

Computer Arithmetic in
Practice

Computer Arithmetic in Practice: Exercises and Programming is a simple,
brief introductory volume for undergraduate and graduate students at
university courses interested in understanding the foundation of computers.
It is focused on numeric data formats and capabilities of computers to
perform basic arithmetic operations. It discusses mainly such topics as:

• Basic concepts of computer architecture
• Assembly language programming skills
• Data formats used to express integer and real numbers
• Algorithms of basic arithmetic operations
• Short overview of nonlinear functions evaluation
• Discussion on limited number representation and computer arithmetic
• Exercises and programming tasks

This book provides an accessible overview of common data formats used to
write numbers in programming languages and how the computer performs four
basic arithmetic operations from the point of view of the processor instruction
set. The book is primarily didactic in nature, therefore the theoretical infor-
mation is enriched with many numerical examples and exercises to be solved
using a ‘sheet of paper and a pencil’. Answers are provided for most of the tasks.

The theoretical discussed issues are illustrated by listings of algorithms
presenting the way to implement arithmetic operations in low-level language.
It allows development the skills of optimal programming, taking into
consideration the computer architecture and limitations. Creating software
using low-level language programming, despite the initial difficulties, gives the
ability to control the code and create efficient applications. This allows for
effective consolidation of knowledge and acquisition of practical skills required
at this stage of education, mainly a specialist in the field of information
technology, electronics, telecommunications, other related disciplines, or at the
level of general education with introduction to information technology. It may
be also useful for engineers interested in their own professional development
and teachers as well.

Sławomir Gryś is a university professor at Częstochowa
University of Technology, Poland. He has conducted
many courses focused on analog electronics, logical
devices, foundations of computer architecture and
organization, low-level programming techniques in
assembly and C languages for embedded systems, image
processing and recognition. He is the author or co-
author of several scientific monographs, book chapters,
academic textbooks, patents and more than 60 papers in

journals and domestic and international conference proceedings in Poland,
Germany, Canada and Australia.

Computer Arithmetic in
Practice

Exercises and Programming

Sławomir Gryś

https://www.crcpress.com
https://www.crcpress.com

Designed cover image: Shutterstock_587427896

First edition published 2024

by CRC Press

6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press

4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 Sławomir Gryś

Reasonable efforts have been made to publish reliable data and information, but the author and publisher

cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and

publishers have attempted to trace the copyright holders of all material reproduced in this publication and

apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright

material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,

transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter

invented, including photocopying, microfilming, and recording, or in any information storage or retrieval

system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or

contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-

8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used

only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Gryś, Sławomir, author.

Title: Computer arithmetic in practice : exercises and programming / SŁŁawomir Gry

Other titles: Arytmetyka komputerâow. English

Description: First edit | 1 Boca Raton, FL : CRC Press, [2 | Translation of: Arytmetyka komputeraŁ |

Includes bibliographical references and in |

Identifiers: LCCN 2023010741 | ISBN 9781032425634 (hbk) | ISBN 9781032425658 (pbk) | ISBN

9781003363286 (ebk)

Subjects:

Classification: LCC QA76.9.C62 G7913 2024 | DDC 004.01/51‐‐dc23/eng/20230404

LC record available at https://lccn.loc.gov/2023010741

ISBN: 978-1-032-42563-4 (hbk)

ISBN: 978-1-032-42565-8 (pbk)

ISBN: 978-1-003-36328-6 (ebk)

DOI: 10.1201/9781003363286

Typeset in Sabon

by MPS Limited, Dehradun

www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://lccn.loc.gov/2023010741
https://doi.org/10.1201/9781003363286

Dedicated to my family
(Thanks for forbearance and patience)

http://taylorandfrancis.com
http://taylorandfrancis.com

Contents

Preface xi

1 Basic Concepts of Computer Architecture 1

1.1 The 1-bit Logical and Arithmetical Operations 1
1.2 Architecture of Simple Microprocessor 5
1.3 Understanding the Instruction Set 11
1.4 Assembly Language and Tools 16

2 Numbers in Fixed-point Format 25

2.1 Unsigned Numbers 25
2.2 Conversion of Unsigned Number to Another

Format 31
2.2.1 Conversion BIN to P-BCD for

A < 100DEC 32
2.2.2 Conversion BIN to P-BCD for

A < 256DEC 33
2.2.3 Conversion BIN to UP-BCD for

A < 100DEC 34
2.2.4 Conversion BIN to UP-BCD for

A < 256DEC 35
2.2.5 Conversion BIN to ASCII for

A < 100DEC 36
2.2.6 Conversion BIN to ASCII for

A < 256DEC 37
2.2.7 Conversion P-BCD to BIN 38
2.2.8 Conversion P-BCD to UP-BCD 39
2.2.9 Conversion P-BCD to ASCII 40

2.2.10 Conversion UP-BCD to BIN 41
2.2.11 Conversion UP-BCD to P-BCD 41

vii

2.2.12 Conversion UP-BCD to ASCII 42
2.2.13 Conversion ASCII to BIN 43
2.2.14 Conversion ASCII to P-BCD 44
2.2.15 Conversion ASCII to UP-BCD 45
2.2.16 Conversion BIN Fraction (num/denom) to

BIN Fraction (dot notation) 46
2.3 Signed Numbers 48

2.3.1 The Sign-magnitude Representation 48
2.3.2 Complements – Theory and Its Usage 49
2.3.3 The 2’s Complement Representation 51

2.4 Conversions and Change of Sign 52
2.4.1 Change of Sign for 2’s Number 53
2.4.2 Conversion SM to 2’s Notation 53
2.4.3 Conversion 2’s Notation to SM 54

3 Basic Arithmetic on Fixed-point Numbers 57

3.1 Operations on Unsigned Numbers 57
3.1.1 Working with Natural Binary Code 57
3.1.2 Working with Packed BCD 74
3.1.3 Working with Unpacked BCD 78
3.1.4 Working with Chars in ASCII 82

3.2 Operations on Signed Numbers 87
3.2.1 Working with Sign-magnitude 87
3.2.2 Working with 2’s Complement 98

3.3 Nonlinear Functions 117

4 Numbers in Floating-point Format 125

4.1 Non-normalized Numbers 125
4.2 IEEE 754 Standard 127

4.2.1 Single Precision 133
4.2.2 Double Precision 134
4.2.3 Double Extended Precision 134
4.2.4 Single Precision 134
4.2.5 Double Precision 135
4.2.6 Double Extended Precision 135

4.3 FPU as a Specialized Arithmetic Unit 137
4.4 Conversion to Another Radix 138

viii Contents

5 Basic Arithmetic Operations on Floating-point Numbers 141

5.1 Addition 141
5.2 Subtraction 142
5.3 Multiplication 144
5.4 Division 145
5.5 Implementations in Assembly Language 146

6 Limited Quality of Arithmetic Operations 161

6.1 Precision of Number Representation 161
6.2 Error Propagation 163

Remarks 171

References 173
Appendices 177

Appendix A. Range of Numbers 177
Appendix B. Numerical Data Types in Some
High-level Languages 179
Appendix C. Solutions to Exercises 181

Index 195

Contents ix

http://taylorandfrancis.com
http://taylorandfrancis.com

Preface

Almost 15 years have passed since the first edition of this book was published in
Poland by Polish Scientific Publisher PWN with ISBN 9788301151317. The
book was positively rated by the academic community, both students and
teachers including students of several universities, on which I had the satisfaction
with teaching them computer arithmetic as one of the main topics related to
foundations of the computer architecture. The measure of book popularity may
be, in my opinion, listing it as ‘further readings’ in the syllabus of many university
courses related to the computer science as a field of education taught in Poland. I
really hope that the first edition of book fulfilled its role, which encouraged me to
start preparation of work on the revised and extended version of a book for a
wider international audience. This textbook was not aimed to compete with
classical books, those provide the complete knowledge in this topic and are well
written, but can be good choice as a first look at topic. The book is rather a
simple, brief introductory volume for undergraduate and graduate students at
university courses related to the introduction to computer science. It may be also
useful for design engineers interested in their own professional development.

The two topics are highlighted in this textbook: explanation how the
computers realize some relatively simple arithmetic operations for numbers
stored in various formats using simple method of ‘paper and pencil’ and its
realization in low-level programming language considering the features and
limitations of the instruction list of real microprocessor. The simplest
possible architecture was chosen to facilitate the understanding the code
created for real microprocessor. The assembly code presented in this book
can be freely downloaded from the website (https://routledgetextbooks.
com/textbooks/instructor_downloads/). The book is primarily didactic in
its nature, and therefore the presented required theoretical information has
been illustrated with numerous examples and exercises both in calculation,
algorithms and coding in assembly language aimed for self-assessment.
Many examples are giving the occasion for understanding the link between
theory and practice and expand student’s knowledge and skills. The
solutions to the exercises are included in Appendix C, except those
marked with an asterisk character.

xi

https://routledgetextbooks.com
https://routledgetextbooks.com

This book, compared with the first Polish edition, has been enriched
with, among other items, the theoretical basis and discussion of selected
algorithms, the recommendation of the world-wide accepted IEEE P-754
standard with its all revisions. Completely new topic concerns selected
methods of computing nonlinear functions. The discussed content was also
illustrated with more examples. The original text was revised and corrected.
An update of the content referring to the current state of the art was
essential improvement. The author has made many efforts to ensure that the
presentation of the discussed topic is as clear and transparent as much as
possible. The programs written in assembly codes have been thoroughly
tested on various combinations of data, but there is no guaranty of correct
operation for any data. So, they are delivered as is with no claiming option.
Any comments on book are very welcome and please forward them to the
one of e-mail addresses, i.e. slawomir.grys@pcz.pl (Częstochowa University
of Technology) or private slavo5.sg@gmail.com.

I hope that several features make the textbook accessible for the reader,
i.e. friendly presentation, numerous examples also implemented in assembly
code of a real microprocessor, theory well balanced with practice, topics
limited to the most typical and important for practitioners.

The book would have not been written and published without interaction
with many people. The author would like to say ‘many thanks’ to the
reviewers for their valuable comments. They would certainly contributed to
improving the quality of our work, its completeness and legibility. Special
thanks are also due for Editor Ms. Gabriella Williams – Information Security,
Networking, Communication and Emerging Technologies from CRC Press.
She was in touch with me from the moment of submitting the textbook
proposal, reviewing phase and solved all technical and organizational issues
related to the preparation of the manuscript for publishing. I also wish to
thank my students for all discussions and comments on presented material
during common work at university. Support by the Częstochowa University
of Technology, particularly Faculty of Electrical Engineering, as well as
excellent workplace and motivation, is acknowledged. This essential support
is greatly appreciated. Finally, the invaluable understanding of my wonderful
wife, Agnieszka, and children, Antonina and Aleksander, was indisputable
condition to the success of this work. The scope of this book is as follows:

• Chapter 1 presents an overview of the general features and architecture
of simple microprocessors: main components as ALU, registers, flags,
stack and instruction set. The 1-bit logical and arithmetical operations
are shown as being the base for any more complex operations. Assembly
language and tools, i.e. assembler and linker as needed for obtaining
machine code ready to run on microprocessor, are discussed. The way to
create the right code in assembly language avoiding wrong syntax
causing bugs is done as an introduction for understanding the listings
given in next chapters. Furthermore, typical file formats such as BIN,

xii Preface

HEX and ELF are mentioned and HEX format explained on real
example.

• Chapter 2 introduces the way of representation of unsigned and signed
numbers in fixed point format mainly aimed for integer numbers. The
fractional part is also considered as requested in some cases. The
considerations are carried out both for unsigned and signed numbers.
The following formats are discussed, i.e. natural binary code,
hexadecimal, unpacked and packed binary coded decimal codes and
ASCII. For signed numbers the sign-magnitude and 2’s complements
representation as practical use of complementation theory are
presented. The methods of conversion from one to another format
are provided. All formats are illustrated with examples of number and
conversions by software implementation in assembly code.

• Chapter 3 discusses the principles of four elementary basic arithmetic
operations and its realization in assembly language. Operations are
performed for all formats presented in the previous chapter. Four
operations, that means, addition, subtraction, multiplication and
division are exclusively for BIN format as being easy to realize. First
three of them are discussed also for signed numbers represented in 2’s
complement format and addition together with subtraction for the
others, i.e. BCD, ASCII and sign-magnitude. Nonlinear function
approximation methods are shortly mentioned using iterative
techniques or simple lookup tables. For some cases, the missing
arithmetic instructions of real microprocessor were programmatically
emulated according to ‘filling gaps’ strategy.

• Chapter 4 deals with number representation in floating-point format
for expressing the real numbers. Non-normalized numbers are
introduced. The main topic is a worldwide accepted and applied
IEEE 754 standard as a hardware independent. Among others, the
following issues are highlighted: single and double precision, special
values and exceptions. The changes imposed by IEEE 854 update and
related to the need of support shorter than single and longer than
double precision new formats are announced. Additionally, some key-
value features of a FPU floating point unit as specialized arithmetic
coprocessor were pointed out. The universal method of conversion to
another radix is provided.

• Chapter 5 similarly to Chapter 3 presents the rules for four basic
arithmetic operations as addition, subtraction, multiplication and
division illustrated with numerical examples and exercises. The very
simplified form of a floating-point numbers format was chosen as it
seemed to be more accurate and readable than a format complying with
IEEE standard requirements. It was applied to present the arithmetic
operations implementation in assembly code. The listings are really not
short but also not too hard to understand and rebuilt for practical
applications. The normalization and denormalization routines needed

Preface xiii

for proper operation execution and ensuring that the output number
will keep the ensured format are pointed too.

• Chapter 6 is devoted to possible errors due to limited precision of
number representation. Error magnification caused by error
propagation is also explained with appropriate examples. This issue
is important in case of single arithmetic operation and much more for
algorithms based on multi iterations or matrix operations. The problem
was only signaled as essential and noteworthy. Unfortunately, no
universal solution for this issue was proposed so far that could be
applicable for practice. Ignoring the computer limitations or using
wrong number format can cause quite freaky incorrect results.

• Appendixes are aimed to ease reading and understanding the chapters.
Appendix A presents the range numbers for the assumed number of
allowed bits. It can be useful in evaluating the minimal number of bits
needed to express the input numbers or result of arithmetical operation.
Comparison is performed for numbers with fractional parts both for
unsigned and signed formats. The binary, 2’s complement and sign-
magnitude are considered. Appendix B is related to the preview one and
is limited to formats and numbers of bits, mainly multiples of eight,
commonly used in high-level languages like Delphi Pascal, C/C++, Java
and Microsoft Visual Basic. The third, Appendix C, provides the
solutions to almost all exercises from book chapters.

The book is attached with three appendixes useful during reading the
chapters, i.e. range numbers for assumed number of allowed bits, numerical
data types with ranges in some common high-level languages and solutions
to almost all exercise.

Finally, I wish you a pleasant reading, and, what is the most important, a
self-practice and inspiration for your own software solutions.

Sławomir Gryś (Author)
Częstochowa (Poland)

January 2023

xiv Preface

Chapter 1

Basic Concepts of Computer
Architecture

1.1 THE 1-BIT LOGICAL AND ARITHMETICAL OPERATIONS

Let’s look at the dictionary definition of computer cited after:

< Latin: computare>, electronic digital machine, an electronic device
designed to process information (data) represented in digital form,
controlled by a program stored in memory.

[Encyclopedia online PWN 2023, https://encyklopedia.pwn.pl/]

an electronic machine that is used for storing, organizing, and finding
words, numbers, and pictures, for doing calculations, and for con-
trolling other machines.

[Cambridge Academic Content Dictionary 2023, https://dictionary.
cambridge.org/dictionary/english/computer]

a programmable electronic device designed to accept data, perform
prescribed mathematical and logical operations at high speed, and
display the results of these operations.

[https://www.dictionary.com/browse/operation]

Unfortunately, the above definitions ignore the outstanding achievements of
many pioneers of the age of mechanical calculating machines; to cite just a
few names: Schickard, Pascal, Leibniz, Stern, Jacquard, Babbage, linking
the emergence of the computer with the development of electro-technology
in the second half of the 20th century. Those interested in the history of the
evolution of computing machines are encouraged to read [Augarten 1985,
Ceruzzi 1998, McCartney 1999, Mollenhoff 1988, and Pollachek 1997]. As
it can be shown, all the computer functions mentioned in the definition (and
thus the performance of calculations, which is the subject of this book) can
be realized by limited set of logical functions and data transfers from and to
computer’s memory.

DOI: 10.1201/9781003363286-1 1

https://encyklopedia.pwn.pl
https://dictionary.cambridge.org
https://dictionary.cambridge.org
https://www.dictionary.com
https://doi.org/10.1201/9781003363286-1

Information in a computer is expressed by set of distinguishable values,
sometimes called states. In binary logic, these states are usually denoted by
symbols {0,1} or {L,H}. The symbols {0,1} are applied much more often
because it is associated with commonly used numbers used to express
numerical values, so it will be also used further in this book. The symbols L
(low) and H (high) are used in digital electronics for describing the theory of
logic circuit. In physical implementations, they translate into two levels of
electric voltage, e.g. 0 V and 3.3 V or current 4 mA and 20 mA (so-called
current loop). In the most cases of computer architectures and communi-
cation technologies, the positive logic is used, where 1 is the distinguished
state and identical to H.

The rule of operation of computer is just data processing that means
convert the input data into output data according to the given algorithm.
Because any data is represented as a combination of bits, i.e. 0 and 1 states,
the well-known logical operations can be applied for bit manipulation.

Let’s start with 1-bit logical operations:

• inversion (denoted by ‘/’)
/0 = 1, /1 = 0

• logical OR (denoted by ‘∪’)
0 ∪ 0 = 0, 0 ∪ 1 = 1, 1 ∪ 0 = 1, 1 ∪ 1 = 1

• logical AND (denoted ‘∩’)
0 ∩ 0 = 0, 0 ∩ 1 = 0, 1 ∩ 0 = 0, 1 ∩ 1= 1

• logical XOR (denoted by ‘⊕’)
0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, 1 ⊕ 1 = 0.

Some additional notes on logical operations are as follows:

1. Inversion can be treated as complement of value from the set of {0,1}.
2. Logical OR is equivalent to the function of alternative.
3. Logical AND is equivalent to the function of conjunction.
4. Logical XOR for more than two inputs is equivalent to non-parity

function, e.g. 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1 and 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0.

It should be mentioned that set of two operations {/,∩} or {/,∪} is sufficient
to emulate the others. This is because de Morgan’s laws apply as follows:

• /(A ∩ B) = /A ∪ /B

and

• /(A ∪ B) = /(A) ∩ /B

where A, B – logical inputs 0 or 1.

2 Computer Arithmetic in Practice

According to the principles given above, the logic gates operate, being the
smallest logical element for data processing realized as digital electronic
circuits. Furthermore, the computer can be considered as very complex
combination of logical gates with feedback loop from outputs to inputs.
The feedback is needed to realize the influence of stored data on the current
output results. Hence, in the theory of computation, the computer is now
an example of sophisticated finite state sequential machine. This topic as
being as not strictly related to the main book topic will be not continued
here.

In addition to logical operations, 1-bit arithmetic operations can be defined:

• arithmetic sum (denoted ‘+’)

0 + 0 = {0,0} 0 + 1 = {0,1} 1 + 0 = {0,1} 1 + 1 = {1,0}

• arithmetic difference (denoted ‘–’)

0 – 0 = {0,0} 0 – 1 = {1,1} 1 – 0 = {0,1} 1 – 1 = {0,0}

• arithmetic sum/difference modulo 2 (denoted ‘⊕’)

0 ⊕ 0 = 0 0 ⊕ 1 = 1 1 ⊕ 0 = 1 1 ⊕ 1 = 0

• arithmetic multiplication (denoted ‘*’)

0 ∗ 0 = 0 0 ∗ 1 = 0 1 ∗ 0 = 0 1 ∗ 1 = 1

Some additional notes about arithmetic operations:

1. Arithmetic sum returns the result of an operation in the form of a pair
of bits {carry, result}.

2. Arithmetic difference returns the result of an operation in the form of
a pair of bits {borrow, result}.

3. Arithmetic sum/difference modulo 2 returns an identical result to the
logical XOR.

4. Arithmetic multiplication of 1-bit arguments returns identical result
as logical AND.

5. The rule of arithmetic multiplication is just a multiplication table for
binary numbers. Its simplicity undoubtedly draws your attention!

The presented arithmetic operations can be realized by logical operations,
and therefore gates, which is an advantage of the zero-one system. The
described 1-bit operations are the basis for operations on multi-bit argu-
ments. The result of a logical operation is a composite of the results of 1-bit
logical operations of individual bit pairs. Let’s illustrate it with an example
as below.

Basic Concepts of Computer Architecture 3

Example 1.1: Two arguments 4-bit logical operations:

/ (1001) = 0110

1100
0110
1110

1101
0001
0001

1101
1001

0100

The practical meaning of logical operations results from their properties. If we
mark one of the arguments with A and treat the other as the so-called mask, the
chosen bits can be cleared (value is 0) by a logical AND operation, set (value is 1)
by a logical OR and inverted by XOR function. These conclusions result from
the following observations:

A ⊕ 0 = A A ⊕ 1 = /A A ∪ 0 = A A ∪ 1 = 1 A ∩ 0 = 0 A ∩ 1 = A

Example 1.2: Use of binary logical operations for bit manipulation:

a a a a
0 1 1 0
a 1 1 a

a a a a
0 1 1 0
0 a a 0

a a a a
0 1 1 0

a /a /a a

3 2 1 0

3 0

3 2 1 0

2 1

3 2 1 0

3 2 1 0

In the book, the reader will find the exercises for self-assessment. The solutions
to exercises are attached in Appendix C.

Exercise 1.1: Determine the result of logical operations:

a a 0 1
a 1 a 1

? ? ? ?

a a 0 0
1 a 0 a

? ? ? ?

0 1 a a
a 1 1 a

? ? ? ?

3 2

3 1

3 2

2 0

1 0

3 0

Logic and arithmetic operations are not only the domain of computer sci-
ence. They are used by electronics engineers for designing digital systems in
PLD/FPGA programmable logic structures. The knowledge of Boolean
algebra, methods of synthesis and analysis of combinatorial and sequential
circuits is necessary here. This subject is discussed in books on computer
architecture and organization or digital electronics. If you are interested,
I refer you to generally known books, e.g. [Null 2018, Tietze 2002 and
Vladutiu 2012]. For further consideration, is it enough if we will be aware
that logical and arithmetic operations are performed in hardware by ele-
ment of the processor called the arithmetic logic unit, abbreviated as ALU?
Modern processors usually are equipped with additional resource, the
floating-point unit (FPU) working with numbers in floating-point format.
These topics are discussed in Chapters 4 and 5.

4 Computer Arithmetic in Practice

1.2 ARCHITECTURE OF SIMPLE MICROPROCESSOR

The aim of the chapter is to familiarize with the basic elements of the
processor, which will be referred to in programs showing how to implement
arithmetic operations. Figure 1.1 shows a simplified structure of a classical
processor with which popular microcontroller of 8-bit 8051 family is
compatible. The figure omits such elements which are not important from
the point of view of the subject matter of this book. These are up/down
counting timers, serial transceiver/receiver, interrupt controller, etc.

The primary reason for choosing CPU based on 8051 architecture is its
simplicity, an ideal feature from a didactic point of view and objectives of
this book. This core did not lose much its popularity despite many years
since its release to the market. Today, 8051s are still available as integrated
circuits offered by many companies and supported by integrated develop-
ment environments, but they are mainly used as silicon-based intellectual
property cores. These cores, available in the source code of a hardware
description language (such as VHDL or Verilog) or as an FPGA network
list, are typically integrated into systems embedded in products such as USB
flash drives, home appliances, and wireless communication system chips.
Designers use 8051 silicon IP cores due to their smaller size and lower
performance compared to 32-bit processors.

The 8051 microcontrollers were developed by Intel, so it is not surprising
that the syntax of its instruction list is close to that deserved family of 8086

Figure 1.1 Simplified architecture of the classical processor.

Basic Concepts of Computer Architecture 5

processors, continued to the present day in Intel Core architecture. The dif-
ferences seen from the programmer’s point of interest occur mainly in word
length, which is related to the width of registers, or the number and variants
of instructions and resources like registers, internal memories, number of
execution units, etc. A processor with a complex architecture, on the one
hand, would provide more possibilities to implement various data formats,
e.g. storing real or complex numbers and more advanced arithmetic opera-
tions, but probably at the cost of the clarity of the presented content.

The implementation in code of arithmetic operations presented in the book
was developed just for the 8051 complying microprocessors. Those can be
reused as code snippets or ready to use algorithms in the targeted user pro-
grams, after an adaptation to the architecture and list of instructions for
specific targeted processor. The reader interested in deeply studying the
architecture details of other processors is referred to [Baer 2010, Blaauw
1997, Hamacher 2012, Metzger 2007, Patterson 2014 and Stallings 2008].

As mentioned, the components shown in Figure 1.1 are common to most
processors, so it is useful to become familiar with their functions:

Data buffer – a register that stores data exchanged between the components
of the processor and external memory or an input-output device.

Address buffer – a register that stores the address of an external memory
cell or input-output device.

Program memory – read only memory for storing the program code.

Data memory – read and write memory intended for data storage used by
program.

Instruction register – a register that stores the instruction code fetched from
the program memory (is working as a pointer).

Instruction decoder – translates the instruction to microcode being executed
by the internal units of processor.

Control unit – responsible for coordination of data transfer between
internal units of processor.

Arithmetic logical unit – performs basic arithmetic and logical operations
on arguments stored in processor registers or memory and determines flags
of status register. Operations performed by ALU (of 8051 CPU):

• logical OR,
• logical AND,
• logical XOR,
• addition (of unsigned and signed numbers),
• subtraction (of unsigned and signed numbers),
• correction after BCD addition,
• unsigned multiplication,

6 Computer Arithmetic in Practice

• unsigned division,
• comparison of two sequences of bits,
• rotations,
• clearing/setting and inverting selected bits.

DID YOU KNOW?

There are usually additional instructions (including jumps/branches) available
in 32/64-bit processors, e.g. Intel Core family:

• decimal correction after subtraction,
• decimal correction after multiplication,
• decimal correction before division,
• multiplication of signed numbers,
• division of signed numbers,
• comparison of two unsigned/signed numbers,
• shifting with or without extra bit.

Their absence in the 8051 is not a relevant problem due to possibility of in
code emulation.

The 8051 flags set as a result of arithmetic operations are:

• overflow (OV or V),
• carry (C or CY),
• auxiliary carry (AC or half carry HC).

The meaning of the specified flags:

• OV – set when a range overrun occurs for signed numbers in the 2’s
complement notation after arithmetic addition or subtraction; also
signals an attempt to divide by zero; for single-byte operations, the
allowed range for numbers in the 2’s complement code is
<−128,127>.

• C – set when there is a carry from the 7th bit to the 8th (out of byte)
after arithmetic addition or a borrow from the 8th bit to the 7th after
arithmetic subtraction, signals an out-of-range result for numbers in
the natural binary and packed BCD systems; also used as an extra bit
during rotation instruction; for single-byte operations, the allowed
range for natural binary numbers is <0,255>, and for packed
BCD <0,99>.

Basic Concepts of Computer Architecture 7

• AC – set when there is a carry from 3th to 4th bit (to the next nibble)
after arithmetic addition or borrow from bit 4th to 3th bit after
arithmetic subtraction; signals the need to perform correction of result
for numbers in the packed BCD notation.

For 8051-compatible microcontrollers, the flags are stored in the PSW
register presented in Table 1.1.

The flag can be tested by conditional jump/branch instructions or taken
as a third input argument by arithmetic operations. The exact relationship
between the flag and the instruction is presented in the next subchapter
discussing the 8051-microcontroller instruction list (ISA).

The meanings of the rest of PSW register flags are as follows:

• P – determines the parity of the number of ones in the accumulator,
P = 1 if this is odd and P = 0 if even.

• F0, PSW.1 – flags of general use.
• RS1, RS0 – register bank selection flags R0...R7.

The flags F0, PSW.1 can be used for any purpose, e.g. storing sign bits of
numbers; they can be tested by conditional jump instructions.

The flags RS1 and RS0 are considered together because their value
indicates the number of the active set (bank) of registers R0, R1...R7
engaged for data transfer. It means that the same register name is associated
to other internal memory location. Physical memory addresses indicated by
R0…R7 names depend on current configuration of bits RS1 and RS0 those
are given in Table 1.2.

By default, after a microcontroller reset or switch the power on, the RS1
and RS0 bits are clear to zero, so the name of the R0 register allocated to
memory cell with address 0, and R1 to the cell with address 1, etc. The bank

Table 1.1 Bits of the PSW Register

PSW.7 PSW.6 PSW.5 PSW.4 PSW.3 PSW.2 PSW.1 PSW.0

C AC F0 RS1 RS0 OV – P

Table 1.2 Memory Space Allocated for R7...R0 Registers According to RS1 and RS0 Bits

RS1 RS0 Bank number Memory addresses of internal RAM (as decimals)

0 0 0 0...7
0 1 1 8...15
1 0 2 16...23
1 1 3 24...31

8 Computer Arithmetic in Practice

switching mechanism is very useful as it shortens the program code. This
will be illustrated by the following example.

Example 1.3: Save the contents of registers R0...R3 in the internal memory in
order to use them for another task, and then restore their original value after
finishing the task. The task can be completed in two ways. The first way – using
the MOV instruction:

;Let’s assume that the registers R0...R3 of bank 0 contain valid data

MOV 20h,R0 ;copy the value from R0 bank 0 to the internal memory cell
at address 20h

MOV 21h,R1

MOV 22h,R2

MOV 23h,R3

;it is empty space left for the code that uses the R0...R3 bank 0 registers for
another task

MOV R0,20h ;copy the value from internal memory cell 20h to R0 bank 0

MOV R1,21h

MOV R2,22h

MOV R3,23h

The second way – using the bank switching mechanism:

;Let’s assume that the registers R0...R3 of bank 0 contain valid data

SETB RS0 ;switch to bank no. 1

;it is empty space left for the code that uses the R0...R3 bank 0 registers for
another task

CLR RS0 ;switch to bank no. 0

The meaning of the MOV, SETB, and CLR instructions used in
Example 1.3 is explained in the next chapter. Do not to worry too much. It
is not necessary to understand them at this stage. However, it is important
to note that using the second solution results in shorter code. There are also
other applications of the bank switching technique. One example can be

Basic Concepts of Computer Architecture 9

implementation of function calling with parameter passing and local vari-
ables. The reader can be able to find more information searching the tu-
torials on learning assembly language.

DID YOU KNOW?

In many processors, e.g. Microchip AVR, there are additional flags related to
arithmetic or logical operations:

• zero (Z),
• negative (N),
• sign (S).

Their meaning is as follows:

• Z – set when result of an arithmetic or logical operation is zero,
• N – duplicated highest bit of the result, N = 1 indicates that the number

is negative in the 2’s complement format,
• S – set for negative result of an arithmetic operation, S = N ⊕ OV,

which allows the correct interpretation of the condition by a jump
instruction even if overflow occurs and result is incorrect.

Register – stores data or address.
Basic registers available for user are:

• accumulator A or ACC,
• register B,
• general purpose registers R0…R7 (x4 banks),
• 16-bits data pointer DPTR,
• program counter (instruction pointer) PC,
• stack pointer SP,
• flag register F / Program status word PSW.

Accumulator – read and write register used primarily for logical and
arithmetic operations addressed by the most of instructions.

B – read and write universal register.

R0-R7 – read and write general purpose registers.

DPTR – read and write 16-bit register for addressing program or data
memory, also available as pair of register DPH (high) and DPL (low).

10 Computer Arithmetic in Practice

Program counter/instruction pointer – read only register; addresses pro-
gram memory, holds next instruction address or argument of current
instruction, e.g. MOVC A,@A+PC.

Stack pointer – 8-bit register for reading and writing; it addresses the
internal RAM with stack organization (LIFO – last in first out), it indicates
the top of the stack, i.e. the address of the last written data.

The stack is used mainly for:

• temporary storing and restoring data with the PUSH and POP
instructions to make register free to use by another instruction,

• store the value of the program counter PC during CALL instruction or
handling an interrupt, i.e. jump/branch to the subroutine. The address
from stack is stored back to the PC register with RET instruction or
RETI for interrupt appropriately. It is resulting in returning to the
next instruction of code after that causing a jump.

DID YOU KNOW?

One of untypical applications of the stack [Null 2018, Gryś 2020] are:

• conversion of logical or arithmetic expressions from the classic infix to
postfix form also known as the Reverse Polish Notation; benefit is that
the parentheses are not necessary longer to force the priority of
operations and less resources consumed,

• processing of logical or arithmetic expressions in postfix form,
• stack oriented data processed in Forth, Postscript language and some

high-level language parsers,
• stack oriented registers of FPU unit of Intel processors.

1.3 UNDERSTANDING THE INSTRUCTION SET

Table 1.3 presents a list of 8051 microcontroller instructions, those using
the following symbols:

Rn – R0...R7 registers of the currently selected register bank,

Ri – an internal data RAM location <0,255> addressed indirectly through
R0 or R1,

address – 8-bit address of internal RAM memory,

Basic Concepts of Computer Architecture 11

Table 1.3 The 8051-Microprocessor Instruction Set Summary

Mnemonic Arguments Description Flag

C OV AC

Arithmetic operations
ADD A,Rn A←A+Rn X X X

A,address A←A+ [address] X X X
A,@Ri A←A+[Ri] X X X
A,#data A←A+data X X X

ADDC A,Rn A←A+Rn+C X X X
A,address A←A+ [address]+C X X X
A,@Ri A←A+ [Ri]+C X X X
A,#data A←A+data+C X X X

SUBB A,Rn A←A–Rn–C X X X
A,address A←A–[address]–C X X X
A,@Ri A←A–[Ri]–C X X X
A,#data A←A–data–C X X X

INC A A←A+1
Rn Rn←Rn+1
address [address]←[address]+1
@Ri [Ri]←[Ri]+1
DPTR DPTR←DPTR+1

DEC A A←A–1
Rn Rn←Rn–1
address [address]←[address]–1
@Ri [Ri]←[Ri]–1

MUL AB B15…8A7…0←A*B 0 If A*B>255,
then OV←1

DIV AB Aresult Bremainder←A/B 0 If B = 0
before
division
then OV = 1

DA A Decimal adjust accumulator
after addition data in P-
BCD: If A3...0>9 or AC=1
then A←A+6 after that if
A7...4>9 or C=1 then
A←A+60h

X

Logic operation
ANL A,Rn A←A∩Rn

A,address A←A∩[address]
A,@Ri A←A∩[Ri]
A,#data A←A∩data
address,A [address]←[address]∩A

(Continued)

12 Computer Arithmetic in Practice

Table 1.3 (Continued) The 8051-Microprocessor Instruction Set Summary

Mnemonic Arguments Description Flag

C OV AC

address,#data [address]←[address]∩data
ORL A,Rn A←A∪Rn

A,address A←A∪[address]
A,@Ri A←A∪[Ri]
A,#data A←A∪data
address,A [address]←[address]∪A
address,#-
data

[address]←[address]∪A

XRL A,Rn A←A⊕Rn
A,address A←A⊕[address]
A,@Ri A←A⊕[Ri]
A,#data A←A⊕data
address,A [address]←[address]⊕A
address,#-
data

[address]←data⊕A

CLR A A←0
CPL A A←/A
RL A Rotate accumulator left
RLC A Rotate accumulator left

through carry bit
X

RR A Rotate accumulator right
RRC A Rotate accumulator right

through carry bit
X

SWAP A A7…4↔A3…0

Data transfer – internal memory
MOV A,Rn A←Rn

A,address A←[address]
A,@Ri A←[Ri]
A,#data A←data
Rn,A Rn←A
Rn,address Rn←[address]
Rn,#data Rn←data
address,A [address]←A
address,Rn [address]←Rn
adress1,ad-
dress2

[address1]←[address2]

(Continued)

Basic Concepts of Computer Architecture 13

Table 1.3 (Continued) The 8051-Microprocessor Instruction Set Summary

Mnemonic Arguments Description Flag

C OV AC

address,@Ri [address]←[Ri]
address,#data [address]←data
@Ri,A [Ri]←A
@Ri,address [Ri]←[address]
@Ri,#data [Ri]←data
DPTR,#dat-
a16

DPTR←data16

XCH A,Rn A↔Rn
A,address A↔ [address]
A,@Ri A↔ [Ri]

XCHD A,@Ri A3...0↔ [Ri]3...0

PUSH Address [SP]←address, SP←SP+1
POP Address [address]←[SP], SP←SP–1

Data transfer – external memory and input/output devices
MOVX A,@Ri A←[Ri]

A,@DPTR A←[DPTR]
@Ri,A [Ri]←A
@DPTR,A [DPTR]←A

Data transfer – program memory
MOVC A,@A+PC A←[A+PC]

A,@A+DPT-
R

A←[A+DPTR]

Single bit operation
CLR C C←0 0

Bit bit←0
SETB C C←1 1

Bit bit←1
CPL C C←/C X

Bit bit←/bit
ANL C,bit C←C∩bit X

C,/bit C←C∩/bit X
ORL C,bit C←C∪bit X

C,/bit C←C∪/bit X
MOV C,bit C←bit X

bit,C bit←C

(Continued)

14 Computer Arithmetic in Practice

Table 1.3 (Continued) The 8051-Microprocessor Instruction Set Summary

Mnemonic Arguments Description Flag

C OV AC

Unconditional jumps
ACALL address11 Subroutine call:

SP←SP+1, [SP]←PC7...0

SP←SP+1, [SP]←PC15...8

PC←address11
LCALL address16 Subroutine call

SP←SP+1, [SP]←PC7...0

SP←SP+1, [SP]←PC15...8

PC←address16
RET Return from subroutine:

PC15...8←[SP], SP←SP–1
PC7...0←[SP], SP←SP–1

RETI Return from interrupt:
PC15...8←[SP], SP←SP–1
PC7...0←[SP], SP←SP–1
Interrupts enabled with
equal or less priority

SJMP Offset PC←PC+offset
AJMP address11 PC10...0←address11
LJMP address16 PC←address16
JMP @A+DPTR PC←A+DPTR

Conditional jumps
JC Offset If C=1 then PC←PC+offset
JNC Offset If C=0 then PC←PC+offset
JB Offset If bit=1 then PC←

PC+offset
JNB Offset If bit=0 then PC←

PC+offset
JBC bit,offset If bit=1 then PC←

PC+offset and bit←0
JZ Offset If A=0 then PC←PC+offset
JNZ Offset If A≠0 then PC←PC+offset
CJNE A,address,of-

fset
A,#data,off-
set
Rn,#data,of-
fset @
Ri,#data,off-
set

if A≠[address] then PC←
PC+offset if A≠data then
PC←PC+offset if Rn≠data
then PC←PC+offset if
[Ri]≠data then PC←
PC+offset

if A≠[address]
then C←1 if
A≠data then
C←1 if
Rn≠data
then C←1 if
[Rn]≠data
then C←1

(Continued)

Basic Concepts of Computer Architecture 15

address11 – 11-bit address of program memory. This argument is used by
ACALL and AJMP instructions. The target of the CALL or JMP must lie
within the same 2 KB range of addresses <−1024,1023>.

address16 – 16-bit address of program memory. This argument is used by
LCALL and LJMP instructions.

data – 8-bits data,

data16 – 16-bits data,

bit – a direct addressed bit in internal data RAM or SFR memory (can be
represented by name),

offset – a signed (two’s complement) 8-bit offset <−128,127>,

X – value 0 or 1 as result of operation,

@... – memory addressed indirectly,

#... – a constant included in the instruction encoding,

/X – logical inversion of X,

[…] – the contents of the memory with address … ,

KB – kilobyte, 210 bytes = 1024 bytes,

BIN – binary code,

P-BCD – packed binary coded decimal.

1.4 ASSEMBLY LANGUAGE AND TOOLS

In previous subsection 1.3, the 8051-instruction set architecture was dis-
cussed in details. The program running on CPU is just a combination of
instructions, addresses and operands translated to machine code under-
standable by microprocessor. To prepare and run program, we need some
tools like: assembler, linker (optionally) and loader. The assembly language

Table 1.3 (Continued) The 8051-Microprocessor Instruction Set Summary

Mnemonic Arguments Description Flag

C OV AC

DJNZ Rn,offset
addres-
s,offset

Rn←Rn–1 and if Rn≠0 then
PC←PC+offset
[address]←[address]–1
and if [address]≠0 then
PC←PC+offset

NOP No operation

16 Computer Arithmetic in Practice

is a low-level programming language but assembler is a software respon-
sible just for translating source code directly to the machine code or
sometimes indirectly to the object code aimed to reuse in another program.
A linker is a program merging one or more files generated earlier by a
compiler or an assembler and combines them into a single executable file,
library file or another ‘object’ file. Typically, one or more commonly used
libraries are usually linked in by default. The linker also takes care of
arranging the objects in a program’s address space. This may involve re-
locating code that assumes a specific base address into another base.
Relocating machine code may involve retargeting of absolute jump, MOV,
load and store instructions. The loader, as its name suggests, is responsible
for writing the final output file to the program memory of microprocessor.
Sometimes it cooperates with bootloader located inside microprocessor
memory and being a key feature of operating system kernel.

For assumed objectives of this book, the using of linker was not neces-
sary. From this reason, we will concentrate only on assembling phase of the
program creation needed to implement topics related to the title of a book.
The assembly code was just written in plain text editor, translated to the
machine code with final memory addresses and saved to the Intel HEX file
format. To perform it, an attached assembler tool DSM51ASS.EXE was
used but any freely available assembler dedicated to 8051 processor is also
appropriate. All presented in this book listings were validated by testing
output HEX output files with a real board equipped with 8051 CPU.
Author is encouraging the potential readers to work (and maybe improve)
with proposed algorithms and those implementation in code.

Basic features of the DSM51ASS assembler are as follows:

• assembles only a single input file (no linking phase),
• allows the use of complex arithmetic expressions similar to C

language,
• allows the use of macros,
• allows the use the directives,
• checks the range of arguments.

A typical program line for this assembler looks like this:

[<label>] [<instruction>] [<operand>] [;<comment>]

The meaning of the individual fields of a program line is as follows:

<label> – a symbol placed at the beginning of the line (the first character
of the label must be the first character on the line). The label
must start with a letter or the underscore ‘_’, and may contain
any combination of letters, numbers and underscores. If a
label ends with a colon it is given a value that defines its

Basic Concepts of Computer Architecture 17

position in the source code (the address of an instruction from
this program line). Labels (symbols) used with directives
giving them a value are not terminated by a colon.

<instruction> – mnemonic of instruction, assembler directive or macro.

<operand> – the information required by the mnemonic, assembler
directive or macro. Individual operands are separated by
commas.

<comment> – all characters following a semicolon are treated as com-
ments and ignored by the assembler during translation to
machine code.

The instruction must be preceded by at least one whitespace character, e.g.
space or tab character. There may be empty lines or lines containing only
comments.

Arithmetic expressions are used to determine the value of parameters that
require a numeric value. They consist of numbers and symbols (labels,
names of constants or variables) combined with arithmetic operators. The
syntax of DSM51ASS arithmetic expressions is very similar to that of the C
language. It introduces some additional operators commonly used in as-
semblers, and changes the priority of bit operations – they are performed
before comparison operations. The latter give the value 1 if the condition is
true and 0 if it is false. Boolean operators (!,&&,||) treat any value other
than zero as true and 0 as false. As a result of logical operations, we also get
the value 1 or 0. In the DSM51ASS assembler, all calculations are per-
formed on 32-bit signed numbers. This means that the value of an ex-
pression is calculated correctly as long as the intermediate results are within
the range −2 147 483 648 to 2 147 483 647. Exceeding this range during
the calculation is not signaled.

Symbols are represented by a string beginning with a letter or underscore
‘_’ and consisting of any sequence of letters, numbers and underscores. The
assembler recognizes the first 32 characters of a symbol.

Bit selection operator in bit-addressable registers is just a comma char:.n
– the address of the specified bit in this register where ‘n’ is a digit from the
range 0...7. If the given address is not the correct address of the bit-
addressable register, an error is signaled.

For example:
START: CLR P1.7; comment

The numeric constant must start with a digit and ends with postfix for
hexadecimal, octal and binary types. The H postfix used for hexadecimal
numbers is equivalent to ‘0x’ prefix in C-like commonly used notation and
HEX subscript used in this book. The char is embraced by apostrophes.
Some examples are presented below:

18 Computer Arithmetic in Practice

Operators that modify the value of the operand following it according to
the priority of their execution:

() – parentheses determine the order in which actions are performed.
There is no limit to the number of enclosing brackets used.

! – Boolean negation. Changes a value different from 0 to 0, and a value
equal to 0 to 1.

~ – Bitwise negation. Changes all 32 bits in the operand to the opposite.

- – changes the sign of the operand to the opposite.

< – lowest byte of operand (‘< operand’ is equivalent to ‘(operand &
FFHEX)’ or ‘(operand % 256)’).

> – higher 3 bytes of operand (an ‘> operand’ is equivalent to ‘(operand
>> 8)’ or ‘(operand / 256)’).

For example:

MOV A,#<((250-3)*2) ;A=494-256=238=EEHEX

Bitwise shift operators:

<< – Left shift. The operand to the left of this operator is shifted left by
the number of bits specified by the operand to the right. The released
bits are replaced by zeros.

For example:

MOV A,#(31+1)<<2;A=32*2*2=128238=80HEX

The DSM51ASS assembler accepts the following directives:

DB – insert numeric and text values in the code, e.g. DB ‘a’,23,34H

DW – insert double-byte numeric values into the code, e.g. DW 2AE4H

Type Example

===
Decimal 123
Hexadecimal 0F28BH
Octal 7654O
Binary 01010001B
Char ‘A’
===

Basic Concepts of Computer Architecture 19

EQU – define a constant, e.g. five EQU 00000101B

BIT – define constant of the bit type, e.g. my_bit BIT ACC.4

SET – define a variable, e.g. x_var SET 20H

IF/ELSE/ENDIF – start of conditional/alternative conditional/end of
assembly block

ORG – set address for next block of code, e.g. ORG 10H

MACRO/ENDM – start/end of macro definition (sets of commands
called by a single name), e.g.

MACRO

instruction1

instruction2

… .

instruction n

ENDM

They allow you to insert data into the program body, assign values to symbols,
control the assembly flow and build macros. More details are provided below:

SET – to define a variable

Syntax: <symbol> SET <expression>

The symbol <symbol> is assigned the value of an expression. The symbol type
is determined by the expression. The values defined by the SET directive can be
modified any number of times by reusing the SET directive. Changing the
symbol type during a subsequent assignment causes a warning to be generated.

IF/ELSE/ENDIF

Syntax – IF <expression> {code} ELSE {code_alter} ENDIF

ORG – set the address for the next block of code

Syntax – ORG <expression>

Sets the address for the code block following this directive. The address for
the next processor instruction is determined by calculating the expression
value. It is only possible to increment the current code address. Any attempt
to decrease the address is signaled as an error. By default, the program code
is starting from address zero.

20 Computer Arithmetic in Practice

MACRO/ENDM

Syntax – <name> MACRO <parameters>

A macro is a set of assembler instructions. The sequence of instructions
following a line containing a MACRO directive, up to the nearest ENDM
directive, forms a macro named <Name>. Once defined, this entire set can
be included in the source code of a program by calling a macro, i.e. re-
placing its name. Calls to other macros may occur in the body of a macro,
but the definition of another macro may not.

After above short information about assembler functionality and
requirements, let’s go to the next phase – creating the output files. The
assembler generates the output file on the basis of source file, here with *.asm
extension. It is then imported by a programmer to ‘burn’ the machine code
into non-volatile memory, or is transferred to the operational RAM memory
for loading and execution. All data required to run an application is included
in binary file, typically with *.bin extension. This file contains raw code
written to specific addresses, i.e. it represents program memory map.
Unfortunately, it does not contain any mechanisms protecting file integrity.
The loader responsible for writing the machine code to the program memory
of microprocessor will not recognize the damage to the file or attempts to
modify it. Moreover, if the code is distributed in different memory areas, it
has to fill the empty addresses usually with the value 0 or 255 (0x00 or 0xFF)
or left unattended. As a result, the volume of file is often oversized. In this
book, we do not work with this kind of file but *.hex and *.lst files instead.
The listing file (*.lst) is post-translating archive being a combination of
source *.asm file and output *hex file. If errors or warnings have occurred
they are also included and pointed to ease bug removing.

*.asm source file *lst listing file

;******************* 1 ;*******************
;* An example of code * 2 ;* An example of code *
;******************* 3 ;*******************
n EQU 39H 4 0039 n EQU 39H

MOV A,#n 5 0000: 74 39 MOV A,#n
NOP 6 0002: 00 NOP
SJMP END 7 0003: 80 00 SJMP END
MUL AB ***** _ERROR 26: UNDEFINED

SYMBOL *****
ADD A,C 8 0005: A4 MUL AB

9 0006: 25 00 ADD A,C
***** _ERROR 26: UNDEFINED SYMBOL *****

Basic Concepts of Computer Architecture 21

The same code with fixed bugs looks like this:

Now, the *.bin or *.hex files were created. The structure of an Intel HEX
file is very simple and will be described here as an example due to the fact
that is commonly used during work not only with a family of 8051
processors. Firstly, it is a text file, because apart from digits it contains
many colon characters (at least one if no code included). Each character,
e.g. hexadecimal number ‘02’, is encoded as ASCII two chars ‘0x30 0x32’.
The way how to express the number values in various ways will be ex-
plained in Chapter 2. For example, the line can look like Figure 1.2

The line starts always with a char ‘:’ as a Start of a record. The next field
is single byte Record length giving the number of data bytes included in
this line, maximum 256, so most often we see 0×10. Next one is the 16-bit
Address field – starting address of program memory, where first byte is
stored, here: 0×00. The address is always expressed as big endian value
0×0010 so for little endian convention, as used in this book, we have
0×0100 instead. The next field is Record type. If the data is just a code,
then we have 0×00. Other values indicate the special meaning of the data,
e.g. 0×01 – end of file. The last line of the file is special and always looks
like this :00 0000 01 FF. The meaning and interpretation of Data field
depends on the application. Mostly, it is just a machine code and some
structure of data with strings, passwords to work with external devices
like transmission terminal, LCD, touchscreen, calibrating factors of applied
algorithms (e.g. digital instrument), look-up table (e.g. nonlinear functions,
BIN to ASCII converter), etc. The line ends with a one byte of Checksum
field. Its role is protection against loss of data integrity caused by errors
during data transmission or storage and modification of file content. The
way how to compute and check a checksum is quite easy, i.e. Checksum

Figure 1.2 An example of correct line of hex file.

*.asm source file *lst listing file *.bin binary file *.hex output file

;*************;*
An example of
code
*;*************
n EQU 39H

MOV A,#n
NOP
SJMP END
MUL AB
ADD A,B
END:

1 ;************
2 ; * An example

…
3 ;***********
4 0039 n EQU 39H
5 0000: 74 39 MOV A,#n
6 0002: 00 NOP
7 0003: 80 03 SJMP END
8 0005: A4 MUL AB
9 0006: 25 F0 ADD A,B

10 0008: END:

00000000:
74390003A425F0

:0800000074390080-
03A425F00F
:00000001FF

22 Computer Arithmetic in Practice

=256 –(sum modulo 256 of bytes in single line) as attached at the end of line
during creating hex file. For line presented in Figure 1.2 and skipping bytes
with value 0×00 we have 0×10+0×10+0×05+0×04+0×08+0×05+0×04
+0×08+0×05+0×04+0×08=0×53. Finally, 0×100-0×053=0×0AD=0×AD is a
value of a checksum. After reading or receiving whole line, the checksum is
evaluated again. Please note that the sum modulo 256 of all bytes together
with the checksum should result in zero as confirmation of correct trans-
mission. Unfortunately, the strength of data integrity protection is very low.
Firstly, it is possible to get the same sum value for different combinations of
number values or if, for example, errors cancelling each other out and
occurred during a file transfer into processor memory, then Checksum
+error −error = Checksum. It’s worth adding that there are many HEX
formats proposed by various companies such as Intel (HEX and HEX-32
file formats), Motorola (S-Record file format), and Tektronix (TEK HEX
file format).

The ELF format is an executable file used to program the more powerful
32/64 processors like ARM family. It has a fixed segment structure. It
contains headers, dedicated place for data, in our case: the program’s
machine code, additional place for data of text type. It is encrypted;
therefore, it has the highest resistance to loss of integrity and is the rec-
ommended format for professional applications. Every modern hardware
programming tool (sometimes called a bootloader) should handle with this
format.

In next chapters of this book, we will present the *.lst listing files but also
source assembly code is also available from the following link. https://
routledgetextbooks.com/textbooks/instructor_downloads/

Basic Concepts of Computer Architecture 23

https://routledgetextbooks.com/textbooks/instructor_downloads/
https://routledgetextbooks.com/textbooks/instructor_downloads/

http://taylorandfrancis.com
http://taylorandfrancis.com

Chapter 2

Numbers in Fixed-point Format

2.1 UNSIGNED NUMBERS

Performing arithmetic operations requires defining the understanding of the
value of a number encoded in a bit word. Let’s start with non-negative
numbers at a beginning for ensuring clarity and simplicity of the informa-
tion to be collected. Any A number is written using n digits in the integer
part, and m digits in the fractional part according to the following format
(Figure 2.1).

The point separates the integer part from the fractional part, i.e. the digits
a0 and a–1. The term ‘positional’ means that the component ai of number A is
depending on its i-th position, where i ∈ <n − 1, −m>. The value of A is taken
as a weighted sum of digits. The ratio of the weights of two adjacent digits ai+1

and ai, denoted here by the letter p, usually is a constant value, and is called
the base or radix of the positional system. In practice, only systems with a
positive base are used commonly to build computers, hence p = 2, 3, ..., ∞.
Nevertheless, it is possible to imagine the number system with negative base
or even variable, depending on the digit position. The term ‘fixed’ emphasizes
the observation that the value of a number can be expressed in only one way.
By limiting the considerations to non-negative numbers with a positive base,
the value of the number is determined from the relationship (2.1):

A = a p + a p + ... + a p + a + a p + ... + a p

= a p

n 1
n 1

n 2
n 2

1 0 1
1

m
m

i= m

n 1

i
i (2.1)

where ai – i-th digit, p – base (radix).

Figure 2.1 A fixed-point format of number.

DOI: 10.1201/9781003363286-2 25

https://doi.org/10.1201/9781003363286-2

For the graphical representation of digits at a given base, the set of Arabic
numerals and Roman letters are used, that amount depends on the assumed
base. More information about the fixed-point format and its properties can
be found in many books, e.g. [Pochopień 2012, Scott 1985]. There are, of
course, other non-positional ways of coding numbers, e.g. the residual
system mentioned in [Biernat 2007, Parhami 2010].

Example 2.1:

a. p = 2 – binary system BIN, digits are in the range {0,1}, e.g.:

101.01 = 1 2 + 0 2 + 1 2 + 0 2 + 1 22 1 0 1 2

b. p = 10 – decimal system DEC, digits are in the range {0,1,2, … ,9}, e.g.:

194.23 = 1 10 + 9 10 + 4 + 2 10 + 3 102 1 2

c. p = 16 – hexadecimal (hexagonal) system HEX, digits are in the range
{0,1,2, …,9,A,B, …, F}, e.g.:

A4.B = A 16 + 4 16 + B 161 0 1

With regard to p = 2, the term natural binary code or binary code is used. In
order to maintain full formalism, the term ‘natural’ should also be applied
to the other two systems, p = 10 and p = 16, which, however, is not
commonly done involving misinterpretation sometimes if different ‘binary
systems’ are mixed. Apart from the above-mentioned systems, infinitely
many others can be defined, but systems with the base p = 2, 10, 16 as
shown above have the greatest practical significance. The octal system p = 8
is also mentioned in many books and tutorials but in my opinion, its use-
fulness is rather insignificant (during many years of practice, the author did
not have the opportunity to use it), so we will not devote any more
attention to it. Of course, this issue may be matter for further discussion
trying to highlight possible advantages of these systems with basis, e.g. p =
3, 4, 7, as shown in [Pankiewicz 1985].

The decimal system has reached widespread acceptance in everyday life –
probably due to the anatomy of the human hand and number of fingers.
The binary system corresponds to the two-state model of information
processed or stored by computers. Two states relate to two distinguished
values of electric voltage or current in technical realizations of electronic
devices. Given the fact that number 16 is a natural power of 2, the hexa-
decimal format can be thought as much compact way of expressing binary
numbers. There is a general rule: the greater the value of p, the more dif-
ferent numbers can be written with the same number of digits thus higher

26 Computer Arithmetic in Practice

density. With n and m digits, we can express pn+m combinations of different
values. The smallest difference between the two values is called the reso-
lution and is p–m.

Example 2.2: Maximum numbers for n = 3, m = 1 and p = 2, 10, 16 are,
respectively:

a. p = 2, 111.1BIN = 7.5DEC = 23 – 2−1
DEC

b. p = 10, 999.9DEC = 103 – 10−1
DEC

c. p = 16, FFF.FHEX = 163 – 16−1
DEC

Example 2.3: Minimum non-zero numbers for n = 2, m = 3 and p = 2, 10, 16,
are, respectively:

a. p = 2, 00.001BIN = 2−3
DEC

b. p = 10, 00.001DEC = 10−3
DEC

c. p = 16, 00.001HEX = 16−3
DEC

Exercise 2.1: Determine the maximal numbers for n = 1, m = 2 and p = 2,
10, 16.

In practice, one can often encounter the problem of expressing a number
using different base. The easy way of conversion is just derived from the
property of Eq. (2.1). The digits are constant weights depending on position
in digit field. Therefore, it is convenient to use an auxiliary template as
presented in Example 2.4, whereby we just make conversion between the
decimal and binary systems. The hexadecimal number is easy to rich from
binary representation by applying 8421 weights for every 4 bits, individu-
ally. A general note about the accepted number expression convention in
this book is as follows: if no base value is explicitly given, it refers to the
decimal system!

Example 2.4: Converting DEC➔BIN➔HEX:

a. 23DEC➔

128 64 32 16 8 4 2 1

0 0 0 1 0 1 1 1 BIN

↕ ↕

8 4 2 1 8 4 2 1

1 7 HEX

Numbers in Fixed-point Format 27

b. 15.75DEC➔

128 64 32 16 8 4 2 1 1
2

1
4

1
8

1
16

0 0 0 0 1 1 1 1 . 1 1 0 0 BIN

↕ ↕ ↕

8 4 2 1 8 4 2 1 ¦ 8 4 2 1

0 F . C HEX
¦

Exercise 2.2: Represent the assumed numbers in other two formats:

a. 246.5DEC ➔ ?…?BIN ➔ ?…?HEX

b. 3E.4HEX ➔ ?…?BIN ➔ ?…?DEC

c. 10110011.0010BIN ➔ ?…?HEX ➔ ?…?DEC

Applying template for fractional part, we see that it requires the addition of
fractions with different denominator values. Contrary, it is recommended
to work as explained in Example 2.5. The routine consists in repeating the
multiplication of the fraction by 2 (if converting to binary system). When
determining the successive bits of the binary fraction, the integer part (single
bit) of the multiplication result is not considered.

Example 2.5: Converting the fraction DEC ➔ fraction BIN ➔ fraction HEX:

0.8125·2 0.751·2
1.6250·2 1.502·2
1.25·2 1.004·2
0.5·2 0.008·2
1.0·2 0.016·2
0.0·2 0.032·2

0.064·2
0.128·2
0.256·2
0.512·2
1.024·2
0.048·2
0.096·2
…

0.8125DEC ➔ 0.1101BIN ➔
0.DHEX

0.751DEC ➔ ≈0.1100 0000 0100BIN ➔
≈0.C04HEX

28 Computer Arithmetic in Practice

Checking:
0.5000
0.2500

+ 0.0625
0.8125DEC

0.500
0.250

+ 0.001
0.751DEC

The same is done for simple fractions as shown in the next example. The
algorithm is universal and can be used also for a decimal system or any base.

Example 2.6: Converting rational number 5/6DEC to the fraction as DEC, BIN
and HEX:

(0 + 5/6)·10 (0 + 5/6)·2
(8 + 2/6)·10 (1 + 4/6)·2
(3 + 2/6)·10 (1 + 2/6)·2
(3 + 2/6)·10 (0 + 4/6)·2
... (1 + 2/6)·2

(0 + 4/6)·2
(1 + 2/6)·2
(0 + 4/6)·2
(1 + 2/6)·2
…

5/6DEC ➔ ≈ 5.833 …DEC 5/6DEC ➔ 0.110101(01)BIN➔ ≈ 0.D5HEX

Exercise 2.3: Convert numbers to the HEX and BIN fractions:

a. 0.63DEC

b. 11/9DEC

c. 3/5DEC

d. 1/128DEC

INTERESTING FACTS!

The expansion of a rational number for the radix p is always finite or
periodic, e.g.:

3/8DEC = 0.375DEC = 0.011BIN – finite

2/3DEC = 0.(6) = 0.(10)BIN – periodic

Numbers in Fixed-point Format 29

Some external devices enabling human-machine interface, such as the
alphanumeric LCD display, are processing data in other formats. In the
context of arithmetic, the 8421 BCD decimal code and the ASCII codes are
important. Most processors can work with these codes delivering the correct
result thanks to proper instruction of correction. The examples are the
processors compatible with the instruction list of the ancestor of modern
CPU – the Intel 8086 processor. The discussed instructions are DAA, DAS,
AAA, AAS, AAM and AAD [Irvine 2003]. Unfortunately, the 8051 micro-
controller that we work in this book, only performs the decimal correction
DAA after adding (see Table 1.3). For 8421 BCD format, each decimal digit
is represented by four or eight binary digits, with such combinations of bits to
express decimal values only, i.e. in the range 0–9. The 4-bit BCD is called
packed BCD, denoted as P-BCD in the book, and 8-bit BCD format with
four padding zeros is called unpacked BCD and denoted as UP-BCD.

Example 2.7: Number coded as P-BCD and UP-BCD and its decimal
representation as DEC:

a. 0000100100000011.00001000UP-BCD = 10010011.1000P-BCD = 93.8DEC

b. 000000100000010000000110UP-BCD = 001001000110P-BCD = 246DEC

Exercise 2.4: Convert DEC numbers to P-BCD and UP-BCD:

a. 479.12DEC

b. 0.03DEC

c. 8.9DEC

d. 123DEC

Another well-known BCD code is the not-weighted BCD code Excess 3. It is
formed by adding the number 3 to the 8421 BCD code. This apparent
inconvenience carries the beneficial property of self-completion, which is
important for the simplicity of hardware implementation of arithmetic cir-
cuits. However, it is not commonly used by ALU, so we will not devote more
attention to it. The ASCII code assigns sequential numbers to graphic char-
acters and control symbols of peripheral devices, most of which are obsolete
today. In some languages, e.g. C/C++, only a few of them are meaningful, e.g.
0 – null for terminating a text string, 10 – LF (line feed) and 13 – CR (carrier
return) in printf() function for formatting the output. The ASCII code array
contains a rich set of graphical characters, including the Latin and Greek
alphabets, punctuation marks, mathematical symbols and semi graphics
[Irvine 2003]. It is mainly used to store the appearance of characters in the
persistent memory of LCD alphanumeric display controllers used in various
control, measurement and monitoring devices, i.e. oven controllers, beverage
vending machines, home appliances and many others. With the development
of the Internet and the need to represent alphabets of many languages, ASCII

30 Computer Arithmetic in Practice

code was absorbed by Unicode (UTF-8) and Universal Character Set (UCS,
ISO 10646) and is now represented in the same positions in the bigger table,
occupying codes 0–127. Operating on the full ASCII code table is not nec-
essary in the context of arithmetic, since we are only interested in the way
how the decimal digits are encoded. In fact, it is very simple and it is enough
to prefix the encoded decimal digit 0...9 with 3DEC coded binary as 0011. The
digit code is then given as a hexadecimal number. It can also be expressed in
the zero-one system. The comma sign is encoded as 2EHEX, or 00101110BIN.
For obvious reasons, these values should not be interpreted do verbally as
hexadecimal or binary numbers according to Eq. (2.1).

Example 2.8: ASCII codes of decimal numbers:

a. 36ASCII = 6DEC

b. 00110010 00101110 00110101ASCII = 2.5DEC

Exercise 2.5: Convert DEC number to ASCII code:

a. 361.82DEC

b. 36.18DEC

c. 0.45DEC

d. 97.1DEC

2.2 CONVERSION OF UNSIGNED NUMBER TO ANOTHER
FORMAT

This chapter will show you how to convert numbers programmatically. The
subroutines have been written in the assembly code of the 8051 family
microcontroller. The code, the meaning of instructions, the content of reg-
isters A, B and sometimes R0 have been presented in tables. In order to
facilitate the analysis of the code, its operation is illustrated on real numerical
values. Shaded values of A, B and R0 presented in tables indicate the input
and output values of the algorithm. Subsequent rows of the table show the
current contents of the registers after running line of code. The meaning of
the numeric argument suffixes is as follows: h or H – hexadecimal notation,
B – binary, none – decimal. Additionally, a full listing of algorithm is pro-
vided. It consists of two main parts: instructions responsible for writing the
input arguments to the registers of the microcontroller and subroutine
starting with a label name and ending with a RET instruction. Each line of
the listing starts with line number and then optionally there can be such
elements as hexadecimal value of the constant and its symbolic name, address
of the program memory cell where the first byte of the machine code is placed
(the address is followed by colon), label ended by colon again, instruction

Numbers in Fixed-point Format 31

mnemonic with operands and comment preceded by semicolon sign. Each
listing ends with a line with the comment like this ‘--- end of file ---’.

2.2.1 Conversion BIN to P-BCD for A < 100DEC

• input number in A,
• output number in A,
• exemplary value: 54DEC = 00110110BIN = 01010100P-BCD.

The algorithm uses the properties of the arithmetic instruction DIV.
Dividing the input argument by the number 10DEC, you get tens in register
A and unities in register B. The next SWAP and ORL instructions convert
the obtained result, interpreted as a number in UP-BCD, into a packed BCD
form. The algorithm returns a correct result for an input number from the
range 0DEC and 255DEC (Table 2.1).

1 ;**
2 ;* Conversion BIN to P-BCD for n<100DEC*
3 ;**
4 0036 n EQU 54 ;n=54 DEC
5
6 0000: 74 36 MOV A,#n ;input a number
7 0002: 12 00 07 LCALL BIN_P_BCD100
8 ;result in A
9 0005: 80 FE STOP: SJMP STOP ;infinite loop

10 ;--
11 0007: BIN_P_BCD100:
12 0007: 75 F0 0A MOV B,#10 ;let B be 10DEC
13 000A: 84 DIV AB ;divide A by B, A-tens,

B-unities
14 000B: C4 SWAP A ;change nibbles

A7..4<->A3..0
15 000C: 45 F0 ORL A,B ;perform (A OR B)
16 000E: 22 RET
17 ;— end of file —

Table 2.1 Implementation in Code and Intermediate Results

Code Description A B

MOV A,#54 Let A be 54DEC 00110110
MOV B,#0Ah Let B be 10DEC given as hexadecimal 00110110 00001010
DIV AB Divide A by B, A – result, B – reminder 00000101 00000100
SWAP A Change nibbles A7 … 4 ↔ A3 … 0 01010000 00000100
ORL A,B Perform A∪B and save result 01010100 00000100

32 Computer Arithmetic in Practice

2.2.2 Conversion BIN to P-BCD for A < 256DEC

• input: number in A,
• output: number in A – hundreds, B7...4 – tens, B3...0 – unities,
• exemplary value: 153BIN = 10011001BIN = 000101010011P-BCD.

By separating out the hundreds the algorithm can be used for numbers
between 0DEC and 255DEC (Table 2.2).

1 ;***
2 ;* Conversion BIN to P-BCD for n<256DEC*
3 ;***
4 0099 n EQU 153 ;n=153 DEC
5
6 0000: 74 99 MOV A,#n ;input a number
7 0002: 12 00 07 LCALL

BIN_P_BCD256
8 ;result in A-hundreds,

B-tens and unities
9 0005: 80 FE STOP: SJMP STOP

10 ;--
11 0007: BIN_P_BCD256:
12 0007: 75 F0 64 MOV B,#100 ;let B be 100DEC
13 000A: 84 DIV AB ;divide A by B, A-hundreds, B-

rest
14 000B: C5 F0 XCH A,B ;exchange A<->B
15 000D: A8 F0 MOV R0,B ;save hundreds to R0

Table 2.2 Implementation in Code and Intermediate Results

Code Description A B R0

MOV A,#153 Input a number 10011001
MOV B,#100 Let B be 100DEC 10011001 01100100
DIV AB Divide A by B, A – hundreds,

B – rest
00000001 00110101

XCH A,B Exchange A ↔ B 00110101 00000001
MOV R0,B Save hundreds to R0 00110101 00000001 00000001
MOV
B,#0Ah

Let B be 10DEC 00110101 00001010 00000001

DIV AB Divide A by B, A – tens, B – unities 00000101 00000011 00000001
SWAP A Change nibbles A7 … 4 ↔ A3 … 0 01010000 00000011 00000001
ORL A,B Perform A∪B and save result 01010011 00000011 00000001
MOV B,R0 Load ‘hundreds’ to B 01010011 00000001 00000001
XCH A,B Exchange A ↔ B 00000001 01010011 00000001

Numbers in Fixed-point Format 33

16 000F: 75 F0 0A MOV B,#10 ;let B be 10DEC
17 0012: 84 DIV AB ;divide A by B, A-tens,

B-unities
18 0013: C4 SWAP A ;change nibbles A7..4<->A3..0
19 0014: 45 F0 ORL A,B ;perform (A OR B) and save

result
20 0016: 88 F0 MOV B,R0 ;load hundreds to B
21 0018: C5 F0 XCH A,B ;exchange A<->B
22 001A: 22 RET
23 ;--- end of file ---

2.2.3 Conversion BIN to UP-BCD for A < 100DEC

• input: number in A,
• output: number in A – tens, B – unities,
• exemplary number: 67DEC = 01000011BIN = 00000110 00000111UP-BCD.

The algorithm returns a correct result for an input number between 0DEC

and 255DEC (Table 2.3).

1 ;***
2 ;* Conversion BIN to UP-BCD for n<100DEC*
3 ;***
4 0036 n EQU 54 ;n=54 DEC
5
6 0000: 74 36 MOV A,#n ;input a number
7 0002: 12 00 07 LCALL BIN_UP_BCD100
8 ;result in A-tens, B-unities
9 0005: 80 FE STOP: SJMP STOP

10 ;--
11 0007: BIN_UP_BCD100:
12 0007: 75 F0 0A MOV B,#10 ;let B be 10DEC
13 000A: 84 DIV AB ;divide A by B
14 000B: 22 RET
15 ;--- end of file ---

Table 2.3 Implementation in Code and Intermediate Results

Code Description A B

MOV A,#67 Input a number 01000011
MOV B,#10 Let B be 10DEC 01000011 00001010
DIV AB Divide A by B, A – tens, B – unities 00000110 00000111

34 Computer Arithmetic in Practice

2.2.4 Conversion BIN to UP-BCD for A < 256DEC

• input: number in A,
• output: number in R0 – hundreds, A – tens, B – unities,
• exemplary value: 153DEC = 10011001BIN = 0000000100000101000

00011UP-BCD.

The algorithm returns a correct result for an input number between 0DEC

and 255DEC (Table 2.4).

1 ;***
2 ;* Conversion BIN to UP-BCD for n<256DEC*
3 ;***
4 0099 n EQU 153 ;n=153 DEC
5
6 0000: 74 99 MOV A,#n ;input a number
7 0002: 12 00 07 LCALL NKD_UP_BCD256
8 ;result in R0-hundreds, A-

tens, B-unities
9 0005: 80 FE STOP: SJMP STOP

10 ;--
11 0007: NKD_UP_BCD256:
12 0007: 75 F0 64 MOV B,#100 ;let B be 100DEC
13 000A: 84 DIV AB ;divide A by B, A-

hundreds, B-rest
14 000B: C5 F0 XCH A,B ;exchange A<->B
15 000D: A8 F0 MOV R0,B ;save hundreds to R0
16 000F: 75 F0 0A MOV B,#10 ;let B be 10DEC
17 0012: 84 DIV AB ;divide A by B
18 0013: 22 RET
19 ;--- end of file ---

Table 2.4 Implementation in Code and Intermediate Results

Code Description R0 A B

MOV A,#153 Input a number 10011001
MOV B,#100 Let B be 100DEC 10011001 01100100
DIV AB Divide A by B, A – hundreds,

B – rest
00000001 00110101

XCH A,B Exchange A ↔ B 00110101 00000001
MOV R0,B Save hundreds to R0 00000001 00110101 00000001
MOV B,#0Ah Let B be 10DEC 00000001 00110101 00001010
DIV AB Divide A by B, R0 – hundreds,

A – tens, B – unities
00000001 00000101 00000011

Numbers in Fixed-point Format 35

2.2.5 Conversion BIN to ASCII for A < 100DEC

• input: number in A,
• output: number in A – tens, B – unities,
• exemplary value: 67DEC = 01000011BIN = 00110110 00110111ASCII.

The algorithm returns a correct result for an input number between 0DEC

and 255DEC (Table 2.5).

1 ;**
2 ;* Conversion BIN to ASCII for n<100DEC*
3 ;**
4 0043 n EQU 67 ;n=67 DEC
5
6 0000: 74 43 MOV A,#n ;input a number
7 0002: 12 00 07 LCALL BIN_ASCII100
8 ;result in A-tens, B-unities
9 0005: 80 FE STOP: SJMP STOP

10 ;--
11 0007: BIN_ASCII100:
12 0007: 75 F0 0A MOV B,#10 ;let B be 10DEC
13 000A: 84 DIV AB ;divide A by B, A-tens,

B-unities
14 000B: C5 F0 XCH A,B ;exchange A<->B
15 000D: 24 30 ADD A,#30H ;add 30h to A
16 000F: C5 F0 XCH A,B ;exchange A<->B
17 0011: 24 30 ADD A,#30H ;add 30h to A
18 0013: 22 RET
19 ;--- end of file ---

Table 2.5 Implementation in Code and Intermediate Results

Code Description A B

MOV A,#67 Input a number 01000011
MOV B,#10 Let B be 10DEC 01000011 00001010
DIV AB Divide A by B, A – tens, B – unities 00000110 00000111
XCH A,B Exchange A ↔ B 00000111 00000110
ADD A,#30h Add 30HEX to A 00110111 00000110
XCH A,B Exchange A ↔ B 00000110 00110111
ADD A,#30h Add 30HEX to A 00110110 00110111

36 Computer Arithmetic in Practice

2.2.6 Conversion BIN to ASCII for A < 256DEC

• input: number in A,
• output: number in R0 – hundreds, A – tens, B – unities,
• exemplary value: 153BIN = 10011001BIN = 001100010011010100

110011ASCII.

The algorithm returns a correct result for an input number between 0DEC

and 255DEC (Table 2.6).

1 ;**
2 ;* Conversion BIN to ASCII for n<256DEC*
3 ;**
4 0099 n EQU 153 ;n=153 DEC
5
6 0000: 74 99 MOV A,#n ;input a number
7 0002: 12 00 07 LCALL BIN_ASCII256
8 ;result in R0-hundreds,

A-tens, B-unities
9 0005: 80 FE STOP: SJMP STOP

10 ;--
11 0007: BIN_ASCII256:
12 0007: 75 F0 64 MOV B,#100 ;let B be 100DEC
13 000A: 84 DIV AB ;divide A by B, A-hundreds,

B-rest

Table 2.6 Implementation in Code and Intermediate Results

Code Description R0 A B

MOV A,#153 Input a number 10011001
MOV B,#100 Let B be 100DEC 10011001 01100100
DIV AB Divide A by B,

A – hundreds,
B – rest

00000001 00110101

ADD A,#30h Add 30HEX to A 00110001 00110101
XCH A,B Exchange A ↔ B 00110101 00110001
MOV R0,B Save hundreds to R0 00110001 00110101 00110001
MOV B,#0Ah Let B be 10DEC 00110001 00110101 00001010
DIV AB Divide A by B, A – tens,

B – unities
00110001 00000101 00000011

XCH A,B Exchange A ↔ B 00110001 00000011 00000101
ADD A,#30h Add 30HEX to A 00110001 00110011 00000101
XCH A,B Exchange A ↔ B 00110001 00000101 00110011
ADD A,#30h Add 30HEX to A 00110001 00110101 00110011

Numbers in Fixed-point Format 37

14 000B: 24 30 ADD A,#30H ;add 30h to A
15 000D: C5 F0 XCH A,B ;exchange A<->B
16 000F: A8 F0 MOV R0,B ;save hundreds to R0
17 0011: 75 F0 0A MOV B,#10 ;let B be 10DEC
18 0014: 84 DIV AB ;divide A by B, A-tens,

B-unities
19 0015: C5 F0 XCH A,B ;exchange A<->B
20 0017: 24 30 ADD A,#30h ;add 30h to A
21 0019: C5 F0 XCH A,B ;exchange A<->B
22 001B: 24 30 ADD A,#30h ;add 30h to A
23 001D: 22 RET
24 ;--- end of file ---

2.2.7 Conversion P-BCD to BIN

• input: number in A,
• output: number in A,
• exemplary number: 01010100P-BCD = 00110110BIN (see Table 2.7).

1 ;**
2 ;* Conversion P-BCD to BIN *
3 ;**
4 0054 n EQU 54h ;n=54 P-BCD
5
6 0000: 74 54 MOV A,#n ;input a number
7 0002: 12 00 07 LCALL P_BCD_BIN
8 ;result in A
9 0005: 80 FE STOP: SJMP STOP

10 ;--
11 0007: P_BCD_BIN:

Table 2.7 Implementation in Code and Intermediate Results

Code Description A B R0

MOV A,#54h Input a number 01010100
MOV R0,A Make a copy to R0 01010100 01010100
ANL A,#0F0h Clear lower nibble of A3...0 01010000 01010100
SWAP A Change nibbles A7 … 4 ↔

A3 … 0

00000101 01010100

MOV B,#0Ah Let B be 10DEC 00000101 00001010 01010100
MUL AB Multiply A by B 00110010 00000000 01010100
MOV B,R0 Load original number to B 00110010 01010100 01010100
ANL B,#0Fh Clear higher nibble of B7...4 00110010 00000100 01010100
ADD A,B Add B to A 00110110 00000100 01010100

38 Computer Arithmetic in Practice

12 0007: F8 MOV R0,A ;make a copy to R0
13 0008: 54 F0 ANL A,#0F0H ;clear lower nibble of A3..0
14 000A: C4 SWAP A ;change nibbles A7..4<->A3..0
15 000B: 75 F0 0A MOV B,#0AH ;let B be 10DEC
16 000E: A4 MUL AB ;multiply A by B
17 000F: 88 F0 MOV B,R0 ;load original number to B
18 0011: 53 F0 0F ANL B,#0FH ;clear higher nibble of B7..4
19 0014: 25 F0 ADD A,B ;add B to A
20 0016: 22 RET
21 ;--- end of file ---

2.2.8 Conversion P-BCD to UP-BCD

• input: number in A,
• output: number in A – tens, B – unities,
• exemplary value: 01000111P-BCD = 00000100 0000111UP-BCD (see

Table 2.8).

1 ;***
2 ;* Conversion P-BCD -> UP-BCD*
3 ;***
4 0047 n EQU 47h ;n=47 P-BCD
5
6 0000: 74 47 MOV A,#n ;input a number
7 0002: 12 00 07 LCALL P_BCD_UP_BCD
8
9 0005: 80 FE STOP: SJMP STOP

10 ;--
11 0007: P_BCD_UP_BCD:
12 0007: F5 F0 MOV B,A ;make a copy to B
13 0009: 54 F0 ANL A,#0F0h ;clear lower nibble of A3..0
14 000B: 53 F0 0F ANL B,#0Fh ;clear higher nibble of B7..4
15 000E: C4 SWAP A ;change nibbles A7..4<->A3..0

Table 2.8 Implementation in Code and Intermediate Results

Code Description A B

MOV A,#47h Input a number 01000111
MOV B,A Make a copy to B 01000111 01000111
ANL A,#0F0h Clear lower nibble of A3...0 01000000 01000111
ANL B,#0Fh Clear higher nibble of B7...4 01000000 00000111
SWAP A Change nibble A7…4 ↔ A3…0 00000100 00000111

Numbers in Fixed-point Format 39

16 ;result in A-tens, B-unities
17 000F: 22 RET
18 ;--- end of file ---

2.2.9 Conversion P-BCD to ASCII

• input: number in A,
• output: number in A – tens, B – unities,
• exemplary number: 01000101P-BCD = 00110100 00110101ASCII (see

Table 2.9).

1 ;***
2 ;* Conversion P-BCD to ASCII *
3 ;***
4 0045 n EQU 45h ;n=45 P-BCD
5
6 0000: 74 45 MOV A,#n ;input a number
7 0002: 12 00 07 LCALL P_BCD_ASCII
8 ;result in A-tens, B-unities
9 0005: 80 FE STOP: SJMP STOP

10 ;--
11 0007: P_BCD_ASCII:
12 0007: F5 F0 MOV B,A ;make a copy to B
13 0009: 54 0F ANL A,#0Fh ;clear a higher nibble of A7..4
14 000B: 24 30 ADD A,#30h ;add 30h to A
15 000D: C5 F0 XCH A,B ;exchange A<->B
16 000F: 54 F0 ANL A,#0F0h ;clear lower nibble of A3..0
17 0011: C4 SWAP A ;change nibbles of A7..4<->A3..0
18 0012: 24 30 ADD A,#30h ;add 30h to A
19 0014: 22 RET
20 ;--- end of file ---

Table 2.9 Implementation in Code and Intermediate Results

Code Description A B

MOV A,#45h Input a number 01000101
MOV B,A Make a copy to B 01000101 01000101
ANL A,#0Fh Clear higher nibble of A7...4 00000101 01000101
ADD A,#30h Add 30HEX to A 00110101 01000101
XCH A,B Exchange A ↔ B 01000101 00110101
ANL A,#0F0h Clear lower nibble of A3...0 01000000 00110101
SWAP A Change nibbles A7 … 4 ↔ A3 … 0 00000100 00110101
ADD A,#30h Add 30HEX to A 00110100 00110101

40 Computer Arithmetic in Practice

2.2.10 Conversion UP-BCD to BIN

• input: number in A – tens, B – unities,
• output: number in A,
• exemplary value: 00001001 00000110UP-BCD = 01100000BIN (see

Table 2.10).

1 ;***
2 ;* Conversion UP-BCD to BIN*
3 ;***
4 0009 n EQU 09h
5 0006 m EQU 06h ;{nm} 0906 UP-BCD = 96 DEC
6 0000: 74 09 MOV A,#09h ;input a first number
7 0002: 75 F0 06 MOV B,#06h ;input a second number
8 0005: 12 00 0A LCALL UP_BCD_BIN
9 ;result in A

10 0008: 80 FE STOP: SJMP STOP
11 ;--
12 000A: UP_BCD_BIN:
13 000A: A8 F0 MOV R0,B ;make a copy to R0
14 000C: 75 F0 0A MOV B,#10 ;let B be 10DEC
15 000F: A4 MUL AB ;multiply A by B
16 0010: 28 ADD A,R0 ;add R0 to A
17 0011: 22 RET
18 ;--- end of file ---

2.2.11 Conversion UP-BCD to P-BCD

• input: number in A – tens, B – unities,
• output: number in A,
• exemplary value: 00001001 00000110UP-BCD = 10010110P-BCD (see

Table 2.11).

Table 2.10 Implementation in Code and Intermediate Results

Code Description A B R0

MOV A,#09h Input a first number (tens) 00001001
MOV B,#06h Input a second number (unities) 00001001 00000110
MOV R0,B Make a copy to B 00001001 00000110 00000110
MOV B,#10 Let B be 10DEC 00001001 00001010 00000110
MUL AB Multiply A by B 01011010 00000000 00000110
ADD A,R0 Add R0 to A 01100000 00000000 00000110

Numbers in Fixed-point Format 41

1 ;***
2 ;* Conversion UP-BCD to P -BCD *
3 ;***
4 0009 n EQU 09h
5 0006 m EQU 06h ;{nm} 0906 UP-BCD = 96 DEC
6
7 0000: 74 09 MOV A,#n ;input a first number
8 0002: 75 F0 06 MOV B,#m ;input a second number
9 0005: 12 00 0A LCALL UP_BCD_P_BCD

10
11 0008: 80 FE STOP: SJMP STOP
12 ;--
13 000A: UP_BCD_P_BCD:
14 000A: C4 SWAP A ;change nibbles A7..4<->A3..0
15 000B: 25 F0 ADD A,B ;add B to A
16 ;result in A
17 000D: 22 RET
18 ;--- end of file ---

2.2.12 Conversion UP-BCD to ASCII

• input: number in A – tens, B – unities,
• output: number in A – tens, B – unities,
• exemplary value: 00001001 00000110UP-BCD = 00111001 00110

110ASCII (see Table 2.12).

Table 2.12 Implementation in Code and Intermediate Results

Code Description A B

MOV A,#09h Input a first number 00001001
MOV B,#06h Input a second number 00001001 00000110
]ADD A,#30h Add 30HEX to A 00111001 00000110
XCH A,B Exchange A ↔ B 00000110 00111001
ADD A,#30h Add 30HEX to A 00110110 00111001
XCH A,B Exchange A ↔ B 00111001 00110110

Table 2.11 Implementation in Code and Intermediate Results

Code Description A B

MOV A,#09h Input a first number (tens) 00001001
MOV B,#06h Input a second number (unities) 00001001 00000110
SWAP A Change nibbles A7…4 ↔ A3…0 10010000 00000110
ADD A,B Add B to A 10010110 00000110

42 Computer Arithmetic in Practice

1 ;***
2 ;* Conversion UP-BCD -> ASCII *
3 ;***
4 0009 n EQU 09h
5 0006 m EQU 06h ;{nm} 0906 UP-BCD = 96 DEC
6
7 0000: 74 09 MOV A,#n ;input a first number
8 0002: 75 F0 06 MOV B,#m ;input a second number
9 0005: 12 00 0A LCALL UP_BCD_ASCII

10 ;result in A-tens, B-unities
11 0008: 80 FE STOP: SJMP STOP
12 ;--
13 000A: UP_BCD_ASCII:
14 000A: 24 30 ADD A,#30h ;add 30h to A
15 000C: C5 F0 XCH A,B ;exchange A<->B
16 000E: 24 30 ADD A,#30h ;add 30h to A
17 0010: C5 F0 XCH A,B ;exchange A<->B
18 0012: 22 RET
19 ;--- end of file ---

2.2.13 Conversion ASCII to BIN

• input: number in A – tens, B – unities,
• output: number in A,
• exemplary value: 00111001 00110110ASCII = 01100000BIN (see

Table 2.13).

1 ;**
2 ;* Conversion ASCII to BIN *
3 ;**
4 0039 n EQU 39H

Table 2.13 Implementation in Code and Intermediate Results

Code Description A B R0

MOV A,#39h Input a first number 00111001
MOV B,#36h Input a second number 00111001 00110110
ANL B,#0Fh Clear higher nibble B7...4 00111001 00000110
ANL A,#0Fh Clear higher nibble A7...4 00001001 00000110
MOV R0,B Make a copy to B 00001001 00000110 00000110
MOV B,#10 Let B be 10DEC 00001001 00001010 00000110
MUL AB Multiply A by B 01011010 00000000 00000110
ADD A,R0 Add R0 to A 01100000 00000000 00000110

Numbers in Fixed-point Format 43

5 0036 m EQU 36H ;{nm}=3936 ASCII=96 DEC
6
7 0000: 74 39 MOV A,#n ;input a first number
8 0002: 75 F0 36 MOV B,#m ;input a second number
9 0005: 12 00 0A LCALL ASCII_BIN

10 ;result in A
11 0008: 80 FE STOP: SJMP STOP
12 ;--
13 000A: ASCII_BIN:
14 000A: 53 F0 0F ANL B,#0Fh ;clear higher nibble B7..4
15 000D: 54 0F ANL A,#0Fh ;clear higher nibble A7..4
16 000F: A8 F0 MOV R0,B ;make a copy to R0
17 0011: 75 F0 0A MOV B,#10 ;let B be 10DEC
18 0014: A4 MUL AB ;multiply A by B
19 0015: 28 ADD A,R0 ;add R0 to A
20 0016: 22 RET
21 ;--- end of file ---

2.2.14 Conversion ASCII to P-BCD

• input: number in A – tens, B – unities,
• output: number in A,
• exemplary value: 00110111 00111000ASCII = 01111000P-BCD (see

Table 2.14).

1 ;**
2 ;* Conversion ASCII to P-BCD *
3 ;**
4 0037 n EQU 37H
5 0038 m EQU 38H ;{nm} 3738 ASCII=78 DEC
6
7 0000: 74 37 MOV A,#n ;input a first number
8 0002: 75 F0 38 MOV B,#m ;input a second number
9 0005: 12 00 0A LCALL ASCII_P_BCD

Table 2.14 Implementation in Code and Intermediate Results

Code Description A B

MOV A,#37h Input a first number 00110111
MOV B,#38h Input a second number 00110111 00111000
ANL A,#0Fh Clear higher nibble of A7...4 00000111 00111000
SWAP A Change nibbles A7…4 ↔ A3…0 01110000 00111000
ANL B,#0Fh Clear higher nibble of B7...4 01110000 00001000
ADD A,B Add B to A 01111000 00001000

44 Computer Arithmetic in Practice

10 ;result in A
11 0008: 80 FE STOP: SJMP STOP
12 ;--
13 000A: ASCII_P_BCD:
14 000A: 54 0F ANL A,#0Fh ;clear higher nibble of A7..4
15 000C: C4 SWAP A ;change nibbles A7..4<->A3..0
16 000D: 53 F0 0F ANL B,#0Fh ;clear higher nibble of B7..4
17 0010: 25 F0 ADD A,B ;add B to A
18 0012: 22 RET
19 ;--- end of file ---

2.2.15 Conversion ASCII to UP-BCD

• input: number in A – tens, B – unities,
• output: number in A – tens, B – unities,
• exemplary value: 00110111 00111000ASCII = 00000111 00001000UP-

BCD (see Table 2.15).

1 ;**
2 ;* Conversion ASCII to UP-BCD *
3 ;**
4 0037 n EQU 37H
5 0038 m EQU 38H ;{nm} 3738 ASCII=78 DEC
6
7 0000: 74 37 MOV A,#n ;input a first number
8 0002: 75 F0 38 MOV B,#m ;input a second number
9 0005: 12 00 0A LCALL ASCII_UP_BCD

10 ;result in A-tens, B-unities
11 0008: 80 FE STOP: SJMP STOP
12 ;--
13 000A: ASCII_UP_BCD:
14 000A: 54 0F ANL A,#0Fh ;clear higher nibble of A7..4
15 000C: 53 F0 0F ANL B,#0Fh ;clear higher nibble of B7..4
16 000F: 22 RET
17 ;--- end of file ---

Table 2.15 Implementation in Code and Intermediate Results

Code Description A B

MOV A,#37h Input a first number 00110111
MOV B,#38h Input a second number 00110111 00111000
ANL A,#0Fh Clear higher nibble of A7...4 00000111 00111000
ANL B,#0Fh Clear higher nibble of B7...4 00000111 00001000

Numbers in Fixed-point Format 45

At the end of this chapter, we will present a subroutine for converting
an ordinary fraction of the numerator/denominator form to a binary
fraction. The algorithm checks if the numerator is less than the
denominator, and if so, the conversion takes place. Otherwise, the OV
flag is set.

2.2.16 Conversion BIN Fraction (num/denom) to BIN
Fraction (dot notation)

• input: number in A – numerator, B – denominator,
• output: number in A – binary fraction in the form 0.xxx or void if

numerator ≥ denominator and then OV = 1,
• exemplary value: 00000101BIN / 00000110BIN = 0.110101(01)BIN.

Table 2.16 shows the state of the registers after the first loop cycle, in
which a bit with weight 2−1 is determined. Subsequent bits are deter-
mined according to the rule described in Example 2.6 presented in
section 2.1.

Table 2.16 Implementation in Code and Intermediate Results

Code Description A B R1

MOV A,#5 Input numerator 00000101
MOV B,#6 Input denominator 00000101 00000110
MOV R2,#7 How many digits

(precision)
00000101 00000110

MOV R1,#0 Clear R1 00000101 00000110 00000000
LOOP: RL A Rotate left 00001010 00000110 00000000
CLR C Clear C flag 00001010 00000110 00000000
SUBB A,B Compare A and B 00000100 00000110 00000000
JNC SKIP Jump if not less 00000100 00000110 00000000
ADD A,B Add B to A --- --- ---
SKIP: CPL C Invert C flag 00000100 00000110 00000000
XCH A,R1 Exchange A ↔ R1 00000000 00000110 00000100
RLC A Rotate left with carry bit 00000001 00000110 00000100
XCH A,R1 Exchange again 0000100 00000110 00000001
DJNZ R2,LOOP Repeat for next digit 0000100 00000110 00000001
MOV A,R1 Copy a result to A State after

last lap:
01101010

46 Computer Arithmetic in Practice

1 ;**
2 ;* Conversion BIN fraction num/denom to dot notation*
3 ;**
4 0005 n EQU 5 ;n=5 DEC
5 0006 m EQU 6 ;m=6 DEC
6 0000: 74 05 MOV A,#n ;input numerator
7 0002: 75 F0 06 MOV B,#m ;input denominator
8 0005: 12 00 0A LCALL FRACTION_BIN
9 ;result in A

10 0008: 80 FE STOP: SJMP STOP
11 ;--
12 000A: FRACTION_BIN:
13 000A: F8 MOV R0,A ;make a copy to R0
14 000B: C3 CLR C ;clear C flag
15 000C: 95 F0 SUBB A,B ;check if num<denom
16 000E: E8 MOV A,R0 ;retrieve original value
17 000F: 40 03 JC LESS ;skip if num<denom
18 0011: D2 D2 SETB OV ;else set flag and stop
19 0013: 22 RET
20 0014: LESS:
21 0014: 7A 07 MOV R2,#7 ;how many digits (precision)
22 0016: 79 00 MOV R1,#0 ;clear R1
23 0018: LOOP:
24 0018: 23 RL A ;rotate left
25 0019: C3 CLR C ;clear C flag
26 001A: 95 F0 SUBB A,B ;compare A and B
27 001C: 50 02 JNC SKIP ;jump if not less
28 001E: 25 F0 ADD A,B
29 0020: SKIP:
30 0020: B3 CPL C ;invert C
31 0021: C9 XCH A,R1 ;exchange A and R1
32 0022: 33 RLC A ;rotate with carry bit
33 0023: C9 XCH A,R1 ;exchange again
34 0024: DA F2 DJNZ R2,LOOP ;repeat for next digit
35 0026: E9 MOV A,R1
36 0027: 22 RET
37 ;--- end of file ---

Numbers in Fixed-point Format 47

2.3 SIGNED NUMBERS

2.3.1 The Sign-magnitude Representation

The number consists of two fields: the sign ‘+’/‘−’ and the magnitude
wherein ‘+’ sign is very often omitted as the default value. This way of
expressing the signed number is commonly used in usual human activities.
We can find many examples, e.g.:

• trends in something (e.g. body weight, prices, demography, etc.);
• in science and engineering: measuring angles, outdoor thermometer

(particularly winter season), acidity or alkalinity Ph;
• accounting and banking: looking at purchase bill (discounts and

payable), account balance.

The value of a number in sign-magnitude (SM) notation for p = 2 is cal-
culated from the following formula (2.2):

A = (1) (a 2 + ... + a 2 + a + a 2 + ... + a 2)

= (1) a 2

a
n 2

n 2
1 0 1

1
m

m

a

i= m

n 2

i
i

n 1

n 1 (2.2)

The highest bit an−1 is the sign bit, and the remaining bits form a magnitude
of determined identically as in BIN format. The sign can be expressed by
assigning ‘+’ to ‘0’ and ‘−’ to ‘1’, respectively. Above formula can be gen-
eralized for any value of the system base. However, the problem is how to
encode the sign of the number. From the analysis of the formula it follows
that if the highest digit is even, then the number is non-negative. Such a
convention of writing the sign of a number, although formally correct, is
not commonly used except in the case of p = 2. So, let’s remain with this
case. The use of the same symbols 0 and 1 to denote the sign of a number
and the consecutive digits of the number facilitates the implementation of
arithmetic operations on multibit numbers in the SM notation by a classical
processor, which implements the principles of 1-bit arithmetic described in
section 1.1. A particular property of sign-magnitude notation is the double
representation of the number 0. For example, using 5 bits we +0 and −0:

+ 0 = 00000 , –0 = 10000DEC SM DE SM

For distinction, the sign bit in the book will be underlined. In other books,
e.g. [Pochopień 2012], the sign bit is separated by a dot character, but this
can lead to misinterpretation when trying to write numbers with fractional
parts in SM!

48 Computer Arithmetic in Practice

Example 2.9: A number in the SM notation and its decimal equivalent DEC:

a. 1 0101.11SM = −5.75DEC

b. 0 1100.01SM = +12.25DEC

Exercise 2.6: Represent the given decimal number DEC in the SM notation:

a. +23.5DEC

b. +17.3DEC

c. −11.25DEC

d. −1DEC

The advantage of the SM notation is the simplicity of interpreting the number
by the user. Unfortunately, this notation also has some disadvantages. Firstly,
for p ≠ 2 the SM format is not optimal because of using only 2∗pn−1+m of pn+m

possible combinations of digits. Another difficulty is related to realization of
arithmetic operations. Since the ALU of the processor performs them on all the
bits of the arguments stored in the registers, including the sign bits, this may lead
to an incorrect result in some cases. What can be done in such a situation to fix
the result? Before performing the operation, you need to clear the sign bits of
both arguments, perform the operation and based on the sign bits and the
information on type of operation determine the sign bit of the result.

However, the addition or subtraction of two 8-bit numbers with different
signs is a little bit complicated. Hence another commonly used format for
signed numbers is 2’s complement. To understand the properties of this
notation, we have to recall the theory of complements. The information
presented below is valid for numbers with any base p = 2, 3, ..., ∞. It must
be mentioned that there are also alternative ways of writing numbers with
signs, such as the offset notation adopted by the IEEE society and published
in its P-754 standard defining the floating-point format and operations and
discussed in Chapters 4 and 5.

2.3.2 Complements – Theory and Its Usage

In mathematics and computing, the complements are efficient techniques to
encode a symmetric range of positive and negative numbers. Two types of
complements have gained widespread acceptance (2.3):

1. p complement of L

L = p L for L 0

L = 0 for L = 0

n
(2.3)

2. p – 1 complement of L

Numbers in Fixed-point Format 49

L = p L pn m, where n is the number of digits in the integer part and m
is the fractional part, respectively.

Example 2.10: The p and p-1 complements:

a. L = 823DEC ➔ p = 10, n = 3, m = 0 b. L = 101.1BIN ➔ p = 2, n = 3, m = 1

L̄ = 10 823 = 177
L̄ = 10 823 10 = 176

3
DEC

3 0
DEC

L = 1000 101.1 = 010.1
L = 1000 101.1 0.1 = 010.0

BIN BIN BIN

BIN BIN BIN BIN

Properties of p and p-1 complements:

Property no. 1. L = p L p = L pn m m ➔ 1a. L = L + p m

Property no. 2. xxx xxxL + L = 100 0.0 0
n+m

➔ 2a. L = L, if carry bit on
position n+m+1 is discarded

Example 2.11: Number added to its p complement:

a. b.
823

+ 177
1000

= L
= L

DEC

DEC

n+m DEC

101.1
+ 010.1
1000.0

= L
= L

BIN

BIN

n+m BIN

Property no. 3. L + L = (p 1)(p 1)... (p 1), (p 1)(p 1)... (p 1)

n+m

Example 2.12: Number added to its p-1 complement:
a. b.

823
+ 176

999
= L
= L

DEC

DEC

n+m DEC

101.1
+ 010.0

111.1
= L
= L

BIN

BIN

n+m BIN

REMEMBER!

• L can be determined by adding 1 to the lowest digit of L.
• L can be treated as a number with the opposite sign to L if we discard 1

in the n+m+1 position.

50 Computer Arithmetic in Practice

• L is determined by subtracting individually each digit of L from the
largest allowed digit at the given base, e.g. for p = 2 that means inversion
of bits due to 2-bit = bit.

• For p = 2 L it is denoted as a 1’s complement and L as a 2’s complement.

Complements can be used, e.g., in the implementation of addition and
subtraction of numbers coded in the SM notation, as will be shown in the
chapter on arithmetic operations. Nevertheless, its primary usage is repre-
sentation of signed numbers as also would be presented below.

2.3.3 The 2’s Complement Representation

In this notation, abbreviated 2’s in this book, the an−1 bit is the sign bit, but
unlike the SM notation, it additionally contributes with −2n−1 weighting
factor to the value of the number. It can be then determined according to
the formula (2.4):

A = a 2 + a 2 + ... +a 2 + a + a 2 + ... +a 2

= a 2 + a 2

n 1
n 1

n 2
n 2

1 0 1
1

m
m

n 1
n 1

i= m

n 2

i
i

(2.4)

Example 2.13: Number in 2’s complement notation and its DEC equivalent:

a. 101.01 = 2 + 0 2 + 1 2 + 0 2 + 1 2 = 2.75U2
2 1 0 1 2

DEC

b. 1101.01 = 2 + 1 2 + 0 2 + 1 2 + 0 2 + 1 2 = 2.75U2
3 2 1 0 1 2

DEC

c. 11101.01 = 2 + 1 2 + 1 2 + 0 2 + 1 2 + 0 2 + 1 2U2
4 3 2 1 0 1 2= 2.75DEC

d. 0101.01 = 0 2 + 1 2 + 0 2 + 1 2 + 0 2 + 1 2 = +5.25U2
3 2 1 0 1 2

DEC

e. 00101.01 = 0 2 + 0 2 + 1 2 + 0 2 + 1 2 + 0 2 + 1 2U2
4 3 2 1 0 1 2= +5.25DEC

The way of sign changing of a number in 2’s notation is of great practical
importance. It is enough to invert all bits and add a 1 to the lowest bit (first
from the right).

Example 2.14: Changing the sign of a number in the 2’s notation:

a. b.
0110.1 + 6.5

1001.0
+ 0000.1

1001.1 6.5

2 s DEC

2 s DEC

and 1001.1 6.5

0110.0
+ 0000.1

0110.1 + 6.5

2 s DEC

2 s DEC

Numbers in Fixed-point Format 51

Another way to change the sign is to subtract a number from zero ac-
cording to the observation that −X = 0 − X, where the minus on the left
represents the number with the opposite sign to X, and the second minus
represents the subtraction operation. Be aware, that it looks the same but it
is not the same for mathematicians!

Example 2.15: Changing the sign of a number in the 2’s notation by
subtracting from zero:

a. b.
0000.0 0.0
0110.1 + 6.5

1001.1 6.5

DEC

DEC

DEC

and 0000.0 0.0
1001.1 6.5

0110.1 + 6.5

DEC

DEC

DEC

REMEMBER!

• Duplication of the highest bit (first from the left) does not change the
value of the number in 2’s notation. It is called the sign extension.

• The highest bit informs about the sign of the number, ‘0’ is for non-
negative number and ‘1’ for negative one, but it also affects the value of
the number.

• Typical way of sign change of 2’s number is inverting all bits and adding
the 1 to the lowest bit (first from the right).

Exercise 2.7: Represent the assumed DEC number in 2’s notation:

a. +3.125DEC

b. –17.5DEC

c. –1DEC

d. +1DEC

Number with fraction in 2’s notation can be represented easily as a complement
to a greater (absolutely) number. Thus, you can apply the conversion method
learned in section 2.1 only to the positive fractional part of this number as
shown here: −2/9 = −1 + 7/9 or −12/5 = −3 + 3/5.

2.4 CONVERSIONS AND CHANGE OF SIGN

The chapter will show how to programmatically convert numbers with sign
between 2’s and SM formats, and how to change the sign of numbers in 2’s
notation. Please note the number in 2’s complement format has no separate
representation for positive and negative zero.

52 Computer Arithmetic in Practice

2.4.1 Change of Sign for 2’s Number

• input: number in A,
• output: number in A,
• exemplary value: 111011112’s ➔ 000100012’s (see Table 2.17).

1 ;**
2 ;* Conversion of sign for 2’s number *
3 ;**
4 ;n EQU 17 ;n=+17 DEC
5 00EF n EQU 11101111B ;n= −17 DEC
6
7 0000: 74 EF MOV A,#n ;input a number
8 0002: 12 00 07 LCALL _2s_2s
9 ;result in A

10 0005: 80 FE STOP: SJMP STOP
11 ;--
12 0007: _2s_2s:
13 0007: 64 FF XRL A,#0FFH ;invert A
14 0009: 04 INC A ;increase A by 1
15 000A: 22 RET
16 ;--- end of file ---

2.4.2 Conversion SM to 2’s Notation

• input: number in A,
• output: number in A,
• exemplary value: 10000111SM ➔ 111110012’s (see Table 2.18).

Table 2.18 Implementation in Code and Intermediate Results

Code Description A

MOV A,# 10000111b Input a number –7DEC as SM 10000111
JNB ACC.7,SKIP Skip if positive
XRL A,#7FH Invert bits A6...0 11111000
INC A Increase A by 1 11111001
SKIP: 11111001

Table 2.17 Implementation in Code and Intermediate Results

Code Description A

MOV A,# 11101111b Input –17DEC as 2’s 11101111
XRL A,#0FFH Invert A 00010000
INC A Increment A by 1 00010001

Numbers in Fixed-point Format 53

1 ;**
2 ;* Conversion SM to 2’s *
3 ;***
4 0087 n EQU 10000111B ;n=−7DEC
5
6 0000: 74 87 MOV A,#n ;input a number
7 0002: 12 00 07 LCALL SM_2s
8 ;result in A
9 0005: 80 FE STOP: SJMP STOP

10 ;--
11 0007: SM_2s:
12 0007: 30 E7 03 JNB ACC.7,SKIP ;if positive
13 000A: 64 7F XRL A,#7FH ;invert bits A6..0
14 000C: 04 INC A ;increase A by 1
15 000D: SKIP:
16 000D: 22 RET
17 ;--- end of file ---

2.4.3 Conversion 2’s Notation to SM

• input: number in A,
• output: number in A,
• exemplary value: 11111001U2 ➔ 10000111SM.

The algorithm returns a correct result for an input number between −127DEC

and +127DEC (see Table 2.19).

Please note that we get the identical algorithm as for SM to 2’s com-
plement conversion!

1 ;**
2 ;* Conversion 2s to SM for −127DEC<n<+127DEC*
3 ;**
4 00F9 n EQU 11111001B ;n=−7DEC

Table 2.19 Implementation in Code and Intermediate Results

Code Description A

MOV A,# 11111001b Input a number –7DEC as 2’s 11111001
JNB ACC.7,SKIP Skip if positive 11111001
XRL A,#7FH Invert bits A6...0 10000110
INC A Increase A by 1 10000111
SKIP: 10000111

54 Computer Arithmetic in Practice

5
6 0000: 74 F9 MOV A,#n ;input a number
7 0002: 12 00 07 LCALL _2s_SM
8 ;result in A
9 0005: 80 FE STOP: SJMP STOP

10 ;--
11 0007: _2s_SM:
12 0007: 30 E7 03 JNB ACC.7,SKIP ;skip if positive
13 000A: 64 7F XRL A,#7FH ;invert bits A6..0
14 000C: 04 INC A ;increase A by 1
15 000D: SKIP:
16 000D: 22 RET
17 ;--- end of file ---

Numbers in Fixed-point Format 55

http://taylorandfrancis.com
http://taylorandfrancis.com

Chapter 3

Basic Arithmetic on Fixed-point
Numbers

3.1 OPERATIONS ON UNSIGNED NUMBERS

3.1.1 Working with Natural Binary Code

As was stated previously in section 2.1, let us recall that any number is
represented on n+m bits, where n is the number bits of the integer part, and
m is the number bits of the fractional part.

Addition of two (n + m)-bit BIN numbers returns the result on (n + m + 1)
bits. It can be seen that for any base p this extra bit can take the value 0 or 1.
Reserving bits for the fractional part is limiting the range in the integer part of
the number. Appendix A gives the smallest and largest value of a number for
given n and m, assuming n + m = 8 and n + m = 16 and for various position of
point. This information will allow the reader to find out in what numerical
range arithmetic operations can be performed. The length of the word in the
8051 processor is fixed – 8 bits, so it can store 256 different combinations.
The n + m cannot exceed 8 bits. When considering numbers with fractional
part, one should make sure that both numbers contain the same number of m
digits in the fractional part. Then the position of the point in the result is
identical to that in the input arguments, although the microprocessor is ‘not
aware’ the existence and position of the comma. In many programming
languages the fixed-point format is dedicated for integer type of variables
without fractional part (see Appendix B). The numbers with fractions are
mostly represented in floating-point format realized in hardware like floating-
point unit (FPU) or programmatically by dedicated math library. We can also
realize real numbers in fixed-point format. Here a priori some bits are
reserved for integer and other for fractional part. For example, if assumed 1-
byte-long number, the notation 1.7 means 1 bit for integer part and 7 bits
after binary point. This convention is supported by, e.g., some of Microchip’s
AVR architecture processors through the FMUL, FMULS and FMULSU
instructions that allow multiplication of two numbers with an unsigned
fraction, two signed numbers and an unsigned with signed numbers. The
prefix F related to fraction just indicates this functionality. No additional
shifts of the multiplication result or another way of point positioning are

DOI: 10.1201/9781003363286-3 57

https://doi.org/10.1201/9781003363286-3

needed. Another of few example is so called 32-bit _IQ format introduced by
Texas Instruments for fixed-point numbers with fractional part. At the
moment of declaration of variable type, its precision and the numerical range
are explicitly forced, depending on the number of bits for the fractional part.
Thus, the notation _IQ30 means that 30 bits of 32 available bits are used to
express the fraction and the remaining 2 bits for the integer part. Using the
2’s convention, this gives the range [−2;1.999999999] with a resolution
(precision) of 0.000000001. All combinations from _IQ0 to _IQ31 are
allowed, so paradoxically one can speak of a fixed-point format with a
floating point is permitted! Another example of IQ format application can be
using it to express numbers during performing CORDIC algorithm suited for
estimation of nonlinear functions. The ST Microelectronics company pre-
pared STM32G4-CORDIC co-processor. It provides hardware acceleration
of some mathematical functions, notably trigonometric, commonly used in
motor control, metering, signal processing and many other applications. It
speeds up the calculation of these functions compared to a software imple-
mentation, freeing up processor cycles in order to perform other tasks. In this
case, the q1.31 or q1.5 formats are available. For processors without hard-
ware support as FPU or CORDIC units this mathematical capability can be
realized by software CORDIC library or math library.

Let’s go back to 8051 CPU and way how the addition of 2 bytes can be
done with instruction ADD:

ADD A,#data {C,A} ← A +data

The result of addition of each pair of bits is calculated according to the
rules given in section 1.1, considering the carry-over from the previous bit
position. The addition starts from the youngest bits, i.e. customarily the
right-hand side. If the ADD instruction results in C = 1, it means that the
BIN range is exceeded for the assumed values of n and m. The result should
be discarded. However, the correct result is obtained by treating C as an
additional n + 1 bit of the result (see Example 3.1a).

Example 3.1: Addition of BIN numbers:

a. n = 5, m = 3 b. n = 5, m = 3
11111.010 =31.25

+ 00001.000 + =1.00

C = 1 00000.010 =32.25

BIN DEC

BIN DEC

BIN DEC

10011.010 =19.25
+ 00001.011 + =1.375

C = 0 10100.101 =20.625

BIN DEC

BIN DEC

BIN DEC

Implementation in code for case (a):

MOV A,#11111010B ;first number
ADD A,#00001000B ;add the second number to the first one

;store a result in the A and C

58 Computer Arithmetic in Practice

The addition of two double-byte (n + m) = 16 BIN numbers is performed
in two steps. First add the lower bytes with the ADD instruction, and then
the higher ones with the ADDC instruction, which considers the C flag from
the previous addition. The double-byte width is sometimes called ‘word’
format.

Example 3.2: Addition of two double-byte BIN numbers:

a. n = 8, m = 8 b. n = 14, m = 2

00011001.11110101
+ 10011101.10000101

0 10110111.01111010

1

BIN

BIN

BIN

10011001 111101.01
+ 11011101100001.01

1 01110111011110.10

1

BIN

BIN

BIN

Implementation for case of (a):

MOV A,#11110101B ;lower byte of the first number
ADD A,#10000101B ;add a lower byte of the second number
MOV B,A ;lower byte of the result in the B
MOV A,#00011001B ;higher byte of the first number
ADDC A,#10011101B ;add a higher byte of the second number

;and store a result in the A and C

Exercise 3.1: Perform addition of BIN numbers:

a. b.
11.011101

+ 00.101101

? ??.??????

BIN

BIN

BIN

1101.0111
+ 1010.1100

? ????.????

BIN

BIN

BIN

Subtraction of two (n + m)-bit BIN numbers returns the result on (n + m
+ 1) bits, where, as previously, n is the number of bits of the integer
part, m is the number of bits of the fractional part. It can be seen that
for any base, p is the borrow flag (in practice it is the same C flag used
during addition – its meaning depends on the operation context),
which can take only the value 0 or 1. When considering numbers with
fractional part, one should make sure that both numbers contain the
same number of digits m in the fractional part. Then the position of the
comma in the result is identical to that in the input arguments. The result
of subtraction of each pair of bits is calculated according to the rules
given in chapter 1.1, considering the borrow from the previous bit posi-
tion. The operation starts from the lowest bits, i.e. customarily the right-
hand side.

Basic Arithmetic on Fixed-point Numbers 59

Subtracting two 1-byte numbers by 8051 CPU is done by the following
pair of instructions:

CLR C
SUBB A,#data {C,A}←A-data-0=A-data

Before subtracting 1-byte two numbers, hence(n + m = 8), it is necessary to
clear C flag to zero, preventing eventually wrong result caused by C = 1 flag
by one of the previous executed instructions. Obtaining C = 1 after sub-
traction indicates a negative result that cannot be expressed in BIN notation.
Alternatively, this state can be interpreted as borrow taken from the extra n +
1 bit of the first number. Then the result is correct in the BIN sense, since
subtraction of a smaller number from a larger number has been performed.

Example 3.3: Subtraction of BIN numbers:

a. n = 2, m = 6 b. n = 8, m = 0
10.010100
01.101001

C = 0 00.101011

BIN

BIN

BIN

00010100
00101011

C = 1 11101001

BIN

BIN

BIN

Implementation for case of (a):

MOV A,#10010100B ;first number
CLR C ;clear C flag
SUBB A,#01101001B ;subtract second number from the first one

;store a result in the A and C

The subtraction of two double-byte (n + m) = 16 BIN numbers is per-
formed in two steps. First subtract the lower bytes by the SUBB instruction
with cleared the C flag before, and then subtract the higher ones again with
SUBB, which considers the C flag from the previous operation that is
working as borrow bit.

Example 3.4: Subtraction of two double-byte BIN numbers:

a. n = 16, m = 0 b. n = 3, m = 13:

01011001 10011011
00011101 01110010

C = 0 00111100 00101001

0

BIN

BIN

BIN

010.11001 00011011
100.11101 01110010

C = 1 101.11011 10101001

1

BIN

BIN

BIN

Subtraction of two double-byte BIN numbers by 8051 CPU is very similar to the
addition. The difference is that the ADD and ADDC instructions must be
replaced by pair of SUBBs.

60 Computer Arithmetic in Practice

Implementation in code of case (a):

MOV A,#10011011B ;lower byte of the first number
CLR C ;clear C flag
SUBB A,#01110010B ;subtract the lower byte of the second number
MOV B,A ;store the lower byte of the result in the B
MOV A,#01011001B ;higher byte of the first number
SUBB A,#00011101B ;subtract the higher byte of the second number

;and store the higher byte of the result in the A

Exercise 3.2: Perform subtraction of BIN numbers:

a. b.
11.011100
01.101011

? ??.??????

BIN

BIN

BIN

0101.1011
1010.1101

? ????.????

BIN

BIN

BIN

Subtraction can also be done in another way, i.e. using addition and
properties of complements.

Subtraction of two BIN numbers by means of complements requires
substitution of the second number by its complement to p or p – 1. The
result of the subtraction is the result of the addition or its complement,
depending on the value of the carry bit. Details on the use of additions are
given in the formulas below. The way how to compute the complement to p
and p – 1 was given earlier in subchapter 2.3.

Using p complements for subtraction: Using p − 1 complements for subtraction:

A B = +(A + B) for C 0

A B = (A + B) for C = 0

A B = +(A + B + 1 p) for C 0

A B = (A + B) for C = 0

m

Example 3.5: Subtraction of two BIN numbers by means of p and p – 1
complements for p = 2:

A = 29DEC B = 38DEC

A = 011101BIN B = 100110BIN

A = 100010 B = 011001

A = 100011 B = 011010

a. A – B by means of B b. B – A by means of A
011101 A

+ 011010 B

C = 0 110111 A + B

‘ ’ 1 001001 (A + B)

100110 B
+ 100011 A

C = 1 001001 B + A

‘ + ’ 0 001001 +(B + A)

Basic Arithmetic on Fixed-point Numbers 61

Implementation in code:

a. b. would you try to continue?
MOV A,#00011101B MOV A,#0001110
MOV B,#00100110B MOV B,#00100110B
XCH A,B ...
CPL A
INC A
ADD A,B
JC end
CPL A
INC A
end:
CPL C ;sign of the result

;the result stored in the A

c. A – B by means of B d. B – A by means of A
011101 A

+ 011001 B
C = 0 110110 A + B

‘ ’ 1 001001 (A + B)

100110 B
+ 100010 A

C = 1 001000 B + A
+ 000001 p m

‘ + ’ 0 001001 +(B + A + 1 p m)

Implementation in code:

c. d. ?
MOV A,#00011101B MOV A,#00011101B
MOV B,#00100110B MOV B,#00100110B
XCH A,B ...
CPL A
ADD A,B
JC skip
CPL A
SJMP end
skip:
INC A
end:
CPL C ;sign of the result

;result in A

Example 3.6: Subtraction by p and p − 1 complements for p = 10:

A = 29DEC B = 38DEC

A = 70 B = 61

A = 71 B = 62

62 Computer Arithmetic in Practice

a. A – B by using B b. B – A by using A
29 A

+ 62 B

C = 0 91 A + B

‘ ’ 1 09 (A + B)

38 B
+ 71 A

C = 1 09 B + A

‘ + ’ 0 09 +(B + A)

c. A – B by using B d. B – A by using A
29 A

+ 61 B
C = 0 90 A + B

‘ ’ 1 09 (A + B)

38 B
+ 70 A

where m = 0

C = 1 08 B + A
+ 01 p

‘+’ 0 09 +(B + A + p)

m

m

REMEMBER!

• The sign bit of a result of subtraction done with complements can be
determined by inversion of carry bit.

• The rules of applying complements can be used to any system base.

Exercise 3.3: Perform subtraction of BIN numbers using p and p – 1
complements:

a. A = 42.5DEC B = 68DEC p = 2
b. A = 75DEC B = 13DEC p = 10

Multiplication of two (n + m) −bits BIN numbers returns on (2n + 2m)
bits. For general case of multiplication, i.e. A1*A2, where A1 is on {n1,m1}
bits and A2 is on {n2,m2} bits, the result is on (n1 + n2, m1 + m2) bits. In
8051 processor, the multiplication is done by MUL instruction:

MUL AB {B15...8 A7...0} ← A*B ; 16-bits results

The classical ‘on paper’ multiplication method taught in primary school
is easy to understand and can be realized by adding shifted results of
multiplication of individual bits of the multiplied by all bits of multiplicand.
This rule is illustrated in Example 3.7.

Basic Arithmetic on Fixed-point Numbers 63

Example 3.7: Multiplication of two BIN numbers:

a. b.

BIN

BIN
1010
0000

1010
+ 0000

BIN

10.10

01.01

0011.0010

BIN

BIN
1111

0000
1111

+ 1111

BIN

1.111

110.1

1100.0011

The multiplication of the first number (multiplicand) by the bit of multi-
plier bit with a value of 0 results 0 ... 0 due to observation 0*x = 0. Therefore,
this component of the result can be omitted in the final addition. However,
the next non-zero component of the sum should be shifted twice, not once.

Implementation in code for case of (a):

MOV A,#0001010B
MOV B,#0000101B
MUL AB ;result is in B – higher byte, A – lower byte

The algorithm can be automated, presenting it in a form suitable for
implementation in code of microcontrollers suffering from lack of multi-
plication instruction. An example of such a processor is the ATtiny family
of Atmel Corporation, acquired in 2016 by Microchip Technology or
68HC08 chip delivered by Freescale Semiconductor. The rule of operation
can be described as below:

1. Clear the result and the carry bit.
2. Copy the multiplier to the lower part of the result.
3. Shift to the right the result and carry bit becomes the highest bit of the

result.
4. If the lowest bit of the result that is lost after shifting was set, add the

multiplicand (first number) to the higher part of the result and store a
carry-over after adding in the carry bit.

5. Repeat from step 3 for all multiplier bits; the number of laps depends
on the number of multiplier bits.

Details of the algorithm are presented in Example 3.8, in which the pre-
vious lowest bit of result is underlined, while the carry bit is to the left of the
higher part of the result. It also becomes the highest bit of the result after
shifting right.

64 Computer Arithmetic in Practice

Example 3.8: Multiplication of two BIN numbers (another version):

a) b)

BIN

BIN

BIN

10.10
* 01.01
0 00000101

000000101
1010

0 10100010
0 010100010

001010001
1010

0 11001000
0 0110,01000

 0011.0010

®
ì+ í
î

®
®

ì+ í
î

®
®

BIN

BIN

BIN

11.11
* 11.01
0 00001101

000001101
1111

0 11110110
0 011110110

001111011
1111

1 00101101
100101101
1111

1 10000110
 1100.0011

®
ì+ í
î

®
®

ì+ í
î

®
ì+ í
î

®

Exercise 3.4: Perform multiplication of BIN numbers:

a. b.
11.11
0.101

???.?????

BIN

BIN

BIN

1.001
0110

?????.???

BIN

BIN

BIN

Multiplication of two double-byte (n + m = 16) BIN numbers is done
according to the same principle. The bytes are multiplied instead of the
individual bits and the resulting partial products are then added.

Example 3.9: Multiplication of double-byte BIN numbers:

23 48
AB 9C

2B E0
15 54
30 18

+ 17 61

HEX17 A6 97 E0

HEX

HEX

Implementation in code:

• input: R1 – higher byte of multiplicand, R0 – lower byte of multi-
plicand, R3 – higher byte of multiplier, R2 – lower byte of multiplier,

Basic Arithmetic on Fixed-point Numbers 65

• output: {R3R2R1R0} R3 – highest byte of result, R0 – lowest byte of
result,

• exemplary value: 2348HEX ∗ AB9CHEX.

1 ;**
2 ;* Multiplication of BIN numbers 2 bytes x 2 bytes *
3 ;**
4 0000: 79 23 MOV R1,#23h
5 0002: 78 48 MOV R0,#48h ;multiplicand in {R1,R0}=2348HEX
6 0004: 7B AB MOV R3,#0ABh
7 0006: 7A 9C MOV R2,#9Ch ;multiplier in {R3,R2}=AB9CHEX
8 0008: 12 00 0D LCALL MUL_BIN16X16
9 ;result in {R3,R2,R1,R0}

10
11 000B: 80 FE STOP: SJMP STOP
12 ;---
13 000D: MUL_BIN16X16:
14 000D: E8 MOV A,R0
15 000E: 8A F0 MOV B,R2
16 0010: A4 MUL AB
17 0011: AD F0 MOV R5,B
18 0013: FC MOV R4,A ;R5*R4=R0*R2
19 0014: E9 MOV A,R1
20 0015: 8A F0 MOV B,R2
21 0017: A4 MUL AB ;B*A=R2*R1
22 0018: 2D ADD A,R5
23 0019: FD MOV R5,A
24 001A: E4 CLR A
25 001B: 35 F0 ADDC A,B
26 001D: FE MOV R6,A ;{R6R5R4} BANK 0
27 001E: E8 MOV A,R0
28 001F: 8B F0 MOV B,R3
29
30 0021: D2 D3 SETB RS0 ;BANK 1
31 0023: A4 MUL AB
32 0024: AD F0 MOV R5,B
33 0026: FC MOV R4,A ;R5*R4=R0*R2
34
35 0027: C2 D3 CLR RS0 ;BANK 0
36 0029: E9 MOV A,R1
37 002A: 8B F0 MOV B,R3
38 002C: D2 D3 SETB RS0 ;BANK 1

66 Computer Arithmetic in Practice

39 002E: A4 MUL AB ;B*A=R2*R1
40 002F: 2D ADD A,R5
41 0030: FD MOV R5,A
42 0031: E4 CLR A
43 0032: 35 F0 ADDC A,B
44
45 0034: FE MOV R6,A ;{R6R5R4}
46 0035: C2 D3 CLR RS0 ;BANK 0
47 0037: AB 0E MOV R3,6+8H
48 0039: AA 0D MOV R2,5+8H
49 003B: A9 0C MOV R1,4+8H
50 003D: A8 04 MOV R0,4H
51 003F: E9 MOV A,R1
52 0040: 2D ADD A,R5
53 0041: F9 MOV R1,A
54 0042: EA MOV A,R2
55 0043: 3E ADDC A,R6
56 0044: FA MOV R2,A
57 0045: E4 CLR A
58 0046: 3B ADDC A,R3
59 0047: FB MOV R3,A
60 0048: 22 RET
61 ;--- end of file ---

Division of two (n + m)-bits BIN numbers can return a result over infi-
nitely many bits, e.g. 101BIN/110BIN = 0.1101(01)BIN. The limited word
length of the microprocessor imposes truncating the fractional part of the
result. Alternatively, the result of division can be represented as a quotient
(integer part) and the remainder (rest of the division). There are many
algorithms, mainly varying in complexity. The simplest one is based on
the observation that division is equivalent to many repeated subtractions.
In this algorithm, the divisor is subtracted from the so-called partial
remainder. Initially, the divisor should be taken as the partial remainder.
If the result of subtraction is non-negative, the quotient is increased by 1,
and the current result of subtraction is taken as the partial remainder.
Continue doing this until the remainder is less than the divisor, as indi-
cated by the borrow bit being set. In practice, the carry bit C is playing
that role. The final remainder of division is equal to the last result of
subtraction, after which C = 0.

Basic Arithmetic on Fixed-point Numbers 67

Example 3.10: Perform division of two BIN numbers using the consecutive
subtraction method:

BIN

BIN

DEC

DEC

DEC BIN

BIN

111 divident
010 divisor
101 C 0 quotient 1
010
011 C 0 quotient 2
010
001 C 0 quotient 3 011
010
111 C 1 remainder 001

-
- -

= Þ =
-

= Þ =
-

= Þ = =
-

= Þ =

BIN

BIN

DEC

DEC BIN

BIN

100 divident
010 divisor
010 C 0 quotient 1
010
000 C 0 quotient 2 010
010
110 C 1 remainder 000

-
- -

= Þ =
-

= Þ = =
-

= Þ =

a. b.

The disadvantage of this method is the variable execution time, which
depends on the dividend to divisor ratio. The greater the ratio, the longer it
takes. There are more efficient ways of dividing, e.g. the differential
method, shown in Example 3.11. This time the number of operations does
not depend on the dividend to divisor ratio, but on the number of bits of the
divisor. It is also worth mentioning about the comparison method, some-
times called the non-restitution method, described in detail, among others,
in [Pochopień 2012].

Example 3.11: Division of two BIN numbers by differential method:

a. smaller by a larger number:

110.1 :1000

0.1101 fraction

1101 :10000

11010
10000
10100
10000
10000
10000
00000 reminder

BIN BIN

BIN

BIN BIN

BIN

Alternatively with reminder

0 quotient

1101 :10000

10000 reminder

BIN

BIN BIN

BIN

68 Computer Arithmetic in Practice

b. larger by a smaller number:

101.1 quotient and fraction

10110 :100

100
110
100
100
100
000 reminder

or with reminder

101 quotient

10110 :100

100
110
100
010 reminder

BIN

BIN BIN

BIN

BIN

BIN BIN

BIN

Exercise 3.5: Perform division of number 110010BIN by 1101BIN using:

a. consecutive subtraction method,
b. differential method.

INTERESTING FACTS!

If you start your experience with processors created by Atmel (currently
Microchip), you may be surprised by the lack of division (and sometimes
multiplication) operations in the instruction list of some microcontrollers of
AVR family, e.g. ATtiny! In such case, the missing instruction should be
replaced with a proper subroutine. You can find appropriate algorithms on the
Microchip website.

Dividing two single-byte numbers by the 8051 CPU is very simple,
because we have the DIV instruction:

DIV AB {A – quotient, B – remainder} ←A÷B; 16-bit result

Implementation in code:

MOV A,#00010110B

MOV B,#00000100B

DIV AB; result in A – quotient, B – remainder

Of course, for zero value of the divisor the processor cannot perform the
division. Instead of engaging extra bit for this purpose in processor

Basic Arithmetic on Fixed-point Numbers 69

resources, the designers of the microprocessor architecture have used the
OV flag to signal such a case (it concerns for 8051 CPU at least). This is
another use of this flag besides informing about exceeding the range of
numbers in 2’s complement format.

Division of double-byte (n + m = 16) BIN number by (n + m = 8) number
is not as simple as for single-byte arguments, because the DIV instruction
cannot be used in this case. The solution is provided by the implementation
of, e.g., the multiple subtraction method for double-byte arguments, which
works according to the principle presented in Example 3.10. If the divisor is
equal to 0, the algorithm does not perform any operations except setting the
OV flag.

Implementation in code:

• input: B – higher byte of dividend, A – lower byte of dividend, R0 –
divisor,

• output: R3 – higher byte of quotient, R2 – lower byte of quotient, B –
higher byte of reminder, A – lower byte of reminder, OV – signal an
attempt to divide by zero,

• exemplary value: 4487DEC/100DEC.

1 ;**
2 ;* Division of BIN numbers 2 bytes/1 byte *
3 ;* consecutive subtraction method *
4 ;**
5 0011 n EQU 17
6 0087 m EQU 135 ;17∗256+135=4487 DEC
7 0064 y EQU 100 ;y=100 DEC
8
9 0000: 75 F0 11 MOV B,#n ;higher byte of dividend

10 0003: 74 87 MOV A,#m ;lower byte of dividend
11 0005: 78 64 MOV R0,#y ;divisor
12 0007: 12 00 0C LCALL DIV_BIN8BY8
13 ;result in {R3R2}-quotient,
14 ;{BA}-reminder
15 000A: 80 FE STOP: SJMP STOP
16 ;--
17 000C: DIV_BIN8BY8:
18 000C: B8 00 03 CJNE R0,#0,LOOP
19 000F: D2 D2 SETB OV
20 0011: 22 RET
21 0012: LOOP:
22 0012: C3 CLR C

70 Computer Arithmetic in Practice

23 0013: F9 MOV R1,A
24 0014: 98 SUBB A,R0
25 0015: C0 E0 PUSH ACC
26 0017: E5 F0 MOV A,B
27 0019: 94 00 SUBB A,#0
28 001B: C0 E0 PUSH ACC
29 001D: 40 0D JC LESS
30 001F: EA MOV A,R2
31 0020: 24 01 ADD A,#1
32 0022: FA MOV R2,A
33 0023: 50 01 JNC LESSTHAN256
34 0025: 0B INC R3
35 0026: LESSTHAN256:
36 0026: D0 F0 POP B ;reminder
37 0028: D0 E0 POP ACC ;reminder
38 002A: 80 E6 SJMP LOOP
39 002C: LESS:
40 002C: D0 E0 POP ACC
41 002E: D0 E0 POP ACC
42 0030: E9 MOV A,R1
43 0031: 22 RET
44 ;--- end of file ---

In situations where the execution time of the division is a critical factor, it is
proposed to use the differential method in a version suitable for easy
implementation in code. We will name it the ‘differential method II’. Its
operation can be characterized as follows, assuming zero values of quotient
and partial remainder at start:

1. Put the dividend to the right after the rest.
2. Shift the partial remainder to the left together with dividend.
3. Subtract the divisor from the partial remainder and take the result as

the new value of partial remainder.
4a. If the result of the subtraction is negative, add the divisor back to the

partial remainder to get its original value, the lowest quotient bit
is 0.

4b. If the result of the subtraction is non-negative, the lowest quotient
bit is 1.

5. Shift the quotient to the left.
6. Repeat from step 2 for all the bits of the divisor.

The above rules of operation are used in Example 3.12.

Basic Arithmetic on Fixed-point Numbers 71

Example 3.12: Division of BIN numbers by differential method II:

a) 1010BIN:011BIN b) 1110BIN:101BIN

1

0

1

0

BIN

0001 010
0011
1110 C 1 quotient 0
0011
0001

0010 10
0011
1111 C 1 quotient 00
0011
0010

0101 0
0011
0010 C 0 quotient 001

0100
0011

reminder 0001 C 0 quotient 0011

¬¾¾
-

= Þ =
+

¯
¬¾¾

-
= Þ =

+

¯
¬¾¾

-
= Þ =

¯
¬¾¾

-
= = Þ =

1

1

1

0

BIN

0001 110
0101
1110 C 1 quotient 0
0101
0001

0011 10
0101
1110 C 1 quotient 00
0101
0011

0111 0
0101
0010 C 0 quotient 001

0100
0101
1111 C 1 quotient 0010
0101

reminder 0100

¬¾¾
-

= Þ =
+

¯
¬¾¾

-
= Þ =

+

¯
¬¾¾

-
= Þ =

¯
¬¾¾

-
= Þ =

+
=

Implementation in code:

• input: B – higher byte of dividend, A – lower byte of dividend,
R0 – divisor,

• output: R3 – higher byte of quotient, R2 – lower byte of quotient,
B – higher byte of reminder, A – lower byte of reminder, OV – signal
an attempt to divide by 0,

• exemplary value: 4487DEC/100DEC.

1 ;**
2 ;* Division of BIN numbers 2 bytes/1 byte *
3 ;* differential method II *
4 ;**
5 0011 n EQU 17
6 0087 m EQU 135 ;17*256+135=4487 DEC
7 0064 y EQU 100 ;y=100 DEC
8
9 0000: 75 F0 11 MOV B,#n ;higher byte of dividend

10 0003: 74 87 MOV A,#m ;lower byte of dividend
11 0005: 78 64 MOV R0,#y ;divisor

72 Computer Arithmetic in Practice

12 0007: 12 00 0C LCALL DIV_BIN16BY8DIFF
13 ;result in {R3R2}-quotient,
14 ; {BA}-reminder
15
16 000A: 80 FE STOP: SJMP STOP
17 ;;--
18 000C: DIV_BIN16BY8DIFF:
19 000C: B8 00 03 CJNE R0,#0,DIVIDE
20 000F: D2 D2 SETB OV
21 0011: 22 RET
22 0012: DIVIDE:
23 0012: 79 10 MOV R1,#16
24 0014: FE MOV R6,A
25 0015: LOOP:
26 0015: EE MOV A,R6
27 0016: C3 CLR C
28 0017: 33 RLC A ;<-lower byte of dividend
29 0018: C5 F0 XCH A,B
30 001A: 33 RLC A ;<-higher byte of dividend
31 001B: C5 F0 XCH A,B
32 001D: FE MOV R6,A
33 001E: CC XCH A,R4
34 001F: 33 RLC A
35 0020: CD XCH A,R5
36 0021: 33 RLC A
37 0022: CD XCH A,R5 ;<-reminder<-C
38 0023: C3 CLR C
39 0024: 98 SUBB A,R0 ;reminder-dividend
40 0025: FC MOV R4,A
41 0026: ED MOV A,R5
42 0027: 94 00 SUBB A,#0
43 0029: FD MOV R5,A
44 002A: 50 07 JNC NOT_LESS
45 002C: EC MOV A,R4
46 002D: 28 ADD A,R0
47 002E: FC MOV R4,A
48 002F: ED MOV A,R5
49 0030: 34 00 ADDC A,#0
50 0032: FD MOV R5,A
51 0033: NOT_LESS:
52 0033: B3 CPL C
53 0034: CA XCH A,R2
54 0035: 33 RLC A ;<-quotient
55 0036: CB XCH A,R3
56 0037: 33 RLC A

Basic Arithmetic on Fixed-point Numbers 73

57 0038: CB XCH A,R3
58 0039: CA XCH A,R2
59 003A: D9 D9 DJNZ R1,LOOP
60 003C: ED MOV A,R5
61 003D: F5 F0 MOV B,A
62 003F: EC MOV A,R4
63 0040: 22 RET
64 ;--- end of file ---

Exercise 3.6: Perform division 10011BIN by 1001BIN using differential
method II.

Exercise 3.7: Write a subroutine for dividing a 1-byte BIN number by a 1-byte
number using differential method II.

Exercise 3.8*: Write a subroutine for dividing a 2-byte BIN number by a
2-byte number using:

a. consecutive subtraction method,
b. differential method II.

3.1.2 Working with Packed BCD

Addition of two P-BCD numbers is done similarly to adding BIN numbers,
i.e. with the ADD instruction. In some cases it is necessary to correct the
result, which is caused by application of radix 2 arithmetic to decimal
numbers with radix 10! The next example shows the value of the carry bit
between nibbles stored in the auxiliary carry AC flag of the processor,
whose setting after addition is one of the conditions indicating the need to
correct the result.

Example 3.13: Addition of two P-BCD numbers:

a. b.

84

+ 13

97

DEC

DEC

DEC

25

+ 37

62

DEC

DEC

DEC

10000100

+ 00010011

0 10010111

0

P BCD

P BCD

P BCD

00100101

+ 00110111

0 01011100

+ 00000110

0 01100010

0

P BCD

P BCD

P BCD

P BCD

P BCD

74 Computer Arithmetic in Practice

c. d. e.

94

+ 16

110

DEC

DEC

DEC

87

+ 19

106

DEC

DEC

DEC

85

+ 92

177

DEC

DEC

DEC

10010100

+ 00010110

0 10101010
+ 00000110

0 10110000
+ 01100000

1 00010000

0

P BCD

P BCD

P BCD

10000111

+ 00011001

0 10100000
+ 00000110

0 10100110
+ 01100000

1 00000110

1

P BCD

P BCD

P BCD

10000101

+ 10010010

1 00010111
+ 01100000

1 01110111

0

P BCD

P BCD

P BCD

Adding two P-BCD numbers in the 8051 CPU is done by the ADD
instruction followed by the DA A instruction, which automatically recognizes
the necessity of result correction checking the following condition: if A3...0>9
or AC = 1, then A←A + 6 after which, if A7...4>9 or C = 1, then A←A + 60h.
The flag C = 1 after correction indicates that the range for two-digit decimal
number is exceeded, i.e. the result is greater than 99DEC. However, if C is
treated as a hundredth digit, then the result is correct, i.e. >99DEC.

Implementation in code for case (b):

MOV A,#00100101B

ADD A,#00110111B

DA A ;result in A

Exercise 3.9: Perform addition of P-BCD numbers:

a. b.

10010110

+ 00010101

? ????????

P BCD

P BCD

P BCD

10000100

+ 01110011

? ????????

P BCD

P BCD

P BCD

Subtraction of two P-BCD numbers is performed by SUBB instruction
after which decimal correction of the result must be considered.
Unfortunately, in the 8051 CPU instruction list there is no equivalent of
DA A that can be used after subtraction. So, the only solution is to sub-
stitute it with an appropriate piece of code. The correction works according
to the following rule: if AC = 1, then A←A − 6, followed by if C = 1, then

Basic Arithmetic on Fixed-point Numbers 75

A←A − 60h. Setting the flag C = 1 after correction signals a negative
(number below zero) result, which cannot be correctly interpreted in the
sense of P-BCD. For this reason, avoid subtracting a larger number from a
smaller number. Alternatively, the state of C = 1 may indicate the bor-
rowing of a 100DEC from the hundreds position, as presented in cases (d)
and (e) of Example 3.14. In that case, the result is correct because a smaller
number has been subtracted from a larger one. As in Example 31, the value
of the AC flag is also signaled.

Example 3.14: Subtraction of two P-BCD numbers:

a. b. c.

48

16

32

DEC

DEC

DEC

40

19

21

DEC

DEC

DEC

72

35

37

DEC

DEC

DEC

01001000

00010110

0 00110010

0

P BCD

P BCD

P BCD

01000000
00011001

00100111
00000110

0 00100001

1

P BCD

P BCD

P BCD

01110010
00110101

00111101
00000110

0 00110111

1

P BCD

P BCD

P BCD

d. e.

102

61

41

DEC

DEC

DEC

107

89

18

DEC

DEC

DEC

00000010
01100001

1 10100001
01100000

0 01000001

0

P BCD

P BCD

P BCD

00000111
10001001

1 01111110
01100110

0 00011000

0

P BCD

P BCD

P BCD

The missing instruction ‘decimal correction after subtraction’ in 8051
CPU is emulated programmatically by the DA_A_S subroutine presented
below. It starts with a label of this name and ends with a RET instruction.
Since it will be reused also in other parts of the book, the occurring
instruction ‘LCALL DA_A_S’ will always refer to the subprogram in the
following listing, showing result of subtraction for data from the case d).

Implementation in code:

• input: A – first number, B – second number,
• output: A – result, C – borrow from ‘100’ position
• exemplary value: 00000010P-BCD – 01100001P-BCD.

76 Computer Arithmetic in Practice

1 ;**
2 ; * Subtraction of P-BCD numbers *
3 **
4 0000: 74 02 MOV A,#02h ;first number {C,A}=102 P-BCD
5 0002: 75 F0 61 MOV B,#61h ;second number
6 0005: 12 00 0A LCALL SUB_PBCD
7 ;result in A
8 0008: 80 FE STOP: SJMP STOP
9 ;--

10 000A: SUB_PBCD:
11 000A: C3 CLR C
12 000B: 95 F0 SUBB A,B
13 000D: 12 00 11 LCALL DA_A_S
14 0010: 22 RET
15 ;--
16 0011: DA_A_S:
17 ;emulation of ‘Decimal Adjust after Subtraction’
18 0011: 85 D0 F0 MOV B,PSW
19 0014: 30 D6 03 JNB AC,SKIP
20 0017: C3 CLR C
21 0018: 94 06 SUBB A,#6
22 001A: SKIP:
23 001A: 85 F0 D0 MOV PSW,B
24 001D: 50 03 JNC END
25 001F: C3 CLR C
26 0020: 94 60 SUBB A,#60h
27 0022: END:
28 0022: 22 RET
29 ;--- end of file ---

Exercise 3.10: Perform subtraction of P-BCD numbers:

a. b.
10010010
10000111

? ????????

P BCD

P BCD

P BCD

01100001
00100101

? ????????

P BCD

P BCD

P BCD

Multiplication and division of two P-BCD numbers are possible but com-
plicated and generally produces abundant code. In practice, it is
more convenient to convert P-BCD numbers into their BIN equivalents,
perform the multiplication or division, and convert the result back into
P-BCD form. The relevant algorithms are presented in chapters 2.2 and 3.1.1,
and their final combination is left to the reader as a do-it-yourself task.

Basic Arithmetic on Fixed-point Numbers 77

Exercise 3.11*: Write a subroutine for multiplication of two P-BCD numbers.

Exercise 3.12*: Write a subroutine for division of two P-BCD numbers.

3.1.3 Working with Unpacked BCD

Addition of two UP-BCD numbers is done similarly to P-BCD, adding the
lower bytes with the ADD instruction and the higher bytes with the ADDC
instruction, followed by the obligatory DA A ‘decimal adjustment’ instruc-
tion. Sometimes, a carry-over bit to the higher nibble of one or both bytes of
the result may occur, resulting in an incorrect number in the UP-BCD sense.
In such a case, the value F0h should be added to such a byte, considering the
carry-over from the lower byte in operations on multi-byte numbers.

Example 3.15: Addition of two UP-BCD numbers:

a. b.
84

+ 13

97

DEC

DEC

DEC

25
+ 37

62

DEC

DEC

DEC

00001000 00000100

+ 00000001 00000011

0 00001001 00000111

0 0

UP BCD

UP BCD

UP BCD

00000010 00000101
+ 00000011 00000111

0 00000101 00001100
+ 00000000 11110110

0 00000110 00000010

0 0

UP BCD

UP BCD

UP BCD

c. d.
94

+ 16

110

DEC

DEC

DEC

79
+ 98

177

DEC

DEC

DEC

00001001 00000100
+ 00000001 00000110

0 00001010 00001010
+ 11110110 11110110

1 00000001 00000000

0 0

UP BCD

UP BCD

UP BCD

00000111 00001001
+ 00001001 00001000

0 00010000 00010001
+ 11110110 11110110

1 00000111 00000111

1 1

UP BCD

UP BCD

UP BCD

Implementation in code:

• input: R1 – higher byte of first number, R0 – lower byte of first number,
R3 – higher byte of second number, R2 – lower byte of second number,

78 Computer Arithmetic in Practice

• output: R1 – higher byte of result, R0 – lower byte of result,
• exemplary value: 00001001 00000100UP-BCD + 00000001

00000110UP-BCD.

1 ;**
2 ;* Addition of UP-BCD numbers *
3 ;**
4 0000: 79 09 MOV R1,#09h
5 0002: 78 04 MOV R0,#04h ;first number

{R1,R0}=94
UP-BCD

6 0004: 7B 01 MOV R3,#01h
7 0006: 7A 06 MOV R2,#06h ;second number

{R3,R2}=16
UP-BCD

8 0008: 12 00 0D LCALL ADD_UPBCD
9 ;result in {R1,R0}

10 000B: 80 FE STOP: SJMP STOP
11 ;--
12 000D: ADD_UPBCD:
13 000D: E8 MOV A,R0
14 000E: 2A ADD A,R2
15 000F: D4 DA A
16 0010: B4 09 02 CJNE A,#9,NOT_THE_SAME
17 0013: 80 05 SJMP SKIP
18 0015: NOT_THE_SAME:
19 0015: 40 03 JC SKIP
20 0017: 24 F0 ADD A,#0F0h
21 0019: 0B INC R3
22 001A: SKIP:
23 001A: F8 MOV R0,A
24 001B: E9 MOV A,R1
25 001C: 2B ADD A,R3
26 001D: D4 DA A
27 001E: B4 09 02 CJNE A,#9,SKIP1
28 0021: 80 04 SJMP END
29 0023: SKIP1:
30 0023: 40 02 JC END
31 0025: 24 F0 ADD A,#0F0h
32 0027: END:
33 0027: F9 MOV R1,A
34 0028: 22 RET
35 ;--- end of file ---

Basic Arithmetic on Fixed-point Numbers 79

Exercise 3.13: Perform addition of two UP-BCD numbers:

a. b.
00001001 00000100

+ 00000101 00000010

? ???????? ????????

UP BCD

UP BCD

UP BCD

00001001 00000111
+ 00000101 00001000

? ???????? ????????

UP BCD

UP BCD

UP BCD

Subtraction of two UP-BCD numbers requires a correction to be per-
formed on the higher nibble of the result, just as after addition. Due to lack
of a proper correction instruction after subtraction, the DA_A_S subroutine
can be used as previously. Unfortunately, the correction algorithm, ac-
cording to which the subroutine works, subtracts 60HEX, among others,
while it is required to subtract F0HEX for UP-BCD numbers. After executing
the DA_A_S subroutine, the difference between F0HEX and 60HEX, i.e. 90
HEX, must be subtracted additionally.

Example 3.16: Subtraction of two UP-BCD numbers:

a. b.
48
16

32

DEC

DEC

DEC

72
35

37

DEC

DEC

DEC

00000100 00001000
00000001 00000110

0 00000011 00000010

0 0

UP BCD

UP BCD

UP BCD

00000111 00000010
00000011 00000101

0 00000011 11111101
00000000 11110110

0 00000011 00000111

0 0

UP BCD

UP BCD

UP BCD

c. d.
40
19

21

DEC

DEC

DEC

102
61

41

DEC

DEC

DEC

00000100 00000000
00000001 00001001

0 00000010 11110111
00000000 11110110

0 00000010 00000001

0 1

UP BCD

UP BCD

UP BCD

00000000 00000010
00000110 00000001

1 11111010 00000001
11110110 00000000

0 00000100 00000001

0 0

UP BCD

UP BCD

UP BCD

80 Computer Arithmetic in Practice

Implementation in code:

• input: R1 – higher byte of first number, R0 – lower byte of first number,
• R3 – higher byte of second number, R2 – lower byte of second number,
• output: R1 – higher byte of result, R0 – lower byte of result,
• exemplary value: 00000100 00001000UP-BCD – 00000001

00000110UP-BCD.

1 ;***
2 ;* Subtraction of UP-BCD numbers *
3 **
4 0000: 79 04 MOV R1,#04h
5 0002: 78 08 MOV R0,#08h ;first number {R1,R0}

=48 UP-BCD
6 0004: 7B 01 MOV R3,#01h
7 0006: 7A 06 MOV R2,#06h ;second number {R3,R2}

=16 UP-BCD
8 0008: 12 00 0D LCALL SUB_UPBCD
9 ;result in {R1,R0}

10 000B: 80 FE STOP: SJMP STOP
11 ;---
12 000D: SUB_UPBCD:
13 000D: E8 MOV A,R0
14 000E: C3 CLR C
15 000F: 9A SUBB A,R2
16 0010: C0 D0 PUSH PSW
17 0012: 12 00 31 LCALL DA_A_S
18 0015: B4 09 02 CJNE A,#9,NOT_THE_SAME
19 0018: 80 04 SJMP SKIP1
20 001A: NOT_THE_SAME:
21 001A: 40 02 JC SKIP1
22 001C: 94 90 SUBB A,#90h
23 001E: SKIP1:
24 001E: F8 MOV R0,A
25 001F: E9 MOV A,R1
26 0020: D0 D0 POP PSW
27 0022: 9B SUBB A,R3
28 0023: 12 00 31 LCALL DA_A_S
29 0026: B4 09 02 CJNE A,#9,NOT_THE_SAME1
30 0029: 80 04 SJMP END1
31 002B: NOT_THE_SAME1:
32 002B: 40 02 JC END1
33 002D: 94 90 SUBB A,#90h

Basic Arithmetic on Fixed-point Numbers 81

34 002F: END1:
35 002F: F9 MOV R1,A
36 0030: 22 RET
37 ;--
38 0031: DA_A_S:
39 ;emulation of ‘Decimal Adjust after Subtraction’
40 0031: 85 D0 F0 MOV B,PSW
41 0034: 30 D6 03 JNB AC,SKIP
42 0037: C3 CLR C
43 0038: 94 06 SUBB A,#6
44 003A: SKIP:
45 003A: 85 F0 D0 MOV PSW,B
46 003D: 50 03 JNC END
47 003F: C3 CLR C
48 0040: 94 60 SUBB A,#60h
49 0042: END:
50 0042: 22 RET
51 ;--- end of file ---

Exercise 3.14: Perform addition of UP-BCD numbers:

a. b.
00001001 00000001
00000110 00000011

? ???????? ????????

UP BCD

UP BCD

UP BCD

00000101 00000110
00000100 00000010

? ???????? ????????

UP BCD

UP BCD

UP BCD

Multiplication/division of two UP-BCD numbers is also troublesome. In
practice, it is more convenient to convert UP-BCD numbers into their BIN
equivalents, perform the multiplication/division and convert the result back
into UP-BCD form. The corresponding algorithms are presented in sub-
chapters 2.2 and 3.1.1.

Exercise 3.15*: Write a subroutine of multiplication of UP-BCD numbers.

Exercise 3.16*: Write a subroutine of division of UP-BCD numbers.

3.1.4 Working with Chars in ASCII

Addition of two numbers in ASCII code is performed similarly to UP-BCD
format. In order not to introduce new rules for correcting the result, it is
sufficient to clear the higher nibble of the adder before adding. The further
procedure is the same as for UP-BCD.

82 Computer Arithmetic in Practice

Example 3.17: Addition of numbers in ASCII code:

a. b.
84

+ 13

97

DEC

DEC

DEC

25
+ 37

62

DEC

DEC

DEC

00111000 00110100

00001000 00000100
+ 00110001 00110011

0 00111001 00110111

ASCII

ASCII

ASCII

00110010 00110101

00000010 00000101
+ 00110011 00110111

0 00110101 00111100
+ 00000000 11110110
0 00110110 00110010

ASCII

ASCII

ASCII

c. d.
94

+ 16

110

DEC

DEC

DEC

79
+ 98

177

DEC

DEC

DEC

00111001 00110100

00001001 00000100
+ 00110001 00110110

0 00111010 00111010
+ 11110110 11110110
1 00110001 00110000

ASCII

ASCII

ASCII

00110111 00111001

00000111 00001001
+ 00111001 00111000

0 01000000 01000001
+ 11110110 11110110
1 00110111 00110111

ASCII

ASCII

ASCII

The following subroutine is a modified version of UP-BCD addition, with the
conversion from ASCII to UP-BCD is made easy by using an extra ANL A,#0Fh
instruction.

Implementation in code:

• input: R1 – higher byte of first number, R0 – lower byte of first
number, R3 – higher byte of second number, R2 – lower byte of
second number,

• output: R1 – higher byte of result, R0 – lower byte of result,
• exemplary value: 00111001 00110100ASCII + 00110001

00110110ASCII.

1 ;***
2 ;* Addition of ASCII numbers *
3 ;***
4 0000: 79 39 MOV R1,#39h

Basic Arithmetic on Fixed-point Numbers 83

5 0002: 78 34 MOV R0,#34h ;first number {R1,R0}=94
ASCII

6 0004: 7B 31 MOV R3,#31h
7 0006: 7A 36 MOV R2,#36h ;second number

{R3,R2}=16 ASCII
8 0008: 12 00 0D LCALL ASCII_ADD
9 ;result in {R1,R0}

10 000B: 80 FE STOP: SJMP STOP
11 ;---
12 000D: ASCII_ADD:
13 000D: E9 MOV A,R1
14 000E: 54 0F ANL A,#0Fh
15 0010: F9 MOV R1,A
16 0011: E8 MOV A,R0
17 0012: 54 0F ANL A,#0Fh
18 0014: 2A ADD A,R2
19 0015: D4 DA A
20 0016: B4 09 02 CJNE

A,#9,NOT_THE_SAME
21 0019: 80 05 SJMP SKIP
22 001B: NOT_THE_SAME:
23 001B: 40 03 JC SKIP
24 001D: 24 F0 ADD A,#0F0h
25 001F: 0B INC R3
26 0020: SKIP:
27 0020: F8 MOV R0,A
28 0021: E9 MOV A,R1
29 0022: 2B ADD A,R3
30 0023: D4 DA A
31 0024: B4 09 02 CJNE

A,#9,NOT_THE_SAME1
32 0027: 80 04 SJMP END
33 0029: NOT_THE_SAME1:
34 0029: 40 02 JC END
35 002B: 24 F0 ADD A,#0F0h
36 002D: END:
37 002D: F9 MOV R1,A
38 002E: 22 RET
39 ;--- end of file ---

Exercise 3.17: Perform addition of numbers in ASCII code:

a. b.
00110011 00110010

+ 00110111 00110011

? ???????? ????????

ASCII

ASCII

ASCII

00110101 00110110
+ 00110111 00110011

? ???????? ????????

ASCII

ASCII

ASCII

84 Computer Arithmetic in Practice

Subtraction of two numbers in ASCII code is performed similarly to UP-
BCD. To avoid new rules for correcting the result, just clear the higher
nibble of the second number before the subtraction. The further procedure
is the same as for UP-BCD.

Example 3.18: Subtraction of two numbers in ASCII code:

a. b.
48
16

32

DEC

DEC

DEC

72
35

37

DEC

DEC

DEC

g

00110100 00111000
00110001 00110110

0 00110100 00111000
00000001 00000110

0 00110011 00110010

ASCII

ASCII

ASCII

ASCII

00110111 00110010
00110011 00110101

0 00110111 00110010
00000011 00000101

0 00110100 00101101
00000000 11110110

0 00110011 00110111

ASCII

ASCII

ASCII

ASCII

c. d.
40
19

21

DEC

DEC

DEC

102
61

41

DEC

DEC

DEC

00110100 00110000
00110001 00111001

00110100 00110000
00000001 00001001

0 00110011 00100111
00000000 11110110

0 00110010 00110001

ASCII

ASCII

ASCII

ASCII

00110000 00110010
00110110 00110001

00110000 00110010
00000110 00000001

1 00101010 00110001
11110110 00000000

0 00110100 00110001

ASCII

ASCII

ASCII

ASCII

Implementation in code:

• input: R1 – higher byte of first number, R0 – lower byte of first
number,

• R3 – higher byte of second number, R2 – lower byte of second
number,

• output: R1 – higher byte of result, R0 – lower byte of result,
• exemplary value: 00110100 00110000ASCII + 00110001

00111001ASCII.

Basic Arithmetic on Fixed-point Numbers 85

1 ;***
2 ;* Subtraction of ASCII numbers *
3 **
4 0000: 79 34 MOV R1,#34h
5 0002: 78 30 MOV R0,#30h first number

{R1,R0}=40 ASCII
6 0004: 7B 31 MOV R3,#31h
7 0006: 7A 39 MOV R2,#39h ;second number

{R3,R2}=19 ASCII
8 0008: 12 00 0D LCALL ASCII_SUB
9 ;result in {R1,R0}

10 000B: 80 FE STOP: SJMP STOP
11 ;--
12 000D: ASCII_SUB:
13 000D: EB MOV A,R3
14 000E: 54 0F ANL A,#0Fh
15 0010: FB MOV R3,A
16 0011: EA MOV A,R2
17 0012: 54 0F ANL A,#0Fh
18 0014: FA MOV R2,A
19 0015: E8 MOV A,R0
20 0016: C3 CLR C
21 0017: 9A SUBB A,R2
22 0018: 12 00 37 LCALL DA_A_S
23 001B: B4 30 02 CJNE A,#30h,NOT_THE_SAME
24 001E: 80 05 SJMP SKIP1
25 0020: NOT_THE_SAME:
26 0020: 50 03 JNC SKIP1
27 0022: C3 CLR C
28 0023: 94 F0 SUBB A,#0F0h
29 0025: SKIP1:
30 0025: F8 MOV R0,A
31 0026: E9 MOV A,R1
32 0027: 9B SUBB A,R3
33 0028: 12 00 37 LCALL DA_A_S
34 002B: B4 30 02 CJNE A,#30h,NOT_THE_SAME1
35 002E: 80 05 SJMP END1
36 0030: NOT_THE_SAME1:
37 0030: 50 03 JNC END1
38 0032: C3 CLR C
39 0033: 94 F0 SUBB A,#0F0h
40 0035: END1:
41 0035: F9 MOV R1,A
42 0036: 22 RET
43

86 Computer Arithmetic in Practice

44 ;---
45 0037: DA_A_S:
46 ;emulation of ‘Decimal Adjust after Subtraction’
47 0037: 85 D0 F0 MOV B,PSW
48 003A: 30 D6 03 JNB AC,SKIP
49 003D: C3 CLR C
50 003E: 94 06 SUBB A,#6
51 0040: SKIP:
52 0040: 85 F0 D0 MOV PSW,B
53 0043: 50 03 JNC END
54 0045: C3 CLR C
55 0046: 94 60 SUBB A,#60h
56 0048: END:
57 0048: 22 RET
58 ;--- end of file ---

Exercise 3.18: Perform subtraction of numbers in ASCII code:

a. b.
00111001 00110010
00110111 00110011

? ???????? ????????

ASCII

ASCII

ASCII

00110101 00110110
00110111 00110010

? ???????? ????????

ASCII

ASCII

ASCII

Multiplying and dividing two numbers in ASCII code is complicated. In
practice, it is more convenient to convert ASCII numbers into their BIN
equivalents, perform the multiplication or division, and convert the result
back into ASCII code. The corresponding algorithms are presented in
chapters 2.2 and 3.1.1.

Exercise 3.19*: Write a subroutine of multiplication of numbers in ASCII
code.

Exercise 3.20*: Write a subroutine of division of numbers in ASCII code.

3.2 OPERATIONS ON SIGNED NUMBERS

3.2.1 Working with Sign-magnitude

Addition of two SM numbers requires consideration of the sign of both
numbers. One of two cases may occur:

Basic Arithmetic on Fixed-point Numbers 87

• if the signs of the two numbers match, then the modulus of the result
is the sum of the moduli of the numbers and the sign of the result is
equal to their sign;

• if the signs of both numbers differ, then the module of the result is
determined by subtracting from the module of the larger number the
module of the smaller number and the sign of the result is equal to the
sign of the larger number.

These rules are simply illustrated in Table 3.1, where A is the first number,
B the second number, S is the sum, i.e. S = A + B and ‘/’ mark means the sign
inversion.

Example 3.19: Addition of two SM numbers:

a. b.
(3)

+ (5)

8

DEC

DEC

DEC

1 0011
+ 1 0101

1 1000

SM

SM

SM

(+ 3)
+ (+ 5)

+8

DEC

DEC

DEC

00011
+ 00101

01000

SM

SM

SM

c.
(3)

+ (+ 5)

+2

DEC

DEC

DEC

1 0011
+ 00101

?

SM

SM A < B

0101
0011

0 0010SM

d.
(5)

+ (+ 3)

2

DEC

DEC

DEC

1 0101
+ 00011

?

SM

SM A > B

0101
0011

1 0010SM

Implementation in code:

• input: A – first number, B – second number,
• output: A – result, OV – result out of the range,
• exemplary value: 10001100BSM + 10010011B SM.

Table 3.1 Rules for Adding Numbers in the Sign-magnitude

Sign of A = sign of B |S|=|A|+|B|
sign of S = sign of A

sign of A ≠ sign of B If |A| ≥ |B| then:
|S|=|A| – |B|

sign of S = sign of A

if |A|<|B| then:
|S|=|B| – |A|

sign of S = /sign of A

88 Computer Arithmetic in Practice

1 ;**
2 ;* Addition of SM numbers *
3 ;**
4 008C n EQU 10001100B ;−12 SM
5 0093 m EQU 10010011B ;−19 SM
6
7 0000: 74 8C MOV A,#n ;first number
8 0002: 75 F0 93 MOV B,#m ;second number
9 0005: 12 00 0A LCALL SM_ADD

10 ;result in A
11 0008: 80 FE STOP: SJMP STOP
12 ;--
13 000A: SM_ADD:
14 000A: A2 E7 MOV C,ACC.7
15 000C: 92 D5 MOV PSW.5,C ;sign of n
16 000E: C0 E0 PUSH ACC
17 0010: 65 F0 XRL A,B
18 0012: A2 E7 MOV C,ACC.7 ;sign of m
19 0014: 53 F0 7F ANL B,#01111111B ;|m|
20 0017: D0 E0 POP ACC
21 0019: 54 7F ANL A,#01111111B ;|n|
22 001B: 50 18 JNC SIGN_THE_SAME
23 001D: B5 F0 02 CJNE A,B,SKIP
24 0020: 80 02 SJMP NOT_LESS
25 0022: SKIP:
26 0022: 40 07 JC LESS
27 0024: NOT_LESS:
28 0024: C3 CLR C
29 0025: 95 F0 SUBB A,B
30 0027: A2 D5 MOV C,PSW.5
31 0029: 80 12 SJMP END
32 002B: LESS:
33 002B: C3 CLR C
34 002C: C5 F0 XCH A,B
35 002E: 95 F0 SUBB A,B
36 0030: A2 D5 MOV C,PSW.5
37 0032: B3 CPL C
38 0033: 80 08 SJMP END
39 0035: SIGN_THE_SAME:
40 0035: 25 F0 ADD A,B
41 0037: A2 E7 MOV C,ACC.7
42 0039: 92 D2 MOV OV,C
43 003B: A2 D5 MOV C,PSW.5

Basic Arithmetic on Fixed-point Numbers 89

44 003D: END:
45 003D: 92 E7 MOV ACC.7,C
46 003F: 22 RET
47 ;--- end of file ---

Carry-over to the sign bit of the result (here the highest bit of the accu-
mulator) of adding numbers with the same signs means exceeding the range
for single-byte numbers in SM. This case is indicated by setting the OV flag.
The result in accumulator should be discarded then!

Exercise 3.21: Perform addition of SM numbers:

a. b.
1 100

+ 1 111

????

SM

SM

SM

0100
+ 0111

????

SM

SM

SM

c. d.
1 100

+ 0111

????

SM

SM

SM

0100
+ 1 111

????

SM

SM

SM

The case of different signs can be solved in another way by using com-
plements. The negative number is replaced by its 1’s or 2’s complement. In
next step the addition is performed, and the result is corrected according to
the rules for using complements, described in chapter 3.1 – look for
‘Subtraction of two BIN numbers by means of complements’.

Example 3.20: Addition of two SM numbers for case of different signs by using
complements:

a.

(3)
+ (+ 5)

+2

1 0011
+ 00101

?

1100
+ 0101
1 0001
+ 0001
0 0010

DEC

DEC

DEC

SM

SM

1 s

SM

or

1101
+ 0101
1 0010

0 0010

U2

SM

b.

(+ 3)
+ (5)

2

00011
+ 1 0101

?

0011
+ 1010

0 1101

1 0010

DEC

DEC

DEC

SM

SM
U1

SM

or

0011
+ 1011

0 1110

0001
+ 0001
1 0010

2 s

SM

90 Computer Arithmetic in Practice

Implementation in code using 1’s complement:

• input: A – first number, B – second number,
• output: A – result, OV – result out of the range,
• exemplary value: 10001100SM + 10010011SM.

1 ;***
2 ;* Addition of SM numbers by 1’s complement *
3 ;***
4 008C n EQU 10001100B ;−12 SM
5 0093 m EQU 10010011B ;−19 SM
6
7 0000: 74 8C MOV A,#n ;first number
8 0002: 75 F0 93 MOV B,#m ;second number
9 0005: 12 00 0A LCALL SM_ADD_BY1S

10 ;result in A
11 0008: 80 FE STOP: SJMP STOP
12 ;--
13 000A: SM_ADD_BY1S:
14 000A: A2 E7 MOV C,ACC.7
15 000C: 92 D5 MOV PSW.5,C ;sign of n
16 000E: C0 E0 PUSH ACC
17 0010: 65 F0 XRL A,B
18 0012: A2 E7 MOV C,ACC.7
19 0014: D0 E0 POP ACC
20 0016: 50 20 JNC SIGN_THE_SAME
21 0018: NOT_THE_SAME:
22 0018: C5 F0 XCH A,B
23 001A: 30 E7 03 JNB ACC.7,POSITIVE_M
24 001D: F4 CPL A
25 001E: B2 D1 CPL PSW.1
26 0020: POSITIVE_M:
27 0020: C5 F0 XCH A,B
28 0022: 30 E7 03 JNB ACC.7,POSITIVE_N
29 0025: F4 CPL A
30 0026: B2 D1 CPL PSW.1
31 0028: POSITIVE_N:
32 0028: 30 D1 0D JNB PSW.1,SIGN_THE_SAME
33 002B: 25 F0 ADD A,B
34 002D: 30 E7 05 JNB ACC.7,SKIP1
35 0030: 04 INC A
36 0031: B2 E7 CPL ACC.7

Basic Arithmetic on Fixed-point Numbers 91

37 0033: 80 0D SJMP END
38 0035: SKIP1:
39 0035: F4 CPL A
40 0036: 80 0A SJMP END
41 0038: SIGN_THE_SAME:
42 0038: 25 F0 ADD A,B
43 003A: A2 E7 MOV C,ACC.7
44 003C: 92 D2 MOV OV,C
45 003E: A2 D5 MOV C,PSW.5
46 0040: 92 E7 MOV ACC.7,C
47 0042: END:
48 0042: 22 RET
49 ;--- end of file ---

Below code presents the implementation of addition by using 2’s complement.
Implementation in code using 2’s complement:

• input: A – first number, B – second number,
• output: A – result, OV – result out of the range,
• exemplary value: 10001100SM + 10010011SM.

1 ;**
2 ;* Addition of SM numbers by 2’s complement *
3 ;**
4 008C n EQU 10001100B ;−12 SM
5 0093 m EQU 10010011B ;−19 SM
6
7 0000: 74 8C MOV A,#n ;first number
8 0002: 75 F0 93 MOV B,#m ;second number
9 0005: 12 00 0A LCALL SM_ADD_BY2S

10 ;result in A
11 0008: 80 FE STOP: SJMP STOP
12 ;--
13 000A: SM_ADD_BY2S:
14 000A: A2 E7 MOV C,ACC.7
15 000C: 92 D5 MOV PSW.5,C ;sign of n
16 000E: C0 E0 PUSH ACC
17 0010: 65 F0 XRL A,B
18 0012: A2 E7 MOV C,ACC.7
19 0014: D0 E0 POP ACC
20 0016: 50 22 JNC SIGN_THE_SAME

92 Computer Arithmetic in Practice

21 0018: NOT_THE_SAME:
22 0018: C5 F0 XCH A,B
23 001A: 30 E7 04 JNB ACC.7,POSITIVE_M
24 001D: F4 CPL A
25 001E: 04 INC A
26 001F: B2 D1 CPL PSW.1
27 0021: POSITIVE_M:
28 0021: C5 F0 XCH A,B
29 0023: 30 E7 04 JNB ACC.7,POSITIVE_N
30 0026: F4 CPL A
31 h0027: 04 INC A
32 0028: B2 D1 CPL PSW.1
33 002A: POSITIVE_N:
34 002A: 30 D1 0D JNB PSW.1,SIGN_THE_SAME
35 002D: 25 F0 ADD A,B
36 002F: 30 E7 04 JNB ACC.7,SKIP1
37 0032: B2 E7 CPL ACC.7
38 0034: 80 0E SJMP END
39 0036: SKIP1:
40 0036: F4 CPL A
41 0037: 04 INC A
42 0038: 80 0A SJMP END
43 003A: SIGN_THE_SAME:
44 003A: 25 F0 ADD A,B
45 003C: A2 E7 MOV C,ACC.7
46 003E: 92 D2 MOV OV,C
47 0040: A2 D5 MOV C,PSW.5
48 0042: 92 E7 MOV ACC.7,C
49 0044: END:
50 0044: 22 RET
51 ;--- end of file ---

Subtraction of two SM numbers requires consideration of the sign of both
numbers. One of two cases may occur:

• if the signs of the two numbers differ, then the modulus of the result is
the sum of the moduli of the numbers and the sign of the result is
equal to their sign;

• if the signs of both numbers match, then the module of the result is
determined by subtracting from the module of the larger number the
module of the smaller number and the sign of the result is equal to the
sign of the larger number.

Basic Arithmetic on Fixed-point Numbers 93

These rules are simply illustrated in Table 3.2, where A is the first number,
B the second number, D is the difference, i.e. D = A − B and ‘/’ mark means
the sign inversion.

Example 3.21: Subtraction of two SM numbers:

a. b.
(+ 3)
(5)

+8

DEC

DEC

DEC

00011
1 0101

01000

SM

SM

SM

(3)
(+ 5)

8

DEC

DEC

DEC

1 0011
+ 00101

1 1000

SM

SM

SM

c.
(+ 3)
(+ 5)

2

DEC

DEC

DEC

00011
00101

?

SM

SM A < B

0101
0011

1 0010SM

d.
(5)
(3)

2

DEC

DEC

DEC

1 0101
1 0011

?

SM

SM A > B

0101
0011

1 0010SM

Implementation in code:

• input: A – first number, B – second number,
• output: A – result, OV – result out of the range,
• exemplary value: 10001100SM – 10010011SM.

1 ;***
2 ;* Subtraction of SM numbers *
3 ;***
4 008C n EQU 10001100B ;−12 SM
5 0093 m EQU 10010011B ;−19 SM
6
7 0000: 74 8C MOV A,#n ;first number

Table 3.2 Rules for Subtracting Numbers in the Sign-magnitude

sign of A ≠ sign of B R=|A|+|B|
sign of D = sign of A

sign of A = sign of B if |A| ≥ |B| then:
|D|=|A| – |B|

sign of D = sign of A

if |A|< |B} then:
|R|=|B| – |A|

sign R = /sign of A

94 Computer Arithmetic in Practice

8 0002: 75 F0 93 MOV B,#m ;second number
9 0005: 12 00 0A LCALL SM_SUB

10 ;result in A
11 0008: 80 FE STOP: SJMP STOP
12 ;---
13 000A: SM_SUB:
14 000A: A2 E7 MOV C,ACC.7
15 000C: 92 D5 MOV PSW.5,C ;sign of n
16 000E: C0 E0 PUSH ACC
17 0010: 65 F0 XRL A,B
18 0012: A2 E7 MOV C,ACC.7 ;sign of m
19 0014: 53 F0 7F ANL B,#01111111B ;|m|
20 0017: D0 E0 POP ACC
21 0019: 54 7F ANL A,#01111111B ;|n|
22 001B: 40 18 JC NOT_THE_SAME
23 001D: SIGN_THE_SAME:
24 001D: B5 F0 02 CJNE A,B,SKIP
25 0020: 80 02 SJMP NOT_LESS
26 0022: SKIP:
27 0022: 40 07 JC LESS
28 0024: NOT_LESS:
29 0024: C3 CLR C
30 0025: 95 F0 SUBB A,B
31 0027: A2 D5 MOV C,PSW.5
32 0029: 80 12 SJMP END
33 002B: LESS:
34 002B: C3 CLR C
35 002C: C5 F0 XCH A,B
36 002E: 95 F0 SUBB A,B
37 0030: A2 D5 MOV C,PSW.5
38 0032: B3 CPL C
39 0033: 80 08 SJMP END
40 0035: NOT_THE_SAME:
41 0035: 25 F0 ADD A,B
42 0037: A2 E7 MOV C,ACC.7
43 0039: 92 D2 MOV OV,C
44 003B: A2 D5 MOV C,PSW.5
45 003D: END:
46 003D: 92 E7 MOV ACC.7,C
47 003F: 22 RET
48 ;--- end of file ---

Basic Arithmetic on Fixed-point Numbers 95

This time, the carry-over to the sign bit of the result (the highest bit of the
accumulator) of subtraction of two numbers with different signs means
exceeding the range for single-byte numbers in SM. This case is indicated by
setting the OV flag. The result in the accumulator must be discarded now!

Exercise 3.22: Perform subtraction of SM numbers:

a. b.
1 100
1 111

????

SM

SM

SM

0100
0111

????

SM

SM

SM

c. d.
1 100
0111

????

SM

SM

SM

0100
1 111

????

SM

SM

SM

Multiplication of two SM numbers is performed similarly as to BIN
numbers. The number modules are multiplied, the result bit is calculated as
an XOR function of the number sign bits. The result of single-byte number
multiplication fits into two bytes.

Implementation in code:

• input: A – multiplicand, B – multiplier,
• output: B – higher byte of result, A – lower byte of result,
• exemplary value: 10001100SM ∗ 10010011SM.

1 ;**
2 ;* Multiplication of SM numbers *
3 ;**
4 008C n EQU 10001100B ;−12 SM
5 0093 m EQU 10010011B ;−19 SM
6
7 0000: 74 8C MOV A,#n ;multiplicand
8 0002: 75 F0 93 MOV B,#m ;multiplier
9 0005: 12 00 0A LCALL SM_MUL

10 ;result in {B,A}
11 0008: 80 FE STOP: SJMP STOP
12 ;---
13 000A: SM_MUL:
14 000A: C0 E0 PUSH ACC
15 000C: 65 F0 XRL A,B
16 000E: A2 E7 MOV C,ACC.7

96 Computer Arithmetic in Practice

17 0010: 92 D5 MOV PSW.5,C
18 0012: 53 F0 7F ANL B,#01111111B
19 0015: D0 E0 POP ACC
20 0017: 54 7F ANL A,#01111111B ;|n|
21 0019: A4 MUL AB
22 001A: A2 D5 MOV C,PSW.5
23 001C: 92 F7 MOV B.7,C ;sign of result
24 001E: 22 RET
25 ;--- end of file ---

The division of two SM numbers is done similarly to the division of BIN
numbers. The modules of number are divided and the sign bit of result is
calculated as an XOR function of the sign bits of both numbers. The result
of dividing single-byte numbers consists of a quotient byte and a remainder
byte.

Implementation in code:

• input number: A – dividend, B – divisor,
• output number: A – quotient, B – reminder, OV – division by zero,
• exemplary value: 00010100SM/10010000SM.

1 ;**
2 ;* Division of SM *
3 ;**
4 0014 n EQU 00010100B ;+20 SM
5 0090 m EQU 10010000B ;−16 SM
6
7 0000: 74 14 MOV A,#n ;dividend
8 0002: 75 F0 90 MOV B,#m ;divisor
9 0005: 12 00 0A LCALL SM_DIV

10 ;result in A-quotient
11 ;B-reminder
12 0008: 80 FE STOP: SJMP STOP
13 ;--
14 000A: SM_DIV:
15 000A: C0 E0 PUSH ACC
16 000C: 65 F0 XRL A,B
17 000E: A2 E7 MOV C,ACC.7
18 0010: 92 D5 MOV PSW.5,C
19 0012: 53 F0 7F ANL B,#01111111B ;|m|
20 0015: D0 E0 POP ACC
21 0017: 54 7F ANL A,#01111111B ;|n|
22 0019: 84 DIV AB

Basic Arithmetic on Fixed-point Numbers 97

23 001A: A2 D5 MOV C,PSW.5
24 001C: 92 E7 MOV ACC.7,C ;sign of result
25 001E: 22 RET
26 ;--- end of file ---

An attempt to divide by 0 is signaled by setting the OV flag. The contents of
registers A and B are then meaningless.

3.2.2 Working with 2’s Complement

Compared to other systems for representing signed numbers 2’s comple-
ment has the advantage that the basic arithmetic operations of addition,
subtraction and multiplication are identical to those for unsigned binary
numbers. It is true as long as the inputs are represented in the same number
of bits as the output, and result can be expressed properly in this number of
bits. This property makes the hardware or software implementation sim-
pler, especially for higher-precision arithmetic.

Addition of two 2’s complement numbers is done similarly as for BINs by
adding the sign bits as well. The carry-over bit must be obligatorily discarded.
If the range is exceeded for numbers in 2’s, the processor’s OV flag is set.

In the next example, the carry bit was crossed out and the carry value
from the two highest bits was distinguished, based on which the processor
determines the state of the OV flag.

Example 3.22: Addition of two 2’s numbers:

a. b.

(+7)

+ (4)

+3

DEC

DEC

DEC

(+3)

+ (+6)

+9

DEC

DEC

DEC

0111
+ 1100

1 0011

11

2 s

2 s

2 s

0011
+ 0110

0 1001

01

2 s

2 s

2 s

In case (b), a result was out of the range assuming 4-bit 2’s numbers. To get the
correct result, repeat the operation for 5-bit numbers as below:

b.*

00011
+ 00110

0 01001

00

2 s

2 s

2 s

98 Computer Arithmetic in Practice

Exercise 3.23: Perform addition of 2’s numbers:

a. b.
1001

+ 1111

????

2 s

2 s

2 s

1011
+ 0110

????

2 s

2 s

2 s

Subtraction of two 2’s complement numbers is done similarly as for BINs
by subtracting the sign bits as well. The borrow bit must be obligatorily
discarded. If the range is exceeded for numbers in 2’s, the processor’s OV
flag is set.

In the next example, the borrow bit was crossed out and the borrowed
value from the two highest bits were distinguished, based on which the
processor determines the state of the OV flag.

Example 3.23: Subtraction of two 2’s numbers:

a. b.

(+6)

(2)

+8

DEC

DEC

DEC

(2)
(+5)

7

DEC

DEC

DEC

0110
1110

1 1000

10

2 s

2 s

2 s

1 110
0101

0 1001

00

2 s

2 s

2 s

In case (a), a result was out of the range assuming 4-bit 2’s numbers. To get the
correct result repeat the operation for 5-bits numbers as below:

a.*

0
11

0110
11110

0 01000

2 s

2 s

2 s

Exercise 3.24: Perform subtraction of 2’s numbers:

a. b.
1101
0011

????

2 s

2 s

2 s

0101
1100

????

2 s

2 s

2 s

Basic Arithmetic on Fixed-point Numbers 99

REMEMBER!

If after the addition operation the carry-over or after the subtraction
operation, the borrowings from the two highest bits are different then
the overflow occurred. It means that the result cannot be expressed by the
provided number of bits. The result must be discarded or the operation on
numbers with more bits (at least one extra bit is needed) must be
performed again. The overflow is signaled by the processor by setting its
OV flag.

Multiplication of two 2’s numbers – sign change method – the method
uses the principle of converting every negative number to a positive one (see
chapter 2.4). Then they are multiplied as positive numbers without the sign.
If the original signs of the multiplicand and the multiplier were different,
the sign of the obtained result must be inverted. The method is intuitive and
rather does not require any additional illustration with example. Therefore,
we just present its implementation in the assembly code of the 8051
processor.

Implementation in code:

• input: A – multiplicand, B – multiplier,
• output: B – higher byte of result, A – lower byte of result,
• exemplary value: 111111012’s* 000000112’s.

1 ;***
2 ;* Multiplication of 2’s numbers *
3 ;* Sign change method *
4 ;***
5 00FD n EQU 11111101B ;−3 U2
6 0003 m EQU 00000011B ;+3 U2
7
8 0000: 74 FD MOV A,#n ;multiplicand
9 0002: 75 F0 03 MOV B,#m ;multiplier

10 0005: 12 00 0A LCALL _2SMULSIGNCHANGE
11 ;result in {B,A}
12 0008: 80 FE STOP: SJMP STOP
13 ;--
14 000A: _2SMULSIGNCHANGE:
15 000A: C0 E0 PUSH ACC
16 000C: 65 F0 XRL A,B

100 Computer Arithmetic in Practice

17 000E: A2 E7 MOV C,ACC.7
18 0010: 92 D5 MOV PSW.5,C ;1 if signs are not the same
19 0012: D0 E0 POP ACC
20 0014: 30 E7 02 JNB ACC.7,POSITIVE_N
21 0017: F4 CPL A
22 0018: 04 INC A
23 0019: POSITIVE_N:
24 0019: 30 F7 05 JNB B.7,POSITIVE_M
25 001C: 63 F0 FF XRL B,#0FFh
26 001F: 05 F0 INC B
27 0021: POSITIVE_M:
28 0021: A4 MUL AB
29 0022: 30 D5 0A JNB PSW.5,END
30 0025: F4 CPL A
31 0026: 24 01 ADD A,#1
32 0028: C5 F0 XCH A,B
33 002A: F4 CPL A
34 002B: 34 00 ADDC A,#0
35 002D: C5 F0 XCH A,B
36 002F: END:
37 002F: 22 RET
38 ;--- end of file ---

Multiplication of two 2’s numbers – Robertson’s method – to discuss the
details of this algorithm, we will represent the number B in 2’s in a slightly
different way. Well, if we notice that (3.1):

B = b 2 + b 2 + ... + b 2 + b + b 2 + ... + b 2

= b 2 + b 2 = b 2 + B
~

2 s n 1
n 1

n 2
n 2

1 0 1
1

m
m

n 1
n 1

i= m

n 2

i
i

n 1
n 1

(3.1)

then we obtain Eq. (3.2):

A B = A B
~

b A 2 = pseudoproduct correction2 s 2 s 2 s n 1 2 s
n 1 (3.2)

Here we treat the 2’s numbers as BIN numbers, except that the highest bit
of multiplier is temporarily removed. The result of the multiplication is a
pseudo product needing adjusting by subtracting ‘correction’ value. The
next example illustrates the details of the procedure.

Basic Arithmetic on Fixed-point Numbers 101

Example 3.24 Multiplication of two 2’s numbers with Robertson’s
method:

a) b)

()
()

DEC

DEC

DEC

7
5
35

+
* +

+

()
()

DEC

DEC

DEC

5
6
30

+
* -

-

0 0 1 1 1
0*

2's
~

2's

pseudoproduct

correction

A

0 1 0 1 B
0 0 0 0 1 1 1
0 0 0 0 0 0
0 0 1 1 1
0 1 0 0 0 1 1
0 0 0 0 0 0 0
0 1 0 0 0 1 1

=

=

+

-

0 1 0 1
1*

2's
~

2's

pseudoproduct

correction

A

0 1 0 B
0 0 0 0 0 0
0 0 1 0 1
0 0 0 0

0 0 0 1 0 1 0
0 1 0 1 0 0 0
1 1 0 0 0 1 0

=

=

+

-

c) d)

()
()

DEC

DEC

DEC

4
5
20

-
* +

-

()
()

DEC

DEC

DEC

7
3
21

-
* -

+

1 1 0 0
0*

2's
~

2's

pseudoproduct

correction

A

1 0 1 B
1 1 1 1 0 0
0 0 0 0 0
1 1 0 0

1 1 0 1 1 0 0
0 0 0 0 0 0 0
1 1 0 1 1 0 0

=

=

+

-

1 0 0 1
1*

2's
~

2's

pseudoproduct

correction

A

1 0 1 B
1 1 1 0 0 1
0 0 0 0 0
1 0 0 1

1 0 1 1 1 0 1
1 0 0 1 0 0 0
0 0 1 0 1 0 1

=

=

+

-

The properties of the algorithm give rise to interesting practical indica-
tions. Multiplication of two positive numbers by Robertson’s algorithm is
carried out in the same way as for BIN numbers (see Example 3.24a). In the
case of numbers with different signs, it is convenient to take a number with
a positive sign as the multiplier and a number with a negative sign as the
multiplicand. A disadvantage of the algorithm, which makes its imple-
mentation difficult in software, is the necessity to duplicate the sign bit of all

102 Computer Arithmetic in Practice

the components of the partial sum. Therefore, the MUL instruction of the
processor cannot be used, because the processor fills in the missing values
with zeros. In the examples given, the duplicated sign bits are underlined to
distinguish them. This drawback does not occur in the algorithms of
duplicated sign, Booth’s algorithm [Booth 1950] or the method proposed
by the author of this book [Gryś 2011], called the two-corrections method.
They can be implemented in relatively simple embedded systems equipped
with 8/16-bit microprocessors, which instruction set architecture do not
include a signed multiplication. Representatives of this group of micro-
processors include 8051, Freescale 68HC08 and HCS12, Microchip (for-
merly Atmel) ATtiny, Zilog eZ8core!, STMicroelectronics ST7, Microchip
PIC16/18, Texas Instruments MSP430, NEC 78K0S/0R and others. A
careful analysis of the machine code generated by compilers of high-level
languages, such as C, BASIC, shows that the above methods are commonly
used. For example, the Booth method is recommended by Microchip for
some of its 8/16-bit microcontrollers. The BASCOM compiler for the 8051
family uses the ‘sign conversion method’. The C compiler from Keil uses the
‘sign extension method’.

Exercise 3.25: Perform multiplication of 2’s numbers according to Robertson’s
method:

a. b.
110.1
00.11

????

2 s

2 s

2 s

1001
1100

????

2 s

2 s

2 s

Multiplication of 2’s numbers – sign extension method – double the word
length of each number before performing the multiplication. If the numbers
are of different lengths, then double the length of the longer number is
assumed. The sign bit should be replicated (expanded) to all additional
positions. Next, data prepared this way are multiplied like BIN numbers.
Only the bits equal to the sum of the number of bits of the original mul-
tiplier and the multiplicand are considered. The remaining (higher) bits of
the result must be discarded, as the interpretation of all bits can lead to an
incorrect result.

Basic Arithmetic on Fixed-point Numbers 103

Example 3.25 Multiplication of two 2’s numbers with Sign extension
method:

a) b)

()
()

DEC

DEC

DEC

4
5
20

-
* +

-

()
()

DEC

DEC

DEC

3
2
6

-
* -

+

2's

2's

2's

1 1 1 1 1 1 0 0
0 0 0 0 0 1 0 1
1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0
1 0 0 1 1 1 0 1 1 0 0

*

+

/ // /

2's

2's

2's

1 1 1 1 0 1
1 1 1 1 1 0
0 0 0 0 0 0

1 1 1 1 0 1
1 1 1 1 0 1

1 1 1 1 0 1
1 1 1 1 0 1

1 1 1 1 0 1
1 1 1 0 1 1 0 0 0 1 1 0

*

+

/ / / / // /

The correctness of the method can be proved for numbers of any
length. For the sake of clarity of the argumentation, we shall limit our
consideration to the case of 2-bit numbers without a fractional part. Then
A = a 2 + a2 s 1 0 and B = b 2 + b2 s 1 0. After the sign bits of both num-
bers, a1 and b1 have been replicated to the left, they are symbolically
written in the following way:

a a a a

b b b b

? ? ? ?

1 1 1 0

1 1 1 0

Let’s use the direct multiplication method for BIN numbers, where the
superscript denotes numbers with an extended sign and ‘...’ denotes terms
with weights higher than 23, which are rejected according to the assump-
tions of the method (3.3):

A B = (a 2 + a 2 +a 2 + a) (b 2 + b 2 +b 2 + b)

= ... (a b + a b + 2 a b) 2 + (a b + a b + a b) 2
+ (a b + a b) 2 + a b

2 s
R

2 s
R

1
3

1
2

1 0 1
3

1
2

1 0

1 0 0 1 1 1
3

1 0 0 1 1 1
2

1 0 0 1 0 0

(3.3)

Let us introduce an additional term that does not change the value of the
expression, i.e., (a b + a b) 2 (a b + a b) 21 0 0 1 1 0 0 1 and let us group the
terms according to the weights of the power of 2 as in Eq. (3.4):

104 Computer Arithmetic in Practice

A B = a b 2 (a b + a b) 2 + (a b + a b) 2

+ a b 2 + 2 (a b + a b) 2 (a b + a b) + a b

= (a b + a b) 2 + (a b + a b) 2 + a b 2 (a b + a b) + a b

= a b 2 (a b + a b) + a b

2 s
R

2 s
R

1 1
4

1 0 0 1
3

1 0 0 1
2

1 1
2

1 0 0 1 1 0 0 1 0 0

1 0 0 1
3

1 0 0 1
3

1 1
2

1 0 0 1 0 0

1 1
2

1 0 0 1 0 0

(3.4)

The result is identical to that expected for 2-bit numbers (3.5):

A B = (a 2 + a) (b 2 + b)

= a b 2 (a b + a b) 2 + a b

2 s 2 s 1 0 1 0

1 1
2

1 0 0 1 0 0 (3.5)

The advantage of the algorithm is that it can use the MUL multiplication
instruction of the 8051 processor.

Implementation in code:

• input: A – multiplicand, B – multiplier,
• output: B – higher byte of result, A – lower byte of result,
• exemplary value: 111101002’s ∗ 111110002’s.

1 ;**
2 ;* Multiplication of 2’s numbers *
3 ;* Sign extension method *
4 ;**
5 00F4 n EQU 11110100B ;−12 2‘s
6 00F8 m EQU 11111000B ;−8 2’s
7
8 0000: 74 F4 MOV A,#n ;multiplicand
9 0002: 75 F0 F8 MOV B,#m ;multiplier

10 0005: 12 00 0A LCALL _2SMULSIGNEXT
11 ;result in {B,A}
12 0008: 80 FE STOP: SJMP STOP
13 ;---
14 000A: _2SMULSIGNEXT:
15 000A: F8 MOV R0,A
16 000B: AA F0 MOV R2,B
17 000D: A2 E7 MOV C,ACC.7
18 000F: 92 D5 MOV PSW.5,C
19 0011: 7D 08 MOV R5,#8
20 0013: LOOP:
21 0013: A2 D5 MOV C,PSW.5
22 0015: 33 RLC A
23 0016: DD FB DJNZ R5,LOOP

Basic Arithmetic on Fixed-point Numbers 105

24 0018: F9 MOV R1,A
25 0019: EA MOV A,R2
26 001A: A2 E7 MOV C,ACC.7
27 001C: 92 D5 MOV PSW.5,C
28 001E: 7C 08 MOV R4,#8
29 0020: LOOP1:
30 0020: A2 D5 MOV C,PSW.5
31 0022: 33 RLC A
32 0023: DC FB DJNZ R4,LOOP1
33 0025: FB MOV R3,A
34 0026: E8 MOV A,R0
35 0027: 8A F0 MOV B,R2
36 0029: A4 MUL AB
37 002A: AD F0 MOV R5,B
38 002C: FC MOV R4,A ;R5*R4=R0*R2
39 002D: E9 MOV A,R1
40 002E: 8A F0 MOV B,R2
41 0030: A4 MUL AB ;B*A=R2*R1
42 0031: 2D ADD A,R5
43 0032: FD MOV R5,A
44 0033: E4 CLR A
45 0034: 35 F0 ADDC A,B
46 0036: FE MOV R6,A ;{R6R5R4} bank 0
47 0037: E8 MOV A,R0
48 0038: 8B F0 MOV B,R3
49 003A: D2 D3 SETB RS0 ;bank 1
50 003C: A4 MUL AB
51 003D: AD F0 MOV R5,B
52 003F: FC MOV R4,A ;R5*R4=R0*R2
53 0040: C2 D3 CLR RS0 ;bank 0
54 0042: E9 MOV A,R1
55 0043: 8B F0 MOV B,R3
56 0045: D2 D3 SETB RS0 ;bank 1
57 0047: A4 MUL AB ;B*A=R2*R1
58 0048: 2D ADD A,R5
59 0049: FD MOV R5,A
60 004A: E4 CLR A
61 004B: 35 F0 ADDC A,B
62 004D: FE MOV R6,A ;{R6R5R4} bank 1
63 004E: C2 D3 CLR RS0
64 0050: AB 0E MOV R3,6+8H
65 0052: AA 0D MOV R2,5+8H
66 0054: A9 0C MOV R1,4+8H
67 0056: E9 MOV A,R1
68 0057: 2D ADD A,R5

106 Computer Arithmetic in Practice

69 0058: F5 F0 MOV B,A
70 005A: E5 04 MOV A,4H
71 005C: 22 RET
72 ;--- end of file ---

Note the considerable similarity of the code to the ‘Multiplication of BIN
numbers 2 bytes × 2 bytes’ program described in chapter 3.1.

Please note that the sign extension can also be achieved in a simpler way,
as presented below:

PUSH ACC ;push number on stack
RLC A ;rotate left with C bit; if A<0 then C=1
SUBB A,A ;A-A-C=FFHEX for A<0 and 00HEX for A≥0
POP B ;pop an original number to B register;

;a double-wide number with duplicated sign bit is stored in the pair
;of registers {B-higher, A-lower}.

This can significantly reduce (almost twice) the length of the program code,
as shown below. Implementation in code:

• input number: A – multiplier, B – multiplier,
• output number: B – higher byte of result, A – lower byte of result,
• exemplary value: 11111012’s ∗ 000000112’s.

1 ;**
2 ;* Multiplication of 2‘s numbers *
3 ;* Sign extension method – fast *
4 ;**
5 00FD n EQU 11111101B ;−3 2’s
6 0003 m EQU 00000011B ;+3 2’s
7
8 0000: 74 FD MOV A,#n ;multiplicand
9 0002: 75 F0 03 MOV B,#m ;multiplier

10 0005: 12 00 0A LCALL _2SMULSIGNEXTFAST
11 ;result in {B,A}
12 0008: 80 FE STOP: SJMP STOP
13 ;--
14 000A: _2SMULSIGNEXTFAST:
15 000A: F8 MOV R0,A ;n
16 000B: AA F0 MOV R2,B ;m
17 000D: 33 RLC A
18 000E: 95 E0 SUBB A,ACC ;ext_n
19 0010: F9 MOV R1,A
20 0011: E5 F0 MOV A,B

Basic Arithmetic on Fixed-point Numbers 107

21 0013: 33 RLC A
22 0014: 95 E0 SUBB A,ACC ;ext_n
23 0016: FB MOV R3,A ;ext_m
24 0017: E8 MOV A,R0
25 0018: A4 MUL AB
26 0019: FC MOV R4,A ;LSB(n*m)
27 001A: AD F0 MOV R5,B ;MSB(n*m)
28 001C: E8 MOV A,R0
29 001D: 8B F0 MOV B,R3
30 001F: A4 MUL AB
31 0020: FE MOV R6,A ;LSB(ext_m*n)
32 0021: EA MOV A,R2
33 0022: 89 F0 MOV B,R1
34 0024: A4 MUL AB ;LSB(m*ext_n)
35 0025: 2E ADD A,R6
36 0026: 2D ADD A,R5
37 0027: F5 F0 MOV B,A
38 0029: EC MOV A,R4
39 002A: 22 RET
40 ;--- end of file ---

Exercise 3.26: Perform multiplication of 2’s numbers according to ‘sign
extension method’:

a. b.
1101
0011

????

2 s

2 s

2 s

0.11
10.0

???

2 s

2 s

2 s

Multiplication of 2’s numbers – Booth method – the operation of the
algorithm can be represented as follows:

1. Clear the higher part of the result and the carry bit.
2. Assign a multiplier to the lower part of the result.
3a. If the previous lowest multiplier bit (shifted to the carry bit) is one,

add the multiplier to the higher part of the result.
3b. If the current lowest multiplier bit is one, subtract the multiplier

from the higher part of the result.
4. Move the lower part of the result/multiplier to the right, the outgoing

bit is hold in carry bit.
5. Shift to the right the higher part of the result with the sign bit

unchanged (the highest bit), the outgoing bit is written into the
position of the higher bit of the lower part of the result/multiplier.

108 Computer Arithmetic in Practice

6. Repeat from step 3 for all bits of the multiplier.

The given rules are used in Example 3.26.

Example 3.26 Multiplication of two 2’s numbers with Booth’s method:

a. b.

1101
0011

0000001{10}

1101
0011001{10}
0001100{1 1 }

+ 0000110{0 1 }
1101

1101110{0 1 }
1110111{00}

11110111

2 s

2 s

2 s

101
110

00011{00}

00001{10}
101

01101{10}
00110{1 1 }

0001101

2 s

2 s

2 s

In this example shown, the multiplier bits are successively replaced by the
bits of the lower part of the result by right shifting the multiplication result.
The pair of bits, i.e. the current and the previous multiplier bit (stored in the
carry bit), is enclosed in brackets {...}, with the carry bit additionally
underlined. You can see that the algorithm works by repeatedly shifting
(the number of times from 3 to 6 is equal to the number of multiplier bits)
the multiplication result, originally composed of zeros and a multiplier, and
adding the multiplier to the older part of the result if we have {01}, or
subtracting the multiplier from the older part of the result if we have {10}. A
modification of the method, known as ‘radix-4 Both’, was presented in
[McSorley 1961]. There are also variants of it for numbers in the comple-
ment code up to 1, or modulo 2n − 1 [Efstathiou 2000]. Other authors
propose to take higher values of the system basis p = 4 and p = 8 [Cherkauer
1996] and p = 32 or p = 256 [Seidel 2001]. All these variations are based on
bit group analysis just like the original method [Booth 1950], whose deri-
vation we will cite after [Pochopień 2012]. Let us represent one of the
numbers in the form (3.6):

B = b 2 + b 2 + ... + b 2 + b + b 2 + ... + b 22 s n 1
n 1

n 2
n 2

1 0 1
1

m
m

(3.6)

then (3.7)

Basic Arithmetic on Fixed-point Numbers 109

A B = A (b 2 + b 2 + ... + b 2

+ b + b 2 + ... + b 2)

2 s 2 s U2 n 1
n 1

n 2
n 2

1

0 1
1

m
m (3.7)

From the below observation (3.8):

2 2 = 2 + 2 = 21 i i i i+1 (3.8)

and thus (3.9):

2 = 2 2i i+1 i (3.9)

Let’s replace 2i by the term (2i+1 − 2−i) in the expression for the result of
multiplication. We obtain (3.10):

A B = A
b (2 2) + b (2 2) + b

(2 2) + ... +b (2 2)
2 s 2 s 2 s

n 1
n n 1

n 2
n 1 n 2

n 3

n 2 n 3
m

m+1 m
(3.10)

or its equivalent form (3.11):

A B = A (2 (b + b) + 2 (b + b)

+ ... + 2 (b + b))

2 s 2 s 2 s
n 1

n 1 n 2
n 2

n 2 n 3

m
m m 1 (3.11)

Now we have (3.12):

A B = (2 (b + b) A + 2 (b + b)

A + ... + 2 (b + b) A)

2 s 2 s
n 1

n 1 n 2 U2
n 2

n 2 n 3

U2
m

m m 1 2 s (3.12)

and finally (3.13):

A B = 2 (b + b) A2 s 2 s
i=n 1

m
i

i i 1 2 s (3.13)

The multiplication is done by repeated summation of partial products, i.e.
the first number A by the weighted difference of two adjacent bits of the
multiplier. Depending on their combination, the term (bi − bi−1) vanishes for
the same values of bits {00} or {11} is added to the current value of result for
{01} or subtracted for the combination {10}. It is worth remembering that
the algorithm has one limitation, namely, it returns an incorrect multipli-
cation result for multiplicand of value 10...02’s!

110 Computer Arithmetic in Practice

Implementation in code:

• input: A – multiplicand, B – multiplier,
• output: B – higher byte of result, A – lower byte of result, OV – out of

the range caused by using prohibited multiplicand value 10 … 0B,
• exemplary value: 111111012’s ∗ 000000112’s.

1 ;**
2 ;* Multiplication of 2’s numbers *
3 ;* Booth method *
4 ;**
5 00FD n EQU 11111101B ;−3 2‘s
6 0003 m EQU 00000011B ;+3 2’s
7
8 0000: 74 FD MOV A,#n ;multiplicand
9 0002: 75 F0 03 MOV B,#m ;multiplier

10 0005: 12 00 0A LCALL _2SMULBOOTH
11 ;result in {B,A}
12 0008: 80 FE STOP: SJMP STOP
13 ;--
14 000A: _2SMULBOOTH:
15 000A: B4 80 03 CJNE A,#80h,MULTIPLY
16 000D: D2 D2 SETB OV
17 000F: 22 RET
18 0010: MULTIPLY:
19 0010: 7A 08 MOV R2,#8
20 0012: C3 CLR C
21 0013: F8 MOV R0,A
22 0014: E4 CLR A
23 0015: LOOP:
24 0015: 50 01 JNC SKIP
25 0017: 28 ADD A,R0
26 0018: SKIP:
27 0018: 30 F0 02 JNB B.0,SKIP1
28 001B: C3 CLR C
29 001C: 98 SUBB A,R0
30 001D: SKIP1:
31 001D: A2 E7 MOV C,ACC.7
32 001F: 13 RRC A
33 0020: C5 F0 XCH A,B
34 0022: 13 RRC A
35 0023: C5 F0 XCH A,B
36 0025: DA EE DJNZ R2,LOOP
37

Basic Arithmetic on Fixed-point Numbers 111

38 0027: C5 F0 XCH A,B
39 0029: 22 RET
40 ;--- end of file ---

Exercise 3.27: Perform multiplication of 2’s numbers according to Booth
method:

a. b.
1101
0011

????
s

2 s

2

2 s

011
100

???

2 s

2 s

2 s

Multiplication of 2’s numbers – two corrections method (proposed by the
author of this book) – let us start by deriving the theoretical basis of how the
method works. Let A and B denote sign numbers in the two’s complement
code, consisting of n bits in the integer part and m in the fractional part. The
number of bits of A and B in the general case may differ, hence A(n1, m1) and
B(n2, m2). The values of the numbers are defined as follows (3.14):

A = a 2 + a 2 = a 2 + Ã

B = b 2 + b 2 = b 2 + B̃

2 s n1 1
n1 1

i= m1

n1 2

i
i

n1 1
n1 1

2 s n2 1
n2 1

i= m2

n2 2

i
i

n2 1
n2 1

(3.14)

The symbols Ã and B̃ represent the positive component of the numbers A and B.
Using the above symbols, the product of these numbers can be written (3.15):

A B = (a 2 + Ã) (b 2 + B̃)

= a 2 b 2 +a 2 B̃ + b 2 Ã

+ Ã B̃ 2 b 2 Ã 2 a 2 B̃

= A B b 2 Ã a 2 B̃
= pseudoproduct (correction_A + correction_B)

2 s 2 s n1 1
n1 1

n2 1
n2 1

n1 1
n1 1

n2 1
n2 1

n1 1
n1 1

n2 1
n2 1

n2 1
n2 1

n1 1
n1 1

BIN BIN n2 1
n2

n1 1
n1

(3.15)

The multiplication result is calculated in two steps. In the first step, the
multiplied numbers are treated as binary unsigned numbers. Such a prelimi-
nary result of multiplication is called, like in Robertson’s method, a ‘pseudo
product’. If the multiplied numbers are positive signs, it becomes the multi-
plication result and operation is completed. In other cases, one or two cor-
rections called ‘correction_A’ and/or ‘correction_B’ respectively are necessary.
These are calculated as the product of the three components (3.16):

112 Computer Arithmetic in Practice

correction_A = b 2 Ã

correction_B = a 2 B̃
n2 1

n2

n1 1
n1

(3.16)

The operation of the method is illustrated by a numerical example.

Example 3.27: Determine the product of the numbers A and B expressed in
terms of the least number of bits.

a) A=-8DEC B=-3DEC b) A =-3.5DEC B=+1.5DEC

Solution Solution

A =10002’s B=1012’s A =100.12’s B=01.102’s

n1=4 m1=0 n2=3 m2=0 =3 m1=1 2=2 m2=2

2's

2's

2's

1 0 0 0 A
* 1 0 1 B

1 0 0 0
0 0 0 0

1 0 0 0
1 0 1 0 0 0 pseudoproduct
0 0 0 0 0 0 correction_A
0 1 0 0 0 0 correction_B
0 1 1 0 0 0

=
=

+

=
- =
- =

2's

2's

2's

1 0 0. 1 A
* 0 1. 1 0 B

0 0 0 0

1 0 0 1

1 0 0 1

0 0 0 0

0 1 1 0. 1 1 0 pseudoproduct
0 0 0 0. 0 0 0 correction_A
1 1 0 0. 0 0 0 correction_B
1 0 1 0. 1 1 0

=

=

+

=
- =
- =

n n1

In practical applications the multiplied numbers are usually stored in the
processor memory as numbers of the same format, so n1 = n2 = n and m1 =
m2 = m. The equation for their multiplication then takes a simplified
form (3.17):

A B = (a 2 + Ã) (b 2 + B̃) = A B 2

(b Ã + a B̃)

2 s 2 s n 1
n 1

n 1
n 1

BIN BIN
n

n 1 n 1 (3.17)

The required number of bits of the multiplication result is equal to 2∗(n + m)
if each of the multiplied numbers is of size n + m. The correction of pseudo
product (conditional subtraction dependent on the signs of A and B) are
performed only on the higher part of the ‘pseudo product’, since the last term
b Ã + a B̃n 1 n 1 is scaled by a factor of 2n. Another possible reduction in the
complexity of the algorithm requires consideration of combinations of
number signs. As noted earlier, if A and B are positive numbers the pseudo

Basic Arithmetic on Fixed-point Numbers 113

random corrections are not needed. On the other hand, if the numbers are of
different signs, then one of the two corrections must be performed. The
following features of a real processor: fixed length of registers word, auto-
matic filling with zero of the leading bits of registers (conventionally from the
left), allow to further reduction of the complexity of the method, in the
context of its efficient implementation. Note additionally that the highest bit
of a positive number in the code of additions to 2 is zero, then Ã = A and
B̃ = B. As a consequence of this, they can be replaced by A and B in the
expressions for ‘correction_A’ and ‘correction_B’ as (3.18):

A B = A B 2 (b A + a B)2 s 2 s BIN BIN
n

n 1 n 1 with some assumptions (3.18)

This situation is shown in Example 3.28, which highlights the bits auto-
matically filled with zeros by the processor.

Example 3.28: Multiply the numbers A and B assuming n = 3 and m = 1. Let A =
−3.5DEC and B = 3.0DEC.

Performing calculations according to both relations (3.17) and (3.18), we
obtain an identical result, as expected. The above modification is valid also
in the case when both numbers are negative. This can be proved by the
following observation. Namely, if the borrowing bit from the highest
position of the result is discarded then it is true that (3.19)

bit 0 0 = bit 1 1 = bit (3.19)

Solution

A =100.12’s B =011.02’s

a) according to Eq. (3.17) b) according to Eq. (3.18)

2's

2's

2's

1 0 0. 1 A
* 0 1 1. 0 B

0 0 0 0
1 0 0 1

1 0 0 1
0 0 0 0

0 0 1 1 0 1. 1 0 pseudoproduct
0 0 0 0 0 0. 0 0 correction_A
0 1 1 0 0 0. 0 0 correction_B
1 1 0 1 0 1. 1 0

=
=

+

=
- =
- =

2's

2's

2's

1 0 0. 1 A
* 0 1 1. 0 B

0 0 0 0
1 0 0 1

1 0 0 1
0 0 0 0

0 0 1 1 0 1. 1 0 pseudoproduct
0 0 0 0 0 0. 0 0 correction _ A
0 1 1 0 0 0. 0 0 correction _ B
1 1 0 1 0 1. 1 0

=
=

+

=
- =
- =

114 Computer Arithmetic in Practice

Example 3.29 shows the principle of the proposed method precisely in the
case of both negative numbers. As before, the correct result is obtained both
by calculating the product according to formula (3.17) and (3.18).

Example 3.29: Multiply the numbers A and B assuming n = 4 and m = 0. Let
A = −6DEC and B = −3DEC.

Solution

Implementation in code:

• input: A – multiplicand, B – multiplier,
• output: B – higher byte of result, A – lower byte of result,
• exemplary value: 111111012’s ∗ 000000112’s.

1 ;***
2 ;* Multiplication of 2‘s numbers *
3 ;* Two corrections method (proposed by Grys) *
4 ;***
5 00FD n EQU 11111101B ;−3 2’s
6 0003 m EQU 00000011B ;+3 2’s
7
8 0000: 74 FD MOV A,#n ;multiplicand
9 0002: 75 F0 03 MOV B,#m ;multiplier

Solution

A =10102’s B =11012’s

a) according to Eq. (3.17) b) according to Eq. (3.18)

2's

2's

2's

1 0 1 0 A
* 1 1 0 1 B

1 0 1 0

0 0 0 0
1 0 1 0

1 0 1 0
1 0 0 0 0 0 1 0 pseudoproduct
0 0 1 0 0 0 0 0 correction_A
0 1 0 1 0 0 0 0 correction_B
0 0 0 1 0 0 1 0

=
=

+

=
- =
- =

2's

2's

2's

1 0 1 0 A
* 1 1 0 1 B

1 0 1 0
0 0 0 0

1 0 1 0
1 0 1 0

1 0 0 0 0 0 1 0 pseudoproduct
1 0 1 0 0 0 0 0 correction_A
1 1 0 1 0 0 0 0 correction_B
0 0 0 1 0 0 1 0

=

=

+

=
- =
- =

Basic Arithmetic on Fixed-point Numbers 115

10 0005: 12 00 0A LCALL _2SMULGRYS
11 ;result in {B,A}
12 0008: 80 FE STOP: SJMP STOP
13 ;--
14 000A: _2SMULGRYS:
15 000A: F5 20 MOV 20h,A
16 000C: 85 F0 21 MOV 21h,B
17 000F: A4 MUL AB ;C=0
18 0010: C5 F0 XCH A,B
19 0012: 30 07 02 JNB 20h.7,POSITIVE_N
20 0015: 95 21 SUBB A,21h
21 0017: POSITIVE_N:
22 0017: 30 0F 03 JNB 21h.7,POSITIVE_M
23 001A: C3 CLR C
24 001B: 95 20 SUBB A,20h
25 001D: POSITIVE_M:
26 001D: C5 F0 XCH A,B
27 001F: 22 RET
28 ;--- end of file ---

By comparing the proposed method with other multiplication methods,
based on their properties and code analysis, its advantages and dis-
advantages can be identified. The detailed discussion on comparison was
presented in [Gryś 2011]. Here, we recall the general features. Advantages
of the ‘two corrections’ method and its implementation in assembly code as
presented above are as follows:

• It works correctly for A = 10...0 unlike Booth’s method.
• Does not work in a loop, hence execution time does not depend on

word length.
• The smallest code size (the smallest occupation of program memory).
• The shortest execution time (the fastest method).
• Smaller register occupancy compared to the extended sign method.

Disadvantages of the proposed ‘two correction’ method and its
implementation:

• for negative numbers one or two corrections of the result are required;
• the processor instruction list must include the unsigned multiplication

operation (otherwise it must be emulated by software);
• execution time (measured in processor cycles) is variable and depends

on the sign combinations of the numbers, contrary to the extended
sign method.

116 Computer Arithmetic in Practice

Division of two 2’s numbers is complicated. An example of one of possible
algorithm is discussed in [Pochopień 2012]. In practice, it is more convenient
to convert negative 2’s numbers into their positive counterparts, perform the
division as BIN numbers, and in the case of different original signs of the
numbers finally convert the result back into a negative 2’s number. The rel-
evant algorithms were presented in the previous chapters 2.4 and 3.1.1.

Exercise 3.28*: Write a subroutine for division of 2’s numbers by changing the
signs.

3.3 NONLINEAR FUNCTIONS

In many applications not only related to the academic research or en-
gineering, we need using various functions, e.g. trigonometric and hyper-
bolic functions, exponent, logarithms, power, square and less often n-th
order root, etc. Let’s consider some examples of a nonlinear function
lending itself to a real-world scenario. In what situations we need, e.g.,
trigonometric function as well? Please think about drawing a circle or
rotating geometrical figures with assumed angle. It is presented in computer
graphics and animation. The hyperbolic cosine is a function used to
describe mathematically the shape of a dangling electric power line or rope
suspended at the ends. The hyperbolic functions are used to describe the so
called ‘hyperbolic motion’ in relativistic physics. Logarithm and exponent
are useful in electrical engineering during analysis of the DC circuits in
transient state or AC circuits in electrical power production and distribu-
tion system. An example in biology is exponential growth of a bacterial
colony. The logarithmic scale is very common in techniques like: acoustics –
sound level in dB, pH for acidity. Richter magnitude scale and moment
magnitude scale for strength of earthquakes and movement in the Earth are
based on logarithm also. The exponentiation, particularly raising to power
is very common. Good examples are kinetic energy, moment of inertia
formulas taught even at early education level. What about the square root?
It is used in electrical engineering again to express the ration between
amplitudes of voltages in one- and three-phase electrical networks. We can
see it working with geometric and harmonic mean, staying familiar with
basic physic at school, e.g. pendulum – dependence of the oscillation period
on the amplitude, also it is used in the logistics management and many,
many others. There are no doubts that after a moment’s of thought prob-
ably anybody can propose different examples of functions applied in many
disciplines of science, engineering, education and normal life. These above
mentioned functions are usually strongly nonlinear and cannot be calcu-
lated directly by simple processor with limited arithmetic capabilities even if
we assume that we are able to work with fractions as shown in previous
material discussed in this chapter. Nonlinear functions can be computed by

Basic Arithmetic on Fixed-point Numbers 117

its approximation engaged four basic operations only, lookup table, itera-
tive operations in the loop or conditional pieces of code related to the value
of input argument – piecewise approximation.

For integer input numbers, required function can be approximated by
pair of points {input number, function value} and tabled. As an example of
this fundamental method, the square root function was selected in below
listing. The expected values are located in table section (after label named
TABLE:) after simple code. For simplicity only initial part of table was
prepared for numbers from subrange <0,5>. There is no problem extending
table for full scale <0,255>.

Implementation in code:

• input: A – number (must be integer),
• output: R0 – integer part of result, A – fractional part of result,
• exemplary value: sqrt(00000010BIN) = 00000001P-BCD,

01000001P-BCD.

1 ;**
2 ;* Square root by LUT *
3 ;**
4 0003 n EQU 00000011B ;+3 BIN
5
6 0000: 74 03 MOV A,#n
7 0002: 12 00 07 LCALL SQRT_LUT
8 ;result in R0-integer
9 ;R1-fraction

10
11 0005: 80 FE STOP: SJMP STOP
12 ;--
13 0007: SQRT_LUT:
14 0007: 90 00 15 MOV DPTR,#TABLE
15 000A: 23 RL A ;multiply by 2 (address

adjusted)
16 000B: F5 F0 MOV B,A
17 000D: 93 MOVC A,@A+DPTR
18 000E: F8 MOV R0,A
19 000F: E5 F0 MOV A,B
20 0011: 04 INC A
21 0012: 93 MOVC A,@A+DPTR
22 0013: F9 MOV R1,A
23 0014: 22 RET
24 0015: TABLE:;two bytes in P-BCD

format, e.g. sqrt(2)=1.41
25 0015: 00 00 DB 00000000B,00000000B ;for 0

118 Computer Arithmetic in Practice

26 0017: 01 00 DB 00000001B,00000000B ;for 1
27 0019: 01 41 DB 00000001B,01000001B ;for 2
28 001B: 01 73 DB 00000001B,01110011B ;for 3
29 001D: 02 00 DB 00000010B,00000000B ;for 4
30 001F: 02 24 DB 00000010B,00100100B ;for 5
31 ; etc.
32 ; DB...
33 ;--- end of file ---

Exercise 3.29: What should be modified in above listing if we need result as
BIN numbers or greater fraction precision?

Different approach for square root function was applied below using
known observation. If the result can be limited to integer part only, e.g.
n = 11 and sqrt(n) = 3 or n = 26 and then sqrt(n) = 5, we can construct
rolling algorithm. We are summing up only odd numbers starting from
1 like this i = 1, 3, 5, 7, … and sum = 1 + 3 + 5 + 7 + … until we get first time
the condition sum > n. Hence, integer approximation of sqrt(number) =
i − 1/2. For easier understanding this rule and implementation in assembly
code the some simple calculations are provided in Table 3.3.

Implementation in code:

• input: A – number (must be integer),
• output: A – integer part of result,
• exemplary value: sqrt(00001011BIN) = 00000011BIN.

1 ;***
2 ;* Square root by addition *

Table 3.3 Explanation How to Estimate Square Root of n

n sqrt(n) Sum last i Approx. of sqrt(n)
= (i − 1)/2

0 0.00 (1 = 1) > 0 1 0
1 1.00 (1 + 3 = 4) > 1 3 1
2 1.41 (1 + 3 = 4) > 2 3 1
3 1.73 (1 + 3 = 4) > 3 3 1
4 2.00 (1 + 3 + 5 = 9) > 4 5 2

…
11 3.32 (1 + 3 + 5 + 7 = 16) > 11 7 3
…
16 4.00 (1 + 3 + 5 + 7 + 9 = 23) > 16 9 4

Basic Arithmetic on Fixed-point Numbers 119

3 ;***
4 000B n EQU 00001011B ;+11 BIN
5
6 0000: 74 0B MOV A,#n
7 0002: 12 00 07 LCALL SQRT_ITER
8 ;result in A-integer part only
9 ;truncation

10 0005: 80 FE STOP: SJMP STOP
11 ;--
12 0007: SQRT_ITER:
13 0007: F8 MOV R0,A
14 0008: 74 FF MOV A,#0FFH ;i=−1
15 000A: 75 F0 00 MOV B,#0 ;sum
16 000D: C0 E0 PUSH ACC
17 000F: LOOP:
18 000F: D0 E0 POP ACC
19 0011: 04 INC A
20 0012: 04 INC A ;1..3..5..etc
21 0013: C0 E0 PUSH ACC
22 0015: 25 F0 ADD A,B ;sum=sum+i
23 0017: 60 09 JZ SKIP ;for n>225
24 0019: F5 F0 MOV B,A
25 001B: B5 00 02 CJNE A,0,NOT_EQUAL ;R0 has address 0
26 001E: 80 EF SJMP LOOP
27 0020: NOT_EQUAL:
28 0020: 40 ED JC LOOP
29 0022: D0 E0 SKIP: POP ACC
30 0024: 14 DEC A
31 0025: 03 RR A ;sqrt(n)=(i-1)/2
32 0026: 22 RET
33 ;--- end of file ---

There exist other methods for square approximation, e.g. based on initial
estimate, Heron’s, Bakhashali, exponential, digit-by-digit method or Taylor
series. So far we have shortly discussed simple methods of evaluation of
square root as an example of nonlinear functions. These methods were
adapted for fixed-point format and limited to integer argument only. Some
further questions may arise here even if we continue considerations for fixed-
point format. How to deal with input argument being a real number? What
about the other functions except square root, e.g. trigonometric or loga-
rithms? Do we really have to look for individual methods of approximation
or is there any universal technique for precise and quick function evaluation?
Luckily there is a way to do that. It is named CORDIC proposed many years
ago by Jack Volder [Volder 1959] and commonly applied nowadays. The
CORDIC abbreviation is from ‘coordinate rotation digital computer’.

120 Computer Arithmetic in Practice

The sine and cosine of an angle θ are determined by rotating the unit
vector [1, 0] through decreasing angles until the cumulative sum of the
rotation angles equals the input angle. The x and y Cartesian components
of the rotated vector then correspond, respectively, to the cosine and sine of
θ. Inversely, the angle of a vector [x, y], corresponding to arctangent (y/x),
is determined by rotating [x, y] through successively decreasing angles to
obtain the unit vector [1, 0]. The cumulative sum of the rotation angles
gives the angle of the original vector. The CORDIC algorithm can also be
used for calculating hyperbolic functions by replacing the successive cir-
cular rotations by steps along a hyperbola. Thanks to this idea computers
can calculate the following functions: cosine (cos(x)), sine (sin(x)),
atan2(y,x), modulus i.e. sqrt(x2+y2), arctangent (tan−1(x)), hyperbolic sin
(sinh(x)), hyperbolic cosine (cosh(x)) and hyperbolic arctangent (atanh(x)).
If needed, the other functions can be evaluated from known identities like
below, e.g.:

tanh(x) = sinh(x)/cosh(x)
coth(x) = 1/tanh(x)
arccoth(z) = ½ ln((z + 1)/(z 1))
ln(x) = 2 atanh((x + 1)/(x 1))
log10(x) = log 10(e) ln(x) = 0.434294482 ln(x)
exp(a) = sinh(a) + cosh(a)

From the algorithmic point of view, the CORDIC can be seen as a sequence
of micro rotations, where the vector XY is rotated by an angle θ expressed
in radians. The algorithm foundations will be cited after [Vitali 2017].
Remembering that tan(θ) = sin(θ)/cos(θ) and applying the known in computer
graphics the affine transformation for rotation we obtain as following (3.20):

X = cos() X sin() Y = cos() [X tan() Y]
Y = sin() X + cos() X = cos() [tan() X + Y]

n+1 n n n n

n+1 n n n n

(3.20)

For simplification needed calculations, the rotation angle is chosen so that
the tan(θ) coefficient is a power of 2. Therefore the multiplication is
replaced with bit shift to the right realized easy by microprocessor
instruction. If the components are scaled by F = 1/cos(θ), which is the
CORDIC gain, the formula for the rotation is reduced indeed to only bit
shifts and additions (3.21):

X F = [X Y /2]
Y F = [X /2 + Y]

n+1 n n n
n

n+1 n n
n

n
(3.21)

Basic Arithmetic on Fixed-point Numbers 121

The CORDIC algorithm can work in circular of hyperbolic modes. To keep
the text readable, we will show in more details the circular mode only. The
elementary rotation angle is then θn = atan(2−n). The corresponding scaling
factor for n-th step is Fn = 1/cos(θn) = sqrt(1 + 2−2n). In the first iteration
n = 0, vector is rotated 45° counterclockwise to get the updated vector.
Successive iterations rotate the vector in one or the other direction by size-
decreasing steps, until the desired angle has been achieved. As only all shifts
and adds are done for all assumed iteration, the final output vector com-
ponents X and Y are scaled by the factor F. It is a multiplication of all 1/Fn

and its value depends on number of iterations. For most ordinary purposes,
40 iterations (n = 40) is sufficient to obtain the correct result of calculated
function to the 10th decimal place and F = 0.607252935008881. The
CORDIC algorithm can also be used for calculating hyperbolic functions
(sinh, cosh, atanh) by replacing the circular rotations by hyperbolic angles
atanh(2−j), where j = 1, 2, 3, ..., n then F = 1.20513635844646.

Because the CORDIC implementation done in assembly language for
8051 CPU would be extensive and probably not readable, only one in this
place of this book, we decided to present it in a high-level language, i.e.
Matlab/GNU Octave as below. It is a simplified version of a code available
in Wikipedia article [Wiki 2022] adapted to above theoretical considera-
tions and symbols.

% We compute v = [cos(beta), sin(beta)] (beta in radians)using n iterations.
beta=beta∗10000;
% Initialization of tables of constants used by CORDIC need a table
% of arctangents of negative powers of two, in radians:
% angles = atan(2.^-(0:23)); % but we will use approximated values
instead
angles = [7854 4636 2450 1244 624 312 156 78 39 20 10 5 2 1 1];
% and a table of products of scaling factors Fn:
% Fn = cumprod(sqrt(1 + 2.^(−2∗(0:23)))) % because 45/2 = 23

Fn = [1414 1581 1629 1642 1646 1646 1647 1647];
Fn(9:23)= 1648;

F = 1/Fn(n)∗1000;

% Initialize loop variables:
v = [1;0]; % start with two-vector cosine and sine of zero
poweroftwo = 1; % because 2^0=1
angle = angles(1);
% Iterations
for j = 0:n−1;

if beta < 0
dir = −1;

122 Computer Arithmetic in Practice

else
dir = 1;

end
factor = dir ∗ poweroftwo;
R = [1, -factor; factor, 1];
v = R ∗ v; % 2-by-2 matrix multiply
beta = beta - dir ∗ angle; % update the remaining angle
poweroftwo = poweroftwo / 2;
angle = angles(j+2);

end
% Adjust length of output vector to be [cos(beta), sin(beta)]:
v = v ∗ F;
% ------- end of code ----------

We performed some test, and in Figure 3.1 we compare values of sin()
and cos() functions evaluated using above cod with ideal shapes for n = 8.
Some imperfections are visible. Increasing n parameter will increase the
precision.

For n > 10 would be hard to see differences because the maximal error
related to maximal amplitude value os sin/cos decreases rapidly, as shown
in Figure 3.2. It refers to cosine function too.

For further reading on fixed-point arithmetic, we can recommend selected
papers and books [Baer 2010, Flores 1962, Hwang 1979, Koren 1993,
Kulisch 2012, Mano 1993, Mano 2008, Omondi 1994, Parhami 2010,

Figure 3.1 Functions avaluated by CORDIC algorithm vs. perfect sin/cos function shapes.

Basic Arithmetic on Fixed-point Numbers 123

Pochopień 2012, Richards 1955, Schmid 1979 and Swartzlander 2015]. In
Chapters 4 and 5, we talk about floating-point format being a very effective
way to express real numbers in the ‘world of computers’. As we will see the
user is practically not limited in number range and precision that sound good
and would satisfy even very demanding computer users as microphysics
scientists, astronomers and engineers.

Figure 3.2 Maximal error of sinus evaluation by CORDIC algorithm.

124 Computer Arithmetic in Practice

Chapter 4

Numbers in Floating-point Format

The number A is written in (n + m) digits with base p, where n is the
number of digits of the mantissa M, m is the number of digits of the
characteristic (exponent) E (Figure 4.1).

Please note the different format of the above bit field compared to the
fixed-point format. The term ‘floating-point’ emphasizes the possibility of
expressing the same value of a number using different combinations of
mantissa and exponent, as shown in Example 4.1. In the following section,
we will assume p = 2, considering only binary systems.

Example 4.1: Decimal number 2.5DEC expressed as BIN using 8 bits:

• in fixed-point format 0010.1000
• in floating-point format 0.10100E10 = 0.10100∗p10,

or 0.0101E011 = 0.0101∗p011, where p = 2 – radix, etc.

4.1 NON-NORMALIZED NUMBERS

From a practical point of view, it is important to adopt a convention for
interpreting bit-field values such that signed numbers can be stored. In
principle, there is no barrier obstacle to, for example, expressing the
mantissa in the 2’s complement code and the exponent in the sign-
magnitude. If one restricts consideration solely to these two most com-
monly used forms of writing numbers with sign, four combinations are
obtained (4.1):

Figure 4.1 A floating-point format of number.

DOI: 10.1201/9781003363286-4 125

https://doi.org/10.1201/9781003363286-4

A = M 2 or A = M 2 or M 2 or M 22’s
E

2’s
E

SM
E

SM
ESM 2’s 2’s SM (4.1)

Assuming that the mantissa is a fraction and the exponent an integer, the
following rules for determining their values can be adopted (4.2):

M = (1) (a 2 + ... +a 2) = (1) a 2SM
ã

1
1

(n 1)
(n 1) ã

i= 1

(n 1)

i
i0 0 (4.2a)

E = (1) (a 2 + ... +a 2 + a) = (1) a 2SM
a

m 2
m 2

1 0
a

i=0

m 2

i
im 1 m 1 (4.2b)

M = ã + a 2 + ... +a 2 = ã + a 22’s 0 1
1

(n 1)
(n 1)

0
i= 1

(n 1)

i
i (4.2c)

E = a 2 + a 2 + ... +a 2 + a

= a 2 + a 2

2’s m 1
m 1

m 2
m 2

1 0

m 1
m 1

i=0

m 2

i
i (4.2d)

The mantissa lies in the range −(1 – 2−(n–1)) ≤ MSM ≤ 1 – 2−(n–1) for the SM
sign-magnitude format and, respectively, −1 ≤ M2’s ≤ 1 – 2−(n–1) for the 2’s
notation. Zero has two representations −0 and +0. Let’s list the smallest and
largest mantissa values:

• the smallest negative: 1 .11...1SM = –(1 – 2–(n–1)) 1.00...02’s = –1,
• the largest negative: 1 .00...0SM = –0 1.11...12’s = –2–(n–1),

• the smallest positive: 0 .00...0SM = +0 0.00...02s = +0,
• the largest positive: 0 .11...1SM = 1 – 2–(n–1) 0.11...12’s = 1 – 2–(n–1).

The exponent lies in the range –(2m–1 – 1) ≤ ESM ≤ 2m –1 – 1 for the SM sign-
magnitude format and, respectively, –2m–1 ≤ E2’s ≤ 2m–1 – 1 for 2’s notation.
Zero has two representations −0 and +0 as previously. Let’s list the smallest
and largest exponent values:

• the smallest negative: 1 11...1SM = –(2m–1 – 1) 100...02’s = –2m–1,
• the largest negative: 1 00...0SM = –0 111...12’s = –1,
• the smallest positive: 0 00...0SM = +0 000...02’s = +0,
• the largest positive: 0 11...1SM = 2m–1 – 1 011...12’s= 2m–1 – 1.

Which form is more beneficial, if we take the proximity of implementation
as a criterion for choice? To answer this question, it is important to note
that the operations of addition and subtraction of numbers in fixed-point

126 Computer Arithmetic in Practice

format are more easily performed for 2’s format, while multiplication and
division are performed for SM format. It is also important to note that
when we want to apply each of the four basic arithmetic operations on two
floating-point numbers, there will be a need to add, subtract, multiply or
divide mantises and add or subtract exponents. This will be demonstrated
in Chapter 5. Analyzing the complexity of the algorithms in the previous
chapter, we tend toward one of the forms (4.1) recalled here:

A = M 2 or A = M 2 g2’s
E

SM
E2’s 2’s

Example 4.2: Number –1.5DEC in floating-point format M 2SM
ESM and n = 4,

m = 3.

–1.5 = –0.75 2 = 1.110 2 .DEC DEC
1

SM SM
001

INTERESTING FACTS!

Alternatives to the floating-point format are the floating slash and signed
logarithm presented in [Koren 2002, Matula 1985 and Swartzlander 1975].
However, they have not been widely accepted and are not commonly
occurring in everyday practice. On the other hand, the work [Ruszkowski
1983] presents the use of a format with sign-magnitude features for BCD
numbers with a floating comma designed for calculators.

4.2 IEEE 754 STANDARD

Most of today’s processors have in their structure an additional unit, the so-
called FPU performing arithmetic operations on numbers in floating-point
format according to IEEE 754:1985 standard. An example is very popular
processors from Intel, AMD or ARM64 processor architecture, which in
some variants even contain several such units. The lack of an FPU on board
the processor, sometimes called an arithmetic coprocessor, does not exclude
the possibility of using a floating-point format. Modern compilers of high-
level languages have the ability to create machine code for ALU, emulating
the lack of FPU, thanks to a dedicated mathematical library of functions,
e.g. ‘math.c’ created for C language. However, the compilation of even a
simple program operating on real variables (in floating-point format) results
in the generation of extensive and usually unreadable code. The reason for
preparing and releasing IEEE 754 was the lack of compatibility between

Numbers in Floating-point Format 127

different machines and languages. Such early computers with own real-
ization of floating format were, e.g.:

• ODRA 1003/1013 – 39-bit format with mantissa and exponent as 2’s
numbers (Poland, 1962 year),

• DEC VAX – 4 formats 32/64/64/128 bits, mantissa as SM number,
biased exponent (USA, 1977 year),

• IBM 360/370 – 2 formats 32/64 bits, radix 16 instead of 2, mantissa
as SM number, biased exponent (USA, 1964 year).

A key milestone was the release three years earlier by Intel of the 8087 chip
as a supporting coprocessor of the popular CPU chip Intel 8086. In a way,
the IEEE 875:1985 standard is a carry-over of many of the solutions from
that chip specification, without reference to implementation details. This
leaves technological freedom to other processor manufacturers.

Standard states that number is stored in memory or registers using 3-bit
fields: sign, mantissa and exponent. Let us introduce the following rules:

• sign bit S,
• significant M,
• exponent E.

The scientific format is used and value of number can be obtained with the
following formula (4.3):

A = (1) M 2s E bias (4.3)

The sign field needs no comment. Recall only that in the sign-magnitude
format S = 1 is for negative number and S = 0 for a non-negative number.
The mantissa is re-presented in fixed-point format with a single bit in the
integer part and many bits in fraction. Its value is determined by the for-
mula (4.4):

M = m + m 2 + m 2 + ... m 2 = m + m 20 1
1

2
2

k
k

0
i=1

k

i
i (4.4)

hence the range is 1 ≤ M < 2 and m0 = 1 is for normalized number (m0 = 0 is
for denormalized). The standard defines four floating-point formats, dis-
tinguishing between basic and extended, single or double precision,
resulting in four combinations – the first column of Table 4.1.

The standard does not require implementation of the extended format,
although it strongly recommends its use to increase the precision of ex-
pressing numbers. One of the reasons for inventing the extended format
was the need to ensure that computers are comparable (or preferably

128 Computer Arithmetic in Practice

higher) with precision with universal calculators. The typical calculator
displays a number to ten decimal places, but internally performs operations
to 13 digits. Comparing the data in the last column of Table 4.1, it can be
seen that a computer working with single-precision numbers has lower
calculation accuracy than calculator! The IEEE standard specifies only the
minimum number of bits of extended formats, leaving the implementation
details to processor and software tool manufacturers (the second column of
Table 4.1). Most computer systems are compliant with Intel’s implemen-
tation, widespread with the 8087 coprocessor. Modern Intel Core-class
processors and their clones include such a coprocessor (or several) in their
structure, called the FPU. Intel uses the 80-bit format for double extended
precision. Wherever we talk about double extended precision conforming
to Intel’s specification, a ‘*’ will appear to distinguish it from the strict
guidelines of the standard. This designation appears, e.g., in Table 4.1.
Because the highest bit of the mantissa has always value of 1, the developers
of the 8087 coprocessor decided to generally omit it in the bit word. It is
only given in the double extended representation, used typically in internal
calculations of FPU. In the most cases, numbers are passed to FPU as a
single or double precision constant or variables declared in high-level
programming language and software.

In addition to Intel’s proposal, there are other solutions, also meeting
the conditions specified in the standard, but differing in, for example, the
number of mantissa bits. For example, HP 700/800 series machines use the
following format, called ‘quad precision’, i.e.: 1 bit – sign bit, 15 bits –
exponent, 112 bits – mantissa. For 128-bit number, the four 32-bit width
memory locations are needed to store a number value.

Let’s go back to the IEEE 754 standard: while the number of exponent
bits affects the range of a number, the precision is determined by the

Table 4.1 Properties of Normalized Numbers in Floating-point Format According to
IEEE 754

Precision Word
length
[bits]

The
sign ‘S’
[bits]

The significand ‘M’ Exponent “E”

Length
[bits]

The accuracy for
decimal format

[significant
digits]

Length
[bits]

range

Single 32 1 23 7 8 2±127≈10±38

Single
extended

≥ 43 1 ≥ 31 ≥ 10 ≥ 11 ≥2±1023≈10±308

Double 64 1 52 16 11 2±1023≈10±308

Double
extended

≥ 79 1 ≥ 63 ≥ 19 ≥ 15 ≥2±16383≈10±4932

Double
extended*

80 1 63 + 1 19 15 2±16383≈10±4932

Numbers in Floating-point Format 129

amount of mantissa bits. For example, for double precision, the mantissa is
stored using 53 (52 plus 1 hidden) bits, allowing 253, or approximately 1016

combination of values. Precision, in terms of decimal significant digits, can
also be determined in another way, directly from the properties of the
number system. Well, x digits can be used to express px different values,
where p is the base of the system. How many bits are needed to encode one
decimal digit? To get the answer, solve the equation 101 = 2x with respect to x.
If we logarithm it both ways with base 2, we get x = log2(10) bits.

So for double precision from the ratio, we get:

• 1 decimal digit – log2(10) bits
• y decimal digits – 53 bits

hence y decimal digits = 53/log2(10) = 53/log10(2) = 15.96 = 16 digits.
Analogous calculations can be done for the other defined formats.

The format of the IEEE 754-bit fields is given in Figure 4.2, and from the
table in Appendix B, the number ranges and names of numeric variables can
be read, including floating-point, as used in popular high-level languages.

The last field of the number is the exponent stored in the bias format. The
use of such a notation, instead of the commonly used sign-magnitude or 2’s
complement, is related to the necessity of reserving two combinations of
exponent bits for special values. The advantage of the bias notation (like for
BIN format also) is its monotonicity, which unfortunately is not feature of
SM and 2’s (Table 4.2). Between the 00h and FFh values, there is a
monotonic region of numerical values (for the bias code), which allows to
exclude the 00h and FFh boundary values from the allowed numerical
range and reserve them for the mentioned special values.

Unfortunately, the disadvantage of this notation is, in the general case, a
greater degree of complication of arithmetic operations than 2’s or SM. The
bias is precision dependent and equal to:

Figure 4.2 Format of bit fields according to the IEEE 754.

130 Computer Arithmetic in Practice

• 27 – 1 = 127 for single precision,
• 210 – 1 = 1023 for double precision,
• 214 – 1 = 16383 for double extended precision*.

The numbers with exponent with all bits are not zeros or ones are called
normalized values. In addition to these, the IEEE 754 standard defines
special cases, among which we can distinguish the 0 and ∞ and others,
which are given in detail in Table 4.3.

The infinity occurs when the result of an operation exceeds the largest
normalized value or an attempt to divide not zero number by zero has oc-
curred, including ∞/0 = ∞. A special combination of bits is reserved for zero
because it is impossible to express its value within the accepted normalized
number format. Zeroing the fractional part of the mantissa is not sufficient
because a bit equal to 1 is assumed in its integer part. The standard also

Table 4.2 Comparison of the Variability of Numbers in the Range 00h...FFh for Different
Notations

Value DEC Biased BIN * 2’s complement Sign-magnitude

Highest +128 FFh – –
+127 FEh 7Fh 7Fh
+1 80h 01h 01h

↑ 0 7Fh 00h 00h
80h

–1 7Eh FFh 81h
–127 00h 81h FFh

Lowest –128 – 80h –

* bias 127DEC = 7FHEX.

Table 4.3 Special Values

Sign Exponent Mantissa Value

m0 m1… mk

1 1 … 1 1 * 0 … 0 –∞
0 1 … 1 1 * 0 … 0 +∞
? 1 … 1 1 * ≠0 QNaN (ang. quiet not a number)
? 1 … 1 1 * ≠0 SNaN (ang. signaling not a number)
1 0 … 0 0 * 0 … 0 –0
0 0 … 0 0 * 0 … 0 +0
1 0 … 0 0 ≠0 – denormalized number
0 0 … 0 0 ≠0 + denormalized number

* Accepted and widely used m0 values by Intel, among others, although IEEE 754 does not explicitly
specify them.

Numbers in Floating-point Format 131

defines two values that have no numerical interpretation, the so-called
QNaN and SNaN. Although it does not specify how to encode both types
of ‘Not a Number’, it is generally accepted to distinguish them by the highest
bit of the fractional part of the mantissa, i.e.: 0 – SNaN, 1 – QNaN. ‘Not a
Number’ finds many applications. The standard leaves the way they are
handled to the processor or compiler manufacturer, requiring only that the
silent NaN pass through most arithmetic operations and conversions
between formats, thus allowing retrospective analysis of program running
and detection of the moment when an undefined value of variable appears.
The occurrence of SNaN usually means an invalid value and generates an
exception handling. An example of SNaN usage is variable initialization. If
program does not assign a value to a variable, it will contain SNaN, which
will cause the computation to abort and bug reporting.

The purpose of introducing the concept of ‘denormalized numbers’ in the
standard IEEE 754 requires some comment. These denormalized numbers
are also numbers in floating-point format, filling the gap between the smallest
normalized value and zero (on both sides of zero). They are encoded by zeros
in the exponent field and a non-zero mantissa value. Unlike normalized
numbers, the highest, i.e. m0, bit of the mantissa is assumed to be zero. By
introducing denormalized values, you get a gradual transition from nor-
malized numbers to zero. Unfortunately, the closer to zero the number is, the
less accurate it is. A denormalized number appears when there is an under-
flow, i.e., the result of the operation is non-zero and can still be written by
denormalizing the mantissa. We encounter such a situation when comparing
or subtracting two numbers with close values. If X ≈ Y, then we should get
X − Y ≈ 0. Not accepting denormalized numbers, we should expect an
incorrect result X − Y = 0 due to the need to round to zero the result of
subtraction with a value smaller than the smallest allowed normalized value.
The result of comparing or subtracting two values occurs quite often in al-
gorithms, e.g., in a pair with a conditional jump as a realization of a typical
‘if condition then go to’ instruction. As a result of rounding the result to zero,
the program will run differently than assumed by programmer. This risk is
reason of introducing denormalized numbers.

The standard defines five types of exceptions that must be detected and
signaled:

• invalid operation, such as:
• an operation whose argument is SNaN,
• addition or subtraction of type (+∞) + (−∞),
• multiplication or division: 0*∞, 0/0, ∞/∞,
• the remainder of dividing x/y when x = ∞ or y = 0,
• square root of x for x < 0,
• inability to convert a floating-point number to integer or BCD,
• inability to compare two data when at least one of them is not a

valid number,

132 Computer Arithmetic in Practice

• division by zero,
• overflow,
• underflow,
• inaccurate result.

The imprecise result exception occurs when the result of an operation
cannot, without loss of precision, be accurately expressed in an accepted
format, e.g. the mantissa of 1/3DEC. A rounded result is usually acceptable
in most applications, such as science, where double precision is the standard
to ensure accuracy by a large margin. For this reason, this exception as
being masked is not handled. Instead, it is supported by applications that
are required rigorously processing on accurate (unrounded) numbers. The
solution can be, e.g., expressing number like 1/3DEC as ratio of two exact
numbers 1DEC and 3DEC. It is so called rational format.

INTERESTING FACTS!

The floating-point units (FPUs) built into Intel processors support an
additional type of exception, the denormalized operand exception. Invalid
operation, divide-by-zero, and denormalized operand exceptions are pre-
computation exceptions and are post-computation exceptions.

By looking at Table 4.1 and using the formula for expressing the value of
a number in IEEE 754 format, it is easy to determine the lowest and highest
value of a number. Let’s look for them for each precision individually.

4.2.1 Single Precision

The combination 11111111, reserved for the special value inf, cannot be
used, so the largest value of E is 11111110BIN, hence E − bias = 254 – 127 =
127. The highest mantissa consists of 24 ones (23 bits plus 1 hidden bit in
the integer part), hence:

M = 1.11111111111111111111111SM = (224 – 1)/223

We calculate the value of the highest normalized number:

Amax_norm_single = M·2E–bias = (224 – 1)/223·2127 = (224 – 1)·2104

= 3.4028234663852885981170418348452·1038

≈ 3.4·1038

Numbers in Floating-point Format 133

4.2.2 Double Precision

The highest value of E is 11111111110BIN, hence E − bias = 2046 – 1023
= 1023.

M = 1.11SM

= (253 – 1)/252

The value of the largest normalized number is:

Amax_norm_double = M·2E–bias = (253 – 1)/252·21023 = (253 – 1)·2971

= 1.797693134862315708145274237317·10308

≈ 1.8·10308

4.2.3 Double Extended Precision*

The highest value of E is 111111111111110BIN, hence E–bias = 32766 –
16383 = 16383.

M = 1.11
11111111111SM

= (264 – 1)/263

The value of the highest normalized number is:

Amax_norm_double_extended = M·2E–bias

= (264 – 1)/263·216383 = (264 – 1)·216320

≈ 1.189731495357231765021263853031·104932

We can repeat similar calculations for denormalized numbers determining
the lowest value different from zero.

4.2.4 Single Precision

Although the combination 0...0 is reserved to distinguish the denormalized
numbers, it is not used to calculate its value. Therefore, the smallest per-
mitted value of the E field is 1, hence E–bias = 1 – 127 = −126. The mantissa
has a zero in integer bit position and 1 in the lowest bit position, therefore:

M = 0.00000000000000000000001SM = 2–23

The value of the lowest denormalized number different from zero is:

Amin_denorm_single = 2–23·2–126 = 2–149

= 1.4012984643248170709237295832899·10–45

≈ 1.4 · 10–45

134 Computer Arithmetic in Practice

4.2.5 Double Precision

E = 00000000001BIN, hence E–bias = 1 – 1023 = –1022.

M = 0.0001SM

= 2–52

The value of the lowest denormalized number different from zero is:

Amin_denorm_double = 2–52·2–1022 = 2–1074

= 4.9406564584124654417656879286822·10–324

≈ 4.9 · 10–324

4.2.6 Double Extended Precision

E = 000000000000001BIN, hence E–bias = 1 – 16383 = –16382.

M = 0.000
0000000001SM

= 2–63

The value of the lowest denormalized number different from zero is:

Amin_denorm_double_extended = 2–63·2–16382=2–16445

= 3.6451995318824746025284059336194
·10–4951 ≈ 3.6·10–4951

The lowest and highest values for normalized and denormalized numbers
are summarized in Table 4.4.

In 1987, the ANSI committee together with the IEEE organization pub-
lished a standard designated IEEE 854 and entitled ‘The IEEE Standard for
Radix-Independent Floating-Point Arithmetic’. Unlike the IEEE 754 stan-
dard, it allows any integer to be used as the basis of the system, which in
fact legitimizes hardware or software implementation of decimal arith-
metic. However, it does not specify the details of the basic and extended
formats, imposing only the conditions that must be met by the exponent
and mantissa of a floating-point number. Those interested in the details of
the standard are referred to the source publication [IEEE 1987]. In response
to market needs, IEEE 754 was updated in 2008 [IEEE 2008]. Among other
things, the extended single-precision format, which had not found accep-
tance in programming languages, was cancelled, synonyms for ‘single’ were
introduced as equivalent to ‘binary32’, ‘double’ was replaced by ‘binary64’,
‘double extended’ was replaced by ‘binary128’, and ‘double extended’ was
replaced by ‘extended’. The biggest change, however, was the introduction
of two 16-bit formats to support low-cost 16-bit processors used in, e.g.,

Numbers in Floating-point Format 135

cash register, parking meter, ticket machine, water and gas consumption
meters, etc. The double extended precision format (now called extended)
has had its bit count increased to 128. The precision and numeric ranges of
these new formats are also included in Table B.2 of Appendix B. It is worth
mentioning that not all manufacturers of FPUs and programming tools have
decided to fully implement the recommendations of the standard in 2008
version. That is main reason why the original version of IEEE 754 was
presented in this book. Thus, the 16-bit format is present, e.g. in MATLAB,
GIMP packages, Direct3D, D3DX, OpenGL, Cg (NVIDIA & Microsoft)
libraries, and OpenEXR and JPEG XR graphic file formats. The only
operation on this format in the FPU of Intel Core processors is the con-
version to and from 32-bit format. Examples of hardware implementation
of operations on 128-bit format are the following families of CPUs: Intel
Core, IBM Power P9 and Fujitsu SPARC V8/9. The new version of standard
specifies additional operations that are recommended for all supported
arithmetic formats. These operations are given as function names, but in a
particular programming environment they may be represented by operators
or functions whose names may differ. These include, among others:

• exp(x), 2x, 10x, ln(x), log2(x), log10(x),
• sqrt(x2 + y2), 1/sqrt(x), x1/n,
• sin(x), cos(x), tan(x), asin(x), acos(x), atan(x),
• sinh(x), cosh(x), tanh(x), asinh(x), acosh(x), atanh(x).

The reader will find more information in the reference publication
[IEEE 2008].

Table 4.4 The Lowest and Highest Positive Number According to IEEE 754 Standard

Single precision Hexadecimal format Value

The lowest denormalized number
The highest denormalized number
The lowest normalized number
The highest normalized number

0000 0001
007F FFFF
0080 0000
7F7F FFFF

2–149

2149 · (223 – 1)
2–126

2104 · (224 – 1)
Double precision Hexadecimal format Value
The lowest denormalized number
The highest denormalized number
The lowest normalized number
The highest normalized number

0000 0000 0000 0001
000F FFFF FFFF FFFF
0010 0000 0000 0000
7FEF FFFF FFFF FFFF

2–1074

21074 · (252 – 1)
2–1022

2971 · (253 – 1)
Double precision* Hexadecimal format Value
The lowest denormalized number
The highest denormalized number
The lowest normalized number
The highest normalized number

0000 0000 0000 0000 0001
0000 7FFF FFFF FFFF FFFF
0001 8000 0000 0000 0000
7FFE FFFF FFFF FFFF FFFF

2–16445

216445 · (263 – 1)
2–16382

216320 · (264 – 1)

136 Computer Arithmetic in Practice

4.3 FPU AS A SPECIALIZED ARITHMETIC UNIT

An FPU is like a ‘younger brother’ of classical ALU but is a much powerful. It
extends the processor arithmetic abilities to work on high precision a wide
range real numbers. It rather occurs as resource of families of strong
processor, e.g. Intel, AMD, NXP ColdFire or ARM architectures. The details
of an internal architecture differ but from the user point of view they provide
similar functionalities thanks to conforming to requirements of IEEE 754
standard (at least to the most of them). For example, Intel FPU, called x87
FPU, consists of eight 80-bit data registers and special-purpose registers for
managing the rounding modes, exceptions and many others. Values are
stored in these registers in the double extended precision format – look for
Table 4.1 and comments on ‘*’. When floating-point, integer or packed BCD
values are loaded from memory into any of FPU data registers, the values are
automatically converted into double extended precision floating-point format
or not if they are already in that format. When computation results are
sending back into memory from any of the x87 FPU registers, the results can
be left in the double extended precision floating-point format or converted
back into a shorter floating-point format, an integer format, or the packed
BCD integer format. The x87 FPU instructions treat the eight x87 FPU data
registers as a classical register stack. Addressing of the data registers is rel-
ative to the register on the top of the stack. If a load operation is performed
when top of a stack is at R0 register, the register wraparound occurs and the
new localization of stack top is assigned to R7.

The ARM architectures support floating-point data types and arithmetic
with some restrictions depending on specific core version. For example, the
Armv8 architecture supports both single and double precision data types. It
also supports the 16-bit half-precision floating-point data type for data
storage, by supporting conversions between single-precision and half-
precision data types and double-precision and half-precision data types.
Another example is the ARM Cortex-M4 core. Its FPU fully supports only
single-precision add, subtract, multiply, divide, multiply and accumulate, and
square root operations. It also provides conversions between fixed-point and
floating-point data formats, and floating-point constant instructions. The
FPU provides an extension register file containing 32 single-precision regis-
ters. These can be viewed as:

• sixteen 64-bit double-word registers, D0-D15,
• thirty-two 32-bit single-word registers, S0-S31,
• or combination of registers from the above views.

Specific options beyond the standard are ‘flush-to-zero’ and ‘default NaN’
modes. In ‘flush-to-zero’ mode, the FPU treats all denormalized input
operands of arithmetic operations as zeros. For the ‘default NaN’ mode
the result of any arithmetic data processing operation that involves an

Numbers in Floating-point Format 137

input NaN, or that generates a NaN result, returns the default NaN. The
default NaN is a qNaN with an all-zero of mantissa fraction. When not in
default NaN mode, the operations with NaN input values preserve the
NaN, or one of the NaN values, if more the one input operand is a NaN, as
the result [Hohl 2015].

4.4 CONVERSION TO ANOTHER RADIX

Conversion of a floating-point number A with base p to base s involves
finding the value of the mantissa Ms and the exponent Es according to the
formulas (4.5):

C = 1 +

M = M exp(C ln(p) C ln(s))

s
ln M + C ln(p)

ln(s)

s p p s

P P

(4.5)

for those the below equality is satisfied (4.6):

A = M p = M sp
C

S
Cp S (4.6)

The derivation of the given formulas will be presented here. Let’s an A
number be as below (4.7):

A = M sS
CS (4.7)

assuming that sign is part of mantissa.
Logarithmizing both sides at the base s of the above relation (considering

the domain of the logarithm), and then adding a constant 1 to both sides,
we get (4.8):

1 + log (A) = log (M) + log (s) + C = log (s M) + Cs S S S

1

S S S S (4.8)

Because of observation that log (s M) < CS S S, we obtain in simplified
form (4.9):

C 1 + log (A) = 1 +
ln(A)

ln(s)
S s (4.9)

Knowing that A = M pp
Cp and applying the rule of changing the logarithm

base, we have (4.10):

138 Computer Arithmetic in Practice

C 1 + log (A) = 1 +
ln(|A|)
ln(s)

= 1 +
ln(|M |) + C ln(p)

ln(s)
S s

p p
(4.10)

The identity x = exp(ln(x)) for x > 0 yields the final mantissa formula with
base s as shown by (4.11):

M = M
p
s

= M exp(C ln(p) C ln(s))S p

C

C p p s

P

S
(4.11)

In general, the accepted format for floating-point numbers requires CS to be
an integer, so it is sometimes necessary to round the value obtained from
the calculation. It follows as a practical matter to first determine the exact
value of the characteristic Cs, then round it, and finally determine the
mantissa MS.

Example 4.3: The floating-point number 0.1101SM·2011
SM = 6.5DEC with base 2

and the same number with base 10:

M = 0,1101 = +13/16 and C = 011 = +3 .2 SM DEC 2 SM DEC

C = 1 +
ln M + C ln2

ln10
= 1 +

ln +0.8125 + (+3) ln2

ln10
= 1.81 210

2 2

M = M exp(C ln2 C ln10) = +0.8125 exp(3 ln2 2 ln10) = +0.06510 2 2 10

Finally, we have +0.065·10+2. Checking: +0.065·10+2 = +6.5DEC

Example 4.4: The floating-point number –3.72·10–2 with base 10 and the same
number with base 2 in SM format:

M = –3.72 and C = –2 .10 DEC 10 DEC

C = 1 +
ln M + C ln10

ln2
= 1 +

ln 3.72 + (2) ln10

ln2
= 3.747 4

= 1100

2
10 10

SM

M = M exp(C ln10 C ln2) = 3.72 exp(2 ln 10 (4) ln 2)

= 0.595

2 10 10 2

DEC

Numbers in Floating-point Format 139

0.595·2
1.19·2
0.38·2
0.76·2
1.52·2
1.04·2
...
0.595DEC → ≈0.10011BIN

Finally we have 1.10011SM·21100
SM. Checking: –0.595·2–4 = –0.0372DEC

Exercise 4.1: Convert the floating-point number –5.28·10–3 with base 10 to
the base of 2 in SM format.

Exercise 4.2: Convert the floating-point number 0.0101SM·2010
SM = +1.25DEC

with base 2 to the base of 10.

140 Computer Arithmetic in Practice

Chapter 5

Basic Arithmetic Operations on
Floating-point Numbers

5.1 ADDITION

The purpose of the following discussion is to show how to perform the
operation Z = X + Y, where (5.1):

M p = M p + M pZ
E

X
E

Y
EZ X Y

M = M + M E = max(E ,E)Z X Y Z X Y (5.1)

and (5.2)

M = M , M = M for E = E

M = M , M = M p for E > E

M = M p , M = M for E < E

X X Y Y X Y

X X Y Y
C C

X Y

X X
C C

Y Y X Y

X Y

X Y

(5.2)

Addition of two mantises should be done according to the rules specified in
Chapter 3. Mantises in 2’s format are added according to the formula
M = M + MZ X Y. Adding the mantises in SM format requires applying the
rules given in Table 3.1. Sometimes the result of the addition cannot be
stored on the assumed number of bits, so it should be normalized according
to the following rules:

• if M 1Z then M _ = M p E = E + 1Z norm Z
1

Znorm Z ,
• if M < pZ

i then M _ = M p E = E iZ norm Z
i

Znorm Z , and i – number
of zeros after dot point, e.g. i = 3 for 0.0001.

Example 5.1: Addition of two floating-point SM numbers:

X = 0.1100·2 = +
12
16

2 = +0.09375 , Y = 0.0001 2 = +
1

16
2

= +0.25

SM
111 3

DEC
010 +2

DEC

DOI: 10.1201/9781003363286-5 141

https://doi.org/10.1201/9781003363286-5

For better readiness, we will sometimes replace the sign bit values 0/1 with +/−.

We have p = 2, EX = −11SM, MX = +0.1100SM, EY = +10SM, MY = +0.0001SM.

E – E = –3 – (+2) = –5 = +5, E < E E = max(3, +2) = +2X Y X Y Z

M = M 2 = 0.0000011 , M = M = 0.0001000X X
5

SM Y Y SM

Because of X and Y are positive (see addition rules for SM numbers in Table 3.1):

M = M + M = +(M + M) = 0.0001011Z X Y X Y SM

We have M < 2Z
3 therefore the normalization is needed:

M _ = M 2 = 0,1011 , E = E 3 = +2 3 = 1 = 101Z norm Z
3

SM Znorm Z SM

Finally, Z = 0.1011 · 2101
SM = +0.34375DEC.

Exercise 5.1: Perform addition of two floating-point SM numbers:

X = 1.1011·2 =
11
16

2 = 2.75 , Y = 0.1111 2 = +
15
16

2

= +0.46875

SM
010 +2

DEC SM
101 1

DEC

5.2 SUBTRACTION

The purpose of the following discussion is to show how to perform the
operation Z = X Y, where (5.3)

M = M M E = max(E , E)Z X Y Z X Y (5.3)

and (5.4)

M = M , M = M dla E = E

M = M , M = M p dla E > E

M = M p M = M dla E < E

X X Y Y X Y

X X Y Y
E E

X Y

X X
E E

Y Y X Y

X Y

X Y

(5.4)

142 Computer Arithmetic in Practice

Subtraction of two mantises should be done according to the rules specified
in Chapter 3. Mantises in 2’s format are subtracted according to the for-
mula M = M MZ X Y. Subtracting the mantises in SM format requires
applying the rules given in Table 3.2. Normalization of the result follows
the rules specified in the previous chapter.

Example 5.2: Subtraction of two floating-point SM numbers:

X = 1.100·2 =
1
2

2 = 1 ,

Y = 0.111·2 = +
7
8

·2 = +3.5 .

SM
001 +1

DEC

SM
010 +2

DEC

p = 2, E = +01 , M = –0.100 ,

E = +10 , M = +0.111

X SM X SM

Y SM Y SM

E – E = +1 – (+2) = 1 = +1,

E < E E = max(+1, +2) = +2

X Y

X Y Z

M = M 2 = 0.010 , M = MX X
1

SM Y Y

Because of X is negative and Y positive (see subtraction rules for SM numbers
in Table 3.2):

M = M M = (M + M) = 1.001Z X Y X Y SM

We have M 1Z , therefore the normalization is needed:

M _ = M 2 = 0.1001 = 1.1001 , E = E + 1 = +2 + 1

= 011

Z norm Z
1

SM SM Znorm Z

SM

If an equal number of bits of the result Z and the arguments X, Y are assumed,
then the lowest bit of the mantissa must be discarded. As a result, the result will
be approximated. Finally, Z ≈ 1.100 · 2011

SM = –4DEC but we expected –4.5DEC.

Exercise 5.2: Perform subtraction of two floating-point SM numbers:

X = 1.101·2 =
5
8

, Y = 1.110·2 =
6
8

·2 = 3SM
000

DEC
SM
010 +2

DEC

Basic Arithmetic Operations on Floating-point Numbers 143

5.3 MULTIPLICATION

The purpose of the following discussion is to show how to perform the
operation Z = X Y (5.5):

() ()M p = M p M pZ
E

X
E

Y
EZ X Y

M = M M E = E + EZ X Y Z X Y (5.5)

Normalization of the result of mantissa multiplication follows the rules
specified for addition of floating-point numbers. The multiplication does
not require a preliminary denormalization of the mantissa, which simplifies
the execution of the operation.

Example 5.3: Multiplication of two floating-point SM numbers, where

X = 1,0110·2 =
3
8

2 =
3

16
,

Y = 0,1010·2 = +
5
8

2 = +5

SM
101 1

DEC

SM
011 +3

DEC

Data:

p = 2, E = –01 , M = –0.0110 ,

E = +11 , M = +0.1010

X SM X SM

Y SM Y SM

E = E + E = 1 + (+3) = +2Z X Y DEC

Because X and Y are different signs (see multiplication rules for SM format):

M = M M = M M = 0.00111100Z X Y X Y SM

We have M < 2Z
2, hence the normalization is needed:

M _ = M 2 = 0.1111 = 1.1111 ,

E = E 2 = +2 2 = 0 = 000

Z norm Z
2

SM SM

Znorm Z SM

Finally, Z = 1.1111·2 =SM
000 15

16 DEC
.

144 Computer Arithmetic in Practice

Exercise 5.3: Perform multiplication of two floating-point numbers, where

X = 1.0100·2 =
1
4

2 =
1
2

,

Y = 1.0010·2 =
1
8

2 =
1
32

SM
001 +1

DEC

SM
110 2

DEC

5.4 DIVISION

The purpose of the following discussion is to show how to perform the
operation Z = X/Y (5.6):

() ()M p = M p / M p , C = C CZ
C

X
C

Y
C

Z X YZ X Y

M = M , C = C for M < M

M = M p , C = C + j, for M M and j (|M | < |M |)

X X X X X Y

X X
j

X X X Y X Y

(5.6)

The parameter j specifies in practice the number of zeros to be added after
the decimal point so that the denormalized mantissa MX is smaller than the
mantissa MY in absolute value. The normalization of the result of dividing
the mantissa follows the rules defined for adding floating-point numbers.

Example 5.4: Division of two floating-point SM numbers, where

X = 0.1010·2 = +
5
8

2 = +5 ,

Y = 1.0110·2 =
3
8

2 =
3

16

SM
011 +3

DEC

SM
101 1

DEC

p = 2, C = +11 , M = +0.1010 ,

C = –01 , M = –0.0110

X SM X SM

Y SM Y SM

Because of |Mx| > |MY|, we have to firstly make a denormalization of X number,
hence

for j = 1 |M | = |M 2 | |M |X X
j

Y

and M = M 2 = +0.0101 , C = C + 1 = +100 , C = C C = +4

(1) = +5

X X
1

SM X X SM Z X Y

DEC

Basic Arithmetic Operations on Floating-point Numbers 145

Because X and Y are of equal signs (see rules for division in SM format):

M = M /M = M / M = 0.110101 = 1 .110101Z X Y X Y SM SM

In this case, there is no need to normalize the result. If an equal number of bits
are assumed for the result Z and the arguments X and Y then the two lowest
bits of the mantissa must be discarded. As a result, the value of the mantissa will
be approximated. Furthermore, to express a feature of value +5 in SM format,
4 bits are needed and the assumed number is 3, so truncation error of 010SM-
0101SM = 111SM would occur. The solution to the problem is to take 4 bits to
express the exponents. Finally, Z ≈ 1.1101·20101

SM ≈ −26.66DEC. A discussion of
the effect of finite precision on the accuracy of the result of arithmetic
operations is undertaken in Chapter 6.

Exercise 5.4: Perform division of two floating-point SM numbers, where

X = 0.1101·2 = +
13
16

2 = +
13
4

= +3.25SM
010 +2

DEC

Y = 1 .1110·2 =
14
16

2 =
14
64SM

1 10 2

DEC

5.5 IMPLEMENTATIONS IN ASSEMBLY LANGUAGE

The software implementation of operation on floating-point numbers in the
8051 microcontroller according to the IEEE 754 standard is quite com-
plicated. It requires performing operations on multi-byte numbers, where
the mantissa is in SM format and the exponent in biased format. To
illustrate the complexity of the problem, we will show the implementation
for numbers using simplified format. We present subroutines implementing
four basic arithmetic operations for 2-byte numbers, where 1 byte for the
mantissa and the other for the exponent are reserved. Comparing the
complexity of arithmetic operations for numbers in different formats (see
Chapter 3), we propose to express the mantissa and the exponent as SM
numbers, i.e., each number will be seen as A = M 2SM

CSM, where (5.7):

M = (1) (a 2 + ... + a 2) = (1) a 2SM
ã

1
1

(n 1)
(n 1) ã

i= 1

(n 1)

i
i0 0

C = (1) (a 2 + ... + a 2 + a) = (1) a 2SM
a

m 2
m 2

1 0
a

i=0

m 2

i
im 1 m 1 (5.7)

146 Computer Arithmetic in Practice

Since a dimension of mantissa and exponent are 1 byte, hence n = 8 and m = 8.
The lowest and highest mantissa values are:

• the lowest negative: 1.1111111SM = −127/128,
• the highest negative: 1.0000000SM = –0,
• the lowest positive: 0.0000000SM = +0,
• the highest positive: 0.1111111SM = +127/128.

Let’s list the lowest and highest values of the exponent:

• the lowest negative: 11111111SM = –127,
• the highest negative: 10000000SM = –0,
• the lowest positive: 00000000SM = +0,
• the highest positive: 01111111SM = +127.

Minimal and maximal values for the assumed convention are:

0.1111111 2 +10

1.1111111 2 –10
SM
01111111

DEC
+38

SM
01111111

DEC
38

with resolution of mantissa 1/128 = 0.0078125 less than 2.5 decimal digits.
According to the rules discussed in the previous chapters, the execution

of the operations consists in performing an initial denormalization of the
mantises, except for multiplication, followed by addition, subtraction,
multiplication or division of the mantises, and multiplication of the ex-
ponents in the case of multiplication, or denormalization and division of the
features in the case of division. Regardless of the type of operation, the
result must be reported in normalized form. In the subroutines presented
here we will refer to the respective subroutines outlined in Chapter 3.
Setting the OV flag will indicate a result out of range.

Implementation in code of the addition:

• input number: R0 – mantissa of first number, R1 – exponent of first
number,

• input number: R2 – mantissa of second number, R3 – exponent of
second number,

• output number: R0 – mantissa of result, R1 – exponent of result, OV
– result out of the range,

• exemplary value: [+0.625*2+3] + [–0.375*2–1].

1 ;***
2 ;* Addition of floating-point numbers *
3 ;***
4 ;mantissa must be normalized, i.e. 1 after sign bit!

Basic Arithmetic Operations on Floating-point Numbers 147

5 ;an exception is mantissa with value of 0.
6
7 0003 c1 EQU 00000011B ;exponent of first SM number
8 0050 m1 EQU 01010000B ;mantissa of first SM number
9 0081 c2 EQU 10000001B ;exponent of second SM number

10 00B0 m2 EQU 10110000B ;mantissa of second SM number
11 ;first number m1*2^c1=+0.625*2^+3
12 ;second number m2*2^c2=−0.375*2^−1
13 ;result my*2^cy=+77/128*2^+3=+4.8125
14 ;another example of numbers
15 ;c1 EQU 10000111B ;exponent of first SM number
16 ;m1 EQU 11000000B ;mantissa of first SM number
17 ;c2 EQU 10000100B ;exponent of second SM number
18 ;m2 EQU 01110000B ;mantissa of second SM number
19 ;first number m1*2^c1=−0.5*2^−7
20 ;second number m2*2^c2=+0.875*2^−4
21 ;result my*2^cy=+13/16*2^−4=

+0.8125*2^−4
22
23 0000: 78 50 MOV R0,#m1
24 0002: 79 03 MOV R1,#c1
25 0004: 7A B0 MOV R2,#m2
26 0006: 7B 81 MOV R3,#c2
27 0008: 12 00 0D LCALL ADD_FLOATS
28 ;result in A
29 000B: 80 FE STOP: SJMP STOP
30 ;--
31 000D: ADD_FLOATS:
32 000D: EB MOV A,R3
33 000E: 89 F0 MOV B,R1
34 0010: B2 E7 CPL ACC.7
35 0012: 12 00 72 LCALL ADD_SM_FLOATS ;compare the exponents
36 0015: 60 2D JZ EXP_THE_SAME
37 0017: 92 E7 MOV ACC.7,C
38 0019: 30 E7 17 JNB ACC.7,GREATER
39 001C: LESS:
40 001C: C2 E7 CLR ACC.7
41 001E: FC MOV R4,A ;c1<c2
42 001F: E8 MOV A,R0
43 0020: A2 E7 MOV C,ACC.7
44 0022: 92 D1 MOV PSW.1,C
45 0024: C2 E7 CLR ACC.7
46 0026: NORM1:
47 0026: C3 CLR C
48 0027: 13 RRC A

148 Computer Arithmetic in Practice

49 0028: DC FC DJNZ R4,NORM1
50 002A: A2 D1 MOV C,PSW.1
51 002C: 92 E7 MOV ACC.7,C
52 002E: F8 MOV R0,A
53 002F: EB MOV A,R3
54 0030: C9 XCH A,R1
55 0031: 80 11 SJMP EXP_THE_SAME
56 0033: GREATER:
57 0033: FC MOV R4,A ;c1>c2
58 0034: EA MOV A,R2
59 0035: A2 E7 MOV C,ACC.7
60 0037: 92 D1 MOV PSW.1,C
61 0039: C2 E7 CLR ACC.7
62 003B: NORM2:
63 003B: C3 CLR C
64 003C: 13 RRC A
65 003D: DC FC DJNZ R4,NORM2
66 003F: A2 D1 MOV C,PSW.1
67 0041: 92 E7 MOV ACC.7,C
68 0043: FA MOV R2,A
69 0044: EXP_THE_SAME:
70 0044: E8 MOV A,R0
71 0045: 8A F0 MOV B,R2
72 0047: 12 00 72 LCALL ADD_SM_FLOATS
73 004A: 92 D5 MOV PSW.5,C
74 004C: 30 E7 06 JNB ACC.7,NORM3
75 004F: C3 CLR C
76 0050: 03 RR A
77 0051: 7C 01 MOV R4,#1
78 0053: 80 0E SJMP SKIP
79 0055: NORM3:
80 0055: 7C 00 MOV R4,#0
81 0057: RETURN:
82 0057: 20 E6 05 JB ACC.6,SKIP1
83 005A: C3 CLR C
84 005B: 23 RL A
85 005C: 0C INC R4
86 005D: 80 F8 SJMP RETURN
87 005F: SKIP1:
88 005F: CC XCH A,R4
89 0060: B2 E7 CPL ACC.7
90 0062: CC XCH A,R4
91 0063: SKIP:
92 0063: A2 D5 MOV C,PSW.5
93 0065: 92 E7 MOV ACC.7,C

Basic Arithmetic Operations on Floating-point Numbers 149

94 0067: F8 MOV R0,A ;mantissa of result
95 0068: E9 MOV A,R1
96 0069: 8C F0 MOV B,R4
97 006B: 12 00 72 LCALL ADD_SM_FLOATS
98 006E: 92 E7 MOV ACC.7,C
99 0070: F9 MOV R1,A ;exponent of result

100 0071: 22 RET
101 ;---
102 0072: ADD_SM_FLOATS:
103 0072: A2 E7 MOV C,ACC.7
104 0074: 92 D5 MOV PSW.5,C
105 0076: C0 E0 PUSH ACC
106 0078: 65 F0 XRL A,B
107 007A: A2 E7 MOV C,ACC.7
108 007C: 53 F0 7F ANL B,#01111111B
109 007F: D0 E0 POP ACC
110 0081: 54 7F ANL A,#01111111B
111 0083: 50 18 JNC signs_the_same
112 0085: signs_different:
113 0085: B5 F0 02 CJNE A,B,different
114 0088: 80 02 SJMP greater_or_equal
115 008A: different:
116 008A: 40 07 JC less
117 008C: greater_or_equal:
118 008C: C3 CLR C
119 008D: 95 F0 SUBB A,B
120 008F: A2 D5 MOV C,PSW.5
121 0091: 80 12 SJMP end
122 0093: less:
123 0093: C3 CLR C
124 0094: C5 F0 XCH A,B
125 0096: 95 F0 SUBB A,B
126 0098: A2 D5 MOV C,PSW.5
127 009A: B3 CPL C
128 009B: 80 08 SJMP end
129 009D: signs_the_same:
130 009D: 25 F0 ADD A,B
131 009F: A2 E7 MOV C,ACC.7
132 00A1: 92 D2 MOV OV,C
133 00A3: A2 D5 MOV C,PSW.5
134 00A5: end:
135 00A5: 22 RET
136 ;--- end of file ---

150 Computer Arithmetic in Practice

Implementation in code of the subtraction:

• input number: R0 – mantissa of first number, R1 – exponent of first
number,

• input number: R2 – mantissa of second number, R3 – exponent of
second number,

• output number: R0 – mantissa of result, R1 – exponent of result, OV
– result out of the range,

• exemplary value: [+0.625*2+3] – [−0.375*2–1].

1 ;**
2 ;* Subtraction of floating-point numbers *
3 ;**
4 ;mantissa must be normalized, i.e. 1 after sign bit!
5 ;an exception is mantissa with value of 0.
6
7 0003 c1 EQU 00000011B ;exponent of first SM number
8 0050 m1 EQU 01010000B ;mantissa of first SM number
9 0081 c2 EQU 10000001B ;exponent of second SM number

10 00B0 m2 EQU 10110000B ;mantissa of second SM number
11 ;first number m1*2^c1=+0.625*2^+3
12 ;second number m2*2^c2=−0.375*2^−1
13 ;result my*2^cy=+83/128*2^+3
14 ;another example of numbers
15 ;c1 EQU 10000111B ;exponent of first SM number
16 ;m1 EQU 11000000B ;mantissa of first SM number
17 ;c2 EQU 10000100B ;exponent of second SM number
18 ;m2 EQU 01110000B ;mantissa of second SM number
19 ;first number m1*2^c1=−0.5*2^−7
20 ;second number m2*2^c2=+0.875*2^−4
21 ;result my*2^cy=−15/16*2^−4
22
23 0000: 78 50 MOV R0,#m1
24 0002: 79 03 MOV R1,#c1
25 0004: 7A B0 MOV R2,#m2
26 0006: 7B 81 MOV R3,#c2
27 0008: 12 00 0D LCALL SUB_FLOATS
28 ;result in A
29 000B: 80 FE STOP: SJMP STOP
30 ;---
31 000D: SUB_FLOATS:
32 000D: E9 MOV A,R1
33 000E: 8B F0 MOV B,R3
34 0010: 12 00 72 LCALL SUB_SM_FLOATS ;compare the exponents
35 0013: 60 2D JZ EXP_THE_SAME

Basic Arithmetic Operations on Floating-point Numbers 151

36 0015: 92 E7 MOV ACC.7,C
37 0017: 30 E7 17 JNB ACC.7,GREATER
38 001A: LESS:
39 001A: C2 E7 CLR ACC.7
40 001C: FC MOV R4,A ;c1<c2
41 001D: E8 MOV A,R0
42 001E: A2 E7 MOV C,ACC.7
43 0020: 92 D1 MOV PSW.1,C
44 0022: C2 E7 CLR ACC.7
45 0024: NORM1:
46 0024: C3 CLR C
47 0025: 13 RRC A
48 0026: DC FC DJNZ R4,NORM1
49 0028: A2 D1 MOV C,PSW.1
50 002A: 92 E7 MOV ACC.7,C
51 002C: F8 MOV R0,A
52 002D: EB MOV A,R3
53 002E: C9 XCH A,R1
54 002F: 80 11 SJMP EXP_THE_SAME
55 0031: GREATER:
56 0031: FC MOV R4,A ;c1>c2
57 0032: EA MOV A,R2
58 0033: A2 E7 MOV C,ACC.7
59 0035: 92 D1 MOV PSW.1,C
60 0037: C2 E7 CLR ACC.7
61 0039: NORM2:
62 0039: C3 CLR C
63 003A: 13 RRC A
64 003B: DC FC DJNZ R4,NORM2
65 003D: A2 D1 MOV C,PSW.1
66 003F: 92 E7 MOV ACC.7,C
67 0041: FA MOV R2,A
68 0042: EXP_THE_SAME:
69 0042: E8 MOV A,R0
70 0043: 8A F0 MOV B,R2
71 0045: 12 00 72 LCALL SUB_SM_FLOATS
72 0048: 92 D5 MOV PSW.5,C
73 004A: 30 E7 06 JNB ACC.7,NORM3
74 004D: C3 CLR C
75 004E: 03 RR A
76 004F: 7C 01 MOV R4,#1
77 0051: 80 0E SJMP SKIP
78 0053: NORM3:
79 0053: 7C 00 MOV R4,#0
80 0055: RETURN:

152 Computer Arithmetic in Practice

81 0055: 20 E6 05 JB ACC.6,SKIP1
82 0058: C3 CLR C
83 0059: 23 RL A
84 005A: 0C INC R4
85 005B: 80 F8 SJMP RETURN
86 005D: SKIP1:
87 005D: CC XCH A,R4
88 005E: B2 E7 CPL ACC.7
89 0060: CC XCH A,R4
90 0061: SKIP:
91 0061: A2 D5 MOV C,PSW.5
92 0063: 92 E7 MOV ACC.7,C
93 0065: F8 MOV R0,A ;mantissa of result
94 0066: E9 MOV A,R1
95 0067: 8C F0 MOV B,R4
96 0069: B2 F7 CPL B.7
97 006B: 12 00 72 LCALL SUB_SM_FLOATS
98 006E: 92 E7 MOV ACC.7,C
99 0070: F9 MOV R1,A ;exponent of result

100 0071: 22 RET
101 ;---
102 0072: SUB_SM_FLOATS:
103 0072: A2 E7 MOV C,ACC.7
104 0074: 92 D5 MOV PSW.5,C
105 0076: C0 E0 PUSH ACC
106 0078: 65 F0 XRL A,B
107 007A: A2 E7 MOV C,ACC.7
108 007C: 53 F0 7F ANL B,#01111111B
109 007F: D0 E0 POP ACC
110 0081: 54 7F ANL A,#01111111B
111 0083: 40 18 JC signs_different
112 0085: signs_the_same:
113 0085: B5 F0 02 CJNE A,B,different
114 0088: 80 02 SJMP greater_or_equal
115 008A: different:
116 008A: 40 07 JC less
117 008C: greater_or_equal:
118 008C: C3 CLR C
119 008D: 95 F0 SUBB A,B
120 008F: A2 D5 MOV C,PSW.5
121 0091: 80 12 SJMP end
122 0093: less:
123 0093: C3 CLR C
124 0094: C5 F0 XCH A,B
125 0096: 95 F0 SUBB A,B

Basic Arithmetic Operations on Floating-point Numbers 153

126 0098: A2 D5 MOV C,PSW.5
127 009A: B3 CPL C
128 009B: 80 08 SJMP end
129 009D: signs_different:
130 009D: 25 F0 ADD A,B
131 009F: A2 E7 MOV C,ACC.7
132 00A1: 92 D2 MOV OV,C
133 00A3: A2 D5 MOV C,PSW.5
134 00A5: end:
135 00A5: 22 RET
136 ;--- end of file ---

Implementation in code of the multiplication:

• input number: R0 – mantissa of first number, R1 – exponent of first
number,

• input number: R2 – mantissa of second number, R3 – exponent of
second number,

• output number: R0 – mantissa of result, R1 – exponent of result, OV
– result out of the range,

• exemplary value: [–0.75*2–5]*[+0.625*2+1].

1 ;**
2 ;* Multiplication of floating-point numbers *
3 ;**
4 ;mantissa must be normalized, i.e. 1 after sign bit!
5 ;an exception is mantissa with value of 0.
6
7 ;c1 EQU 10000101B ;exponent of first SM number
8 ;m1 EQU 11100000B ;mantissa of first SM number
9 ;c2 EQU 00000001B ;exponent of second SM number

10 ;m2 EQU 01010000B ;mantissa of second SM number
11 ;first number m1*2^c1=−0.75*2^−5
12 ;second number m2*2^c2=+0.625*2^+1
13 ;result my*2^cy=−0.46875*2^−4=
14 ;=−0.9375*2^−5
15 ;another example of numbers
16 0087 c1 EQU 10000111B ;exponent of first SM number
17 00D8 m1 EQU 11011000B ;mantissa of first SM number
18 008C c2 EQU 10001100B ;exponent of second SM number
19 00C1 m2 EQU 11000001B ;mantissa of second SM number
20 ;first number m1*2^c1=−0.6875*2^−7
21 ;second number m2*2^c2=−0.5078125*2^−12

154 Computer Arithmetic in Practice

22 ;result my*2^cy=+715/2048*2^−19=
23 ;=+1430/2048*2^−20

=+0.69824*2^−20
24
25 0000: 78 D8 MOV R0,#m1
26 0002: 79 87 MOV R1,#c1
27 0004: 7A C1 MOV R2,#m2
28 0006: 7B 8C MOV R3,#c2
29 0008: 12 00 0D LCALL MUL_FLOATS
30 ;result in A
31 000B: 80 FE STOP: SJMP STOP
32 ;---
33 000D: MUL_FLOATS:
34 000D: E8 MOV A,R0
35 000E: 8A F0 MOV B,R2
36 0010: 12 00 3A LCALL MUL_SM_FLOATS
37 0013: 7C FF MOV R4,#0FFH
38 0015: NORM_MANTISSA:
39 0015: 20 F6 0A JB B.6,SKIP
40 0018: C3 CLR C
41 0019: 33 RLC A
42 001A: C5 F0 XCH A,B
43 001C: 33 RLC A
44 001D: C5 F0 XCH A,B
45 001F: 0C INC R4
46 0020: 80 F3 SJMP NORM_MANTISSA
47 0022: SKIP:
48 0022: A2 D5 MOV C,PSW.5
49 0024: 92 F7 MOV B.7,C
50 0026: A8 F0 MOV R0,B ;mantissa of result
51 0028: E9 MOV A,R1
52 0029: 8B F0 MOV B,R3
53 002B: 12 00 4B LCALL ADD_SM_FLOATS
54 002E: 20 D2 08 JB OV,SKIP1
55 0031: 8C F0 MOV B,R4
56 0033: B2 F7 CPL B.7
57 0035: 12 00 4B LCALL ADD_SM_FLOATS
58 0038: F9 MOV R1,A ;exponent of result
59 0039: SKIP1:
60 0039: 22 RET
61 003A: MUL_SM_FLOATS:
62 003A: C0 E0 PUSH ACC
63 003C: 65 F0 XRL A,B
64 003E: A2 E7 MOV C,ACC.7
65 0040: 92 D5 MOV PSW.5,C

Basic Arithmetic Operations on Floating-point Numbers 155

66 0042: 53 F0 7F ANL B,#01111111B
67 0045: D0 E0 POP ACC
68 0047: 54 7F ANL A,#01111111B
69 0049: A4 MUL AB
70 004A: 22 RET
71 004B: ADD_SM_FLOATS:
72 004B: A2 E7 MOV C,ACC.7
73 004D: 92 D5 MOV PSW.5,C
74 004F: C0 E0 PUSH ACC
75 0051: 65 F0 XRL A,B
76 0053: A2 E7 MOV C,ACC.7
77 0055: 53 F0 7F ANL B,#01111111B
78 0058: D0 E0 POP ACC
79 005A: 54 7F ANL A,#01111111B
80 005C: 50 18 JNC signs_the_same
81 005E: signs_different:
82 005E: B5 F0 02 CJNE A,B,different
83 0061: 80 02 SJMP greater_or_equal
84 0063: different:
85 0063: 40 07 JC less
86 0065: greater_or_equal:
87 0065: C3 CLR C
88 0066: 95 F0 SUBB A,B
89 0068: A2 D5 MOV C,PSW.5
90 006A: 80 12 SJMP end
91 006C: less:
92 006C: C3 CLR C
93 006D: C5 F0 XCH A,B
94 006F: 95 F0 SUBB A,B
95 0071: A2 D5 MOV C,PSW.5
96 0073: B3 CPL C
97 0074: 80 08 SJMP end
98 0076: signs_the_same:
99 0076: 25 F0 ADD A,B

100 0078: A2 E7 MOV C,ACC.7
101 007A: 92 D2 MOV OV,C
102 007C: A2 D5 MOV C,PSW.5
103 007E: end:
104 007E: 92 E7 MOV ACC.7,C
105 0080: 22 RET
106 ;--- end of file ---

156 Computer Arithmetic in Practice

Implementation in code of the division:

• input number: R0 – mantissa of first number, R1 – exponent of first
number,

• input number: R2 – mantissa of second number, R3 – exponent of
second number,

• output number: R0 – mantissa of result, R1 – exponent of result, OV
– result out of the range,

• exemplary value: [–0.5*2–7]/[–0.375*2–1].

1 ;**
2 ;* Division of floating-point numbers *
3 ;**
4 ;mantissa must be normalized, i.e. 1 after sign bit!
5 ;an exception is mantissa with value of 0.
6
7 ;c1 EQU 00000011B ;exponent of first SM number
8 ;m1 EQU 01010000B ;mantissa of first SM number
9 ;c2 EQU 10000001B ;exponent of second SM number

10 ;m2 EQU 10110000B ;mantissa of second SM number
11 ;first number m1*2^c1=+0.625*2^+3
12 ;second number m2*2^c2=−0.375*2^−1
13 ;result my*2^cy=−106/128*2^+5
14 ;another example of numbers
15 0087 c1 EQU 10000111B ;exponent of first SM number
16 00C0 m1 EQU 11000000B ;mantissa of first SM number
17 0084 c2 EQU 10000100B ;exponent of second SM number
18 0070 m2 EQU 01110000B ;mantissa of second SM number
19 ;first number m1*2^c1=−0.5*2^−7
20 ;second number m2*2^c2=+0.875*2^−4
21 ;result my*2^cy=−73/128*2^−3
22
23 0000: 78 C0 MOV R0,#m1
24 0002: 79 87 MOV R1,#c1
25 0004: 7A 70 MOV R2,#m2
26 0006: 7B 84 MOV R3,#c2
27 0008: 12 00 0D LCALL DIV_FLOATS
28 ;result in A
29 000B: 80 FE STOP:SJMP STOP
30 ;---
31 000D: DIV_FLOATS:
32 000D: E8 MOV A,R0
33 000E: 8A F0 MOV B,R2
34 0010: BA 00 03 CJNE R2,#0,SKIP ;division by 0!
35 0013: D2 D2 SETB OV

Basic Arithmetic Operations on Floating-point Numbers 157

36 0015: 22 RET
37 0016: SKIP:
38 0016: 12 00 26 LCALL DIV_SM_FLOATS
39 0019: A2 D5 MOV C,PSW.5
40 001B: 92 E7 MOV ACC.7,C
41 001D: F8 MOV R0,A ;mantissa of result
42 001E: E9 MOV A,R1
43 001F: 8B F0 MOV B,R3
44 0021: 12 00 39 LCALL SUB_SM_FLOATS
45 0024: F9 MOV R1,A ;exponent of result
46 0025: SKIP1:
47 0025: 22 RET
48 0026: DIV_SM_FLOATS:
49 0026: C0 E0 PUSH ACC
50 0028: 65 F0 XRL A,B
51 002A: A2 E7 MOV C,ACC.7
52 002C: 92 D5 MOV PSW.5,C
53 002E: 53 F0 7F ANL B,#01111111B
54 0031: D0 E0 POP ACC
55 0033: 54 7F ANL A,#01111111B
56 0035: 12 00 6F LCALL FRACTION ;divide A by B
57 0038: 22 RET
58 0039: SUB_SM_FLOATS:
59 0039: A2 E7 MOV C,ACC.7
60 003B: 92 D5 MOV PSW.5,C
61 003D: C0 E0 PUSH ACC
62 003F: 65 F0 XRL A,B
63 0041: A2 E7 MOV C,ACC.7
64 0043: 53 F0 7F ANL B,#01111111B
65 0046: D0 E0 POP ACC
66 0048: 54 7F ANL A,#01111111B
67 004A: 40 18 JC signs_different
68 004C: signs_the_same:
69 004C: B5 F0 02 CJNE A,B,different
70 004F: 80 02 SJMP greater_or_equal
71 0051: different:
72 0051: 40 07 JC less
73 0053: greater_or_equal:
74 0053: C3 CLR C
75 0054: 95 F0 SUBB A,B
76 0056: A2 D5 MOV C,PSW.5
77 0058: 80 12 SJMP SKIP2
78 005A: less:
79 005A: C3 CLR C
80 005B: C5 F0 XCH A,B

158 Computer Arithmetic in Practice

81 005D: 95 F0 SUBB A,B
82 005F: A2 D5 MOV C,PSW.5
83 0061: B3 CPL C
84 0062: 80 08 SJMP SKIP2
85 0064: signs_different:
86 0064: 25 F0 ADD A,B
87 0066: A2 E7 MOV C,ACC.7
88 0068: 92 D2 MOV OV,C
89 006A: A2 D5 MOV C,PSW.5
90 006C: SKIP2:
91 006C: 92 E7 MOV ACC.7,C
92 006E: 22 RET
93 006F: FRACTION:
94 006F: 12 00 86 LCALL DENORM
95 0072: 7E 07 MOV R6,#7
96 0074: 7F 00 MOV R7,#0
97 0076: LOOP:
98 0076: 23 RL A
99 0077: C3 CLR C

100 0078: 95 F0 SUBB A,B
101 007A: 50 02 JNC SKIP3
102 007C: 25 F0 ADD A,B
103 007E: SKIP3:
104 007E: B3 CPL C
105 007F: CF XCH A,R7
106 0080: 33 RLC A
107 0081: CF XCH A,R7
108 0082: DE F2 DJNZ R6,LOOP
109 0084: EF MOV A,R7
110 0085: 22 RET
111 0086: DENORM:
112 0086: 7C 00 MOV R4,#00
113 0088: SHIFT:
114 0088: FD MOV R5,A
115 0089: C3 CLR C
116 008A: 95 F0 SUBB A,B
117 008C: ED MOV A,R5
118 008D: 40 05 JC SKIP4
119 008F: C3 CLR C
120 0090: 03 RR A
121 0091: 0C INC R4
122 0092: 80 F4 SJMP SHIFT
123 0094: SKIP4:
124 0094: C0 E0 PUSH ACC
125 0096: C0 F0 PUSH B

Basic Arithmetic Operations on Floating-point Numbers 159

126 0098: E9 MOV A,R1
127 0099: 8C F0 MOV B,R4
128 009B: B2 F7 CPL B.7
129 009D: 12 00 39 LCALL SUB_SM_FLOATS
130 00A0: F9 MOV R1,A
131 00A1: D0 F0 POP B
132 00A3: D0 E0 POP ACC
133 00A5: 22 RET
134 ;--- end of file ---

For further reading we recommend the books and publications: [Cody
1988, Coonen 1980, Goldberg 1991, IEEE 1985, IEEE 1987, IEEE 2008,
Kulisch 2014, Scott 1985 and Sternbenz 1974].

160 Computer Arithmetic in Practice

Chapter 6

Limited Quality of Arithmetic
Operations

6.1 PRECISION OF NUMBER REPRESENTATION

In the previous chapters, we concentrated on the representation of numbers
and on the ways in which the processor performs the four basic arithmetic
operations. The aim of this chapter is to make the reader aware of the
problem of the finite precision of calculations, which increases with
the number of arithmetic operations. It is particularly noticeable in iterative
versions of numerical algorithms and in operations on large data structures,
e.g. matrices. The causes of the mentioned imperfection are as follows:

• Limited width of a register or memory cell
• Inability to express exactly some numbers on a given basis, e.g. π, 1/3

Let us look at Example 6.1.

Example 6.1: Multiplication and division of decimal fractions 3/4 and 7/2
expressed in BIN format using 4 bits:

3
4

= 0.110
7
2

= 11.10BIN BIN

a. = = 2 = 10.101 10.103
4

7
2

21
8

5
8 BIN

but using 4 bits
BIN

b. : = = = 0.00110(110)... 0.0013
4

7
2

3
4

2
7

3
14 BIN

but using 4 bits
BIN

Please note that the result of the product in case (a) of two exactly
expressed numbers at the given base (here: p = 2) is not exact. The reason is
that the result must be written using a limited number of digits (here:
4 bits). The results of the product in case (b) is also approximate, but due to
the impossibility of expressing the number 3/14 on the base 2 even if word
length is not limited. If even the error of the multiplication can be avoided
by using more bits this solution is not satisfying in general case for division

DOI: 10.1201/9781003363286-6 161

https://doi.org/10.1201/9781003363286-6

routine. It is obvious that the longer the word length, the higher the pre-
cision and the smaller the errors are. However, please remember that
numbers are stored in the computer’s memory, so if the time of program
execution or its size is of primary importance, one should carefully, choose
the length of the word to the required precision of numbers, remembering
about the accumulation of errors of individual operations. In practice,
programmers are developing applications in high-level languages and have
several integer and floating-point numeric (see Appendix B for details). The
limits of errors are clearly defined and depend on the assumed precision
level and the rounding rules. We have a few possibilities, i.e. rounding to
the nearest value (the favorite one), toward zero (truncation), toward +inf
or toward −inf. In the following discussion, by rounding term, we mean an
operation that implements the following rule: if the discarded part is greater
than 0.5DEC, increase the preceding digit by one, e.g. 23.17438 −> 23.174,
but 23.17458 −>23.175.

REMEMBER!

If the real number A’ is approximated by the number A expressed in the floating-
point format of the form A = M·pC, where the mantissa M = m0, m−1 · m−k is
composed of k digits in the fractional part, then

• the absolute rounding error ΔA = A − A’ may be positive or negative,
and satisfies the inequality ulp A ulp1

2
1
2

,
• the absolute truncation error ΔA = A − A’ is always negative, and

satisfies the inequality −ulp < ΔA ≤ 0, where ulp is the abbreviation for
‘units in the last place’ and for the assumed number format is equal to
ulp = p−k·pC.

Example 6.2: Absolute rounding and truncation errors for the exact
number A’ = 12.318DEC expressed in floating-point format with k = 2 and k =
3 digits of the fractional part of the mantissa at basis p = 10.

a. A = round(A′,k)
• for k = 2 A = 1.23 · 10+1

Absolute rounding error: ΔA = A – A′ = –0.018
We have: |–0.018| < 0.05 and 0.5ulp = 0.5 · 10–k · 10C = 0.5 · 10–2 ·
10+1 = 0.05

• for k = 3 A = 1.232 · 10+1

Absolute rounding error: ΔA = A – A′= +0.002
We have |+0.002|= < 0.005 and 0.5ulp = 0.5 · 10–k · 10C = 0.5 · 10–3 ·
10+1 = 0.005

162 Computer Arithmetic in Practice

b. A = truncate(A′,k)
• for k = 2 A = 1.23 · 10+1

Absolute truncating error: ΔA = A – A′ = –0.018
We have –0.1 < –0.018 < 0, and ulp = 10–k · 10C = 10–2 · 10+1 = 0.1

• for k = 3 A = 1.231 · 10+1

Absolute truncating error: ΔA = A – A′ = –0.008
We have –0.01 < –0.008 < 0, and ulp = 10–k · 10C = 10–3 · 10+1 = 0.01

Exercise 6.1: Determine the rounding and truncation errors of the number
A’ = 0.0314159DEC expressed in floating-point format with k = 3 and k = 4 digits
of the fractional part of the mantissa and p = 10. Check whether the determined
errors satisfy the conditions given in the above box.

6.2 ERROR PROPAGATION

In Example 6.1, the case of two decimal input numbers exactly expressed as
binary numbers was considered as well. This is not always possible, e.g. try
to express a fraction 1/3DEC with a base that is not a multiple of 3 is
doomed to failure, even assuming an infinite number word length, because
1/3DEC = 0.3333(3)...DEC = 0.0101(01)...BIN. In general, the input argu-
ments of arithmetic operations may be subject to approximation error. We
will check how the introduced inaccuracies propagate by arithmetic oper-
ations and have an impact on the error of the result. We will show that it
depends on the type of arithmetic operation. One extra assumption was
taken. We ignore the error component resulting from the need to approx-
imate the result.

Let A’ and B’ denote the arguments of arithmetic operations. In a digital
machine, they may be written as approximated numbers A and B with
absolute error ΔA and ΔB, hence (6.1):

A = A + A B = B + B

or

A = A A B = B B (6.1)

The processor performs an operation on the approximate numbers A and B,
so the following formulas hold (6.2):

A + B = (A + A) + (B + B) = A + B + (A + B) (6.2a)

Limited Quality of Arithmetic Operations 163

A B = (A + A) (B + B) = A B + (A B) (6.2b)

A B = (A + A) (B + B) = A B + (B A + A B + A B)
A B + (B A + A B)

(6.2c)

Let us derive the formula for division. If we assume, as an alternative (6.3):

A
B

=
A + A
B + B

=
A
B

+ R (6.3)

hence (6.4):

R =
A + A
B + B

A
B

=
(A + A) B A (B + B)

(B + B) B

=
A B + A B A B A B

(B + B) B
=

A B A B
(B + B) B

A B A B
B B

=
A

B
A B
B B

(6.4)

and finally (6.5):

A
B

=
A + A
B + B

=
A
B

+
A B A B
(B + B) B

A
B

+
A

B
A B
B B

(6.5)

In summary, the arithmetic operations listed are subject to absolute errors (6.6):

= A + B = A BA+B A B (6.6a)

A B + B A
A

B
A B
B B

A B A/B (6.6b)

The simplified formulas for multiplication and division error is valid when
A >> ΔA and B >> ΔB, otherwise the exact full formulas should be used.

Similarly to the absolute error, the formula for relative error can be
derived, defined in general (6.7):

X =
X X

X
=

X
X

(6.7)

Accordingly, we get (6.8):

164 Computer Arithmetic in Practice

=
A + B

A + B
=

A
A + B

A
A

+
B

A + B
B

B

=
A

A + B
A +

B
A + B

B

A+B

(6.8a)

=
A B

A B
=

A
A B

A
A

B
A B

B
B

=
A

A B
A

B
A B

B

A B

(6.8b)

A B + B A
A B

=
A

A
+

B
B

= A + BA B (6.8c)

A
B

A B
B B

B
A

=
A

A
B

B
= A BA/B (6.8d)

We leave it to the reader to derive the exact relations for the relative error of
multiplication and division. After analyzing the formulas obtained, the
following observations arise:

• the absolute error of addition and subtraction depends only on the
error of the approximations of the arguments,

• the relative error of the result of multiplication and division depends
only on the error of the approximations of the arguments,

• the relative error of the result of subtraction is greater the smaller the
difference of the arguments.

Potentially worrying is the last observation, which shows that the relative
error of subtraction can many times exceed the relative errors of the
arguments! Such a situation is shown in Example 6.3. Please compare the
result errors in cases (a) and (b).

Example 6.3: Relative errors of addition and subtraction of two decimal
numbers A’ and B’, where

a. A′ = 100, ΔA = 1, B′= 99, ΔB = 0.9

hence δA = 0.01 = 1%, δB≈0.01 = 1%

=
A + B

A + B
=

1 + 0.9
100 + 99

1
100

= 1% < 1% + 1%A+B

Limited Quality of Arithmetic Operations 165

=
A B

A B
=

1 0.9
100 99

=
1

10
= 10%A B

b. A′ = 100, ΔA = 1, B′ = 99.9, ΔB = 0.9

hence δA = 0.01 = 1%, δB≈0.01 = 1%

=
A + B

A + B
=

1 + 0.9
100 + 99.9

=
1.9

199.9
1

100
= 1% < 1% + 1%A+B

=
A B

A B
=

1 0.9
100 99.9

=
0.1
0.1

= 1 = 100%!A B

Exercise 6.2: Determine the relative error of addition, subtraction, multipli-
cation and division of two decimal numbers A’ and B’, where A’= 543, ΔA = 2,
B’= 398 and ΔB = 3.

Example 6.4: Numbers A = 5
6
, B = 2

7
as decimal fractions to three decimal

places and the errors of arithmetical operations on approximate numbers to
which rounding has been applied:

a. A + B
b. A – B
c. A · B
d. A/B

A = 0.833 B = 0.285DEC DEC

A = A A =
833

1000
5
6

=
2499
3000

2500
3000

=
1

3000

B = B B =
285

1000
2
7

=
1995
7000

2000
7000

=
5

7000

a)

A + B =
1

3000
+

5
7000

=
7 + 15
21000

=
22

21000
= 0.0010(476190)... 0.001

166 Computer Arithmetic in Practice

Checking:

A + B = 0.833 + 0.285 = 1.118

A + B =
5
6

+
2
7

=
35
42

+
12
42

=
47
42

= 1
5
42

= (A + B) (A + B) = 1 1 = =

= 0.0010(476190)... 0.001
A+B

118
1000

5
42

4956
42000

5000
42000

22
21000

b)

A B =
1

3000
5

7000
=

15 7
21000

=
8

21000
= 0.000(380952)... 0.0004

Checking:

A–B = 0.833–0.285 = 0.548

A B =
5
6

2
7

=
35
42

12
42

=
23
42

= (A B) (A B) = =

= 0.000(380952)... 0.0004

A B
548

1000
23
42

23016
42000

23000
42000

8
21000

c)

() () ()B A + A B = + = +

= = 0.0006947...

2
7

1
3000

5
6

5
7000

1
1000

2
21

25
42

1
1000

25 + 4
42

Checking:

A · B = 0.833 · 0.285 = 0.237405

Limited Quality of Arithmetic Operations 167

A B =
5
6

2
7

=
10
42

= (A B) (A B) = =

= = 0.000690(238095)...

A B
237405

1000000
10
42

997101
4200000

1000000
4200000

2899
4200000

d)

()= = + =

= = 0.006125

A
B

A B
B B

1
3000

7
2

5
6

5
7000

7
2

7
2

7
6000

175
24000

175 28
24000

147
24000

Checking:

A/B = 0.833/0.285 =
833
285

= 2
263
285

A /B =
5
6

7
2

=
35
12

= 2
11
12

= (A/B) (A /B) = 2 2 = =

= 0.00(614035087719298245)... 0.006
A/B

263
285

11
12

3156
3420

3135
3420

21
3420

Exercise 6.3: Given decimal fractions A = 3/16, B = 5/8. Write them down
in the form of binary fractions A and B to three decimal places, and then
determine the errors of the following arithmetic operations:

a. A + B
b. A – B
c. A · B
d. A/B

Show the correctness of the formulas for the absolute errors of the opera-
tions listed above.

The error propagation and amplification can be a cause of serious final
errors, particularly if mathematical operations are done many times. A lot of
scientific algorithms are based on iterative solution of task that requires
repetition of many laps in the loop. Another example of numerous operations

168 Computer Arithmetic in Practice

is matrix algebra used to describe many research problems requiring solving
systems of equations (we need matrix inversion and multiplication as well).
The best practice is to limit the necessary amount of calculations and assume
format of numbers with some extra significant digits. Fortunately, in the
most cases, the double format proposed by IEEE 754 standard seems to be
accurate.

The deeper understanding how precise the result of a floating-point cal-
culation is and which operations introduce the most significant errors is not
easy work and generally is out of a scope and main objectives of this simple
book. For further reading, some excellent papers can be recommended. In
[Martel 2006], general method of assessment based on abstract interpre-
tation was discussed from theoretical point of view. Nevertheless, it can be
too hard for students without understanding of sophisticated math.
Another interesting approach is the CADNA library [Jézéquel 2008], which
allows you to estimate the propagation of rounding errors using a proba-
bilistic approach. With CADNA, you can control the numerical quality of
any simulation program. In addition, numerical debugging of user code can
be performed by detecting any instabilities that may occur during working.

Limited Quality of Arithmetic Operations 169

http://taylorandfrancis.com
http://taylorandfrancis.com

Remarks

1 IT APPLIES TO OPERATIONS ON NUMBERS IN FIXED-
POINT FORMAT

Analyzing the length of the resulting code, it seems that in many cases a
shorter code can be obtained by reducing it to the BIN form. Then it is
enough to use the appropriate arithmetic instructions ADD, SUBB, MUL
and DIV. In the final phase the result should be converted into the desired
output form. For which formats and actions is such a procedure worth-
while? Unfortunately, or rather lackily, the Reader must find the answer to
this question himself.

2 IT APPLIES TO OPERATIONS ON NUMBERS IN FLOATING-
POINT FORMAT

The format of floating-point numbers adopted in Chapter 5 is characterized
by low precision, so you should be aware that the usefulness of the sub-
routines contained therein is limited. They were aimed to provide,
straightforward as possible, the link between theoretical considerations
given in Chapter 4 and programming practice. Maybe it will facilitate the
understanding of coding and encourage the Reader to search for own
programmatic implementations. I know that is a challenge but giving a lot
of satisfaction. Adopting, for example, the single-precision format, as rec-
ommended by the IEEE standard, would certainly result in a more ex-
tensive, and at the same time less readable, code of subroutines, which
could effectively discourage an attempt to analyze them.

3 GENERAL REMARK

Due to primary educational purpose of this book many advanced topics
were omitted, unfortunately. We could spend many times discussing, for

DOI: 10.1201/9781003363286-7 171

https://doi.org/10.1201/9781003363286-7

example the issues of algorithms implementation in assembly code of var-
ious microprocessors starting with simple 8bits architecture and finish with
64bits one. We did not discuss the benefits of classical math library deli-
vering the ready-to-use arithmetic functions working with fixed and floating
formats for many CPUs. The reader could be also curious what are the
CORDIC method improvements and limitations and many more? People
interesting in hardware or mixed code/hardware realization of arithmetic,
what is common solutions met in the Graphical Processing Units (GPU
chips used in graphical cards or laptop chipsets) may feel a little bit dis-
appointed. The author is fully aware of these limitations. If you have
reached this point of book, you are probably also unsatisfied and looking
for further knowledge. I congratulate you on your persistence, but you must
go on your own way, explore and collect experience by reading excellent
books, e.g. [Brent 2010], [Koren 2002] and papers [Volder 1959], [Li 2016]
and practice and practice more ...

Best regards
Author

172 Computer Arithmetic in Practice

References

BOOK AND JOURNALS

Augarten S., Bit by bit: An illustrated history of computers, Unwin Paperbacks,
London 1985.

Baer J.L., Microprocessor architecture: From simple pipelines to chip multi-
processors, Cambridge University Press, New York, 2010.

Biernat J., Architektura układów arytmetyki resztowej (en. Architecture of residual
arithmetic systems), Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2007,
in Polish.

Bindal A., Fundamentals of computer architecture and design, 2nd edition, Springer,
Cham, 2019.

Blaauw G.A., Brooks F.P.J.R., Computer architecture: Concepts and evolution,
Addison-Wesley, Reading, 1997.

Boot A.D., A signed binary multiplication technique, Journal of Applied
Mathematics, 4(2/1951) 1951, pp. 236–240.

Brent R., Zimmermann P., Modern computer arithmetic, Cambridge University Press,
Cambridge, 2010.

Ceruzzi P., A history of modern computing, MIT Press, Cambridge, 1998.
Cherkauer B., Friedman E., A hybrid radix-4/radix-8 low power, high speed mul-

tiplier architecture for wide bit widths, IEEE International Symposium on
Circuits and Systems, 1996, pp. 53–56.

Cody W.J., Floating-point standards – theory and practice, Reliability in computing:
the role of interval methods in scientific computing, pp. 99–107, Academic
Press, Boston, 1988.

Coonen J., An implementation guide to a proposed standard for floating-point
arithmetic, Computer, 13, pp. 68–79.

Efstathiou C., Vergos H., Modified booth 1’s complement and modulo 2n-1 multi-
pliers, The 7th IEEE International Conference on Electronics Circuits and
Systems, 2000, pp. 637–640.

Flores I., The logic of computer arithmetic, Englewood Cliffs, Prentice-Hall Inc.,
New York, 1962.

Goldberg D., What every computer scientist should know about floating-point
arithmetic, Computing Surveys, Association for Computing Machinery Inc.,
March 1991.

173

Gryś S., Signed multiplication technique by means of unsigned multiply instruction,
Computers and Electrical Engineering, 37, 2011, pp. 1212–1221, doi: 10.101
6/j.compeleceng.2011.04.004.

Gryś S., Minkina W., O znaczeniu odwrotnej notacji polskiej dla rozwoju technik in-
formatycznych (en. On the importance of reverse polish notation for the devel-
opment of computer science), Pomiary Automatyka Robotyka, ISSN 1427-9126,
R. 24, No. 24(2) 2020, pp. 11–16, doi: 10.14313/PAR_236/11, in Polish.

Hamacher C., Vranesic Z. et al., Computer organization and embedded systems,
6th edition, McGraw-Hill, New York, 2012.

Hohl W., Hinds Ch., ARM assembly language: Fundamentals and techniques – 2nd
edition, CRC Press, Boca Raton, 2015.

Hwang K., Computer arithmetic: Principles, architecture and design, John Wiley &
Sons Inc., New York, 1979.

IEEE Standard 754-1985 for binary floating-point arithmetic, ANSI/IEEE 1985.
IEEE Standard 854-1987 for radix-independent floating-point arithmetic, ANSI/

IEEE 1987.
IEEE Standard 754-2008 for floating-point arithmetic, ANSI/IEEE 2008.
Irvine K., Assembly language for x86 processors 7th edition, Pearson, Upper Saddle

River, 2014.
Jézéquel F., Chesneaux J-M., CADNA: A library for estimating round-off error

propagation, Computer Physics Communications, 178, 2008, pp. 933–955,
10.1016/j.cpc.2008.02.003.

Koren I., Computer arithmetic algorithms, Prentice-Hall, Englewood Cliffs, New
Jersey, 1993.

Koren I., Computer arithmetic algorithms, 2nd edition, A.K. Peters, Natick
Massachusetts, 2002.

Kulisch U., Advanced arithmetic for the digital computer: Design of arithmetic
units, Springer Science & Business Media, Wien, 2012.

Kulisch U., Miranker W., Computer arithmetic in theory and practice, Academic
Press, New York, 2014.

Li J., Fang J., Li J., Zhao Y., Study of CORDIC algorithm based on FPGA, 2016
Chinese Control and Decision Conference (CCDC), pp. 4338–4343, doi:
10.1109/CCDC.2016.7531747.

Mano M., Computer system architecture, Prentice Hall, Englewood Cliffs, 1993.
Mano M., Computer system architecture, 3rd edition, Pearson Education, London,

2008.
Martel M., Semantics of roundoff error propagation in finite precision calculations,

Higher-Order Symbolic Computation, 19(7–30) 2006, doi: 10.1007/s10990-
006-8608-2.

Matula D., Kornerup P., Finite precision rational arithmetic: Slash number systems,
IEEE Transactions on Computers, C-34(1) 1985, pp. 3–18.

McCartney S., ENIAC: The triumphs and tragedies of the world’s first computer,
Walker and Company, New York, 1999.

McSorley O.L., High speed arithmetic in binary computers, Proceedings of IRE,
January 1961, pp. 67–91.

Metzger P., Anatomia PC (en. Anatomy of PC), wyd. XI, Helion, Gliwice 2007, in
Polish.

174 References

https://dx.doi.org/10.1016/j.compeleceng.2011.04.004
https://dx.doi.org/10.1016/j.compeleceng.2011.04.004
https://dx.doi.org/10.14313/PAR_236/11
https://dx.doi.org/10.1016/j.cpc.2008.02.003
https://dx.doi.org/10.1109/CCDC.2016.7531747
https://dx.doi.org/10.1007/s10990-006-8608-2
https://dx.doi.org/10.1007/s10990-006-8608-2

Mollenhoff C., Atanasoff: The forgotten father of the computer, Iowa State
University Press, Ames, 1988.

Null L., Lobur J., The essentials of computer organization and architecture, John
and Barlett Publishers, Burlington, 2018.

Omondi A.R., Computer arithmetic systems, algorithms, architecture and imple-
mentations, Series in Computer Science Prentice-Hall International, Englewood
Cliffs, New York, 1994.

Pankiewicz S., Arytmetyka liczb zapisywanych w systemach niedziesiętnych (en.
Arithmetic of numbers in non-decimal systems), Politechnika Śląska, Gliwice,
1985, in Polish.

Parhami B., Computer arithmetic: Algorithms and hardware designs, Oxford
University Press, New York, 2010.

Patterson D., Hennessy J., Computer organisation and design: The hardware/
software interface, 5th edition, Morgan Kaufmann, Oxford, 2014.

Pochopień B., Arytmetyka komputerowa (en. Computer arithmetic), Akademicka
Oficyna Wydawnicza EXIT, Warsaw, 2012, in Polish.

Pollachek H., Before the ENIAC, IEEE annals of the history computing 19, June
1997, pp. 25–30.

Richards R., Arithmetic operations in digital computers, Princeton, D.Van Nostrand,
New York, 1955.

Ruszkowski P., Witkowski J., Architektura logiczna i oprogramowanie prostych
mikroukładów kalkulatorowych (en. Logical architecture and software for
simple calculator microcircuits), PWN, Warsaw, 1983, in Polish.

Schmid H., Decimal arithmetic, John Wiley & Sons Inc., New York, 1979.
Scott N., Computer number systems and arithmetic, Prentice-Hall, Englewood

Cliffs, New York, 1985.
Seidel P., McFearin L., Matula D., Binary multiplication radix-32 and radix-256,

15th Symposium on Computer Arithmetic, 2001, pp. 23–32.
Stallings W. Computer organization and architecture, designing for performance,

8th edition, Pearson Education, Upper Sadle River, 2008.
Sternbenz P.H., Floating-point computation, Prentice-Hall, Englewood Cliffs, New

York, 1974.
Swartzlander E., Alexopoulos A., The sign/logarithm number systems, IEEE

Transactions on Computers, C-24(12) 1975, pp. 1238–1242.
Swartzlander E. (ed.), Computer arithmetic, vol. I, World Scientific, 2015, ISBN

978-981-4651-56-1, 10.1142/9476.
Tietze U., Schenk Ch., Gamm E., Electronic circuits: Handbook for design and

applications, 2nd edition, Springer, Berlin, 2002.
Vitali A., Coordinate rotation digital computer algorithm (CORDIC) to compute

trigonometric and hyperbolic functions, DT0085 Design tip, ST Microelectronics,
2017.

Vladutiu M., Computer arithmetic: Algorithms and hardware implementations,
Springer-Verlag, Berlin Heidelberg 2012.

Volder J., The CORDIC computer technique, IRE-AIEE-ACM ’59 (Western),
pp. 257–261, 10.1145/1457838.1457886.

Wiki 2022, CORDIC, from Wikipedia, https://en.wikipedia.org/wiki/CORDIC.

References 175

http://dx.doi.org/10.1142/9476
https://dx.doi.org/10.1145/1457838.1457886
https://en.wikipedia.org

http://taylorandfrancis.com
http://taylorandfrancis.com

Appendices

APPENDIX A. RANGE OF NUMBERS

Numerical range for BIN, 2’s and SM formats for assumed n and m, where
n is the number of bits of the integer part (quotient), m is the number of bits
of the fractional part.

Table A.1 Range for n + m = 8 Bits

n m Resolution 2−m Range for decimal format

BIN 2’s SM

8 0 1.0 0:255 −128:127 −127:127

7 1 0.5 0:127.5 −64:63.5 −63.5:63.5

6 2 0.25 0:63.75 −32:31.75 −31.75:31.75

5 3 0.125 0:31.875 −16:15.875 −15.875:15.875

4 4 0.0625 0:15.9375 −8:7.9375 −7.9375:7.9375

3 5 0.03125 0:7.96875 −4:3.96875 −3.96875:3.96875

2 6 0.015625 0:3.984375 −2:1.984375 −1.984375: 1.984375

1 7 0.0078125 0:1.9921875 −1:0.9921875 −0.9921875: 0.9921875

0 8 0.00390625 0:0.99609375 −0.5:0.49609375 −0.49609375:0.49609375

177

Ta
bl

e
A.

2
R

an
ge

 fo
r

n
+

 m
 =

 1
6

Bi
ts

n
m

Re

so
lu

tio
n

2−
m

Ra

ng
e

fo
r

de
cim

al
 f

or
m

at

BI
N

2’

s
SM

16

0
1.

0
0:

65
53

5
−

32
76

8:
32

76
7

−
32

76
7:

32
76

7

15

1
0.

5
0:

32
76

7.
5

−
16

38
4:

16
38

3.
5

−
16

38
3.

5:
16

38
3.

5

14

2
0.

25

0:
16

38
3.

75

−
81

92
:8

19
1.

75

−
81

91
.7

5:
81

91
.7

5

13

3
0.

12
5

0:
81

91
.8

75

−
40

96
:4

09
5.

87
5

−
40

95
.8

75
:4

09
5.

87
5

12

4
0.

06
25

0:

40
95

.9
37

5
−

20
48

:2
04

7.
93

75

−
20

47
.9

37
5:

20
47

.9
37

5

11

5
0.

03
12

5
0:

20
47

.9
68

75

−
10

24
:1

02
3.

96
87

5
−

10
23

.9
68

75
:1

02
3.

96
87

5

10

6
0.

01
56

25

0:
10

23
.9

84
37

5
−

51
2:

51
1.

98
43

75

−
51

1.
98

43
75

:5
11

.9
84

37
5

9
7

0.
00

78
12

5
0:

51
1.

99
21

87
5

−
25

6:
25

5.
99

21
87

5
−

25
5.

99
21

87
5:

25
5.

99
21

87
5

8
8

0.
00

39
06

25

0:
25

5.
99

60
93

75

−
12

8:
12

7.
99

60
93

75

−
12

7.
99

60
93

75
:1

27
.9

96
09

37
5

7
9

0.
00

19
53

12
5

0:
12

7.
99

88
04

68
75

−

64
:6

3.
99

80
46

87
5

−
63

.9
98

04
68

75
:6

3.
99

80
46

87
5

6
10

0.

00
09

76
56

25

0:
63

.9
99

02
34

37
5

−
32

:3
1.

99
90

23
43

75

−
31

.9
99

02
34

37
5:

31
.9

99
02

34
37

5

5
11

0.

00
04

88
28

12
5

0:
31

.9
99

51
17

18
75

−

16
:1

5.
99

95
11

71
87

5
−

15
.9

99
51

17
18

75
:1

5.
99

95
11

71
87

5

4
12

0.

00
02

44
14

06
25

0:

15
.9

99
75

58
59

37
5

−
8:

7.
99

97
55

85
93

75

−
7.

99
97

55
85

93
75

:7
.9

99
75

58
59

37
5

3
13

0.

00
01

22
07

03
12

5
0:

7.
99

98
77

92
96

87
5

−
4:

3.
99

98
77

92
96

87
5

−
3.

99
98

77
92

96
87

5:
3.

99
98

77
92

96
87

5

2
14

0.

00
00

61
03

51
56

25

0:
3.

99
99

38
96

48
43

75

−
2:

1.
99

99
38

96
48

43
75

−

1.
99

99
38

96
48

43
75

:1
.9

99
93

89
64

84
37

5

1
15

0.

00
00

30
51

75
78

12
5

0:
1.

99
99

69
48

24
21

87
5

−
1:

0.
99

96
94

82
42

18
75

−

0.
99

96
94

82
42

18
75

:0
.9

99
69

48
24

21
87

5

0
16

0.

00
00

15
25

87
89

06
25

0:

0.
99

99
84

74
12

10
93

75

−
0.

5:
0.

49
99

84
74

12
10

93
75

−

0.
49

99
84

74
12

10
93

75
:0

.4
99

98
47

41
21

09
37

5

178 Appendices

APPENDIX B. NUMERICAL DATA TYPES IN SOME
HIGH-LEVEL LANGUAGES

Table B.1 Integer Types of Numeric Variables

Signed numbers Delphi
Pascal

C/C++ Java Microsoft
Visual Basic

Range Bytes Name

−128... +127 1 shortInt signed char byte SByte

−32768... +32767 2 SmallInt short
short int
signed short
signed short int

short short
Int16

−2147483648...
+2147483647

4 LongInt long
long int
signed long
signed long int

int integer
Int32

−9 223 372 036 854
775 808 … + 9 223
372 036 854
775 807

8 Int64 long long
long long int
signed long long
signed long

long int

long long
Int64

Unsigned numbers Delphi
Pascal

C/C++ Java Microsoft
Visual
Basic

Range Bytes Name

0... 255 1 Byte unsigned char – byte

0... 65535 2 Word unsigned short
unsigned

short int

char UShort
UInt16

0... 4 294 967 295 4 Longword
Cardinal

unsigned long
unsigned

long int

Int (for SE8
and higher
releases

UInteger
UInt32

0 … 18 446 744 073
709 551 615

8 – unsigned long
long

unsigned long
long int

Long (for
SE8 and
higher
releases)

Ulong
UInt64

Appendices 179

Ta
bl

e
B.

2
R

ea
l N

um
be

rs

Re
al

 n
um

be
rs

D

el
ph

i
Pa

sc
al

C/

C+
+

Ja

va

M
icr

os
of

t
Vi

su
al

 B
as

ic

R
an

ge
 (

no
rm

al
iz

ed

nu
m

be
rs

)
By

te
s

Pr
ec

is
io

n
(s

ig
ni

fic
an

t
de

ci
m

al
 d

ig
its

)

IE
EE

-P
75

4
N

am
e

±
(1

.1
8e

−
38

...
3.

40
e3

8)

4
7–

8
si

ng
le

Si

ng
le

flo

at

Fl
oa

t
Si

ng
le

±
(2

.2
3e

−
30

8.
..1

.7
9e

30
8)

8

15
–1

6
do

ub
le

D

ou
bl

e
do

ub
le

do

ub
le

D

ou
bl

e

±
(3

.3
7e

−
49

32
...

1.
18

e4
93

2)

10

19

do
ub

le
 e

xt
en

de
d

Ex
te

nd
ed

lo

ng
 d

ou
bl

e
–

–

IE
EE

-P
75

4:
20

08

N
am

e

±
(6

.1
e−

5
…

 6
55

04
)

2
3–

4
ha

lf
(b

in
ar

y1
6)

–

ha
lf

–
–

±
(3

.3
7e

−
49

32
...

1.
18

e4
93

2)

16

34

qu
ad

ru
pl

e
(b

in
ar

y1
28

)
–

_F
lo

at
12

8
–

–

180 Appendices

APPENDIX C. SOLUTIONS TO EXERCISES

Exercise 1.1: Tip. From dependencies a ∪ a = a, a ∩ a = a and a ⊕ a = 0 we
have:

a a 0 1
a 1 a 1

a 1 a 1

a a 0 0
1 a 0 a

a a 0 0

0 1 a a
a 1 1 a

a 0 /a 0

3 2

3 1

3 1

3 2

2 0

3 2

1 0

3 0

3 1

Exercise 2.1: p = 2, 1.11BIN = 1.75DEC = 21 – 2−2,

p = 10, 9.99DEC = 101 – 10−2,

p = 16, F.FFHEX = 15 = 255/256 = 161 – 16−2.

Exercise 2.2:

a. 246.5DEC → 11110110.1000BIN → F6.8HEX

b. 3E.4HEX → 00111110.0100BIN → 62.25DEC

c. 10110011.0010BIN → B3.2HEX → 179.125DEC

Exercise 2.3:

a. 0.63DEC → ≈0.10100000BIN → 0.A0HEX

b. 11/9DEC = (1 + 2/9)DEC → ≈1.00111000BIN → 1.38HEX

c. 3/5DEC → ≈0.10011001BIN → ≈0.99HEX

d. 1/128DEC → 0.00000010BIN → 0.02HEX

Exercise 2.4:

a. 479.12DEC → 010001111001.00010010P-BCD→00000100000001110000
1001.0000000100000010UP-BCD

b. 0.03DEC → 0000.00000011P-BCD →00000000.0000000000000011UP-BCD

c. 8.9DEC → 1000.1001P-BCD → 00001000.00001001UP-BCD

d. 123DEC → 000100100011P-BCD → 000000010000001000000011UP-BCD

Exercise 2.5:

a. 361.82DEC → 3336312E3832(HEX) as ASCII

b. 36.18DEC → 33362E3138(HEX) as ASCII

c. 0.45DEC → 302E3435(HEX) as ASCII

d. 97.1DEC → 39372E31(HEX) as ASCII

Appendices 181

Exercise 2.6:

a. +23.5DEC → 010111.1SM

b. +17.3DEC → 010001.0100…SM

c. −11.25DEC → 11011.01SM

d. −1DEC → 11SM.

Exercise 2.7:

a. +3.125DEC → 011.0012’s

b. −17.5DEC → 101110.12’s

c. −1DEC → 12’s

d. +1DEC → 012’s

Exercise 3.1:

a. b.
11.011101

+ 00.101101

1 00.001010

BIN

BIN

BIN

1101.0111
+ 1010.1100

1 1000.0011

BIN

BIN

BIN

Exercise 3.2:

a. b.
11.011100
01.101011

01.110001

BIN

BIN

BIN

1 0101.1011
1010.1101

1010.1110

BIN

BIN

BIN

Exercise 3.3:

a. A = 42.5DEC B = 68DEC p = 2

A = 101010.1 B = 1000100.0 B = 0111011.1 B = 0111100.0BIN BIN

0101010.1 A
+ 0111100.0 B

0 1100110.1 A + B

1 0011001.1 A + B

0101010.1 A
+ 0111011.1 B

0 1100110.0 A + B

1 0011001.1 (A + B)

182 Appendices

b. A = 75DEC B = 13DEC p = 10 B = 86 B = 87

75 A
+ 87 B

1 62 A + B

0 62 +(A + B)

75 A
+ 86 B
1 61 A+B
+ 01 p m

0 62 +(A + B)

Exercise 3.4:

a. b.
11.11
0.101

1111
0000

1111
0000
10.01011

BIN

BIN

BIN

1.001
0110

0000
1001

1001
0000
0110.110

NKD

NKD

NKD

Exercise 3.5:

b)
BIN

BIN BIN

 11.1...
 110010 :1101
01101

 11000
 01101

 10110
 01101

 1001
 ...

»

-

-

-

 or

BIN

BIN BIN

 11 quotient
 110010 :1101
01101

 11000
 01101

 01011 reminder

-

-

-
-

a)
BIN

BIN

110010
001101
100101
001101
011000
001101
001011
010010
111001

-

-

-

-

DEC

DEC

DEC BIN

BIN

0 quotient 1

0 quotient 2

0 quotient 3 011

0 reminder 1011

> Þ =

> Þ =

> Þ = =

< Þ =

Appendices 183

Exercise 3.6:

1

0

0001 0011
1001
1000
1001
0001

0010 011
1001
1001
1001
0010

0100 11
1001
1011
1001
0100

1001 1
1001
0000

0001
1001
1000
1001

reminder 0001

¬¾¾
-

+

¯
¬¾¾

-

+

¯

-

+

¯

-

¯

0

1

1

¬¾¾

¬¾¾

¬¾¾
-

+
=

BIN

0 quotient 0

0 iloraz 00

0 quotient 000

0 quotient 0001

0 quotient 00010

quotient 00010

< Þ =

< Þ =

< Þ =

³ Þ =

< Þ =

Þ =

Exercise 3.7:

1 ;***
2 ;* Division of BIN numbers byte/byte *
3 ;* differential method II *
4 ;***
5 000A n EQU 10 ;n=10 DEC
6 0003 y EQU 3 ;y=3 DEC
7
8 0000: 74 0A MOV A,#n ;dividend
9 0002: 75 F0 03 MOV B,#y ;divisor

10 0005: 12 00 0A LCALL DIV_BIN8BY8DIFF
11 ;result in A-quotient,

B-reminder
12 0008: 80 FE STOP: SJMP STOP
13 ;---
14 000A: DIV_BIN8BY8DIFF:
15 000A: AB F0 MOV R3,B
16 000C: BB 00 03 CJNE R3,#0,DIVIDE
17 000F: D2 D2 SETB OV
18 0011: 22 RET

184 Appendices

19 0012: DIVIDE:
20 0012: 79 08 MOV R1,#8
21 0014: LOOP:
22 0014: C3 CLR C
23 0015: 33 RLC A ;<-divident
24 0016: CA XCH A,R2 ;<-reminder<-C
25 0017: 33 RLC A
26 0018: C3 CLR C
27 0019: 9B SUBB A,R3 ;reminder-divisor
28 001A: 50 01 JNC NOT_LESS
29 001C: 2B ADD A,R3
30 001D: NOT_LESS:
31 001D: CA XCH A,R2
32 001E: B3 CPL C
33 001F: C8 XCH A,R0
34 0020: 33 RLC A ;<-quotient
35 0021: C8 XCH A,R0
36 0022: D9 F0 DJNZ R1,LOOP
37 0024: E8 MOV A,R0
38 0025: 8A F0 MOV B,R2
39 0027: 22 RET
40 ;--- end of file ---

Exercise 3.8*: No solution is provided.

Exercise 3.9:

a. b.
10010110

+ 00010101

10101011

+ 00000110
10110001

+ 01100000
1 00010001

P BCD

P BCD

P BCD

P BCD

P BCD

10000100
+ 01110011

11110111

+ 01100000

1 01010111

P BCD

P BCD

P BCD

P BCD

P BCD

Exercise 3.10:

a. b.
10010010
10000111

00001011

00000110
00000101

P BCD

P BCD

P BCD

P BCD

01100001
00100101

00111100

00000110
00110110

P BCD

P BCD

P BCD

P BCD

Appendices 185

Exercise 3.11*: No solution is provided.

Exercise 3.12*: No solution is provided.

Exercise 3.13:

a. b.
00001001 00000100

+ 00000101 00000010

00001110 00000110

+ 11110110 00000000
1 00000100 00000110

UP BCD

UP BCD

UP BCD

UP BCD

00001001 00000111
+ 00000101 00001000

00001110 00001111

+ 11110110 11110110
1 00000101 00000101

UP BCD

UP BCD

UP BCD

UP BCD

Exercise 3.14:

a. b.
00001001 00000001
00000110 00000011

00000010 11111110

00000000 11110110
0 00000010 00001000

UP BCD

UP BCD

UP BCD

UP BCD

00000101 00000110
00000100 00000010

00000001 00000100

UP BCD

UP BCD

UP BCD

Exercise 3.15*: No solution is provided.

Exercise 3.16*: No solution is provided.

Exercise 3.17:

a. b.
00110011 00110010

00000011 00000010
+ 00110111 00110011

00111010 00110101
+ 11110110 00000000

1 00110000 00110101

ASCII

ASCII

ASCII

00110101 00110110

00000101 00000110
+ 00110111 00110011

00111100 00111001
+ 11110110 00000000

1 00110010 00111001

ASCII

ASCII

ASCII

186 Appendices

Exercise 3.18:

a. b.
00111001 00110010
00110111 00110011

00111001 00110010
00000111 00000011
00110010 00101111
00000000 11110110
00110001 00111001

ASCII

ASCII

ASCII

ASCII

1 00110101 00110110
00110111 00110010

00110101 00110110
00000111 00000010

1 00101110 00110100
11110110 00000000
00111000 00110100

ASCII

ASCII

ASCII

ASCII

Exercise 3.19*: No solution is provided.

Exercise 3.20*: No solution is provided.

Exercise 3.21:

a. b.
1 100

+ 1 111

?011

1 0100
+ 1 0111

1 1011

SM

SM

SM

SM

SM

SM

0100
+ 0111

?011

00100
+ 00111

01011

SM

SM

SM

SM

SM

SM

c. d.
1 100

+ 0111

?

0111
0100

0 0011

SM

SM A < B

SM

0100
+ 1 111

?

0111
0100

1 0011

SM

SM A < B

SM

In cases (a) and (b), there was a carry-over to the sign bit, so the numbers had to
be written on five bits.

Exercise 3.22:

a. b.
1 100
1 111

?

0111
0100

0 0011

SM

SM A < B

SM

0100
0111

?

0111
0100

1 0011

SM

SM A < B

SM

Appendices 187

c. d.
1 100
0111

?011

1 100
+ 0111

?011

1 0100
+ 00111

1 1011

SM

SM

SM

SM

SM

SM

SM

SM

SM

0100
1 111

?011

0100
+ 1 111

?011

00100
+ 1 0111

01011

SM

SM

SM

SM

SM

SM

SM

SM

SM

In cases (c) and (d), there was a carry-over to the sign bit, so the numbers had to
be written on five bits.

Exercise 3.23:

a. b.

1 001
+ 1111

1 1000

11

2 s

2 s

2 s

1 011
+ 0110

1 0001

11

2 s

2 s

2 s

Exercise 3.24:

a. b.

1 101
0011

0 1010

00

2 s

2 s

2 s

0101
1100

1 0001

00101
11100

1 01001

10

2 s

2 s

2 s

11

2 s

2 s

2 s

In case (b), there was a carry-over to the sign bit position, so the numbers had to
be written using five bits.

Exercise 3.25:

a) b)

2's
~

2's

pseudoproduct

correction

A

B

=

=

1 1 0. 1
0* 0. 1 1

1 1 1 1 0 1
1 1 1 0 1
0 0 0 0

1 1 1 0 1 1 1
0 0 0 0 0 0 0
1 1 1 0. 1 1 1

+

-

1*
2's

~

2's

pseudoproduct

correction

A

B

1 0 0 1
1 0 0

0 0 0 0 0 0
0 0 0 0 0
1 0 0 1

1 1 0 0 1 0 0
1 0 0 1 0 0 0
0 0 1 1 1 0 0

=

=

+

-

188 Appendices

Exercise 3.26:

a) b)

2's

2 's

2 's

1 0 1
0 1 1
1 0 1

1

1 1 1
0
1 1
0 0 0 0

1 1 1
1 1 1 0 1

0 0

1 1
1 1
0 0 0 0 0 0

0 0
0 0 1 0 1 01 1 1 1 1 1

*

+
// / /

M
L

2's

2's

0 0. 1 1
1 1 0. 0
0 0 0 0

0

0 0
1 1
0 0
0 0 0 0 0

0 0 0 0 1 1
0 0 0 0 1 1

0 0 0 0 1 1
0 0 0 0 1 1
0

*

+
0 0 1 0 2's1 1 0. 1 0 0

Exercise 3.27:

a. b.
1101
0011

0000001{10}

1101
0011001{10}
0001100{1 1 }

+ 0000110{0 1 }
1101

1101110{0 1 }
1110111{00}

= 11110111

2 s

2 s

2 s

011
100

00010{00}
00001{00}

00000{10}
011

10100{10}

= 110100

2 s

2 s

2 s

Exercise 3.28*: No solution is provided.

Exercise 3.29: No solution is provided.

Exercise 4.1: M10 = –5.28DEC i E10 = –3DEC, hence:

E = 1 +
ln M + E ln10

ln2
= 1 +

ln 5, 28 + (3) ln10

ln2
= 6.565 7

= 1 111

2
10 10

SM

Appendices 189

M = M exp(E ln10 E ln2) = 5.28 exp(3 ln 10 (7) ln 2)

= 0.67584

2 10 10 2

DEC

The result is 1.10101101SM·21111
SM

Checking: −0.67584·2−7 = −0.00528DEC.

Exercise 4.2: M2 = 0.0101SM = +5/16DEC and E2 = 010SM = +2DEC, hence:

E = 1 +
ln M + E ln2

ln10
= 1 +

ln +0.3125 + (+2) ln2

ln10
= 1.097 110

2 2

M = M exp(E ln2 E ln10) = +0.3125 exp(2 ln2 1 ln10) = +0.12510 2 2 10

The result is +0.125·10+1 = +1.25DEC

Exercise 5.1:

p = 2, E = +10 , M = 0.1011 , E = 01 , M = +0.1111X SM X SM Y SM Y SM

E E = +2–(–1) = +3 = +3, E > EX Y X Y

0.67584·2

1.35168·2

0.70336·2

1.40672·2

0.81344·2

1.62688·2

1.25376·2

0.50752·2

1.01504·2

...

0.67584DEC → ≈0.10101101BIN

190 Appendices

M = M , M = M 2 = 0.0001111X X Y Y
3

SM

Because X and Y are different signs and M > MX Y (see addition rules for SM
numbers – Table 3.1):

M = M + M = (M M)

= 0.1001001 , E = max(+2, 1) = +2

Z X Y X Y

SM Z

The result is Z = 1.1001001 · 2010
SM = –2.28125DEC.

It takes 8 bits to express the exact mantissa value of the result!

Exercise 5.2*: p = 2, EX = +00SM, MX = –0.101SM, EY = +10SM, MY = –0.0110SM

|EX – EY| = |+0 – (+2)| = |–2| = +2, EX< EY

M = M 2 = 0.00101 , M = MX X
2

SM Y Y

Because X and Y are negative and M < MX Y (see subtraction rules for SM
numbers – Table 3.2):

M = M M = +(M M)

= +0.10011 , E = max(+0, +2) = +2

Z X Y Y X

SM Z

The result is Z = 0.10011 2 = +2SM
010 3

8DEC

Exercise 5.3:

p = 2, E = +01 , M = 0.0100 , E = 10 , M = 0.0010X SM X SM Y SM Y SM

M = M M = + M M = 0.00001000 , E = E + E = +1 + (2)

= 1

Z X Y X Y SM Z X Y

DEC

Because M < 2Z
4 the normalization is needed:

M _ = M 2 = 0.1000 , E = E 4 = 1 4 = 5 = 1 101Z norm Z
4

SM Znorm Z SM

Appendices 191

The result is Z = 0.1000·2 = +SM
1101 1

64DEC
.

It takes 4 bits to express the exact exponent value of the result!

Exercise 5.4:

p = 2, E = +10 , M = +0.1101 , E = 10 , M = 0.1110X SM X SM Y SM Y SM

Because M < MX Y the denormalization of X number is not required and:

M = M , E = E ,X X X X

M = M /M = M / M = 1 .111011(011)... , E = E E

= +2 (2) = +4

Z X Y X Y SM Z X Y

DEC

The result is Z 1 .111011(011)... ·2 14.857SM
0100

DEC

It takes an infinite number of bits to express the exact mantissa value of the
result!

Exercise 6.1:

a. A = round(A′,k)
• for k = 3 A = 3.142 · 10−2

Absolute rounding error: ΔA = A – A′ = −0.0000041
We have |−0.0000041| < 0.000005
and 0.5ulp = 0.5 · 10−k · 10E = 0.5 · 10−3 · 10−2 = 0.000005

• for k = 4 A = 3.1416 · 10−2

Absolute rounding error: ΔA = A – A′ = −0.0000001
We have |−0.0000001| < 0.0000005
and 0.5ulp = 0.5 · 10−k · 10E =0.5 · 10−4 · 10−2 = 0.0000005

b. A = truncate(A′,k)
• for k = 3 A = 3.141 · 10−2

Absolute truncating error: ΔA = A – A′ = −0.0000059
We have −0.00001 < −0.0000059 < 0
and ulp = 10−k · 10E = 10−3 · 10−2 = 0.00001

• for k = 4 A = 3.1415 · 10−2

Absolute truncating error: ΔA = A – A′ = −0.00009
We have −0.0000001 < −0.00009 < 0
and ulp = 10−k · 10E = 10−4 · 10−2 = 0.000001

192 Appendices

Exercise 6.2: A′ = 543, ΔA = 2, B′ = 398, ΔB = 3 hence: δA = 2/543 ≈ 0.37%,
δB= 3/398 ≈ 0.75%

=
A + B
A + B

=
2 + 3

543 + 398
=

5
941

0.5% < 0.37% + 0.75%A+B

=
A B
A B

=
2 3

543 398
0.7%A B

+ = 1.12%A B A B

= 0.38%A/B A B

Exercise 6.3: A = B =3
16

5
8

A′ = 0.001BIN B = 0.101DEC, hence:

A = A A =
1
8

3
16

=
1

16
B = B B =

5
8

5
8

= 0

ad a)

A + B =
1

16
+ 0 =

1
16

Checking: A + B = 0.001 + 0.101 = 0.110 = A + B = + =BIN BIN BIN
6
8

3
16

5
8

13
16

= (A + B) (A + B) =
6
8

13
16

=
1

16
A+B

ad b)

A B =
1

16
0 =

1
16

Checking: A B = 0.001 0.101 = A B = =BIN BIN
4
8

3
16

5
8

7
16

= (A B) (A B) =
4
8

7
16

=
1

16
A B

ad c)

Appendices 193

B A + A B =
5
8

1
16

+
3
8

0 =
5

128

Checking: A·B = 0.001 ·0.101 = 0.000101 = A B = =BIN BIN BIN
5
64

3
16

5
8

15
128

= (A B) (A B) =
5
64

15
128

=
5

128
A B

ad d)

A
B

A B
B B

=
1

16
8
5

3
16

0
8
5

8
5

=
1

10

Checking: A/B = 0.001 /0.101 = = A /B = =BIN BIN
1
8

8
5

1
5

3
16

8
5

3
10

= (A/B) (A /B) =
1
5

3
10

=
1

10
A/B

194 Appendices

Index

_IQ format, 58
1-bit arithmetic operations, 3, 48
1-bit logical operations, 2, 3
2’s complement, 7, 10, 49, 51, 52, 54,

70, 90, 92, 98, 99, 125,
130, 131

8051 architecture, 5

accumulator, 8, 10, 90, 96
accuracy, 129, 133, 146
addition, 3, 6, 7, 8, 28, 49, 51, 57, 58,

59, 61, 74, 75, 78, 80, 82, 87,
88, 90, 92, 98, 99, 100, 126,
129, 131, 132, 141, 142, 144,
165, 189

address buffer, 6
algorithm, 2, 6, 17, 22, 29, 32, 32, 33,

34, 35, 36, 37, 46, 54, 24, 64,
67, 69, 70, 77, 80, 82, 87, 101,
102, 103, 105, 108, 109, 110,
113, 117, 119, 121, 122, 123,
124, 127, 132, 161, 168

ANSI, 135
arithmetic difference, 3
arithmetic logic unit, 4
arithmetic multiplication, 3
arithmetic sum, 3
ASCII, 22, 30, 31, 36, 37, 42
assembler, 16, 17, 18, 19, 20
assembly language, 10, 16, 122, 146
auxiliary carry, 7, 74

bank switching, 9
BCD, 6, 7, 8, 16, 30, 32, 33, 34, 35, 38,

39, 40, 41, 42, 43, 44, 45, 74,
75, 76, 77, 78, 80, 81, 82, 83,
85, 118, 127, 132, 137

binary, 2, 3, 4, 7, 16, 18, 19, 21, 22, 26,
27, 28, 30, 31, 46, 57, 98, 112,
125, 135, 163, 168

Boolean algebra, 4
Boolean operators, 18
Booth’s algorithm, 103
borrow, 3, 7, 8, 59, 60, 67, 76, 99

carry, 3, 7, 8, 50, 58, 61, 63, 64, 67, 74,
78, 90, 100, 108, 109, 128,
185, 186

checksum, 22
comparison, 7, 18, 68, 116, 131
complements, 49, 50, 51, 61, 63, 90
complexity, 67, 113, 114, 127, 146, 67
control unit, 6
CORDIC, 58, 120, 121, 122, 123, 124
CPU, 5, 6, 16, 17, 30, 58, 60, 69, 70,

75, 76, 122, 128, 136
current loop, 2

data buffer, 6
data memory, 6, 10
data types, 137, 177
de Morgan’s laws, 2
decimal, 7, 8, 16, 18, 19, 26, 27, 29, 30,

31, 49, 74, 75, 76, 78, 122,
125, 129, 130, 135, 145, 147,
161, 163, 165, 166, 168

denormalization, 144, 145, 147, 190
denormalized number, 131, 132, 134,

135, 136
directive, 17, 18, 19, 20, 21
divide by zero, 7, 70
dividend, 68, 70, 71, 72, 97
division, 7, 67, 68, 69, 70, 71, 72, 74,

77, 78, 87, 97, 117, 127, 132,

195

133, 145, 146, 147, 157, 161,
164, 165, 166

divisor, 67, 68, 69, 70, 71, 72, 97
double extended precision, 129, 131,

134, 135, 136, 137

electronics, 2, 4, 58
embedded systems, 103
exponent, 117, 125, 126, 127, 128,

129, 130, 131, 132, 135, 138,
146, 147, 151, 154, 157, 190

fixed-point format, 25, 57, 58, 120,
125, 128

floating-point format, 4, 49, 57, 124,
125, 127, 128, 129, 131, 132,
137, 162, 163

floating-point number, 127, 132, 135,
138, 139, 140, 141, 144, 145,
146, 147

floating-point unit, 4
Forth, 11
fractional, 25, 28, 48, 50, 52, 57, 58,

59, 67, 104, 112, 118, 131,
132, 162, 163, 175

hexadecimal, 18, 19, 22, 26, 27, 31, 136

IEEE, 754, 127, 129, 130, 131, 132,
133, 135, 136, 137,
146, 169

IEEE 754:1985 standard, 127
IEEE society, 49
instruction decoder, 6
instruction pointer, 10
instruction register, 6
Intel Core, 6, 7, 129, 136
Intel HEX format, 23
inversion, 2, 16, 51, 63, 88, 94, 169

jump, 7, 8, 10, 11, 15, 17, 132

kernel, 17

label, 17, 18, 31, 76, 118
linker, 16, 17
loader, 16, 17, 21, 23
logarithm, 117, 120, 127, 130, 138
logic, 1, 2, 4, 12
logical AND, 2, 3, 4, 6
logical OR, 2, 4, 6
logical XOR, 2, 3, 6

machine code, 16, 17, 18, 21, 22, 23,
31, 103, 127

macro, 17, 18, 20
mantissa, 125, 126, 128, 130, 131, 132,

133, 134, 135, 138, 139, 143,
144, 145, 146, 147, 151

memory, 1, 6, 8, 9, 10, 11, 13, 16, 17,
21, 22, 23, 30, 31, 113, 116,
128, 129, 137, 161, 162

microprocessor, 5, 6, 12, 13, 14, 15, 16,
17, 21, 57, 67, 70, 103, 121

multiplicand, 63, 64, 65, 96, 100, 102,
103, 105, 110, 111, 115

multiplication, 3, 6, 7, 28, 57, 63, 64,
65, 69, 77, 78, 82, 82, 87,
96, 98, 100, 101, 102, 103,
104, 105, 107, 108, 109,
110, 112, 113, 116, 122,
127, 132, 144, 145, 147,
161, 164, 166, 169

multiplier, 64, 65, 96, 100, 101, 103,
107, 108, 109, 110, 111, 115

negative, 10, 25, 48, 49, 52, 60, 67, 71,
76, 90, 100, 102, 114, 115,
116, 117, 122, 126, 128, 143,
147, 162, 189

nibble, 8
nonlinear functions, 22, 58, 117, 120
non-restitution method, 68
normalized number, 125, 128, 129,

131, 132, 133, 134, 135, 136

octal, 18, 19, 26
out of the range, 88, 91, 92, 94, 98, 99,

111, 147, 151, 154, 157
overflow, 7, 10, 100, 133

parity, 2, 8
PLD/FPGA, 4
postfix, 11, 18
Postscript, 11
precision, 46, 58, 98, 119, 123, 124,

128, 129, 130, 133, 134, 135,
136, 137, 146, 161, 162

prefix, 18, 31, 57
program memory, 6
programming languages, 57, 135

quad precision, 129
quotient, 67, 68, 69, 70, 71, 72, 73,

97, 175

196 Index

RAM, 8, 11, 16, 21
register, 6, 8, 10, 11, 18, 32, 137, 161
register bank, 8, 11
remainder, 12, 67, 68, 69, 71, 97, 132
Reverse Polish Notation, 11
Robertson’s method, 101, 102, 103
rotations, 7, 121, 122
rounding, 132, 137, 162, 163, 166, 169

shifting, 7, 64, 109
sign, 1, 8, 10, 19, 31, 48, 49, 50, 51, 52,

53, 63, 87, 88, 90, 93, 94, 96,
97, 98, 99, 100, 102, 103,
104, 107, 108, 116, 128, 129,
131, 142, 147, 185, 186

signed numbers, 6, 7, 18, 49, 51, 57, 87,
98, 112, 125, 177

sign-magnitude, 48, 87, 88, 94, 126,
127, 128, 130

stack, 10, 11, 107, 137
stack pointer, 10, 11
subtraction, 6, 7, 8, 49, 51, 52, 59, 60,

61, 63, 68, 69, 70, 71

truncation, 146, 162, 163

underflow, 132, 133
unsigned numbers, 25, 57, 112

Index 197

http://taylorandfrancis.com
http://taylorandfrancis.com

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	Chapter 1: Basic Concepts of Computer Architecture
	1.1 The 1-bit Logical and Arithmetical Operations
	1.2 Architecture of Simple Microprocessor
	1.3 Understanding the Instruction Set
	1.4 Assembly Language and Tools

	Chapter 2: Numbers in Fixed-point Format
	2.1 Unsigned Numbers
	2.2 Conversion of Unsigned Number to Another Format
	2.2.1 Conversion BIN to P-BCD for A < 100DEC
	2.2.2 Conversion BIN to P-BCD for A < 256DEC
	2.2.3 Conversion BIN to UP-BCD for A < 100DEC
	2.2.4 Conversion BIN to UP-BCD for A < 256DEC
	2.2.5 Conversion BIN to ASCII for A < 100DEC
	2.2.6 Conversion BIN to ASCII for A < 256DEC
	2.2.7 Conversion P-BCD to BIN
	2.2.8 Conversion P-BCD to UP-BCD
	2.2.9 Conversion P-BCD to ASCII
	2.2.10 Conversion UP-BCD to BIN
	2.2.11 Conversion UP-BCD to P-BCD
	2.2.12 Conversion UP-BCD to ASCII
	2.2.13 Conversion ASCII to BIN
	2.2.14 Conversion ASCII to P-BCD
	2.2.15 Conversion ASCII to UP-BCD
	2.2.16 Conversion BIN Fraction (num/denom) to BIN Fraction (dot notation)

	2.3 Signed Numbers
	2.3.1 The Sign-magnitude Representation
	2.3.2 Complements - Theory and Its Usage
	2.3.3 The 2's Complement Representation

	2.4 Conversions and Change of Sign
	2.4.1 Change of Sign for 2's Number
	2.4.2 Conversion SM to 2's Notation
	2.4.3 Conversion 2's Notation to SM

	Chapter 3: Basic Arithmetic on Fixed-point Numbers
	3.1 Operations on Unsigned Numbers
	3.1.1 Working with Natural Binary Code
	3.1.2 Working with Packed BCD
	3.1.3 Working with Unpacked BCD
	3.1.4 Working with Chars in ASCII

	3.2 Operations on Signed Numbers
	3.2.1 Working with Sign-magnitude
	3.2.2 Working with 2's Complement

	3.3 Nonlinear Functions

	Chapter 4: Numbers in Floating-point Format
	4.1 Non-normalized Numbers
	4.2 IEEE 754 Standard
	4.2.1 Single Precision
	4.2.2 Double Precision
	4.2.3 Double Extended Precision*
	4.2.4 Single Precision
	4.2.5 Double Precision
	4.2.6 Double Extended Precision

	4.3 FPU as a Specialized Arithmetic Unit
	4.4 Conversion to Another Radix

	Chapter 5: Basic Arithmetic Operations on Floating-point Numbers
	5.1 Addition
	5.2 Subtraction
	5.3 Multiplication
	5.4 Division
	5.5 Implementations in Assembly Language

	Chapter 6: Limited Quality of Arithmetic Operations
	6.1 Precision of Number Representation
	6.2 Error Propagation

	Remarks
	1 It applies to operations on numbers in fixed-point format
	2 It applies to operations on numbers in floating-point format
	3 General remark

	References
	Book and journals

	Appendices
	Appendix A. Range of numbers
	Appendix B. Numerical Data Types in Some High-level Languages
	Appendix C. Solutions to Exercises

	Index

