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When [ joined Google in 2000, algorithmic problems came up every day. Even strong
engineers didn’t have all the background they needed to design efficient algorithms.
Paolo Ferragina’s well-written and concise book helps fill that void. A strong software
engineer who masters this material will be an asset.

— Martin Farach-Colton, Rutgers University

There are plenty of books on Algorithm Design, but few about Algorithm Engineering.
This is one of those rare books on algorithms that pays the necessary attention to the
more practical aspects of the process, which become crucial when actual performance
matters and render some theoretically appealing algorithms useless in real life. The
author is an authority on this challenging path between theory and practice of algo-
rithms, which aims at both conceptually nontrivial and practically relevant solutions.
I hope the readers will find the reading as pleasant and inspiring as I did.

— Gonzalo Navarro, University of Chile

Ferragina combines his skills as a coding engineer, an algorithmic mathematician, and
a pedagogic innovator to engineer a string of pearls made up of beautiful algorithms. In
this, beauty dovetails with computational efficiency. His data structures of Stringomics
hold the promise for a better understanding of population of genomes and the history
of humanity. It belongs in the library of anyone interested in the beauty of code and
the code of beauty.

— Bud Mishra, Courant Institute, New York University

There are many textbooks on algorithms focusing on big-O notation and general
design principles. This book offers a completely unique aspect of taking the design
and analyses to the level of predictable practical efficiency. No sacrifices in generality
are made, but rather a convenient formalism is developed around external memory
efficiency and parallelism provided by modern computers. The benefits of randomi-
zation are elegantly used for obtaining simple algorithms whose insightful analyses
provide the reader with useful tools to be applied to other settings. This book will be
invaluable in broadening the computer science curriculum with a course on algorithm
engineering.

— Veli Mdkinen, University of Helsinki
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Preface

This book offers advice for programmers and software engineers: no matter how smart
you are, in the field of algorithm engineering, the proverbial five-minutes thinking
will not be enough to get a reasonable solution for real-life problems. Real-life prob-
lems have reached such a large size, machines have become so complicated, users so
demanding, applications so resource-hungry, and algorithmic tools so sophisticated
that you cannot improvise being an algorithm engineer: you need to be trained to be
one.

The following chapters bear witness to this situation by introducing challenging
problems together with elegant and efficient algorithmic techniques to solve them.
In selecting their topics I was driven by a twofold goal: on the one hand, to provide
readers with an algorithm engineering toolbox that will help them tackle program-
ming problems involving massive datasets; and, on the other hand, to collect together
the scientific material that I would have liked to have been taught when I was a mas-
ter’s/PhD student. Some of the following sections, typically (though not always) at
the ends of chapters, have their titles completed by the superscripted symbol oo; this
indicates more advanced contents that the reader can skip without jeopardizing the
reading of the book. As a final note for the reader passionate of programming, I point
out another specialty of this book related to the fact that array indexes start from 1,
instead of the classic 0 usually adopted in coding, because in this way algorithms may
be paraphrased more easily and formulas do not become complicated by the presence
of +1.

The style and content of these chapters is the result of many hours of illuminat-
ing, and sometimes hard and fatiguing, discussions with many fellow researchers and
students. Some of these lectures comprised the courses on information retrieval and
advanced algorithms that I have been teaching at the University of Pisa and in vari-
ous international PhD schools since 2004. In particular, a preliminary draft of these
notes was prepared by the students of the Algorithm Engineering course in the mas-
ter’s degree of Computer Science and Networking in September—December 2009, in a
collaboration between the University of Pisa and the Sant’Anna School of Advanced
Studies. Some other notes were prepared by the PhD students attending the course on
Advanced Algorithms for Massive DataSets that I taught at the Bertinoro International
Spring School (BISS), held in March 2010 (Bertinoro, Italy). I used these draft notes
as a seed for some of the following chapters. Of course, many changes have been made
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Preface

to these notes in the following years, thanks to the corrections and suggestions made
by the many students who attended the Algorithm Engineering courses since 2010.

Special thanks go to Antonio Boffa, Andrea Guerra, Francesco Tosoni, and Giorgio
Vinciguerra for carefully reading the latest version of this book, to Gemma Mar-
tini for contributing to Chapter 15, and to Riccardo Manetti for the figures in tikz.
I also thank my PhD students and colleagues: Jyrki Alakuijala, Ricardo Baeza-Yates,
Lorenzo Bellomo, Massi Ciaramita, Marco Cornolti, Martin Farach-Colton, Andrea
Farruggia, Raffaele Giancarlo, Roberto Grossi, Antonio Gulli, Luigi Laura, Veli Maki-
nen, Giovanni Manzini, Kurt Mehlhorn, Ulli Meyer, Bud Mishra, S. Muthukrishnan,
Gonzalo Navarro, Igor Nitto, Linda Pagli, Francesco Piccinno, Luca Pinello, Marco
Ponza, Prabhakar Raghavan, Peter Sanders, and Rossano Venturini, Jeff S. Vitter, for
the many hours of fascinating and challenging discussions about these topics over the
years. My final and warmest thanks go to Fabrizio Luccio, my mentor, who has contin-
uously stimulated my research passion and instilled in me the desire for and pleasure
in teaching and writing as simply and clearly as possible... but not too much simply.
You will be the judge of whether I have succeeded in achieving this goal with the
present book.

My ultimate hope is that in reading the following pages you will be pervaded by
the same pleasure and excitement that filled me when I met these algorithmic solu-
tions for the first time. If this is the case, please read more about algorithms to find
inspiration for your academic and professional work. It is still the case that computer
programming is an art, but you need good tools to express it at the highest level of
beauty.

P.F
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Introduction

This is rocket science but you don’t have
to be a rocket scientist to use it.
Jack Noonan, CEO of SPSS

The main actor in this book is the algorithm, so in order to dig into the beauty and
challenges that pertain to its ideation and design, we need to start from one of its
many possible definitions. The Oxford English Dictionary reports that an algorithm
is, informally, “a process, or set of rules, usually one expressed in algebraic nota-
tion, now used esp. in computing, machine translation and linguistics.” The modern
meaning of algorithm is quite similar to that of recipe, method, procedure, or routine,
but in computer science the word connotes something more precisely described. In
fact many authoritative researchers have tried to pin down the term over the past 200
years by proposing definitions that have become more complicated and detailed but,
in the minds of their proponents, more precise and elegant.! As algorithm designers
and engineers we will follow the definition provided by Donald Knuth at the end of
the 1960s [7]: an algorithm is a finite, definite, effective procedure, with some output.
Although these features may be intuitively clear and are widely accepted as require-
ments for a sequence of steps to be an algorithm, they are so dense in significance that
we need to look at them in more detail; this will lead us to the scenarios and challenges
posed nowadays by algorithm design and engineering, and to the motivation behind
this book.

e Finite: “An algorithm must always terminate after a finite number of steps ... a very
finite number, a reasonable number.” Clearly, the term “reasonable” is related to
the efficiency of the algorithm: Knuth [7] states that “In practice, we not only want
algorithms, we want good algorithms.” The “goodness” of an algorithm is related to
the use that the algorithm makes of some precious computational resources, such
as: time, space, communication, I/Os, energy, or just simplicity and elegance, which
both impact on its coding, debugging and maintenance costs.

e Definite: “Each step of an algorithm must be precisely defined; the actions to be
carried out must be rigorously and unambiguously specified for each case.” Knuth
made an effort in this direction by detailing what he called the “machine language”

I See “algorithm characterizations” at https://en.wikipedia.org/wiki/Algorithm_characterizations.
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1 Introduction

for his “mythical MIX... the world’s first polyunsaturated computer.” Today there are
many other programming languages, such as C/C++, Java, Python, and so on. They
all specify a set of instructions that programmers may use to describe the proce-
dure[s] underlying their algorithm[s] in an unambiguous way: “unambiguity” here
is granted by the formal semantics that researchers have attached to each of these
instructions. This eventually means that anyone reading that algorithm’s description
will interpret it in a precise way: nothing will be left to personal choice.

e Effective: “all of the operations to be performed in the algorithm must be suffi-
ciently basic that they can in principle be done exactly and in a finite length of time
by a man using paper and pencil.” Therefore the notion of “step” invoked in the pre-
vious item implies that one has to dig into a complete and deep understanding of the
problem to be solved, and then into logical well-defined structuring of a step-by-step
solution.

e Procedure: “the sequence of specific steps arranged in a logical order.”

e Input: “quantities which are given to it initially before the algorithm begins. These
inputs are taken from specified sets of objects.” Therefore the behavior of the algo-
rithm is not unique, but it depends on the “sets of objects” given as input to be
processed.

e Output: “quantities which have a specified relation to the inputs” given by the
problem at hand, and constitute the answer returned by the algorithm for those
inputs.

In this book we will not use a formal approach to algorithm description, because
we wish to concentrate on the theoretically elegant and practically efficient ideas that
underlie the algorithmic solution of some interesting problems, without being lost in
the maze of programming technicalities. So, in every chapter, we will take an inter-
esting problem that emerges from a practical/useful application and then propose
solutions of increasing sophistication and improved efficiency, taking care that this
will not necessarily lead to increasing the complexity of the algorithm’s description.
Actually, problems were selected to admit surprisingly elegant solutions that can be
described in a few lines of code. So we will opt for the current practice of algorithm
design and describe our algorithms either colloquially or by using pseudocode that
mimics, the most well known languages. In all cases the algorithm descriptions will
be as rigorous as they need to be to match Knuth’s six features.

Elegance will not be the only goal of our algorithm design, of course; we will
also aim for efficiency, which commonly relates to the time/space complexity of the
algorithm. Traditionally, time complexity has been evaluated as a function of the input
size n by counting the (maximum) number of steps, say 7(n), an algorithm takes to
complete its computation over an input of # items. Since the maximum is taken over
all inputs of that size, the time complexity is termed worst case because it concerns
the input that induces the worst behavior in time for the algorithm. Of course, the
larger n is, the larger T'(n) is, which is therefore nondecreasing and positive. In a
similar way we can define the (worst-case) space complexity of an algorithm as the
maximum number of memory cells it uses for its computation over an input of size n.
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Introduction 3

This approach to the design and analysis of algorithms assumes a very simple model of
computation, known as the Von Neumann model (aka random access machine, or RAM
model). This model consists of a CPU and a memory of infinite size, and constant-
time access to each of its cells. Here we argue that every step takes a fixed amount
of time on a PC, which is the same for any operation, be it arithmetic, logical, or
just a memory access (read/write). Hence we postulate that it is enough to count the
number of steps executed by the algorithm in order to have an “accurate” estimate of
its execution time on a real PC. Two algorithms can then be compared according to
the asymptotic behavior of their time-complexity functions as » — +-o00; the faster
the time complexity grows over inputs of increasing size, the worse the corresponding
algorithm is judged to be. The robustness of this approach has been debated for a long
time but, eventually, the RAM model dominated the algorithmic scene for decades
(and is still dominating it) because of its simplicity, which impacts on algorithm design
and evaluation, and its ability to estimate the algorithm performance “quite accurately”
on (old) PCs and small input sizes. Therefore it is not surprising that most introductory
books on algorithms deploy the RAM model to evaluate their performance [6].

But in the past ten years things have changed significantly, thus highlighting the
need for a shift in algorithm design and analysis. Two main changes occurred: the
architecture of modern PCs became more and more sophisticated (not just one CPU
and one monolithic memory), and input data has exploded in size (“n — +00” does
not only belong in the theoretical world), because it is abundantly generated by many
sources, such as DNA sequencing, bank transactions, mobile communications, web
navigation and searches, auctions, and so on. The first change turned the RAM model
into an unsatisfactory abstraction of modern PCs, whereas the second change made
the design of asymptotically good algorithms ubiquitous and fruitful not only for the-
oreticians but also for a much larger professional audience because of their impact
on business [2], society [1], and science in general [3]. The net consequence was a
revamped scientific interest in algorithmics and the spread of the word “algorithm” to
even colloquial speech.

In order to make algorithms effective in this new scenario, researchers needed new
models of computation able to abstract in a better way the features of modern com-
puters and applications and, in turn, to derive more accurate estimates of algorithm
performance from the analysis of their complexity. Nowadays a modern PC consists
of one or more CPUs (multi-cores, GPUs, TPUs, etc.) and a very complex hierarchy
of memory levels, all with their own technological peculiarities (see Figure 1.1): L1
and L2 caches, internal memory, one or more mechanical or solid-state disks, and
possibly other (hierarchical) memories of multiple hosts distributed over a (possibly
geographic) network, the so-called “cloud.” Each of these memory levels has its own
cost, capacity, latency, bandwidth, and access method. The closer a memory level is to
the CPU, the smaller, the faster, and the more expensive it is. Currently, nanoseconds
suffice to access the caches, whereas milliseconds are needed to fetch data from disks
(aka I/O). This is the so-called /O bottleneck, which amounts to the astonishing factor
of 10°—10°, nicely illustrated in a quote attributed to Thomas H. Cormen:
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CPU

registers

\ g

Size: Petabytes
(PBs) and more
Access Time: secs
Block size: Packets

RN EIR RTINS

Size: Gigabytes (GBs)
Access Time: tens of nanosecs
Block size: tens of bytes

Size: Megabytes (MBs)
Access Time: nanosecs

Block size: few bytes Size: Terabytes (TBs)

Access Time: milliseconds
Block size: Kbytes (KBs)

Figure 1.1 An example of memory hierarchy in a modern PC.

“The difference in speed between modern CPU and (mechanical) disk technologies
is analogous to the difference in speed in sharpening a pencil using a sharpener on
one’s desk or by taking an airplane to the other side of the world and using a
sharpener on someone else’s desk.”

Engineering research is trying nowadays to improve input/output subsystems to
reduce the impact of the I/O bottleneck on the efficiency of applications managing
large datasets; on the other hand, however, the improvements achievable by means
of good algorithm design and engineering abundantly surpass the best expected
technology advancements. Let us see the why, with a simple example.?

Consider three algorithms which have increasing I/O complexity (and thus, time
complexity): C(n) = n, C2(n) = n?, and C3(n) = 2". Here C;(n) denotes the number
of disk accesses executed by the i-th algorithm to process n input data. Notice that the
first two algorithms execute a polynomial number of I/Os (in the input size n), whereas
the last one executes an exponential number of I/Os in n. Note that these I/O complex-
ities have a very simple (and thus unrealistic) mathematical form, because we want to
simplify the calculations without impairing our final conclusions. Let us now ask how
much data each of these algorithms is able to process in a fixed time interval of length
t, given that each /O takes ¢ time. The answer is obtained by solving the equation
Ci(n) x ¢ = t with respect to n: so we get ¢/c data are processed by the first algorithm
in time ¢, 4/t/c data are processed by the second algorithm, and only log,(#/c) data
are processed by the third algorithm in time ¢. These values are already impressive by
themselves, and provide a robust understanding of why polynomial-time algorithms
are called efficient, whereas exponential-time algorithms are called inefficient: a large
change in the length 7 of the time interval induces just a tiny change in the amount of
data that exponential-time algorithms can process. Of course, this distinction admits
many exceptions when the problem instances have limited input size or have distribu-
tions that favor efficient executions. But, on the other hand, these examples are quite
rare, and the much more stringent bounds on execution time satisfied by polynomial-
time algorithms mean that they are considered provably efficient and the preferred
way to solve problems. Algorithmically speaking, most exponential-time algorithms
are merely implementations of the approach based on exhaustive searches, whereas

2 This is paraphrased from [8]; here we talk about I/Os instead of steps.
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Introduction 5

polynomial-time algorithms are generally made possible only through gaining some
deeper insight into the structure of a problem. So polynomial-time algorithms are the
right choice from many points of view.

Let us now assume that we run these algorithms with a better 1/O-subsystem, say
one that is k£ times faster, and ask: How much data can be managed by this new
computer? To address this question we solve the previous equations with the time
interval set to the length & x ¢, thus implicitly assuming that the algorithms are exe-
cuted with & times more available running time than the previous computer. We find
that the first algorithm perfectly scales by a factor of %, the second algorithm scales
by a factor of /&, whereas the last algorithm scales only by an additive term log, k.
We can see that the improvement induced by a k-times more powerful computer for
an exponential-time algorithm is totally negligible even in the presence of impressive
(and thus unrealistic) technology advancements. Super-linear time algorithms, like the
second one, are positively affected by technology advancements, but their performance
improvement decreases as the degree of the polynomial-time complexity grows: more
precisely, if C(n) = n® then a k-times more powerful computer induces an increase in
speed by a factor of v/k. Overall, it is safe to say that the impact of a good algorithm
is far beyond any optimistic forecasting for the performance of future (mechanical or
solid-state) disks.

Given this appetizer on the “power” of algorithm design and engineering, let us now
turn back to the problem of analyzing the performance of algorithms in modern com-
puters by considering the following simple example: compute the sum of the integers
stored in an array A[ 1, n]. The simplest idea is to scan 4 and accumulate in a temporary
variable the sum of the scanned integers. This algorithm executes n sums between two
integers, accesses each integer in 4 once, and thus takes » steps. Let us now generalize
this approach by considering a family of algorithms, denoted by A 5, which differen-
tiate themselves according to the pattern of accesses to A’s elements, as driven by the
parameters s and b. In particular, A, looks at array A as logically divided into blocks
of b elements each, say 4; = A[j x b+ 1,(j+ 1) x b] forj =0,1,2,...,n/b — 1.4
Then it sums all items in one block 4; before moving to the next block 4, which
occurs s blocks farther on the right. Array A4 is considered cyclic so that, when the next
block lies out of A4, the algorithm wraps around it, starting again from its beginning:
hence, the index of the next block is actually defined as (j + s) mod (1/b).°> Clearly,
not all values of s allow us to take into account all of 4’s blocks (and thus sum all of
A’s integers). And in fact we know that if s is coprime with n/b then the sequence of
visited-block indexes, that is, j = s x i mod (n/b) fori =0, 1,...,n/b—1, is a permu-
tation of the integers {0, 1, . .., n/b—1}, and thus A 5 touches all blocks in 4 and hence
sums all of its integers. But the peculiarity of this parametrization is that by varying
s and b we can sum A’s integers according to different patterns of memory accesses:

3 See [11] for an extended treatment of this subject.

4 For the sake of presentation we assume that n and b are powers of two, so b divides n.

5 The modulo (mod) function is defined as follows: given two positive integers x and m > 1, x mod m is
the remainder of the division of x by m.


https://doi.org/10.1017/9781009128933.002
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009128933.002
https://www.cambridge.org/core

1 Introduction

from the sequential scan we have described (setting s = b = 1), to sequential-wise
blocked access (setting a larger b), or to random-wise blocked access (setting a larger
s). Nicely enough, all algorithms A are equivalent from a computational point of
view, because they read and sum exactly » integers and thus take exactly » steps; but
from a practical point of view, they have different time performance which becomes
more and more different as the array size n grows. The reason for this is that, for a
growing n, data will be spread over more and more memory levels, each with its own
capacity, latency, bandwidth and access method. So the “equivalence in efficiency”
derived by adopting the RAM model, and counting the number of steps executed by
As p, is not an accurate estimate of the real time required by the algorithms to sum A’s
elements.

We need a different model that grasps the essence of real computers and is simple
enough to not jeopardize the algorithm design and analysis. In a previous example
we argued that the number of I/Os is a good estimator for the time complexity of an
algorithm, given the large gap between disk- and internal-memory performance. This
is indeed captured by the 2-level memory model (aka disk model, or external-memory
model [11]), which abstracts the computer as comprising only two memory levels:
the internal memory of (bounded) size M, and the (unbounded) disk memory which
operates by reading/writing data via blocks of size B (called disk pages). Sometimes
the model consists of D disks, each of unbounded size, so that each I/O reads or writes
a total of D x B items stored in D pages, each one residing on a different disk. For the
sake of clarity we remark that the two-level view must not suggest to the reader that
this model is restricted to abstract disk-based computations; in fact, we are actually
free to choose any two levels of the memory hierarchy, with their M and B parameters
properly set. The algorithm performance is evaluated in this model by counting: (i) the
number of accesses to disk pages (hereafter 7/0s), (ii) the running time (CPU time),
and (iii) the number of disk pages used by the algorithm as its working space. This
also suggests two golden rules for the design of “good” algorithms operating on large
datasets: they must exploit spatial locality and temporal locality. The former imposes
a data organization in the disk(s) that makes each accessed disk page as useful as
possible; the latter requires as much useful work as possible over the data fetched in
internal memory, before it is written back to disk.

In the light of this new model, let us reanalyze the time complexity of algorithms
Aj p by taking into account I/Os, given that the CPU time is » and the space occupancy
is n/B disk pages independently of s and . We start from the simplest settings for s
and b in order to gain some intuitions about the general formulas. The case s = 1 is
obvious: algorithms A  scan 4 rightward, summing the items one block at a time, by
taking n/B 1/Os independently of the value of . As s and b change, the situation gets
complicated, but by not much. As an example, fix s = 2 and select some b < B that, for
simplicity, is assumed to divide the block-size B. Every block of size B consists of B/b
smaller (logical) blocks of size b, and the algorithms A, examine only half of them
because of the jump s = 2. This actually means that each B-sized page is half utilized
in the summing process, thus inducing a total of 2n/B 1/Os. It is then not difficult to
generalize this formula by writing a cost of min{s, B/b} x (n/B) I/Os, which correctly
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Introduction 7

gives n/b for the case of large jumps over array A. This formula provides a better
approximation of the real time complexity of the algorithms A4, although it does
not capture all features of the disk: all I/Os are evaluated as equal, independently of
their distribution. This is clearly not precise, because on real disks sequential 1/Os are
faster than random 1/0s.% As such, referring to the previous example, all algorithms
Ay p have the same I/O complexity n/B, independently of s, although their behavior is
rather different if executed on a (mechanical) disk, because of the disk seeks induced
by increasing s. Therefore, we can conclude that even the two-level memory model
provides an approximation of the behavior of algorithms on real computers, although
its results are sufficiently good that it has been widely adopted in the literature to
evaluate algorithm performance on massive datasets. So in order to be as precise as
possible, we will evaluate algorithms in these pages not only by specifying the number
of executed I/Os but also by characterizing their distribution (random vs. sequential)
over the disk.

At this point one could object that given the impressive technological advancements
of recent years, internal-memory size M is so large that most of the working set of an
algorithm (roughly speaking, the set of pages it will reference in the near future) can fit
into it, thus reducing significantly the number of I/O faults. We will argue that even a
small portion of data resident in disk makes the algorithm slower than expected, so that
data organization cannot be neglected even in these extremely favorable situations. Let
us see why, by means of a “back of the envelope” calculation.

Assume that the input size n = (1 4 €)M is larger than the internal-memory size
of a factor ¢ > 0. The question is how much € impacts on the average cost of an
algorithm step, given that it may access a datum located either in internal memory or
on disk. To simplify our analysis, while still obtaining a meaningful conclusion, we
assume that p(¢€) is the probability of an I/O fault: hence, if p(¢) = 1, the algorithm
always accesses data on disk; if p(€) = 0, the algorithm has a working set smaller than
the internal-memory size, and thus it always accesses data in internal memory; finally,
ple) = ﬁ = 1% when the algorithm has a fully random behavior in accessing
its input data. In other words, we can look at p(€) as a measure of the non-locality of
the memory references of the analyzed algorithm.

To complete the notation, let us indicate with ¢ the time cost of one 1/0 with respect
to one internal-memory access (we have in practice ¢ &~ 10° — 10°, see above), with
f the fraction of steps that induce a memory access in the running algorithm (this is
typically 30%—40%, according to [5]), with #,, the average time cost of such memory
accesses and the cost of a computation step or an internal-memory access set as 1.
To derive t,, we have to distinguish two cases: an in-memory access (occurring with
probability 1 — p(e)) or a disk access (occurring with probability p(€)). So we have

tm =1 x (1 — p(€)) + ¢ x p(e€).

6 Conversely, this difference will be almost negligible in an (electronic) memory, such as DRAM or
modern solid-state disks, where the distribution of the memory accesses does not significantly impact on
the throughput of the memory/SSD.
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Now we are ready to estimate the average time cost of a step for an algorithm
working in this scenario: it is 1 x (1 — f) 4+ #,, x f, since 1 — f is the fraction of
computing steps and f is the fraction of memory accesses (both in internal memory
and on disk). By plugging in the value computed for #,,, we can lower bound that cost
by 3 x 10% x p(e). This formula clearly shows that, even for algorithms exploiting
locality of references (i.e. a small p(¢)), the slowdown may be significant, resulting in
four orders of magnitude larger than what might be expected (i.e. p(€)). As an example,
take an algorithm that forces locality of references into its memory accesses: say 1 out
of 1000 memory accesses go to data stored on disk (i.e. p(¢) = 0.001). Then, its
performance gets slowed down by a factor larger than 30 in comparison with the case
in which its computation would be fully executed in internal memory.

It goes without saying that this is just the tip of the iceberg, because the larger the
amount of data to be processed by an algorithm, the higher is the number of memory
levels involved in the storage of this data and, hence, the more varied are the types
of “memory faults” that need to be coped with for achieving efficiency. The overall
message is that neglecting questions pertaining to the cost of memory references in a
hierarchical-memory system may prevent the use of an algorithm for large input data.

Motivated by these premises, this book will provide a few examples of challeng-
ing problems that admit elegant algorithmic solutions whose efficiency is crucial to
manage the large datasets that occur in many real-world applications. Details of the
algorithm design will be accompanied by several comments on the difficulties that
underlie the engineering of those algorithms: how to turn a “theoretically efficient”
algorithm into a “practically efficient” code. In fact, too many times, as a theore-
tician, I was told that “your algorithm is far from being amenable to an efficient
implementation!” Furthermore, by following the recent surge of investigations in algo-
rithm engineering [10] (not to be confused with the “practice of algorithms”), we will
also dig into the deep computational features of some algorithms by resorting to a
few other successful models of computation — mainly the streaming model [9] and
the cache-oblivious model [4]. These models will allow us to capture and highlight
some interesting issues of the underlying computation, such as disk passes (stream-
ing model), and universal scalability (cache-oblivious model). We will try our best to
describe all these issues in their simplest terms but, nonetheless, we will be unsuc-
cessful in turning this “rocket science for non-boffins” into a “science for dummies”
[2]. In fact many more things have to fall into place for algorithms to work: top IT
companies (like Amazon, Facebook, Google, IBM, Microsoft, Oracle, Spotify, Twit-
ter, etc.) are perfectly aware of the difficulty of finding people with the right skills for
designing and engineering “good” algorithms. This book will only scratch the surface
of algorithm design and engineering, with the main goal of inspiring you in your daily
job as a software designer and engineer.
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A Warm-up

Everything should be made as simple as
possible, but not simpler.
Attributed to Albert Einstein

Let us consider the following problem, which is on the face of it simple, but for which
the design of its optimal solution is much less straightforward.

Problem. We are given the performance of a stock at the New York Stock
Exchange (NYSE) expressed as a sequence of day-by-day differences of its
quotations. We wish to determine the best buy-and-sell strategy for that stock,
namely the pair of days (b, s) that would have maximized our revenues if we had
bought the stock at (the beginning of) day b and sold it at (the end of) day s.

The specialty of this problem is that it has a simple formulation, which has many other
useful variations and applications. We will comment on some of these at the end of
this chapter; for now we content ourselves by mentioning that we are interested in this
problem because it admits of a sequence of algorithmic solutions of increasing sophis-
tication and elegance, which imply a significant reduction in their time complexity.
The ultimate result will be a linear-time algorithm, that is, linear in the number n of
stock quotations. This algorithm is optimal in terms of the number of executed steps,
because all day-by-day differences must be looked at in order to determine whether
they need to be included or not in the optimal solution — one single difference could
provide a one-day period worth of investment. Surprisingly, the optimal algorithm will
exhibit the simplest pattern of memory accesses — it will execute a single scan of the
available stock quotations — and thus it utilizes a streaming behavior, which is partic-
ularly useful in a scenario in which the granularity of the buy-and-sell actions is not
restricted to full days, and we may need to compute the optimal time-window on the fly
as quotations oscillate. Moreover, as we commented in the Chapter 1, this algorithmic
scheme is optimal in terms of I/Os and uniformly over all levels of the memory hierar-
chy. In fact, because of its streaming behavior, it will execute n/B 1/Os independently
of the disk-page size B, which may thus be unknown to the underlying algorithm. This
is the typical feature of the cache-oblivious algorithms [4], which we will therefore
introduce in this chapter (Section 2.3).
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This chapter is the prototype of what you will find in the following chapters: a
problem that is simple to state, with a few elegant solutions and challenging techniques
to teach and learn, together with several intriguing extensions that can be posed as
exercises to students or as puzzles to tempt your mathematical skills.

Let us now dig into the technicalities, and consider the following example. Take the
case of 11 days of exchange for a given stock, and let D[1, 11]=[+4, —6,+3, 41,43,
—2,43,—4,+1,—9,+6] denote the day-by-day differences of quotations for that
stock. It is not difficult to convince yourself that the gain of buying the stock at the
beginning of day x and selling it at the end of day y is equal to the sum of the values in
the subarray D[x, y], namely the sum of all its fluctuations. As an example, take x = 1
and y = 2: the gain is +4 — 6 = —2, and indeed we would lose two dollars in buying
at the morning of the first day and selling the stock at the end of the second day. Note
that the starting value of the stock is not crucial for determining the best time interval
of our investment; what is important are its variations. In the literature this problem is
indeed known as the maximum subarray sum problem.

Problem abstraction. Given an array D[1, n] of positive and negative numbers,
we want to find the subarray D[b, s] that maximizes the sum of its elements.

It is clear that if all numbers are positive, then the optimal subarray is the entire
D: this is the case of an always increasing stock price, and there is no reason to sell
it before the last day. Conversely, if all numbers are negative, then we can select the
element window containing the largest negative value: if you have to buy this poor
stock, then do it on the day it loses the smallest value and sell it quickly. In all other
cases, it is not at all clear where the optimum subarray is located. In the example, the
optimum spans D[3,7] = [+3,+1,+3,—2,+3] and has a gain of eight dollars. This
shows that the optimum neither includes the day with the greatest gain (i.e. 4+6), nor
does it consist of positive values only. Determining the optimal subarray is not simple
but, surprisingly enough, also not very complicated.

A Cubic-Time Algorithm

We start by considering an inefficient solution which just translates in pseudocode
the formulation of the problem we have described. Algorithm 2.1 uses the pair of
variables (b,, s,) to identify the current subarray with the maximum sum, whose value
is stored in MaxSum. Initially MaxSum is set to the dummy value —oo, so that it is
immediately changed whenever the algorithm executes Step 8 for the first time. The
core of the algorithm consists of the two nested for-loops (Steps 2—3), which examine
all possible subarrays D[b, s], computing for each of them the sum of their elements
(Steps 4—7). If a sum larger than the current maximal value is found (Steps 8-9), then
TmpSum and its corresponding subarray extremes are stored in MaxSum and (b, s,),
respectively.

The correctness of the algorithm is immediate, since it checks all possible subarrays
of D[1, n] and selects the one whose sum of elements is the largest (Step 8). The time
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Algorithm 2.1 The cubic-time algorithm

1: MaxSum = —o0;

2: for (b =1;b < n; b++) do

3: for (s = b; s < n; st+) do

4 TmpSum = 0;

5: for i = b;i <s;i++)do

6: TmpSum—+ = DIi];

7: end for

8: if MaxSum < TmpSum then
9: MaxSum = TmpSum; b, = b; s, = s;
10: end if
11: end for
12: end for

13: return (MaxSum, b,, s,);

complexity is cubic, that is, ®@(n>), and can be evaluated as follows. Clearly the time
complexity is upper bounded by O(r?), because we can form no more than % pairs
(b, s) out of n elements, and #» is an upper bound to the cost of computing the sum of
the elements of each subarray.' Let us now show that the time cost is also Q(n?), so
concluding that the time complexity is strictly cubic. To show this lower bound, we
observe that D[1, n] contains (n — L + 1) subarrays of length L, and thus the cost of
computing the sum for all of their elements is (n — L+ 1) x L. Summing over all values
of L would give us the exact time complexity. But here we are interested in a lower
bound, so we can evaluate that cost just for the subset of subarrays whose length L is
in the range [n/4,n/2]. For each such L, L > n/4 and thus n — L + 1 > n/2, so the
costis (n — L + 1) x L > n?/8. Since we have 5 — 7+ 1> n/4 of those Ls, the total
cost for analyzing that subset of subarrays is lower bounded by 73 /32 = Q(n?).

It is natural now to ask ourselves how fast Algorithm 2.1 is in practice: It is too slow
if we wish to scale to very large sequences (of stock quotations), as we are aiming for
here.

A Quadratic-Time Algorithm

The key inefficiency of the cubic-time Algorithm 2.1 resides in the execution of
Steps 4-7, which recompute from scratch the sum of the elements in the subarray
D[b, s] each time its extremes change in Steps 2—3. Now, if we look carefully at the
for-loop at Step 3 we note that the size s is incremented by one unit at a time from
the value b (one-element subarray) to the value n (the longest possible subarray that
starts at b). Therefore, from one iteration to the next of that for-loop, the subarray to
be summed changes from D[b, s] to D[b, s + 1]. It can thus be concluded that the new
sum for D[b, s+ 1] does not need to be recomputed from scratch, but can be computed

1 For each pair (b, s), with b < s, D[b, s] is a possible subarray, but D[s, b] is not.
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Algorithm 2.2 The quadratic-time algorithm

1. MaxSum = —o0;

2: for (b= 1;b < n; b++) do

3: TmpSum = 0;

4 for (s = b; s < n; st++) do

5 TmpSum += D[s];

6: if MaxSum < TmpSum then

7 MaxSum = TmpSum; b, = b; s, = s;
8: end if

9: end for
10: end for

11: return (MaxSum, by, s,);

incrementally just by adding the value of the new element D[s + 1] to the current
value of TmpSum (which inductively stores the sum of D[b, s]). This is exactly what
the pseudocode of Algorithm 2.2 implements: its two main changes with respect to
Algorithm 2.1 are in Step 3, which nulls 7mpSum every time b is changed (because
the subarray starts again from length 1, namely D[b, b]), and in Step 5, which imple-
ments the incremental update of the current sum. Such small changes are worth a
saving of ®(n) additions per execution of Step 2, thus making the new algorithm have
quadratic-time complexity, namely ©(n?).

More precisely, let us concentrate on counting the number of additions executed by
Algorithm 2.2; this is the prominent operation of this algorithm, whose evaluation will
give us an estimate of its total number of steps. This number is

D U4Y D= (I+Hn—b+1) =nx(n+2) = Y b= n2+2n—@ = 0(n?).
b=1 s=b b=1 b=1

This improvement is effective also in practice. Consider an array D of size n = 10°;
Algorithm 2.1 implemented in Python takes about 17 seconds on a commodity PC
with an Intel i5 processor, whereas Algorithm 2.2 takes less than 1 second on the
same machine. This means an arguably “small” difference, which actually becomes
“significant” if the size of the array D becomes n = 10*. In this case, Algorithm 2.1
takes about 17,000 seconds (pretty much 103 times more), whereas Algorithm 2.2
takes about 7 seconds. This means that the quadratic-time algorithm is able to man-
age more elements in a “reasonable” time than the previous cubic-time algorithm.
Clearly, these figures change if we use a different programming language (Python, in
the present example), operating system (MacOS), or processor (Intel Core i5). Never-
theless, they are interesting anyway because they provide a concrete picture of what
asymptotic improvement like the one described here means in a real-life situation. It
goes without saying that the life of a coder is typically not easy, because theoretically

2 We use here the famous formula, discovered by the young Gauss, to compute the sum of the first n
positive integers.
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optimal sub-array

x bo—1 bo y So

sum < 0 sum > 0

Figure 2.1 An illustrative example of Properties 1 and 2.

good algorithms often conceal so many details that their engineering is difficult, and
big-O notation often turns out to be not very “realistic.” Do not worry — we will have
time in these chapters to look at these issues in more detail.

A Linear-Time Algorithm

The final step of this chapter is to show that the maximum subarray sum problem
admits of an elegant algorithm that processes the elements of D[1, ] in a streaming
fashion and takes the optimal O(n) time. We cannot aim for more, as we have noted.

To design this algorithm we need to dig into the structural properties of the optimal
subarray. For the purpose of clarity, we refer the reader to Figure 2.1, where the optimal
subarray is assumed to be located between two positions b, < s, in the range [1, n].

Let us now take a subarray that starts before b, and ends at position b, — 1, say
Dix, b, — 1], with x < b,. The sum of the elements in this subarray cannot be positive
because, otherwise, we could merge it with the (adjacent) optimal subarray and thus
get a longer subarray, D[x,s,], whose sum is larger than the one obtained with the
(claimed) optimal D[b,, s,]. So we can state the following:

Property 1: The sum of the elements in a subarray D[x, b, — 1], with x < b, cannot
be (strictly) positive.

Via a similar argument, we can consider a subarray that prefixes the optimal
D[by, s,], and thus has the form D[b,,y] with y < s,. This subarray cannot have a
negative sum because, otherwise, we could drop it from the optimal solution and get a
shorter array, namely D[y + 1,5,], whose sum is larger than the one obtained by the
(claimed) optimal D[b,, s,]. So we can state the following second property:

Property 2: The sum of the elements in a subarray D[b,,y], with y < s,, cannot be
(strictly) negative.

Any one of the subarrays considered in these properties might have a sum equal to
zero. This would not affect the optimality of D[b,, s,]; rather it could only introduce
other optimal solutions either longer or shorter than D[b,, s,].

Let us illustrate these two properties in the array D[1, 11] used as example at the
beginning of this chapter: hence D = [+4, —6,+43,+1,+3,—2,+3, —4,+1, -9, 4+6].
Recall that the optimum subarray is D[3, 7] = [+3, +1, +3, —2, +3]. Note that D[x, 2]
is always negative (as stated in Property 1); in fact for x = 1 the sum is +4 — 6 = —2,
and for x = 2 the sum is —6. On the other hand, the sum of all elements in D[3, y]
is positive for all prefixes of the optimum subarray (as stated in Property 2), namely
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Algorithm 2.3 The linear-time algorithm
1. MaxSum = —o0;
2: TmpSum = 0; b = 1;
3: for (s = 1;5 < n; st++) do

4: TmpSum += D[s];

5: if MaxSum < TmpSum then

6: MaxSum = TmpSum; b, = b; s, = s;
7: end if

8: if TmpSum < O then

9: TmpSum = 0; b = s + 1;

10: end if

11: end for

12: return (MaxSum, b,, s,);

y < 7. Note also that the sum of D[3,y] is positive even for some y > 7; take, for
example, D[3, 8], for which the sum is 4, and D[3, 9], for which the sum is 5, which
does not contradict Property 2.

These two properties lead to the simple linear-time Algorithm 2.3. It consists of
one unique for-loop (Step 3) which keeps in 7mpSum the sum of a subarray starting
at some position » and ending at the currently examined position s, where b < s.
At any step of the for-loop, the candidate subarray is extended one position to the
right (i.e. s++), and its sum 7mpSum is increased by the value of the current element
D[s] (Step 4). Since the current subarray is a candidate to be the optimal one, its sum is
compared with the current optimal value (Step 5). Then, according to Property 1, if the
subarray sum is negative, the current subarray is discarded and the process “restarts”
with a new subarray beginning at the next position b = s + 1 (Steps 8-9). Otherwise,
the current subarray is extended to the right, by incrementing s. The tricky issue here is
to show that the optimal subarray is checked in Step 5, and thus stored in (b,, s,,). This
is not intuitive at all, because the algorithm is checking n subarrays out of the ®(n?)
possible ones, and we want to show that this (minimal) subset of candidates actually
contains the optimal solution. This subset is minimal because these subarrays form
a partition of D[1,n] so that every element belongs to one, and only one, checked
subarray. Moreover, since every element must be analyzed, we cannot discard any
subarray of this partition without checking its sum.

Before digging into the formal proof of correctness, let us follow the execution
of the algorithm over the array D[1,11]=[+4,—6,+3,+1,+3,—2,+3,—4,+1,
—9,46]. Remember that the optimal subarray is D[3,7] = [+3,+1,+3,—-2,+3].
Since D[x, 2] is negative for x = 1, 2, the algorithm zeroes the variable 7mpSum when
s = 2 in Steps 8-9. At that time, b is set to 3 and TmpSum is set to 0. The subse-
quent scanning of the elements s = 3,..., 7 will add their values to TmpSum, which is
always positive (as commented above). When s = 7, the examined subarray coincides
with the optimal one, we thus have TmpSum = 8, and so Step 5 stores the optimum
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subarray locations in (b,, s,). It is interesting to note that, in this example, the algo-
rithm does not restart the value of TmpSum at the next position s = 8 because it is still
positive (namely, TmpSum = 4); hence, the algorithm will examine subarrays longer
than the optimal one, but all having a smaller sum. The next restarting will occur at
position s = 10, where TmpSum = —4.

It is easy to see that the time complexity of the algorithm is O(n), because every
element is examined just once. More tricky is to show formally that the algorithm is
correct, which actually means that Steps 4-5 eventually compute and check the opti-
mal subarray sum. To show this, it suffices to prove the following two facts: (i) when
s = b, — 1, Step 8 resets b to b,; (ii) for all subsequent positions s = b,, . . ., S,, Step
8 never resets b, so it will eventually compute in 7mpSum the sum of all elements in
D[b,, s,], whenever s = s,. It is not difficult to see that (i) derives from Property 1,
and (ii) derives from Property 2.

This algorithm is very fast in the experimental scenario mentioned in Section 2.2;
it takes less than one second to process millions of stock quotations: a truly scal-
able algorithm, indeed, with many nice features that also make it appealing in a
hierarchical-memory setting. In fact this algorithm scans the array D from left to right
and examines each of its elements just once. If D is stored on disk, these elements
are fetched into internal memory one page at a time. Hence the algorithm executes
n/B 1/Os, which is optimal. 1t is interesting also to note that the design of the algo-
rithm does not depend on B (which indeed does not appear in the pseudocode), but
we can still evaluate its I/O complexity in terms of B. Hence the algorithm takes n/B
optimal I/Os independently of the page size B, and thus subtly independently of the
characteristics of the memory levels involved in the algorithm execution. Decoupling
the use of the parameter B in algorithm design and algorithm analysis is the key issue
of the cache-oblivious algorithms. This feature is achieved here in a basic way simply
by adopting a scan-based approach. The literature offers more sophisticated results
regarding the design of cache-oblivious algorithms and data structures [4].

Another Linear-Time Algorithm

There is another optimal solution to the maximum subarray sum problem, which
hinges on a different algorithm design. For simplicity of exposition, let us denote by
Sump[y’,)”] the sum of the elements in the subarray D[}/, )"]. Take now a selling
time s and consider all subarrays that end at s: namely, we are interested in subarrays
that have the form D[x, s], with x < s. The value Sump|x, s] can be expressed as the
difference between Sump[1,s] and Sump[1,x — 1]. Both of these sums are indeed
prefix sums over the array D and can be computed in linear time. As a result, we can
rephrase our maximization problem as follows:

max I?ax Sump|[b, s] = max I?ax(SumD[l,s] — Sump[1,b — 1]).
S <s S <s

If b = 1 the second term refers to the empty subarray D[1, 0], so we can assume
that Sump[1,0] = 0. This is the case in which D[1,s] is the subarray of maximum
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sum among all the subarrays ending at s (so no prefix subarray D[1,b — 1] is dropped
from it).

The next step is to precompute all prefix sums P[i] = Sump[1, ] in O(n) time and
O(n) space via a scan of the array D: just note that P[i] = P[i — 1] + D[i], where
we set P[0] = 0 in order to manage the special case considered here. Hence we can
rewrite the maximization problem in terms of the array P, rather than Sump: namely,
write Sump[1,s] — Sump[1,b — 1] as P[s] — P[b — 1]. We can now decompose the
max, maxy<s computation into a min/max calculation as follows:

max rilax(P[s] —Plb—1]) = m?x(P[s] - rglinP[b —1).

In fact we can move P[s] outside the inner max-calculation because it does not
depend on the variable b, and then change a max into a min because of the nega-
tive sign. The final step is then to precompute the minimum min,<, P[b — 1] for all
positions s, and store it in an array M[0,n — 1]. Note that, in this case also, the com-
putation of M[i] can be performed via a single scan of P in O(n) time and space: set
M[0] = 0 and then derive M[i] as min{M[i — 1], P[i]}. Finally, we can rewrite the
previous formula as:

mSaX(P[s] - inP[b—1]) = msax(P[s] — M[s —1]),

which can be clearly computed in O(n) time given the two arrays P and M. Overall,
this new approach takes O(n) time, as in Algorithm 2.3, but it needs ®(n) extra space.

As an example, consider again the array D[1,11] = [+4,—6,+3,+1,43,-2,
+3,—4,+1, -9, +6]. We compute the prefix-sum array P[0, 11]=[0, +4, =2, +1, 42,
+5, 43, +6,42,+3, —6, 0] and the minimum array M[0, 10] = [0,0, =2, -2, -2, =2,
—2,-2,-2,—-2,—6]. If we compute the difference P[s]—M[s—1]foralls =1,...,n,
we obtain the sequence of values [+4, —2,+3,+4,+7,45,+8, +4, +5,—4,46],
whose maximum is +8, which has the (correct) ending position s = 7. It is interesting
to note that the left-extreme b, of the optimal subarray could be derived by finding the
position b, — 1 where P[b, — 1] is the minimum: in the example, P[2] = —2 and thus
b, = 3.

Algorithm 2.4 implements these algorithmic ideas, but with a nice coding trick that
turns it into a one-pass approach using only O(1) extra space, as for Algorithm 2.3. It
deploys the associativity of the min/max functions, and uses two variables that induc-
tively keep the values of P[s] (i.e. TmpSum) and M[s — 1] (i.e. MinTmpSum) as the
array D is scanned from left to right. This way the formula max (P[s] — M[s — 1]) is
evaluated incrementally fors = 1,...,n.

A Few Interesting Variants>

As promised at the beginning of this chapter, we discuss now a few interesting vari-
ants of the maximum subarray sum problem. For further algorithmic details and
formulations, we refer the interested reader to [1, 2]. Note that this is a challenging
section, because it proposes an algorithm whose design and analysis are sophisticated,


https://doi.org/10.1017/9781009128933.003
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009128933.003
https://www.cambridge.org/core

18

2 A Warm-up

Algorithm 2.4 Another linear-time algorithm
1: MaxSum = —00; by = 1;
2: TmpSum = 0; MinTmpSum = 0;
3: for (s = 1;5 < n; st++) do
4: TmpSum += D[s];

5: if MaxSum < TmpSum — MinTmpSum then

6: MaxSum = TmpSum — MinTmpSum; s, = $; by = bynp;
7: end if

8: if TmpSum < MinTmpSum then

9: MinTmpSum = TmpSum;, bypp = s + 1;

10: end if

11: end for

12: return (MaxSum, b,, s,);

so we label it with the symbol *°. We adopt this notation to denote such challenging
sections in the rest of this book.

Sometimes in the bioinformatics literature the term “subarray” is substituted by
“segment,” and the problem takes the name of “maximum-sum segment problem.”
Here the goal is to identify segments that occur inside DNA sequences (i.e. strings
drawn from a four-letters alphabet {A, T, G, C}) and are rich in G and C nucleotides.
In biology it is believed that these segments are significant since they predominantly
contain genes. The mapping from DNA sequences to arrays of numbers, and thus
to our problem abstraction, can be obtained in several ways depending on the objec-
tive function that models the GC-richness of a segment. Two interesting mappings to
identify C- and G-rich sequences are the following ones:

e Assign a penalty —p to the nucleotides A and T in the sequence, and a reward 1 — p
to the nucleotides C and G. Given this assignment, the sum of a segment of length
[ containing x occurrences of C or G is equal to x — p x [. Interestingly enough, all
algorithms described in the previous sections can be used to identify the CG-rich
segments of a DNA sequence in linear time according to this objective function.
Often, biologists prefer to define a cut-off range on the length of the segments for
which the maximum sum needs to be searched, in order to avoid the reporting of
extremely short or extremely long segments. In this new scenario the algorithms of
the previous sections cannot be applied, but there are linear-time optimal solutions
for them (see, e.g., [2]).

e Assign a value 0 to the nucleotides A and T of the sequence, and a value 1 to the
nucleotides C and G. Given this assignment, the density of C and G nucleotides in a
segment of length / containing x occurrences of C and G isx//. Clearly, 0 < x// <1
and every single occurrence of a nucleotide C or G provides a segment with maxi-
mum density 1. Biologists consider this to be an interesting measure of CG-richness
for a segment, provided that a cut-off on the length of the searched segments is
imposed. This problem is more difficult than the one stated in the previous bullet
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point, nevertheless it posses optimal (quasi-)linear time solutions which are very
sophisticated and for which we refer the interested reader to the pertinent literature

(e.g. [1, 3, 5]).

These examples are useful to highlight a dangerous trap that often occurs when
abstracting a real-life problem: apparently small changes in the problem formulation
lead to big jumps in the complexity of designing efficient algorithms for them. Think,
for example, of the density function introduced in the second item above; we needed
to introduce a cut-off lower bound to the segment length in order to avoid the trivial
solution consisting of single nucleotides C or G. With this “small” change, the problem
becomes more challenging and its solutions need to be more sophisticated.

Other subtle traps are more difficult to discover. Assume that we decide to cir-
cumvent the single-nucleotide outcome by searching for the /ongest segment whose
density x// is not smaller than a fixed value ¢. This is, in some sense, complementary
to the problem stated in the second item above, because maximization is here on the
segment length and a cut-off is imposed on the density value. Surprisingly, it is possi-
ble to reduce this density-based problem to a sum-based problem, in the spirit of the
one stated in the first item above, and those solved in the previous sections. Algorith-
mic reductions are often employed by researchers to reuse known solutions and thus
not need to reinventing the wheel again and again.

To prove this reduction it is enough to note that, for any subarray D[a, b],

Sumpla,b] Zb: D[]
Sy

b
>t D[k] — 1) = 0.
[ —— = §([] )=

—a+1 "~

Therefore, subtracting the density threshold 7 from all elements in D, we can turn
the density-based problem into one that asks for the longest segment that has a sum
larger than or equal to 0.

Problem. Given an array D[1, n] of positive and negative numbers, we want to
find the longest segment in D whose density is larger than or equal to a fixed
threshold .

Be aware that if you change the request from the longest segment to the shortest one
whose density is larger than a threshold ¢, then the problem becomes trivial again: just
take the single occurrence of a nucleotide C or G. Similarly, if we fix an upper bound u
to the segment’s sum (instead of a lower bound), then we can change the sign of all D’s
elements and thus turn the problem again into a problem with a lower bound t = —u.
We finally note that this formulation is in some sense a complement of the one given
in the first item. Here we maximize the segment length and force a lower bound on the
sum of its elements; there, we maximized the sum of the segment’s elements provided
that its length was within a given range. It is nice to observe that the structure of the
algorithmic solution for both problems is similar, so we detail only the former one and
refer the reader to the literature for the latter.

The algorithm to solve this problem proceeds inductively by assuming that, at step
i = 1,2,...,n, it has computed the longest subarray that has a sum larger than ¢
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and occurs within D[1,i — 1]. Let us denote the solution available at the beginning
of step i by D[l;—1,r;—1]. Initially we have i = 1, and thus the inductive solution is
the empty one, hence it has a length equal to 0. To move from step i to step i + 1,
we need to compute D[/;, r;], possibly by taking advantage of the currently known
solution.

It is clear that the new segment either is inside D[1,i — 1] (namely, r; < i) or
ends at D[i] (namely, »; = i). The former case admits as a solution the one of the
previous iteration, namely D[/;_1,r;—1], and so nothing has to be done: just set r; =
ri—1 and /; = [;_1. The latter case is more involved and requires the use of some special
data structures and a tricky analysis to show that the total complexity of the proposed
algorithm is O(n) in space and time, thus turning out to be asymptotically optimal.

We start by making a simple, yet effective, observation:

Fact 2.1 If r; = i then the segment D[/;, ;] must be strictly longer than the segment
D[li—1,7i—1]. This means in particular that /; occurs to the left of position L; = i —

(rim1 — i)

The proof of this fact follows immediately by the observation that, if »; = i, then
the current step i has found a segment that is “longer” than the previously known one.
This is the reason why we can discard all positions within the range [L;, i], because they
generate segments of length shorter than or equal to the previous solution D[/;_1, 7i—1].

Reformulated problem. Given an array D[1,n] of positive and negative num-
bers, we want to find at every step the smallest index [; € [1,L;) such that
Sumpll;,i] > ¢.

There could be many indexes /; such that Sump[/;,i] > ¢; here we wish to find the
smallest one, because we aim to determine the longest segment.

At this point it is useful to recall that Sump[/;, 7] can be rewritten in terms of prefix
sums of array D, namely Sumpl[1,i] — Sump[1,; — 1] = P[i] — P[l; — 1], where the
array P was introduced in Section 2.4 and precomputed in linear time and space. So
we need to find the smallest index /; € [1, L;) such that P[i] — P[/; — 1] > t.

It is worth observing that the computation of /; could be done by scanning P[1, L;—1]
and searching for the lefimost index x such that P[i] — P[x] > ¢t or, equivalently,
P[x] < P[i] — t. We could then set ; = x + 1 and be done. Unfortunately, this
is inefficient because it requires us to repeatedly scan the same positions of P as
i increases, thus leading to a quadratic-time algorithm. Since we are aiming for a
linear-time algorithm, we need to spend constant time “amortized” per step .

In order to achieve this performance we first need to show that we can avoid scan-
ning the whole prefix P[1, L; — 1] by identifying a subset of candidate positions for
x. Call C;; the candidate positions for iteration 7, where j = 0, 1, ... .. They are defined
as follows: Cjo = L; (it is a dummy value), and C;; is defined inductively as the
leftmost minimum of the subarray P[1,C; ;1 — 1] (i.e. the subarray to the left of
the current minimum and to the left of L;). We denote by c(7) the number of these
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Figure 22 An illustrative example for the c(i) candidate positions C;; relative to the position L;,
given an array P of prefix sums.

candidate positions for the step i, where clearly c(i) < L; (equality holds when P[1, L;]
is decreasing).

For an illustrative example see Figure 2.2, where c(i) = 3 and the candidate
positions are connected via left-pointing arrows.

Looking at Figure 2.2, we derive three key properties whose proof is left to the
reader because it immediately comes from the definition of C; ;:

e Property a: The sequence of candidate positions C;; occurs within [1,L;) and
moves leftward, namely C; ; < C; ;-1 < ... < Cj1 < Cio = L;, where j = c(i).

e Property b: At each iteration i, the sequence of candidate values P[C;,] is increas-
ing with j = 1,2,...,c(i). More precisely, we have P[C;;] > P[C;;_1] and
Ci; < Cij—1, so values increase as the positions C; ; move leftward.

e Property c: The value P[C; ;] is smaller than any other value on its left in P, because
it is the leftmost minimum of the prefix P[1, C; ;1 — 1].

It is crucial now to show that the index we are searching for, namely /;, can be
derived by looking only at these candidate positions C; ; and corresponding prefix-
sum values P[C; ;]. From Fact 2.1 we are interested in segments that have the form
D[x,i] with x < L; and sum Sumpl[x,i] > ¢, and among those x we search for the
smallest one (i.e. /;). Since Sumplx,i] = P[i] — P[x — 1], Property c allows us to
conclude that if we have Sump[C; ; + 1,i] < ¢ then all longer segments will have a
sum smaller than ¢. Therefore we can conclude that:

Fact 2.2 At each iteration i, the largest index j* such that Sump[C; j« + 1,i] > ¢ (if
any) provides us with the longest segment we are searching for.

There are two main problems in deploying the candidate positions C; ; for the effi-
cient computation of /;: (i) How do we compute the C; ;s as i increases, and (ii) How
do we search for the index j*. To address (i) we note that the computation of C;;
depends only on the position of the previous C; ;1 and not on the indices i or j. So
we can define an auxiliary array LMin[1, n] such that LMin[i] is the leftmost position
of the minimum within P[1,i — 1]. It is not difficult to see that C;; = LMin[L;], and
that according to the definition of Cs it is C;» = LMin[ LMin[L;] ], which we write as
LMinz[L[]. In general, itis C;x = LMin* [L;]. This allows an incremental computation:
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0 ifx=0
LMin[x] =4 x—1 if P[x — 1] < P[ LMin[x — 1] ]
LMin[x — 1] otherwise

This formula has an easy explanation using induction. Initially we set LMin[0] to
the dummy value 0. To compute LMin[x] we need to determine the leftmost minimum
in P[1,x—1]: this is either located in x— 1 (with value P[x—1]) or is the one determined
for P[1,x — 2] in position LMin[x — 1] (with value P[LMin[x — 1]]). Therefore, by
comparing these two values we can compute LMin[x] in constant time. Hence the
computation of all candidate positions LMin[1, n] takes O(n) time.

We are left with the problem of determining ;* efficiently. We will not be able
to compute j* in constant time at each iteration i/ but we will show that, if at step
i we execute s; > 1 steps, then we are extending the length of the current solution
by ©(s;) units. Given that the longest segment cannot be longer than #, the sum of
these extra costs cannot be larger than O(n), and thus we are done. This is called the
amortized argument, because we are, in some sense, charging the cost of the expensive
iterations to the cheapest ones. The computation of j* at iteration i requires checking
the positions LMin* [Li] for £ = 1,2,... until the condition in Fact 2.2 is satisfied; in
fact, we know that all the other j > ;* do not satisfy Fact 2.2. This search takes j*
steps and finds a new segment whose length is increased by at least j* units, given
Property a. Since a segment cannot be longer than the entire sequence D[1, n], we can
conclude that the total extra time incurred by the search for j* cannot be larger than
O(n).

We leave to the diligent reader to work out the details of the pseudocode of this
algorithm; the techniques underlying its elegant design and analysis should be clear
enough that it can be approached without any difficulties.
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Random Sampling

So much of life, it seems to me, is
determined by pure randomness.
Sidney Poitier

This chapter addressses a problem that is simple to state, is the backbone of many
randomized algorithms, and admits of solutions that are algorithmically challenging
to design and analyze.

Problem. Given a sequence of n items S = (i1, 12, ...,i,) and a positive integer
m < n, the goal is to select a subset of m items from S uniformly at random.

“Uniformly” here means that any item in S has to be sampled with probability 1/x.
Items can be numbers, strings, or complex objects, either stored in a file located on
disk or streamed through a channel. In the former scenario, the input size » is known
and items occupy a contiguous sequence of pages; in the latter scenario, the input
size may be unknown, yet the uniformity of the sampling process must be guaranteed.
In this chapter we will address both scenarios, aiming at efficiency in terms of I/Os,
extra space required for the computation (in addition to the input), and amount of ran-
domness deployed (expressed as number of randomly generated integers). Hereafter,
we will make use of a built-in procedure RAND(a,b) that randomly selects a number
within the range (a, b]. Whether the number is a real or an integer will be clear from
the context. The design of a good RAND function is a challenging task; however, we
will not go into detail here because we wish to concentrate only on the sampling proc-
ess, rather than on the generation of random numbers for which the interested reader
can refer to the wide literature on (pseudo-)random number generators.

Finally, we note that it is desirable to have the positions of the sampled items in
sorted order, because this speeds up their extraction from S both in the disk setting
(less seek time) and in the stream-based setting (fewer passes over the data). Moreover,
it reduces the working space because it enables the efficient extraction of the items via
a scan, rather than using an auxiliary array of pointers to the sampled items. We do not
want to detail further the sorting issue here, which gets complicated whenever m > M
and thus these positions cannot fit into internal memory. In this case we would need
a disk-based sorter, which is an advanced topic, and is dealt with in Chapter 5. If,
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instead, m < M we can deploy the fact that positions are integers in a fixed range, and
thus use radix sort or any other fast internal-memory sorting routine available in the
literature.

Disk Model and Known Sequence Length

We start by assuming that the input size n is known and that S[1, ] is stored in a
contiguous set of pages on disk. These pages cannot be modified because they may
be the input of a more complicated problem that includes the current one as a sub-
task. Algorithm 3.1 is the first solution we propose for the sampling problem we have
described; it is very simple and allows us to raise some issues that will be addressed
in the subsequent solutions.

Algorithm 3.1 Drawing from unsampled positions

1: Initialize the auxiliary array S'[1,n] = S[1, n];
2: fors=0,1,...,m—1do

3 p =RAND(1,n —s);

4: select the item (pointed to by) S'[p];

5 swap S'[p] with §’'[n — s];

6: end for

At each step s the algorithm maintains the following invariant: the subarray
S'[n— s+ 1, n] contains the items that have already been sampled, and the unsampled
items of S are contained in S'[1, n—s]. Initially (i.e. s = 0) this invariant holds because
S'[n— s+ 1,n] = §'[n + 1,n] is the empty array. At a generic step s, the algorithm
selects uniformly at random one item from S’[1,7n — s], and replaces it with the last
item of that sequence (namely, S’[n — s]). This preserves the invariant for s + 1. At the
end (i.e. s = m), the sampled items are contained in §'[n — m + 1, n].

S’ cannot be a pure copy of S, but it must be implemented as an array of pointers
to S’s items. The reason for this is that these items may have variable length (e.g.
strings or complex objects), so their retrieval in constant time could not be obtained
via arithmetic operations; also, the replacement step might be impossible due to a
difference in length between the item at S'[p] and the item at S'[n — s]. Pointers avoid
these issues but occupy ©(n logn) bits of extra space, which might be nonnegligible
when n gets large and might turn out even larger than S’s space if the average length
of its items is shorter than log 7 bits. Another drawback of this approach is given by its
pattern of memory accesses, which act over ®(n) cells in a purely random way, thus
taking ®(m) I/Os. This may be too slow when m = n, because in this case we would
like to obtain O(n/B) I/Os, which is the cost of scanning the whole S.

Let us approach these issues by proposing a series of algorithms that incrementally
improve the I/Os and the space resources of the previous solution, up to the final result,
which will achieve O(m) extra space, O(m) expected time, and O(min{m, n/B}) I/Os.
We start by observing that the swap of the items in Step 5 of Algorithm 3.1 guarantees
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that every step generates one distinct item, but forces to duplicate S. Algorithm 3.2
improves the I/O and space complexities by avoiding the item swapping via the use
of an auxiliary data structure that keeps track of the selected positions in sorted order
and needs only O(m) space.

Algorithm 3.2 Dictionary of sampled positions

1: Initialize a dictionary D = (J;
2: while |D| < m do

3 p = RAND(1, n);

4: if p € D insert it;

5: end while

Algorithm 3.2 stops when D contains m (distinct) integers which constitute the
positions of the items to be sampled. The efficiency of the algorithm mainly depends
on the implementation of the dictionary D, which allows us to detect the presence
of duplicate positions (and thus duplicate items). The literature offers many data
structures that efficiently support membership and insert operations, based either on
hashing or on trees. Here we consider only a hash-based solution, which consists of
implementing D via a hash table of size ®(m) with collisions managed via chaining,
and a universal hash function for table access (see Chapter 8 for details on hash-
ing). This way each membership query and insertion operation over D takes O(1)
expected time (the load factor of this table is O(1)), and total space O(m). Time
complexity could be improved by using more sophisticated data structures, such as
dynamic perfect hashing or cuckoo hashing, but the final time bounds would always
be in expectation because of the underlying resampling process. In fact, this algorithm
may generate duplicate positions, which must be discarded and resampled. Bounding
the cost of the resampling is the main drawback of this approach, which induces a
constant-factor slowdown in expectation, thus making this solution very appealing in
practice for small m. The reason for this is that the probability of having extracted an
item already present in D is |D|/n < m/n < 1/2 because, without loss of generality,
we can assume that m < n/2; if that isn’t the case, we can solve the complement of the
current problem and thus randomly select the positions of the items that are not sam-
pled from S. So we need an expected constant number of resamplings in order to obtain
a new item for D, and thus advance in our selection process. Overall we have proved:

Fact 3.1 Algorithm 3.2 based on hashing with chaining requires O(m) expected
time and O(m) additional space to select uniformly at random m positions in [1,7].
An additional sorting step is needed if we wish to extract the sampled items of
S in a streaming-like fashion. In this case, the overall sampling process takes
O(min{m, n/B}) 1/Os.

If we substitute hashing with a (balanced) search tree and assume we are working
in the RAM model (hence we assume m < M), then we can avoid the sorting step by
performing an in-visit of the search tree in O(m) time. However, Algorithm 3.2 would
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still require O(m log m) time because each insertion/membership operation would take
O(log m) time. We could do better by deploying an integer-based dictionary data
structure, such as a van Emde Boas tree [1], and thus take O(log log n) time for each
dictionary operation (which is executed on integer keys of ®(logn) bits each). Note
that the two bounds are incomparable, because of the relative magnitudes of m and n.
Many other trade-offs are possible by changing the underlying dictionary data struc-
ture; we leave this exercise to the reader. As a final point we observe that, if m < M, the
random generation and the management of D can occur within main memory without
incurring any 1/Os. Sometimes this is useful because the randomized algorithm that
invokes the random-sampling subroutine does not need the corresponding items, but
rather it needs only their positions in S.

Streaming Model and Known Sequence Length

We turn next to the case in which S is flowing through a channel and the input size n is
known and large (e.g. internet traffic or query logs). This stream-based model requires
that no preprocessing is possible (as instead done in Section 3.1 items’ positions were
resampled and/or sorted), every item of S is considered once, and the algorithm must
immediately and irrevocably take a decision whether that item should be included or
not in the set of sampled items. Later items may possibly kick that one out of the
sampled set, but no discarded item can be reconsidered again in the future. Even in
this case the algorithms are simple in their design, but their probabilistic analysis is
a little more involved than before. The algorithms of the previous section offer an
expected time complexity because they are faced with the resampling problem: some
samples may have to be eliminated because they are duplicated. In order to avoid
resampling, we need to ensure that each item is not considered more than once. So
the algorithms that follow implement this idea in the simplest possible way: they scan
the input sequence S and consider each item once. This approach brings with it two
main difficulties that are related to the two requirements: uniformly sampling from the
range [1, 7], and returning a sample of size m.

We start by designing an algorithm that draws just one item from S (hence m = 1),
and then we generalize it to the case of a subset of m > 1 items. This algorithm
proceeds by selecting the item S[ /] with probability (), which is properly defined in
order to guarantee the selection of just one item uniformly at random.! In particular,
we set P(1) = 1/n, P(2) =1/(n — 1), P(3) = 1/(n — 2), and so on, so the algorithm
selects the item j with probability P(j) = ﬁ, and if this occurs it stops. Eventually
the item S[#n] is selected because its probability of being drawn is P(n) = 1.

So the proposed algorithm guarantees the condition on the sample size m = 1, but
that the probability of sampling any item S[;] is 1/n is more difficult to be proved,

' In order to draw an item with probability P, it suffices to draw a random real p = RAND(0, 1) € (0, 1]
and then compare it against P. If p < P then the item is selected, otherwise it is not. Hence, for any p, an
item will never be selected if P = 0 and it will always be selected if P = 1.
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independently of j, given that we defined P(j) = 1/(n — j + 1). The reason for this
derives from a simple probabilistic argument because n — j + 1 is the number of
remaining elements in the sequence and all of them have to be drawn uniformly at
random. By induction, the first j — 1 items of the sequence have uniform probability
1/n to be sampled; so the probability of not selecting any one of them is 1 — 1_71 As
a result,

‘P(Sampling i;) = P(Not sampling iy - - - i;_1) x P(Selecting i;)

( j—l) 1 1
=(1- X - = -.
n n—j+1 n

Algorithm 3.3 details the pseudocode for this approach, here generalized to work for
an arbitrarily large sample m > 1.

Algorithm 3.3 Scanning and selecting
1: s =0;
2: for j = 1;(j <n) and (s < m);j++) do
3: p = RAND(0, 1);

4 if p< nfj_jl then
5 select S[/1;

6: s++;

7 end if

8: end for

The difference with the previously described algorithm, which sets m = 1, lies
in the probability P(;) of sampling S[/], which is now P(j) = n’fj_jl,
the number of items already selected before S[j]. Notice that if we have already got
all samples, it is s = m and thus P(j) = 0, which means that Algorithm 3.3 does
not generate more than m samples. On the other hand, Algorithm 3.3 cannot generate
less than m samples, say y samples with y < m, because the last m — y items of S
would have probability 1 of being selected and thus they would be included in the
final sample (according to Step 4 and Footnote 1). As far as the uniformity of the
sample is concerned, we show that () is equal to the probability that S| /] is included
in a random sample of size m given that s samples lie within S[1,; — 1]. We can
rephrase this as the probability that S[/] is included in a random sample of size m — s
taken from S[j, n], and thus from n — j 4+ 1 items. This probability is obtained by

counting how many such combinations include S[/], that is, (mﬁ:]_ 1), and dividing by

where s is

the number of combinations that either include or do not include S[ /], that is, (”;f_ +S1)

Since (2) = %, we get the formula for P(}).

Fact 3.2 Algorithm 3.3 takes O(n/B) 1/Os and O(n) time, generates #» random num-
bers, and takes O(m) additional space to sample uniformly m items from the sequence
S[1, n] in a streaming-like way.
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We conclude this section by mentioning a solution proposed by Jeffrey Vitter [4]
that reduces the amount of randomly generated numbers from » to m, and thus speeds
up the solution to O(m) time and I/Os. This solution could also be fit into the frame-
work of the previous section (random access to input data), and in that case its specialty
would be the avoidance of resampling. Its key idea is not to generate random indica-
tors, which specify whether or not an item S[ ] should be selected, but rather generate
random jumps that count the number of items to skip over before selecting the next
item of S. Vitter introduces a random variable G(v, V'), where v is the number of items
remaining to be selected, and V is the total number of items left to be examined in S.
According to our previous notation, at step j we have thatv =m—sand V =n—j+1.
The item S[G(v, V') + 1] is the next one selected to form the uniform sample from the
remaining ones. It goes without saying that this approach avoids the generation of
duplicate samples, but it does incur an expected time bound because of the cost of
generating the jumps G according to the following distribution:

P(G=g)=< V;fl_l )/( I:)

The key difficulty here is that we cannot tabulate (and store) the values of all binomial
coefficients in advance, because this would need too much time and space, since V' < n
and v < m. Surprisingly, Vitter solved this problem in O(1) expected time, by adapting
in an elegant way von Neumann’s rejection-acceptance method to the discrete case
induced by G’s jumps. We refer the reader to [4] for further details.

Streaming Model and Unknown Sequence Length

It goes without saying that the knowledge of n was crucial to compute P(j) in Algo-
rithm 3.3. If n is unknown we need to proceed differently, and so the rest of this chapter
is dedicated to detailing two possible solutions for this scenario.

The first solution is fairly simple and deploys a min-heap # of size m plus the
random number generator RAND(0,1). The key idea is to associate a random priority
r; to each item S[ /] and then use the min-heap # to select the items that have the top-
m priorities. The pseudocode in Algorithm 3.4 implements this idea, by comparing
the minimum priority among the top-m ones currently stored in the the min-heap H
(and located in its root) with priority 7; associated to the currently examined item
S[/]. If 7; is larger than that minimum priority, then S[/] is inserted in # and the
minimum priority is deleted from #, thus updating the set of top-m priorities (and
their associated items).

Since the heap H has size m, the final sample will consist of m items. Each priority
takes O(log m) time to be inserted in or deleted from 7{. The randomness of the prior-
ities ensures that every item has the same probability of being included in the top-m
set. So we have proved:

Fact 3.3 Algorithm 3.4 takes O(n/B) 1/0Os and O(n log m) time, generates n random
numbers, and uses O(m) additional space to sample uniformly at random m items from
the sequence S[1, #] in a streaming-like way and without the knowledge of 7.
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Algorithm 3.4 Heap and random keys
1: Initialize a min-heap H with m dummy items having priority —oo;
2: for each item S[ /] do

3: r; = RAND(0, 1);

4 y = the minimum priority in ;

5: if 7; >y then

6 extract the item with priority y from H;

7: insert item S| /] in ‘H, assigning priority r;;
8: end if

9: end for

10: return the m items contained in H;

We conclude this chapter by introducing the elegant reservoir sampling algorithm,
attributed to Alan Waterman according to [5], which improves Algorithm 3.4 both in
time and space complexity. The idea is similar to the one adopted for Algorithm 3.3
and consists of properly defining the probability with which an item is selected. But
the key issue here is that we cannot take an irrevocable decision on S[ /] because we
do not know how long the sequence S is, so we need some freedom to change what
we have decided so far as the scanning of S goes on.

Algorithm 3.5 Reservoir sampling
1: Initialize array R[1,m] = S[1, m];
2: for each item S[ /] do
3 h = RAND(1,);
4 if 2 < m then
5: set R[h] = S[/];
6
7
8

end if
: end for
: return array R;

The pseudocode of Algorithm 3.5 uses a “reservoir” array R[1, m] to keep the can-
didate samples. Initially R is set to contain the first m items of the input sequence. At
any subsequent step j, the algorithm makes a choice whether S[ /] has to be included or
not in the current sample. This choice occurs with probability P(j) = m/j, in which
case some previously selected item has to be kicked out of R. This item is chosen at
random in R, hence with probability 1/m. This double choice is implemented in Algo-
rithm 3.5 by choosing an integer / in the range [1, ], and making the substitution only
if 7 < m. This event has probability m/j: exactly what we wished to set for P(j).

For the correctness of the algorithm, it is clear that Algorithm 3.5 selects m items;
it is less clear that these items are drawn uniformly at random from S, which actually
means that they are drawn with probability m/n. Let us see why this is the case, by
induction on the (unknown) sequence length n. The base case in which n = m is
obvious: every item has to be selected with probability m/n = 1, and indeed this is
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what Step 1 does by writing the first m items of S in the reservoir R. To prove the
inductive step (from n — 1 to n items), we note that the uniform-sampling property
holds for S[n] since by definition that item is inserted in R with probability P(n) =
m/n (Step 4). Computing the probability of being sampled for the previous items in
S[1,n — 1] is more difficult. An item S[/], with j < n, belongs to the reservoir R at the
n-th step of Algorithm 3.5 if and only if it was in the reservoir at the (n — 1)-th step and
it is not kicked out at the n-th step. This latter may occur either if S[#] is not selected
(and thus R is untouched) or if S[#] is selected and S[ /] is not kicked out of R (as these
two events are independent of each other). Expressed as a formula, the probability at
the n-th step is

P(S[/1 € R) x [P(S[n] is not selected) + P(S[x] is selected)
x P(S[/] is not kicked out of R)] .

By induction, each item S[] preceding S[n] has probability m/(n — 1) of being
in the reservoir R before that S[n] is processed. Moreover, item S[ /] remains in the
reservoir either if S[n] is not selected (which occurs with probability 1 — =7) or if it is
not kicked out by the selected S[#] (which occurs with probability ’”};1 ). Summing up
these terms we get:

-1
‘P(item S[/] € R after n items, and j < n) = " [(1 - T) + <Z x )i|
n—1 n n m

m n—1 m
A—1 . = n
To understand this formula, assume that we have a reservoir of 10 items, so the first
10 items of S are inserted in R by Step 1. Then item S[11] is inserted in the reservoir
with probability 10/11, item S[12] with probability 10/12, and so on. Each time an
item is inserted in the reservoir, a random element is kicked out of it, hence with
probability 1/10. After n steps the reservoir R contains 10 items, each sampled from
S with probability 10/n.

Fact 3.4 Algorithm 3.5 takes O(n/B) 1/Os, O(n) time, and exactly m additional space,
and generates n random numbers to sample uniformly at random m items from the
sequence S[1, ] in a streaming-like way and without the knowledge of n. Hence it is
time, space, and 1/O optimal in this model of computation.

A drawback of this approach is the number of times Step 3 is executed, which needs
the generation of a random integer of increasing size for each processed item S[/].
Researchers have investigated the problem of reducing this number; here we mention
an asymptotically optimal solution called Algorithm L in [3]. This algorithm requires
O(m(1 + log(n/m))) expected time and random number generations, which is optimal
up to a constant factor. We refer the reader to [3] for the in-depth algorithmic details;
here we content ourselves with a few important observations.

The first concerns the expected number of insertions in the reservoir R. Given that
the first m items are always inserted in the reservoir and each subsequent item S| ;]
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executes Step 5 with probability m/j, with j > m, the expected number of insertions
in R can be estimated as

Jj=m+1

m+ Y (mfj) = m+ D m/j)=Y (m/j)| = m(1+H,—Hpy,
J=1 Jj=1

where H, = Z;’Zl(l/ /j) is the n-th harmonic number which can be asymptotically
bounded by O(log n). This proves also to be the bound on the expected number of times
Step 5 of Algorithm 3.5 is executed. This is exactly the number of steps Algorithm L
executes provided that the generation of the “jumps” takes constant time.

The second key idea underlying Algorithm L is to compute how many items in S
are discarded before the next item enters the reservoir R, and thus Step 5 is executed.
This is implemented by simulating the approach of Algorithm 3.4, which associates a
random priority in (0, 1) to each item S[ /] and then selects the items corresponding to
the top-m priorities. Here, however, we cannot generate these priorities explicitly for
all items but need to do this just for the checked ones. It can be shown that the number
of skipped items follows a geometric distribution and can therefore be computed in
constant time [2].
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List Ranking

Pointers are dangerous in disks!

This chapter addresses a simple problem related to lists: the basic data structure under-
lying the design of many algorithms that manage interconnected items. We start with
an easy to state but inefficient solution derived from the optimal one designed for
the RAM model; then we discuss increasingly sophisticated solutions that are elegant
and efficient or optimal, but still simple enough to be implemented with a few lines
of code. The treatment of this problem will also allow us to highlight a subtle rela-
tion between parallel computation and external memory computation, which can be
deployed to derive efficient disk-aware algorithms from efficient parallel algorithms.

Problem. Given a (unidirectional) list £ of n items, the goal is to compute the
distance of each of those items from the tail of L.

Items are represented via their ids, which are integers from 1 to n. The list is encoded
by means of an array Succ(1, n], which stores in entry Succ[i] the id  if item 7 points
to item j. If 7 is the id of the tail of the list £, then we have Succ|[f] = ¢, and thus the
link outgoing from ¢ forms a self-loop. Figure 4.1 exemplifies these ideas by showing a
graphical representation of a list (left), its encoding via the array Succ (right), and the
output required by the list-ranking problem, hereafter stored in the array Rank[1, n].
This problem can be solved easily in the RAM model by exploiting the constant-
time access to its internal memory. Actually, we can foresee three simple algorithmic

id Succ Rank
13 1
2 5 5
33 0
4 6 3
5 4 4

Figure 4.1 An example of input and output for the list-ranking problem, defined over a list £ of
n = 6 items. The head of the list is the only item % in {1, . .., 6} not occurring in Succ (in the
example, 4 = 2); the tail of the list is the only item 7 in {1,. .., 6} for which Succ[f] = (in
the example, # = 3). It is Rank[¢f] = 0 and Rank[A] =n—1 = 5.
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solutions, each requiring optimal O(n) time. This time complexity is optimal because
all items in £ must be visited to set their Rank’s values.

The first solution scans the list from its head and computes the number # of its
items, then re-scans the list by assigning to its head the rank » — 1 and to every
subsequent element in the list a rank decremented by one at every step. The sec-
ond solution computes the array of predecessors as Pred[Succ[i]] = i, and then
scans the list backward, starting from its tail # and setting Rank[f] = 0, and then
incrementing the Rank’s value for each item as the traversal proceeds from ¢. The
third way to solve the problem is recursively, defining the function ListRank(i),
which works as follows: Rank[i] = 0 if Succ[i] = 7 (and hence i = ), else it sets
Rank[i] = ListRank(Succ[i]) + 1.

If we execute these algorithms over a list stored on disk (via its array Succ), then
they could elicit ®(n) I/Os because of the arbitrary distribution of links, which might
induce an irregular pattern of disk accesses to the entries of arrays Rank and Succ.
This I/O cost is significantly far from the obvious lower bound 2(n/B), which can be
derived by the same argument we used for the RAM model. Although this lower bound
seems very low, in this chapter we will come very close to it by introducing a bunch
of sophisticated techniques that are general enough to find applications in many other,
apparently dissimilar, scenarios.

The moral is that, in order to achieve I/O-efficiency on /linked data structures,
you need to avoid the traversal of pointers as much as possible and dig into the
wide parallel-algorithm literature (see, e.g., [2], where the parallel-RAM (PRAM)
model is also defined) because efficient parallelism can, surprisingly, be turned into
I/O-efficiency.

The Pointer-Jumping Technique

There is a well-known technique for solving the list-ranking problem in parallel set-
tings, based on the pointer-jumping technique. The algorithmic idea is quite simple, it
takes n processors, each dealing with one item of L. Processor i initializes Rank[i] =0
if i = ¢, otherwise it sets Rank[i] = 1. Then it executes the following two instructions:
Rank[i] = Rank][i] + Rank[Succ][i]] and Succ[i] = Succ[Succ]i]]. This double
update actually maintains the following invariant: Rank[i] measures the distance (i.e.
the number of items) in the original list between i and the item currently stored in
Succli]. We will skip the formal proof that can be derived by induction, and refer the
reader to the illustrative example in Figure 4.2. In the figure the dashed arrows indi-
cate the new links computed by one pointer-jumping step, and the table on the right of
each list specifies the values of the array Rank[1, n] as they are recomputed after this
step. The values in bold are the final/correct values. Note that distances do not grow
linearly (i.e. 1,2, 3, .. .), but they grow as a power of two (i.e. 1,2, 4, . ..), up to the step
in which the next jump reaches ¢, the tail of the list. This means that the total number
of times the parallel algorithm executes these two steps is O(log n), thus resulting in an
exponential improvement compared to the time required by the sequential algorithm.
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Figure 4.2 An example of pointer jumping applied to the list £ of Figure 4.1. The dashed
arrows indicate the result of executing one pointer-jumping step applied to the solid black
arrows, which represent the current configuration of the list. Rank’s values in bold are correct
and correspond to dashed arrows pointing to the tail 7 of the list.

If n processors are involved, pointer jumping executes a total of O(n log n) operations,
which is inefficient if we compare it to the number O(n) of operations executed by the
optimal RAM algorithm.

Lemma 4.1 The parallel algorithm, using n processors and the pointer-jumping
technique, takes O(logn) time and O(nlogn) operations to solve the list-ranking
problem.

Optimizations are possible to further improve the previous result and come close to
the optimal number of operations; for example, turning off processors as their corre-
sponding items reach the end of the list could be an idea. We will not dig into these
details as this topic is covered elsewhere in the literature (see, e.g., [2]). Here we are
interested in simulating the pointer-jumping technique in our setting, which consists of
one single processor and a two-level memory, and show that deriving an I/O-efficient
algorithm is very simple whenever an efficient parallel algorithm is available. The sim-
plicity hinges on an algorithmic scheme which deploys two basic primitives — Scan
and Sort a set of tuples — nowadays available in almost every distributed platform,
such as Apache Hadoop.

Parallel Algorithm Simulation in a Two-Level Memory

The key difficulty in using the pointer-jumping technique within the two-level mem-
ory framework is the arbitrary layout of the list on disk, and the consequent arbitrary
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pattern of memory accesses to update Succ-pointers and Rank-values, which might
induce many “random” I/Os. To circumvent this problem we will describe how the two
key steps of the pointer-jumping technique can be simulated via a constant number of
Sort and Scan primitives over n triples of integers. Sorting is a basic primitive,
which is very complicated to implement I/O-efficiently, and indeed, it will be the sub-
ject of Chapter 5. For the sake of presentation, we will denote in this chapter its I/O
complexity as O(n /B) which means that we have a hidden logarithmic factor depend-
ing on the main parameters of the model, namely M, n, and B. This factor is negligible
in practice, since we can safely upper bound it with a very small constant, such as 4 or
less. So we prefer now to Aide it, in order to simplify the discussion. On the other hand,
Scan is easy and takes O(n/B) 1/Os to process a contiguous disk portion occupied by
the n triples.

We can identify a common algorithmic structure in the two steps of the pointer-
jumping technique: they both consist of an operation (either copy or sum) between
two entries of an array (either Succ or Rank). For the sake of presentation, we will
refer to a generic array 4, and model the parallel operation to be simulated on disk as
follows:

Assume that a parallel step has the following form: A[a;] op A[b;], where op is
the operation executed in parallel over the two array entries 4[a;] and A[b;] by all
processors i = 1,2,...,n which actually read 4[b;] and use this value to update
the content of A[a;].

The operation op is a sum and an assignment for the update of the Rank-array
(here A = Rank), whereas it is a copy for the update of the Succ-array (here 4 =
Succ). As far as the array indices are concerned, for both steps they are @; = i and
b; = Succli]. The key issue is to show that A[a;] op A[b;] can be implemented,
simultaneously over all i = 1,2,3,...,n, by using a constant number of Sort and
Scan primitives, thus taking a total of 5(71 /B) I/Os. This implementation consists of
five steps:

1. Scan the disk and create a sequence of triples with the form (a;, b;, 0). Every triple
carries information about the source address of the array entry involved in op (i.e.,
b;), its destination address (i.e. «;), and the value that we are moving (the third
component, initialized to 0).

2. Sort the triples according to their second component (i.e. the source address b;).
Here we are “aligning” each triple (a;, b;, 0) with the memory cell A[5;].

3. Scan the triples and the array 4 using two iterators, one over the triples and one
over the array 4. Because the triples are sorted according to their second component
(i.e. b;), we can efficiently create the new triples (a;, b;, A[b;]) during the Scan.
Note that not all memory cells of A are necessarily present as second component
of a triple; nevertheless, their coordinated order allows 4[b;] to be copied into the
triple for b; within the coordinated Scan.

4. Sort the triples according to their first component (i.e. the destination address a;).
This way, we are “aligning” the triple (a;, b;, A[b;]) with the memory cell A[«;].
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5. Scan the triples and the array 4, again using two iterators, one over the triples and
one over the array A. For every triple (a;, b;, A[b;]), update the content of the mem-
ory cell 4[a;] according to the semantics of op and the value A[b;]. This update
can be done efficiently within the coordinated Scan.

The I/O complexity is easy to derive since the previous algorithm is executing two
Sorts and three Scans which involve 7 triples. Therefore we can state:

Theorem 4.1 The parallel execution of n operations Ala;] op A[b;] can be simu-
lated in a two-level memory model by using a constant number of Sort and Scan
primitives, thus taking a total of O(n/B) 1/Os.

In the case of the parallel pointer-jumping algorithm, the parallel pointer-jumps are
executed O(log n) times, so we have:

Theorem 4.2 The parallel pointer-jumping algorithm can be simulated in a two-level
memory model taking O((n/B)logn) 1/Os.

This bound turns out to be o(n), and thus better than the direct execution of the
RAM algorithm on disk, whenever B = w(logn). This condition is trivially satisfied
in practice because B &~ 10* bytes and logn < 80 for any real dataset size 23° (being
the estimated number of atoms in the Universe').

Figure 4.3 illustrates a running example of this simulation. The table on the left
indicates the content of the arrays Rank and Succ encoding the list of n = 6
items depicted at the top of the figure with black solid arrows; the table on the right
indicates the content of these two arrays after one step of the pointer-jumping tech-
nique and encoding the dashed arrows. The four columns of triples correspond to
the application of the five Scan/Sort phases described earlier in this section. More
precisely, the first column of triples is created via the first Scan as (i, Succ|i], 0),
since @; = i and b; = Succ][i]. The second column of triples is obtained via the
first Sort executed according to their second component. The third column of triples
can thus be computed via a coordinated Scan of the triples and the array Rank, thus
creating the new triples (i, Succ(i],Rank[Succ][i]]). The fourth column of triples
is Sorted by their first component, namely i, so that the final coordinated Scan
of the array Rank and the third component of those triples can compute correctly
Rank[i] = Rank[i] + Rank[Succ[i]].

This simulation demonstrates the updating of the array Rank; array Succ can
be updated similarly. Nonetheless, note that the update of the two arrays Rank
and Succ can be done simultaneously by using a quadruple, instead of a triple,
which carries both values of Rank[Succ([i]] and Succ[Succ(i]]. This is possible
because both values refer to the same source and destination addresses (namely, i and
Succ[i]).

I See, e.g., http://en.wikipedia.org/wiki/Large_numbers.
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Item 1123|4516 Ttem 1123456

Rank | 1|20 |2[2]2 Rank |1 [4[0|3]|4]|2

Succ [3|4|3|1]|6]|3 Succ |3 [1|3|3[3]|3
(1,3,0) (4 1,0) “,1,1) (1,3,0) Rank[1]+=0=1
(2,4,0) 1,3,0) (1,3,0) (2,4,2) Rank[2]+=2=4
(3,3, 0) (3 3, O) » (3,3,0) (3,3, 0) Rank[3]+=0=0
4, l,0> (6,3,0) (6,3,0) “,1, l) Rank[4]+=1=3
(5,6,0) (2,4,0) 2,4,2) (5,6,2) Rank[5]+=2=4
(6,3,0) (5,6,0) (5,6,2) (6,3,0) Rank[6] +=0=2

Figure 4.3 An example of simulation of the basic parallel step via Scan and Sort primitives,
relative to the computation of the array Rank, with the configuration specified in the diagram
and tables. Black solid arrows indicate the pointers encoded in the table on the left; the dashed
arrows indicate the updated pointers after one step of pointer-jumping, and they are encoded in
the table on the right.

The simulation scheme introduced in this section can actually be generalized to
every parallel algorithm, thus leading to the following important, and useful, result

(see [1]):

Theorem 4.3 Every parallel algorithm using n processors and taking T steps can
be simulated in a two-level memory by a disk-aware sequential algorithm taking
O((n/B) T) I/Os and O(n) space.

This simulation is advantageous whenever 7 =o(B), which implies a sublinear
number of 1/Os, namely o(#). This occurs in all cases in which the parallel algorithm
takes a low polylogarithmic time complexity. Such a situation is typical of the parallel
algorithms developed for the so-called P-RAM model of computation, which assumes
that all processors work independently of each other and can access in constant time
an unbounded shared memory. It is an ideal model which was very famous in the
1980s—1990s [2], and led to the design of many powerful parallel techniques, which
were applied to distributed as well as disk-aware algorithms. Its main limitation was
that it did not account for conflicts among the many processors accessing the shared
memory, and a simplified communication framework among them. Nevertheless, the
simplicity of P-RAM allowed researchers to concentrate on the algorithmic aspects
of parallel computation and thus design parallel schemes such as the pointer-jumping
one and the others described in the remainder of this chapter.

A Divide-and-Conquer Approach

The goal of this section is to show that the list-ranking problem can be solved
more efficiently than what can be achieved with the pointer-jumping technique. The
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algorithmic solution we describe in this section relies on an interesting application of
the divide-and-conquer paradigm, here specialized to work on a (uni-directional) list
of items.

Before going into the technicalities of this application, let us briefly recall the main
ideas underlying the design of an algorithm, say Ay, based on the divide-and-conquer
technique which solves a problem P, formulated on » input data [3]. A consists of
three main phases:

e Divide: A, creates a set of k subproblems, say Pi,Pa,..., P, having sizes
ni,ny,...,n, respectively. They are identical to the original problem P but
formulated on smaller inputs, that is, n; < n.

e Conquer: Ay, is invoked recursively on the subproblems P;, thus obtaining the
solutions s;.

e Recombine: A, recombines the solutions s; to obtain the solution s for the original
problem P. s is returned as the output of Ay

It is clear that the divide-and-conquer technique generates a recursive algorithm
Aqgc, which needs a base case to terminate. Typically, the base case consists of stopping
Ay whenever the input consists of a few items, that is, n < 1. For small inputs, the
solution can be computed easily and directly, possibly by enumeration, within constant
time.

The time complexity 7(n) of Ag. can be described by a recurrence relation, in
which the base condition is 7(n) = O(1) for n < 1, and for the other cases it is

T(n) = D(n) +R(n)+ Y T(ny),

i=1,....k

where D(n) is the cost of the Divide step, R(n) is the cost of the Recombine step, and
the final term accounts for the cost of all £ recursive calls. These observations are
sufficient here; we refer the reader to Chapter 4 in [3] for a deeper discussion on the
divide-and-conquer technique and the master theorem, which provides a mathematical
solution for most recurrence relations, such as the one here.

We are ready now to adapt the divide-and-conquer technique to the list-ranking
problem. The algorithm we propose is quite simple and starts by setting Rank[f] = 0
and Rank[i] = 1, for all items i # . Then it executes three main steps:

e Divide: Identify a set of items [ = {i1,i2,...,i;} drawn from the input list £. Set
I must be an independent set, which means that the successor of each item in £
that is added to / is not itself added to /. This condition clearly guarantees that
|I] < n/2, because at most one item out of two consecutive items may be selected.
The algorithm will also guarantee that |/| > n/c, where ¢ > 2, in order to make the
approach efficient in time.

e Conquer: Form the list £* = £ — I, by removing the items in / from the list L.
This is implemented by applying the pointer-jumping technique only to the pre-
decessors of the removed items: for every item x € L£* such that Succ[x] € I,
we set Rank[x] = Rank[x] + Rank[Succ[x]] and Succ[x] = Succ[Succ[x]].
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Rank | 1 [ 1| o |1 [ 1] 1]
Rank | 1 [ 2o |1 [ 1] 2]

Figure 4.4 Reduction of a list by the removal of the items belonging to an independent set, here
specified by the bold nodes. This results in the lower list in the figure; the Rank-array is
recomputed accordingly to reflect the missing items. The updated ranks, namely those of items
2 and 6 (because of the removal of items 5 and 1, respectively), are shown in bold.

This means that, at any recursive call, Rank[x] accounts for the number of items of
the original input list that lie between x (included) and the current Succ[x]. Then
we solve recursively the list-ranking problem over £*. Note that n/2 < |£*| <
(1 — 1/c)n, so the recursion acts on a sublist £* whose size is a fractional part of
L. This is crucial for the efficiency of the recursive calls.

e Recombine: At this point, the recursive call has computed correctly the list rank-
ing of all items in £*. So, we derive the rank of each item x € [ as Rank[x] =
Rank[x] + Rank[Succ[x]], thus adopting an updating rule which reminds us of
the one used in pointer jumping. The correctness of this computation is given
by two facts: (i) the independent-set property of / ensures that Succ[x] ¢ I,
thus Succ[x] € L£* and its Rank is available; (ii) by induction, Rank[Succ[x]]
accounts for the distance of Succ[x] from the tail of £, and Rank[x] accounts for
the number of items between x (included) and Succ|[x] in the original input list (as
observed in the Conquer step). In fact, the removal of x (because of its selection
in /) may occur at any recursive step, so x may be far from the current Succ[x]
when considering them in the original list; this means that it might be the case of
Rank[x] 3> 1, which the previous summation step will correctly take into account.
As aresult, all items in £ = £* U [ will have their Rank-value correctly computed
and, hence, induction is preserved and the algorithm may return to its invoking
caller.

Figure 4.4 illustrates how an independent set (denoted by bold nodes) is removed
from the list £ and how the Succ-links are updated. Note that we are indeed pointer
Jjumping only on the predecessors of the removed items (that is, the predecessors of
the items in /), and that the Succ-pointers for others are unchanged. It is clear that,
if the next recursive step selects / = {6}, the final list will be constituted by three
items £ = (2,4, 3) whose final ranks are (5, 3, 0), respectively. The Recombination-
step will reinsert 6 in £ = (2,4, 3), just after 4, and compute Rank[6] = Rank[6]+
Rank[3] = 240 = 2, because Succ[6] = 3 in the current list. Conversely, if one did
not take into account the fact that item 6 may be far from Succ[6] = 3 in the original
list and summed 1, the calculation for Rank[6] would be wrong.
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It is clear that the I/O-efficiency of this algorithm depends on the Divide step. In
fact, the Conquer step is recursive and thus its cost can be estimated as 7 ((1 - %) n)
I/Os; the Recombine step executes all reinsertions at once, given that the removed

items are not contiguous (by the definition of independent set), and hence it can be
implemented in O(n/B) 1/Os (see Theorem 4.1).

Theorem 4.4 The list-ranking problem formulated over a list L of length n can be
solved via the divide-and-conquer paradigm in T(n) = I(n)+5(n/B)+T ((l - %) n)
1/Os, where I(n) is the I/O cost of selecting an independent set from L of size at least
n/c (and, of course, at most n/2).

Deriving a large independent set is trivial if we can sequentially traverse the list £:
just pick one of every two items. But in our disk context the sequential list traversal
is I/O-inefficient, and this is exactly what we want to avoid: otherwise we would have
solved the list-ranking problem.

In what follows we will therefore concentrate on the problem of identifying a large
independent set within the list £ in an I/O-efficient manner, thus deploying only local
information within the list. We will solve this issue in two ways: one is simple and
randomized, the other one is deterministic and more involved. It is surprising that the
latter solution (called deterministic coin tossing) has found applications in many other
contexts, such as data compression, text similarity, and string-equality testing. It is a
very general and powerful technique that definitely deserves some attention in here.

A Randomized Solution

The algorithmic idea is simple: toss a fair coin for each item in £, and then select
those items i such that coin(i) = H but coin(Succ[i]) = T.”

The probability that the item i is selected is 1/4, because this happens for one con-
figuration (HT) out of the four possible configurations. So the expected number of
items selected for / is /4. By using sophisticated probabilistic tools, such as Chernoff
bounds,’ it is possible to prove that the number of selected items is strongly concen-
trated around n/4. This means that the algorithm can repeat the coin tossing until
|I| = n/c, for some ¢ > 4. The strong concentration guarantees that this repetition is
executed a (small) constant number of times.

We finally note that the check on the values of coin, for selecting /I’s items,
can be simulated by Theorem 4.1 via few Sort and Scan primitives, thus taking
I(n) = 5(n /B) expected 1/Os. So by substituting this value in Theorem 4.4, we get
the following recurrence relation for the I/O-complexity of the proposed algorithm:

2 The algorithm also works if we exchange the role of head (H) and tail (T), but it does not work if we
choose the configurations HH or TT. Why?
3 See https://en.wikipedia.org/wiki/Chernoff_bound.
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T(n) = 5(n/B) +T (@), with ¢ > 4. Using the master theorem (see Chapter 4
in [3]), we can prove the following result.

Theorem 4.5 There exists a randomized algorithm that solves the list-ranking
problem, formulated over a list of length n, in O(n/B) expected 1/O:s.

Deterministic Coin-Tossing®>

The key property of the randomized algorithm, described in Section 4.3.1, was the
locality of I'’s construction, which allowed it to pick an item 7 just by looking at the
results of the coins tossed for 7 itself and for its successor Succ|[i]. In this section we
simulate deterministically this process by introducing the so-called deterministic coin-
tossing technique that, instead of assigning two coin values to each item (i.e. H or T),
starts by assigning n coin values (hereafter indicated by the integers 0, 1,...,n — 1)
and eventually reduces them to three coin values (namely 0, 1,2). The final selec-
tion process for / will then pick the items whose coin value is minimum among their
adjacent items in £. This means that the algorithm will have to compare three items
adjacent in £, and this still needs the execution of a constant number of Sort and
Scan primitives. Let us provide more algorithmic details about this approach.

e Initialization: Assign to each item i the value coin(i) = i — 1. This way all items
take a different coin value, which is smaller than n. We represent these values in
b = [logn] bits, and we denote by bit(7) the binary representation of coin(i)
using b bits.

e Get six coin values: Repeat the following steps until coin(i) < 6, for all items
iel:

— Compute the first position (i) from the right where bitp(i) and
bitp(Succ[i]) differ, and denote by z(i) the bit value of bit,(i) at that
position, for all items i that are not the tail of the list.

— Compute the new coin value for i as coin(i) = 2 (i) + z(i) and represent it by
using [log b]+1 bits. If i is the last item in the list, and hence has no successor, we
define coin(i) as the minimum value that is different from all the other assigned
coins.

e Get just three coin values: For each value v € {3,4, 5}, take all items i such that
coin(i) = v, and change their value to {0, 1, 2} \ {coin(Succ[i]), coin(Pred[i])}.

e Select /: Select those items i such that coin(i) is a local minimum, that is, it is
smaller than coin(Pred][i]) and coin(Succ[i]).

Let us first discuss the correctness of this algorithm. At the beginning all coin values
are distinct, and in the range {0, 1, ..., n — 1}. By distinctness, the computation of 7 (7)
is sound and 27 (i) 4+ z(i) < 2(b — 1) + 1 = 2b — 1 since coin(i) was represented
with b bits and hence 7 (i) < b — 1 (counting from 0). Therefore, the new value
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coin(i) can be represented by [log b] + 1 bits, and thus the updating of b is correct
too.

A key observation is that the new value of coin(i) is still different to the coin
value of its adjacent items in £, namely coin(Succ[i]) and coin(Pred[i]). We
prove this by contradiction. Let us assume that coin(i) = coin(Succ(i]) (the other
case is similar); then 27 (i) + z(i) = 2w (Succ[i]) + z(Succ]i]). Since z denotes a bit
value, the two coin values are equal if and only if it is both 7 (i) = 7 (Succ[i]) and
z(i) = z(Succ(i]). But if this condition holds, then the two-bit sequences bit(i) and
bitp(Succ[i]) cannot differ at the bit-position 7 (i), as we had assumed.

This clearly demonstrates the correctness of the step that allows us to go from n
coin values to six coin values, and then in turn get three coin values. It is also obvious
that the selected items form an independent set because of the minimality of coin(i)
and the distinctness of adjacent coin values.

As far as the I/O complexity is concerned, we start by introducing the function
log* n defined as min{j | log” n < 1}, where log"” n is the repeated application of
the logarithm function for j times to n.* As an example, take n = 16 and compute
log® 16 = 16,log" 16 = 4,10g® 16 = 2,10g® 16 = 1; thus log* 16 = 3. It is not
difficult to convince yourselves that log* n grows very slowly, and indeed its value is
5 for n = 203336,

Now, in order to estimate the /O complexity of the proposed algorithm, we need
to bound the number of iterations it needs to reduce the coin values to {0, 1,...,5}.
This number is log*n, because at each step the number of bits used to repre-
sent the coin values reduces logarithmically (from b to [logb] + 1). All single
steps can be implemented by Theorem 4.1 via a few Sort and Scan primitives,
thus taking 5(n/B) I/Os. So the construction of the independent set takes I(n) =
5((n/B) log*n) = 5(n/B) 1/Os, by definition of 5(). The size of I can be lower
bounded as |/| > n/4, because the distance between two consecutive selected items
(local minima) is maximized when the coin values form a bitonic sequence of the form
...,0,1,2,1,0,1,2,1,0,....

By substituting this value in Theorem 4.4, we get the same recurrence relation of
the randomized algorithm presented in Section 4.3.1, with the exception that now the
algorithm is deterministic and its I/O-bound is worst case.

Theorem 4.6 There exists a deterministic algorithm that solves the list-ranking
problem, formulated over a list of length n, in O(n/B) worst-case 1/Os.

A comment is in order to conclude this chapter. The logarithmic term hidden in the
5()-n0tati0n has the form (log* n)(log,, /8 1), as will be shown in Chapter 5. This term
can be safely assumed to be smaller than 15 because, in practice, logy,,zn < 3 and
log*n < 5 fornupto 1 petabyte and using a commodity machine with a few gigabytes
of internal memory.

4 Recall that logarithms are all in base 2, unless otherwise stated.
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Sorting Atomic Items

We adore chaos because we love to
produce order.
Attributed to M. C. Escher

This chapter focuses on the very well known problem of sorting a set of afomic items;
the case of variable-length items (aka strings) will be addressed in the following chap-
ter. Atomic means that the items occupy a constant fixed number of memory cells.
Typically they are integers or reals represented with a fixed number of bytes, say four
(32 bits) or eight (64 bits) bytes each.

The sorting problem. Given a sequence of » atomic items S[1,#] and a total
ordering < between each pair, sort S into increasing order.

We will consider two complementary sorting paradigms: the merge-based paradigm,
which underlies the design of MERGESORT, and the distribution-based paradigm,
which underlies the design of QUICKSORT. We will adapt them to work in the
two-level memory model, analyze their I/O complexity, and propose some useful
algorithmic tools that allow us to speed up their execution in practice, such as the
Snow-Plow technique and data compression. We will also demonstrate that these
disk-based adaptations are I/O-optimal by proving a sophisticated lower bound on
the number of I/Os that any external-memory sorter must execute in order to produce
an ordered sequence of S. In this context we will relate the sorting problem to the so-
called permuting problem, which is typically neglected when dealing with sorting in
the RAM model, and then argue an interesting I/O-complexity equivalence between
them which will allow us to provide a mathematical ground to the ubiquitous use of
sorters when designing I/O-efficient solutions for problems involving large datasets.

The permuting problem. Given a sequence of » atomic items S[1, ] and a per-
mutation [ 1, n] of the integers {1, 2, ..., n}, permute S according to 7z and thus
obtain the new sequence S[x[1]], S[=[2]], ..., S[x[n]].

Clearly, sorting includes permuting as a subtask: to order the sequence S we need
to determine its sorted permutation and then implement it (these two phases may be
intricately intermingled). So sorting should be more difficult than permuting. And
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indeed, in the RAM model, we know that comparison-based sorting » atomic items
takes ®(nlogn) time (via MERGESORT or HEAPSORT [3]) whereas permuting them
takes ©(n) time. The latter time bound can be obtained by just moving one item at
a time according to what the array 7 indicates. We will show that, surprisingly, this
complexity gap does not exist in the disk model, because these two problems exhibit
the same 1/O-complexity under some reasonable conditions on the input and model
parameters n, M, B. This elegant and profound result was obtained by Aggarwal and
Vitter in 1988 [1], and it is surely the result that spurred the huge amount of algorith-
mic literature on the I/O subject. Philosophically speaking, this result formally proves
the intuition that moving items in the disk is the real bottleneck, rather than finding the
sorted permutation. And indeed, researchers and software engineers typically speak
about the /O bottleneck to characterize this issue in their (slow) algorithms.

We will conclude this section by briefly mentioning two solutions for the prob-
lem of sorting items on D disks: the disk-striping technique, which is at the base of
RAID (‘redundant array of independent disks’) systems and turns any efficient/opti-
mal 1-disk algorithm into an efficient D-disk algorithm (typically losing its optimality,
if any), and the GREEDSORT algorithm, which is specifically tailored for the sorting
problem on D disks and achieves I/O optimality.

The Merge-Based Sorting Paradigm

We recall the main features of the external-memory model introduced in Chapter 1:
it consists of an internal memory of size M and allows blocked access to disk by
reading/writing B items at once (the disk page).

Algorithm 5.1 Binary Merge-Sort: MERGESORT(S, i, )
1: if i <j then
2: m=(i+))/2;

3 MERGESORT(S, i,m — 1);
4 MERGESORT(S, m, j);

5 MERGE(S, i, m, );

6: end if

MERGESORT is one of the most well known sorting algorithms, and it is based
on the divide-and-conquer paradigm [3]. Its pseudocode is given in Algorithm 5.1.
Step 1 checks if the array to be sorted consists of at least two items; otherwise it is
already ordered and nothing has to be done. If there are at least two items, it splits
the input array S into two halves, and then recurses on each part. As recursion ends,
the two halves S[i,m — 1] and S[m, /] are ordered so that Step 5 fuses them in S[i, /]
by invoking the MERGE procedure. This merging step needs an auxiliary array of size
n, so that MERGESORT is not an in-place sorting algorithm (unlike HEAPSORT and,
somewhat, QUICKSORT), but needs ®(n) extra working space.

Given that at each recursive call we halve the size of the input array to be sorted, the
total number of recursive calls is O(log ). The MERGE procedure can be implemented
in O(j — i + 1) time by using two pointers, say x and y, that start at the beginning of
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the two halves S[i,m — 1] and S[m,j]. Then S[x] is compared with S| y], the smaller
one is written out in the merged sequence, and its pointer is advanced. Given that
each comparison advances one pointer, the total number of steps is bounded above
by the total number of the pointer’s advancements, which is upper bounded by the
length of S[7,/]. So the time complexity of MERGESORT(S, 1, 7) can be modeled via
the recurrence relation 7'(n) = 27(n/2) + O(n) = O(nlogn), as is well known from
any basic algorithm course (see, e.g., [3]).!

Let us assume now that n > M, so that S must be stored on disk and I/Os become
the most important computational resource to be analyzed and minimized. In practice
every 1/O takes 5 ms on average, so one could think that every item comparison takes
one I/O and thus one could estimate the running time of MERGESORT on a massive
S as: Sms x (nlogn), rounding up the big-O notation a little. If » is of the order
of few gigabytes, say n ~ 230, which is actually not that massive for the current
memory size of commodity PCs, the previous time estimate would be at least 5 x
(239 x 30) > 10% ms, which is more than one day of computation. However, if we
run MERGESORT on a commodity PC it completes in less than one hour. This is
not surprising, because the previous evaluation totally neglects the existence of the
internal memory, of size M, and the sequential pattern of memory accesses induced by
MERGESORT. Let us therefore analyze the MERGESORT algorithm in a more precise
way within the two-level memory model.

First of all, we note that O(z/B) 1/Os is the cost of merging two ordered sequences of
z items in total. This holds if M > 3B, because the MERGE procedure in Algorithm 5.1
keeps in internal memory the two disk pages that contain the two items pointed to by
the two pointers scanning S[i, j], where z = j — i 4 1, and one disk page to write the
sorted output sequence (which is flushed to disk every time it gets full). Every time a
pointer advances onto another disk page, an I/O fault occurs, that disk page is fetched
into internal memory, and the merging continues. Given that S is stored contiguously
on disk, S[i, ] occupies O(z/B) disk pages, and this is the I/O bound for merging two
subsequences of total size z. Similarly, the I/O cost of writing the merged sequence is
O(z/B), because it occurs sequentially from the smallest to the largest item of S[i, ],
by exploiting an auxiliary array of size z. As a result, the recurrent relation for the
I/O complexity of MERGESORT can be written as 7(n) = 27(n/2) + O(n/B) =
O(5 logn) 1/Os.

But this formula does not explain completely the good behavior of MERGESORT
in practice, because it does not yet account for the memory hierarchy. In fact, as
MERGESORT recursively splits the sequence S, smaller and smaller subsequences are
generated that have to be sorted. So when a subsequence of length z fits in internal
memory, namely z = O(M), then it is entirely cached by the underlying operating sys-
tem using O(z/B) 1/Os, and thus the subsequent sorting steps do not incur any I/Os.
The net result of this simple observation is that the I/O cost of sorting a subsequence
of z = O(M) items is no longer ®( log z), as accounted for in the previous recurrence
relation, but it is O(z/B) 1/Os, which only accounts for the cost of loading the subse-
quence in internal memory. This saving applies to all S’s subsequences of size ®(M)

' Throughtout the book, when the base of the logarithm is not indicated, it should be taken to be 2.
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Figure 5.1 The recursive call of MERGESORT over a subarray of size 2M. This is split into two
subarrays of size M on which it is suggested to apply gsort, an efficient internal-memory
implementation of QUICKSORT. Below the horizontal dotted line are depicted the recursive
calls over subarrays shorter than M. They do not elicit I/Os because they are executed in
internal memory. On the left side, the total number of recursive calls executed by MERGESORT
is indicated (i.e. O(log n); big-O notation is hidden for simplicity); on the right side, that
number is divided between the ones executed on disk (i.e. O(log (n/M))) and the ones executed
in internal memory (i.e. O(log M)).

on which MERGESORT is recursively run, which are ®(n/M) in total. So the overall
saving is ©(5 log M), which leads us to reformulate the MERGESORT’s complexity as
O( log 17) 1/Os.

This bound is particularly interesting because it relates the I/O complexity of
MERGESORT not only to the disk-page size B but also to the internal-memory size
M, and thus to the caching feature made available to the sorter by the underlying
operating system. Moreover, this bound suggests three immediate optimizations to
the classic pseudocode of Algorithm 5.1, which we discuss in the following Sections
5.1.1-5.1.3.

Stopping Recursion

The first optimization consists of introducing a threshold on the subsequence size, say
Jj — i < cM,where ¢ < 1, which triggers the stop of the recursion, the fetching of that
subsequence entirely into internal memory, and the application of an internal-memory
sorter on this subsequence (see Figure 5.1). The value of the parameter ¢ depends on
the space occupancy of the sorter, which must be guaranteed to work entirely in inter-
nal memory. As an example, ¢ is 1 for in-place sorters such as INSERTIONSORT and
HEAPSORT; it s close to 1 for QUICKSORT (because of the use of the call stack during
its recursion; see Section 5.3.3), and it is less than 0.5 for MERGESORT (because of the
extra array used by MERGE). As a result, we should write cM instead of M in the I/O
bound above, because recursion is stopped at cM items, thus obtaining ®( log 7).
This substitution is useless when dealing with asymptotic analysis, given that ¢ is a
constant, but it is important when considering the real performance of algorithms in
the external-memory scenario, since c is smaller than 1. Hence it is desirable to make
c as close as possible to 1, in order to reduce the impact of the logarithmic factor on
the I/O complexity, thus preferring in-place sorters such as HEAPSORT.
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We finally remark that INSERTIONSORT could also be a good choice (and indeed it
is) whenever M is small, as it occurs when the # items fit in internal memory and thus
M denotes the size of the two caches, L1 and L2. In this case M is a few megabytes.

The Snow-Plow Technique®®

Looking at the I/O complexity of (binary) MERGESORT, that is, ©(j log §7), it is clear
that the larger M is, the smaller is the number of merge-passes over the data. These
passes are clearly the bottleneck to the efficient execution of the algorithm, especially
in the presence of disks with low bandwidth. In order to circumvent this problem we
can either buy a larger memory, or try to deploy as much as possible the one we have
available. As algorithm engineers we opt for the second option, and thus propose two
techniques that can be combined together in order to enlarge (virtually) M.

The first technique is based on data compression and builds upon the observation
that the runs are increasingly sorted. So, instead of representing items via fixed-
length codes (e.g. four or eight bytes), we can use integer compression techniques that
squeeze those items into fewer bits, thus allowing us to pack more of them in internal
memory or in a disk page. Chapter 11 will describe in detail several approaches to
this problem; here we content ourselves with mentioning the names of some of these
approaches: y-code, §-code, Rice coding, Golomb coding, and so on. In addition,
since the smaller an integer is, the fewer bits are used for its encoding, we can enforce
the presence of small integers in the sorted runs by encoding not just their absolute
value but the difference between one integer and the previous one in the sorted run
(gap coding). This difference is surely nonnegative, and smaller than the item to be
encoded. This is the typical approach to the encoding of integer sequences used in
modern search engines, which we will also discuss in Chapter 11.

The second technique is based on an elegant idea, called Snow-Plow and attributed
to Donald Knuth [5], that allows one to virtually increase the memory size by a factor
of two on average. This technique scans the input sequence S and generates sorted
runs whose length have variable size which is never smaller than M, and proved to
be 2M on average. Its use needs to change the sorting scheme because it first creates
these sorted runs, now of variable length, and then applies repeatedly over these sorted
runs the MERGE procedure. Although runs will have different lengths, the MERGE will
operate as usual, requiring an optimal number of I/Os for their merging. Hence O(n/B)
I/Os will suffice to halve the number of runs to be merged, what ever their length is,
and thus a total of O(% log 57;) 1/0Os will be used on average to produce the totally
ordered sequence. This corresponds to a saving of one pass over the data, which is
nonnegligible if the sequence S is very long.

For ease of description, let us assume that items are transferred one at a time from
disk to memory, rather than block-wise. Eventually, since the algorithm scans the input
items, it will be apparent that the number of 1/Os required by this process is still the
optimal O(n/B) I/Os.

The algorithm proceeds in phases, each phase generating a sorted run. See Fig-
ure 5.2 for a pictorial description of a phase, and Algorithm 5.2 for its pseudocode. A
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input run

output run

Figure 5.2 The four main steps of a phase in Snow-Plow. The leftmost picture shows the
starting step, in which M unsorted items present in memory are heapified in the min-heap H.
The second picture shows the basic I/O step in which the minimum item in H is written to disk
and a new item is fetched from S. The third picture shows the two possible cases occurring at
the fetching of an item from S: it is either inserted in U/ or in H, depending on the current
heap-minimum. The rightmost picture shows the stopping condition of a phase, namely the
one in which # is empty and U/ entirely fills the internal memory.

phase starts with the internal memory filled with M (unsorted) items, stored in a min-
heap data structure called . Since the array-based implementation of heaps requires
no additional space, in addition to the indexed items, we can fit in /{ as many items
as we have memory cells available. The phase scans the input sequence S (which is
unsorted) and, at each step, it writes to the output the minimum item within H, say
min, and loads in memory the next item from S, say next. Since we want to generate
a sorted output, we cannot store next in H if next < min, because it would be the
new heap-minimum and thus it would be written out at the next step, thus destroying
the property of ordered run. So in this case next is stored in an auxiliary array, called
U, which stays unsorted and is kept in internal memory too. Of course, the total size of
H and U is M over the whole execution of a phase. A phase ends whenever H is empty,
and thus U consists of M unsorted items. At this point, the next phase can start by
moving the M items in U/ to form a new min-heap for # (in this way U/ ends up empty).

Algorithm 5.2 A phase of the Snow-Plow technique
Require: I/ is an unsorted array of M items

1: Build H as a min-heap over I/’s items;

2: SetUd =0

3: while H # @ do

4: min = Extract minimum from #;

5: Write min to the output run;

6: next = Read the next item from the input sequence;
7: if next <min then

8: insert next inU;

9: else
10: insert next in H;
11 end if

12: end while

Two observations are in order: (i) during the phase execution, the minimum of H
is nondecreasing, and so it is also nondecreasing the output run; (ii) the items stored
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in H at the beginning of the phase are eventually output before the phase ends. Obser-
vation (i) implies the correctness, observation (ii) implies that this approach forms
sorted runs longer than M, and thus its use makes the final algorithm not less efficient
than MERGESORT.

Actually, the resulting algorithm is more efficient than MERGESORT on average.
Suppose that a phase reads 7 items in total from S. By the while-guard in Step 3, we
know that a phase starts with M items in U, which are then heapified and moved to
the min-heap # (Step 1 in Algorithm 5.2), and then ends when the min-heap is empty
and || = M again. We know that the next t items read from S go in part to H and in
part to /. But since items are added to I/ and never removed from it during a phase,
since [U/| < M we can conclude that M of the t items end up in &/. Consequently
(r — M) items are inserted in H and eventually written to the output (sorted) run. So
the length of the sorted run at the end of the phase is M + (t — M) = t, where the
first addendum accounts for the items in 7 at the beginning of a phase, whereas the
second addendum accounts for the items read from S and inserted in A during the
phase. The key issue now is to compute the average of 7, which is easy if we assume a
random distribution of the input items. In this case we have probability 1/2 that next
is smaller than min, and thus we have equal probability that a read item is inserted
either in H or in Y. Overall it follows that, on average, t/2 items go to H and t/2
items go to {/. But we already know that the items inserted in {/ are M, so we can set
M = t/2 and thus we get T = 2M.

Fact 5.1 Snow-Plow builds O(rn/M) sorted runs, each longer than M and actu-
ally of length 2M on average. Using Snow-Plow for the formation of sorted runs,
MERGESORT takes an average 1/0 complexity of O (4 log 717).

From Binary to Multi-way MERGESORT

Previous optimizations deployed the internal-memory size M to reduce the number of
recursion levels by increasing the size of the initial (sorted) runs. But then the merging
was binary, in that it processed two input runs at a time. This binary merge impacted
on the base 2 of the logarithm of the I/O complexity of MERGESORT. Here we wish to
increase that base to a much larger value, and in order to achieve this goal we need to
deploy the memory M also in the merging phase by enlarging the number of runs that
are processed at a time. In fact, merging two runs uses only three blocks of size B in
internal memory: two blocks are used to cache the current disk pages that contain the
compared items, namely S[x] and S| y] from the notation of the previous sections, and
one block is used to cache the output items, which are flushed when the block is full
(to allow a block-wise writing to disk of the merged run). But the internal memory
contains a much larger number of blocks, that is, M /B > 3, which remain unused
over the whole merging process.

In light of this observation, we propose a third optimization, which consists in
deploying all those internal-memory blocks by designing a k-way merging algorithm
that processes k runs at a time, with £ >> 2. In particular, we will setk = (M /B) — 1,
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Figure 5.3 An illustration of the k-way merging algorithm over k£ = 3 sorted runs stored on
disk, whose pages contain B = 2 items. The gray blocks on disk have already been processed
and their items have been written to the output sorted run on disk. The disk pages in bold
rectangles are the ones under processing by the three-way merging algorithm, and in fact they
have been fetched in internal memory. Actually, the first item of R, ’s page, namely item 7, has
already been written to the output block in internal memory and not yet flushed to disk because
that page is not yet full. As explained in the text, the min-heap stores the first item of each run
in internal memory that has been not yet processed (shown in bold), and it is indexed as a pair
(item, run_index). Given the content of the min-heap, the next item to be written to the
internal-memory output block is 8, so that the item replacing it in the min-heap will be the next
one from its same run, namely 13 (hence, the pair inserted in the min-heap will be (13, 3)).

so that k blocks are available to read block-wise k input sorted runs, and one block is
reserved for a block-wise writing of the merged sorted run to disk. This scheme poses
a challenging algorithmic problem because, at each step, we have to select the mini-
mum among k candidate items coming from £ distinct sorted runs, and this cannot be
done by brute force in ®(k) time by iterating among them. We need a smarter solution
that hinges on the use of a min-heap data structure, and takes O(log k) time per item
written to the output block. The min-heap contains & pairs (one per input run), each
consisting of two components: one denoting an item to be compared and the other
denoting the index of its run. Initially the items are the minimum items of the & runs,
and so the pairs have the form (R;[1], ), where R;[1] denotes the first item of the i-th
sortedrunandi = 1,2,... k.

Figure 5.3 shows an example of the k-way merge algorithm, and its caption explains
it in detail. At each step, the k-way merge algorithm extracts the pair containing the
current smallest item in H (given by the first component of its pairs), writes that item
to the output block, and inserts in the heap the next item of its run. As an example, if
the minimum pair is (R,[x], m), then the algorithm writes R,,[x] to the output block
in internal memory, and inserts in #H the next pair (R,,[x + 1], m) from the same run
R,,, provided that it is not exhausted. In this latter case no pair replaces the extracted
one. If the disk page containing R,[x + 1] is not cached in internal memory, an I/O
fault occurs and that page is fetched, thus guaranteeing that the next B reads from run
R, will not elicit any further 1/Os. It should be clear that this merging process takes
O(log, k) time per item, and again O(z/B) 1/Os to merge k runs of total length z.
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As aresult, the k-way merging scheme recalls a k-way tree with O(n/M) leaves (i.e.
sorted runs of length at least M) which have been formed, possibly using Snow-Plow.
Hence the total number of merging levels is now O(log, 5 77) for a total volume of
1/0s equal to O(5 logy, 5 77)- We observe that sometimes we also write the formula as
O(% logyy/5 ) as it typically occurs in the literature, because log),, M can be written
as logys/p(B x (M/B)) = (logys/p B) + 1 = ©O(log,,p B). This makes no difference
asymptotically, hence log,/5 17 = ©(logy/5 )-

Theorem 5.1 Multi-way MERGESORT takes O(g logyp 17) 1/Os and O(nlogn)
comparisons and time to sort n atomic items in a two-level memory model in which
the internal memory has size M and the disk page has size B.

In practice the number of merging levels will be very small: assuming a block
size B = 4 KB and a memory size M = 4 GB, we get M/B = 232212 = 220
so that the number of passes is (1/20)-th smaller than the ones needed by binary
MERGESORT. Probably more interesting is the observation that one pass is able to
individually sort runs of M items, but two passes are able to individually sort runs of
(M/B) x M = M? /B items, because of the (M /B)-way merge, which is already a large
number. It goes without saying that in practice the internal-memory space that can be
dedicated to sorting is smaller than the physical memory available (typically MBs
versus GBs). Nevertheless, it is evident that A2 /B is already of the order of terabytes
for M = 128 MB and B = 4 KB. Furthermore, we note that the use of Snow-Plow or
integer compressors could virtually increase the value of M with a twofold advantage
in the final I/O complexity, because M occurs twice in the I/O bound.

Lower Bounds

At the beginning of this chapter we commented on the relation between the sorting and
the permuting problems, concluding that the former is more difficult than the latter in
the RAM model. The gap in time complexity is given by a logarithmic factor. The
question we address in this section is whether this gap also exists when measuring
I/Os. We will show that, surprisingly, sorting is equivalent to permuting in terms of
I/O volume, for most reasonable situations for the setting of the parameters N, M, and
B. This result is amazing because it can be read as saying that the I/O cost for sorting
is not in the computation of the sorted permutation but rather in the movement of the
data on the disk to realize it. This result offers a mathematical proof and quantification
of the popular expression “I/O-bottleneck”.

Before digging into the proof of this lower bound, let us briefly show how a sorter
can be used to permute a sequence of items S[1, 7] in accordance with a given per-
mutation 7[1,#]. This will allow us to derive an upper bound to the number of I/Os
that suffice to solve the permuting problem for any instance of (S, ). Recall that
this means generating the sequence S[z[1]], S[[2]],...,S[x[#]]. In the RAM model
we can jump among S’s items according to the permutation 7 and create the new
sequence S[x[i]], fori = 1,2,...,n, thus taking ®(n) optimal time. On disk we have
actually two different algorithms which induce two incomparable I/O bounds. The
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Table 5.1 Time and I/O complexities of the permuting and sorting problems in a two-level
memory model in which M is the internal-memory size, B is the disk-page size, and D = 1 is
the number of available disks. The case of multi-disks presents the multiplicative term n/D in
place of n.

Time complexity (RAM model) /O complexity (two-level memory model)

Permuting O(n) O(minfn, % 10gM/B % D

Sorting O(nlogy n) O(% log u 77)

first algorithm consists of mimicking what is done in RAM, paying one I/O per moved
item and thus taking ®(n) I/Os in the worst case. The second algorithm consists of
generating a proper set of tuples and then sorting them. Precisely, the algorithm cre-
ates the sequence P of pairs (i, 7[i]) where the first component indicates the position
i where the item S[x[7]], stored in the position specified by the second component,
must be stored. Then it sorts these pairs according to the w-component, and via a
parallel scan of S and P substitutes 7 [i] with the item S[z[i]], thus creating the new
pairs (i, S[[{]]). Finally, another sort is executed according to the first component of
these pairs, so that another parallel scan of S and P can be used to write S[x[i]] into
S[i], thus obtaining the sequence of items correctly permuted. Overall, this second
algorithm uses two scans and two sorts of the data, so it needs O(5 logy; 5 77) /Os,
according to Theorem 5.1.

This means that a user can choose the algorithm that requires the minimum number
of I/Os depending on the parameter setting of N, M, and B. Table 5.1 summarizes
these algorithmic considerations.

Theorem 5.2 Permuting n items takes O(min{n, 3 logy/z 37}) 1/Os in a two-level
memory model in which the internal memory has size M and the disk page has
size B.

In what follows we will show that this approach, in its simplicity, is I/O-optimal.
The two upper bounds for sorting and permuting asymptotically equal each other
whenever n = Q(z logys/p 77)- This occurs when B = Q(log,, 5 7;7), which always
holds in practice because that logarithm term is a very small constant for input sizes
n up to exabytes. So programmers don’t need to find sophisticated strategies, but can
simply sort as described here.

A Lower-Bound for Sorting

There are some subtle issues here that we do not wish to investigate too much, so we
will here give just a brief description of what underlies the I/O lower bounds for both
sorting and permuting.” We start by recalling the use of the decision tree technique

2 There are two assumptions that are typically introduced in those arguments. One concerns item
indivisibility, so items cannot be broken up into pieces (hence hashing is not allowed), and the other
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for proving comparison-based lower bounds in the RAM model [3]. An algorithm
corresponds to a family of such trees, one per input size (so infinite in number). Every
node is a comparison between two items, generating two possible results, so the fan-
out of each internal node is two and the tree is binary. Each leaf of the tree corresponds
to a solution of the underlying problem to be solved: so in the case of sorting n items,
the tree has one leaf per possible permutation of the input, hence n! leaves.> Every
root-to-leaf path in the decision tree corresponds to a computation, so the longest path
corresponds to the worst-case number of comparisons executed by the algorithm to
solve the problem at hand for a specific input size n. In order to derive a lower bound,
it is therefore enough to compute the depth of the shallowest binary tree having that
number of leaves. The shallowest binary tree with £ leaves is the (quasi-)perfectly
balanced tree, for which the height % is such that 2h > £; hence i > log, £. In the
case of sorting, we have £ = n!, so the classic lower bound # = Q(nlog, n) can be
easily derived by applying logarithms to both sides of the equation and using Stirling’s
approximation for the factorial function (see Footnote 3).

In the two-level memory model the use of such decision trees is more sophisticated.
Here we wish to account for I/Os, and exploit the fact that the information available
in the internal memory can be used for free. As a result, every node of the decision
tree now corresponds to one I/O, and the number of leaves still equals #!, but the fan-
out of each internal node equals the number of distinct comparison-based results that
a single I/O can generate among the items it reads from disk (i.e. B) and the items
available in internal memory (i.e. M — B). These B items can be distributed in at most
(Ag ) ways among the other M — B items present in internal memory.* Hence, one I/O
can generate no more than (Ag ) different results for those comparisons.

But this is an incomplete answer because we are not considering the permutations
among those items. In fact, some of these permutations have been already counted
by some previous I/Os, and thus we should not recount them. These permutations are
the ones concerning items that have already passed through internal memory, and thus
have been fetched by some previous I/Os. So we need to count only the permutations
among the new items, namely the ones residing in the input pages that have not yet
been fetched. There are n/B input pages, and thus n/B 1/Os accessing new items. So
these 1/0s may generate (Ag )(B!) distinct results by comparing those new B items (to
be sorted) with the M — B ones in internal memory.

Let us now consider a computation with ¢ I/Os, and thus a path in the decision tree
with ¢ nodes. A total of n/B of those nodes must access the input items, which must

concerns the possibility of only moving items and not creating/destroying/copying them, which actually
implies that exactly one copy of each item does exist during their sorting or permuting process.
Recall that the factorial function is defined asn! =n x (n—1) x (n—2) --- x 2 x 1. Itis well known

[

thatn! = ® ((%)" «/Znn); this is the Stirling s approximation of large factorials.

To convince yourself about this binomial coefficient, just observe that the M — B items already present
in internal memory can be assumed to be sorted. Now the read B items are distributed among the M — B
sorted items so as to generate a sequence of M sorted items. To count in how many ways this may occur,
it is enough to consider the fact that this corresponds to selecting B positions out of the M available ones
where the B read items will be stored.
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be read to generate the final permutation. The other  — 5 nodes read pages containing
already processed items. Any root-to-leaf path has this form, so we can look at the
decision tree as having the nodes for the new I/Os at the top and the other nodes at its
bottom. Hence, if the tree has depth ¢, its number of leaves is at least (Ag )t x (B!)"/B.
By imposing that this number is > n!, and applying logarithms to both sides of the
inequality, we derive = Q( log,, /B 77)- It is not difficult to extend this argument to
the case of D disks, thus obtaining Theorem 5.3.

Theorem 5.3 In a two-level memory model with internal memory of size M,
disk-page size B and D disks, a comparison-based sorting algorithm must execute

It is interesting to observe that the number of available disks D does not appear in
the denominator of the base of the logarithm, although it appears in the denominator
of all other terms. If this was the case, D would somewhat penalize the sorting algo-
rithms, making the lower bound larger and thus increasing the needed I/O complexity,
because it would reduce the logarithm’s base. In the light of Theorem 5.1, multi-way
MERGESORT is I/O and time optimal on one disk. But, according to Theorem 5.3,
MERGESORT is no longer optimal on multi-disks because the simultaneous merging
of k > 2 runs should take O(n/DB) 1/Os in order to be optimal. This means that the
k-way merge algorithm should be able to fetch D pages per /O, hence one per disk.
This cannot be guaranteed at every step by the current merging scheme because what-
ever the distribution of the & runs among the D disks is, even if we know which are
the next DB items to be loaded in the heap #, it could be the case that more than B of
these items reside on the same disk, thus requiring more than one I/O from that disk,
hence preventing the D-way parallelism in the read operation.

In Section 5.4 we will address this issue by proposing the disk-striping technique,
which comes close to the I/0-optimal bound via a simple data layout on disks, and
the GREEDSORT algorithm, which achieves full optimality by devising an elegant and
sophisticated merging scheme.

A Lower-Bound for Permuting

Let us assume that at any time the global memory of our model, hence the internal
memory of size M and the unbounded disk, contains a permutation of the input items
possibly interspersed by empty cells. No more than n blocks will be non-empty during
the execution of the algorithm, because n steps (and thus I/Os) is an obvious upper
bound to the I/O complexity of permuting (obtained by mimicking on disk the per-
muting algorithm for the RAM model, as observed at the beginning of this chapter).
We denote by P; the maximum number of permutations generated by any algorithm
with ¢ I/Os. Given the previous observation, we can state that r < n and Py = 1,
since at the beginning we have the input order as initial permutation. In what follows
we estimate P; and then set P; > n! in order to derive the minimum number of steps
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¢t that any algorithm needs to realize any possible permutation of n items given in
input.

Recall that permuting is different from sorting because the permutation to be real-
ized is provided in input, and thus we do not need any computation. So in this case we
distinguish three types of I/Os, which contribute differently to the number of generated
permutations:

e Read I/0O of an untouched page: If the page was an input page never read before,
the read operation requires accounting for the permutations among the read items,
hence B! in number, and also for the permutations that these B items can realize by
distributing them among the M — B items present in internal memory (as was simi-
larly done for sorting). So this read I/O can increase P; by a factor 0((];1 ) (B!)). The
number of input (hence “untouched”) pages is n/B. After a read I/0O, they become
“touched.”

e Read I/O on a touched page: If the page has already been read or written, P; has
already accounted for the permutations among its items, so this read I/O can only
increase P; by a factor O( (1\; )) due to the shuffling of the B read items with the M —B
ones present in internal memory. The number of touched pages is at most #, as this
is an upper bound to the number of steps executed by the permuting algorithm.

e Write I/0: When a page is flushed from internal memory to disk, it can be written
in at most n + 1 possible ways among the at most » non-empty pages available on
disk. Therefore, a write I/O may increase P; by a factor of O(n). We say that any
written page is “touched,” and recall that they are no more than » in number at any
instant of the permuting process.

If ¢, is the number of read I/Os and #,, is the number of write I/Os executed by a
permuting algorithm, where ¢ = #,.+t,,, then we can bound P; as follows (here “big-O”
has been dropped to ease the reading of the formulas):

n/B t-—n/B t
P < (% (g) (B!)) x (n @)) x n < (n G;)) B8, (5.1)

In this formula we have multiplied every factor by the number of possible ways
that a page may participate in a read or a write 1/O: this number is n/B for reads
of untouched pages, while, as we have stated, it is at most »n for writes and reads of
touched pages.

In order to generate every possible permutation of the n input items, we need

t
P, > n!. From equation (5.1), this means that it should be (n(Ag)) BY/E > nl.

Resolving with respect to ¢, we get

nlog %
t=Q —MgB :
Blog 7 +logn

We distinguish two cases. If Blog% < logn, then this equation becomes

t=Q ("ll:ggn%) = Q(n); otherwise it is t = (;:Z:fé) = Q(%log% ﬁ) As
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for sorting, it is not difficult to extend this proof to the case of D disks. Overall this
means that we have proved the following result:

Theorem 5.4 [n a two-level memory model with internal memory of size M, disk-page
size B and D disks, permuting n items requires Q (min {5, 25 logy/s D }) 1/0s.

Theorems 5.2-5.4 prove that the I/O upper bounds provided in Table 5.1 for the
sorting and permuting problems are asymptotically optimal. Actually, we have already
noted that they are asymptotically equivalent when B = Q (logy;/p 7). Given the
current values for B and M in modern computers, respectively tens of KBs and at
least tens of GBs, this equality holds for any practical (even very large) values of n. It
is therefore not surprising that researchers and algorithm engineers typically assume
computationally that Sorting = Permuting in the I/O setting.

The Distribution-Based Sorting Paradigm

Like MERGESORT, QUICKSORT is based on the divide-and-conquer paradigm, so
it proceeds by dividing the array to be sorted into two parts, which are then sorted
recursively. But unlike MERGESORT, QUICKSORT does not explicitly allocate extra
working space, its combine step is absent, and its divide step is sophisticated and
impacts on its overall efficiency. Algorithm 5.3 gives the pseudocode of QUICKSORT;
this will be used to comment on its complexity and argue for some optimizations and
tricky issues that arise when implementing it over hierarchical memories.

Algorithm 5.3 Binary QuickSort: QUICKSORT(S, 7, /)
1: if i <j then

2: r = select the position of a “good pivot”;
3 swap S[r] with S[i];

4 p = PARTITION(S, 7, ));

5: QUICKSORT(S,i,p — 1);

6: QUICKSORT(S, p + 1,/);

7: end if

The key idea is to partition the input array S[Z,/] into two parts such that one con-
tains items that are smaller than the items contained in the latter part. This partition is
order-preserving because no subsequent steps are necessary to recombine the ordered
parts after the two recursive calls. Partitioning is typically obtained by selecting one
input item as a pivot, and by distributing all the other input items into two subarrays
according to whether they are smaller/greater than the pivot (Step 4). Items equal to
the pivot can be stored anywhere. In the pseudocode the pivot is forced to occur in the
first position S[7] of the array to be sorted (Steps 2—3); this is obtained by swapping the
chosen pivot S[r] with S[i] before the procedure PARTITION(S, 7, ) is invoked. Step 2
does not detail the selection of the pivot, because this will be the topic of Section 5.3.2.
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We notice that the execution of procedure PARTITION(S, 7, /) returns the position p
occupied by the pivot after the partitioning of the items in S[i,/]; this position will
drive the two following recursive calls.

There are two issues for achieving efficiency in the execution of QUICKSORT:
one concerns the implementation of PARTITION(S, i, /), and the other the relationship
between the size of the two formed parts, because the more balanced they are, the
more QUICKSORT comes closer to MERGESORT and thus to the optimal time com-
plexity of ®(nlogn). In the case of a totally unbalanced partition, in which one part is
possibly empty (i.e. p = i or p = j), the time complexity of QUICKSORT is ©(n?), thus
incurring a time complexity similar to that of INSERTIONSORT. We will comment on
these two issues in detail in the following subsections.

From Two- to Three-Way Partitioning

The goal of PARTITION(S, 7, /) is to divide the input array into two parts, one containing
items that are smaller than the pivot, and the other containing items that are larger than
the pivot. Items equal to the pivot can be arbitrarily distributed between the two parts.
The input array is therefore permuted so that the smaller items are located before the
pivot, which in turn precedes the larger items. At the end of PARTITION(S, i,/), the
pivot is located at S[p], the smaller items are stored in S[7, p — 1], and the larger items
are stored in S[p + 1,/]. This partition can be implemented in many ways, taking
O(n) optimal time, but each way offers a different cache usage and thus different
performance in practice. We present in Algorithm 5.4 a tricky algorithm that actually
implements a three-way distribution and takes into account the presence of items equal
to the pivot. They are detected and stored aside in a “special” subarray which is located
between the two smaller/larger parts.

It is clear that the central subarray, which contains items equal to the pivot, can
be discarded from the subsequent recursive calls, similarly to how we discard the
pivot. This reduces the number of items to be sorted recursively, but needs a change in

Algorithm 5.4 Three-way partitioning: PARTITION(S, i, )
1. P=S[i;l=6ir=i+1;
2: for (c =r;c <j;ct+)do

3: if S[c] = P then

4: swap S[c] with S[r];
5: r++;

6: else if S[c] < P then

7: swap S[c] with S[/];
8: swap S[c] with S[r];
9: r+t; [+

10: end if

11: end for

12: return {(/,r — 1);
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Case S[c] =P || < || - || E > || ||

cwesa<r [ < [ =] > T[]
l r c

Figure 5.4 The two cases and the corresponding swapping operations. The arrows specify the
ordered relations between the moved items and the pivot.

the (classic) pseudocode of Algorithm 5.3, because PARTITION must now return the
pair of indices which delimit the central subarray instead of just the position p of the
pivot.

Algorithm 5.4 details an implementation for the three-way partitioning of S[i, /]
which uses three pointers that move rightward over this array and maintain the fol-
lowing invariant: P is the pivot driving the three-way distribution, S[c] is the item
currently compared against P, and S[i,c — 1] is the part of the input array already
processed and three-way partitioned in its items. In particular, S[i, ¢ — 1] consists of
three parts: S[i, / — 1] contains items smaller than P, S[/, » — 1] contains items equal to
P, and S[r, ¢ — 1] contains items larger than P. It may be the case that any one of these
subarrays is empty. Referring to the pseudocode of Algorithm 5.4, Step 1 initializes
P to the first item of the array to be partitioned (which is the pivot), / and r are set to
guarantee that the smaller/greater parts are empty, whereas the part containing items
equal to the pivot consists only of item P. Next, the algorithm scans S[i,/], trying to
maintain the invariant. This is easy if S[c] > P, because it suffices to extend the part
of the larger items by advancing 7. In the other two cases (i.e. S[c] < P) we have to
insert S[c] in its correct position among the items of S[7, »— 1], in order to preserve the
invariant on the three-way partition of S[7, c]. The neat idea is that this can be imple-
mented in constant time by means of at most two swaps, as described graphically in
Figure 5.4 and coded in Steps 3—-9 of Algorithm 5.4.

The three-way partitioning algorithm takes O(#n) time and offers two positive prop-
erties: (i) stream-like access to the array S, which allows the processor to prefetch the
items to be read; (ii) the items equal to the pivot, residing in the subarray S[/,r — 1],
can then be eliminated from the following recursive calls because they are in their final
correct position.

Pivot Selection

The selection of the pivot is crucial to get balanced partitions, reduce the number of
recursive calls, and achieve optimal O(nlogn) time complexity. The pseudocode of
Algorithm 5.3 does not detail the way the pivot is selected because this may occur in
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many different ways, each offering pros and cons. As an example, if we choose the
pivot as the first item of the input array (namely » = i), the selection is fast, but it
is easy to instantiate the input array in order to induce unbalanced partitions: we can
just take S to be an increasing or decreasing ordered sequence of items. However, any
deterministic choice may incur in this drawback.

One way to prevent the case that a given input is bad for QUICKSORT is to select the
pivot randomly among the items in ST, j]. But this makes the behavior of the algorithm
unpredictable in advance and dependant on the random selection of the pivot. We can
show that the expected time complexity is the optimal O(n log, n), with a hidden con-
stant smaller than 2. This fact, together with the space efficiency of QUICKSORT (see
Section 5.3.3), makes this approach very appealing in practice (cf. gsort, mentioned
in Section 5.3.3).

Theorem 5.5 The random selection of the pivot drives QUICKSORT to compare no
more than 2n In n items, in expectation.

Proof The proof of this theorem is deceptively simple if approached from the correct
angle. We wish to compute the number of comparisons executed by PARTITION over
the input sequence S. Let X;,, be the random binary variable that indicates whether
S[u] and S[v] are compared by PARTITION, and denote by p,,, the probability that this
event occurs. The expected number of comparisons executed by QUICKSORT can then
be computed as

n n n
E[Z Xyl = Z Z E[Xyy] = Z Z 1 X puy+0x(1—pyy) = Z Z Puy

u,y u=1 v=u+1 u v>u u=1v=u+1
by linearity of expectation.

To estimate p,,,, we concentrate on the random choice of the pivot S[7], because two
items are compared by PARTITION only if one of them is the pivot. So we distinguish
three cases. If S[r] is smaller or larger than both S[u] and S[v], then the two items S[u]
and S[v] are not compared to each other and they are passed to the same recursive call
of QUICKSORT. In this case, the problem presents itself again on a smaller subset of
items containing both S[u] and S[v]. Therefore it is not interesting for estimating p,,,,
because we cannot conclude anything at this recursive point about the execution or not
of the comparison between S[u] and S[v]. In the other case where either S[u] or S[v]
is the pivot, then they are surely compared by PARTITION. In all remaining cases, the
pivot is taken among the items of S whose value is strictly between S[u] and S[v]; so
these two items go to two different partitions (hence two different recursive calls of
QUICKSORT) and they will never be compared.

As a result, to compute p,,,, we have to consider as interesting pivot selections the
previous last two situations. In those situations, two selections provide the “good”
cases (i.e. S[u] and S[v] are compared), and b selections provide the “bad” cases,
where b is the number of items in S whose value is strictly between S[u] and S[v] (i.e.
S[u] and S[v] are not compared). In order to estimate » we consider the sorted version
of S, denoted by S’. There is an obvious bijection between pairs of items in §” and
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pairs of items in S. Let us assume that S[u] is mapped to S'[+/] and S[v] is mapped to
S'[V']; it is then easy to derive b as v — v/ — 1. So the probability that S[u] and S[v]
are compared is py,, = 2/(b+2) =2/(V —u' + 1).

This formula may appear complicated, because we have on the left u,v and on
the right «’,v'. Given the bijection between S and S’, we can rephrase the statement
“considering all pairs («, v) in S as “considering all pairs (z/,V') in §’,” and thus write
the previous summation as

n n—u'+1

Z Z puv—ZZ u+1 2/21 ij —<22n:2n:%§2nlnn,

u=1v=u+1 u=1v>u u'=1k=2

where the final inequality comes from the properties of the n-th harmonic number. H

The next question is how we can “enforce” the expected behavior. The natural
answer is to sample more than one pivot. Typically, three pivots are randomly sam-
pled from S and the median is taken, thus requiring just two comparisons. Taking
more than three pivots makes the selection of a “good one” more robust [2], as proved
in Theorem 5.6.

Theorem 5.6 If QUICKSORT partitions around the median of 2s + 1 randomly

selected items, it sorts n distinct items in szn—HH_H + O(n) expected comparisons,

where H, is the z-th harmonic number Y -_; 1 7-

By increasing s, we can push the expected number of comparisons close to
nlogn + O(n), however the selection of the median incurs a higher cost. In fact this
can be implemented either by sorting the s samples in O(s log s) time and taking the
one in the middle position s 4+ 1 of the ordered sequence; or in O(s) worst-case time
via a sophisticated algorithm (not detailed here; see [3]). Randomization helps in sim-
plifying the selection and still guarantees O(s) expected time performance. We detail
this approach here because its analysis is elegant and its algorithmic structure is gen-
eral enough to be applied not only for the selection of the median of an unordered
sequence, but also for selecting the item of any rank k.

Algorithm 5.5 is randomized and selects the item of the unordered S having rank
k. It is interesting to see that the algorithmic scheme mimics the one used in the Par-
titioning phase of QUICKSORT: here the selected item S[r] plays the same role of the
pivot in QUICKSORT, because it is used to partition the input sequence S in three parts
consisting of items smaller/equal/larger than S[r]. But unlike QUICKSORT, RANDS-
ELECT recurses only in one of these three parts, namely the one containing the k-th
ranked item, which can be determined by just looking at the sizes of those parts, as
done in Steps 6 and 8. There are two specific issues that deserve a comment. First, we
do not need to recurse on S— because it consists of items all equal to S[r], so the k-th
ranked item has value S[r]. Second, if recursion occurs on S-, we need to update the
searched rank k& because we are dropping from the original sequence the items belong-
ing to the set S- U S—. Correctness is immediate, so we are left with computing the
expected time complexity of this algorithm, which turns out to be the optimal O(n),
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Algorithm 5.5 Selecting the k-th ranked item: RANDSELECT(S, k)
1: » = random position in {1,2, ... ,n};

2: S- =items of S which are smaller than S[r];
3: S. =items of S which are larger than S[r];
4 ne =|[8.[;

50 n= = |S| = (IS<| + 1S>1);

6: if k < n_. then

7: return RANDSELECT(S, k);

8: elseif k < n_ + n— then

9: return S[r];

10: else

11: return RANDSELECT(S>,k — n. — n-);
12: end if

given that S is unsorted and thus all of its » items have to be examined to find the one
having rank & among them.

Theorem 5.7 Selecting the k-th ranked item in an unordered sequence of size n takes
O(n) expected time in the RAM model, and O(n/B) expected 1/Os in the two-level
memory model.

Proof Let us call “good selection” the one that induces a partition in which n_ and
n- are not larger than 2n/3. We do not care about the size of S— since, if it contains the
searched item, that item is returned immediately as S[r]. It is not difficult to observe
that S[7] must have a rank in the range [n/3,2n/3] in order to ensure that n. < 2n/3
and n- < 2n/3. This occurs with probability 1/3, given that S[r] is drawn uniformly
at random from § (Step 1). So let us denote by T (n) the expected time complexity of
RANDSELECT when run on an array S[1, n]. We can write

T(n) < O(n) + % x T(2n/3) + % x T(n),

where the first linear term accounts for the time complexity of Steps 2—5, the sec-
ond term accounts for the expected time complexity of a recursive call on a “good
pivot selection,” and the third term is a crude upper bound to the expected time com-
plexity of a recursive call on a “bad pivot-selection” (that is actually referring to
the case of a recursion on the entire S again). This is a special recurrence relation
because the term 7'(r) occurs on both sides of the inequality; nevertheless, we observe
that this term occurs with different constants in the front. Thus we can simplify the
relation by subtracting those terms and get %f" (n) < O(n) + %T (2n/3), which gives
T(n) < O(n)+ T(2n/3) = O(n). If this algorithm is executed in the two-level memory
model, the equation becomes 7(n) < O(n/B) + T(2n/3) = O(n/B) given that the
construction of the three subsets can be done via a single pass over the » input items,
thus eliciting O(n/B) 1/0s. u
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We can use RANDSELECT in many different ways within QUICKSORT. For exam-
ple, we can select the pivot as the median of the entire array S (setting k = n/2) or the
median among an oversampled set of 25+ 1 pivots (setting k = s+ 1, where s < n/2),
or finally, it could be subtly used to select a pivot that generates a balanced partition in
which the two parts have different sizes both being a fraction of n, say an and (1 — «a)n
with & < 0.5. This last choice £k = |an] seems useless because the three-way parti-
tioning still takes O(n) time, but it increases the number of recursive calls from log, n
to log 1 n. On the other hand, this observation neglects the sophistication of mod-
ern CPUs which implement pipeline or instruction-level parallelism provided that
there are no events that break the instruction flow, thus significantly slowing down the
computation. Particularly slow are branch mispredictions, which might occur in the
execution of PARTITION(S, i,j) whenever an item smaller than or equal to the pivot
is encountered. If we reduce their number, then we increase the full instruction-level
parallelism of modern CPUs [4].

Starting from these considerations, a new QUICKSORT variant was chosen in 2012
as the standard sorting method for Oracle’s Java 7 runtime library. The decision for the
change was based on empirical studies showing that, on average, this new algorithm
was faster than the formerly used classic QUICKSORT. The improvement was achieved
by means of a new three-way partitioning strategy based on a pair of pivots properly
moved over the input sequence S. Researchers showed that this change reduced in
expectation the number of comparisons at the expenses of an increase in the number
of swaps [9]. Despite this trade-off, this dual-pivot strategy was more than 10 percent
faster than classic QUICKSORT implementation, and the researchers argued that this
was due to the fact that branch mispredictions were more costly than memory accesses
at that time.

This example is illustrative of the fact that classic algorithms and problems, known
for decades and considered antiquated, may be harbingers of innovation and deep-
/novel theoretical analysis. So do not ever lose the curiosity to explore and analyze
new algorithmic schemes!

Bounding the Extra-Working Space

QUICKSORT is frequently referred to as an in-place sorter, because it does not use
extra space for ordering the array S. This is true if we limit ourself to the pseudo-
code of Algorithm 5.3, but it is no longer true if we consider the cost of managing
the recursive calls. In fact, at each recursive call, the operating system must allocate
space to save the local variables of the caller, in order to retrieve them whenever the
recursive call ends. Each recursive call has a space cost of ®(1), which has to be mul-
tiplied by the number of nested calls QUICKSORT can issue on an array S[1, n]. This
number can be ®(n) in the worst case, thus making the extra working space ®(n) on
some bad inputs (such as the already sorted ones, which induce totally unbalanced
partitions).

We can circumvent this behavior by restructuring the pseudocode of Algorithm 5.3
as specified in Algorithm 5.6. This algorithm is cryptic at a first glance, but the
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Algorithm 5.6 Binary QuickSort with bounded recursion: BOUNDEDQS(S, i, /)
1: while j —i > ny do

2 r = select the position of a “good pivot”;
3 swap S[r] with S[i];

4 p = PARTITION(S, 1,));

5 if p < % then

6: BOUNDEDQS(S, 7, p — 1);

7 i=p+1;

8 else

9 BOUNDEDQS(S, p + 1,));

10: j=p—1;

11 end if

12: end while
13: INSERTIONSORT(S, i,/);

underlying design principle is pretty smart and elegant. First, we note that the
while-body is executed only if the input array is longer than ng, otherwise INSER-
TIONSORT is called in Step 13, thus deploying the well-known efficiency of this sorter
over very short sequences. The value of ny is typically set at a few tens of items. If the
input array is longer than ng, a modified version of the classic binary QUICKSORT is
executed that mixes one single recursive call with an iterative while-loop. The rationale
underlying this code refactoring is that the correctness of classic QUICKSORT does not
depend on the order of the two recursive calls, so we can reshuffle them in such a way
that the first call is always executed on the smaller part of the two/three-way partition.
This is exactly what the if-statement in Step 5 guarantees. In addition, the pseudocode
drops the recursive call in the longer part of the partition in favor of another execution
of the body of the while-loop in which we changed the parameters i and ; to reflect
the new extremes of that longer part. This “change” is well known in the literature
of compilers, and is termed eliminating the tail recursion. The net result is that the
recursive call is executed on a subarray whose size is no more than half of the input
array. This guarantees an upper bound of O(log#) on the number of recursive calls,
and thus on the size of the extra space needed to manage them.

Theorem 5.8 BOUNDEDQS sorts n atomic items in the RAM model taking O(nlog n)
expected time, and using O(log n) additional working space.

We conclude this section by observing that the C89 and C99 ANSI standards define
a sorting algorithm called gsort, whose implementation encapsulates most of the
algorithmic tricks detailed in the previous sections.’ This demonstrates further the

5 Actually, gsort is based on a different two-way partitioning scheme that uses two iterators. One moves
forward and the other moves backward over S; a swap occurs whenever two unsorted items are
encountered. The asymptotic time complexity does not change, but practical efficiency derives from the
fact that the number of swaps is reduced, since equal items are not moved.
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efficiency of the distribution-based sorting scheme over the two-levels: cache and
DRAM.

From Binary to Multi-way QUICKSORT

Distribution-based sorting is the opposite of merge-based sorting in that the first pro-
ceeds by splitting sequences according to pivots and then ordering them recursively,
while the latter merges sequences that have been ordered recursively. Disk effi-
ciency was obtained in multi-way MERGESORT by merging multiple sorted sequences
together. The same idea is applied to design the multi-way QUICKSORT, which splits
the input sequence into k = ®(M /B) subsequences by using k — 1 pivots. Given that
k > 1, the selection of those pivots is not a trivial task because it must ensure that the
k partitions they form are balanced, and thus contain ®(n/k) items each. Section 5.3.2
discussed the difficulties underlying the selection of one pivot, so the case of selecting
many pivots is even more involved and needs a sophisticated analysis.

We start by denoting by s1,...,s;—1 the pivots used by the algorithm to split the
input sequence S[1,#] into k parts, also called buckets. For the sake of clarity we
introduce two dummy pivots so = —oo and sy = +00, and denote the i-th bucket
by B; = {S[/1: sic1 < S[j] < s;}. We wish to guarantee that |B;| = ©(n/k) for
all the k buckets. This would ensure that log, y; partitioning phases are enough to
get subsequences shorter than M, which can thus be sorted in internal memory with-
out any further I/Os. Each partitioning phase can be implemented in O(n/B) 1/Os by
using a memory organization that is the opposite of the one employed for multi-way
MERGESORT: namely, one input block (used to read from the input sequence to be
partitioned) and & output blocks (used to write into the & partitions under formation).
By requiring that £ = ®(M/B), we derive that the number of partitioning phases is
log; 77 = ©(logyy /5 77), so the multi-way QUICKSORT takes the optimal I/O bound of
® (f—; logy/p %) in expectation, provided that each partitioning step distributes evenly
the input items among the k buckets.

To find efficiently (kK — 1) good pivots, we deploy a fast and simple randomized
strategy based on oversampling, whose pseudocode is given in Algorithm 5.7. Param-
eter a > 0 controls the amount of oversampling and thus impacts on the robustness of
the selection process as well as on the time efficiency of Step 2. This is O((ak) log(ak))
if we adopt an optimal in-memory sorter, such as HEAPSORT or MERGESORT, over
the ®(ak) sampled items.

Algorithm 5.7 Selection of £ — 1 good pivots via oversampling
1: Take (a + 1)k — 1 samples at random from the input sequence;
2: Sort them into an ordered sequence 4;
3: Fori=1,...,k— 1, select the pivot s; = A[(a + 1)i];
4: return the pivots s;;

The main idea, after sorting the ®(ak) candidate pivots, is then to select (kK — 1)
among them, namely the ones that are evenly spaced and thus (a + 1) far apart from
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4 15) 8] Ij Tkj2

2n/k 2n/k 2n/k 2n/k

Figure 5.5 Splitting of the sorted sequence S’ into segments.

each other. We are arguing that those ®(ak) samples provide a faithful picture of
the distribution of the items in the entire input sequence, so the balanced selection
s; = A[(a + 1)i] should provide us with “good pivots.” The larger a is, the closer the
size of all buckets will be to ®(n/k), but the higher the cost of sorting the samples.
At the extreme case of a = n/k, the samples could not be sorted in internal mem-
ory. On the other hand, the closer a is to zero, the faster the pivot selection, but the
higher the likelihood of getting unbalanced partitions. As we will see in Lemma 5.1,
choosing ¢ = O(log k) is enough to obtain balanced partitions with a pivot selection
cost of O(k log? k) time. We note that the buckets will be not perfectly balanced, but
quasi-balanced, since they include no more than ‘% = O(n/k) items with reasonable
probability; the factor of four will nonetheless leave unchanged the aimed asymptotic
time and I/O complexity.

Lemma 5.1 Letk >2anda+ 1 = 121Ink. A sample of size (a + 1)k — 1 suffices to
ensure that all buckets receive less than 4n/k items, with probability at least 1/2.

Proof We provide an upper bound of 1/2 to the probability of the complement event
stated in the lemma, namely that there exists one bucket whose size is larger than
4n/k. This corresponds to a failure sampling, which induces an unbalanced partition.
To get this probability estimate we will introduce a cascade of events that are implied
by this one and thus have increasingly large probabilities of occurrence. For the last
event in the sequence we will be able to fix an explicit upper bound of 1/2. Given the
implications, this upper bound will also hold for the original event. And so we will be
done.

As we did in the proof of Theorem 5.5, let us consider the sorted version of the input
sequence S, which hereafter we denote by S’. We logically split S’ in k/2 segments of
length 2n/k each. The event we are interested in is that there exists a bucket B; with
at least 4n/k items assigned to it, for some index i. As illustrated in Figure 5.5, this
large bucket completely spans at least one segment, say #, in the figure (but it might be
any segment of S”), because the former contains at least 4n/k items whereas the latter
contains 2n/k items.

By the definition of buckets, the pivots s;—1 and s; delimiting B; fall outside #.
Hence, by Algorithm 5.7, fewer than (a + 1) samples fall into the segment overlapped
by B;. So we have:

P@3B;: |Bil = 4n/k) < P3¢ : t; contains less than (a + 1) samples)

< — x P(a specific segment contains less than (a + 1) samples), (5.2)

N
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where the last inequality comes from the union bound, given that k/2 is the number of
segments constituting S’. So we will hereafter concentrate on proving an upper bound
to the last term.

The probability that one sampled item ends in a given segment is equal to (Z'i,ﬂ = %,
because they are assumed to be drawn uniformly at random from S (and thus from
S’). Now, let us call X the number of those samples; we are interested in computing
PX < a+ 1). We start by observing that, since we take ((¢ + 1)k — 1) samples, it
SEX]=({(a+ 1DHk—1)x % =2a+1)— % The lemma assumes that £ > 2, so
E[X] > 2(a+ 1) — 1, which is at least %(a + 1) for all @ > 1. Solving the inequality
E[X] > %(a+ 1) with respect to (a+ 1), we get thata+1 < (2/3)E[X] = (1 — %)E[X].
This form calls to mind the Chernoff bound:

PX < (1 - §EX]) < e AN,

By setting 6 = 1/3, we derive

P <a = (< (1) 1) < e-omnmn _ oy

< ¢~ G/D@D/18 _ p~(@+D/12 _ ~Ink _ % (5.3)
where we used the inequality E[X] > (3/2)(a + 1) and the lemma’s assumption that
a+ 1 = 121Ink. By plugging the result of equation (5.3) into equation (5.2), we get
P@EB;: |Bi| = 4n/k) < (k/2) x (1/k) = 1/2, and thus the statement of the lemma
follows. |

Sorting With Multi-Disks>®

The bottleneck in disk-based sorting is the time needed to perform an I/O operation. In
order to mitigate this problem, we can use D disks working in parallel so as to transfer
DB items per I/O. On the one hand this increases the bandwidth of the I/O subsys-
tem, but on the other hand, it makes the design of I/O-efficient algorithms particularly
difficult. Let’s see why in the context of sorting » atomic items.

The simplest approach to managing parallel disks is called disk striping and con-
sists of looking at the D disks as one single disk whose page size is B* = DB. This
way, on the one hand, we gain simplicity in algorithm design by just using “as-is” any
algorithm designed for one disk, now with a disk page of size B’. But, on the other
hand, we lose the independence among the D disks, and this comes at some price in
terms of I/O complexity, when applied to the sorting algorithms:

n n n n
o (g logy/m M) =0 (ﬁ logys/pa M) :

This bound is not optimal, because the base of the logarithm is D times smaller

than that indicated by the lower bound proved in Theorem 5.3. Looking at the ratio
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Block 1 Block2 Block3 Block4 Block 5

i 1 9 17 25 33
s 2 10 18 26 34
o | 3 11 19 27 35
s 4 12 20 28 36
oeka |3 13 21 29 37
s 6 14 22 30 38
o | 7 15 23 31 39
s 8 16 24 32 40

Figure 5.6 An example of striping a sequence of items among D = 4 disks, with B = 2.

between the optimal bound and the bound achieved via disk striping, we find that it is
1 —log,/p D. This shows that disk striping is less and less efficient as the number of
disks increases: namely, D —> M /B.

Leveraging the independence among the D disks is tricky, and it took several years
to develop fully optimal algorithms running over multi-disks and achieve the bounds
stated in Theorem 5.3. The key problem is guaranteeing that every time we access
the disk subsystem, we are able to read or write D pages, each one coming from or
going to a different disk. This is to guarantee a throughput of DB items per I/O. In
the case of sorting, such a difficulty arises both in the case of distributed-based and
merge-based sorters, each with its own specialty, given the differences between these
two approaches.

In particular, let us consider the multi-way QUICKSORT. In order to guarantee a D-
way throughput in reading the input items, these must be distributed evenly among the
D disks. For example, they could be striped circularly as indicated in Figure 5.6. This
ensures that a scan of the input items takes O(n/DB) optimal 1/Os. The subsequent
distribution phase can then read the input sequence at that I/O speed. Nonetheless,
problems occur when writing the output subsequences produced by the partitioning
process. In fact, that writing should guarantee that each of these subsequences is circu-
larly striped among the disks in order to maintain the invariant for the next distribution
phase (to be executed independently over those subsequences). In the case of D disks,
we have D output blocks that are filled by the partitioning phase. So when these D
blocks are full, they must be written to D distinct disks to ensure full I/O parallelism,
and thus one I/O. Given the striping of the runs, if all these output blocks belong to the
same run, then they can be written in one I/O. But, in general, they belong to different
runs, so conflicts may arise in the writing process because blocks of different runs
could have to be written onto the same disks.

An example is given in Figure 5.7 that illustrates a situation in which we have three
runs under formation by the partitioning phase of QUICKSORT, and three disks. Runs
are striped circularly among the three disks, and shadowed blocks correspond to the
prefixes of the runs that have been already written on those disks. Arrows point to the
next free blocks of each run that all reside on the same disk D;. This is an unfortunate
situation because, if the partitioning phase of multi-way QUICKSORT needs to write
one block per run, then an I/O conflict arises and the I/O subsystem must serialize the
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Figure 5.7 An /O conflict in writing D = 3 blocks belonging to three distinct runs.

write operation in D = 3 distinct I/Os, hence losing all the I/O parallelism of the D
disks.

In order to avoid this inefficiency, researchers have proposed randomized and deter-
ministic sorters that execute an optimal number of I/Os [8]. In what follows, we
sketch a deterministic multi-disk sorter, known as GREEDSORT [7], which solves
these difficulties via an elegant merge-based approach consisting of two stages: first,
items are approximately sorted via an 1/O-efficient multi-way merger that deals with
R = ©(/M/B) sorted runs in an independent way (thus deploying disks in parallel),
and then it completes the sorting of the input sequence by using an algorithm (aka
COLUMNSORT, designed by T. Leighton in 1985) that takes a linear number of 1/Os
when executed over short sequences of length O(M?>/?). Correctness comes from the
fact that the distance of the unsorted items from their correct sorted position, after the
first stage, is smaller than the size of the sequences manageable by COLUMNSORT.
Hence the second stage can correctly turn the approximately sorted sequence into a
totally sorted sequence via a single (I/O-optimal) pass.

How to get the approximately sorted runs in an I/O-efficient way is the elegant
algorithmic contribution of GREEDSORT. We sketch its main ideas here, and refer the
interested reader to the corresponding paper for further details [7]. We assume that
the sorted runs are stored in a striped way among the D disks (see Figure 5.6), so
reading D consecutive blocks from each run takes just one I/O. As we discussed for
QUICKSORT, in this merge-based approach we could also incur I/O conflicts when
reading the striped runs. GREEDSORT avoids this problem by operating independently
on each disk and fetching its two best available blocks. Here “best” means that these
two blocks contain the smallest minimum item, say my, and the smallest maximum
item, say my, currently present in blocks stored on that disk (these two blocks may be
the same). It is evident that this selection can proceed independently over the D disks,
and it needs a proper data structure that keeps track of minimum/maximum items in
disk blocks. Actually, [7] shows that this data structure can fit in internal memory, thus
not incurring any further I/Os for this selection operations.

Figure 5.8 shows an example for the disk j, which contains the blocks of several
runs because of the striping-based storage. The figure assumes that Run 1 contains the
block with the smallest minimum item (i.e. 1) and Run 2 contains the block with the
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Disk j

Disk j

5 Sorting Atomic Items

Run 1 Run 2 e Run i

®f =38
3
5
8

>7 >1

@O\-lkl\)
vV
]

Run 1 Run 2 .. Run i .. Output

>8 >7 >1 guaranteed < 7

[e RN I V)|

>7 (4)

Figure 5.8 Example taken from [7]. Top figure: The disk j contains the blocks of several runs,
and its best two blocks are the ones in Run 1 (that block contains the smallest minimum item)
and Run 2 (that block contains the smallest maximum item). Bottom figure: The best two
blocks of disk j have been merged, and the resulting first block is written to the next free block
of the output run residing on disk j, whereas the resulting second block is written to Run 1 of
disk ;.

smallest maximum item (i.e. 7). Clearly, all the other blocks that come from Run 1
and Run 2 contain items larger than 7, and all blocks coming from the other runs have
minimum larger than 1 and maximum larger than 7. GREEDSORT then merges these
two best blocks of disk j and creates two new sorted blocks: the first one is written to
the next free block of the output run residing on disk j (it contains the items {1, 2, 3, 4}),
and the second one is written back to the run of the smallest minimum m1, namely run
1 (it contains the items {5, 6,7, 8}). This last write back into Run 1 does not disrupt
that ordered sub-sequence, because this second-best block contains items which are
smaller than the maximum of the original block of m;.

The selection of the “two best blocks” proceeds independently over all disks until
all input runs have been examined and their blocks written to the output run in a striped
way among the D disks. But looking at this example, we note that the items written
in output to disk j are not necessarily the four smallest items of all blocks residing
on that disk. In fact, there could be a block in another run (different from Runs 1
and 2, but still residing on disk /) that contains an item within [1,4], say 2.5, and
whose minimum is larger than 1 and whose maximum is larger than 7. So this block is
compatible with the selection of the two best blocks, but it contains items that should
be stored in the first block of the sorted sequence. The final sequence produced by this
merging process is therefore not sorted, but if we read it in a striped way along all D
disks, then it is approximately sorted, as stated in the following lemma (proved in [7]).

Lemma 5.2 A sequence is called L-regressive if any pair of unsorted records, say
L.V...X...withy > x, has distance less than L in the sequence. The previous sorting
algorithm creates an output that is L-regressive, with L = RDB = D/ MB.
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Since L = Dv/MB < DB/M < M?3/?, the application of COLUMNSORT over a
sliding window of 2L items, which moves L steps forward at each phase, produces
a fully sorted sequence striped along the D disks. Hence the invariant for the next
merging phase is preserved, taking O(n/DB) 1/Os. Since the number of sorted runs
has been reduced by a factor R = ©(/M/B), the total number of merging phases is
O (logg 77) = O (logys 5 75)- and thus the optimal I/0 bound for D disks follows.
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Set Intersection

Sharing is caring!

This chapter tackles a simple problem related to sets, which constitutes the backbone
of every query resolver in a (web) search engine. A search engine is a well-known tool
designed to search for information in a collection D of documents. We restrict our
attention to search engines for fextual documents, meaning that a document d; € D
is a book, a news item, a tweet, or any file containing a sequence of linguistic tokens
(aka words). Along with many other auxiliary data structures, a search engine builds
an index to answer efficiently the queries posed by users. A query Q is commonly
structured as a bag of words, say wiwy - - - wg, and the goal of the search engine is
to retrieve efficiently the most relevant documents in D which contain all the query
words. People skilled in this art know that this is a very simplistic definition, because
modern search engines look for documents that contain most of the words in O (which
may be exact, or include a few typos, or refer to synonyms or related words), and are
preferably close to each other, and relevant to the user issuing Q. However, “relevance”
is a quite subjective and time-varying definition.

In any case, this is not a chapter in a book on information retrieval, so we refer the
reader interested in these issues to the information retrieval literature, such as [4, 7].
Here we content ourselves with dealing with the most generic algorithmic step solving
the bag-of-words query.

Problem. Given a sequence of words Q = wwy - - - wg and a document collection
D, find the documents in D that contain all words w;.

An obvious solution is to scan every document in D, searching for all words specified
by Q. This is simple, but it would take a time proportional to the whole length of the
document collection, which is clearly too much even for a supercomputer or a data
centre, given the size of the (indexed) Web. And, in fact, modern search engines build
a very simple, but efficient, data structure called an inverted index, which helps in
speeding up the flow of billions of daily user queries.

The inverted index consists of three main parts: the dictionary of words w, one
list of occurrences per dictionary word (called a posting list, which we will desig-
nate L£[w]), and some additional information indicating the importance of each of
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Dictionary Posting list

abaco 50,23, 10

abiura 131,100,90, 132
ball 20,21,90
mathematics | 15,1,3,23,30,7,10,18,40,70
Z0O 5,1000

Figure 6.1 An example of inverted index for a part of a dictionary. Posting lists are not sorted ,
for now.

these occurrences (to be deployed in the subsequent phases where the relevance of a
document has to be established, but not discussed in this chapter; see, e.g., [4, 7]). The
term “inverted” refers to the fact that word occurrences are not sorted according to
their position in the document, but according to the alphabetic ordering of the words
to which they refer. So inverted indexes are similar to the classic glossary contained
in some books, here extended to represent occurrences of all the words present in a
collection of documents (not just the most important ones).

Each posting list £[w] is stored contiguously in a single array, possibly on disk.
The names of the indexed documents (actually, their identifying URLs) are placed
in another table, where they are identified through unique positive integers known as
doclDs; these IDs are generally assigned in an arbitrary way by the search engine.!
The dictionary is stored in a table which contains some satellite information plus the
pointers to the posting lists. Figure 6.1 illustrates the main structure of an inverted
index.

Now let us assume that the query QO consists of the two words abaco and
mathematics. Finding the documents in D that contain both of the words in Q
boils down to finding the docIDs shared by the two inverted lists L[abaco] and
L[mathematics]: namely, 10 and 23. This is the set intersection problem, the key
subject of this chapter.

Given that the integers of the two posting lists are arbitrarily arranged, the compu-
tation of the intersection might be executed by comparing each docID a € L[abaco]
with all docIDs b € L{mathematics]. If a = b then a is inserted in the result set.
Assuming that the two lists have length » and m, respectively, this brute-force algo-
rithm takes n x m steps/comparisons. In the real case that n and m are of the order of
millions, as typically occurs for common words in the modern Web, then that number
of steps/comparisons is of the order of 10° x 10® = 10'%. Even assuming that a mod-
ern computer is able to execute one billion comparisons per second (10° cmp/sec), this
trivial algorithm takes 103 seconds to process a bi-word query (so about ten minutes),
which is too long even for a patient user!

The good news is that the docIDs occurring in the two posting lists can be rear-
ranged so as to impose some proper structure on them in order to speed up the

' The docID assignment process is crucial to save space in the storage of those posting lists, but its
solution is too sophisticated to be discussed here; see [6].
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6 Set Intersection

Dictionary Posting list

abaco 10,23,50

abiura 90,100,131, 132
ball 20,21,90
mathematics | 1,3,7,10,15,18,23,30,40,70
Z0O 5,1000

Figure 6.2 An example of an inverted index for part of a dictionary, with sorted posting lists.

identification of the common integers. The key idea here is to sort the posting lists
once for all, as shown in Figure 6.2. We thus reformulate the intersection problem on
the two sorted sets A = L[abaco] and B = L[mathematics], as:

(Sorted) set intersection problem. Given two sorted integer sequences
A = ajay---a, and B = biby - - - by, such that a; < ajy1 and b;i < biyq,
compute the integers common to both sets.

We remark that the following approaches can be extended to work on sequences
of items on which it is defined a total order, thus not only integers. Here we discuss
integer sequences for simplicity.

Merge-Based Approach

The sortedness of the two sequences allows us to design a set-intersection algorithm
that is deceptively simple, elegant, and fast. It simply scans 4 and B from left to right
and compares at each step a pair of docIDs from the two lists. Say a; and b; are the two
doclIDs currently compared, where initially we have i = j = 1. If a; < b; the iterator i
gets incremented, if a; > b; the iterator j gets incremented, otherwise it is a; = b; and
thus a common docID is found and both iterators get incremented.

The correctness can be proved inductively, exploiting the following observation: if
a; < bj (the other case is symmetric), then a; is smaller than all elements following
b;j in B (because of its order), so a; ¢ B. As far as the time complexity is concerned,
we note that at each step the algorithm executes one comparison and advances at least
one iterator. Given that n = |4| and m = |B| are the number of elements in the
two sequences, we can deduce that i (resp. j) can advance at most n times (resp. m
times), and thus we can conclude that this algorithm requires no more than n + m
comparisons/steps; we say no more because it could be the case that one sequence
gets exhausted before the other one, so there is no need to compare the remaining
elements of the latter sequence. This time cost is significantly smaller than the one
mentioned for the unsorted sequences (namely 7 xm), and its real advantage in practice
is strikingly evident. In fact, by considering our running example with » and m of
the order of 10° docIDs and a computer performing 10° comparisons per second, we
derive that this new algorithm takes 10~ seconds to compute 4 N B, which is in the
order of milliseconds, exactly what occurs today in modern search engines.
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An attentive reader may have noticed this algorithm mimics the MERGE procedure
used in MERGESORT, here adapted to find the common elements of the two sets 4 and
B rather than merging them.

Theorem 6.1 The algorithm based upon the merging paradigm solves the sorted set
intersection problem in O(m + n) time.

In the case that n = ®(m) this algorithm is optimal, because we need to process
the smallest set, so Q(min{n, m}) is an obvious lower bound. What is more, this scan-
based paradigm is also optimal in the disk model, because it takes O(n/B) 1/Os. To be
more precise, it is optimal whatever the memory hierarchy underlying the computation
(the cache-oblivious model).

The next question is what we can do when m is very different from n, say m < n.
This is the situation in which one word is much more selective than the other; here,
the classic binary search can be helpful, in the sense that we can design an algorithm
that binary searches every element b € B (which are just a few) into the (many)
sorted elements of A, thus taking O(m log n) steps/comparisons. This time complexity
is better than O(n 4+ m) if m = o(n/ logn), which is actually less stringent and more
precise than the condition m < n that we imposed at the beginning of this paragraph.

Theorem 6.2 The algorithm based on the binary-search paradigm solves the sorted
set intersection problem in O(mlog n) time.

At this point it is natural to ask whether an algorithm can be designed that combines
the best of both merge-based and search-based paradigms. In fact, there is an ineffi-
ciency in the binary-search paradigm which becomes apparent when m is of the order
of n: when we search element b; in 4 we possibly recheck over and over again the same
elements of 4. This is surely the case for A’s middle element, say a,,/», which is the first
one checked by any binary search. But if b; > ay,> then it is useless to compare b1
with a, /> because it must be larger, since b;11 > b; > a,2. And the same holds for
all the subsequent elements of B. A similar argument may apply to other elements in 4
checked by the binary search. The next section details a new set-intersection paradigm
that avoids these unnecessary comparisons.

Mutual Partitioning

This approach to set intersection adopts another classic algorithmic paradigm, called
partitioning, which is the one we used to design QUICKSORT; here we deploy it to
split repeatedly and mutually the two sorted sets to be intersected [1]. Formally, let
us assume that m < n and that both are even numbers. We select the median element
bmy2 of the shortest sequence B as a pivot and search for it in the longer sequence
A. Two cases may occur: (i) b2 € A, say by2 = a; for some j, and thus b2
is returned as one of the elements of the intersection A N B; or (ii) byn & A, say
aj < bup < ajy1 (where we assume that ap = —o0 and a,41 = +00). In both
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Figure 6.3 The first step of the mutual partitioning paradigm: the pivot is 12, the median
element of the shortest sequence B. The pivot splits the sorted sequence A into two parts, one
equal to {1, 3, 7} and the other equal to {16, 19,20, 25,27,40, 50, 100}. These two parts are
recursively and correspondingly intersected with the two parts of B split by the pivot 12.

cases the intersection algorithm proceeds recursively in the two parts in which each
sequence 4 and B has been split according to the choice of the pivot, thus computing
recursively A[1,71NB[1,m/2—1]and A[ j+1,n]NB[m/2+ 1, m]. A small optimization
consists of discarding from the first recursive call the element b2 = a; (in case (i)).

A running example is illustrated in Figure 6.3, and the pseudocode is given in Algo-
rithm 6.1. There, the median element of B is 12 and it is used as the pivot for the mutual
partitioning of the two sorted sequences 4 and B. The pivot splits 4 into two unbal-
anced parts (i.e. A[1,3] and A[5, 12]) and B into two almost-halves (i.e. B[1,4] and
B[6,9]) which are recursively and correspondingly intersected; since the pivot occurs
both in 4 and B, it is returned as an element of the intersection. Moreover, we note that
the first part of 4 is shorter than the first part of B, and thus in the recursive call their
role will be exchanged.

Algorithm 6.1 Sorted set intersection based on mutual partitioning

1: Let m = |B| < n = |4|, otherwise exchange the role of 4 and B;
Select the median element p = by;,,2) of B;
Binary search for the position of p in 4, say a; < p < aj;1;
Compute recursively the intersection A[1,j] N B[1,m/2 — 1];
if p = a; then
print p;
end if
Compute recursively the intersection A[j + 1,n] N B[m/2 + 1, m];

Correctness easily follows in this case; for evaluating the time complexity we need
to identify the worst case. Let us begin with the simplest situation, in which the pivot
falls outside 4 (i.e. j = 0 or j = n). This means that one of the two parts in 4 is
empty and thus the corresponding half of B can be discarded from the subsequent
recursive calls. So one binary search over 4, costing O(log n) time, has discarded half
of B. If this occurs at all recursive calls, the total number of them will be O(log m),
thus inducing an overall cost for the algorithm equal to O(logm logn) time. That is,
an unbalanced partitioning of A4 results in the intersection algorithm performing very
well; this is more or less the opposite to what is typical for recursive algorithms, which
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perform worst on unbalanced partitions. On the other hand, let us assume that the pivot
by falls inside the sequence 4 and consider the case where it coincides with the
median element of 4, say a,,>. In this specific situation the two partitions are balanced
in both sequences we are intersecting, so the time complexity can be expressed via
the recurrence relation 7'(n,m) = O(logn) + 2T(n/2,m/2), with the base case of
T(n,m) = O(1) whenever n,m < 1. It can be proved that this recurrence relation has
the solution 7'(n,m) = O(m(1 +log +-)) for any m < n. It is interesting to observe that
this time complexity subsumes the ones of the previous two algorithms (namely the
one based on merging and the one based on binary searching). In fact, when m = ®(n)
itis 7'(n,m) = O(n) (a lamerging); when m < nitis T'(n,m) = O(mlogn) (a la binary
searching).

Actually, the time complexity of mutual partitioning is optimal in the comparison
model, because this follows from the classic binary decision-tree argument: there exist
at least (:;) solutions to the set-intersection problem (here we account only for the
case in which B C A), and thus every comparison-based algorithm computing any of
these solutions must execute <2 (log (:4)) steps, which is Q(m log ;) by definition of
binomial coefficient.

Theorem 6.3 The algorithm based on the mutual-partitioning paradigm solves the
sorted set intersection problem in O(m (1+log i) time. The time complexity is optimal
in the comparison model.

Doubling Search

Despite its optimal time complexity, the mutual-partitioning paradigm is heavily based
on recursive calls and binary searching, which are two paradigms that offer poor per-
formance in a disk-based setting when sequences are long and hence there is a large
number of recursive calls (thus, dynamic memory allocations) and binary-search steps
(thus, random memory accesses). In order to partially deal with these issues we intro-
duce another approach to sorted set intersection which allows us to discuss another
interesting algorithmic paradigm: the doubling search, or the galloping search, also
called the exponential search. It can be explained most clearly using an inductive
argument.

Let us assume that we have already checked the first j — 1 elements of B for their
appearance in 4, and that b; | is located immediately after a; in the sorted 4. This
means that a; < b; | < a;y1. To check the next element of B, namely b;, it suffices
to search for it in A[i + 1,n]. However, and this is the bright idea underlying this
approach, instead of binary searching this subarray, we execute a doubling search,
that consists of checking elements of A[i + 1, n] at distances that grow as a power of
two (hence the term “doubling”). This means that we compare b; against the elements
Ali + 2] for k = 0,1, ... until we find that either bj < Ali + 21, for some k, or
we have jumped out of the array 4, so that i + 2F > n. Finally, we perform a binary
search for b; in A[i + 1, min{i + 2k n}], and we return b; if the search is successful.
We thus determine the position of b; in that subarray, say a; < b; < ay41, so that
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Algorithm 6.2 Sorted set intersection based on doubling search
1: Let m = |B| < n = |4|, otherwise exchange the role of 4 and B;
2: 1 =0;
3: forj=1,2,...,mdo

4: k=0;

5: while (i + 2% < n) and (B[] > A[i + 2¢]) do

6: k=k+1;

7: end while

8: i' = Binary search B[ j] into A[i + 2! 4 1, min{i 4 2¥, n}];
9: if a; = b; then

10: print b;;

11: end if

12: i=1;

13: end for

the process can be repeated by discarding A[1,i'] from the subsequent searches for
the next elements of B. Algorithm 6.2 reports the pseudocode of the doubling search
algorithm, and Figure 6.4 shows a running example.

Correctness is again immediate, whereas deriving the evaluation of time complex-
ity is more involved. Let us denote with i; =1’ the position where b; occurs in 4 and,
inductively, denote with i;_; the position of b;_1 in 4; clearly i;_; < i;. For the sake
of presentation we set ip = 0 and denote with A; = min{2%~1, n} the size of the subar-
ray where the binary search of b; is executed (according to Step 8 of Algorithm 6.2).
From the condition of the while-loop in Step 5, the position of b; in 4 is such that
i > i1+ 21 (e b; is larger than the previously checked element in 4) and
ij < min{i;_| + 2%, n} (i.e. either b; is smaller than A[i;_| + 21 or that checked
position is out of 4). We can therefore write 2~ < ij — ij—1, and combining this ine-
quality with the definition of A;, we get A; < 261 < ij — ij—1. At this point we have
all the mathematical ingredients to estimate the total length of the searched subarrays
of 4: 3701 Aj < 377 (ij — ij—1) < n, because the latter is a telescopic sum in which
consecutive terms in the summation cancel out except iy = 0 and #,, < n. For every j,
Algorithm 6.2 executes O(1+log A;) steps because of the while-statement in Steps 57
and the binary search in Step 8. Summing forj = 1,2, ...,m, we get a total time com-

plexity of 377 O(1 +log Aj) = O(3/L (1 +log Aj)) = O (m +mlog) ", %) =
O(m (1 + log 2)).

Theorem 6.4 The algorithm based on the doubling-search paradigm solves the sorted
set intersection problem in O(m(1 + log i) time. This time complexity is optimal in
the comparison model.

2 We are applying Jensen s inequality: https://en.wikipedia.org/wiki/Jensen%27s_inequality.
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A | ... 12 16 19 20 25 27 30 31 34 38 40 41 44 45 47 50 60 61 65 68 ...
B 12 41
t

Figure 6.4 An example of the doubling-search paradigm: the two sequences 4 and B are
assumed to have been intersected up to the element ¢; = 12. The next element in B, that is,

b; = 41 (indicated by an upward arrow), is taken to be exponentially searched in the suffix of 4
following 12. This search checks A4’s elements at distances that are a power of two — namely
1,2,4, 8,16 — until it finds the element 60 which is larger than 41 and thus delimits the portion
of 4 within which the binary search for 41 can be confined. We notice that the searched
subarray has size 16, whereas the distance of 41 from 12 in 4 is 11, thus proving, in this
example, that the binary search is executed on a subarray whose size is smaller than twice the
real distance of the searched element.

We notice that this is the same time complexity of the algorithm based on the
mutual-partitioning paradigm (see Theorem 6.3), but the present doubling-search par-
adigm is iterative and thus it does not execute any recursive calls, as instead occurred
for mutual partitioning.

Two-Level Storage Approach

Although the previous approach avoids some of the pitfalls due to the recursive par-
titioning of the two sorted sequences A and B, it still needs to jump over the array 4
because of the doubling scheme; and we know that this is inefficient when executed
in a hierarchical memory. In order to avoid this issue, algorithm engineers adopt a
two-level organization of the data, which is a very common scheme of storing effi-
cient data structures for the two-level memory model. The main idea of this storage
scheme, intended to work over a collection of sorted lists in the search-engine sce-
nario, is to preprocess all lists of the collection, logically partition each of them into
blocks of size L (the final block may be shorter), and copy the first element of each
block into an auxiliary sequence. This auxiliary sequence will then be used to speed
up the intersection among any pair of sets of the collection that will be involved in a
user query composed of two terms. As an example, let us consider a set 4, and assume
that its length » is a multiple of L (say n = hL): the preprocessing of 4 just described
creates & blocks A; of size L each, and copies the first element of each block (i.e.
A;i[1]1 = A[(i — 1) x L+ 1]) into an auxiliary sequence A’ of size h. This preprocessing
is executed over all input sets (see Figure 6.5 for an illustrative example).

At query time, given two sets 4 and B of the (preprocessed) collection, their inter-
section proceeds in two main phases. For the sake of presentation, let us assume that 4
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according to Phase 1

4 |13458111519| —»|13E455811§1519 ‘
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according to Phase 1
B |580918 Jeeodne o e L | 5 18 9

By " By ' B

1
1
1
1
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|
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Figure 6.5 An example of the two-level storage approach. The figure on the left shows in bold
the elements of 4 that are copied in the auxiliary sequence 4’ = (1,4, 8, 15) given that L = 2.
Also B is preprocessed, by generating two blocks of length L, thus headed by 5 and 9.
However, for the sake of clarity, the blocking of B is not shown, because it is not used in this
example, where 4| > |B|. The figure on the right graphically shows how the elements of B are
partitioned, by merging 4’ and B into the subsets B; according to the elements 4;[1] (Phase 1).
Block Bj is empty, because no element in B is between A([1] = 1 and 4A3[1] = 4. So Phase 2
does not examine 41, which is therefore dropped from the computation, without there being
any time cost for it. The subsequent intersections executed by Phase 2 between the subset pairs
A; N By, for i = 2, 3,4, will return the correct intersection 4 N B = {5, 8}.

is longer than B, and thus n = |4| > |B| = m. Phase 1 applies the MERGE procedure
of MERGESORT to fuse together the two sorted sequences A’ and B into one unique
sorted sequence (see Section 5.1), which thus consists of elements of B interspersed
among elements of A’. This takes O(n/L 4+ m) time. Now, let B; be the contiguous
subsequence of B’s elements that fall between two consecutive elements of 4’, say
A;i[1] and A;11[1]. This means that B;’s elements may occur in the block 4;, so that
Phase 2 executes the merge-based set-intersection algorithm of Theorem 6.1 to com-
pute 4; N B; in time O(|4;| + |B;|) = O(L + |B;|). This algorithm is indeed executed
over all pairs 4; and B; that involve a non-empty subset B;. These are no more than
m such pairs, and since B = U;B;, the total time taken by Phase 2 is O(L m + m).
Summing up the time complexity of the two phases, and observing that sequences are
scanned in an I/O-optimal way, we obtain:

Theorem 6.5 The algorithm based on the two-level storage paradigm solves the
sorted set intersection problem in O(7 + mL) time and O(75 + % + m) I/Os, where
B is the disk-page size of the two-level memory model.

We note that the two-level storage approach is suitable for a variant that leverages a
compressed storage of the elements in order to save space, and consequently improve
the overall performance because of the possibly reduced amount of processed data.
There are two main ideas underlying this new proposal. The first one is to represent the

increasing elements of every block 4; = (a},d}, ...,a}) by means of a compression
scheme that sets a;, = 0 and then represents aj/. as its difference with the preced-
ing element aj/._l, forj = 1,2,..., L. Each difference is then stored (compressed) by

using [logy(1 + max;{a; — a}_l N1 bits, instead of the full representation in four/eight
bytes. Since the two-level storage approach proceeds rightward over the sequences,
these differences and their corresponding elements can be efficiently decompressed.
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The second idea stems from the observation that this compression scheme is advanta-
geous whenever those differences are small. Thus, at preprocessing time, the algorithm
may artificially force this situation by shuffling the elements in all sets of the indexed
collection via a random permutation, which thus guarantees in expectation the smallest
maximum gap between adjacent (shuffled) elements. The permuted sets are eventually
preprocessed and queried via the two-level storage approach just described above. For
further details on variants of this approach, see [2, 3, 5].
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Sorting Strings

In Chapter 5 we dealt with sorting atomic items, namely items that either occupy
fixed-constant space or have to be managed in their entirety as atomic objects, thus
without deploying their constituent parts. In the present chapter we will generalize
those algorithms, and introduce new ones, to deal with the case of variable-length
items (aka strings). More formally, we will be interested in solving efficiently the
following problem:

The string-sorting problem. Given a sequence S[1,#] of strings, with total
length N and drawn from an alphabet of size o, sort these strings into ascending
lexicographic order.

The first idea in approaching this problem consists of deploying the power of
comparison-based sorting algorithms, such as QUICKSORT or MERGESORT, by
implementing a proper comparison function between pairs of strings. The obvious way
to do this is to compare the two strings from their beginning, character by character,
find their mismatch, and then use it to derive their lexicographic order. Let L = N /n be
the average length of the strings in §; an optimal comparison-based sorter would thus
take O(Ln logn) = O(N log n) average time on RAM, because every string comparison
may involve O(L) characters on average.

Apart from the time complexity, which is not optimal (see Section 7.1), the key
limitation of this approach in a memory hierarchy is that S is typically implemented as
an array of pointers to strings that are spread in the internal memory of the computer,
or stored on disk if N is very large. Figure 7.1 shows the two situations via a graphical
example. Whichever is the allocation an algorithm chooses to adopt, the sorter will
indirectly order the strings of S by moving their pointers rather than their characters.
This situation is typically neglected by programmers, with a consequent slowness of
their sorter when executed on large string sets. The motivation is clear; every time a
string comparison is executed between two pointers, say S[i] and S[], they are first
resolved by accessing their corresponding strings, and then they are compared charac-
ter by character. As a result, every string comparison takes two cache misses or I/Os,
and the algorithm takes ®(n logn) I/Os overall. As we noted in Chapter 1, the virtual
memory of the operating system will help by buffering the most recently compared
strings, thus possibly reducing the number of incurred I/Os. Nevertheless, two arrays
are here competing for that buffering space — the array of pointers and the array of
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[N}

N 2 S [ i S
[H | [oau] (o] [ ] (200 ]|

:

Internal File on disk
Internal memory memory

Figure 7.1 Two examples of string allocation, spread in the internal memory (left) and written
contiguously in a file on disk (right).

strings — and time is wasted by repeatedly rescanning string prefixes that have been
already compared.

The rest of this chapter is therefore devoted to proposing algorithms that are optimal
in the number of executed character comparisons, and offer I/O-conscious patterns
of memory accesses, which thus make them efficient in the presence of a memory
hierarchy.

A Lower Bound

Let d; be the length of the shortest prefix of the string s € S that distinguishes it from
the other strings in the set. The value dj is called the distinguishing prefix of the string
s, and the sum of these values over all strings in S is called the distinguishing prefix
of the set S, and is denoted by d = ) _¢ d,. Referring to Figure 7.1, and assuming
that S consists of the four strings shown in the figure, the distinguishing prefix of the
string all is al because this substring does not prefix any other string in S, whereas
a does.

It is evident that any string sorter must compare the initial d; characters of s, oth-
erwise it would be unable to distinguish s from the other strings in .S and thus find
its lexicographic position in the sorted set. So €2(d) is a term that must appear in the
string-sorting lower bound. But this term does not take into account the cost of com-
puting the sorted order among the n strings, which is €(n logn) string comparisons,
and thus at least Q(n log n) character comparisons (because comparing one character
per string is surely needed to sort them).

Lemma 7.1 Any algorithm solving the string-sorting problem must execute 2(d +
nlogn) character comparisons.

This formula deserves a few comments. Assume that » is a power of two; the n
strings of S are binary, share the initial £ bits, and differ for the other logn bits, so
dy = €+ logn,and d = n(£ + logn) = N. The lower bound in this case is Q(N +
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nlogn) = Q(N) because N = n (£ + logn) > nlogn. But string sorters based on
MERGESORT or QUICKSORT take ®(N log n) time. Thus, for any ¢, those algorithms
may be far from optimality by a factor ®(logn), which gets larger and larger as S
grows in cardinality.

One could wonder whether string sorting can be implemented without looking at
the entire content of the strings. And indeed, this is the case when d < N, which is
why we introduced the parameter d, which allows a finer analysis of the algorithms
discussed later in this chapter.

RADIXSORT

The first step to get a more competitive algorithm for string sorting is to look at strings
as sequences of characters drawn from an integer alphabet {0, 1,2,...,0 — 1} (aka
digits). This condition can be easily enforced by sorting in advance the characters
occurring in S, and then assigning to each of them an integer (i.e. its rank) in that
range. This is typically called the naming process and takes O(N log o) time because
we can use a binary search tree built over at most o distinct characters occurring in S.

Consequently, we hereafter assume that strings in S have been drawn from an inte-
ger alphabet of size o and keep in mind that, if this is not the case, a term O(N logo’)
has to be added to the time complexity of the proposed algorithm. Moreover, we
observe that each character can be encoded in [log, o] bits; thus the input size is
O(N log o) whenever it is measured in bits.

We can devise two main variants of RADIXSORT that differentiate each other
according to the order in which the digits of the strings are processed: MSD-first
processes the strings rightward starting from the most significant digit, LSD-first
processes the strings leftward starting from the least significant digit.

MSD-First

This algorithm follows the divide-and-conquer approach in that it processes the strings
character by character from their beginning, and distributes them recursively into o
buckets, taking a constant-time per character. Figure 7.2 shows an example in which S
consists of seven strings drawn from an alphabet of size o = 10. Strings are distributed
according to their first (most significant) digit in 10 buckets. Since buckets 1 and 6
consist of one single string each, their ordering is known. Conversely, buckets 0 and 9
have to be sorted recursively according to the second digit of the strings contained in
them. At the end, the ordered S is obtained by concatenating all groups of individual
strings in left-to-right order.

It is not difficult to notice that distribution-based approaches generate search trees.
The classic QUICKSORT generates a binary search tree. The MSD-first RADIXSORT
generates a o -ary tree because of the o-ary partition of S’s strings executed at every
distribution step. This tree takes in the literature the name of trie, or digital search
tree, and its main use is in string searching (as we will detail in Chapter 9).
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017 [ 111 766 911
042 999
007

< - -
< -

007 | 017 042 911 999

Figure 7.2 (Top) Sorting seven strings according to their first most significant digit. (Bottom)
Recursive sort of bucket 0, on top, and bucket 9, below, according to the second most
significant digit of their strings.

0|1]|2]|3]|4[5[6]7[8]9

[ofa]2[s]a]sTe]7]s]o] [efa]2]3]4[s]e]7]8]o] [o]s]2]s]«[s 6]7[e]o] [o]a]2[3]]s]e]7]s]0]

[ofsf2]3]4[s 67 s]o] N\ [olsl2]s[4]s]e]7]se]o] [ofe]2]3]4[s]e 7]8]o] [e]s]2]3]4[sTel7]e]o]\ [elrl2[s]¢]s6]7]s]o]
007 042 111 766 999
o]1]2]3]4[s]6]7]8]o of1]2]3]4[s]6]7]8]o
017 911

Figure 7.3 The trie-based view of MSD-first RADIXSORT for the strings in Figure 7.2.

An example of a trie for the string set of Figure 7.2 is given in Figure 7.3. Every
node is implemented as a o-sized array, one entry per possible alphabet character.
Strings are stored in the leaves of the trie, hence we have n leaves. Internal nodes are
less than NV, one per character occurring in the strings of S. Given a node u, the down-
ward path from the root of the trie to u spells out the string, say s[u], that is obtained by
concatenating the characters encountered in the path traversal. For example, the path
leading to the leaf 017 traverses three nodes, one per possible character of that string.
Then, having fixed a node u, all strings that descend from u share the same prefix s[u].
For example, s[root] is the empty string, which is obviously shared by all strings of S.
The leftmost child of the root spells the string 0 because it is reached from the root by
traversing the edge hanging out of the 0-entry of the array.

Notice that the trie may contain unary nodes, namely nodes that have one single
child, such as the ones on the paths leading to strings 111 and 666, for example.
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All the other internal nodes have at least two children, and they are called branching
nodes. In Figure 7.3 we have nine unary nodes and three branching nodes, with n = 7
and N = 21. In general the trie can have no more than » branching nodes, and no
more than N unary nodes. Actually, the unary nodes that have a descending branching
node are at most d. In fact, these unary nodes correspond to characters occurring in
the distinguishing prefixes of S’s strings, and the lowest descending branching nodes
correspond to the characters that end the distinguishing prefixes. On the other hand,
the unary paths that start from the lowest branching nodes in the trie and lead to its
leaves correspond to the string suffixes that follow those distinguishing prefixes. In
algorithmic terms, the unary nodes correspond to buckets formed by items all sharing
the same compared characters in the distribution of MSD-first RADIXSORT, while
the branching nodes correspond to buckets formed by items with distinct compared
characters in the distribution of MSD-first RADIXSORT.

If edge labels are alphabetically sorted, as in Figure 7.3, reading the leaves accord-
ing to the pre-order visit of the trie gives the sorted S. This suggests a simple trie-based
string sorter.

The idea is to start with an empty trie, and then insert one string after another into it.
Inserting a string s € S in the current trie consists of tracing a downward path until s’s
characters are matched with existing edge labels (i.e. non-empty entries of the o -sized
arrays). As soon as the next character in s cannot be matched with any of the edges
leaving the reached node u,! then we say that the mismatch for s is found. So a special
node is appended to the trie at u with that branching character. This special node
points to s. The speciality resides in the fact that we have dropped the not-yet-matched
suffix of s, but the pointer to the string implicitly keeps track of it for the subsequent
insertions. In fact, if while inserting another string s’ we encounter the special node
u, then we resort to the string s (linked to it) and create a (unary) path for the other
characters constituting the common prefix between s and s’ which descends from u.
The last node in this path branches to s and s’, possibly dropping again the two paths
corresponding to the not-yet-matched suffixes of these two strings, and introducing for
each of them one special node.

Every time a trie node is created, an array of size o is allocated, thus taking O(c)
time and space. So the following theorem can be proved.

Theorem 7.1 A set of strings over an (integer) alphabet of size o and distinguishing
prefix d can be sorted via the MSD-first RADIXSORT with a trie using o -sized arrays
in O(d o) time and space.

Proof Every string s spells out a path of length dy; before that the special node point-
ing to s is created. Each node of those paths allocates o space and takes that amount of
time to be allocated. Moreover, O(1) is the time cost for traversing a trie node. There-
fore O(o) is the time spent for each traversed/created node. The claim then follows by

' This actually means that the slot in the o-sized array of u corresponding to the next character of s is
null.
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visiting the constructed trie and listing its leaves from left to right, given that they are
lexicographically sorted, because the naming of characters is lexicographic and thus
reflects their order. u

The space occupancy is significant and should be reduced. An option is to replace
the o-sized array into each node u with a hash table (with chaining) of size propor-
tional to the number of edges leaving u, say e,, and indexed by the digit associated
with that edge label.” This guarantees O(1) expected time for searching and inserting
one edge in each node. As we have observed, the number of edges can be bounded
by the number of internal nodes, that is, O(d), plus the number of special nodes, that
is, n leaves, so that ), e, = O(d + n) = O(d). We can thus derive the construction
time, which is O(d) to insert all strings in the trie (here every node access takes con-
stant time), O}, e, loge,) = O3, e, log o) = O(d log o) for the sorting of the trie
edges over all nodes, and O(d) time to scan the trie leaves rightward via a pre-order
visit in order to get the dictionary strings in lexicographic order.

Theorem 7.2 A set of strings over an (integer) alphabet of size o and distinguishing
prefix d can be sorted via the MSD-first RADIXSORT using a trie with hashing in
O(d log o) expected time and O(d) space.

When o is small we cannot conclude that this result is better than the lower bound
provided in Lemma 7.1, because that applies to comparison-based algorithms and thus
it does not apply to hashing or integer sorting.

The space allocated for the trie can be further reduced to O(#), and the construction
time to O(d + nlogo), by using compacted tries, namely tries in which the unary
paths have been compacted into single edges whose length is equal to the number of
characters forming the compacted unary path. The discussion of this data structure is
deferred to Chapter 9.

LSD-First

The next sorter was discovered by Herman Hollerith more than a century ago, and led
to the implementation of a card-sorting machine for the 1890 U Census. Interestingly,
he was also the founder of a company that went on to become IBM.> The algorithm is
counterintuitive because it sorts strings digit by digit, starting from the least significant
one and using a stable sorter as a black box. We recall that a sorter is stable if and only
if equal keys maintain in the final sorted order the one they had in the input. We use
as stable sorter the CountingSort (see, e.g., [3]) and assume that all strings have the
same length L; if not, they are logically padded at their front with a special digit which

2 More complex hash-based solutions will be presented in Chapter 8. Here we consider hashing with
chaining because it is a classic topic of every basic course on algorithms, and it is enough for the
teaching purposes of this chapter.

3 See the entry for Herman Hollerith in Wikipedia: http://en.wikipedia.org/wiki/Herman_Hollerith.
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1st digit 2nd digit 3rd digit
017/\1‘11/\0‘{_\@
042 911 111 017
766 042 911 041
111 766 017 ARt
911 017 042 766
999 007 766 911
Unsorted strings —» | 007 999 999 999 | «— Sorted strings

Figure 7.4 A running example for LSD-first RADIXSORT. Plain digits have yet to be processed,
underlined digits have already been processed, bold digits are the ones being processed and
driving the stable sorter. Since strings consist of three digits, three phases suffice to sort them.

is assumed to be smaller than any other alphabet digit. The logic is that, the LSD-first
RADIXSORT will correctly obtain an ordered lexicographic sequence.

The LSD-first RADIXSORT consists of L phases, say i = 1,2, ..., L. In each phase
we stably sort all strings according to their i-th least significant digit. A running exam-
ple of LSD-first RADIXSORT is given in Figure 7.4: the bold digits (characters) are
the ones that are going to be sorted in the current phase, whereas the underlined digits
are the ones already sorted in the previous phases. Each phase produces a new sorted
string order which deploys the order in the input sequence, obtained from the previous
phases, to resolve the ordering of the strings that show equal digits in the currently
compared position i. As an example, let us consider the strings 111 and 017 in the
second phase of Figure 7.4. These strings present the same second digit so their order-
ing in the second phase places 111 before 017, just because this was the ordering
after the first sorting step. This is clearly a wrong order, which will be nonetheless
correctly adjusted after the final phase, which operates on the third digit, that is 1
versus 0.

The time complexity can be easily estimated as L times the cost of executing
COUNTINGSORT over n integer digits drawn from the range {0, 1,...,o — 1}; hence it
is O(L (n+ 0)). A nice property of this sorter is that it is in-place whenever the sorting
black box is in-place, namely o = O(1).

Lemma 7.2 LSD-first Radixsort solves the string-sorting problem in O(L (n+ o)) =
O(N + Lo) time and O(N) space. The sorter is in-place if and only if an in-place digit
sorter is adopted.

Proof Time and space efficiency follow from the previous observations. Correctness
is proved by deploying the stability of COUNTINGSORT. Let o and $ be two strings of
S, and assume that « < S according to their lexicographic order. Since we assumed
that S’s strings have the same length, we can decompose these two strings into three
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parts: « = yaa| and 8 = ybB;, where y is the longest common prefix between « and
B (possibly it is empty), @ < b are the first mismatch characters, and o] and 81 are the
two remaining suffixes (which may be empty).

Let us now look at the history of comparisons between the digits of « and . We can
identify three stages, depending on the position of the compared digit within the three-
way decomposition described here. Since the algorithm starts from the least significant
digit, it starts comparing digits in «; and ;. We do not care about the ordering after
the first |a1| = |B1] phases, because in the immediately following phase, o and 8 are
sorted in accordance to characters a and b. Since a < b, this sorting places « before .
All other |y | sorting steps will compare the digits falling in y, which are equal in both
strings, so their order will not change because of the stability of COUNTINGSORT.
At the end we will correctly have o < B. Since this holds for any pair of strings in
S, the final sequence produced by LSD-first RADIXSORT will be lexicographically
ordered. |

The previous time bound deserves few comments. LSD-first RADIXSORT processes
all digits of all strings, so it doesn’t seem appealing when d <« N with respect to
MSD-first RADIXSORT. But the efficiency of LSD-first RADIXSORT hinges on the
observation that nothing prevents a phase from sorting groups of digits rather than a
single digit at a time. Clearly the longer this group is, the larger the time complexity of
a phase is, but the smaller the number of phases is. We are in the presence of a trade-
off that can be tuned by investigating deeply the relation that exists between these two
parameters. Without loss of generality, we simplify our discussion by assuming that
the strings in S are binary and have an equal length of b bits, so Nlogo = bn. Of
course, this is not a limitation in practice because any string is encoded in memory as
a bit sequence, taking log o bits per digit.

Lemma 7.3 LSD-first RADIXSORT takes © (i—f(n + 2’)) time and O(nb) = O(N log o)

space to sort n strings of b bits each. Here r < b is a positive integer fixed in
advance.

Proof* We decompose each string into g = é groups of 7 bits each. Each phase will
order the strings according to a group of 7 bits. Hence COUNTINGSORT is asked to
order n integers between 0 and 2" — 1 (extremes included), so it takes O(n + 27) time.

As there are g phases, the total time is O (g (n +2")) = O ((é) (n+ 2’)). |

Given n and b, we need to choose a proper value for 7 such that the time complexity
is minimized. We could derive this minimum via analytic calculus (i.e. first-order
derivatives) but, instead, we argue for the minimum as follows. Since the COUNT-
INGSORT uses O(n + 2") time to sort each group of r digits, it is useless to use groups
shorter than logn, given that O(n) time has to be paid in any case. So we have to
choose r in the interval [log n, b]. As r grows larger than log n, the time complexity in
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Lemma 7.3 also increases because of the ratio 2" /r. So the best choice is » = O(log n)

for which the time complexity is O (1 Obg”n).

Theorem 7.3 LSD-first Radixsort sorts n strings of b bits each in O (lé’g”n> time and

O(bn) space, by using COUNTINGSORT on groups of ®(log n) bits. The algorithm is
not in-place because it needs ®(n) space for the COUNTINGSORT.

We finally observe that bn is the total length in bits of the strings in S, so we
can express that number also as N logo since each character takes logo bits to be
represented.

Corollary 7.1 LSD-first Radixsort solves the string-sorting problem on n strings

Nl(l)‘;gn") time and O(N log o) bits of space.

drawn from a o -sized alphabet in O (

If d=0O(N) and o is a constant (hence N = Q(nlogn) because of string dis-
tinctness), the comparison-based lower bound (Lemma 7.1) becomes Q(N). So
LSD-first RADIXSORT beats that lower bound, and this is not surprising, because
this sorter operates on an infeger alphabet and uses COUNTINGSORT, so it is not a
comparison-based string sorter.

Comparing the trie-based construction of the MSD-first RADIXSORT algorithm
(Theorems 7.1-7.2) against the LSD-first RADIXSORT algorithm, we conclude that the

%) , which is true for most practi-
cal cases. In fact, LSD-first RADIXSORT needs to scan the whole string set whatever
the string compositions, whereas the trie construction may skip some string suffixes
whenever d <« N. However, the LSD-first approach avoids the dynamic memory allo-
cation incurred by the construction of the trie, and the extra space due to the storage
of the trie structure. This additional space and work is nonnegligible in practice and
could impact unfavorably on the real-life performance of the MSD-first RADIXSORT,
or even prevent its use over large string sets because the internal memory has bounded

size M.

former is always better than the latter for d = O (

Multi-key QUICKSORT

This is a variant of the well-known QUICKSORT algorithm extended to manage items
of variable length, it is a comparison-based string sorter matching the lower bound of
Q(d 4 nlogn) stated in Lemma 7.1. For a recap of QUICKSORT we refer the reader to
Chapter 5. Here it is enough to recall that QUICKSORT hinges on two main ingredients:
the pivot-selection procedure and the algorithm to partition the input array according
to the selected pivot. For the present section we restrict ourselves to a pivot selection
based on a random choice and to a three-way partitioning of the input array. All other
variants discussed in Chapter 5 can be easily adapted to work in the string setting too.

The key here is that items are not considered to be atomic, but as strings to be
split into their constituent characters. Now the pivot is a character, and the partitioning
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Algorithm 7.1 MULTIKEYQS(R, i)
1: if [R] < 1 then
return R;

. else

choose a pivot-string p € R;

R< = {s € R|sli] < plil};

R_ = (s € R|s[i] = plil};

R- = {s € R|s[i] > plil};

A = MULTIKEYQS(R -, i);

: B = MULTIKEYQS(R=,i + 1);

10: C = MULTIKEYQS(R-, i);

11: return the concatenated sequence 4, B, C;
12: end if

2
3
4
5:
6:
7
8
9

of the input strings is done according to the single character that occupies a given
position within them. Algorithm 7.1 details the pseudocode of multi-key QUICKSORT,
in which it is assumed that the input string set R is prefix free, so no string in R prefixes
any other string in the set. This condition can be easily guaranteed by assuming that
strings in R are distinct and logically padded with a dummy character that is smaller
than any other character in the alphabet. This guarantees that any pair of strings in
R admits a bounded longest common prefix (LCP), and that the mismatch character
following the LCP exists in both strings.

Algorithm 7.1 receives in input a sequence R of strings to be sorted and an inte-
ger parameter i > 0 that denotes the offset of the character driving the three-way
partitioning of R. The pivot character is p[i], where p is a randomly chosen string
within R. The real-life implementation of this three-way partitioning can follow the
PARTITION procedure of Chapter 5. MULTIKEYQS(R, i) assumes that the following
invariant holds on its input parameters: A/l strings in R are lexicographically sorted up
to their length-(i — 1) prefix. So the sorting of the input string set S[1, #] is obtained by
invoking MULTIKEYQS(S, 1), which ensures that the invariant trivially holds for the
initial sequence S. Steps 5—7 partition the generic string sequence R in three subsets
whose notation is explicative of their content. All three subsets are recursively sorted
and their ordered sequences are eventually concatenated in order to obtain the ordered
R. The tricky issue here is the definition of the parameters passed to the three recursive
calls:

e the sorting of the strings in R and R. still has to reconsider the i-th character,
because we just checked that it is smaller/greater than p[i] (and this is not sufficient
to order those strings). So recursion does not advance 7, and it hinges on the current
validity of the invariant.

e the sorting of the strings in R— can advance i because, by the invariant, these strings
are sorted up to their length-(i — 1) prefixes and, by construction of R—, they share
the i-th character. This character is actually equal to p[i], so p € R— too.
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Alabama
Alabama Abaco R
Abaco Allure <
Asturias Albanian
Avenue i=2
R Allure Amazing R
Albanian Amref =
Amref <—— pivot p[2] =m
Attic Attic
Average Average
Amazing Asturi R.
sturias
Avenue

Figure 7.5 A running example for MULTIKEYQS(R, 2). In bold we have the length-1 prefix
shared by all strings in R, according to the invariant to be guaranteed. The pivot string chosen
at random is p = Amref, and the character thus adopted to three-way partition the string set R
isp[2] =m.

Figure 7.5 shows a running example, where readers can also convince themselves
about the correctness, which is indeed immediate from the discussion here. We are
therefore left with the problem of computing the expected time complexity of MUL-
TIKEYQS. Let us concentrate on a single string, say s € R, and count the number of
comparisons that involve one of its characters during the sequence of recursive calls.
There are two cases at a generic recursive call MULTIKEYQS(R, i): eithers € R UR-
or s € R—. In the first case, character s[i] is compared with the corresponding char-
acter of the pivot string p[7], and then s included in a smaller set R U R. C R with
the offset 7 unchanged. In the other case, s[i] is compared with p[i] but, since they are
found to be equal, s is included in R— and offset i is advanced. If the pivot selection is
good (see Chapter 5), the three-way partitions are balanced and thus |[R- UR. | < an,
for a proper constant @ < 1. As a result both cases cost O(1) time, but one reduces the
string set by a constant factor, while the other increases i. Since the initial set R = S
has size n, and i is bounded above by the string length |s|, we have that the number
of comparisons involving s is O(|s| + log ). Summing up over all strings in S, we get
the time bound O(N + nlogn). A closer look at the second case shows that i can be
bounded above by the number d; of characters that belong to s’s distinguishing prefix,
because these characters will lead s to be located in a singleton set.

Theorem 7.4 MULTIKEYQS solves the string-sorting problem by performing O(d +
nlogn) character comparisons in expectation. This is optimal in the comparison-
based model. The bound can be turned into a worst-case bound by adopting a
worst-case linear-time algorithm to select the pivot as the median of R.

Compared to the trie-based sorters of the previous sections, multi-key QUICKSORT
is very appealing in practice because it is much simpler, it does not use additional data
structures (i.e. hash tables or o-sized arrays), and the constants hidden in the big-O
notation are very small.
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Figure 7.6 A ternary search tree for 12 two-letter strings. The low and high pointers are shown
as solid lines, while the pointers to the equal split-character child are shown as dashed lines.
The split character is indicated within the internal nodes.

We conclude this section by noting an interesting parallel between multi-key
QUICKSORT and fernary search trees [4]. These are search data structures in which
each node contains a split character, and three types of pointers: low, equal, and high
(or left, middle, and right). In some sense a ternary search tree is obtained from a
trie by collapsing together the children whose first character on their leading edges is
smaller/greater than the split character. The elegance and practical efficiency of ter-
nary search trees come from this three-way branching, which is a clear simplification
of the o -ary branching of classic tries and also reduces the cache misses at each node
branching.

If a given node splits on the character in position i, say ¢, the strings descending
from the left (resp. right) child are the ones whose i-th character is smaller (resp.
larger) than c. Instead, the middle child points to strings that have the i-th character
equal to c¢. In addition, and similarly to multi-key QUICKSORT, the iterator i does
not advance when descending in the left/right children, whereas it advances when
descending in the middle child.

Ternary search trees may be balanced either by inserting strings in random order
or by applying a variety of known schemes. Searching proceeds by following edges
according to the split character of the encountered nodes. Figure 7.6 shows an example
of a ternary search tree. The search for the pattern P = “ir” starts at the root, which
is labeled with the character i, and initializes the iterator i = 1. Since P[1] = i, the
search proceeds down to the middle child, increments i to 2, and thus reaches the node
with split character s. Here P[2] = r < s, so the search goes to the left child and
keeps 7 unchanged. At that node the search stops, because it is a leaf pointing to string
in. So the search concludes that P does not belong to the string set indexed by the
ternary search tree, and it could actually also determine the lexicographic position of
P just to the right of in.
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Theorem 7.5 A search for a pattern P[1,p] in a balanced ternary search tree rep-
resenting n strings takes O(p + logn) character comparisons. This is optimal in the
comparison-based model.

Some Observations on the Two-Level Memory Model>

Sorting strings on disk is not nearly as simple as it is in internal memory, and a bunch
of sophisticated string-sorting algorithms have been introduced in the literature which
achieve I/O-efficiency (see, e.g., [1, 2]). The difficulty is that strings have variable
length and their brute-force comparison over the sorting process may induce a lot of
I/Os. In the following we will use the notation: 7, is the number of strings shorter than
the disk-page size B, whose total length is Ny, and #; is the number of strings longer
than B, whose total length is N;. Clearly n = ng 4+ nj and N = Ny + N;.

The known algorithms can be classified according to the way strings are managed
in their sorting process. We can devise three main models of computations [1]:

e Model A: Strings are considered indivisible (i.e. they are moved in their entirety
and cannot be broken into characters), with the exception that long strings can be
divided into blocks of size B.

e Model B: Relaxes the indivisibility assumption of Model A by allowing strings to
be divided into single characters, but this may happen only in internal memory.

e Model C: Waives the indivisibility assumption by allowing division of strings in
both internal and external memory.

Model A forces the use of MERGE-based sorters that achieve the following I/0 bounds,
which can be proved to be optimal:

Theorem 7.6 [n Model A, string sorting takes © (% logM/B% + nylogy i
+w> 1/Os.

The first term in the bound is the cost of sorting the short strings, the second term is
the cost of sorting the long strings, and the final term accounts for the cost of reading
the whole input. The result shows that sorting short strings is as difficult as sorting
their individual characters, which are N, while sorting long strings is as difficult as
sorting their first B characters. The lower bound for small strings in Theorem 7.6 is
proved by extending the technique used in Chapter 5 and considering the special case
where all ng small strings have the same length N, /n,. The lower bound for the long
strings is proved by considering the n; small strings obtained by looking at their first
B characters. The upper bounds in Theorem 7.6 are obtained by using a special multi-
way MERGESORT that takes advantage of a lazy trie stored in internal memory to
guide the merge passes among the strings.

Model B presents a more complex situation, and leads to long and short strings
being handled separately.
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Theorem 7.7 In Model B, sorting short strings takes 0<min [ns log,, ns,%

logys/5 % ]) 1/Os, whereas sorting long strings takes © (nl logy, n; + %) 1/O:s.

The bound for long strings is optimal, whereas the bound for short strings is not
known to be optimal. Comparing the optimal bound for long strings with the corre-
sponding bound in Theorem 7.6, we note that they differ in terms of the base of the
logarithm: the base is M rather than M /B. This shows that breaking up long strings
in internal memory is provably helpful for external string sorting. The upper bound
is obtained by combining the String B-tree data structure (described in Chapter 9)
with a proper buffering technique. As far as short strings are concerned, we note
that the I/O bound is the same as the cost of sorting all the characters in the strings

when the average length Ng/ng is O (m). For the (in practice) narrow range
B < Y~ B the cost of sorting short strings becomes O(ng log,, ng). In this

lo, M ng
raflAgg, the sorting complexity for Model B is lower than the one for Model A, which
shows that breaking up short strings in internal memory is provably helpful.
Surprisingly enough, the best deterministic algorithm for Model C is derived from
the one designed for Model B. However, since Model C allows the spliting of strings on
disk too, we can use randomization and hashing. The main idea is to shrink strings by
hashing some of their pieces. Since hashing does not preserve the lexicographic order,
these algorithms must orchestrate the selection of the string pieces to be hashed with
a carefully designed sorting process so that the correct sorted order may be eventually
computed. In [2] the following result was proved (which can be extended to the more
powerful cache-oblivious model too):

Theorem 7.8 In Model C, the string-sorting problem can be solved by a ran-
domized algorithm using O (% (logM/B 2 (log %v) + %) 1/Os, with arbitrarily high
probability.
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The Dictionary Problem

Impossible is a word to be found only in the
dictionary of fools.
Attibuted to Napoleone Bonaparte

In this chapter we present randomized and simple, yet smart, data structures that solve
efficiently the classic dictionary problem, formally defined in the following box. These
solutions will allow us to propose algorithmic fixes for some issues that are typically
left untouched or only addressed via “hand waving” in basic courses on algorithms.

Problem. Let D be a set of n objects, called the dictionary, uniquely identified
by keys drawn from a universe U. The dictionary problem consists of designing
a data structure that efficiently supports the following three basic operations:

e Search (k) : Check whether D contains an object x with key k£ = key[x],
and then return true or false, accordingly. In some cases, the goal is to
return the object associated with this key, if any, otherwise return null.

e Insert (x) : Insert in D the object x indexed by the key & = key[x]. Typ-
ically it is assumed that no object in D has key & before the insertion takes
place; a condition that may be easily checked by executing a preliminary query
Search (k).

e Delete (k) : Delete from D the object indexed by the key £, if any.

In the case that all three operations have to be supported, the problem and the corre-
sponding data structure that solves it are termed dynamic; otherwise, if only the query
operation has to be supported, they are termed static.

Note that in several applications the structure of an object x typically consists of a
pair (k,d), where k € U is the key indexing x in D, and d is the so-called satellite data
featuring x. For the sake of presentation, in the rest of this chapter, we will drop the
satellite data and the notation D in favor of just the key set S € U, which consists of all
keys indexing objects in D. In this way, we will simplify the discussion by considering
dictionary search and update operations only on those keys rather than on (whole)
objects. But when the context requires satellite data as well, we will again talk about
objects and their implementing pairs. Moreover, without any loss of generality, since
keys are represented in our computers as binary strings, we will set U = {0, 1,2,...}
as the universe of nonnegative integers. See Figure 8.1 for a graphical representation.
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object x
k = key[x]
Other fields
containing
satellite data
for x

Figure 8.1 Illustrative example for a dictionary D of objects (left) and their keys £ = key[x]
forming a subset S of a large universe U (middle), and a rectangle (right) illustrating
graphically the satellite data featuring the object x.

In the following sections, we will analyze three main data structures: direct-address
tables (or arrays), hash tables (and some of their sophisticated variants), and the Bloom
filter. Direct-access tables are introduced for teaching purposes, because the diction-
ary problem can often be solved very efficiently without resorting to complicated data
structures. The subsequent discussion on hash tables will allow us, first, to fix some
issues concerning the design of a good hash function (typically sketched in basic algo-
rithms courses) and then to design the so-called perfect hash tables, which address
optimally and in the worst case the static dictionary problem; we will lastly move
to the elegant cuckoo hash tables, which manage dictionary updates efficiently, still
guaranteeing constant query time in the worst case. The chapter concludes with the
Bloom filter, one of the most used data structures in the context of large dictionaries
and Web/networking applications. Its surprising feature is that it guarantees query and
update operations up to constant time, and, more surprisingly, its space requirements
depend on the number of keys 7, but not on their lengths. The reason for this impres-
sive “compression” is that only a fingerprint of a few bits for each key is stored; the
incurred limitation is a one-sided error when executing Search (k) : namely, the data
structure answers in a correct way when £ € S, but it may answer incorrectly if & is
not in the dictionary (a so-called false positive). Despite that, we will show that the
probability of this error can be mathematically bounded by a function that exponen-
tially decreases with the space m reserved for the Bloom filter or, equivalently, with
the number of bits allocated per each key (i.e. its fingerprint). The nice aspect of this
formula is that it is enough to take m to be a constant factor slightly more than » and
reach a negligible probability of error. This makes the Bloom filter very appealing
in several interesting applications: crawlers of search engines, storage systems, P2P
systems and so on.

Direct-Address Tables

The simplest data structure to support all dictionary operations is the one based on a
binary table 7, of size u = |U| bits. There is a one-to-one mapping between keys and
table entries, so entry 7[k] is set to 1 if and only if the key k& € S. If some satellite data
for k has to be stored, then 7 is implemented as a table of pointers to these satellite
data. In this case we have that T[k] = NULL if and only if £ € S and T[k] points to
the memory location where the satellite data for & is stored.
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T  Hash table with chaining
0
——1]

e 1]

Figure 8.2 Hash table with chaining.

It is quite straightforward to implement dictionary operations upon 7 in constant
(optimal) time in the worst case. The main issue with this solution is that the table’s
occupancy depends on the universe size u; so if n = ©(u), then the approach is opti-
mal. But if the dictionary is small compared to the universe, the approach wastes a lot
of space an becomes unacceptable. Take the case of a university which stores the data
of its students indexed by their IDs: there could be millions of students, and if the IDs
are encoded with integers (e.g., 4 bytes) then the universe size is 232, and thus of the
order of billions. Smarter solutions have therefore been designed to reduce the sparse-
ness of the table with respect to the universe size, still guaranteeing the efficiency of
the dictionary operations: among all proposals, hash tables and their many variations
provide an excellent choice.

Hash Tables

The simplest data structures for implementing a dictionary are arrays and lists. Arrays
offer constant-time access to their entries, but linear-time updates; lists offer the oppo-
site: linear-time access to their elements, but constant-time updates whenever the
position where they have to occur is given. Hash tables combine the best of these
two approaches. Their simplest implementation is hashing with chaining, which con-
sists of an array of lists. The array T of size m points to lists of dictionary objects,
or keys, as in our simplified assumption of the previous section. The mapping of keys
to array entries is implemented via a hash function h: U — {0,1,2...,m — 1}, so
that a key & is mapped to the list pointed to by T[A(k)]. Figure 8.2 shows a graphical
example of a hash table with chaining.

Forget for a moment the implementation of the function /4, and just assume that its
computation takes constant time. We will dedicate to this issue a significant part of
this chapter, because the overall efficiency of the proposed scheme strongly depends
on the efficiency and efficacy of /4 to distribute items evenly among the table entries.

Given a good hash function, dictionary operations are easy to implement over the
hash table because they are just turned into operations on the array 7 and on the lists
that are linked to its entries. Searching for a key & (and its associated object) boils
down to searching this key in the list 7[A(k)]. Inserting an object with key & consists
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of appending it at the front of the list pointed to by 7[A(k)]. Deleting an object with key
k consists of first searching for & in the list 7/(k)], and then removing it. The running
time of dictionary operations is constant for Insert, provided that the computation
of (k) takes constant time, and it is linear in the length of the list pointed to by 7'[A(k)]
for both the Search and Delete operations. Therefore, the efficiency of hashing
with chaining depends on the ability of the hash function 4 to evenly distribute the
dictionary keys among the m entries of table T'; the more evenly distributed they are,
the shorter the list to scan. The worst situation is when all dictionary keys are hashed
to the same entry of 7', thus creating a list of length 7. In this case, the hash table boils
down to a single linked list, so that the cost of searching is ®(n).

This is the reason why we are interested in good hash functions, namely ones that
distribute keys among table entries uniformly at random (aka simple uniform hash-
ing [6]). This means that, for such hash functions, every key k € S is equally likely to
be hashed to any of the m slots in 7', independently of where the other dictionary keys
are hashed. If 4 guarantees this strong property, then the following result can be easily
proved.

Theorem 8.1 Under the hypothesis of simple uniform hashing, there exists a hash
table with chaining, of size m, in which the operation Search (k) over a dictionary
of n objects takes ©(1 4+ n/m) expected time. The value « = n/m is often called the
load factor of the hash table.

Proof In the case of an unsuccessful search (i.e. £ ¢ S§), the time for executing
Search (k) equals the time to perform a full scan of the list 7[A(k)], and thus it
equals its length. Given the uniform distribution of the dictionary keys induced by the
hash function /4, the expected length of a generic list T[i] is ) ;g P(h(k) = i) = |S| x
% = n/m = «. We add “plus 1” in the time complexity because of the constant-time
computation of A(k).

In the case of a successful search (i.e. £ € §), the proof is less straightforward.
Assume £ is the j-th key inserted in the dictionary S, and let the insertion be executed
at the tail of the list £(k) = T[h(k)]: we need just one additional pointer per list to
keep track of it. The number of elements examined during Search (k) equals the
number of items that were present in £(k) plus k£ itself. Now, the expected length of
L(k) can be estimated as (j — 1)/m (given that £ is the j-th key to be inserted), so the
expected time taken by a successful search is

And this can be rewritten as O (1+ % = 25) = O(1 +a). =

It is fairly easy to estimate the space taken by the hash table by observing that each
list pointer takes ®(logn) bits, because it has to index one out of » items, and each
dictionary key takes ®(log ) bits, because it is drawn from a universe U of size u. It
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is interesting to note that the key storage can dominate the overall space occupancy
of the table as the universe size increases (think, e.g., of URLs as keys, which require
on average hundreds of bytes to be represented). This subtle observation will motivate
the discussion of the design of Bloom filters in Section 8.7.

Corollary 8.1 Hash table with chaining occupies O((m + n)log, n + nlog, u) bits.
Constants hidden in the big-O notation are very small and close to 1.

It is evident that if the dictionary size n is known, the table can be designed to
consist of m = ©(n) cells (hence, « = ©(1)), and thus obtain an expected constant-
time performance for all dictionary operations. If n is unknown, one can resize the
table whenever the dictionary gets too small (many deletions), or too large (many
insertions). The idea is to start with a table size m = 2ng, where ng is the initial
number of dictionary keys. Then, we keep track of the current number 7 of dictionary
keys present in S (and thus in the table 7). If the dictionary gets too small, that is,
n < ng/2, then we halve the table size m and rebuild T’ if the dictionary gets too
large, that is, n > 2n, then we double the table size m and rebuild 7. Table rebuilding
consists of inserting the current dictionary keys in the new table of proper size m, and
drop the old one.

This scheme guarantees that, at any time, the dictionary size » is proportional to
the table size m: more precisely, no/2 = m/4 < n < m = 2ng. This implies that
a = m/n = O(1). Since insertion takes O(1) time per key, and the rebuilding affects n
items to be deleted from the current table and then inserted in the resized table, the total
rebuilding cost is ®(n). But this cost is paid at least every ng/2 = ®(n) operations,
the worst case being the one in which these operations consist of all insertions or all
deletions between consecutive table reconstructions. So the ®(#n) rebuilding cost can
be amortized over the 2(n) operations forming this update sequence, thus adding a
O(1) amortized cost at the actual cost of each update operation. Overall this means
that:

Corollary 8.2 Under the hypothesis of simple uniform hashing, there exists a
dynamic hash table with chaining that takes expected constant time for the search
operation, expected amortized constant time for the insert and delete operations, and
uses O(n) space.

How Do We Design a “Good” Hash Function?

Simple uniform hashing is difficult to guarantee from a computational point of view,
because one rarely knows the probability distribution according to which the dic-
tionary keys are drawn and, in addition, it could be the case that they are not even
drawn independently of each other. Since # maps keys from a universe of size u
to an integer range of size mi, it induces a partition of those keys in m subsets
U =1{k e U : h(k) = i}. By the pigeonhole principle there does exist at least
one of these subsets whose size is larger than the average load factor u/m. Now, if we
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reasonably assume that the universe is sufficiently large to guarantee that u/m > n,
then an adversary could choose the dictionary S as that subset U; of keys such that
|Ui| = u/m, and thus force the hash table to offer its worst behavior, by boiling down
to a single linked list of length n.

This argument is independent of the hash function %, so we can conclude that no
hash function is robust enough to always guarantee a “good” behavior. In practice,
heuristics are used to create hash functions that perform well sufficiently often: the
design principle is to compute the hash value in a way that it is expected to be inde-
pendent of any regular pattern that might exist among the dictionary keys. The two
most simple and famous hashing schemes are based on division and multiplication
(for more details we refer the reader to any classic text on algorithms, such as [6]):

e Hashing by division: The hash value is computed as the remainder of the division
of the key k by the table size m, that is, #(k) = k modm. This is quite fast and
behaves well as long as /(k) depends on most of £’s bits. So power-of-two values for
m should be avoided, whereas prime numbers not too close to a power of two should
be chosen. For the selection of large prime numbers there are both simple, but slow
(exponential in time) algorithms (such as the famous sieve of Eratosthenes method),
and fast algorithms based on some (randomized or deterministic) primality test."
In general, the cost of prime selection is negligible in relation to the cost of building
the hash table.

e Hashing by multiplication: The hash value is computed in two steps: first, the key
k is multiplied by a constant 4, with 0 < 4 < 1; then, the fractional part of k4
is multiplied by m and the integral part of the result is taken as the index for the
hash table 7. An advantage of this method is that the choice of m is not critical, and
indeed it is usually set as a power of 2, thus simplifying the multiplication step. For
the value of 4, it is often suggested to take 4 = (/5 — 1)/2 = 0.618.

It goes without saying that none of these practical hashing schemes guarantees a
“good” mapping behavior: it is always possible to select a dictionary of keys that
makes the hash table boil down to a single linked list; for example, just take integer
keys that are multiples of m to disrupt the hashing-by-division method. In the next
section, we propose a hashing scheme that is robust enough to guarantee a “good”
behavior in expectation, whatever is the input dictionary.

Universal Hashing

Let us first demonstrate, using a counting argument, why the uniformity property we
required for good hash functions is computationally hard to guarantee. Recall that we
are interested in hash functions that map keys in U to integers in {0, 1, ...,m — 1}. The

' The most famous, and randomized, primality test is the one by Miller and Rabin; more recently, a
deterministic test has been proposed which allows to prove that this problem is solvable in
(deterministic) polynomial time. See http://en.wikipedia.org/wiki/Prime_number.
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total number of such hash functions is m", given that each key among the u = |U|
ones can be mapped into any one of the m slots of the hash table. In order to guarantee
a uniform distribution of the keys and independence among them, our hash function
should be any one of these mappings. But, in this case, its representation would need
Q(log, m*) = Q(ulogm) bits, which is really too much in terms of space occupancy
and computing time: take the case of a computer with a memory word of 64 bits, so
that u = 2%4; we would need a space of the order of zettabytes for storing the encoding
of the hash function.

Practical hash functions, on the other hand, suffer from several weaknesses, some
of which have already been mentioned. In this section we introduce the powerful uni-
versal hashing paradigm, which overcomes these drawbacks by means of a proper
design of the class of possible hash functions and the use of randomization to select
one of them, thus proceeding similarly to how we make the pivot selection in the
QUICKSORT procedure more robust (see Chapter 5). There, instead of taking the pivot
from a fixed position, it was chosen uniformly at random from the underlying array
to be sorted. This way no input was in principle bad for the pivot selection strat-
egy because, this selection being randomized, it allowed the risk to be spread over the
many pivot choices, thus guaranteeing that most of them would lead to a well-balanced
partitioning.

Universal hashing mimics this algorithmic approach in the context of hash func-
tions. Informally, we do not set the hash function in advance (cf. fix the pivot position),
but we will choose the hash function uniformly at random from a properly defined set
of hash functions (cf. random pivot selection) which is defined in a way that makes
it very likely to select a good hash for the current input set of keys S (cf. the parti-
tioning is balanced). A good hash function is one that can be computed in constant
time and minimizes the number of collisions among pairs of dictionary keys. Because
of the randomization, even if S is fixed, the algorithm will behave differently on var-
ious executions, but the nice property of universal hashing be that, on average, the
performance will be the expected one. It is now time to formalize these ideas.

Definition 8.1 Let H be a finite collection of hash functions that map a given universe
U of keys into integers in {0, 1,...,m — 1}. H is said to be a universal class of hash
functions if, and only if, for any fixed pair of distinct keys x,y € U it is

he H 2 hix) = h(»)| < '%'

In other words, the class H is defined in such a way that a randomly chosen hash
function /4 from this set has a chance no more than 1/m of making the two fixed
distinct keys x and y collide.? This is exactly the basic property that we deployed
when designing hashing with chaining (see the proof of Theorem 8.1). And indeed,
in Theorem 8.2, we will show that Theorem 8.1 and its Corollaries 8.1-8.2 can be
rephrased by substituting the ideal simple uniform hashing with the effective universal

2 This notion can be extended with some slackness ¢ > 1 into the guarantee of a probability of collision
upper bounded by ¢/m, thus giving rise to the so-called c-universal hashing.
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hashing. Effective because, in Section 8.3.1, we will provide a real universal hash
class, which will make concrete all these mathematical ruminations.

Theorem 8.2 Let T[0, m—1] be a hash table with chaining, and suppose that the hash

function h is selected uniformly at random from a universal class H. The expected
length of the lists in T, whichever is the input dictionary of keys S, is still no more than
1 + o, where « is the load factor of T.

Proof We note that the expectation here is over the choices of / in 4, and it does not
depend on the distribution of the keys in S. For each pair of keys x,y € S, define the
indicator random variable /y,, which is 1 if these two keys collide according to a given
h € H, namely h(x) = h(y); otherwise it takes the value 0. By definition of universal
class, given the random choice of & € H, P(l,, = 1) = P(h(x) = h(y)) < 1/m.
Therefore we have E[L,] =1 x P(ly, = 1) +0 x P(ly, =0) =Py, =1) < 1/m,
where the expectation is computed over /’s random choices.

Now we define, for each key x € S, the random variable N, that counts the number
of keys other than x that hash to the entry 7[A(x)], and thus collide with x. We can
write Ny = Zye S, ysx Lov- BY linearity of expectation, the expected length of the list
pointed to by T[h(x)] is E[N,] = Zyes’y#x E[ly] = (n — 1)/m < «a. By adding 1,
because of x, the theorem follows. [ |

Note that the time bounds given for hashing with chaining are in expectation, so
there could be some lists which might be very long, possibly containing up to ®(n)
items. This satisfies Theorem 8.2, but is of course not a nice situation because the
distribution of the searches might privilege keys that belong to these very long lists,
thus taking significantly more than the “expected” time bound. In order to circumvent
this problem, one should also guarantee a small upper bound on the length of the
longest list in T; this is what the Theorem 8.3 proves.

Theorem 8.3 Let T[0,n— 1] be a hash table with chaining indexed by a hash function
taken uniformly at random from a universal class H. Assume that we insert in T a

dictionary S of n keys; the length of the longest list in T is O (log)l%;gjn) with high

probability, namely at least 1 — %

Proof Let h be a hash function selected uniformly at random from 7, and let O(k)
be the probability that exactly k keys of S are hashed by /4 to a particular slot of the
table 7. Given the universality of %, the probability that a key is assigned to a fixed
slot is bounded above by 1/#x, and the expected number of keys per slot is thus 1.

Let X; be the random variable denoting the number of keys mapped to slot j, for
j=0,1,...,n — 1. There are (Z) ways to choose k keys from dictionary S, so the
probability that a slot gets at least & keys is bounded above by

ow=(1) () =(5) () =)

where we use the well-known upper bound for the binomial coefficient: (Z) < (ne/k)*.
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Since Q(k) is decreasing for k£ > e, we aim at finding a value kg such that Q(k) <
1/n? for k > k. We will show that such a value is kg = lflll';l’; , where ¢ is some constant
such that ¢ > 4. In fact, it is enough to notice that Q(k) < 1/n? iff (e/k)* < 1/n* iff
(k/e)¥ = n?, and then by applying the logarithm to both sides, we get k In(k/e) > Inn?.
We find that this inequality holds for &g, by simple algebraic manipulations.

Finally, we conclude that the theorem’s statement holds because we can use the
union bound over the 7 slots of 7', and thus show that the probability that any slot gets

more than ko keys is at most n Q(kg) < n(1/n*) = 1/n. [ ]

Two observations are in order at this point. First, the bound on the maximum length
of a list in 7' is with high probability, but it can be turned into a worst-case bound
via a simple argument applied to the construction of 7. We start by selecting uni-
formly at random a hash function # € H; we hash every dictionary key of S into
T, and then check whether the condition on the length of the longest list is at most
2logn/loglogn. If so, we use T for the subsequent search operations, otherwise we
resample 2 € H and reinsert all dictionary keys in 7. A constant number of trials
suffice to satisfy that bound,® thus guaranteeing O(n) construction time in expectation
and O(log n/ log log n) search time in the worst case.

The second observation is that this result can be further improved by using two
or more, say d, hash functions /; and a hash table 7" in which the slots are buckets
holding all dictionary keys hashed to that slot. The speciality of this scheme resides
in the way the d hash functions are deployed to fill the table’s buckets. Operation
Insert (k) tests the loading of the d slots T[A;(k)], and then inserts % in the least
filled one. In the case of a tie in the loading of slots, the algorithm chooses T[4 (k)].
Operation Search (k) searches all d lists T[h;(k)], since, if k exists, we cannot know
how loaded each slot was at insertion time. For its algorithmic structure this scheme
is also known as d-choice hashing. The time cost for Insert (k) is O(d), whereas
the time cost of Search (k) is given by the total length of the d searched lists. We
can upper bound this length by d times the length of the longest list in 7" which,
surprisingly, has been proved to be % 4+ O(1) for d > 2 (see [5] for details).
The literature offers several variants of this idea, one of the most famous and effective
being d-left hashing. Here d tables of size m/d are used; each of them being indexed by
one distinct hash function, ties are managed by inserting the key into the leftmost table.

It is interesting to note that two-choice hashing is preferable to any other d-choice
hashing with d > 2, because it achieves O(log log n) for the length of the longest list
in 7', and this bound cannot be improved asymptotically whatever constant d is taken
but, in turn, a larger d slows down the search operations by a factor d. Moreover, if
we compare the bound of two-choice hashing with the bound obtained for the classic
case of hashing with chaining (here d = 1) in Theorem 8.3, we notice that two-choice
hashing achieves an exponential improvement just by using one more hash function.
This surprising result is also known in the literature as the power of two choices,

3 We just use the Markov bound (see https://en.wikipedia.org/wiki/Markov%27s_inequality) to state that
the longest list longer than twice the average may occur with probability < 1/2.
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precisely because choosing the least full slot between two randomly selected ones
allows the length of the longest list in 7" to be reduced exponentially.

As a corollary, we note that this result can be used to design a hash table that saves
the space of pointers and increases the locality of reference in the search and update
operations (hence less cache/IO misses). The idea is to use two-choice hashing over a
table of small and fixed-size buckets. If we set the bucket size to y loglog n, for some
small constant y > 1, we will ensure with high probability that (i) no buckets will
undergo any overflows and (ii) just two cache misses will be taken by any search and
update operation.

Do Universal Hash Functions Exist?

The answer to this question is positive and, surprisingly enough, universal hash func-
tions can be easily constructed, as we will show in this section by providing three
concrete examples. We assume, without loss of generality, that the table size m is a
prime number and keys are integers represented as bit strings of log, |U| bits.* We let

= 1‘l’§g22|;/| and assume that this is an integer. We decompose each key & into » parts
of log, m bits each, so k = [ko, k1, ...k,—1]. Clearly, each part £; is an integer smaller
than m, because it is represented in log, m bits. We do the same for a generic integer
a = [ag,ay,...,ar—1] € [1,|U| — 1] used as the parameter that defines the universal
class of hash functions H as follows: /,(k) = Z;;& a;k; mod m. The size of H is

|U| — 1, because we have one function per value of @ > 0.

Theorem 8.4 An example of a universal class is the set of hash functions having the
form: hy(k) = Zf;(} aik; mod m, where m is prime and a is a positive integer smaller
than |U| = m".

Proof Suppose that x and y are two distinct keys which differ by at least one bit. For
simplicity of exposition, we assume that a differing bit falls into their most significant
block of (log m)-bits, that is, xg # yo. According to Definition 8.1, we need to count
how many hash functions of the form 4,(k) = Zf;é aik; mod m make these two keys
collide; or equivalently, how many a > 0 exist for which 4,(x) = h,(y). Since xg # yo,
and we operate in arithmetic modulo a prime m, the multiplicative inverse of (xo — o)
must exist and be an integer in the range [1, |U| — 1]. By abusing a little bit of the
notation, we will denote this inverse by (xo — y0)~!. So we can write

r—1 r—1
ha(¥) = ha(y) € Y apxi =) _ajy; mod m
i=0 i=0

r—1
& ag(xo —y0) = — Y aix; —y) mod m
i=1

r—1
& ap= (- Zai(xi —yz')) (xo—y0)"'  mod m.

i=1

4 This is possible by pre-padding the key with 0, thus preserving its value.
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The final equation actually shows that, whatever the choice for [a1, az, ..., a,—1] (and
they are m"~! — 1, since we are excluding the null configuration), there exists only one
choice for ap # 0 (the one specified in the last line above) that causes x and y to
collide. So there are m"~! — 1 choices for a that make x # y collide, and this number
can be written as m' ! — 1 = (m’/m) — 1 = (|[U|/m) — 1 < (JU| — 1)/m = |H|/m.
So Definition 8.1 of universal hash class for H is satisfied. |

It is possible to adjust the previous definition in order to hold for any table size
m, thus not only for prime values. The key idea is to make a nested modular com-
putation by means of a large prime p > |U|, and a generic integer m < |U| equal
to the size of the hash table we wish to set up. We can then define a hash function
parametrized by two integer values ¢ # 0 and b > 0: hyp(k) = ((ak 4+ b) mod
p) mod m, and then define the set H),,, = Ua>0’b>0{ha,;,}, which can be shown to be
universal. -

These two examples of universal classes of hash functions require modulo oper-
ations over arbitrary integers. There are indeed other universal hash classes that are
faster to compute because they rely on modulo operations involving only power-of-
two integers, which can be easily implemented via fast register shifts. An interesting
and effective example is provided by the multiply-add-shift scheme (see [7, 12]). It
assumes that |U| = 2", and takes a table size m = 2¢ < |U|. Then it defines the class
H,¢ as containing hash functions of the form: 4, 4(k) = (ak + b mod 2%) div W=t
where ¢ is an odd integer smaller than |U]| and b > 0. Note that 4, (k) selects first
the least significant w bits (because of the modulo operation by 2'), and then selects
their most significant £ bits (because of the division operation by 2" ~*). In some sense,
these £ bits fall in the “middle” of the integer (ak 4 b) and correspond to a nonnegative
integer that is smaller than 2¢ (= m). It can be proved that the class H,y¢ is universal,
and can be efficiently implemented by avoiding any modulo operation, via register
shifts over memory words of 2w bits.

A Simple (Static) Perfect Hash Table

When dealing with hash tables we are usually led to think that they are very efficient
in practice but, in theory, their bounds are in expectation and depend on the properties
of the underlying universal class of hash functions and/or on the distribution of the
dictionary keys. This is a false belief, because nowadays there are many hash-table
designs that are elegant, simple to implement, and ensure very efficient performance
in the worst case for the query and update operations. The design of such effective
hash functions will be the subject of the rest of this chapter; this makes such hashing
schemes the right choice whenever the search operation is a lookup, that is, when we
need to assess whether a key in the dictionary S exists or not.

Let us start from the case of a static dictionary S whose keys do not undergo any
insertion and deletion operations, and introduce the following key definition.
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Definition 8.2 A hash function 2: U — {0, 1,...,m — 1} is said to be perfect with
respect to a dictionary S of n keys if, and only if, for any pair of distinct keys k', k" € S,
it is h(K') # h(k").

A simple counting argument shows that we need m > n in order to make perfect
hashing possible. In the case that m = n, that is, the minimum possible value, the
perfect hash function is termed minimal (in short, MPHF). A hash table 7 using an
MPHF A guarantees O(1) worst-case search time as well as no waste of storage space,
because it has the size of the dictionary S and keys can be directly stored in the table
slots. Perfect hashing is thus a sort of “perfect” variant of direct-address tables (see
Section 8.1), in the sense that it achieves constant search time (like those tables), but
optimal linear space in the size of S (unlike those tables).

A (minimal) perfect hash function is said to be order preserving (for short,
OP (MP) HF) if and only if, VK’ < k” € S, h(k’) < h(k”). Clearly, if & is also min-
imal, and thus m = n, then A(k) returns the rank of the key in the ordered dictionary
S. It goes without saying that the property OPMPHF strictly depends on the dictionary
S upon which /4 has been built: by changing S we could destroy this property, so it is
difficult, to maintain this property under a dynamic scenario.

In the rest of this section we will confine ourselves to the case of static dictionar-
ies, and thus a fixed S. Then in Section 8.5 we extend this design to the case of a
dynamic dictionary, and finally return in Section 8.6 to the case of a static dictionary
by presenting the design of a perfect, static, minimal, and order-preserving hashing
scheme.

The key algorithmic method for designing a static perfect hashing scheme is to use
a two-level approach that deploys a group of tables and universal hash functions: one
for the first level and the others for the second level. More precisely, the first level is
a hash table 77 of size m = n, and keys are distributed according to a primary-level
universal hash function, say /;(k) : U — {0, 1,...,n—1}. In order to manage the keys
colliding into a same slot 7'[/], forj = 0,1,...,n — 1, we design a secondary hash
table 7> ;, which is addressed by another universal hash function /5 ;, which must be
perfect for the keys colliding at T7[ /], and thus not eliciting any collisions in 73 ;. So
overall we will have at most 1+ 7 universal hash functions: /; for the first level and the
n hash functions /4, ; for the secondary level. The key mathematical result to prove is
that each /5 ; can be designed to guarantee that there are no collisions in 75 ; and that
the overall space occupancy of all secondary-level hash tables is bounded above by
O(n). In terms of query efficiency, the search for a key & consists of two table lookups
(hence O(1) time in the worst case): one at 71[j] with j = A(k), and one at the table
T»,; (pointed to by T1[;]). The pseudocode for the searching operation is provided in
Algorithm 8.1.

The following theorem is crucial for defining the size of the secondary hash tables.

Theorem 8.5 If we store q keys in a hash table of size s = q* using a universal
hash function, then the expected number of collisions among those keys is less than
1/2. Consequently, the probability of having at least one collision in that table is less
than 1/2.
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Algorithm 8.1 Procedure Search (k) in a perfect hash table 7'
1: Let iy and £, ; be the universal hash functions defining T';
= hk);
if 7[j] = NULL then
return false;/k ¢ S
end if
Ty = T1[jl;
i = hy, j(k);
if 7 ;[i] = NULL or 13 ;[i] # k then
return false;/k ¢ §
end if
. return true;//k e S

R A i

[ —
—_ O

Proof  Since the keys are ¢, there are (g) < ¢*/2 pairs of them that may collide. If
we choose the hash function % uniformly at random from a universal class, then each
given pair collides with probability 1/s (by Definition 8.1). Thus setting s = ¢°, the
expected number of collisions is bounded above by (g) % < ¢*/2¢%) = % To prove
the second statement of the theorem it is enough to apply Markov’s inequality (i.e.
PX > 2E[X]) < 1/2), over a random variable X that expresses the total number of
collisions in the hash table 7. |

Let S; be the dictionary keys mapped to the entry 7' /] by the first-level hash func-
tion 41, and define n; = |§;|. Theorem 8.5 proves that, by setting the size m; of the
hash table 7; equal to (nj)2 (the square of the number of keys hashed to 77/]), the
randomly chosen secondary-level universal hash function 4 ; is perfect for S;’s keys
with nonnegligible probability, for everyj = 0, 1,...,n — 1. Hence, we can iterate the
random selection of 4, ; until this property is guaranteed, and Theorem 8.5 actually
ensures that, in expectation, two iterations are enough to guarantee this for each entry.

We are left with proving that the total size of the secondary-level hash tables is
bounded above by O(n), so that the overall size of this two-level hashing scheme will
be n + O(n) = O(n).

Theorem 8.6 [f we store n keys in a hash table of size m = n using a universal hash
function, then E [X:J":_Ol (nj)z] < 2n, where the expectation is with respect to the random
selection of the hash function in its universal class. In terms of the two-level hashing
scheme, this means that the expected total size of all secondary-level hash tables T
is less than 2n, given that we have set m; = (nj)2 foreveryj=0,1,...,n— 1.

Proof Let us consider the following identity: a*> = a + 2(;), which holds for any
positive integer a, and note that n = Z/m:_ol n; because every dictionary key is mapped

by A1 to one table entry. We use these two equalities in the following algebraic steps:
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Algorithm 8.2 Creating a perfect hash table
1: Choose uniformly at random a hash function 21 : U — {0,1,...,n — 1} from a
universal class;

2: Initialize n; = 0,S; =@, forallj = 0,1,...,n — 1;
3: for k € S do
4: Add k to set S;, where j = hy(k);
5: nj=n;+ 1,
6: end for
7 L= Y00 ()%
8: if L > 2n then
9: Repeat the algorithm from Step 1;
10: end if
11: forj=0,1,...,n—1do
12: Allocate table T ; of size m; = (n;)%;
13: Choose uniformly at random /2 ; : U — {0, 1,...,m; — 1} from a universal
class;
14: for k € S; do
15: i = hy (k)
16: if 75 ;[i] # NULL then
17: Destroy 75, and repeat from Step 12;
18: end if
19: il = k;
20: end for
21: end for

{2 ] 5]

Since one collision involves a pair of keys, the number of collisions occurring in
a slot 7' /] equals the number of pairs of dictionary keys mapping to 77 ], hence it is
(j)- Consequently, the summation in the last equality accounts for the total number of
collisions induced by the primary-level hash function /). By repeating the argument
adopted in the proof of Theorem 8.5 with ¢ = n keys, and s = » as the size of
table T}, the expected value for this total number of collisions is (g)}lq =1 (';1) <3

Substituting this upper bound to the summation Z;l:_()l (’;f), we derive the statement of
the theorem. |
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Figure 8.3 A perfect hash table over the dictionary S = {3,4,7,8,9,11,12,13,17}, with
universal hash functions having the form 4(k) = (a k + b mod 19) mod s, where s is the size
of the hash table indexed by this hash function. See the text for explanations.

It is important to observe that every secondary-level hash function 42 is chosen
independently of the others, so if it turns out to be not perfect, because it induces
some collisions among the n; keys mapped within 7> ;[0, (nj)2 — 1], then it can be
redrawn from its universal class without influencing the other secondary-level hash
functions. The same is true for the primary-level hash function /41, as we have already
observed. Algorithm 8.2 provides the pseudocode for the construction process of this
two-level hashing scheme, and Theorems 8.5 and 8.6 ensure that the expected number
of redraws is a small constant per hash function, so the overall construction time is
O(n), in expectation.

Figure 8.3 shows an example of a two-level hashing scheme for a set S of n = 9
integer keys. The example uses universal hash functions with the form i(k) = (a k +
b mod 19) mod s, where s is the size of the hash table indexed by this hash function.
For the primary-level hash table 77 we set m = n = 9, and hash parameters s = m,
a = 1,and b = 0; for the secondary-level hash tables 7> ; we set m; = (n;)* and
show on the left of the figure the three parameters (i.e. s = m;, a;, b;) involved in the
computation of /5 ;, and on the right the content of 7 ;[0,m; — 1]. In the running
example, the condition introduced in Theorem 8.6 for the total size of the secondary-
level hash tables is satisfied: in fact, L=1+1+4+4+1+4=15<2n=18.

To search for a key k£ = 14, we follow the pseudocode of Algorithm 8.1, and thus
compute j = A1(14) = (1 x 14 + 0 mod 19) mod 9 = 5. So we access 7[5] and
find that it is NULL, thus concluding that 14 ¢ S. Let us now assume we search for
k = 13; we compute j=h1(13)=(1 x 13 4+ 0 mod 19) mod 9 =4. The entry 71[4]
points to table 77 4, and the visited entry is the one at position /2 4(13) = (1 x 13 +
2 mod 19) mod 4 = 3 that is not NULL: namely, 75 4[3] = 13, and thus the algorithm
has verified that 13 € S. The last case to consider is exemplified by key & = 18,
which accesses the primary-level hash table at 7[0], and the secondary-level hash
table 7> 0[0] = 9 # 18, so the search algorithm can conclude that 18 & S.
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Cuckoo Hashing

When the dictionary is dynamic a different perfect-hashing scheme has to be devised.
Here we describe an efficient and elegant solution called cuckoo hashing [10], which
achieves expected constant time in updates and worst-case constant time in searches.
The only drawback of this approach in its preliminary formulation was that it made use
of two hash functions that were O(log n)-independent.” However, recent results in the
literature have significantly relaxed this requirement to just 2-universal hashing [1],
but we stick with the original scheme for its simplicity.

Briefly, cuckoo hashing combines the d-choice hashing of Section 8.3 with the
ability to move dictionary keys in a proper way among table entries to avoid their
collisions. In its simplest form, cuckoo hashing consists of two hash functions /; and
hy and one table T of size m. Any key k is stored either at T[h1(k)] or at T[hx(k)],
so searching and deleting operations are trivial: we need to look for & in both those
entries and, in the case of a deletion operation, eventually remove it. Inserting a key is
a little bit more involved because it can trigger a cascade of key moves in the table,
and this process is exactly the one that gives the name to this approach, inspired by
the behavior of some species of cuckoo which push the other eggs or young out of the
nest when they hatch. When inserting a key £, the algorithm looks at positions /1 (k)
and A, (k) in T if one of them is empty (if both are, /1 (k) is chosen), the key is stored
at that position and the insertion process is completed; otherwise, it creates room for
k by evicting one of the two keys stored in those two table entries (typically, the key
stored in TThy(k)] is evicted) and replacing it with k. Then, the evicted key plays the
role of k£ and the insertion process is repeated all over again.

There is a caveat to take into account at this point. If the evicted key, say y, was
stored in T[h(k)], then T[h;(y)] = T[hi(k)] for either i = 1 or i = 2. This means
that, if both positions 7[4;(y)] and T[hy(y)] are occupied, the key to be evicted at
this second step cannot be chosen from the entry that was storing 7[41(k)], because
that key is &, and this would therefore induce a trivial infinite cycle of evictions over
this entry between keys k and y. The algorithm therefore is careful to always avoid
evicting the previously inserted key. Nevertheless, cycles may arise (e.g. consider the
trivial case in which {A1(k), ha(k)} = {h1(»),h2(»)}), and they can be of arbitrary
length, so the algorithm must be careful in defining an efficient escape condition which
detects this situation, in which case it resamples the two hash functions and rehashes
all dictionary keys (similarly to what was done for the perfect hashing of the previous
section). The key property, proved in Theorem 8.7, will be that cycles occur with
bounded probability, so the O(n) cost of rehashing can be amortized, by charging O(1)
time per insertion (as proved in Corollary 8.3).

5 See https://en.wikipedia.org/wiki/K-independent_hashing for a formal yet succinct definition of
k-independent hashing. Actually, the universality property we introduced in Section 8.3 may be
rephrased as pairwise independence or 2-independent hashing, because it holds for pairs of keys, and
thus k£ = 2.
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Algorithm 8.3 Insert key £ ¢ S in a dictionary indexed by cuckoo hashing over a
table 770, m — 1].

1: if TThy(k)] = NULL then

2 T[h1(k)] = k; return;

3: end if

4: if TThy(k)] = NULL then

5: T[ha(k)] = k; return;

6: end if

7. count = 0;

8: s = 2;// for the inserted key k we use hy in Step 10 below

9: while count < m do
10: d = {1,2} — {s}; /s is the index of the (source) hash function for k in T
11: // d is the index of the (destination) hash function for k in T
12: pos = hy(k); // position in T where k has to be stored
13: swap k with T'[pos]; // k is the new key to be relocated
14: if ¥ = NULL then
15: return;
16: end if
17: let s be hy(k) = pos; // s the (source) hash-function index for k in T
18: count = count + 1;

19: end while
20: rehash the dictionary keys in 7' by two new hash functions, possibly doubling ;
21: repeat the insertion of & from Step 7.

Algorithm 8.3 gives the pseudocode of the insertion operation, as sketched in the
previous paragraph; more compact pseudocodes are possible, but we opt here for a
pedantic coding for the sake of teaching purposes. Steps 1-6 check whether at least
one of the two candidate table entries for storing k is empty, and in this case the
key gets stored therein. Otherwise it starts a while-loop which codes the cascading of
evictions described in the previous paragraph. The loop stops either if an empty table
entry is met (Steps 14—16), or if it has executed more than m steps (meaning that we
ended up in an infinite loop). The coding trick is in Step 10, which ensures that the
evicted key is moved to the table entry pointed to by kg(k) — hg(k), which we will
model as a directed edge of a suitably constructed graph (see Figure 8.4).

In fact, in order to analyze this situation it is useful to introduce the cuckoo graph,
whose nodes are entries of the table 7" and whose edges are associated to dictionary

l |
¥ [ I ¥
A C B D E F

T

Figure 8.4 Graph-based representation of cuckoo hashing.
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Figure 8.5 Inserting the key G: (left) the two entry options, (right) the final configuration for the
table. Note that the edges associated with the moved keys, namely A and B, are dashed and
swapped in order to reflect the final positions of these two keys.

keys and connect the two table entries where a key could be stored by the two
universal hash functions /1 and /y. Edges are directed to keep account of where a
key is stored (source), and where a key could be alternatively stored (destination).
Figure 8.4 depicts a cuckoo graph for a table of 10 entries, and storing 6 keys, namely
(A, B,C,D,E, FL

The directed edges provide a simple way to identify the sequence of table entries
(i.e. path of nodes) traversed by a cascade of evictions triggered by a key k and starting
from either entry (node) T'[A1(k)] or T[ha(k)]. Let us call this path the bucket of k. It
reminds the list associated to entry 7[A(k)] in hashing with chaining (Section 8.2), but
it might have a more complicated structure because the cuckoo graph can have cycles,
and thus this path can form loops as it occurs for the cycle formed by keys D and F.

Let us now consider the insertion of a key G into the cuckoo graph depicted in
Figure 8.4, by assuming that /1(G) = 3 and 42(G) = 0 (i.e. table entries are counted
from 0), so that G evicts either A or B, as shown in Figure 8.5. We put key G in 7[0],
thereby evicting A, which attempts to be stored in 7[3] = B according to the directed
edge. Then A evicts B, which is moved to the last location of the table according to its
corresponding directed edge. Since such a table entry is NULL, B is stored there and
the insertion process is successfully completed.

Let us now consider a more sophisticated case of insertion, involving a key Z,
for which we study two possible mappings of the two hashes /#1(Z) and %,(Z). Fig-
ure 8.6 exemplifies these two situations, which allow us to comment on the relation
between the existence of a cycle in the directed cuckoo graph and the impossibility of
completing an insertion operation.

On the left of Figure 8.6, key Z is mapped either to table entry 7[1] or to table
entry 7[4]. These entries are occupied by keys C and D, respectively. Since the inser-
tion procedure prefers evicting the key 7[41(Z)] = D, the key Z replaces D, which
moves to replace F (according to its directed edge), which in turn moves to replace Z
again. Hence, the algorithm finds a cycle (shown with bold edges in the figure) which
nevertheless does not induces an infinite loop, because the eviction of Z leads to the
algorithm checking its second possible location, namely 7'[4(Z)] = T[1] = C, which
is moved to the free table entry 7[2]. We conclude that the insertion is completed
successfully, even in the presence of a (single) cycle.
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Figure 8.6 Inserting the key Z: (left) successful insertion, (right) unsuccessful insertion. In bold
the edges considered by the insertions.

On the right of Figure 8.6, we only change the second mapping of /,(Z), to the table
entry 3 instead of 1. This change makes the insertion unsuccessful because both entries
T[3] and T[4] are part of two directed cycles (shown with bold edges in the picture),
the former involving entries {0, 3} and the latter involving entries {4, 8}. In this case,
the algorithm will end up in an infinite loop of evictions, flowing from one cycle to the
other without stopping. This means that the insertion algorithm must be designed to
check whether the traversal of the cuckoo graph ends up in such an infinite loop: this
is done easily and space efficiently by bounding the number of eviction steps to the
table size. If this occurs, as stated in Step 20 of Algorithm 8.3, the table is rebuilt from
scratch, eventually using two new hash functions and a larger/smaller size depending
on the current load factor of the table.

We are now ready to analyze the time complexity of the insertion operation, which
inevitably hinges on the study of some properties of the cuckoo graph. Let us assume
that this graph consists of m nodes, one per table entry, and » edges, one per dictionary
key. Note that the role of these two parameters is swapped with respect to the classical
notation used in the graph literature where, typically, » is the number of nodes and m is
the number of edges. The cuckoo graph is a random graph because edge endpoints are
defined according to the two universal hash functions /1 and 4. In the following, to
easily bound the event probabilities, we consider the undirected version of the cuckoo
graph, namely one in which edges are not oriented: this way, we can state that two
nodes (i.e. table entries) are involved in an insertion operation if there is an undirected
path connecting them in the cuckoo graph. Theorem 8.7 states and proves the key
property upon which the efficiency of the insertion operation hinges.

Theorem 8.7 For any pair of nodes i and j, and any constant ¢ > 1, if m > 2cn, then
the probability that in an undirected cuckoo graph of m nodes and n edges there exists
a shortest path from i to j of length L > 1 is at most ¢~% /m.

Proof We proceed by induction on the path length L > 1. The base case L = 1 cor-
responds to the existence of the undirected edge between nodes i and j. Every key can
generate that edge with probability no more than 2/m?, because edges are undirected
and 41 (k) and A (k) are uniformly random choices among the m table entries, given the
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universality of those hash functions. Summing over all # dictionary keys, and recalling
that m > 2cn, we get the bound 3", ¢ 2/m* = 2n/m?> < c~!/m.

For the inductive step we must bound the probability that there exists a shortest
path of length L > 1, but no shortest path of length less than L connects i to j (or
vice versa). This occurs only if, for some table entry z, the following two conditions
hold: (i) there is a shortest path of length L — 1 from i to z (that, clearly, does not pass
through /); (ii) there is an edge from z to ;.

By the inductive hypothesis, the probability that the first condition is true is
bounded by ¢=“"D/m = ¢+ /m. The probability of the second condition has
already been computed for the base case, and it is bounded by ¢~!/m. So the
probability that there exists such a shortest path (passing through z) is at most
(1/em) x (¢ X /m) = ¢t /m?*. Summing over all m table entries z, we get that
the probability of a shortest path of length L between i and j is at most ¢~ /m. |

In other words, this theorem states that if the number m of nodes in the cuckoo
graph is sufficiently large compared to the number n of edges (i.e. m > 2cn), there is
a low probability that any two nodes i and j are connected by a long path and hence
might participate in a long cascade of evictions. Actually, this probability decreases
exponentially with L. The case of a constant-length path L = ®(1), for which the
probability of occurrence is O(1/m), is very significant. This means that, even for this
restricted case, the probability of a nonconstant number of evictions is small. We can
relate this probability to the collision probability in hashing with chaining, by using
the notion of “bucket” introduced in Section 8.3, and by including in a bucket all
dictionary keys stored in table entries connected by an undirected path of the cuckoo
graph.

If the dictionary undergoes many key insertions, the table 7 eventually gets full
and further insertion operations become impossible. Actually, such an impossibil-
ity may be met well before 7' gets full, because Theorem 8.7 holds only for a load
factor of the cuckoo hash table equal to « = n/m < 1/2¢ < 50%. Recent results
have significantly improved this poor bound, thus making cuckoo hashing a viable,
practical, and effective alternative to other hashing schemes. So we conclude this sec-
tion by focusing on the cost of rehashing the dictionary keys stored in table 7" and
on how much this process impacts on the time complexity of each single insertion
operation.

Let us consider a sequence of en key insertions, where € is a small positive constant,
and assume that the table size m is sufficiently large to satisfy the conditions imposed
in Theorem 8.7 after that sequence of insertions: namely, m > 2cn+2c(en) = 2en(1+
€). There is a rehashing of 7 only if some key insertion induces an infinite loop in the
cuckoo graph (i.e. Step 20 of Algorithm 8.3). In order to bound this probability we
consider the final cuckoo graph in which all en keys have been inserted, and thus
consists of m nodes and n(1 + €) edges. The presence of a cycle in this graph is surely
an event that includes the one inducing an infinite loop in the insertion of those keys,
so its probability of occurrence provides a simple (yet significant) upper bound to the
probability of an unsuccessful insertion. This probability can be easily estimated in
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two steps. First, we compute the probability that a node in the cuckoo graph is part of
a cycle of any length: this is at most > 7o, cLim= ’C’%, according to Theorem 8.7,
because we assumed m > 2cn(1 + €). Second, note that the probability of having a
cycle in the cuckoo graph can be bounded by summing the previous bound over all m

table entries: namely, ﬁ = Cl—l

Corollary 8.3 By setting c = 3, the insertion of €n keys in a dictionary of size n imple-
mented via cuckoo hashing over a table of size m > 6n(1 + €) takes ®(n) amortized
expected time.

Proof By setting ¢ = 3 in the paragraph preceding this theorem, we derive that the
probability of the existence of a cycle in a cuckoo graph of m > 6n(1 + €) nodes and
n(l + €) keys is at most 1/2. Therefore a constant number of rehashes are enough to
ensure the successful insertion of en keys in that cuckoo hashing table. Given that the
expected time for an insertion is O(1), because of the observation about the constant
expected size of a bucket, we can derive that one rehashing of n(1 4+ €) keys takes O(n)
expected time. Therefore, we can conclude that the insertion of en keys completes
successfully in O(n) expected amortized time. |

In order to make this algorithm work for every »n and ¢, we can adopt the same
idea sketched for hashing with chaining at the beginning of this chapter, just after
Corollary 8.1, called the global rebuilding technique. More precisely, whenever the
size of the dictionary becomes too small compared to the size of the hash table, a
new, smaller hash table is created; conversely, whenever the hash table becomes too
full, a new, larger hash table is created. To make this work efficiently, the size of the
hash table is increased or decreased by a constant factor (larger than 1), for example,
doubled or halved. The cost of rehashing can be further reduced by using a very small
amount (i.e. constant) of extra space, called a stash. Once a failure situation is detected
during the insertion of a key k& (i.e. k incurs an infinite loop), then this key is stored
in the stash (without rehashing). This reduces the rehashing probability to @(1/n°*1),
where s is the size of the stash. The choice of the parameter s is related to some
structural properties of the cuckoo graph and of the universal hash functions, which
are too involved to be discussed here (for details see [1] and references therein).

More on Static and Perfect Hashing: Minimal and Ordered

We recall that a minimal ordered perfect hash function is a hash function that avoids
collisions between the dictionary keys, maps to a codomain whose size matches the
dictionary size (i.e. m = n), and preserves in the hash values the key order (i.e. VA’ <
k" € S, itis h(k") < h(k")). The minimality implies that, given a dictionary key k € S,
the integer 4(k) corresponds to the rank of k in the ordered dictionary S.

The design of / strictly depends on the dictionary S: by changing S we could destroy
either the fact that it is “perfect” or the fact that it is “ordered,” or both. So it is difficult
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to maintain this property under a dynamic scenario. Moreover, even if U is ordered,
the order-preserving property is guaranteed only for the dictionary keys, so if we select
a key % ¢ S we cannot say anything about the value h(/k\) and the position of ¥ in the
ordered S: we can conclude only that it is a value in {0, 1, . . ., m — 1}. Nevertheless, for
the dictionary keys, we can use /4 to implement a direct-access table without incurring
its space-occupancy limitations mentioned in Section 8.1: just allocate a table of size
n and store the dictionary key £, and its satellite information, in 7T[A(k)]. Keys will be
stored in distinct table entries (% is perfect) and ordered within 7" (% is ordered), and
without any wasted extra space (4 is minimal). An interesting subtlety of these types
of hash functions is that the value A(k) can be used as a lexicographic (integer) name
for the dictionary key &, so we can substitute lexicographic comparisons between pairs
of keys with less-than comparisons between hash values, thus exploiting the efficiency
of integer comparisons with respect to the possible inefficient comparisons between
(possibly long) keys.

Before digging into the technicalities of the construction of /4, let us add to these
considerations the following subtle one. If the dictionary keys are encoded as variable-
length bit strings, then we could assign the rank to each of them by deploying a trie
data structure (see Theorem 9.7), but this would incur two main limitations: (i) rank
assignment would need a trie search that incurs I/Os in the worst case, rather than
the O(1) I/Os required by the hash-based solution; (ii) space occupancy would be
linear in the total dictionary length, rather than linear in the dictionary’s cardinality.
This is because the proposed minimal ordered perfect hash functions do not need the
storage of the dictionary S but just ®(n) integers. However, the reader has to remember
that these hash functions are not able to provide the lexicographic rank of keys not
belonging to the dictionary S, and thus they are confined to solve just the so-called
lookup queries. Conversely, if lexicographic queries within the dictionary S also have
to be supported for the keys not in S, then tries are mandatory and they incur larger
time and space costs (see Chapter 7).

It is interesting to note that the design of / is based upon three auxiliary functions,
denoted /1, hy, and g: the first two are universal hash functions over a proper integer
codomain, which is larger than n, whereas the third function g is defined from the
first two by solving a set of n» modulo equations in two variables each, which in turn
boils down to solving an interesting labeling problem over an undirected and acyclic
random graph. Again, random graphs are used to solve concrete problems apparently
far removed from a graph formulation: previously we introduced random graphs for
designing and analyzing cuckoo hashing, and now we use them for designing and
analyzing minimal ordered perfect hash functions.

Let us now dig into the formal definition of the three auxiliary functions 41, 43,
and g:

e We define /1 and /4, as two universal hash functions mapping keys from the universe
U to integers in the set {0,1,...,m" — 1}, where m’ is set to be larger than the
dictionary size n = |S|. It is worth observing that /1 and /4, are not minimal (in fact,
m’ > n) and, in addition, they are not necessarily perfect because they might induce
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collisions among S’s keys. After 4; and A, have been selected from a universal class
of hash functions, the algorithm builds a proper undirected graph G, consisting of
n edges and m’ nodes,® and checks whether it is cyclic, in which case it redraws
h1 and hy; otherwise (i.e. G is acyclic) it proceeds to construct the function g as
sketched in the following bullet. The choice of m’ impacts on the expected number
of redraws, and thus on the efficiency of the construction process: typically, we set
m’ = cn, for a constant ¢ > 3.7

e We define g as a function that maps integers from the range {0,...,m" — 1} to
integers in the range {0, . .., n— 1}. This mapping cannot be perfect, given that m’ >
n, and so some output values of g could be repeated. Nevertheless, the function g
is designed in a way that it can be properly combined with 4] and 4, to define
h in the way we want. The construction of g is obtained via an elegant algorithm
that assigns proper integer labels to the nodes of the graph G, which are m’ and in
correspondence with g’s domain values. Such an assignment always exists, if G is
acyclic, and can be computed in time linear in G’s size by traversing its paths (see
later in this section).

e We compose /1, hy, and g to define A(k) as follows: [g(h1(k)) + g(h2(k))] mod n,
for every k € S§. Clearly, 4 is minimal because it returns values in the range
{0,...,n — 1}; we will prove that it is perfect and ordered by construction.

As far as time and space complexities for the evaluation of /4 are concerned, we
observe the following. The function g is encoded with an integer array of m’ entries,
whereas universal hash functions /; and 4, take constant space (see Section 8.3).
Given that m’ = ©(n), the total required space is ©(n), hence linear in the dictionary’s
cardinality (and not in the dictionary length). Evaluating /(¢) takes constant time: we
need to compute the hash functions /; and /;, make two accesses to the array g, and
finally execute two sums and one modulo operation. Figure 8.7.a shows an example of
a dictionary S with nine strings, and m’ set to the prime 13.

We are left with detailing the algorithm that computes the function g so that A(k) is
correctly defined according to the formula we have given. The formula actually pro-
vides n equality constraints over the n dictionary keys & € S. For each such constraint,
h(k), h1(k), and hy(k) are known (once the two universal hash functions have been
drawn), and so the unknown variables are the two occurrences of g(). Referring to the
example in Figure 8.7,

e the first key, “abacus,” sets the equation 0 =[g(1) + g(6)] mod 9;

e the second key, “cat,” sets the equation 1 =[g(7) + g(2)] mod 9;

e and so on... until the last key, “zoo,” which sets the equation 8=/[g(5)+ g(3)]
mod 9.

6 As occurs for the cuckoo graph, in this case too the role of the letters 7 and 7’ in denoting the number of
edges and nodes, respectively, is swapped.

7 Choosing ¢ > 3 gives an acyclic G in (‘ / m,mf;n —‘ trials. This is about two trials if we set c = 3
(see [11]).
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| (@ Key k [ h(k) | hi(k) hyk) [ (b) x 8x) |

abacus 0 1 6 0 0
cat 1 7 2 1 5
dog 2 5 7 2 0
flop 3 4 6 3 7
home 4 1 10 4 8
house 5 0 1 5 1
son 6 8 11 6 4
trip 7 11 9 7 1
Z00 8 5 3 8 0

9 1

10 8

11 6

12 0

Figure 8.7 An example of a perfect, minimal, and ordered hash function for a dictionary S of

n = 9 keys (in the form of variable-length strings) which are listed in alphabetic order. Column
h(k) reports the lexicographic rank of each key in S. Hash function # is built upon three
functions: (a) two random hash functions /1 (k) and A, (k), for k € S, and having codomain
{0,1,...,m — 1}, withm’ = 13 > 9 = n; and (b) a properly derived function g(x), for
x€{0,1,...,m" — 1}, implemented as an array and whose design is explained in the text.

We note from Figure 8.7 that these equations may involve multiple occurrences of
the same “variables”: for example, g(1) occurs in the equations of “abacus,” “home,”
and “house.” So it is not obvious at all that this set of equations admits of a solution.
But, surprisingly enough, the computation of g is quite simple and consists of building
an undirected graph G = (V, E) with m’ nodes labeled {0, 1,...,m" — 1} (the same
range as the codomain of /] and 4, and the domain of g) and » edges (as many as the
keys in the dictionary S). We have one (undirected) edge per key, thus one (undirected)
edge per equation: namely, the edge (/1(k), h2(k)) for every key k € S. We also label
every such edge with the desired value h(k). Looking at Figure 8.8, and referring to
the equations we have given, we note that:

e the first key, “abacus,” sets the equation 0 = [g(1)+g(6)] mod 9, which creates the
undirected edge (1, 6) and labels it 0;

e the second key, “cat,” sets the equation 1 = [g(7) + g(2)] mod 9, which creates the
undirected edge (2, 7) and labels it 1;

e and so on... until the last equation for the key “zoo,” equal to 8 = [g(5) + g(3)]
mod 9, which creates the undirected edge (3, 5) and labels it 8.

It is evident that the topology of G depends only on 4; and 4, and thus it is a
random topology because of the randomness of these two hash functions. The question
now is how we solve that set of equations. Here comes the elegant, yet simple idea that
hinges upon the property that G is acyclic (as the graph in Figure 8.8); if this is not
the case, as we have stated, 4 and /4, are redrawn until the corresponding graph does
not have any cycles.

The algorithmic idea is to start from any node, say node 0 in Figure 8.8, and assign
an arbitrary value, say 0. This corresponds to setting g(0) = 0. Then we take an edge
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Figure 8.8 Graph corresponding to the string dictionary of Figure 8.7. We do not show node 12
because this value does not occur in the codomain of hash functions 41 and /5.

incident on that node, say (0, 1), labeled 5. This edge corresponds to the sixth equation
associated with the key “house”: 5 = [g(0) + g(1)] mod 9. Since g(0) = 0, we also
can easily derive g(1) = 5, and the equation is satisfied. We then proceed in this way,
taking another edge incident on a node already labeled with some value. For example,
we take the edge (1, 10), labeled 4, which corresponds to the fifth equation associated
to the key “home”: 4 = [g(1) + g(10)] mod 9. Since g(1) = 5 from earlier, and g(10)
is not set, we set it as g(10) = 8, and the equation is satisfied. We continue this way by
selecting an edge (u, v) labeled with rank R(u, v) and in which v is labeled with value
g(v), but g(u) is not set, and derive g(u) > 0 so that g(v) = [R(u,v) — g(v)] mod 9.
This assignment is always possible provided that g() has not been assigned before,
which is always the case if the graph is acyclic. If there is an edge incident in two
unlabeled nodes, then we assign an arbitrary value to one of them (say value 0 for
simplicity), and we continue as before.

Algorithms 8.4 and 8.5 provide the pseudocode of what we have paraphrased here.
The first algorithm is the one that triggers the labelling of the graph nodes reachable
from a node v that was initially unlabeled and set to the value 0. In this graph visit, if
the algorithm meets an already visited node, it has detected a cycle and thus it stops the
construction of g. Otherwise, it assigns the correct value to « determined by resolving

Algorithm 8.4 Procedure LabelGraph(G)
1: forveVdo
2: g[v] = undef
3: end for
4: forve V do
5 if g[v] = undef then
6: Label(v,0)
7
8

end if
. end for
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the corresponding equation in terms of g(u), as we have specified. Array g is correct
by construction, and the time complexity of this process is just the one visit of G. We
have therefore proved the following.

Algorithm 8.5 Procedure Label(v,c)
1: if g[v] # undef and g[v] # c then
2 return the graph is cyclic; STOP
3: end if

4 glvl=c

5

6

7

: for u € Adj[v] do
Label(u, R(u,v) — g(v) mod n)
: end for

Theorem 8.8 A minimal ordered perfect hash function for a dictionary of n keys can
be constructed in O(n) expected time and space. The hash function can be evaluated
in O(1) time and uses O(n) space in the worst case.

The reader can verify that, by applying Algorithm 8.4 to the graph of Figure 8.8,
one gets the assignment for the array g specified in Figure 8.7.b.

Bloom Filters

There are situations in which the universe of keys is very large in cardinality and
length, so that hashing solutions could be limited not just by the storage of the table
and its pointers, which take (n 4+ m) log n bits (see Corollary 8.1), but by the storage of
the keys, which take nlog, u bits. An example is the dictionary of URLs managed by
crawlers in search engines: URLs can be hundreds of characters long, so the size of
the indexable dictionary in internal memory becomes limited fairly soon, if we attempt
to store entire URLs [4]. And, in fact, crawlers do not use either cuckoo hashing or
hashing with chaining but, rather, they employ a simple and randomized, yet efficient,
data structure named the Bloom filter [2].

The crucial property of Bloom filters is that keys are not explicitly stored; only a
small “fingerprint” of them is stored, and this means that the space needed for the
data structure depends on the number of keys rather than their total length (pro), at
the drawback of incurring false positive answers returned for the membership queries
(cons). This is not the case for queries involving keys belonging to the dictionary,
for which the Bloom filter is always able to verify the membership correctly: there
are no false-negatives in this case. That is the reason why Bloom filters are said to
incur one-side errors. As for false positive errors, they can be controlled and, indeed,
their probability decreases exponentially with the size of the fingerprints associated to
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B [afofe] o JoJuif - [ifo] |

Figure 8.9 Searching key y in a Bloom filter. The four arrows point to the four checked entries
Blhi(»)], since here r = 4 and thus i = 1,2, 3, 4. Since one checked entry is 0, key y & S.

the dictionary keys. Practically speaking, tens of bits (hence, a few bytes) per finger-
print are enough to guarantee tiny error probabilities® and succinct space occupancy,
thus making this solution very appealing in a big-data context. It is useful at this
point to recall the Bloom filter mantra: “Wherever a list or set is used, and space
is a consideration, a Bloom filter should be considered. When using a Bloom filter,
consider the potential effects of false positives.”

Let S = {x1,x2,...,x,} be a set of n keys and B a bit vector of length m.
Initially, all bits in B are set to 0. Suppose we have r universal hash functions
hi: U—{0,...,m—1}, fori = 1,...,r. As we have anticipated, every dictionary
key k is not represented explicitly in B but, rather, it is fingerprinted by setting r bits
of B to 1 as follows: B[h;(k)] = 1,V 1 < i < r. Therefore, inserting a key in a Bloom
filter requires O(r) time, and sets at most 7 bits (possibly some hashes may collide; this
is called a standard Bloom filter). For searching, we state that a key y belongs to the
dictionary S if, and only if, all bits of its fingerprint are set to one: that is, B[#;(y)] = 1,
V1 <i < r. Searching costs O(r) time, as does inserting. Deletions are not supported.
In the example shown in Figure 8.9, we can assert that y ¢ S, since three bits are set to
1 but the rightmost checked bit is zero (i.e. the four checked bits B[/;( )] are the ones
pointed to by the four arrows).

Clearly, if y € S then the Bloom filter correctly detects this; but it might be the case
that y ¢ §, and all » bits checked are nonetheless set to 1 because of the setting due
to other hashes and keys (possibly not just one). This is the false-positive result we
have mentioned, because it induces the Bloom filter to return a positive but erroneous
answer to a membership query. It is therefore natural to ask for the probability of a
false-positive error, which can be proved to be bounded above by a surprisingly simple
formula.

The probability that the insertion of a key & € S has left null an entry B[] equals
the probabrility that the » hash functions 4;(k) returned an entry different to j, which
is mT_l . This value can be approximated with e~ m for sufficiently large m. After
the insertion of all n dictionarynkeys, the probability that B[] is still null can then

be estimated as pg ~ <e‘rf« = e m by assuming independence among those

8 One could object that errors might occur anyway. But programmers counteract this by claiming that
these errors can be made smaller than those incurred by hardware/network failures in data centers or
PCs and so they can be disregarded.
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hash functions.” Hence the probability of a false-positive error (or, equivalently, the
false-positive rate) is the probability that all  bits checked for a key not in the current

rn\"

dictionary are set to 1, that is: pe, = (1 — pg) ~ (1 —e m)

Not surprisingly, the error probability depends on the three parameters that define
the Bloom filter’s data structure: the number » of hash functions, the number n of
dictionary keys, and the number m of bits in the binary array B. As we anticipated,
the total size of dictionary S, which also accounts for the keys’ length, does not
occur in that formula. It is interesting to note that the fraction f = m/n > 1 can
be read as the average number of bits per dictionary key allocated in B, hence what
we termed its fingerprint size f. The larger f is, the smaller the error probability pe,
is, but the larger the space allocated for B. We can optimize p,,, for a given finger-
print size / by computing its first-order derivative and equalling it to zero: this gets
Fopt = (m/n)In2 = f'In2. For this value of r the probability a bit in B gets a null
value is pg = 1/2; which actually means that the array is half filled with 1s and half
with 0s. And, indeed, this result could not be different: a larger » induces more 1s in
B and thus a larger pg,,, a lower r induces more Os in B and thus a larger wasting of
(null) space: the optimal choice 7, falls in the middle. For that optimal value of , we
have per, = (1/2)* = (0.693)"/" which decreases exponentially by increasing the
fingerprint size f' = m/n.

Nicely enough, we need small values for f* in order to achieve tiny false-positive
rates: actually, this is p.,- = 8 x 107 for a fingerprint of 32 bits (i.e. m = 32n), and
Perr = 6.4 x 10711 for a fingerprint of 64 bits (i.e. m = 64 n). Figure 8.10 reports the
false-positive rate as a function of the number » of hashes for a Bloom filter designed
to use m = 32n bits of space, and hence a fingerprint of /' = 32 bits per key. In this
figure we note that » = 23 hash functions minimizes the false-positive rate to about
10~7; we also note that for » > 16, the error rate does not change too much, but these
(suboptimal) choices of 16 < r < 23 speed up the membership queries in practice.

The literature offers many variants of the Bloom filter: two notable examples are
the compressed Bloom filter and the spectral Bloom filter. The former addresses the
issue of further squeezing its space occupancy because, in many Web applications, the
Bloom filter is a data structure that must be transferred between proxies, thus saving
bandwidth and transfer time [9]. The latter addresses the issue of managing multi-
sets, thus allowing the storage and counting of multiplicities of elements, provided
that they are below a given threshold (a spectrum indeed).

Suppose that we wish to optimize the false-positive rate of the Bloom filter under
the constraint that the number of bits to be sent after compression is z < m. As a com-
pression tool we can use arithmetic coding (see Chapter 12), which well approximates
the entropy of the string to be compressed. Surprisingly enough, it turns out that using

9 A more precise analysis is possible, but is very involved and doesn’t change the asymptotic result, so we
prefer to stick to these simpler (although rougher) calculations [3, 8]. In addition, we mention here that
there is another version of the Bloom filter, called the partitioned (or classic) Bloom filter [2], which
forces all r bits set to 1 by a single key to be distinct, by, for example, considering » hash tables of size
m/r each. The asymptotic behavior of these two types of Bloom filters is the same, although the classic
one tends to have a larger false-positive rate because of the presence of more 1s.
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False-positive rate in log scale

0 5 10 15 20 25 30 35

Number of hash functions

Figure 8.10 Plotting p., (in logarithmic scale) as a function of the number r of hashes for the
case m = 32 n. The minimum is achieved for » = 23.

a larger, but sparser, Bloom filter can yield the same false-positive rate with a smaller
number of transmitted bits; or, in other words, one can transmit the same number of
bits with a smaller false-positive rate. As an example, the optimal number of hash
functions in a standard Bloom filter with m = 16n is r,p; = 11, with a false-positive
rate equal to 0.000459; by making a sparser Bloom filter with m = 48n and just » = 3
hash functions, one can compress the result down to less than / = 16 bits per item and
also decrease the false-positive rate by roughly a factor of two. Hence a win-win-win
situation in terms of false-positive rate, space occupancy, and query speed. However,
it goes without saying that the compressed Bloom filter may increase the memory
usage at running time (because of decompression), and comes at the computational
cost of the additional compression/decompression stages. Nevertheless, some sophis-
ticated compressed indexing approaches are possible that allow direct access to the
compressed data without incurring their full decompression: an example is provided
by the FM-index data structure, discussed in Chapter 14, which could be built over the
binary array B.

As far as the spectral Bloom filter is concerned, recall that it has been introduced
to support queries on the multiplicities of dictionary keys, by incurring a small error
probability about their estimates, and to support insertions and also deletions among
them. In more detail, let /(k) be the multiplicity of the key £ € S; this integer can be
the number of occurrences of & in a stream or just a value associated to k. A spectral
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Bloom filter substitutes the bit vector B with an array C of m counters (thus taking
®(mlog u) bits of space, where u is the maximum multiplicity a key in S may occur).
The insertion of a key & in the dictionary S consists of adding the value f(k) to all
counters identified by the » hash functions %;(k). Deletion is symmetric. Querying a
key k for its multiplicity consists of computing the minimum of the values stored at
the counters C[h;(k)], for i = 1,2,...r. The reason for the minimum computation
resides in the fact that, due to possible conflicts among the hashes of different keys,
each counter C[i] provides an overestimate for the multiplicities of the keys mapped
to it: hence f(k) < C[hi(k)], for i = 1,2,...r. This observation also allows us to
easily prove that the probability that the minimum is different from f(k), and thus
its estimate is wrong, equals the probability that there is a collision over all counters
C[h;(k)], and this in turn equals the error rate of a standard Bloom filter built upon
the same set of parameters m, n, . The literature offers variants of the spectral Bloom
filter that allow reduction of its space occupancy or its error rate. Probably the most
famous one is the adoption of a second-level Bloom filter in which are stored the
keys &k whose minimum occurs once among the counters C[A;(k)], fori = 1,2,...r.
This repeated-minimum property enforces the goodness of the estimates, otherwise
it forces the use of another smaller spectral Bloom filter that refines the potentially
wrong answers related to single-minimum estimates.

A Lower Bound on Space Occupancy

The question is how small can the bit array B be in order to guarantee a given error
rate € for a dictionary of n keys drawn from a universe U of size u. We will answer
this difficult question by proving that any data structure offering these features must
occupy at least n log,(1/¢€) bits. This result will allow us to conclude that Bloom filters
are asymptotically optimal within a factor of log, e ~ 1.44 of this space lower bound.

The proof proceeds as follows. Let us denote by F(m,e,X) any data structure,
requiring m bits of space and solving the membership query on a dictionary X € U
with false-positive rate €. The Bloom filter of the previous section is therefore one of
these data structures, with B = F(m, ¢, S) for the indexed dictionary S. Clearly, the
data structure must work for every possible subset X C U; they are (Z) We say that
a data structure F(m,€,X) accepts a key k if X includes k, otherwise we say that it
rejects k.

Let us now consider a specific dictionary S of n elements. Any data structure that
is used to represent S must accept each one of its n keys, since no false negatives are
admitted, and may also accept at most (# — n)e other keys of U, because its false-
positive rate is €. Therefore, each such data structure accepts at most n + €(u — n)
keys, and can thus be used to represent any of the w = ("+€(n”_")) subsets of size n of
these elements, but it cannot be used to represent any other set.

Since there are 2" such data structures of m bits, we can conclude that they rep-
resent at most 2" x w subsets of U consisting of » keys and incurring an error rate
at most €. Given that we have (;’) possible dictionaries drawn from U and consisting
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of n keys, the following inequality must hold in order to guarantee that an m-bit data
structure, such the ones we are aiming for, does exist:

. <n+e(u—n)> - <u)’
n —\n

and solving with respect to m we get

et ()20 o () () -

where we used the approximation (Z) ~ % that holds for @ > b, as it occurs in
practice for the parameters u (universe size) and » (dictionary size).

Let us now consider a Bloom filter with the same configuration: namely, error
rate €, dictionary size n, and space occupancy of m bits. We know that, in its opti-
mal configuration, it sets r,,, = (m/n)In2 which translates to an error rate equal to
e =(1/2)m/MM2 Solving with respect to m, we get

logy(1/€)

m= nT ~ 1.44n logy(1/e€).

This means that Bloom filters are asymptotically optimal in space, and the gap with
respect to the optimal space bound is the constant factor 1.44.

A Simple Application

Bloom filters can be used to approximate the intersection of two sets, say 4 and
B, stored in two distinct machines My and Mp, by exchanging a small number of
bits. Typical applications of this are data replication checking and distributed search
engines. This can be efficiently achieved by executing the following steps:

1. Machine My builds the Bloom filter BF(4) of my = ©(|4]) bits, and 7,y =
(m4/]A4]) In 2 hash functions;

2. Machine M4 sends BF'(A4) to machine Mp;

3. Machine Mp constructs Q as the subset of B’s elements for which BF(A4) answers

13 2

yes.

Clearly, ANB C Q, so Q contains |4 N B| keys plus the number of elements belong-
ing to B, but not to 4, that, unfortunately, the Bloom filter BF(A4) has erroneously
identified as being in 4 too. Therefore, we can conclude that |Q| = |4 N B| + |Ble
where € = 0.6185”4/M! is the error rate for that design of BF(4). This means that
these three steps define a single-round protocol, which allows machine Mz to com-
pute an approximation of A N B with error rate €. The larger my is, the smaller € is,
but the larger would be the number of exchanged bits.

By adding the next two steps to this protocol, we get a two-round protocol that
allows machine M, to compute the correct intersection 4 N B:

4. Machine Mp sends back O to My;
5. Machine M, computes O N 4.
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Step 2 exchanges my4 bits and Step 4 exchanges |Q| log | U] bits, so the total number
of bits exchanged by the two-round protocol is m4+(|ANB|+|B| x 0.693"4/ ) log |U|.
Conversely, the number of bits exchanged by the obvious protocol that sends the whole
of set A to Mp is |4| log |U|. Therefore, the two-round protocol is better than the obliv-
ious one whenever m,4 = c|A| for a constant ¢ that is much smaller than log |U| and,
anyway, not too small, as we have observed when commenting on the relation between
the size m of the Bloom filter and its error rate €.
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Searching Strings by Prefix

Most discoveries even today are a
combination of serendipity and of
searching.

Attributed to Siddhartha Mukherjee

The problem of searching strings by prefix is experiencing a renewed interest in
the algorithmic community because of new applications stemming from Web search
engines. Think of the auto-completion feature currently offered by major search
engines like Google and Bing: it is a prefix search executed on the fly over millions
of strings corresponding to past queries by Web users, using the query pattern as
the string to search. This problem is made challenging by the size of the dictionary
and by the time constraints imposed by the patience of the users.! In this chapter we
will describe many different solutions to this problem of increasing sophistication and
efficiency in time, space, and I/O complexities.

The prefix-search problem. Given a dictionary D consisting of 7 strings of total
length N, drawn from an alphabet of size o, the problem consists of prepro-
cessing D in order to retrieve (or just count) the strings of D that have P as a
prefix.

We mention two other typical string queries: the exact search and the substring
search within the dictionary strings of D. The former is best addressed via hashing
because of its simplicity and practical speed; Chapter 8 has already detailed several
hashing solutions. The latter problem is more sophisticated and finds application in
computational genomics and Asian search engines, just to cite a couple. It consists in
finding all positions where the query pattern P occurs as a substring of the dictionary
strings. Surprisingly enough, there is a simple algorithmic reduction from substring
search to prefix search over the set of all suffixes of the dictionary strings. This reduc-
tion will be discussed in Chapter 10, where the suffix array and the suffix tree data

' We are simplifying the formulation of the problem to its syntactic form, choosing to ignore the issues
regarding the ranking of the answers based on features, such as the frequency of the returned queries,
the geographic location of the issuing users, and other features to be defined by the search engine with
the aim of best matching the underlying user needs.
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A= |]28|500|637|120|36|226|20|
20 21 ____ 3 37 38 120 121 122 o128 o
s= M [N HEE §a |

26 227 28 500 637 638 639
HED R [

Figure 9.1 The array S = [fo, ted, tea, a, ten, i, inn] of (unsorted) strings and the array A of

(indirectly sorted) pointers to S’s strings.

structures are introduced. As a result, we can conclude that prefix search is the back-
bone of other important search problems on strings, so the data structures introduced
in this chapter offer applications that go far beyond the simple ones discussed below.

Array of String Pointers

We start with a simple, common solution to the prefix-search problem which consists
of an array of pointers to strings stored in arbitrary locations in memory (possibly on
disk). Let us call 4[1, n] the array of pointers, which are indirectly sorted according to
the strings pointed to by its entries. We assume that each pointer takes w bytes of mem-
ory: typically four bytes (32 bits) or eight bytes (64 bits). Several other representations
of pointers are possible, such as variable-length representations, but this discussion is
deferred to Chapter 11, where we deal with the efficient encodings of integers.

Figure 9.1 provides a running example in which the dictionary strings are stored in
an array S, according to an arbitrary order.
There are two crucial properties that the array 4 of pointers to (sorted) strings satisfies:

e All dictionary strings prefixed by P occur contiguously when they are lexicograph-
ically sorted. So their pointers occupy a subarray, say A[/, 7], which is empty if P
does not prefix any dictionary string.

e The string P is lexicographically located between A[/ — 1] and A[/].

Since the prefix search returns either the number of dictionary strings prefixed by
P, hence the value n,.. = r—1[+ 1, or reports these strings, the key problem to solve is
to identify the two positions / and r efficiently. To this aim, we reduce the prefix search
problem to the problem of searching for the lexicographic position of a proper pattern
string Q among D’s strings, known as alexicographic search. The formation of Q is
simple: Q is either the pattern P or the pattern P#, where # is a special symbol that is
assumed to be larger than any other alphabet character. It is not difficult to convince
yourself that O = P will precede the string A[/], whereas O = P# will follow the
string A[r]. This actually means that these two lexicographic searches for patterns
shorter than p 4 1 characters are enough to solve the prefix-search problem.

The lexicographic search for Q among D’s strings can be implemented by means of
an (indirect) binary search over the (indirectly sorted) array 4. It consists of O(log n)
steps, each one requiring a string comparison between Q and the string pointed to by
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the entry checked in 4. The comparison is lexicographic and thus takes O(p) time and
O(p/B) 1/0Os, because it requires in the worst case the scan of all ®(p) characters of
0. These poor time and I/O complexities derive from the indirection, which elicits no
locality in the memory/string accesses of the binary search. The inefficiency is even
more evident if we wish to retrieve all n,.. strings prefixed by P, and not just count
them. After the subarray A[/, r] has been identified, each string reporting incurs at least
one /O, because the strings that are pointed to by A[/, 7] may not be contiguous in S.

Theorem 9.1 The complexity of a prefix search over the array of string pointers
is O(plogn) time and O(% logn) I/Os, and the total space is N + (1 + w)n bytes.
Retrieving the nyc. strings prefixed by P requires Q2(nocc) 1/Os.

Proof  Time and I/O complexities derive from the previous observations. For the
space occupancy, 4 needs n pointers, each taking a memory word w, and all dic-
tionary strings occupy N bytes plus a one-byte delimiter for each of them (commonly
\0 in C). |

The bound 2(n,..) may be a major bottleneck if the number of returned strings is
large, as it typically occurs in queries that use the prefix search as a preliminary step to
select a candidate set of answers that have then to be refined via a proper post-filtering
process. An example is the solution to the problem of searching with wild cards, which
involves the presence in P of possibly many special symbols *. The semantics of the
wild card symbol is that it matches any substring. In this case if P = v % 8 % - - -,
where «, 8, . .. are non-empty strings, then we can implement the wild card search by
first performing a prefix search for « in D and then checking by brute-force whether
P matches the returned strings given the presence of the wild cards. Of course, this
approach can be very expensive, especially when « is not a selective prefix, and thus
many dictionary strings are returned as candidate matches. Nevertheless, this provides
evidence of how slow a wildcard query could be in a disk environment if solved with
such a simple approach.

Contiguous Allocation of Strings

A simple trick to circumvent some of the previous limitations is to store the dictionary
strings sorted lexicographically and contiguously on disk. (Pointer) contiguity in 4 is
then reflected in (string) contiguity in S. This has two main advantages:

e Speed: when the binary search is confined to a few strings, they will be stored
closely both in 4 and in S, so have probably been buffered by the operating system
in internal memory;

e Space: compression can be applied to contiguous strings in S, because they
typically share some prefix.

Given that S is stored on disk, we can deploy the first observation by blocking
strings into groups of B characters each and then storing in A a pointer to the first
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string of each group. The sampled strings are denoted by Dp € D, and their number
np is upper bounded by % because we select at most one string per block. Since 4 has
been squeezed to index at most np < n strings, the search over A must be changed in
order to reflect the two-level structure given by the array A and the blocked strings.
The idea is thus to decompose the lexicographic search for Q in a two-stages process:
in the first stage, we search for the lexicographic position of O within the sampled
strings of Dp; in the second stage, this position is deployed to identify the block of
strings where the lexicographic position of Q lies, so that the strings of this block can
be eventually scanned and compared with Q for prefix match. We recall that, in order
to implement the prefix search, we have to repeat this process for the two strings P and
P#, so we have proved the following:

Theorem 9.2 Prefix search over D takes 0(% log %) 1/Os. Retrieving the strings

prefixed by P requires N 2 I/Os, where Noc. is their length. The total space is N +n +

npw.

Proof Once the block of strings A[/,r] prefixed by P has been identified, we can
report all of them in O( N %) 1/Os by scanning the contiguous portion of S that contains
those strings. The space occupancy comes from the observation that pointers are stored
only for the np sampled strings, where ng < N/B. [ |

Typically, strings are shorter than B, so % < n, and hence this solution is faster

than the previous one. In addition, it can be effectively combined with the compres-
sion technique called front coding to further lower the space and I/O complexities, as
discussed in the following section.

Front Coding

Given a sequence of sorted strings, it is common that adjacent strings share a com-
mon prefix. If £ is the number of shared characters, then we can substitute them with
a proper variable-length binary encoding of £ which saves some bits with respect to
the classic fixed-size encoding based on four- or eight-bytes. Chapter 11 will detail
some of those encoders; here we introduce a simple one to satisfy the curiosity of the
reader. The encoder pads the binary representation of ¢ with Os until an integer number
of bytes is used, and then sets the first two bits of the padding (if any, otherwise one
more byte is added) to encode the number of used bytes.? This encoding is prefix-free,
thus it guarantees unique decoding properties; moreover, its byte alignment ensures
fast decoding speed in modern processors; it also replaces the initial ®(¢ log, o) bits,
representing the ¢ characters of the shared prefix, with O(log¢) bits of the integer
coding, so is advantageous in terms of space. Obviously, the final impact of this solu-
tion depends on the amount of shared characters which, in the case of a dictionary of
URLSs, can be up to 70 percent.

Front coding is a delta-compression algorithm, which can be easily defined in an
incremental way: given a sequence of strings (s, . . ., S,), it encodes the string s; using

2 We are safely assuming that £ can be binary encoded in 30 bits, namely £ < 230,


https://doi.org/10.1017/9781009128933.010
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009128933.010
https://www.cambridge.org/core

132 9 Searching Strings by Prefix
A |
(0, alcatraz), (3, ool) | | (0, alcyone), (1, nacleto) | (0, ananas), (1, ster) | | (0, astral), (4, onomy)

Figure 9.2 Two-level indexing of the set of strings D = {alcatraz, alcool, alcyone,
anacleto, ananas, aster, astral, astronomyj}. Strings are partitioned into
blocks of two strings each; each block is stored in one disk page and compressed with FCp.
The first string of each block is available uncompressed (in fact, for them we have ¢ = 0).

the pair (¢;, 5;), where ¢; is the length of the shared prefix between s; and its predecessor
si—1 (0 if i=1), and §; =s;[€; + 1,]s;]] is the “remaining suffix” of the string s;.
As an example, consider the dictionary D ={ alcatraz, alcool, alcyone,
anacleto, ananas, aster, astral, astronomy }; its front-coded
representation is (0,alcatraz),(3,00l),(3,yone),(l,nacleto),(3,nas),
(1,ster), (3,ral), (4, onomy).

Decoding a string a pair (£,5) is symmetric; we have to copy £ characters from
the preceding string and then append the remaining suffix §. This takes O(|s|) time
and O(1 + |s|/B) 1/Os, provided that the preceding string is available. In general,
the reconstruction of a string s; may require reverse scanning the input sequence up
to the first string 51, which is available in its entirety. So we may possibly need to
scan (£;—1,8;-1),...,(£1,81) and reconstruct si,...,s;— in order to decode (¢;,S;).
Therefore, the time cost to decode s; might be much higher than the optimal ®(|s;|)
cost.3

To overcome this drawback, it is typical to apply front coding to blocks of strings,
thus resorting to the two-level scheme we introduced in Section 9.1.1. The idea is to
restart the front-coding at the beginning of every block, so the first string of each block
is stored uncompressed. This has two immediate advantages for the prefix-search prob-
lem: (i) these uncompressed strings are the ones participating in the binary-search
process and thus they do not need to be decompressed when compared with Q; (ii)
each block is compressed individually and thus the scan of its strings for lexicograph-
ically searching QO can be combined with the decompression of these strings without
incurring any slowdown. We call this storage scheme front coding with bucketing, and
denote it by FCp. Figure 9.2 provides a running example in which the strings “alca-
traz”, “alcyone”, “ananas”, and “astral” are stored explicitly because they are the first
ones of each block.

As a positive side effect, this approach reduces the number of sampled strings
because it can potentially increase the number of strings stored in one disk page: we
start from s; and we front-compress the strings of D in order; whenever the com-
pression of a string s; overflows the current block, a new block is started and the last

3 A smarter solution would be to reconstruct only the first £ characters of the previous strings
$1,82,...,8i—1, because these are the ones involved in s;’s reconstruction.
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string is stored there in uncompressed form. The number of sampled strings reduces
from about % to about FCBT(m strings, where FCp(D) is the space required by FCp
to store all the dictionary strings in blocks of size B. This obviously impacts pos-
itively on the number of I/Os needed for a prefix search, given that we execute a
binary search over the sampled strings. However, space occupancy increases with
respect to F'C(D), because FCp(D) forces the first string of each block to be stored
uncompressed; nonetheless, we expect that this increase is negligible because B > 1.

Theorem 9.3 Prefix search over D takes 0(% log FCBTQ) 1/Os. Retrieving the

FCp (Ducc)
B

strings prefixed by P requires O ( ) 1/Os, where Dy < D is the set of strings

in the answer set.

So, in general, compressing the strings is a good idea because it lowers the
space required for storing the strings, and it lowers the number of I/Os. How-
ever, we must observe that FC-compression might increase the time complexity of
the scan of a block from ©(B) to ©(B?) because of the decompression of that
block. In fact, take the sequence of strings (a, aa, aaa, . ..), which is front-coded as
0,a),(1,a),(2,a),(3,a),.... In one disk page we can store ®(B) such pairs, which
represent ®(B) strings whose total length is Z?:o (i) = O(B?).

Despite these pathological cases, the space reduction in practice turns out to be of
a constant factor, so the time increase incurred by a block scan is negligible. There-
fore, this approach introduces a time/space trade-off driven by the block size B. The
longer B is, the better the compression ratio is, the faster the binary search is, but the
slower a block scan is. The choice of B also impacts on the occupancy of array 4 and
the possible copy in internal memory of the uncompressed strings it points to, which
would reduce the number of I/Os of the binary search.

In order to overcome this trade-off we decouple search and compression issues as
follows. We notice that the proposed data structure consists of two levels: the “upper”
level contains references to the sampled strings Dp, and the “lower” level contains the
strings themselves stored in a block-wise fashion. The choice of the algorithms and
data structures used in the two levels are “orthogonal” to each other, and thus they
can be decided independently. It goes without saying that this two-level scheme for
searching and storing a dictionary of strings is suitable to be used in a hierarchy of two
memory levels, such as also the cache and the internal memory. This is typical in Web
search, where D is the dictionary of terms to be searched by users and disk accesses
have to be avoided in order to support each keyword search in few milliseconds.

In the following sections we propose four improvements to the two-level solution:
the first is concerned with the compressed storage of the dictionary strings in a way
that string decompression is I/0O-optimal; the other three solutions refer to the efficient
indexing of the sampled strings. These proposals are interesting in themselves, and the
reader should not confine their use to the one described in this chpater.
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Locality-Preserving Front Coding>

This is an elegant variant of front coding which provides a controlled trade-off between
space occupancy and time to decode one string [2]. The key idea is simple, and thus
easily implementable, but proving its guaranteed bounds is challenging. We can state
the underlying algorithmic idea as follows: a string is front-coded only if its decoding
time is proportional to its length, otherwise it is written uncompressed. The outcome
in time complexity is clear: we compress only if decoding is optimal. But what appears
surprising is that, even if we concentrated on the time-optimality of decoding, its “con-
stant of proportionality” also controls the space occupancy of the compressed strings.
It seems likes magic — indeed it is!

Formally, suppose that we have front-coded the first i — 1 strings (sy, . .., s;_1) into
the compressed sequence F = (0,51), (£2,52),...,(£i—1,5i—1). We want to compress
S; SO We reverse scan at most c|s;| characters of F to check whether these characters are
enough to reconstruct s;. This actually means that an uncompressed string is included
in those characters, because we have available the first character for s;. If so, we front-
compress s; into (¢;, $;); otherwise s; is copied uncompressed in F, outputting the pair
(0, s;). Figure 9.3 shows these two cases pictorially.

cls|

el D] ) - —

copied

copied copied front-coded

Figure 9.3 The two cases occurring in locality-preserving front coding (LPFC) when
compressing the dictionary string s. Gray rectangles are copied and thus represent the
uncompressed strings (in particular, s’ is the copied string preceding s); white rectangles
represent the front-coded strings.

The key difficulty is to show that the strings that are left uncompressed (i.e. copied),
and were instead compressed by the classic front coding scheme, have a length that
can be controlled by means of the parameter ¢, as the following theorem shows (by
using the parameter € = ¢/(c — 2)):

Theorem 9.4 Locality-preserving front coding (LPFC) takes at most (1 4+ €)FC(D)
space, and supports the decoding of any dictionary string s in O (%) optimal 1/0Os.

Proof We call any uncompressed string s a copied string, and denote the c|s| charac-
ters explored during the backward check as the /eft extent of s. If s is a copied string,
there can be no copied string preceding s and beginning in its left extent, otherwise
it would have been front-coded. Moreover, the copied string that precedes s may end
within s’s left extent (see the left-hand side of Figure 9.3). For the sake of presentation,
the characters belonging to the output suffix § of a front-coded string s are referred to
as FC-characters.

Clearly, the space occupied by the front-coded strings is upper bounded by FC(D).
We wish to show that the space occupied by the copied strings, which were possibly
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cls| cls|

|0 | LI JL I T |

clsl/2 crowded clsl/2 uncrowded

Figure 9.4 The two cases occurring in LPFC. The white rectangles denote the front-coded
strings, and thus their FC-characters, while the gray rectangles denote two consecutive copied
and thus uncompressed strings, distinguishing the case of crowded (left) and uncrowded (right)
copies.

compressed by the classic front coding but are left uncompressed here, sums up to
€ FC(D), where € is a parameter depending on and equal to ¢/(c — 2) as shown at the
end of the proof.

We consider two cases for the copied strings depending on the amount of FC-
characters that lie between two consecutive occurrences of them. The first case is
called uncrowded and occurs when that number of FC-characters is at least % (shown
in the right part of Figure 9.4); the second case is called crowded, and occurs when
that number of FC-characters is at most % (shown in the left part of Figure 9.4).
From Figure 9.4 it is simple to conclude that if the copied string s is crowded then
|| = c|s|/2, because s’ starts before the left extent of s (otherwise s would not be
copied) but ends within the last ¢ |s|/2 characters of that extent (otherwise s would
be uncrowded). Conversely, again referring to Figure 9.4, we can conclude that if s
is uncrowded then it is preceded by at least ¢ |s|/2 characters of front-coded strings
(FC-characters).

We are now ready to bound the total length of the copied (uncompressed) strings.
We partition them into “chains” composed of one uncrowded copied string followed
by the maximal sequence of crowded copied strings. By definition, the first string in
D is assumed to be uncrowded, as it is always copied. We prove that the total number
of characters in each chain is proportional to the length of its first copied string, which
is uncrowded by definition. Precisely, consider the chain wiw; - - - w, of consecutive
copied strings, where we have that w is uncrowded and the following w;s are crowded.
For any crowded w;, with i > 1, we know that it holds the inequality on crowded
strings just proved, namely |w;_1| > c|w;|/2 or, equivalently, |w;| < 2|w;_1|/c =
cee = (2/c)i_1|w1| foralli = 2,3,...,x. Taking ¢ > 2, we derive that the crowded
copied strings shrink by a constant factor. Therefore we can upper bound the total
number of characters forming a chain by

X X X
D wil = wil+ > lwil < lwil+ Y (2/c) " wil
i=1 i=2 i=2

= w1l Z(z/c)i < |wi| Z(z/c)i - ‘7|W1|.

5 ‘ c—2
i=1 >0
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By the definition of an uncrowded string, w; is preceded by at least ¢|w|/2 FC-
characters. The total number of these FC-characters is bounded by FC(D), so we can
upper bound the total length of the uncrowded strings by (2/c)FC(D). By plugging

2FC(D)

this into the previous bound on the total length of the chains, we get -5 x === =

ﬁF C(D). The theorem follows by setting € = ﬁ "

So locality-preserving front coding (LPFC) is a compressed storage scheme for
strings that can substitute their plain storage without introducing any asymptotic
slowdown in the accesses to the compressed strings and still guaranteeing the space
occupancy of the classic front coding up to a constant factor. In this sense it can be
considered as a sort of space booster for any string-indexing technique.

The two-level indexing data structure described in the previous section can imme-
diately benefit LPFC by making A point to the copied strings of LPFC (which are
uncompressed). The buckets delimited by these strings then have variable length, but
any such string can be decompressed in optimal time and I/Os. So the bounds are the
ones stated in Theorem 9.3, but without the pathological cases commented on next to
it (cf. previous observation about the ®@(B?) size of a bucket in classic FCg). The scan-
ning of the strings prefixed by P and identified by the binary-search step then takes
I/Os and time still proportional to their total length, and hence it is optimal.

The remaining question is, therefore, how to speed up the search over the array
A. We foresee two main limitations: (i) the binary-search step has time complexity
depending on N or n; (ii) if the strings pointed to by the array 4 do not fit within
the internal memory space allocated by the programmer, or available in cache, then
the binary-search step incurs many I/Os and cache misses, and this might be expen-
sive. In Sections 9.3-9.5 we propose three approaches that take full advantage of the
distribution of dictionary strings or of some more sophisticated indexing of them.

Interpolation Search

Let us consider the case of a dictionary of strings that have bounded length, say shorter
than b characters drawn from an alphabet of size 0. We can interpret these strings as
integers in a universe of size 0. In some applications, keys may be short binary strings
fitting in the memory-word size so that b = 4 or 8§ bytes and o = 256.

Searching for the lexicographic position of a string P in D boils down to searching
for the integer coding of P among the ordered set of integers encoding the dictionary
strings. In this string-to-int transformation some care must be taken; in fact we need
to assume that all strings have the same length and, when shorter, they are logically
padded with a character assumed to be smaller than any other alphabet character. The
search for P and P# can then be turned into a search for two proper integers, and if
the integers generated from the dictionary strings follow some suitable distributions,
then there are searching schemes that are faster than binary search. In what follows
we describe a variant of the classic interpolation search that offers some interesting
additional properties (details in [4]).
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B B3 Bg By Bip | Bi| B
|1|2|3 8|9 17 19|20 28|30 321 36

Figure 9.5 An example of interpolation search over a set of 12 integers. The bins are separated
by long vertical bars; some bins are empty and thus not shown, such as Bj, By, Bs, Bg, and Bg.

Let X[1,m] = x1...x, be the array of sorted integers encoding the dictionary
strings, so that m = n (if we encode the whole dictionary D) or m = np (if we
encode the sampled dictionary Dp). We evenly subdivide the range [x1,x,,] into m
bins By,...,B, of size b = ’C’"_Txl“ Hence, we have as many bins as dictionary
strings, and B; = [x; + (i — 1)b,x; + ib). In order to guarantee the constant-time
access to these bins, and for the simplicity of exposition, we keep an additional array
S[1, m] of pointers to the first and last integers of B; in X.

Figure 9.5 gives an example in which we have m = 12 integers (and bins). The
first integer is x; = 1, the last integer is x; = 36, and thus the bin size is b =
(36 — 14 1)/12 = 3. Only non-empty bins are shown, and the integers of X included
in them are separated by long vertical bars.

Given a string P to be lexicographically searched among the dictionary strings, we
compute its corresponding integer, say y, and perform the following two steps: first, we
determine the index j of the candidate bin where y could occur: that is, j = L%%J +1;
then, we binary search the position of y in B; by accessing the subarray of X delimited
by the two pointers stored in S[/]. These two steps take O(1 + log|B;|) = O(logb)
time. The value of b depends on the magnitude of the integers present in the indexed
dictionary but, in any case, it is |B;| < n, so one could be induced to conclude that
O(log b) = O(log n) in the worst case, thus making this approach not asymptotically
faster than binary search.

In what follows, we prove two interesting properties of this approach which concern
the distribution of X’s integers and impact on the evaluation of its time complexity. We
start by defining the parameter A as the ratio between the maximum and the minimum
gaps between two consecutive integers of the input dictionary. Formally,

max;—_m(X; — Xi—1)

minj—y__m(x; — xi—1)

It is interesting to note that the algorithm is oblivious to the value of A; neverthe-
less, the following theorem shows that its time complexity can be bounded in terms of
this value. Hence, interpolation search cannot be slower than binary search, but it can
be faster depending on the distribution of dictionary keys.

Theorem 9.5 [Interpolation search executed over a dictionary of m integers takes
O(log min{A, m}) time and O(m) extra space in the worst case.

Proof Correctness is immediate. For the time complexity, we prove that the maxi-
mum number of integers that can belong to any bin is no more than b/g, where g is
defined as the minimum gap between consecutive integers of X. Then we show that
b/g < A so that the claim will follow.
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We start by observing that the maximum of a series of integers is at least as large as
their mean. Here we take as integers the gaps x; — x;—1 between the consecutive sorted
integers in X, and write

m
DX — X1 o Xm X1 +1 _

max (X; — Xj—1) > > b, 9.1)

i=2..m m—1 m

. . . . . L d a+1
where the last inequality comes from the following arithmetic property: 7 > &=

whenever @’ > a” > 0. This property can be easily proved by solving it, and it holds
for the final ratio in equation (9.1) since the integers in X are positive and distinct, so
that x,, —x; >m — 1.

Starting from the preliminary observation that |B;| < b/g, and then plugging in
equation (9.1) and the definition of A, we can write

b max;— X; — Xj_
|Bi| <2< ‘ 1—2‘..m(l i l) — A,
g mini=__ m(xi — Xi—1) m

In the peculiar case where X’s integers are uniformly distributed, we can derive a
very interesting bound on the maximum bin size, which holds with high probability.
In fact, this problem can be rephrased as the maximum load of m bins (i.e. the B;s)
among which we distribute m balls (i.e. X’s integers) uniformly at random. This max-
imum value is well known and equal to O(log m/ log log m), as we actually proved in
Theorem 8.3.

Lemma 9.1 [f'the m integers of set X are drawn uniformly at random from [0, U — 1],
interpolation search takes O(log log m) time with high probability.

But the issue here is that a uniform input distribution is uncommon in practice.
Nevertheless, if we relax the query operation to be just a membership query (and not
a predecessor query on integers), then we can artificially enforce the uniform distri-
bution over any input by selecting a random permutation 7 : U — U and shuffling
X according to 7w before building the proposed data structure. Care must be taken at
query time, since we have to search not for y but for its permuted image 7 (y) in 7 (X).
The query performance proved in Lemma 9.1 then holds with high probability for a
membership query executed on any indexed set X. For the choice of & we refer the
reader to [8].

If interpolation search is applied to our string context, and assuming that the
sampled strings of Dp are uniformly distributed (which could be the case after the
sampling, if B is not too small), then the number of I/Os required to prefix search P
among them is O(% log log %). This is an exponential reduction in the time and I/O
performance of prefix searching executed through the binary search, as reported in
Theorem 9.2.

Compacted Trie

We have already talked about tries in Chapter 7; here we dig further into their prop-
erties as efficient data structures for string searching. In this context, the trie is used
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(b)

Figure 9.6 An example of uncompacted trie (a) and compacted trie (b) for n = 7 strings. The
integer shown in each internal node u denotes the length of the string spelled out by the
root-to-u path. In uncompacted tries, these integers are useless because they correspond to u’s
depth. In compacted tries, edge labels are substrings of variable length that can be represented
in constant space with triples of integers: for example on could be encoded as (6, 2, 3), since
the sixth string tons includes on from position 2 to position 3.

for indexing the sampled strings Dp in internal memory. This induces a speed-up in
the first stage of the lexicographic search of string Q (either P or P#) in Dp from
O(log(N/B)) time to O(p) time, thus being surprisingly independent of the dictionary
size. The reason for this is the power of the RAM model, which allows memory cells
of ®(log N) bits to be managed and addressed in constant time. Let us dig more into
the use of tries for prefix searching.

A trie is a multi-way tree whose edges are labeled by characters of the indexed
strings. An internal node u is associated with a string s[u], which is a prefix of a
dictionary string. String s[u] is obtained by concatenating the characters found on the
downward path that connects the trie’s root with the node u. A leaf is associated with
a dictionary string. All leaves that descend from a node u are prefixed by s[u]. The trie
has n leaves and at most N nodes, one per string character.* Figure 9.6 provides an
illustrative example of a trie built over seven strings. This form of trie is commonly
called uncompacted because it can have unary paths, such as the one leading to string
inn.

If we want to check if a string P prefixes some dictionary string, we just have to
check if there is a downward path starting from trie’s root and spelling out P. All leaves
descending from the reached node provide the dictionary strings correctly answering
the prefix search. So tries do not need the reduction to the lexicographic search oper-
ation introduced for the binary-search approach, whenever the entire dictionary D is
indexed.

But if we want to implement the two-level indexing approach and adopt the uncom-
pacted trie to index the sampled dictionary Djp, in order to route the search toward the

4 We say “at most” because some paths (prefixes) can be shared among several strings.

5 The trie cannot index strings when one is the prefix of the other. In fact the former string would end up
in an internal node. To avoid this case, each string is extended with a special character that is not present
in the alphabet and is typically denoted by $.


https://doi.org/10.1017/9781009128933.010
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009128933.010
https://www.cambridge.org/core

140

9 Searching Strings by Prefix

disk pages storing the strings of D prefixed by P, then we still need to perform a lex-
icographic search for the properly built string O within the uncompacted trie built on
Dg. In this case, either Q is spelled out completely, and thus the search ends up at some
internal node u, or the downward trie traversal stops at a node v before the scanning of
0 is completed, say at character Q[£]. In the former case, the lexicographic position
of Q is found by traversing the leftmost spine of the subtrie rooted at u; in the latter
case, £ provides us with the longest common prefix between Q and Dp’s strings, and
the lexicographic position of Q in Djp is found by locating O[£] among the edge labels
outgoing from v, and thus among the subtries descending from these outgoing edges.

As an example, consider the pattern Q= to and its lexicographic search in the
uncompacted trie of Figure 9.6(a). Q prefixes the strings s¢ and s7 and, in fact, it is
fully spelled out in a downward trie traversal which leads to the unary node being the
rightmost one in the picture with label 2. Let us now call this node v and assume that
the pattern to be lexicographically searched is Q = tod. So the downward traversal
still reaches v, and then checks whether it has an outgoing edge labeled d, which is
not the case. So the lexicographic position of Q is found to the left of the descending
subtrie, because d is smaller than the character n labeling the single edge outgoing
from v.

A big issue is how to efficiently find the “edge to follow” during the downward tra-
versal of the trie, because this impacts on the overall efficiency of the pattern search.
The efficiency of this step hinges on a proper storage of the edges (and their labeling
characters) outgoing from a node. The simplest data structure that does the job is the
linked list. Its space requirement is optimal, namely proportional to the number of out-
going edges, but it incurs a ®(o) cost in the worst case per traversed node. The result
is a prefix search taking O(p o) worst-case time, which is too much for large alpha-
bets. If we store the branching characters (and their edges) into a sorted array, then
we could binary search it taking O(log o) time per node. A faster approach consists of
using a full-sized array of o entries, where the non-empty ones store the pointers to
the children associated with the existing branching characters. In this case the time to
branch out of a node is O(1), and thus O(p) time is the cost for searching the pattern
0; but the space occupancy of the trie grows up to O(No ), which may be unaccepta-
bly high for large alphabets. The best approach consists of resorting to a perfect hash
table, which stores just the existing branching characters and their associated pointers.
This guarantees O(1) branching time in the worst case and optimal space occupancy,
thus combining the best of the two previous solutions. For details about perfect hashes
we refer the reader to Chapter 8.

Theorem 9.6 The uncompacted trie solves the prefix-search problem in O(p + nocc)
time and O(p + noce/B) I/Os, where noc. is the number of strings prefixed by P. The
retrieval of those strings takes O(Nycc) time and, in particular, takes O(Nycc/B) 1/Os
if leaves and strings are stored contiguously and alphabetically sorted on disk. The
uncompacted trie consists of O(N) nodes and exactly n leaves, and thus takes O(N)
space. Finally, the uncompacted trie also supports the lexicographic search for the
pattern P among the indexed strings in O(p + log o) worst-case time and 1/Os.


https://doi.org/10.1017/9781009128933.010
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009128933.010
https://www.cambridge.org/core

9.4 Compacted Trie 141

Proof  Let u be the node such that s[u] = P. All strings descending from u are pre-
fixed by P, and they can be visualized by visiting the subtree rooted in u. The I/O
complexity of the traversal leading to u is O(p) because of the constant-time jumps
among trie nodes via perfect hash tables. The retrieval of the n,.. leaves descend-
ing from the node spelling P takes optimal O(n,../B) 1/Os because we have assumed
that trie leaves are stored contiguously on disk, and every node keeps a pointer to its
leftmost and rightmost descending leaves. On the other hand, the display of the strings
associated with these leaves takes additional O(N,./B) 1/Os, provided that the indexed
strings are ordered and stored contiguously on disk. Searching for the lexicographic
position of P’s mismatch character, i.e. Q[€], among the edge labels outgoing from the
reached node, takes O(log o) time by using an array implementation of the branching
characters (see Chapter 15 for compressed and faster solutions). |

A trie can be wasteful in space if there are long strings with a short common prefix:
this would induce a significant number of unary nodes. We can save space by con-
tracting the unary paths into one single edge. Edge labels then become (possibly long)
substrings rather than single characters, and the resulting trie is termed compacted.
Figure 9.6(b) shows an example of compacted trie. It is evident that each edge label is
a substring of a dictionary string, say s[i, /], so it can be represented via a triple (s, 7, /).
Given that each node is at least binary, the number of internal nodes and edges is O(n)
(cf. O(N) in uncompacted tries). So the total space occupied by a compacted trie is
also O(n).

Theorem 9.7 The compacted trie solves the prefix-search problem in O(p + nocc)
time and O(p + noce/B) 1/Os, where nyc. is the number of strings prefixed by P and
strings are stored contiguously and alphabetically sorted on disk. The retrieval of
those strings takes O(Nycc) time and, in particular, it takes O(Nycc/B) I/Os. The com-
pacted trie consists of O(n) nodes and leaves, so its storage takes O(n) space. It goes
without saying that the trie also needs the storage of the dictionary strings to resolve
its edge labels, hence additional N space. Finally, the compacted trie also supports
the lexicographic search for the pattern P among the indexed strings in O(p + logo)
worst-case time and I/Os.

Proof Prefix searching is implemented similarly to that for uncompacted tries. The
difference is that it alternates character-branches out of internal nodes, and substring
matches with edge labels. If the branching characters and the associated edge point-
ers outgoing from internal nodes are again implemented with perfect hash tables, the
stated time and /O bounds easily follow.

For searching the lexicographic position of the pattern string Q among the indexed
strings we can proceed similarly to the approach for uncompacted tries. It is enough to
traverse a downward path spelling O as much as possible until a mismatch character is
encountered or the full Q is matched. The difference with uncompacted tries is that the
traversal can stop at the middle of an edge, but the conclusions drawn for uncompacted
tries still hold here (see Chapter 15 for compressed and faster solutions). |

So the compacted trie is an interesting substitute for the array A4 in the two-level
indexing structure of Section 9.1.1, and could be used to support the search for the
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o p o
o p o

b b b b
c [ c c
b b b b
c [ c c
a a b b
b b b b
a b a b
a

() (®)
Figure 9.7 An example of compacted trie (a) and the corresponding Patricia trie (b).

candidate bucket where the string P occurs, taking O(p + logo) time in the worst
case. Since each traversed edge can induce one I/O for the retrieval of its labeling
substring to be compared with the corresponding one in P, this approach is efficient
if the trie and its indexed strings can be fit in internal memory. Otherwise (since o is
typically not much large), it presents two main drawbacks: the linear dependence of
the I/Os on the pattern length, and the dependence of its space occupancy on the disk
page size (influencing the sampling of D to get D) and on the length of the sampled
strings.

The Patricia trie, introduced in the next section, solves the former problem, and its
combination with the locality-preserving front coding solves both of them.

Patricia Trie

A Patricia trie built on a string dictionary D of n strings of total length N is a com-
pacted trie in which edge labels consist just of their initial single character, and
internal nodes are labeled with integers denoting the /length of the associated strings.
Figure 9.7 illustrates how to convert a compacted trie (left) into a Patricia trie (right).

Even if the Patricia trie strips out some information from the compacted trie, it is
still able to support the search for the lexicographic position of a pattern P among a
(sorted) sequence of strings, with the significant advantage that this search needs to
access only one single string, and hence execute typically one I/O instead of the p I/Os
potentially incurred by the edge-resolution step in compacted tries. This algorithm
is called blind search in the literature [5]. It is a little more complicated than prefix
searching in classic tries, because of the presence of only one character per edge label.
Technically speaking, blind search consists of three stages:

e Stage 1 — downward traversal: Trace a downward path in the Patricia trie to locate
a leaf / which points to an “interesting” string of the indexed dictionary. This string
does not necessarily identify P’s lexicographic position in the dictionary (which is
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our goal), but it provides enough information to find that position in the subsequent
stages. The retrieval of the interesting leaf / is done by traversing the Patricia trie
from the root and comparing the characters of P with the single characters that label
the traversed edges until either a leaf is reached or no further branching is possible.
In this latter case, we choose / to be any descendant leaf from the last traversed
node.

e Stage 2 — LCP computation: Compare P against the string pointed to by leaf /, in
order to determine their longest common prefix (LCP). Let £ be the length of this
shared prefix; it is then possible to prove that (see [5] for details) the leaf / stores
one of the strings indexed by the Patricia trie that shares the longest common prefix
with P, and denote by P[£ + 1] and s[£ + 1] their two mismatched characters.

e Stage 3 — upward traversal: Traverse the Patricia triec upward from / to determine
the edge e = (u, v) where the mismatch character s[£ + 1] lies: this is easy because
each node on the upward path stores an integer that denotes the length of the corre-
sponding prefix of s, so we have |s[u]| < £ + 1 < |s[v]|. If s[€ + 1] is a branching
character (i.e. £ = |s[u]]), then we determine the lexicographic position of P[¢ + 1]
among the branching characters of node u. Say this is the i-th child of u; the lexi-
cographic position of P is therefore to the immediate left of the subtree descending
from this i-th child. Otherwise (i.e. £ > |s[u]]), the character s[£ + 1] lies within e
and after its first character, so the lexicographic position of P is to the immediate
right of the subtree descending from e, if P[€ 4 1] > s[£ + 1]; otherwise it is to the
immediate left of that subtree.

A running example is illustrated in Figure 9.8. Stage 1 percolates the Patricia trie
downward, matching the rightmost path (depicted in bold), and thus reaching the right-
most leaf s7 = bcbcbbba. This is because the characters labeling the path edges
match the pattern characters at positions 1,5,7. Note that these numbers are “+1”
with respect to the numbers labeling the nodes in the traversed path, given that they
denote the positions of the branching characters. Stage 2 computes the longest com-
mon prefix between P = bcbabcba and sg, thus finding that it is equal to 3 with
mismatches s7[4] = ¢ and P[4] = a. Stage 3 traverses the Patricia trie upward from
s7’s leaf, and stops at the edge indicated in Figure 9.8(b), thus finding that P lies to
the left of this edge, and thus to the left of its descending subtree. This is indeed the
correct lexicographic position of the searched pattern among the indexed dictionary
strings.

In the case that the searched pattern is P = ababblb, then Stage 1 stops at the left-
most child of the root because all of its branching characters are different to P[4] = b.
Then, it selects any leaf descending from that node as leaf /; say it selects the leaf point-
ing to s1. It computes the longest common prefix between s; and P, thus returning the
value 3. Finally, Stage 3 stops its upward traversal from s| again at the leftmost child
of the root, and finds the position of P[4] = b as occurring between the two branch-
ing edges of that node, so the lexicographic position of P lies between the subtrees
descending from these two branching edges, that is, between strings s, and s3.
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P =Dbcbabcba

mismatch

P =bcbabcba

—hit-node

a a a a b b b b | longest
a a e o leaf [ b b b c c c ¢ t common
a a a b b b b | prefix
a a a b b b b a a c c [ c c
b b b c c c c b b a a b b
a a a b b b b a b b b b b
a a c c c c c a b a b
b b a a b b a
a b b b b b P’s
a b a b correct
a position

(@) (b)

Figure 9.8 An example of the first (a) and second and third (b) stages of the blind search for P
in a dictionary of seven strings.

In order to understand why the algorithm is correct, let us take the path spelling
out the prefix P[1, £] corresponding to the longest common prefix between P and the
dictionary strings. We have two cases: either we reached an internal node u such that
|s[u]] = € or we are in the middle of an edge (u,v), namely |s[u]|] < € < |s[V]].
In the former case, all strings descending from u share ¢ characters with the pattern,
and no dictionary string shares more characters (by definition of LCP). The correct
lexicographic position therefore falls among them or is adjacent to these strings, and
thus it can be found by looking only at the branching characters of the edges outgoing
from node u. This is correctly done also by the blind search that stops at u (Stage 1),
computes £ (Stage 2), and finally determines the correct position of P by comparing
u’s branching characters against P[¢ + 1] (Stage 3).

In the second case, the blind search reaches node v by skipping the mismatch char-
acter that lies within the edge label of (u,v) and, possibly, the traversal goes further
down in the Patricia trie because of the possible match between the branching char-
acters of subsequently traversed edges and matched characters of P. Eventually a leaf
! descending from v is reached or selected (Stage 1), and the value ¢ is computed
correctly given that all leaves descending from v share |s[v]| > ¢ characters and thus
share ¢ characters with P (Stage 2). So the upward traversal executed in Stage 3 from
leaf [ reaches correctly the edge (u,v), where |s[u]| < £ < |s[v]|. There, we deploy
the mismatch characters s;[¢ + 1] and P[£ 4 1] to choose the correct lexicographic
position of P which is either to the left (i.e. P[£ + 1] < s;[£ + 1]) or to the right (i.e.
si[€ 4+ 1] < P[€ + 1]) of the leaves descending from v.

We have therefore provided a mathematical ground to the correctness of the blind
search which, actually, offers excellent performance in space, time, and I/Os:


https://doi.org/10.1017/9781009128933.010
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009128933.010
https://www.cambridge.org/core

9.6

9.6 Managing Huge Dictionaries 145

Theorem 9.8 Let us assume that the Patricia trie indexing a dictionary of n strings
can be stored in the internal memory of a computer, whereas the dictionary is so large
that it has to be stored on disk. The Patricia trie takes ®(n) space, hence constant
space per indexed string (independent, therefore, of their total length).

The blind search for the lexicographic position of a pattern string P[1, p] among the
dictionary strings takes O(p + log o) time and no 1/Os to traverse the tries structure
(Stage 1 and 3), and O(p) time and O(p/B) 1/Os to fetch and compare the single string
identified by the blind search (Stage 2).

By searching for P and P#, the blind search determines the range of indexed strings
prefixed by P, if any, within the same time and 1/0O bounds.

This theorem actually states that if p < B and n < M, which are indeed reasonable
conditions in practice, the prefix search for P in a dictionary D takes just one 1/O. If
dictionary compression is mandatory, then the performance achieved by the combina-
tion of Patricia trie with the LPFC scheme, as stated in the following theorem, is very
interesting.

Theorem 9.9 The two-level indexing data structure composed of the Patricia trie
as index in internal memory (“upper level”) and the LPFC as compressed storage
of the dictionary strings on disk (“lower level”) requires O(n) space in memory and
O((14¢€) FC(D)) space on disk, where € is the parameter set by LPFC and controlling
its I/O-space trade-off-

A prefix search for a pattern P[1, p] takes O(% + 1%) 1/Os, where s is the “interesting
string” determined in Stage 1 of the blind search. The retrieval of the prefixed strings
takes O(W) 1/Os, where D, C D is the set of returned strings.

Proof The I/O performance comes from the observation that the computation of the
value ¢ in Stage 2 of the blind search needs to decode the selected string s from its
LPFC representation (Theorem 9.4), and this takes O(|s|/e B) 1/Os. |

In the case that n = Q(M), we cannot index in the internal-memory Patricia trie the
whole dictionary, so we have to resort to a bucketing strategy over its strings and thus
index in the Patricia trie only the first string of every disk page. If N/B = O(M), the
Patricia trie can index in internal memory all sampled strings, and thus it can support
the prefix search for P within the bounds stated in Theorem 9.9, by adding just one
I/O due to the scanning of the bucket (i.e. disk page) containing the lexicographic
position of P. The previous condition can be rewritten as N = O(MB), which is pretty
reasonable in practice, given the current values of M ~ 32 GB and B ~ 32 KB, which
make M x B of the order of hundreds of terabytes.

Managing Huge Dictionaries>

The final question we address in this chpater is: What if N = Q(MB)? In this case
the Patricia trie is too big to be fit in the internal memory of our computer. We could
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consider storing the trie on disk without taking much care of the layout of its nodes
among the disk pages. But unfortunately, a pattern search could take ®(p) I/Os in the
two root-to-leaf traversals performed by Stages 1 and 3 of the blind search. Alterna-
tively, we could envision a “packing” of the Patricia trie in disk pages that minimizes
the I/Os needed for these root-to-leaf traversals. The idea, in this case, would be to
incrementally grow a root page and repeatedly add some node not already packed into
that page, where the choice of that node might be driven by various criteria that depend
on some access probability or on its depth. When the root page contains B nodes, it
is written onto disk and the algorithm recursively lays out the rest of the tree. Surpris-
ingly enough, the obtained packing is far from optimality by a factor of Q(lolgol%),
but it is surely within a factor of O(log B) from the optimal [1].

In what follows we describe two distinct optimal approaches to solve the prefix-
search problem over dictionaries of huge size: the first solution is based on a data
structure, called the String B-tree [5], which boils down to a B-tree in which the routing
table of each node is a Patricia tree; the second solution consists of applying proper
disk layouts of trees on to the Patricia trie’s structure. Both these approaches are briefly
described in the following subsections.

String B-Tree

The key idea consists of dividing the big Patricia trie into a set of smaller Patricia tries,
each fitting into one disk page, and then linking them all together by means of a B-tree
structure. In this section we outline a constructive definition of the String B-tree; for
details on this structure and the supported operations we refer the interested reader to
the seminal paper [5].

The strings in the dictionary D are stored on disk contiguously and ordered alpha-
betically. We denote by D° = D the pointers to the dictionary strings stored at the leaf
level of the String B-tree. These pointers are partitioned into a set of smaller, equally
sized chunks D(l), ..., DY, each including ®(B) strings independently of their length,
and thus m = n/B. We can then index each chunk D? with a Patricia trie that fits into
one disk page and embed it into a leaf of the B-tree. In order to search for P among this

set of leaf nodes, we take from each partition D? its first and last (lexicographically

speaking) strings sl.f and sf, defining the set D! = {slf, sll, e s,‘,{, sﬁn}
Recall that the prefix search for P boils down to the lexicographic search of a pattern
0, properly defined from P: QO = P or Q = P#. If we search Q within D!, we can

discover one of the following three cases:

1. O falls before the first or after the last string of D', because O < slf or O > sﬁn.

2. Q falls between two chunks, say D? and D?H, because sf < 0 < sl:il. So we
have found Q’s lexicographic position in the whole D between these two adjacent
chunks.

3. Q falls among the strings of some chunk DZQ, because sl:f <Q< sf. So the search

is continued in the Patricia trie that indexes D?.
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Figure 9.9 An example of String B-tree built on a dictionary of 15 strings stored on disk (in an
unsorted order). The strings are stored in the B-tree leaves in alphabetical order by means of
their logical pointers. Notice that sorting strings on disk would improve their I/O scanning, and
indeed our theorems assume an ordered D on disk. However, the picture does not force the
string sorting in order to show the flexibility of the data structure in supporting the update
operations due to string insertions and deletions.

In order to establish which of the three cases occurs, we need to search efficiently in
D! for the lexicographic position of Q. Now, if D! is small and can be fit in memory,
we can build on it a Patricia trie and we are done (see Theorem 9.8). Otherwise, we
repeat the partitioning process on D! to build a smaller set D?, in which we sample,
as before, two strings every B, so |D?| = lePl'. We continue this partitioning process
for k steps, until |D¥| = O(B), and thus we can fit the Patricia trie built on D¥ within
one disk page.®

Note that each disk page gets an even number of strings when partitioning
DO, ..., Dk, and to each pair (sl:f ,sf) we associate a pointer to the block of strings
that they delimit in the lower level of this partitioning process. The final result of this
partitioning process is then a B-tree over string pointers. The arity of the tree is ®(B),
because we index ®(B) strings in each single node. The nodes of the String B-tree are
then stored on disk. Therefore the String B-tree has height £ = ®(logg n). Figure 9.9
provides an illustrative example for a String B-tree built over 15 strings and height 2.

A (prefix) search for string QO in a String B-tree is simply a traversal of the B-tree,
which executes at each node a lexicographic search of QO in the Patricia trie of that
node. This search discovers one of the three cases we have mentioned, in particular:

6 Actually, we could stop as soon as ‘Dk) = O(M), but we prefer the former to get a standard B-tree
structure.
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e Case 1 can only happen on the root node; it has found the lexicographic position of
Q at the beginning or at the end of dictionary D, so the search in the String B-tree
stops;

e Case 2 has found the lexicographic position of Q in the dictionary D between the
strings sf and S‘é e which are adjacent in the dictionary D, so the search in the
String B-tree stops;

e Case 3 implies that we have to follow the node pointer associated with the identified
chunk delimited in the lower level by the pair of strings (sf shy.

1°%1
The I/O complexity of the data structure just defined is pretty good: since the arity
of the B-tree is ®(B), we have ®(logg n) levels, so a search traverses ®(logz 7) nodes.
Since on each node we need to load the node’s page into memory and perform a blind
search of Q over its Patricia trie (in internal memory), we pay O(1 + %) I/Os, and thus
O(% logg n) I/Os for the overall prefix search of Q in the dictionary D.

Theorem 9.10 The prefix search for a pattern P[1,p] in a String B-tree built over a

dictionary D of n strings takes O (% logg n + N}’;’") 1/Os, where Ny is the total length

of the dictionary strings that are prefixed by P. The String B-tree occupies O(%) disk
pages, and strings are stored sorted, uncompressed and contiguously on disk.

This result is good but not yet optimal. The issue that we have to resolve to
reach optimality is pattern rescanning: each time we do a blind search, we com-
pare Q and one of the strings stored in the currently visited B-tree node starting from
their first character. However, as we go down in the String B-tree we can capital-
ize on the characters of Q that we have already compared in the upper levels of the
B-tree, and thus avoid the rescanning of these characters during the subsequent LCP-
computations. So if ¢ characters have been already matched in Q during some previous
LCP-computations, the next LCP-computation can compare Q with a dictionary string
starting from their (¢ + 1)-th character. The pro of this approach is that I/Os are opti-
mal; the con is that strings have to be stored uncompressed in order to support the
efficient access to that (¢ + 1)-th character. Working out all the details [5], one can
show that:

Theorem 9.11 The prefix search for a pattern P[1,p] in a String B-tree built over a
dictionary D of n strings takes O( % +loggn+ %) 1/Os, where Ny is the total length
of the dictionary strings that are prefixed by P. The String B-tree occupies O(%) disk
pages, and strings are stored sorted, uncompressed and contiguously on disk.

If we want to store the strings compressed on disk, we can either adopt the subopti-
mal approach of Theorem 9.10 and plug the LPFC scheme over the dictionary D; or,
we can keep the I/O-optimality but need to adopt a more sophisticated solution, such
as the ones stated in [2, 6]. We refer the interested reader to these papers for details.
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Packing Trees on Disk

The advantage of finding a good layout for unbalanced trees among disk pages (of
size B) may be unexpectedly large, and therefore must not be underestimated when
designing solutions that have to manage large trees on disk. In fact, while balanced
trees save a factor O(log B) when mapped to disk (pack B-node balanced subtrees per
page), the mapping of unbalanced trees grows with nonuniformity and approaches, in
the extreme case of a linearly shaped tree (i.e. a tree shaped much like a path), a saving
factor of ®(B) over a naive memory layout.

This problem is also known in the literature as the tree packing problem. Its goal is
to find an allocation of tree nodes among the disk pages in such a way that the number
of I/Os executed for a root-to-leaf traversal is minimized. Minimization may involve
either the total number of loaded pages in internal memory (i.e. I/Os), or the number
of distinct visited pages (i.e. working-set size, which may be smaller if some pages
are revisited). In this way we model two extreme situations: the case of a one-page
internal memory (i.e. a small buffer), or the case of an unbounded internal mem-
ory (i.e. an unbounded buffer). Surprisingly, the optimal solution to the tree-packing
problem is independent of the available buffer size because no disk page is visited
twice when I/Os are minimized or the working set is minimum. Moreover, the opti-
mal solution shows a nice decomposability property: the optimal tree packing forms
in turn a tree of disk pages. These two facts allow us to restrict our attention to the
I/O-minimization problem, and thus design recursive solutions for the optimal tree
decomposition among B-sized disk pages.

In the rest of this section we present two solutions of increasing sophistication
which address two different scenarios: one in which the goal is to minimize the maxi-
mum number of 1/0s executed during a downward root-to-leaf traversal, and the other
in which the goal is to minimize the average number of 1/0Os by assuming an access
distribution to the tree leaves, and thus to the possible tree traversals. Both solutions
assume that B is known; the literature actually offers cache-oblivious solutions to the
tree-packing problem, but they are too sophisticated to be discussed in these pages
(see [1, 7] for details).

Min-max algorithm. This solution [3] operates greedily and bottom up over the tree to
be packed with the goal of minimizing the maximum number of I/Os executed during
a downward traversal which starts from the root of the tree. The tree is assumed to
be binary; this is not a restriction for Patricia tries because it is enough to encode the
alphabet characters with binary strings. The algorithm assigns every leaf to its own
disk page and the height of this page is set to 1. Working upward, Algorithm 9.1 is
applied to each processed node until the root of the tree is reached.

The final packing may induce a poor page-fill ratio, nonetheless several changes
can alleviate this problem in real situations, for example:

1. When a page is closed off, scan its child pages from the smallest to the largest and
check whether they can be merged with their parent.
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Algorithm 9.1 Min-max algorithm over binary trees (general step)
Let u be the currently visited node;
if both children of # have the same page height d then
if the total number of nodes in both child pages is < B then
Merge the two disk pages and add u;
Set the height of this new page to d (i.e. as it was for its children);
else
Close off the pages of u’s children;
Create a new page for u and set its height to d + 1;
end if

else
Close off the page of u’s child with the smaller height;
If possible, merge the page of the other child with u and leave its height
unchanged;
Otherwise, create a new page for u with height d + 1 and close off both child
pages;

end if

2. Design logical disk pages and pack many of them into one physical disk page;
possibly ignore physical page boundaries when placing logical pages to disk.

It can be shown that Algorithm 9.1 provides a disk packing of a binary tree of
n nodes and height A such that every root-to-leaf path traverses O (% + logp n)
pages.

Distribution-aware tree packing. We assume that an access distribution to the Patri-
cia trie leaves is known. Since this distribution is often skewed toward some leaves,
which are then accessed more frequently than others, the min-max algorithm may
be significantly inefficient. The following algorithm is based on a dynamic program-
ming scheme that minimizes the expected number of 1/Os incurred by any root-to-leaf
traversal in the Patricia trie [7].

We denote by t this optimal tree packing (from tree nodes to disk pages), so t(u)
denotes the disk page to which node u is mapped. Let w(f) be the probability of
accessing a leaf f; we derive a distribution over all other nodes of the tree by just
summing up the access probabilities to their descending leaves. We can assume that
the tree root 7 is always mapped to a fixed page t(r) = R. Consider now the set V' of
tree nodes that descend from R’s nodes but are not themselves in R. We observe that
the optimal packing 7 induces a tree of disk pages and, consequently, if T is optimal
for the current tree 7', then t is optimal for all subtrees 7, rooted inv € V.

This result allows us to state a recursive computation for t that first determines
which nodes reside in R, and then continues recursively with all subtrees 7, for which
v € V. Dynamic programming provides an efficient implementation of this idea, based
on the following definition: An i-confined packing of a tree T is a packing in which
the page R contains exactly i nodes, with i < B. Now, in the optimal packing 7, the
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Algorithm 9.2 Distribution-aware packing of trees on disk
Initialize A[v, i] = w(v), for all leaves v and integers i < B;
while there exists an unmarked node v do
mark v;
update A[v, 1] = w(v) + A[1left(v),B] + A[right(v), B];
for i =2to B do
update A[v, i] according to the dynamic programming rule specified in the
text.
end for
end while

root page R will contain the root » of T, i* nodes from the left subtree Therc() and
(B —i* — 1) nodes from the right subtree Tv;gne(r), for some i* < B. The consequence
is that 7 is both an optimal i*-confined packing for T1ef¢() and an optimal (B — i* —
1)-confined packing for Tvigne(r)-

This property is at the basis of the dynamic programming rule which computes, for
a generic node v and integer i < B, the cost A[v,i] of an optimal i-confined packing
of the subtree 7). The authors of paper [7] showed that A[v, i] can be computed as the
access probability w(v) to node v, which accounts for the expected I/Os incurred by
visiting v’s page (i.e. 1 xw(v)), plus the minimum among the following three quantities:

o A[left(v),i—1]+w(right(v))+A[right(v), B], which accounts for the (unbal-
anced) case in which the i-confined packing for v is obtained by storing i — 1 nodes
from T1efe(y) into v’s page, and right(v) in another page;

e Alright(v),i — 1] + w(left(v)) + A[left(v), B], which is symmetric to the
previous rule but here specialized on the right child of v;

e min|<;.; {A[left(v),j] + A[right(v),i —j — 1]}, which accounts for the case
in which j nodes from T7eft(y) and 7 —j — 1 nodes from 7'y gne(y) are stored in v’s
page to form the optimal i-confined packing of 7). (The special case i = 1 is given
by A[v, 1] = w(v) + A[left(v), B] + A[right(v), B].)

It can be shown that Algorithm 9.2 computes the optimal tree packing in O(n B?)
time and O(n B) space, where optimality here is with respect to the expected number
of I/Os incurred by any root-to-leaf traversal of the packed binary tree. The packing
maps the binary tree into at most 2| | disk pages.
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10.1

Searching Strings by Substring

In this chapter we will look at solving the following problem, known as full-text
searching or substring searching.

The substring-search problem. Given a text string 71, n], drawn from an alpha-
bet of size o, preprocess it in a way that it is efficient to subsequently retrieve (or
just count) all text positions where a query pattern P[1, p] occurs as a substring
of text 7.

It is evident that this problem can be solved by brute-forcedly comparing P against
every substring of 7, thus taking O(np) time in the worst case. But it is also evi-
dent that this scan-based approach is unacceptably slow when applied to massive
text collections subject to a large number of queries, which is the scenario involv-
ing genomic databases or search engines. This suggests that we need to “preprocess”
the text 7 before the searches start, by building an indexing data structure. A setup
cost is required for this construction, but this cost is amortized over the subsequent
pattern searches, thus resulting conveniently in a quasi-static environment in which 7’
is changed very rarely.

In this chapter we will describe two main approaches to substring search, based
on arrays and another based on trees, which mimic what we have done for the
prefix-search problem. The two approaches hinge on the use of two fundamental data
structures: the suffix array (SA) and the suffix tree (ST'). We will describe these data
structures in much detail because their use goes far beyond the context of full-text
search.

Notation and Terminology

We assume that text 7 ends with a special character T[n] = $, which is smaller than
any other alphabet character. This ensures that no suffix is a prefix of another suf-
fix. We use suff; to denote the i-th suffix of text 7', namely the substring 77[i, n]. The
following observation is crucial:

If P = T[i,i + p — 1], then the pattern occurs at text position i and thus we can
state that P is a prefix of the i-th text suffix, that is, P is a prefix of the string suff;.
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SUF(T) | Positions Sorted SUF(T) S4 | 1lcp
mississippi$ 1 $ 12 0
ississippi$ 2 i$ 11 1
ssissippi$ 3 ippi$ 8 1
sissippi$ 4 issippi$ 5 4
issippi$ 5 ississippi$ 2 0
ssippi$ 6 mississippi$ 1 0
sippi$ 7 pi$ 10 1
ippi$ 8 ppi$ 9 0
ppi$ 9 sippi$ 7 2
pi$ 10 sissippi$ 4 1
i$ 11 ssippi$ 6 3
$ 12 ssissippi$ 3 -

Figure 10.1 The set of all text suffixes SUF'(T'), and the two arrays S4 and 1cp for the string
T =“mississippi$”.

As an example, if P =“siss” and 7' =“mississippi$”, then P occurs at text position 4
and prefixes the suffix suff, = T[4, 12] ="“sissippi$” (see Figure 10.1). For simplicity
of exposition, and for historical reasons, we will use this text as running example; note
that a text may be an arbitrary sequence of characters, hence not necessarily a single
word.

Given this observation, we can form with all text suffixes the dictionary SUF(T)
and state that searching for P as a substring of T boils down to searching for P as a
prefix of some string in SUF(T). In addition, since there is a bijective correspondence
among the text suffixes prefixed by P and the pattern occurrences in 7, then:

e the suffixes prefixed by P occur contiguously into the lexicographically sorted
SUF(T);

e the lexicographic position of P in SUF(T) immediately precedes the block of
suffixes prefixed by P.

An attentive reader may have noticed that these are the properties we deployed to
efficiently support prefix searches in Chapter 9. And indeed, the solutions known in
the literature for efficiently solving the substring-search problem hinge either on array-
based data structures (i.e. the suffix array) or on trie-based data structures (i.e. the
suffix tree). So the use of these data structures in pattern searching is pretty immediate.
What is challenging is the efficient construction of these data structures and their
mapping onto disk to achieve efficient I/O performance. These will be the main issues
dealt with in the following sections.

The Suffix Array

The suffix array for a text 7 is the array of pointers to all text suffixes ordered lexi-
cographically [14]. We use the notation SA(7') to denote the suffix array built over 7',
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Algorithm 10.1 SUBSTRINGSEARCH(P, T, SA)
1. L=1,R=nmn;
while L # R do
M= [(L+R)/2];
if strncmp(P,suffys,p) > 0 then
L=M+1;
else
R=M;
end if
end while
10: if strncmp(P,suff;,p) =0 then
11: return L;
12: else
13: return —1;
14: end if

R A A i

or just S4 if the indexed text is clear from the context. Because of the lexicographic
ordering, SA[7] is the i-th smallest text suffix, so suffs 1) < suffsqp) < -+ < suffgupus
where < is the lexicographic order between strings. For space reasons, each suffix is
represented by its starting position in 7 (i.e. an integer), so SA consists of n integers
in the range [1, n] and occupies ®(n log n) bits.

Another useful concept is the longest common prefix between two consecutive suf-
fixes suff g p and suffgyp;117, which we have already introduced and deployed in the
previous Chapter 9. We store its length in the entry 1cp[i] of an array of n — 1 entries,
each containing values smaller than n. Figure 10.1 provides a running example for
the arrays 1cp and SA4 given the input text 7 =“mississippi$”. There is an optimal
and nonobvious linear-time algorithm to build the 1cp array, which will be detailed
in Section 10.2.3. The interest in the Icp rests in its usefulness in designing efficien-
t/optimal algorithms to solve various search and mining problems over strings, some
of which will be studied in Section 10.4.

The Substring-Search Problem

We observed that the substring-search problem can be reduced to a prefix search over
the string dictionary SUF(T), so it can be solved by means of a binary search for P
over the array of text suffixes ordered lexicographically, namely SA(7’). Algorithm 10.1
encodes a classic binary search, here specialized to compare strings rather than num-
bers. Therefore, it takes O(logn) string comparisons, each taking O(p) time in the
worst case. We have therefore proved the following result.

Lemma 10.1 Given the text T[1,n] and its suffix array, we can count the occur-
rences of a pattern P[1,plin T taking O(p logn) time and O(log n) memory accesses
in the worst case. Retrieving the positions of these occ occurrences takes an additional
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= $ $ $

| i$ i$ i$ i$

| ippi$ ippi$ ippi$ ippi$

| issippi$ issippi$ issippi$ issippi$

| ississippi$ ississippi$ ississippi$ ississippi$

| > mississippi$ mississippi$ mississippi$ mississippi$

| pi$ = pi$ pi$ pi$

| ppi$ | ppi$ ppi$ ppi$

| sippi$ | sippi$ sippi$ sippi$

| sissippi$ |— sissippi$ sissippi$ sissippi$

| ssippi$ | ssippi$ = ssippi$ = ssippi$

— ssissippi$ = ssissippi$ = ssissippi$ ssissippi$
Step 1 Step 2 Step 3 Step 4

Figure 10.2 Binary search steps to identify the lexicographic position of the pattern P = “ssi”
among the suffixes of the text string “mississippi$”. The double right arrows denote the
pointers L and R, whereas the single right arrow denotes the pointer M.

O(occ) time. The total required space is ®(n (logn + log o)) bits, where the first term
accounts for the suffix array and the second term for the text.

Since each pattern-suffix comparison takes O(p/B) 1/Os, then this approach takes
O([T; logn) I/Os to count the occurrences of a pattern P[1,p] in T retrieving the
positions of these occ occurrences takes an additional O(occ/B) 1/Os.

Figure 10.2 shows a running example for Algorithm 10.1, which highlights an inter-
esting property: the comparison between P and suff;, does not need to start from their
initial character. In fact one could exploit the lexicographic sorting of the suffixes
and skip the character comparisons that have already been carried out in previous
iterations. This can be done with the help of three arrays:

e The array 1cp[l,n — 1], which stores in 1cp[i] the length of the longest common
prefix between suffixes SA[i] and SA[i+1]. Let us denote by lep(suffs i suffsafir17)
the function that computes this length.

e Two other arrays Licp[1,n— 1] and Rlcp[1, n — 1], which are defined for every triple
(L, M, R) that may arise in the inner loop of a binary search over the range [1, n]. We
define Licp[M] = lep(suffsqprys sulfsapr) and Rlcp[M] = lep(suffsans sulfsagry):
that is, Llcp[M] accounts for the length of the longest prefix shared by the leftmost
suffix suffg ;) and the middle suffix suffg )/ of the range currently explored by
the binary search; Rlcp[M] accounts for the length of the longest prefix shared by
the rightmost suffix suffg,(; and the middle suffix suffg,;)/ of that range.

Note that each triple (L, M, R) is uniquely identified by its midpoint M because the
execution of a binary search actually defines a hierarchical partition of the array SA4
into smaller and smaller subarrays delimited by (L, R) and thus centered on M. Hence
we have ®(n) triples overall, and these three arrays occupy ®(n) space in total.

We can build the arrays Llcp and Rlcp in time O(n) by exploiting two differ-
ent approaches. The former approach deploys the observation that the length of
the longest common prefix between any two suffixes suffg,;;; and suffg,p;, with
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i < J, can be computed as the minimum of a range of lcp values, namely
lepliy] = ming=  j—1 lep(suffsap, Sulfsaper1) = Mig=;,..ji—1 1cp[k]. By
associativity of the min operator we can split the computation as lcpl[i,j] =
min{1cp[i, k], 1cplk,/]}, where k is any index in the range [i,/], so we can set
lcp[L,R] = min{lcp[L, M], 1cp[M, R]}. This implies that the arrays Llcp and Rlcp
can be computed via a bottom-up traversal of the triplets (L, M,R) in O(n) time.
The other approach is to compute 1cpl[i,j] on the fly via a range-minimum-query
data structure built over the array 1cp, as explained in Section 10.4.2. Both these
approaches take O(n) time and space, and thus they are asymptotically optimal.

We are left with showing how the binary search can be sped up by using the three
arrays SA, Llcp, and Rlcp. Consider a binary search step in the subarray SA[L, R], and
let M be the midpoint of this range (hence M = [(L + R)/2]). The lexicographic
comparison between P and suffs, executed in Step 4 of Algorithm 10.1, aims at
choosing the next search range between SA[L, M| and SA[M,R]. There, the string
comparison started from the first character of P and suffg,)s); here we compare them
by skipping some characters, taking advantage of the previous binary search steps.

Surprisingly enough, this is possible and requires us to know, in addition to Licp
and Ricp, the values [ = lcp (P, suffsy;1y) and r = lep (P, suffszy), which denote the
number of characters the pattern P shares with the strings at the extremes of the range
currently explored by the binary search. Initially (i.e. L = 1 and R = n), these two val-
ues can be computed in O(p) time by explicitly comparing character-by-character the
involved strings. At a generic step, we assume that / and » are known inductively, and
show next how the binary search step can efficiently recompute them before moving
either to SA[L, M] or to SA[M, R].!

In fact, we know that P lies between suff ;71 and suffs ), so P shares 1cp[L, R]
characters with all suffixes in the range SA[L, R], given that any string in this range
must share this number of characters (given that they are lexicographically sorted).
Therefore we can conclude that / and r are larger than or equal to 1cp[L, R], and the
number of characters m that the pattern P shares with suff,)/) is also larger than or
equal to 1cp[L, R]. We can thus take advantage of this last inequality to compare P
with suffsp, starting from their (Lep[L, R] + 1)-th character.

But actually, we can do better, because we know / and r, and these values can
be significantly larger than 1cp[L, R], thus more characters of P have already been
involved in previous comparisons and so they are known. We distinguish three main
cases by assuming that / > r (the other case / < r is symmetric), and aim at not
rescanning the characters of P that have been already seen (namely the characters in
P[1,1]). We define our algorithm in such a way that the order between P and suffg,
can be inferred either by comparing characters in P[/ + 1, n], or by comparing the
values / and Llcp[M] (which give us information about P[1,[]).

I'To simplify the presentation, we are using the right-hand range [M, R] instead of [M + 1, R], adopted in
Algorithm 10.1. Since the middle element SA[M] is shared by both the left and right ranges, we could
end up in an infinite loop whenever R — L = 1. Nevertheless, we can easily change the while-condition
of that algorithm in R — L = 1, and then explicitly check the two delimiting strings.
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e If [ < Llcp[M], then P is greater that suffs,),) and we can set / = m. In fact, by
induction, P > suffg,;; and their mismatched character lies at position / 4 1. By
definition of Llcp[M] and the hypothesis (i.e. | < Llcp[M]), suff s, shares more
than / characters with suffg . So suffsanll + 11 = suffsypz7[/ + 1] and thus the
mismatch between P and these two suffixes is the same, hence their comparison
gives the same answer — that is, P > suffg,)s. The search can thus continue in the
subrange SA[M, R], without incurring any character comparison.

e If [ > Llcp[M], this case is similar to the previous one. We can conclude that P
is smaller than suffg(; and it is m = Llcp[M]. So the search continues in the
subrange SA[L, M], without incurring any character comparison.

e If I = Llcp[M], then P shares [ characters with suffg ;1 and suffgpp, so the
comparison between P and suff,jy can start from their (/ + 1)-th character. Even-
tually we determine m and their lexicographic order by executing some character
comparisons, but the knowledge about P’s characters advances too.

It is clear that every binary search step either advances the comparison of P’s char-
acters, or does not compare any character but halves the range [L, R]. The first case
can occur at most p times, the second case can occur O(log n) times. We have therefore
proved the following.

Lemma 10.2 Given the three arrays 1cp, Llcp, and Rlcp in addition to the suffix
array SA built over a text T[1, n], we can count the occurrences of a pattern P[1, p] in
the text T taking O(p + log n) time in the worst case. Retrieving the positions of these
occ occurrences takes an additional O(occ) time. The total required space is O(n). All
these bounds are optimal in the comparison-based model.

Proof Remember that searching for all strings that have the pattern P as a prefix
requires two lexicographic searches: one for P and the other for P#, where # is a
special character larger than any other alphabet character. So O(p + logn) character
comparisons are enough to delimit the range SA[7, /] of suffixes that have P as a prefix.
It is then easy to count the pattern occurrences in constant time, as occ =j —i+ 1, or
print all of their positions in O(occ) time. |

The LCP Array and Its Construction®>

Constructing the longest-common-prefix array 1cp[l,n — 1] seems simple and effi-
cient: just scan the n — 1 contiguous pairs of text suffixes in S4 and compare them
character by character.> This would take @(Z;:ll(l cpli] + 1)) time, where the +1
comes from the comparison of the mismatched character between SA[i] and SA[i + 1].
This time bound can be ©(n?) for some pathological inputs, such as 7 = . In this
case SA[i] points to 7'[n — i+ 1,n], fori = 1,...,n, so 1cp[i] = i and thus the time
complexity is @(Z;’;ll(l cpli]+1)) = ®(Z;’=_11 (i+ 1)) = O(n?), as claimed. In gen-
eral, the time complexity is O(nf) where £ is the average LCP among all 7’s suffixes.

2 Recall that 1cpli] = lep (suﬂ:gA[i],szyﬁ’SA[iH]) fori < n.
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Sorted suffixes SA SA positions
abedef... j—1 p—1
abchi... i—1 p
bedef... j

beh... k qg—1
behi... i q

Figure 10.3 Relation between suffixes and lcp values in Kasai’s algorithm. Suffixes are shown
only with their starting characters; the rest is indicated with ... for simplicity.

But surprisingly enough, in 2001 Kasai and colleagues proposed an elegant, decep-
tively simple, and linear-time optimal algorithm to compute the 1cp array, provided
that the suffix array is known [12]. The linearity is obtained by avoiding the rescan-
ning of text characters, based on some properties of the input text that they proved and
deployed in the design of the algorithm, which we show and comment on in the rest of
this section.

For the sake of presentation we will refer to Figure 10.3, which illustrates clearly
the main algorithmic idea. Let us concentrate on two consecutive suffixes in the text
T, say suff;_, = T[i — 1,n] and suff; = T[i, n], which occur at positions p and g in
the suffix array SA4. That is, SA[p] = suff;_, and S4A[q] = suff;. Let us now consider
the text suffix that lexicographically precedes SA[p], say SA[p — 1] = suff;_; for
some j, and assume that we know inductively the value of 1cp[p — 1], storing the
length of longest common prefix between SA[p — 1] and SA[p]. Similarly, let us denote
with SA[g — 1] = suff, = T[k,n], for some k, the text suffix that lexicographically
precedes SA[q]. By definition of 1cp array, the entry 1cp[g — 1] must store their
longest common prefix.

Kasai’s algorithm scans the text suffixes from left to right (see Algorithm 10.2),
hence it examines 77i, n] after having processed 7T[i — 1, n]. Our goal is to show that
lcplg — 1], which refers to T[i, n], can be efficiently derived from 1cp[ p — 1], which
refers to 7'[i — 1, n]. Here efficiently means that the computation of 1cp[g — 1] does
not need the full rescanning of 7'[i, n] from its first character but can take advantage of
the knowledge of 1cp[ p — 1] and thus start where the comparison between SA[p — 1]
and SA4[p] ended. This will ensure that the rescanning of text characters is avoided and,
as a result, we will get a linear-time complexity.
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Algorithm 10.2 LCP-BUILD(7, S4)

1. h=0;

2: for (i = 1;i < n, i++) do
3 q = SA7'il;

4 if ¢ > 1 then

5: k= S84[q — 1];
6: if 7 > 0 then

7 h=h-—1;
8 end if

9: while T[k + h] = T[i+ h] do
10: h=h+1;
11: end while

12: lcplg—1]1=h;
13: end if

14: end for

We start from the following property that we already mentioned when dealing with
prefix search, and that we restate here in the context of suffix arrays.

Fact 10.1 The longest common prefix (LCP) between the consecutive suffixes
SA[y — 1] and SA[y] is not shorter than the LCP between SA[y] and any other previous
suffix SA[x], where x=1,...,y — L.

Proof This property derives from the observation that suffixes in SA are ordered
lexicographically, so as we go farther from SA4[y] we reduce the length of their shared
prefix. |

Let us now refer to Figure 10.3, and concentrate on a generic step i of
Kasai’s algorithm which has compared the pair of consecutive suffixes SA[p —
1]=suff;_, and SA[p]=suff;_;, and then moves to compare the pair of consecu-
tive suffixes SA[g — 1] =suff; and SA[q] = suff;. There are two possible cases: either
lcp[p — 1] >0, and thus the two adjacent suffixes SA[p — 1] and SA4[p] share some
characters in their prefix (as in Figure 10.3), or they do not (i.e. 1cp[p — 1] = 0).

In the former case we can conclude that, since lexicographically suff;_; comes
before suff;_;, their next suffixes in 7" will preserve that lexicographic order,
so suff; will come before suff;. Moreover, since suff; (resp., suff;) is obtained
from suff;_ (resp., suff;_;) by dropping its first character, it is lep(suff;, suff;) =
lep(suffi_y,suffi_;) — 1 = lcplp — 1] — 1. In Figure 10.3, we have 1cp[p — 1] =3
and the shared prefix is abc, so when we consider the next suffixes their LCP is bc
of length 2, and their order is preserved (as suff; occurs before suff;).

Therefore we have proved the following property, here rephrased using the obser-
vation that j = SA[p — 1]+ 1 and i = S4[p] + :
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Fact 10.2 Iflcp(suﬁSA[p_l],suﬁSA[p]) > 0 then:
lep(suffsapp—114-1 Sl sapp41) = lep(Suffsapp— 17, Suffsapp) — 1.

The next key observation is that, although suff;_; and suff;_; occur contiguously
in S4, their next suffixes suff; and suff; may not, as Figure 10.3 depicts. Hence,
by Fact 10.1 and Fact 10.2, we can derive the key property that 1cp[g — 1] >
max{lcp[p — 1] — 1,0}. This is algorithmically deployed by Kasai’s algorithm
to compute lcpl[g — 1] taking full advantage of what we compared for deriving
lcplp —1].

The pseudocode is shown in Algorithm 10.2, where we make use of the inverse
suffix array, denoted by S4~!, which returns for every suffix its position in S4. Refer-
ring to Figure 10.3, SA~'[i] = ¢ and S4~'[i — 1] = p. Algorithm 10.2 hinges on
the for-loop that scans the text suffixes suff; from left to right, and for each of them
it retrieves their position in S4, namely ¢ = S4~'[i], and finally sets the content of
lcplg — 1] (see Step 12). In order to make this initialization consistent, Step 4 checks
whether suff; occupies the first position of the suffix array (i.e. ¢ = 1), in which case
the LCP with the previous suffix is undefined, and so the algorithm skips the LCP
computation and moves to the next i. Otherwise (i.e. ¢ > 1), Step 5 computes the suf-
fix lexicographically preceding suff; as k = SA[q — 1], and then the algorithm extends
via character-by-character comparison the LCP between SA[g — 1] and SA[g¢] starting
from the offset 7 = 1cp[p — 1], which is properly reduced by one unit with Step 6,
according to Fact 10.2.

As far as the time complexity is concerned, note that /4 is decreased at most n times
(once per iteration of the for-loop), and it cannot move outside 7" because of Step 9,
since T is terminated by a special character, such as \0 in C. This implies that / can be
increased at most 2z times and this is therefore the upper bound to the number of char-
acter comparisons executed by Algorithm 10.2. The total time complexity is therefore
O(n). Clearly, this algorithm is not I/O-efficient because it sets the 1cp entries in an
arbitrary order. Some heuristics are known to reduce the number of I/Os incurred by
the above computation, but an optimal O(n/B) I/O bound, if it is actually possible, is
yet to come.

Theorem 10.1 Given a string T[1,n] and its suffix array SAr, we can derive the
corresponding 1cp array in O(n) time and space. Running this algorithm in the two-
level memory model may be inefficient and takes O(n) 1/Os.

Suffix-Array Construction

Given that the suffix array is a sorted sequence of suffixes, the most intuitive way
to construct S4 is to use an efficient comparison-based sorting algorithm and spe-
cialize the comparison function in such a way that it computes the lexicographic order
between strings. Algorithm 10.3 implements this idea in C-style using the built-in pro-
cedure QSORT as sorter and a properly defined subroutine Suffix_cmp for comparing
suffixes:

Suffix_cmp(char **p, char **q{ return strcmp(*p,*q); }
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Algorithm 10.3 COMPARISON_BASED_CONSTRUCTION(char *7, int n, char **SA4)
1: for (i =0;i < n;i ++) do

2 SA[i] =T + i
3: end for
4: QSORT(S4, n, sizeof(char *), Suffix_cmp);

Notice that the suffix array is initialized with the pointers to the real starting posi-
tions in memory of the suffixes to be sorted, and not the integer offsets from 1 to n as
stated in the formal description of SA4 at the start of Section 10.2. The reason for this
is that, here, Suffix_cmp does not need to know 7’s position in memory (which would
have required the use of a global parameter), because its actual parameters, passed
during an invocation, provide directly the starting memory positions of the suffixes to
be compared. Moreover, the suffix array S4 has indexes starting from 0 as is typical
of the C language.

A major drawback of this simple approach is that it is not I/O-efficient, for two
main reasons: the optimal number O(n log n) of comparisons now involves variable-
length strings which may consist of up to ®(n) characters; and locality in S4 does not
translate into locality in suffix comparisons because of the fact that sorting permutes
the string pointers rather than the strings themselves. Both these issues elicit I/Os, and
turn this simple algorithm into a slow one.

Theorem 10.2 In the worst case, the use of a comparison-based sorter to construct
the suffix array of a given string T[1,n] requires O((%)nlogn) I/Os, and O(nlogn)
bits of working space.

In the rest of this section we describe two I/O-efficient approaches to suffix array
construction. One is based on a divide-and-conquer algorithm — the DC3 algorithm
proposed by Kéarkkdinen and Sanders [11] — which is elegant, easy to code, and flexi-
ble enough to achieve the optimal I/O bound in various models of computations. The
other — the Scan-based algorithm proposed by Gonnet, Baeza-Yates, and Snider [10]
— is also simple and, although incurring a larger number of 1/Os, is still interesting
because it offers the positive feature of processing the input data in passes (streaming-
like) which force prefetching, allow compression, and hence make this approach
suitable for slow disks.

The Skew Algorithm

In 2003 Kérkkaiinen and Sanders [11] showed that the problem of constructing suffix
arrays can be reduced to the problem of sorting a set of triplets whose compo-
nents are integers in the range [1, O(n)]. Surprisingly, this reduction takes linear time
and space, thus turning the complexity of suffix-array construction into the com-
plexity of sorting atomic items, a problem we have discussed deeply in previous
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chapters and for which we know optimal algorithms for hierarchical memories and
multiple disks. More than this, since the items to be sorted are integers bounded in
value by O(n), the sorting of the triplets takes O(n) time in the RAM model, so we
known how to construct a suffix array in RAM taking linear-time complexity. Really
impressive!

The precious feature of this algorithm is that it works in every model of computation
for which an efficient sorting primitive is available. It hinges on a divide-and-conquer
approach that executes a % : % split, crucial to make the final merge step easy to
implement. Previous approaches used the more natural % : % split (such as [4]), but
they were forced to use a more sophisticated merge step which needed the use of the
suffix-tree data structure (described in Section 10.3). Because of the nonbalancedness
of the underlying divide-and-conquer scheme, the algorithm was originally named
skew, and then it was named DC3 (which stands for difference cover modulo 3).

For the sake of presentation, we use T[1,n] = #1f; ... t, to denote the input string
and we assume that the characters are drawn from an integer alphabet of size 0 =
O(n). If that is not the case, we can sort the characters of 7" and rename them with
integers in [0,n — 1], taking overall O(n log o) time in the worst case. So T is a text
of integers, taking O(log n) bits each; this will be the case for all texts created during
the suffix-array construction process. Furthermore, we assume that 7, = $, a special
symbol smaller than any other alphabet character, and logically pad 7 with an infinite
number of occurrences of $.

Given this notation, we can sketch the three main steps of the Skew algorithm:

Step 1: Construct the suffix array S4>° limited to the suffixes starting at positions
Pro={i: imod3 = 2, orimod3 = 0}.
This consists of the following three substeps:
e Build a special string 7> of length (2/3)n that compactly encodes all suffixes
of T starting at positions P .
e Build recursively the suffix array S4’ of 720,
e Derive the suffix array S4>° from S4'.
Step 2: Construct the suffix array S4' of the remaining suffixes, starting at positions
Py={i: imod3 = 1}.
This consists of the following three substeps:

e Assume we have precomputed the array pos[j] which provides the position of
the j-th text suffix T[j, n] in S420.

e For every i € Py, represent suffix 7'[i, n] with a pair (7[i], pos[i 4+ 1]), where it
isi+1ePpy.

e Use RADIXSORT over the O(n) pairs.
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Step 3: Merge the two suffix arrays S4%? and SA' into one, via the following substep:

e Deploy the decomposition % : %, which ensures a constant-time lexicographic
comparison between any pair of suffixes (see details later in section).

This algorithm is detailed in the following pages, and illustrated over the input
string 71, 12] = “mississippi$” whose suffix array is S4 =(12,11,8,5,2,1,10,9,7,
4,6,3). In this example we have P, o =1{2,3,5,6,8,9,11,12} and P; = {1,4,7,10}.

Step 1. The first step is the most involved, and constitutes the backbone of the entire
recursive process. It lexicographically sorts the suffixes starting at the text positions
P 0. The resulting array is denoted by 5420 and represents a sampled version of the
final suffix array S4 because it is restricted to the suffixes starting at positions P p.

To efficiently obtain S42°, we reduce the problem to the construction of the suffix
array for a string 720 of length about 21/3. This text consists of “characters” which
are integers whose maximum value is about 2n/3. Since we are again in the presence
of a text of integers, of length proportionally smaller than n, we can construct its suffix
array by invoking recursively the same construction procedure.

The key difficulty is how to define 72 so that its suffix array may be used to
derive easily SA>°, namely the sorted sequence of text suffixes starting at posi-
tions in Ppp. The elegant solution proposed in [11] consists of considering the
two text suffixes 7[2,n] and 7T[3,n], padding them with the special symbol $ in
order to have multiple-of-three length, and then decomposing the resulting strings
into triplets of characters, that is, T[2,-] = [t,13,a][ts, ts, t71[t3, 19, t10] . . . and
T[3,-]1 = [t3,t4,t5][t6, t7, t3][t9, t10, t11] - - .. The dot expresses the fact that we are con-
sidering the smallest integer larger than # that allows those strings to have length which
is a multiple of three.

With reference to the previous example, we have:

T[2,']=[i38][i§S][i§p][il$i$] T[3,-]=[ssi]lssillppil[$58]

3 6 9 12

We then concatenate these two strings and construct the string R = 7[2,-] T[3, -]

R=[iss][iss][ippl[i$S%][ssil[ssillppi][$$%]
2 5 8 11 3 6 9 12

The key property on which the first step of the Skew algorithm hinges on is:

Property 1:  Every suffix 7'[i,n] starting at a position i € P can be put in cor-
respondence with a suffix of the string R consisting of an integral sequence of
triplets. Specifically, if i mod 3 =0 then T[i, n] coincides exactly with a suffix of R; if
i mod 3 =2, then T7[i, n] prefixes a suffix of R which nevertheless terminates with the
special symbol §.

By the previous running example, take i = 6 € P, , because i mod 3 = 0, and
note that the suffix 76, 12] = ssippi$ occurs at the second triplet of 773, -], which
is the sixth triplet of R. Similarly, take i = 8 € P, , because i mod 3 = 2, and note
that the suffix 7[8, 12] = ippi$ occurs at the third triplet of 7[2, -], which is the third
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triplet of R. Note that, even if 7[8, 12] is not a full suffix of R, T[8, 12] ends with two
$s, which will constitute a sort of end delimiter.

Formally speaking, the correctness of this property can be inferred easily by observ-
ing that any suffix T'[7, n] starting at a position i € P is clearly a suffix either of
T[2,-] or of T[3,-], given that i > 0, and i mod 3 is either 0 or 2. Moreover, since
i € Py, it has the form i = 3 4 3k or i = 2 + 3k, for some k& > 0, and thus T, n]
occurs within R aligned to the beginning of some triplet.

The final operation to get the string 7> of (211/3) integer symbols is then to encode
those triplets via integers. This encoding must be implemented in a way that the lexico-
graphic comparison between two triplets can be obtained by comparing those integers.
In the literature this is called /lexicographic naming, and can be easily obtained by
using RADIXSORT over the triplets in R and associating with each distinct triplet
its rank in the lexicographic order. Since we have O(n) triplets, each consisting of
symbols in a range [0, n], their RADIXSORT takes O(n) time.

In our example, the sorted triplets are labeled with the following ranks:

[$$8] [i$$] [ipp] [iss] [iss] [ppi] [ssi] [ssi] sorted triplets
0 1 2 3 3 4 5 5 sorted ranks

which allow us to construct the string:

R= [iss] [iss] [ipp] [1$9%] [ssi] [ssi] [ppi] [$$9%] triplets
3 3 2 1 5 5 4 0 720

As a result of the naming of the triplets in R, we get the new text 720 = 33215540
whose length is 2n/3. The crucial observation here is that we have a text 7> which
is again a text of integers as 7T, taking O(logn) bits per integer (as before), but 720
has a shorter length than 7', so we can invoke recursively the suffix-array construction
procedure over it.

It is evident from this discussion that, since the ranks are assigned in the same
order as the lexicographic order of their triplets, the lexicographic comparison between
suffixes of R (aligned to the triplets) equals the lexicographic comparison between
suffixes of 720, Here Property 1 comes into play, because it defines a bijection between
suffixes of R aligned to triplet beginnings, hence suffixes of 729, with text suffixes
starting in P, . This correspondence is then deployed to derive S4%° from the suffix
array of 720,

In our running example 7>* = 33215540, the suffix-array construction algorithm
is applied recursively, thus deriving its suffix array (8,4,3,2,1,7,6,5). We can turn
this suffix array into S4>-° by turning the positions in 7> into positions in 7'. This can
be done via simple arithmetic operations, given the layout of the triplets in 7%, and
obtains in our running example the suffix array SAZ0 = (12,11,8,5,2,9,6,3).

Before concluding the description of Step 1, we add two notes. The first is that,
if all symbols in 7% are different, then we do not need to recurse because suffixes
can be sorted by looking just at their first characters. The second observation is for
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programmers: they should be careful when turning the suffix positions in 72 into the
suffix positions in 7' to get the final S4>°, because they must take into account the
layout of the triplets of R.

Step 2. Once the suffix array SA%? has been built (recursively), it is possible to sort
lexicographically the remaining suffixes of 7', namely the ones starting at the text posi-
tions i mod 3 = 1, in a simple way. We decompose a suffix 77, n] as a pair composed
by its first character 7[i] and its remaining suffix 7[i + 1,n]. Since i € P, the next
position i + 1 € P;p, and thus the suffix 7[i 4+ 1, n] occurs in SA%0 We can then
encode the suffix 7'[7, n] with a pair of integers (7[i], pos[i + 1]), where pos[i + 1]
denotes the lexicographic rank in SA%? of the suffix T[i + 1,n]. Ifi + 1 = n + 1 then
we set pos[n 4+ 1] = 0, given that the character $ is assumed to be smaller than any
other alphabet character.

Given this observation, two text suffixes starting at positions in P; can then be
compared in constant time by comparing their corresponding pairs. Therefore SA4!
can be computed in O(n) time by using RADIXSORT on the O(n) pairs encoding its
suffixes.

In our example, this boils down to using RADIXSORT on the following pairs
(T'[i], pos[i + 11), thus obtaining the suffix array S4' = (1, 10,7, 4).

Starting position in P 1 4 7 10
Pairs: char + text suffix (T[1],T[2,-]) (T[4, T[S5,12])y (T[71,T[8,12]) (T[10],T[11,12])
(m, T2, -]) (s, TT5,12]) (s, T[8,12]) (p, T[11,12])
Pairs: (m, pos[2]) (s,pos[5]) (s,pos[8]) (p,pos[11])
char + suffix position in S420 (m, 4) (.3) (£.2) (1)
Sorted pairs (m, 4) < (p, 1) < (s,2) < (s, 3)
84! 1 10 7 4

Step 3. The final step merges the two sorted arrays S4' and S42° in linear O(n) time by
resorting to an interesting observation which motivates the split % : % Let us take two
suffixes T[i, n] € SA' and T[j, n] € S4>°, which we wish to lexicographically compare
for implementing the merge step. They belong to two different suffix arrays, so we
have no lexicographic relation known for them, and we cannot compare them character
by character because this would incur a very high cost. We deploy a decomposition
idea similar to the one exploited in Step 2, which consists in regarding a suffix as
composed of one or two characters plus the lexicographic rank of its remaining suffix.
This decomposition becomes effective if the remaining suffixes of the compared ones
lie in the same suffix array, so their rank is enough to get their order in constant time.
Elegantly enough, this is possible with the split % : %, but it would not be possible
with the split % : % This observation is implemented as follows:

1. if jmod 3 = 2 then we compare T[j, n] against T[i, n] by looking at them as the
pairs (T[j], T[j+1,n]) and (T[i], T[i+1,n]). Both suffixes T[j+1,n] and T[i+1, n]
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occur in S4>° (given that their starting positions are congruent to 0 or 2 modulo
3, respectively), so we can derive this lexicographic comparison by comparing the
pairs (T[i], pos[i + 1]) and (T[j], pos[j + 1]). This comparison takes O(1) time,
provided that the array pos is available.’

2. if jmod 3 = 0 then we compare T[j, n] against 7[i,n] by comparing the triples
(T, Tlj+11, T[j+2,n]) against (T[], T[i+1], T[i+2, n]). Both suffixes T[j+2, n]
and T[i + 2,n] occur in S4%° (given that their starting positions are congruent to
0 or 2 mod 3, respectively), so we can derive this lexicographic comparison by
comparing the triples (7'[i], T[i + 1], pos[i + 2]) and (T[j], T[j + 1], pos[j + 2]).
This comparison takes O(1) time, provided that the array pos is available.

In our running example, 7[8,11] < T[10,11], and in fact (i,5) < (p, 1). Also,
T[7,11] < TI[6,11], and in fact (s,i,5) < (s,s,2). In the following diagram, we
depict for SA' all possible pairs or triples which may be involved in a comparison,
where (x) and (xx) denote pairs and triples for rules 1 and 2 above, respectively. In
fact, since we do not know which suffix of S4%° will be compared with a suffix of
SA4' during the merging process, for each of the latter suffixes we need to compute
both representations (x) and (x%), hence as a pair and as a triple.* At the end of the
merge step we obtain the final suffix array: S4 = (12,11,8,5,2,1,10,9,7,4,6,3).

(m, 4)
(m, 1,7)

54! 5420
10 7 4 12 11| 8| 5] 2 9 6 3 ||suffix positions
(e, 1) | (5,2) | (s,3) (1,0)[(1,5)[(1,6)[(1,7) (%)
(p,1,0)|(s,1,5)|(s,1,6)|[($,$, 1) (p.p. 1)|(s,5,2)|(s,5,3) (Fe %)

From our discussion, it is clear that every step can be implemented via sorting or
scanning a set of » atomic items, which are possibly triples of integers taking O(log n)
bits each, so O(1) memory words. Therefore the proposed method can be seen as an
algorithmic reduction of the suffix-array construction problem to the classic problem
of sorting n items.

As far as the RAM model is concerned, the time complexity of the Skew algorithm
can be modeled by the recurrence relation 7'(n) = T' (23—”)+ O(n), because Steps 2 and 3
cost O(n) and the recursive call is executed over the string 720 whose length is (2/3)n.
This recurrence has solution 7'(n) = O(n), which is clearly optimal. For the two-level
memory model, the Skew algorithm can be implemented in O(3 log,, /B 17) V/Os, that
is, the I/O complexity of sorting # atomic items.

Theorem 10.3 The Skew algorithm builds the suffix array of a string T[1,n] in
O(Sort(n)) I/Os, using O(n/B) disk pages. If the alphabet size o is polynomial in
n, the CPU time is O(n).

3 of course, the array pos can be derived from 5420 in linear time, since it is its inverse.
4 Recall that pos[n] = 0, and for the sake of the lexicographic order, we set pos[j] = —1, for allj > n.
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The Scan-Based Algorithm®

Before the introduction of the Skew algorithm, the best-known disk-based algorithm
was the one proposed by Gonnet, Baeza-Yates, and Snider in 1992 [10]. It is also
a divide-and-conquer algorithm whose divide step is strongly unbalanced, thus it exe-
cutes a quadratic number of suffix comparisons which induce a cubic time complexity.
Nevertheless, the algorithm is fast in practice because it processes the data into passes,
thus deploying the high throughput of modern disks.

Let £ < 1 be a positive constant, fixed to build the suffix array of a text piece
of m = {M characters in internal memory. Then assume that the text 71, n] is
logically divided into blocks of m characters each, numbered rightward: namely
T =TIz Tyym where T, = T[hm + 1,(h + 1)m] for h = 0,1, .... The algo-
rithm computes incrementally the suffix array of 7 in ®(n/M) stages, rather than the
logarithmic number of stages of the Skew algorithm. At the beginning of stage /, we
assume we have on disk the array SA" that contains the sorted sequence of the first hm
suffives of T. Initially 4 = 0 and thus S4° is an empty array. In the generic A-th stage,
the algorithm loads the next text piece 7*! in internal memory, builds SA’ as the
sorted sequence of suffixes starting in T"+!, and then computes the new array SA"*!
by merging the two sorted sequences S4” and S4’.

There are two main issues when implementing this algorithmic idea:

e how to efficiently construct S4’, since its suffixes start in 7%*! but may extend
outside that block of characters up to the end of 7;

e how to efficiently merge the two sorted arrays SA" and SA’, since they involve
suffixes whose length may be up to ®(n) characters.

For the first issue, the algorithm does not implement any special trick; it just com-
pares pairs of suffixes character by character in O(n) time and O(n/B) 1/Os, thus
possibly extending the suffix comparisons outside the block loaded in internal mem-
ory. This means that over the total execution of the O(n/M) stages, the algorithm
constructs SA" in O (% £ mlogm) = O (% log m) I/Os.

For the second issue, the algorithm adopts a smart approach to merging S4’ with
SA4", by resorting to the use of an auxiliary array C[1, m + 1] which counts in C[/] the
number of suffixes of S4” that are lexicographically greater than the SA'[j — 1]-th text
suffix and smaller than the SA'[j]-th text suffix, where we logically set S4’[0] to be the
empty string and SA'[m + 1] to be a special string larger than any other. Since SA”
is increasingly long, it cannot be fit in internal memory, and therefore we process it
streaming-like by scanning rightward the text 7" (from its beginning) and then binary
searching each suffix in S4'. If the lexicographic position of the searched suffix is j,
then the entry C[/] is incremented. The binary search in S4” may involve the compar-
ison of some suffix characters outside the block 7#+!, currently in internal memory,
so we have to count the worst case O(n/B) 1/Os per binary search step. Over all n/M
stages, the computation of array C takes O (Zz/z "(1)_1 2(hm)log m) =0 (A’}—; log M)
1/Os (recall that m = ¢M).
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Array C is then exploited in the next substep to quickly merge the two arrays SA’
(residing in internal memory) and S4” (residing on disk): C[/] indicates how many
consecutive suffixes of SA” lexicographically lie after SA'[j — 1] and before S4'[/].
Hence a disk scan suffices to perform the merging process in O(n/B) 1/Os.

Theorem 10.4 The Scan-based algorithm builds the suffix array of a string T[1,n] in
0 (}\’/ll_j}? log M ) 1/Os, using O(n/B) disk pages.

Since the worst-case number of total I/Os is cubic, a purely theoretical analysis
would classify this algorithm as uninteresting. However, in practical situations it is
very reasonable to assume that each suffix comparison finds in internal memory all
the characters used to compare the two suffixes involved in a binary search step.
And indeed, the practical behavior of this algorithm is better described by the for-
mula O (AWT;) I/Os. Additionally, all I/Os in this analysis are sequential and the actual
number of random seeks is only O(rn/M) (i.e. at most a constant number per stage).
Consequently, the algorithm takes full advantage of the large bandwidth of modern
disks and of the high speed of current CPUs. As a final note we remark that the suf-
fix arrays SA” and the text T are scanned sequentially, so some form of compression
can be adopted to reduce the I/O volume, and thus further speed up the underlying
algorithm.

Before detailing a significant improvement to the previous approach, let us illustrate
the working of the Scan-based algorithm on the same running example used in the
previous section for the Skew algorithm, and referring to the following text string.

1 2 3 4 5 6 7 8 9 10 11 12
T[,12l= m i s s i s s i p p i $

Suppose that m = 3 and that, at the beginning of stage # = 1, the algorithm
has already processed the text block 70 = 7[1,3] = mis, and thus computed and
stored on disk the array SA! = (2, 1,3) which corresponds to the lexicographic order
of the three text suffixes starting in that block: namely, mississippi$, issis-
sippis,and ssissippis. During Stage 1, the algorithm loads in internal memory
the next block 7' = T[4,6] = sis, and lexicographically sorts the text suffixes
that start in positions [4, 6] and extend to the end of 7, as illustrated in Figure 10.4.
Note that, in Step 2, the comparison between the text suffixes 7[4,12] = sis-
sippi$ and 716, 12] = ssippis involves characters that lie outside the text piece
T[4, 6], available in internal memory, so their comparison induces some 1/Os. The final
step, Step 3, computes the new array SA> by merging S4' = (2, 1, 3), stored on disk,
with S4” = (5,4, 6), available in internal memory. Figure 10.4 illustrates this merge
on our running example with the array C[1,4] = [0,2,0,1]: in fact it is C[2] =2,
because two suffixes, 71, 12]=mississippi$ and 7[2,12] = ississippis,
are between the SA'[1]-th suffix T[5,12]=1issippi$ and the SA'[2]-th suffix
T[4,12] =sissippis; and C[4] = 1 because suffix 73, 12] = ssissippi$ lies
after the SA’[3]-th suffix T[6, 12] =ssippis.
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Stage 1:
(1) Load into internal memory 7' = T[4,6] = sis.

(2) Build S4’ for the suffixes starting in [4, 6]:
Text suffixes | sissippis issippi$ ssippis
U

lexicographic ordering

Sorted suffixes issippi$ sissippi$ ssippis

SA’ 5 4 6

(3)  Merge SA’ with SA! exploiting array C:

Suffix arrays | S4’' =[5,4,6] S4' =[2,1,3]
 C=1020.1]
S42 =1[5,2,1,4,6,3]

Merge via C

Figure 10.4 Stage 1 of the Scan-based algorithm.

Figures 10.5 and 10.6 illustrate the next two stages processing the text substrings
7?2 =T[7,9] = sipand T3 = T[10, 12] = pi$. In particular, the second stage loads
in memory 77 = T[7,9] and builds the suffix array S4’ for the suffixes starting at
positions [7, 9]. This suffix array is then merged with array S42, residing on disk and
containing the suffixes that start in 71, 6] (illustrated in Figure 10.4). The third and
last stage, summarized in Figure 10.6, loads in memory 73 = 7710, 12] and builds
the suffix array SA” for the suffixes starting at positions [10, 12]. This suffix array is
then merged with array S43, residing on disk and containing the suffixes that start in
711, 9] (illustrated in Figure 10.6). The merged array is the suffix array of the entire
string 71, 12].

The asymptotic performance of the Scan-based algorithm claimed in Theorem 10.4
can be improved via a simple observation. Assume that, at the beginning of stage 4,
in addition to array S4" we have on disk a bit array, called gt;,, such that gt,[i] = 1
if and only if the suffix T[(hm + 1) + i,n] is greater than (hence gt) the suffix
T[(hm 4 1), n] or, in other words, the text suffix starting at the i-th character of 7" is
greater than the text suffix starting at its first character. The computation of gt can be
performed I/O-efficiently, but this technicality is left to the original paper [7] and not
detailed here.

During the h-th stage the algorithm loads into internal memory the substring
{1,2m] = T"T"*1 (so this is double in size with respect to the previous proposal)
and the binary array gt,[1,m — 1] (so it refers to the second block of text loaded in
internal memory). The key observation is that we can build S4’ for the suffixes starting
in T" by deploying the two arrays without performing any I/Os, other than the ones
needed to load #[1,2m] and gt ;[1,m — 1]. This seems surprising, but it derives from
the fact that any two text suffixes starting at positions 7 and j within 7”7, with i < j,
can be compared lexicographically by looking first at some of their characters in the
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Stage 2:
(1) Load into internal memory 72 = T[7,9] = sip.

(2) Build S4’ for the suffixes starting in [7, 9]:
Text suffixes | sippis ippis$ ppis
4

lexicographic ordering

Sorted suffixes ippis ppis sippi$

SA’ 8 9 7
(3)  Merge SA’ with S4? exploiting array C:

Suffix arrays S4" = [8,9,7] SA% = [5,2,1,4,6,3]

Merge via C | €=10.3.0.3]
S43 =1[8,5,2,1,9,7,4,6,3]

Figure 10.5 Stage 2 of the Scan-based algorithm.

Stage 3:
(1) Load into internal memory 73 = T[10, 12] = piS$.

(2) Build S4’ for the suffixes starting in [10, 12]:
Text suffixes | pis 1S S
4

lexicographic ordering

Sorted suffixes S i$ pis

SA’ 12 11 10
(3) Merge S4’ with S43 exploiting array C:

Suffix arrays | S4’ =[12,11,10] SA3 = [8,5,2,1,9,7,4,6,3]

Merge via C |} €=10.045]
S4% =1[12,11,8,5,2,1,10,9,7,4,6,3]

Figure 10.6 Stage 3 of the Scan-based algorithm.

substring 7, namely at the substrings #[i, m] and ¢[j,j + m — i]. These two substrings
have the same length and are completely in #[1, 2m], hence in internal memory. If these
strings differ, their order is determined and we are done; otherwise, the order between
these two suffixes is determined by the order of their remaining suffixes starting at
the characters ¢[m + 1] and #[j + m — i + 1]. This order is given by the bit stored in
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gt [/ —i], also available in internal memory. In conclusion, the two arrays ¢ and gty , ;
contain all information needed to build S4"*! by working entirely in internal memory,
and thus without performing any 1/Os.

Theorem 10.5 The new variant of the Scan-based algorithm builds the suffix array of
a string T[1,n] in O (A”T;) 1/Os, using O(n/B) disk pages.

As an example consider stage # = 1 which loads in internal memory the substring
t = T'T? = T[4,9] = sis sip, and the array gt, = (0,0). The content of gt,
follows from the fact that gt,[1] = 0 because 72[1 + 1,-] = ippi$ < T?[1,-] =
sippi$, and gt,[2] = 0 because T2[1 + 2,-] = pi$ < T?[1,-] = sippi$. Now
consider the positions i = 1 and j = 2 in ¢, we can compare the text suffixes starting
at these positions by first taking the substrings #[1,3] = 7[4,6] = sis with ¢[3,5] =
716,9] = ssi. The strings are different so we obtain their order without accessing
the disk. Now consider the positions i = 3 and j = 4 in #; they would not be taken into
account by the algorithm since the block has size 3, but let us consider them for the
sake of explanation. We can compare the text suffixes starting at these positions by first
taking the substrings #[3, 3] = s with #[4,4] = s. The strings are not different so we
use gt, [/ —i] = gt,[1] = 0, and hence the remaining (j — i)-th suffix 7[8,.] = ippis,
is lexicographically smaller than the first suffix 7[7,.] = sippis$, and this can be
determined again without any I/Os.

The Suffix Tree

The suffix tree is a fundamental data structure used in many algorithms that process
variable-length strings [9]. In its essence it is a compacted trie that stores all suffixes
of an input string, where each suffix is represented by a (unique) path from the root of
the trie to one of its leaves. We have already discussed compacted tries in Chapter 9;
now we specialize that description to the context of a dictionary of strings that are
suffixes of one single string.

Let us denote the suffix tree built over an input string 71, #n] as STr (or just ST
when the input is clear from the context) and assume, as done for suffix arrays, that
the last character of 7' is the special symbol $ which is smaller than any other alphabet
character. The suffix tree has the following properties:

1. Each suffix of T is represented by a unigue path descending from the root of ST to
one of its leaves. So there are n leaves, one per text suffix, and each leaf is labeled
with the starting position in 7 of its corresponding suffix.

2. Each internal node of S7 has at least two outgoing edges, since it is a compacted
trie. So there are less than # internal nodes and less than 2n — 1 edges. Every
internal node u spells out a text substring, denoted by s[u], which prefixes all of the
suffixes descending from u in the suffix tree. Typically the value |s[u]] is stored as
satellite information of node u, and we use occ[u] to indicate the leaves (and their
text positions) descending from u.


https://doi.org/10.1017/9781009128933.011
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009128933.011
https://www.cambridge.org/core

10.3 The Suffix Tree 173

¢TddTSsTSsTw

Figure 10.7 The suffix tree of the string 7 = mississippis$.

3. The edge labels are nonempty substrings of 7. The labels of the edges leaving any
internal node start with different characters, called branching characters. Edges are
assumed to be ordered alphabetically according to their branching characters. So
every node has at most o outgoing edges.’

In Figure 10.7 we show the suffix tree built over our exemplar text
T[1,12]=mississippis. The presence of the special symbol 7[12] = $ ensures
that no suffix is a prefix of another suffix of 7', and thus every pair of suffixes differs
in some character and thus each of them has an associated leaf. So the paths from the
root to the leaves of two different suffixes coincide up to their longest common prefix,
which ends up in an internal node of S7'.

It is evident that we cannot store explicitly the substrings labeling the suffix-tree
edges because this could end up in ©(n?) space: Take T as the string consisting of n
distinct characters, and observe that the suffix tree consists of one root connected to n
leaves with edges representing all suffixes.

We can circumvent this space explosion by encoding the edge labels with pairs of
integers which represent the starting position of the labeling substring and its length.
With reference to Figure 10.7, the label of the edge leading to leaf 5, namely the
substring 779, 12] = ppis$, can be encoded with the integer pair (9,4), where 9 is
the offset in 7 and 4 is the length of the edge label. Other obvious encodings are
possible — for example, the pair (9, 12) indicating the starting and ending position
of the edge label — but we will not detail them here. Anyway, whatever edge-label
encoding is adopted, it uses constant space, and thus the storage of all edge labels
takes O(n) space, independently of the indexed string.

Fact 10.3 The suffix tree of a string 71, n] consists of n leaves, at most n — 1 internal
nodes, and at most 2n — 2 edges. Its space occupancy is ®(n), provided that a proper
constant-sized edge-label encoding is adopted.

5 The special character $ is included in the alphabet X.
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As a final point of terminology, the locus of a text substring ¢ is the node v whose
spelled string is exactly ¢, hence s[v] = t. The extended locus of a text substring ¢’ is
the locus of its shortest extension that has a defined locus in S7. In other words, the
path spelling the string ¢ in ST ends within an edge label, say the label of the edge
(u,v). Then s[u] prefixes ¢, which in turn prefixes s[v]. Of course, if # has a locus in
ST then this coincides with its extended locus. As an example, the node z of the suffix
tree in Figure 10.7 is the locus of the substring ssi and the extended locus of the
substring ss.

There are few other important properties that the suffix tree satisfies; they pervade
most algorithms that hinge on this powerful data structure. We summarize a few of
them:

Property 2: Let « be a substring of the text 7. There exists an internal node u such
that s[u] = « (hence u is the locus of «) if and only if there are at least two occurrences
of @ in T followed by distinct characters.

As an example, take node x in Figure 10.7: the substring s[x] = issi occurs twice
in T at positions 2 and 5, followed by characters i and p, respectively.

Property 3: Let o be a substring of the text 7" that has an extended locus in the suffix
tree. Then every occurrence of « is followed by the same character in 7.

As an example, take the substring iss that has node x as extended locus in Fig-
ure 10.7. This substring occurs twice in 7" at positions 2 and 5, always followed by
character 1.

Property 4: Every internal node u spells out a substring s[u] of 7" which occurs at
the positions occ[u] and is maximal, in the sense that it cannot be extended by one
character and yet occur at these positions.

Now we introduce the notion of the lowest common ancestor (1ca) in trees, which
is defined for every pair of leaves and denotes the deepest node that is an ancestor
of both leaves in input. As an example, in Figure 10.7, u is the 1ca of leaf 8 and
2. Now we turn 1ca between leaves into longest common prefix (Icp) between their
corresponding suffixes.

Property 5: Let a(i,/) be the lowest common ancestor between the leaves in the suffix
tree corresponding to the two suffixes T'[7, n] and T[j, n]. We have that s[a(i, )] equals
their prefix of length lcp(T'[i, nl, T[j, n)).

As an example, take the suffixes 7[11,12] = is$ and 7T[5,12] = issippis.
Their longest common prefix is the single character i and, indeed, the 1ca between
their leaves is the node u, which spells out the string s[u] = i.

The Substring-Search Problem

The search for a pattern P[1,p] as a substring of the text 7[1, n], with the help of
the suffix tree ST, consists of a tree traversal that starts from its root and proceeds
downward as pattern characters are matched against characters labeling the tree edges
(see Figure 10.8). Note that, since the first character of the edges outgoing from each


https://doi.org/10.1017/9781009128933.011
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009128933.011
https://www.cambridge.org/core

10.3 The Suffix Tree 175

%  Success
output = (3,5}

T = banana$ T = banana$
P = anas P =na

Figure 10.8 Two examples of substring searches over the suffix tree built for the text
T = bananas. The search for the pattern P = anas fails at node v (left); the search for the
pattern P = na is successful at node z (right).

traversed node is distinct, the matching of P can follow only one downward path. If
the traversal determines a mismatched character, the pattern P does not occur in T
otherwise the pattern is fully matched, the extended locus of P is found, say node u,
and all leaves of ST descending from u identify all text suffixes that are prefixed by P.
The positions occ[u] associated with these descending leaves are the ones indicating
the occ occurrences of the pattern P in 7. These positions can be retrieved in optimal
linear time by visiting the subtree that descends from u; it has O(occ) size because the
subtree consists of occ leaves and its internal nodes have (at least) binary fan-out.

In the running example of Figure 10.8, the pattern P = na occurs twice in 7 and,
in fact, the traversal of ST fully matches P and stops at the node z (the locus of P),
from which descend two leaves labeled 3 and 5. These are the positions in 7" where P
occurs, and indeed P prefixes the two suffixes 7[3, 12] = nana$ and 7[5, 12] = nas.

The cost of pattern searching is O(pt, + occ) time in the worst case, where 7, is
the time to branch out of a node during the tree traversal. This cost depends on the
alphabet size o and on the data structure used to store the branching characters of the
edges leaving each node. We discussed this issue in Chapter 9, when solving the prefix-
search problem via compacted tries. There we observed that it is £, = O(1) if we use a
perfect hash table indexed by the branching characters, whereas it is 7, = O(log o) if
we use a plain array and the branching is implemented by a binary search. In both cases
the space occupancy is optimal, that is, linear in the number of branching edges, and
thus O(n) overall. We also mentioned that perfect hash tables do not support efficient
lexicographic searches.

Fact 10.4 The occ occurrences of a pattern P[1,p] in a text 7[1,#n] can be found
in O(p + occ) time and O(n) space by using a suffix tree built on the input text
T, in which the branching characters at each node are indexed via a perfect hash
table.
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Construction from Suffix Arrays and Vice Versa

It is not difficult to observe that the suffix array S4 of the text 7', and the corresponding
lcp array, can be obtained via an in-order visit of its suffix tree S7: each time a leaf
is encountered, the suffix index stored in this leaf is written into the suffix array S4;
each time an internal node u is encountered, its associated value (i.e. |s[u]|) is written
into the array 1cp.

Fact 10.5 Given the suffix tree of a string 7[1,n], we can derive in O(n) time and
space the corresponding suffix array SA4 and longest-common-prefix array 1cp.

Vice versa, we can derive the suffix tree ST from the two arrays S4 and lcp in
O(n) time as follows. The algorithm constructs incrementally S7 starting from a tree,
say ST1, that contains the root, denoting the empty string, and the leaf labeled SA4[1],
denoting the smallest suffix of 7. At step i > 1, we have inductively constructed the
partial suffix tree S7;_; which contains all the (i — 1)-smallest suffixes of 7', according
to the lexicographic order, hence the suffixes in SA[1,i — 1]. During step i, the algo-
rithm inserts in S7;_; the i-th smallest suffix SA[i]. This requires the addition of one
leaf labeled SA[i] and, as we will prove next, at most one single internal node which
becomes the father of the inserted leaf. After n steps, the final tree S7, will be the
suffix tree of the string 71, n].

The key issue here is to show how to insert the leaf SA[i] into S7;_; in constant
amortized time. This will be enough to ensure a total time complexity of O(n) for
the overall construction process. The main difficulty consists in the detection of the
node u father of the leaf SA[i]. This node u may already exist in S7;_1; in this case
SA[i] is attached to u; otherwise, u must be created by splitting an edge of S7;_;.
Whether u exists or not is discovered by traversing S7;_ upward (and not downward),
starting from the leaf SA[i — 1], which is the rightmost one in S7;_; because of the
lexicographic order, and stopping when a node x is reached such that 1cp[i — 1] <
|s[x]]. Recall that 1cp[i — 1] is the number of characters that the currently inserted
text suffix suff,;) shares with the previously inserted text suffix suffs,(;_1;. The leaves
corresponding to these two suffixes are of course consecutive in the in-order visit of
ST. At this point, if 1cp[i — 1] = |s[x]|, the node x is the father of the leaf labeled
SA[i]; we connect them and the new S7; is obtained. Otherwise, if 1cp[i— 1] < |s[x]],
the edge leading to x has to be split by inserting a node u that has two children: the
left child is x and the right child is the leaf SA[7] (because it is lexicographically larger
than SA[i — 1]). This node is associated with the value 1cp[i — 1]. Readers can run
this algorithm over the string 71, 12] = mississippis and convince themselves
that the final suffix tree S77, is exactly the one showed in Figure 10.7.

The time complexity of this algorithm derives from an accounting argument that
involves the edges traversed by the upward percolation of S7' Since the suffix suffg ;)
is lexicographically greater than the suffix suffg,p;_ 1, the leaf labeled SA[i] lies to the
right of the leaf SA[i — 1]. So every time we traverse an edge, we either discard it
from the next traversals and proceed upward, or we split it and a new leaf is inserted.
In particular, all edges from SA[i — 1] up to x are never traversed again because they
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lie to the left of the newly inserted edge (u, SA[{]). The total number of these edges is
bounded by the total number of edges in S7', which is O(n) from Fact 10.3. The total
number of edge-splits equals the number of inserted leaves, which is again O(n).

Theorem 10.6 Given the suffix array and the longest-common-prefix array of a string
T[1,n], we can derive the corresponding suffix tree in O(n) time and space.

Therefore, we can construct the suffix tree of a string 7[1,n] by first running
the Skew algorithm to construct the suffix array of 7 in O(n) time (Theorem 10.3,
where we use RADIXSORT in RAM), then the corresponding lcp array in O(n)
time (Theorem 10.1), and finally obtain ST via the algorithm described in this sec-
tion (Theorem 10.6). The overall process takes O(n) optimal time for an integer (or
constant-sized) alphabet, and the optimal O(Sort(n)) steps in the comparison-based
model.

The following subsection presents a classic algorithm for the direct construction
of suffix trees which takes O(nlogo) time complexity, as stated in Theorem 10.7,
but is not very efficient in terms of I/O complexity. Nowadays the space succinctness
of suffix arrays and the existence of the Skew algorithm drive programmers to build
suffix trees passing through suffix arrays. However, if the average LCP among the text
suffixes is small, then the direct construction of suffix trees may be still advantageous
both in internal memory and on disk. We refer the interested reader to [6] for a deeper
analysis of these issues, and to [4] for an 1/O-optimal direct construction of suffix
trees, which is too sophisticated to be discussed in these pages.

McCreight’s Algorithm®°

A naive algorithm for constructing the suffix tree of an input string 71, n] could start
with an empty trie and then iteratively insert text suffixes, one after the other. It would
then maintain the property by which each intermediate trie is a compacted trie of the
suffixes inserted so far. In the worst case of a highly repetitive string 7[1,n] = a"~'$,
the algorithm would cost up to O(#?) time. The reason for this poor behavior is due
to the rescanning of some of T’s substrings that have already been examined during
the insertion of previous suffixes. In 1976 McCreight proposed a now well-known
algorithm [15] that circumvents rescanning by the use of some special pointers added
to the suffix tree.

These special pointers are called suffix links and are defined as follows. The suffix
link SL(z) connects the node z to the node z' such that s[z] = as[Z'], where a is an
arbitrary alphabet character. So z’ spells out a string that is obtained by dropping the
first character from s[z]. The existence of node z’ in ST is not at all obvious: of course
s[Z'] is a substring of T, given that s[z] is, and thus there exists a path in ST that ends
up in the extended locus of s[z']; but nothing seems to ensure that s[z'] has indeed a
locus in ST, and thus that node z’ exists. This property is derived by observing that
the existence of z implies the existence of at least two suffixes, say suff; and suff;, that
have the node z as their lowest common ancestor in S7, and thus s[z] is their longest
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common prefix (see Property 5). Then drop the first character of s[z] and obtain s[Z'],
which will surely be, by construction, the longest common prefix of suff;, | and suff; ;.
So z/ will be the lowest common ancestor of the leaves corresponding to these two
suffixes.

Looking at Figure 10.7, we can take the node z with s[z] = ss1, and then select the
suffixes suff; and suff (which are actually children of z) which have z as their lowest
common ancestor. Now consider the two suffixes following these two, namely suff
and suff; in the figure. They will share s1i as their longest common prefix, given that
we dropped only their first character, and the suffix tree has indeed a node y (which
plays the role of Z’ in our discussion) such that s[y] = s1i and it is their lowest common
ancestor. In conclusion, every node z has one suffix link correctly defined; more subtle
is the observation that all suffix links form a tree rooted in the root of S7": just observe
that |s[z']] < |s[z]| so they cannot induce cycles and eventually end up in the root of
the suffix tree (spelling out the empty string).

McCreight’s algorithm works in #z steps. It starts with the suffix tree ST, which
consists of a root node, denoting the empty string, and one leaf labeled suff| = T[1, n]
(namely the entire text). In a generic step i > 1, the current suffix tree S7;_; is the
compacted trie built over all text suffixes suff; such that j = 1,2,...,i — 1. Hence
suffixes are inserted in ST from the longest one to the shortest, and at any step S7;_1
indexes the (i — 1) longest suffixes of 7.

To ease the description of the algorithm we need to introduce the notation head;,
which denotes the longest prefix of suffix suff; that occurs in S7;_;. Given that S7;_;
is a partial suffix tree, head; is the longest common prefix between suff; and any of
its previous suffixes in 7', namely suﬁ; withj = 1,2,...,i — 1. We denote by 4; the
(extended) locus of the string head; in the current suffix tree S7;_1, because suff; has
not yet been inserted. After its insertion, head; = s[h;] in ST;, so h; is the locus of
head;, and h; is set as the parent of the leaf associated with the suffix suff;. As an
example, consider the insertion of suffix suffs = byabzs$ in the partial suffix tree
STy of Figure 10.9. suffs shares only the character b with the previous four suffixes of
T, so heads = b in STy, and heads has extended locus in ST given by the leaf 2. But,
after the insertion of suffs, we get the new suffix tree S7s in which 45 = v, and this is
the locus of heads.

Now we are ready to describe McCreight’s algorithm in detail. To produce ST;, we
must locate in S7;_ the (extended) locus #4; of head;. If it is an extended locus, then
the edge incident in this node is split by inserting an internal node, which corresponds
to h;, and spells out head;, to which the leaf for suff; is attached. In the naive algorithm,
head; and h; were found tracing a downward path in S7;_1 matching suff; character by
character. But we commented that this approach induces a quadratic time complexity
in the worst case. Instead McCreight’s algorithm determines 4ead; and k; by using the
information inductively available for string head;_ and its locus 4;_1, and the suffix
links that are already available in ST;_.

Fact 10.6 In S7;_; the suffix link SL(u) is defined for all nodes u # h;_1. It may be
the case that SL(h;—1) is also defined, because that node was already present in S7;_
before inserting suff;_;.
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$zqelqexq

STy

Figure 10.9 Several steps of the McCreight’s algorithm for the string 7 =abxabyabzs.

Proof The first statement derives immediately from the way S7;_; is inductively
constructed. The question about the possible existence of SL(k;—1) comes from the
observation that /;_1 is the locus of head;—1 which prefixes suff;_;. Thus the second
suffix of head;_; starts at position i and prefixes the suffix suff;. We denote this second
suffix with head_,, to denote the fact that we have dropped the first character from
head;_;. By definition, string head; is the longest prefix shared between suff; and any
one of the previous text suffixes, so that the string head,_ | prefixes head,, and therefore
it is already in S7;_1 and could have a locus in this compacted trie. [ |

McCreight’s algorithm starts with S7', which consists of two nodes: the root and
the leaf for suff;. At Step 1 head; is the empty string, /; is the root, and SL(root)
points to the root itself. At a generic step i > 1, we know head,_| and its locus /;_;
(which is the parent of suff;_;), and we wish to determine head; and its locus 4;, in
order to insert the leaf for suff; as a child of /;. These data are found via the following
three substeps:

1. if SL(h;—1) is defined, we set w = SL(h;—1) and we go to Substep 3;

2. Otherwise we need to perform a rescanning whose goal is to find/create the locus
w of the string obtained by dropping the first character from head;_1, denoted by
head_ ;. Given w, we can consequently set the suffix link SL(4;—1) = w. The search
for w is implemented by taking the parent f* of /;_;, jumping via its suffix link
f" = SL(f) (which is defined according to Fact 10.6), and then tracing a downward
path from f” starting from the (|s[f”]| 4+ 1)-th character of suff;. Since we know that

head_, occurs in T and it prefixes suff;, this downward tracing can be implemented
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by comparing only the branching characters of the traversed edges with head_ . If
the landing node of this traversal is the locus of head, ;, then this landing node is
the searched w; otherwise the landing node is the extended locus of read;_ |, so we
split the last traversed edge and insert the node w such that s[w] = head;_ . In all
cases we set SL(hj—1) = w.

3. Finally, we locate head; starting from w and scanning the rest of suff;. If the locus of
head; does exist, then we set it to 4;; otherwise the scanning of kead; stopped within
some edge, and so we split it by inserting 4; as the locus of head;. We conclude the
process by installing the leaf for suff; as a child of 4;.

Figure 10.9 shows an example of the advantage gained with suffix links. At Step 8
we have the partial suffix tree S77, head; = ab, its locus 77 = u, and we need to insert
the suffix suffs = bz$. Using McCreight’s algorithm, we find that SL(%7) is defined
and equal to v, so we reach that node following that suffix link (without rescanning
head,_ ). Subsequently, we scan the rest of suffg, namely z$, searching for the locus
of heads, but we find that actually headg = head; , so hg = v and we can attach leaf
8 there.

From the point of view of time complexity, the rescanning and scanning steps per-
form two different types of traversals: the former traverses edges by comparing only
the branching characters, since it is rescanning the string head,_; which is already
known from the previous step i—1; the latter traverses edges by comparing their labels
in their entirety because it has to determine head;. This last type of traversal always
advances in T so the cost of the scanning phase is O(n). The difficulty is to show
that the cost of rescanning also is O(n). The proof comes from an observation on the
structure of suffix links and suffix trees: if SL(x) = v then all ancestors of u point to a
distinct ancestor of v. This comes from Fact 10.6 (all these suffix links do exist), and
from the definition of suffix links (which ensures ancestorship). Hence the tree-depth
of v = SL(u), say d[v], is larger than d[u] — 1 (where —1 is due to the dropping of
the first character). Therefore, the execution of rescanning can decrease the current
depth at most by 2 (i.e. one for reaching the father of /;_1, one for crossing SL(%;_1)).
Since the depth of ST is most n, and we lose at most two levels per SL-jump, then the
number of edges traversed by rescanning is O(n), and each edge traversal takes O(1)
time because only the branching character is matched.

The last issue to be considered regards the cost of branching out of a node dur-
ing the rescanning and scanning steps. Previously we stated that this cost is constant,
through using perfect hash tables built over the branching characters of each internal
node of ST. In the context of suffix-tree construction, the tree is dynamic and thus we
should adopt dynamic perfect hash tables, which is a pretty involved solution. A sim-
pler approach consists of keeping the branching characters and their associated edges
within a binary search tree, thus supporting the branching in O(log o) time. Practically,
programmers relax the requirement of worst-case time complexity and use either hash
tables with chaining, or cuckoo hashing (described in Chapter 8), or dictionary data
structures for integer values (such as the van Emde Boas tree, whose search complex-
ity is O(loglog o) time) because characters can be looked at as sequences of bits and
hence integers.
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Theorem 10.7 McCreights algorithm builds the suffix tree of a string T[1,n] in
O(nlog o) time and O(n) space in the worst case.

This algorithm is inefficient in an external-memory setting because it may elicit
one I/O per edge traversal. Nevertheless, as we have observed, the distribution of the
lengths of head; might be skewed toward small values, so this construction might turn
out to be I/O-efficient because the top part of the suffix tree could be cached in the
internal memory, and thus will not elicit any I/Os during the scanning and rescanning
steps. We refer the reader to [6] for details on this issue.

Some Interesting Problems

Approximate Pattern Matching

The problem of approximate pattern matching can be formulated as: finding all sub-
strings of a text T[1,n] that match a pattern P[1,p] with at most k errors. In this
section we restrict our discussion to the simplest type of errors, the ones called mis-
matches or substitutions. Here the text substrings that “k-mismatch” the searched
pattern P have length p and coincide with the pattern in all but at most & charac-
ters. Figure 10.10 provides an example by considering two DNA strings formed over
the alphabet of four nucleotide bases {4, T, G, C}. The reason for using this kind of
string is that bio-informatics is the context that spurred interest around the approxi-
mate pattern-matching problem. In the figure, pattern P occurs at position 1 in 7 with
two mismatches, indicated by the arrows.

cC C G A C A T C A G T A

cC C G A C

= > -

G
T
o

Figure 10.10 An example of approximate matching between a text string 7" (top) and a pattern
string P (bottom) with & = 2 mismatches.

The naive solution to this problem consists of trying to match P with every possi-
ble length-p substring of 7', by counting the mismatches and returning the positions
where this number is at most k. This would take O(pn) time, independently of k. The
inefficiency comes from the fact that each pattern-substring comparison starts from the
beginning of P, thus taking O(p) time in the worst case. In what follows we describe a
sophisticated solution to the k-mismatch problem which hinges on an elegant data
structure that solves an apparently unrelated problem formulated over an array of
integers, called a range minimum query (RMQ). This data structure is the backbone
of many other algorithmic solutions to problems arising in data mining, information
retrieval, computational biology, and so on.

Algorithm 10.4 solves the k-mismatches problem in O(nk) time by making the
following basic observation. If P occurs in 7 with j < k mismatches, then we can align
the pattern P with a substring of 7', having the same length p, so that j or j—1 substrings
coincide and j characters mismatch. Actually, matching substrings and mismatches
interleave each other. As an example, consider again Figure 10.10: the pattern occurs
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Algorithm 10.4 Approximate pattern matching based on LCP computations

matches = {}
fori =1tondo
m=0,j=1;
while m < kand;j < p do
t=lep(Ti +j — 1,n],Plj,p));
Jj=it4
if j < p then
m=m+1;j=j+1;
end if
end while
if m < k then
matches = matches U {i};
end if
end for
return matches,

at position 1 in the text 7" with 2 mismatches, and in fact two substrings of P match
their corresponding substrings of 7. If neither mismatch had been at the extremes of
P, then there would have been three matching substrings.

This observation allows us to conclude that, if we can compare the pattern and a
text substring for equality in constant time, then we can execute the naive approach
taking O(nk) time, instead of O(np) time. To be operational, this observation can be
rephrased as follows: if T[i, i+¢] = P[j,j+£] is one of these matching substrings, then
¢ is the longest common prefix (LCP) between the pattern and the text suffix starting
at the matching positions 7 and j. Algorithm 10.4 deploys this rephrasing to code a
solution that takes O(nk) time provided that LCP computations take O(1) time. In our
running example of Figure 10.10, we need to perform two LCP computations and find
that P[1, 7] occurs at text position 1 because it equals 71, 7] with two mismatches:

e The longest common prefix between 71, 14] = CCGTACGATCAGTA and P[1,7] =
CCGAACT is CCG (i.e. Iep(T[1, 14], P[1,7]) = 3); this means that 71, 3] = P[1, 3]
and the mismatch is at position 4.

e The longest common prefix between 7[5, 14] = ACGATCAGTA and P[5,7] = ACT
is AC (i.e. lep(T[5,14], P[5,7]) = 2); this means that T[5,6] = P[5, 6] and the
mismatch is at position 7.

Referring to Algorithm 10.4, how do we compute Icp(T[i + j — 1,n], P[j,p]) in
constant time? We know that suffix trees and suffix arrays have some built-in LCP
information, but we similarly recall that these data structures were built on one single
string. Here we are talking about suffixes of P and 7 together. Nevertheless, we can
easily circumvent this difficulty by constructing the suffix array, or the suffix tree, over
the string X = T#P, where # is a new character not occurring elsewhere. Thus each
computation of the form Iep(T[i 4+ j — 1,n], P[j, p]) can now be turned into an LCP
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Figure 10.11 An example of suffix tree, suffix array, and 1cp array for the string X shown in the
figure. In the suffix tree we have indicated only a prefix of a few characters for the long edge
labels. The number in the internal node u denotes |s[u«]|, whereas numbers in the leaves denote
the starting positions of the corresponding suffixes. The figure highlights that the computation
of lep(X[2,14],X[10, 14]) = 1 (i.e. the matched character is C) boils down to finding the depth
of the 1ca node in ST between leaf 2 and leaf 10, as well as solving a range minimum query
on the subarray 1cpl6, 8], since SAx[6] = 10 and S4x[9] = 2.

computation between suffixes of X, precisely lep(T[i+j—1,n], P[n+1+4j,n+1+p]),
because P starts at position n + 1 of string X. We are therefore left with showing how
these LCP computations can be performed in constant time, whichever is the pair of
compared suffixes. This is the topic of the next subsection.

Lowest Common Ancestor, Range Minimum Query, and Cartesian Tree

Let us start with an example, and consider the suffix tree STy and the suffix array SAx
built on the string X = CCGTACGATCAGTA. This string is not in the form X = T#P
because we wish to stress the fact that the considerations and the algorithmic solutions
proposed in this section apply to any string X, not necessarily the ones arising from
the k-mismatch problem of the previous subsection.

The key observation builds upon Property 5 of suffix trees, introduced in Sec-
tion 10.3: there is a strong relation between the problem of computing the longest
common prefix between X’s suffixes and the problem of computing the lowest
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common ancestor (1ca) between leaves of the suffix tree STy. Consider the prob-
lem of computing lep(XTi, x], X[/, x]), where x is the length of string X. The node
u = lca(X[i,x],X[j,x]) in the suffix tree STy spells out the LCP between these two
suffixes of X, and thus the value |s[u]| stored in node u is exactly the LCP length we
are searching for. Equivalently, the same length can be derived by looking at the suffix
array SAy. In particular, take the lexicographic positions i, and j, where those two
suffixes occur in SAy, say SAx[iy] = i and SAx[j,] = j (we are assuming for simplic-
ity that i, < j,). Because of the lexicographic ordering of Xs suffixes, the minimum
value in the subarray® lcplip,jp — 1] is equal to |s[u]| since the values contained in
that subarray are the values stored in the suffix-tree nodes of the subtree that descends
from u (cf. Section 10.3.2). We are actually interested in the smallest value, which
corresponds to the shallowest node (namely the root u) of that subtree, hence the min-
imum computation. As a result, we have two approaches to compute the 1cp length
in constant time, either through 1ca computations over S7y or through RMQ compu-
tations over the array 1cp (and given SAyx). For the sake of presentation we introduce
an elegant solution for the latter, which actually induces in turn an elegant solution for
the former, given that they are strongly related. The reader may refer to Figure 10.11
for a running example that will be discussed in the following paragraphs.
In general terms the RMQ problem can be stated as follows:

The range minimum query problem (RMQ). Given an array A[1,n] of ele-
ments drawn from an ordered universe, build a data structure RMQ4 that is able
to compute efficiently the position of a smallest element in A[7, ], for any given
queried range (i, /). We say “a smallest” because that subarray may contain more
than one minimum elements.

We underline that this problem asks for the position of a minimum element in the
queried subarray, rather than its value. This is more general because the value of the
minimum can obviously be retrieved from its position in 4 by accessing this array,
which is available.

The simplest, and naive, solution to achieving constant-time RMQ queries is by
means of a table that stores the index of a minimum entry for each possible range
(i,/), where 1 < i <j < n. Such a table requires ®(n?) space and time to be built.

A better solution hinges on the observation that any range (i, j) can be decomposed
into two (possibly overlapping) ranges whose size is a power of two, namely (i,i +
2L — 1) and (j — 2¢ + 1,)) where L = [log(j — i)]. This allows us to sparsify the
previous quadratic-size table by storing only ranges whose size is a power of two.
Namely, for each position i we store the answers to the queries RMQ (7, i 4 2¢ — 1), for
0 < ¢ < |logy(n — 7)]. This sparse table occupies O(n log n) space and still requires
constant time to answer RMQ queries: just compute RMQ 4(7, 7) as the position between

6 Recall that the lcp array has size x — 1 and stores in 1cp[i] the length of the longest common prefix
between suffix SA[/] and the next adjacent suffix SA[i + 1], fori = 1,2,...,x — L.
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RMQ(i,i + 2% — 1) and RMQ4(j — 2% + 1,/) that stores the minimum value, where
L = [log(j — i)].

In order to get the optimal O(n) space occupancy, we need to dig into the struc-
ture of the RMQ problem and make a twofold reduction which goes back and forth
between RMQ computations and 1ca computations [3]: namely, we reduce (i) the
RMQ computation over the 1cp array to an 1ca computation over Cartesian trees
(that we define next); we then reduce (ii) the 1ca computation over Cartesian trees to
an RMQ computation over a properly defined binary array. This last problem is then
solved in O(n) space and constant query time. Clearly, reduction (ii) can be applied
to any tree, and thus can be applied to suffix trees in order to solve 1ca queries over
them, thus providing a direct solution to the k-mismatch problem.

First reduction step: from RMQ to 1ca. We transform the RMQ, problem “back”
into an 1ca computation over a special tree which is known as Cartesian tree and
is built over the entries of the array A4[1,n]. The Cartesian tree C4 is a binary tree
of n nodes, each labeled with one of 4’s entries (i.e. value and position in 4). The
labeling is defined recursively as follows: the root of C4 is labeled by the minimum
entry in A[1, n] and its position; say this is (4[m], m). Then the left subtree of the root
is recursively defined as the Cartesian tree of the subarray A[1,m — 1], and the right
subtree is recursively defined as the Cartesian tree of the subarray A[m + 1,n]. See
Figure 10.12 for a simple example over an array of just five positions.

[
(S
w
=
(7 OS]

Figure 10.12 A Cartesian tree built over the array 4[1,5] = {2,5, 1,7, 3}. Observe that nodes of
C4 store as first component of the node label A’s value (shown in normal text inside the node)
and, as second component of the node label, its position in 4 (shown in bold outside the node).

Figure 10.13 shows the Cartesian tree built on the 1cp array depicted in Fig-
ure 10.11. Given the construction process, we can state that ranges in the 1cp array
correspond to subtrees of the Cartesian tree. Therefore computing RMQ,(i,/) boils
down to computing an 1ca query between the nodes of C4 associated with the entries
i and j. Differently to what occurred for 1ca queries on S7y, where the arguments
were leaves of that suffix tree, the queried nodes in the Cartesian tree may be internal
nodes, and it is possible that one node is the ancestor of the other node, thus, in this
case, making the 1ca query trivial. For example, executing RMQ; .,(6, 8) is equal to
executing 1ca(6, 8) over the Cartesian tree C1.p of Figure 10.13. Queried nodes are
highlighted, and the result of this query is the node (1cp[7],7) = (1, 7). Note that we
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Eulertour=1524342597/678{79121011 101214 131412951
D=1234543234|545[434 5 6 545 65 4321

Figure 10.13 Cartesian tree built on the 1cp array of Figure 10.11: inside the nodes we report
the LCP’s values, outside the nodes we report the corresponding position in the 1cp array (in
the case of ties, we make an arbitrary choice). As an example, the child of the root is labeled
(1cp[5],5) = (0,5). On the bottom part of the figure are reported the positions of the nodes
encountered during an Euler-tour traversal of the Cartesian tree, and the array D storing the
depth of these nodes.

have another minimum value in 1cp[6, 8] at 1cp[6] = 1, but the algorithm does not
“detect” it because it reports the position of “just” one minimum.

Second reduction step: from lca to RMQ. We transform the lca problem over
the Cartesian tree C4 “back” into an RMQ problem over a special binary array
A[1,2e+1], where e is the number of edges in the Cartesian tree (of course, e = O(n)).
It seems strange that this “circular” sequence of reductions now returned us to an RMQ
problem. But the current RMQ problem, unlike the original one, is formulated on a
binary array that admits an optimal solution in O(n) space.

To build the binary array A[1,2e + 1], we first build the array D[1, 2e + 1] defined
as follows. The Euler tour of the Cartesian tree C4 is a sequence of nodes obtained
by the pre-order visit of C4 such that each node is written every time the visit passes
through it (both at downward and upward edge traversals). Thus an edge is visited
twice (which justifies the 2e additive term in the size of D), whereas a node is visited
(and thus written) as many times as its number of incident edges, with the exception
of the root, which is written one more time than its incident edges (hence the +1 in the
size of D). We build the array D[1, 2e + 1] by storing in D[] the depth of the i-th node
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in the Euler tour traversal of the Cartesian tree C4. See Figure 10.13 for our running
example in which the array 4 is the 1cp array of Figure 10.11.

Given the way the array D is derived from the Euler tour, we can conclude that the
query lca(i,j) in the Cartesian tree C4 boils down to computing the node of mini-
mum depth in the subarray D[/, ;'] where i’ (resp., j') is the position of the first (resp.,
last) occurrence of the node i (resp., j) in the Euler tour. In fact, the range (/,;) cor-
responds to the part of the Euler tour that starts at node i and ends at node j. The
node of minimum depth encountered in this subsequence of the Euler tour is properly
lca(i,)).

So we reduced an 1ca query over the Cartesian tree C4 into an RMQ query over
the array D of node depths. In our running example in Figure 10.13 this reduction
transforms the query 1ca(6, 8) into a query RMQp(11, 13), which is highlighted by a
rectangle. Turning nodes into ranges can be done in constant time simply by storing
two integers per node of the Cartesian tree, denoting their first/last occurrence in the
Euler tour, thus taking O(n) additional space.

We are again “back” to an RMQ query over an integer array. But the current array
D is a special one, because its consecutive entries differ by 1 given that they refer to
the depths of consecutive nodes in an Euler tour. And in fact, two consecutive nodes
in the Euler tour are connected by an edge and thus one node is the parent of the other,
and hence their depths differ by one unit. The net result of this property is that we can
solve the RMQ problem over D[1, 2e 4 1] in O(n) space and O(1) time by deploying
the following two data structures.

First, we split the array D into subarrays Dy of size d = (1/2)loge each. Next,
we find the minimum element in each subarray Dy, and store its position at the
entry M[k] of a new array whose size is therefore (2e + 1)/d = O(e/log e). We
finally build on the array M the sparse-table solution previously indicated, which takes

(0] ((@) x log 1026) = O(e) = O(n) space and solves RMQ queries aligned at the
extremes of these subarrays in constant time.

The second data structure is built to efficiently answer RMQ queries in which i
and j are in the same block Dy. It is clear that we cannot tabulate all answers to all
such possible pairs of indexes, because this would end up in O(nd) = O(nlog n)
space occupancy. So the solution we describe here spurs from two simple, but cute,

observations whose proof is immediate and left to the reader:

e Binary entries: Every block Dy can be transformed into a pair that consists of its
first element D [1] and a binary array Ax[i] = Di[i] — Dil[i — 1] fori =2,...,d.
Entries of Ay are either —1 or +1 because of the unit difference between adjacent
entries of D.

e Minimum location: The position of the minimum value in D;, depends only on the
content of the binary sequence Ay and does not depend on the starting value D[1].

Nicely, the possible configurations that every block Dj can assume are infinite,
given that infinite is the number of ways we can instantiate the input array 4 on which
we want to issue the RMQ queries; but the possible configurations of the array Ay are
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finite and equal to 29!, This suggests to apply the four Russians trick to all binary
arrays Ay, by tabulating all their possible binary configurations and, for each, store the
position of the minimum value. Since the blocks A; have lengthd — 1 < d = loge

b
loge

2
the total number of their possible binary configurations is at most 2¢~! = 0272 ) =
O(y/e) = O(/n). Moreover, since both query-indexes i and j can take at most d =
10% possible values, being internal in a block Dy, we can have at most O(log” e) =
O(log? n) queries of this type. Consequently, we build a lookup table TTi,, j,, Ax] that
is indexed by the possible query-offsets i, and j, within the block Dj and by its binary
configuration Ay. Table 7 stores at that entry the position of the minimum value in Dy.
We also assume that, for each k, we have stored A so that the binary representation
Ay of Dy can be retrieved in constant time. Each of these indexing parameters takes
O(log e) = O(log n) bits of space, hence one memory word, and thus can be managed
in O(1) time and space. In summary, the whole table 7' consists of O(/n (logn)*) =
o(n) entries. The time needed to build 7 is O(n). The power of transforming Dy into
Ay is evident now; every entry of T7i,,j,, Ax] is actually encoding the answer for an
infinite number of blocks Dy, namely the ones that can be converted to the same binary
configuration Ay.

At this point we are ready to design an algorithm that, using the two data structures
we have illustrated, answers a query RMQp(i,/) in constant time. If i,; are inside the
same block Dy then the answer is retrieved in two steps: first we compute the offsets
i, and j, with respect to the beginning of Dy and determine the binary configuration
Ay from k; then we use this triple to access the proper entry of 7. Otherwise the range
(i,j) spans at least two blocks and can thus be decomposed in to three parts: a suffix
of some block Dy, a consecutive (possibly empty) sequence of blocks Dy ---Dy_y,
and finally the prefix of block D; . The minimum for the suffix of D and for the prefix
of Dy can be retrieved from 7', given that these ranges are inside two blocks. The
minimum of the range spanned by Dy --- Dy_ (if non-empty) is stored in M. All
this information can be accessed in constant time and the final minimum position can
thus be retrieved by comparing these three minimum values, also in constant time.

Theorem 10.8 Range-minimum queries over an array A[1, n] of elements drawn from
an ordered universe can be answered in constant time using a data structure that
occupies O(n) space.

Given the stream of reductions illustrated, we can conclude that Theorem 10.8 also
applies to computing 1ca in generic trees: it is enough to take the input tree in place
of the Cartesian tree.

Theorem 10.9 Lowest-common-ancestor queries over an arbitrary tree of size n can
be answered in constant time using a data structure that occupies O(n) space.
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Text Compression

Data compression will be the topic of Chapters 12—15; nonetheless, in this section, we
address the problem of compressing a text via the simple algorithm that is at the core
of the well-known gzip compressor, named LZ77 from the initials of its inventors
(Abraham Lempel and Jacob Ziv [13]) and from the year of its publication (1977). We
will show that there exists an optimal implementation of the LZ77 algorithm taking
O(n) time and space, by using suffix trees. (Details on the LZ family of compressors
will be given in Chapter 13.)

Given a text string 71, n], the algorithm LZ77 produces a parsing of T into
substrings that are defined as follows. Assume that it has already parsed the prefix
T[1,i — 1] (at the beginning this prefix is empty); then it decomposes the remaining
text suffix 777, n] in to three parts: the longest substring 7°[7,i + £ — 1] which starts at
i and repeats before in the text 7'; the next character 7[i + £]; and the remaining suffix
T[i + ¢ + 1,n]. The next substring to add to the parsing of 7 is T[i,i + £], and thus
corresponds to the shortest string that is new among the ones starting in 71,7 — 1].
Parsing then continues on the remaining suffix 7[i + £ + 1, n], if any.

Compression is obtained by succinctly encoding the triple of integers (d, £, T[i+{]),
where d is the distance (in characters) from i to the previous copy of T[i,i + £ — 1];
¢ is the length of the copied string; T[i + €] is the appended character. By saying
“previous copy” of T[i,i + £ — 1], we mean that this copy starts before position i but
it might extend after this position, hence it could be d < ¢; furthermore, the “previous
copy” can be any previous occurrence of 7[i,i + ¢ — 1], although space-efficiency
issues suggest that we take the closest copy (and thus the smallest d).” Finally, we
observe that the reason for adding the character 7i + £] to the emitted triple is that
this character behaves like an escape mechanism, when no copy is possible and thus
d = 0 and £ = 0. Specifically, this occurs when the LZ parsing meets a new character
in T, as the running example on the string 7 = mississippi shows:

Output: (0,0, m)

Output: (0,0, 7)

7 We are not going to discuss the integer-coding issue here, since it will be the topic of Chapter 11; we
just mention here that space efficiency is obtained in classic gzip by taking the rightmost copy and by
encoding the values d and ¢ via a Huffman coder. However, recent studies [5, 8] have shown that the
best previous copy to choose is not necessarily the closest one, which in fact implements Google’s
open-source compressor, named Brot1i [1].
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1 2 3 4 5 6 7 8 9 10 11
m i S s i S s i S S i

Output: (0,0,s)

1 2 3 4 5 6 7 8 9 10 11
m i s S i s s i P S i

Output: (1, 1,7)

1 2 3 4 5 6 7 8 9 10 11
m i s s i s s i P jS) i

Output: (3,3,p)

1 2 3 4 5 6 7 8 9 10 11
m i s s i s S i P P i

Output: (1, 1,7)

We can compute the LZ77 parsing in O(n) time and space via an elegant algorithm
that deploys the suffix tree ST built on the text 7. The difficulty is to find 7;, the longest
substring that occurs at position i and repeats before in the text 7, say at distance d
from i. We therefore have ¢ = |mr;|, and we can state that 7; is the longest common
prefix of the two suffixes suff; and suff;_,. By the properties of suffix trees, the lowest
common ancestor of the leaves i and i — d spells out ;. However, we cannot compute
lca(i,i — d) by issuing a query to the data structure of Theorem 10.9, because we
do not know d, which is exactly the information we wish to compute. Similarly, we
cannot trace a downward path from the root of ST matching suff;, because all suffixes
of T are indexed in the suffix tree and thus we could detect a longer copy that follows
position 7, instead of preceding it.

To circumvent these problems we preprocess ST via a post-order visit that computes
for every internal node u its minimum descending leaf, denoted as min(u). Clearly,
min(x) is the leftmost position from which we can copy the substring s[«]. Given this
information we can easily determine 7;: just trace a downward path from the root of
ST scanning suff;, and stopping as soon as the reached node v is such that min(v) = i.
At this point, we take u as the parent of v and set 7; = s[u], and d = i — min(u).
Clearly, the chosen copy of 7; is the farthest one from position 7, and not the closest
one. However, this does not impact on the number of phrases in which T is parsed by
LZ77, but possibly influences the magnitude of these distances and thus their succinct
encoding. Devising an LZ77-parser that efficiently determines the closest copy of each
7t; is nontrivial and needs much more sophisticated data structures, which we do not
describe in this book and thus refer the interested reader to the corresponding literature
(such as [8, 2]).

Referring to our running example, take the suffix tree S7 in Figure 10.7
and assume that the parsing has processed the prefix missi, emitting the
triples: (0,0, m), (0,0,1),(0,0,s),(1,1,1). The tracing of the subsequent suffix
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suffe = ssippis down ST stops at node z, because min(z) = 3 < 6 and any other
additional character from suffy would have led to leaf 6 (which is not smaller than
itself). Consequently, the emitted triple is correctly (6 —min(z), | s[z] |, T[6+] s[z] |]) =
(3,3,p).

The time complexity of this algorithm is linear in the length of 7', because the
traversal of the suffix tree advances over string 7', so this may occur only n times.
Branching out of suffix tree nodes can be implemented in O(1) time via perfect hash
tables, as observed for the substring-search problem. The construction of the suffix
tree costs O(n) time, by using one of the algorithms we described in the previous
sections. The computation of the values min(u), over all nodes u, takes O(n) time via
a post-order visit of ST'.

Theorem 10.10 The LZ77 parsing of a string T[1,n] can be computed in O(n) time
and space. The proposed algorithm copies each substring of the parsing from its
farthest previous occurrence.

Text Mining

In this section we briefly survey two examples of uses of suffix arrays and 1cp arrays
in the solution of interesting text mining problems.

Let us consider the following problem: Check whether there exists a substring of
T[1,n] that repeats at least twice and has length L. Solving this in a brute-force way
would mean taking every text substring of length L, and counting its number of occur-
rences in 7. These substrings are ®(n), searching each of them takes O(nL) time,
hence the overall time complexity of this brute-force approach would be O(n*L). A
smarter and faster, actually optimal, solution comes from the use either of the suffix
tree or of the array 1cp, built on the input text 7.

The use of the suffix tree is simple. Let us assume that such a string does exist,
and it occurs at positions x and y of 7. Now take the two leaves in the suffix tree that
correspond to suff, and suff,, and compute their lowest common ancestor, say a(x, y).
Since T[x,x + L — 1] = T[y,y + L — 1], it is |s[a(x, y)]| > L. We write “greater than
or equal to” because it could be the case that a longer substring is shared at positions
x and y; in fact L is just fixed by the problem. The conclusion of this argument is that
there is an internal node u in STr whose label is greater than or equal to L, namely
| s(u)| > L. Therefore, a visit of the suffix tree is enough to search for such a node u,
thus taking O(n) time.

The use of the suffix array is a little more involved, but follows a similar argument.
Recall that suffixes in S4 are lexicographically ordered, so the longest prefix shared
by a suffix SA[i] is with its adjacent suffixes, namely either with suffix SA[i — 1] or
with suffix SA[i + 1]. The length of these LCPs is stored in the entries 1cp[i — 1,1].
Now, if the repeated substring of length L does exist, and it occurs at some text posi-
tions, say x and y, then we have Icp(T[x,n], T[y,n]) > L. These two suffixes are not
necessarily contiguous in SA4 (this may be the case when the substring occurs more
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than twice); nonetheless, all suffixes occurring among them in S4 will surely share a
prefix of length L, because of their lexicographic order. Hence, if suffix 7'[x, n] occurs
at position i of the suffix array, namely SA[i] = x, then either 1cp[i — 1] > L (if
Tly,n] < T[x,n]) or 1cp[i] > L (if T[y,n] > T[x,n]). Hence we can solve the
problem stated at the start of this section by scanning the array 1cp and search-
ing for an entry whose value is greater than or equal to L. This takes O(n) optimal
time.

Let us now pose a more sophisticated problem: Check whether there exists a sub-
string of T[1,n] that repeats at least C times and has length L. This is the typical
query in a text mining scenario, where we are interested not just in a repetitive event
but in an event occurring with some statistical evidence. We can again solve this prob-
lem by trying all possible substrings and counting their occurrences. Again, a faster
solution comes from the use either of the suffix tree or of the array 1cp. Following the
argument provided in the solution to the previous problem, we note that, if a substring
of length L occurs (at least) C times, then there are (at least) C text suffixes that share
(at least) L characters. So there is a node u in the suffix tree such that |s[u]] > L and
the number of descending leaves | occ[u] | is greater than or equal to C. Equivalently,
there is a subarray of 1cp with length > C — 1 and whose entries are greater than or
equal to L. Both approaches provide an answer to the problem in O(n) time.

Let us conclude this section by setting a problem proper for a search-engine sce-
nario: Given two patterns P[1, p] and Q[1, q], and a positive integer k, check whether
there exists an occurrence of P whose distance from an occurrence of Q in an input
text T[1,n] is at most k. This is also called proximity search over text T, which is
given in advance to be preprocessed. The solution passes through the use of any
string-search data structure, be it a suffix tree or a suffix array built over 7, plus
some sorting/scanning steps. More precisely, we search for P and Q in the suffix
array, or in the suffix tree, built on 7 and retrieve their occ occurrences unsorted.
Then we sort them, and scan the ordered list, checking, for every pair of consecutive
positions of P and Q occurrences, whether the difference is at most k. This takes over-
all O(p + g + occlogocc) time, which is clearly advantageous whenever the set of
candidate occurrences is small, and thus the queries P and Q are sufficiently selective.
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Integer Coding

The trouble with integers is that we have
examined only the very small ones. Maybe
all the exciting stuff happens at really big
numbers, ones we can’t even begin to think
about in any very definite way.

Attributed to Ronald Graham

In this chapter we address a basic encoding problem that occurs in many contexts
[4, 9], and whose impact on the total memory footprint and speed performance of the
underlying application is too easily underestimated or neglected.

Problem. Let S = s1,...,5, be a sequence of positive integers s;, possibly
repeated. The goal is to represent the integers of S as binary sequences that are
self-delimiting and use just a few bits.

Note that the requirement that s; are positive integers can be relaxed by computing
the minimum value in S among the negative integers, and then summing its absolute
value to all of s;.

Before digging into the algorithmic solution to this problem, let us comment upon
two exemplar applications. Search engines store for each term ¢ the list of documents
(i.e. Web pages, blog posts, tweets, etc.) in which # occurs; this list is called the posting
list of t. Documents are usually represented in posting lists via integer IDs, which are
assigned during Web crawling. Answering a user query, formulated as a sequence of
keywords #1t; . . . t;, then consists of finding the docIDs where all #s occur. This is
implemented by intersecting the posting lists for these k terms. Storing these integers
with a fixed-length binary encoding (i.e., four or eight bytes) may require consider-
able space, and thus time for their retrieval, given that modern search engines index
billions and billions of documents. In order to reduce disk-space occupancy, band-
width as well as increase the amount of cached lists in internal memory, two kinds of
compression tricks are usually adopted: the first consists of sorting the document IDs
in each posting list, and then encoding each docID as the difference between itself and
its preceding docID in the list, the so-called gap coding;' the second trick consists

1 Of course, the first docID of a posting list is stored explicitly.
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of encoding each gap with a variable-length sequence of bits which is short for small
integers [3, 7, 9].

Another example of this problem relates to data compression. We have seen in
Chapter 10 that the LZ77 compressor turns input files into sequences of triples in
which the first two components are integers. Other well-known compressors (such as
MTE, MPEG, RLE, BWT, etc.) produce as intermediate output one or more sets of
integers, with smaller values most probable and larger values increasingly less proba-
ble. The final coding stage of those compressors must therefore convert these integers
into a bit stream, such that the total number of bits is minimized [4, 9].

A final example supporting the generality of the integer compression problem can
be obtained by looking at any text 7 as a sequence of tokens, which may be words
or single characters. Each token can be represented with an integer (aka fokenID),
so that the problem of compressing 7' can be solved by compressing its sequence of
tokenIDs. In order to better deploy integer-coding schemes, one can sort the tokens
by decreasing frequency of occurrence in 7', and then assign as tokenIDs their rank in
the ordered sequence. Then the more frequent a token in 7 is, the smaller its tokenID,
and thus the shorter the codeword assigned to it by an integer-coding scheme. It is
very well known that words in (linguistic) texts follow a Zipfian distribution [3]: the
i-th most frequent word in 7" has a frequency c(1/i)*, where c is a normalization
factor and « is a parameter depending on the input text. Then, any of the following
universal integer coders (such as the ones in Section 11.1) could be used to encode 7”s
tokenIDs, thus achieving a compression performance close to the entropy of the input
text.

The main question we address in this chapter is, therefore, how we design a
variable-length binary representation for a sequence of (unbounded) integers that takes
as a few bits as possible and is prefix-free, that is, the binary encoding of all these inte-
gers can be concatenated to produce an output bit stream that preserves decodability,
in the sense that the decoder has a means to identify the start and the end of each sin-
gle integer representation within the bit stream and, thus, get back to its uncompressed
representation.

The first and simplest idea to solve this problem is surely the one that takes
m = max;s; and then encodes each integer s; € S by using [log,(m + 1)] bits.
This fixed-size encoding is efficient whenever the set S is not very spread out and
is concentrated around the value zero. But this is a very unusual situation; in general,
m >> s;, so many bits are wasted in the output bit stream. So why not store each s;
by using its binary encoding with [log,(s; + 1)] bits? The subtle problem with this
approach is that this code is not self-delimiting, and in fact we cannot concatenate the
binary encoding of all s; and still be able to distinguish each codeword. As an exam-
ple, take S = {1, 2, 3} and the output bit sequence 11011, which is produced by using
their binary encodings: 1, 10, and 11. It is evident that we could derive many com-
patible sequences of integers from 11011, such as {6, 1, 1} or {1,2, 1, 1}, and several
others.

It is therefore clear that this simple encoding problem is challenging and deserves
the attention that we dedicate to it in this chapter. We start by introducing one of the
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simplest and best-known integer codes, the unary code. The unary code U(x) for an
integer x > 1 is given by a sequence of x — 1 bits set to 0, ended by a (delimiting)
bit set to 1. The correctness of the condition that x # 0 is easily established, although
this code can also be made to work on all nonnegative integers just by writting x bits
set to 0 rather than x — 1. All these trivial technicalities will be neglected in the rest
of this chapter, and we will just concentrate on strictly positive s;. It is clear that U(x)
requires x bits, which is exponentially longer than the length ®(logx) of its binary
code. Nonetheless, this code is efficient for very small integers and soon becomes
space inefficient as x increases.

This statement can be made more precise by recalling a basic fact deriving from
Shannon’s coding theorem, which states that the ideal code length L(c) for a symbol
c is equal to log, ﬁ bits, where P[c] is the probability of occurrence of symbol c.
This probability can be known in advance, if we have sufficient information about the
source emitting ¢, or it can be estimated empirically by counting the occurrences of
symbol ¢ in S. The reader should be careful in recalling that, in the scenario considered
in this chapter, symbols are positive integers, so the ideal code for the integer x consists
of log, ﬁ bits. So, by solving the equation |U(x)| = log, ﬁ with respect to P[x],
we derive the distribution of the integers x for which the unary code is optimal. In this
specific case it is P[x] = 27". As far as efficiency is concerned, the unary code needs
a lot of bit shifts, which are slow operations in modern processors: another reason to
favor small integers.

Theorem 11.1 The unary code of a positive integer x takes x bits, and thus it is
optimal for the distribution P[x] = 27*.

Using this same argument we can also deduce that the fixed-length binary encod-
ing, which uses [log,(m + 1)] bits, is optimal whenever integers in S are distributed
uniformly within the range {1,2,...,m}.

Theorem 11.2 Given a set S of integers, of maximum value m, the fixed-length binary
code represents each of them in [log,(m+-1)] bits, and thus it is optimal for the uniform
distribution P[x] = 1/m.

In general, integers are not uniformly distributed, and in fact variable-length binary
representations must be considered that eventually improve the simple unary code.
There are many proposals in the literature, each offering a different trade-off between
space occupancy of the binary code and time efficiency for its decoding. The follow-
ing subsections will detail the most useful and most used variable-length binary codes,
starting from the simplest ones, which use fixed encoding models for the integers in
S (such as, e.g., y and § codes), and then move on to the more involved interpolative
and Elias—Fano codes which use sophisticated (dynamic) models that adapt to the dis-
tribution of the integers in S, and thus may induce a much more succinct encoding.
Surprisingly enough, we will show that in some cases the interpolative code could
end up even shorter than the “optimal” Huffman code (described in Chapter 12). This
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Figure 11.1 (Left) Graphical representation of y(x), for x > 0 and £ = |B(x)|. The dark-gray
rectangle denotes the binary digit 1 shared between U(¢) and B(x). (Right) Graphical
representation of y(9); note the dark-gray digit 1 shared between the unary code U(4) and the
binary code B(9).

apparently contradictory statement comes from the fact that the Huffman code is opti-
mal among the family of static prefix-free codes, namely the ones that use a fixed
code for all occurrences of x in S. Conversely, the interpolative code uses a dynamic
model that encodes x according to the distribution of its surrounding integers in S,
thus possibly adopting different codes for each of its different occurrences in S. For
some integer distributions, this context-aware behavior of the interpolative code may
result in a much more compressed representation of the output bit stream.

Elias Codes: y and §

These are two very simple universal codes for integers that use a fixed model, which
were introduced in the 1960s by Elias [2]. The adjective “universal” here relates to
the property that the length of the code is O(logx) for any integer x. So it is just a
constant factor longer than the binary code B(x), which has length [log(x + 1)1, with
the additional desirable property of being prefix-free.

The y-code represents an integer x as a binary sequence composed of two parts: a
sequence of |B(x)| — 1 zeros, followed by the binary representation B(x). The initial
sequence of zeros is delimited by the first 1, which also corresponds to the first bit of
the binary representation B(x). So y(x) can be decoded easily: count the consecutive
number of zeros up to the first 1; say this number is c¢. Then, fetch the following ¢ + 1
bits (including the trailing 1), and interpret the c-long binary sequence as the integer x.
Figure 11.1 provides a graphical representation of the y-code for an arbitrary positive
integer x, and an instantiation for x = 9.

The y-code requires 2|B(x)|—1 bits, which is equal to 2 [log,(x+1)]—1. In fact, the
y-code of the integer 9 needs 2[log,(9 + 1)] — 1 = 7 bits. From Shannon’s condition
on ideal codes, we derive that the y-code is optimal whenever the distribution of the
integers in S follows the formula P[x] ~ é

Theorem 11.3 The y-code of a positive integer x takes 2 [log,(x + 1)1 — 1 bits, and
thus it is optimal for the distribution P[x] ~ 1/x*. This is within a factor of two from
the bit length |B(x)| = [log,(x + 1)] of the binary code of x.

The inefficiency in the y-code resides in the unary coding of the length |B(x)|,
which is really costly as x becomes larger and larger. In order to mitigate this problem,
Elias introduced the §-code, which applies the y-code in place of the unary code. So
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¢ ¢
8(x) = | U(€’)| | B | B(x) | S(14) = mnm

Figure 11.2 (Left) Graphical representation of §(x), for x > 0, £ = |B(x)| and ¢ = |B(£)|. The
dark-gray rectangle denotes the binary digit 1 shared between U(£") and B(¢).

(Right) Graphical representation of §(14), where £ = 4 and £’ = 3. Notice the dark-gray digit
1 shared between the unary code U(¢") = U(3) and B(£) = B(4), given that

[B(x)| = |B(14)| = 4.

3(x) consists of two parts: the first encodes y (|B(x)|), the second encodes x in binary.
Note that, since we are using the y-code for B(x)’s length, the first and the second
parts do not share any bits; moreover, we observe that y is applied to |B(x)|, which is
guaranteed to be a number greater than zero. Decoding §(x) is easy: first we decode
y(|B(x)]), and then we fetch the next |B(x)| bits which encode the value x in binary. It
is interesting to note that the §-code can also encode the value zero, as §(0) = 1 0,
where the first bit corresponds to y(1) = 1, which is the length of the (special) binary
representation of value 0. Figure 11.2 provides a graphical representation of the §-code
for an arbitrary positive integer x, and an instantiation for x = 14.

As for the number of bits taken by §(x), we observe that it is |y (£)|+£ = 2 [log,(£+
1)] — 1+ ¢ =~ 2loglogx + logx + 1. This encoding is therefore a factor of 1 + o(1)
from the length £ = |B(x)| of the binary code of x, and hence it is universal.

Theorem 11.4 The §-code of a positive integer x takes about 1 +1log, x+2 log, log, x
bits, and thus it is optimal for the distribution P[x] ~ m This is within a factor
of 1 + o(1) from the bit length |B(x)| = 2 [log,(x + 1)] of the binary code of x.

In conclusion, y- and §-codes are universal and pretty efficient whenever the inte-
gers in the set S are concentrated around 1. Moreover, we note that these two codes
need a lot of bit shifts to be decoded and thus turn out to be slow for decoding large
integers. The codes of the following subsections trade space efficiency with decoding
speed and, in fact, they are preferred in practical applications.

Rice Code

There are situations in which integers are concentrated around some value, differ-
ent from zero. In this case, the larger this value is, the worse the performance of
y- and §-codes. Here, Rice coding becomes advantageous both in compression ratio
and decoding speed. Its special feature is being a parametric code, namely one that
depends on a positive integer &, which may be fixed according to the distribution of
the integers in the set S. The Rice code R (x) of an integer x > 0, given the parameter
k, consists of two parts: the quotient ¢ = sz;li and the remainder » = x — 1 — 2kg.
We subtract 1 in the quotient and the remainder in order to transform a strictly positive
integer sequence into a 0-based one. For sequences where x > 0 there is no need to
perform this subtraction. The quotient is stored in unary using ¢ + 1 bits (the +1 is
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g+1 k g=5 r=2

Figure 11.3 (Left) Graphical representation of the Rice code with parameter k.
(Right) Graphical representation of R4(83), where k = 4, g = | (83 — 1)/24J =5, and
r=8—-1-5x2%=2

needed because ¢ may be 0, and we defined the unary code for positive integers); the
remainder r is in the range [0, 2X) and thus it is stored in binary using  bits, denoted
with By(r). This means that the quotient is encoded in variable length, whereas the
remainder is encoded in fixed length. The closer 2% is to the value of x, the shorter
the representation of ¢ is, thus the faster its decoding. For this reason, k is chosen
in such a way that 2% is concentrated around the mean of S’ elements. Figure 11.3
provides a graphical representation of the Rice code for an arbitrary positive integer x
with parameter &, and an instantiation for x = 83 and k = 4.

The bit length of Rr(x) is ¢ + k + 1. This code is a particular case of the Golomb
code [9]; it is optimal when the values to be encoded follow a geometric distribu-
tion with parameter p, namely P[x] = p(1 — p)*~'. In this case, if 2 ~ @ i~
0.69 x mean(S), the Rice and all Golomb codes generate an optimal prefix code [9].

Fact 11.1 The Rice code, with parameter k&, of a positive integer x takes sz;klj +1+k
bits, and it is optimal for the geometric distribution P[x] = p (1 — py*~ L.

PForDelta Code

This method for compressing integers supports extremely fast decompression and
achieves a small size in the compressed output whenever S’s integers follow a
Gaussian distribution. Let us assume that most of S’s integers fall in an interval
[base, base+2" —2]. We translate the integers in the new interval [0, 2” —2] in order to
encode them in b bits; the other integers outside this range are called exceptions; they
are represented in the compressed list with an escape symbol and stored in a separate
list using a fixed-size representation of w bits (namely, a whole memory word). The
escape symbol can be encoded in binary using the b bits representing the configuration
2% — 1 which is not part of the range of the encodable integers (see Figure 11.4 for a
running example). The good property of this code is that all integers in S are encoded
in fixed length, either b bits or w + b bits, so they can be decoded fast and possibly in
parallel by packing a few of them in a memory word.

Fact 11.2 The PForDelta code of a positive integer x takes either b bits or b + w bits,
depending on whether x € [base, base + 2° — 2] or not, respectively.

The design of a PForDelta code for an integer sequence S needs to deal with the choice
of b. A rule of thumb is to choose b such that about 90 percent of S’s integers fall in
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‘12<<<<2605<<2H101622‘

‘001 010111 111 010 110 000 101 111 010‘ ‘10 16 22‘

Figure 11.4 Anexample of PForDelta encoding of the sequence S = (1, 2, 10, 16,2, 6,0, 5,22, 2),
with b = 3 and base = 0. The upper image illustrates that the integers of S falling in the range
[o, 2b — 2] = [0, 6] are encoded explicitly in the white rectangle using b bits, whereas the
out-of-range integers are encoded twice: by means of the escape symbol < in the white
rectangle using b bits, together with a full-size representation in the gray rectangle. The lower
image shows the final encoding, in which the escape symbol < is represented in three bits
using the reserved binary sequence 20 _1=7= (111),.

the range [base, base + 2P — 2], and thus can be encoded in b bits. An alternative
solution is to trade between wasting space (choosing a larger b, but reducing the
number of exceptions) and saving space (choosing a smaller b, but inducing more
exceptions). The authors of [8] have proposed an algorithm based on dynamic pro-
gramming that computes the largest b for a desired compression ratio, thus ensuring
the fastest decompression for a given space-occupancy constraint for the compressed
S. The decoding speed of PForDelta is particularly appreciated by the community of
software developers: in fact, it can force memory-word alignment over groups of w/b
integers, and it can be implemented to avoid branch mispredictions.

Variable-Byte Code and (s, c)-Dense Codes

Another class of codes that trade speed and succinctness are (s, ¢)-dense codes. Their
simplest instantiation, commonly said to have been introduced by the AltaVista search
engine, is the variable-byte code, which uses a sequence of bytes to represent an inte-
ger, thus achieving a significant decoding speed. This byte-aligned coding is useful
for achieving a significant decoding speed. The variable-byte code for x is constructed
as follows: its binary representation B(x) is padded to the left with a sequence of Os
in order to guarantee that its length is a multiple of 7; then, this binary sequence is
partitioned into groups of seven bits each; finally, a flag bit is appended to each such
group to indicate whether it is the last one (bit set to 0) or not (bit set to 1) of x’s rep-
resentation. Figure 11.5 provides a graphical representation of the variable-byte code
for an arbitrary positive integer, and its instantiation for x = 216

The decoding is simple: the byte sequence is scanned until a byte is found whose
value is smaller than 128 (hence, its flag bit is 0); then all flag bits are removed and the
resulting binary sequence is interpreted as a positive integer. The minimum amount of
bits necessary to encode an integer x is 8, and on average four bits are wasted because
of the padding. Hence this method is appropriate for large values of x.
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7 bits 7 bits 7 bits

>

| | 215 = [100p00000q0000000]

IEI |i60001oo1ooooood|0ooooood\
{ — < > < >

8 bits 8 bits 8 bits

Figure 11.5 (Left) Graphical representation of the variable-byte code for a generic integer.
(Right) Graphical representation of the variable-byte code for the integer 216,

Fact 11.3 The variable-byte code of a positive integer x takes 8 (&;C)l_l bits, and thus
it is optimal for the distribution P[x] ~ v/1/x8.

The use of flag bits induces a subtle issue that we discuss next, by introducing the
design of a more effective family of integer coders: (s, ¢)-dense codes.

The flag bit partitions the 28 = 256 binary configurations of each byte into two sets:
the configurations representing integers smaller than 128 (i.e. the flag bit is equal to
0), and the configurations representing integers larger than or equal to 128 (i.e. the flag
bit is equal to 1). The former configurations are 128 in number and are called stoppers
(because they delimit the end of an integer representation); the latter configurations
are also 128 in number, and are called continuers (because they are in the middle
of a byte-aligned integer representation). For the sake of presentation we denote the
cardinalities of the two sets by s and ¢, respectively. In the case of the variable-byte
code, s + ¢ = 28 = 256 and s = ¢ = 128. During the decoding phase, whenever
we encounter a continuer byte, we go on reading; otherwise we stop and decode the
resulting binary sequence, according to the steps we have illustrated.

The drawback of this approach is that for any x < 128 we use one byte. Therefore,
if the set S consists of very small integers, we are wasting bits. Vice versa, if S consists
of integers larger than 128, but smaller than 256, then it could be better to enlarge the
set of stoppers in order to still use one byte for them, instead of emitting two bytes.
This observation drives us to investigate the design of codes in which we vary the set
of stoppers/continuers, still under the constraint that s + ¢ = 256. To dig into this, let
us first analyze how the choice of s and ¢ changes the number of integers that can be
encoded with one or more bytes:

One byte can encode the first s integers.

Two bytes can encode the subsequent s x ¢ integers.
Three bytes can encode the subsequent s x ¢? integers.
A sequence of k bytes can encode s x ¢! integers.

It is simple to derive a closed formula that expresses the number of integers
encodable with at most & bytes, and thus with at most (k — 1) continuers and one
stopper:


https://doi.org/10.1017/9781009128933.012
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009128933.012
https://www.cambridge.org/core

202

11 Integer Coding

Values s=c=4 s=6,c=2
0 000 000
1 001 001
2 010 010
3 011 011
4 100 000 100
5 100 001 101
6 100 010 110 000
7 100 011 110 001
8 1017 000 110 010
9 101 001 110 011
10 101 010 110 100
11 101 011 110 101
12 110 000 111 000
13 110 001 111 001
14 110 010 111 010
15 110 011 111 011
16 111 000 111 100
17 111 001 111 101
18 111010 -
19 111 011

s=c=4 | s=6,c=2
s - from 000 000
s-to 011 101
¢ - from 100 110
c-to 111 111
0,...,s—1 0,...,3 0,...,5
S,...,exs—1 4,...,19 0,...,17
exs,...,ctxs | 20,...,85 | 18,...,41

Figure 11.6 Example of an (s, ¢)-code using two different pairs of values for s and c.

k—1
; & -1
stc:sx T
c—
i=0

This formula allows us to immediately derive the number of bytes that are necessary
to encode an integer x via an (s, c)-code with s + ¢ = 256: it is enough to find the
smallest & such that & > x x ((c — 1)/s) + 1.

It is evident, at this point, that the previous design is not bounded to byte sequences,
and thus to configurations over eight bits. But it can be shaped to fit any number b of
bits. In this case, the total number of 2% configurations can be arbitrarily partitioned
in s stoppers and ¢ continuers, provided that s + ¢ = 2°. For simplicity of design,
we assume that the first s configurations are stoppers and the remaining ¢ configura-
tions are continuers (as we did for the variable-byte code). The best choice of s and ¢
depends on the distribution of the integers to be encoded. For example, assume that we
want to design an (s, ¢)-code over b = 3 bits (instead of 8 bits), so we have to choose
the number of stoppers and continuers in such a way that s + ¢ = 23 = 8 (instead
of 256). Figure 11.6 shows two different choices for s and ¢, such that s + ¢ = 8:
in the first case, the number of stoppers and continuers is equal to 4; in the second
case, the number of stoppers is 6 and the number of continuers is 2. Changing s (and
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thus ¢ = 8 — s) changes the number of integers that can be encoded with 3,6,9,...
bits, as Figure 11.6 shows. Note that, while the (4,4)-code can encode only the first
four integers with three bits, the (6, 2)-code can encode two more integers with three
bits. This means that this latter code can lead to a more compressed integer sequence
according to the skewness of the distribution of the integers in {0, ..., 5}. Therefore,
it can be advantageous to adapt the number of stoppers and continuers to the proba-
bility distribution of the integers in S. In particular, if this distribution is concentrated
toward 0, then it can be advantageous to choose a small s; on the other hand, the flatter
the distribution, the more we could consider choosing larger values of s. The authors
of [1] propose an efficient algorithm to calculate that optimal s for a given integer
distribution.

Interpolative Code

This is an integer-coding technique that can be applied to an increasing sequence of
positive integers. This means that we have to modify the original formulation of our
integer-coding problem, over a possibly repeated sequence S of integers, into a new
formulation referring to a sequence S’ consisting of increasing positive integers. The
transformation is easy to define: just set S'[i] = Z}:l S[j1, so that every integer of S’
is obtained as a prefix sum of integers in S.

Let us now concentrate on the increasing sequence S = s/,...,s, with s} < s7_,.
The interpolative code will be very efficient in space compression whenever S’ shows
clustered occurrences of integers, that is, subsequences that are concentrated in small
ranges. This is a typical situation that arises in the storage of posting lists of search
engines [8].

The design of this integer-coding scheme is recursive and proceeds as follows.
At each iteration, the algorithm processes the (uncompressed) subsequence S ., and
knows inductively four parameters relating to it: ’

e the left index / and the right index r delimiting the subsequence to be encoded: that

is, Sl”r = {s;,s;H, R
e a lower bound low to the lowest value in §; ., and an upper bound 4i to the highest
value in §; , hence low < s5; < ... < 5. < hi. The values low and /i do not nec-

essarily coincide with s} and s; they just represent some lower and upper estimates
obtained during the recursive calls (both by encoder and decoder).

Initially the subsequence to be encoded is the full sequence S'[1,7], so we have
l=1,r=n,low= s/l, and hi = s),. These four values are stored in the compressed
file so that the decoder can read them at the beginning of the decompression phase.

At each recursive call, the algorithm first encodes the middle element s,
m= LH’T’J , given the information available in the 4-tuple (/, 7, low, hi), and then recur-
sively encodes the two subsequences s}, . .., s, _, ands/ !

5., by using a properly
recomputed 4-tuple for each:

where

m+12° 00
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Algorithm 11.1 Interpolative coding of (S’, 1, r, low, hi)
1: if » < [ then
return the empty string;
end if
if / = r then
return BinaryCode(S'[[], low, hi);
end if
Compute m = LH'TrJ;
Compute 4] =BinaryCode(S'[m], low +m — I, hi — r + m);
Compute 4, = Interpolative coding of (S’,/,m — 1, low, S'[m] — 1);
10: Compute A3 = Interpolative coding of (S',m + 1,r,S'[m] + 1, hi);
11: return the concatenation of 41, 4, and 43;

R P AR AR

e For the subsequence sg, o ,s:nfl, the parameter low is the same as in the previous
step, since ) has not changed, whereas /i can be set as s, — 1, since s, | < s,,, the
integers of " being distinct and increasing.

e For the subsequence s/, IR ,s.., the parameter Ai is the same as before, since .
has not changed, whereas low can be set as s, + 1, since s), | > s,

e The parameters /, r, and n are recomputed accordingly.

In order to succinctly encode s/, the algorithm deploys as much information as it
can derive from the 4-tuple (I, 7, low, hi). Specifically, it knows that s, > low +m — |,
because to the left of s/, we have m — [ distinct elements of S’ and the smallest one is
larger than Jow; and, by a similar argument, it knows that s}, < hi—(r—m). Thus it can
infer that s/, lies in the range [low+m —1I, hi —r+m], so it encodes it not explicitly but
as the difference between the value s/, and its known lower bound (low + m — 1) just
by using [log, B] bits, where B = hi —low —r+ [+ 1 is the size of the interval enclos-
ing s/,. In this way, the interpolative code can use very few bits per s/, whenever the
sequence S, , is dense. As a further speciality of this coding scheme, note that, when-
ever the sut;sequence to be encoded has the form (low, low + 1,...,low 4+ n — 1), the
algorithm does not emit any bits, thus achieving a significant compression advantage,
indeed.

Algorithm 11.1 provides the details of these steps. In particular, procedure Bina-
ryCode(x,a,b) is used to emit the binary encoding of the integer (x — a) in
[log, (b — a + 1)] bits, by assuming that x € {a,a + 1,...,b — 1,b}. Figure 11.7
shows a running example for the execution of interpolative coding over an increasing
sequence of 12 positive integers. Please note the two cases in which the algorithm does
not emit any bits (shown as thickly outlined light-gray boxes), because the two ranges
of integers, namely {1, 2} and {19, 20, 21}, are fully dense.

We conclude this section by noting that the interpolative coding of an integer s/ is
not fixed but depends on the distribution of the other integers in S’. It is therefore an
adaptive code which, additionally, turns out to be not prefix-free. These two features
make it very different from the other codes we have seen in the previous sections,
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n=12 1=1 r=12 low=1 hi=21
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low =1 hi =2 low =4 hi =8 low = 10 hi = 17 low = 19 hi = 21
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Figure 11.7 The gray and white boxes are, respectively, the left and right subsequences of each
recursive iteration of the interpolative coding algorithm. The dark gray boxes highlight the
integer s/, to be encoded. The figure also shows explicitly the number n = r — I + 1 of integers
to be encoded, for illustrative purposes, as well as the 4-tuple passed to every recursive call.
The two thickly outlined light gray boxes show the subsequences for which the interpolative
code does not emit any bits. The procedure performs, in practice, a pre-order traversal of a
balanced binary tree whose leaves are the integers in $’. The items are encoded in the
following order (the actual number encoded is given in parentheses): 9 (3), 3 (0), 5 (1), 7 (1),
18 (6), 11 (1), 15 (4).

and from the Huffman code dealt with in the next chapter, which is optimal among the
class of static prefix-free codes. As a result, the interpolative code might be much more
succinct than Huffman code over dense integer sequences, but this will not surprise us
at all because we now know the reason for that.

Elias—Fano Gode

Unlike interpolative coding, the code described in this section provides a space occu-
pancy that does not depend on the distribution of the input data and, more importantly,
can be indexed (by proper compressed data structures) in order to efficiently access
the encoded integers randomly. The former feature is a positive one in some settings,
and a negative one in other settings. It is positive in the context of storing inverted
lists of search engines and adjacency lists of large graphs; it is negative whenever
integers are clustered and space is a main concern of the underlying application.
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1 000 | Of
4= 1001 | 00
7= 1001 | 11 L= 0100111000101011
18= 1 100 | 10
24= 110 | 00 bucket 0| 1 |45 6 | 7
26=| 110 | 10 H=10‘11000100110110
30=| 111 | 10
31=| 111 | 11

Figure 11.8 The Elias-Fano code for the integer sequence " = 1,4, 7, 18,24, 26,30, 31.

Some authors have recently proposed a (sort of) dynamic programming approach
that turns Elias-Fano coding into a distribution-sensitive code, like interpolative code,
thus combining the efficiency in randomly accessing the encoded integers of the
former with the space succinctness of the latter in compressing clustered integer
subsequences [6]. Experiments have shown that interpolative coding is only 2—8 per-
cent smaller than the optimized Elias-Fano code but up to 5.5 times slower, and the
variable-byte code is 10—40 percent faster than the optimized Elias-Fano code but at
least 2.5 times larger in space. This means that the Elias-Fano code is a competitive
choice whenever an integer sequence must be compressed and randomly accessed.

As for the interpolative code, Elias-Fano code works on a monotonically increasing
sequence §' = s7,...,s, with s} < 5| 41~ For the sake of explanation, we set the size
of the universe u = s, + 1, and assume that each integer s; is represented in binary
with b = [log, u] bits. We partition the binary representation of s into two blocks:
one denoted by L(s;) and consisting of the £ = [log,(u/n)] least significant bits (the
rightmost ones), and the other denoted by H(s;) and consisting of the # = b — £ most
significant bits (the leftmost ones). Clearly, b = £ + h.

The Elias-Fano code then consists of two binary sequences:

e The sequence L, which is obtained by concatenating the blocks L(s}), in the order
i=1,2,...,n, thus resulting in length n £ = n [log,(u/n)] bits.

e The sequence H, which is obtained by iterating over all possible configurations of
h bits, namely from j = 0" = 0toj = 1" = 2" — 1, and using the negative
unary representation to encode the number x of elements s for which H(s}) = ;.
Specifically, value x is encoded as 1¥0 (i.e. 1 is repeated x times), so the binary
representation 0 encodes x = 0 (i.e. the case that no H(s;) = ). We call each such
negative unary encoding a bucket, because it refers to the “bucket” of integers s that
have a specific configuration j. The sequence H has n bits set to 1, because every
s, generates one bit set to 1 in its negative unary representation, and a number of
Os that is equal to the number of buckets, because every 0 delimits their encoding.
Now, since the maximum bucket value is [u#/2¢], then the number of 0 can be
bounded by [u/2M022u/71| < y/2loe/n) — p Therefore the binary sequence H
has size 2n bits, and it has a perfectly balanced number of Os and 1s.

Figure 11.8 shows a running example of the coding process for a set S of n = 8
integers in a universe of size # = 32. Therefore, b = [log, 32] = 5 bits are used to
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represent the integers of S, £ = [log,(u/n)] = [log,(32/8)] = 2 bits are used to
represent their least significant part, and # = b — £ = 3 bits are used to represent their
most significant part. The binary sequence L thus has size £ n =2 x 8 = 16 bits, and
the binary sequence H also consists of 16 bits, because we have 23 = 8 buckets (i.e.
configurations of 2 = 3 bits) and n = 8 integers to be coded. For illustrative purposes,
the figure details which negative unary sequence corresponds to every configuration
Jj of three bits (i.e. j = 0,1,...,7). In particular, the configuration 001 (i.e.j = 1)
occurs twice as H(s}), namely for the integers 4 and 7, so the binary sequence H
encodes these two occurrences as 110; instead, the configuration 011 (i.e. j = 3)
does not occur as H(s;) and so the binary sequence A encodes that event as 0.

Decoding the Elias-Fano code is easy: just reverse the process we followed to
encode §’. Select groups of £ bits from L to form the least significant part of the
integers of §’. Actually, the i-th group provides the ¢ least significant bits of s/. For the
h most significant bits of s}, we iterate over the binary sequence H and, if the i-th bit
set to 1 belongs to the j-th negative unary sequence, then we encode j in binary using
h bits. We have therefore proved the following:

Theorem 11.5 The Elias—Fano encoding of a monotonically increasing sequence of
n integers in the range [0, u) takes less than 2n + n [log, 1.1 bits, regardless of their
distribution. Compressing and decompressing that integer sequence takes O(n) time.
The space bound is almost optimal if the integers are uniformly distributed in [0, u), to
be precise, this encoding takes less than two bits per integer in addition to the optimal
encoding of [log,(u/n)] bits.

The most interesting property of the Elias-Fano code is that it can be augmented with
proper data structures to efficiently support the following two operations:

e Access(i), which, given an index 1 < i < n, returns s/.
o NextGEQ(x), which, given an integer 0 < x < u, returns the smallest element s/ that
is Greater than or EQual to x.

The key idea underlying the “augmentation” of H is via an auxiliary data struc-
ture that efficiently, in time and space, answers a well-known primitive, called
Select; (p, H), which returns the position in A of the p-th bit set to 1 (or set to 0,
in the case of Selecty(p, H)). The implementation of these two operations, and of the
succinct data structure for the Select primitive, will be detailed in Chapter 15; we con-
tent ourselves here in pointing out that Select can be answered in constant time and
o(|H|) = o(n) bits in addition to H (see, e.g., [5]). Given the Select primitive, the two
operations Access (1) and NextGEQ (x) can be implemented in O(1) time and
O(log(u/n)) time, respectively, as the next Chapter 15 will explain.

A comment is in order at this point which addresses an issue mentioned at the begin-
ning of this section. Since Elias-Fano code represents a monotone sequence of integers
regardless of its regularities, clustered sequences get significantly worse compression
than what interpolative code is able to achieve. Take, as an illustrative example, the
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sequence 8" = (1,2,...,n— l,u— 1) of n integers. This sequence is highly compress-
ible since the length of the first run and the value of u — 1 can be encoded in O(log u)
bits each. Conversely Elias-Fano code requires 2 + [log,(u/n)] bits per element. Some
authors have studied how to turn the Elias-Fano code into a distribution-sensitive code
that takes advantage of the regularities present in the input sequence S’ [6]. These
authors proposed two approaches. The first is a simple one based on a two-level stor-
age scheme in which the sequence S’ is partitioned into n/m chunks of m integers
each, where m is a user-defined parameter. The “first level” is then created by using
Elias-Fano to encode the last integer of each chunk, hence n/m integers overall; then,
the “second level” is created by using a specific Elias-Fano code on each chunk whose
integers are gap-encoded with respect to the last integer of the previous chunk (availa-
ble in the first level). Let #; be the distance between the first and last integers of the j-th
chunk; then the Elias-Fano code will compress its integers in the second level using
(2 + [log(u;/m)] bits each, which is advantageous when compared against the cost
for Elias-Fano coding the entire sequence S’ because (u;/m) is the average distance
within a bucket, whereas (u/n) is the average distance over the entire S’. Nonethe-
less, we partially lose this advantage due to the space taken by the first indexing
level. Overall, this simple integer-coding scheme improves the space occupancy of
the classic Elias-Fano code (which operates on the entire S”) by up to 30 percent, but
it slows down the decompression time by up to 10 percent. Compared to interpola-
tive code, this two-level scheme worsens space occupancy by up to 10 percent, but it
achieves three/four times faster decompression. The second approach proposed by the
authors of [6] is a more sophisticated approach, hinging on the interpretation of Elias-
Fano’s encoding of S’ as a shortest-path computation over a suitably constructed graph,
which comes even closer in space to interpolative code and still achieves very fast
decompression.
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12.1

Statistical Coding

Information is the resolution of
uncertainty.
Attributed to Claude Shannon

The topic of this chapter is the statistical coding of a sequence S of symbols (aka texts)
drawn from an alphabet X. Symbols may be characters, in which case the problem is
named text compression, or they can be DNA bases, where the challenge is the one
of genomic-database compression, or they can be bits, and in this case we fall in the
realm of classic data compression. If symbols are integers, then we have the integer-
coding problem addressed in the previous chapter, which can still be solved with a
statistical coder just by deriving statistical information on the integers occurring in the
sequence S. In this latter case, the code we derive is an optimal prefix-free code for the
integers of S which, anyway, is slower in both compression and decompression phases
when compared against the solutions of the previous chapter.

Conceptually, statistical compression may be viewed as consisting of two phases:
a modeling phase, followed by a coding phase. In the modeling phase, the statisti-
cal properties of the input sequence are computed and a model is built. In the coding
phase, the model is used to derive codewords for the symbols of X, and they are
then used to compress the input sequence. In the first sections of this chapter we
will concentrate only on the coding phase, surveying the best-known statistical com-
pressors: Huffman coding, arithmetic coding, and range coding; whereas in the final
Section 12.3, we will introduce a sophisticated modeling technique which will be used
to introduce the prediction by partial matching (PPM) coder, thus providing a pretty
complete picture of what can be done by statistical compressors. As a net result, we
will move from a compression performance that can be bounded in terms of 0-th order
entropy, namely an entropy function depending on the probability of single symbols
(which are therefore considered to occur independently distributed), to the more com-
pact k-th order entropy which depends on the probability of k-sized blocks of symbols
and thus models, for example, the case of Markovian sources.

Huffman Coding

First published in the early 1950s, Huffman coding was regarded as one of the best
methods for data compression for several decades, until the arithmetic coding made
higher compression rates possible at the end of the 1960s.


https://doi.org/10.1017/9781009128933.013
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009128933.013
https://www.cambridge.org/core

0.05

0.15

0.05

X

° ° ° ° °
b c d e
0.1 0.15 0.3 0.25 0.15

12.1 Huffman Coding 211

(a) Leaves of the Huffman tree

° ° ° °
b c d e f f
0.1 0.15 0.3 0.25 0.15 0.05 0.1 0.15 0.3 0.25 0.15
(b) The first merging step (¢) The final Huffman tree

Figure 12.1 Constructing the Huffman tree for the alphabet ¥ = {a, b, ¢, d, e,f’}. Probabilities
are indicated below every symbol. Tree edges are annotated with the bits 0 (left edge) and 1
(right edge). The final Huffman tree consists of six leaves and five internal nodes.

Huffman coding is based upon a greedy algorithmic scheme that constructs a binary
tree whose leaves are the symbols o in X, each provided with a probability P[o] of
occurrence in the input sequence to be compressed. These leaves constitute a candi-
date set, which will be kept updated during the construction of the Huffman tree. In
a generic step, the Huffman algorithm selects the two nodes with the smallest proba-
bilities from the candidate set, and creates their parent node, whose probability is set
equal to the sum of the probabilities of its two children. That parent node is inserted in
the candidate set, while its two children are removed from it. Since each step adds one
node and removes two nodes from the candidate set, the process stops after |X| — 1
steps, when the candidate set contains only the root of the tree. At the end of this
greedy process, the Huffman tree will consist of t = |Z| + (|| — 1) = 2|X]| — 1
nodes, of which |X| are leaves and (| 2| — 1) are internal nodes.

Figure 12.1 shows an example of a Huffman tree for the alphabet ¥ ={a,b,
¢,d,e,f}. The first merge (on the left) attaches the symbols ¢ and b as children of
the node x, whose probability is set to 0.05 + 0.1 = 0.15. This node is added to the
candidate set, whereas leaves a and b are removed from it. In the second step (see
Figure 12.1.b), the two nodes with the smallest probabilities are the leaf ¢ and the (just
inserted) node x. Their merging updates the candidate set by deleting x and ¢, and by
adding their parent node y, whose probability is set to be 0.15 4 0.15 = 0.3. The algo-
rithm continues until there is only one node (the root) left, with probability, of course,
equal to 1.

In order to derive the Huffman code for the symbols in X, we assign binary labels
to the tree edges. The typical labeling consists of assigning 0 to the left edge and 1
to the right edge of each internal node. But this is one of many possible choices. In
fact, a Huffman tree can generate 2/>~! labeled trees, because we have two labeling
choices (i.e. 0—1 or 1-0) for the two edges leaving each of the | X| — 1 internal nodes.
Given a labeled Huffman tree, the Huffman codeword for a symbol o is derived by
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0.1 0.1 0.2 0.2 0.4 0.1 0.1 0.2 0.2 0.4

Figure 122 An example of two Huffman codes that have the same average codeword length 2.2
bits, but different maximum codeword length, that is, 3 versus 4.

taking the binary labels encountered on the downward path that connects the root to
the leaf associated with o. The length of this codeword equals the depth of the leaf o
in the Huffman tree, and we denote it L(o). The Huffman code is prefix-free because
every symbol is associated with a distinct leaf, and thus no codeword is the prefix of
another codeword.

We observe that the choice of the two nodes with the minimum probability may not
be unique, and the actual available choices may induce different codewords all having
the same optimal average length but, possibly, different maximum length. Minimiz-
ing this value is useful to reduce the size of the compression/decompression buffer.
Figure 12.2 provides an illustrative example of these multiple choices.

A strategy to minimize the maximum codeword length is to choose the two oldest
nodes among the ones with the same probability in the current candidate set. Oldest
nodes means that they are either leaves or internal nodes that have been created farther
in the past than the other nodes in the candidate set. This strategy can be implemented
by using two queues: the first contains the leaves ordered by increasing probability
while the second contains the internal nodes in the order they are created by the Huft-
man algorithm. It is not difficult to observe that the second queue is also sorted by
increasing probability. In the presence of more than two minimum-probability nodes,
the algorithm looks at the nodes in the first queue, and then looks at the second queue.
Figure 12.2 shows on the left the tree resulting from this algorithm and, on the right,
the tree obtained by using an approach that makes an arbitrary choice.

The compressed file generated by the Huffman algorithm consists of two parts: the
preamble, which contains an encoding of the Huffman tree together with the symbol’s
probabilities, and thus has size ®(|X|), and the body, which contains the codewords
of the symbols in the input sequence S. The size of the preamble is usually neglected
in the evaluation of the length of the compressed file, because it is assumed that
|2| <« |S]. However, it must be noted that there are situations in practice in which
the alphabet size is significant and thus the preamble size must be taken into account.
In the rest of the section, we will concentrate on the evaluation of the size in bits for
the compressed body, and then turn to the efficient encoding of the Huffman tree by
proposing the elegant canonical Huffinan,which offers space succinctness and very
fast decoding speed.
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Let Lc = ) 5 L(0) x P[o] be the average length of the codewords produced
by a prefix-free code C, which encodes every alphabet symbol o in L(o) bits. The
following theorem states the optimality of Huffman coding:

Theorem 12.1 [f'C is a Huffman code, then L¢ is the shortest possible average length
among all prefix-free codes C', that is, Lc < L¢.

To prove this result we first observe that a prefix-free code can be seen as a binary
tree (more precisely, we should say binary trie, according to the terminology of Chap-
ter 9), so the optimality of the Huffman code can be rephrased as the minimality of the
average depth of the corresponding binary tree. This latter property can be proved by
deploying the following key lemma, whose proof is left to the reader.

Lemma 12.1 Let F be a set of (weighted) binary trees with probabilities associated
to their leaves, and minimal average depth among all binary trees with |X| leaves.
There then exists a tree T in F in which two leaves with minimum probabilities are at
the greatest depth, and are children of the same parent node.

All trees in F will have two leaves with minimum probabilities at the greatest
depth, although they can be attached to different parents. In fact, the deeper the leaf
is, the more it weights the average depth of the tree. Hence, it is better to “push” down
the leaves of smallest probability to get a minimum average depth. In particular, if
a leaf of smallest probability is not at the deepest depth, we can swap it with a leaf
at deepest depth and not of smallest probability, and get a tree of smaller average
depth. So at least two leaves of smallest probability must be at the deepest depth, but
this is not necessarily true for all of them: take the case of four symbols {a, b, c, d}
with probabilities [.1,.1,.1,.7]. The Huffman tree could merge (a, b), and then the
resulting node with ¢, thus making them of different depth. Moreover, as anticipated,
the two leaves of smallest probability may not be children of the same parent: take, for
example, the case of five symbols {a, b, ¢, d, e} with probabilities [.1,.1,.11,.11,.58],
respectively. The Huffman tree would merge (a, b) and then (c, d), and finally make
both of them children of the same parent, which is a sibling of the leaf e. Another
tree with minimum average depth could be built by merging (a, ¢) and then (b, d), and
finally make both of them children of the same parent, which is again a sibling of the
leaf e. But in this latter tree, the two leaves with minimum probabilities will not be
children of the same parent node, despite being at the greatest depth. In any case, at
least one tree in F will satisfy both properties as stated in Lemma 12.1.

Before digging into the proof of Theorem 12.1, let us introduce another technical
lemma. Assume that the alphabet ¥ consists of n symbols, and that symbols x and y
have the smallest probability. Let 7¢ be the binary tree generated by a code C built on
this alphabet, and let us denote by R¢ the reduced tree which is obtained by dropping
the leaves for x and y. Thus the parent, say z, of leaves x and y is a leaf of R¢c with
probability P[z] = P[x] + P[y]. So the tree R¢ is a binary (weighted) tree with
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Plx] + Ply]

P[x] Ply]

Figure 12.3 Relationship between a binary (weighted) tree 7" and its corresponding reduced
(weighted) tree R, as stated in Lemma 12.2.

n — 1 leaves corresponding to the alphabet ¥ — {x, y} U {z}. Figure 12.3 exemplifies
the binary trees 7¢ and Rc, and the following lemma states the relation between their
average depths.

Lemma 12.2 The relation between the average depth of the binary (weighted) tree
T with the one of its reduced binary (weighted) tree R is given by the formula Lt =
Lg + (P[x] 4+ P[y]), where x and y are two leaves with the smallest probability.

Proof 1t is enough to write down the equalities for L7 and Lg, by summing the
lengths of all root-to-leaf paths multiplied by the probability of the landing leaf. So
we have Ly = (Zo#w Plo] x L(o)) + (PIx] + PD]) x (L(z) + 1), where z is
the parent of x and y, and thus L(x) = L(y) = L(z) + 1. Similarly, we can write
Lg = (Za#w Plo] x L(a)) + L(z) x (P[x]+ P[y]). So the thesis follows. |

The optimality of the Huffman code (claimed in Theorem 12.1) can now be proved
by induction on the number n of alphabet symbols. The base case n = 2 is obvious,
because any prefix-free code must assign at least one bit to each of X’s symbols;
therefore Huffman is optimal because it assigns the single bit 0 to one symbol and the
single bit 1 to the other symbol of X.

Let us now assume that n > 2 and, by induction, assume that the Huffman code is
optimal for an alphabet of n — 1 symbols. Take now |X| = n, and let C be an optimal
code for X and its underlying distribution. Our goal will be to show that Lc = Ly, so
that Huffman is also optimal for » symbols. Clearly, Lc < Ly because C is assumed
to be an optimal code for . Now we consider the two reduced trees, say R¢ and Ry,
which can be derived from 7¢ and Ty, respectively, by dropping the leaves x and y with
the smallest probability and leaving their parent z. By Lemma 12.1 (for the optimal
() and the structure of Huffman’s algorithm, this reduction is possible for both trees
Tc and Ty. The two reduced trees define a prefix-free code for an alphabet of n — 1
symbols; so, given the inductive hypothesis, the code defined by Ry is optimal for the
“reduced” alphabet X U{z} —{x, y}. Therefore Lg,, < L. over this “reduced” alphabet.
By Lemma 12.2, we can write that the average depth of Ty is Lyy = Lg,, +P[x]+P[y],
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no Huffman

7

no Huffman

N

03 03 . 0.3

01 01 01 0.1 0.1 0.1 0.1 0.1

(a) Huffman tree (b) Not obtainable by Huffman algorithm

Figure 12.4 Example of an optimal code not obtainable by means of the Huffman algorithm.

and that the average depth of T¢ is Lc = Lg. + P[x]+P[y]. So it turns out that Ly <
L which, combined with the previous (opposite) inequality due to the optimality of
C, gives Ly = L¢. This actually means that Huffman is also an optimal code for an
alphabet of n symbols, and thus inductively proves that it is an optimal code for any
alphabet size.

This statement does not mean that C = H, and indeed, there are optimal prefix-
free codes that cannot be obtained via the Huffman algorithm (see Figure 12.4 for an
example). Rather, the previous statement indicates that the average codeword lengths
of C and H are equal. The next fundamental theorem provides a quantitative upper
bound to this average length.

Theorem 12.2 Let H be the entropy of the source emitting the symbols of an alphabet
X, hence =), .5 Plo] log, ﬁ The average codeword length of the Huffman
code satisfies the inequalities H < Ly < H + 1.

Proof* The first inequality comes from Shannon’s noiseless coding theorem, whose
sophisticated proof can be found in its beautiful original paper [6], or in any other
classic text on information theory. To prove the second inequality, we define ¢, =
[log, (1/P(c))], which is actually the smallest integer upper-bounding Shannon’s
optimal codeword length given by the entropy term for the symbol o. By simple
arithmetic manipulations, it is easy to derive that )~ _ 5 27% < 1. So by Kraft’s ine-
quality, there exists a binary tree with | 2| leaves whose root-to-leaf paths have lengths
£, for every symbol o. This binary tree provides a code C for X’s symbols, whose
average codeword lengthis Lc = )" .5, P(0) x £s. Now, by the optimality of Huff-
man’s code (Theorem 12.1), we know that Ly < L, and this proves the thesis because
of the definition of the entropy H and the inequality £, < 1 + log, (1/P(0)). |
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This theorem states that the Huffman code can lose up to one bit per compressed
symbol with respect to the entropy #H of the underlying source. This extra bit may
make quite a difference or, instead, may be neglected altogether depending on the value
of H. Clearly, H > 0, because P(o) € [0, 1] and thus log, ﬁ > 0. The entropy is
equal to zero whenever the source emits just one symbol with probability 1 and all
the other symbols with probability 0. Moreover, the entropy is a concave function and
its maximum is achieved when all symbols are equiprobable, thus getting the value
‘H = log, |X|. As a result, H may get arbitrarily large for a large alphabet of almost
equally distributed symbols. In this case (i.e. # >> 1), the Huffman code is effective
and the extra bit is negligible. Otherwise (i.e. H =~ 0), the distribution is skewed
toward one or a few alphabet symbols, and the (possibly) wasted extra bit makes the
Huffman code inefficient because, as for any prefix-free code, Huffman’s algorithm
cannot use less than one bit per symbol. So the best compression ratio that Huffman
can obtain is to encode every symbol with one bit, starting from its full representation
of log, || bits. This ideal encoding would achieve a compression ratio of 1/ log, | X|.
If ¥ is ASCIL hence |X| = 256, Huffman cannot achieve a compression ratio for any
sequence S which is less than 1/8 = 12.57 percent.

In order to overcome this limitation, Shannon proposed in his famous article of
1948 [6] a simple blocking scheme which considers an extended alphabet whose sym-
bols are substrings of k symbols each. The new alphabet has size |Z|¥ and thus, if
we use Huffman’s code on this alphabet, we waste one extra bit per block rather than
per symbol. This means that this blocked approach loses a fractional part of a bit per
symbol, namely 1/k, and this is indeed negligible for larger values of k. So how come
we do not always select very large values of k? Well, a large k does often improve
the compression ratio thanks to the blocking scheme, which captures the interdepend-
ency among adjacent symbols. Nevertheless, k£ cannot be greater than the text length,
of course; and, more importantly, a larger £ induces a larger Huffman tree, since the
number of leaves/symbols in the tree grows as |=|¥, which has to be stored in the
preamble of the compressed file. That is why a “smart” compressor should always
carefully select the right value for &, which may possibly vary along the text to be
compressed. This strategy, albeit viable, is still suboptimal in any case, as we will
prove in the following sections.

A final comment regarding the case of very long codewords. If the codeword length
exceeds 32 bits the operations can become costly because it is no longer possible to
store codewords as a single machine word. Thus it is natural to ask when this patho-
logical case occurs. Given that the optimal code should assign a codeword of length
[log, (1/P(o))] bits to symbol o, one could conclude that P[o] should be around
2733 in order to have L(0) > 32, and hence conclude that this bad situation occurs
only after about 233 symbols have been processed. Unfortunately, this first approxi-
mation is an excessive upper bound. It is enough to consider a Huffman tree skewed
to the left, whose leaf i has frequency F(i) < F(i 4+ 1). Moreover, we assume that
Z{ZI F() < F(i + 2) in order to induce the Huffman algorithm to join F(i 4+ 1)

J
with the last created internal node rather than with leaf i + 2 (or all the other leaves


https://doi.org/10.1017/9781009128933.013
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009128933.013
https://www.cambridge.org/core

1211

12.1 Huffman Coding 217

i+3,i+4,...). Itis not difficult to observe that /(i) may be taken to be the Fibonacci
sequence, possibly with different initial conditions, such as F (1) = F(2) = F(3) = 1.
Here, F(33) = 3.01 x 10°and Y32, F(i) = 1.28 x 107. The cumulative sum indi-
cates how much text has to be read in order to force a codeword of length 33 bits.
Thus, the pathological case can occur after just 10 million symbols, which is con-
siderably less than the preceding estimation! Now, if the pathological case cannot be
avoided, then there are methods to reduce the codeword lengths whilst still guaran-
teeing a good compression performance [8]. One effective approach is the iterative
scaling of symbol probabilities. It constructs the classic Huffman code over the sym-
bols, whose probabilities are approximated via the number of symbol occurrences in
the input text; then, if the longest codeword is larger than the maximum allowed num-
ber of bits, say L bits, all the symbol counts are reduced by some constant ratio (e.g.
2 or the golden ratio 1.618) and a new Huffman code is constructed over the newly
derived probability distribution for the alphabet symbols. This process is continued
until a code of maximum codeword length L or less is generated. In the limit, all
symbols will have their counts equal to 1, thus leading to a fixed-length code.

Canonical Huffman Coding
Let us recall the two main limitations incurred by the Huffman code:

e It has to store the structure of the tree, and this can be costly if the alphabet ¥ is
large, as occurs when coding blocks of symbols, possibly words.

e Decoding is slow because it has to traverse the whole tree for each codeword, and
every edge of the path (bit of the codeword) may elicit one cache miss. Thus the
total number of cache misses could be equal to the total number of bits constituting
the compressed file.

There is an elegant variant of the Huffman code, denoted canonical Huffiman code,
that alleviates these problems by introducing a special restructuring of the Huffman
tree that allows extremely fast decoding and a small memory footprint. The idea is to
transform the classic Huffman tree into another Huffman tree, equivalent to the previ-
ous one in terms of codeword lengths assigned to alphabet symbols, but structured in
a way that path lengths do not increase as we move from the leftmost to the rightmost
leaf. This “restructuring” is obtained in a surprising way, without manipulating tree
pointers but via five steps which involve only arrays and basic arithmetic operations,
as detailed here:

1. Compute the codeword length L(o) for each symbol ¢ € X according to the
classical Huffman’s algorithm. Say max is the maximum codeword length (in bits).

2. Construct the array symb[1, max] which stores in the entry symb[{] the list of
symbols having Huffman codeword of ¢ bits.

3. Construct the array num[1, max] which stores in the entry num[£] the number of
symbols having Huffman codeword of ¢ bits.
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symb code 4
a 0000 | 4
b 0001 4
c 001 3
d 01 2
e 10 2
f 11 2
14 symb num fc
0 1 2
1 0 2
2|1 d|e| f 3 1
3 c 1 1
4 | a b 2 0

0.05 0.1

Figure 125 Example of canonical Huffman coding. Note that the Huffman tree is shaped in a
way that path lengths do not increase as we move from the leftmost to the rightmost leaf. The
table in the top-right corner shows the result of the computation of a classic Huffman
algorithm applied to six symbols {a, b, ¢, d, e, f}, whose probabilities are specified below the
corresponding leaves. The table on the bottom-right corner specifies all arrays computed by the
canonical Huffiman code, and the binary tree on the left is its graphical representation.

4. Derive from the array num (then discarded), the array fc[1, max], which stores in
the entry fc[£] the first codeword of all symbols encoded with £ bits. This assign-
ment is tricky; it does not use the Huffman tree structure, but involves arithmetic
operations which will be detailed below.

5. Implicitly assign consecutive codewords to the symbols in symb[¢], starting from
the codeword fc[f] and having length ¢ bits. “Implicitly” here means that they
are not stored in memory but they are created on the fly as needed by the
encoding/decoding process, as detailed in Algorithm 12.1.

At the end, the canonical Huffman code needs only to store the arrays fc and
symb, for a total space complexity that is at most max? bits to store fc, and at most
(2] + max)log, (|X] + 1) bits to encode table symb (note that max < |X|). Conse-
quently, the first key advantage of canonical Huffman is that we do not need to store
explicitly the tree structure via pointers, with a saving of ®(]X| log, | X|) bits. More-
over, in the preamble of the compressed file, we can store just the codeword lengths
of the |X| symbols, for a total of |X|log, | X| bits (while the storage of the symbols’
frequency would take || log, n bits); this information is enough to rebuild the canon-
ical Huffman code. Figure 12.5 provides a graphical example of a Huffman tree that
satisfies the canonical property.

The other important advantage of canonical Huffman resides in its decoding proce-
dure, which does not need to percolate the Huffman tree, but only operates on the two
available arrays, thus inducing at most two cache misses per decoded symbol.! The
pseudocode of the decoding procedure is summarized in the few lines of pseudocode

! Tt is reasonable to assume that the number of cache misses is just 1 because the array fc is small and
can be fit in cache.
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Algorithm 12.1 Decoding one symbol by canonical Huffman
I: v=next bit();

2: =1,

3: while v < £c[£] do

4: v=2v+ next bit();
5: 0++;

6: end while

7: return symb[¢,v — £c[£]];

in Algorithm 12.1, where the correctness of the computation of fc-array in Step 4
(proved next) is assumed.

The correctness of the decoding procedure can be inferred from the structure of the
canonical Huffman tree. In fact, the while-guard v < £c[£] checks whether the current
codeword v, of ¢ bits, is to the left of the first codeword of that level, namely fc[¢].
If this is the case, because of the left-skewness of the canonical Huffman tree, the
codeword v is to the left of al/ symbols encoded with £ bits. Therefore, the codeword
to be decoded is longer and thus a new bit is fetched by the while-body. On the other
hand, if v > fc[¢], then the current codeword is larger in value than the first codeword
represented with £ bits, hence v corresponds to a leaf of the canonical Huffman tree at
that level ¢, and this leaf is the one with offset v — £c[£].

In order to better understand these two cases, let us analyze the decoding of the
compressed sequence 01, as shown in Figure 12.6. The function next bit () reads
the first incoming bit to be decoded, namely 0. Initially, we have £ = 1, v = 0, and
fc[l] = 2; so we are in the first case (i.e. v = 0 < 2 = £c[1]), and therefore the
algorithm knows that the codeword to be decoded is longer. So ¢ is incremented to
the value 2 (next level of the canonical Huffman tree) and v gets the next bit 1, thus
y = 01 = 1. Now, we are in the second case, for which above because the while
condition is no longer satisfied: v =1 > £¢[2] = 1. Thus the algorithm has detected
a codeword of length ¢ = 2 and, since v — £c[2] = 0, it returns the first symbol of the
list pointed to by symb[2], namely symb[2,0] = d.

A subtle comment is in order at this point: the value £c[1] = 2 seems impossible,
because we cannot represent the value 2 with a codeword consisting of one single bit.
This is a special value which forces the algorithm to always skip to the next level: in
fact, £c[1] is larger than any codeword of one bit.

We are finally ready to get down to describing the construction of a canonical Huff-
man tree, when the underlying symbol distribution does not induce one with such a
property. Figure 12.5 shows a Huffman tree that is canonical by construction, thanks
to the input symbol distribution. But this is not necessarily the case: take, for example,
the Huffman tree shown in Figure 12.7. This is a non canonical tree but, nonetheless,
it can be turned into a canonical one by means of the six lines of pseudocode shown
in Algorithm 12.2, and for which we detail here the computation of the fc-array,
recalling that max is the largest codeword length (in the running example, max = 4).
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symb | code 4

a 0000 | 4

b 0001 | 4

c 001 3

d 01 2

e 10 2

f 11 2
’ symb fe ’ symb fc

0 1 2 0 1 2
1 2 1 2
2 | d|e | f 1 2 |d|e | f 1
31 ¢ 1 31 ¢ 1
4 1 a|b 0 4 | a | b 0

Figure 12.6 The figure reports on top the Canonical Huffman tree from Figure 12.5, and all
codewords for the alphabet symbols. The codeword corresponding to the input bits 01 is
highlighted. The first table on the bottom left refers to the entry of the fc-array checked at the
first iteration of the while-loop of the decoding process, when fetching the bit 0 from input.
The second table on the bottom right refers to the entry of the fc-array checked at the second
iteration of the while-loop, when fetching the bit 1 from input. We further comment on this in
the text.

Algorithm 12.2 Computing the fc-array of a canonical Huffman code

1. fc[max] = 0;

2: i = max — 1;

3: whilei >=1do

4: felil = (Ec[i 4+ 1] 4+ num[i + 1])/2;
5: i=i—1;

6: end while

There are two key remarks to be made before digging into the proof of correctness
of Algorithm 12.2. First and foremost, £c[£] is the value of a codeword consisting of
£ bits, so the reader should keep in mind that, if the binary representation of the value
stored in £ c[¢] is shorter than £ bits, then it must be padded with zeros. Second, since
the algorithm sets fc[max] = 0, the longest codeword is a sequence of max zeros,
and so the tree built by the canonical Huffman is totally skewed to the left. Now,
let us analyze the formula that computes fc[£], according to this pseudocode, and
prove its correctness. By induction, at the level £ 4 1, the first codeword is £c[¢ + 1]
and that level consists of num[¢ + 1] leaves. So all codewords from fc[f¢ + 1] to
fc[€ + 114+ num[€ + 1] — 1 can be reserved to all symbols stored in symb[£ + 1].
The first unused codeword of £ + 1 bits is therefore given by the value £c[£ + 1] +
num[£+ 1]. The formula in the pseudocode divides this value by 2, which corresponds
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symb code ¢
a 0000 | 4
b 0001 4
c 001 3
d 01 2
e 10 2
f 110 3
g 111 3
14 symb num fc
0 1 2
1 0 2
2 | d e 2 2
3 c | f] g 3 1
4 | a b 2 0

0.05 0.1 0.2 03 02 0.1

Figure 12.7 From a Huffman tree to the corresponding canonical Huffman tree.

to dropping the most significant bit from the binary encoding of that number. In terms
of a binary tree, this is equivalent to taking the parent of the node spelling out the bit
string f£c[€+ 1]+ num[£ + 1], which is at depth £ and does not prefix any codeword
of length £ + 1. So this bit sequence can be taken as the first codeword fc[€]. This
algorithm computes fc[1] = 2 for the example in Figure 12.7, thus obtaining the
special case already commented on.

Arithmetic Coding

The principal strength of arithmetic coding, introduced by Elias in the 1960s, is that
it can code symbols arbitrarily close to the O-th order entropy, by possibly using a
fraction of bits per symbol, thus achieving much better compression than Huffman on
skewed distributions. So in Shannon’s sense it is optimal.

For the sake of clarity, let us consider the following example. Take an input
alphabet ¥ = {a,b} with a skewed distribution: Pla] = % and P[b] = 1%'
According to Shannon, the entropy of this source is H = P(a) log, (1/P(a)) +
P(b) log, (1/P(b)) =~ 0.08056 bits. In contrast, a Huffman coder, like any prefix
coder, applied on every symbol of an input text generated by this source must use
at least one bit per symbol, which is at least 10 times more than the entropy of the
source. Consequently, the Huffman code is far in terms of compression ratio from the
0-th order entropy, and clearly, the more skewed the symbol distribution is, the far-
ther Huffman’s code is from optimality. As we have already commented, the Huffman
code cannot achieve a compression ratio better than 1/log, ||, the best case occur-
ring when we substitute one symbol (encoded plainly with log, || bits) with just one
bit. This is 1/8 = 12.5 percent, in the case where the symbols are the 256 characters
of the ASCII code.

To overcome this problem, arithmetic coding relaxes the request to define a prefix-
free codeword for each individual symbol by adopting a different strategy in which
every bit of the compressed output can represent more than one input symbol. This
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Algorithm 12.3 Converter (x, k)
Require: A real number x € [0, 1), a positive integer k.
Ensure: The string representing x in k bits.

repeat
X=2XxXx
if x < 1 then
output = output :: 0

output = output :: 1
x=x—1
end if

1:
2
3
4:
5 else
6
7
8
9: until % bits are emitted

results in a better compression, at the cost of slowing down the algorithm and of
losing the capability to access/decode the compressed output from any position.
Another interesting feature of arithmetic coding is that it works easily for the case
of a dynamic model for the probability distribution, namely one in which proba-
bilities P(o) are updated as the input sequence S is processed. It is enough to set
Plo)={Us + 1)/(€+ |X]), where £ is the length of the prefix of S processed so far,
and ¢, is the number of occurrences of symbol o in that prefix. The reader can check
that this is a sound probability distribution, initially set to the uniform one, as in fact
¢ = 0and ¢, = 0 for all symbols 0 € X. These dynamic probabilities can also be
kept updated easily enough by the decompression algorithm, so that both compres-
sor and decompressor look at the same input distribution and thus encode/decode the
same symbols.

Bit Streams and Dyadic Fractions

A (possibly infinite) bit stream b1 b2b3 . . . by can be interpreted as a real number in the
range [0, 1) by prepending “0.” to it:

k
0.b1bobs3 ... by = Zb,- x 27,
i=1

Vice versa, a real number x in the range [0, 1) can be converted into a (possibly infinite)
sequence of bits with the algorithm CONVERTER, whose pseudocode is given in Algo-
rithm 12.3. This algorithm consists of a loop where the variable output is the output
bitstream and where :: expresses concatenation among bits. The loop has to end when
a level of accuracy in the representation of x is reached: we can stop when we have
emitted a certain number of bits in output, or when we establish that the representation
of x is periodic, or the value to encode is zero.
In order to clarify how CONVERTER works, we apply the pseudocode at the number
x= % and not fix any upper bound for £:
1

2
= xX2==<1— output=0
3 3
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2
- X2=
3

In this second iteration x is greater than 1, so CONVERTER emits the bit 1 and updates

the value of x by executing Step 7 in the pseudocode: % —1= % Since we have already

encountered this value of x, we infer that the output is the periodic representation 01.
Let us consider another example, say execute CONVERTER(3/32, 5):

> 1 — output =1

Wi

3

— x2=—<1— output =0
32 32

6 12

— Xx2=—<1— output =0
32 32

12 2 24 1 tput =0
— XL=—<1— =
32 32 Pt
24 48

— Xx2=—>1— output =1
32 32

48
——1)x2=1>1— output =1
32

1-1)x2=0— exit

So the final output of CONVERTER is 00011. The same output, in this case, could
be obtained by observing that the number to be encoded is represented by a dyadic
fraction, namely a fraction of the form zlk, where v and k are positive integers. A
dyadic fraction can be encoded exactly and directly, without executing CONVERTER,
by emitting the bit sequence .bing(v), where bing(v) is the binary representation of the
integer v as a string of & bits, eventually padded with zeroes. In the previous example,

k=5andv =3, s0bins(3) = 00011, as computed by CONVERTER.

Compression Algorithm

Compression by arithmetic coding is iterative: each step takes as input a subinterval of
[0, 1), representing the prefix of the input sequence compressed so far, the probabilities
of the alphabet symbols, and their cumulative probabilities, and consumes the next
input symbol.> The input subinterval is further subdivided into smaller subintervals,
one for each symbol o of X, whose lengths are proportional to their probabilities
‘P(o). The step produces as output a new subinterval that is the one associated with
the consumed input symbol, and is contained in the previous one. The number of steps
is equal to the number of symbols to be encoded, and thus to the length of the input
sequence.

In more detail, the algorithm starts by considering the interval [0, 1) and, having
consumed the entire input, produces the interval [/,/ + s) associated with the last

2 We recall that the cumulative probability of a symbol o € X is computed as ) _._, P(c), and it is
provided by the statistical model constructed during the modeling phase of the compression process. In
the case of a dynamic model, the probabilities and the cumulative probabilities change as the input
sequence is scanned.
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Algorithm 12.4 AC-Coding (S, P)
Require: The input sequence S[1, ] and the probabilities P (o).
Ensure: A subinterval [/,]+ s) of [0, 1).

1: Compute the cumulative probabilities f(o) = Y .., P(c), for each alphabet
symbol o € X;

2:0850=1,0lp=0,i=1;

3: whilei < n do

4: si=si-1 x PIS[]];

5 li =11 +si—1 x f(S[i]);
6: i=i+1;

7. end while

8:

return (x € [1,, 1, + s,), n);

symbol of the input sequence. The tricky issue here is that the output is not the pair
(1, s) (hence two real numbers,) but is just one real x € [/, + s), chosen to be a dyadic
fraction, plus the length of the input sequence.

In the next section we will see how to choose this value in order to minimize the
number of output bits; here we will concentrate on the overall compression stage
whose pseudocode is provided in Algorithm 12.4: the variables /; and s; are, respec-
tively, the left extreme and the length of the interval encoding the i-long prefix of the
input sequence. In the case that arithmetic coding uses a semi-static model to estimate
the probabilities of the alphabet symbols, the input to Algorithm 12.4 can consist just
of the input sequence S, because the probabilities P(o) are estimated as the frequency
of o in S via a scan taking O(n) time.

As an example, consider the input sequence S = abac and assume the semi-static
modeling to estimate the probabilities P(a) = %, P) = Plc) = }‘. The resulting
cumulative probabilities are f(a) = 0, f(b) = P(a) = %, andf(c) = P(a)+P(b) = %.
Following the pseudocode of AC-Coding (S), we have n = 4 and thus we repeat the
internal while-loop four times. In the first iteration (i.e. i = 1), we consider the first
symbol S[1] = a of the sequence, and compute the new interval [/{,]; + s1) given
P(a) and f(a) from the probability model:

1
st =s0 x P(S[1]) =1 x P(a) = 7
h=l+so x fS[I) =041 x f(a)=0.
In the second iteration we consider the second symbol, S[2] = b and the (cumulative)

probability P(b) (and f(b)), and determine the second interval [l>, [ + s7):

1 1
§2 =81 X P(S[Z]) = 5 X P(b) = §

1 1
L=1I0+si Xf(S[z])=0+§><f(b)=Z-

We continue this way for the third and the fourth symbols, namely S[3] = « and
S[4] = c, thus obtaining the final interval:
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A 1 3 5
2 8 16 final
c c c c .
11 19 interval

32 64
b b b b
L L1 s L 9 |
2 1 16 32
a a a a

1
i

Figure 12.8 A graphical representation of the algorithmic idea behind arithmetic coding.

o450 1919 1 19 20 19 5
S, = _— e = _— — — _— — .
T 64’ 64 ' 64 64 64 64> 16

In Figure 12.8 we illustrate the execution of the algorithm in a graphical way. Each
step zooms in on the subinterval associated with the current symbol. The final step
returns a real number inside the final subinterval, hence this number is inside all the
previously generated intervals too. This number, together with the length » of the input
sequence S, is sufficient to reconstruct it, as we will show in the following subsection.
In fact, all input sequences of a fixed length 7 are associated with distinct subintervals
which do not intersect each other, but cover [0, 1); on the other hand, sequences of
different lengths might be nested, so » is necessary to reconstruct uniquely S and
indeed it is returned as output of AC-Coding.

Decompression Algorithm

The input consists of the stream of bits resulting from the compression stage, the
length n of the input sequence to be decompressed, and the symbol probabilities P (o),
for all alphabet symbols o € X. The output is the original sequence S[1, #], given that
arithmetic coding is a lossless compressor.

Decoding is correct because the encoder and the decoder use the same statistical
model to decompose the current interval (i.e. P and /), and both start from the interval
[0, 1). The difference is that the encoder uses symbols to choose the subintervals,
whereas the decoder uses the real number 0.5 to choose (the same) subinterval to
zoom into.

As an example, take the pair (%,4) and assume that the input distribution is
P(a) = %, P) = P(c) = }‘. The resulting cumulative probabilities are f(a) = 0,

f(b) ="P(a) = %, and f(c) = P(a)+P(b) = %. The decoder executes the pseudocode

detailed in Algorithm 12.5, starting with the interval [0, 1), and setting b = 39/128
and n = 4. As the reader will discover at the end of this section, this is the pair returned
by Arithmetic coding for the text S = abac of the previous section. So we suggest that
readers excute in to parallel the decompression process with the compression one in
Figure 12.8, just to convince themselves that coder and decoder are synchronized, as
we have observed.

In the first iteration (i.e. i = 1), the initial range [0, 1) is subdivided into three
subintervals, one per symbol of the alphabet. These intervals follow a predefined
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Algorithm 12.5 AC-Decoding( b, n, P)

Require: The binary sequence b representing the compressed output, the length n of
S, the probabilities P(o).

Ensure: The original sequence S.

1: Compute the cumulative probabilities f(o) = ) ., P(c), for each alphabet
symbol o € X;

22080=1,lp=0,i=1;

3: whilei < n do

4: Subdivide the interval [/;_1,/;_1 + s;—1) into subintervals of length propor-
tional to the probabilities of the alphabet symbols (taken in a predefined
order);

5: Determine the symbol o corresponding to the subinterval in which the value
0.5 lies;

6 S=S8:o0;

7: si =si—1 X P(o);

8: li=1li_1+si-1 x f(o);

9: i=i+1;

10: end while

11: return S;

order; in particular, for this example, the first interval from the bottom is associ-
ated with the symbol a, the second with symbol b, and the last one with symbol ¢
(as in Figure 12.8). Algorithm 12.5 computes the size of each subinterval as propor-
tional to the probability of the respective symbol: so we have [0, %) for a, [%, %) for b,
and [%, 1) for ¢. Given the input value 13798, the decoding algorithm outputs the sym-
bol a because this value is included in [0, %). After that, Algorithm 12.5 updates the
subinterval as [0, %). The partitioning in three subintervals and the choice of the one
including the value .b (i.e. Steps 4 and 5) are implemented by iterating Steps 7 and
8 for all symbols o until the correct one is found. That is, 0.5 € [I1,]; + s1) where
s1=s850 X Play=1x (1/2)y=1/2and ]y =lp+50 X f(a)=0+ 1 x 0=0.

In the second iteration (i.e. i = 1), the current interval [0, %) is subdivided into
three subintervals whose sizes are proportional to the probabilities of the three alpha-
bet symbols (i.e. again 1/2 for a, and 1/4 for b and ¢). This means that they are

[O, %), [}1, %), [%, %) As a result, the second symbol returned in output is b because
% S [%, %) As a check for the correctness of Algorithm 12.5, Steps 7 and 8 compute

so =851 X Pb)=(1/2)yx (1/4)=1/8andr, =I1+s1 x f(b) =0+ (1/2) x (1/2) =
1/4.

Proceeding in this way, the third and the fourth iterations output respectively the
symbols a and ¢, and the initial sequence is thus reconstructed correctly. Algo-
rithm 12.5 stops after four steps, because # = 4 was communicated in input to the
decoder as the original sequence length.
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Efficiency

Intuitively this scheme performs well, because it associates large subintervals to fre-
quent symbols (given that the interval size s; is proportional to P(S[i])), and a large
final interval requires fewer bits to specify a number inside it. From Step 4 of Algo-
rithm 12.4 it is easy to derive an explicit formula for the size s, of the final interval
associated to the input sequence S:

Sp = 8Sp—1 X P(S[n]) = sp—2 x P(S[n—1]) x P(S[n]) = ...

n
=s0 X PWS[1]) x --- x P(S[n]) =1 x HP(S[Z’]). (12.1)
i=1

This formula is interesting because it says that s, depends on the symbols forming
S but not on their order within S. So the size of the interval returned by arithmetic
coding for S is the same whatever the order. Now, since the size of the interval impacts
on the number of bits returned in the compressed output, we derive that the output
size is independent of the permutation of the symbols in S. This does not contradict
the previous statement, which we will go on to prove that arithmetic coding achieves a
performance close to the entropy of the sequence S, given that the formula for entropy
is also independent of S’s symbol ordering.

We are left with the problem of choosing a number within the interval [1,, 1, + s,,)
that has the form of a dyadic fraction 21,{ and can be encoded with a few bits (i.e. a
small k). The following lemma is crucial to establish the efficiency and correctness of
arithmetic coding.

Lemma 12.3 Take a real number x represented as the binary sequence 0.b1by - - -. If
we truncate it to its first d bits, we obtain a real number truncg(x) € [x — 277 x].

Proof  The real number x may differ from its truncation in terms of the bits that follow
the position d. Those bits have been reset to 0 in truncy(x). Therefore we have:

o0 o0 o0
A : 1
x —truncg(x) = Y by 270 <3 "1 x 27 @) =27 :5 =271
i=1 i=1 i=1

On the other hand, truncy;(x) < x because we may turn bits 1 in the binary
representation of x into bits 0 in the binary representation of truncy(x). |

Corollary 12.1 The truncation of | + 5 to its first (logz %—‘ bits falls in the interval
[,I+5).

Proof 1t is enough to set d = (logz %—I in Lemma 12.3, and observe that 27¢ < 5
|

At this point we can substitute the final step, Step 8, in AC-Coding (S) with the
invocation of CONVERTER on the real number /, +s,/2, asking to emit only lrlogz %-I
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bits. Nicely enough, algorithm CONVERTER allows these bits to be incrementally
generated.

For the sake of clarity, let us resume the previous example taking the final interval
[la, 14 + 54) = [5, %) found in the compression stage. Hence the value to output is
s¢ 19 1 1 39

L+
Pt T a "

27 128

truncated at the first ’710g2 é-l = log, 128 = 7 bits. The resulting stream of bits

associated with this value is obtained by executing the algorithm CONVERTER for
seven steps, in this way:

39 78
— x2=—<1—= output =0

128 128

78 156
— X2=—2>1— output =1

128 128

156 56
<_128 — 1) x 2= 28 <1 — output =0

56 112
— X2=—<1— output =0

128 128

112 224
— x2=—>1— output = 1

128 128

224 192
— — 1| x2=-—>1— output =1

128 128

128
At the end the encoder returns the pair (0100111;,,4). We recall that, to allow the

decompression, the decoder must receive not only this pair but also the alphabet £ =
{a, b, c} and the symbol probabilities P(a) = %, PD)="P(c) = }‘.

192
1) x2=1>1— output = 1.

We are ready now to prove the main theorem of this section, which relates the
compression ratio achieved by arithmetic coding with the (empirical) entropy of the
input string S. We refer to “empirical” entropy when we estimate the probabilities of
the alphabet symbols via their frequency of occurrence in S.

Theorem 12.3 The number of bits emitted by arithmetic coding for a sequence S of
n symbols is at most 2 + nH, where H is the (empirical) entropy of'S.

Proof By Corollary 12.1 and Equation (12.1), we know that the number of output
bits is:

’710g2 ﬂ <2 —logys, =2 —log, <]_[ P(S[i])) =2-) " log, P(S[i]).

n i=1 i=1
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Now we can rewrite the summation by iterating not over the positions 7 in S but, rather,
iterating over the symbols o and grouping their same occurrences:

2 — Z Hg logZP(o)=2—n<Z n;” logQP(o)),

ogeX geEX

where 7, is the number of occurrences of symbol o in S. The final observation is that,
if arithmetic coding uses the semi-static model to estimate the probabilities of symbols
and thus sets P(o) = "7”, then we can rewrite this formula exactly as 2 + n H, where
‘H is the empirical entropy of S, and the theorem follows. In the case of a static model,
the probabilities are fixed in advance and S is emitted according to them. Nevertheless,
by the law of large numbers, the ratio n, /n converges to P(o) as n is sufficiently large,
and thus the bound stated in the theorem follows asymptotically for the entropy of S’s
source. |

We can draw some conclusions from the result just proved:

e There is a waste of only two bits on an entire input sequence S, hence % bits per
symbol. This is a vanishing loss as the input sequence becomes increasingly long.

e The size of the output is a function of the set of symbols constituting S with their
multiplicities, but not of their order.

In Section 12.1 we saw that Huffman coding requires n + nH bits for compressing
a sequence of n symbols, so arithmetic coding is much better: it turns the additive lin-
ear term 7 into the constant 2. Another advantage is that it calculates the compressed
output on the fly and can easily accommodate the use of dynamic modeling. On the
other hand, arithmetic coding achieves this efficiency by means of infinite-precision
arithmetic operations which are very costly (in time and space) to support. There are
several proposals about using finite-precision arithmetic, which nonetheless penalizes
the compression ratio up to n Ho + 12W n (see, e.g., [3, 9]). Even so, arithmetic coding
is still more compressed than Huffman coding: 1(2)—0 versus 1 bit loss. The next subsec-
tion describes a practical implementation for arithmetic coding proposed by Witten,
Neal, and Clearly [9], sometimes called range coding, which is mathematically equiv-
alent to arithmetic coding, but works with subintervals that have integral extremes.
A more recent proposal working with finite-precision arithmetic and very interesting
compression and time performance in practice is asymmetric numeral systems (ANS)
[2]. Like arithmetic coding, ANS converts a sequence of input symbols into a number
that encapsulates a description of the sequence; but, unlike arithmetic coding, ANS
generates an infeger value which grows as new symbols are read from the input. So
ANS coding adds low-significance bits to that integer, which is proved to diverge from
zero according to the reciprocal of the symbol probabilities. So the average number of
emitted bits still grows as the (empirical) entropy of the input sequence. (For a clear
explanation and comparison of ANS against Huffman and arithmetic codings, we refer
the reader to [5].)
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Overall, (canonical) Huffman still offers some advantages over arithmetic and ANS
codings: it is faster and able to decompress any portion of the compressed file pro-
vided that we know its starting codeword. These properties justify the frequent use of
(canonical) Huffman coding in the context of Web/text collections, where the efficient
decompression of portions of data is essential and symbol distributions are not very
skewed. For these applications, an interesting variant of (canonical) Huffman is the
one that uses a large alphabet consisting of words or tokens, known as Huffword [8].

Range Coding>®

In range coding, representing real numbers in finite-precision arithmetic hinges on the
following three steps:

1. For every symbol 0 € X, we introduce an integer count c[o], denoting the
number of occurrences of that symbol in the input sequence, and a cumulative
count C[o], which sums the counts of all symbols preceding ¢ in X, hence
Clo] =), -, cla]. So we approximate the probability P(o) and the cumulative
probability /(o) as

clo] Clo]

PO=qm+n (O G

2. The interval [0, 1) is mapped to the integer interval [0, M), where M = 2" depends
on the length w in bits of the memory word.

3. During the i-th iteration of the compression or decompression stages in arithmetic
coding, the current subinterval (formerly [/;, /; 4 s;)) will be chosen to have integer
endpoints [L;, H;) such that

Li=Li—1 + LfS[D x (Hi—1 — Li-1)]
Hi =L+ [P(S[i]) x (Hi—1 — Li-1)].

These approximations induce a compression loss empirically estimated (by the
original authors) as 10~ bits per input symbol. In order to clarify how it works, we
will first explain the compression and decompression stages, and then we will illustrate
an example.

Compression stage. In order to guarantee that every interval [L;, H;) has non-
empty subintervals, the integer starting point of the next subintervals must be strictly
increasing. From their definitions,

CIS[i + 11]

LH=L+VMH%DXWFIMZM+{mm+H

X (H; _Li)J :

Since C[i]s are strictly increasing, the condition % > 1 ensures that the starting
points of the subintervals are also increasing. Adding the fact that expansions need to
keep numbers smaller than M, it is enough to guarantee that

M
CUEI+ 1< +2<Hi—Li. (12.2)
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This means that an adaptive range coding should reset these counts every AT/I + 2 input
symbols, or rescale them every, for example, % + 1 input symbols by dividing them
by 2.

Rescaling. In order to guarantee (12.2), one can adopt the following expansion rules,
which are repeatedly checked before each step of the compression process, and until
none of them is satisfied:

1. [Li,H;) € [O, %) — output “0”, and the new interval is:
[Lit1,Hiv1) = [2L;,2(H; — 1) + 2).

2. [Li, Hy) € [%,M) — output “1”, and the new interval is

L =12 M\ 5 LA WP
[i+1,Hi+1)—[ (L,-—7>, <H,-— _?>+ )

3. If AT/I <L < %4 < H; < 3TM, then we cannot output any bit and we have an

underflow condition, which is managed as follows.

In the case of underflow, we cannot emit any bit until the interval falls in one of
the two halves of [0, M) (i.e. cases 1 or 2 above). If we continue and operate on the
interval [%, %) as we did with [0, M), by rewriting conditions 1 and 2, the interval
size can fall below %’ and thus the same problem arises again. The solution is to use a

parameter m that records the number of times that the underflow condition occurred,

so that the current interval is within [% - 2,%] , % + 2,%1 ); observe that, when the

interval eventually does not include %/I, we will output 01 if it is in the first half, or
10™ if it is in the second half. After that, we can expand the interval around its halfway
point and count the number of expansions:

e Mathematically, if % <Li< % < H; < 3TM, then we increment the number m of

underflows and consider the new interval

L =12 M\ 5 MYy,
[i+1>Hi+1)—|: (L,'—Z), ([—[l_ _Z>+ )

e When expansion rules 1 or 2 are operated, after the output of the bit, we also output
m copies of the complement of that bit, and reset m to 0.

End of the input sequence. At the end of the input sequence, because of interval
expansions, the current interval satisfies at least one of the following two inequalities:

M M M 3M
Ln<Z<?<Hn or Ln<7<T<Hn. (123)

In the case that m > 0, range coding completes the output bit stream as follows:

o If the first inequality holds, we can emit 017! (if m = 0, this means encoding %’).

e If the second inequality holds, we can emit 10”+! (if m = 0, this means encoding
3M
)
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Decompression stage. The decoder must mimic the computations operated during the
compression stage. It maintains a shift register v of [log, M bits, which plays the role
of x (in the classic arithmetic coding), and it is thus used to find the next subinter-
val from the partitioning of the current interval. When the interval is expanded, v is
modified accordingly, and a new bit from the compressed stream is loaded through the
function next bit (which is assumed to fetch a bit 0 whenever the input stream is
exhausted). As in the compression stage, the following expansion rules are repeatedly
checked until none is satisfied:

1. [L;i, H;) € [O, %4) — consider the new interval

[Liv1, Hip1) = [2Li,2(H; — 1) + 2),
v=2v+next bit.

2. [Li,H;) C [%,M) —> consider the new interval

M M
[Li+1,Hiv1) = |:2 <Li_ ?> ,2 <Hi— 1- ?) +2>,

M .
v=2 (v — 3> +next bit.

3. if

R

<Li< %[ < H; < % consider the new interval

M M
[Liv1,Hiy1) = |:2 <Li - Z) ,2 <H,- —1- Z) +2> ,
M '
v=2 (V - Z) + next_bit.

In order to understand range coding better, let us resume the example of the previ-
ous sections with the same input sequence S = abac of length n = 4, ordered alphabet
¥ = {a, b, c}, probabilities P(a) = 1, P(b) = P(c) = }, and cumulative probabilities
fla)=0,1(b) = %, and f(c) = %. We rewrite these probabilities by using the approx-
imations that we saw at the start of this section, hence C[|X| + 1] = 4, and we set the
initial interval as [Lo, Ho) = [0, M), where M is chosen to satisfy (12.2):

M M
CUZI+1]< 7 +2¢>4< T +2

We take M = 16, so that % =4, % = §, and % = 12 (of course, this value of M
is not based on the real machine word length but it is useful for our example). At this
point, we have the initial interval

(Lo, Ho) = [0, 16),

and we are ready to compress the first symbol S[1] = a using the expressions for the
endpoints from the start of this section:

Li=Lo+ /(@) x (Hy—Lo)] =0+ 10 x 16] =0

Hy =L + |P(a) x (Hy—Ly)| =0+ E x 16J =38.
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The new interval [L, H{) = [0, 8) satisfies the first expansion rule [L{, H]) € [O, %’),
hence range coding outputs “1” and expands the current interval as:

[L1,H1)=1[2L1,2(H; — 1)+ 2) =0, 16).

In the second iteration, we consider the second input symbol S[2] = b, and the
endpoints of the new interval are:

Ly=Li +f(b) x (H1 —L1)] =38
H, =L, + |P(b) x (H —Ly)] =12.

This interval satisfies the second expansion rule [Ly, Hy) C [%,M), hence range
coding outputs the bit “1” and expands the current interval as:

M M
[La, Hy) = |:2 <L2 — ?> ,2 <H2 -1 - ?> +2> = [0, 8).

This interval satisfies the first expansion rule, thus range coding applies it before
reading the next input symbol. So it outputs “0”” and obtains the new expanded interval:

[La,H)=1[2L1,2(H2 — 1)+ 2) =0, 16).

The third input symbol S[3] = « is equal to the first one and is encoded within the
same interval, so we know that range coding outputs “0” and obtains the new interval
[L3, H3) = [0, 16). For the final, fourth input symbol S[4] = ¢, range coding computes
the new interval as:

[L4,Hy) =[L3 + |f(c) x (H3 — L3)],Ls + [ P(c) x (H3 — L3)]) = [12,16).

This interval lies after M /2 so range coding emits “1” and applies the second
expansion rule:

M M
[La,Hy) = [2 <L4 — ?) ,2 <H4 —1- ?> +2> = [8, 16).

This interval must be expanded again according to the second expansion rule, so range
coding outputs “1”” and obtains the final interval:

M M
[Ls, Hy) = [2 <L4 - 7) ,2 (H4 —1- ?> +2> = [0, 16).

The reader can verify that this last interval satisfies (12.3), and that the compressed
bit sequence 010011 is actually one bit shorter than the one generated by the classic
arithmetic coding. This bit sequence encodes the dyadic fraction 5, which is correctly
within the range [5, %) identified by arithmetic coding in Figure 12.8.

As far as the decoding stage is concerned, the first step initializes the shift reg-
ister v (of length [log, M| = [log, 16] = 4) with the first [log, 161 = 4 bits of
the compressed sequence, hence v = 0100, = 410.3 At this point the initial inter-
val [Lo, Hy) = [0, 16) is subdivided into three different subintervals, one for every
symbol in the alphabet, according to their countings: [0, 8), [8, 12), and [12, 16). The

3 The notation x7 (resp. x10) denotes that x is written in base 2 (resp. 10).
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symbol output at the first iteration is then a because v = 4 € [0, 8). At this point,
range coding applies the first expansion rule of the decompression process because
[L1,H)) = [0,8) C [0, %), obtaining:

[L1,Hy) =[2L1,2(H1 — 1) +2) = [0, 16)
v=2v+next bit =shifty(01002)+ 1, = 10002 + 1, = 10012 = 9.

In the second iteration, the interval [0, 16) is subdivided into the same ranges as before,
and the output symbol is now b because v = 9 € [8, 12). This last interval satisfies the
second expansion rule, which produces the new interval:

M M
[Lo, Hp) = [2 <L2 — ?) ,2 <H2 —1- 7) +2) =[0,8)

M
y=2 <v— 7) +next _bit = shiftu(1001; — 10003)+ 12 = 0011, = 3.

Since the current interval [0, 8) satisfies the first expansion rule, we apply it (the
function next bit returns “0” if there are not more bits in the compressed
sequence):

(L2, Hp) = [2L5,2(H2 — 1)+ 2) = [0, 16)
v=2v+next bit = shifty(00112)+ 0, = 01102 = 61o.

This interval is subdivided as in the first iteration, and range coding outputs a because
v = 6 € [0,8). By following the same calculations as in the first iteration, the new
interval is [L3, H3) = [0, 16) and

v=2v+next bit =shifty(01102)+ 02 = 1100, = 124.

The last output symbol is ¢ because v = 12 € [12,16), and thus the entire input
sequence is exactly reconstructed. The algorithm can stop because it has generated
four symbols, and 4 was provided as input to the decoder to specify the length of S.

Prediction by Partial Matching®>

In order to improve compression, we need better models for the symbol probabili-
ties. A typical approach consists of estimating them by considering not just individual
symbols, and thus assuming that they occur independently of each other, but evaluat-
ing the conditional probability of their occurrence in S given a few previous symbols:
the so-called context. In this section we will look at a particular adaptive technique to
build a context model that can be combined very successfully with arithmetic coding,
because it generates skewed probabilities and thus high compression. This method is
called prediction by partial matching (PPM); it allows us to move from 0-th order
entropy coders to k-th order entropy coders. The recent advent of deep neural net-
works as sophisticated probability distribution models has opened the way to new
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modeling approaches which could be used in combination with the previous statisti-
cal coders in order to achieve even better compression performance, whose time and
space efficiency has yet to be investigated with care.

The implementation of PPM suffers two main problems: (i) it needs proper data
structures to maintain updated in a time- and space-efficient manner all conditional
probabilities, as the input sequence is scanned; (ii) at the beginning, the estimates
of the context-based probabilities are poor, so proper adjustments have to be made
in order to quickly establish good statistics for all input symbols. In the rest of this
section, we concentrate on the second issue, and refer the reader to the literature for
the first one (see, e.g., [4, 8]), also pointing out some recent results concerning the
compressed encoding of the tree-based data structures that could be adopted for (i),
this being another key efficiency problem when the alphabet and the context lengths
grow (see also Chapter 15).

PPM uses a suite of finite contexts of length £ < K (aka £-order contexts) in order
to predict the next symbol. The maximum context length K influences the time and
space efficiency of the data structures used to index those contexts and, as such, it has
to be chosen with care, as we highlighted in point (i). At step i, PPM has to execute
two phases: one consists of encoding the current symbol o = S[i] according to the
probability estimates that the suite of contexts provides for it; the other consists of
updating the counts for o and all of its previous contexts « = S[i — £,i — 1] of length
up to K, so that it keeps track of how many times the string & o occurs in the prefix of
S processed so far.

The choice of the best context to use for the encoding of S[i] is tricky, and done in
PPM starting from the longest possible context of length K that precedes S[i], namely
S[i — K,i — 1]. If PPM establishes that it has not much statistical information for
predicting “S[i] after S[i — K,i — 1],” then it switches to shorter and shorter £-order
contexts until it finds the one, say S[i — ¢,i — 1] with £ < K, that is able to predict S[i]
with enough statistical significance. This check deploys the statistics (i.e. counts) that
PPM keeps for all symbols occurring after all contexts of length up to K in the prefix
of the sequence S processed so far. Therefore, it can estimate the probability that S[i]
follows S[i — £,i — 1] by accessing the corresponding count, and using it if larger
than 0. Note that the 0-order context corresponds to probabilities estimated just by the
frequency counts of the individual symbols, exactly as in the classic arithmetic coding.
Otherwise (i.e. the count for S[i] following S[i — ¢,i — 1] is null), PPM scales to a
shorter £-order context. At the start, some contexts may be missing; in particular, when
i < K, the encoder and the decoder can use at most the context of length (i — 1) < K.
In order to avoid the pathological cases in which no statistics is available for “S[/] after
S[i —¢,i— 1], for all 0 < ¢ < K, PPM additionally maintains a special (—1)-order
context, which corresponds to a model in which all symbols have the same probability.
This context ensures that, in the context-scaling process, there will always be one in
which symbol S[7] has non-null probability.

The key compression issue is then how to encode the length ¢ of the model adopted
to compress S[7], so that the decoder can also use that context in the decompression
phase. We could use an integer coder (see Chapter 11), of course, but this would take
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an integral number of bits per symbol, thus undoing all our previous efforts for a good
modeling. The smart idea adopted by PPM is to turn this problem into a symbol-
encoding problem, by introducing an escape symbol (esc) which is emitted every
time a context switch, to the next shorter context, has to be performed. This escaping
process continues till a model where the symbol is not novel (and thus its count is
more than 0), is reached. This is eventually the special (—1)-order context. Using such
strategy, the probability associated to a symbol is always the one that has been calcu-
lated in the longest context where the symbol has previously occurred; so it should be
more precise than just the probabilities based on individual counts for the symbols in
3, as adopted for arithmetic and Huffman codings.

To better understand how PPM works, we consider the following example. Let the
input sequence S be the string abracadabra, and let K = 2 be the longest context
used in the computation of the conditional probabilities for all alphabet symbols. As
previously said, the only model available when the algorithm starts is the (—1)-order
model. So when the first symbol a is read, no escape symbols have to be emitted,
and the (—1)-order context is used to assign to S[1] = a the uniform probability
ﬁ (typically, symbols are byte encoded and thus |X| = 256). At the same time,
PPM updates the frequency counts in the 0-order model, by assigning a probability
Pa) = % and P(esc) = % In this running example we assume that the escape
symbol is given a count equal to the total number of different characters in the model.
Other strategies to define its probability will be discussed in detail in the following
subsection.

PPM then reads S[2] = b and tries the 0-order model, which is currently the longest
one available, as has been explained. An escape symbol is transmitted since b has never
been read before. The (—1)-order model is so used to compress b, and then both the
1-order and the 0-order models are updated. In the 0-order model we have P(a) = %,
P(b) = ‘l‘, P(esc) = % = % (two distinct symbols have been read). In the 1-order
model the probabilities are P(b|a) = % and P(escla) = % (only one distinct symbol
is read).

Now let us skip the coding of the first five symbols and suppose that PPM has to
encode S[6] = d. Since it is the first occurrence of d in S, three escape symbols will
be emitted for switching from the 2-order to the (—1)-order model. Figure 12.9 shows
the statistics computed by PPM after it has processed the entire sequence S. PPM
offers probability estimates that can then be used by an arithmetic coder or any other
statistical coder to compress a sequence of symbols in ¥ U {esc}. This is the reason
why PPM is often regarded as a context-modeling technique rather than a compressor.

On the Estimation of Symbol Probabilities

It is possible to use the knowledge about symbol frequencies in the £-order models
to improve the compression rate when scaling through increasingly shorter contexts.
Suppose that the whole input sequence S of the previous example has been processed
and that the following symbol to be encoded is ¢ and K = 2. The current 2-order
context is ra, so the entry for ra — ¢ in Figure 12.9 is considered, and thus c is
encoded with a probability of %, thus using 1 bit.
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Order k =2 Order k = 1 Order k =0 Order £k = —1
Predictions ¢ P Predictions ¢ P Predictions ¢ P Predictions ¢ P
ab—>r2%a—>b2%—>a515—6 —>Va[i]1ﬁ

— esc 1 % - ¢ 1 % - b 2 12—6

- d 15 - ¢ 1 &
ac — a |1 % — esc 3 % - d 1 11—6
— esc 1 % — r 2 12—6
b - r 2 % — esc 5 15—6

ad - a 1 % — esc 1 %

— esc 1 %

c —> a 1 %

br - a 2 % — esc 1 %
— esc 1 %

d - a 1 %

ca —»> d 1 % — esc 1 %
— esc 1 %

r - a 2 %

da — b 1 % — esc 1 %

— esc 1 %
ra — ¢ 1 %

— esc 1 %

Figure 129 Method C of PPM model after processing the whole string S = abracadabra.

Suppose now that, instead of ¢, the character d follows S = abracadabra. In this
case, no entry ra — d does exist in Figure 12.9. PPM emits an esc symbol (encoded
with probability %) and it switches to the 1-order context a. The entry ¢ — d does
exist in Figure 12.9, and thus d can be encoded with probability % An interest-
ing observation, called the exclusion principle, allows us to improve the estimate for
the probability P(d|a). Since the 2-order model was discarded, the encoder (and the
decoder) can infer that the current symbol cannot be any of the ones tabulated after
context ra in Figure 12.9. Consequently, the shorter 1-order model knows that the cur-
rent symbol cannot be ¢ (because of the entry ra — c), and thus it can “exclude” the
entry a — ¢ and reduce the frequency count of the context ¢ by one unit (i.e. the
frequency of ac). As a result, symbol d can be encoded with probability %.

Suppose now that after abracadabra, the novel symbol e occurs. In this case, a
sequence of esc symbols is emitted to make the decoder switch to the (—1)-order
context. Without exclusion, the novel symbol would be encoded with a probability of

1

= Instead, PPM can exclude from the (—1)-order context all symbols that occurred
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after the previously longer contexts, such as ra, a, and the empty context. These are
indeed all symbols seen so far, namely {a, b, ¢, d, r}, so the probability assigned to the
novel symbol is IEI%S Performing this technique takes a little extra time but gives a
reasonable payback in terms of extra compression, because all nonexcluded symbols
have their probability increased.

A final comment concerns the maximum length K of the contexts maintained by
PPM and the encoding of the esc symbol. It may seem that PPM’s performance
should improve when K increases, but this is not necessarily the case, because the input
sequence is finite, and with longer contexts there is a greater probability of emitting
as many escape symbols as is needed to reach the context length for which non-null
predictions are available. Therefore, K cannot be very large (typically it is chosen as
K < 5), and much care must be adopted when estimating the probability of esc,
because this impacts on the overall compressed space achieved by PPM. We conclude
this chapter by commenting on some famous methods to estimate this probability (see,
e.g., [1, 4, 7]), using the following notation: o denotes a context; o is a symbol; c(o)
is the number of times that o has occurred after context «; n, is the number of times
the current context « has occurred; ¢ the total number of distinct symbols read in the
context o.

Method A. This method estimates the probability that symbol o occurs (hence
¢(0)>0) in a context a by P(o |o) = % It then estimates the probability that
a novel symbol occurs in a context « as:

Plesclay=1— Y Pole)=1- Y G

l+n
o0eX,c(0)>0 oeX,c(0)>0 T e

_ 1 Ny _ 1
- l4+n, 14ny

where we deployed the equality Y c(0) = ngy, by definition of these parameters.

oex

Method B. The second method classifies a symbol as novel unless it has already
occurred twice. The motivation for this is that a symbol that has occurred only once
can be an anomaly. The probability of a symbol occurring in a context is thus esti-
mated by P(o |«) = %, and ¢ is set as the number of distinct symbols seen so far
in the input sequence. This method then estimates the probability that a novel symbol
occurs in a context « as:

P(escla)=1— Z C(U)—_l

oeX,c(o)>0 N
1

=l-| 2 - )1
o oceX,c(0)>0 oceX,c(0)>0

1
=1__(na_CI)=i'
n n

o o

Method C. This is a hybrid between the previous two methods A and B. When a novel
symbol occurs, a count of 1 is added both to the escape count and to the new symbol
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count, so the total count increases by 2. Thus this method estimates the probability of
a symbol o in a context @ as P(o |a@) = c(0)/ (ny + q), and evaluates the escape
probability as

P(escla)=1-— Z nC(j—)q = Z_q.

oceX,c(0)>0

Method D. This is a minor modification of method C, which treats in a more uniform
way the occurrence of a novel symbol: instead of adding 1, it adds % both to the
escape and to the new symbol counts. Hence this method estimates the probability of
a symbol o in a context « as P(o | o) = (2c(0) — 1)/(2ny), and evaluates the escape
probability as P(esc | «) = (¢ / 2ny).

Previous methods do not make any assumptions on the distribution of symbol
occurrences in some specific context. For example, under the hypothesis that symbols
appear according to a Poisson process, and denoting with ¢ the number of distinct
symbols occurring exactly i times in a sample of size n,, we could approximate the
probability that the next symbol is novel by #; — tp + t3 — - - -. A simplification is
to compute only the first term of the series, since in most cases 7, is very large and
t; decreases rapidly as i increases: namely, P(esc |«a) = | /ny. This corresponds
to counting only the symbols that have occurred once after context «. There are
other approaches to more sophisticated evaluations of P(esc | «) that mix these latter
methods with the previous ones, but for those ones we refer the reader to [1, 4, 7, 8].
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Dictionary-Based Compressors

The first step was to try and understand
how to cope with the case where you don’t
know what the statistics are and you have to
cleverly learn what it is.

Jacob Ziv

In this chapter we further discuss data-compression techniques, but following a
different approach to the statistical one. The algorithms we are going to analyze do not
derive statistics about the source generating the input sequence S; rather, they derive a
dictionary of strings from S, and use it to replace occurrences in S of those strings via
proper tokens (aka IDs), which are indexes for that dictionary. The choice of the dic-
tionary is of course crucial in determining how well the file is compressed. An English
dictionary will have a hard time to compress an Italian text, for instance; and it would
be totally inappropriate to compress an executable file. Thus, while a static dictionary
can work very well for compressing some specific file types that are known in advance,
it cannot be used for a good general-purpose compressor. Moreover, sometimes it is
ineffective to transmit the full dictionary along with each compressed file, and it is
often unreasonable to assume that the receiver already has a copy of it.

Starting from 1977, Abraham Lempel and Jacob Ziv introduced a family of com-
pressors which addressed these problems successfully by designing two algorithms,
named LZ77 and LZ78 after the initials of the inventors and the years of the propos-
als, which use the input sequence they are compressing as the dictionary, and substitute
each occurrence of an already seen string with either the offset of its previous posi-
tion or an ID assigned incrementally to new dictionary phrases. The dictionary is
dynamically built in the sense that it is initially empty, and then it grows as the input
sequence is processed; at the beginning, low compression is achieved, but after some
kilobytes, we can expect to achieve good compression ratios, provided that the input
sequence shows some degree of repetitiveness. For typical textual files, those meth-
ods achieve about one-third of compression ratio. Lempel—Ziv compressors are very
popular because of their gz ip instantiation, and constitute the base of more sophisti-
cated compressors in use today, such as 7zip, Brotli, LZ4, LZMA, and ZSTD. In
the following paragraphs, we will describe them in detail, along with some interesting
variants.
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LZ77

In their seminal paper of 1977 [7], Lempel and Ziv described their contribution as fol-
lows “universal coding scheme which can be applied to any discrete source and whose
performance is comparable to certain optimal fixed code book schemes designed for
completely specified sources.” The key expression here is “comparable to [...] fixed
code book schemes designed for completely specified sources,” because the authors
compare their scheme to previously designed statistical compressors, such as Huffman
and arithmetic, for which a statistical characterization of the source was necessary.
Conversely, their dictionary-based compressors waive this characterization, which is
derived implicitly by observing substring repetitiveness via a fully syntactic approach.

In the following pages, we will not dig into the observations that provide a math-
ematical ground to these comments (see [1, 7]); rather, we will concentrate on the
algorithmic issues underlying their design. LZ77’s compressor is based on a sliding
window W[1,w], which contains a portion of the input sequence that has been pro-
cessed so far, typically consisting of the last w symbols, and a look-ahead buffer B,
which contains the suffix of the text still to be processed. In the following example,
the window W = aabbababb is of size 9 (surrounded by a rectangular box), and the
rest of the input sequence is B = baababaabbaa$:

<— - - -laabbababbl baababaabbaa$ —

The algorithm works inductively by assuming that everything occurring before B
has been processed and compressed by LZ77, and W is initially set to the empty
string. The compressor operates in two main stages: parsing and encoding. Parsing
consists of transforming the input sequence S into a sequence of triples of integers
(called phrases). Encoding turns these triples into a (compressed) bit stream by apply-
ing either a statistical compressor (e.g. Huffman or arithmetic) or an integer-coding
scheme to each triplet component individually.

So the most interesting algorithmic stage is the parsing stage, which works as fol-
lows. LZ77 searches for the longest prefix o of B that occurs as a substring of W - B.
We write the concatenation 7 - B rather than the single string ¥ because the previ-
ous occurrence we are searching for may start in ' and extend up to within B. Say
« occurs at distance d from the beginning of B, and it is followed by symbol ¢ in B;
then the triple generated by LZ77 is (d, |«|, c), where |«/| is the length of the copied
string. If a match is not found, the output triple becomes (0, 0, B[1]). We note that any
occurrence of @ in W - B must be followed by a symbol different from ¢, otherwise «
would not be the longest prefix of B that repeats in W - B.

After this triple is emitted, LZ77 advances in B by || + 1 positions, and slides W
accordingly. In the case that |IW| = 400, the window is unbounded and thus LZ77
parsing can copy up to the beginning of the file to be compressed. It is not difficult to
convince ourselves that this parsing process minimizes the number of emitted phrases.

We refer to LZ77 as a dictionary-based compressor because “the dictionary” is not
explicitly stored; rather it is implicitly formed by all substrings of S that start in # and
extend rightward, possibly ending in B. Each of those substrings is represented by the
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pair (d, |a|). The dictionary is dynamic because at every shift it has to be updated by
removing the substrings starting in W1, |a| + 1], and adding the substrings starting in
B[1, o] + 1].

The role of the sliding window is easy to explain: it delimits the size of the diction-
ary, which depends on s and S’s length, because it includes | W|’s strings of length
up to |S]. So W impacts significantly on the time cost for the search of «. As a running
example, let us consider the following sequence of LZ77-parsing steps, where the bar |
separates W and B:

= no copy is found; it emits (0,0, a)

= it copies “a”, thus emitting (1, 1, b)

— it copies “b”, thus emitting (1, 1, a)

= an overlapping copy is found; it emits (2,3, EOF)

It is interesting to note that the last phrase (2, 3, EOF) presents a copy-length which
is larger than the copy-distance; this actually indicates the special situation we men-
tioned in which « starts in /' and ends in B. Even if this overlapping occurs, the
copy-step that must be executed by LZ77 in the decompression stage is not affected,
provided that it is executed sequentially according to the following snippet of code:

for 1 = 0 to L-1 do { S[s+i] = S[s-d+il; }
s = s+L;

where the triple to be decoded is (d,L,c) and S[1,s — 1] is the prefix of the input
sequence which has been already decompressed. Since d < || and the window size
is up to a few megabytes, the copy operation does not elicit any cache miss, thus
making the decompression process very fast indeed. The longer the window W, the
longer the phrases may be, the fewer their number, and thus possibly the shorter the
compressed output; but in terms of compression time, the longer the time to search for
the longest copied . Vice versa, the shorter ¥ is, the worse the compression ratio, but
the faster the compression time. This trade-off is evident and its magnitude depends on
the input sequence. Surprisingly enough, the performance of the decompression stage
is the opposite of the one experienced in the compression stage, since the number of
phrases impacts on the number of copies to be executed and, thus, on the efficacy of
the caching and prefetching in modern computers.

To slightly improve compression we make the following observation, which is due
to Storer and Szymanski [5] and dates back to 1982. In the parsing process two situa-
tions may occur: either a (longest) match has been found, or it has not. In the former
case, it is not reasonable to add the symbol following « (the third component in the
triple), given that we advance anyway in the input sequence. In the latter case, it is
not reasonable to emit two Os (first two components of the triple) and thus waste one
integer code. The simplest solution to these two inefficiencies is to always output a
pair, rather than a triple, with the form (d, |«|) or (0, B[1]). This variant of LZ77 is
named LZss, and it is often confused with LZ77, so we will use it from this point on.
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By referring to the previous running example, LZss would obtain the following
parsing:

[ [aabbababl —; (0,q
=><,
[ aa[bbababl —; (0, )
[ aabfbababl —; (1, 1)
[ aabbfababl —; (3,2)
[ aabbablabl — (2,2)

At decompression time, distinguishing which kind of pair is available is simple:
just read the first integer and if it is zero then we are in the presence of a one-symbol
phrase and the next bits encode that symbol; otherwise, we are in the presence of a
copied phrase, whose distance is encoded in the read integer (larger than zero) and its
length is encoded in the following bits.

gzip: a classic, nice, and fast implementation of LZ77. The key programming
problem when implementing LZ77 is the fast search for the longest prefix « of B that
starts in . A brute-force algorithm that checks the occurrence of every prefix of B
starting in W, via a linear backward scan, would be very time-consuming and thus
unacceptable for compressing long files.

Fortunately, this process can be accelerated by using a suitable data structure.
gzip, the most popular and classic implementation of LZ77, uses a hash table to
determine « and find its previous occurrence in . The idea is to store in the hash
table all 3-grams occurring in W - B[ 1, 2], that is, all triplets of contiguous symbols, by
using as key the 3-gram and as its satellite data the position in W where that 3-gram
occurs. Since a 3-gram may repeat multiple times, the hash table saves for a given
3-gram all of its multiple occurrences, sorted by increasing position in S. Then when
W shifts to the right, because of the emission of the pair (d, ¢), the hash table can be
updated by deleting the 3-grams starting at |1, £], and inserting the 3-grams starting
at B[1, £]. In total, this takes ¢ deletions from the hash table, and ¢ insertions into it.

The search for « is implemented as follows:

e First, the 3-gram B[, 3] is searched in the hash table. If it does not occur, then
gzip emits the phrase (0, B[1]), and the parsing advances by one single symbol.
Otherwise, it determines the list £ of occurrences of B[1,3]in W - B[1,2].

e Then, for each position i in £ (which is expressed as absolute position in §), the
algorithm compares symbol-by-symbol the suffix S[i, n] against B in order to com-
pute their longest common prefix. At the end, the position i* € L sharing this
longest common prefix is determined, hence « has been found.

e Finally, let p be the current position of B in S; the algorithm emits the pair
(p —i*, |a]), and advances the window W and B of |«| positions.

gzip implements the encoding of the phrases by using Huffman over two
alphabets: the one formed by the lengths of the copies plus the literals, and the other
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formed by the distances of the copies. This trick saves one extra bit in distinguishing
between the two types of pairs. In fact, (0, c) is represented as the Huffman encod-
ing of ¢, and (d, £) is represented reversed by anticipating the Huffman encoding of ¢.
Given that literals and copy-lengths are encoded within the same alphabet, the decoder
fetches the next codeword and decompresses it, so is able to distinguish whether the
next item is a symbol ¢ or a length £. According to the result, it can either restart the
decoding of the next pair (¢ has been decoded), or it can decode d (¢ has been decoded)
by using the other Huffman code.

gzip deploys an additional programming trick that further speeds up the com-
pression process. It consists of sorting the list of occurrences of the 3-grams from the
most recent to the oldest matches, and possibly stops the search for @ when a sufficient
number of candidates have been checked. This trades the length of the longest match
against the speed of the search. As far as the size of the window W is concerned, gzip
allows us to specify at the command line the options -1, ..., -9, which in fact means
that W’s size may vary from 100 KB to 900 KB, with a consequent improvement of
the compression ratio, at the cost of slowing down the compression speed. As we have
observed, the longer W is, the faster the decompression, because the smaller the num-
ber of encoded phrases, and thus the smaller the number of memory copies and cache
misses induced by the Huffman decoding process.

For other implementations of LZ77, the reader can refer to Chapter 10, where we
discussed the use of the suffix tree in the case of an unbounded window. Other inter-
esting issues arise when we take into account the size of the compressed output (in
bits), rather than just the number of phrases. The compressed size clearly depends on
the number of phrases, but also upon the values of their integer components, in a way
that cannot be underestimated [2]. Briefly, it is not necessarily the case that a longer «
induces a shorter compressed file, because its copy might occur at a very far distance
d, thus taking many bits for its encoding. Conversely, it might be better to divide «
into two substrings which can be copied closely enough that the total number of bits
required for their encoding is less than the ones needed for d.

LZ78

The sliding window used by LZ77 on the one hand speeds up the search for the longest
phrase to encode, but on the other hand limits the search space, and thus the ultimate
compression ratio. In order to avoid this problem and still keep a fast compression
stage, Lempel and Ziv devised in 1978 another algorithm, which is consequently called
LZ78 [8]. The key idea is to build incrementally an explicit dictionary that contains
only a subset of the substrings of the input sequence S, selected according to a sim-
ple rule that we detail in the following paragraph. Concurrently, S is decomposed
into phrases that are taken from the current dictionary, and encoded by compression
schemes similar to the ones adopted for LZ77’s phrases.

Phrase detection and dictionary update are deeply intermingled in LZ78. Adopting
a similar notation as for LZ77, let B be the sequence yet to be parsed, and let D be
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(0, empty string)

Input | Output | Dictionary

- - 0: empty string

a <0,a> | 1 a

ab <1l,b> | 2: ab

b <0,b> | 3: Db

. 2,b

|G| & o G SR S
ba <3,a> | 6: ba 4, a)
abab | <4,b> | 7: abab

aa <l,a> | 8 aa

Figure 13.1 LZ78 parsing of the string S = aabbababbbaababaa, and the uncompacted trie
built by the parsing algorithm upon the corresponding dictionary.

the current dictionary in which every phrase f is identified via the integer 1d(f"). The
parsing of B consists again of determining its longest prefix « that is also a phrase of
D, and substituting it with the pair (id(«), c¢), where c is the symbol following « in B,
hence ¢ = B[|«| + 1]. Next, D is updated by adding the new phrase «c. Therefore, the
dictionary is prefix-complete because it will contain all prefixes of all phrases in D.
Moreover, its size grows with the length of the input sequence. As occurred for LZ77,
the stream of pairs generated by the LZ78 parsing can be encoded via a statistical
compressor (such as Huffman or arithmetic) or via any variable-length integer coder.
This will produce the compressed bit stream which is the eventual output of LZ78.

The decompressor works in a very similar way: it reads a pair (id,x) from the
compressed stream, determines the phrase « corresponding to the integer id in the
current dictionary D, emits the substring «c, and updates the current dictionary by
adding that substring as a new phrase.

As an illustrative example, let us consider the sequence S depicted in Figure 13.1.
The table on the left shows the sequence of phrases o detected in S by the LZ78
parsing, specified in the column Input, and substituted by pairs (1d(«), ¢), specified in
the column Output. The last column of the table shows the corresponding phrases «c
incrementally added to the dictionary D, and the ids assigned to them. On the right
of Figure 13.1 is shown the data structure adopted by LZ78 to implement, efficiently
in time and space, the dictionary D. This data structure is the trie (see Chapter 9),
given that it supports fast insertion and prefix searches of strings. The prefix-complete
property satisfied by D ensures that the trie is uncompacted, that is, every edge is
labeled with a single symbol. In the figure, the trie shows close to each node u the
pair (1d(f), ¢) such that character c is the label of the trie edge incident into node u,
and /" is the phrase spelled out by the downward path starting from the trie root and
leading to u. As an example, the node labeled with the pair (8, @) corresponds to the
dictionary string aa with 1d = 8. It is not surprising to note that 1ds are increasing
as we traverse the trie downward, because longer phrases lengthen shorter phrases by
appending just one symbol at a time. The encoding algorithm fits nicely on the trie
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structure. In fact, searching for the longest prefix of B, which is a dictionary phrase,
can be implemented by traversing the trie according to B’s symbols and matching edge
labels until a trie leaf v is reached. The string spelled out by v is the detected phrase
a. Then, the new phrase «c is easily inserted into the trie (and thus in D) by just
appending a new leaf to v, and labeling it with the symbol ¢ = B[|«| + 1] and the id
equal to the size of the dictionary before its insertion. As a final note, the size of the
trie equals the number of dictionary strings and not their total length, because of the
prefix-completeness property of LZ78’s dictionaries.

The final question is how LZ78 manages large files and, thus, large dictionaries
which host increasingly long phrases. There are a few possibilities to cope with this
problem; we sketch here the most common ones. As soon as a maximum dictionary
size is reached, (1) the dictionary is frozen by disallowing the entry of new strings (this
approach may be advantageous in the case of an input sequence S that has the same
recurring pattern of substrings); or (ii) the dictionary is discarded, and a new empty
one is started (this approach may be advantageous whenever the input sequence S is
structured in blocks, each with its own recurring pattern of substrings); or, finally, (iii)
the dictionary is updated by inserting the new phrase and deleting one of the least
recently used (this solution recalls a sort of LRU model in the way the dictionary is
managed.)

LZw

A very popular variant of LZ78 is LZW, developed by Welch in 1984 [6], which is
the reason for the addition of the letter W at the end of the algorithm’s name. Its main
objective is to avoid the need for the second component of the pair (id(«),c), and
thus for the byte representing the additional symbol. To accomplish this goal, before
the start of the algorithm, all possible one-symbol strings are written to the dictionary.
This means that the phrase-ids from 0 to 255 have been allocated to these one-byte
symbols. Next, the parsing of S starts by searching, as usual, for the longest prefix «
that matches a phrase in D. Since the next prefix ac of B does not occur in D, «c is
then added to the dictionary, taking the next available id, and the next phrase to detect
starts from c rather than from the following symbol, as is done in LZ78 and LZ77. So
parsing and dictionary updating are misaligned, which makes decoding a bit tricky.

In fact, assume that decoding has to process two consecutive ids i and /”, and
call their corresponding dictionary phrases o’ and &”. The decoder, in order to realign
the dictionary, has to create the new phrase / from the reading of i/ and i”, setting
f = o’ a"[1], where o”[1] is the first character of the phrase «”’. This seems easy to
do but, indeed, it is not because o’ might not yet be available in D.

For better understanding this concept, let us consider the time at which the com-
pressor emitted i’ for o’ and inserted /' = a’ «”[1] in D. Clearly, the compressor knows
a” (because it knows S), and so it can construct / and insert it in the dictionary. But if
the next phrase is exactly the one just inserted, namely ” = £, then the decompressor
is in trouble, because it needs to construct / as ' «”’[1] = o' f[1], and thus it needs
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Input Dictionary Output
- 0-255:°\0’-*\255’
Input Output Dictionary 97 25 6 a? a
3 - 0-255-\0°-\255° 97 256: aa a
a 97 (a) 256: aa 257: a?
b 97 (a) 257: ab 98 257: ab b
b 98 (b) 258: bb 258: b?
ab 98 (b) 259: ba 98 258: bb b
ab? 257 (ab) 2603 aba 250: b?
eo 260 (aba) 261: aba EOF 257 250: ba ab
260: ab?
260 261: aba aba

Figure 13.2 We assume that the LZW dictionary starts with all single ASCII symbols into it,
having ids from 0 to 255. (Left) LZW encoding of S = aabbabab; 97 and 98 are the ASCII
codes for a and b. (Right) LZW decoding of the id-stream: 97,97, 98, 98,257, 260.

the first symbol of the phrase under construction. However, this recursive definition of
f can be solved by noting that || > 1, so f[1] = «/[1]. Hence the LZW decoder can
construct /" as o’a’[ 1], thus using only phrases available in the current dictionary. Then
f is inserted in D, and thus LZW realigns the dictionaries available at the compression
and decompression stages after the reading of 7.

Figure 13.2 shows a running example for the encoding (left) and the decoding
(right) stages of LZW, applied to the string S = aabbabab. The dictionary starts with
all the possible 256 symbols in the ASCII code, so the new phrases take ids from 256
on. The question mark (i.e. ?), specified closely to each phrase in the column Diction-
ary of the right-hand table, indicates the misalignment of the decoding stage, which
needs to defer the construction of the current dictionary phrase until the next one is
available. And, in fact, the right-hand table reports pairs of lines per each constructed
phrase. All of these constructions are possible, because they involve available diction-
ary phrases, except for the last one with 1d = 260. In fact, that id triggers the special
case we have discussed, because after reading the 1d = 257, its corresponding phrase
o' = ab is available in D, but the phrase «” with 1d = 260 is not yet in the dictionary.
Nevertheless, by using this observation, we can conclude that /' = o’a/[1] = aba,
and can insert it into the dictionary, and thus realign the dictionaries available at the
LZW’s encoder and decoder.

Similarly to the LZ77 algorithm, LZW has many commonly used implementations,
among which is the popular GIF image format.! It assumes that the original (uncom-
pressed) image uses eight bits per pixel, so the alphabet has size 256, and the input
sequence S comes as a stream of bytes, obtained by reading the pixels of the image
row by row.” Since eight bits are very few to represent all possible colours of an image,

1 See “GIF” at https://en.wikipedia.org/wiki/GIF.
2 Actually, the GIF format can also present the rows in an inferleaved format, the details of which are out
of the scope of this brief discussion; the compression algorithm is, however, the same.
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each value is actually an index in a palette, whose entries are 24-bit descriptions of the
actual colour (the typical RGB format). In any case, this restricts the maximum num-
ber of different colours present in an image to 256. Some researchers [3] also explored
the possibility of introducing a lossy variant of GIF compression, without changing the
way the output is represented [5]. The basic idea is quite simple: instead of looking
for the longest exact match in the dictionary while parsing, it performs some kind
of approximate matching, thus finding potentially longer phrases, which reduces the
output size, but at the cost of representing a slightly different image. Approximate
matching of two strings of colours is done with a measure of difference based on their
actual RGB values, which must be guaranteed to not exceed a threshold in order to not
distort the original image too much.

On the Optimality of Compressors>

The literature shows many results regarding the optimality of LZ-inspired algorithms.
Lempel and Ziv themselves demonstrated that LZ77 is optimal for a certain family
of sources (see [7]), and that LZ78 asymptotically reaches the best compression ratio
among finite-state compressors (see [8]). Optimality here means that, assuming the
string to compress is infinite and is produced by a stationary ergodic source with a
finite alphabet, then the compression ratio asymptotically approaches to the entropy
of the underlying source. More recent results made it possible to have a quantitative
estimate of an algorithm’s redundancy, which is a measure of the distance between the
source’s entropy and the compression ratio, and can thereby be seen as a measure of
“how fast” the algorithm reaches the source’s entropy.

All these measures are very interesting, but unrealistic because it is quite unusual,
if not impossible, to know the entropy of the source that generated the string we are
going to compress. In order to circumvent this problem, a different empirical approach
has been taken by introducing the notion of k-th order empirical entropy of a string
S, denoted by H(S). In Chapter 12 we discussed the case £ = 0, which depends on
the frequencies of the individual symbols occurring in S. Here, we wish with H(S)
to empower the entropy definition by considering the frequencies of k-grams in S,
thus taking into account subsequences of symbols, hence the compositional structure
of S.

More precisely, let S be a string over an alphabet ¥ = {oy,...,03}, and let us
denote by 7n,, the number of occurrences of the substring w in S. We use the notation
w € XX to specify that the length of w is k. Given this notation, we can define

(Z oo, log <n':”; >>

A compression algorithm is then defined as being coarsely optimal if and only if,
for all k there exists a function f;(n) approaching to 0 as n — oo such that, for all
sequences S of increasing length, it holds that the compression ratio of the evaluated
algorithm is at most H(S) + f%(|S]). Plotnik, Weinberger, and Ziv proved the coarse
optimality of LZ78 [4]; Kosaraju and Manzini [1] noted that the notion of coarse

He®) = o5 S| >

wexk
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optimality does not necessarily imply a good algorithm because, if the entropy of the
string S approaches zero, the algorithm can still compress badly because of the additive

term f%(|S]).

Lemma 13.1 There exist strings for which the compression ratio achieved by LZ78 is
at least g(|S]) x Ho(S), where lim,,_, », g(n) = o0.

Proof Consider the string S = 01"~!, which has entropy Ho(S) = ©(1%2). It is eas
g Yy Y

n

to see that LZ78 parses S with ©(/n) phrases. Thus we get g(n) = %. So Ho(S)
decreases for increasingly long S, but LZ78’s compression ratio decreases at a slower

rate. [ |

This observation is equivalent to the one we made for Huffman, related to the extra
bit needed for each encoded symbol. That extra bit was okay for large entropies,
but it was considered bad for entropies approaching 0. To circumvent these inef-
ficiencies, Kosaraju and Manzini introduced a stricter version of optimality, called
A-optimality, which applies to any algorithm whose compression ratio can be bounded
by A Hi(S) + o(Hi(S)). As the previous lemma clearly demonstrates, LZ78 is not
A-optimal; however there is a modified version of LZ78, combined with run-length
compression (described in the next chapter), which is 3-optimal with respect to Ho,
but it has been shown to be not A-optimal for all £ > 1.

Let us now turn our attention to LZ77, which seems to be more powerful than LZ78,
given that its dictionary is richer in substrings. The practical variant of LZ77 that uses
a fixed-size compression window is not much good, and is actually worse than LZ78:

Lemma 13.2 The LZ77 algorithm, with a bounded sliding window, is not coarsely
optimal.

Proof For each size L of the sliding window, we can find a string S for which the
compression ratio exceeds its k-th order entropy. Consider the string (01%)"1 of length
2kn + 1 bits, and choose k = L — 1. Due to the sliding window, LZ77 parses S in the
following way:

00115 o 0% 1. 1Flo of ol 1k,

Every phrase then has a length up to £, splitting the input into ®(n) phrases, and thus
achieving an output size Q(n).

In order to compute H(S) we need to work on all different k-length substrings of S,
which are 2k: {07157}, U {1707},— . Now, all strings having the form 0714~
are always followed by a 1. Similarly, all strings having the form 1?07 are always
followed by a 0. Only the string 1% is followed n — 1 times by a 0, and once by a 1. So
we can split the sum over the k-grams w within the definition of #(S) into four parts:

we {01k = ne=0 Nl =H
w e {101}y 41 = npo=n nwl =0
w=1k —>ng=n—1 ngy =1

else — N0 =0 ne1 = 0.
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It is now easy to calculate

n

|S| Hx(S) =logn + (n — 1)log = O(logn),

n_
and the lemma follows. |

If we waive the sliding window, then LZ77 is coarsely optimal and also 8-optimal
with respect to Ho. However, it is not A-optimal for any & > 1:

Lemma 13.3 There exist strings for which the compression ratio of LZ77, with no
sliding window, is at least g(|S|) x H1(S), with lim,_, », g(n) = oo.

Proof Consider the string 10 22° 1 101 1021 1031 ... 10%1 of length 2%+ O(k?), and
k-th-order entropy bound |S| Hx(S) = klog k + O(k). The string is parsed with &k + 4
phrases:

100122211 101 10%1. .. 1051

The problem is that the last k phrases refer back to the beginning of S, which is 2%
characters away. This generates (k) long phrases, thus an overall output size of (k%)
bits. |

So LZ77 is better than LZ78, as expected, but not as good as we would like, for k£ >
1. The next chapter will introduce the Burrows—Wheeler transform, proposed in 1994,
which addresses the inefficiencies of LZ-based methods by devising a novel approach
to data compression which achieves A-optimality, for very small A and simultaneously
for all £ > 0. It is therefore not surprising that the BWT-based compressor bzip2,
available in most operating system distributions, produces a more succinct output than
gzip and has got much visibility and interest within the data compression community,
and elsewhere.
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Years passed, and it became clear that David
had no thought of publishing the algorithm —
he was too busy thinking of new things.
Mike Burrows

This chapter describes a lossless data compression technique devised by Mike Bur-
rows and David Wheeler at the DEC Systems Research Center.! This technique was
published in a technical report of the company [4, 9], and since it was rejected by the
1994 IEEE Data Compression Conference (as Mike Burrows stated in its foreword to
[10]%), the two authors decided not to publish their paper anywhere. Fortunately, Mark
Nelson drew attention to it in an article in Dr. Dobb s Journal, and that was enough to
ensure its survival and successful spread through the scientific community.

In fact, a wonderful thing about publishing an idea is that a greater number of
minds can be brought to bear on the surrounding problems. This is what happened
with the Burrows—Wheeler transform, whose studies exploded around the year 2000,
leading a group of researchers to celebrate a ten-year-later resume in a special issue
of Theoretical Computer Science [10]. In that volume, Mike Burrows again declined
to publish the original technical report but wrote a wonderful foreword dedicated to
the memory of David Wheeler, who passed away in 2004, and stated at the end “This
issue of Theoretical Computer Science is an example of how an idea can be improved
and generalized when more people are involved. I feel sure that David Wheeler would
be pleased to see that his technique has inspired so much interesting work.”

The Burrows—Wheeler transform (BWT) offered a revolutionary alternative to dicti-
onary-based and statistical compressors by initiating a new class of data compression
approaches (such as bzip2 [19] or booster [7]), as well as a new powerful class of
compressed indexes (such as, the FM-index [8], and many variations of it [16]). In
the following we will detail the BWT and the other two simple compressors, Move-
to-Front and Run-Length Encoding, whose combination constitutes the design core

' Mike Burrows: “In the technical report that described the BWT, I gave the year as 1981, but later, with

access to the memory of his wife Joyce, we deduced that it must have been 1978.” [10].

Mike Burrows: “Years passed, and it became clear that David had no thought of publishing the algorithm
— he was too busy thinking of new things. Eventually, I decided to force his hand: I could not make him
write a paper, but I could write a paper with him, given the right excuse.”
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of bzip-based compressors, also known as block-sorting compressors. We will also
briefly mention some theoretical issues about the BWT performance expressed in
terms of the k-th order empirical entropy of the data to be compressed, and sketch
the main algorithmic issues that underlie the design of the first provably compressed
index to date, namely the FM-index.

The Burrows-Wheeler Transform

The Burrows—Wheeler transform is not a compression algorithm per se, as it does
not squeeze the input size. It is a permutation (and thus, a lossless transformation)
of the input symbols, which are laid down in a way that the resulting string is most
suitably compressed via simple algorithms, such as Move-to-Front coding (MTF) and
Run Length Encoding (RLE), both to be described in Section 14.2. This permutation
forces some “locally homogeneous” properties in the ordering of the symbols that can
be fully deployed, efficiently and efficaciously, by the combination MTF + RLE. A
last statistical encoding step (e.g. Huffman or arithmetic) is finally executed in order
to eventually squeeze the output bit stream. All these steps constitute the backbone of
any bzip-like compressor, which will be discussed in Section 14.3.

The BWT consists of a pair of inverse transformations: a forward transform, which
rearranges the symbols in the input string; and a backward transform, which somewhat
magically reconstructs the original string from its BWT. It goes without saying that
the invertibility of BWT is necessary to guarantee the decompression of the input file.

The Forward Transform

Let S[1, 7] be an input string on n symbols drawn from an ordered alphabet X. We
append to S a special symbol $ which does not occur in X and is assumed to be smaller
than any other symbol in the alphabet, according to its total ordering.?

The forward transform proceeds as follows:

1. Build the string S$.

2. Consider the conceptual matrix M of size (n + 1) x (n + 1), whose rows contain
all the cyclic left-shifts of string S$. M is called the rotation matrix of S.*

3. Sort the rows of M reading them /lef? fo right and according to the ordering defined
on the alphabet ¥ U {$}. The final matrix is called M’. Since $ is smaller than any
other symbol in X, the first row of M’ is $S.

4. Set bw(S) = (Z, r) as the output of the algorithm, where L is the string obtained by
reading the last column of M’, sans symbol $, and r is the position of § there.

The step that concatenates the special symbol $ to the initial string was not part of the original version
of the algorithm as described by Burrows and Wheeler. It is introduced here with the intent of simplifing
the description.

The left shift of a string ac« is the string aa, that is, the first symbol is moved to the end of the original
string.
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sort direction

F L F L
1| a | bracadabra | $ $ | abracadabr | a | 1
2 | b | racadraba$ | a a | $abracadab | r | 2
3| r | acadraba$a | b a | bra$abraca | d | 3
4 | a | cadabra$ab | r a | bracadabra | $ | 4 =r
5 | ¢ | adabra$abr | a a | cadabra$ab | r | 5
6 | a | dabra$abra | c a | dabra$abra | c | 6
7| d | abra$abrac | a b | ra$abracad | a | 7
8 | a | bra$abraca | d b | racadraba$ | a | 8
9| b | raf$abracad | a c | adabra$abr [ a | 9
10 | r | a$abracada | b d | abra$abrac | a | 10
11 | a | $abracadab | r r | a$abracada | b | 11
12 | § | abracadabr | a r | acadraba$a | b | 12

Figure 14.1 Forward Burrows—Wheeler transform of the string S = abracadabra.

We have called M a conceptual matrix because we have to avoid its explicit con-
struction, which otherwise would make the BWT just an elegant mathematical object:
the size of M is quadratic in bw(S)’s length, so the conceptual matrix would have the
size of terabytes just for transforming a string of a few megabytes. In Section 14.3 we
will show that M’ can be built in time and space linear in the length of the input string
S, by resorting to the construction of suffix arrays (introduced in Chapter 10).

An alternate enunciation of the algorithm, less frequent yet still present in the liter-
ature [20], constructs matrix M’ by sorting the rows of M reading them right to left
(i.e. starting from the last symbol of every row). Then, it takes the string F formed by
scanning the first column of M’ top to bottom and, again, skipping symbol $ and stor-
ing its position in 7. The output is then bw(S) = (¥, 7). This enunciation is somewhat
equivalent of the one already described because it is possible to formally prove that
strings F and L both exhibit the same local homogeneity properties, and thus compres-
sion. In the rest of the chapter we will refer to the left-to-right sorting of M’s rows
and to (L, ) as the BWT of the string S.

In order to better understand the power of the Burrows—Wheeler trans-
form, let us consider the following running example formulated over the string
S'=abracadabra. The left side of Figure 14.1 shows the rotated matrix M built
over S, whereas the right side of Figure 14.1 shows the sorted matrix M’. Because
the first row of M is the only one to end with $, which is the lowest-ordered symbol
in the alphabet, row $abracadabra is the first row of M’. The other three rows of
M’ are the ones beginning with a, and then follow the rows starting with b, ¢, 4, and
finally r, respectively.

If we read the first column of M’, denoted by F, we obtain the string
$aaaaabbcdr which is the sorted sequence of all symbols in the input string S$.
We finally obtain L by excluding the single occurrence of $ from the last column L, so
= ardrcaaaabb, and set r = 4.
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This example is illustrative of the locally homogeneous property we have men-
tioned: the last six symbols of the last column of M form a highly repetitive string
aaaabb which can be easily and highly compressed via the two simple compres-
sors MTF + RLE (described in Section 14.2). The soundness of this statement will
be mathematically sustained in the following pages; here we content ourselves with
observing that this repetitiveness does not occur by chance but is induced by the way
M’s rows are sorted (left to right) and texts are written by humans (left to right). The
nice issue here is that there are many real sources (called Markovian) that generate
data sequences, other than texts, that can be converted to be locally homogeneous via
the Burrows—Wheeler transform, and thus can be highly compressed by bzip-like
COmpressors.

The Backward Transform

We observe, both by construction and from the example we have provided, that each
column of the sorted cyclic-shift matrix M’ (and, indeed, also M) contains a per-
mutation of S$. In particular, its first column F = $aaaaabbcdr is alphabetically
sorted and thus it represents the most-compressible transformation of the input string
S$. But unfortunately /' cannot be used as BWT because it is not invertible: every text
of length 10 and consisting of five occurrences of symbol a, two occurrences of b, and
one occurrence each of ¢, d, r respectively, generates a BWT whose F is the same as
the one of the string S$. The Burrows—Wheeler transform represents, in some sense,
the best column of M’ to be chosen as a transformation of the input string in terms of
its reversibility and compressibility.

In order to prove these properties more formally, let us define a useful function that
tells us how to locate in M’ the predecessor of a symbol at a given index in S.

Fact 14.1 For 1 < i < n + 1, let S[k;, n] denote the (possibly empty) suffix of S
prefixing row i of M. Clearly, this suffix is then followed in row i by symbol $, and
then by the (possibly empty) prefix S[1, k; — 1] because of the leftward cyclic shift of
the rows in M.

For example, in Figure 14.1, row 3 of M’ is prefixed by abra, followed by $, and
then by abracad.

Property 1: The symbol L[] precedes the symbol F[i] in the string S except for the
row i ending with $ (i.e. L[i] = $), in which case F[i] = S[1].

Proof Because of Fact 14.1, the last symbol of the row i is L[i] = S[k; — 1] and its
first symbol is F[i] = S[k;]. So the statement follows. |

Intuitively, this property derives from the very nature of every row in M and M’
that is a left cyclic shift of S$, so if we take two extremes of each row, the symbol on
the right extreme (i.e. on L) is immediately followed by the one on the left extreme
(i.e. on F') over the string S. The following property is the key one to design the BWT’s
backward transform.
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Property 2:  All the occurrences of a same symbol ¢ in L maintain the same relative
order as in F. This means that the k-th occurrence in L of symbol ¢ corresponds to the
k-th occurrence of the symbol ¢ in F.

Proof Given two strings 7 and 7, we shall use the notation # < ¢ to indicate that
string # lexicographically precedes string ¢. Fix now a symbol ¢ occurring in the input
string S. If ¢ occurs once, then the proof derives immediately because the single occur-
rence of ¢ in F' obviously maps to the single occurrence of ¢ in L. (Both columns are
permutations of S.)

To prove the more complex situation where ¢ occurs at least twice in S, let us fix
two of these occurrences in F, say F[i] and F[j] with i < j, and pick their rows (strings)
in the sorted matrix M’, say (i) and (). We can observe a few interesting things:

e Row r(i) precedes lexicographically row r( ), given the ordering of M’’ rows and
the fact that i < j, by assumption.

e Both rows r(i) and () start with symbol ¢, by assumption.

e Given that 7(i/) = co and r(j) = ¢ B, we have o < .

Since we are interested in the respective positions of those two occurrences of ¢
when they are mapped to L, we consider the two rows (/') and (') that are obtained
by rotating r(i) and r(j) leftward by one single symbol: (") = a ¢ and r(j') = Bec.
This rotation then brings the first symbol F[i] (resp. F[;']) to the last symbol L[i']
(resp. L[j']) of the rotated rows. By assumption a < 8, so we have r(i’) < r(j") and
so the ordering in L of that pair of occurrences of ¢ is preserved. Given that this order-
preserving property holds for every pair of occurrences of ¢ in F' and L, it holds true
for all of them. |

We now have all the mathematical tools to design an algorithm that reconstructs S
from its bw(S) = (L, r) by exploiting the following LF-mapping.

Definition 14.1 LF[1,n+ 1] is an array of n + 1 integers in the range [1,7 4 1] such
that LF[i] = j if and only if the symbol L[i] maps to symbol F[/]. Thus, if L[{] is the
k-th occurrence in L of symbol ¢, then F[LFi]] is the k-th occurrence of ¢ in F.

Building LF is pretty straightforward for symbols that occur only once, as is the
case for $, c, and d in our running example of S = abracadabra$; see Figure 14.1.
But when it comes to symbols a, b, and r, which occur several times in the string S,
computing LF efficiently is no longer trivial. Nonetheless, it can be solved in opti-
mal O(n) time thanks to Property 2, as Algorithm 14.1 details. This algorithm uses
an auxiliary vector C, of size |X| + 1, because of the addition of $ to S. For the
sake of description, we assume that array C is indexed by a symbol rather than by an
integer.’

5 Just implement C as a hash table, or observe that in practice any symbol is encoded via an integer
(ASCII code maps to the range 0, . . ., 255) which can be used as its index in C.
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Algorithm 14.1 Constructing the LF-mapping from column L
1: fori=1,...,n+1do

2 CIL[i]]++;

3: end for

4: temp = 0, sum = 1;
5: fori=1,...,|Z|+1do
6: temp = C[i];

7 Cli] = sum,;

8 sum += temp,

9: end for

10: fori=1,...,ndo
11: LF[i] = C[L[{]];
12: C[L[i]]++;

13: end for

The first for-loop in Algorithm 14.1 computes, for each symbol ¢, the number 7,
of its occurrences in L, and thus it sets C[c] = n. (we assume that C’s entries are null
at the beginning and that their indexes are given by symbols’ rank). Then, the second
for-loop turns these symbol-wise occurrences into a cumulative sum, so that the new
value in C[c] denotes the total number of occurrences in L of symbols smaller than ¢
increased by 1, namely C[c] = 1+ ), __ny. This is done by adopting two auxiliary
variables (i.e. temp and sum), so that the overall working space is still O(n). We note
that C[c] after Step 7 gives the first position in ' where symbol ¢ occurs. Therefore,
before the last for-loop starts, C[c] is the landing position in F of the first ¢ in L (we
thus know the LF-mapping for the first occurrence of every alphabet symbol). Finally,
the last for-loop scans the column L and, whenever it encounters symbol L[i]] = c,
it sets LF[i] = CJ[c]. This is correct when ¢ is met for the first time; then C[c] is
incremented in line 12 so that the next occurrence of ¢ in L will map to the next
position in F (given the contiguities in F of all rows starting with that symbol). So the
algorithm keeps the invariant that LF[c] = ) __.nc+k, after k— 1 occurrences of ¢ in
L have been processed. It is easy to derive the time complexity of such computation,
which is O(n).

Given the LF-mapping and the fundamental properties we have shown, we are able
to reconstruct S backwards, starting from the transformed output bw(S) = (L, ) in
O(n) time and space. Clearly, it is easy to construct L from bw(S): just insert $ at
position r of L. The algorithm then picks the last symbol of S, namely S[n], which
can be easily identified at L[1], given that the first row of M’ is $S. Then it proceeds
by moving one symbol at a time to the left in S, deploying the two properties above:
Property 2 allows us to map the current symbol occurring in L (initially L[1]) to its
corresponding copy in F; then Property 1 allows us to find the symbol which precedes
that copy in F' by taking the symbol at the end of the same row (i.e. the one in L). This
double step, which returns the algorithmic focus to L, allows us to move one symbol
leftward in S. Repeating this for n — 1 steps, we are able to reconstruct the original
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Algorithm 14.2 Reconstructing S from bw(S)
1: Derive column L from bw(S);
Compute LF[1,n+ 1] from L;  // by Algorithm 14.1
k=1;i=nmn;
while i > 0 do
S[i] = L[k];
k = LF[k];
i--;

end while

A A

input string S. The pseudocode of the BWT-backward transformation is reported in
Algorithm 14.2.

As an example, refer to Figure 14.1, where L[1] = S[n] = a, and execute the
while-loop of Algorithm 14.2. Definition 14.1 guarantees that LF[1] points to the first
row starting with a; this is row 2. So that copy of a is LF-mapped to F[2] (and in fact
F[2] = a), and the preceding symbol in § is thus L[2] = r. These two basic steps
are repeated until the whole string S is reconstructed. Continuing the previous running
example, L[2] = r is LF-mapped to the symbol in F at position LF[2] = 11 (and
indeed, F[11] = r). In fact, L[2] and F[11] are the first occurrence of symbol r in
both columns L and F, respectively. The algorithm then takes as the preceding symbol
of r in § the symbol L[11] = b. And so on...

Theorem 14.1 The original input string S can be reconstructed from its BWT in O(n)
time and space. Algorithm 14.2 may elicits one cache miss per symbol.

Several recent studies have addressed the problem of reducing the number of cache
misses as well as the working space of algorithms inverting the BWT. Some progress
has been made in the literature (see, e.g., [18, 13, 14, 12]), but so far the improvements
have been limited, for example small constants for the cache misses, which get larger
if the data is highly repetitive. There is still much to be discovered here!

Two Other Simple Transforms

Let us now focus on two simple algorithms that turn out to be very useful in designing
the compressor bzip2. These algorithms are called Move-fo-Front (MTF) and Run-
Length Encoding (RLE). The former maps symbols into integers, and the latter maps
runs of equal symbols into pairs of the form (symbol, integer). For the sake of com-
pleteness we observe that RLE is actually a compressor, because the output sequence
may be reduced in length in the presence of long runs of equal symbols, while MTF
can be turned into a compressor by encoding the output integers via proper variable-
length encoders. In general, the compression performance of those algorithms is very
poor: BWT is, magically, their killer application!
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S: “bananacocco”
X :{a,b,c,n,o}

L] [2] El
o “b” o “a” o “n”
i 2 — i 2 — i 4
LMTE: 4a.b,c,n,0) LMTE: b a,c,n, o) LMTE: Aa b, c,n, 0}
SMIE, «p» SMIE, «pp» SMIF. «ppg»
I J
[4] El o]
o “a” o “n” o “a”
i 2 —{ it 2 —{ 0 2
LMTE: n a,b,c, o) LMTE: Aa n, b, c,o0) LMTE: na,b,c, o)
SMIE, «)24D» SMIE, «22422” SMIE. «224222”
I J
7] 3] L]
o e’ o “o” o e’
i 4 > it 5 —{ 0 2
LMTE: da,n,b,c,o) LMTE: e a,n, b, o) LMTE: {o,¢,a,n,b)
SMIF. «2242224” SMIE. «22422245” SMTE. «)24222452”
I J
@ m =
o e’ o “o” o 7
ii 1 —{ it 2 > i
LMTE: {c 0,a,n,b) LMTE: e 0,a,n,b) LMTE: to,¢,a,n,b)
SMTF. «)242224521” SMIF. «22422245212” SMTF. «)2422245212”

Figure 142 An example of MTF transform over the string S = bananacocco, alphabet
¥ ={a,b,c,n,o} and thus index set {1, 2, 3,4, 5} for the list LMIF

The Move-to-Front Transform

The MTF-transform is discussed in [3], and implements the idea that every symbol
of a string S can be replaced with its index in a proper dynamic list LTF containing
all alphabet symbols. The string produced in output, denoted hereafter as SM7F is
initialized to the empty string and contains as symbols integers in the range [1, | 2|]. At
each step i, MTF processes the symbol S[i] and finds its position p in LY (counting
from 1). Then p is appended to the string S’ and £LYF is modified by moving the
symbol S[i] to the front of the list.

It may be greatly advantageous to apply this processing over the column L of bw/(S)
because, as will soon be clear, it transforms locally homogeneous substrings of L into
a globally homogeneous string LM in which small integers abound. At this point we
can apply any integer compressor, described in Chapter 11, or deploy, as bzip does,
the structural properties of LM to apply, in cascade, RLE and finally a statistical
encoder (such as Huffman, arithmetic, or some of their “variants” see Chapter 12).

Figure 14.2 shows a running example for MTF over the string S = bananacocco,
which consists of five distinct symbols {a, b, c, n, 0} and thus index set {1, 2, 3, 4, 5} for
the list LY77 It is evident that the most frequent symbols are frequently to the front
of the list LM and thus get smaller indices in SM’*'; this is the principle exploited
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SMTF: «22422245212”
X :{a,b,c,n,o}

L] [2] E
ii 2 ii 2 ii 4
LMTE: Aa b, c,n, o0} T LMTE: 4p a,c,n, o) ] LMTE: b a,c,n, o)
S: “b” S: “ba” S: “ban”
i J
[4] El o]
ii 2 ii 2 ii 2
LMTE: Ap a,b,c, o0} | £MTF: . n, b, e, 0) | £MTE: (n,a, b, c, 0)
S: “bana” S: “banan” S: “banana”
J
!
7] Kl Kl
ir 4 ii 5 ii 2
LMTE: Aa,n,b,c, o) | L£MTE: (e, a,n, b, 0} 1 LMTF: {o,c,a,n, b
S: “bananac” S: “bananaco” S: “bananacoc”
I J
m ] ]
ii 1 i 2 i
LMTE: {c 0,a,n,b) | LM, {c,0,a,n,b} | LM {o,c,a,n, b}
S: “bananacocc” S: “bananacococo” S: “bananacocco”

Figure 14.3 An example of MTF-inversion over the string SM7F = 22422245212, starting
with the list LMTF = {a, b, ¢, n, 0}.

in [3] to prove some compressibility bounds for the compressor that applies y-coding
over the integers in SM7F (see the following Theorem 14.3).

We notice two local homogeneous substrings in S — namely, “anana” and
“cocco” — which show individually some redundancy in a few symbols (such as
{a,n} and {c, o}, respectively). The nice thing about the MTF-mapping is that such
homogeneous substrings are changed into substrings of S™7F, consisting of small
integers. As a result, the strong local-homogeneity properties of the column L in bw(S)
will thus make ZMTF full of 1s, so the use of the simple compressor RLE is worth and
effective.

SM TF £M TF

Inverting is easy, provided that we start with the same initial list used
for the MTF transformation of S. Therefore, the initial £LY7F should be part of the
preamble of the compressed file produced by MTF. A running example is provided in
Figure 14.3. The algorithm turns every integer i in SM’F" into the symbol that occurs
at position i in £MTF | and then moves that symbol to the front of the list. The inver-
sion algorithm thus mimics the transformation algorithm, by keeping both MTF lists
synchronized.

Theorem 14.2 Transforming a string S via MTF takes O(|S|) time and O(| £|) working
space.
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A key concept for evaluating the compression performance of MTF is the one
named locality of reference, which we have previously refered to as locally homo-
geneous substrings. Locality of references in S means that the distance between
consecutive occurrences of the same symbol is small. For example, the string
bananacocco shows this feature in the substrings anana and cocco. We are per-
fectly aware that this concept is roughly specified but, for now, let us stick to this
intuitive formulation, which we will soon make mathematically precise.

If the input string S exhibits locality of references, then the MTF-compressor
(namely one that MTF transforms S and then compresses the integers in S¥7F') per-
forms better than the Huffman compressor. This might appear surprising, because the
Huffman compressor is an optimal prefix-free code (as proved in Chapter 12); but,
actually, it should not be surprising, because the MTF-compressor is not a prefix-free
code, given that a symbol may be dynamically associated to different codewords. As an
example, look at Figure 14.2 and note that the symbol c gets three different numbers
in SMTF _je. 4,2, 1 — and thus three different codewords.

Lemma 14.1 The compressor based on the combination of the MTF transform and
y-code can be better than the Huffman compressor by the unbounded factor Q(log n),
where n is the length of the string to be compressed.

Proof Take the string S = 172" - .. n" defined over an integer alphabet of size n and
having length n?. Since every symbol occurs 7 times, the distribution is uniform and
thus Huffman code uses for each symbol ©(log, n) bits. The overall compression of S
by Huffman code then takes ©(|S|logn) = O(n? log n) bits.

If we apply the MTF transform to S, we get the string SM™F" = 17217131714 ...
Compressing this string via the y-code, we get an output bit sequence of length
O(n? + nlogn). This is due to the fact that the ©(n?) integers equal to 1 are encoded
as y(1) = 1, thus taking one bit, whereas all other integers (they are n — 1 and of value
at most n) are encoded with O(log n) bits each. |

Conversely, if the input string S does not exhibit any kind of locality of reference
(e.g. it is a (quasi-)random string over the alphabet X), then the MTF-compressor
performs worse than the Huffman compressor, but not actually by much. Theorem 14.3
makes this rough and intuitive analysis precise by combining the MTF transform with
the y-code. It goes without saying that the upper bound in the theorem could be made
closer to the (0-th order) empirical entropy Ho of the string S by substituting the
y-code with the §-code, or any other better universal compressor for integers (see
Chapter 11).

Theorem 14.3 Let n. be the number of occurrences of a symbol c in the input string S,
whose total length is n. We denote by pyrr(S) the average number of bits per symbol
output by the compressor that squeezes the string SM™F using the y-code over its
integers. As pyrr(S) < 2Ho + 1, we can conclude that this compressor cannot be
more than twice worse than the Huffman compressor.
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Proof Letpi,...,pn, be the positions in S where symbol ¢ occurs. Clearly, between
any two consecutive occurrences of ¢, say p;—| and p;, there may exist no more than
pi — pi—1 distinct symbols (including c itself). So the index encoded by the MTF-
compressor for the occurrence of ¢ at position p; is at most p; — p;—1. In fact, when
processing position p;_1, the symbol ¢ is moved to the front of the list (i.e. in position
1), then it can move (at most) one position back per symbol processed subsequently,
until we reach the occurrence of ¢ at position p;. This means that the integer emitted
for the occurrence of ¢ at position p; is at most p; — p;—1. This integer is then encoded
via y-code using at most |y (p; —pi—1)| < 2(log,(p; —pi—1))+ 1 bits. As far as the first
occurrence of ¢ is concerned, we can assume that pg = 0, and thus encode it with at
most |y (p1)| <2(log, p1) + 1 bits. Overall, the cost in bits for storing the occurrences
of ¢ in string S is

< ly@Dl+ Y ly(i = pi1)

i=2

ne
<2logy(p1) + 1+ Y (2logy(pi — pi1) + 1)
=2

Nne
= (2logy(pi — pi-1) + 1).
i=1
By applying Jensen’s inequality to the summation of the logarithms, we can move
the logarithm function outside the summation and average its arguments, resulting in

a telescopic sum:
1 (&
ne (2 log, (n_ (Z Pi —Pi—1)>> + 1)
¢ \i=1

ne (2 log, <n£> + 1) s
C

where the last inequality comes from the simple observation that the position p,,. of
the last occurrence of symbol ¢ in § cannot be more than its length n. If we now sum
over all symbols ¢ € ¥ and divide by the string length 7, because py7r(S) denotes
number of bits per symbol in S, we get

3 % log, (i)) F1 = 2Ho+1.
n n

ceEX ¢

IA

IA

omrr(s) < 2 (

The thesis follows because Ho lower-bounds the average codeword length of the
Huffman code. u

The RLE Transform

This is a very simple string transformation which maps every maximal contiguous
substring of £ occurrences of symbol ¢ into a pair (¢,c). As an example, suppose
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we have to compress the following string, which represents a line of pixels of a
monochromatic bitmap (where W stands for “white” and B for “black™).

WWWWWWWWWWWBWWWWWWWWWWWWBBBBBWWWWWW
We can take the first block of W and compress it in the following way:

WWWWWWWWWWW BWWWWWWWWWWWWBBBBBWWWWWW
(11,w)

We can proceed in the same way until the end of the line is encountered, thus obtain-
ing the sequence of pairs (11, W), (1, B), (12, W), (5, B), (6, W). It is easy to see that
the encoding is lossless and simple to reverse. A remarkable observation is that if
|¥| = 2, as in the previous example, the input string would have alternating maximal
runs of Ws and Bs, so we could simply emit the run lengths plus the first symbol of
the string to compress, and still be able to get back the original string. In the previous
example, we could emit: W, 11,1,12,5,6.

Run-length encoding is actually more than a transform, because it can be turned
into a simple compressor by combining it with an integer coder (as we did for MTF).
Its best-known context of application is fax transmission: a sheet of paper is viewed as
a binary (i.e. monochromatic) bitmap, this bitmap is first transformed by XORing two
consecutive lines of pixels, then every output line is RLE-transformed, and, finally,
the integers are compressed via Huffman or arithmetic (recall that in binary images,
the alphabet has size two). Provided that the paper to be faxed is pretty regular, the
XORed lines will be full of 0s, and thus their RLE transformation will generate a
few runs, whose compression will be significant. Nothing prevents applying this argu-
ment to coloured images, but the XORing of contiguous lines will get fewer 0s. More
sophisticated approaches are needed in this setting.

Run-length encoding can perform better or worse than the Huffman compressor:
this depends on the string we want to squeeze. The following lemma shows that RLE
can be much better than Huffman, by adopting the same string we used to prove
Lemma 14.1.

Lemma 14.2 The compressor based on the combination of the RLE transform and
the y-code can be better than the Huffiman compressor by an unbounded factor Q(n),
where n is the length of the string to be compressed.

Proof Take the string S = 172" - .. ", and recall from the proof of Lemma 14.1 that
the Huffman code takes ©(n? log n) bits to compress it. If we apply the RLE transform
to S we get the string S®LE = (1,n) (2,n) (3,n) - - - (n,n). The y-code over the integers
of SRLE will use O(log n) bits per pair, and thus O(n log n) bits overall. |

But there are cases, of course, in which the RLE-compressor can perform much
worse than Huffman’s one. Just consider a string S in which runs are very short, as in
any English text where runs are typically of length 1.
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The bzip Compressor

As we anticipated in the previous sections, the compressor bzip hinges on the
sequential combination of three transforms — BWT, MTE, and RLE — which produce
an output that is suitable to be highly squeezed by a classical statistical compressor,
such as Huffman, arithmetic, or one of their variants. The most time-consuming step in
this sequence is the computation/inversion of the BWT, at compression/decompression
time, respectively. This is not just in terms of the number of operations, which is ®(n)
overall, but because of the pattern of memory accesses, which is very scattered, thus
inducing a lot of cache misses. This is an issue that we will now comment on in
depth.

The key property that makes bzip work well is the local homogeneity of the string
produced by the Burrows—Wheeler transform, as we have broadly mentioned. Here,
we provide more hints about this issue, and leave to Section 14.4 the task of digging
into some more mathematical insights. Let us consider the input string S and one
of its substrings w, which is assumed to occur n,, times in S. Say c1, ..., c,, are the
symbols preceding these occurrences of w. Given the way bw(S) is constructed, we can
conclude that all rows prefixed by w in M’ (they are of course n,,) are contiguous but
possibly shuffled, with respect to their positions in S, in accordance with the symbols
that follow w in each of those rows. In any case, the symbols ¢; that precede w are
contiguous in L (shuffled, accordingly), and thus constitute a substring of L. If the
string S is Markovian, in the sense that symbols are emitted based on their previous
ones (like in linguistic texts), then the symbols ¢; are expected to be a few distinct
ones, and this property holds the longer w is. This homogeneity is the core property
that makes the subsequent steps in bz ip very effective in compressing L.

For the sake of clarity, let us consider the following example, which
runs bzip over the string S defined as the string mississippi repeated
three times, which will entail a high degree of repetitiveness in S. The
first step consists of computing bw(S); for space reasons we do not detail
this computation but just show the result, which can be checked by hand:
L=1ppp ssss ssmm miip ppii isss sssi iiii i, where we have
grouped symbols in 4-grams to simplify the reading, and » = 16 (counting from 1).
The next step is to apply the MTF transform to L starting with a list LY7F = (i, m, p, s}.
The storage of r (using 4-8 bytes) and of LM (plainly) occurs in the preamble of the
compressed file. The result of the MTF is the string

IMIF — 1311 4111 1141 1414 1121 1411 1112 1111 1.

Note that runs of equal symbols generate runs of 1, except for the first symbol of each
run, which is mapped to an integer representing its position in £M7F" at the time of its
processing.

The first speciality introduced by bzip is that RLE is not applied to runs of all
possible symbols; rather it applies a restricted variant, called RLE1, which squeezes
only the runs consisting of 1s. So LM can be regarded as a smart way to reserve
the symbols (integers) 0 and 1 for the binary encoding of the lengths of 1-runs. More
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precisely, the run 11111, consisting of five occurrences of 1, is encoded according
to the following scheme, known as Wheeler’s code: the length of the run is increased
by 1, hence 5 + 1 = 6, then the binary encoding of 6 is computed, hence 110, and
finally the first bit (surely 1) is removed, thus outputting the binary sequence 10. The
first increment guarantees that the (increased) run length is at least 2, and thus it is
represented in at least two binary digits, of which the first is surely a 1. So the 1-bit
removal leaves at least one bit to be output. Decoding Wheeler’s code is easy — just
repeat these steps in reverse order.

The key property of Wheeler’s code is that the output bit sequence consists of no
more digits than symbols in LMF, so this step can be considered as a preliminary
compression, which is increasingly effective as the 1-runs in LM7F increase in length.
The binary output for the sequence of our running example is:

RLE1 = 0314 1041 4031 4141 0210.

It is evident that the decompressor can easily identify the run’s encodings, because
they consist of maximal sequences of Os and 1s; recall that these numbers have been
reserved explicitly for this purpose.

Finally, RLE1 is compressed by using a statistical compressor that operates on an
alphabet which consists of integers in the range [1, |X| + 1]. The reader can look at
the home page of bzip2 [19] for further details,® especially regarding the statistical-
encoding step, and at the Squash compression benchmark’ to access a plethora of
compressors, datasets, and machines to perform the widest possible comparison.

An immediate conclusion about the practical performance of the compressors we
have seen in this book is that LZ-based compressors are the fastest in (de)compression
performance, because of their cache-friendly algorithmic structure, and they also
achieve very interesting compression ratios; on the other hand, BWT-based compres-
sors are quite slow, which is not a surprise because of the BWT-algorithmic structure,
but they reach significant compression rates. Since bw(S) is costly to be computed,
its implementations divide the input file into blocks and then apply the transform
block-wise. This is the reason why BWT-based compressors are called block-wise com-
pressors. As for dictionary-based compressors, the size of the block impacts on the
trade-off compression ratio versus compression speed; but, unlike dictionary-based
compressors, this also impacts unfavorably on the decompression speed, which slows
when working on longer blocks. Regardless, the current implementation of bzip2
allows us to specify the size of the block at compression time with the command-line
options -1, ..., -9, which actually indicate a block of size 100KB, ..., 900 KB.

We are left with the problem of constructing the Burrows—Wheeler forward trans-
form given that, as we have observed, we cannot construct explicitly the rotation matrix
M, and a fortiori its sorted version M/, since this would take ®(n?) working space for
an input of length ». This is why most BWT-based compressors exploit some “tricks”
in order to avoid the construction of these matrices. One such “trick” involves the

6 There, positions are counted from 0, so that RLE works on 0-runs and all other numbers are increased
by 1 in order to still reserve the symbols 0 and 1 to encode the run’s lengths.
7 See https://quixdb.github.io/squash-benchmark/.
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suffix index sorted suffix  index M L
abracadabra$ 1 $ 12 $abracadabra | a
bracadabra$ 2 a$ 11  a$abracadabr | r
racadabra$ 3 abra$ 8 abraSabracad | d
acadabra$ 4 abracadabra$ 1 abracadabra$ | $
cadabra$ 5 acadabra$ 4 acadabra$abr | r
adabra$ 6 adabra$ 6 adabra$abrac | c
dabra$ 7  bra$ 9  bra$abracada | a
abra$ 8  bracadabra$ 2 bracadabra$a | a

bra$ 9  cadabra$ 5 cadabra$abra | a

ra$ 10 dabra$ 7  dabra$abraca | a

a$ 11 ra$ 10  ra$abracadab | b

$ 12 racadabra$ 3 racadabra$ab | b

Figure 14.4 Suffix Array versus sorted rotated matrix M’ over the string S = abracadabra$. We
show the matrix M’ and we copy in L the last symbol of each of its rows.

usage of suffix arrays, which were described in Chapter 10, where we also detailed
several algorithms to build them efficiently. The construction of BWT deploys one of
these algorithms,® and this motivates the increased interest in the literature about the
suffix-array construction problem after the BWT publication (see, e.g., [15, 17, 1]).

To see why suffix arrays and BWT are connected, let us consider the following
example Take the string S = abracadabra$ and compute its suffix array S4 =
[12,11,8,1,4,6,2,5,7,10,3]. Figure 14.4 summarizes these data structures for the
running example at hand. The first four columns show the suffixes of the string S and
its suffix array SA4. The fifth column shows the corresponding sorted-rotated matrix
M’ with its last column L. It is easy to see that sorting suffixes is equivalent to sorting
rows of M, given the presence of the sentinel symbol $. The reader can check that the
formula below ties S4 with L:

L[] = { S[SA4[i] — 1] if SA[7] # 1
$ otherwise

We know that every symbol L[i] precedes symbol F[i] in S (see Property 1). Symbol
F[i] is the first symbol of row i in M’, and thus it is the first symbol of the suffix
starting at SA[i]. Therefore we can conclude that L[i] equals the symbol of S that
precedes position SA[7]. The special case is the row corresponding to S, hence prefixed
by the first suffix, for which $ will be used as preceding symbol. So, given the suffix
array of string S, it takes only linear time to derive the string L, by applying this
formula. We have therefore proved the following:

Theorem 14.4 Given an input string S, constructing bw(S) takes the time and 1I/0
complexity of Suffix array construction. By using the DC3 algorithm of Chapter 10,

8 M. Burrows: “So I enlisted his help in finding ways to execute the algorithm’s sorting step efficiently,
which involved considering constant factors as much as asymptotic behaviour. We tried many things,
only some of which made it into the paper, but we met my goals: we showed that the algorithm could be
made fast enough to see practical use on modern machines ...” [10].
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the overall cost of building bw(S) is optimal in several models of computation. In
particular, it is O(n) in the RAM model, and O(Sort(n)) in the two-level memory
model, where Sort(n) is the I/O cost of sorting n atomic items.

On Compression Boosting>®

Let us first recall the notion of k-th order empirical entropy as a measure of uncertainty
(or information) associated with string S drawn from an alphabet ¥ = {o1q,...,03},
and let us denote by #,, the number of occurrences of the substring w in S. We use the
notation w € ¥ to specify that the length of w is k. As introduced in Section 13.4, we

define
h
Ny
N o, log < ) .
1 Ny o;

i=

1
S)= —
Hi(S) |S|wezk(

Setting £ = 0, we get the classical 0-th order empirical entropy, which is com-
puted with respect to the frequencies of the individual symbols in S, therefore without
exploiting any k-length context. Clearly, H(S) < Ho(S), but it can be much smaller,
and for growing |S| and k this value converges to the entropy of the source that
emitted S.

We are interested in this formula because it suggests a way to design a compres-
sor that achieves Hy(S) starting from a compressor that achieves Ho(S) of its input
string, such as arithmetic or Huffman compressors. This kind of algorithm is called
a compression booster, because it is able to boost a compression performance up to
Ho into a compression performance up to H. The algorithmic tool to achieve this is,
surprisingly, the Burrows—Wheeler transform [7]. In order to illustrate this innovative
and powerful idea, let us consider a generic 0-order statistical compressor Cyp whose
performance, in bits per symbol, over a string S is bounded by Ho(S) +/(|S|) bits. We
note that the function f(|S]) = 2/|S] is the one achieved by arithmetic coding, and it
is f(]S]) = 1 for Huffman coding (see Chapter 12).

In order to turn Cy into an effective k-th order compressor Cy, we proceed as follows.

e Compute the Burrows—Wheeler transform bw(S) of the input string S.

e Take all possible substrings w of the string S, and partition the column L so as to
form substrings L,,, each formed by the last symbols of the rows prefixed by w.

e Compress each L,, with Cp, and concatenate the output bit sequences by alphabeti-
cally increasing w (or, equivalently, by occurrence of L, in L).

It can be seen immediately that L, is a substring of L, because rows prefixed by
 in M’ are contiguous. Given the 1cp array of string S, the partitioning of L takes
linear time (see Chapter 10), and thus it does not impact on the efficiency of the final
compressor Ci. As far as the compression performance in bits per symbol is concerned,
we easily derive that it can be bounded by
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1

S D Lol HoLo) +/(ILol) = Hi(S)+ O(Z[),

we Xk

where we have applied the definition of H(S) to the summation of the H¢(L,), and
the fact that f(|L,|) < 1 for Huffman and arithmetic compressors. It is clear that
the more effective the 0-th order compressor, the closer it is to Hg, the smaller is the
term f(|L|), and thus the additive term O(| X |F) becomes negligible. In [7] the authors
showed that one actually does not need to fix k, since there is a compression booster
that identifies in optimal O(|S]) time a partition of L which achieves a compression
ratio that is better than the one obtained by Cy, for any possible £ > 0. The algorithm
is elegant and not too involved, but it would require some space to be described in
sufficient details, so that we refer the interested reader to that paper.

On Compressed Indexing™>

We have already highlighted the bijective correspondence between the rows of the
rotated matrix M and the suffixes of the string S, as well as the relationship between
the string L and the suffix array built on S (see Figure 14.4). These are at the core of the
FM-index’s design, which has been the first compressed full-text index to achieve effi-
cient substring search and space occupancy bounded above by the k-th order empirical
entropy of the indexed string. We can look at the FM-index as the compressed version
of the suffix array, or as the searchable version of a bz ip-compressed file. The nature
of these notes does not allow us to dig into the technical details of the FM-index, so
in the rest of this section we will just fly over its technicalities and concentrate on the
main algorithmic ideas; the interested reader may look at the seminal paper [8] and
the survey [16] for further details.

In order to simplify the presentation, we distinguish between three basic operations:

e Count(P) returns the range of rows [first, last] in M’ (and thus suffixes in the suffix
array) that are prefixed by the string P[1, p]. The value (last — first + 1) accounts
for the number of these pattern occurrences.

e Locate(P) returns the /ist of all positions in the indexed string S where P occurs
(they are possibly unsorte).

e Extract(i,j) returns the substring S[i,;] by accessing its compressed representa-
tion in the FM-index.

For example, in Figure 14.4 for the pattern P = ab we have first = 3 and
last = 4 for a total of two occurrences. These two rows correspond, as the figure clearly
illustrates, to the two suffixes S[1, 12] and S[8, 12] which are prefixed by P.

Let us start from the description of Count(P). The retrieval of the rows first
and /ast is not implemented via a binary search, as occurred in suffix arrays, but
it uses a peculiar search method which deploys the column L, the array C (which
stores in C[c] the position of the first occurrence of symbol ¢ in column F, see
Step 7 in Algorithm 14.1), and an additional data structure which supports effi-
ciently the very basic counting Rank(c, k), which reports the number of occurrences
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Algorithm 14.3 Counting the occurrences of pattern P[1,p] in S
1: i=p,c=P[pl;

: first = Clc], last = C[c + 1] — 1;

: while (first < last and i > 1) do

c=Pli—1];

first = C[c] + Rank(c, first — 1);

last = C[c] + Rank(c, last) — 1;

i=i—1;

. end while

2
3
4
5:
6
7
8
9: return (first, last).

of the symbol ¢ in the string prefix L[1,%]. We mention that the array C is small
in that its size is proportional to the alphabet cardinality; whereas the string L
and the data structure to implement Rank(c, k) over it can be kept compressed
and they are still able to support efficiently the retrieval of L[i] and Rank(c, k).
The literature offers many solutions for this latter problem (see, e.g., some classic
results in [8, 11, 2, 16]); here we report some of them (possibly no longer the best
ones at the time of writing given the effervescence of this research field):

Theorem 14.5 Let S[1,n] be a string over alphabet %, and let L be its BWT.

e [f|X]| = O(polylog(n)), there exists a data structure that supports Rank queries
on L in O(1) time using nHy(S) + o(n) bits of space, for any k = o(log x| n), and
retrieves any symbol L in the same time bound.

e For general X, there exists a data structure that supports Rank queries on
L in O(loglog|X|) time, using nHi(S) 4+ o(nlog|X|) bits of space, for any
k = o(log|x| n), and retrieves any symbol of L in the same time bound.

This means that Rank can be implemented in constant, or “almost” constant time,
and in space that is very much close to the k-th order entropy of the string S we wish
to index. The array C takes only O(|X|) space, which is negligible for real alphabets.
This means that this ensemble of data structures is very compact indeed.

We are left to show how this ensemble allows us to implement Count(P). Algo-
rithm 14.3, nowadays called a backward search, reports the pseudocode of such an
implementation which works in p phases numbered from p to 1. The i-th phase pre-
serves the following invariant: the parameter “first” points to the first row of the sorted
rotated matrix M’ prefixed by the suffix P[i, p], and the parameter “last” points to the
last row of M prefixed by the same suffix P[i, p]. Initially the invariant is true by con-
struction: C[c] is the first row in M’ starting with ¢, and C[c + 1] — 1 is the last row in
M starting with ¢ (recall that rows are numbered from 1). As a running example, take
P = ab and refer to the matrix M’ of Figure 14.4: at the beginning we have p = 2,
P[2] = b and C[b] = 7 (we count one occurrence of $ and five occurrences of @ in S),
and C[b + 1] = C[c] = 9 (we count two more occurrences of b in S). Thus [7, 8] is


https://doi.org/10.1017/9781009128933.015
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009128933.015
https://www.cambridge.org/core

270

14 Block-Sorting Compression

the correct range of rows prefixed by the single symbol P[2] = b before the backward
search starts.

At each subsequent phase, Algorithm 14.3 has inductively found the range of rows
[first, last] prefixed by P[i,p]. Then it determines the new range of rows [first, last]
prefixed by the pattern suffix P[i — 1,p] = P[i — 1] - P[i,p], which is one symbol
longer than the previously processed pattern suffix, namely P[i, p]. This inductive step
works as follows. First it determines the first and last occurrence of the symbol ¢ =
P[i—1] in the substring L[first, last] by deploying the function Rank properly queried.
Specifically, Rank(c, first— 1) counts how many occurrences of ¢ occur before position
first in L, and Rank(c, last) counts how many occurrences of ¢ occur up to position
last in L. Therefore, these two values allow us to know which occurrences of ¢ are
included in L[first, last], so they can be used to compute the LF-mapping of the first
and the last occurrences of ¢ in that range. Therefore Property 2 and Definition 14.1
imply the equalities deployed in Steps 5 and 6 of Algorithm 14.3, which can thus be
efficiently implemented in time and space by means of a compressed data structure
for Rank(c, k) (see Theorem 14.5).

For a formal proof that this mapping actually retrieves the new range of rows
[first, last] prefixed by P[i — 1, p] we refer the reader to the seminal publication [8].
Here we construct an example to convince the reader that everything works fine. Refer
again to Figure 14.4 and consider, as before, the pattern P = ab and the range [7, 8]
of rows in M’ prefixed by the last pattern symbol P[2] = b (recall that we process P
backward, hence the name backward search). Algorithm 14.3 picks the previous pat-
tern symbol P[1] = a, and then computes Rank(a,first — 1) = Rank(a,6) = 1 and
Rank(a, last) = Rank(a, 8) = 3, because L[1, first — 1] contains one occurrence of
a and L[1, last] contains three occurrences of a. So Algorithm 14.3 computes the new
range as: first = Cl[a]+Rank(a,6) = 2+ 1 = 3, and last = C[a]+Rank(a,8)—1 =
2 + 3 — 1 = 4, which is indeed the contiguous range [3,4] of rows prefixed by the
pattern P = ab.

After the final phase (i.e. i = 1), first and last will delimit the rows of M’ containing
all the suffixes prefixed by P. Clearly, if last < first the pattern P does not occur in the
indexed string S. The following theorem summarizes what we have sketched.

Theorem 14.6 Given a string S[1, n] drawn from an alphabet %, there exists a com-
pressed index that takes O(p X tyank) time to support the operation Count(P[1, p]),
where tyank is the time cost of a single Rank operation over the BWT of the string
S (i.e. bw(S)). The space usage is bounded by nHy(S) + o(n log|X|) bits, for any
k = o(log x| n).

The interesting corollary of this result is that, by plugging the compressed data
structure claimed in Theorem 14.5, we get an implementation of Count(P) that takes
optimal O(p) time and compressed space. However, this solution suffers some I/O
inefficiency because every phase may elicit ©(p) cache/IO misses due to the jumping
around L and Rank required by Algorithm 14.3. There have been several attempts,
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reported in the literature, to make FM-index cache-oblivious or cache-aware, but so
far we do not have an equally elegant solution for those issues.

Let us now describe the implementation of Locate(P). For a fixed parameter ,
we sample the rows i of M’ that correspond to suffixes of the indexed string S that start
at positions in S with the form pos(i) = 1 +j , where j = 0, 1,2, .. .. Each such pair
(i, pos(i)) is stored explicitly in a data structure P that supports membership queries
in constant time (on the first 7ow-component). Now, given a row index r, the position
pos(r) in S can be derived immediately for that row if it is sampled and thus indexed
in P; otherwise, the algorithm computes # = LF"(r), where ¢ is the step in which / is a
sampled row and thus it is found in P. In this case, pos(r) = pos(h) + ¢ because every
LF-computation moves backward in S by one single position. The sampling strategy
ensures that a row in P is found in at most u iterations, and thus the occ occurrences
of the pattern P can be located via O(u x occ) queries to the Rank-data structure.

Theorem 14.7 Given a string S[1,n] drawn from an alphabet %, there exists a
compressed index that takes O(u occ) time and O(ﬁ log n) bits of space to support
Locate(P), provided that the range [ first, last] of rows prefixed by P is available.

By fixing 1 = log!*€ n, the solution takes polylogarithmic time per occurrence,
and potentially sub-linear space (in bits) in the indexed string length n. Trade-offs
are possible and literature abounds nowadays with asymptotic improvements and
experimental investigations about these compressed indexes.

It is not very surprising that Count(P) can be adapted to implement the last basic
operation supported by FM-index: Extract(i,j). Let r be the row of M’ prefixed
by the suffix S[j, n], and assume that the value of r is known, that is the case after
executing Count(P). The algorithm sets S[j] = F[r], and then starts a loop which
moves backward in S from S[j — 1] (because S[/] has been found via the array F),
deploying the LF-mapping (implemented via the Rank-data structure) as follows:
S[j—1—1]=L[LF'[r]], fort =0,1,...,j —i— 1. It stops after j — i steps, when we
have reached S[i]. This approach is reminiscent of the one we took in the BWT inver-
sion, with the difference that the array LF is not explicitly available, but its entries
are generated on-the-fly via Rank computations. This guarantees still efficient time
access to LF array and compressed space (thanks to Theorem 14.5).

Given the appealing asymptotic performance and structural properties of the FM-
index, several authors have investigated its practical behavior by performing an
extensive set of experiments [5].” Experiments have shown that the FM-index is com-
pact (its space occupancy is usually not far from to the one achieved by bzip), it
is fast in counting the number of pattern occurrences (a few microseconds per pat-
tern’s symbol), and the cost of their retrieval is reasonable when they are few (about
100k occurrences/sec). In addition, the FM-index allows us to trade space occupancy
for search time by choosing the amount of auxiliary information stored into it (i.e.
by properly setting the parameter 1 and a few other parameters arising in the imple-
mentation of Rank). As a result, the FM-index combines compression and full-text

9 See the Succinct Data Structure Library at https://github.com/simongog/sdsl-lite.
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indexing, and like bzip it encapsulates a compressed version of the original file
(accessible via Extract), and like suffix trees and suffix arrays it allows us to search
for arbitrary patterns (via Count and Locate). Everything works by looking only at
a small portion of the compressed file, thus avoiding its full decompression.
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15.1

Compressed Data Structures

When Claude Shannon meets Donald E. Knuth...

In the previous chapter we presented a compressed version of suffix arrays, the
FM-index. The literature nowadays offers plenty of compressed solutions for most,
if not all, classic data structures for arrays, trees, and graphs [4]. In this final chapter
we wish to give just an idea of these novel approaches to data structure design, and
discuss the ones that we consider the most significant and fruitful, from a didactic
point of view. A side effect of this discussion will be the introduction of the paradigm
called pointer-less programming, which waives the explicit use of pointers (and thus
integer offsets of four/eight bytes to index arbitrary items, such as strings, nodes, or
edges) and instead uses compressed data structures built upon proper binary arrays
that efficiently subsume the pointers, some operations over them, and even more.

In conclusion, at least from a theoretical perspective, pointer-less programming is a
viable modern alternative to represent in compressed space classic pointer-based data
structures, without impacting on their asymptotic performance. Having said this, and
since this is a book on algorithm engineering, we must be frank in saying that pointer-
less programming still needs skilled algorithm engineers to decide whether its use is
effective and, if so, use it in the most fruitful way when building big-data applications.

Compressed Representation of (Binary) Arrays

Let us consider the following paradigmatic example. We are given a dictionary D of n
strings of total length m. We map the dictionary onto a single string 71, m] (without
separators between adjacent strings), and wish to support two query operations. The
first is Access_string(i), which retrieves the i-th string in 7'; the second operation is
Which_string(x), which asks to retrieve the starting position of the string in 7 including
the symbol 7T[x].

The classic approach to solve this problem is via an array of pointers A[1,n] to
D’s strings, implemented by means of their offsets in 71, m], thus using ®(n log m)
bits overall. Here, Access_string(i) boils down to returning A[{], whereas Which_string(x)
boils down to finding the predecessor of x in A. The first operation costs O(1) time,
and the second operation costs O(log n) time via binary search.
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An orthogonal approach consists of adopting compressed representations for the
offsets in A. In the next two subsections we will describe two approaches: one imple-
ments A4’s offsets via a binary array B[1, m], where we set B[i]=1 if and only if 7]
is the first symbol of a dictionary string, enriched by a compressed data structure that
supports some basic (yet useful) operations over B’s bits; the other leverages the fact
that 4’s offsets are increasing integers, and thus deploys Elias—Fano code to index them
in compressed form (described in Chapter 11).

For the first solution, note that Access_string(i) requires searching for the i-th bit
set to 1 in B, whereas Which_string(x) requires searching for the first bit set to 1 on
the left of B[x] (included) or, equivalently, counting the number k of Is in B[1,x]
and then jumping to the k-th bit set to 1 in B. Nowadays, the first operation is called
Select(i), whereas the counting operation is called Rank(x). Both operations could be
implemented via a scan of B, but this would be costly in the worst case. The next
subsection discusses a data structure that takes constant time for these two operations
and occupies a space that is o(m) bits in addition to B. For its space complexity, this
solution is called succinct (because of the explicit storage of B), and turns out to be
more compact in space than the pointer-based solution if n = o(m/ log m).

For the second solution, we take advantage of the algorithmic properties of Elias—
Fano code, which can support Access(i), to retrieve 4[], in constant time, and Rank(x) in
logarithmic time, taking space bounded above by O(n log(m/n)) bits (see Chapter 11).
We will show that this space bound is related to the entropy of array B, so this solu-
tion is called compressed, and turns out to be asymptotically better in space than the
pointer-based solution, for all values of m and n.

A Succinct Solution, via Rank and Select

For achieving the goals we have stated, we introduce two new primitives and their
corresponding data structures, called Rank and Select.

Definition 15.1 Let B[1,m] be a binary array.

e The Rank of an index 7 in B relative to a bit b € {0, 1} represents the number of bits
b occurring in B[1,i]. Formally, Rank; (i) = Z;zl B[j]. Note that Ranky(i) can be
computed in constant time as i — Rank (z).

e Let B[1,m] be a binary array. The Select of an index 7 in B relative to a bit b € {0, 1}
returns the position of the i-th occurrence of bit b in B, and is denoted by Select, (7).
Unlike Rank, Select, cannot be derived in constant time from Select;, so each one
needs proper data structures.

Let us consider the following binary array:

1 2 3 4 5 6 7 8 9 10 11

p=[00[ 1 o 1 o 0] 1]0][1]0]

and consider the query Rank;(6), which is asking for the number of 1s encountered
in the first six positions of B. The portion of B interested in this counting is the one
highlighted in the following graphic, and the result is Rank; (6) = 2:
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1 2 3 4 5 6 7 8 9 10 11

5= O[O o]0 1[0]1]0]

Now consider the query Select; (3), which is asking for the position of the third occur-
rence of the bit 1 in the whole array B. The result is Select;(3) = 8, and the returned
position is the one highlighted in the next graphic, where we also show the rankings
of all 1s before the queried one.

1 2 3 4 5 6 7 8 9 10 11
B=[oJof1][of1]ofo]r]o][1]o0|

1 2 3

Implementation of Rank. The succinct data structure supporting the Rank opera-
tion consists of three levels: in the first, we logically split the binary array B into
big blocks of size Z each, and maintain for each some meta-information suitable
to support the Rank operation; in the second level, we logically split each big block
into small blocks of size z each, and maintain for each some other meta-information;
the third level consists of a direct-access table indexed by small blocks and queried
positions. The meta-information kept in the first two levels, and the table of the
third level, will be proved to be succinct in space by occupying o(m) bits over-
all. For simplicity of exposition we assume that z divides Z, so that the i-th big
block is B[Z - (i — 1) + 1,Z - 1], and the j-th small block inside the i-th big block is
BZ-i—-1)4z-G—D+1,Z-(i—1)+2z-j], where i,j > 1.

The meta-information associated with the i-th big block consists of the number of
Is seen in the prefix of array B preceding this big block; it is termed absolute rank and
denoted by r;. The meta-information associated with the j-th small block inside the i-th
big block consists of the number of 1s occurring in the prefix of that big block preced-
ing that small block; it is termed relative rank and denoted by 7; ;. Figure 15.1 explains
this meta-information pictorially. In particular, if 7; is by definition the number of 1s
preceding (up to the beginning of B) the highlighted big block, then r;y; = r; + 4,
because that big block includes four 1s. As for the meta-information stored for the

i i
Vi | Tisl

~[1]t]o]t]t]oJo]t]oJo]t{ofofofo[1]ofo]1]of1 -

1 Z=9 ! Z=9

1
LT Ti3

o | | vt J o] o t [ of of 1

I 1
© A
I I
| |

z=3

Figure 15.1 Example of meta-information stored for big blocks of size Z = 9 and small blocks
of size z = 3, relative to the implementation of the Rank operation. 7; is the number of 1s from
the beginning of binary array B up to the first entry of the highlighted big block (excluded), so
riy1 = r;i + 4. For the relative ranks associated at each small block, r; 1 = 0,7, = 2,r;3 = 3.
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small blocks, note that 7;; = 0, and we show it for completeness; the other two rela-
tive ranks are ;2 = 2, since two 1s precede the second small block in the highlighted
big block, and r; 3 = 3, since three 1s precede the third small block in the highlighted
big block (as reported in the zoomed array depicted in Figure 15.1).

The space occupancy of all absolute ranks can be computed by multiplying the
number of big blocks and the space needed to store one absolute rank, namely
O(7 logm) bits, because each absolute rank is smaller than B’s size m. By the same

argument, the space needed to store all relative ranks is 0(% log Z), because each rel-
ative rank is smaller than the size Z of big blocks, and thus can be stored in O(log Z)

bits.
Now, let us set Z = (log m)? and z = % log m, then the total space occupancy is

=0 <m logm + = logZ)
Z z

0( W; logm + 5 n log(log? m))
log“m 5 logm

O( " + " loglogm)
logm ~ logm

_ O(m loglogm> = o(m).

logm

It is easy to convince ourselves that we can obtain the Rank of positions at the end of
each block (being either small or big) in constant time by either reading the absolute
rank of the big block following the queried position, or summing the absolute rank of
the big block enclosing the queried position and the relative rank of the small block
following the queried position.

At this point, we know how to answer a Rank query on the last position of each
(small or big) block, but what about queries on positions inside small blocks? The first
solution we discuss is based only on the meta-information provided by absolute and
relative ranks, as follows. Say Rank;(x) is formulated over an arbitrary position x in
B possibly occurring inside a small block. For the sake of description, suppose B[x]
is included in the j-th small block, which is in turn included in the i-th big block of
B, denoted by B;;. The answer to Rank;(x) is computed as r; + r;; + Count;[B; ;, x],
where the last term counts the number of 1s occurring in the small block B;; up to the

bit B[x] (included). Note that the indexes i and j can be computed as i = 1 + L)%IJ,

% , where r1 = 0, r;,; = 0, and recall that indexes are counted

andj =1+ {
from 1. Having said this, the retrieval of the first two quantities takes constant time,
whereas Count; [B;;, x] takes O(z) = O(log m) time in the worst case via a scan of B; ;.

Note that if z fits in one memory word, then Count; [B;,x] can be implemented in
constant time via bit manipulation primitives, such as the std: :pop_ count! if z

consists of a very few memory words, so that we can deploy SIMD (single instruction,

1 https://en.cppreference.com/w/cpp/numeric/popcount.
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R pos
block 1 2 3
000 0 0 O
001 0 0 1
010 0 1 1
011 0 1 2
100 1 1 1
101 1 1 2
110 1 2 2
111 1 2 3

Figure 15.2 Lookup table R of precomputed ranks for all possible small blocks of size z = 3
bits. Here R[b, o] denotes the rank of the element in relative position o inside the block of
binary configuration b.

multiple data) operations, and still be very fast; for longer z, it is still possible to
achieve the constant-time optimal theoretical bound, but we need to include a third
piece of meta-information consisting of a table R which tabulates the answers to all
possible small-block configurations and queried positions, as shown in Figure 15.2.
By means of this table, we can compute Count; [B; ;, x] by accessing the corresponding
entry in R, namely R[B;;, 0], where 0 = 1 + ((x — 1) mod z) is the offset of bit B[x] in
the small block B; ;. This procedure takes three memory accesses (i.e. one per r;, one
per 7;;, and one per R[B;;, 0]) and two additions, thus O(1) time. Surprisingly enough,
storing table R is not as costly as it could seem, given that we have setz = (1/2) log m.
In fact, R consists of 2° rows and z columns, and each entry can be represented in
O(logz) bits because it counts the number of 1s in a small block. The total space
occupancy of R is therefore 27z logz = O(ZIOgﬁ (log m) (loglog m)) = o(m) bits.
We conclude by observing that the last column of table R is redundant, because the
information it stores is also available in 7;;, thus it could be dropped, even if this does
not change the asymptotic space occupancy of the proposed solution.

Theorem 15.1 The space occupancy of the Rank data structure is o(m) bits, and thus it
is asymptotically sublinear in the size of the binary array B[1, m]. The Rank algorithm
takes constant time in the worst case, and accesses the array B only in read-mode.

Let us use the example shown in Figure 15.1 to visually explain the computation
of Rank; (x), where we assume that x = 17 is the element indicated by a downward
arrow in Figure 15.3. The algorithm follows the three steps already mentioned for the
retrieval of the three quantities involved in the formula r; + r;; + R[B;;, 0], where we

recall thati =1 + L’%IJ,]: 1+ L%J,ando: 1 4+ ((x — 1) mod z).

. Find the i-th big block including B[26], namely i = 1 + L%J — 2, and retrieve
the absolute rank 7;.
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B[x]

© 7

- Jufi]ofiftfofoftfofoft]ofofofo]tfofoft]of1 -
— |

Ly oF

: Z=9 : Z=9

i i ; Blx] ;

LT LT ! l !
o | [ vt J o] o t o] of 1

RS RS :' <=3 ":

Figure 15.3 Graphic explanation of the execution of the Rank operation, where the absolute and
relative ranks used in the computation are circled.

2. Find the j-th small block which contains B[26], namely j = 1+ LWJ =3,
and retrieve the relative rank 77 3.

3. Find the offset position of B[x] inside the small block B; 3, namely o = 1+ ((17 —
1) mod 3) = 2, and then access the entry R[001, 2], which is equal to zero in the
running example (see Figure 15.2).

4. Compute the result as Rank;(17) = r, +r23 + R[001,2].

Implementation of Select. The implementation of the Select operation mainly fol-
lows the three-level design of the Rank data structure, with the algorithmic twist that
here the binary array B is not split into big and small blocks of fixed length, but the
splitting is driven by the number of bits set to 1.

Technically speaking, let us set K = log? m and use Z again to denote the size in
bits of the big blocks that contain K bits set to 1. Clearly, Z changes among big blocks,
but to keep things simple we avoid using different values of Z here and clarify things
in text. By definition Z > K, hence the storage of all starting positions of big blocks
takes O(% logm) = o(m) bits, and since big blocks contain exactly K bits set to 1, a
simple arithmetic operation can derive the big block where the 1 searched for by the
Select; (7) operation occurs.

To continue the search for Select; (i), we need to zoom into a big block. For time
efficiency we cannot scan it, so we proceed to design the second level of the Select’s
data structure by splitting big blocks into small blocks still driven by the count of 1s. In
particular, we distinguish between sparse and dense big blocks. A big block is called
sparse if it contains “a few” 1s with respect to its size, where a “few” is quantified as
Z > K2. Otherwise it is called dense, and in this case we clearly have Z < K2

If a big block is sparse, then we can explicitly store the positions of its bits set to
1s, without incurring too much space occupancy. In fact, this takes O (% K log m) =

0 (L log m) = o(m) bits, where we have exploited the fact that the length of a

log? m
sparse big block is Z > K2 and K = log? m.
On the other hand, if a big block is dense (i.e. Z < K?), we proceed recursively by
splitting that block into small blocks that contain k = (log log m)? bits set to 1 each. We
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I
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Figure 15.4 Implementation of Select. In this example, K = 3 and £ = 2. Comments in text.

denote the length of a small block by z and observe again, as occurred for big blocks,
that z may vary among small blocks, but we do not use subscripts to ease the reading.
The storage of all starting positions of small blocks, relative to the beginning of their
enclosing dense big block, takes O (% log Kz) =0 (m log (log* m)) = o(m)
bits, where we use the fact that the length of a small block is at least k£ and the length
of its enclosing dense big block is at most K?.

Finally, in order to keep track of the positions of the bits set to 1 in small blocks,
we mimic what was done for the big blocks, and thus distinguish between sparse
and dense small blocks, depending on whether the length z of a small block is larger
or smaller, respectively, than k2 = (loglogm)* bits. As for big blocks, if the small
block is sparse (i.e. z > k?), we can store explicitly the positions of its s, but now
relative to the beginning of the enclosing big block, thus taking O(]Z”—2 k logK?) =
O Goglogmy
small block is z > k2, so their number is O(m/k?), and, moreover, z is shorter than
the length of a dense big block, which is is Z < K?. We are therefore left with the
storage of the 1s occurring in dense small blocks (within dense big blocks): we mimic
what was done for the third level of the Rank’s data structure, and thus pre-compute a
table 7 of all answers to Select; within a dense small block, by observing that its size
is z < k? = (loglogm)*, and thus T occupies O(z 2° logz) = o(m) bits.

log (log4 m)) = o(m) bits, where we use the fact that the length of a sparse

In order to better understand the working of the Select; operation, let us refer to
Figure 15.4, where we take for the sake of explanation K = 3 and k& = 2. Note that the
(highlighted) big block is dense because it contains K = 3 bits set to 1 and its size is
Z =7 < 9 = K?, whereas the subsequent big block is sparse because it also contains
K = 3 bits set to 1 but its size is Z = 10 > 9 = K2. Moreover, the first small block
of the highlighted big block is dense because it contains k£ = 2 bits set to 1 and its
size is z = 3 < 4 = k?, while the second small block is sparse and actually contains
fewer than £ bits set to 1, because k& does not divide K. According to the description of
the data structure for Select, the positions of the 1s of the sparse big block and of the
sparse small block can be stored explicitly (the former as absolute values, the latter
as relative values with respect to the beginning of their enclosing big block). Instead,
the first small block of the highlighted big block contributes to the construction of the
table 7 given that it is dense.
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We are now ready to describe the implementation of Select; (i), which exploits the
three-level data structure, and proceeds as follows:

1. Compute the index j = 1 + L%J of the big block including the i-th bit set to 1 in
the binary array B. Denote this big block by B;.

2. If B; is sparse, the data structure has stored explicitly the result of Select; (i), and
we are done. Otherwise, the data structure has stored the starting position of the
(dense) big block B, say s;.

3. Turn Select; (i) within B into a relative Select;(i") within B;, by computing i’ =
1 4+ (i — 1 mod K).

4. Compute the index /' = 1 + L%J of the smal block including the '~th bit set to
1 in B;. Denote this small block by B ;.

5. The data structure has stored the starting position of B; , relative to the beginning
of By, say /.

6. At this point, if B; is sparse, the data structure has stored the position of the 7'-
th bit set to 1 in B;, relative to the beginning of this big block, and thus we get
the answer to Select; (i) by summing that relative position to s;; or, we access the
precomputed table 7" with the binary configuration of B; y and the value 1 + (i — 1
mod &%), and we get the answer to Select| (i) by summing the retrieved T’s entry to
8j + 8.

Similarly as observed for the Rank operation, since the length of dense small blocks
is very short (namely, it is shorter than (log log m)*, which is a tiny value for practical
values of m), we could in practice consider scanning those small blocks, and thus drop
the use of the precomputed table 7.

We have therefore proved the following:

Theorem 15.2 The space occupancy of the Select, data structure is o(m) bits, and
thus it is asymptotically sublinear in the size of the binary array B[1,m]. The Select;
algorithm takes constant time in the worst case, and accesses the array B only in
read-mode. The same time and space bounds hold for Select.

A Compressed Solution, via Elias—Fano Coding

The approach we describe in this section can be directly applied to the array of (offset)
pointers A[1, n] to D’s strings or to their characteristic binary vector B[ 1, m]. In fact, we
can transform the latter into the former by taking the positions of the bits set to 1 in B,
and thus obtain an increasing sequence of positive integers, which is the precondition
of a valid input for the Elias—Fano code.

As an example, let us assume that in input we have the binary array

1 2 3 4 5 6 7 8 9 10 11

=[O 1[1T0 0 o 0] 1[0][1]0]
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1 2 3 4

and then derive the array 4 = | 2 | 3 | 8 | 10 |. As we described in Chapter 11, the
compression of 4 via Elias—Fano code obtains the two arrays

1 2 3 4 1 2 3 4 5 6 7 8

L=[10]11]00][10]| and H=[1]1]0]0[1][1]0]0]

defined over n = 4 items (hence four 1s in H), universe size u = 11, word size
b = [log, 117 = 4, number of bits for the least significant part £ = (log %—| =

{log %-‘ = 2, and number of bits for the most significant part h = b — £ = 2.

As we anticipated in Chapter 11, the most interesting property of the Elias—Fano
code is that the array H can be augmented with proper data structures and algorithms
to efficiently support the following two operations:

e Access(i), which, given an index 1 < i < n, returns A[{];
o NextGEQ(x), which, given an integer 0 < x < u, returns the smallest element A[7] > x.

Given these two operations on array A4, it is the easy to compute Select| (B, i) by
means of Access(i), and compute Rank; (B, i) by means of NextGEQ(i+1) — 1, where we
assume that A[n + 1] = oo and that NextGEQ returns the position i of A[i] > x, rather
than its value (to ease the explanation). We are now ready to discuss the implementa-
tion of these two operations using the terminology of Chapter 11 and by deploying an
“augmentation” of H which hinges over a data structure that supports the Select;
primitive on it.

Access(i) needs to concatenate the higher and lower bits of A[7] present in L and H,
respectively. The least significant bits of A[i] are easily retrieved by accessing the i-th
block of £ bits in the binary sequence L. The retrieval of the # most significant bits
of A[i] is a little more complicated, and boils down to determining in H the negative
unary sequence referring to those bits. Since we do not know A[7] but just the input
i, that negative unary sequence is the one that includes the i-th bit set to 1 in H. The
position of that bit (counting from 1) can be retrieved by executing Select; (i, H), and
then subtracting 7, which returns the number of 0s preceding that position. By the
properties of the Elias—Fano code, this number of 0s equals the bucket configuration
that includes that bit 1; so by representing it with % bits, we get the most significant
part of A[i]. The time complexity of this algorithm is therefore the one of the Select
primitive, and thus it is constant according to Theorem 15.2; the additional space
complexity required to support the Select primitive over array H is o(|H|) = o(n) bits,
thus it is sublinear in the number # of bits set to 1 rather than in the size m of array B.

Consider the example presented, and execute Access(3) which should return
A[3]=38. We retrieve the £ = 2 least significant bits of A[3] by accessing the third
pair of bits in L, hence L[3] = 00. The retrieval of the remaining 4 = b — £ = 2 most
significant bits is obtained by first computing Select;(3, /) —3 =5 —3 = 2, and by
then encoding this bucket configuration in 2 = 2 bits, hence 10. By concatenating the
two bit sequences we obtain the correct result: A[3] = 10-00 =(1000); = 8.
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The other operation, NextGEQ(x), is implemented as follows. The algorithmic idea
is to identify the bucket of the integer x, given its 4 most significant bits, and then
determine the answer to NextGEQ(x) by looking at the integers of 4 in that bucket.
More precisely, let v;, be the value of the # most significant bits of x. We search for
the elements of 4 in the bucket of v, by looking at its negative unary sequence in H.
This negative unary sequence extends from the bit in position p = Selecty(v;) + 1
if v, > 0, otherwise it is p = 0; and it terminates in position ¢ = Selecty(v, + 1).
So H[p,q] = 1977710 is that negative unary sequence, and ¢ — p is the number
of integers in A that have the & most significant bits equal to v in value. Now, if the
bit H[p] = 0, then the bucket is empty (i.e. ¢ — p = 0), and thus no integers in
A have the same 4 most significant bits as x. Thus, NextGEQ(x) has to return the first
element of the next non-empty bucket (which surely has its # most significant bits
larger than vy). This element corresponds to the first 1 to the right of H[p]. We do
not need its position: it is sufficient to know its rank i in 4, and then execute Access(i).
The rank i is p — vy, because vy, is the number of bits set to 0 in H[1, p]. Otherwise
the bucket is non-empty, its elements have the same / highest bits as x, and hence the
element answering NextGEQ(x) either corresponds to a bit 1 in H[ p, ¢] or it corresponds
to the first 1 to the right of H[g]. We distinguish between these two situations by
finding the first value returned by Access(i) that is greater than or equal to x, for i =
P — Vh...,q — vy. The elements in a bucket are no more than 2¢ = ©(u/n) (to be
precise, they are no more than min{z, 2¢}), so their scan would take O(min{n, u/n})
time in the worst case. We can speed up this search by performing a binary search
over them in O(min{log n, log(u/n)}) time. The additional space complexity required
to support the Select primitive over array H is o(|H|) = o(n) bits.

Consider again the previous example, and execute NextGEQ(9), which should return
A[4] = 10. Since 9 = 1001, ¢ = 2, and h = 2, we have p = Selecty(10;) + 1 =
Selecty(2) + 1 =4+ 1 = 5 and ¢ = Selecty(2 + 1) = 7. Since H[5] = 1, the bucket
is non-empty, its items in H[5, 6] have the same /4 most significant digits as 10, and
thus we could scan A4 between the positionsi = 5 —2 =3toi =7 —2 = 5 (not
included), thus returning the value 10 because A[3,4] = [8, 10]. As another example,
assume we execute NextGEQ(4) (where 4 = 0100 represented in b = 4 bits). We
compute p = Selectp(01) + 1 = Selectp(1) + 1 = 3 + 1 = 4. Since H[4] = 0, the
corresponding bucket is empty and thus we need to find the first element of the next
non-empty bucket. This is the element of rank i = p — v, =4 — 1 = 3 in 4, namely
A[3] = 8 that we retrieve by executing Access(3).

Theorem 15.3 Given an array A[l,n] of increasing positive integers in the range

. . . m o
[0,m), there exists a compressed index for A taking 2n + n [log, 71 + o(n) bits,
and supporting the retrieval of its elements (i.e. the ACCESS operation) in worst-case
constant time, and the retrieval of the integer greater than or equal to a given one (i.e.
the NextGEQ operation) in O(log(m/n)) worst-case time.

This result can be rephrased as follows over the binary array B, interpreted as the
characteristic binary vector of the array 4 of increasing positive integers.
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Theorem 15.4 Given a binary array B[1,m], with n positions set to 1, there exists a
compressed index for B taking 2n + n [log, =1 + o(n) bits, and supporting Rank (i)
in O(log(m/n)) time and Select| (i) in O(1) time in the worst case.

We may observe that when z increases, the number of extra bits per element, namely
2 + [log %1, decreases and converges to 2 (plus small order terms). Vice versa, when
n decreases, the number of extra bits goes to ®(logm), as for classic pointers. In any
case, the proposed solution is no worse that the pointer-based solution, and it may
turn out to be much better when B is dense. We finally notice that the term n log(m/n)
relates to the information-theoretic lower bound of encoding » items in m positions,
given by |_10g ('Z)-| bits. This latter term can be rewritten as |_10g (’:)-| = n log (em/n)—
O(logn) — ©(n?/m), which is related to the 0-order entropy Ho of a bit string of
length m with n bits set to 1, in fact [log (”')] = m Ho — O(log m) (see section 2.3.1
in [4]). Hence, we can conclude that the proposed approach is close to the optimal
space complexity, except for the additive two bits per element, provided that no further
information about the distribution of the 1s is available and can thus be deployed.

Succinct Representation of Trees

In this section we address the problem of storing a tree in compressed form while still
being able to perform some operations over its structure efficiently in time.

Binary Trees

The classic approach to representing a binary tree consists of storing two pointers per
node (either an internal or a leaf node) so that navigational operations to left or right
children can be implemented in constant time by following the corresponding pointer.
If a child is missing, or we are at a leaf, pointers are set to NULL. This tree represen-
tation takes ®(n logn) bits, where n is the total number of nodes and leaves of the
tree. Additional space is needed to answer more sophisticated queries, such as parent
queries, or subtree size queries. In the former case, we need additional ®(n log n) bits
for storing the pointer to the node’s parent; in the latter case, we still need additional
®(n logn) bits for storing the subtree size.

The question is whether this amount of bits is necessary to support constant-time
navigational operations, or whether it can be improved. It is known that a lower bound
to the storage complexity of a binary tree is 2n bits, because there are asymptotically
22" distinct binary trees on n nodes,? and thus we need that amount of bits to dis-

2 This result comes from the fact that we can explore a binary tree transforming it into a balanced
sequence of opening ( and closed ) parentheses. An open parenthesis is printed when a node is visited,
and a closed parenthesis is printed as soon as that node (and its subtree) has been fully visited in a
pre-order traversal of the tree. Each binary tree of n nodes is now identified by a sequence of n pairs of

12 (,,,1)) SR Ul

parentheses that are correctly matched. Such configurations are C,,_| = ( el >
(=127

called Catalan numbers, that are @(22”) asymptotically.
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INPUT ExpanD LABEL
SERIALIZE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
p=[1[1]t[t]oJt[t]oJt[ofoJi[ofoJo[o0]O]

Figure 15.5 Construction of the binary array B from the binary tree 7', where the added dummy
leaves are represented as gray squares. The input binary tree consists of n = 8 nodes
(including its leaves). The first step creates the expanded binary tree Tof2n+ 1 =17 total
nodes (including dummy leaves), which are then labeled with 0 (dummy leaves) and 1 (original
nodes). The final step consists of serializing the labeled nodes of Tintoa binary array B of 17
bits.

tinguish one tree from another one. In this section we describe a brilliant idea dating
back to 1989 [3], and due to Guy Jacobson, which matches this space lower bound (up
to lower-order terms) by turning constant-time navigational queries over binary trees
into constant-time Rank and Select operations over binary arrays suitably derived from
those binary trees. A win—win situation, indeed.

In describing this transformation we refer the reader to Figure 15.5, which shows
a running example for a binary tree 7 of » = 8 nodes (including leaves). The
transformation generates a binary array B in three main steps:

1. Expand: Complete all nonbinary nodes and leaves in 7" with some special nodes,
called dummy leaves, thus forming the expanded binary tree T,

2. Label with one bit: Label dummy leaves in T with bit 0, and all other nodes of 7
that were present in the original tree T with bit 1;

3. Serialize: Visit 7 per levels, from left to right, and write down in an array B the
binary labels encountered in the visit.

It is easy to show that the expanded binary tree 7T consists of 27+ 1 nodes (including
the dummy leaves), and thus the output binary array B consists of 2n-+1 bits. The proof
may be addressed by induction, and this is left to the reader.
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4@ 153

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
p=[1]1]t]rjofJtrfrfoJtjofJofrfofoJofo[oO]
3 4 5

1 2

6 7 8

Figure 15.6 Example of the two (plain and bold) logical labelings computed over the expanded
tree 7 and the corresponding binary array B. The indexes above B refer to the plain labeling
(i.e. BFS numbering) of T’s nodes, whereas the indexes below B represent the bold labeling
(i.e. BFS numbering) of 7”’s nodes.

As far as the navigational queries are concerned, we label logically (i.e. the labels
are not stored, but used to perform the algorithms) each node of the expanded tree T
with two integers that, for the sake of discussion and illustration, are denoted in bold
and plain. The bold labels are integers from 1 to n, they are attached to the nodes of the
input tree 7, and correspond to a BF'S (breadth-first search) numbering of T. The plain
labels are integers from 1 to 2n + 1, they are attached to the nodes of the expanded
tree 7, and correspond to a BFS numbering of 7. This labeling of T’s nodes naturally
maps onto a labeling of B’s bits that is a logical labeling (shown in Figure 15.6 only
for illustrative purposes), since we don’t actually store those numbers.

We then enrich the binary array B[1, 2n+ 1] with the two data structures that support
Rank; and Select;, and take o(n) bits in addition to the space occupancy of B (according
to Theorem 15.2). The key tool to implement the navigational operations over 7 is a
bijection from bold labels to plain ones, and vice versa, thanks to Select and Rank
operations respectively. More precisely, the plain label j can be derived from the bold
label i of a node in 7 via the computation j = Select; (i); vice versa, the bold label i can
be derived from the plain label j of a node in 7 via the computation i = Rank (). The
former comes from the fact that the 1s are assigned to the nodes of the input tree 7',
included in 7, so that Select; (i) gives the position of that node in B jumping the zeros
due to the added dummy leaves. The reverse, that is, i = Rank;(j), comes from the
complementarity of Rank and Select operations. As an illustrative example, referring
to Figure 15.6, we may check that the node of T at the second level and the farthest
right has plain label j = 7 and bold label i = 6: and in fact the reader can check on
the array B that 7 = Select; (6) and, vice versa, 6 = Rank; (7).
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Now we are ready to implement the three navigational operations mentioned at the
beginning of this section, by noting that in the expanded binary tree T an internal
node with bold number x has left child with plain number 2x and right child with
plain number 2x + 1; this is the same numbering rule of binary heaps, here applied
to the complete binary tree T, as the reader can easily check in Figure 15.6. Another
important observation is that one can check if a node in 7T is an internal (original) node
or a dummy leaf just by checking its corresponding bit B[i] = 1 or 0, respectively,
where i is the plain label of that node. Again referring to Figure 15.6 and the node
with plain label 7 and bold label 6, the left child has plain label 2 - 6 = 12 and right
child has plain label 2 - 6 + 1 = 13; moreover, it is an internal node of T, and its bit
B[7] = 1, its left child is also internal, and in fact its bit B[12] = 1, whereas its right
child is a dummy leaf, and its bit B[13] = 0.

We now have all the algorithmic ingredients to implement the three main naviga-
tional operations over the nodes of the input tree 7', in constant time:

1. LEFT CHILD: Given a node of the input tree 7, represented by its (bold) num-
ber x, we use the formula above and compute first the plain labeling of its left
child, namely 2 - x, and then turn it into its corresponding bold labeling via the
computation left child(x) = Rank;(2x).

2. RIGHT CHILD: Similarly, the bold label for the right child is right child(x) =
Rank;(2x + 1).

3. PARENT: By inverting the reasoning behind the computation of the right and left
children, we have that the bold label of the parent is parent(x) = | Select;(x)/2 .

As we have observed, the algorithm has to check whether B[2x] = O or B[2x+1] =
0, in which cases the retrieved child is NULL. The parent is NULL if the query is
executed over the root of 7', hence the node with bold label 1. We have therefore
proved the following:

Theorem 15.5 A binary tree of n nodes can be represented in 2n + 1 + o(n) bits,
and supports queries for parent, left childand right child, in constant
time.

Note that this succinct representation achieves the same query performance as the
pointer-based representation, but with an improvement of a factor ®(log ») in its space
occupancy. Actually, if we need to move downwards in 7', we only have to build the
data structure for Rank;; in fact Select; is only needed for the parent computation.
Finally, we note that this succinct tree representation can still be enriched with auxil-
iary data attached to the nodes of 7. It is enough to store an array A[1, »] that keeps in
A[7] the auxiliary information associated to the node with bold labeling i in 7. A sim-
ilar argument can be followed to manage auxiliary information attached to the edges
of T, by using the destination node as their indexing handle.

We conclude this section with a running example for the three navigational oper-
ations we have described, executed on the binary tree of Figure 15.6. We start by
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computing the left child of the node with bold label 6 in T: lef t child(6) =
Rank;(2 x 6) = Rank;(12) = 8; but now we discover that this child exists, because
B[12] = 1. Pictorially, the computation is as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
B=[1|1][1]1]of1][1]ofr1]o]oft|ofoofo0]0]

1 2 3 4 5 6 7 8

Let us now compute the right child of the same node: right child(6) = Rank;(2 x
6 4+ 1) = Rank;(13) = 6; but now we discover that this child does not exist, because
B[13] = 0. Pictorially, the computation is as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
p=[1]1J1]1fof1]1]oJ1]Jofo[1]oJoJoJo]o]

1 2 3 4 5 6 7 8

Finally, let us compute the parent of that node: it is parent(6) = | Select;(6)/2] =
L%J = 3; we can conclude that the parent exists because its index is larger than 0.

Pictorially, the computation is as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
p=[1]tfafurjofufuajofrjofoftfofofofofo]

1 2 3 4 5 6 7 8

Arbitrary Trees

We now explore another implementation of trees, which is powerful enough to manage
ordered trees of arbitrary degree and perform a larger set of queries in constant time,
such as parent, first child (from the left), next sibling (on the right), and the node’s
degree. The ordering property is necessary in order for us to refer to the first and next
child. The solution is called LOUDS, which stands for Level Order Unary Degree
Sequence. This approach is based on the intuition that a tree is uniquely determined
by its degree sequence written in BFS order, and works as follows:

1. Expand: Append a “dummy root” of degree 1.

2. Label with node’s degree: Label every tree node with its degree.

3. Serialize: Visit the tree level-wise and from left to right (i.e. BFS order), encode
the sequence of the nodes’ degrees in unary, and store them in a binary array B.

A running example of LOUDS for a tree of degree at most three is provided in Fig-
ure 15.7. This figure allows us to first derive a bound on the space occupancy of this
tree representation (hence array B), and then infer two properties of B upon which
hinge the implementation of the four navigational operations supported by LOUDS.
LOUDS takes 2n + 1 bits to encode the tree’s structure, like the Jacobson’s repre-
sentation of the previous section. The proof follows by a simple counting argument:
the number of bits 0 in B is n, because the unary encoding associates a bit 0 to every
child of a node in the expanded tree (and thus, to all its nodes except the dummy root);
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InpuT Expanp and LABEL
dummy root
3
(]
2 ®0 3
(] [ [ )
®0 1 ®0 2 0
(] e o
®0 ®0 ®0
SERIALIZE
0
5
I I I I I I I I I I I I I
1 213 4 5 617 8 911 12 13 14115016 17118119 20 211221231241 251
1 1 1 1 } 1 } 1 1 1 1 } ]
s=[o]1]ofofo[t[ofo[t]t]ofofoft]t]oft]t]ofoft]r]r]r]r1]
degrees — 1 ‘TB ‘TZ :T()‘TB E[)‘TI E()‘TZ :Tl):T(l:T()il)‘:
I I I I I
nodes — 0 |1 12 134 VS16 708 Lo 10112
children — 1 : 2 3 4 : 5 6 : : 7 8 9 : : 10 : : 1112 : : : : :

Figure 15.7 Example of LOUDS applied to the tree shown at the upper-left corner of the figure.
The result of steps EXPAND and LABEL is shown on the same tree at the upper-right corner of
the picture, where each node reports its degree on the right. The result of the final step
SERIALIZE is shown in the tree, above, which reports the BFS numbering for each node, and,
below, the binary array B, which consists of the sequence of unary representations of the
degrees for each node (see text). For the sake of illustration (and thus not stored), the values
above B represent the array indexes, while below B we show three lists: the first is denoted as
“degrees” and reports the nodes’ degrees encoded in unary in the array B; the second list is
denoted as “nodes” and reports the BFS numbering of the nodes in 7 whose degree is
indicated in the list above; while the third list represents, for each 0 entry in B, the child(ren) of
the corresponding node reported in the list “nodes.”
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the number of bits 1 in B is n + 1, because every node (including the dummy root)
generates a unary encoding that is ended by a 1.

From the BFS numbering of the tree nodes and the BFS-ordered serialization of the
unary encoding of their degrees, it is not difficult to get an intuition of the correctness
of the following two properties relating B’s bits and tree nodes:

Property 1. The node numbered £, according to the BFS visit, corresponds to the
k-th bit 0 in B.

Property 2. The children of the node numbered % correspond to the maximal
sequence of Os following the k-th bit | in B.

Given these two properties, the four navigational operations — parent, left child,
next sibling, degree — can be easily implemented in constant time as follows (refer to
Figure 15.7 for the running examples, and recall that the BFS numbering of a node
equals the position in B of its corresponding bit 0):

DEGREE: Given a node with BFS number x, its degree can be derived as deg(x) =
Select; (x4 1) — (Select; (x) 4 1) (here we use Property 2). As an example, deg(4) =
Select; (5) — (Select;(4) + 1) = 14 — (10 + 1) = 3, since

2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 2 23 24 25

= [0 oo o i o o T Ao o el o[ oo 1 [i[i[i[1]

PARENT: Given a node with BFS number x, the BFS numbering of its parent can
be derived as parent(x) = Rank;(Selecty(x)) = Selecty(x) — x (here we use first
Property 1 and then Property 2). As an example, parent(5) = Selecty(5) — 5 =
7 —5 =2, since

3 4 5 7 8 10 11 12 13 14 24 25

= [0 To o oo Tolo[o i [0 [ifolo[ i [i]i[i[1]

1

FIRST CHILD: From the computation of deg(x) we know that the degree of a node
with BFS number x is located between the positions Select; (x)+1 and Select; (x+1).
So if deg(x) = 0, we return NULL; otherwise, we jump to the first 0 of that unary-
degree sequence, which is located at position Select;(x) + 1 in B, and then return
the BFS numbering of its corresponding node by executing Rank; (here we use
Property 2). Note that Ranko(Select;(x) + 1) = Select;(x) + 1 — x. Thus we have
proved the following:

NULL if deg(x) =0

first child(x) = .
- Select;(x) + 1 —x otherwise

Here we consider two examples, for the two possible cases. As for
first child(9), since deg(9) = Select;(9+1)—Select; (9)—1 =22-21—-1=
0, the answer is NULL:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

B=[o]t]ofoJofrJofoft]rfofofoftfufofufrfofofafafuifr[r]



https://doi.org/10.1017/9781009128933.016
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009128933.016
https://www.cambridge.org/core

15.3 Succinct Representation of Graphs 291

As for first child(8), since deg(8) = Select;(8 + 1) — Select;(8) — 1 =
21—18—1 = 2, the first child of the node whose BFS numbering is 8 does exist, and
its BFS numbering can be computed by first child(8) = Select;(8)+1—8 =
18+1—-8=11:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

p= o oo i o o T i o o o 1 [ilo i fafo ol i 1 i]1]

25

NEXT SIBLING: Let us consider a node with BFS numbering x, and compute y =
Selecty(x) as its corresponding null bit in B (according to Property 1). Hence its
sibling gets the next BFS number, that is, x 4 1, if the next bit B[y 4+ 1] is 0,

otherwise the requested sibling does not exist. Formally,
o x+1 ifB[Select_0x)+1]=0
next sibling(x) = .
- NULL otherwise

We consider again two examples, for the two possible cases. For
next sibling(12), we first compute y = Selecty(12) = 20, and since B[y+1] =
B[21] = 1, the answer is NULL because the sibling does not exist:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

B= [OTTTO o0 01T [o 1[I0 o o T T[0T 1001 [1][I]T]

For next sibling(l1l), we first compute y = Selecty(11) = 19, and since
B[19 + 1] = B[20] = 0 the requested sibling has BFS numbering 11 + 1 = 12:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

B= [0 1[ofo o[t ool [t o oot [1[ o1 oo [1[i[I1][1]

15.3 Succinct Representation of Graphs

We have eventually arrived at the final topic of this book, which is probably one of
the most challenging of all topics investigated in current years, because of the advent
of graph databases, social networks, and knowledge graphs. We are being flooded
with data and most of the time they are related, which can be fruitfully modeled via a
graph data structure. In this section, we aim to design succinct graph representations
that efficiently support some graph traversals directly over them. The case of satellite
information associated to graph nodes or edges, so-called labeled graphs, can be dealt
with by adopting additional data structures, as was the case for labeled trees discussed
in the previous section.

We will consider three orthogonal approaches to the succinct representation of
graphs: one leverages the power of the Elias—Fano code in the compressed indexing of
increasing integer sequences, such as the ones describing the adjacency lists of nodes;
another exploits the specialities of Web graphs to derive highly compressible binary
sequences; and the third adopts a sophisticated compressed indexing approach based
on k*-trees and a regular decomposition of the adjacency (binary) matrix in (binary)
submatrices.

Let us start by introducing some useful notation and terminology. The input graph
is denoted by G = (V, E), where V is a set of n graph nodes and £ is a set of m graph
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Node Outdegree Adjacency lists

15 9 13,15, 16, 17, 18, 19, 23, 24, 203

16 10 15,16, 17, 22,23, 24,316, 317, 3041
17 0

18 5 13,15, 16, 17, 50

Figure 15.8 Naive representation of graphs by adjacency lists.

edges. For the sake of presentation, we assume that nodes are identified by means
of positive integers from 1 to n, and we overload the symbol E to denote also the
adjacency matrix of the graph, so that E[u,v] = 1 if and only if (#,v) is an edge of
G. For a given node u € V, the nodes v connected to u by means of a graph edge (i.e.
Elu,v] = 1) are called adjacent nodes of u, and if we sort them in increasing order by
their integer label, we get the adjacency list of u. The classic and naive representation
of G consists of encoding nodes in adjacency lists with ®(log n) bits each, thus taking
overall ®(m log n) bits for storing the entire graph.

An illustrative example of a graph representation via its adjacency lists is provided
in Figure 15.8. It is pretty much obvious from the picture how to deploy the Elias—
Fano code to compress and efficiently access the adjacency lists of G, because of their
increasing order, as discussed in Chapter 11. This is surely a well-justified approach
to apply whenever no special properties can be proved over the distribution of the
integers (i.e. node IDs) in the adjacency lists. In this case, the space occupancy could
be evaluated as O(m (2 + log %)) bits, by observing that we have m bits set to 1 over
n? possible entries of E.

The next two subsections investigate the case of some special graphs, in which
specially designed approaches to their succinct representation can be exploited to
get further space savings with respect to the Elias—Fano encoding described in the
previous paragraph.

The Case of Web Graphs

A Web graph is a directed graph in which nodes are Web pages and edges are the
hyperlinks between them. Web pages are identified by means of their URLs, which can
be turned into integers (and thus, nodelDs) by taking their ranking in the alphabetical
order of their reversed URLs, namely URLSs in which the host has been reversed.’

As shown in [1], Web graphs satisfy two interesting properties, locality and simi-
larity: the first means that most outgoing links from a page point to pages in the same

3 This means that the URL string www.corriere.it/esteri/page.html is reversed as
it.corriere. www/esteri/page.html, and then alphabetically ordered. This order tends to cluster URLs
coming from the same host.
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host; the second means that two pages coming from the same host share many outgo-
ing links. Interpreting these two properties in terms of nodelDs, we can deduce that,
by locality, a node u often points to nodes v such that |u —v| is small, and furthermore,
that the difference between nodes in the same adjacency list is often small, because
they may come from the same host; and, by similarity, we can deduce that u’s and v’s
adjacency lists share many elements provided that |z — v| is small.

The locality property therefore suggests that adjacency lists of nodes from the same
host occur close to each other in the reversed-URL ordering, and they show the pres-
ence of clustered integers, possibly forming contiguous increasing runs. We know
from Chapter 11 that the Elias—Fano code does not best exploit this type of integers
distribution rather, the simpler y- or §-codes do, and even better in terms of space
occupancy is the interpolative code, which, however, does not support the efficient
access to the individual elements of those compressed lists. Therefore, unless graph
backups are mandatory, the y- and §-codes are a good choice given their interest-
ing storage-versus-access trade-off. And, indeed, they may be used in the following
algorithm as an escape compression strategy, whenever no special property about an
increasing sequence of nodeIDs can be proved.

If we also take into account the similarity property, then a more effective storage
of Web graphs is possible [1]. The key idea is to represent the adjacency list L[x] of
a node x as the “modified” version of some previous, but close, list L[y], called the
reference list. The difference x —y = r > 0 is called the reference number. We use
r = 0 to mean that L[x] is encoded as is, without applying the reference compression
with respect to any previous L[y]: here, we may just use an integer coder (such as y - or
8-codes) over the differences between consecutive nodelDs. The choice of r is critical,
and occurs within a window of size W. The larger W is, the better the compression
ratio, but the slower and more memory-consuming the compression phase turns out to
be. In fact, the value of /¥ impacts on the number of reference lists examined to find
the one that compresses L[x] best. Of course, the list L[y] can in turn be compressed as
the “modified” version of some previous list L[z], withz < yand y—z < W, and so on,
thus creating reference chains whose length might be arbitrarily long. This impacts on
the decompression efficiency of this compressed storage approach. In order to trade
space occupancy with decompression efficiency, the authors of [1] have introduced
another parameter, denoted by R and called maximum reference count, that limits the
set of reference lists to the ones in the window #¥ that do not produce reference chains
longer than R. A small value for R is likely to produce worse compression, but shorter
(random) access times.*

4 Fora principled management of reference lists and chains, offering good compression ratios together
with fast and flexible access to compressed adjacency lists (without incurring complete decompression
of the entire graph), we refer the reader to Zuckerli [6]. Zuckerli is a scalable compression system meant
for large real-world graphs, experimented over billions of nodes and edges. Compared to WebGraph,
Zuckerli leverages advanced compression techniques and novel heuristic graph algorithms that can
achieve up to 30 percent space reduction with a resource usage for decompression comparable to that of
WebGraph.
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Node Outd Ref Copy list Extra nodes

15 9 0 13,15, 16, 17, 18, 19, 23, 24, 203

16 10 1 011100110 22,316,317, 3041
17 0 -

18 5 3 111100000 50

Figure 159 Representation of adjacency lists in Figure 15.8 by means of copy lists. Node 15 is
not subject to reference compression (in fact, its “Ref” field is 0), whereas nodes 16 and 18
have their adjacency lists compressed with respect to the reference list L[15].

Now, in order to differentially compress L[x] in terms of its reference list L[y], we
build a binary sequence B[x] of |L[y]| bits, each one indicating whether the corre-
sponding element of L[] is or is not also an element of L[x]: in the former case that
bit is set to 1, in the latter case it is set to 0. Bit sequence B[x] is called the copy list of
L[y]. From the similarity property and the fact that r is small, we expect that L[x]NL[y]
is large, so many items of L[x] are represented via just one bit (set to 1) in B[x]; more-
over, we expect that L[x]\ L[y] is small and thus its nodes, called the extra nodes, are
stored explicitly or compressed via some integer coder (such as y - or §-codes) applied
over the differences between consecutive nodelDs. In order to reconstruct the original
adjacency list L[x], a merge operation is performed between the list of extra nodes and
the referred adjacency list L[y] limited to the elements set to 1 in B[x]. An example of
differential compression is shown in Figure 15.9.

An attentive reader may have noticed that the copy lists are an alternating sequence
of maximal runs composed either of 1s or of 0s. Hence, they can be encoded via the
following scheme: first, we store the initial bit of the copy list, and then we encode
with a suitable integer compressor the length £ of each run. The type of run (whether
it is a run of 1s or Os) has not to be stored because runs are alternating and we know
the type of the first one, since its bit value is stored in the front of the compressed bit
sequence. The resulting binary sequence is called a copy block. An additional space
saving is obtained by dropping the encoding of the length of the last run from the
copy blocks, because it can be easily derived from the other available information (e.g.
|L[¥]]) stored in Outd, and the length of the other runs available in copy blocks; see
Figure 15.9 and the seminal paper [1] for other succinctly encoding tricks.

As illustrated in Figure 15.10, the adjacency list L[18] has a copy list which starts
with a run of 1s (because of the content of the field “First bit”) of length 4 (because
the first encoded integer is 4), and with a second run of Os having length |L[15]| —4 =
9 —4 = 5, which is correct, as the reader can verify by looking at the copy list of L[18]
in Figure 15.9. For completeness, we look at the adjacency list L[16]: its copy blocks
are 5, the first one is a run of Os (because of the content of the field “First bit”), and
the last one not stored is a 0-run again (because of the alternation of the 4 4 1 runs)
having length [L[15]| -8 =9 —8 = 1.
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Node Outd Ref Firstbit Copy blocks Extra nodes

15 9 13,15, 16, 17, 18, 19, 23, 24, 203

0 - -
16 0 1 0 1,3,2,2 22,316,317, 3041
17 0o - - - -
18 5 03 1 4 50

Figure 15.10 Representation of adjacency lists by means of copy blocks. For the sake of
illustration, we use commas to separate the lengths of the maximal runs of s or Os.

Experiments have shown that the extra nodes often form increasing sequences of
consecutive integers, called intervals. Two types of compression can be applied to
squeeze them: if an interval is longer than some predefined threshold, it is encoded
via its left extreme and its length, properly encoded in a succinct way; otherwise, its
integers can be encoded by taking into account the preceding intervals or nodelDs
in order to squeeze the used bits. Details about these special encoding steps can be
found in the original publication [1], where it is also shown that Web graphs can be
compressed by up to three bits per edge.

The Case of Generic Graphs

The final compression scheme for graphs that we consider exploits the sparsity of
their adjacency matrices and a form of clustering of their 1-entries, which typically
occur in generic graphs, in order to obtain a compressed and efficiently navigable
representation [2, 4]. The proposed scheme hinges upon a k?-ary tree (aka k>-tree)
built upon the adjacency matrix £ of the input graph, as follows.

For the sake of presentation, let us assume that the graph consists of n nodes and m
edges, so its adjacency matrix E has size n x n of which only m entries are set to 1.
We assume that n = k", otherwise we pad the matrix in its bottom and right part, in
order to make it have the width of the smallest power of & bigger than n. The size of £
is then such that it consists of n2 = k" binary entries.

The original matrix E is logically assigned to the root of the k*-tree. Then we split
E in exactly k? square submatrices £ 1.1, - -» Exk, and each one is logically assigned
to a child of the root, which therefore has k% children. These children are labeled
with 1 if the corresponding submatrix contains at least one bit set to 1, otherwise they
are labeled with 0. The nodes labeled with 0 are the leaves of the k%-tree, whereas the
nodes labeled with 1 are decomposed recursively in & further submatrices, which will
constitute the children of the decomposed nodes. This decomposition process stops as
soon as it reaches a submatrix size equal to 1. See Figure 15.11 for a running example.

Given this decomposition strategy, the k>-tree has height # = @(log, 1), and con-
sists of at most n? leaves. The k*-tree is fully balanced and complete if £ is full of 1s;
conversely, the sparser and the more clustered the 1s in £ are, the smaller the k2-tree,
which, regardless, contains as many paths of length % as Is in E, which are m. Thus
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Figure 15.11 Example of k2-tree over a 4 x 4 adjacency matrix, here £ = 2. The tree has height
2, and its leaves are represented by squares whereas its internal nodes are represented by dots.
Internal nodes are labeled with 1, whereas leaves are labeled with 0 if they represent null
submatrices, or with 1 if they correspond to a submatrix of a singleton bit set to 1.

the total number of nodes is upper-bounded by mhk?, because any node on such paths
has k2 children.® It goes without saying that the larger & is, the shallower the tree is,
but the larger its branching factor is. This trade-off impacts on the space occupancy
and the performance of the navigational operations over the k-tree, and it is driven by
the composition of E.

It is easy to check the existence of a graph edge (i, v) by navigating the k>-tree: start
from the root and go to the child £;; such thati = [(u k)/n] andj = [(v k)/n]; then set
the new v and vas 1+((«#—1) mod (n/k)) and 14+((v—1) mod (n/k)), respectively, and
repeat that computation recursively (with the new n being n/k) relative to the currently
visited node until a leaf is reached; its label will provide the answer to the existence of
the queried edge. The time complexity is therefore O(#) in the worst case.

Retrieving a row or a column of the compressed matrix is a little more compli-
cated, but it allows us to navigate the graph via its forward and backward edges. This
is a feature not supported by the graph representations described in the previous sec-
tions, unless one represented with them both the adjacency matrix and its transpose,
thus duplicating the space occupancy. The intuition behind a row retrieval (column
retrieval is similar) by means of a k%-tree extends the one behind the retrieval of a sin-
gle matrix entry, with the additional trick that a row can span several nodes at different
levels, so many paths have to be traversed, with the consequence that the retrieved row
has to recombine the answers coming from all those paths (i.e. all reached leaves).
Figure 15.12 shows the case of retrieving the row 15 from the adjacency matrix of
a graph with n = 16 nodes and having set £ = 2. Null submatrices are delimited
by bold segments, and we visualize the part of the adjacency matrix that is explored
by the algorithm. Note that the first half of the queried row is available in the child
E> 1 because it is fully null; to retrieve the other entries we have to traverse paths at
different depths, and thus referring to submatrices of different sizes. In the figure, the
parameter p; denotes the row queried at every recursive level, starting with pg = 15.

5 Actually, a better upper bound on the number of nodes can be derived by observing that, at the top of the
k3-tree, many nodes are shared by the m paths mentioned in the text. The upper bound can thus be

2
refined as mk?(log;> 2= + O(1)) bits.
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Po
0[0 0

0]0[0[0[0[0[0
0[0]0[0[0]0[0[0
0[0]0]0[0[0[0[0 1
0]0[0[0[0[0[0]OT0]0]0]0 0
0]0[0[0[0]0[0]0]0]010]0 0}1)2

R — [0]0[0]0]0[0]0]O[O[O]T]T]0[0]0[0
0[0[0[0[0T0[0[0l0[0[0[o[0[0[0]0

Figure 15.12 An example where n = 16 and k = 2. In this case py = 15, p1 =7, p = 3,

p3 = 1, pg = 1. Counting the children in BFS order, as {1, 2, 3, 4}, we note that: at the first
level we visit two children (submatrices) of the root, that is, third and fourth, the former being
fully null; at the second level we visit two children of the latter fourth child, that is, third and
fourth, the latter being fully null; at the third level we visit again two children of the former,
that is, third and fourth, the former being fully null; and then we finally visit two children of
the latter, which turns out to be labeled 1.

The nice idea behind the use of k2-trees is that they may be efficiently stored using a
variant of the LOUDS representation (see Section 15.2.2) that makes use of two arrays:
T is a bit array that stores the labels of all internal nodes of the k*-tree serialized in BFS
order, and L is another bit array that stores the labels of the lowest level in rightward
order. Finally, Rank; and Select; data structures are built over 7', in order to support an
efficient tree navigation. The array L is not indexed because leaves have no children,
and thus the navigation surely stops at them.

In the running example of Figure 15.11, the arrays 7 and L are the following ones:

1 2 3 4 1 2 3 4 5 6 7 8

r=[1]oJo]1] and z=[t]1]OJU]t]1]1]O]
We observe that, given an entry 7[i] = 1 corresponding to an internal node of the
k?-tree, the position (according to the BFS numbering) of its j-th child (as internal
node) is Rank; (7, i) x k% + j, because we need to take into account all the k> children
of nodes to the left (according to the BFS numbering) of 7°[i] and then add the queried
child-offset. As for the asymptotic time and space performance of the k*-tree-based
solution, we note that the worst-case time complexity of retrieving a row (full of 1s)
of the adjacency matrix is O(n), since Rank; takes constant time and, at level £, in the
pathological case, we may need to explore all k* submatrices covering that queried
row, until we reach the last level, where we visit the submatrices of size 1 x 1 set
to 1. On average, the time complexity may be proved to be O(y/m) [2]. This means
that the sparser the matrix (hence, the graph) is, the faster the decoding of one row
is, and thus the retrieval of the adjacency list of a node of the indexed graph is also
faster. Moreover, since the total k*-tree size has been estimated to be upper-bounded
by mhk*> = mk? log, n, this is the number of bits (up to lower-order terms) taken
by the succinct solution with the use of Rank and Select data structures built over the

binary arrays 7" and L. More details can be found in the literature, such as [2, 4].
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Conclusion

In the end we retain from our studies only
that which we practically apply.
Attributed to Johann Wolfgang Von Goethe

Arriving at the end of this book, you might ask, “What’s next ?”” And indeed, although
the previous fiftheen chapters have just scratched the surface of algorithmics, I hope
they have increased your interest in this field and had positive impact on your academic
or professional approach to problem solving. Moreover, I hope that after reading these
pages you agree with the phrase at the beginning of this book: “Programming is still
an art, but you need good tools to express it at the highest level of beauty.”

That said, let me dig into the question of the “next” algorithmic tools and computing
infrastructures that algorithm engineers will need to study, design, and practice with
in the coming years.

In this book we have commented at length on the evolution of computer memo-
ries, and their increased complexity, type, and number. These features have driven us
to introduce the simplified two-level memory model that allowed us to analyze the
performance of the proposed algorithmic solutions with simplicity and obtain a much
better approximation than the classical RAM model. However, the algorithms opti-
mized over this model of computation will probably become less effective in the years
to come, because of the evolution of ICT infrastructures and the demanding chal-
lenges posed by new data-intensive workloads. In fact, data is the core resource in our
present digital economy era, and companies will be able to successfully deal with
digital transformation if they can develop customer-centric and data-driven digital
services that increasingly offer real-time responses by means of a digital infrastruc-
ture platform centered on big data. Add to this complex industrial scenario the eager
requests of researchers, engineers, and analysts to digitalize larger and larger amounts
of data and have available more and more computing power that should accelerate
their “time to results” in several processing-power- and data-demanding applications,
such as autonomous driving, biological and medical sciences, energy, economics
and financials, and advanced scientific and engineering research, just to mention a
few.

It goes without saying that storage devices will continue to play a critical role in
driving these innovations, because are a key component of HPC (high-performance
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computing) infrastructures. In particular, physically distributed, globally shared mem-
ory will become more and more important to cope with those data-intensive work-
loads, especially the ones that elicit nonpatterned memory access, such as graph
analytics. Moreover, as the next-generation cloud architectures become ubiquitous,
applications will need more and more capability to move computing workflows
through multiple containers, each provided dynamically with appropriate hardware
and software resources, possibly enriched with some embedded intelligence. But,
although recent years have seen impressive progress in the rollout of advanced com-
puting and storage infrastructures, and more will surely come in the near future, we are
perfectly aware that those hardware solutions will not be enough to ensure that storage
and computing resources will be available where and when they will be needed.

As a result, the design of algorithms and data structures will play an even more
crucial role than before, because they may guarantee advancements that go far beyond
Moore’s law.! But these “advancements” will be possible only if algorithm engineers
will enrich their “algorithmic toolbox” with knowledge and competence that can build
upon the topics discussed in the previous pages by adding, first and foremost, meth-
ods and techniques from the fields of artificial intelligence (Al) and machine learning
(ML), optimization, and cryptography. This should be driven by the same spirit that
moved designers and engineers in the recent past toward the introduction in their
algorithmic solutions of database concepts (generating I/O-efficient data structures),
bioinformatics challenges (generating genome search engines), and, more recently,
information theory (which drove the design of the compressed indexes of Chapter 15).
And indeed, it is not surprising that in the recent years we have witnessed an upsurge
in interest in data structures and algorithms building upon AI/ML tools (the learned
indexes, or algorithms with predictions) to exploit data distribution or GPU/TPU
hardware to improve their performance, or to optimize computational resources with
respect to multiple criteria (hence, not just time and/or space taken individually), or,
finally, to deal with cloud computing and storage by offering robustness against mali-
cious leaking (by internal or external parties) of various types of information using
increasingly sophisticated cryptographic techniques. In the latter scenario, the key
issue is to support secure and efficient searches and mining operations over sensi-
tive data, such as genomic and medical data, which have been encrypted and indexed
in a way that there can not be leak of query access patterns, their responses, and, of
course, the underlying indexed data. In order to perform private and secure real-time
computations, researchers and professionals are investigating how to combine cryp-
tographic and data-structure methodologies in novel and efficient ways that aim at
achieving guarantees of privacy and security, not only in theory but also with practi-
cally efficient performance. Last, but not least, AI/ML and multi-criteria optimization
will also play a crucial role in the data compression field, where the goal is to increase
the performance of HPC infrastructures by automatically, dynamically, and efficiently
determining the best compression approaches that satisfy the computational-resource

I Moore’s law (1965) predicted that the number of transistors in a microchip would double about every 18
months: see https://en.wikipedia.org/wiki/Moore%27s_law.
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constraints imposed by modern customer-centric applications. This will require the
design of novel encoding schemes which exploit not only the (classic) repetitions in the
input data, but also some novel forms of regularities that are not captured by current
compressors, and that can be identified by properly designed and trained ML models.
These new encoding schemes will also be required to compress structured data, such
as matrices and labeled graphs (namely the ones generated by AI/ML applications,
knowledge graphs, and graph databases), in a way that will eventually allow them to
support arithmetic/query operations directly on their compressed versions.

No doubt, the coming years will be full of striking challenges for algorithm
designers and engineers.
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ternary search tree, 93
trie, (un)compacted, 138
two-level indexing, 133, 141, 146
string substring search, 153
algorithmic reduction, 154
longest common prefix (LCP), 158
suffix, 153
suffix array, 154
suffix tree, 175
string, variable-length key, 82, 153

Index

subarray sum, maximal, 10
suffix array, 154, 176, 254
suffix tree, 172, 190

technique

Burrows—Wheeler transform, 252

coin tossing, 40, 41

compressed graph encoding, 291

compression booster, 267
disk striping, 67

306
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four Russians trick, 188
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Move-to-Front Transform, 259
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pointer jumping, 33

prediction by partial matching (PPM), 235
Run Length Encoding transform, 263

Snow Plow, 48
three-way partitioning, 59
tree encoding, succinct, 284
tree packing on disk, 146
ternary search tree, 93
text mining, 191
tree
canonical, Huffman, 217
disk packing, 146, 149
Huffman, 212
K2 -ary tree, 295
succinct representation, 284
suffix tree, 172
ternary search tree, 93
trie, 84, 138, 245
compacted, 141
disk packing, 146
Huffman, 212
Patricia trie, 142
String B-tree, 146
uncompacted, 139, 245

unary integer code, 196
variable-byte integer code, 200

Webgraph compressor, 292
Wheeler, David, 252

Ziv, Jacob, 189, 240
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