switch to bank no. 0 

The meaning of the MOV, SETB, and CLR instructions used in 
Example 1.3 is explained in the next chapter. Do not to worry too much. It 
is not necessary to understand them at this stage. However, it is important 
to note that using the second solution results in shorter code. There are also 
other applications of the bank switching technique. One example can be 
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implementation of function calling with parameter passing and local vari-
ables. The reader can be able to find more information searching the tu-
torials on learning assembly language. 

DID YOU KNOW? 

In many processors, e.g. Microchip AVR, there are additional flags related to 
arithmetic or logical operations:  

• zero (Z),  
• negative (N),  
• sign (S). 

Their meaning is as follows:  

• Z – set when result of an arithmetic or logical operation is zero,  
• N – duplicated highest bit of the result, N = 1 indicates that the number 

is negative in the 2’s complement format,  
• S – set for negative result of an arithmetic operation, S = N ⊕ OV, 

which allows the correct interpretation of the condition by a jump 
instruction even if overflow occurs and result is incorrect.    

Register – stores data or address. 
Basic registers available for user are:  

• accumulator A or ACC,  
• register B,  
• general purpose registers R0…R7 (x4 banks),  
• 16-bits data pointer DPTR,  
• program counter (instruction pointer) PC,  
• stack pointer SP,  
• flag register F / Program status word PSW. 

Accumulator – read and write register used primarily for logical and 
arithmetic operations addressed by the most of instructions. 

B – read and write universal register. 

R0-R7 – read and write general purpose registers. 

DPTR – read and write 16-bit register for addressing program or data 
memory, also available as pair of register DPH (high) and DPL (low). 
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Program counter/instruction pointer – read only register; addresses pro-
gram memory, holds next instruction address or argument of current 
instruction, e.g. MOVC A,@A+PC. 

Stack pointer – 8-bit register for reading and writing; it addresses the 
internal RAM with stack organization (LIFO – last in first out), it indicates 
the top of the stack, i.e. the address of the last written data. 

The stack is used mainly for:  

• temporary storing and restoring data with the PUSH and POP 
instructions to make register free to use by another instruction,  

• store the value of the program counter PC during CALL instruction or 
handling an interrupt, i.e. jump/branch to the subroutine. The address 
from stack is stored back to the PC register with RET instruction or 
RETI for interrupt appropriately. It is resulting in returning to the 
next instruction of code after that causing a jump. 

DID YOU KNOW? 

One of untypical applications of the stack [ Null 2018,  Gryś 2020] are:  

• conversion of logical or arithmetic expressions from the classic infix to 
postfix form also known as the Reverse Polish Notation; benefit is that 
the parentheses are not necessary longer to force the priority of 
operations and less resources consumed,  

• processing of logical or arithmetic expressions in postfix form,  
• stack oriented data processed in Forth, Postscript language and some 

high-level language parsers,  
• stack oriented registers of FPU unit of Intel processors.   

1.3 UNDERSTANDING THE INSTRUCTION SET 

Table 1.3 presents a list of 8051 microcontroller instructions, those using 
the following symbols: 

Rn – R0...R7 registers of the currently selected register bank, 

Ri – an internal data RAM location <0,255> addressed indirectly through 
R0 or R1, 

address – 8-bit address of internal RAM memory, 
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Table 1.3 The 8051-Microprocessor Instruction Set Summary        

Mnemonic Arguments Description Flag    

C OV AC  

Arithmetic operations 
ADD A,Rn A←A+Rn X X X 

A,address A←A+ [address] X X X 
A,@Ri A←A+[Ri] X X X 
A,#data A←A+data X X X 

ADDC A,Rn A←A+Rn+C X X X 
A,address A←A+ [address]+C X X X 
A,@Ri A←A+ [Ri]+C X X X 
A,#data A←A+data+C X X X 

SUBB A,Rn A←A–Rn–C X X X 
A,address A←A–[address]–C X X X 
A,@Ri A←A–[Ri]–C X X X 
A,#data A←A–data–C X X X 

INC A A←A+1    
Rn Rn←Rn+1    
address [address]←[address]+1    
@Ri [Ri]←[Ri]+1    
DPTR DPTR←DPTR+1    

DEC A A←A–1    
Rn Rn←Rn–1    
address [address]←[address]–1    
@Ri [Ri]←[Ri]–1    

MUL AB B15…8A7…0←A*B 0 If A*B>255, 
then OV←1  

DIV AB Aresult Bremainder←A/B 0 If B = 0 
before 
division 
then OV = 1  

DA A Decimal adjust accumulator 
after addition data in P- 
BCD: If A3...0>9 or AC=1 
then A←A+6 after that if 
A7...4>9 or C=1 then 
A←A+60h 

X   

Logic operation 
ANL A,Rn A←A∩Rn    

A,address A←A∩[address]    
A,@Ri A←A∩[Ri]    
A,#data A←A∩data    
address,A [address]←[address]∩A    

(Continued) 
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Table 1.3 (Continued) The 8051-Microprocessor Instruction Set Summary       

Mnemonic Arguments Description Flag    

C OV AC  

address,#data [address]←[address]∩data    
ORL A,Rn A←A∪Rn    

A,address A←A∪[address]    
A,@Ri A←A∪[Ri]    
A,#data A←A∪data    
address,A [address]←[address]∪A    
address,#-
data 

[address]←[address]∪A    

XRL A,Rn A←A⊕Rn    
A,address A←A⊕[address]    
A,@Ri A←A⊕[Ri]    
A,#data A←A⊕data    
address,A [address]←[address]⊕A    
address,#-
data 

[address]←data⊕A    

CLR A A←0    
CPL A A←/A    
RL A Rotate accumulator left    
RLC A Rotate accumulator left 

through carry bit 
X   

RR A Rotate accumulator right    
RRC A Rotate accumulator right 

through carry bit 
X   

SWAP A A7…4↔A3…0    

Data transfer – internal memory 
MOV A,Rn A←Rn    

A,address A←[address]    
A,@Ri A←[Ri]    
A,#data A←data    
Rn,A Rn←A    
Rn,address Rn←[address]    
Rn,#data Rn←data    
address,A [address]←A    
address,Rn [address]←Rn    
adress1,ad-
dress2 

[address1]←[address2]    

(Continued) 
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Table 1.3 (Continued) The 8051-Microprocessor Instruction Set Summary       

Mnemonic Arguments Description Flag    

C OV AC  

address,@Ri [address]←[Ri]    
address,#data [address]←data    
@Ri,A [Ri]←A    
@Ri,address [Ri]←[address]    
@Ri,#data [Ri]←data    
DPTR,#dat-
a16 

DPTR←data16    

XCH A,Rn A↔Rn    
A,address A↔ [address]    
A,@Ri A↔ [Ri]    

XCHD A,@Ri A3...0↔ [Ri]3...0    

PUSH Address [SP]←address, SP←SP+1    
POP Address [address]←[SP], SP←SP–1    

Data transfer – external memory and input/output devices 
MOVX A,@Ri A←[Ri]    

A,@DPTR A←[DPTR]    
@Ri,A [Ri]←A    
@DPTR,A [DPTR]←A    

Data transfer – program memory 
MOVC A,@A+PC A←[A+PC]    

A,@A+DPT-
R 

A←[A+DPTR]    

Single bit operation 
CLR C C←0 0   

Bit bit←0    
SETB C C←1 1   

Bit bit←1    
CPL C C←/C X   

Bit bit←/bit    
ANL C,bit C←C∩bit X   

C,/bit C←C∩/bit X   
ORL C,bit C←C∪bit X   

C,/bit C←C∪/bit X   
MOV C,bit C←bit X   

bit,C bit←C    

(Continued) 
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Table 1.3 (Continued) The 8051-Microprocessor Instruction Set Summary       

Mnemonic Arguments Description Flag    

C OV AC  

Unconditional jumps 
ACALL address11 Subroutine call:     

SP←SP+1, [SP]←PC7...0     

SP←SP+1, [SP]←PC15...8     

PC←address11    
LCALL address16 Subroutine call     

SP←SP+1, [SP]←PC7...0     

SP←SP+1, [SP]←PC15...8     

PC←address16    
RET  Return from subroutine:     

PC15...8←[SP], SP←SP–1     
PC7...0←[SP], SP←SP–1    

RETI  Return from interrupt:     
PC15...8←[SP], SP←SP–1     
PC7...0←[SP], SP←SP–1     
Interrupts enabled with 
equal or less priority    

SJMP Offset PC←PC+offset    
AJMP address11 PC10...0←address11    
LJMP address16 PC←address16    
JMP @A+DPTR PC←A+DPTR    

Conditional jumps 
JC Offset If C=1 then PC←PC+offset    
JNC Offset If C=0 then PC←PC+offset    
JB Offset If bit=1 then PC← 

PC+offset    
JNB Offset If bit=0 then PC← 

PC+offset    
JBC bit,offset If bit=1 then PC← 

PC+offset and bit←0    
JZ Offset If A=0 then PC←PC+offset    
JNZ Offset If A≠0 then PC←PC+offset    
CJNE A,address,of-

fset 
A,#data,off-
set 
Rn,#data,of-
fset @ 
Ri,#data,off-
set 

if A≠[address] then PC← 
PC+offset if A≠data then 
PC←PC+offset if Rn≠data 
then PC←PC+offset if 
[Ri]≠data then PC← 
PC+offset 

if A≠[address] 
then C←1 if 
A≠data then 
C←1 if 
Rn≠data 
then C←1 if 
[Rn]≠data 
then C←1   

(Continued) 
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address11 – 11-bit address of program memory. This argument is used by 
ACALL and AJMP instructions. The target of the CALL or JMP must lie 
within the same 2 KB range of addresses <−1024,1023>. 

address16 – 16-bit address of program memory. This argument is used by 
LCALL and LJMP instructions. 

data – 8-bits data, 

data16 – 16-bits data, 

bit – a direct addressed bit in internal data RAM or SFR memory (can be 
represented by name), 

offset – a signed (two’s complement) 8-bit offset <−128,127>, 

X – value 0 or 1 as result of operation, 

@... – memory addressed indirectly, 

#... – a constant included in the instruction encoding, 

/X – logical inversion of X, 

[ … ] – the contents of the memory with address … , 

KB – kilobyte, 210 bytes = 1024 bytes, 

BIN – binary code, 

P-BCD – packed binary coded decimal. 

1.4 ASSEMBLY LANGUAGE AND TOOLS 

In previous subsection 1.3, the 8051-instruction set architecture was dis-
cussed in details. The program running on CPU is just a combination of 
instructions, addresses and operands translated to machine code under-
standable by microprocessor. To prepare and run program, we need some 
tools like: assembler, linker (optionally) and loader. The assembly language 

Table 1.3 (Continued) The 8051-Microprocessor Instruction Set Summary       

Mnemonic Arguments Description Flag    

C OV AC  

DJNZ Rn,offset 
addres-
s,offset 

Rn←Rn–1 and if Rn≠0 then 
PC←PC+offset 
[address]←[address]–1 
and if [address]≠0 then 
PC←PC+offset    

NOP  No operation    
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is a low-level programming language but assembler is a software respon-
sible just for translating source code directly to the machine code or 
sometimes indirectly to the object code aimed to reuse in another program. 
A linker is a program merging one or more files generated earlier by a 
compiler or an assembler and combines them into a single executable file, 
library file or another ‘object’ file. Typically, one or more commonly used 
libraries are usually linked in by default. The linker also takes care of 
arranging the objects in a program’s address space. This may involve re-
locating code that assumes a specific base address into another base. 
Relocating machine code may involve retargeting of absolute jump, MOV, 
load and store instructions. The loader, as its name suggests, is responsible 
for writing the final output file to the program memory of microprocessor. 
Sometimes it cooperates with bootloader located inside microprocessor 
memory and being a key feature of operating system kernel. 

For assumed objectives of this book, the using of linker was not neces-
sary. From this reason, we will concentrate only on assembling phase of the 
program creation needed to implement topics related to the title of a book. 
The assembly code was just written in plain text editor, translated to the 
machine code with final memory addresses and saved to the Intel HEX file 
format. To perform it, an attached assembler tool DSM51ASS.EXE was 
used but any freely available assembler dedicated to 8051 processor is also 
appropriate. All presented in this book listings were validated by testing 
output HEX output files with a real board equipped with 8051 CPU. 
Author is encouraging the potential readers to work (and maybe improve) 
with proposed algorithms and those implementation in code. 

Basic features of the DSM51ASS assembler are as follows:  

• assembles only a single input file (no linking phase),  
• allows the use of complex arithmetic expressions similar to C 

language,  
• allows the use of macros,  
• allows the use the directives,  
• checks the range of arguments. 

A typical program line for this assembler looks like this: 

[<label>] [<instruction>] [<operand>] [;<comment>]  

The meaning of the individual fields of a program line is as follows: 

<label> – a symbol placed at the beginning of the line (the first character 
of the label must be the first character on the line). The label 
must start with a letter or the underscore ‘_’, and may contain 
any combination of letters, numbers and underscores. If a 
label ends with a colon it is given a value that defines its 
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position in the source code (the address of an instruction from 
this program line). Labels (symbols) used with directives 
giving them a value are not terminated by a colon. 

<instruction> – mnemonic of instruction, assembler directive or macro. 

<operand> – the information required by the mnemonic, assembler 
directive or macro. Individual operands are separated by 
commas. 

<comment> – all characters following a semicolon are treated as com-
ments and ignored by the assembler during translation to 
machine code.  

The instruction must be preceded by at least one whitespace character, e.g. 
space or tab character. There may be empty lines or lines containing only 
comments. 

Arithmetic expressions are used to determine the value of parameters that 
require a numeric value. They consist of numbers and symbols (labels, 
names of constants or variables) combined with arithmetic operators. The 
syntax of DSM51ASS arithmetic expressions is very similar to that of the C 
language. It introduces some additional operators commonly used in as-
semblers, and changes the priority of bit operations – they are performed 
before comparison operations. The latter give the value 1 if the condition is 
true and 0 if it is false. Boolean operators (!,&&,||) treat any value other 
than zero as true and 0 as false. As a result of logical operations, we also get 
the value 1 or 0. In the DSM51ASS assembler, all calculations are per-
formed on 32-bit signed numbers. This means that the value of an ex-
pression is calculated correctly as long as the intermediate results are within 
the range −2 147 483 648 to 2 147 483 647. Exceeding this range during 
the calculation is not signaled. 

Symbols are represented by a string beginning with a letter or underscore 
‘_’ and consisting of any sequence of letters, numbers and underscores. The 
assembler recognizes the first 32 characters of a symbol. 

Bit selection operator in bit-addressable registers is just a comma char:.n 
– the address of the specified bit in this register where ‘n’ is a digit from the 
range 0...7. If the given address is not the correct address of the bit- 
addressable register, an error is signaled. 

For example: 
START: CLR P1.7; comment 

The numeric constant must start with a digit and ends with postfix for 
hexadecimal, octal and binary types. The H postfix used for hexadecimal 
numbers is equivalent to ‘0x’ prefix in C-like commonly used notation and 
HEX subscript used in this book. The char is embraced by apostrophes. 
Some examples are presented below: 
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Operators that modify the value of the operand following it according to 
the priority of their execution: 

() – parentheses determine the order in which actions are performed. 
There is no limit to the number of enclosing brackets used. 

! – Boolean negation. Changes a value different from 0 to 0, and a value 
equal to 0 to 1. 

~ – Bitwise negation. Changes all 32 bits in the operand to the opposite. 

- – changes the sign of the operand to the opposite. 

< – lowest byte of operand ( ‘< operand’ is equivalent to ‘(operand & 
FFHEX)’ or ‘(operand % 256)’). 

> – higher 3 bytes of operand (an ‘> operand’ is equivalent to ‘(operand 
>> 8)’ or ‘(operand / 256)’).  

For example: 

MOV A,#<((250-3)*2) ;A=494-256=238=EEHEX  

Bitwise shift operators: 

<< – Left shift. The operand to the left of this operator is shifted left by 
the number of bits specified by the operand to the right. The released 
bits are replaced by zeros.  

For example: 

MOV A,#(31+1)<<2;A=32*2*2=128238=80HEX  

The DSM51ASS assembler accepts the following directives: 

DB – insert numeric and text values in the code, e.g. DB ‘a’,23,34H 

DW – insert double-byte numeric values into the code, e.g. DW 2AE4H 

Type Example  

=============================================== 
Decimal 123 
Hexadecimal 0F28BH 
Octal 7654O 
Binary 01010001B 
Char ‘A’ 
=============================================== 
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EQU – define a constant, e.g. five EQU 00000101B 

BIT – define constant of the bit type, e.g. my_bit BIT ACC.4 

SET – define a variable, e.g. x_var SET 20H 

IF/ELSE/ENDIF – start of conditional/alternative conditional/end of 
assembly block 

ORG – set address for next block of code, e.g. ORG 10H 

MACRO/ENDM – start/end of macro definition (sets of commands 
called by a single name), e.g. 

MACRO 

instruction1 

instruction2 

… . 

instruction n 

ENDM  

They allow you to insert data into the program body, assign values to symbols, 
control the assembly flow and build macros. More details are provided below: 

SET – to define a variable 

Syntax: <symbol> SET <expression>  

The symbol <symbol> is assigned the value of an expression. The symbol type 
is determined by the expression. The values defined by the SET directive can be 
modified any number of times by reusing the SET directive. Changing the 
symbol type during a subsequent assignment causes a warning to be generated. 

IF/ELSE/ENDIF 

Syntax – IF <expression> {code} ELSE {code_alter} ENDIF 

ORG – set the address for the next block of code 

Syntax – ORG <expression>  

Sets the address for the code block following this directive. The address for 
the next processor instruction is determined by calculating the expression 
value. It is only possible to increment the current code address. Any attempt 
to decrease the address is signaled as an error. By default, the program code 
is starting from address zero. 
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MACRO/ENDM 

Syntax – <name> MACRO <parameters>  

A macro is a set of assembler instructions. The sequence of instructions 
following a line containing a MACRO directive, up to the nearest ENDM 
directive, forms a macro named <Name>. Once defined, this entire set can 
be included in the source code of a program by calling a macro, i.e. re-
placing its name. Calls to other macros may occur in the body of a macro, 
but the definition of another macro may not. 

After above short information about assembler functionality and 
requirements, let’s go to the next phase – creating the output files. The 
assembler generates the output file on the basis of source file, here with *.asm 
extension. It is then imported by a programmer to ‘burn’ the machine code 
into non-volatile memory, or is transferred to the operational RAM memory 
for loading and execution. All data required to run an application is included 
in binary file, typically with *.bin extension. This file contains raw code 
written to specific addresses, i.e. it represents program memory map. 
Unfortunately, it does not contain any mechanisms protecting file integrity. 
The loader responsible for writing the machine code to the program memory 
of microprocessor will not recognize the damage to the file or attempts to 
modify it. Moreover, if the code is distributed in different memory areas, it 
has to fill the empty addresses usually with the value 0 or 255 (0x00 or 0xFF) 
or left unattended. As a result, the volume of file is often oversized. In this 
book, we do not work with this kind of file but *.hex and *.lst files instead. 
The listing file (*.lst) is post-translating archive being a combination of 
source *.asm file and output *hex file. If errors or warnings have occurred 
they are also included and pointed to ease bug removing. 

*.asm source file *lst listing file  

;******************* 1 ;******************* 
;* An example of code * 2 ;* An example of code * 
;******************* 3 ;******************* 
n EQU 39H 4 0039 n EQU 39H 

MOV A,#n 5 0000: 74 39 MOV A,#n 
NOP 6 0002: 00 NOP 
SJMP END 7 0003: 80 00 SJMP END 
MUL AB ***** _ERROR 26: UNDEFINED 

SYMBOL ***** 
ADD A,C 8 0005: A4 MUL AB 

9 0006: 25 00 ADD A,C 
***** _ERROR 26: UNDEFINED SYMBOL *****    
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The same code with fixed bugs looks like this: 

Now, the *.bin or *.hex files were created. The structure of an Intel HEX 
file is very simple and will be described here as an example due to the fact 
that is commonly used during work not only with a family of 8051 
processors. Firstly, it is a text file, because apart from digits it contains 
many colon characters (at least one if no code included). Each character, 
e.g. hexadecimal number ‘02’, is encoded as ASCII two chars ‘0x30 0x32’. 
The way how to express the number values in various ways will be ex-
plained in Chapter 2. For example, the line can look like Figure 1.2 

The line starts always with a char ‘:’ as a Start of a record. The next field 
is single byte Record length giving the number of data bytes included in 
this line, maximum 256, so most often we see 0×10. Next one is the 16-bit 
Address field – starting address of program memory, where first byte is 
stored, here: 0×00. The address is always expressed as big endian value 
0×0010 so for little endian convention, as used in this book, we have 
0×0100 instead. The next field is Record type. If the data is just a code, 
then we have 0×00. Other values indicate the special meaning of the data, 
e.g. 0×01 – end of file. The last line of the file is special and always looks 
like this :00 0000 01 FF. The meaning and interpretation of Data field 
depends on the application. Mostly, it is just a machine code and some 
structure of data with strings, passwords to work with external devices 
like transmission terminal, LCD, touchscreen, calibrating factors of applied 
algorithms (e.g. digital instrument), look-up table (e.g. nonlinear functions, 
BIN to ASCII converter), etc. The line ends with a one byte of Checksum 
field. Its role is protection against loss of data integrity caused by errors 
during data transmission or storage and modification of file content. The 
way how to compute and check a checksum is quite easy, i.e. Checksum 

Figure 1.2 An example of correct line of hex file.    

*.asm source file *lst listing file *.bin binary file *.hex output file  

;*************;*  
An example of 
code  
*;*************  
n EQU 39H  

MOV A,#n 
NOP 
SJMP END 
MUL AB 
ADD A,B 
END: 

1 ;************ 
2 ; * An example  

…  
3 ;*********** 
4 0039 n EQU 39H 
5 0000: 74 39 MOV A,#n 
6 0002: 00 NOP 
7 0003: 80 03 SJMP END 
8 0005: A4 MUL AB 
9 0006: 25 F0 ADD A,B 

10 0008: END: 

00000000:  
74390003A425F0 

:0800000074390080-
03A425F00F 
:00000001FF 
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=256 –(sum modulo 256 of bytes in single line) as attached at the end of line 
during creating hex file. For line presented in Figure 1.2 and skipping bytes 
with value 0×00 we have 0×10+0×10+0×05+0×04+0×08+0×05+0×04 
+0×08+0×05+0×04+0×08=0×53. Finally, 0×100-0×053=0×0AD=0×AD is a 
value of a checksum. After reading or receiving whole line, the checksum is 
evaluated again. Please note that the sum modulo 256 of all bytes together 
with the checksum should result in zero as confirmation of correct trans-
mission. Unfortunately, the strength of data integrity protection is very low. 
Firstly, it is possible to get the same sum value for different combinations of 
number values or if, for example, errors cancelling each other out and 
occurred during a file transfer into processor memory, then Checksum 
+error −error = Checksum. It’s worth adding that there are many HEX 
formats proposed by various companies such as Intel (HEX and HEX-32 
file formats), Motorola (S-Record file format), and Tektronix (TEK HEX 
file format). 

The ELF format is an executable file used to program the more powerful 
32/64 processors like ARM family. It has a fixed segment structure. It 
contains headers, dedicated place for data, in our case: the program’s 
machine code, additional place for data of text type. It is encrypted; 
therefore, it has the highest resistance to loss of integrity and is the rec-
ommended format for professional applications. Every modern hardware 
programming tool (sometimes called a bootloader) should handle with this 
format. 

In next chapters of this book, we will present the *.lst listing files but also 
source assembly code is also available from the following link. https:// 
routledgetextbooks.com/textbooks/instructor_downloads/  
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Chapter 2 

Numbers in Fixed-point Format     

2.1 UNSIGNED NUMBERS 

Performing arithmetic operations requires defining the understanding of the 
value of a number encoded in a bit word. Let’s start with non-negative 
numbers at a beginning for ensuring clarity and simplicity of the informa-
tion to be collected. Any A number is written using n digits in the integer 
part, and m digits in the fractional part according to the following format 
(Figure 2.1). 

The point separates the integer part from the fractional part, i.e. the digits 
a0 and a–1. The term ‘positional’ means that the component ai of number A is 
depending on its i-th position, where i ∈ <n − 1, −m>. The value of A is taken 
as a weighted sum of digits. The ratio of the weights of two adjacent digits ai+1 

and ai, denoted here by the letter p, usually is a constant value, and is called 
the base or radix of the positional system. In practice, only systems with a 
positive base are used commonly to build computers, hence p = 2, 3, ..., ∞. 
Nevertheless, it is possible to imagine the number system with negative base 
or even variable, depending on the digit position. The term ‘fixed’ emphasizes 
the observation that the value of a number can be expressed in only one way. 
By limiting the considerations to non-negative numbers with a positive base, 
the value of the number is determined from the relationship (2.1): 

A = a p + a p + ... + a p + a + a p + ... + a p

= a p

n 1
n 1

n 2
n 2

1 0 1
1

m
m

i= m

n 1

i
i (2.1)  

where ai – i-th digit, p – base (radix). 

Figure 2.1 A fixed-point format of number.    
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For the graphical representation of digits at a given base, the set of Arabic 
numerals and Roman letters are used, that amount depends on the assumed 
base. More information about the fixed-point format and its properties can 
be found in many books, e.g. [Pochopień 2012, Scott 1985]. There are, of 
course, other non-positional ways of coding numbers, e.g. the residual 
system mentioned in [Biernat 2007, Parhami 2010]. 

Example 2.1:   

a.  p = 2 – binary system BIN, digits are in the range {0,1}, e.g.: 

101.01 = 1 2 + 0 2 + 1 2 + 0 2 + 1 22 1 0 1 2

b.  p = 10 – decimal system DEC, digits are in the range {0,1,2, … ,9}, e.g.: 

194.23 = 1 10 + 9 10 + 4 + 2 10 + 3 102 1 2

c.  p = 16 – hexadecimal (hexagonal) system HEX, digits are in the range 
{0,1,2, …,9,A,B, …, F}, e.g.: 

A4.B = A 16 + 4 16 + B 161 0 1

With regard to p = 2, the term natural binary code or binary code is used. In 
order to maintain full formalism, the term ‘natural’ should also be applied 
to the other two systems, p = 10 and p = 16, which, however, is not 
commonly done involving misinterpretation sometimes if different ‘binary 
systems’ are mixed. Apart from the above-mentioned systems, infinitely 
many others can be defined, but systems with the base p = 2, 10, 16 as 
shown above have the greatest practical significance. The octal system p = 8 
is also mentioned in many books and tutorials but in my opinion, its use-
fulness is rather insignificant (during many years of practice, the author did 
not have the opportunity to use it), so we will not devote any more 
attention to it. Of course, this issue may be matter for further discussion 
trying to highlight possible advantages of these systems with basis, e.g. p = 
3, 4, 7, as shown in [Pankiewicz 1985]. 

The decimal system has reached widespread acceptance in everyday life – 
probably due to the anatomy of the human hand and number of fingers. 
The binary system corresponds to the two-state model of information 
processed or stored by computers. Two states relate to two distinguished 
values of electric voltage or current in technical realizations of electronic 
devices. Given the fact that number 16 is a natural power of 2, the hexa-
decimal format can be thought as much compact way of expressing binary 
numbers. There is a general rule: the greater the value of p, the more dif-
ferent numbers can be written with the same number of digits thus higher 
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density. With n and m digits, we can express pn+m combinations of different 
values. The smallest difference between the two values is called the reso-
lution and is p–m.  

Example 2.2: Maximum numbers for n = 3, m = 1 and p = 2, 10, 16 are, 
respectively:  

a.  p = 2, 111.1BIN = 7.5DEC = 23 – 2−1
DEC  

b.  p = 10, 999.9DEC = 103 – 10−1
DEC  

c.  p = 16, FFF.FHEX = 163 – 16−1
DEC 

Example 2.3: Minimum non-zero numbers for n = 2, m = 3 and p = 2, 10, 16, 
are, respectively:  

a.  p = 2, 00.001BIN = 2−3
DEC  

b.  p = 10, 00.001DEC = 10−3
DEC  

c.  p = 16, 00.001HEX = 16−3
DEC 

Exercise 2.1: Determine the maximal numbers for n = 1, m = 2 and p = 2, 
10, 16.  

In practice, one can often encounter the problem of expressing a number 
using different base. The easy way of conversion is just derived from the 
property of Eq. (2.1). The digits are constant weights depending on position 
in digit field. Therefore, it is convenient to use an auxiliary template as 
presented in Example 2.4, whereby we just make conversion between the 
decimal and binary systems. The hexadecimal number is easy to rich from 
binary representation by applying 8421 weights for every 4 bits, individu-
ally. A general note about the accepted number expression convention in 
this book is as follows: if no base value is explicitly given, it refers to the 
decimal system!  

Example 2.4: Converting DEC➔BIN➔HEX:  

a.  23DEC➔ 

128 64 32 16 8 4 2 1  

0 0 0 1 0 1 1 1 BIN 

↕ ↕  

8 4 2 1 8 4 2 1  

1 7 HEX    
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b.  15.75DEC➔ 

128 64 32 16 8 4 2 1  1
2

1
4

1
8

1
16

0 0 0 0 1 1 1 1 . 1 1 0 0 BIN 

↕ ↕  ↕  

8 4 2 1 8 4 2 1 ¦ 8 4 2 1  

0 F . C HEX         
¦       

Exercise 2.2: Represent the assumed numbers in other two formats:  

a.  246.5DEC ➔ ?…?BIN ➔ ?…?HEX  

b.  3E.4HEX ➔ ?…?BIN ➔ ?…?DEC  

c.  10110011.0010BIN ➔ ?…?HEX ➔ ?…?DEC  

Applying template for fractional part, we see that it requires the addition of 
fractions with different denominator values. Contrary, it is recommended 
to work as explained in Example 2.5. The routine consists in repeating the 
multiplication of the fraction by 2 (if converting to binary system). When 
determining the successive bits of the binary fraction, the integer part (single 
bit) of the multiplication result is not considered.  

Example 2.5: Converting the fraction DEC ➔ fraction BIN ➔ fraction HEX: 

0.8125·2 0.751·2 
1.6250·2 1.502·2 
1.25·2 1.004·2 
0.5·2 0.008·2 
1.0·2 0.016·2 
0.0·2 0.032·2  

0.064·2  
0.128·2  
0.256·2  
0.512·2  
1.024·2  
0.048·2  
0.096·2  
… 

0.8125DEC ➔ 0.1101BIN ➔ 
0.DHEX 

0.751DEC ➔ ≈0.1100 0000 0100BIN ➔ 
≈0.C04HEX 
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Checking:  
0.5000
0.2500

+ 0.0625
0.8125DEC

0.500
0.250

+ 0.001
0.751DEC

The same is done for simple fractions as shown in the next example. The 
algorithm is universal and can be used also for a decimal system or any base. 

Example 2.6: Converting rational number 5/6DEC to the fraction as DEC, BIN 
and HEX: 

(0 + 5/6)·10 (0 + 5/6)·2 
(8 + 2/6)·10 (1 + 4/6)·2 
(3 + 2/6)·10 (1 + 2/6)·2 
(3 + 2/6)·10 (0 + 4/6)·2 
... (1 + 2/6)·2  

(0 + 4/6)·2  
(1 + 2/6)·2  
(0 + 4/6)·2  
(1 + 2/6)·2  
… 

5/6DEC ➔ ≈ 5.833 …DEC 5/6DEC ➔ 0.110101(01)BIN➔ ≈ 0.D5HEX   

Exercise 2.3: Convert numbers to the HEX and BIN fractions:  

a.  0.63DEC  

b.  11/9DEC  

c.  3/5DEC  

d.  1/128DEC 

INTERESTING FACTS! 

The expansion of a rational number for the radix p is always finite or 
periodic, e.g.: 

3/8DEC = 0.375DEC = 0.011BIN – finite 

2/3DEC = 0.(6) = 0.(10)BIN – periodic    
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Some external devices enabling human-machine interface, such as the 
alphanumeric LCD display, are processing data in other formats. In the 
context of arithmetic, the 8421 BCD decimal code and the ASCII codes are 
important. Most processors can work with these codes delivering the correct 
result thanks to proper instruction of correction. The examples are the 
processors compatible with the instruction list of the ancestor of modern 
CPU – the Intel 8086 processor. The discussed instructions are DAA, DAS, 
AAA, AAS, AAM and AAD [Irvine 2003]. Unfortunately, the 8051 micro-
controller that we work in this book, only performs the decimal correction 
DAA after adding (see Table 1.3). For 8421 BCD format, each decimal digit 
is represented by four or eight binary digits, with such combinations of bits to 
express decimal values only, i.e. in the range 0–9. The 4-bit BCD is called 
packed BCD, denoted as P-BCD in the book, and 8-bit BCD format with 
four padding zeros is called unpacked BCD and denoted as UP-BCD.  

Example 2.7: Number coded as P-BCD and UP-BCD and its decimal 
representation as DEC:  

a.  0000100100000011.00001000UP-BCD = 10010011.1000P-BCD = 93.8DEC  

b.  000000100000010000000110UP-BCD = 001001000110P-BCD = 246DEC 

Exercise 2.4: Convert DEC numbers to P-BCD and UP-BCD:  

a.  479.12DEC  

b.  0.03DEC  

c.  8.9DEC  

d.  123DEC  

Another well-known BCD code is the not-weighted BCD code Excess 3. It is 
formed by adding the number 3 to the 8421 BCD code. This apparent 
inconvenience carries the beneficial property of self-completion, which is 
important for the simplicity of hardware implementation of arithmetic cir-
cuits. However, it is not commonly used by ALU, so we will not devote more 
attention to it. The ASCII code assigns sequential numbers to graphic char-
acters and control symbols of peripheral devices, most of which are obsolete 
today. In some languages, e.g. C/C++, only a few of them are meaningful, e.g. 
0 – null for terminating a text string, 10 – LF (line feed) and 13 – CR (carrier 
return) in printf() function for formatting the output. The ASCII code array 
contains a rich set of graphical characters, including the Latin and Greek 
alphabets, punctuation marks, mathematical symbols and semi graphics 
[Irvine 2003]. It is mainly used to store the appearance of characters in the 
persistent memory of LCD alphanumeric display controllers used in various 
control, measurement and monitoring devices, i.e. oven controllers, beverage 
vending machines, home appliances and many others. With the development 
of the Internet and the need to represent alphabets of many languages, ASCII 
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code was absorbed by Unicode (UTF-8) and Universal Character Set (UCS, 
ISO 10646) and is now represented in the same positions in the bigger table, 
occupying codes 0–127. Operating on the full ASCII code table is not nec-
essary in the context of arithmetic, since we are only interested in the way 
how the decimal digits are encoded. In fact, it is very simple and it is enough 
to prefix the encoded decimal digit 0...9 with 3DEC coded binary as 0011. The 
digit code is then given as a hexadecimal number. It can also be expressed in 
the zero-one system. The comma sign is encoded as 2EHEX, or 00101110BIN. 
For obvious reasons, these values should not be interpreted do verbally as 
hexadecimal or binary numbers according to Eq. (2.1).  

Example 2.8: ASCII codes of decimal numbers:  

a.  36ASCII = 6DEC  

b.  00110010 00101110 00110101ASCII = 2.5DEC 

Exercise 2.5: Convert DEC number to ASCII code:  

a.  361.82DEC  

b.  36.18DEC  

c.  0.45DEC  

d.  97.1DEC 

2.2 CONVERSION OF UNSIGNED NUMBER TO ANOTHER 
FORMAT 

This chapter will show you how to convert numbers programmatically. The 
subroutines have been written in the assembly code of the 8051 family 
microcontroller. The code, the meaning of instructions, the content of reg-
isters A, B and sometimes R0 have been presented in tables. In order to 
facilitate the analysis of the code, its operation is illustrated on real numerical 
values. Shaded values of A, B and R0 presented in tables indicate the input 
and output values of the algorithm. Subsequent rows of the table show the 
current contents of the registers after running line of code. The meaning of 
the numeric argument suffixes is as follows: h or H – hexadecimal notation, 
B – binary, none – decimal. Additionally, a full listing of algorithm is pro-
vided. It consists of two main parts: instructions responsible for writing the 
input arguments to the registers of the microcontroller and subroutine 
starting with a label name and ending with a RET instruction. Each line of 
the listing starts with line number and then optionally there can be such 
elements as hexadecimal value of the constant and its symbolic name, address 
of the program memory cell where the first byte of the machine code is placed 
(the address is followed by colon), label ended by colon again, instruction 
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mnemonic with operands and comment preceded by semicolon sign. Each 
listing ends with a line with the comment like this ‘--- end of file ---’. 

2.2.1 Conversion BIN to P-BCD for A < 100DEC   

• input number in A,  
• output number in A,  
• exemplary value: 54DEC = 00110110BIN = 01010100P-BCD. 

The algorithm uses the properties of the arithmetic instruction DIV. 
Dividing the input argument by the number 10DEC, you get tens in register 
A and unities in register B. The next SWAP and ORL instructions convert 
the obtained result, interpreted as a number in UP-BCD, into a packed BCD 
form. The algorithm returns a correct result for an input number from the 
range 0DEC and 255DEC (Table 2.1). 

1 ;************************************************************************** 
2 ;* Conversion BIN to P-BCD for n<100DEC* 
3 ;************************************************************************** 
4 0036 n EQU 54 ;n=54 DEC 
5    
6 0000: 74 36 MOV A,#n ;input a number 
7 0002: 12 00 07 LCALL BIN_P_BCD100  
8   ;result in A 
9 0005: 80 FE STOP: SJMP STOP ;infinite loop 

10 ;---------------------------------------------------------------------------------------- 
11 0007: BIN_P_BCD100:  
12 0007: 75 F0 0A MOV B,#10 ;let B be 10DEC 
13 000A: 84 DIV AB ;divide A by B, A-tens,  

B-unities 
14 000B: C4 SWAP A ;change nibbles 

A7..4<->A3..0 
15 000C: 45 F0 ORL A,B ;perform (A OR B) 
16 000E: 22 RET  
17 ;— end of file — 

Table 2.1 Implementation in Code and Intermediate Results       

Code Description A B  

MOV A,#54 Let A be 54DEC 00110110  
MOV B,#0Ah Let B be 10DEC given as hexadecimal 00110110 00001010 
DIV AB Divide A by B, A – result, B – reminder 00000101 00000100 
SWAP A Change nibbles A7 … 4 ↔ A3 … 0 01010000 00000100 
ORL A,B Perform A∪B and save result 01010100 00000100    
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2.2.2 Conversion BIN to P-BCD for A < 256DEC   

• input: number in A,  
• output: number in A – hundreds, B7...4 – tens, B3...0 – unities,  
• exemplary value: 153BIN = 10011001BIN = 000101010011P-BCD. 

By separating out the hundreds the algorithm can be used for numbers 
between 0DEC and 255DEC (Table 2.2). 

1 ;***************************************************************************** 
2 ;* Conversion BIN to P-BCD for n<256DEC* 
3 ;***************************************************************************** 
4 0099 n EQU 153 ;n=153 DEC 
5    
6 0000: 74 99 MOV A,#n ;input a number 
7 0002: 12 00 07 LCALL 

BIN_P_BCD256  
8   ;result in A-hundreds,  

B-tens and unities 
9 0005: 80 FE STOP: SJMP STOP  

10 ;---------------------------------------------------------------------------------------- 
11 0007: BIN_P_BCD256:  
12 0007: 75 F0 64 MOV B,#100 ;let B be 100DEC 
13 000A: 84 DIV AB ;divide A by B, A-hundreds, B- 

rest 
14 000B: C5 F0 XCH A,B ;exchange A<->B 
15 000D: A8 F0 MOV R0,B ;save hundreds to R0 

Table 2.2 Implementation in Code and Intermediate Results        

Code Description A B R0  

MOV A,#153 Input a number 10011001   
MOV B,#100 Let B be 100DEC 10011001 01100100  
DIV AB Divide A by B, A – hundreds,  

B – rest 
00000001 00110101  

XCH A,B Exchange A ↔ B 00110101 00000001  
MOV R0,B Save hundreds to R0 00110101 00000001 00000001 
MOV 
B,#0Ah 

Let B be 10DEC 00110101 00001010 00000001 

DIV AB Divide A by B, A – tens, B – unities 00000101 00000011 00000001 
SWAP A Change nibbles A7 … 4 ↔ A3 … 0 01010000 00000011 00000001 
ORL A,B Perform A∪B and save result 01010011 00000011 00000001 
MOV B,R0 Load ‘hundreds’ to B 01010011 00000001 00000001 
XCH A,B Exchange A ↔ B 00000001 01010011 00000001 
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16 000F: 75 F0 0A MOV B,#10 ;let B be 10DEC 
17 0012: 84 DIV AB ;divide A by B, A-tens,  

B-unities 
18 0013: C4 SWAP A ;change nibbles A7..4<->A3..0 
19 0014: 45 F0 ORL A,B ;perform (A OR B) and save 

result 
20 0016: 88 F0 MOV B,R0 ;load hundreds to B 
21 0018: C5 F0 XCH A,B ;exchange A<->B 
22 001A: 22 RET  
23 ;--- end of file ---  

2.2.3 Conversion BIN to UP-BCD for A < 100DEC   

• input: number in A,  
• output: number in A – tens, B – unities,  
• exemplary number: 67DEC = 01000011BIN = 00000110 00000111UP-BCD. 

The algorithm returns a correct result for an input number between 0DEC 

and 255DEC (Table 2.3). 

1 ;***************************************************************************** 
2 ;* Conversion BIN to UP-BCD for n<100DEC* 
3 ;***************************************************************************** 
4 0036 n EQU 54 ;n=54 DEC 
5    
6 0000: 74 36 MOV A,#n ;input a number 
7 0002: 12 00 07 LCALL BIN_UP_BCD100  
8   ;result in A-tens, B-unities 
9 0005: 80 FE STOP: SJMP STOP 

10 ;---------------------------------------------------------------------------------------- 
11 0007: BIN_UP_BCD100:  
12 0007: 75 F0 0A MOV B,#10 ;let B be 10DEC 
13 000A: 84 DIV AB ;divide A by B 
14 000B: 22 RET  
15 ;--- end of file --- 

Table 2.3 Implementation in Code and Intermediate Results       

Code Description A B  

MOV A,#67 Input a number 01000011  
MOV B,#10 Let B be 10DEC 01000011 00001010 
DIV AB Divide A by B, A – tens, B – unities 00000110 00000111 
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2.2.4 Conversion BIN to UP-BCD for A < 256DEC   

• input: number in A,  
• output: number in R0 – hundreds, A – tens, B – unities,  
• exemplary value: 153DEC = 10011001BIN = 0000000100000101000 

00011UP-BCD. 

The algorithm returns a correct result for an input number between 0DEC 

and 255DEC (Table 2.4). 

1 ;***************************************************************************** 
2 ;* Conversion BIN to UP-BCD for n<256DEC* 
3 ;***************************************************************************** 
4 0099 n EQU 153 ;n=153 DEC 
5    
6 0000: 74 99 MOV A,#n ;input a number 
7 0002: 12 00 07 LCALL NKD_UP_BCD256  
8   ;result in R0-hundreds, A- 

tens, B-unities 
9 0005: 80 FE STOP: SJMP STOP 

10 ;---------------------------------------------------------------------------------------- 
11 0007: NKD_UP_BCD256:  
12 0007: 75 F0 64 MOV B,#100 ;let B be 100DEC 
13 000A: 84 DIV AB ;divide A by B, A- 

hundreds, B-rest 
14 000B: C5 F0 XCH A,B ;exchange A<->B 
15 000D: A8 F0 MOV R0,B ;save hundreds to R0 
16 000F: 75 F0 0A MOV B,#10 ;let B be 10DEC 
17 0012: 84 DIV AB ;divide A by B 
18 0013: 22 RET  
19 ;--- end of file --- 

Table 2.4 Implementation in Code and Intermediate Results        

Code Description R0 A B  

MOV A,#153 Input a number  10011001  
MOV B,#100 Let B be 100DEC  10011001 01100100 
DIV AB Divide A by B, A – hundreds,  

B – rest  
00000001 00110101 

XCH A,B Exchange A ↔ B  00110101 00000001 
MOV R0,B Save hundreds to R0 00000001 00110101 00000001 
MOV B,#0Ah Let B be 10DEC 00000001 00110101 00001010 
DIV AB Divide A by B, R0 – hundreds,  

A – tens, B – unities 
00000001 00000101 00000011 
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2.2.5 Conversion BIN to ASCII for A < 100DEC   

• input: number in A,  
• output: number in A – tens, B – unities,  
• exemplary value: 67DEC = 01000011BIN = 00110110 00110111ASCII. 

The algorithm returns a correct result for an input number between 0DEC 

and 255DEC (Table 2.5). 

1 ;************************************************************************** 
2 ;* Conversion BIN to ASCII for n<100DEC* 
3 ;************************************************************************** 
4 0043 n EQU 67 ;n=67 DEC 
5    
6 0000: 74 43 MOV A,#n ;input a number 
7 0002: 12 00 07 LCALL BIN_ASCII100  
8   ;result in A-tens, B-unities 
9 0005: 80 FE STOP: SJMP STOP 

10 ;---------------------------------------------------------------------------------------- 
11 0007: BIN_ASCII100:  
12 0007: 75 F0 0A MOV B,#10 ;let B be 10DEC 
13 000A: 84 DIV AB ;divide A by B, A-tens,  

B-unities 
14 000B: C5 F0 XCH A,B ;exchange A<->B 
15 000D: 24 30 ADD A,#30H ;add 30h to A 
16 000F: C5 F0 XCH A,B ;exchange A<->B 
17 0011: 24 30 ADD A,#30H ;add 30h to A 
18 0013: 22 RET  
19 ;--- end of file ---   

Table 2.5 Implementation in Code and Intermediate Results       

Code Description A B  

MOV A,#67 Input a number 01000011  
MOV B,#10 Let B be 10DEC 01000011 00001010 
DIV AB Divide A by B, A – tens, B – unities 00000110 00000111 
XCH A,B Exchange A ↔ B 00000111 00000110 
ADD A,#30h Add 30HEX to A 00110111 00000110 
XCH A,B Exchange A ↔ B 00000110 00110111 
ADD A,#30h Add 30HEX to A 00110110 00110111 
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2.2.6 Conversion BIN to ASCII for A < 256DEC   

• input: number in A,  
• output: number in R0 – hundreds, A – tens, B – unities,  
• exemplary value: 153BIN = 10011001BIN = 001100010011010100 

110011ASCII. 

The algorithm returns a correct result for an input number between 0DEC 

and 255DEC (Table 2.6). 

1 ;************************************************************************** 
2 ;* Conversion BIN to ASCII for n<256DEC* 
3 ;************************************************************************** 
4 0099 n EQU 153 ;n=153 DEC 
5    
6 0000: 74 99 MOV A,#n ;input a number 
7 0002: 12 00 07 LCALL BIN_ASCII256  
8   ;result in R0-hundreds,  

A-tens, B-unities 
9 0005: 80 FE STOP: SJMP STOP 

10 ;---------------------------------------------------------------------------------------- 
11 0007: BIN_ASCII256:  
12 0007: 75 F0 64 MOV B,#100 ;let B be 100DEC 
13 000A: 84 DIV AB ;divide A by B, A-hundreds, 

B-rest 

Table 2.6 Implementation in Code and Intermediate Results        

Code Description R0 A B  

MOV A,#153 Input a number  10011001  
MOV B,#100 Let B be 100DEC  10011001 01100100 
DIV AB Divide A by B,  

A – hundreds,  
B – rest  

00000001 00110101 

ADD A,#30h Add 30HEX to A  00110001 00110101 
XCH A,B Exchange A ↔ B  00110101 00110001 
MOV R0,B Save hundreds to R0 00110001 00110101 00110001 
MOV B,#0Ah Let B be 10DEC 00110001 00110101 00001010 
DIV AB Divide A by B, A – tens, 

B – unities 
00110001 00000101 00000011 

XCH A,B Exchange A ↔ B 00110001 00000011 00000101 
ADD A,#30h Add 30HEX to A 00110001 00110011 00000101 
XCH A,B Exchange A ↔ B 00110001 00000101 00110011 
ADD A,#30h Add 30HEX to A 00110001 00110101 00110011    
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14 000B: 24 30 ADD A,#30H ;add 30h to A 
15 000D: C5 F0 XCH A,B ;exchange A<->B 
16 000F: A8 F0 MOV R0,B ;save hundreds to R0 
17 0011: 75 F0 0A MOV B,#10 ;let B be 10DEC 
18 0014: 84 DIV AB ;divide A by B, A-tens,  

B-unities 
19 0015: C5 F0 XCH A,B ;exchange A<->B 
20 0017: 24 30 ADD A,#30h ;add 30h to A 
21 0019: C5 F0 XCH A,B ;exchange A<->B 
22 001B: 24 30 ADD A,#30h ;add 30h to A 
23 001D: 22 RET  
24 ;--- end of file ---  

2.2.7 Conversion P-BCD to BIN   

• input: number in A,  
• output: number in A,  
• exemplary number: 01010100P-BCD = 00110110BIN (see Table 2.7). 

1 ;******************************************************************************** 
2 ;* Conversion P-BCD to BIN * 
3 ;******************************************************************************** 
4 0054 n EQU 54h ;n=54 P-BCD 
5    
6 0000: 74 54 MOV A,#n ;input a number 
7 0002: 12 00 07 LCALL P_BCD_BIN  
8   ;result in A 
9 0005: 80 FE STOP: SJMP STOP 

10 ;---------------------------------------------------------------------------------------- 
11 0007: P_BCD_BIN:  

Table 2.7 Implementation in Code and Intermediate Results        

Code Description A B R0  

MOV A,#54h Input a number 01010100   
MOV R0,A Make a copy to R0 01010100  01010100 
ANL A,#0F0h Clear lower nibble of A3...0 01010000  01010100 
SWAP A Change nibbles A7 … 4 ↔ 

A3 … 0 

00000101  01010100 

MOV B,#0Ah Let B be 10DEC 00000101 00001010 01010100 
MUL AB Multiply A by B 00110010 00000000 01010100 
MOV B,R0 Load original number to B 00110010 01010100 01010100 
ANL B,#0Fh Clear higher nibble of B7...4 00110010 00000100 01010100 
ADD A,B Add B to A 00110110 00000100 01010100 
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12 0007: F8 MOV R0,A ;make a copy to R0 
13 0008: 54 F0 ANL A,#0F0H ;clear lower nibble of A3..0 
14 000A: C4 SWAP A ;change nibbles A7..4<->A3..0 
15 000B: 75 F0 0A MOV B,#0AH ;let B be 10DEC 
16 000E: A4 MUL AB ;multiply A by B 
17 000F: 88 F0 MOV B,R0 ;load original number to B 
18 0011: 53 F0 0F ANL B,#0FH ;clear higher nibble of B7..4 
19 0014: 25 F0 ADD A,B ;add B to A 
20 0016: 22 RET  
21 ;--- end of file ---  

2.2.8 Conversion P-BCD to UP-BCD   

• input: number in A,  
• output: number in A – tens, B – unities,  
• exemplary value: 01000111P-BCD = 00000100 0000111UP-BCD (see  

Table 2.8). 

1 ;***************************************************************************** 
2 ;* Conversion P-BCD -> UP-BCD* 
3 ;***************************************************************************** 
4 0047 n EQU 47h ;n=47 P-BCD 
5    
6 0000: 74 47 MOV A,#n ;input a number 
7 0002: 12 00 07 LCALL P_BCD_UP_BCD  
8    
9 0005: 80 FE STOP: SJMP STOP 

10 ;---------------------------------------------------------------------------------------- 
11 0007: P_BCD_UP_BCD:  
12 0007: F5 F0 MOV B,A ;make a copy to B 
13 0009: 54 F0 ANL A,#0F0h ;clear lower nibble of A3..0 
14 000B: 53 F0 0F ANL B,#0Fh ;clear higher nibble of B7..4 
15 000E: C4 SWAP A ;change nibbles A7..4<->A3..0 

Table 2.8 Implementation in Code and Intermediate Results       

Code Description A B  

MOV A,#47h Input a number 01000111  
MOV B,A Make a copy to B 01000111 01000111 
ANL A,#0F0h Clear lower nibble of A3...0 01000000 01000111 
ANL B,#0Fh Clear higher nibble of B7...4 01000000 00000111 
SWAP A Change nibble A7…4 ↔ A3…0 00000100 00000111    
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16   ;result in A-tens, B-unities 
17 000F: 22 RET  
18 ;--- end of file ---  

2.2.9 Conversion P-BCD to ASCII   

• input: number in A,  
• output: number in A – tens, B – unities,  
• exemplary number: 01000101P-BCD = 00110100 00110101ASCII (see  

Table 2.9). 

1 ;***************************************************************************** 
2 ;* Conversion P-BCD to ASCII * 
3 ;***************************************************************************** 
4 0045 n EQU 45h ;n=45 P-BCD 
5    
6 0000: 74 45 MOV A,#n ;input a number 
7 0002: 12 00 07 LCALL P_BCD_ASCII  
8   ;result in A-tens, B-unities 
9 0005: 80 FE STOP: SJMP STOP 

10 ;---------------------------------------------------------------------------------------- 
11 0007: P_BCD_ASCII:  
12 0007: F5 F0 MOV B,A ;make a copy to B 
13 0009: 54 0F ANL A,#0Fh ;clear a higher nibble of A7..4 
14 000B: 24 30 ADD A,#30h ;add 30h to A 
15 000D: C5 F0 XCH A,B ;exchange A<->B 
16 000F: 54 F0 ANL A,#0F0h ;clear lower nibble of A3..0 
17 0011: C4 SWAP A ;change nibbles of A7..4<->A3..0 
18 0012: 24 30 ADD A,#30h ;add 30h to A 
19 0014: 22 RET  
20 ;--- end of file --- 

Table 2.9 Implementation in Code and Intermediate Results       

Code Description A B  

MOV A,#45h Input a number 01000101  
MOV B,A Make a copy to B 01000101 01000101 
ANL A,#0Fh Clear higher nibble of A7...4 00000101 01000101 
ADD A,#30h Add 30HEX to A 00110101 01000101 
XCH A,B Exchange A ↔ B 01000101 00110101 
ANL A,#0F0h Clear lower nibble of A3...0 01000000 00110101 
SWAP A Change nibbles A7 … 4 ↔ A3 … 0 00000100 00110101 
ADD A,#30h Add 30HEX to A 00110100 00110101    
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2.2.10 Conversion UP-BCD to BIN   

• input: number in A – tens, B – unities,  
• output: number in A,  
• exemplary value: 00001001 00000110UP-BCD = 01100000BIN (see  

Table 2.10). 

1 ;******************************************************************************* 
2 ;* Conversion UP-BCD to BIN* 
3 ;******************************************************************************* 
4 0009 n EQU 09h  
5 0006 m EQU 06h ;{nm} 0906 UP-BCD = 96 DEC 
6 0000: 74 09 MOV A,#09h ;input a first number 
7 0002: 75 F0 06 MOV B,#06h ;input a second number 
8 0005: 12 00 0A LCALL UP_BCD_BIN  
9   ;result in A 

10 0008: 80 FE STOP: SJMP STOP 
11 ;---------------------------------------------------------------------------------------- 
12 000A: UP_BCD_BIN:  
13 000A: A8 F0 MOV R0,B ;make a copy to R0 
14 000C: 75 F0 0A MOV B,#10 ;let B be 10DEC 
15 000F: A4 MUL AB ;multiply A by B 
16 0010: 28 ADD A,R0 ;add R0 to A 
17 0011: 22 RET  
18 ;--- end of file ---  

2.2.11 Conversion UP-BCD to P-BCD   

• input: number in A – tens, B – unities,  
• output: number in A,  
• exemplary value: 00001001 00000110UP-BCD = 10010110P-BCD (see  

Table 2.11). 

Table 2.10 Implementation in Code and Intermediate Results        

Code Description A B R0  

MOV A,#09h Input a first number (tens) 00001001   
MOV B,#06h Input a second number (unities) 00001001 00000110  
MOV R0,B Make a copy to B 00001001 00000110 00000110 
MOV B,#10 Let B be 10DEC 00001001 00001010 00000110 
MUL AB Multiply A by B 01011010 00000000 00000110 
ADD A,R0 Add R0 to A 01100000 00000000 00000110    
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1 ;*************************************************************************** 
2 ;* Conversion UP-BCD to P -BCD * 
3 ;*************************************************************************** 
4 0009 n EQU 09h  
5 0006 m EQU 06h ;{nm} 0906 UP-BCD = 96 DEC 
6    
7 0000: 74 09 MOV A,#n ;input a first number 
8 0002: 75 F0 06 MOV B,#m ;input a second number 
9 0005: 12 00 0A LCALL UP_BCD_P_BCD  

10    
11 0008: 80 FE STOP: SJMP STOP 
12 ;---------------------------------------------------------------------------------------- 
13 000A: UP_BCD_P_BCD:  
14 000A: C4 SWAP A ;change nibbles A7..4<->A3..0 
15 000B: 25 F0 ADD A,B ;add B to A 
16   ;result in A 
17 000D: 22 RET  
18 ;--- end of file ---  

2.2.12 Conversion UP-BCD to ASCII   

• input: number in A – tens, B – unities,  
• output: number in A – tens, B – unities,  
• exemplary value: 00001001 00000110UP-BCD = 00111001 00110 

110ASCII (see Table 2.12). 

Table 2.12 Implementation in Code and Intermediate Results       

Code Description A B  

MOV A,#09h Input a first number 00001001  
MOV B,#06h Input a second number 00001001 00000110 
]ADD A,#30h Add 30HEX to A 00111001 00000110 
XCH A,B Exchange A ↔ B 00000110 00111001 
ADD A,#30h Add 30HEX to A 00110110 00111001 
XCH A,B Exchange A ↔ B 00111001 00110110    

Table 2.11 Implementation in Code and Intermediate Results       

Code Description A B  

MOV A,#09h Input a first number (tens) 00001001  
MOV B,#06h Input a second number (unities) 00001001 00000110 
SWAP A Change nibbles A7…4 ↔ A3…0 10010000 00000110 
ADD A,B Add B to A 10010110 00000110    
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1 ;***************************************************************************** 
2 ;* Conversion UP-BCD -> ASCII * 
3 ;***************************************************************************** 
4 0009 n EQU 09h  
5 0006 m EQU 06h ;{nm} 0906 UP-BCD = 96 DEC 
6    
7 0000: 74 09 MOV A,#n ;input a first number 
8 0002: 75 F0 06 MOV B,#m ;input a second number 
9 0005: 12 00 0A LCALL UP_BCD_ASCII  

10   ;result in A-tens, B-unities 
11 0008: 80 FE STOP: SJMP STOP 
12 ;---------------------------------------------------------------------------------------- 
13 000A: UP_BCD_ASCII:  
14 000A: 24 30 ADD A,#30h ;add 30h to A 
15 000C: C5 F0 XCH A,B ;exchange A<->B 
16 000E: 24 30 ADD A,#30h ;add 30h to A 
17 0010: C5 F0 XCH A,B ;exchange A<->B 
18 0012: 22 RET  
19 ;--- end of file ---  

2.2.13 Conversion ASCII to BIN   

• input: number in A – tens, B – unities,  
• output: number in A,  
• exemplary value: 00111001 00110110ASCII = 01100000BIN (see  

Table 2.13).   

1 ;****************************************************************************** 
2 ;* Conversion ASCII to BIN * 
3 ;****************************************************************************** 
4 0039 n EQU 39H  

Table 2.13 Implementation in Code and Intermediate Results        

Code Description A B R0  

MOV A,#39h Input a first number 00111001   
MOV B,#36h Input a second number 00111001 00110110  
ANL B,#0Fh Clear higher nibble B7...4 00111001 00000110  
ANL A,#0Fh Clear higher nibble A7...4 00001001 00000110  
MOV R0,B Make a copy to B 00001001 00000110 00000110 
MOV B,#10 Let B be 10DEC 00001001 00001010 00000110 
MUL AB Multiply A by B 01011010 00000000 00000110 
ADD A,R0 Add R0 to A 01100000 00000000 00000110 
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5 0036 m EQU 36H ;{nm}=3936 ASCII=96 DEC 
6    
7 0000: 74 39 MOV A,#n ;input a first number 
8 0002: 75 F0 36 MOV B,#m ;input a second number 
9 0005: 12 00 0A LCALL ASCII_BIN  

10   ;result in A 
11 0008: 80 FE STOP: SJMP STOP 
12 ;---------------------------------------------------------------------------------------- 
13 000A: ASCII_BIN:  
14 000A: 53 F0 0F ANL B,#0Fh ;clear higher nibble B7..4 
15 000D: 54 0F ANL A,#0Fh ;clear higher nibble A7..4 
16 000F: A8 F0 MOV R0,B ;make a copy to R0 
17 0011: 75 F0 0A MOV B,#10 ;let B be 10DEC 
18 0014: A4 MUL AB ;multiply A by B 
19 0015: 28 ADD A,R0 ;add R0 to A 
20 0016: 22 RET  
21 ;--- end of file ---  

2.2.14 Conversion ASCII to P-BCD   

• input: number in A – tens, B – unities,  
• output: number in A,  
• exemplary value: 00110111 00111000ASCII = 01111000P-BCD (see  

Table 2.14). 

1 ;**************************************************************************** 
2 ;* Conversion ASCII to P-BCD * 
3 ;**************************************************************************** 
4 0037 n EQU 37H  
5 0038 m EQU 38H ;{nm} 3738 ASCII=78 DEC 
6    
7 0000: 74 37 MOV A,#n ;input a first number 
8 0002: 75 F0 38 MOV B,#m ;input a second number 
9 0005: 12 00 0A LCALL ASCII_P_BCD  

Table 2.14 Implementation in Code and Intermediate Results       

Code Description A B  

MOV A,#37h Input a first number 00110111  
MOV B,#38h Input a second number 00110111 00111000 
ANL A,#0Fh Clear higher nibble of A7...4 00000111 00111000 
SWAP A Change nibbles A7…4 ↔ A3…0 01110000 00111000 
ANL B,#0Fh Clear higher nibble of B7...4 01110000 00001000 
ADD A,B Add B to A 01111000 00001000 
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10   ;result in A 
11 0008: 80 FE STOP: SJMP STOP 
12 ;---------------------------------------------------------------------------------------- 
13 000A: ASCII_P_BCD:  
14 000A: 54 0F ANL A,#0Fh ;clear higher nibble of A7..4 
15 000C: C4 SWAP A ;change nibbles A7..4<->A3..0 
16 000D: 53 F0 0F ANL B,#0Fh ;clear higher nibble of B7..4 
17 0010: 25 F0 ADD A,B ;add B to A 
18 0012: 22 RET  
19 ;--- end of file ---  

2.2.15 Conversion ASCII to UP-BCD   

• input: number in A – tens, B – unities,  
• output: number in A – tens, B – unities,  
• exemplary value: 00110111 00111000ASCII = 00000111 00001000UP- 

BCD (see Table 2.15). 

1 ;**************************************************************************** 
2 ;* Conversion ASCII to UP-BCD * 
3 ;**************************************************************************** 
4 0037 n EQU 37H  
5 0038 m EQU 38H ;{nm} 3738 ASCII=78 DEC 
6    
7 0000: 74 37 MOV A,#n ;input a first number 
8 0002: 75 F0 38 MOV B,#m ;input a second number 
9 0005: 12 00 0A LCALL ASCII_UP_BCD  

10   ;result in A-tens, B-unities 
11 0008: 80 FE STOP: SJMP STOP 
12 ;---------------------------------------------------------------------------------------- 
13 000A: ASCII_UP_BCD:  
14 000A: 54 0F ANL A,#0Fh ;clear higher nibble of A7..4 
15 000C: 53 F0 0F ANL B,#0Fh ;clear higher nibble of B7..4 
16 000F: 22 RET  
17 ;--- end of file --- 

Table 2.15 Implementation in Code and Intermediate Results       

Code Description A B  

MOV A,#37h Input a first number 00110111  
MOV B,#38h Input a second number 00110111 00111000 
ANL A,#0Fh Clear higher nibble of A7...4 00000111 00111000 
ANL B,#0Fh Clear higher nibble of B7...4 00000111 00001000 
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At the end of this chapter, we will present a subroutine for converting 
an ordinary fraction of the numerator/denominator form to a binary 
fraction. The algorithm checks if the numerator is less than the 
denominator, and if so, the conversion takes place. Otherwise, the OV 
flag is set. 

2.2.16 Conversion BIN Fraction (num/denom) to BIN 
Fraction (dot notation)   

• input: number in A – numerator, B – denominator,  
• output: number in A – binary fraction in the form 0.xxx or void if 

numerator ≥ denominator and then OV = 1,  
• exemplary value: 00000101BIN / 00000110BIN = 0.110101(01)BIN. 

Table 2.16 shows the state of the registers after the first loop cycle, in 
which a bit with weight 2−1 is determined. Subsequent bits are deter-
mined according to the rule described in Example 2.6 presented in 
section 2.1. 

Table 2.16 Implementation in Code and Intermediate Results        

Code Description A B R1  

MOV A,#5 Input numerator 00000101   
MOV B,#6 Input denominator 00000101 00000110  
MOV R2,#7 How many digits 

(precision) 
00000101 00000110  

MOV R1,#0 Clear R1 00000101 00000110 00000000 
LOOP: RL A Rotate left 00001010 00000110 00000000 
CLR C Clear C flag 00001010 00000110 00000000 
SUBB A,B Compare A and B 00000100 00000110 00000000 
JNC SKIP Jump if not less 00000100 00000110 00000000 
ADD A,B Add B to A --- --- --- 
SKIP: CPL C Invert C flag 00000100 00000110 00000000 
XCH A,R1 Exchange A ↔ R1 00000000 00000110 00000100 
RLC A Rotate left with carry bit 00000001 00000110 00000100 
XCH A,R1 Exchange again 0000100 00000110 00000001 
DJNZ R2,LOOP Repeat for next digit 0000100 00000110 00000001 
MOV A,R1 Copy a result to A State after 

last lap:  
01101010      
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1 ;************************************************************************** 
2 ;* Conversion BIN fraction num/denom to dot notation* 
3 ;************************************************************************** 
4 0005 n EQU 5 ;n=5 DEC 
5 0006 m EQU 6 ;m=6 DEC 
6 0000: 74 05 MOV A,#n ;input numerator 
7 0002: 75 F0 06 MOV B,#m ;input denominator 
8 0005: 12 00 0A LCALL FRACTION_BIN  
9   ;result in A 

10 0008: 80 FE STOP: SJMP STOP 
11 ;---------------------------------------------------------------------------------------- 
12 000A: FRACTION_BIN:  
13 000A: F8 MOV R0,A ;make a copy to R0 
14 000B: C3 CLR C ;clear C flag 
15 000C: 95 F0 SUBB A,B ;check if num<denom 
16 000E: E8 MOV A,R0 ;retrieve original value 
17 000F: 40 03 JC LESS ;skip if num<denom 
18 0011: D2 D2 SETB OV ;else set flag and stop 
19 0013: 22 RET  
20 0014: LESS:  
21 0014: 7A 07 MOV R2,#7 ;how many digits (precision) 
22 0016: 79 00 MOV R1,#0 ;clear R1 
23 0018: LOOP:  
24 0018: 23 RL A ;rotate left 
25 0019: C3 CLR C ;clear C flag 
26 001A: 95 F0 SUBB A,B ;compare A and B 
27 001C: 50 02 JNC SKIP ;jump if not less 
28 001E: 25 F0 ADD A,B  
29 0020: SKIP:  
30 0020: B3 CPL C ;invert C 
31 0021: C9 XCH A,R1 ;exchange A and R1 
32 0022: 33 RLC A ;rotate with carry bit 
33 0023: C9 XCH A,R1 ;exchange again 
34 0024: DA F2 DJNZ R2,LOOP ;repeat for next digit 
35 0026: E9 MOV A,R1  
36 0027: 22 RET  
37 ;--- end of file ---    
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2.3 SIGNED NUMBERS 

2.3.1 The Sign-magnitude Representation 

The number consists of two fields: the sign ‘+’/‘−’ and the magnitude 
wherein ‘+’ sign is very often omitted as the default value. This way of 
expressing the signed number is commonly used in usual human activities. 
We can find many examples, e.g.:  

• trends in something (e.g. body weight, prices, demography, etc.);  
• in science and engineering: measuring angles, outdoor thermometer 

(particularly winter season), acidity or alkalinity Ph;  
• accounting and banking: looking at purchase bill (discounts and 

payable), account balance. 

The value of a number in sign-magnitude (SM) notation for p = 2 is cal-
culated from the following formula (2.2): 

A = ( 1) (a 2 + ... + a 2 + a + a 2 + ... + a 2 )

= ( 1) a 2

a
n 2

n 2
1 0 1

1
m

m

a

i= m

n 2

i
i

n 1

n 1 (2.2)  

The highest bit an−1 is the sign bit, and the remaining bits form a magnitude 
of determined identically as in BIN format. The sign can be expressed by 
assigning ‘+’ to ‘0’ and ‘−’ to ‘1’, respectively. Above formula can be gen-
eralized for any value of the system base. However, the problem is how to 
encode the sign of the number. From the analysis of the formula it follows 
that if the highest digit is even, then the number is non-negative. Such a 
convention of writing the sign of a number, although formally correct, is 
not commonly used except in the case of p = 2. So, let’s remain with this 
case. The use of the same symbols 0 and 1 to denote the sign of a number 
and the consecutive digits of the number facilitates the implementation of 
arithmetic operations on multibit numbers in the SM notation by a classical 
processor, which implements the principles of 1-bit arithmetic described in 
section 1.1. A particular property of sign-magnitude notation is the double 
representation of the number 0. For example, using 5 bits we +0 and −0: 

+ 0 = 00000 , –0 = 10000DEC SM DE SM

For distinction, the sign bit in the book will be underlined. In other books, 
e.g. [Pochopień 2012], the sign bit is separated by a dot character, but this 
can lead to misinterpretation when trying to write numbers with fractional 
parts in SM! 
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Example 2.9: A number in the SM notation and its decimal equivalent DEC:  

a.  1 0101.11SM = −5.75DEC  

b.  0 1100.01SM = +12.25DEC 

Exercise 2.6: Represent the given decimal number DEC in the SM notation:  

a.  +23.5DEC  

b.  +17.3DEC  

c.  −11.25DEC  

d.  −1DEC 

The advantage of the SM notation is the simplicity of interpreting the number 
by the user. Unfortunately, this notation also has some disadvantages. Firstly, 
for p ≠ 2 the SM format is not optimal because of using only 2∗pn−1+m of pn+m 

possible combinations of digits. Another difficulty is related to realization of 
arithmetic operations. Since the ALU of the processor performs them on all the 
bits of the arguments stored in the registers, including the sign bits, this may lead 
to an incorrect result in some cases. What can be done in such a situation to fix 
the result? Before performing the operation, you need to clear the sign bits of 
both arguments, perform the operation and based on the sign bits and the 
information on type of operation determine the sign bit of the result. 

However, the addition or subtraction of two 8-bit numbers with different 
signs is a little bit complicated. Hence another commonly used format for 
signed numbers is 2’s complement. To understand the properties of this 
notation, we have to recall the theory of complements. The information 
presented below is valid for numbers with any base p = 2, 3, ..., ∞. It must 
be mentioned that there are also alternative ways of writing numbers with 
signs, such as the offset notation adopted by the IEEE society and published 
in its P-754 standard defining the floating-point format and operations and 
discussed in Chapters 4 and 5. 

2.3.2 Complements – Theory and Its Usage 

In mathematics and computing, the complements are efficient techniques to 
encode a symmetric range of positive and negative numbers. Two types of 
complements have gained widespread acceptance (2.3):  

1. p complement of L 

L = p L for L 0

L = 0 for L = 0

n
(2.3)   

2. p – 1 complement of L 
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L = p L pn m, where n is the number of digits in the integer part and m 
is the fractional part, respectively. 

Example 2.10: The p and p-1 complements: 

a. L = 823DEC ➔ p = 10, n = 3, m = 0 b. L = 101.1BIN ➔ p = 2, n = 3, m = 1 

L̄ = 10 823 = 177
L̄ = 10 823 10 = 176

3
DEC

3 0
DEC

L = 1000 101.1 = 010.1
L = 1000 101.1 0.1 = 010.0

BIN BIN BIN

BIN BIN BIN BIN

Properties of p and p-1 complements: 

Property no. 1. L = p L p = L pn m m ➔ 1a. L = L + p m

Property no. 2. xxx xxxL + L = 100 0.0 0
n+m

➔ 2a. L = L, if carry bit on  
position n+m+1 is discarded   

Example 2.11: Number added to its p complement: 

a. b. 
823

+ 177
1000

= L
= L

DEC

DEC

n+m DEC

101.1
+ 010.1
1000.0

= L
= L

BIN

BIN

n+m BIN

Property no. 3. L + L = (p 1)(p 1)... (p 1), (p 1)(p 1)... (p 1)

n+m

Example 2.12: Number added to its p-1 complement: 
a. b. 

823
+ 176

999
= L
= L

DEC

DEC

n+m DEC

101.1
+ 010.0

111.1
= L
= L

BIN

BIN

n+m BIN

REMEMBER!  

• L can be determined by adding 1 to the lowest digit of L.  
• L can be treated as a number with the opposite sign to L if we discard 1 

in the n+m+1 position. 
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• L is determined by subtracting individually each digit of L from the 
largest allowed digit at the given base, e.g. for p = 2 that means inversion 
of bits due to 2-bit = bit.  

• For p = 2 L it is denoted as a 1’s complement and L as a 2’s complement.    

Complements can be used, e.g., in the implementation of addition and 
subtraction of numbers coded in the SM notation, as will be shown in the 
chapter on arithmetic operations. Nevertheless, its primary usage is repre-
sentation of signed numbers as also would be presented below. 

2.3.3 The 2’s Complement Representation 

In this notation, abbreviated 2’s in this book, the an−1 bit is the sign bit, but 
unlike the SM notation, it additionally contributes with −2n−1 weighting 
factor to the value of the number. It can be then determined according to 
the formula (2.4): 

A = a 2 + a 2 + ... +a 2 + a + a 2 + ... +a 2

= a 2 + a 2

n 1
n 1

n 2
n 2

1 0 1
1

m
m

n 1
n 1

i= m

n 2

i
i

(2.4)  

Example 2.13: Number in 2’s complement notation and its DEC equivalent:  

a.  101.01 = 2 + 0 2 + 1 2 + 0 2 + 1 2 = 2.75U2
2 1 0 1 2

DEC

b.  1101.01 = 2 + 1 2 + 0 2 + 1 2 + 0 2 + 1 2 = 2.75U2
3 2 1 0 1 2

DEC

c.  11101.01 = 2 + 1 2 + 1 2 + 0 2 + 1 2 + 0 2 + 1 2U2
4 3 2 1 0 1 2= 2.75DEC

d.  0101.01 = 0 2 + 1 2 + 0 2 + 1 2 + 0 2 + 1 2 = +5.25U2
3 2 1 0 1 2

DEC

e.  00101.01 = 0 2 + 0 2 + 1 2 + 0 2 + 1 2 + 0 2 + 1 2U2
4 3 2 1 0 1 2= +5.25DEC

The way of sign changing of a number in 2’s notation is of great practical 
importance. It is enough to invert all bits and add a 1 to the lowest bit (first 
from the right). 

Example 2.14: Changing the sign of a number in the 2’s notation: 

a.  b. 
0110.1 + 6.5

1001.0
+ 0000.1

1001.1 6.5

2 s DEC

2 s DEC

and 1001.1 6.5

0110.0
+ 0000.1

0110.1 + 6.5

2 s DEC

2 s DEC
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Another way to change the sign is to subtract a number from zero ac-
cording to the observation that −X = 0 − X, where the minus on the left 
represents the number with the opposite sign to X, and the second minus 
represents the subtraction operation. Be aware, that it looks the same but it 
is not the same for mathematicians! 

Example 2.15: Changing the sign of a number in the 2’s notation by 
subtracting from zero: 

a.  b. 
0000.0 0.0
0110.1 + 6.5

1001.1 6.5

DEC

DEC

DEC

and 0000.0 0.0
1001.1 6.5

0110.1 + 6.5

DEC

DEC

DEC

REMEMBER!  

• Duplication of the highest bit (first from the left) does not change the 
value of the number in 2’s notation. It is called the sign extension.  

• The highest bit informs about the sign of the number, ‘0’ is for non- 
negative number and ‘1’ for negative one, but it also affects the value of 
the number.  

• Typical way of sign change of 2’s number is inverting all bits and adding 
the 1 to the lowest bit (first from the right).   

Exercise 2.7: Represent the assumed DEC number in 2’s notation:  

a.  +3.125DEC  

b.  –17.5DEC  

c.  –1DEC  

d.  +1DEC 

Number with fraction in 2’s notation can be represented easily as a complement 
to a greater (absolutely) number. Thus, you can apply the conversion method 
learned in section 2.1 only to the positive fractional part of this number as 
shown here: −2/9 = −1 + 7/9 or −12/5 = −3 + 3/5. 

2.4 CONVERSIONS AND CHANGE OF SIGN 

The chapter will show how to programmatically convert numbers with sign 
between 2’s and SM formats, and how to change the sign of numbers in 2’s 
notation. Please note the number in 2’s complement format has no separate 
representation for positive and negative zero. 
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2.4.1 Change of Sign for 2’s Number   

• input: number in A,  
• output: number in A,  
• exemplary value: 111011112’s ➔ 000100012’s (see Table 2.17).   

1 ;**************************************************************************** 
2 ;* Conversion of sign for 2’s number * 
3 ;**************************************************************************** 
4 ;n EQU 17 ;n=+17 DEC  
5 00EF n EQU 11101111B ;n= −17 DEC 
6    
7 0000: 74 EF MOV A,#n ;input a number 
8 0002: 12 00 07 LCALL _2s_2s  
9   ;result in A 

10 0005: 80 FE STOP: SJMP STOP 
11 ;---------------------------------------------------------------------------------------- 
12 0007: _2s_2s:  
13 0007: 64 FF XRL A,#0FFH ;invert A 
14 0009: 04 INC A ;increase A by 1 
15 000A: 22 RET  
16 ;--- end of file ---  

2.4.2 Conversion SM to 2’s Notation   

• input: number in A,  
• output: number in A,  
• exemplary value: 10000111SM ➔ 111110012’s (see Table 2.18). 

Table 2.18 Implementation in Code and Intermediate Results      

Code Description A  

MOV A,# 10000111b Input a number –7DEC as SM 10000111 
JNB ACC.7,SKIP Skip if positive  
XRL A,#7FH Invert bits A6...0 11111000 
INC A Increase A by 1 11111001 
SKIP:  11111001    

Table 2.17 Implementation in Code and Intermediate Results      

Code Description A  

MOV A,# 11101111b Input –17DEC as 2’s 11101111 
XRL A,#0FFH Invert A 00010000 
INC A Increment A by 1 00010001 
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1 ;************************************************************************** 
2 ;* Conversion SM to 2’s * 
3 ;************************************************************************* 
4 0087 n EQU 10000111B ;n=−7DEC 
5    
6 0000: 74 87 MOV A,#n ;input a number 
7 0002: 12 00 07 LCALL SM_2s  
8   ;result in A 
9 0005: 80 FE STOP: SJMP STOP 

10 ;---------------------------------------------------------------------------------------- 
11 0007: SM_2s:  
12 0007: 30 E7 03 JNB ACC.7,SKIP ;if positive 
13 000A: 64 7F XRL A,#7FH ;invert bits A6..0 
14 000C: 04 INC A ;increase A by 1 
15 000D: SKIP:  
16 000D: 22 RET  
17 ;--- end of file ---  

2.4.3 Conversion 2’s Notation to SM   

• input: number in A,  
• output: number in A,  
• exemplary value: 11111001U2 ➔ 10000111SM. 

The algorithm returns a correct result for an input number between −127DEC 

and +127DEC (see Table 2.19). 

Please note that we get the identical algorithm as for SM to 2’s com-
plement conversion! 

1 ;************************************************************************** 
2 ;* Conversion 2s to SM for −127DEC<n<+127DEC* 
3 ;************************************************************************** 
4 00F9 n EQU 11111001B ;n=−7DEC 

Table 2.19 Implementation in Code and Intermediate Results      

Code Description A  

MOV A,# 11111001b Input a number –7DEC as 2’s 11111001 
JNB ACC.7,SKIP Skip if positive 11111001 
XRL A,#7FH Invert bits A6...0 10000110 
INC A Increase A by 1 10000111 
SKIP:  10000111 
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5    
6 0000: 74 F9 MOV A,#n ;input a number 
7 0002: 12 00 07 LCALL _2s_SM  
8   ;result in A 
9 0005: 80 FE STOP: SJMP STOP 

10 ;---------------------------------------------------------------------------------------- 
11 0007: _2s_SM:  
12 0007: 30 E7 03 JNB ACC.7,SKIP ;skip if positive 
13 000A: 64 7F XRL A,#7FH ;invert bits A6..0 
14 000C: 04 INC A ;increase A by 1 
15 000D: SKIP:  
16 000D: 22 RET  
17 ;--- end of file ---    
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Chapter 3 

Basic Arithmetic on Fixed-point 
Numbers     

3.1 OPERATIONS ON UNSIGNED NUMBERS 

3.1.1 Working with Natural Binary Code 

As was stated previously in section 2.1, let us recall that any number is 
represented on n+m bits, where n is the number bits of the integer part, and 
m is the number bits of the fractional part. 

Addition of two (n + m)-bit BIN numbers returns the result on (n + m + 1) 
bits. It can be seen that for any base p this extra bit can take the value 0 or 1. 
Reserving bits for the fractional part is limiting the range in the integer part of 
the number. Appendix A gives the smallest and largest value of a number for 
given n and m, assuming n + m = 8 and n + m = 16 and for various position of 
point. This information will allow the reader to find out in what numerical 
range arithmetic operations can be performed. The length of the word in the 
8051 processor is fixed – 8 bits, so it can store 256 different combinations. 
The n + m cannot exceed 8 bits. When considering numbers with fractional 
part, one should make sure that both numbers contain the same number of m 
digits in the fractional part. Then the position of the point in the result is 
identical to that in the input arguments, although the microprocessor is ‘not 
aware’ the existence and position of the comma. In many programming 
languages the fixed-point format is dedicated for integer type of variables 
without fractional part (see Appendix B). The numbers with fractions are 
mostly represented in floating-point format realized in hardware like floating- 
point unit (FPU) or programmatically by dedicated math library. We can also 
realize real numbers in fixed-point format. Here a priori some bits are 
reserved for integer and other for fractional part. For example, if assumed 1- 
byte-long number, the notation 1.7 means 1 bit for integer part and 7 bits 
after binary point. This convention is supported by, e.g., some of Microchip’s 
AVR architecture processors through the FMUL, FMULS and FMULSU 
instructions that allow multiplication of two numbers with an unsigned 
fraction, two signed numbers and an unsigned with signed numbers. The 
prefix F related to fraction just indicates this functionality. No additional 
shifts of the multiplication result or another way of point positioning are 
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needed. Another of few example is so called 32-bit _IQ format introduced by 
Texas Instruments for fixed-point numbers with fractional part. At the 
moment of declaration of variable type, its precision and the numerical range 
are explicitly forced, depending on the number of bits for the fractional part. 
Thus, the notation _IQ30 means that 30 bits of 32 available bits are used to 
express the fraction and the remaining 2 bits for the integer part. Using the 
2’s convention, this gives the range [−2;1.999999999] with a resolution 
(precision) of 0.000000001. All combinations from _IQ0 to _IQ31 are 
allowed, so paradoxically one can speak of a fixed-point format with a 
floating point is permitted! Another example of IQ format application can be 
using it to express numbers during performing CORDIC algorithm suited for 
estimation of nonlinear functions. The ST Microelectronics company pre-
pared STM32G4-CORDIC co-processor. It provides hardware acceleration 
of some mathematical functions, notably trigonometric, commonly used in 
motor control, metering, signal processing and many other applications. It 
speeds up the calculation of these functions compared to a software imple-
mentation, freeing up processor cycles in order to perform other tasks. In this 
case, the q1.31 or q1.5 formats are available. For processors without hard-
ware support as FPU or CORDIC units this mathematical capability can be 
realized by software CORDIC library or math library. 

Let’s go back to 8051 CPU and way how the addition of 2 bytes can be 
done with instruction ADD: 

ADD A,#data {C,A} ← A +data   

The result of addition of each pair of bits is calculated according to the 
rules given in section 1.1, considering the carry-over from the previous bit 
position. The addition starts from the youngest bits, i.e. customarily the 
right-hand side. If the ADD instruction results in C = 1, it means that the 
BIN range is exceeded for the assumed values of n and m. The result should 
be discarded. However, the correct result is obtained by treating C as an 
additional n + 1 bit of the result (see Example 3.1a). 

Example 3.1: Addition of BIN numbers: 

a. n = 5, m = 3 b. n = 5, m = 3 
11111.010 =31.25

+ 00001.000 + =1.00

C = 1 00000.010 =32.25

BIN DEC

BIN DEC

BIN DEC

10011.010 =19.25
+ 00001.011 + =1.375

C = 0 10100.101 =20.625

BIN DEC

BIN DEC

BIN DEC

Implementation in code for case (a): 

MOV A,#11111010B ;first number 
ADD A,#00001000B ;add the second number to the first one   

;store a result in the A and C 
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The addition of two double-byte (n + m) = 16 BIN numbers is performed 
in two steps. First add the lower bytes with the ADD instruction, and then 
the higher ones with the ADDC instruction, which considers the C flag from 
the previous addition. The double-byte width is sometimes called ‘word’ 
format.  

Example 3.2: Addition of two double-byte BIN numbers: 

a. n = 8, m = 8 b. n = 14, m = 2 

00011001.11110101
+ 10011101.10000101

0 10110111.01111010

1

BIN

BIN

BIN

10011001 111101.01
+ 11011101100001.01

1 01110111011110.10

1

BIN

BIN

BIN

Implementation for case of (a): 

MOV A,#11110101B ;lower byte of the first number 
ADD A,#10000101B ;add a lower byte of the second number 
MOV B,A ;lower byte of the result in the B 
MOV A,#00011001B ;higher byte of the first number 
ADDC A,#10011101B ;add a higher byte of the second number   

;and store a result in the A and C   

Exercise 3.1: Perform addition of BIN numbers: 

a. b. 
11.011101

+ 00.101101

? ??.??????

BIN

BIN

BIN

1101.0111
+ 1010.1100

? ????.????

BIN

BIN

BIN

Subtraction of two (n + m)-bit BIN numbers returns the result on (n + m 
+ 1) bits, where, as previously, n is the number of bits of the integer 
part, m is the number of bits of the fractional part. It can be seen that 
for any base, p is the borrow flag (in practice it is the same C flag used 
during addition – its meaning depends on the operation context), 
which can take only the value 0 or 1. When considering numbers with 
fractional part, one should make sure that both numbers contain the 
same number of digits m in the fractional part. Then the position of the 
comma in the result is identical to that in the input arguments. The result 
of subtraction of each pair of bits is calculated according to the rules 
given in chapter 1.1, considering the borrow from the previous bit posi-
tion. The operation starts from the lowest bits, i.e. customarily the right- 
hand side. 
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Subtracting two 1-byte numbers by 8051 CPU is done by the following 
pair of instructions: 

CLR C  
SUBB A,#data {C,A}←A-data-0=A-data   

Before subtracting 1-byte two numbers, hence(n + m = 8), it is necessary to 
clear C flag to zero, preventing eventually wrong result caused by C = 1 flag 
by one of the previous executed instructions. Obtaining C = 1 after sub-
traction indicates a negative result that cannot be expressed in BIN notation. 
Alternatively, this state can be interpreted as borrow taken from the extra n + 
1 bit of the first number. Then the result is correct in the BIN sense, since 
subtraction of a smaller number from a larger number has been performed.  

Example 3.3: Subtraction of BIN numbers: 

a. n = 2, m = 6 b. n = 8, m = 0 
10.010100
01.101001

C = 0 00.101011

BIN

BIN

BIN

00010100
00101011

C = 1 11101001

BIN

BIN

BIN

Implementation for case of (a): 

MOV A,#10010100B ;first number 
CLR C ;clear C flag 
SUBB A,#01101001B ;subtract second number from the first one   

;store a result in the A and C    

The subtraction of two double-byte (n + m) = 16 BIN numbers is per-
formed in two steps. First subtract the lower bytes by the SUBB instruction 
with cleared the C flag before, and then subtract the higher ones again with 
SUBB, which considers the C flag from the previous operation that is 
working as borrow bit.  

Example 3.4: Subtraction of two double-byte BIN numbers: 

a. n = 16, m = 0 b. n = 3, m = 13: 

01011001 10011011
00011101 01110010

C = 0 00111100 00101001

0

BIN

BIN

BIN

010.11001 00011011
100.11101 01110010

C = 1 101.11011 10101001

1

BIN

BIN

BIN

Subtraction of two double-byte BIN numbers by 8051 CPU is very similar to the 
addition. The difference is that the ADD and ADDC instructions must be 
replaced by pair of SUBBs. 
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Implementation in code of case (a): 

MOV A,#10011011B ;lower byte of the first number 
CLR C ;clear C flag 
SUBB A,#01110010B ;subtract the lower byte of the second number 
MOV B,A ;store the lower byte of the result in the B 
MOV A,#01011001B ;higher byte of the first number 
SUBB A,#00011101B ;subtract the higher byte of the second number   

;and store the higher byte of the result in the A   

Exercise 3.2: Perform subtraction of BIN numbers: 

a. b. 
11.011100
01.101011

? ??.??????

BIN

BIN

BIN

0101.1011
1010.1101

? ????.????

BIN

BIN

BIN

Subtraction can also be done in another way, i.e. using addition and 
properties of complements. 

Subtraction of two BIN numbers by means of complements requires 
substitution of the second number by its complement to p or p – 1. The 
result of the subtraction is the result of the addition or its complement, 
depending on the value of the carry bit. Details on the use of additions are 
given in the formulas below. The way how to compute the complement to p 
and p – 1 was given earlier in subchapter 2.3. 

Using p complements for subtraction: Using p − 1 complements for subtraction: 

A B = +(A + B) for C 0

A B = (A + B) for C = 0

A B = +(A + B + 1 p ) for C 0

A B = (A + B) for C = 0

m

Example 3.5: Subtraction of two BIN numbers by means of p and p – 1 
complements for p = 2: 

A = 29DEC B = 38DEC 

A = 011101BIN B = 100110BIN 

A = 100010 B = 011001

A = 100011 B = 011010

a. A – B by means of B b. B – A by means of A
011101 A

+ 011010 B

C = 0 110111 A + B

‘ ’ 1 001001 (A + B)

100110 B
+ 100011 A

C = 1 001001 B + A

‘ + ’ 0 001001 +(B + A)
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Implementation in code:       

a. b. would you try to continue? 
MOV A,#00011101B MOV A,#0001110  
MOV B,#00100110B MOV B,#00100110B  
XCH A,B ...  
CPL A   
INC A   
ADD A,B   
JC end   
CPL A   
INC A   
end:    
CPL C ;sign of the result    

;the result stored in the A  

c. A – B by means of B d. B – A by means of A
011101 A

+ 011001 B
C = 0 110110 A + B

‘ ’ 1 001001 (A + B)

100110 B
+ 100010 A

C = 1 001000 B + A
+ 000001 p m

‘ + ’ 0 001001 +(B + A + 1 p m)

Implementation in code: 

c. d. ? 
MOV A,#00011101B MOV A,#00011101B 
MOV B,#00100110B MOV B,#00100110B 
XCH A,B  ... 
CPL A   
ADD A,B   
JC skip   
CPL A   
SJMP end   
skip:    
INC A   
end:    
CPL C ;sign of the result    

;result in A    

Example 3.6: Subtraction by p and p − 1 complements for p = 10: 

A = 29DEC B = 38DEC 

A = 70 B = 61

A = 71 B = 62
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a. A – B by using B b. B – A by using A
29 A

+ 62 B

C = 0 91 A + B

‘ ’ 1 09 (A + B)

38 B
+ 71 A

C = 1 09 B + A

‘ + ’ 0 09 +(B + A)

c. A – B by using B d. B – A by using A
29 A

+ 61 B
C = 0 90 A + B

‘ ’ 1 09 (A + B)

38 B
+ 70 A

where m = 0

C = 1 08 B + A
+ 01 p

‘+’ 0 09 +(B + A + p )

m

m

REMEMBER!  

• The sign bit of a result of subtraction done with complements can be 
determined by inversion of carry bit.  

• The rules of applying complements can be used to any system base.   

Exercise 3.3: Perform subtraction of BIN numbers using p and p – 1 
complements:  

a.  A = 42.5DEC B = 68DEC p = 2  
b.  A = 75DEC B = 13DEC p = 10  

Multiplication of two (n + m) −bits BIN numbers returns on (2n + 2m) 
bits. For general case of multiplication, i.e. A1*A2, where A1 is on {n1,m1} 
bits and A2 is on {n2,m2} bits, the result is on (n1 + n2, m1 + m2) bits. In 
8051 processor, the multiplication is done by MUL instruction: 

MUL AB {B15...8 A7...0} ← A*B ; 16-bits results   

The classical ‘on paper’ multiplication method taught in primary school 
is easy to understand and can be realized by adding shifted results of 
multiplication of individual bits of the multiplied by all bits of multiplicand. 
This rule is illustrated in Example 3.7. 
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Example 3.7: Multiplication of two BIN numbers: 

a. b. 

BIN

BIN
1010
0000

1010
+ 0000

BIN

10.10

01.01

0011.0010

BIN

BIN
1111

0000
1111

+ 1111

BIN

1.111

110.1

1100.0011

The multiplication of the first number (multiplicand) by the bit of multi-
plier bit with a value of 0 results 0 ... 0 due to observation 0*x = 0. Therefore, 
this component of the result can be omitted in the final addition. However, 
the next non-zero component of the sum should be shifted twice, not once. 

Implementation in code for case of (a): 

MOV A,#0001010B  
MOV B,#0000101B  
MUL AB ;result is in B – higher byte, A – lower byte   

The algorithm can be automated, presenting it in a form suitable for 
implementation in code of microcontrollers suffering from lack of multi-
plication instruction. An example of such a processor is the ATtiny family 
of Atmel Corporation, acquired in 2016 by Microchip Technology or 
68HC08 chip delivered by Freescale Semiconductor. The rule of operation 
can be described as below:  

1. Clear the result and the carry bit.  
2. Copy the multiplier to the lower part of the result.  
3. Shift to the right the result and carry bit becomes the highest bit of the 

result.  
4. If the lowest bit of the result that is lost after shifting was set, add the 

multiplicand (first number) to the higher part of the result and store a 
carry-over after adding in the carry bit.  

5. Repeat from step 3 for all multiplier bits; the number of laps depends 
on the number of multiplier bits. 

Details of the algorithm are presented in Example 3.8, in which the pre-
vious lowest bit of result is underlined, while the carry bit is to the left of the 
higher part of the result. It also becomes the highest bit of the result after 
shifting right.  
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Example 3.8: Multiplication of two BIN numbers (another version):  

a) b) 

BIN

BIN

BIN

10.10
* 01.01
0   00000101

000000101
1010

0   10100010
0   010100010

001010001
1010

0   11001000
0   0110,01000

  0011.0010

®
ì+ í
î

®
®

ì+ í
î

®
®

BIN

BIN

BIN

11.11
* 11.01
0   00001101

000001101
1111

0   11110110
0   011110110

001111011
1111

1   00101101
100101101
1111

1   10000110
  1100.0011

®
ì+ í
î

®
®

ì+ í
î

®
ì+ í
î

®

Exercise 3.4: Perform multiplication of BIN numbers: 

a. b. 
11.11
0.101

???.?????

BIN

BIN

BIN

1.001
0110

?????.???

BIN

BIN

BIN

Multiplication of two double-byte (n + m = 16) BIN numbers is done 
according to the same principle. The bytes are multiplied instead of the 
individual bits and the resulting partial products are then added.  

Example 3.9: Multiplication of double-byte BIN numbers: 

23 48
AB 9C

2B E0
15 54
30 18

+ 17 61

HEX17 A6 97 E0

HEX

HEX

Implementation in code: 

• input: R1 – higher byte of multiplicand, R0 – lower byte of multi-
plicand, R3 – higher byte of multiplier, R2 – lower byte of multiplier, 
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• output: {R3R2R1R0} R3 – highest byte of result, R0 – lowest byte of 
result,  

• exemplary value: 2348HEX ∗ AB9CHEX. 

1 ;**************************************************************************** 
2 ;* Multiplication of BIN numbers 2 bytes x 2 bytes * 
3 ;**************************************************************************** 
4 0000: 79 23 MOV R1,#23h  
5 0002: 78 48 MOV R0,#48h ;multiplicand in {R1,R0}=2348HEX 
6 0004: 7B AB MOV R3,#0ABh  
7 0006: 7A 9C MOV R2,#9Ch ;multiplier in {R3,R2}=AB9CHEX 
8 0008: 12 00 0D LCALL MUL_BIN16X16  
9   ;result in {R3,R2,R1,R0} 

10    
11 000B: 80 FE STOP: SJMP STOP  
12 ;--------------------------------------------------------------------------------------------------- 
13 000D: MUL_BIN16X16:  
14 000D: E8 MOV A,R0  
15 000E: 8A F0 MOV B,R2  
16 0010: A4 MUL AB  
17 0011: AD F0 MOV R5,B  
18 0013: FC MOV R4,A ;R5*R4=R0*R2 
19 0014: E9 MOV A,R1  
20 0015: 8A F0 MOV B,R2  
21 0017: A4 MUL AB ;B*A=R2*R1 
22 0018: 2D ADD A,R5  
23 0019: FD MOV R5,A  
24 001A: E4 CLR A  
25 001B: 35 F0 ADDC A,B  
26 001D: FE MOV R6,A ;{R6R5R4} BANK 0 
27 001E: E8 MOV A,R0  
28 001F: 8B F0 MOV B,R3  
29    
30 0021: D2 D3 SETB RS0 ;BANK 1 
31 0023: A4 MUL AB  
32 0024: AD F0 MOV R5,B  
33 0026: FC MOV R4,A ;R5*R4=R0*R2 
34    
35 0027: C2 D3 CLR RS0 ;BANK 0 
36 0029: E9 MOV A,R1  
37 002A: 8B F0 MOV B,R3  
38 002C: D2 D3 SETB RS0 ;BANK 1 
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39 002E: A4 MUL AB ;B*A=R2*R1 
40 002F: 2D ADD A,R5  
41 0030: FD MOV R5,A  
42 0031: E4 CLR A  
43 0032: 35 F0 ADDC A,B  
44    
45 0034: FE MOV R6,A ;{R6R5R4} 
46 0035: C2 D3 CLR RS0 ;BANK 0 
47 0037: AB 0E MOV R3,6+8H  
48 0039: AA 0D MOV R2,5+8H  
49 003B: A9 0C MOV R1,4+8H  
50 003D: A8 04 MOV R0,4H  
51 003F: E9 MOV A,R1  
52 0040: 2D ADD A,R5  
53 0041: F9 MOV R1,A  
54 0042: EA MOV A,R2  
55 0043: 3E ADDC A,R6  
56 0044: FA MOV R2,A  
57 0045: E4 CLR A  
58 0046: 3B ADDC A,R3  
59 0047: FB MOV R3,A  
60 0048: 22 RET  
61 ;--- end of file ---  

Division of two (n + m)-bits BIN numbers can return a result over infi-
nitely many bits, e.g. 101BIN/110BIN = 0.1101(01)BIN. The limited word 
length of the microprocessor imposes truncating the fractional part of the 
result. Alternatively, the result of division can be represented as a quotient 
(integer part) and the remainder (rest of the division). There are many 
algorithms, mainly varying in complexity. The simplest one is based on 
the observation that division is equivalent to many repeated subtractions. 
In this algorithm, the divisor is subtracted from the so-called partial 
remainder. Initially, the divisor should be taken as the partial remainder. 
If the result of subtraction is non-negative, the quotient is increased by 1, 
and the current result of subtraction is taken as the partial remainder. 
Continue doing this until the remainder is less than the divisor, as indi-
cated by the borrow bit being set. In practice, the carry bit C is playing 
that role. The final remainder of division is equal to the last result of 
subtraction, after which C = 0.  
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Example 3.10: Perform division of two BIN numbers using the consecutive 
subtraction method: 

BIN

BIN

DEC

DEC

DEC BIN

BIN

111 divident
010 divisor
101 C 0 quotient 1
010
011 C 0 quotient 2
010
001 C 0 quotient 3 011
010
111 C 1 remainder 001

-
- -

= Þ =
-

= Þ =
-

= Þ = =
-

= Þ =

BIN

BIN

DEC

DEC BIN

BIN

100 divident
010 divisor
010 C 0 quotient 1
010
000 C 0 quotient 2 010
010
110 C 1 remainder 000

-
- -

= Þ =
-

= Þ = =
-

= Þ =

a. b.

The disadvantage of this method is the variable execution time, which 
depends on the dividend to divisor ratio. The greater the ratio, the longer it 
takes. There are more efficient ways of dividing, e.g. the differential 
method, shown in Example 3.11. This time the number of operations does 
not depend on the dividend to divisor ratio, but on the number of bits of the 
divisor. It is also worth mentioning about the comparison method, some-
times called the non-restitution method, described in detail, among others, 
in [Pochopień 2012].  

Example 3.11: Division of two BIN numbers by differential method:  

a.  smaller by a larger number: 

110.1 :1000

0.1101 fraction

1101 :10000

11010
10000
10100
10000
10000
10000
00000 reminder

BIN BIN

BIN

BIN BIN

BIN

Alternatively with reminder 

0 quotient

1101 :10000

10000 reminder

BIN

BIN BIN

BIN
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b.  larger by a smaller number: 

101.1 quotient and fraction

10110 :100

100
110
100
100
100
000 reminder

or with reminder

101 quotient

10110 :100

100
110
100
010 reminder

BIN

BIN BIN

BIN

BIN

BIN BIN

BIN

Exercise 3.5: Perform division of number 110010BIN by 1101BIN using:  

a.  consecutive subtraction method,  
b.  differential method. 

INTERESTING FACTS! 

If you start your experience with processors created by Atmel (currently 
Microchip), you may be surprised by the lack of division (and sometimes 
multiplication) operations in the instruction list of some microcontrollers of 
AVR family, e.g. ATtiny! In such case, the missing instruction should be 
replaced with a proper subroutine. You can find appropriate algorithms on the 
Microchip website.    

Dividing two single-byte numbers by the 8051 CPU is very simple, 
because we have the DIV instruction: 

DIV AB {A – quotient, B – remainder} ←A÷B; 16-bit result  

Implementation in code: 

MOV A,#00010110B 

MOV B,#00000100B 

DIV AB; result in A – quotient, B – remainder  

Of course, for zero value of the divisor the processor cannot perform the 
division. Instead of engaging extra bit for this purpose in processor 

Basic Arithmetic on Fixed-point Numbers 69 



resources, the designers of the microprocessor architecture have used the 
OV flag to signal such a case (it concerns for 8051 CPU at least). This is 
another use of this flag besides informing about exceeding the range of 
numbers in 2’s complement format. 

Division of double-byte (n + m = 16) BIN number by (n + m = 8) number 
is not as simple as for single-byte arguments, because the DIV instruction 
cannot be used in this case. The solution is provided by the implementation 
of, e.g., the multiple subtraction method for double-byte arguments, which 
works according to the principle presented in Example 3.10. If the divisor is 
equal to 0, the algorithm does not perform any operations except setting the 
OV flag. 

Implementation in code:  

• input: B – higher byte of dividend, A – lower byte of dividend, R0 – 
divisor,  

• output: R3 – higher byte of quotient, R2 – lower byte of quotient, B – 
higher byte of reminder, A – lower byte of reminder, OV – signal an 
attempt to divide by zero,  

• exemplary value: 4487DEC/100DEC.  

1 ;**************************************************************************** 
2 ;* Division of BIN numbers 2 bytes/1 byte * 
3 ;* consecutive subtraction method * 
4 ;**************************************************************************** 
5 0011 n EQU 17  
6 0087 m EQU 135 ;17∗256+135=4487 DEC 
7 0064 y EQU 100 ;y=100 DEC 
8    
9 0000: 75 F0 11 MOV B,#n ;higher byte of dividend 

10 0003: 74 87 MOV A,#m ;lower byte of dividend 
11 0005: 78 64 MOV R0,#y ;divisor 
12 0007: 12 00 0C LCALL DIV_BIN8BY8  
13   ;result in {R3R2}-quotient, 
14   ;{BA}-reminder 
15 000A: 80 FE STOP: SJMP STOP  
16 ;-------------------------------------------------------------------------------------------------- 
17 000C: DIV_BIN8BY8:  
18 000C: B8 00 03 CJNE R0,#0,LOOP  
19 000F: D2 D2 SETB OV  
20 0011: 22 RET  
21 0012: LOOP:  
22 0012: C3 CLR C  
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23 0013: F9 MOV R1,A  
24 0014: 98 SUBB A,R0  
25 0015: C0 E0 PUSH ACC  
26 0017: E5 F0 MOV A,B  
27 0019: 94 00 SUBB A,#0  
28 001B: C0 E0 PUSH ACC  
29 001D: 40 0D JC LESS  
30 001F: EA MOV A,R2  
31 0020: 24 01 ADD A,#1  
32 0022: FA MOV R2,A  
33 0023: 50 01 JNC LESSTHAN256  
34 0025: 0B INC R3  
35 0026: LESSTHAN256:  
36 0026: D0 F0 POP B ;reminder 
37 0028: D0 E0 POP ACC ;reminder 
38 002A: 80 E6 SJMP LOOP  
39 002C: LESS:  
40 002C: D0 E0 POP ACC  
41 002E: D0 E0 POP ACC  
42 0030: E9 MOV A,R1  
43 0031: 22 RET  
44 ;--- end of file ---  

In situations where the execution time of the division is a critical factor, it is 
proposed to use the differential method in a version suitable for easy 
implementation in code. We will name it the ‘differential method II’. Its 
operation can be characterized as follows, assuming zero values of quotient 
and partial remainder at start:  

1. Put the dividend to the right after the rest.  
2. Shift the partial remainder to the left together with dividend.  
3. Subtract the divisor from the partial remainder and take the result as 

the new value of partial remainder.  
4a. If the result of the subtraction is negative, add the divisor back to the 

partial remainder to get its original value, the lowest quotient bit 
is 0.  

4b. If the result of the subtraction is non-negative, the lowest quotient 
bit is 1.  

5. Shift the quotient to the left.  
6. Repeat from step 2 for all the bits of the divisor. 

The above rules of operation are used in Example 3.12.   
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Example 3.12: Division of BIN numbers by differential method II:  

a) 1010BIN:011BIN b) 1110BIN:101BIN

1

0

1

0

BIN

0001 010
0011
1110 C 1 quotient 0
0011
0001

0010 10
0011
1111 C 1 quotient 00
0011
0010

0101 0
0011
0010 C 0 quotient 001

0100
0011

reminder 0001 C 0 quotient 0011

¬¾¾
-

= Þ =
+

¯
¬¾¾

-
= Þ =

+

¯
¬¾¾

-
= Þ =

¯
¬¾¾

-
= = Þ =

1

1

1

0

BIN

0001 110
0101
1110 C 1 quotient 0
0101
0001

0011 10
0101
1110 C 1 quotient 00
0101
0011

0111 0
0101
0010 C 0 quotient 001

0100
0101
1111 C 1 quotient 0010
0101

reminder 0100

¬¾¾
-

= Þ =
+

¯
¬¾¾

-
= Þ =

+

¯
¬¾¾

-
= Þ =

¯
¬¾¾

-
= Þ =

+
=

Implementation in code:  

• input: B – higher byte of dividend, A – lower byte of dividend, 
R0 – divisor,  

• output: R3 – higher byte of quotient, R2 – lower byte of quotient, 
B – higher byte of reminder, A – lower byte of reminder, OV – signal 
an attempt to divide by 0,  

• exemplary value: 4487DEC/100DEC. 

1 ;************************************************************************** 
2 ;* Division of BIN numbers 2 bytes/1 byte * 
3 ;* differential method II * 
4 ;************************************************************************** 
5 0011 n EQU 17  
6 0087 m EQU 135 ;17*256+135=4487 DEC 
7 0064 y EQU 100 ;y=100 DEC 
8    
9 0000: 75 F0 11 MOV B,#n ;higher byte of dividend 

10 0003: 74 87 MOV A,#m ;lower byte of dividend 
11 0005: 78 64 MOV R0,#y ;divisor 
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12 0007: 12 00 0C LCALL DIV_BIN16BY8DIFF  
13   ;result in {R3R2}-quotient, 
14   ; {BA}-reminder 
15    
16 000A: 80 FE STOP: SJMP STOP  
17 ;;-------------------------------------------------------------------------------------------------- 
18 000C: DIV_BIN16BY8DIFF:  
19 000C: B8 00 03 CJNE R0,#0,DIVIDE  
20 000F: D2 D2 SETB OV  
21 0011: 22 RET  
22 0012: DIVIDE:  
23 0012: 79 10 MOV R1,#16  
24 0014: FE MOV R6,A  
25 0015: LOOP:  
26 0015: EE MOV A,R6  
27 0016: C3 CLR C  
28 0017: 33 RLC A ;<-lower byte of dividend 
29 0018: C5 F0 XCH A,B  
30 001A: 33 RLC A ;<-higher byte of dividend 
31 001B: C5 F0 XCH A,B  
32 001D: FE MOV R6,A  
33 001E: CC XCH A,R4  
34 001F: 33 RLC A  
35 0020: CD XCH A,R5  
36 0021: 33 RLC A  
37 0022: CD XCH A,R5 ;<-reminder<-C 
38 0023: C3 CLR C  
39 0024: 98 SUBB A,R0 ;reminder-dividend 
40 0025: FC MOV R4,A  
41 0026: ED MOV A,R5  
42 0027: 94 00 SUBB A,#0  
43 0029: FD MOV R5,A  
44 002A: 50 07 JNC NOT_LESS  
45 002C: EC MOV A,R4  
46 002D: 28 ADD A,R0  
47 002E: FC MOV R4,A  
48 002F: ED MOV A,R5  
49 0030: 34 00 ADDC A,#0  
50 0032: FD MOV R5,A  
51 0033: NOT_LESS:  
52 0033: B3 CPL C  
53 0034: CA XCH A,R2  
54 0035: 33 RLC A ;<-quotient 
55 0036: CB XCH A,R3  
56 0037: 33 RLC A  
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57 0038: CB XCH A,R3  
58 0039: CA XCH A,R2  
59 003A: D9 D9 DJNZ R1,LOOP  
60 003C: ED MOV A,R5  
61 003D: F5 F0 MOV B,A  
62 003F: EC MOV A,R4  
63 0040: 22 RET  
64 ;--- end of file --- 

Exercise 3.6: Perform division 10011BIN by 1001BIN using differential 
method II. 

Exercise 3.7: Write a subroutine for dividing a 1-byte BIN number by a 1-byte 
number using differential method II. 

Exercise 3.8*: Write a subroutine for dividing a 2-byte BIN number by a 
2-byte number using:  

a.  consecutive subtraction method,  
b.  differential method II. 

3.1.2 Working with Packed BCD 

Addition of two P-BCD numbers is done similarly to adding BIN numbers, 
i.e. with the ADD instruction. In some cases it is necessary to correct the 
result, which is caused by application of radix 2 arithmetic to decimal 
numbers with radix 10! The next example shows the value of the carry bit 
between nibbles stored in the auxiliary carry AC flag of the processor, 
whose setting after addition is one of the conditions indicating the need to 
correct the result. 

Example 3.13: Addition of two P-BCD numbers: 

a. b. 

84

+ 13

97

DEC

DEC

DEC

25

+ 37

62

DEC

DEC

DEC

10000100

+ 00010011

0 10010111

0

P BCD

P BCD

P BCD

00100101

+ 00110111

0 01011100

+ 00000110

0 01100010

0

P BCD

P BCD

P BCD

P BCD

P BCD
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c. d. e. 

94

+ 16

110

DEC

DEC

DEC

87

+ 19

106

DEC

DEC

DEC

85

+ 92

177

DEC

DEC

DEC

10010100

+ 00010110

0 10101010
+ 00000110

0 10110000
+ 01100000

1 00010000

0

P BCD

P BCD

P BCD

10000111

+ 00011001

0 10100000
+ 00000110

0 10100110
+ 01100000

1 00000110

1

P BCD

P BCD

P BCD

10000101

+ 10010010

1 00010111
+ 01100000

1 01110111

0

P BCD

P BCD

P BCD

Adding two P-BCD numbers in the 8051 CPU is done by the ADD 
instruction followed by the DA A instruction, which automatically recognizes 
the necessity of result correction checking the following condition: if A3...0>9 
or AC = 1, then A←A + 6 after which, if A7...4>9 or C = 1, then A←A + 60h. 
The flag C = 1 after correction indicates that the range for two-digit decimal 
number is exceeded, i.e. the result is greater than 99DEC. However, if C is 
treated as a hundredth digit, then the result is correct, i.e. >99DEC. 

Implementation in code for case (b): 

MOV A,#00100101B 

ADD A,#00110111B 

DA A ;result in A  

Exercise 3.9: Perform addition of P-BCD numbers: 

a. b. 

10010110

+ 00010101

? ????????

P BCD

P BCD

P BCD

10000100

+ 01110011

? ????????

P BCD

P BCD

P BCD

Subtraction of two P-BCD numbers is performed by SUBB instruction 
after which decimal correction of the result must be considered. 
Unfortunately, in the 8051 CPU instruction list there is no equivalent of 
DA A that can be used after subtraction. So, the only solution is to sub-
stitute it with an appropriate piece of code. The correction works according 
to the following rule: if AC = 1, then A←A − 6, followed by if C = 1, then 
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A←A − 60h. Setting the flag C = 1 after correction signals a negative 
(number below zero) result, which cannot be correctly interpreted in the 
sense of P-BCD. For this reason, avoid subtracting a larger number from a 
smaller number. Alternatively, the state of C = 1 may indicate the bor-
rowing of a 100DEC from the hundreds position, as presented in cases (d) 
and (e) of Example 3.14. In that case, the result is correct because a smaller 
number has been subtracted from a larger one. As in Example 31, the value 
of the AC flag is also signaled.  

Example 3.14: Subtraction of two P-BCD numbers: 

a. b. c. 

48

16

32

DEC

DEC

DEC

40

19

21

DEC

DEC

DEC

72

35

37

DEC

DEC

DEC

01001000

00010110

0 00110010

0

P BCD

P BCD

P BCD

01000000
00011001

00100111
00000110

0 00100001

1

P BCD

P BCD

P BCD

01110010
00110101

00111101
00000110

0 00110111

1

P BCD

P BCD

P BCD

d. e. 

102

61

41

DEC

DEC

DEC

107

89

18

DEC

DEC

DEC

00000010
01100001

1 10100001
01100000

0 01000001

0

P BCD

P BCD

P BCD

00000111
10001001

1 01111110
01100110

0 00011000

0

P BCD

P BCD

P BCD

The missing instruction ‘decimal correction after subtraction’ in 8051 
CPU is emulated programmatically by the DA_A_S subroutine presented 
below. It starts with a label of this name and ends with a RET instruction. 
Since it will be reused also in other parts of the book, the occurring 
instruction ‘LCALL DA_A_S’ will always refer to the subprogram in the 
following listing, showing result of subtraction for data from the case d). 

Implementation in code:  

• input: A – first number, B – second number,  
• output: A – result, C – borrow from ‘100’ position  
• exemplary value: 00000010P-BCD – 01100001P-BCD. 
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1 ;****************************************************************************** 
2 ; * Subtraction of P-BCD numbers * 
3 ****************************************************************************** 
4 0000: 74 02 MOV A,#02h ;first number {C,A}=102 P-BCD 
5 0002: 75 F0 61 MOV B,#61h ;second number 
6 0005: 12 00 0A LCALL SUB_PBCD 
7   ;result in A 
8 0008: 80 FE STOP: SJMP STOP  
9 ;---------------------------------------------------------------------------------------------------- 

10 000A: SUB_PBCD:  
11 000A: C3 CLR C  
12 000B: 95 F0 SUBB A,B  
13 000D: 12 00 11 LCALL DA_A_S  
14 0010: 22 RET  
15 ;---------------------------------------------------------------------------------------------------- 
16 0011: DA_A_S:  
17 ;emulation of ‘Decimal Adjust after Subtraction’ 
18 0011: 85 D0 F0 MOV B,PSW  
19 0014: 30 D6 03 JNB AC,SKIP  
20 0017: C3 CLR C  
21 0018: 94 06 SUBB A,#6  
22 001A: SKIP:  
23 001A: 85 F0 D0 MOV PSW,B  
24 001D: 50 03 JNC END  
25 001F: C3 CLR C  
26 0020: 94 60 SUBB A,#60h  
27 0022: END:  
28 0022: 22 RET  
29 ;--- end of file --- 

Exercise 3.10: Perform subtraction of P-BCD numbers: 

a. b. 
10010010
10000111

? ????????

P BCD

P BCD

P BCD

01100001
00100101

? ????????

P BCD

P BCD

P BCD

Multiplication and division of two P-BCD numbers are possible but com-
plicated and generally produces abundant code. In practice, it is 
more convenient to convert P-BCD numbers into their BIN equivalents, 
perform the multiplication or division, and convert the result back into 
P-BCD form. The relevant algorithms are presented in chapters 2.2 and 3.1.1, 
and their final combination is left to the reader as a do-it-yourself task. 
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Exercise 3.11*: Write a subroutine for multiplication of two P-BCD numbers. 

Exercise 3.12*: Write a subroutine for division of two P-BCD numbers. 

3.1.3 Working with Unpacked BCD 

Addition of two UP-BCD numbers is done similarly to P-BCD, adding the 
lower bytes with the ADD instruction and the higher bytes with the ADDC 
instruction, followed by the obligatory DA A ‘decimal adjustment’ instruc-
tion. Sometimes, a carry-over bit to the higher nibble of one or both bytes of 
the result may occur, resulting in an incorrect number in the UP-BCD sense. 
In such a case, the value F0h should be added to such a byte, considering the 
carry-over from the lower byte in operations on multi-byte numbers. 

Example 3.15: Addition of two UP-BCD numbers: 

a. b. 
84

+ 13

97

DEC

DEC

DEC

25
+ 37

62

DEC

DEC

DEC

00001000 00000100

+ 00000001 00000011

0 00001001 00000111

0 0

UP BCD

UP BCD

UP BCD

00000010 00000101
+ 00000011 00000111

0 00000101 00001100
+ 00000000 11110110

0 00000110 00000010

0 0

UP BCD

UP BCD

UP BCD

c. d. 
94

+ 16

110

DEC

DEC

DEC

79
+ 98

177

DEC

DEC

DEC

00001001 00000100
+ 00000001 00000110

0 00001010 00001010
+ 11110110 11110110

1 00000001 00000000

0 0

UP BCD

UP BCD

UP BCD

00000111 00001001
+ 00001001 00001000

0 00010000 00010001
+ 11110110 11110110

1 00000111 00000111

1 1

UP BCD

UP BCD

UP BCD

Implementation in code:  

• input: R1 – higher byte of first number, R0 – lower byte of first number, 
R3 – higher byte of second number, R2 – lower byte of second number, 

78 Computer Arithmetic in Practice 



• output: R1 – higher byte of result, R0 – lower byte of result,  
• exemplary value: 00001001 00000100UP-BCD + 00000001  

00000110UP-BCD.    

1 ;************************************************************************ 
2 ;* Addition of UP-BCD numbers * 
3 ;************************************************************************ 
4 0000: 79 09 MOV R1,#09h  
5 0002: 78 04 MOV R0,#04h ;first number 

{R1,R0}=94 
UP-BCD 

6 0004: 7B 01 MOV R3,#01h  
7 0006: 7A 06 MOV R2,#06h ;second number 

{R3,R2}=16 
UP-BCD 

8 0008: 12 00 0D LCALL ADD_UPBCD  
9   ;result in {R1,R0} 

10 000B: 80 FE STOP: SJMP STOP  
11 ;---------------------------------------------------------------------------------------------- 
12 000D: ADD_UPBCD:  
13 000D: E8 MOV A,R0  
14 000E: 2A ADD A,R2  
15 000F: D4 DA A  
16 0010: B4 09 02 CJNE A,#9,NOT_THE_SAME  
17 0013: 80 05 SJMP SKIP  
18 0015: NOT_THE_SAME:  
19 0015: 40 03 JC SKIP  
20 0017: 24 F0 ADD A,#0F0h  
21 0019: 0B INC R3  
22 001A: SKIP:  
23 001A: F8 MOV R0,A  
24 001B: E9 MOV A,R1  
25 001C: 2B ADD A,R3  
26 001D: D4 DA A  
27 001E: B4 09 02 CJNE A,#9,SKIP1  
28 0021: 80 04 SJMP END  
29 0023: SKIP1:  
30 0023: 40 02 JC END  
31 0025: 24 F0 ADD A,#0F0h  
32 0027: END:  
33 0027: F9 MOV R1,A  
34 0028: 22 RET  
35 ;--- end of file ---  
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Exercise 3.13: Perform addition of two UP-BCD numbers: 

a. b. 
00001001 00000100

+ 00000101 00000010

? ???????? ????????

UP BCD

UP BCD

UP BCD

00001001 00000111
+ 00000101 00001000

? ???????? ????????

UP BCD

UP BCD

UP BCD

Subtraction of two UP-BCD numbers requires a correction to be per-
formed on the higher nibble of the result, just as after addition. Due to lack 
of a proper correction instruction after subtraction, the DA_A_S subroutine 
can be used as previously. Unfortunately, the correction algorithm, ac-
cording to which the subroutine works, subtracts 60HEX, among others, 
while it is required to subtract F0HEX for UP-BCD numbers. After executing 
the DA_A_S subroutine, the difference between F0HEX and 60HEX, i.e. 90 
HEX, must be subtracted additionally.  

Example 3.16: Subtraction of two UP-BCD numbers: 

a. b. 
48
16

32

DEC

DEC

DEC

72
35

37

DEC

DEC

DEC

00000100 00001000
00000001 00000110

0 00000011 00000010

0 0

UP BCD

UP BCD

UP BCD

00000111 00000010
00000011 00000101

0 00000011 11111101
00000000 11110110

0 00000011 00000111

0 0

UP BCD

UP BCD

UP BCD

c. d. 
40
19

21

DEC

DEC

DEC

102
61

41

DEC

DEC

DEC

00000100 00000000
00000001 00001001

0 00000010 11110111
00000000 11110110

0 00000010 00000001

0 1

UP BCD

UP BCD

UP BCD

00000000 00000010
00000110 00000001

1 11111010 00000001
11110110 00000000

0 00000100 00000001

0 0

UP BCD

UP BCD

UP BCD
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Implementation in code:  

• input: R1 – higher byte of first number, R0 – lower byte of first number,  
• R3 – higher byte of second number, R2 – lower byte of second number,  
• output: R1 – higher byte of result, R0 – lower byte of result,  
• exemplary value: 00000100 00001000UP-BCD – 00000001  

00000110UP-BCD. 

1 ;************************************************************************* 
2 ;* Subtraction of UP-BCD numbers * 
3 ************************************************************************** 
4 0000: 79 04 MOV R1,#04h  
5 0002: 78 08 MOV R0,#08h ;first number {R1,R0} 

=48 UP-BCD 
6 0004: 7B 01 MOV R3,#01h  
7 0006: 7A 06 MOV R2,#06h ;second number {R3,R2} 

=16 UP-BCD 
8 0008: 12 00 0D LCALL SUB_UPBCD  
9   ;result in {R1,R0} 

10 000B: 80 FE STOP: SJMP STOP  
11 ;----------------------------------------------------------------------------------------------- 
12 000D: SUB_UPBCD:  
13 000D: E8 MOV A,R0  
14 000E: C3 CLR C  
15 000F: 9A SUBB A,R2  
16 0010: C0 D0 PUSH PSW  
17 0012: 12 00 31 LCALL DA_A_S  
18 0015: B4 09 02 CJNE A,#9,NOT_THE_SAME  
19 0018: 80 04 SJMP SKIP1  
20 001A: NOT_THE_SAME:  
21 001A: 40 02 JC SKIP1  
22 001C: 94 90 SUBB A,#90h  
23 001E: SKIP1:  
24 001E: F8 MOV R0,A  
25 001F: E9 MOV A,R1  
26 0020: D0 D0 POP PSW  
27 0022: 9B SUBB A,R3  
28 0023: 12 00 31 LCALL DA_A_S  
29 0026: B4 09 02 CJNE A,#9,NOT_THE_SAME1  
30 0029: 80 04 SJMP END1  
31 002B: NOT_THE_SAME1:  
32 002B: 40 02 JC END1  
33 002D: 94 90 SUBB A,#90h  
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34 002F: END1:  
35 002F: F9 MOV R1,A  
36 0030: 22 RET  
37 ;------------------------------------------------------------------------------ 
38 0031: DA_A_S:  
39  ;emulation of ‘Decimal Adjust after Subtraction’ 
40 0031: 85 D0 F0 MOV B,PSW  
41 0034: 30 D6 03 JNB AC,SKIP  
42 0037: C3 CLR C  
43 0038: 94 06 SUBB A,#6  
44 003A: SKIP:  
45 003A: 85 F0 D0 MOV PSW,B  
46 003D: 50 03 JNC END  
47 003F: C3 CLR C  
48 0040: 94 60 SUBB A,#60h  
49 0042: END:  
50 0042: 22 RET  
51 ;--- end of file --- 

Exercise 3.14: Perform addition of UP-BCD numbers: 

a. b. 
00001001 00000001
00000110 00000011

? ???????? ????????

UP BCD

UP BCD

UP BCD

00000101 00000110
00000100 00000010

? ???????? ????????

UP BCD

UP BCD

UP BCD

Multiplication/division of two UP-BCD numbers is also troublesome. In 
practice, it is more convenient to convert UP-BCD numbers into their BIN 
equivalents, perform the multiplication/division and convert the result back 
into UP-BCD form. The corresponding algorithms are presented in sub-
chapters 2.2 and 3.1.1.  

Exercise 3.15*: Write a subroutine of multiplication of UP-BCD numbers. 

Exercise 3.16*: Write a subroutine of division of UP-BCD numbers. 

3.1.4 Working with Chars in ASCII 

Addition of two numbers in ASCII code is performed similarly to UP-BCD 
format. In order not to introduce new rules for correcting the result, it is 
sufficient to clear the higher nibble of the adder before adding. The further 
procedure is the same as for UP-BCD. 
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Example 3.17: Addition of numbers in ASCII code: 

a. b. 
84

+ 13

97

DEC

DEC

DEC

25
+ 37

62

DEC

DEC

DEC

00111000 00110100

00001000 00000100
+ 00110001 00110011

0 00111001 00110111

ASCII

ASCII

ASCII

00110010 00110101

00000010 00000101
+ 00110011 00110111

0 00110101 00111100
+ 00000000 11110110
0 00110110 00110010

ASCII

ASCII

ASCII

c. d. 
94

+ 16

110

DEC

DEC

DEC

79
+ 98

177

DEC

DEC

DEC

00111001 00110100

00001001 00000100
+ 00110001 00110110

0 00111010 00111010
+ 11110110 11110110
1 00110001 00110000

ASCII

ASCII

ASCII

00110111 00111001

00000111 00001001
+ 00111001 00111000

0 01000000 01000001
+ 11110110 11110110
1 00110111 00110111

ASCII

ASCII

ASCII

The following subroutine is a modified version of UP-BCD addition, with the 
conversion from ASCII to UP-BCD is made easy by using an extra ANL A,#0Fh 
instruction.  

Implementation in code:  

• input: R1 – higher byte of first number, R0 – lower byte of first 
number, R3 – higher byte of second number, R2 – lower byte of 
second number,  

• output: R1 – higher byte of result, R0 – lower byte of result,  
• exemplary value: 00111001 00110100ASCII + 00110001  

00110110ASCII. 

1 ;************************************************************************* 
2 ;* Addition of ASCII numbers * 
3 ;************************************************************************* 
4 0000: 79 39 MOV R1,#39h  
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5 0002: 78 34 MOV R0,#34h ;first number {R1,R0}=94  
ASCII 

6 0004: 7B 31 MOV R3,#31h  
7 0006: 7A 36 MOV R2,#36h ;second number  

{R3,R2}=16 ASCII 
8 0008: 12 00 0D LCALL ASCII_ADD  
9   ;result in {R1,R0} 

10 000B: 80 FE STOP: SJMP STOP  
11 ;----------------------------------------------------------------------------------------------- 
12 000D: ASCII_ADD:  
13 000D: E9 MOV A,R1  
14 000E: 54 0F ANL A,#0Fh  
15 0010: F9 MOV R1,A  
16 0011: E8 MOV A,R0  
17 0012: 54 0F ANL A,#0Fh  
18 0014: 2A ADD A,R2  
19 0015: D4 DA A  
20 0016: B4 09 02 CJNE 

A,#9,NOT_THE_SAME  
21 0019: 80 05 SJMP SKIP  
22 001B: NOT_THE_SAME:  
23 001B: 40 03 JC SKIP  
24 001D: 24 F0 ADD A,#0F0h  
25 001F: 0B INC R3  
26 0020: SKIP:  
27 0020: F8 MOV R0,A  
28 0021: E9 MOV A,R1  
29 0022: 2B ADD A,R3  
30 0023: D4 DA A  
31 0024: B4 09 02 CJNE 

A,#9,NOT_THE_SAME1  
32 0027: 80 04 SJMP END  
33 0029: NOT_THE_SAME1:  
34 0029: 40 02 JC END  
35 002B: 24 F0 ADD A,#0F0h  
36 002D: END:  
37 002D: F9 MOV R1,A  
38 002E: 22 RET  
39 ;--- end of file --- 

Exercise 3.17: Perform addition of numbers in ASCII code: 

a. b. 
00110011 00110010

+ 00110111 00110011

? ???????? ????????

ASCII

ASCII

ASCII

00110101 00110110
+ 00110111 00110011

? ???????? ????????

ASCII

ASCII

ASCII
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Subtraction of two numbers in ASCII code is performed similarly to UP- 
BCD. To avoid new rules for correcting the result, just clear the higher 
nibble of the second number before the subtraction. The further procedure 
is the same as for UP-BCD.  

Example 3.18: Subtraction of two numbers in ASCII code: 

a. b. 
48
16

32

DEC

DEC

DEC

72
35

37

DEC

DEC

DEC

g

00110100 00111000
00110001 00110110

0 00110100 00111000
00000001 00000110

0 00110011 00110010

ASCII

ASCII

ASCII

ASCII

00110111 00110010
00110011 00110101

0 00110111 00110010
00000011 00000101

0 00110100 00101101
00000000 11110110

0 00110011 00110111

ASCII

ASCII

ASCII

ASCII

c. d. 
40
19

21

DEC

DEC

DEC

102
61

41

DEC

DEC

DEC

00110100 00110000
00110001 00111001

00110100 00110000
00000001 00001001

0 00110011 00100111
00000000 11110110

0 00110010 00110001

ASCII

ASCII

ASCII

ASCII

00110000 00110010
00110110 00110001

00110000 00110010
00000110 00000001

1 00101010 00110001
11110110 00000000

0 00110100 00110001

ASCII

ASCII

ASCII

ASCII

Implementation in code:  

• input: R1 – higher byte of first number, R0 – lower byte of first 
number,  

• R3 – higher byte of second number, R2 – lower byte of second 
number,  

• output: R1 – higher byte of result, R0 – lower byte of result,  
• exemplary value: 00110100 00110000ASCII + 00110001  

00111001ASCII. 
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1 ;***************************************************************************** 
2 ;* Subtraction of ASCII numbers * 
3 ****************************************************************************** 
4 0000: 79 34 MOV R1,#34h  
5 0002: 78 30 MOV R0,#30h first number 

{R1,R0}=40 ASCII 
6 0004: 7B 31 MOV R3,#31h  
7 0006: 7A 39 MOV R2,#39h ;second number 

{R3,R2}=19 ASCII 
8 0008: 12 00 0D LCALL ASCII_SUB  
9   ;result in {R1,R0} 

10 000B: 80 FE STOP: SJMP STOP  
11 ;---------------------------------------------------------------------------------------------------- 
12 000D: ASCII_SUB:  
13 000D: EB MOV A,R3  
14 000E: 54 0F ANL A,#0Fh  
15 0010: FB MOV R3,A  
16 0011: EA MOV A,R2  
17 0012: 54 0F ANL A,#0Fh  
18 0014: FA MOV R2,A  
19 0015: E8 MOV A,R0  
20 0016: C3 CLR C  
21 0017: 9A SUBB A,R2  
22 0018: 12 00 37 LCALL DA_A_S  
23 001B: B4 30 02 CJNE A,#30h,NOT_THE_SAME  
24 001E: 80 05 SJMP SKIP1  
25 0020: NOT_THE_SAME:  
26 0020: 50 03 JNC SKIP1  
27 0022: C3 CLR C  
28 0023: 94 F0 SUBB A,#0F0h  
29 0025: SKIP1:  
30 0025: F8 MOV R0,A  
31 0026: E9 MOV A,R1  
32 0027: 9B SUBB A,R3  
33 0028: 12 00 37 LCALL DA_A_S  
34 002B: B4 30 02 CJNE A,#30h,NOT_THE_SAME1  
35 002E: 80 05 SJMP END1  
36 0030: NOT_THE_SAME1:  
37 0030: 50 03 JNC END1  
38 0032: C3 CLR C  
39 0033: 94 F0 SUBB A,#0F0h  
40 0035: END1:  
41 0035: F9 MOV R1,A  
42 0036: 22 RET  
43    
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44 ;------------------------------------------------------------------------------------------------- 
45 0037: DA_A_S:  
46  ;emulation of ‘Decimal Adjust after Subtraction’ 
47 0037: 85 D0 F0 MOV B,PSW  
48 003A: 30 D6 03 JNB AC,SKIP  
49 003D: C3 CLR C  
50 003E: 94 06 SUBB A,#6  
51 0040: SKIP:  
52 0040: 85 F0 D0 MOV PSW,B  
53 0043: 50 03 JNC END  
54 0045: C3 CLR C  
55 0046: 94 60 SUBB A,#60h  
56 0048: END:  
57 0048: 22 RET  
58 ;--- end of file ---  

Exercise 3.18: Perform subtraction of numbers in ASCII code: 

a. b. 
00111001 00110010
00110111 00110011

? ???????? ????????

ASCII

ASCII

ASCII

00110101 00110110
00110111 00110010

? ???????? ????????

ASCII

ASCII

ASCII

Multiplying and dividing two numbers in ASCII code is complicated. In 
practice, it is more convenient to convert ASCII numbers into their BIN 
equivalents, perform the multiplication or division, and convert the result 
back into ASCII code. The corresponding algorithms are presented in 
chapters 2.2 and 3.1.1.  

Exercise 3.19*: Write a subroutine of multiplication of numbers in ASCII 
code. 

Exercise 3.20*: Write a subroutine of division of numbers in ASCII code. 

3.2 OPERATIONS ON SIGNED NUMBERS 

3.2.1 Working with Sign-magnitude 

Addition of two SM numbers requires consideration of the sign of both 
numbers. One of two cases may occur: 
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• if the signs of the two numbers match, then the modulus of the result 
is the sum of the moduli of the numbers and the sign of the result is 
equal to their sign;  

• if the signs of both numbers differ, then the module of the result is 
determined by subtracting from the module of the larger number the 
module of the smaller number and the sign of the result is equal to the 
sign of the larger number. 

These rules are simply illustrated in Table 3.1, where A is the first number, 
B the second number, S is the sum, i.e. S = A + B and ‘/’ mark means the sign 
inversion. 

Example 3.19: Addition of two SM numbers: 

a.  b.  
( 3)

+ ( 5)

8

DEC

DEC

DEC

1 0011
+ 1 0101

1 1000

SM

SM

SM

( + 3)
+ ( + 5)

+8

DEC

DEC

DEC

00011
+ 00101

01000

SM

SM

SM

c.    
( 3)

+ ( + 5)

+2

DEC

DEC

DEC

1 0011
+ 00101

?

SM

SM A < B

0101
0011

0 0010SM

d.    
( 5)

+ ( + 3)

2

DEC

DEC

DEC

1 0101
+ 00011

?

SM

SM A > B

0101
0011

1 0010SM

Implementation in code:  

• input: A – first number, B – second number,  
• output: A – result, OV – result out of the range,  
• exemplary value: 10001100BSM + 10010011B SM. 

Table 3.1 Rules for Adding Numbers in the Sign-magnitude     

Sign of A = sign of B |S|=|A|+|B| 
sign of S = sign of A  

sign of A ≠ sign of B If |A| ≥ |B| then: 
|S|=|A| – |B| 

sign of S = sign of A 

if |A|<|B| then: 
|S|=|B| – |A| 

sign of S = /sign of A    
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1 ;**************************************************************************** 
2 ;* Addition of SM numbers * 
3 ;**************************************************************************** 
4 008C n EQU 10001100B ;−12 SM 
5 0093 m EQU 10010011B ;−19 SM 
6    
7 0000: 74 8C MOV A,#n ;first number 
8 0002: 75 F0 93 MOV B,#m ;second number 
9 0005: 12 00 0A LCALL SM_ADD  

10   ;result in A 
11 0008: 80 FE STOP: SJMP STOP  
12 ;-------------------------------------------------------------------------------------------------- 
13 000A: SM_ADD:  
14 000A: A2 E7 MOV C,ACC.7  
15 000C: 92 D5 MOV PSW.5,C ;sign of n 
16 000E: C0 E0 PUSH ACC  
17 0010: 65 F0 XRL A,B  
18 0012: A2 E7 MOV C,ACC.7 ;sign of m 
19 0014: 53 F0 7F ANL B,#01111111B ;|m| 
20 0017: D0 E0 POP ACC  
21 0019: 54 7F ANL A,#01111111B ;|n| 
22 001B: 50 18 JNC SIGN_THE_SAME  
23 001D: B5 F0 02 CJNE A,B,SKIP  
24 0020: 80 02 SJMP NOT_LESS  
25 0022: SKIP:  
26 0022: 40 07 JC LESS  
27 0024: NOT_LESS:  
28 0024: C3 CLR C  
29 0025: 95 F0 SUBB A,B  
30 0027: A2 D5 MOV C,PSW.5  
31 0029: 80 12 SJMP END  
32 002B: LESS:  
33 002B: C3 CLR C  
34 002C: C5 F0 XCH A,B  
35 002E: 95 F0 SUBB A,B  
36 0030: A2 D5 MOV C,PSW.5  
37 0032: B3 CPL C  
38 0033: 80 08 SJMP END  
39 0035: SIGN_THE_SAME:  
40 0035: 25 F0 ADD A,B  
41 0037: A2 E7 MOV C,ACC.7  
42 0039: 92 D2 MOV OV,C  
43 003B: A2 D5 MOV C,PSW.5  
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44 003D: END:  
45 003D: 92 E7 MOV ACC.7,C  
46 003F: 22 RET  
47 ;--- end of file ---  

Carry-over to the sign bit of the result (here the highest bit of the accu-
mulator) of adding numbers with the same signs means exceeding the range 
for single-byte numbers in SM. This case is indicated by setting the OV flag. 
The result in accumulator should be discarded then! 

Exercise 3.21: Perform addition of SM numbers: 

a. b. 
1 100

+ 1 111

????

SM

SM

SM

0100
+ 0111

????

SM

SM

SM

c. d. 
1 100

+ 0111

????

SM

SM

SM

0100
+ 1 111

????

SM

SM

SM

The case of different signs can be solved in another way by using com-
plements. The negative number is replaced by its 1’s or 2’s complement. In 
next step the addition is performed, and the result is corrected according to 
the rules for using complements, described in chapter 3.1 – look for 
‘Subtraction of two BIN numbers by means of complements’.  

Example 3.20: Addition of two SM numbers for case of different signs by using 
complements:  

a.  

( 3)
+ ( + 5)

+2

1 0011
+ 00101

?

1100
+ 0101
1 0001
+ 0001
0 0010

DEC

DEC

DEC

SM

SM

1 s

SM

or 

1101
+ 0101
1 0010

0 0010

U2

SM

b.  

( + 3)
+ ( 5)

2

00011
+ 1 0101

?

0011
+ 1010

0 1101

1 0010

DEC

DEC

DEC

SM

SM
U1

SM

or 

0011
+ 1011

0 1110

0001
+ 0001
1 0010

2 s

SM
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Implementation in code using 1’s complement:  

• input: A – first number, B – second number,  
• output: A – result, OV – result out of the range,  
• exemplary value: 10001100SM + 10010011SM. 

1 ;***************************************************************************** 
2 ;* Addition of SM numbers by 1’s complement * 
3 ;***************************************************************************** 
4 008C n EQU 10001100B ;−12 SM 
5 0093 m EQU 10010011B ;−19 SM 
6    
7 0000: 74 8C MOV A,#n ;first number 
8 0002: 75 F0 93 MOV B,#m ;second number 
9 0005: 12 00 0A LCALL SM_ADD_BY1S  

10   ;result in A 
11 0008: 80 FE STOP: SJMP STOP  
12 ;---------------------------------------------------------------------------------------------------- 
13 000A: SM_ADD_BY1S:  
14 000A: A2 E7 MOV C,ACC.7  
15 000C: 92 D5 MOV PSW.5,C ;sign of n 
16 000E: C0 E0 PUSH ACC  
17 0010: 65 F0 XRL A,B  
18 0012: A2 E7 MOV C,ACC.7  
19 0014: D0 E0 POP ACC  
20 0016: 50 20 JNC SIGN_THE_SAME  
21 0018: NOT_THE_SAME:  
22 0018: C5 F0 XCH A,B  
23 001A: 30 E7 03 JNB ACC.7,POSITIVE_M  
24 001D: F4 CPL A  
25 001E: B2 D1 CPL PSW.1  
26 0020: POSITIVE_M:  
27 0020: C5 F0 XCH A,B  
28 0022: 30 E7 03 JNB ACC.7,POSITIVE_N  
29 0025: F4 CPL A  
30 0026: B2 D1 CPL PSW.1  
31 0028: POSITIVE_N:  
32 0028: 30 D1 0D JNB PSW.1,SIGN_THE_SAME  
33 002B: 25 F0 ADD A,B  
34 002D: 30 E7 05 JNB ACC.7,SKIP1  
35 0030: 04 INC A  
36 0031: B2 E7 CPL ACC.7  
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37 0033: 80 0D SJMP END  
38 0035: SKIP1:  
39 0035: F4 CPL A  
40 0036: 80 0A SJMP END  
41 0038: SIGN_THE_SAME:  
42 0038: 25 F0 ADD A,B  
43 003A: A2 E7 MOV C,ACC.7  
44 003C: 92 D2 MOV OV,C  
45 003E: A2 D5 MOV C,PSW.5  
46 0040: 92 E7 MOV ACC.7,C  
47 0042: END:  
48 0042: 22 RET  
49 ;--- end of file ---  

Below code presents the implementation of addition by using 2’s complement. 
Implementation in code using 2’s complement:  

• input: A – first number, B – second number,  
• output: A – result, OV – result out of the range,  
• exemplary value: 10001100SM + 10010011SM. 

1 ;**************************************************************************** 
2 ;* Addition of SM numbers by 2’s complement * 
3 ;**************************************************************************** 
4 008C n EQU 10001100B ;−12 SM 
5 0093 m EQU 10010011B ;−19 SM 
6    
7 0000: 74 8C MOV A,#n ;first number 
8 0002: 75 F0 93 MOV B,#m ;second number 
9 0005: 12 00 0A LCALL SM_ADD_BY2S  

10   ;result in A 
11 0008: 80 FE STOP: SJMP STOP  
12 ;-------------------------------------------------------------------------------------------------- 
13 000A: SM_ADD_BY2S:  
14 000A: A2 E7 MOV C,ACC.7  
15 000C: 92 D5 MOV PSW.5,C ;sign of n 
16 000E: C0 E0 PUSH ACC  
17 0010: 65 F0 XRL A,B  
18 0012: A2 E7 MOV C,ACC.7  
19 0014: D0 E0 POP ACC  
20 0016: 50 22 JNC SIGN_THE_SAME  
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21 0018: NOT_THE_SAME:  
22 0018: C5 F0 XCH A,B  
23 001A: 30 E7 04 JNB ACC.7,POSITIVE_M  
24 001D: F4 CPL A  
25 001E: 04 INC A  
26 001F: B2 D1 CPL PSW.1  
27 0021: POSITIVE_M:  
28 0021: C5 F0 XCH A,B  
29 0023: 30 E7 04 JNB ACC.7,POSITIVE_N  
30 0026: F4 CPL A  
31 h0027: 04 INC A  
32 0028: B2 D1 CPL PSW.1  
33 002A: POSITIVE_N:  
34 002A: 30 D1 0D JNB PSW.1,SIGN_THE_SAME  
35 002D: 25 F0 ADD A,B  
36 002F: 30 E7 04 JNB ACC.7,SKIP1  
37 0032: B2 E7 CPL ACC.7  
38 0034: 80 0E SJMP END  
39 0036: SKIP1:  
40 0036: F4 CPL A  
41 0037: 04 INC A  
42 0038: 80 0A SJMP END  
43 003A: SIGN_THE_SAME:  
44 003A: 25 F0 ADD A,B  
45 003C: A2 E7 MOV C,ACC.7  
46 003E: 92 D2 MOV OV,C  
47 0040: A2 D5 MOV C,PSW.5  
48 0042: 92 E7 MOV ACC.7,C  
49 0044: END:  
50 0044: 22 RET  
51 ;--- end of file ---  

Subtraction of two SM numbers requires consideration of the sign of both 
numbers. One of two cases may occur:  

• if the signs of the two numbers differ, then the modulus of the result is 
the sum of the moduli of the numbers and the sign of the result is 
equal to their sign;  

• if the signs of both numbers match, then the module of the result is 
determined by subtracting from the module of the larger number the 
module of the smaller number and the sign of the result is equal to the 
sign of the larger number. 
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These rules are simply illustrated in Table 3.2, where A is the first number, 
B the second number, D is the difference, i.e. D = A − B and ‘/’ mark means 
the sign inversion.  

Example 3.21: Subtraction of two SM numbers: 

a. b. 
( + 3)
( 5)

+8

DEC

DEC

DEC

00011
1 0101

01000

SM

SM

SM

( 3)
( + 5)

8

DEC

DEC

DEC

1 0011
+ 00101

1 1000

SM

SM

SM

c.    
( + 3)
( + 5)

2

DEC

DEC

DEC

00011
00101

?

SM

SM A < B

0101
0011

1 0010SM

d.    
( 5)
( 3)

2

DEC

DEC

DEC

1 0101
1 0011

?

SM

SM A > B

0101
0011

1 0010SM

Implementation in code:  

• input: A – first number, B – second number,  
• output: A – result, OV – result out of the range,  
• exemplary value: 10001100SM – 10010011SM. 

1 ;*************************************************************************** 
2 ;* Subtraction of SM numbers * 
3 ;*************************************************************************** 
4 008C n EQU 10001100B ;−12 SM 
5 0093 m EQU 10010011B ;−19 SM 
6    
7 0000: 74 8C MOV A,#n ;first number 

Table 3.2 Rules for Subtracting Numbers in the Sign-magnitude     

sign of A ≠ sign of B R=|A|+|B| 
sign of D = sign of A  

sign of A = sign of B if |A| ≥ |B| then: 
|D|=|A| – |B| 

sign of D = sign of A 

if |A|< |B} then: 
|R|=|B| – |A| 

sign R = /sign of A 
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8 0002: 75 F0 93 MOV B,#m ;second number 
9 0005: 12 00 0A LCALL SM_SUB  

10   ;result in A 
11 0008: 80 FE STOP: SJMP STOP  
12 ;--------------------------------------------------------------------------------------------------- 
13 000A: SM_SUB:  
14 000A: A2 E7 MOV C,ACC.7  
15 000C: 92 D5 MOV PSW.5,C ;sign of n 
16 000E: C0 E0 PUSH ACC  
17 0010: 65 F0 XRL A,B  
18 0012: A2 E7 MOV C,ACC.7 ;sign of m 
19 0014: 53 F0 7F ANL B,#01111111B ;|m| 
20 0017: D0 E0 POP ACC  
21 0019: 54 7F ANL A,#01111111B ;|n| 
22 001B: 40 18 JC NOT_THE_SAME  
23 001D: SIGN_THE_SAME:  
24 001D: B5 F0 02 CJNE A,B,SKIP  
25 0020: 80 02 SJMP NOT_LESS  
26 0022: SKIP:  
27 0022: 40 07 JC LESS  
28 0024: NOT_LESS:  
29 0024: C3 CLR C  
30 0025: 95 F0 SUBB A,B  
31 0027: A2 D5 MOV C,PSW.5  
32 0029: 80 12 SJMP END  
33 002B: LESS:  
34 002B: C3 CLR C  
35 002C: C5 F0 XCH A,B  
36 002E: 95 F0 SUBB A,B  
37 0030: A2 D5 MOV C,PSW.5  
38 0032: B3 CPL C  
39 0033: 80 08 SJMP END  
40 0035: NOT_THE_SAME:  
41 0035: 25 F0 ADD A,B  
42 0037: A2 E7 MOV C,ACC.7  
43 0039: 92 D2 MOV OV,C  
44 003B: A2 D5 MOV C,PSW.5  
45 003D: END:  
46 003D: 92 E7 MOV ACC.7,C  
47 003F: 22 RET  
48 ;--- end of file ---  
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This time, the carry-over to the sign bit of the result (the highest bit of the 
accumulator) of subtraction of two numbers with different signs means 
exceeding the range for single-byte numbers in SM. This case is indicated by 
setting the OV flag. The result in the accumulator must be discarded now! 

Exercise 3.22: Perform subtraction of SM numbers: 

a. b. 
1 100
1 111

????

SM

SM

SM

0100
0111

????

SM

SM

SM

c. d. 
1 100
0111

????

SM

SM

SM

0100
1 111

????

SM

SM

SM

Multiplication of two SM numbers is performed similarly as to BIN 
numbers. The number modules are multiplied, the result bit is calculated as 
an XOR function of the number sign bits. The result of single-byte number 
multiplication fits into two bytes. 

Implementation in code:  

• input: A – multiplicand, B – multiplier,  
• output: B – higher byte of result, A – lower byte of result,  
• exemplary value: 10001100SM ∗ 10010011SM. 

1 ;**************************************************************************** 
2 ;* Multiplication of SM numbers * 
3 ;**************************************************************************** 
4 008C n EQU 10001100B ;−12 SM 
5 0093 m EQU 10010011B ;−19 SM 
6    
7 0000: 74 8C MOV A,#n ;multiplicand 
8 0002: 75 F0 93 MOV B,#m ;multiplier 
9 0005: 12 00 0A LCALL SM_MUL  

10   ;result in {B,A} 
11 0008: 80 FE STOP: SJMP STOP  
12 ;--------------------------------------------------------------------------------------------------- 
13 000A: SM_MUL:  
14 000A: C0 E0 PUSH ACC  
15 000C: 65 F0 XRL A,B  
16 000E: A2 E7 MOV C,ACC.7  
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17 0010: 92 D5 MOV PSW.5,C  
18 0012: 53 F0 7F ANL B,#01111111B  
19 0015: D0 E0 POP ACC  
20 0017: 54 7F ANL A,#01111111B ;|n| 
21 0019: A4 MUL AB  
22 001A: A2 D5 MOV C,PSW.5  
23 001C: 92 F7 MOV B.7,C ;sign of result 
24 001E: 22 RET  
25 ;--- end of file ---  

The division of two SM numbers is done similarly to the division of BIN 
numbers. The modules of number are divided and the sign bit of result is 
calculated as an XOR function of the sign bits of both numbers. The result 
of dividing single-byte numbers consists of a quotient byte and a remainder 
byte. 

Implementation in code:  

• input number: A – dividend, B – divisor,  
• output number: A – quotient, B – reminder, OV – division by zero,  
• exemplary value: 00010100SM/10010000SM. 

1 ;************************************************************************** 
2 ;* Division of SM * 
3 ;************************************************************************** 
4 0014 n EQU 00010100B ;+20 SM 
5 0090 m EQU 10010000B ;−16 SM 
6    
7 0000: 74 14 MOV A,#n ;dividend 
8 0002: 75 F0 90 MOV B,#m ;divisor 
9 0005: 12 00 0A LCALL SM_DIV 

10   ;result in A-quotient 
11   ;B-reminder 
12 0008: 80 FE STOP: SJMP STOP  
13 ;------------------------------------------------------------------------------------------------ 
14 000A: SM_DIV:  
15 000A: C0 E0 PUSH ACC  
16 000C: 65 F0 XRL A,B  
17 000E: A2 E7 MOV C,ACC.7  
18 0010: 92 D5 MOV PSW.5,C  
19 0012: 53 F0 7F ANL B,#01111111B ;|m| 
20 0015: D0 E0 POP ACC  
21 0017: 54 7F ANL A,#01111111B ;|n| 
22 0019: 84 DIV AB  
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23 001A: A2 D5 MOV C,PSW.5  
24 001C: 92 E7 MOV ACC.7,C ;sign of result 
25 001E: 22 RET  
26 ;--- end of file ---  

An attempt to divide by 0 is signaled by setting the OV flag. The contents of 
registers A and B are then meaningless. 

3.2.2 Working with 2’s Complement 

Compared to other systems for representing signed numbers 2’s comple-
ment has the advantage that the basic arithmetic operations of addition, 
subtraction and multiplication are identical to those for unsigned binary 
numbers. It is true as long as the inputs are represented in the same number 
of bits as the output, and result can be expressed properly in this number of 
bits. This property makes the hardware or software implementation sim-
pler, especially for higher-precision arithmetic. 

Addition of two 2’s complement numbers is done similarly as for BINs by 
adding the sign bits as well. The carry-over bit must be obligatorily discarded. 
If the range is exceeded for numbers in 2’s, the processor’s OV flag is set. 

In the next example, the carry bit was crossed out and the carry value 
from the two highest bits was distinguished, based on which the processor 
determines the state of the OV flag. 

Example 3.22: Addition of two 2’s numbers: 

a. b. 

(+7)

+ ( 4)

+3

DEC

DEC

DEC

(+3)

+ (+6)

+9

DEC

DEC

DEC

0111
+ 1100

1 0011

11

2 s

2 s

2 s

0011
+ 0110

0 1001

01

2 s

2 s

2 s

In case (b), a result was out of the range assuming 4-bit 2’s numbers. To get the 
correct result, repeat the operation for 5-bit numbers as below: 

b.* 

00011
+ 00110

0 01001

00

2 s

2 s

2 s
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Exercise 3.23: Perform addition of 2’s numbers: 

a. b. 
1001

+ 1111

????

2 s

2 s

2 s

1011
+ 0110

????

2 s

2 s

2 s

Subtraction of two 2’s complement numbers is done similarly as for BINs 
by subtracting the sign bits as well. The borrow bit must be obligatorily 
discarded. If the range is exceeded for numbers in 2’s, the processor’s OV 
flag is set. 

In the next example, the borrow bit was crossed out and the borrowed 
value from the two highest bits were distinguished, based on which the 
processor determines the state of the OV flag.  

Example 3.23: Subtraction of two 2’s numbers: 

a. b. 

(+6)

( 2)

+8

DEC

DEC

DEC

( 2)
(+5)

7

DEC

DEC

DEC

0110
1110

1 1000

10

2 s

2 s

2 s

1 110
0101

0 1001

00

2 s

2 s

2 s

In case (a), a result was out of the range assuming 4-bit 2’s numbers. To get the 
correct result repeat the operation for 5-bits numbers as below: 

a.* 

0
11

0110
11110

0 01000

2 s

2 s

2 s

Exercise 3.24: Perform subtraction of 2’s numbers: 

a. b. 
1101
0011

????

2 s

2 s

2 s

0101
1100

????

2 s

2 s

2 s
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REMEMBER! 

If after the addition operation the carry-over or after the subtraction 
operation, the borrowings from the two highest bits are different then 
the overflow occurred. It means that the result cannot be expressed by the 
provided number of bits. The result must be discarded or the operation on 
numbers with more bits (at least one extra bit is needed) must be 
performed again. The overflow is signaled by the processor by setting its 
OV flag.    

Multiplication of two 2’s numbers – sign change method – the method 
uses the principle of converting every negative number to a positive one (see 
chapter 2.4). Then they are multiplied as positive numbers without the sign. 
If the original signs of the multiplicand and the multiplier were different, 
the sign of the obtained result must be inverted. The method is intuitive and 
rather does not require any additional illustration with example. Therefore, 
we just present its implementation in the assembly code of the 8051 
processor. 

Implementation in code:  

• input: A – multiplicand, B – multiplier,  
• output: B – higher byte of result, A – lower byte of result,  
• exemplary value: 111111012’s* 000000112’s. 

1 ;******************************************************************************* 
2 ;* Multiplication of 2’s numbers * 
3 ;* Sign change method * 
4 ;******************************************************************************* 
5 00FD n EQU 11111101B ;−3 U2 
6 0003 m EQU 00000011B ;+3 U2 
7    
8 0000: 74 FD MOV A,#n ;multiplicand 
9 0002: 75 F0 03 MOV B,#m ;multiplier 

10 0005: 12 00 0A LCALL _2SMULSIGNCHANGE  
11   ;result in {B,A} 
12 0008: 80 FE STOP: SJMP STOP  
13 ;------------------------------------------------------------------------------------------------------ 
14 000A: _2SMULSIGNCHANGE:  
15 000A: C0 E0 PUSH ACC  
16 000C: 65 F0 XRL A,B  
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17 000E: A2 E7 MOV C,ACC.7  
18 0010: 92 D5 MOV PSW.5,C ;1 if signs are not the same 
19 0012: D0 E0 POP ACC  
20 0014: 30 E7 02 JNB ACC.7,POSITIVE_N  
21 0017: F4 CPL A  
22 0018: 04 INC A  
23 0019: POSITIVE_N:  
24 0019: 30 F7 05 JNB B.7,POSITIVE_M  
25 001C: 63 F0 FF XRL B,#0FFh  
26 001F: 05 F0 INC B  
27 0021: POSITIVE_M:  
28 0021: A4 MUL AB  
29 0022: 30 D5 0A JNB PSW.5,END  
30 0025: F4 CPL A  
31 0026: 24 01 ADD A,#1  
32 0028: C5 F0 XCH A,B  
33 002A: F4 CPL A  
34 002B: 34 00 ADDC A,#0  
35 002D: C5 F0 XCH A,B  
36 002F: END:  
37 002F: 22 RET  
38 ;--- end of file ---  

Multiplication of two 2’s numbers – Robertson’s method – to discuss the 
details of this algorithm, we will represent the number B in 2’s in a slightly 
different way. Well, if we notice that (3.1): 

B = b 2 + b 2 + ... + b 2 + b + b 2 + ... + b 2

= b 2 + b 2 = b 2 + B
~

2 s n 1
n 1

n 2
n 2

1 0 1
1

m
m

n 1
n 1

i= m

n 2

i
i

n 1
n 1

(3.1)  

then we obtain Eq. (3.2): 

A B = A B
~

b A 2 = pseudoproduct correction2 s 2 s 2 s n 1 2 s
n 1 (3.2)  

Here we treat the 2’s numbers as BIN numbers, except that the highest bit 
of multiplier is temporarily removed. The result of the multiplication is a 
pseudo product needing adjusting by subtracting ‘correction’ value. The 
next example illustrates the details of the procedure.  
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Example 3.24 Multiplication of two 2’s numbers with Robertson’s 
method:   

a) b) 

( )
( )

DEC

DEC

DEC

7
5
35

+
* +

+

( )
( )

DEC

DEC

DEC

5
6
30

+
* -

-

0 0 1 1 1
0*

2's
~

2's

pseudoproduct

correction

A

0 1 0 1 B
0 0 0 0 1 1 1
0 0 0 0 0 0
0 0 1 1 1
0 1 0 0 0 1 1
0 0 0 0 0 0 0
0 1 0 0 0 1 1

=

=

+

-

0 1 0 1
1*

2's
~

2's

pseudoproduct

correction

A

0 1 0 B
0 0 0 0 0 0
0 0 1 0 1
0 0 0 0

0 0 0 1 0 1 0
0 1 0 1 0 0 0
1 1 0 0 0 1 0

=

=

+

-

c) d) 

( )
( )

DEC

DEC

DEC

4
5
20

-
* +

-

( )
( )

DEC

DEC

DEC

7
3
21

-
* -

+

1 1 0 0
0*

2's
~

2's

pseudoproduct

correction

A

1 0 1 B
1 1 1 1 0 0
0 0 0 0 0
1 1 0 0

1 1 0 1 1 0 0
0 0 0 0 0 0 0
1 1 0 1 1 0 0

=

=

+

-

1 0 0 1
1*

2's
~

2's

pseudoproduct

correction

A

1 0 1 B
1 1 1 0 0 1
0 0 0 0 0
1 0 0 1

1 0 1 1 1 0 1
1 0 0 1 0 0 0
0 0 1 0 1 0 1

=

=

+

-

The properties of the algorithm give rise to interesting practical indica-
tions. Multiplication of two positive numbers by Robertson’s algorithm is 
carried out in the same way as for BIN numbers (see Example 3.24a). In the 
case of numbers with different signs, it is convenient to take a number with 
a positive sign as the multiplier and a number with a negative sign as the 
multiplicand. A disadvantage of the algorithm, which makes its imple-
mentation difficult in software, is the necessity to duplicate the sign bit of all 
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the components of the partial sum. Therefore, the MUL instruction of the 
processor cannot be used, because the processor fills in the missing values 
with zeros. In the examples given, the duplicated sign bits are underlined to 
distinguish them. This drawback does not occur in the algorithms of 
duplicated sign, Booth’s algorithm [Booth 1950] or the method proposed 
by the author of this book [Gryś 2011], called the two-corrections method. 
They can be implemented in relatively simple embedded systems equipped 
with 8/16-bit microprocessors, which instruction set architecture do not 
include a signed multiplication. Representatives of this group of micro-
processors include 8051, Freescale 68HC08 and HCS12, Microchip (for-
merly Atmel) ATtiny, Zilog eZ8core!, STMicroelectronics ST7, Microchip 
PIC16/18, Texas Instruments MSP430, NEC 78K0S/0R and others. A 
careful analysis of the machine code generated by compilers of high-level 
languages, such as C, BASIC, shows that the above methods are commonly 
used. For example, the Booth method is recommended by Microchip for 
some of its 8/16-bit microcontrollers. The BASCOM compiler for the 8051 
family uses the ‘sign conversion method’. The C compiler from Keil uses the 
‘sign extension method’.  

Exercise 3.25: Perform multiplication of 2’s numbers according to Robertson’s 
method: 

a. b. 
110.1
00.11

????

2 s

2 s

2 s

1001
1100

????

2 s

2 s

2 s

Multiplication of 2’s numbers – sign extension method – double the word 
length of each number before performing the multiplication. If the numbers 
are of different lengths, then double the length of the longer number is 
assumed. The sign bit should be replicated (expanded) to all additional 
positions. Next, data prepared this way are multiplied like BIN numbers. 
Only the bits equal to the sum of the number of bits of the original mul-
tiplier and the multiplicand are considered. The remaining (higher) bits of 
the result must be discarded, as the interpretation of all bits can lead to an 
incorrect result.  
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Example 3.25 Multiplication of two 2’s numbers with Sign extension 
method:   

a) b) 

( )
( )

DEC

DEC

DEC

4
5
20

-
* +

-
 

( )
( )

DEC

DEC

DEC

3
2
6

-
* -

+
 

2's

2's

2's

1 1 1 1 1 1 0 0
0 0 0 0 0 1 0 1
1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0
1 0 0 1 1 1 0 1 1 0 0

*

+

/ // /

2's

2's

2's

1 1 1 1 0 1
1 1 1 1 1 0
0 0 0 0 0 0

1 1 1 1 0 1
1 1 1 1 0 1

1 1 1 1 0 1
1 1 1 1 0 1

1 1 1 1 0 1
1 1 1 0 1 1 0 0 0 1 1 0

*

+

/ / / / // /

The correctness of the method can be proved for numbers of any 
length. For the sake of clarity of the argumentation, we shall limit our 
consideration to the case of 2-bit numbers without a fractional part. Then 
A = a 2 + a2 s 1 0 and B = b 2 + b2 s 1 0. After the sign bits of both num-
bers, a1 and b1 have been replicated to the left, they are symbolically 
written in the following way: 

a a a a

b b b b

? ? ? ?

1 1 1 0

1 1 1 0

Let’s use the direct multiplication method for BIN numbers, where the 
superscript denotes numbers with an extended sign and ‘...’ denotes terms 
with weights higher than 23, which are rejected according to the assump-
tions of the method (3.3): 

A B = (a 2 + a 2 +a 2 + a ) (b 2 + b 2 +b 2 + b )

= ... (a b + a b + 2 a b ) 2 + (a b + a b + a b ) 2
+ (a b + a b ) 2 + a b

2 s
R

2 s
R

1
3

1
2

1 0 1
3

1
2

1 0

1 0 0 1 1 1
3

1 0 0 1 1 1
2

1 0 0 1 0 0

(3.3)  

Let us introduce an additional term that does not change the value of the 
expression, i.e., (a b + a b ) 2 (a b + a b ) 21 0 0 1 1 0 0 1 and let us group the 
terms according to the weights of the power of 2 as in Eq. (3.4): 
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A B = a b 2 (a b + a b ) 2 + (a b + a b ) 2

+ a b 2 + 2 (a b + a b ) 2 (a b + a b ) + a b

= (a b + a b ) 2 + (a b + a b ) 2 + a b 2 (a b + a b ) + a b

= a b 2 (a b + a b ) + a b

2 s
R

2 s
R

1 1
4

1 0 0 1
3

1 0 0 1
2

1 1
2

1 0 0 1 1 0 0 1 0 0

1 0 0 1
3

1 0 0 1
3

1 1
2

1 0 0 1 0 0

1 1
2

1 0 0 1 0 0

(3.4)  

The result is identical to that expected for 2-bit numbers (3.5): 

A B = ( a 2 + a ) ( b 2 + b )

= a b 2 (a b + a b ) 2 + a b

2 s 2 s 1 0 1 0

1 1
2

1 0 0 1 0 0 (3.5)  

The advantage of the algorithm is that it can use the MUL multiplication 
instruction of the 8051 processor. 

Implementation in code:  

• input: A – multiplicand, B – multiplier,  
• output: B – higher byte of result, A – lower byte of result,  
• exemplary value: 111101002’s ∗ 111110002’s. 

1 ;************************************************************************ 
2 ;* Multiplication of 2’s numbers * 
3 ;* Sign extension method * 
4 ;************************************************************************ 
5 00F4 n EQU 11110100B ;−12 2‘s 
6 00F8 m EQU 11111000B ;−8 2’s 
7    
8 0000: 74 F4 MOV A,#n ;multiplicand 
9 0002: 75 F0 F8 MOV B,#m ;multiplier 

10 0005: 12 00 0A LCALL _2SMULSIGNEXT  
11   ;result in {B,A} 
12 0008: 80 FE STOP: SJMP STOP  
13 ;--------------------------------------------------------------------------------------------- 
14 000A: _2SMULSIGNEXT:  
15 000A: F8 MOV R0,A  
16 000B: AA F0 MOV R2,B  
17 000D: A2 E7 MOV C,ACC.7  
18 000F: 92 D5 MOV PSW.5,C  
19 0011: 7D 08 MOV R5,#8  
20 0013: LOOP:  
21 0013: A2 D5 MOV C,PSW.5  
22 0015: 33 RLC A  
23 0016: DD FB DJNZ R5,LOOP  
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24 0018: F9 MOV R1,A  
25 0019: EA MOV A,R2  
26 001A: A2 E7 MOV C,ACC.7  
27 001C: 92 D5 MOV PSW.5,C  
28 001E: 7C 08 MOV R4,#8  
29 0020: LOOP1:  
30 0020: A2 D5 MOV C,PSW.5  
31 0022: 33 RLC A  
32 0023: DC FB DJNZ R4,LOOP1  
33 0025: FB MOV R3,A  
34 0026: E8 MOV A,R0  
35 0027: 8A F0 MOV B,R2  
36 0029: A4 MUL AB  
37 002A: AD F0 MOV R5,B  
38 002C: FC MOV R4,A ;R5*R4=R0*R2 
39 002D: E9 MOV A,R1  
40 002E: 8A F0 MOV B,R2  
41 0030: A4 MUL AB ;B*A=R2*R1 
42 0031: 2D ADD A,R5  
43 0032: FD MOV R5,A  
44 0033: E4 CLR A  
45 0034: 35 F0 ADDC A,B  
46 0036: FE MOV R6,A ;{R6R5R4} bank 0 
47 0037: E8 MOV A,R0  
48 0038: 8B F0 MOV B,R3  
49 003A: D2 D3 SETB RS0 ;bank 1 
50 003C: A4 MUL AB  
51 003D: AD F0 MOV R5,B  
52 003F: FC MOV R4,A ;R5*R4=R0*R2 
53 0040: C2 D3 CLR RS0 ;bank 0 
54 0042: E9 MOV A,R1  
55 0043: 8B F0 MOV B,R3  
56 0045: D2 D3 SETB RS0 ;bank 1 
57 0047: A4 MUL AB ;B*A=R2*R1 
58 0048: 2D ADD A,R5  
59 0049: FD MOV R5,A  
60 004A: E4 CLR A  
61 004B: 35 F0 ADDC A,B  
62 004D: FE MOV R6,A ;{R6R5R4} bank 1 
63 004E: C2 D3 CLR RS0  
64 0050: AB 0E MOV R3,6+8H  
65 0052: AA 0D MOV R2,5+8H  
66 0054: A9 0C MOV R1,4+8H  
67 0056: E9 MOV A,R1  
68 0057: 2D ADD A,R5  

106 Computer Arithmetic in Practice 



69 0058: F5 F0 MOV B,A  
70 005A: E5 04 MOV A,4H  
71 005C: 22 RET  
72 ;--- end of file ---  

Note the considerable similarity of the code to the ‘Multiplication of BIN 
numbers 2 bytes × 2 bytes’ program described in chapter 3.1. 

Please note that the sign extension can also be achieved in a simpler way, 
as presented below: 

PUSH ACC  ;push number on stack 
RLC A  ;rotate left with C bit; if A<0 then C=1 
SUBB A,A  ;A-A-C=FFHEX for A<0 and 00HEX for A≥0 
POP B  ;pop an original number to B register;   

;a double-wide number with duplicated sign bit is stored in the pair   
;of registers {B-higher, A-lower}.   

This can significantly reduce (almost twice) the length of the program code, 
as shown below. Implementation in code:  

• input number: A – multiplier, B – multiplier,  
• output number: B – higher byte of result, A – lower byte of result,  
• exemplary value: 11111012’s ∗ 000000112’s. 

1 ;**************************************************************************** 
2 ;* Multiplication of 2‘s numbers * 
3 ;* Sign extension method – fast * 
4 ;**************************************************************************** 
5 00FD n EQU 11111101B ;−3 2’s 
6 0003 m EQU 00000011B ;+3 2’s 
7    
8 0000: 74 FD MOV A,#n ;multiplicand 
9 0002: 75 F0 03 MOV B,#m ;multiplier 

10 0005: 12 00 0A LCALL _2SMULSIGNEXTFAST  
11   ;result in {B,A} 
12 0008: 80 FE STOP: SJMP STOP  
13 ;-------------------------------------------------------------------------------------------------- 
14 000A: _2SMULSIGNEXTFAST:  
15 000A: F8 MOV R0,A ;n 
16 000B: AA F0 MOV R2,B ;m 
17 000D: 33 RLC A  
18 000E: 95 E0 SUBB A,ACC ;ext_n 
19 0010: F9 MOV R1,A  
20 0011: E5 F0 MOV A,B  
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21 0013: 33 RLC A  
22 0014: 95 E0 SUBB A,ACC ;ext_n 
23 0016: FB MOV R3,A ;ext_m 
24 0017: E8 MOV A,R0  
25 0018: A4 MUL AB  
26 0019: FC MOV R4,A ;LSB(n*m) 
27 001A: AD F0 MOV R5,B ;MSB(n*m) 
28 001C: E8 MOV A,R0  
29 001D: 8B F0 MOV B,R3  
30 001F: A4 MUL AB  
31 0020: FE MOV R6,A ;LSB(ext_m*n) 
32 0021: EA MOV A,R2  
33 0022: 89 F0 MOV B,R1  
34 0024: A4 MUL AB ;LSB(m*ext_n) 
35 0025: 2E ADD A,R6  
36 0026: 2D ADD A,R5  
37 0027: F5 F0 MOV B,A  
38 0029: EC MOV A,R4  
39 002A: 22 RET  
40 ;--- end of file --- 

Exercise 3.26: Perform multiplication of 2’s numbers according to ‘sign 
extension method’: 

a. b. 
1101
0011

????

2 s

2 s

2 s

0.11
10.0

???

2 s

2 s

2 s

Multiplication of 2’s numbers – Booth method – the operation of the 
algorithm can be represented as follows:  

1. Clear the higher part of the result and the carry bit.  
2. Assign a multiplier to the lower part of the result.  
3a. If the previous lowest multiplier bit (shifted to the carry bit) is one, 

add the multiplier to the higher part of the result.  
3b. If the current lowest multiplier bit is one, subtract the multiplier 

from the higher part of the result.  
4. Move the lower part of the result/multiplier to the right, the outgoing 

bit is hold in carry bit.  
5. Shift to the right the higher part of the result with the sign bit 

unchanged (the highest bit), the outgoing bit is written into the 
position of the higher bit of the lower part of the result/multiplier. 
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6. Repeat from step 3 for all bits of the multiplier. 

The given rules are used in Example 3.26.  

Example 3.26 Multiplication of two 2’s numbers with Booth’s method:  

a. b. 

1101
0011

0000001{10}

1101
0011001{10}
0001100{1 1 }

+ 0000110{0 1 }
1101

1101110{0 1 }
1110111{00}

11110111

2 s

2 s

2 s

101
110

00011{00}

00001{10}
101

01101{10}
00110{1 1 }

0001101

2 s

2 s

2 s

In this example shown, the multiplier bits are successively replaced by the 
bits of the lower part of the result by right shifting the multiplication result. 
The pair of bits, i.e. the current and the previous multiplier bit (stored in the 
carry bit), is enclosed in brackets {...}, with the carry bit additionally 
underlined. You can see that the algorithm works by repeatedly shifting 
(the number of times from 3 to 6 is equal to the number of multiplier bits) 
the multiplication result, originally composed of zeros and a multiplier, and 
adding the multiplier to the older part of the result if we have {01}, or 
subtracting the multiplier from the older part of the result if we have {10}. A 
modification of the method, known as ‘radix-4 Both’, was presented in 
[McSorley 1961]. There are also variants of it for numbers in the comple-
ment code up to 1, or modulo 2n − 1 [Efstathiou 2000]. Other authors 
propose to take higher values of the system basis p = 4 and p = 8 [Cherkauer 
1996] and p = 32 or p = 256 [Seidel 2001]. All these variations are based on 
bit group analysis just like the original method [Booth 1950], whose deri-
vation we will cite after [Pochopień 2012]. Let us represent one of the 
numbers in the form (3.6): 

B = b 2 + b 2 + ... + b 2 + b + b 2 + ... + b 22 s n 1
n 1

n 2
n 2

1 0 1
1

m
m

(3.6)  

then (3.7) 
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A B = A ( b 2 + b 2 + ... + b 2

+ b + b 2 + ... + b 2 )

2 s 2 s U2 n 1
n 1

n 2
n 2

1

0 1
1

m
m (3.7)  

From the below observation (3.8): 

2 2 = 2 + 2 = 21 i i i i+1 (3.8)  

and thus (3.9): 

2 = 2 2i i+1 i (3.9)  

Let’s replace 2i by the term (2i+1 − 2−i) in the expression for the result of 
multiplication. We obtain (3.10): 

A B = A
b (2 2 ) + b (2 2 ) + b

(2 2 ) + ... +b (2 2 )
2 s 2 s 2 s

n 1
n n 1

n 2
n 1 n 2

n 3

n 2 n 3
m

m+1 m
(3.10)  

or its equivalent form (3.11): 

A B = A (2 ( b + b ) + 2 ( b + b )

+ ... + 2 ( b + b ))

2 s 2 s 2 s
n 1

n 1 n 2
n 2

n 2 n 3

m
m m 1 (3.11)  

Now we have (3.12): 

A B = (2 ( b + b ) A + 2 ( b + b )

A + ... + 2 ( b + b ) A )

2 s 2 s
n 1

n 1 n 2 U2
n 2

n 2 n 3

U2
m

m m 1 2 s (3.12)  

and finally (3.13): 

A B = 2 ( b + b ) A2 s 2 s
i=n 1

m
i

i i 1 2 s (3.13)  

The multiplication is done by repeated summation of partial products, i.e. 
the first number A by the weighted difference of two adjacent bits of the 
multiplier. Depending on their combination, the term (bi − bi−1) vanishes for 
the same values of bits {00} or {11} is added to the current value of result for 
{01} or subtracted for the combination {10}. It is worth remembering that 
the algorithm has one limitation, namely, it returns an incorrect multipli-
cation result for multiplicand of value 10...02’s! 
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Implementation in code:  

• input: A – multiplicand, B – multiplier,  
• output: B – higher byte of result, A – lower byte of result, OV – out of 

the range caused by using prohibited multiplicand value 10 … 0B,  
• exemplary value: 111111012’s ∗ 000000112’s. 

1 ;************************************************************************ 
2 ;* Multiplication of 2’s numbers * 
3 ;* Booth method * 
4 ;************************************************************************ 
5 00FD n EQU 11111101B ;−3 2‘s 
6 0003 m EQU 00000011B ;+3 2’s 
7    
8 0000: 74 FD MOV A,#n ;multiplicand 
9 0002: 75 F0 03 MOV B,#m ;multiplier 

10 0005: 12 00 0A LCALL _2SMULBOOTH  
11   ;result in {B,A} 
12 0008: 80 FE STOP: SJMP STOP  
13 ;---------------------------------------------------------------------------------------------- 
14 000A: _2SMULBOOTH:  
15 000A: B4 80 03 CJNE A,#80h,MULTIPLY  
16 000D: D2 D2 SETB OV  
17 000F: 22 RET  
18 0010: MULTIPLY:  
19 0010: 7A 08 MOV R2,#8  
20 0012: C3 CLR C  
21 0013: F8 MOV R0,A  
22 0014: E4 CLR A  
23 0015: LOOP:  
24 0015: 50 01 JNC SKIP  
25 0017: 28 ADD A,R0  
26 0018: SKIP:  
27 0018: 30 F0 02 JNB B.0,SKIP1  
28 001B: C3 CLR C  
29 001C: 98 SUBB A,R0  
30 001D: SKIP1:  
31 001D: A2 E7 MOV C,ACC.7  
32 001F: 13 RRC A  
33 0020: C5 F0 XCH A,B  
34 0022: 13 RRC A  
35 0023: C5 F0 XCH A,B  
36 0025: DA EE DJNZ R2,LOOP  
37    
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38 0027: C5 F0 XCH A,B  
39 0029: 22 RET  
40 ;--- end of file --- 

Exercise 3.27: Perform multiplication of 2’s numbers according to Booth 
method: 

a. b. 
1101
0011

????
s

2 s

2

2 s

011
100

???

2 s

2 s

2 s

Multiplication of 2’s numbers – two corrections method (proposed by the 
author of this book) – let us start by deriving the theoretical basis of how the 
method works. Let A and B denote sign numbers in the two’s complement 
code, consisting of n bits in the integer part and m in the fractional part. The 
number of bits of A and B in the general case may differ, hence A(n1, m1) and 
B(n2, m2). The values of the numbers are defined as follows (3.14): 

A = a 2 + a 2 = a 2 + Ã

B = b 2 + b 2 = b 2 + B̃

2 s n1 1
n1 1

i= m1

n1 2

i
i

n1 1
n1 1

2 s n2 1
n2 1

i= m2

n2 2

i
i

n2 1
n2 1

(3.14)  

The symbols Ã and B̃ represent the positive component of the numbers A and B. 
Using the above symbols, the product of these numbers can be written (3.15): 

A B = ( a 2 + Ã) ( b 2 + B̃)

= a 2 b 2 +a 2 B̃ + b 2 Ã

+ Ã B̃ 2 b 2 Ã 2 a 2 B̃

= A B b 2 Ã a 2 B̃
= pseudoproduct (correction_A + correction_B)

2 s 2 s n1 1
n1 1

n2 1
n2 1

n1 1
n1 1

n2 1
n2 1

n1 1
n1 1

n2 1
n2 1

n2 1
n2 1

n1 1
n1 1

BIN BIN n2 1
n2

n1 1
n1

(3.15)  

The multiplication result is calculated in two steps. In the first step, the 
multiplied numbers are treated as binary unsigned numbers. Such a prelimi-
nary result of multiplication is called, like in Robertson’s method, a ‘pseudo 
product’. If the multiplied numbers are positive signs, it becomes the multi-
plication result and operation is completed. In other cases, one or two cor-
rections called ‘correction_A’ and/or ‘correction_B’ respectively are necessary. 
These are calculated as the product of the three components (3.16): 
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correction_A = b 2 Ã

correction_B = a 2 B̃
n2 1

n2

n1 1
n1

(3.16)  

The operation of the method is illustrated by a numerical example.  

Example 3.27: Determine the product of the numbers A and B expressed in 
terms of the least number of bits.   

a) A=-8DEC B=-3DEC b) A =-3.5DEC B=+1.5DEC

Solution Solution

A =10002’s         B=1012’s A =100.12’s    B=01.102’s

n1=4 m1=0     n2=3 m2=0 =3 m1=1 2=2 m2=2

2's

2's

2's

1 0 0 0 A
* 1 0 1 B

1 0 0 0
0 0 0 0

1 0 0 0
1 0 1 0 0 0 pseudoproduct
0 0 0 0 0 0 correction_A
0 1 0 0 0 0 correction_B
0 1 1 0 0 0

=
=

+

=
- =
- =

2's

2's

2's

1 0 0. 1 A
* 0 1. 1 0 B

0 0 0 0

1 0 0 1

1 0 0 1

0 0 0 0

0 1 1 0. 1 1 0 pseudoproduct
0 0 0 0. 0 0 0 correction_A
1 1 0 0. 0 0 0 correction_B
1 0 1 0. 1 1 0

=

=

+

=
- =
- =

n n1

In practical applications the multiplied numbers are usually stored in the 
processor memory as numbers of the same format, so n1 = n2 = n and m1 = 
m2 = m. The equation for their multiplication then takes a simplified 
form (3.17): 

A B = ( a 2 + Ã) ( b 2 + B̃) = A B 2

(b Ã + a B̃)

2 s 2 s n 1
n 1

n 1
n 1

BIN BIN
n

n 1 n 1 (3.17)  

The required number of bits of the multiplication result is equal to 2∗(n + m) 
if each of the multiplied numbers is of size n + m. The correction of pseudo 
product (conditional subtraction dependent on the signs of A and B) are 
performed only on the higher part of the ‘pseudo product’, since the last term 
b Ã + a B̃n 1 n 1 is scaled by a factor of 2n. Another possible reduction in the 
complexity of the algorithm requires consideration of combinations of 
number signs. As noted earlier, if A and B are positive numbers the pseudo 
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random corrections are not needed. On the other hand, if the numbers are of 
different signs, then one of the two corrections must be performed. The 
following features of a real processor: fixed length of registers word, auto-
matic filling with zero of the leading bits of registers (conventionally from the 
left), allow to further reduction of the complexity of the method, in the 
context of its efficient implementation. Note additionally that the highest bit 
of a positive number in the code of additions to 2 is zero, then Ã = A and 
B̃ = B. As a consequence of this, they can be replaced by A and B in the 
expressions for ‘correction_A’ and ‘correction_B’ as (3.18): 

A B = A B 2 (b A + a B)2 s 2 s BIN BIN
n

n 1 n 1 with some assumptions (3.18)  

This situation is shown in Example 3.28, which highlights the bits auto-
matically filled with zeros by the processor.  

Example 3.28: Multiply the numbers A and B assuming n = 3 and m = 1. Let A = 
−3.5DEC and B = 3.0DEC.   

Performing calculations according to both relations (3.17) and (3.18), we 
obtain an identical result, as expected. The above modification is valid also 
in the case when both numbers are negative. This can be proved by the 
following observation. Namely, if the borrowing bit from the highest 
position of the result is discarded then it is true that (3.19) 

bit 0 0 = bit 1 1 = bit (3.19)  

Solution 

A =100.12’s        B =011.02’s

a) according to Eq. (3.17)   b) according to Eq. (3.18) 

2's

2's

2's

1 0 0. 1 A
* 0 1 1. 0 B

0 0 0 0
1 0 0 1

1 0 0 1
0 0 0 0

0 0 1 1 0 1. 1 0 pseudoproduct
0 0 0 0 0 0. 0 0 correction_A
0 1 1 0 0 0. 0 0 correction_B
1 1 0 1 0 1. 1 0

=
=

+

=
- =
- =

2's

2's

2's

1 0 0. 1 A
* 0 1 1. 0 B

0 0 0 0
1 0 0 1

1 0 0 1
0 0 0 0

0 0 1 1 0 1. 1 0 pseudoproduct
0 0 0 0 0 0. 0 0 correction _ A
0 1 1 0 0 0. 0 0 correction _ B
1 1 0 1 0 1. 1 0

=
=

+

=
- =
- =
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Example 3.29 shows the principle of the proposed method precisely in the 
case of both negative numbers. As before, the correct result is obtained both 
by calculating the product according to formula (3.17) and (3.18).  

Example 3.29: Multiply the numbers A and B assuming n = 4 and m = 0. Let 
A = −6DEC and B = −3DEC. 

Solution  

Implementation in code:  

• input: A – multiplicand, B – multiplier,  
• output: B – higher byte of result, A – lower byte of result,  
• exemplary value: 111111012’s ∗ 000000112’s. 

1 ;*********************************************************************** 
2 ;* Multiplication of 2‘s numbers * 
3 ;* Two corrections method (proposed by Grys) * 
4 ;*********************************************************************** 
5 00FD n EQU 11111101B ;−3 2’s 
6 0003 m EQU 00000011B ;+3 2’s 
7    
8 0000: 74 FD MOV A,#n ;multiplicand 
9 0002: 75 F0 03 MOV B,#m ;multiplier 

Solution 

A =10102’s  B =11012’s

a) according to Eq. (3.17)   b) according to Eq. (3.18) 

2's

2's

2's

1 0 1 0 A
* 1 1 0 1 B

1 0 1 0

0 0 0 0
1 0 1 0

1 0 1 0
1 0 0 0 0 0 1 0 pseudoproduct
0 0 1 0 0 0 0 0 correction_A
0 1 0 1 0 0 0 0 correction_B
0 0 0 1 0 0 1 0

=
=

+

=
- =
- =

2's

2's

2's

1 0 1 0 A
* 1 1 0 1 B

1 0 1 0
0 0 0 0

1 0 1 0
1 0 1 0

1 0 0 0 0 0 1 0 pseudoproduct
1 0 1 0 0 0 0 0 correction_A
1 1 0 1 0 0 0 0 correction_B
0 0 0 1 0 0 1 0

=

=

+

=
- =
- =

Basic Arithmetic on Fixed-point Numbers 115 



10 0005: 12 00 0A LCALL _2SMULGRYS  
11   ;result in {B,A} 
12 0008: 80 FE STOP: SJMP STOP  
13 ;------------------------------------------------------------------------------------------------ 
14 000A: _2SMULGRYS:  
15 000A: F5 20 MOV 20h,A  
16 000C: 85 F0 21 MOV 21h,B  
17 000F: A4 MUL AB ;C=0 
18 0010: C5 F0 XCH A,B  
19 0012: 30 07 02 JNB 20h.7,POSITIVE_N  
20 0015: 95 21 SUBB A,21h  
21 0017: POSITIVE_N:  
22 0017: 30 0F 03 JNB 21h.7,POSITIVE_M  
23 001A: C3 CLR C  
24 001B: 95 20 SUBB A,20h  
25 001D: POSITIVE_M:  
26 001D: C5 F0 XCH A,B  
27 001F: 22 RET  
28 ;--- end of file ---  

By comparing the proposed method with other multiplication methods, 
based on their properties and code analysis, its advantages and dis-
advantages can be identified. The detailed discussion on comparison was 
presented in [Gryś 2011]. Here, we recall the general features. Advantages 
of the ‘two corrections’ method and its implementation in assembly code as 
presented above are as follows:  

• It works correctly for A = 10...0 unlike Booth’s method.  
• Does not work in a loop, hence execution time does not depend on 

word length.  
• The smallest code size (the smallest occupation of program memory).  
• The shortest execution time (the fastest method).  
• Smaller register occupancy compared to the extended sign method. 

Disadvantages of the proposed ‘two correction’ method and its 
implementation:  

• for negative numbers one or two corrections of the result are required;  
• the processor instruction list must include the unsigned multiplication 

operation (otherwise it must be emulated by software);  
• execution time (measured in processor cycles) is variable and depends 

on the sign combinations of the numbers, contrary to the extended 
sign method. 
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Division of two 2’s numbers is complicated. An example of one of possible 
algorithm is discussed in [Pochopień 2012]. In practice, it is more convenient 
to convert negative 2’s numbers into their positive counterparts, perform the 
division as BIN numbers, and in the case of different original signs of the 
numbers finally convert the result back into a negative 2’s number. The rel-
evant algorithms were presented in the previous chapters 2.4 and 3.1.1.  

Exercise 3.28*: Write a subroutine for division of 2’s numbers by changing the 
signs. 

3.3 NONLINEAR FUNCTIONS 

In many applications not only related to the academic research or en-
gineering, we need using various functions, e.g. trigonometric and hyper-
bolic functions, exponent, logarithms, power, square and less often n-th 
order root, etc. Let’s consider some examples of a nonlinear function 
lending itself to a real-world scenario. In what situations we need, e.g., 
trigonometric function as well? Please think about drawing a circle or 
rotating geometrical figures with assumed angle. It is presented in computer 
graphics and animation. The hyperbolic cosine is a function used to 
describe mathematically the shape of a dangling electric power line or rope 
suspended at the ends. The hyperbolic functions are used to describe the so 
called ‘hyperbolic motion’ in relativistic physics. Logarithm and exponent 
are useful in electrical engineering during analysis of the DC circuits in 
transient state or AC circuits in electrical power production and distribu-
tion system. An example in biology is exponential growth of a bacterial 
colony. The logarithmic scale is very common in techniques like: acoustics – 
sound level in dB, pH for acidity. Richter magnitude scale and moment 
magnitude scale for strength of earthquakes and movement in the Earth are 
based on logarithm also. The exponentiation, particularly raising to power 
is very common. Good examples are kinetic energy, moment of inertia 
formulas taught even at early education level. What about the square root? 
It is used in electrical engineering again to express the ration between 
amplitudes of voltages in one- and three-phase electrical networks. We can 
see it working with geometric and harmonic mean, staying familiar with 
basic physic at school, e.g. pendulum – dependence of the oscillation period 
on the amplitude, also it is used in the logistics management and many, 
many others. There are no doubts that after a moment’s of thought prob-
ably anybody can propose different examples of functions applied in many 
disciplines of science, engineering, education and normal life. These above 
mentioned functions are usually strongly nonlinear and cannot be calcu-
lated directly by simple processor with limited arithmetic capabilities even if 
we assume that we are able to work with fractions as shown in previous 
material discussed in this chapter. Nonlinear functions can be computed by 
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its approximation engaged four basic operations only, lookup table, itera-
tive operations in the loop or conditional pieces of code related to the value 
of input argument – piecewise approximation. 

For integer input numbers, required function can be approximated by 
pair of points {input number, function value} and tabled. As an example of 
this fundamental method, the square root function was selected in below 
listing. The expected values are located in table section (after label named 
TABLE:) after simple code. For simplicity only initial part of table was 
prepared for numbers from subrange <0,5>. There is no problem extending 
table for full scale <0,255>. 

Implementation in code:  

• input: A – number (must be integer),  
• output: R0 – integer part of result, A – fractional part of result,  
• exemplary value: sqrt(00000010BIN) = 00000001P-BCD,  

01000001P-BCD. 

1 ;****************************************************************************** 
2 ;* Square root by LUT * 
3 ;****************************************************************************** 
4 0003 n EQU 00000011B ;+3 BIN 
5    
6 0000: 74 03 MOV A,#n  
7 0002: 12 00 07 LCALL SQRT_LUT  
8   ;result in R0-integer 
9   ;R1-fraction 

10    
11 0005: 80 FE STOP: SJMP STOP  
12 ;---------------------------------------------------------------------------------------------------- 
13 0007: SQRT_LUT:  
14 0007: 90 00 15 MOV DPTR,#TABLE  
15 000A: 23 RL A ;multiply by 2 (address 

adjusted) 
16 000B: F5 F0 MOV B,A  
17 000D: 93 MOVC A,@A+DPTR  
18 000E: F8 MOV R0,A  
19 000F: E5 F0 MOV A,B  
20 0011: 04 INC A  
21 0012: 93 MOVC A,@A+DPTR  
22 0013: F9 MOV R1,A  
23 0014: 22 RET  
24 0015: TABLE:;two bytes in P-BCD 

format, e.g. sqrt(2)=1.41  
25 0015: 00 00 DB 00000000B,00000000B ;for 0 
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26 0017: 01 00 DB 00000001B,00000000B ;for 1 
27 0019: 01 41 DB 00000001B,01000001B ;for 2 
28 001B: 01 73 DB 00000001B,01110011B ;for 3 
29 001D: 02 00 DB 00000010B,00000000B ;for 4 
30 001F: 02 24 DB 00000010B,00100100B ;for 5 
31 ; etc. 
32 ; DB... 
33 ;--- end of file ---  

Exercise 3.29: What should be modified in above listing if we need result as 
BIN numbers or greater fraction precision? 

Different approach for square root function was applied below using 
known observation. If the result can be limited to integer part only, e.g. 
n = 11 and sqrt(n) = 3 or n = 26 and then sqrt(n) = 5, we can construct 
rolling algorithm. We are summing up only odd numbers starting from 
1 like this i = 1, 3, 5, 7, … and sum = 1 + 3 + 5 + 7 + … until we get first time 
the condition sum > n. Hence, integer approximation of sqrt(number) = 
i − 1/2. For easier understanding this rule and implementation in assembly 
code the some simple calculations are provided in Table 3.3. 

Implementation in code:  

• input: A – number (must be integer),  
• output: A – integer part of result,  
• exemplary value: sqrt(00001011BIN) = 00000011BIN. 

1 ;***************************************************************************** 
2 ;* Square root by addition * 

Table 3.3 Explanation How to Estimate Square Root of n       

n sqrt(n) Sum last i Approx. of sqrt(n)  
= (i − 1)/2   

0 0.00 (1 = 1) > 0 1 0  
1 1.00 (1 + 3 = 4) > 1 3 1  
2 1.41 (1 + 3 = 4) > 2 3 1  
3 1.73 (1 + 3 = 4) > 3 3 1  
4 2.00 (1 + 3 + 5 = 9) > 4 5 2 

…      
11 3.32 (1 + 3 + 5 + 7 = 16) > 11 7 3 
…      
16 4.00 (1 + 3 + 5 + 7 + 9 = 23) > 16 9 4 
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3 ;***************************************************************************** 
4 000B n EQU 00001011B ;+11 BIN 
5    
6 0000: 74 0B MOV A,#n  
7 0002: 12 00 07 LCALL SQRT_ITER  
8   ;result in A-integer part only 
9   ;truncation 

10 0005: 80 FE STOP: SJMP STOP  
11 ;---------------------------------------------------------------------------------------------------- 
12 0007: SQRT_ITER:  
13 0007: F8 MOV R0,A  
14 0008: 74 FF MOV A,#0FFH ;i=−1 
15 000A: 75 F0 00 MOV B,#0 ;sum 
16 000D: C0 E0 PUSH ACC  
17 000F: LOOP:  
18 000F: D0 E0 POP ACC  
19 0011: 04 INC A  
20 0012: 04 INC A ;1..3..5..etc 
21 0013: C0 E0 PUSH ACC  
22 0015: 25 F0 ADD A,B ;sum=sum+i 
23 0017: 60 09 JZ SKIP ;for n>225 
24 0019: F5 F0 MOV B,A  
25 001B: B5 00 02 CJNE A,0,NOT_EQUAL ;R0 has address 0 
26 001E: 80 EF SJMP LOOP  
27 0020: NOT_EQUAL:  
28 0020: 40 ED JC LOOP  
29 0022: D0 E0 SKIP: POP ACC  
30 0024: 14 DEC A  
31 0025: 03 RR A ;sqrt(n)=(i-1)/2 
32 0026: 22 RET  
33 ;--- end of file ---  

There exist other methods for square approximation, e.g. based on initial 
estimate, Heron’s, Bakhashali, exponential, digit-by-digit method or Taylor 
series. So far we have shortly discussed simple methods of evaluation of 
square root as an example of nonlinear functions. These methods were 
adapted for fixed-point format and limited to integer argument only. Some 
further questions may arise here even if we continue considerations for fixed- 
point format. How to deal with input argument being a real number? What 
about the other functions except square root, e.g. trigonometric or loga-
rithms? Do we really have to look for individual methods of approximation 
or is there any universal technique for precise and quick function evaluation? 
Luckily there is a way to do that. It is named CORDIC proposed many years 
ago by Jack Volder [Volder 1959] and commonly applied nowadays. The 
CORDIC abbreviation is from ‘coordinate rotation digital computer’. 

120 Computer Arithmetic in Practice 



The sine and cosine of an angle θ are determined by rotating the unit 
vector [1, 0] through decreasing angles until the cumulative sum of the 
rotation angles equals the input angle. The x and y Cartesian components 
of the rotated vector then correspond, respectively, to the cosine and sine of 
θ. Inversely, the angle of a vector [x, y], corresponding to arctangent (y/x), 
is determined by rotating [x, y] through successively decreasing angles to 
obtain the unit vector [1, 0]. The cumulative sum of the rotation angles 
gives the angle of the original vector. The CORDIC algorithm can also be 
used for calculating hyperbolic functions by replacing the successive cir-
cular rotations by steps along a hyperbola. Thanks to this idea computers 
can calculate the following functions: cosine (cos(x)), sine (sin(x)), 
atan2(y,x), modulus i.e. sqrt(x2+y2), arctangent (tan−1(x)), hyperbolic sin 
(sinh(x)), hyperbolic cosine (cosh(x)) and hyperbolic arctangent (atanh(x)). 
If needed, the other functions can be evaluated from known identities like 
below, e.g.: 

tanh(x) = sinh(x)/cosh(x)
coth(x) = 1/tanh(x)
arccoth(z) = ½ ln((z + 1)/(z 1))
ln(x) = 2 atanh((x + 1)/(x 1))
log10(x) = log 10(e) ln(x) = 0.434294482 ln(x)
exp(a) = sinh(a) + cosh(a)

From the algorithmic point of view, the CORDIC can be seen as a sequence 
of micro rotations, where the vector XY is rotated by an angle θ expressed 
in radians. The algorithm foundations will be cited after [Vitali 2017]. 
Remembering that tan(θ) = sin(θ)/cos(θ) and applying the known in computer 
graphics the affine transformation for rotation we obtain as following (3.20): 

X = cos( ) X sin( ) Y = cos( ) [X tan( ) Y ]
Y = sin( ) X + cos( ) X = cos( ) [tan( ) X + Y ]

n+1 n n n n

n+1 n n n n

(3.20)  

For simplification needed calculations, the rotation angle is chosen so that 
the tan(θ) coefficient is a power of 2. Therefore the multiplication is 
replaced with bit shift to the right realized easy by microprocessor 
instruction. If the components are scaled by F = 1/cos(θ), which is the 
CORDIC gain, the formula for the rotation is reduced indeed to only bit 
shifts and additions (3.21): 

X F = [X Y /2 ]
Y F = [X /2 + Y ]

n+1 n n n
n

n+1 n n
n

n
(3.21)  
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The CORDIC algorithm can work in circular of hyperbolic modes. To keep 
the text readable, we will show in more details the circular mode only. The 
elementary rotation angle is then θn = atan(2−n). The corresponding scaling 
factor for n-th step is Fn = 1/cos(θn) = sqrt(1 + 2−2n). In the first iteration 
n = 0, vector is rotated 45° counterclockwise to get the updated vector. 
Successive iterations rotate the vector in one or the other direction by size- 
decreasing steps, until the desired angle has been achieved. As only all shifts 
and adds are done for all assumed iteration, the final output vector com-
ponents X and Y are scaled by the factor F. It is a multiplication of all 1/Fn 

and its value depends on number of iterations. For most ordinary purposes, 
40 iterations (n = 40) is sufficient to obtain the correct result of calculated 
function to the 10th decimal place and F = 0.607252935008881. The 
CORDIC algorithm can also be used for calculating hyperbolic functions 
(sinh, cosh, atanh) by replacing the circular rotations by hyperbolic angles 
atanh(2−j), where j = 1, 2, 3, ..., n then F = 1.20513635844646. 

Because the CORDIC implementation done in assembly language for 
8051 CPU would be extensive and probably not readable, only one in this 
place of this book, we decided to present it in a high-level language, i.e. 
Matlab/GNU Octave as below. It is a simplified version of a code available 
in Wikipedia article [Wiki 2022] adapted to above theoretical considera-
tions and symbols. 

% We compute v = [cos(beta), sin(beta)] (beta in radians)using n iterations. 
beta=beta∗10000; 
% Initialization of tables of constants used by CORDIC need a table 
% of arctangents of negative powers of two, in radians: 
% angles = atan(2.^-(0:23)); % but we will use approximated values 
instead 
angles = [7854 4636 2450 1244 624 312 156 78 39 20 10 5 2 1 1]; 
% and a table of products of scaling factors Fn: 
% Fn = cumprod(sqrt(1 + 2.^(−2∗(0:23)))) % because 45/2 = 23 

Fn = [ 1414 1581 1629 1642 1646 1646 1647 1647]; 
Fn(9:23)= 1648; 

F = 1/Fn(n)∗1000; 

% Initialize loop variables: 
v = [1;0]; % start with two-vector cosine and sine of zero 
poweroftwo = 1; % because 2^0=1 
angle = angles(1); 
% Iterations 
for j = 0:n−1; 

if beta < 0 
dir = −1; 

122 Computer Arithmetic in Practice 



else 
dir = 1; 

end 
factor = dir ∗ poweroftwo; 
R = [1, -factor; factor, 1]; 
v = R ∗ v; % 2-by-2 matrix multiply 
beta = beta - dir ∗ angle; % update the remaining angle 
poweroftwo = poweroftwo / 2; 
angle = angles(j+2); 

end 
% Adjust length of output vector to be [cos(beta), sin(beta)]: 
v = v ∗ F; 
% ------- end of code ---------- 

We performed some test, and in Figure 3.1 we compare values of sin() 
and cos() functions evaluated using above cod with ideal shapes for n = 8. 
Some imperfections are visible. Increasing n parameter will increase the 
precision. 

For n > 10 would be hard to see differences because the maximal error 
related to maximal amplitude value os sin/cos decreases rapidly, as shown 
in Figure 3.2. It refers to cosine function too. 

For further reading on fixed-point arithmetic, we can recommend selected 
papers and books [Baer 2010, Flores 1962, Hwang 1979, Koren 1993,  
Kulisch 2012, Mano 1993, Mano 2008, Omondi 1994, Parhami 2010,  

Figure 3.1 Functions avaluated by CORDIC algorithm vs. perfect sin/cos function shapes.    
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Pochopień 2012, Richards 1955, Schmid 1979 and Swartzlander 2015]. In 
Chapters 4 and 5, we talk about floating-point format being a very effective 
way to express real numbers in the ‘world of computers’. As we will see the 
user is practically not limited in number range and precision that sound good 
and would satisfy even very demanding computer users as microphysics 
scientists, astronomers and engineers.  

Figure 3.2 Maximal error of sinus evaluation by CORDIC algorithm.    
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Chapter 4 

Numbers in Floating-point Format     

The number A is written in (n + m) digits with base p, where n is the 
number of digits of the mantissa M, m is the number of digits of the 
characteristic (exponent) E (Figure 4.1). 

Please note the different format of the above bit field compared to the 
fixed-point format. The term ‘floating-point’ emphasizes the possibility of 
expressing the same value of a number using different combinations of 
mantissa and exponent, as shown in Example 4.1. In the following section, 
we will assume p = 2, considering only binary systems. 

Example 4.1: Decimal number 2.5DEC expressed as BIN using 8 bits:  

• in fixed-point format 0010.1000  
• in floating-point format 0.10100E10 = 0.10100∗p10,  

or 0.0101E011 = 0.0101∗p011, where p = 2 – radix, etc. 

4.1 NON-NORMALIZED NUMBERS 

From a practical point of view, it is important to adopt a convention for 
interpreting bit-field values such that signed numbers can be stored. In 
principle, there is no barrier obstacle to, for example, expressing the 
mantissa in the 2’s complement code and the exponent in the sign- 
magnitude. If one restricts consideration solely to these two most com-
monly used forms of writing numbers with sign, four combinations are 
obtained (4.1): 

Figure 4.1 A floating-point format of number.    
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A = M 2 or A = M 2 or M 2 or M 22’s
E

2’s
E

SM
E

SM
ESM 2’s 2’s SM (4.1)  

Assuming that the mantissa is a fraction and the exponent an integer, the 
following rules for determining their values can be adopted (4.2): 

M = ( 1) (a 2 + ... +a 2 ) = ( 1) a 2SM
ã

1
1

(n 1)
(n 1) ã

i= 1

(n 1)

i
i0 0 (4.2a) 

E = ( 1) (a 2 + ... +a 2 + a ) = ( 1) a 2SM
a

m 2
m 2

1 0
a

i=0

m 2

i
im 1 m 1 (4.2b) 

M = ã + a 2 + ... +a 2 = ã + a 22’s 0 1
1

(n 1)
(n 1)

0
i= 1

(n 1)

i
i (4.2c) 

E = a 2 + a 2 + ... +a 2 + a

= a 2 + a 2

2’s m 1
m 1

m 2
m 2

1 0

m 1
m 1

i=0

m 2

i
i (4.2d)  

The mantissa lies in the range −(1 – 2−(n–1)) ≤ MSM ≤ 1 – 2−(n–1) for the SM 
sign-magnitude format and, respectively, −1 ≤ M2’s ≤ 1 – 2−(n–1) for the 2’s 
notation. Zero has two representations −0 and +0. Let’s list the smallest and 
largest mantissa values:  

• the smallest negative: 1 .11...1SM = –(1 – 2–(n–1)) 1.00...02’s = –1,  
• the largest negative: 1 .00...0SM = –0 1.11...12’s = –2–(n–1),  

• the smallest positive: 0 .00...0SM = +0 0.00...02s = +0,  
• the largest positive: 0 .11...1SM = 1 – 2–(n–1) 0.11...12’s = 1 – 2–(n–1). 

The exponent lies in the range –(2m–1 – 1) ≤ ESM ≤ 2m –1 – 1 for the SM sign- 
magnitude format and, respectively, –2m–1 ≤ E2’s ≤ 2m–1 – 1 for 2’s notation. 
Zero has two representations −0 and +0 as previously. Let’s list the smallest 
and largest exponent values:  

• the smallest negative: 1 11...1SM = –(2m–1 – 1) 100...02’s = –2m–1,  
• the largest negative: 1 00...0SM = –0 111...12’s = –1,  
• the smallest positive: 0 00...0SM = +0 000...02’s = +0,  
• the largest positive: 0 11...1SM = 2m–1 – 1 011...12’s= 2m–1 – 1. 

Which form is more beneficial, if we take the proximity of implementation 
as a criterion for choice? To answer this question, it is important to note 
that the operations of addition and subtraction of numbers in fixed-point 
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format are more easily performed for 2’s format, while multiplication and 
division are performed for SM format. It is also important to note that 
when we want to apply each of the four basic arithmetic operations on two 
floating-point numbers, there will be a need to add, subtract, multiply or 
divide mantises and add or subtract exponents. This will be demonstrated 
in Chapter 5. Analyzing the complexity of the algorithms in the previous 
chapter, we tend toward one of the forms (4.1) recalled here: 

A = M 2 or A = M 2 g2’s
E

SM
E2’s 2’s

Example 4.2: Number –1.5DEC in floating-point format M 2SM
ESM and n = 4, 

m = 3. 

–1.5 = –0.75 2 = 1.110 2 .DEC DEC
1

SM SM
001

INTERESTING FACTS! 

Alternatives to the floating-point format are the floating slash and signed 
logarithm presented in [ Koren 2002,  Matula 1985 and  Swartzlander 1975]. 
However, they have not been widely accepted and are not commonly 
occurring in everyday practice. On the other hand, the work [Ruszkowski 
1983] presents the use of a format with sign-magnitude features for BCD 
numbers with a floating comma designed for calculators.   

4.2 IEEE 754 STANDARD 

Most of today’s processors have in their structure an additional unit, the so- 
called FPU performing arithmetic operations on numbers in floating-point 
format according to IEEE 754:1985 standard. An example is very popular 
processors from Intel, AMD or ARM64 processor architecture, which in 
some variants even contain several such units. The lack of an FPU on board 
the processor, sometimes called an arithmetic coprocessor, does not exclude 
the possibility of using a floating-point format. Modern compilers of high- 
level languages have the ability to create machine code for ALU, emulating 
the lack of FPU, thanks to a dedicated mathematical library of functions, 
e.g. ‘math.c’ created for C language. However, the compilation of even a 
simple program operating on real variables (in floating-point format) results 
in the generation of extensive and usually unreadable code. The reason for 
preparing and releasing IEEE 754 was the lack of compatibility between 
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different machines and languages. Such early computers with own real-
ization of floating format were, e.g.:  

• ODRA 1003/1013 – 39-bit format with mantissa and exponent as 2’s 
numbers (Poland, 1962 year),  

• DEC VAX – 4 formats 32/64/64/128 bits, mantissa as SM number, 
biased exponent (USA, 1977 year),  

• IBM 360/370 – 2 formats 32/64 bits, radix 16 instead of 2, mantissa 
as SM number, biased exponent (USA, 1964 year). 

A key milestone was the release three years earlier by Intel of the 8087 chip 
as a supporting coprocessor of the popular CPU chip Intel 8086. In a way, 
the IEEE 875:1985 standard is a carry-over of many of the solutions from 
that chip specification, without reference to implementation details. This 
leaves technological freedom to other processor manufacturers. 

Standard states that number is stored in memory or registers using 3-bit 
fields: sign, mantissa and exponent. Let us introduce the following rules:  

• sign bit S,  
• significant M,  
• exponent E. 

The scientific format is used and value of number can be obtained with the 
following formula (4.3): 

A = ( 1) M 2s E bias (4.3)  

The sign field needs no comment. Recall only that in the sign-magnitude 
format S = 1 is for negative number and S = 0 for a non-negative number. 
The mantissa is re-presented in fixed-point format with a single bit in the 
integer part and many bits in fraction. Its value is determined by the for-
mula (4.4): 

M = m + m 2 + m 2 + ... m 2 = m + m 20 1
1

2
2

k
k

0
i=1

k

i
i (4.4)  

hence the range is 1 ≤ M < 2 and m0 = 1 is for normalized number (m0 = 0 is 
for denormalized). The standard defines four floating-point formats, dis-
tinguishing between basic and extended, single or double precision, 
resulting in four combinations – the first column of Table 4.1. 

The standard does not require implementation of the extended format, 
although it strongly recommends its use to increase the precision of ex-
pressing numbers. One of the reasons for inventing the extended format 
was the need to ensure that computers are comparable (or preferably 
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higher) with precision with universal calculators. The typical calculator 
displays a number to ten decimal places, but internally performs operations 
to 13 digits. Comparing the data in the last column of Table 4.1, it can be 
seen that a computer working with single-precision numbers has lower 
calculation accuracy than calculator! The IEEE standard specifies only the 
minimum number of bits of extended formats, leaving the implementation 
details to processor and software tool manufacturers (the second column of 
Table 4.1). Most computer systems are compliant with Intel’s implemen-
tation, widespread with the 8087 coprocessor. Modern Intel Core-class 
processors and their clones include such a coprocessor (or several) in their 
structure, called the FPU. Intel uses the 80-bit format for double extended 
precision. Wherever we talk about double extended precision conforming 
to Intel’s specification, a ‘*’ will appear to distinguish it from the strict 
guidelines of the standard. This designation appears, e.g., in Table 4.1. 
Because the highest bit of the mantissa has always value of 1, the developers 
of the 8087 coprocessor decided to generally omit it in the bit word. It is 
only given in the double extended representation, used typically in internal 
calculations of FPU. In the most cases, numbers are passed to FPU as a 
single or double precision constant or variables declared in high-level 
programming language and software. 

In addition to Intel’s proposal, there are other solutions, also meeting 
the conditions specified in the standard, but differing in, for example, the 
number of mantissa bits. For example, HP 700/800 series machines use the 
following format, called ‘quad precision’, i.e.: 1 bit – sign bit, 15 bits – 
exponent, 112 bits – mantissa. For 128-bit number, the four 32-bit width 
memory locations are needed to store a number value. 

Let’s go back to the IEEE 754 standard: while the number of exponent 
bits affects the range of a number, the precision is determined by the 

Table 4.1 Properties of Normalized Numbers in Floating-point Format According to 
IEEE 754         

Precision Word 
length 
[bits] 

The 
sign ‘S’ 
[bits] 

The significand ‘M’ Exponent “E” 

Length 
[bits] 

The accuracy for 
decimal format 

[significant 
digits] 

Length 
[bits] 

range  

Single 32 1 23 7 8 2±127≈10±38 

Single 
extended 

≥ 43 1 ≥ 31 ≥ 10 ≥ 11 ≥2±1023≈10±308 

Double 64 1 52 16 11 2±1023≈10±308 

Double 
extended 

≥ 79 1 ≥ 63 ≥ 19 ≥ 15 ≥2±16383≈10±4932 

Double 
extended* 

80 1 63 + 1 19 15 2±16383≈10±4932 
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amount of mantissa bits. For example, for double precision, the mantissa is 
stored using 53 (52 plus 1 hidden) bits, allowing 253, or approximately 1016 

combination of values. Precision, in terms of decimal significant digits, can 
also be determined in another way, directly from the properties of the 
number system. Well, x digits can be used to express px different values, 
where p is the base of the system. How many bits are needed to encode one 
decimal digit? To get the answer, solve the equation 101 = 2x with respect to x. 
If we logarithm it both ways with base 2, we get x = log2(10) bits. 

So for double precision from the ratio, we get:  

• 1 decimal digit – log2(10) bits  
• y decimal digits – 53 bits 

hence y decimal digits = 53/log2(10) = 53/log10(2) = 15.96 = 16 digits. 
Analogous calculations can be done for the other defined formats. 

The format of the IEEE 754-bit fields is given in Figure 4.2, and from the 
table in Appendix B, the number ranges and names of numeric variables can 
be read, including floating-point, as used in popular high-level languages. 

The last field of the number is the exponent stored in the bias format. The 
use of such a notation, instead of the commonly used sign-magnitude or 2’s 
complement, is related to the necessity of reserving two combinations of 
exponent bits for special values. The advantage of the bias notation (like for 
BIN format also) is its monotonicity, which unfortunately is not feature of 
SM and 2’s (Table 4.2). Between the 00h and FFh values, there is a 
monotonic region of numerical values (for the bias code), which allows to 
exclude the 00h and FFh boundary values from the allowed numerical 
range and reserve them for the mentioned special values. 

Unfortunately, the disadvantage of this notation is, in the general case, a 
greater degree of complication of arithmetic operations than 2’s or SM. The 
bias is precision dependent and equal to: 

Figure 4.2 Format of bit fields according to the IEEE 754.    
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• 27 – 1 = 127 for single precision,  
• 210 – 1 = 1023 for double precision,  
• 214 – 1 = 16383 for double extended precision*. 

The numbers with exponent with all bits are not zeros or ones are called 
normalized values. In addition to these, the IEEE 754 standard defines 
special cases, among which we can distinguish the 0 and ∞ and others, 
which are given in detail in Table 4.3. 

The infinity occurs when the result of an operation exceeds the largest 
normalized value or an attempt to divide not zero number by zero has oc-
curred, including ∞/0 = ∞. A special combination of bits is reserved for zero 
because it is impossible to express its value within the accepted normalized 
number format. Zeroing the fractional part of the mantissa is not sufficient 
because a bit equal to 1 is assumed in its integer part. The standard also 

Table 4.2 Comparison of the Variability of Numbers in the Range 00h...FFh for Different 
Notations       

Value DEC Biased BIN * 2’s complement Sign-magnitude  

Highest +128 FFh – –  
+127 FEh 7Fh 7Fh  
+1 80h 01h 01h 

↑ 0 7Fh 00h 00h 
80h  

–1 7Eh FFh 81h  
–127 00h 81h FFh 

Lowest –128 – 80h –     

* bias 127DEC = 7FHEX.  

Table 4.3 Special Values       

Sign Exponent Mantissa Value 

m0 m1… mk  

1 1 … 1 1 * 0 … 0 –∞ 
0 1 … 1 1 * 0 … 0 +∞ 
? 1 … 1 1 * ≠0 QNaN (ang. quiet not a number) 
? 1 … 1 1 * ≠0 SNaN (ang. signaling not a number) 
1 0 … 0 0 * 0 … 0 –0 
0 0 … 0 0 * 0 … 0 +0 
1 0 … 0 0 ≠0 – denormalized number 
0 0 … 0 0 ≠0 + denormalized number     

* Accepted and widely used m0 values by Intel, among others, although IEEE 754 does not explicitly 
specify them.  
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defines two values that have no numerical interpretation, the so-called 
QNaN and SNaN. Although it does not specify how to encode both types 
of ‘Not a Number’, it is generally accepted to distinguish them by the highest 
bit of the fractional part of the mantissa, i.e.: 0 – SNaN, 1 – QNaN. ‘Not a 
Number’ finds many applications. The standard leaves the way they are 
handled to the processor or compiler manufacturer, requiring only that the 
silent NaN pass through most arithmetic operations and conversions 
between formats, thus allowing retrospective analysis of program running 
and detection of the moment when an undefined value of variable appears. 
The occurrence of SNaN usually means an invalid value and generates an 
exception handling. An example of SNaN usage is variable initialization. If 
program does not assign a value to a variable, it will contain SNaN, which 
will cause the computation to abort and bug reporting. 

The purpose of introducing the concept of ‘denormalized numbers’ in the 
standard IEEE 754 requires some comment. These denormalized numbers 
are also numbers in floating-point format, filling the gap between the smallest 
normalized value and zero (on both sides of zero). They are encoded by zeros 
in the exponent field and a non-zero mantissa value. Unlike normalized 
numbers, the highest, i.e. m0, bit of the mantissa is assumed to be zero. By 
introducing denormalized values, you get a gradual transition from nor-
malized numbers to zero. Unfortunately, the closer to zero the number is, the 
less accurate it is. A denormalized number appears when there is an under-
flow, i.e., the result of the operation is non-zero and can still be written by 
denormalizing the mantissa. We encounter such a situation when comparing 
or subtracting two numbers with close values. If X ≈ Y, then we should get 
X − Y ≈ 0. Not accepting denormalized numbers, we should expect an 
incorrect result X − Y = 0 due to the need to round to zero the result of 
subtraction with a value smaller than the smallest allowed normalized value. 
The result of comparing or subtracting two values occurs quite often in al-
gorithms, e.g., in a pair with a conditional jump as a realization of a typical 
‘if condition then go to’ instruction. As a result of rounding the result to zero, 
the program will run differently than assumed by programmer. This risk is 
reason of introducing denormalized numbers. 

The standard defines five types of exceptions that must be detected and 
signaled:  

• invalid operation, such as:  
• an operation whose argument is SNaN,  
• addition or subtraction of type (+∞) + (−∞),  
• multiplication or division: 0*∞, 0/0, ∞/∞,  
• the remainder of dividing x/y when x = ∞ or y = 0,  
• square root of x for x < 0,  
• inability to convert a floating-point number to integer or BCD,  
• inability to compare two data when at least one of them is not a 

valid number, 
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• division by zero,  
• overflow,  
• underflow,  
• inaccurate result. 

The imprecise result exception occurs when the result of an operation 
cannot, without loss of precision, be accurately expressed in an accepted 
format, e.g. the mantissa of 1/3DEC. A rounded result is usually acceptable 
in most applications, such as science, where double precision is the standard 
to ensure accuracy by a large margin. For this reason, this exception as 
being masked is not handled. Instead, it is supported by applications that 
are required rigorously processing on accurate (unrounded) numbers. The 
solution can be, e.g., expressing number like 1/3DEC as ratio of two exact 
numbers 1DEC and 3DEC. It is so called rational format. 

INTERESTING FACTS! 

The floating-point units (FPUs) built into Intel processors support an 
additional type of exception, the denormalized operand exception. Invalid 
operation, divide-by-zero, and denormalized operand exceptions are pre- 
computation exceptions and are post-computation exceptions.    

By looking at Table 4.1 and using the formula for expressing the value of 
a number in IEEE 754 format, it is easy to determine the lowest and highest 
value of a number. Let’s look for them for each precision individually. 

4.2.1 Single Precision 

The combination 11111111, reserved for the special value inf, cannot be 
used, so the largest value of E is 11111110BIN, hence E − bias = 254 – 127 = 
127. The highest mantissa consists of 24 ones (23 bits plus 1 hidden bit in 
the integer part), hence: 

M = 1.11111111111111111111111SM = (224 – 1)/223 

We calculate the value of the highest normalized number: 

Amax_norm_single = M·2E–bias = (224 – 1)/223·2127 = (224 – 1)·2104  

= 3.4028234663852885981170418348452·1038  

≈ 3.4·1038 
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4.2.2 Double Precision 

The highest value of E is 11111111110BIN, hence E − bias = 2046 – 1023 
= 1023. 

M = 1.1111111111111111111111111111111111111111111111111111SM 

= (253 – 1)/252 

The value of the largest normalized number is: 

Amax_norm_double = M·2E–bias = (253 – 1)/252·21023 = (253 – 1)·2971  

= 1.797693134862315708145274237317·10308  

≈ 1.8·10308 

4.2.3 Double Extended Precision* 

The highest value of E is 111111111111110BIN, hence E–bias = 32766 – 
16383 = 16383. 

M = 1.1111111111111111111111111111111111111111111111111111 
11111111111SM  

= (264 – 1)/263 

The value of the highest normalized number is: 

Amax_norm_double_extended = M·2E–bias  

= (264 – 1)/263·216383 = (264 – 1)·216320 

≈ 1.189731495357231765021263853031·104932 

We can repeat similar calculations for denormalized numbers determining 
the lowest value different from zero. 

4.2.4 Single Precision 

Although the combination 0...0 is reserved to distinguish the denormalized 
numbers, it is not used to calculate its value. Therefore, the smallest per-
mitted value of the E field is 1, hence E–bias = 1 – 127 = −126. The mantissa 
has a zero in integer bit position and 1 in the lowest bit position, therefore: 

M = 0.00000000000000000000001SM = 2–23 

The value of the lowest denormalized number different from zero is: 

Amin_denorm_single = 2–23·2–126 = 2–149  

= 1.4012984643248170709237295832899·10–45  

≈ 1.4 · 10–45 
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4.2.5 Double Precision 

E = 00000000001BIN, hence E–bias = 1 – 1023 = –1022. 

M = 0.0000000000000000000000000000000000000000000000000001SM 

= 2–52 

The value of the lowest denormalized number different from zero is: 

Amin_denorm_double = 2–52·2–1022 = 2–1074  

= 4.9406564584124654417656879286822·10–324  

≈ 4.9 · 10–324 

4.2.6 Double Extended Precision 

E = 000000000000001BIN, hence E–bias = 1 – 16383 = –16382. 

M = 0.00000000000000000000000000000000000000000000000000000 
0000000001SM  

= 2–63  

The value of the lowest denormalized number different from zero is: 

Amin_denorm_double_extended = 2–63·2–16382=2–16445  

= 3.6451995318824746025284059336194 
·10–4951 ≈ 3.6·10–4951 

The lowest and highest values for normalized and denormalized numbers 
are summarized in Table 4.4. 

In 1987, the ANSI committee together with the IEEE organization pub-
lished a standard designated IEEE 854 and entitled ‘The IEEE Standard for 
Radix-Independent Floating-Point Arithmetic’. Unlike the IEEE 754 stan-
dard, it allows any integer to be used as the basis of the system, which in 
fact legitimizes hardware or software implementation of decimal arith-
metic. However, it does not specify the details of the basic and extended 
formats, imposing only the conditions that must be met by the exponent 
and mantissa of a floating-point number. Those interested in the details of 
the standard are referred to the source publication [IEEE 1987]. In response 
to market needs, IEEE 754 was updated in 2008 [IEEE 2008]. Among other 
things, the extended single-precision format, which had not found accep-
tance in programming languages, was cancelled, synonyms for ‘single’ were 
introduced as equivalent to ‘binary32’, ‘double’ was replaced by ‘binary64’, 
‘double extended’ was replaced by ‘binary128’, and ‘double extended’ was 
replaced by ‘extended’. The biggest change, however, was the introduction 
of two 16-bit formats to support low-cost 16-bit processors used in, e.g., 
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cash register, parking meter, ticket machine, water and gas consumption 
meters, etc. The double extended precision format (now called extended) 
has had its bit count increased to 128. The precision and numeric ranges of 
these new formats are also included in Table B.2 of Appendix B. It is worth 
mentioning that not all manufacturers of FPUs and programming tools have 
decided to fully implement the recommendations of the standard in 2008 
version. That is main reason why the original version of IEEE 754 was 
presented in this book. Thus, the 16-bit format is present, e.g. in MATLAB, 
GIMP packages, Direct3D, D3DX, OpenGL, Cg (NVIDIA & Microsoft) 
libraries, and OpenEXR and JPEG XR graphic file formats. The only 
operation on this format in the FPU of Intel Core processors is the con-
version to and from 32-bit format. Examples of hardware implementation 
of operations on 128-bit format are the following families of CPUs: Intel 
Core, IBM Power P9 and Fujitsu SPARC V8/9. The new version of standard 
specifies additional operations that are recommended for all supported 
arithmetic formats. These operations are given as function names, but in a 
particular programming environment they may be represented by operators 
or functions whose names may differ. These include, among others:  

• exp(x), 2x, 10x, ln(x), log2(x), log10(x),  
• sqrt(x2 + y2), 1/sqrt(x), x1/n,  
• sin(x), cos(x), tan(x), asin(x), acos(x), atan(x),  
• sinh(x), cosh(x), tanh(x), asinh(x), acosh(x), atanh(x). 

The reader will find more information in the reference publication 
[IEEE 2008]. 

Table 4.4 The Lowest and Highest Positive Number According to IEEE 754 Standard     

Single precision Hexadecimal format Value     

The lowest denormalized number 
The highest denormalized number 
The lowest normalized number 
The highest normalized number 

0000 0001 
007F FFFF 
0080 0000 
7F7F FFFF 

2–149 

2149 · (223 – 1) 
2–126 

2104 · (224 – 1) 
Double precision Hexadecimal format Value 
The lowest denormalized number 
The highest denormalized number 
The lowest normalized number 
The highest normalized number 

0000 0000 0000 0001 
000F FFFF FFFF FFFF 
0010 0000 0000 0000 
7FEF FFFF FFFF FFFF 

2–1074 

21074 · (252 – 1) 
2–1022 

2971 · (253 – 1) 
Double precision* Hexadecimal format Value 
The lowest denormalized number 
The highest denormalized number 
The lowest normalized number 
The highest normalized number 

0000 0000 0000 0000 0001 
0000 7FFF FFFF FFFF FFFF 
0001 8000 0000 0000 0000 
7FFE FFFF FFFF FFFF FFFF 

2–16445 

216445 · (263 – 1) 
2–16382 

216320 · (264 – 1) 
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4.3 FPU AS A SPECIALIZED ARITHMETIC UNIT 

An FPU is like a ‘younger brother’ of classical ALU but is a much powerful. It 
extends the processor arithmetic abilities to work on high precision a wide 
range real numbers. It rather occurs as resource of families of strong 
processor, e.g. Intel, AMD, NXP ColdFire or ARM architectures. The details 
of an internal architecture differ but from the user point of view they provide 
similar functionalities thanks to conforming to requirements of IEEE 754 
standard (at least to the most of them). For example, Intel FPU, called x87 
FPU, consists of eight 80-bit data registers and special-purpose registers for 
managing the rounding modes, exceptions and many others. Values are 
stored in these registers in the double extended precision format – look for 
Table 4.1 and comments on ‘*’. When floating-point, integer or packed BCD 
values are loaded from memory into any of FPU data registers, the values are 
automatically converted into double extended precision floating-point format 
or not if they are already in that format. When computation results are 
sending back into memory from any of the x87 FPU registers, the results can 
be left in the double extended precision floating-point format or converted 
back into a shorter floating-point format, an integer format, or the packed 
BCD integer format. The x87 FPU instructions treat the eight x87 FPU data 
registers as a classical register stack. Addressing of the data registers is rel-
ative to the register on the top of the stack. If a load operation is performed 
when top of a stack is at R0 register, the register wraparound occurs and the 
new localization of stack top is assigned to R7. 

The ARM architectures support floating-point data types and arithmetic 
with some restrictions depending on specific core version. For example, the 
Armv8 architecture supports both single and double precision data types. It 
also supports the 16-bit half-precision floating-point data type for data 
storage, by supporting conversions between single-precision and half- 
precision data types and double-precision and half-precision data types. 
Another example is the ARM Cortex-M4 core. Its FPU fully supports only 
single-precision add, subtract, multiply, divide, multiply and accumulate, and 
square root operations. It also provides conversions between fixed-point and 
floating-point data formats, and floating-point constant instructions. The 
FPU provides an extension register file containing 32 single-precision regis-
ters. These can be viewed as:  

• sixteen 64-bit double-word registers, D0-D15,  
• thirty-two 32-bit single-word registers, S0-S31,  
• or combination of registers from the above views. 

Specific options beyond the standard are ‘flush-to-zero’ and ‘default NaN’ 
modes. In ‘flush-to-zero’ mode, the FPU treats all denormalized input 
operands of arithmetic operations as zeros. For the ‘default NaN’ mode 
the result of any arithmetic data processing operation that involves an 
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input NaN, or that generates a NaN result, returns the default NaN. The 
default NaN is a qNaN with an all-zero of mantissa fraction. When not in 
default NaN mode, the operations with NaN input values preserve the 
NaN, or one of the NaN values, if more the one input operand is a NaN, as 
the result [Hohl 2015]. 

4.4 CONVERSION TO ANOTHER RADIX 

Conversion of a floating-point number A with base p to base s involves 
finding the value of the mantissa Ms and the exponent Es according to the 
formulas (4.5): 

C = 1 +

M = M exp(C ln(p) C ln(s))

s
ln M + C ln(p)

ln(s)

s p p s

P P

(4.5)  

for those the below equality is satisfied (4.6): 

A = M p = M sp
C

S
Cp S (4.6)  

The derivation of the given formulas will be presented here. Let’s an A 
number be as below (4.7): 

A = M sS
CS (4.7)  

assuming that sign is part of mantissa. 
Logarithmizing both sides at the base s of the above relation (considering 

the domain of the logarithm), and then adding a constant 1 to both sides, 
we get (4.8): 

1 + log ( A ) = log ( M ) + log (s) + C = log (s M ) + Cs S S S

1

S S S S (4.8)  

Because of observation that log (s M ) < CS S S, we obtain in simplified 
form (4.9): 

C 1 + log (A) = 1 +
ln( A )

ln(s)
S s (4.9)  

Knowing that A = M pp
Cp and applying the rule of changing the logarithm 

base, we have (4.10): 
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C 1 + log (A) = 1 +
ln(|A|)
ln(s)

= 1 +
ln(|M |) + C ln(p)

ln(s)
S s

p p
(4.10)  

The identity x = exp(ln(x)) for x > 0 yields the final mantissa formula with 
base s as shown by (4.11): 

M = M
p
s

= M exp(C ln(p) C ln(s))S p

C

C p p s

P

S
(4.11)  

In general, the accepted format for floating-point numbers requires CS to be 
an integer, so it is sometimes necessary to round the value obtained from 
the calculation. It follows as a practical matter to first determine the exact 
value of the characteristic Cs, then round it, and finally determine the 
mantissa MS. 

Example 4.3: The floating-point number 0.1101SM·2011
SM = 6.5DEC with base 2 

and the same number with base 10: 

M = 0,1101 = +13/16 and C = 011 = +3 .2 SM DEC 2 SM DEC

C = 1 +
ln M + C ln2

ln10
= 1 +

ln +0.8125 + (+3) ln2

ln10
= 1.81 210

2 2

M = M exp(C ln2 C ln10) = +0.8125 exp(3 ln2 2 ln10) = +0.06510 2 2 10

Finally, we have +0.065·10+2. Checking: +0.065·10+2 = +6.5DEC 

Example 4.4: The floating-point number –3.72·10–2 with base 10 and the same 
number with base 2 in SM format: 

M = –3.72 and C = –2 .10 DEC 10 DEC

C = 1 +
ln M + C ln10

ln2
= 1 +

ln 3.72 + ( 2) ln10

ln2
= 3.747 4

= 1100

2
10 10

SM

M = M exp(C ln10 C ln2) = 3.72 exp( 2 ln 10 ( 4) ln 2)

= 0.595

2 10 10 2

DEC
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0.595·2 
1.19·2 
0.38·2 
0.76·2 
1.52·2 
1.04·2 
... 
0.595DEC → ≈0.10011BIN  

Finally we have 1.10011SM·21100
SM. Checking: –0.595·2–4 = –0.0372DEC 

Exercise 4.1: Convert the floating-point number –5.28·10–3 with base 10 to 
the base of 2 in SM format. 

Exercise 4.2: Convert the floating-point number 0.0101SM·2010
SM = +1.25DEC 

with base 2 to the base of 10.  
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Chapter 5 

Basic Arithmetic Operations on 
Floating-point Numbers     

5.1 ADDITION 

The purpose of the following discussion is to show how to perform the 
operation Z = X + Y, where (5.1): 

M p = M p + M pZ
E

X
E

Y
EZ X Y

M = M + M E = max(E ,E )Z X Y Z X Y (5.1)  

and (5.2) 

M = M , M = M for E = E

M = M , M = M p for E > E

M = M p , M = M for E < E

X X Y Y X Y

X X Y Y
C C

X Y

X X
C C

Y Y X Y

X Y

X Y

(5.2)  

Addition of two mantises should be done according to the rules specified in 
Chapter 3. Mantises in 2’s format are added according to the formula 
M = M + MZ X Y. Adding the mantises in SM format requires applying the 
rules given in Table 3.1. Sometimes the result of the addition cannot be 
stored on the assumed number of bits, so it should be normalized according 
to the following rules:  

• if M 1Z then M _ = M p E = E + 1Z norm Z
1

Znorm Z ,  
• if M < pZ

i then M _ = M p E = E iZ norm Z
i

Znorm Z , and i – number 
of zeros after dot point, e.g. i = 3 for 0.0001. 

Example 5.1: Addition of two floating-point SM numbers: 

X = 0.1100·2 = +
12
16

2 = +0.09375 , Y = 0.0001 2 = +
1

16
2

= +0.25

SM
111 3

DEC
010 +2

DEC
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For better readiness, we will sometimes replace the sign bit values 0/1 with +/−. 

We have p = 2, EX = −11SM, MX = +0.1100SM, EY = +10SM, MY = +0.0001SM. 

E – E = –3 – (+2) = –5 = +5, E < E E = max( 3, +2) = +2X Y X Y Z

M = M 2 = 0.0000011 , M = M = 0.0001000X X
5

SM Y Y SM

Because of X and Y are positive (see addition rules for SM numbers in Table 3.1): 

M = M + M = +( M + M ) = 0.0001011Z X Y X Y SM

We have M < 2Z
3 therefore the normalization is needed: 

M _ = M 2 = 0,1011 , E = E 3 = +2 3 = 1 = 101Z norm Z
3

SM Znorm Z SM

Finally, Z = 0.1011 · 2101
SM = +0.34375DEC. 

Exercise 5.1: Perform addition of two floating-point SM numbers: 

X = 1.1011·2 =
11
16

2 = 2.75 , Y = 0.1111 2 = +
15
16

2

= +0.46875

SM
010 +2

DEC SM
101 1

DEC

5.2 SUBTRACTION 

The purpose of the following discussion is to show how to perform the 
operation Z = X Y, where (5.3) 

M = M M E = max(E , E )Z X Y Z X Y (5.3)  

and (5.4) 

M = M , M = M dla E = E

M = M , M = M p dla E > E

M = M p M = M dla E < E

X X Y Y X Y

X X Y Y
E E

X Y

X X
E E

Y Y X Y

X Y

X Y

(5.4)  
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Subtraction of two mantises should be done according to the rules specified 
in Chapter 3. Mantises in 2’s format are subtracted according to the for-
mula M = M MZ X Y. Subtracting the mantises in SM format requires 
applying the rules given in Table 3.2. Normalization of the result follows 
the rules specified in the previous chapter. 

Example 5.2: Subtraction of two floating-point SM numbers: 

X = 1.100·2 =
1
2

2 = 1 ,

Y = 0.111·2 = +
7
8

·2 = +3.5 .

SM
001 +1

DEC

SM
010 +2

DEC

p = 2, E = +01 , M = –0.100 ,

E = +10 , M = +0.111

X SM X SM

Y SM Y SM

E – E = +1 – (+2) = 1 = +1,

E < E E = max(+1, +2) = +2

X Y

X Y Z

M = M 2 = 0.010 , M = MX X
1

SM Y Y

Because of X is negative and Y positive (see subtraction rules for SM numbers 
in Table 3.2): 

M = M M = ( M + M ) = 1.001Z X Y X Y SM

We have M 1Z , therefore the normalization is needed: 

M _ = M 2 = 0.1001 = 1.1001 , E = E + 1 = +2 + 1

= 011

Z norm Z
1

SM SM Znorm Z

SM

If an equal number of bits of the result Z and the arguments X, Y are assumed, 
then the lowest bit of the mantissa must be discarded. As a result, the result will 
be approximated. Finally, Z ≈ 1.100 · 2011

SM = –4DEC but we expected –4.5DEC. 

Exercise 5.2: Perform subtraction of two floating-point SM numbers: 

X = 1.101·2 =
5
8

, Y = 1.110·2 =
6
8

·2 = 3SM
000

DEC
SM
010 +2

DEC
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5.3 MULTIPLICATION 

The purpose of the following discussion is to show how to perform the 
operation Z = X Y (5.5): 

( ) ( )M p = M p M pZ
E

X
E

Y
EZ X Y

M = M M E = E + EZ X Y Z X Y (5.5)  

Normalization of the result of mantissa multiplication follows the rules 
specified for addition of floating-point numbers. The multiplication does 
not require a preliminary denormalization of the mantissa, which simplifies 
the execution of the operation. 

Example 5.3: Multiplication of two floating-point SM numbers, where 

X = 1,0110·2 =
3
8

2 =
3

16
,

Y = 0,1010·2 = +
5
8

2 = +5

SM
101 1

DEC

SM
011 +3

DEC

Data: 

p = 2, E = –01 , M = –0.0110 ,

E = +11 , M = +0.1010

X SM X SM

Y SM Y SM

E = E + E = 1 + (+3) = +2Z X Y DEC

Because X and Y are different signs (see multiplication rules for SM format): 

M = M M = M M = 0.00111100Z X Y X Y SM

We have M < 2Z
2, hence the normalization is needed: 

M _ = M 2 = 0.1111 = 1.1111 ,

E = E 2 = +2 2 = 0 = 000

Z norm Z
2

SM SM

Znorm Z SM

Finally, Z = 1.1111·2 =SM
000 15

16 DEC
. 
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Exercise 5.3: Perform multiplication of two floating-point numbers, where 

X = 1.0100·2 =
1
4

2 =
1
2

,

Y = 1.0010·2 =
1
8

2 =
1
32

SM
001 +1

DEC

SM
110 2

DEC

5.4 DIVISION 

The purpose of the following discussion is to show how to perform the 
operation Z = X/Y (5.6): 

( ) ( )M p = M p / M p , C = C CZ
C

X
C

Y
C

Z X YZ X Y

M = M , C = C for M < M

M = M p , C = C + j, for M M and j (|M | < |M |)

X X X X X Y

X X
j

X X X Y X Y

(5.6)  

The parameter j specifies in practice the number of zeros to be added after 
the decimal point so that the denormalized mantissa MX is smaller than the 
mantissa MY in absolute value. The normalization of the result of dividing 
the mantissa follows the rules defined for adding floating-point numbers. 

Example 5.4: Division of two floating-point SM numbers, where 

X = 0.1010·2 = +
5
8

2 = +5 ,

Y = 1.0110·2 =
3
8

2 =
3

16

SM
011 +3

DEC

SM
101 1

DEC

p = 2, C = +11 , M = +0.1010 ,

C = –01 , M = –0.0110

X SM X SM

Y SM Y SM

Because of |Mx| > |MY|, we have to firstly make a denormalization of X number, 
hence 

for j = 1 |M | = |M 2 | |M |X X
j

Y

and M = M 2 = +0.0101 , C = C + 1 = +100 , C = C C = +4

( 1) = +5

X X
1

SM X X SM Z X Y

DEC
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Because X and Y are of equal signs (see rules for division in SM format): 

M = M /M = M / M = 0.110101 = 1 .110101Z X Y X Y SM SM

In this case, there is no need to normalize the result. If an equal number of bits 
are assumed for the result Z and the arguments X and Y then the two lowest 
bits of the mantissa must be discarded. As a result, the value of the mantissa will 
be approximated. Furthermore, to express a feature of value +5 in SM format, 
4 bits are needed and the assumed number is 3, so truncation error of 010SM- 
0101SM = 111SM would occur. The solution to the problem is to take 4 bits to 
express the exponents. Finally, Z ≈ 1.1101·20101

SM ≈ −26.66DEC. A discussion of 
the effect of finite precision on the accuracy of the result of arithmetic 
operations is undertaken in Chapter 6. 

Exercise 5.4: Perform division of two floating-point SM numbers, where 

X = 0.1101·2 = +
13
16

2 = +
13
4

= +3.25SM
010 +2

DEC

Y = 1 .1110·2 =
14
16

2 =
14
64SM

1 10 2

DEC

5.5 IMPLEMENTATIONS IN ASSEMBLY LANGUAGE 

The software implementation of operation on floating-point numbers in the 
8051 microcontroller according to the IEEE 754 standard is quite com-
plicated. It requires performing operations on multi-byte numbers, where 
the mantissa is in SM format and the exponent in biased format. To 
illustrate the complexity of the problem, we will show the implementation 
for numbers using simplified format. We present subroutines implementing 
four basic arithmetic operations for 2-byte numbers, where 1 byte for the 
mantissa and the other for the exponent are reserved. Comparing the 
complexity of arithmetic operations for numbers in different formats (see 
Chapter 3), we propose to express the mantissa and the exponent as SM 
numbers, i.e., each number will be seen as A = M 2SM

CSM, where (5.7): 

M = ( 1) (a 2 + ... + a 2 ) = ( 1) a 2SM
ã

1
1

(n 1)
(n 1) ã

i= 1

(n 1)

i
i0 0

C = ( 1) (a 2 + ... + a 2 + a ) = ( 1) a 2SM
a

m 2
m 2

1 0
a

i=0

m 2

i
im 1 m 1 (5.7)  
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Since a dimension of mantissa and exponent are 1 byte, hence n = 8 and m = 8. 
The lowest and highest mantissa values are:  

• the lowest negative: 1.1111111SM = −127/128,  
• the highest negative: 1.0000000SM = –0,  
• the lowest positive: 0.0000000SM = +0,  
• the highest positive: 0.1111111SM = +127/128. 

Let’s list the lowest and highest values of the exponent:  

• the lowest negative: 11111111SM = –127,  
• the highest negative: 10000000SM = –0,  
• the lowest positive: 00000000SM = +0,  
• the highest positive: 01111111SM = +127. 

Minimal and maximal values for the assumed convention are: 

0.1111111 2 +10

1.1111111 2 –10
SM
01111111

DEC
+38

SM
01111111

DEC
38

with resolution of mantissa 1/128 = 0.0078125 less than 2.5 decimal digits. 
According to the rules discussed in the previous chapters, the execution 

of the operations consists in performing an initial denormalization of the 
mantises, except for multiplication, followed by addition, subtraction, 
multiplication or division of the mantises, and multiplication of the ex-
ponents in the case of multiplication, or denormalization and division of the 
features in the case of division. Regardless of the type of operation, the 
result must be reported in normalized form. In the subroutines presented 
here we will refer to the respective subroutines outlined in Chapter 3. 
Setting the OV flag will indicate a result out of range. 

Implementation in code of the addition:  

• input number: R0 – mantissa of first number, R1 – exponent of first 
number,  

• input number: R2 – mantissa of second number, R3 – exponent of 
second number,  

• output number: R0 – mantissa of result, R1 – exponent of result, OV 
– result out of the range,  

• exemplary value: [+0.625*2+3] + [–0.375*2–1]. 

1 ;******************************************************************************* 
2 ;* Addition of floating-point numbers * 
3 ;******************************************************************************* 
4 ;mantissa must be normalized, i.e. 1 after sign bit! 
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5 ;an exception is mantissa with value of 0. 
6    
7 0003 c1 EQU 00000011B ;exponent of first SM number 
8 0050 m1 EQU 01010000B ;mantissa of first SM number 
9 0081 c2 EQU 10000001B ;exponent of second SM number 

10 00B0 m2 EQU 10110000B ;mantissa of second SM number 
11  ;first number m1*2^c1=+0.625*2^+3 
12  ;second number m2*2^c2=−0.375*2^−1 
13  ;result my*2^cy=+77/128*2^+3=+4.8125 
14  ;another example of numbers  
15  ;c1 EQU 10000111B ;exponent of first SM number 
16  ;m1 EQU 11000000B ;mantissa of first SM number 
17  ;c2 EQU 10000100B ;exponent of second SM number 
18  ;m2 EQU 01110000B ;mantissa of second SM number 
19  ;first number m1*2^c1=−0.5*2^−7 
20  ;second number m2*2^c2=+0.875*2^−4 
21  ;result my*2^cy=+13/16*2^−4= 

+0.8125*2^−4 
22    
23 0000: 78 50 MOV R0,#m1  
24 0002: 79 03 MOV R1,#c1  
25 0004: 7A B0 MOV R2,#m2  
26 0006: 7B 81 MOV R3,#c2  
27 0008: 12 00 0D LCALL ADD_FLOATS  
28   ;result in A 
29 000B: 80 FE STOP: SJMP STOP  
30 ;------------------------------------------------------------------------------------------------------ 
31 000D: ADD_FLOATS:  
32 000D: EB MOV A,R3  
33 000E: 89 F0 MOV B,R1  
34 0010: B2 E7 CPL ACC.7  
35 0012: 12 00 72 LCALL ADD_SM_FLOATS ;compare the exponents 
36 0015: 60 2D JZ EXP_THE_SAME  
37 0017: 92 E7 MOV ACC.7,C  
38 0019: 30 E7 17 JNB ACC.7,GREATER  
39 001C: LESS:  
40 001C: C2 E7 CLR ACC.7  
41 001E: FC MOV R4,A ;c1<c2 
42 001F: E8 MOV A,R0  
43 0020: A2 E7 MOV C,ACC.7  
44 0022: 92 D1 MOV PSW.1,C  
45 0024: C2 E7 CLR ACC.7  
46 0026: NORM1:  
47 0026: C3 CLR C  
48 0027: 13 RRC A  
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49 0028: DC FC DJNZ R4,NORM1  
50 002A: A2 D1 MOV C,PSW.1  
51 002C: 92 E7 MOV ACC.7,C  
52 002E: F8 MOV R0,A  
53 002F: EB MOV A,R3  
54 0030: C9 XCH A,R1  
55 0031: 80 11 SJMP EXP_THE_SAME  
56 0033: GREATER:  
57 0033: FC MOV R4,A ;c1>c2 
58 0034: EA MOV A,R2  
59 0035: A2 E7 MOV C,ACC.7  
60 0037: 92 D1 MOV PSW.1,C  
61 0039: C2 E7 CLR ACC.7  
62 003B: NORM2:  
63 003B: C3 CLR C  
64 003C: 13 RRC A  
65 003D: DC FC DJNZ R4,NORM2  
66 003F: A2 D1 MOV C,PSW.1  
67 0041: 92 E7 MOV ACC.7,C  
68 0043: FA MOV R2,A  
69 0044: EXP_THE_SAME:  
70 0044: E8 MOV A,R0  
71 0045: 8A F0 MOV B,R2  
72 0047: 12 00 72 LCALL ADD_SM_FLOATS  
73 004A: 92 D5 MOV PSW.5,C  
74 004C: 30 E7 06 JNB ACC.7,NORM3  
75 004F: C3 CLR C  
76 0050: 03 RR A  
77 0051: 7C 01 MOV R4,#1  
78 0053: 80 0E SJMP SKIP  
79 0055: NORM3:  
80 0055: 7C 00 MOV R4,#0  
81 0057: RETURN:  
82 0057: 20 E6 05 JB ACC.6,SKIP1  
83 005A: C3 CLR C  
84 005B: 23 RL A  
85 005C: 0C INC R4  
86 005D: 80 F8 SJMP RETURN  
87 005F: SKIP1:  
88 005F: CC XCH A,R4  
89 0060: B2 E7 CPL ACC.7  
90 0062: CC XCH A,R4  
91 0063: SKIP:  
92 0063: A2 D5 MOV C,PSW.5  
93 0065: 92 E7 MOV ACC.7,C  
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94 0067: F8 MOV R0,A ;mantissa of result 
95 0068: E9 MOV A,R1  
96 0069: 8C F0 MOV B,R4  
97 006B: 12 00 72 LCALL ADD_SM_FLOATS  
98 006E: 92 E7 MOV ACC.7,C  
99 0070: F9 MOV R1,A ;exponent of result 

100 0071: 22 RET  
101 ;----------------------------------------------------------------------------------------------------- 
102 0072: ADD_SM_FLOATS:  
103 0072: A2 E7 MOV C,ACC.7  
104 0074: 92 D5 MOV PSW.5,C  
105 0076: C0 E0 PUSH ACC  
106 0078: 65 F0 XRL A,B  
107 007A: A2 E7 MOV C,ACC.7  
108 007C: 53 F0 7F ANL B,#01111111B  
109 007F: D0 E0 POP ACC  
110 0081: 54 7F ANL A,#01111111B  
111 0083: 50 18 JNC signs_the_same  
112 0085: signs_different:  
113 0085: B5 F0 02 CJNE A,B,different  
114 0088: 80 02 SJMP greater_or_equal  
115 008A: different:  
116 008A: 40 07 JC less  
117 008C: greater_or_equal:  
118 008C: C3 CLR C  
119 008D: 95 F0 SUBB A,B  
120 008F: A2 D5 MOV C,PSW.5  
121 0091: 80 12 SJMP end  
122 0093: less:  
123 0093: C3 CLR C  
124 0094: C5 F0 XCH A,B  
125 0096: 95 F0 SUBB A,B  
126 0098: A2 D5 MOV C,PSW.5  
127 009A: B3 CPL C  
128 009B: 80 08 SJMP end  
129 009D: signs_the_same:  
130 009D: 25 F0 ADD A,B  
131 009F: A2 E7 MOV C,ACC.7  
132 00A1: 92 D2 MOV OV,C  
133 00A3: A2 D5 MOV C,PSW.5  
134 00A5: end:  
135 00A5: 22 RET  
136 ;--- end of file ---  
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Implementation in code of the subtraction:  

• input number: R0 – mantissa of first number, R1 – exponent of first 
number,  

• input number: R2 – mantissa of second number, R3 – exponent of 
second number,  

• output number: R0 – mantissa of result, R1 – exponent of result, OV 
– result out of the range,  

• exemplary value: [+0.625*2+3] – [−0.375*2–1]. 

1 ;****************************************************************************** 
2 ;* Subtraction of floating-point numbers * 
3 ;****************************************************************************** 
4 ;mantissa must be normalized, i.e. 1 after sign bit! 
5 ;an exception is mantissa with value of 0. 
6    
7 0003 c1 EQU 00000011B ;exponent of first SM number 
8 0050 m1 EQU 01010000B ;mantissa of first SM number 
9 0081 c2 EQU 10000001B ;exponent of second SM number 

10 00B0 m2 EQU 10110000B ;mantissa of second SM number 
11  ;first number m1*2^c1=+0.625*2^+3 
12  ;second number m2*2^c2=−0.375*2^−1 
13  ;result my*2^cy=+83/128*2^+3 
14  ;another example of numbers  
15  ;c1 EQU 10000111B ;exponent of first SM number 
16  ;m1 EQU 11000000B ;mantissa of first SM number 
17  ;c2 EQU 10000100B ;exponent of second SM number 
18  ;m2 EQU 01110000B ;mantissa of second SM number 
19  ;first number m1*2^c1=−0.5*2^−7 
20  ;second number m2*2^c2=+0.875*2^−4 
21  ;result my*2^cy=−15/16*2^−4 
22    
23 0000: 78 50 MOV R0,#m1  
24 0002: 79 03 MOV R1,#c1  
25 0004: 7A B0 MOV R2,#m2  
26 0006: 7B 81 MOV R3,#c2  
27 0008: 12 00 0D LCALL SUB_FLOATS  
28   ;result in A 
29 000B: 80 FE STOP: SJMP STOP  
30 ;----------------------------------------------------------------------------------------------------- 
31 000D: SUB_FLOATS:  
32 000D: E9 MOV A,R1  
33 000E: 8B F0 MOV B,R3  
34 0010: 12 00 72 LCALL SUB_SM_FLOATS ;compare the exponents 
35 0013: 60 2D JZ EXP_THE_SAME  
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36 0015: 92 E7 MOV ACC.7,C  
37 0017: 30 E7 17 JNB ACC.7,GREATER  
38 001A: LESS:  
39 001A: C2 E7 CLR ACC.7  
40 001C: FC MOV R4,A ;c1<c2 
41 001D: E8 MOV A,R0  
42 001E: A2 E7 MOV C,ACC.7  
43 0020: 92 D1 MOV PSW.1,C  
44 0022: C2 E7 CLR ACC.7  
45 0024: NORM1:  
46 0024: C3 CLR C  
47 0025: 13 RRC A  
48 0026: DC FC DJNZ R4,NORM1  
49 0028: A2 D1 MOV C,PSW.1  
50 002A: 92 E7 MOV ACC.7,C  
51 002C: F8 MOV R0,A  
52 002D: EB MOV A,R3  
53 002E: C9 XCH A,R1  
54 002F: 80 11 SJMP EXP_THE_SAME  
55 0031: GREATER:  
56 0031: FC MOV R4,A ;c1>c2 
57 0032: EA MOV A,R2  
58 0033: A2 E7 MOV C,ACC.7  
59 0035: 92 D1 MOV PSW.1,C  
60 0037: C2 E7 CLR ACC.7  
61 0039: NORM2:  
62 0039: C3 CLR C  
63 003A: 13 RRC A  
64 003B: DC FC DJNZ R4,NORM2  
65 003D: A2 D1 MOV C,PSW.1  
66 003F: 92 E7 MOV ACC.7,C  
67 0041: FA MOV R2,A  
68 0042: EXP_THE_SAME:  
69 0042: E8 MOV A,R0  
70 0043: 8A F0 MOV B,R2  
71 0045: 12 00 72 LCALL SUB_SM_FLOATS  
72 0048: 92 D5 MOV PSW.5,C  
73 004A: 30 E7 06 JNB ACC.7,NORM3  
74 004D: C3 CLR C  
75 004E: 03 RR A  
76 004F: 7C 01 MOV R4,#1  
77 0051: 80 0E SJMP SKIP  
78 0053: NORM3:  
79 0053: 7C 00 MOV R4,#0  
80 0055: RETURN:  
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81 0055: 20 E6 05 JB ACC.6,SKIP1  
82 0058: C3 CLR C  
83 0059: 23 RL A  
84 005A: 0C INC R4  
85 005B: 80 F8 SJMP RETURN  
86 005D: SKIP1:  
87 005D: CC XCH A,R4  
88 005E: B2 E7 CPL ACC.7  
89 0060: CC XCH A,R4  
90 0061: SKIP:  
91 0061: A2 D5 MOV C,PSW.5  
92 0063: 92 E7 MOV ACC.7,C  
93 0065: F8 MOV R0,A ;mantissa of result 
94 0066: E9 MOV A,R1  
95 0067: 8C F0 MOV B,R4  
96 0069: B2 F7 CPL B.7  
97 006B: 12 00 72 LCALL SUB_SM_FLOATS  
98 006E: 92 E7 MOV ACC.7,C  
99 0070: F9 MOV R1,A ;exponent of result 

100 0071: 22 RET  
101 ;----------------------------------------------------------------------------------------------------- 
102 0072: SUB_SM_FLOATS:  
103 0072: A2 E7 MOV C,ACC.7  
104 0074: 92 D5 MOV PSW.5,C  
105 0076: C0 E0 PUSH ACC  
106 0078: 65 F0 XRL A,B  
107 007A: A2 E7 MOV C,ACC.7  
108 007C: 53 F0 7F ANL B,#01111111B  
109 007F: D0 E0 POP ACC  
110 0081: 54 7F ANL A,#01111111B  
111 0083: 40 18 JC signs_different  
112 0085: signs_the_same:  
113 0085: B5 F0 02 CJNE A,B,different  
114 0088: 80 02 SJMP greater_or_equal  
115 008A: different:  
116 008A: 40 07 JC less  
117 008C: greater_or_equal:  
118 008C: C3 CLR C  
119 008D: 95 F0 SUBB A,B  
120 008F: A2 D5 MOV C,PSW.5  
121 0091: 80 12 SJMP end  
122 0093: less:  
123 0093: C3 CLR C  
124 0094: C5 F0 XCH A,B  
125 0096: 95 F0 SUBB A,B  
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126 0098: A2 D5 MOV C,PSW.5  
127 009A: B3 CPL C  
128 009B: 80 08 SJMP end  
129 009D: signs_different:  
130 009D: 25 F0 ADD A,B  
131 009F: A2 E7 MOV C,ACC.7  
132 00A1: 92 D2 MOV OV,C  
133 00A3: A2 D5 MOV C,PSW.5  
134 00A5: end:  
135 00A5: 22 RET  
136 ;--- end of file ---  

Implementation in code of the multiplication:  

• input number: R0 – mantissa of first number, R1 – exponent of first 
number,  

• input number: R2 – mantissa of second number, R3 – exponent of 
second number,  

• output number: R0 – mantissa of result, R1 – exponent of result, OV 
– result out of the range,  

• exemplary value: [–0.75*2–5]*[+0.625*2+1]. 

1 ;****************************************************************************** 
2 ;* Multiplication of floating-point numbers * 
3 ;****************************************************************************** 
4 ;mantissa must be normalized, i.e. 1 after sign bit! 
5 ;an exception is mantissa with value of 0. 
6    
7  ;c1 EQU 10000101B ;exponent of first SM number 
8  ;m1 EQU 11100000B ;mantissa of first SM number 
9  ;c2 EQU 00000001B ;exponent of second SM number 

10  ;m2 EQU 01010000B ;mantissa of second SM number 
11  ;first number m1*2^c1=−0.75*2^−5 
12  ;second number m2*2^c2=+0.625*2^+1 
13  ;result my*2^cy=−0.46875*2^−4= 
14   ;=−0.9375*2^−5 
15  ;another example of numbers  
16 0087 c1 EQU 10000111B ;exponent of first SM number 
17 00D8 m1 EQU 11011000B ;mantissa of first SM number 
18 008C c2 EQU 10001100B ;exponent of second SM number 
19 00C1 m2 EQU 11000001B ;mantissa of second SM number 
20  ;first number m1*2^c1=−0.6875*2^−7 
21  ;second number m2*2^c2=−0.5078125*2^−12 
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22  ;result my*2^cy=+715/2048*2^−19= 
23   ;=+1430/2048*2^−20 

=+0.69824*2^−20 
24    
25 0000: 78 D8 MOV R0,#m1  
26 0002: 79 87 MOV R1,#c1  
27 0004: 7A C1 MOV R2,#m2  
28 0006: 7B 8C MOV R3,#c2  
29 0008: 12 00 0D LCALL MUL_FLOATS  
30   ;result in A 
31 000B: 80 FE STOP: SJMP STOP  
32 ;----------------------------------------------------------------------------------------------------- 
33 000D: MUL_FLOATS:  
34 000D: E8 MOV A,R0  
35 000E: 8A F0 MOV B,R2  
36 0010: 12 00 3A LCALL MUL_SM_FLOATS  
37 0013: 7C FF MOV R4,#0FFH  
38 0015: NORM_MANTISSA:  
39 0015: 20 F6 0A JB B.6,SKIP  
40 0018: C3 CLR C  
41 0019: 33 RLC A  
42 001A: C5 F0 XCH A,B  
43 001C: 33 RLC A  
44 001D: C5 F0 XCH A,B  
45 001F: 0C INC R4  
46 0020: 80 F3 SJMP NORM_MANTISSA  
47 0022: SKIP:  
48 0022: A2 D5 MOV C,PSW.5  
49 0024: 92 F7 MOV B.7,C  
50 0026: A8 F0 MOV R0,B ;mantissa of result 
51 0028: E9 MOV A,R1  
52 0029: 8B F0 MOV B,R3  
53 002B: 12 00 4B LCALL ADD_SM_FLOATS  
54 002E: 20 D2 08 JB OV,SKIP1  
55 0031: 8C F0 MOV B,R4  
56 0033: B2 F7 CPL B.7  
57 0035: 12 00 4B LCALL ADD_SM_FLOATS  
58 0038: F9 MOV R1,A ;exponent of result 
59 0039: SKIP1:  
60 0039: 22 RET  
61 003A: MUL_SM_FLOATS:  
62 003A: C0 E0 PUSH ACC  
63 003C: 65 F0 XRL A,B  
64 003E: A2 E7 MOV C,ACC.7  
65 0040: 92 D5 MOV PSW.5,C  
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66 0042: 53 F0 7F ANL B,#01111111B  
67 0045: D0 E0 POP ACC  
68 0047: 54 7F ANL A,#01111111B  
69 0049: A4 MUL AB  
70 004A: 22 RET  
71 004B: ADD_SM_FLOATS:  
72 004B: A2 E7 MOV C,ACC.7  
73 004D: 92 D5 MOV PSW.5,C  
74 004F: C0 E0 PUSH ACC  
75 0051: 65 F0 XRL A,B  
76 0053: A2 E7 MOV C,ACC.7  
77 0055: 53 F0 7F ANL B,#01111111B  
78 0058: D0 E0 POP ACC  
79 005A: 54 7F ANL A,#01111111B  
80 005C: 50 18 JNC signs_the_same  
81 005E: signs_different:  
82 005E: B5 F0 02 CJNE A,B,different  
83 0061: 80 02 SJMP greater_or_equal  
84 0063: different:  
85 0063: 40 07 JC less  
86 0065: greater_or_equal:  
87 0065: C3 CLR C  
88 0066: 95 F0 SUBB A,B  
89 0068: A2 D5 MOV C,PSW.5  
90 006A: 80 12 SJMP end  
91 006C: less:  
92 006C: C3 CLR C  
93 006D: C5 F0 XCH A,B  
94 006F: 95 F0 SUBB A,B  
95 0071: A2 D5 MOV C,PSW.5  
96 0073: B3 CPL C  
97 0074: 80 08 SJMP end  
98 0076: signs_the_same:  
99 0076: 25 F0 ADD A,B  

100 0078: A2 E7 MOV C,ACC.7  
101 007A: 92 D2 MOV OV,C  
102 007C: A2 D5 MOV C,PSW.5  
103 007E: end:  
104 007E: 92 E7 MOV ACC.7,C  
105 0080: 22 RET  
106 ;--- end of file ---  
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Implementation in code of the division:  

• input number: R0 – mantissa of first number, R1 – exponent of first 
number,  

• input number: R2 – mantissa of second number, R3 – exponent of 
second number,  

• output number: R0 – mantissa of result, R1 – exponent of result, OV 
– result out of the range,  

• exemplary value: [–0.5*2–7]/[–0.375*2–1]. 

1 ;****************************************************************************** 
2 ;* Division of floating-point numbers * 
3 ;****************************************************************************** 
4 ;mantissa must be normalized, i.e. 1 after sign bit! 
5 ;an exception is mantissa with value of 0. 
6    
7  ;c1 EQU 00000011B ;exponent of first SM number 
8  ;m1 EQU 01010000B ;mantissa of first SM number 
9  ;c2 EQU 10000001B ;exponent of second SM number 

10  ;m2 EQU 10110000B ;mantissa of second SM number 
11  ;first number m1*2^c1=+0.625*2^+3 
12  ;second number m2*2^c2=−0.375*2^−1 
13  ;result my*2^cy=−106/128*2^+5 
14  ;another example of numbers  
15 0087 c1 EQU 10000111B ;exponent of first SM number 
16 00C0 m1 EQU 11000000B ;mantissa of first SM number 
17 0084 c2 EQU 10000100B ;exponent of second SM number 
18 0070 m2 EQU 01110000B ;mantissa of second SM number 
19  ;first number m1*2^c1=−0.5*2^−7 
20  ;second number m2*2^c2=+0.875*2^−4 
21  ;result my*2^cy=−73/128*2^−3 
22    
23 0000: 78 C0 MOV R0,#m1  
24 0002: 79 87 MOV R1,#c1  
25 0004: 7A 70 MOV R2,#m2  
26 0006: 7B 84 MOV R3,#c2  
27 0008: 12 00 0D LCALL DIV_FLOATS  
28   ;result in A 
29 000B: 80 FE STOP:SJMP STOP  
30 ;----------------------------------------------------------------------------------------------------- 
31 000D: DIV_FLOATS:  
32 000D: E8 MOV A,R0  
33 000E: 8A F0 MOV B,R2  
34 0010: BA 00 03 CJNE R2,#0,SKIP ;division by 0! 
35 0013: D2 D2 SETB OV  
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36 0015: 22 RET  
37 0016: SKIP:  
38 0016: 12 00 26 LCALL DIV_SM_FLOATS  
39 0019: A2 D5 MOV C,PSW.5  
40 001B: 92 E7 MOV ACC.7,C  
41 001D: F8 MOV R0,A ;mantissa of result 
42 001E: E9 MOV A,R1  
43 001F: 8B F0 MOV B,R3  
44 0021: 12 00 39 LCALL SUB_SM_FLOATS  
45 0024: F9 MOV R1,A ;exponent of result 
46 0025: SKIP1:  
47 0025: 22 RET  
48 0026: DIV_SM_FLOATS:  
49 0026: C0 E0 PUSH ACC  
50 0028: 65 F0 XRL A,B  
51 002A: A2 E7 MOV C,ACC.7  
52 002C: 92 D5 MOV PSW.5,C  
53 002E: 53 F0 7F ANL B,#01111111B  
54 0031: D0 E0 POP ACC  
55 0033: 54 7F ANL A,#01111111B  
56 0035: 12 00 6F LCALL FRACTION ;divide A by B 
57 0038: 22 RET  
58 0039: SUB_SM_FLOATS:  
59 0039: A2 E7 MOV C,ACC.7  
60 003B: 92 D5 MOV PSW.5,C  
61 003D: C0 E0 PUSH ACC  
62 003F: 65 F0 XRL A,B  
63 0041: A2 E7 MOV C,ACC.7  
64 0043: 53 F0 7F ANL B,#01111111B  
65 0046: D0 E0 POP ACC  
66 0048: 54 7F ANL A,#01111111B  
67 004A: 40 18 JC signs_different  
68 004C: signs_the_same:  
69 004C: B5 F0 02 CJNE A,B,different  
70 004F: 80 02 SJMP greater_or_equal  
71 0051: different:  
72 0051: 40 07 JC less  
73 0053: greater_or_equal:  
74 0053: C3 CLR C  
75 0054: 95 F0 SUBB A,B  
76 0056: A2 D5 MOV C,PSW.5  
77 0058: 80 12 SJMP SKIP2  
78 005A: less:  
79 005A: C3 CLR C  
80 005B: C5 F0 XCH A,B  
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81 005D: 95 F0 SUBB A,B  
82 005F: A2 D5 MOV C,PSW.5  
83 0061: B3 CPL C  
84 0062: 80 08 SJMP SKIP2  
85 0064: signs_different:  
86 0064: 25 F0 ADD A,B  
87 0066: A2 E7 MOV C,ACC.7  
88 0068: 92 D2 MOV OV,C  
89 006A: A2 D5 MOV C,PSW.5  
90 006C: SKIP2:  
91 006C: 92 E7 MOV ACC.7,C  
92 006E: 22 RET  
93 006F: FRACTION:  
94 006F: 12 00 86 LCALL DENORM  
95 0072: 7E 07 MOV R6,#7  
96 0074: 7F 00 MOV R7,#0  
97 0076: LOOP:  
98 0076: 23 RL A  
99 0077: C3 CLR C  

100 0078: 95 F0 SUBB A,B  
101 007A: 50 02 JNC SKIP3  
102 007C: 25 F0 ADD A,B  
103 007E: SKIP3:  
104 007E: B3 CPL C  
105 007F: CF XCH A,R7  
106 0080: 33 RLC A  
107 0081: CF XCH A,R7  
108 0082: DE F2 DJNZ R6,LOOP  
109 0084: EF MOV A,R7  
110 0085: 22 RET  
111 0086: DENORM:  
112 0086: 7C 00 MOV R4,#00  
113 0088: SHIFT:  
114 0088: FD MOV R5,A  
115 0089: C3 CLR C  
116 008A: 95 F0 SUBB A,B  
117 008C: ED MOV A,R5  
118 008D: 40 05 JC SKIP4  
119 008F: C3 CLR C  
120 0090: 03 RR A  
121 0091: 0C INC R4  
122 0092: 80 F4 SJMP SHIFT  
123 0094: SKIP4:  
124 0094: C0 E0 PUSH ACC  
125 0096: C0 F0 PUSH B  
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126 0098: E9 MOV A,R1  
127 0099: 8C F0 MOV B,R4  
128 009B: B2 F7 CPL B.7  
129 009D: 12 00 39 LCALL SUB_SM_FLOATS  
130 00A0: F9 MOV R1,A  
131 00A1: D0 F0 POP B  
132 00A3: D0 E0 POP ACC  
133 00A5: 22 RET  
134 ;--- end of file ---  

For further reading we recommend the books and publications: [Cody 
1988, Coonen 1980, Goldberg 1991, IEEE 1985, IEEE 1987, IEEE 2008,  
Kulisch 2014, Scott 1985 and Sternbenz 1974].  
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Chapter 6 

Limited Quality of Arithmetic 
Operations     

6.1 PRECISION OF NUMBER REPRESENTATION 

In the previous chapters, we concentrated on the representation of numbers 
and on the ways in which the processor performs the four basic arithmetic 
operations. The aim of this chapter is to make the reader aware of the 
problem of the finite precision of calculations, which increases with 
the number of arithmetic operations. It is particularly noticeable in iterative 
versions of numerical algorithms and in operations on large data structures, 
e.g. matrices. The causes of the mentioned imperfection are as follows:  

• Limited width of a register or memory cell  
• Inability to express exactly some numbers on a given basis, e.g. π, 1/3 

Let us look at Example 6.1. 

Example 6.1: Multiplication and division of decimal fractions 3/4 and 7/2 
expressed in BIN format using 4 bits: 

3
4

= 0.110
7
2

= 11.10BIN BIN

a.  = = 2 = 10.101 10.103
4

7
2

21
8

5
8 BIN

but using 4 bits
BIN

b.  : = = = 0.00110(110)... 0.0013
4

7
2

3
4

2
7

3
14 BIN

but using 4 bits
BIN

Please note that the result of the product in case (a) of two exactly 
expressed numbers at the given base (here: p = 2) is not exact. The reason is 
that the result must be written using a limited number of digits (here: 
4 bits). The results of the product in case (b) is also approximate, but due to 
the impossibility of expressing the number 3/14 on the base 2 even if word 
length is not limited. If even the error of the multiplication can be avoided 
by using more bits this solution is not satisfying in general case for division 
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routine. It is obvious that the longer the word length, the higher the pre-
cision and the smaller the errors are. However, please remember that 
numbers are stored in the computer’s memory, so if the time of program 
execution or its size is of primary importance, one should carefully, choose 
the length of the word to the required precision of numbers, remembering 
about the accumulation of errors of individual operations. In practice, 
programmers are developing applications in high-level languages and have 
several integer and floating-point numeric (see Appendix B for details). The 
limits of errors are clearly defined and depend on the assumed precision 
level and the rounding rules. We have a few possibilities, i.e. rounding to 
the nearest value (the favorite one), toward zero (truncation), toward +inf 
or toward −inf. In the following discussion, by rounding term, we mean an 
operation that implements the following rule: if the discarded part is greater 
than 0.5DEC, increase the preceding digit by one, e.g. 23.17438 −> 23.174, 
but 23.17458 −>23.175. 

REMEMBER! 

If the real number A’ is approximated by the number A expressed in the floating- 
point format of the form A = M·pC, where the mantissa M = m0, m−1 · m−k is 
composed of k digits in the fractional part, then  

• the absolute rounding error ΔA = A − A’ may be positive or negative, 
and satisfies the inequality ulp A ulp1

2
1
2

,  
• the absolute truncation error ΔA = A − A’ is always negative, and 

satisfies the inequality −ulp < ΔA ≤ 0, where ulp is the abbreviation for 
‘units in the last place’ and for the assumed number format is equal to 
ulp = p−k·pC.   

Example 6.2: Absolute rounding and truncation errors for the exact 
number A’ = 12.318DEC expressed in floating-point format with k = 2 and k = 
3 digits of the fractional part of the mantissa at basis p = 10.  

a.  A = round(A′,k)  
• for k = 2 A = 1.23 · 10+1 

Absolute rounding error: ΔA = A – A′ = –0.018 
We have: |–0.018| < 0.05 and 0.5ulp = 0.5 · 10–k · 10C = 0.5 · 10–2 · 
10+1 = 0.05  

• for k = 3 A = 1.232 · 10+1 

Absolute rounding error: ΔA = A – A′= +0.002 
We have |+0.002|= < 0.005 and 0.5ulp = 0.5 · 10–k · 10C = 0.5 · 10–3 · 
10+1 = 0.005 
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b.  A = truncate(A′,k)  
• for k = 2 A = 1.23 · 10+1 

Absolute truncating error: ΔA = A – A′ = –0.018 
We have –0.1 < –0.018 < 0, and ulp = 10–k · 10C = 10–2 · 10+1 = 0.1  

• for k = 3 A = 1.231 · 10+1 

Absolute truncating error: ΔA = A – A′ = –0.008 
We have –0.01 < –0.008 < 0, and ulp = 10–k · 10C = 10–3 · 10+1 = 0.01 

Exercise 6.1: Determine the rounding and truncation errors of the number 
A’ = 0.0314159DEC expressed in floating-point format with k = 3 and k = 4 digits 
of the fractional part of the mantissa and p = 10. Check whether the determined 
errors satisfy the conditions given in the above box. 

6.2 ERROR PROPAGATION 

In Example 6.1, the case of two decimal input numbers exactly expressed as 
binary numbers was considered as well. This is not always possible, e.g. try 
to express a fraction 1/3DEC with a base that is not a multiple of 3 is 
doomed to failure, even assuming an infinite number word length, because 
1/3DEC = 0.3333(3)...DEC = 0.0101(01)...BIN. In general, the input argu-
ments of arithmetic operations may be subject to approximation error. We 
will check how the introduced inaccuracies propagate by arithmetic oper-
ations and have an impact on the error of the result. We will show that it 
depends on the type of arithmetic operation. One extra assumption was 
taken. We ignore the error component resulting from the need to approx-
imate the result. 

Let A’ and B’ denote the arguments of arithmetic operations. In a digital 
machine, they may be written as approximated numbers A and B with 
absolute error ΔA and ΔB, hence (6.1): 

A = A + A B = B + B

or 

A = A A B = B B (6.1)  

The processor performs an operation on the approximate numbers A and B, 
so the following formulas hold (6.2): 

A + B = (A + A) + (B + B) = A + B + ( A + B) (6.2a) 
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A B = (A + A) (B + B) = A B + ( A B) (6.2b) 

A B = (A + A) (B + B) = A B + (B A + A B + A B)
A B + (B A + A B)

(6.2c)  

Let us derive the formula for division. If we assume, as an alternative (6.3): 

A
B

=
A + A
B + B

=
A
B

+ R (6.3)  

hence (6.4): 

R =
A + A
B + B

A
B

=
(A + A) B A (B + B)

(B + B) B

=
A B + A B A B A B

(B + B) B
=

A B A B
(B + B) B

A B A B
B B

=
A

B
A B
B B

(6.4)  

and finally (6.5): 

A
B

=
A + A
B + B

=
A
B

+
A B A B
(B + B) B

A
B

+
A

B
A B
B B

(6.5)  

In summary, the arithmetic operations listed are subject to absolute errors (6.6): 

= A + B = A BA+B A B (6.6a) 

A B + B A
A

B
A B
B B

A B A/B (6.6b)  

The simplified formulas for multiplication and division error is valid when 
A >> ΔA and B >> ΔB, otherwise the exact full formulas should be used. 

Similarly to the absolute error, the formula for relative error can be 
derived, defined in general (6.7): 

X =
X X

X
=

X
X

(6.7)  

Accordingly, we get (6.8): 
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=
A + B

A + B
=

A
A + B

A
A

+
B

A + B
B

B

=
A

A + B
A +

B
A + B

B

A+B

(6.8a) 

=
A B

A B
=

A
A B

A
A

B
A B

B
B

=
A

A B
A

B
A B

B

A B

(6.8b) 

A B + B A
A B

=
A

A
+

B
B

= A + BA B (6.8c) 

A
B

A B
B B

B
A

=
A

A
B

B
= A BA/B (6.8d)  

We leave it to the reader to derive the exact relations for the relative error of 
multiplication and division. After analyzing the formulas obtained, the 
following observations arise:  

• the absolute error of addition and subtraction depends only on the 
error of the approximations of the arguments,  

• the relative error of the result of multiplication and division depends 
only on the error of the approximations of the arguments,  

• the relative error of the result of subtraction is greater the smaller the 
difference of the arguments. 

Potentially worrying is the last observation, which shows that the relative 
error of subtraction can many times exceed the relative errors of the 
arguments! Such a situation is shown in Example 6.3. Please compare the 
result errors in cases (a) and (b). 

Example 6.3: Relative errors of addition and subtraction of two decimal 
numbers A’ and B’, where  

a.  A′ = 100, ΔA = 1, B′= 99, ΔB = 0.9 

hence δA = 0.01 = 1%, δB≈0.01 = 1% 

=
A + B

A + B
=

1 + 0.9
100 + 99

1
100

= 1% < 1% + 1%A+B
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=
A B

A B
=

1 0.9
100 99

=
1

10
= 10%A B

b.  A′ = 100, ΔA = 1, B′ = 99.9, ΔB = 0.9 

hence δA = 0.01 = 1%, δB≈0.01 = 1% 

=
A + B

A + B
=

1 + 0.9
100 + 99.9

=
1.9

199.9
1

100
= 1% < 1% + 1%A+B

=
A B

A B
=

1 0.9
100 99.9

=
0.1
0.1

= 1 = 100%!A B

Exercise 6.2: Determine the relative error of addition, subtraction, multipli-
cation and division of two decimal numbers A’ and B’, where A’= 543, ΔA = 2, 
B’= 398 and ΔB = 3. 

Example 6.4: Numbers A = 5
6
, B = 2

7
as decimal fractions to three decimal 

places and the errors of arithmetical operations on approximate numbers to 
which rounding has been applied:  

a.  A + B  
b.  A – B  
c.  A · B  
d.  A/B 

A = 0.833 B = 0.285DEC DEC

A = A A =
833

1000
5
6

=
2499
3000

2500
3000

=
1

3000

B = B B =
285

1000
2
7

=
1995
7000

2000
7000

=
5

7000

a) 

A + B =
1

3000
+

5
7000

=
7 + 15
21000

=
22

21000
= 0.0010(476190)... 0.001
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Checking: 

A + B = 0.833 + 0.285 = 1.118

A + B =
5
6

+
2
7

=
35
42

+
12
42

=
47
42

= 1
5
42

= (A + B) (A + B ) = 1 1 = =

= 0.0010(476190)... 0.001
A+B

118
1000

5
42

4956
42000

5000
42000

22
21000

b) 

A B =
1

3000
5

7000
=

15 7
21000

=
8

21000
= 0.000(380952)... 0.0004

Checking: 

A–B = 0.833–0.285 = 0.548

A B =
5
6

2
7

=
35
42

12
42

=
23
42

= (A B) (A B ) = =

= 0.000(380952)... 0.0004

A B
548

1000
23
42

23016
42000

23000
42000

8
21000

c) 

( ) ( ) ( )B A + A B = + = +

= = 0.0006947...

2
7

1
3000

5
6

5
7000

1
1000

2
21

25
42

1
1000

25 + 4
42

Checking: 

A · B = 0.833 · 0.285 = 0.237405
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A B =
5
6

2
7

=
10
42

= (A B) (A B ) = =

= = 0.000690(238095)...

A B
237405

1000000
10
42

997101
4200000

1000000
4200000

2899
4200000

d) 

( )= = + =

= = 0.006125

A
B

A B
B B

1
3000

7
2

5
6

5
7000

7
2

7
2

7
6000

175
24000

175 28
24000

147
24000

Checking: 

A/B = 0.833/0.285 =
833
285

= 2
263
285

A /B =
5
6

7
2

=
35
12

= 2
11
12

= (A/B) (A /B ) = 2 2 = =

= 0.00(614035087719298245)... 0.006
A/B

263
285

11
12

3156
3420

3135
3420

21
3420

Exercise 6.3: Given decimal fractions A = 3/16, B = 5/8. Write them down 
in the form of binary fractions A and B to three decimal places, and then 
determine the errors of the following arithmetic operations:  

a.  A + B  
b.  A – B  
c.  A · B  
d.  A/B 

Show the correctness of the formulas for the absolute errors of the opera-
tions listed above. 

The error propagation and amplification can be a cause of serious final 
errors, particularly if mathematical operations are done many times. A lot of 
scientific algorithms are based on iterative solution of task that requires 
repetition of many laps in the loop. Another example of numerous operations 
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is matrix algebra used to describe many research problems requiring solving 
systems of equations (we need matrix inversion and multiplication as well). 
The best practice is to limit the necessary amount of calculations and assume 
format of numbers with some extra significant digits. Fortunately, in the 
most cases, the double format proposed by IEEE 754 standard seems to be 
accurate. 

The deeper understanding how precise the result of a floating-point cal-
culation is and which operations introduce the most significant errors is not 
easy work and generally is out of a scope and main objectives of this simple 
book. For further reading, some excellent papers can be recommended. In 
[Martel 2006], general method of assessment based on abstract interpre-
tation was discussed from theoretical point of view. Nevertheless, it can be 
too hard for students without understanding of sophisticated math. 
Another interesting approach is the CADNA library [Jézéquel 2008], which 
allows you to estimate the propagation of rounding errors using a proba-
bilistic approach. With CADNA, you can control the numerical quality of 
any simulation program. In addition, numerical debugging of user code can 
be performed by detecting any instabilities that may occur during working.  
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Remarks     

1 IT APPLIES TO OPERATIONS ON NUMBERS IN FIXED- 
POINT FORMAT 

Analyzing the length of the resulting code, it seems that in many cases a 
shorter code can be obtained by reducing it to the BIN form. Then it is 
enough to use the appropriate arithmetic instructions ADD, SUBB, MUL 
and DIV. In the final phase the result should be converted into the desired 
output form. For which formats and actions is such a procedure worth-
while? Unfortunately, or rather lackily, the Reader must find the answer to 
this question himself. 

2 IT APPLIES TO OPERATIONS ON NUMBERS IN FLOATING- 
POINT FORMAT 

The format of floating-point numbers adopted in Chapter 5 is characterized 
by low precision, so you should be aware that the usefulness of the sub-
routines contained therein is limited. They were aimed to provide, 
straightforward as possible, the link between theoretical considerations 
given in Chapter 4 and programming practice. Maybe it will facilitate the 
understanding of coding and encourage the Reader to search for own 
programmatic implementations. I know that is a challenge but giving a lot 
of satisfaction. Adopting, for example, the single-precision format, as rec-
ommended by the IEEE standard, would certainly result in a more ex-
tensive, and at the same time less readable, code of subroutines, which 
could effectively discourage an attempt to analyze them. 

3 GENERAL REMARK 

Due to primary educational purpose of this book many advanced topics 
were omitted, unfortunately. We could spend many times discussing, for 
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example the issues of algorithms implementation in assembly code of var-
ious microprocessors starting with simple 8bits architecture and finish with 
64bits one. We did not discuss the benefits of classical math library deli-
vering the ready-to-use arithmetic functions working with fixed and floating 
formats for many CPUs. The reader could be also curious what are the 
CORDIC method improvements and limitations and many more? People 
interesting in hardware or mixed code/hardware realization of arithmetic, 
what is common solutions met in the Graphical Processing Units (GPU 
chips used in graphical cards or laptop chipsets) may feel a little bit dis-
appointed. The author is fully aware of these limitations. If you have 
reached this point of book, you are probably also unsatisfied and looking 
for further knowledge. I congratulate you on your persistence, but you must 
go on your own way, explore and collect experience by reading excellent 
books, e.g. [Brent 2010], [Koren 2002] and papers [Volder 1959], [Li 2016] 
and practice and practice more ... 

Best regards 
Author  
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Appendices     

APPENDIX A. RANGE OF NUMBERS 

Numerical range for BIN, 2’s and SM formats for assumed n and m, where 
n is the number of bits of the integer part (quotient), m is the number of bits 
of the fractional part. 

Table A.1 Range for n + m = 8 Bits        

n m Resolution 2−m Range for decimal format 

BIN 2’s SM 

8 0 1.0 0:255 −128:127 −127:127 

7 1 0.5 0:127.5 −64:63.5 −63.5:63.5 

6 2 0.25 0:63.75 −32:31.75 −31.75:31.75 

5 3 0.125 0:31.875 −16:15.875 −15.875:15.875 

4 4 0.0625 0:15.9375 −8:7.9375 −7.9375:7.9375 

3 5 0.03125 0:7.96875 −4:3.96875 −3.96875:3.96875 

2 6 0.015625 0:3.984375 −2:1.984375 −1.984375: 1.984375 

1 7 0.0078125 0:1.9921875 −1:0.9921875 −0.9921875: 0.9921875 

0 8 0.00390625 0:0.99609375 −0.5:0.49609375 −0.49609375:0.49609375    
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APPENDIX B. NUMERICAL DATA TYPES IN SOME  
HIGH-LEVEL LANGUAGES   

Table B.1 Integer Types of Numeric Variables        

Signed numbers Delphi 
Pascal 

C/C++ Java Microsoft 
Visual Basic 

Range Bytes Name 

−128... +127 1 shortInt signed char byte SByte 

−32768... +32767 2 SmallInt short 
short int 
signed short 
signed short int 

short short 
Int16 

−2147483648... 
+2147483647 

4 LongInt long 
long int 
signed long 
signed long int 

int integer 
Int32 

−9 223 372 036 854 
775 808 … + 9 223 
372 036 854 
775 807 

8 Int64 long long 
long long int 
signed long long 
signed long 

long int 

long long 
Int64 

Unsigned numbers Delphi 
Pascal 

C/C++ Java Microsoft 
Visual 
Basic 

Range Bytes Name 

0... 255 1 Byte unsigned char – byte 

0... 65535 2 Word unsigned short 
unsigned 

short int 

char UShort 
UInt16 

0... 4 294 967 295 4 Longword 
Cardinal 

unsigned long 
unsigned 

long int 

Int (for SE8 
and higher 
releases 

UInteger 
UInt32 

0 … 18 446 744 073 
709 551 615 

8 – unsigned long 
long 

unsigned long 
long int 

Long (for 
SE8 and 
higher 
releases) 

Ulong 
UInt64    
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APPENDIX C. SOLUTIONS TO EXERCISES 

Exercise 1.1: Tip. From dependencies a ∪ a = a, a ∩ a = a and a ⊕ a = 0 we 
have: 

a a 0 1
a 1 a 1

a 1 a 1

a a 0 0
1 a 0 a

a a 0 0

0 1 a a
a 1 1 a

a 0 /a 0

3 2

3 1

3 1

3 2

2 0

3 2

1 0

3 0

3 1

Exercise 2.1: p = 2, 1.11BIN = 1.75DEC = 21 – 2−2, 

p = 10, 9.99DEC = 101 – 10−2, 

p = 16, F.FFHEX = 15 = 255/256 = 161 – 16−2. 

Exercise 2.2:   

a.  246.5DEC → 11110110.1000BIN → F6.8HEX  

b.  3E.4HEX → 00111110.0100BIN → 62.25DEC  

c.  10110011.0010BIN → B3.2HEX → 179.125DEC 

Exercise 2.3:   

a.  0.63DEC → ≈0.10100000BIN → 0.A0HEX  

b.  11/9DEC = (1 + 2/9)DEC → ≈1.00111000BIN → 1.38HEX  

c.  3/5DEC → ≈0.10011001BIN → ≈0.99HEX  

d.  1/128DEC → 0.00000010BIN → 0.02HEX 

Exercise 2.4:   

a.  479.12DEC → 010001111001.00010010P-BCD→00000100000001110000 
1001.0000000100000010UP-BCD  

b.  0.03DEC → 0000.00000011P-BCD →00000000.0000000000000011UP-BCD  

c.  8.9DEC → 1000.1001P-BCD → 00001000.00001001UP-BCD  

d.  123DEC → 000100100011P-BCD → 000000010000001000000011UP-BCD 

Exercise 2.5:   

a.  361.82DEC → 3336312E3832(HEX) as ASCII  

b.  36.18DEC → 33362E3138(HEX) as ASCII  

c.  0.45DEC → 302E3435(HEX) as ASCII  

d.  97.1DEC → 39372E31(HEX) as ASCII 
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Exercise 2.6:   

a.  +23.5DEC → 010111.1SM  

b.  +17.3DEC → 010001.0100…SM  

c.  −11.25DEC → 11011.01SM  

d.  −1DEC → 11SM. 

Exercise 2.7:   

a.  +3.125DEC → 011.0012’s  

b.  −17.5DEC → 101110.12’s  

c.  −1DEC → 12’s  

d.  +1DEC → 012’s 

Exercise 3.1:  

a. b. 
11.011101

+ 00.101101

1 00.001010

BIN

BIN

BIN

1101.0111
+ 1010.1100

1 1000.0011

BIN

BIN

BIN

Exercise 3.2:  

a. b. 
11.011100
01.101011

01.110001

BIN

BIN

BIN

1 0101.1011
1010.1101

1010.1110

BIN

BIN

BIN

Exercise 3.3:   

a.  A = 42.5DEC  B = 68DEC  p = 2 

A = 101010.1 B = 1000100.0 B = 0111011.1 B = 0111100.0BIN BIN

0101010.1 A
+ 0111100.0 B

0 1100110.1 A + B

1 0011001.1 A + B

0101010.1 A
+ 0111011.1 B

0 1100110.0 A + B

1 0011001.1 (A + B)
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b.  A = 75DEC  B = 13DEC  p = 10  B = 86 B = 87

75 A
+ 87 B

1 62 A + B

0 62 +(A + B)

75 A
+ 86 B
1 61 A+B
+ 01 p m

0 62 +(A + B)

Exercise 3.4:  

a. b. 
11.11
0.101

1111
0000

1111
0000
10.01011

BIN

BIN

BIN

1.001
0110

0000
1001

1001
0000
0110.110

NKD

NKD

NKD

Exercise 3.5:        

b) 
BIN

BIN BIN

      11.1...
  110010 :1101
01101

    11000
  01101

      10110
    01101

       1001
          ...

»

-

-

-

 or 

BIN

BIN BIN

      11 quotient
  110010 :1101
01101

    11000
  01101

    01011 reminder

-

-

-
-

a) 
BIN

BIN

110010
001101
100101
001101
011000
001101
001011
010010
111001

-

-

-

-

DEC

DEC

DEC BIN

BIN

0 quotient 1

0 quotient 2

0 quotient 3 011

0 reminder 1011

> Þ =

> Þ =

> Þ = =

< Þ =
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Exercise 3.6:             

1

0

0001 0011
1001
1000
1001
0001

0010 011
1001
1001
1001
0010

0100 11
1001
1011
1001
0100

1001 1
1001
0000

0001
1001
1000
1001

reminder 0001

¬¾¾
-

+

¯
¬¾¾

-

+

¯

-

+

¯

-

¯

0

1

1

¬¾¾

¬¾¾

¬¾¾
-

+
=

BIN

0 quotient 0

0 iloraz 00

0 quotient 000

0 quotient 0001

0 quotient 00010

quotient 00010

< Þ =

< Þ =

< Þ =

³ Þ =

< Þ =

Þ =

Exercise 3.7:  

1 ;************************************************************************* 
2 ;* Division of BIN numbers byte/byte * 
3 ;* differential method II * 
4 ;************************************************************************* 
5 000A n EQU 10 ;n=10 DEC 
6 0003 y EQU 3 ;y=3 DEC 
7  
8 0000: 74 0A MOV A,#n ;dividend 
9 0002: 75 F0 03 MOV B,#y ;divisor 

10 0005: 12 00 0A LCALL DIV_BIN8BY8DIFF  
11   ;result in A-quotient,  

B-reminder 
12 0008: 80 FE STOP: SJMP STOP  
13 ;----------------------------------------------------------------------------------------------- 
14 000A: DIV_BIN8BY8DIFF:  
15 000A: AB F0 MOV R3,B  
16 000C: BB 00 03 CJNE R3,#0,DIVIDE  
17 000F: D2 D2 SETB OV  
18 0011: 22 RET  
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19 0012: DIVIDE:  
20 0012: 79 08 MOV R1,#8  
21 0014: LOOP:  
22 0014: C3 CLR C  
23 0015: 33 RLC A ;<-divident 
24 0016: CA XCH A,R2 ;<-reminder<-C 
25 0017: 33 RLC A  
26 0018: C3 CLR C  
27 0019: 9B SUBB A,R3 ;reminder-divisor 
28 001A: 50 01 JNC NOT_LESS  
29 001C: 2B ADD A,R3  
30 001D: NOT_LESS:  
31 001D: CA XCH A,R2  
32 001E: B3 CPL C  
33 001F: C8 XCH A,R0  
34 0020: 33 RLC A ;<-quotient 
35 0021: C8 XCH A,R0  
36 0022: D9 F0 DJNZ R1,LOOP  
37 0024: E8 MOV A,R0  
38 0025: 8A F0 MOV B,R2  
39 0027: 22 RET  
40 ;--- end of file ---   

Exercise 3.8*: No solution is provided. 

Exercise 3.9:  

a. b. 
10010110

+ 00010101

10101011

+ 00000110
10110001

+ 01100000
1 00010001

P BCD

P BCD

P BCD

P BCD

P BCD

10000100
+ 01110011

11110111

+ 01100000

1 01010111

P BCD

P BCD

P BCD

P BCD

P BCD

Exercise 3.10:  

a. b. 
10010010
10000111

00001011

00000110
00000101

P BCD

P BCD

P BCD

P BCD

01100001
00100101

00111100

00000110
00110110

P BCD

P BCD

P BCD

P BCD
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Exercise 3.11*: No solution is provided. 

Exercise 3.12*: No solution is provided. 

Exercise 3.13:  

a. b. 
00001001 00000100

+ 00000101 00000010

00001110 00000110

+ 11110110 00000000
1 00000100 00000110

UP BCD

UP BCD

UP BCD

UP BCD

00001001 00000111
+ 00000101 00001000

00001110 00001111

+ 11110110 11110110
1 00000101 00000101

UP BCD

UP BCD

UP BCD

UP BCD

Exercise 3.14:  

a. b. 
00001001 00000001
00000110 00000011

00000010 11111110

00000000 11110110
0 00000010 00001000

UP BCD

UP BCD

UP BCD

UP BCD

00000101 00000110
00000100 00000010

00000001 00000100

UP BCD

UP BCD

UP BCD

Exercise 3.15*: No solution is provided. 

Exercise 3.16*: No solution is provided. 

Exercise 3.17:  

a. b. 
00110011 00110010

00000011 00000010
+ 00110111 00110011

00111010 00110101
+ 11110110 00000000

1 00110000 00110101

ASCII

ASCII

ASCII

00110101 00110110

00000101 00000110
+ 00110111 00110011

00111100 00111001
+ 11110110 00000000

1 00110010 00111001

ASCII

ASCII

ASCII
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Exercise 3.18:  

a. b. 
00111001 00110010
00110111 00110011

00111001 00110010
00000111 00000011
00110010 00101111
00000000 11110110
00110001 00111001

ASCII

ASCII

ASCII

ASCII

1 00110101 00110110
00110111 00110010

00110101 00110110
00000111 00000010

1 00101110 00110100
11110110 00000000
00111000 00110100

ASCII

ASCII

ASCII

ASCII

Exercise 3.19*: No solution is provided. 

Exercise 3.20*: No solution is provided. 

Exercise 3.21:  

a. b. 
1 100

+ 1 111

?011

1 0100
+ 1 0111

1 1011

SM

SM

SM

SM

SM

SM

0100
+ 0111

?011

00100
+ 00111

01011

SM

SM

SM

SM

SM

SM

c. d. 
1 100

+ 0111

?

0111
0100

0 0011

SM

SM A < B

SM

0100
+ 1 111

?

0111
0100

1 0011

SM

SM A < B

SM

In cases (a) and (b), there was a carry-over to the sign bit, so the numbers had to 
be written on five bits. 

Exercise 3.22:  

a. b. 
1 100
1 111

?

0111
0100

0 0011

SM

SM A < B

SM

0100
0111

?

0111
0100

1 0011

SM

SM A < B

SM
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c. d. 
1 100
0111

?011

1 100
+ 0111

?011

1 0100
+ 00111

1 1011

SM

SM

SM

SM

SM

SM

SM

SM

SM

0100
1 111

?011

0100
+ 1 111

?011

00100
+ 1 0111

01011

SM

SM

SM

SM

SM

SM

SM

SM

SM

In cases (c) and (d), there was a carry-over to the sign bit, so the numbers had to 
be written on five bits. 

Exercise 3.23:  

a. b. 

1 001
+ 1111

1 1000

11

2 s

2 s

2 s

1 011
+ 0110

1 0001

11

2 s

2 s

2 s

Exercise 3.24:  

a. b. 

1 101
0011

0 1010

00

2 s

2 s

2 s

0101
1100

1 0001

00101
11100

1 01001

10

2 s

2 s

2 s

11

2 s

2 s

2 s

In case (b), there was a carry-over to the sign bit position, so the numbers had to 
be written using five bits. 

Exercise 3.25:   

a) b)

2's
~

2's

pseudoproduct

correction

A

B

=

=

1 1 0. 1
0* 0. 1 1

1 1 1 1 0 1
1 1 1 0 1
0 0 0 0

1 1 1 0 1 1 1
0 0 0 0 0 0 0
1 1 1 0. 1 1 1

+

-

1*
2's

~

2's

pseudoproduct

correction

A

B

1 0 0 1
1 0 0

0 0 0 0 0 0
0 0 0 0 0
1 0 0 1

1 1 0 0 1 0 0
1 0 0 1 0 0 0
0 0 1 1 1 0 0

=

=

+

-
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Exercise 3.26:   

a) b)

2's

2 's

2 's

1 0 1
0 1 1
1 0 1

1

1 1 1
0
1 1
0 0 0 0

1 1 1
1 1 1 0 1

0 0

1 1
1 1
0 0 0 0 0 0

0 0
0 0 1 0 1 01 1 1 1 1 1

*

+
// / /

M
L

2's

2's

0 0. 1 1
1 1 0. 0
0 0 0 0

0

0 0
1 1
0 0
0 0 0 0 0

0 0 0 0 1 1
0 0 0 0 1 1

0 0 0 0 1 1
0 0 0 0 1 1
0

*

+
0 0 1 0 2's1 1 0. 1 0 0

Exercise 3.27:  

a. b. 
1101
0011

0000001{10}

1101
0011001{10}
0001100{1 1 }

+ 0000110{0 1 }
1101

1101110{0 1 }
1110111{00}

= 11110111

2 s

2 s

2 s

011
100

00010{00}
00001{00}

00000{10}
011

10100{10}

= 110100

2 s

2 s

2 s

Exercise 3.28*: No solution is provided. 

Exercise 3.29: No solution is provided. 

Exercise 4.1: M10 = –5.28DEC i E10 = –3DEC, hence: 

E = 1 +
ln M + E ln10

ln2
= 1 +

ln 5, 28 + ( 3) ln10

ln2
= 6.565 7

= 1 111

2
10 10

SM
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M = M exp(E ln10 E ln2) = 5.28 exp( 3 ln 10 ( 7) ln 2)

= 0.67584

2 10 10 2

DEC

The result is 1.10101101SM·21111
SM 

Checking: −0.67584·2−7 = −0.00528DEC. 

Exercise 4.2: M2 = 0.0101SM = +5/16DEC and E2 = 010SM = +2DEC, hence: 

E = 1 +
ln M + E ln2

ln10
= 1 +

ln +0.3125 + (+2) ln2

ln10
= 1.097 110

2 2

M = M exp(E ln2 E ln10) = +0.3125 exp(2 ln2 1 ln10) = +0.12510 2 2 10

The result is +0.125·10+1 = +1.25DEC 

Exercise 5.1:  

p = 2, E = +10 , M = 0.1011 , E = 01 , M = +0.1111X SM X SM Y SM Y SM

E E = +2–(–1) = +3 = +3, E > EX Y X Y

0.67584·2 

1.35168·2 

0.70336·2 

1.40672·2 

0.81344·2 

1.62688·2 

1.25376·2 

0.50752·2 

1.01504·2 

... 

0.67584DEC → ≈0.10101101BIN 
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M = M , M = M 2 = 0.0001111X X Y Y
3

SM

Because X and Y are different signs and M > MX Y (see addition rules for SM 
numbers – Table 3.1): 

M = M + M = ( M M )

= 0.1001001 , E = max(+2, 1) = +2

Z X Y X Y

SM Z

The result is Z = 1.1001001 · 2010
SM = –2.28125DEC. 

It takes 8 bits to express the exact mantissa value of the result! 

Exercise 5.2*: p = 2, EX = +00SM, MX = –0.101SM, EY = +10SM, MY = –0.0110SM 

|EX – EY| = |+0 – (+2)| = |–2| = +2, EX< EY 

M = M 2 = 0.00101 , M = MX X
2

SM Y Y

Because X and Y are negative and M < MX Y (see subtraction rules for SM 
numbers – Table 3.2): 

M = M M = +( M M )

= +0.10011 , E = max(+0, +2) = +2

Z X Y Y X

SM Z

The result is Z = 0.10011 2 = +2SM
010 3

8DEC

Exercise 5.3:  

p = 2, E = +01 , M = 0.0100 , E = 10 , M = 0.0010X SM X SM Y SM Y SM

M = M M = + M M = 0.00001000 , E = E + E = +1 + ( 2)

= 1

Z X Y X Y SM Z X Y

DEC

Because M < 2Z
4 the normalization is needed: 

M _ = M 2 = 0.1000 , E = E 4 = 1 4 = 5 = 1 101Z norm Z
4

SM Znorm Z SM
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The result is Z = 0.1000·2 = +SM
1101 1

64DEC
. 

It takes 4 bits to express the exact exponent value of the result! 

Exercise 5.4:  

p = 2, E = +10 , M = +0.1101 , E = 10 , M = 0.1110X SM X SM Y SM Y SM

Because M < MX Y the denormalization of X number is not required and: 

M = M , E = E ,X X X X

M = M /M = M / M = 1 .111011(011)... , E = E E

= +2 ( 2) = +4

Z X Y X Y SM Z X Y

DEC

The result is Z 1 .111011(011)... ·2 14.857SM
0100

DEC

It takes an infinite number of bits to express the exact mantissa value of the 
result! 

Exercise 6.1:   

a.  A = round(A′,k)  
• for k = 3 A = 3.142 · 10−2 

Absolute rounding error: ΔA = A – A′ = −0.0000041 
We have |−0.0000041| < 0.000005 
and 0.5ulp = 0.5 · 10−k · 10E = 0.5 · 10−3 · 10−2 = 0.000005  

• for k = 4 A = 3.1416 · 10−2 

Absolute rounding error: ΔA = A – A′ = −0.0000001 
We have |−0.0000001| < 0.0000005 
and 0.5ulp = 0.5 · 10−k · 10E =0.5 · 10−4 · 10−2 = 0.0000005  

b.  A = truncate(A′,k)  
• for k = 3 A = 3.141 · 10−2 

Absolute truncating error: ΔA = A – A′ = −0.0000059 
We have −0.00001 < −0.0000059 < 0 
and ulp = 10−k · 10E = 10−3 · 10−2 = 0.00001  

• for k = 4 A = 3.1415 · 10−2 

Absolute truncating error: ΔA = A – A′ = −0.00009 
We have −0.0000001 < −0.00009 < 0 
and ulp = 10−k · 10E = 10−4 · 10−2 = 0.000001 
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Exercise 6.2: A′ = 543, ΔA = 2, B′ = 398, ΔB = 3 hence: δA = 2/543 ≈ 0.37%, 
δB= 3/398 ≈ 0.75% 

=
A + B
A + B

=
2 + 3

543 + 398
=

5
941

0.5% < 0.37% + 0.75%A+B

=
A B
A B

=
2 3

543 398
0.7%A B

+ = 1.12%A B A B

= 0.38%A/B A B

Exercise 6.3: A = B =3
16

5
8

A′ = 0.001BIN B = 0.101DEC, hence: 

A = A A =
1
8

3
16

=
1

16
B = B B =

5
8

5
8

= 0

ad a) 

A + B =
1

16
+ 0 =

1
16

Checking: A + B = 0.001 + 0.101 = 0.110 = A + B = + =BIN BIN BIN
6
8

3
16

5
8

13
16

= (A + B) (A + B ) =
6
8

13
16

=
1

16
A+B

ad b) 

A B =
1

16
0 =

1
16

Checking: A B = 0.001 0.101 = A B = =BIN BIN
4
8

3
16

5
8

7
16

= (A B) (A B ) =
4
8

7
16

=
1

16
A B

ad c) 
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B A + A B =
5
8

1
16

+
3
8

0 =
5

128

Checking: A·B = 0.001 ·0.101 = 0.000101 = A B = =BIN BIN BIN
5
64

3
16

5
8

15
128

= (A B) (A B ) =
5
64

15
128

=
5

128
A B

ad d) 

A
B

A B
B B

=
1

16
8
5

3
16

0
8
5

8
5

=
1

10

Checking: A/B = 0.001 /0.101 = = A /B = =BIN BIN
1
8

8
5

1
5

3
16

8
5

3
10

= (A/B) (A /B ) =
1
5

3
10

=
1

10
A/B
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