Lecture Notes Series on Computing - Vol. 16

M. H. Alsuwaiyel

=
ﬂﬁé\f\
=

iy /“S‘\\‘"\, N X

87 e

" Sseaj

AR R

&‘!Xﬁ%ﬁs"'o b
=Pl

. w:p;@: ‘] \Q x
“‘4@&@"‘“\“ A4\

. » O \A*m?@‘é b 'ii“? W
) A%, A O AT \ o

)
O\)
o e g iy

O
7) 3)

84,0 . 0 © 0 < “\Vq&“ !" .\v\i&.‘ﬂ" \
= . @0 e 0. \&K‘,AV‘,@‘“\?&'%}Q\‘Q\ . NS

@ @ St .9 0 N\ \:‘s‘.\&\‘\" AN N
€ o O WA L RLR ! T

= 1 Al k ¢ N :
<00 NG .\\\‘..&l. Ol KOR \ XS
. .. = © NN OO S
i ow MR e
S 3 (1) @ . . o LY 1 K > V_»\:“ 7K
@ v P ;0% \?%9&3“3,2&?@'@{\—{%5?&&
MENTRRT O n g o4 ‘;.3, 1 OOWNE '.\‘]., ‘t‘

\.‘
Y 1 % “'..

\ : “'0 L, NS
0 g © '%@. T

A \ AL A NN R oBE) Bo L e
World Scientific
v @ MO NN e BN # o @ ...t ® - -
: o @ @‘0"1«‘;:'.@@‘_' _ 0 : .;%}.
i 077 QAR O e (1}

Lecture Notes Series on Computing - Vol. 16

Parallel
Algorithms

LECTURE NOTES SERIES ON COMPUTING
Editor-in-Chief: D T Lee (Academia Sinica, Taiwan)

Published

Vol. 16: Parallel Algorithms
M H Alsuwaiyel

Vol. 15: Algorithms: Design Techniques and Analysis (Second Edition)
M H Alsuwaiyel

Vol. 14: Algorithms: Design Techniques and Analysis (Revised Edition)
M H Alsuwaiyel

Vol. 13: Computational Aspects of Algebraic Curves
Ed. T Shaska

Vol. 12: Planar Graph Drawing
T Nishizeki & S Rahman

Vol. 11: Geometric Computation
Eds. F Chen & D Wang

Vol. 10: Computer Mathematics
Proceedings of the Sixth Asian Symposium (ASCM 2003)
Eds. Z Li & W Sit

Vol. 9: Computer Mathematics
Proceedings of the Fifth Asian Symposium (ASCM 2001)
Eds. K Yokoyama & K Shirayanagi

Vol. &: Computer Mathematics
Proceedings of the Fourth Asian Symposium (ASCM 2000)
Eds. X-S Gao & D Wang

Vol. 7: Algorithms: Design Techniques and Analysis
Ed. M H Alsuwaiyel

Vol. 6: VLSI Physical Design Automation: Theory and Practice
S M Sait & H Youssef

Vol. 5: Proceedings of the Conference on
Parallel Symbolic Computation — PASCO 94
Ed. H Hong

Vol. 4: Computing in Euclidean Geometry (Second Edition)
Eds. D-Z Du & F Hwang

Vol. 3: String Searching Algorithms
G A Stephen

Vol. 2: Algorithmic Aspects of VLSI Layout
Eds. D T Lee & M Sarrafzadeh

Vol. 1: Computing in Euclidean Geometry
Eds. D-Z Du & F Hwang

Lecture Notes Series on Computing - Vol. 16

Parallel
Algorithms

M. H. Alsuwaiyel

King Fahd Universily of Petroleum & Minerals (KFUPM), Saudi Arabia

\\:e World Scientific

NEW JERSEY « LONDON < SINGAPORE < BEIJING « SHANGHAI « HONG KONG « TAIPEl « CHENNAI « TOKYO

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Publication Data
Names: Alsuwaiyel, M. H., author.
Title: Parallel algorithms / M. H. Alsuwaiyel, King Fahd University of
Petroleum & Minerals (KFUPM), Saudi Arabia.
Description: [Hackensack] New Jersey : World Scientific, [2022] |
Series: Lecture notes series on computing, 1793-1223 ; vol. 16 |
Includes bibliographical references and index.
Identifiers: LCCN 2022008953 | ISBN 9789811252976 (hardcover) |
ISBN 9789811252983 (ebook for institutions) | ISBN 9789811252990 (ebook for individuals)
Subjects: LCSH: Parallel algorithms. | Parallel processing (Electronic computers)
Classification: LCC QA76.642 .A47 2022 | DDC 005.2/75--dc23/eng/20220429
LC record available at https://Iccn.loc.gov/2022008953

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Copyright © 2022 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy
is not required from the publisher.

For any available supplementary material, please visit
https://www.worldscientific.com/worldscibooks/10.1142/12744#t=suppl
Desk Editors: Balasubramanian Shanmugam/Amanda Yun

Typeset by Stallion Press
Email: enquiries@stallionpress.com

Printed in Singapore

https://lccn.loc.gov/2022008953
https://www.worldscientific.com/worldscibooks/10.1142/12744#t=suppl

To my wife Noura and my daughter Sara

This page intentionally left blank

Preface

In the last few decades, there has been an explosion of interest in the field
of parallel computation. From the computer scientist’s point of view, this
has provided a challenging range of problems with new ground rules for the
design and analysis of parallel algorithms.

This text is meant to be an introduction to the field of parallel algo-
rithms and to techniques for efficient parallelization. The emphasis is upon
designing algorithms within the timeless and abstract context of a high-
level programming language, rather than depending upon highly detailed
machine architectures.

Although the main theme of the book is algorithm design using different
models of computation, it also emphasizes the other major component in
algorithmic design: the analysis of parallel algorithms. It covers the analysis
of most of the algorithms presented in detail. The focus of the presentation
is on practical applications of algorithm design using different models of
parallel computation. Each model is illustrated by providing an adequate
number of algorithms to solve some problems that quite often arise in many
applications in science and engineering.

The style of presentation of algorithms is straightforward, and uses
pseudocode that is similar to the syntax of structured programming
languages, e.g., if-then-else, for and while constructs. The pseudocode is
sometimes intermixed with English whenever necessary. Describing a por-
tion of an algorithm in English is indeed instructive; it conveys the idea
with minimum effort on the part of the reader. However, sometimes it is
both easier and more formal to use a pseudocode statement.

vii

viii Parallel Algorithms

The book is largely self-contained, presuming no special knowledge of
parallel computers or particular mathematics. However, the reader familiar
with elementary ideas from the areas of discrete mathematics, data struc-
tures and sequential algorithms will be at an advantage. Most chapters
include examples and illustrations. In addition, the solutions to all exer-
cises are included at the end of each chapter.

The book is intended as a text in the field of the design and analysis
of parallel algorithms. It includes adequate material for a course in parallel
algorithms in the undergraduate or graduate levels.

The author would like to thank those who have critically offered sugges-
tions, including the students of the parallel algorithms course at KFUPM.
Special thanks go to Wasfi Al-Khatib and Sultan Almuhammadi for their
valuable discussions and comments.

M. H. Alsuwaiyel
Khobar, Saudi Arabia

About the Author

Muhammad Hamad (M. H.) Alsuwaiyel is a retired Professor of the
Information and Computer Science Department at King Fahd University
of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia. He was a
member of KFUPM’s faculty from 1991 to 2014. Dr Alsuwaiyel taught both
undergraduate and graduate courses on design and analysis of algorithms,
computer networks, discrete structures, theory of computing, automata and
formal languages, foundations of computer science, mathematical logic,
design and theory of algorithms, combinatorial algorithms optimization,
parallel algorithms, theory of automata and formal languages, computa-
tional complexity, and computational geometry. He has publications in the
design and analysis of algorithms. He holds a B.S. in Systems Engineering
from KFUPM, an M.S. in Computer Science from University of Colorado
at Boulder, USA and a Ph.D. in Computer Science from Northwestern
University, Illinois, USA. M. H. Alsuwaiyel is the author of Algorithms:
Design Techniques and Analysis.

ix

This page intentionally left blank

Preface

Contents

About the Author

1. Introduction

1.1
1.2
1.3
14

Classifications of Parallel Architectures
Shared-Memory Computers
Interconnection-Network Computers
Two Simple Examples

2. Shared-memory Computers (PRAM)

2.1
2.2
2.3
2.4

2.5

2.6
2.7
2.8

Introductiono
The Balanced Tree Method
Brent Theorem
Sorting in ©(1) Time on the CRCW PRAM Model
2.4.1 Implementation on the CREW PRAM model . . .
2.4.2 Implementation on the EREW PRAM model . . .
Parallel Prefix
2.5.1 Array packing
2.5.2 Parallel quicksort
Parallel Search
Pointer Jumping oo oL
Euler Tour
2.8.1 Directingatree.,
2.8.2 Computing vertex levels in a tree

xi

vii

ix

00 N OtWwN =

— s =
W N = O

xii

3.

Parallel Algorithms

2.9 Merging by Ranking 27
2.9.1 Computing rankso 27
2.92 Mergingo 30
2.9.3 Parallel bottom-up merge sorting 31
2.10 The Zero-one Principle 32
2.11 Odd-Even Merging 33
2.12 Bitonic Merging and Sorting 35
2.12.1 Bitonicsorting oL 40
2.13 Pipelined Mergesort oo 43
2.13.1 The algorithm 44
2.13.2 Computing and maintaining ranks 46
2.13.3 Analysis of the algorithm 49
2.14 Selection 50
2.15 Multiselection 52
2.16 Matrix Multiplication 56
2.17 Transitive Closure 58
2.18 Shortest Pathso 0oL 58
2.19 Minimum Spanning Trees 59
2.20 Computing the Convex Hull of a Set of Points 63
2.21 Bibliographic Notes 68
2.22 EXercises 69
2.23 Solutions 7
The Hypercube 95
3.1 Imtroduction L 95
3.2 TheButterfly 000 96
3.3 Embeddings of the Hypercube 99
331 Graycodes 100

3.3.2 Embedding of a linear array into the
hypercube oo 101
3.3.3 Embedding of a mesh into the hypercube 102

3.3.4 Embedding of a binary tree into the
hypercubeo oo 103
3.4 Broadcasting in the Hypercube 104
3.5 Semigroup Operations 105
3.6 Permutation Routing on the Hypercube 105
3.6.1 The greedy algorithm 106

3.6.2 The randomized algorithm 107

Contents xiii

3.7 Permutation Routing on the Butterfly 110
3.8 Computing Parallel Prefix on the Hypercube 112
3.9 Hyperquicksort o oo 113
3.10 Sample Sort 115
3.11 Selection on the Hypercube 118
3.12 Multiselection on the Hypercube 119
3.13 Load Balancing on the Hypercube 122
3.14 Computing Parallel Prefix on the Butterfly 126
3.15 Odd-Even Merging and Sorting on the Butterfly 127
3.16 Matrix Multiplication on the Hypercube 132
3.17 Bibliographic Notes 138
3.18 Exerciseso 138
3.19 Solutions 144
The Linear Array and the Mesh 159
4.1 Introduction L oL 159
4.2 Embedding between a Mesh and a Linear Array 161
4.3 Broadcasting in the Linear Array and the Mesh 162
4.4 Computing Parallel Prefix on the Mesh 163
4.5 0Odd-Even Transposition Sort 164
4.6 Shearsort. 165
4.7 A Simple O(y/n) Time Algorithm for Sorting
onthe Mesh 167
4.8 Odd-Even Merging and Sorting on the Mesh 169
4.9 Routing on the Linear Array and the Mesh. 172
4.9.1 Routing in the linear array 172
4.9.2 Deterministic routing in the mesh 173
4.9.3 Randomized routing on the mesh 174
4.10 Matrix Multiplication on the Mesh 177
4.10.1 The first algorithm 177
4.10.2 The second algorithm 178
4.11 Computing the Transitive Closure on the Mesh 180
4.12 Connected Components 184
4.13 Shortest Paths oo 185
4.14 Computing the Convex Hull of a Set of Points
onthe Mesh 185
4.14.1 The first algorithm 186

4.14.2 The second algorithm 187

Xiv

Parallel Algorithms
4.15 Labeling Connected Components 191
4.15.1 The propagation algorithm 191
4.15.2 The recursive algorithm 192
4.16 Colummnsort oo 196
4.17 3-dimensional Mesh o oL 202
4.17.1 Sorting on 3-dimensional meshes 202
4.18 Bibliographic Notes 206
4.19 Exerciseso 207
4.20 Solutions Lo 212
Fast Fourier Transform 227
5.1 Introduction Lo 227
5.2 Implementation on the Butterfly 231
5.3 Iterative FFT on the Butterfly 231
5.4 The Inverse Fourier Transform 234
5.5 Product of Polynomials 235
5.6 Computing the Convolution of Two Vectors 238
5.7 The Product of a Toeplitz Matrix and a Vectors 239
5.8 Using Modular Arithmetic 241
5.9 Bibliographic Notes 244
5.10 Exercises oo 244
5.11 Solutions 246
Tree-based Networks 253
6.1 The Tree Network 253
6.1.1 Semigroup operations 254
6.1.2 Sorting by minimum extraction 254
6.1.3 Sorting by partitioning 255
6.1.4 Selection 256
6.1.5 The one-dimensional pyramid 259
6.2 The Pyramid 0oL 260
6.2.1 Computing parallel prefix on the pyramid 262
6.3 Meshof Trees 264
6.3.1 Sorting on the mesh of trees 266
6.3.2 Routing in the mesh of trees 269
6.4 Computing Parallel Prefix on the Mesh of Trees 270
6.5 Comparison Between the Mesh of Trees

and the Pyramid 272

Contents

6.6 Bibliographic Notes
6.7 Exercises e
6.8 Solutions

The Star Network

7.1 Introduction L
7.2 Ranking of the Processors
7.3 Routing between Substars
7.4 Computing Parallel Prefix on the Star
7.5 Computing the Maximum
7.6 Neighborhood Broadcasting and Recursive Doubling

7.7 Broadcasting in the Star
7.8 The Arrangement Graph
7.9 The (d,k)-Star Graph
7.10 Sorting in the Sgp Star. oL
7.11 Bibliographic Notes
7.12 Exercises e
7.13 Solutions

Optical Transpose Interconnection System (OTIS)

8.1 Introduction
8.2 The OTIS-Mesh,
8.2.1 Data movements in the OTIS-Mesh
8.2.2 Broadcasting in the OTIS-Mesh
8.2.3 Semigroup operations on the OTIS-Mesh
8.2.4 Parallel prefix in OTIS-Mesh
8.2.5 Shift operations on the OTIS-Mesh
8.2.6 Permutation routing in OTIS-Mesh
8.2.7 Sorting on OTIS-Mesh
8.3 The OTIS-Hypercube
8.3.1 Simulation of an n2-processor hypercube
8.3.2 Broadcasting in the OTIS-Hypercube
8.3.3 Semigroup operations on the
OTIS-Hypercube
8.3.4 Sorting and routing in the OTIS-Hypercube
8.4 Other OTIS Networks
8.4.1 The OTIS-Star
8.4.2 The OTIS-MOT

XV

273
273
275

281

281
283
285
287
290
292
294
296
297
300
303
303
305

313

313
314
315
316
316
318
320
322
324
324
324
326

xvi

8.5 Bibliographic Notes
8.6 Exercises
8.7 Solutions

Parallel Algorithms

9. Systolic Computation

9.1 Introduction

9.2 Matrix-vector Multiplication
9.3 Computing the Convolution of Two Sequences

9.3.1
9.3.2

94 A Zero-time VLSI Sorter

Semisystolic solution

Pure systolic solution

9.5 An On-chip Bubble Sorter

9.6 Bibliographic Notes
9.7 Exercises
9.8 Solutions

Appendix A Mathematical Preliminaries

A.1 Asymptotic Notations

Al
Al12
Al13
Al4

The O-notation
The Q-notation
The O-notation
The o-notation

A.2 Divide-and-conquer Recurrences

A.3 Summations
A.4 Probability

A4l
A42
A43
A4d4

Bibliography
Index

Random variables and expectation
Bernoulli distribution

Binomial distribution

Chernoff bounds

Chapter 1

Introduction

With the growing number of areas in which computers are being used,
there is an ever-increasing demand for more computing power. A means
to attain very high computational speeds is to use a parallel computer,
meaning, a computer that possesses several processing units, or processors.
In this case, the problem is broken down into smaller parts, which are solved
simultaneously, each by a different processor.

A parallel algorithm, as opposed to a traditional sequential algorithm, is
an algorithm which can do multiple operations in a given time. In sequential
algorithms, an algorithm is described and analyzed using the random-access
machine (RAM) as a model of computation. By contrast, in parallel algo-
rithms, an algorithm is described and analyzed using different models, one
of which is the so-called parallel random-access machine (PRAM). The pur-
pose of this chapter is to introduce parallel architectures and models, and
illustrate parallel algorithms through simple examples.

1.1 Classifications of Parallel Architectures

There are four classifications of parallel architectures based upon the num-
ber of concurrent instruction streams and data streams available in the
architecture.

(a) Single instruction stream, single data stream (SISD): Most conventional
computers with one central processing unit (CPU) belong to this class.
Examples of SISD architecture are the traditional uniprocessor machines

2 Parallel Algorithms

like older personal computers and mainframe computers. By 2010, many
personal computers had multiple cores.

(b) Single instruction stream, multiple data streams (SIMD): This cate-
gory includes machines with a single program and multiple CPUs. In this
class, a parallel computer consists of p identical processors. All processors
operate under the control of a single instruction stream issued by a central
control unit. Processors communicate among themselves during computa-
tion in order to exchange data or intermediate results in two ways, giving
rise to two subclasses: SIMD computers where communication is effected
through a shared memory, and those where it is done via an interconnection
network.

(¢) Multiple instruction streams, single data stream (MISD): This architec-
ture is uncommon and unrealistic.

(d) Multiple instruction streams, multiple data streams (MIMD): This class
of computers is the most general and most powerful. In this class, there are
p processors, p streams of instructions, and p streams of data. The machines
that fall into this category are capable of executing several programs inde-
pendently. They include multi-core superscalar processors, and distributed
systems, using either one shared memory space or a distributed memory
space. In MIMD, processors may have multiple processing cores that can
execute different instructions on different data. Most parallel computers, as
of 2013, are MIMD systems.

1.2 Shared-Memory Computers

This class is also known in the literature as the Parallel Random-Access
Machine (PRAM) model. It assumes that there is a random-access shared
memory, such that any processor can access any variable with unit cost.
This assumption of unit-cost access (regardless of the size of the mem-
ory) is unrealistic, but it makes the analysis of parallel algorithms easier.
The programs written on these machines are, in general, of type SIMD.
These kinds of algorithms are useful for understanding the exploitation of
concurrency, for they divide the original problem into similar subproblems
and then solve them in parallel. The introduction of the formal PRAM
model had the aim of quantifying analysis of parallel algorithms in a way
analogous to the RAM model. The structure of the PRAM is shown in
Fig. 1.1. Here, multiple processors are attached to a single block of memory.

Introduction 3

A

Processor 1 [«———>

A
Y

Processor 2

Y

Processor 3 Memory [Shared
access memory

unit

A
Y

Processor n

)

Fig. 1.1. Parallel random access machine (PRAM).

’ Memory 1 ‘ ’ Memory 2 ‘ ’ Memory 3 ‘ ***** Memory n

’ Processorl‘ ’ Processor 2‘ ’ Processor 3‘ 77777 Proce@

A

Y A. Y Y
’ Communication network ‘

Fig. 1.2. Interconnection network.

The processors can communicate among themselves through the shared
memory only. A memory access unit connects the processors with the shared
memory block.

1.3 Interconnection-Network Computers

Interconnection networks or distributed memory machines are constructed
as processor-memory pairs and connected to each other in a well-defined
pattern. These processor-memory pairs are often referred to as processing
elements or PEs, or sometimes just as processors. An interconnection net-
work may be viewed as an undirected graph G = (V, E), where V is the
set of nodes or processors, and E is the set of two-way links. Processors
communicate between each other by sending messages. The structure of
the interconnection network is shown in Fig. 1.2.

4 Parallel Algorithms

The topology of a network refers to its general infrastructure — the
pattern in which multiple processors are connected. This pattern could
either be regular or irregular, though many multi-core architectures today
use highly regular interconnection networks. On one extreme, there is the
complete graph, which models an interconnection network where every pro-
cessor is connected to every other processor. This kind of connection is pro-
hibitive, as it is impractical. On the other extreme, the line graph, which
models the linear array, connects each node to one or two other nodes. In
between, there is a multitude of interconnection networks that have both
advantages and disadvantages. For instance, there is the hypercube, the
mesh, the tree and the pyramid, to mention a few.

The degree of a network is the maximum degree of any vertex in the
underlying graph. The degree of processor P corresponds to the number
of processors directly connected to P. Naturally, networks of high degree
become very difficult to manufacture. Therefore, it is desirable to use net-
works of low degree, especially if the network is to be scaled to an extremely
large number of processors. In a network with n processors, a constant
degree is preferable to one that is a function of n. For example, the degree
of the mesh network is 4, while that of the hypercube is logn.

The network diameter is defined as the maximum shortest path dis-
tance between any two processors. A low communication diameter is highly
desirable, because it allows for efficient communication between arbitrary
processors. For instance, the diameter of the hypercube with n processors
is log n, while the diameter of a mesh with the same number of processors
is 2¢/n — 2.

The bisection width of an interconnection network is the minimum num-
ber of links that have to be removed in order to disconnect the network
into two approximately equal-sized subnetworks. In general, machines with
a high bisection width are difficult to build, but they provide users with the
possibility of moving large amounts of data efficiently. The bisection width
implies a lower bound on the computations in an interconnection network,
especially in algorithms that require massive data movements. For instance,
in the problem of sorting n elements, 2(n) data items may have to be moved
from one half of the network to the other. For example, the bisection width
of the hypercube is ©(n), and it admits sorting algorithms in the order of
O(log® n) and O(lognloglogn), while the bisection width of the mesh is
O(y/n), which explains why sorting on the mesh is Q(y/n).

Introduction 5

1.4 Two Simple Examples

Now, we present two simple examples of parallel algorithms, and define and
illustrate some of the performance measures that are used in the analysis
of parallel algorithms.

Example 1.1 Consider the problem of adding n numbers s = a; +
as + - - + a,, where n = 2* for some nonnegative integer k. Sequentially,
the expression can be computed by scanning the input from left to right
in the obvious way using n — 1 additions. In parallel, b1 = a1 + as,bs =
asz +aq,...,by/2 = an—1 + a, are computed in one parallel step using n/2
processors to produce a new expression by + by + -+ + by, /5 consisting of
n/2 operands. Then ¢; = b1 + ba, ¢ = b3 + ba, ..., Cpa = byjo1 + byyo
are computed in one parallel step using n/4 processors to produce a new
expression ¢; + ¢a 4 - -+ + ¢, /4 consisting of n/4 operands. This process
continues until there is only one value left. The total number of parallel
steps is k = logn using n/2 processors. U

Example 1.2 Recall the search problem: Given a set X = {1, 2o, ...,
Zn} of n unordered and distinct elements, and an element y, determine j
such that y = z; if y € X and j = 0 otherwise. n comparisons are needed
in the worst case to solve this problem sequentially. In parallel, assume
there are n processors Pi, Ps,..., P,, and that z; is stored in P;, 1 <
i < n. Initially, P; sets j = 0. Then all processors P; compare y with x;
simultaneously. If ¥y € X, only one processor P will succeed in setting
j = k. It follows that the problem can be solved in two parallel steps
using n processors. Notice that concurrent read capability is required, as
all processors need to read y at the same time. U

Unlike in sequential algorithms, the performance measures include the
number of processors and communication cost. Let n be the input size,
and p the number of processors. Then, T(n,p), or simply T'(n) if p is
known from the context, denotes the running time of the algorithm using p
processors. If the algorithm has two parameters, n and m, then we write
T (n,m,p). We may also write T'(n, p) or T'(n, m) if m or p are known from
the context. In Example 1.1, T'(n,n/2) = O(logn), while in Example 1.2,
T(n,n) = O(1). The cost of an algorithm is the product of the running
time and number of processors, e.g., C(n,p) = pT(n,p). In Example 1.1,

6 Parallel Algorithms

C(n,n/2) = O(nlogn), while in Example 1.2, C(n,n) = ©(n). The work
done by an algorithm is the total number of operations done by individ-
ual processors. It is less than or equal to the cost of the algorithm. In
Example 1.1, W(n,n/2) =n/2+n/4+---+1=n—1= O(n), while in
Example 1.2, W(n,n) = ©(n), since there are n comparisons.

The ratio S(p) = T(n,1)/T(n,p) is called the speedup of the algo-
rithm, where T'(n, 1) should be taken from the best sequential algorithm.
An algorithm achieves a perfect speedup if S(p) = p. In Example 1.1,
S(n/2) = ©(n/logn), while in Example 1.2, S(n) = ©(n). A useful measure
of the utilization of the processors is the efficiency of a parallel algorithm,
which is defined as E(n,p) = S(p)/p = T(n,1)/pT (n,p). The efficiency is
the ratio of the time used by one processor with a sequential algorithm
and the total time used by p processors, which is the cost of the algo-
rithm. The efficiency indicates the percentage of the processors’ time that
is not wasted, compared to the sequential algorithm. If E(n,p) = 1, then
the amount of work done by all processors throughout the execution of
the algorithm is equal to the amount of work required by the sequential
algorithm. In this case, we get optimal usage of the processors. All in all,
the goal is to maximize efficiency. In Example 1.1, E(n,n/2) = ©(1/logn),
while in Example 1.2, E(n,n) = ©(n)/nO(1) = ©(1).

Chapter 2

Shared-memory Computers (PRAM)

2.1 Introduction

The parallel random-access machine (PRAM) was intended as the parallel-
computing analogy to the random-access machine (RAM). It is used to
model parallel algorithmic performance such as time complexity, where the
number of processors assumed is typically also stated. As in the RAM,
the PRAM model neglects issues such as synchronization and communica-
tion, but includes the number of processors. Algorithm cost, for instance, is
estimated using two parameters: time X number of processors. Read /write
conflicts are resolved by one of the following models:

e Exclusive read exclusive write (EREW): In this strategy, every processor
can read or write to a memory cell at a time.

e Concurrent read exclusive write (CREW): Here, multiple processors can
read a memory cell but only one can write to it at a time.

e Exclusive read concurrent write (ERCW): This is never considered.

e Concurrent read concurrent write (CRCW): In this strategy, multiple
processors can read from or write to the same memory cell at the same
time.

In the CRCW model, the writes cause some discrepancies, and hence
the write is further defined as:

e COMMON: If all processors write the same value, it is successful; other-
wise it is illegal.

8 Parallel Algorithms

e ARBITRARY: Only one arbitrary attempt by an arbitrary processor is
successful.

e PRIORITY: Processors are ranked, and the processor with the maximum
rank can write.

Array reduction uses associative binary operations (e.g., SUM, Logical
AND or MAX) of processor contents. Only either the maximum of proces-
sors’ contents, or the sum of all contents in all processors can be written.

In the PRAM, there is no limit on the number of processors in the
machine. Any memory location is accessible from any processor, and there
is no limit on the amount of shared memory in the system.

2.2 The Balanced Tree Method

The balanced tree method is one of the parallel algorithmic design tech-
niques usually implemented either as the main component or as a subtask
of the parallel algorithm. Let o be a binary associative operation (e.g.,
+, X, min, max), and consider computing the expression

§=0a100a20: " -0aQy,

where n = 2" for some nonnegative integer k (see Example 1.1). Sequen-
tially, the expression can be computed by scanning the input from left to
right. In parallel, by = a1 0 az,b2 = azoay,...,b,/2 = an—1 0 a, are com-
puted in one parallel step to produce a new expression s = bjobzo---0b, /o
consisting of n/2 operands. This process continues until there is only one
value to compute. This procedure defines a complete binary tree where
the input is initially at its leaves, and each internal node corresponds to
a subproblem, while the root corresponds to the overall problem. Each
leaf node is assigned a processor P;,1 < ¢ < n. The internal nodes at
level 7,0 < j < k — 1, are assigned processors Pi, Ps, ..., Py;. The compu-
tations at the internal nodes of the same level are performed in one parallel
step. Figure 2.1 depicts a typical complete binary tree for n = 8. It has
2n — 1 nodes. Note that it is represented by the array B[1..2n — 1], where
the children for B[j],1 < j < n — 1, are stored at B[2j] and B[2j + 1]. For
J, 1 <j<n-—1,if B[2j] =2 and B[2j + 1] =y, then B[j] =z oy.
Algorithm PARADDITION performs the operation of addition on n
numbers stored initially in array A[l..n]. The first for loop copies the

Shared-memory Computers (PRAM) 9

Fig. 2.1. The computation of s =aj0a20---0an.

numbers in A into B[n], B[n + 1],..., B[2n — 1], which correspond to the
leaves of the binary tree. The for loop in Line 3 is repeated k = logn
times, once for each internal level of the tree. The for loop at line 4 is for
performing 2¢ additions in parallel, i =k — 1,k —2,...,0.

Algorithm 2.1 PARADDITION
Input: A[l..n], an array of n numbers, where n = 2F.

Output: A[1] + A[2] + --- + A[n].

. for j< 1 to n do in parallel
Blj +n — 1]« A[j]
. for i<k —1 downto 0 do
for j« 2" to 2°t! — 1 do in parallel
Bj]« B[2j] + B[2j + 1]
end for
end for
return B[1]

PN O W=

The running time of the algorithm is equal to the depth of the binary
tree, which is ©(logn). The work done by the algorithm is proportional to
the number of additions performed in the internal nodes, which is n — 1.
The cost of the algorithm is n x O(logn) = ©(nlogn).

10 Parallel Algorithms

2.3 Brent Theorem

Consider the algorithm for finding the maximum of n numbers on the
EREW PRAM using the balanced tree method (see Fig. 2.1). The algorithm
uses n/2 processors. Note that n/2 processors are only required by the first
step of the algorithm. In the second step, only n/4 processors are needed.
In the third step, only n/8 processors are needed, and so on. Therefore, in
a very short time, most of the processors will be idle. The running time of
the algorithm is ©(logn). We can reduce the number of processors signifi-
cantly without affecting the time complexity as follows. Let the number of
processors be n/logn, and assign logn numbers to each processor. Now,
each processor finds the maximum in its group sequentially using logn — 1
comparisons, and the parallel algorithm continues to find the maximum of
the n/logn group maxima. Thus, the running time is still ©(logn), while
the cost of the algorithm is reduced from ©(nlogn) to O(n). The following
theorem, known as Brent’s theorem, generalizes the above discussion.

Theorem 2.1 Suppose an algorithm A, performs ¢,, parallel steps using p
processors on the PRAM such that the total number of operations over all
processors is s, and let ¢ = s/t,. Then, there exists an algorithm A, that
performs at most 2t, parallel steps using ¢ processors. Moreover, if the
sequential time complexity is O(s), then the cost of A, is optimal.

Proof. Let s;,1 < i < t,, be the number of operations performed by
all p processors in step ¢ of Algorithm A,. Let Algorithm A, emulate A,
by replacing each parallel step 7 of A, by [s;/q] parallel steps. The total
number of parallel steps performed by algorithm A, is thus

£

Shared-memory Computers (PRAM) 11

b &

1=1
=2,
since Y217 | s; = 5. The new cost of the algorithm is < 2t,, x & =25= O(s).
Hence, if the sequential time complexity is O(s), then Algorithm A, is cost-
optimal. O

Thus, in O-notation, if the original running time is O(%,), and the work
is O(s), then the number of processors can be reduced to O(s/t,) without
increasing the running time. Recall Algorithm PARADDITION in Section 2.2
for the addition of n numbers using n processors. The running time of the
algorithm is ©(logn) and it performs a total of O(n) operations. Its cost is
O(nlogn). By Brent Theorem, the number of processors can be reduced to
n/logn without changing the time complexity. The new cost is ©(n), which
is optimal.

2.4 Sorting in ©(1) Time on the CRCW PRAM Model

Let A[l..n] be an array of n elements to be sorted on the CRCW PRAM
model with n? processors. We use the SUM criterion for resolving write
conflicts. In other words, if k processors need to write x1,z2, ...,z simul-
taneously in the same memory location, then the sum x1 + 9 + - -+ 4+ g
is written in that memory location. Assume for simplicity that the ele-
ments are distinct. The rank of element A[i] is defined to be the number
of elements in A less than A[i]. Algorithm SORTINGCRCW performs the
operation of sorting on A. There are concurrent writes in Line 3, as more
than one processor may attempt to write to the same memory location. For
instance, A[1] will be compared with A[1], A[2], A[3],..., A[n] simultane-
ously, and many processors may attempt to execute the statement r[i]«+ 1
at the same time. These concurrent writes are resolved using the sum oper-
ation. Specifically, the sum of all 1’s will be assigned to r[i], which is the
rank of A[i]. Note that there are no write conflicts in the assignment in
Line 7. Clearly, the running time of the algorithm is ©(1), and its cost is
©(n?). The above algorithm is also sometimes referred to as enumeration
sort.

12 Parallel Algorithms

Algorithm 2.2 SORTINGCRCW
Input: A[l..n|, an array of n elements.

Output: A[l..n] sorted in ascending order.

1. for i+ 1 to n do in parallel

2 for j< 1 to n do in parallel

3 if A[i] > A[j] then r[i]< 1 else r[i]< 0
4 end for

5. end for

6. for i< 1 to n do in parallel

7 Alr[i] + 1]« A[i

8. end for

2.4.1 Implementation on the CREW PRAM model

The above algorithm can be implemented to run on the CREW PRAM
with n processors only, but the running time will increase substantially.
The CREW algorithm is shown as Algorithm SORTINGCREW.

Algorithm 2.3 SORTINGCREW
Input: A[l..n], an array of n elements.

Output: A[l..n] sorted in ascending order.

1. for i+ 1 to n do in parallel
2 r[i]« 0
3. for i<— 1 to n do in parallel
4 for j< 1 to ndo
5. if A[i] > A[j] then r[i]<« r[{] +1
6. end for
7. end for

8. for i<— 1 to n do in parallel
9. Blr[i] + 1]+ Ali]

0. end for

1. return B

The difference between this algorithm and Algorithm SORTINGCRCW for
the CRCW PRAM is that the for loop in Line 4 is now sequential. There
are no concurrent writes, but there are concurrent reads. For instance,
comparing A[l] with any pair of A[l], A[2], A[3],..., A[n] will not take
place simultaneously, and hence the statement r[1]+ r[1] + 1 will not be
executed more than once at the same time. However, A[l], for example,
will be fetched n times simultaneously when comparing A[1], A[2],..., A[n]

Shared-memory Computers (PRAM) 13

with A[1]. Clearly, the running time is ©(n), and the cost is ©(n?). We will
see later in this chapter that sorting n elements on the CREW PRAM can
be effected in optimal ©(logn) time using n processors.

2.4.2 Implementation on the EREW PRAM model

The above CREW algorithm can be implemented to run on the EREW
PRAM with n processors without increasing the running time or cost; we
only need to take care of concurrent reads. The EREW algorithm is given as
Algorithm SORTINGEREW. In this algorithm, A[j] is compared starting with

Algorithm 2.4 SORTINGEREW
Input: A[l..n], an array of n elements.

Output: A[l..n] sorted in ascending order.

1. for j< 1 to n do in parallel
2 rlj]« 0

3 Cljl« AlJ]

4. end for

5. for i<~ 1ton—1do
6 for j< 1 to n do in parallel

7 k< i4j (mod n) if k=0 then k< n
8. if A[j] > C[k] then r[j]«< r[j] +1

9. end for

10. end for

11. for i< 1 to n do in parallel

12. Blr[i] + 1]+ AJi]

13. end for

14. return B

the element at distance 7. Figure 2.2 depicts an example of the comparisons
performed by the algorithm on 8 elements. In this figure, comparing x
and y is shown by an arrow from z to y. As is evident from the figure,
there are no concurrent reads or concurrent writes. In the first iteration of
the outer for loop, A[l] is compared with C[2] = A[2], A[2] is compared
with C[3] = A[3], etc. (see Fig. 2.2(a)). In the second iteration, that is,
when ¢ = 2, A[l] is compared with C[3] = A[3], A[2] is compared with
C[4] = A[4], ete. (see Fig. 2.2(b)). In the third iteration, that is, when i = 3,
A[1] is compared with C[4] = A[4], A[2] is compared with C[5] = A[5], etc.
(see Fig. 2.2(c)). Finally, in the last iteration, when ¢ = n — 1, A[l] is
compared with C[n] = A[n], A[2] is compared with C[1] = A[l], and so

14 Parallel Algorithms

Fig. 2.2. Example of the action of Algorithm SORTINGEREW.

forth. Clearly, the running time is ©(n), and the cost is ©(n?). We will see
later in this chapter that sorting n elements on the EREW PRAM can be
achieved in optimal O(logn) time using n processors.

2.5 Parallel Prefix

Let X = (21,72,...,2,) be a sequence of n numbers, where n = 2* for
a nonnegative integer k. Let o be a binary associative operation defined
on X. The prefix sums problem is to compute the n partial sums: s; = x1,
S9 = X10X2,...,8; = T10X20" -0k, ...,S8, = L10T20---0xy. It is also called
the scan or the scan operation. We will call s1, s, ...,s, the prefix sums.
Algorithm PARPREFIX is a simple iterative procedure to compute the prefix
sums. The algorithm uses n processors. There are k = logn iterations in the
outer loop in Step 5. Since the time needed for the loop in Step 6 is ©(1),
the running time of the algorithm is ©(logn). Its cost is n x O(logn) =
O(nlogn), which is not optimal in view of the ©(n) time complexity for the
sequential algorithm. The work can be computed as follows. The number
of operations done by Step 6 in the first iteration is n — 1, and in the
jth iteration it is n — 2971, Thus, W(n) = Zle(n —2/71) = O(nlogn).
The cost can be reduced to ©(n) by reducing the number of processors to
n/logn, and making some simple modifications.

Shared-memory Computers (PRAM) 15

Algorithm 2.5 PARPREFIX
Input: X = (z1,22,...,Tns), a sequences of n numbers, where n = 2k,
Output: S = (s1, 82, ..., Sn), the prefix sums of X.
1. for i+ 1 to n do in parallel
2. Si<— Xx;
3. end for
4. t +1
5. for j< 1 to k do
6. for i<—t+ 1 to n do in parallel
7. Si<— Si_t O S8;
8. end for
9. t 2t
10. end for
11. return S

Another algorithm for computing the prefix sums is shown as Algorithm
PARPREFIXREC, which is recursive. First, it recursively computes the prefix
sums Sg, S4,S6 - - - , S 1t then computes sy, s3, s5, ..., s,—1 using the com-
bined divide-and-conquer step. Except for the recursive call, the parallel
time is ©(1). Hence, T'(n) = O(logn). We compute the work done by the
algorithm as follows. There are n/2 and n/2 — 1 iterations in the loops
in Steps 3 and 7, respectively. Therefore W(n) = W(n/2) + ©(n) = O(n).
The cost, however, is not optimal since the number of processors needed is
n/2 for a total cost of ©(nlogn).

Algorithm 2.6 PARPREFIXREC
Input: X = (z1,22,...,Tns), a sequences of n numbers, where n = 2k,

Output: S = (s1,82,...,), the prefix sums of X.

S14<T1

if n =1 then return S = (z1)

for i+ 1 to n/2 do in parallel
T2i<— T2;—1 O T2;

end for

Recursively compute the prefix sums of (z2,x4,...,z,) and store them

in (s2,84,...,8n)

for i+ 2 to n/2 do in parallel
§2i—1 ¢ S2(i—1) © T2i—1

end for

return S = (s1,82,...,8n)

SO

S LN

16 Parallel Algorithms

1 2 3 4 5 6 7 8 Input
T T N T
3 7 11 15 Add odd to even
3 10 21 36 Find prefix sums of even
3 5 7
N NG N
6 15 28 Add computed prefix sums to odd

1 3 6 10 15 21 28 36 Final prefix sums

Fig. 2.3. Example of recursive parallel prefix, Algorithm PARPREFIXREC.

There are no concurrent reads or writes in the above two algorithms,
and hence they run on the EREW PRAM.

Example 2.1 Figure 2.3 shows an example of the recursive parallel prefix
algorithm, PARPREFIXREC. We will use addition as the binary operation.
The input is given in Line 1. In Line 2, the odd-indexed numbers are added
to the even-indexed numbers. In Line 3, the prefix sums are computed
recursively for the even-indexed numbers. These prefix sums are shown
in boldface: 3, 10, 21, 36. These prefixes are added to the odd-indexed
numbers, which results in the odd-indexed prefix sums. These prefix sums
are shown in Line 5 in boldface: 6, 15, 28. The last line shows the final
prefix sums. O

2.5.1 Array packing

Let A = (a1, as,...,a,) be an array of n elements such that ¢ of them are
“marked” and the remaining n — t elements are “unmarked”. The array
packing problem consists of creating another array D where all the marked
elements are moved to the lower part of D and the unmarked ones to
the upper part of the array D without changing their relative order. One
method of packing consists of assigning a value of 1 to each of the marked
elements and a value of 0 to each of the unmarked elements. A new array
B = (by,ba,...,by,) is used to hold the 0-1 values, with b; = 1 if and only
if a; is marked. Now, if we apply the prefix sums algorithm to the array B
and store the prefix sums in C = (c1,¢a,...,¢,), the ranks of the marked

Shared-memory Computers (PRAM) 17

elements will be computed in C'. Specifically, if a; is marked, then it is stored
in D at position ¢;. So, the marked elements are moved to the first ¢ cells
of array D. Likewise, the ranks of the unmarked elements are computed
by interchanging 0’s and 1’s in array B. Finally, the prefix computation is
run again and the unmarked elements are moved to the last n — ¢ cells of
array D.

Example 2.2 We now illustrate array packing explained above. Refer-
ring to Fig 2.4, the problem requires us to pack the even elements to the
left. The first row, part (a), contains the input array A. The second row,
part (b), contains the 0-1 values in array B. Array C in part (¢) of the
figure contains the result of applying parallel prefix on array B. Array D
in part (d) contains the even numbers packed in their positions as given
in array C. If we now interchange 0’s and 1’s in B, then we can pack the
odd numbers using the same procedure to pack the even numbers. This is
shown in Figs. 2.4(e)—(g).

O

Alifofafa]s 7 afefa]r[a]s]o]
(b)
Blofofifofofofufrfifoftfo]o]
(c)
clofofufrfufifafafsfafs]s]s]
(d)
o f2fafofafef [[[][]]]
(e)
Blafofofufufifofofofifofi]r]
()
Clifzlafsfefs]s[s]s[efe]7]s]
(8)
pl2]4fsf2]efifofs]s]7[7]s]0]

Fig. 2.4. Example of array packing.

18 Parallel Algorithms

2.5.2 Parallel quicksort

A parallel version of the quicksort algorithm for the EREW PRAM with
n processors is shown as Algorithm PARQUICKSORT. As in the sequential
quicksort algorithm, the pivot v is chosen as A[1]. First, the pivot is copied
n times to avoid concurrent reads. This can be done by a broadcasting
procedure in time ©(logn)(see Exercise 2.5). Next, array packing is used
to partition the array A into two parts, one with elements less than v and
one with elements greater than v. This takes ©(logn) time as explained in
Section 2.5.1. Next, these two parts are sorted recursively into A; and As,
whose concatenation together with v is returned as the sorted array. In the
worst case, the recursion depth can be as large as ©(n), causing the running
time to be ©(nlogn). However, the average recursion depth is ©(logn), for
a total running time of ©(log®n).

Algorithm 2.7 PARQUICKSORT
Input: An array A[l..n] of n distinct numbers.

Output: A sorted in ascending order.

if n =1 then return A
v A[l]
Let Bli] =vfor 1<i<n
for i< 1 to n do in parallel
if Afi] < BJi] then C[i]+ 1
else if A[i] > B[i] then C[i]<- 0
end for
Pack the numbers in A marked 1 in C at the beginning of A followed by
v followed by the numbers in A marked 0 in C
9. Let w be the position of v in A
10. do in parallel
11. A1 4 PARQUICKSORT(A, 1,w — 1)
12. Ap <~ PARQUICKSORT(A,w + 1,n)
13. A<« Ai]|v||A2, the concatenation of A1, v and As
14. return A

PN DO =

2.6 Parallel Search

Consider the search problem: Given a sequence S = (a1, as,...,a,) of n
distinct elements drawn from a linearly ordered set such that a1 < as <
-+ < an, and an element z, find the index k,1 < k < n, such that =z = a;,

Shared-memory Computers (PRAM) 19

if x € S and 0 otherwise. Assume that we have a CREW PRAM with p
processors, 1 < p < n. For convenience, let n = (p+1)q. First, the sequence
S is divided into p + 1 subsequences of ¢ elements each, and x is compared

to the elements at the p internal boundaries of these subsequences. That

is, the algorithm compares x with p elements simultaneously; processor P;

compares x with a;q for 1 <4 < p. We have the following cases:

(1)
(2)

(3)

If for some ¢, 1 < i < p, * = a4, the algorithm returns & = ig and
halts.

x < aq, and hence only the elements less than a, are kept for the next
stage. This is shown as the shaded area in Fig. 2.5(a). In this case, the
algorithm returns the index of = in (a1, ag,...,aq-1).

2 > apq, and hence only the elements greater than a,, are kept for the
next stage. This is shown as the shaded area in Fig. 2.5(b). In this case,

the algorithm returns pg plus the index of in (apg+1, Gpg+2; - - -5 an)-
There exists an 4, 1 < i < p, such that z > a;; and x < a(;y1)4- The
next stage performs the search on (aig11, Gigi2,- -, a(i41)q—1). This is
shown as the shaded area in Fig. 2.5(c). In this case, the algorithm
returns ig plus the index of in (aig11, Gigr2, -, Axir1)q-1)-
(@) < < < <
[l [« [fod o] [
P P P P
1 i i+l P
(b) > > > >
4 4 |a,-q "(i+1|q “pq| | a
P P i P
1 i i+l P
(C) > > < <
| 4 | | “q| |“iq |“(i+1|q ”pq| @n
P P P P
1 i i+l P

Fig. 2.5. Parallel search.

20 Parallel Algorithms

The above discussion is summarized in Algorithm PARSEARCH. In
Step 1, all processors read x simultaneously in one step. Step 2 is the stop-
ping condition for recursion, which happens when the number of remain-
ing elements drops as or below the number of processors. In this case, n
processors are allocated, and each processor tests one element for equality
against . If one processor finds element a; = x, it sets k = i. The remaining
steps are as explained above.

The size of the recursive call is approximately % Hence, the running
time is given by the recurrence T'(n) = T'(n/(p+1)) + ©(1) whose solution
is T'(n) = ©(log, 1 n) = @(10:;()%). There are at most p element compar-
isons in each stage for a total of ©(plog,; n). Hence, the work done by the
algorithm is W (n) = ©(plog, 1 n). If p=n°,0 < e < 1, then T'(n) = O(1)
and W(n) = O(n°).

Algorithm 2.8 PARSEARCH
Input: A sequence S = (a1, a2, ...,a,) of n distinct elements such that
a1 < az < --- < an, and an element x.
Output: The index k,1 < k < n, such that x = ay if x € S and 0 otherwise.

Initialize: k< 0, All processors read x
if n < p use n processors to compare = with a;,1 < ¢ < n, and return k.
gn/(p+1)
for i< 1 to p do in parallel
Processor P; compares x with aiq
if z = a;q return k = iq
if x < aq then
let S" = (a1, a2,...,aq-1)
k<« PARSEARCH(S', x)
10. return k
11. else if x > apq then
12. let S = (apg+1, apgt2, - - ., an)
13. k<« PARSEARCH(S', x)
14. return k + pq
15. else let i be such that x > aiq and x < a(j41)4. do

© 0N O W=

16. let " = <aiq+17 Qig4+2; -3 Q(i+1)g—1
17. k< PARSEARCH(S’,x)

18. return k + iq

19. end if

20. return £ =0

Shared-memory Computers (PRAM) 21

Example 2.3 We apply Algorithm PARSEARCH for parallel search using
two processors on the sequence S = (1,3,4,6,9,12,14,15,20) and = = 8.
Initially, the algorithm divides S into three subsequences

(1,3,4), (6,9,12), (14,15,20).

The two processors compare x with elements at the internal boundaries,
that is, 4 and 12. Since 8 > 4 and 8 < 12, the search area is reduced to
(6,9). Finally, the two processors perform two comparisons simultaneously
and both of them return 0 indicating that x is not found. The number of
parallel steps is 2. O

Example 2.4 We apply Algorithm PARSEARCH for parallel search using
two processors on the same sequence in Example 2.3 and x = 14. Initially,
the algorithm divides S into three subsequences

(1,3,4), (6,9,12), (14,15,20).

The two processors compare x with elements at the internal boundaries,
that is, 4 and 12. 14 > ag = 12, so the search area is reduced to (14, 15, 20).
Now, the number of remaining elements is greater than p, so the algorithm
performs one more iteration and divides these elements into three subse-
quences (14), (15) and (20). In this iteration, ¢ = n/(p +1) = 3/3 = 1.
Since & = a, = a1 = 14, the algorithm returns 6 + 1 = 7. The number of
parallel steps is 3. O

2.7 Pointer Jumping

Let L denote a linked list of n elements, and let us associate a processor
with each element in the list. Each element 2 has two fields: succ(x) and
dist(x). succ(x) is a pointer that points to the next element in the list. The
succ field of the last element points to itself, that is, succ(L(n)) = L(n).
The other field dist is initially 1 if succ(z) # 2z and 0 if suce(z) = z. An
algorithm is required to be developed to compute: for each element z —
its distance from the end of the list and to store it in dist(x). Algorithm
PJUMPING computes the distances from each node to the end of the list
using a technique called pointer jumping or doubling.

22 Parallel Algorithms

Algorithm 2.9 PJUMPING
Input: A Linked list L = (dist(z), succ(x)), 1 <z < n.

Output: dist(x),1 < x < n, the distance of x from the end of the list.

1. for z<+ 1 to n do in parallel
s(z) < succ(z)
while s(z) # s(s(x)) do
dist(x) < dist(x) + dist(s(z))
s(x) <+ s(s(x))
end while
end for

OOt W

Pointer jumping consists of updating the successor of each node by
that node successor’s successor. Thus, the distance between a node and its
successor doubles unless it is its own successor. Hence, after k iterations,
the distance between a node z and its successor is 2% unless succ(z) is the
last element in the list. It follows that the while loop is executed [logn]
times, which means the parallel time complexity of the algorithm is T'(n) =
O(logn). Its cost, however, is O(nlogn) since there are n processors.

Example 2.5 Figure 2.6 illustrates the algorithm for a list of seven
elements. Each pointer s(x) is shown as an arc from one element to another,
and the arc from element z is labelled with the current value of dist(x).
The original list is shown on the top of the figure, and the rest of the figure
shows the lists after each of the three iterations. O

2.8 Euler Tour

The Euler tour technique on trees is a very powerful tool when designing
parallel algorithms for trees. Let G be a directed graph. An Fuler circuit in
G is a cycle that visits each edge exactly once. G is said to be Fulerian if it
has an Euler circuit. It is well-known that G is Eulerian if and only if the
indegree of each vertex is equal to its outdegree. Let T = (V, E) be a given
tree, and let 7" = (V, E’) be obtained from T by replacing each edge (u,v)
of T by two directed edges (u,v) and (v, u) in opposite directions. Then, T’
is Eulerian since the indegree of each vertex is equal to its outdegree (see
Fig. 2.7). We now show how to construct an Euler circuit in T', which is
commonly known as Euler tour.

Shared-memory Computers (PRAM) 23

1 1 1 1 1 1
O—>0O0—0 O O O C@o

2 2 2
o o X 1
v 0
2 2
4 4

5

Fig. 2.6. Pointer jumping.

Fig. 2.7. (a) A tree. (b) A directed tree.

A tree T is represented by its adjacency lists as shown in Fig. 2.8 for
the adjacency lists of the graph shown in Fig. 2.7(a). The edges in each list
are listed in a counterclockwise order. We define the function next(e) to
be the edge following edge e in the adjacency lists. Note that the lists are
circular, so if e is the last edge in its list, then next(e) is the first edge in
the list. Each edge (4, 7) in the adjacency lists has two pointers, one to the
next edge and the other to the edge (j,14).

An Euler tour can be defined by specifying the successor function
succ(e), which gives the next edge in the tour. Let v be a vertex in the

24 Parallel Algorithms

6
ol

Fig. 2.8. Adjacency lists of the tree in Fig. 2.7(a).

(undirected) tree T, and suppose that its degree is d. Let the vertices
adjacent to v be ug,u1,...,uq—1 listed in counterclockwise order. Then,
suce((ui, v)) = (U, U(i+1)mod). The successor function can also be obtained
directly from the adjacency lists using the equation

suce((4, 7)) = next((4,1)).

If the resulting tour is 7 = e, ea, ..., e, then 7 defines a depth-first order
on the set of vertices.

Example 2.6 Consider the tree shown in Fig. 2.7(a). Vertex 1 has the
adjacent vertices 2,3 and 4, in this order. Hence, succ((2,1)) = (1,3),
succ((3,1)) = (1,4), and succ((1,2)) = (2,1). Using the next function,
succ((2,1)) = next((1,2)) = (1, 3), and so on. The next and succ functions
for all edges in the tree are shown in Table 2.1. It follows that the Euler
tour starting from edge (1,2) is

T=(1,2),(2,1),(1,3),(3,1),(1,4),(4,6),(6,4), (4,5), (5,4), (4,1), (1, 2).

The above Euler tour 7 defines the following depth-first ordering on the set
of vertices: 1,2,1,3,1,4,6,4,5,4, 1. O

Clearly, using the two pointers in each node of the adjacency lists, it
takes ©(1) time to find succ(e), and hence, the Euler tour can be computed
in ©(1) steps using O(n) processors on the EREW PRAM.

Shared-memory Computers (PRAM) 25

Table 2.1. The next and successor functions.

edge e next(e) succ(e)

)

)

)

)

O OU s e W N =
B s = OO~ = N R W
NSNS AN NN

R OO s W
[S Y I SO Uy o
N NI IS IS NN

)

(1,2
(1,3
(1,4
(2,1
(3,1
(4.1
(4,6
(4,5
(5,4
(6,4

)

)

)

NN N N N N S S S
o~ o~ —

)

2.8.1 Dairecting a tree

The Euler tour technique on trees can be used to make a tree directed. The
first step is to assign a root, which we will assume to be the first vertex in
the tour r. This can be done by deleting the last edge in the tour, which
converts the Euler circuit into an Euler path. Next, we assign 1 to every
edge in the resulting tour, and apply the prefix sums algorithm on the set of
edges defined by the tour. Finally, for each edge (u, v) assign the parent of v
p(v) = u whenever the prefix sum of (u,v) is smaller than the prefix sum
of (v,u). The algorithm is given as Algorithm DIRECTINGTREE. Clearly,
the algorithm runs in O(logn) time using O(n) processors on the EREW
PRAM.

Algorithm 2.10 DIRECTINGTREE
Input: A tree T and a vertex r in T'.

Output: Assign parents to all nodes in T' except r.

Find an Euler tour 7 for the tree 7'

Remove the last edge (x,r) from 7.

Assign 1 to every edge of the tour 7.

Apply parallel prefix on the set of edges of 7.

Assign p(r) =0, p(z) = r, and for each other edge (u,v) assign p(v) = u
whenever the prefix sum of (u,v) is smaller than the prefix sum of (v, u).

Al S

26 Parallel Algorithms

Fig. 2.9. Directing the tree in Fig. 2.7(a).

Example 2.7 We convert the tree shown in Fig. 2.7(a) into a directed
tree rooted at vertex 1. Consider the tree shown in Fig. 2.9(a), which is the
tree in Fig. 2.7(b) with assigned weights of 1 to all edges. The last edge
in the tour 7 has been deleted. The prefix sums are shown in Fig. 2.9(b),
and the rooted tree is shown in Fig. 2.9(c). Note, for example, that 4 is the
parent of 6 since the prefix sum on edge (4,6) is smaller than the prefix
sum on edge (6,4) in Fig. 2.9(b). O

2.8.2 Computing vertex levels in a tree

Let T be a tree rooted at vertex r. The vertex level of a vertex v is the
distance between v and the root » measured in the number of edges. Note
that we have assumed here that T is rooted. Let 7 be the Euler path starting
at r. On this path, assign the weights w(p(v),v) =1 and w(v,p(v)) = —1,
and perform parallel prefix on 7. Finally, set level(v) to the prefix sum of the
edge (p(v),v). The algorithm is given as Algorithm TREELEVELS. Clearly,
the algorithm runs in O(logn) time using O(n) processors on the EREW
PRAM.

Algorithm 2.11 TREELEVELS
Input: A tree T rooted at r.

Output: Assign levels to all nodes in 7.

Find an Euler tour 7 for the tree T

Remove the last edge from 7.

Assign the weights w(p(v),v) =1 and w(v,p(v)) = —1.
Apply parallel prefix on the set of edges of 7.

Set level(v) to the prefix sum of the edge (p(v),v).

Al

Shared-memory Computers (PRAM) 27

Fig. 2.10. Computing levels of the vertices in the tree shown in Fig. 2.7(a).

Example 2.8 We compute the levels of the vertices in the tree shown
in Fig. 2.7(a), where vertex 1 is the root. Consider the tree shown in
Fig. 2.10(a), which is the tree in Fig. 2.7(b) with assigned weights of 1
and —1 as explained above. The last edge in the tour 7 has been deleted.
The prefix sums are shown in Fig. 2.10(b), and the tree with levels of the
vertices is shown in Fig. 2.10(c). O

2.9 Merging by Ranking

Given a sequence S and an element x, let rank(z,S) be the number of
elements in S less than x. It is not hard to modify Algorithm PARSEARCH
given in Section 2.6 so that on input S and z, it returns rank(z, S). We will
refer to the modified algorithm as Algorithm MODPARSEARCH.

2.9.1 Computing ranks

Let A = (a1, as,...,a,) and B = (by,ba, ..., by) be two sequences of n+m
distinct numbers, each sorted in increasing order. The problem of merging A
and B into a new sequence C' = (¢1, ¢, . .., Cmin) may be solved in parallel
by computing for each x € AU B,r4 = rank(z, A) and rp = rank(z, B),
and setting ¢y = x, where k = r4 + rp + 1. The ranks of all items in
B are found in parallel, where a processor P; is assigned to each element
b; € B. To find rank(b;, A), P; performs binary search on A, and this is
done for all b; € B in parallel. To compute the rank of b; in B, we use the
identity rank(b;, B) = i — 1. Next, we repeat the above procedure for all
items a; € A to find rank(a;, B) and set rank(aj, A) = j — 1. The above
algorithm works on the CREW PRAM in time O(max{logn,logm}).

28 Parallel Algorithms

Ay A

a, ar(m)) 'ar(im)ﬂ ar((m)x/ﬁ))

(o bl] o Pae]
B, B;

Fig. 2.11. Computing rank(B, A).

In the following, we present a faster algorithm that runs in time
O(loglogn) for the case m = n. First, we develop an algorithm for comput-
ing rank(B, A) = {rank(b, A) | b € B}; finding rank(A, B) can be achieved
in a similar fashion. For clarity, let s = /m. First, use Algorithm MOD-

PARSEARCH to compute in parallel the ranks of bs,bas, ..., by, using \/n
processors for each rank. Call these ranks r(s), r(2s), ..., r(m). This divides
the remaining elements in B into s subsequences By, By, ...,Bs_1 of s — 1
elements each, where By = {b1,ba,...,bs-1}, B1 = {bs41,bs42,.--,b2s-1},
and in general B; = {bisy1,bis42,...,b(4+1)s—1}. This induces a par-
tition of {a1,as,...,a,(m)} into s subsequences Ag, Ay,..., A;_1, where
Ao = {ar,a2,... ;0,5 }, A1 = {ar(s)41, Ar(s)425 - - - » Ap(25) }, and in general

A; = {ar(is)+1,ar(is)+2, - ,ar((i+1)s)} (see Fig 2.11).

Note that |A4;| may vary; it may be 0 or n. Let b;s4; € B;. Then, we
should search for rank(b;s+;, A;) in A;, and compute rank(b;s4+;, A) from
the equation

rank(bisﬂ-, A) = rank(bis, A) + rank(bisﬂ-, Al) (21)
Note that this means
If rank(b(;41)s, A) = rank(bss, A), then rank(bis;;, A;) = 0.

Thus, the problem of computing the ranks of B in A reduces to computing
the ranks of B; in A;, 0 < ¢ < s — 1. Call the algorithm recursively on
(A;, B;) to compute rank(B;, A;) for 0 <4 < s—1. For bjs4; € B, let r;(j) =
rank(bis1j, A;). Thus, as stated in Eq. 2.1, rank(bis1j;, A) = r(is) + 7:(j).
The above discussion is outlined in Algorithm PARRANK. The algo-
rithm returns R = {r(1),7(2),...,7(m)}, a set of m ranks, where

Shared-memory Computers (PRAM) 29

r(i) = rank(b;, A). In Line 8, the algorithm returns R; = {r;(1),7:(2),...,
ri(s —1)}, a set of s — 1 ranks corresponding to rank(B;, A;).

Algorithm 2.12 PARRANK

Input: A = (a1,a2,...,an) and B = (b1, ba,...,by) are two sequences of]
n + m distinct numbers, each sorted in increasing order.

Output: rank(B, A) = {rank(b;, A) | b; € B}.

1. if m < 4 then for i+ 1 to m do in parallel

2. Use Algorithm MODPARSEARCH to compute
r(i) = rank(b;, A) using n processors.

for i< 1 to s do in parallel
Use Algorithm MODPARSEARCH to compute
r(is) = rank(b;s, A) using \/n processors.

5. end for

6. 7(0)«0

7. for i<- 0 to s — 1 do in parallel

8 if r(is) = r((¢ + 1)s) then R;+ {0,0,...,0}

9 else

10 R; <+ PARRANK(A;, B;)

11. for j<—1to s —1 do in parallel

12. r(is 4+ j) < r(is) + ri(4)

13

14

15

16

> Co

end for
end if
. end for
. return R = {r(1),7(2),...,7(m)}

It is easy to see that the number of processors used by the algorithm
is O(y/my/n) = O(m + n) as required by Steps 3 and 4 of the algorithm.
Steps 14 take constant time. Step 10 takes at most T'(n,/m) time since
|A;| can be as large as n. Hence, the running time is given by the recurrence

0(1) ifm<4
T'(n,m) < {T(n, Vm)+0(1) ifm >4,

whose solution is T'(n,m) = O(loglogm). The work done by Steps 1-2 of
the algorithm is O(n). The number of operations done by Steps 3 and 4
is O(y/my/n) = O(m + n) since the call to Algorithm MODPARSEARCH
performs O(y/n) x O(1) = O(y/n) operations. The work done by Steps 7-16
of the algorithm except for the recursive calls is O(m). It follows that the
overall work done by the algorithm is W(n,m) = O((n 4+ m) loglogm).

30 Parallel Algorithms

Example 2.9 Let A = (10,30,40,60,70,90,110,120) and B =
(20,50, 80,100),s0 m =4 and n = 8. s = 2, by = 50 and by = 100. First, the
ranks of by and by are computed: r(2) = 3 and r(4) = 6. Next, By, By, Ao
and A; are computed: By = {20},B; = {80}, 4y = {10,30,40} and
Ay ={60,70,90}. Now, the algorithm recursively computes the ranks of By
in Ag and By in A;y: 79(1) = 1 (which is the rank of 20 in Ag), so Ry = {1},
and r1(1) = 2 (which is the rank of 80 in A;), so Ry = {2}. Finally, we
compute the ranks of By in A and By in A: (1) =r(0) +7r9(1) =0+1=1
and 7(3) = r(2) + (1) = 3+ 2 = 5. It follows that R = R(B, A)
{1,3,5,61.

oo

Example 2.10 Suppose we change B in Example 2.9 to B = (7,8,
80,100). Then, by = 8, r(2) = 0 and By = {7}. Also, Ay = {} and 4; =
{10, 30, 40, 60, 70,90}. By Step 8 of the algorithm, since r(0) = r(2), Ry =
{0} and thus the algorithm will not be called recursively on Ay and By.
Consequently, 7(1) = r(0) + r9(1) =04+ 0= 0. O

2.9.2 Merging

To merge A and B, we only need to compute rank(B, A) and rank(A, B).
Algorithm PARMERGE merges A and B into a sequence C'. It is assumed
here that |A| = |B| = n. Let b; € B. Then, the index of b; in C is equal to
rank(b;, B) 4+ rank(b;, A) + 1 = (i — 1) + r(¢) + 1 = r(¢) + ¢. Similarly, for
a; € A, the index of a; in C is equal to rank(a;, A) + rank(a;, B) + 1 =
G=D+r@)+1=r0)+J

Algorithm 2.13 PARMERGE

Input: A = (ai1,az,...,a,) and B = (b1,ba,...,by) are two sequences of 2n
distinct numbers each sorted in increasing order.

Output: A sequence C' = (c1,ca, ..., c2n) which is the merge of A and B.

{r(1),7(2),...,7(n)} + PARRANK(A, B) (Find rank(B, A))
{r'(1),7'(2),...,7'(n)}+ PARRANK(B, A) (Find rank(A4, B))
for i<~ 1 to n do in parallel

Citr(i) < b;

Citr/ (i) € Qi
end for

NS ot W=

return C

Shared-memory Computers (PRAM) 31

Clearly, the running time of Algorithm PARMERGE is T'(n) =
O(loglogn). The cost of the algorithm is C(n) = O(nloglogn).

2.9.3 Parallel bottom-up merge sorting

The algorithm for bottom-up sorting works by merging pairs of consecutive
elements, then merging consecutive pairs to form 4-element sequences, and
so on. This algorithm can easily be parallelized as shown in Algorithm
PARBOTTOMUPSORT. Note here that n = 2% for some positive integer .

Algorithm 2.14 PARBOTTOMUPSORT
Input: A = (a1,a2,...,a,), a sequences of n distinct numbers, where n = 2k,

Output: A sorted in increasing order.

1. for j< 1 to n do in parallel
2 So’j —aj
3. end for

4. for i< 1 to k do

5. ten/2°

6 for j< 1 to t do in parallel

7 Siyj < PARMERGE(SifLijl, Sifl,gj)
8 end for

9. end for

10. A<+ Sk

11. return A

Algorithm PARBOTTOMUPSORT defines a (conceptual) complete binary
tree whose nodes are the sequences S;;, 0 < i < k,1 < j < 2k=1 TIni-
tially, the elements are stored at the leaves Sy ;,1 < j < n. Subsequently,
the sequence S; ; corresponding to an internal node is computed by merg-
ing its children S;_1 2;—1 and S;_1 ;. Now, we compute the running time
of the algorithm. Algorithm PARMERGE is called in Step 7, and it takes
O(loglog|Si—12j-1]) = O(loglog 2=1). This is repeated in the for loop in
Step 4 k times, for sizes 1,2,4,...,n/2. Hence, the running time is

k
T(n) = Z O(loglog2i~1)

i=1

32 Parallel Algorithms

O(log(i — 1))

I
'M’V

s
Il
-

|
KM”

@
Il
—

O(log k)

klogk)

o(
O(lognloglogn).

2.10 The Zero-one Principle

A sorting algorithm is called oblivious if it consists of comparison-exchange
operations that are prescribed and independent of the input elements and
results of comparisons between them. The zero-one principle states that if a
comparison-based oblivious algorithm sorts any sequence of zeros and ones,
then it sorts any sequence of arbitrary values. It really simplifies the proofs
of correctness of many oblivious sorting algorithms.

Lemma 2.1 If an oblivious comparison-exchange algorithm sorts any
sequence of zeros and ones, then it sorts any sequence of arbitrary values.

Proof. Suppose for the sake of contradiction that an oblivious
comparison-exchange algorithm sorts all sequences of zeros and ones, but
fails to sort the input sequence (x1,x3,...,x,) of arbitrary numbers. Let 7
be a permutation such that z,1) < zr2) < -+ < 2r(n), and for some per-
mutation o # 7, let the output of the algorithm be x,(1), T5(2); - -, Tom)-
Then, there exists some integer j such that z,;) = 2. for i < j and
Tg(j) > Tr(j)- Hence, there must exist k& > j such that z,y = ;). For
1 <i <mn,define y; =0 if z; < 25, and y; = 1 if x; > 2,(;). Now, con-
sider the action of the algorithm on input (y1,y2, ..., yn) of 0’s and 1’s. The
algorithm will perform the same set of comparison-exchange operations as
it did for the original input (x1, z3a,...,x,). In particular, the output of the
algorithm on the y;’s input will be

ya'(l)vycr(2)a"'7ya'(j71)aya'(j)7'"7yd(k)"' :0703"'70717"'707"'7

which is not sorted. This contradicts the assumption that the algorithm
sorts all sequences of zeros and ones. O

Shared-memory Computers (PRAM) 33
2.11 Odd-Even Merging
Let A = (ag,a1,...,an—1) and B = (bg,by,...,by—1) be two sorted

sequences of 2n distinct numbers, where n is a power of 2. The odd—even
merging method is summarized in Algorithm ODDEVENMERGE.

Algorithm 2.15 ODDEVENMERGE

Input: Two sorted sequences A = (aog,ai,...,an—1) and
B = (bo,b1,...,bn—1) of n elements each sorted in ascending order,
where n = 2%,

Output: The elements in S = AU B in sorted order.

1. if n < 2 return the merge of A and B, and exit.

2. Let Acven = {ao,a2,...,an—2) and Aodqa = (a1, as,...,an—1) be the even
and odd subsequences of A, respectively.

3. Let Beven = <bo, ba, ..., bn72> and Boqq = <b1, bs,..., bn71> be the even
and odd subsequences of B, respectively.

4. Recursively merge Acven and Boda to obtain C = (cg,c1,...,cn—1).

5. Recursively merge Agaa and Beven to obtain D = (do,du,...,dn—1).

6. Let E be the shuffle of C and D, that is,
E= <Co7 do7 C1, d17 ey Cn—1, dn,1>.

7. Traverse the pairs (¢;,d;) in E, 0 < ¢ < n — 1, and interchange the
elements in each pair if they are out of order to obtain the sorted sequence
S = <807 S1y... 732n71>

8. return S

After the execution of Step 6, we have sy = min{co,dp}, s1 =
maX{Co,do}, So = min{cl,dl}, S3 = max{cl,dl}, ey S2p—2 = min{cn,l,
dnfl}, Soan—1 = max{cn,l, dnfl}.

The algorithm uses 2n processors on the EREW PRAM. Obviously,
the time needed in each recursive call is ©(1). Hence, the running time of
the algorithm is governed by the recurrence T'(n) = T'(n/2) + ©(1), whose
solution is T'(n) = O(logn). The work done by the algorithm is given by
the recurrence W(n) = 2W(n/2) + O(n), and hence W(n) = O(nlogn).

Example 2.11 Let A = (1,3,4,7) and B = (2,5,6,8). Then, Aeyen =
{1,4}, Aodd = {3,7}, Beven = {2,6}, Bodd = {5,8}, C = <1,4,5,8> and
D = (2,3,6,7). E = (1,2,4,3,5,6,8,7). The pair (4, 3) is out of order,
so 4 and 3 are exchanged. The same applies to the pair (8, 7). The sorted
sequence is S = (1,2,3,4,5,6,7,8). See Fig. 2.12. O

34 Parallel Algorithms

1347 2568

Even Odd><)dd Even

14 58 37 26

' :

Merge Merge
1458 2367

\/

Shuffle
12435687

l

Compare-exchange
123456738

Fig. 2.12. An example of odd—even merging.

Theorem 2.2 Algorithm ODDEVENMERGE correctly merges A and B
into S.

Proof. Let A, B,C, D and E be as defined in Algorithm ODDEVENMERGE,

and assume the elements in A U B are distinct. By the zero-one principle

(Lemma 2.1, we may assume that A and B consist of zeros and ones. Let

and y be the number of zeros in A and B, respectively. Then, Aeyen has
X xT

[£] zeros, Agaq has |] zeros, Beven has [4] zeros, and Bogq has | § | zeros.

Consequently, C' has w = [$] + [§] zeros and D has z = [§] + [§] zeros.

Clearly, w and z differ by at most 1, and hence we have the following three
cases. If w =z or w=2z+1, then

F=0,0,...,0,1,1,...,1,
—_———
w—+z

and F is sorted. If, however, w = z — 1, then

FE=0,0,...,0,1,0,1,...,1,
—
2w
and F will be sorted after making one exchange of 0 and 1. O

The algorithm for sorting is given as Algorithm ODDEVENMERGESORT.
The running time of the algorithm is ©(log? n). Its work is ©(nlog? n).

Shared-memory Computers (PRAM) 35

Algorithm 2.16 ODDEVENMERGESORT
Input: A sequence S = (ag,a1,...,an—1) where n is a power of 2.

Output: The elements in S in sorted order.

Sl < <a0, A1y an/2,1>.

So 4= (an/2,Anyai1s- vy Gn-1).
S} < ODDEVENMERGESORT(S1)
S5 < ODDEVENMERGESORT(.S2)
S<— ODDEVENMERGE(S], S5)

S Uk w =

return S

2.12 Bitonic Merging and Sorting

A sequence S = (aj,as,...,a,) is monotonically increasing if a1 < ay <

- < ay, and is monotonically decreasing if a1 > ay > -+ > an. A
sequence is monotone if it is monotonically increasing or monotonically
decreasing. A monotone sequence can be represented pictorially as shown
in Fig. 2.13(a), where there is a point for each item in the sequence. The
sequence corresponding to this diagram is T = (a1,..., a4, ..., 05, ..., 0n),
where 1 < i < j < n. However, if we are not interested in the actual values
of the items in the sequence, but only in their relative order, then we can
simply represent a monotone sequence by a line segment. An example is
shown in Fig. 2.13(b) for the monotonically increasing sequence T' above.
Figure 2.13(c) shows a generic monotone sequence in which the items and
their number are immaterial. Thus, the diagram shown in Fig. 2.13(c) is
the representation of any monotonically increasing sequence. Similarly, a
monotonically decreasing sequence can be represented by a line segment
with negative slope.

Fig. 2.13. A monotone sequence.

36 Parallel Algorithms

A sequence S = (aj,as,...,a,) is bitonic if it monotonically increases
and then monotonically decreases, that is, there is an ¢, 1 < ¢ < n, such
that

a1 <az << 0 2 Gip1 2 Qi 2 00 2 Ay,

or can be circularly shifted to become monotonically increasing and then
monotically decreasing. Thus, a sequence is also bitonic if it is monotone.
For example, the sequence (1,3,5,7,4,2) is bitonic, while (1,3, 1,2) is not.
The sequence (7,8,3,1,0,4) is also a bitonic sequence, because it is a cyclic
shift of (0,4,7,8,3,1). We will represent a bitonic sequence by a diagram
consisting of a polygonal chain composed of line segments intersecting at
their internal endpoints, with at most one local maximum and one local
minimum. Each line segment represents a monotone sequence. Figure 2.14
shows the diagrams of two bitonic sequences. In part (a) there is one local
maximum, and in part (b) there is one local maximum and one local
minimum. If the number of line segments is 1 or 2, then the diagram is
a bitonic sequence. If the number of line segments is more than 2, then the
diagram is a bitonic sequence if and only if there does not exist a horizon-
tal line that intersects the polygonal chain at more than 2 points. To see
this, consider Fig. 2.15, which shows the diagram of a sequence with three
intersections of the polygonal chain with a horizontal line.

The sequence corresponding to this diagram is (ai,...,ai,...,a;,
..., Gp), where 1 < i < j < n, with the following inequalities: a; > a;,a; <
aj,a; > a, and a, < ai. If this sequence is bitonic, then the sequence
a = (a1,a4,a;j,a,) such that a1 > a; < a; > a, < ap is bitonic. Then,
it is possible through circular shifts to transform « into two monotonic

(a) % (b) w

Fig. 2.14. Bitonic sequences.

Shared-memory Computers (PRAM) 37

Fig. 2.15. A non-bitonic sequences.

sequences, one increasing followed by one decreasing. It can be shown, how-
ever, that a cannot be converted to such a sequence. Hence, the sequence
is not bitonic.

Now, consider the sequence o’ obtained from « by increasing the value
of a, so that a,, > ay. Then, we have a1 > a; < a; > ay, > a1, and thus o/
is bitonic, as it can be transformed into o = (a;, a;, an, a1), which consists
of two monotonic sequences. The diagram of o’ is similar to the one shown
in Fig. 2.14(b); there does not exist a horizontal line that intersects this
diagram at more than 2 points. The diagram of o is similar to the one
shown in Fig. 2.14(a).

Example 2.12 Consider the sequence a = (4,1, 6,3). Its diagram is the
one shown in Fig. 2.15. In this sequence, 4 > 1 < 6 > 3 < 4, so « is
obviously not a bitonic sequence. However, if we change 3 to 5 to obtain
o' = (4,1,6,5), the new sequence is bitonic since in this case 4 > 1 <
6 > 5 > 4. Its diagram is similar to the one shown in Fig. 2.14(b). With
one cyclic shift, o/ is converted to o” = (1,6,5,4), which consists of two
monotonic sequences — one increasing and one decreasing. Its diagram is

similar to the one shown in Fig. 2.14(a). O
Let S = (a1, as,...,a,) be a bitonic sequence. Define
S1 = (min(a1, @y 241), min(az, a,/o42), . .., Min(a, /2, an)), (2.2)
and

Sy = (max(ai, a,/241), max(ag, ap242), - - -, MaX(Ay /2, Gn). (2.3)

38 Parallel Algorithms

(b)

Fig. 2.16. Bitonic sequences.

(b)

Fig. 2.17. Bitonic sequences example.

Then, both S; and S5 are bitonic sequences. Moreover,
max(S1) < min(Sz). (2.4)

Consider, for example, the bitonic sequence wu,v,w,z,y shown in
Fig. 2.16(a). Here, the line segment w,v accounts for approximately half
the elements in the sequence. Shift the line segment @, v to the right until
the vertex u is aligned vertically with w. The resulting line segment v/, v’
intersects the line segment T, 7 at the vertex z. Then, S; = v/, 2,y and
Sy = w,x,2,v as shown in Fig. 2.16(b) are bitonic. It is clear from the
figure that max(S7) < min(Ss).

Example 2.13 Consider the bitonic sequence S = (2,3,5,7,9,10,8,6,4,1)
shown in Fig. 2.17(a). If we apply the procedure described above for split-
ting this sequence, we obtain the two bitonic sequences S; = (2,3,5,4,1)
and Se = (9,10,8,6,7) shown in Fig. 2.17(b). Sz is a cyclic shift of the
sequence (10,8,6,7,9). Furthermore, max(S;) =5 < 6 = min(Ss). O

By Eq. (2.4), every element of the sequence Sy is less than or equal
to every element of the sequence S;. Thus, the problem of sorting the

Shared-memory Computers (PRAM) 39

elements in S is reduced to sorting the elements in S; and S separately.
This is summarized in Algorithm BITONICMERGE. It is important to note
that the input to the algorithm is a bitonic sequence S of length n, where n
is a power of 2, and the output is the elements in S in sorted order. The
algorithm first computes S; and S as in Eqs. 2.2 and 2.3. Now, S7 and S
are bitonic sequences, so the algorithm recursively computes the two sorted
sequences S7 and S5, and returns their concatenation sequence S7|[S%.

Algorithm 2.17 BITONICMERGE
Input: A bitonic sequence S = (a1, a2, ...,a,), where n is a power of 2.

Output: The elements in S in sorted order.

1. if |S| =1 then return S
2. for i+ 1 to n/2 do in parallel

if a; > a;4n/2 then interchange a; and a;, /2
end for
S1 = (a1, a2,...,an/2)
S2 = (@n /2415 Anj2425 - -5 An)

S| < BITONICMERGE(S1)
S5 < BITONICMERGE(S>)

© XN oW

return S7||S%, the concatenation of S and S35

Algorithm BITONICMERGE works on the EREW PRAM with n pro-
cessors. The running time is ©(logn) and the total amount of work is
O(nlogn), which is not optimal in view of the O(n) time sequential
algorithm.

Example 2.14 Consider the instance given in Fig. 2.18. Line 1 is the
input bitonic sequence. Line 2 shows the first split into two bitonic
sequences. Lines 3 and 4 show the second and third splits, respectively. O

25786431
2
21
1121

78
1738
6

4
|
3 1718

_ W W
B~ b=

W N N

Fig. 2.18. Bitonic merge example for n = 8.

40 Parallel Algorithms

(a) (b)
A St SR
y max(x, y) y min(x, y)

Fig. 2.19. (a) Increasing comparator. (b) Decreasing comparator.

O——0

N
N4

2 2 ~ 2 ~ 1
7p
5 o 4 \f 1 ;g 2
7 o 3 é\r 3 o 3
1 |

8 ~ 4 A 4
A\ N\ N

6 5
6 O 6 O

4 p 5 T 5 LIJ 6

3 rL 7 g 7 fi 7
A\

Fig. 2.20. Bitonic merge network for n = 8.

A comparator is a devise with two inputs x and y, and two outputs
min(z,y) and max(z,y). It is either an increasing comparator, shown in
Fig. 2.19(a), or decreasing comparator, shown in Fig. 2.19(b). A network
of comparators is composed solely of wires and comparators. Algorithm
BITONICMERGE can be implemented on a network of comparators, also
called a merging network, as illustrated in Fig. 2.20. A sample input of a
bitonic sequence OR bitonic sequences are shown on the wires. The merging
network with n inputs consists of logn columns, called stages.

2.12.1 Bsitonic sorting

Bitonic sorting essentially works like Algorithm MERGESORT in that it
divides the input into two halves, sorts each half recursively and uses Algo-
rithm BITONICMERGE to merge the two sorted sequences. It is given in
Algorithm BITONICSORT. To merge two monotonic sequences S7 and S5
sorted in ascending order, first reverse S% and form the bitonic sequence
S3 obtained by concatenating S{ and S5, where S4 is the reverse of S5.
Finally, apply Algorithm BITONICMERGE to Ss.

Shared-memory Computers (PRAM) 41

Algorithm 2.18 BITONICSORT
Input: A sequence S of n elements, where n is a power of 2.

Output: The elements in S in sorted order.

1. if |S| > 1 then

2. S14 (a1, a2, ..., a,/2)

S2 4= (An /2415 Anj242s - -5 0n)

S} BITONICSORT(S1)

S5+ BITONICSORT(S2)

S < Reverse of S)

S3 < S1]|S%, the concatenation of S7 and S5
S <~ BITONICMERGE(S3)

®© N T w

9. return S
10. end if

The algorithm uses n processors on the EREW PRAM. Obviously, the
time needed in each recursive call is ©(logn). Hence, the running time of
the algorithm is governed by the recurrence

c ifn=1

Tn) = {T(n/2) +0O(logn) ifn>2,

whose solution is 7'(n) = ©(log®n). The work done by the algorithm is
W (n) = ©(nlog?n), which is not optimal.

Theorem 2.3 Algorithm BITONICSORT correctly sorts a given sequence
of numbers in ascending order.

Proof. By the zero-one principle (Lemma 2.1, we may assume that the
input consists of 0’s and 1’s. Let A and B be two strings of 0’s and 1’s such
that |A] 4+ |B| = n, and assume without loss of generality that n = 2™ > 2.
The proof is by induction on m. If m = 1, then clearly the input will
be sorted, so assume that the algorithm correctly sorts its input for all
powers h, 1 < h < m, and let |A|+ |B| = 2™. First, A and B will be sorted
separately, and B will be reversed, and so they will look like the following:

A=017, B=1k0"

Next, some 1’s in A will be swapped with 0’s in B by Step 3 of Algorithm
BITONICMERGE. Let A’ and B’ be A and B after swapping, respectively.

42 Parallel Algorithms

If 7 <1, all I’s in A will be swapped with 0’s in B, and A" will consist of
0’s only. In this case, A" and B’ will look like:

A =0, B =1F071,

If, however, j > [, then [1’s in A will be swapped with [0’s in B, and A’
and B’ will look like the following:

A =017, B =1k

Finally, A’ and B’ will be merged separately and concatenated by Algorithm
BITONICMERGE to produce A”||B”, which is sorted in ascending order. [

We can derive a sorting network by unrolling recursion as follows:
Starting from n = 1, any sequence of length 1 is monotonic, and hence
any sequence of length 2 is bitonic. In the first stage of bitonic sort,
bitonic sequences of size 2 are merged to create ordered lists of size 2.
If these sequences alternate between being ordered into increasing and
decreasing order, then at the end of this stage of merging, we have n/4
bitonic sequences of size 4. In the next stage, bitonic sequences of size 4
are merged into sorted sequences of size 4, alternately into increasing and
decreasing orders so as to form n/8 bitonic sequences of size 8. Given an
unordered sequence of size n, exactly logn stages of merging are required to
produce a completely ordered sequence. Figure 2.21 shows a bitonic sorting

3 3 3 2
5 +O+0—2-0 o o %—1
5
376 T ° 5 Iy 4 Tﬂ 1
To 2] :
8 8 6 3
BE @ O — 3
6 8 1 /L 4
6 —| C O 4
7 6
_ 1 5 5 .
4
1| ’ N ° Tﬂ 5 -
O 6
4 z A
4@ @) 1 7
2 1 8 /L 8
2 — O O — 8

Merge (2) Merge (4) Merge (8)

Fig. 2.21. Bitonic sort network for n = 8.

Shared-memory Computers (PRAM) 43

network with sample input of size 8. This network has three stages labeled
Merge(2), Merge(4) and Merge(8). Stage 3 in the figure is identical to the
merging network of Fig. 2.20.

2.13 Pipelined Mergesort

Recall the parallel bottom-up merge sorting algorithm, Algorithm PAR-
BOTTOMUPSORT, discussed in Section 2.9.3. The algorithm works by merg-
ing pairs of consecutive elements, then merging consecutive pairs to form
4-element sequences, and so on. The running time of the algorithm was
shown to be O(lognloglogn). In fact, there is a Q(loglogn)-time-lower
bound for merging two sorted sequences of n elements using n processors
on the CREW PRAM. In this section, we sketch an optimal ©(logn) time
algorithm for sorting n items on the CREW PRAM with O(n) processors.
The algorithm can be modified to work on the EREW PRAM with the same
time complexity. It is a modification of Algorithm PARBOTTOMUPSORT, in
which merges are pipelined efficiently. We will assume in this section that
the elements to be sorted are all distinct and that n is a power of 2.

Let a,b and ¢ be three numbers such that a < ¢. We say that b is
between a and c if a < b < c¢. We also say that a and ¢ straddle b.
Given a sequence A and an element a, recall that rank(a, A) denotes the
number of elements in A less than a. We will assume that all sequences
and arrays are implicitly augmented with —oo and oo, so the rank of the
minimum element is 1, not 0. Given two arrays A and B, the cross rank
R(A, B) = (rank(a, B) | a € A). Let a and b be two adjacent items in B (if
necessary, we let @ = —oo or b = 00). We define the range [a,b) to be the
interval induced by item a (including the cases a = —oo and b = o). Let
C be a sorted sequence of numbers. C' will be called a 3-cover or simply a
cover of A if each interval induced by consecutive elements of C' contains
at most three elements from A. More precisely, for any two consecutive ele-
ments a and ¢ in Co, the set {b € A | a <b < ¢} has at most 3 elements,
where Co, = {—00} U C'U {+00}. For example, if C' contains the numbers
9,18 and 30 while A contains 1, 5, 20, 23,25 and 35, then C is a 3-cover for
A. If, however, A also contains 28, then C' is not a 3-cover for A, since in
this case the number of elements between 18 and 30 is more than 3.

44 Parallel Algorithms

2.13.1 The algorithm

The sorting algorithm is described in terms of a complete binary tree T' with
n leaves. Initially, the n elements to be sorted are placed at the leaves of T',
one element per leaf, and the internal nodes contain empty sequences. Let v
be an internal node in the tree. L, will denote the sequence of leaves of the
subtree T, rooted at v. In the course of the algorithm, the internal nodes
of T will contain sorted sequences of elements. The task of node v is to sort
the sequence L,. The algorithm goes through stages t,1 <t < 3logn — 2.
By A,(t) we denote the sequence associated with node v at stage t. The
items in A, (t) will be a rough sample of the items in L,. As the algorithm
proceeds, the size of A,(t) increases, and A, (t) becomes a more accurate
approximation of L,, and it will always be a sorted subsequence of L,. We
say that node v is complete at stage t if and only if A, (t) = L,; otherwise v
is said to be active. Throughout the algorithm, node v from its left son x
a sorted sequence B, (t), and from its right son y a sorted sequence By (t)
hence producing the sequence B, (t + 1), which is sent to the parent of v.
In each of these sequences, the size of the next object is twice as big as the
size of the preceding one. That is, for all nodes v,

A, (t+ 1) = 2|A,(t)|, and |B,(t+ 1)] = 2|B,(t)].

We explain the processing performed in one stage at an arbitrary internal
node v of the tree. The array A,(t) is the array at hand at the start of
the stage; A, (t + 1) is the array at hand at the start of the next stage, and
A, (t—1) is the array at hand at the start of the previous stage, if any. Also,
in each stage, we will create an array B, (t) at node v; B, (t+ 1), B,(t —1)
are the corresponding arrays in respectively, the next, and previous, stage.
B, (t) is a sorted array comprising every fourth item in A, (t), for the active
node v.

The computation performed during each stage at each internal node v
comprises the following two phases:

(1) Compute B,(t)<+ a(A,(t)) and send it to the parent of v, where
a(Ay(t)) is computed as follows: If v is active, then «(A4,(t)) consists
of every fourth element of A, (¢). During the first stage after v becomes
complete, a(A,(t)) consists of every fourth element of A, (t). During
the second stage after v becomes complete, (A, (t)) consists of every

Shared-memory Computers (PRAM) 45

second element of A, (t), while in the third stage (A, (t)) consists of
every element of A,(¢).

(2) If v is active, then merge B,(t) with B,(t) using the cover A,(t) to
obtain A, (t + 1). That is, A,(t + 1)<« B, (t) U B,(t), where U denotes
merging. If v is complete, then v ignores its inputs B, (¢) and By(t).

By (1) above, three stages after node v becomes complete, its parent
becomes complete too. The exception is in stage 1 in which the nodes at
the level before the last merge their inputs and become complete in one
stage. Hence, the total number of stages of the algorithm is 3logn — 2.

Figure 2.22 illustrates the flow of the algorithm with n = 8 by depicting
stages 2-7, that is, after nodes d, e, f and g become complete. Note that
the total number of stages is 3log8 — 2 = 7. In part (c¢) of this figure, we
have A,(4) = {}, By(4) = (8) and B.(4) = (6). In part (d) of this figure,
we have A,(5) = (6,8), By(5) = (5,8) and B.(5) = (3, 6).

The proof of the following theorem is omitted.

Fig. 2.22. The flow of the algorithm with n = 8.

46 Parallel Algorithms

Theorem 2.4 B, (t) is a 3-cover of B,(t + 1).

We will need the following observation to show that the merge can be
performed in O(1) time.

Observation 2.1 Let A and C' be two sorted sequences such that C' is a
cover for A. Then, for any sorted sequence D, C'UD is a cover for A, where
U denotes the merge operation.

By the above theorem, B,(t — 1) is a 3-cover for B,(t) for each node .
By the above observation, since A, (t) = B,(t — 1) U By(t — 1), we deduce
A, (t) is a 3-cover for B,(t); similarly, A,(t) is a 3-cover for B, (t). Since
A, (t+1) = B,(t) U By(t), it follows that A, (¢) is a 3-cover for A, (t+ 1).

We will assume that R(A,(t), Bx(t)) and R(A,(t), By(t)) are available.
Let a be an item in B,(¢); the rank of a in A, (t+1) = B, (t)UB, () is equal
to the sum of its ranks in B, (t) and B,(t). So to perform the merge we
compute the cross ranks R(B,(t), By(t)) and R(By(t), Bx(t)) (the method
is given below).

2.13.2 Computing and maintaining ranks

In order for the algorithm to perform the merges quickly in ©(1) time, we
show how to compute the ranks in ©(1) time. We compute and maintain
ranks as described in the following steps.

(1) The first step is to compute R(B,(t), A,(t)) and R(By(t), A,(t)). For
two adjacent items a and b with a < b, recall that the interval induced
by item a is the range [a,b) (including the cases a = —oo and b = 00).
Let u be an item in A,(t); u may be —oo. Consider the interval I(u)
in A,(t) induced by wu, and consider the set of items X (u) in B, (t)
contained in I(u) (there are at most three items in X (u) by the 3-cover
property). X (u) can be found in ©(1) time since R(A,(t), Bx(t)) is
available, which means rank(u, B;) is known. Each item a in X (u) is
given its rank in A, (¢) as rank(a, A,(t)) = rank(u, A,(t)) + 1 (note
that all elements are distinct, which means a > u). For example, in
Fig. 2.22(d), with ¢t = 5, we have A,(5) = {6,8}, By(5) = {5,8}.
If we let w = —oo, then I(u) = (—00,6) and X(u) = {5}. Hence,
rank(5, A4(5)) = 04+ 1 = 1. This takes care of R(By(t), A,(t)). We
repeat the symmetrical procedure to compute R(B,(t), A,(t)). These

Shared-memory Computers (PRAM) 47

Av(t) wes 0 o o °

o o O wusw == O O ©0 O O O O

Bx() a <a >a By()

Fig. 2.23. Computing R(B,(t), By(t)).

ranks are needed for computing R(B,(t), By(t)) and R(By(t), By(t)),
which are required by the merge step A, (t + 1)< B,(t) U By(t).

Now, we show how to compute R(B(t), By(t)); R(By(t), Bz(t)) can be
found in a similar fashion. Let a be an item in B,(t); we show how to
compute its rank in By (t). (See Fig. 2.23.) We determine the two items
b and ¢ in A,(t) that straddle a, using rank(a, A,(t)) computed above.
Suppose that b and ¢ have ranks r and ¢, respectively, in B, (¢). Then, all
items of rank 7 or less are smaller than item a (recall we assumed that
all the inputs were distinct), while all items of rank greater than ¢ are
larger than item a; thus the only items about which there is any doubt
as to their sizes relative to a are the items with rank s, < s <t. But
there are at most three such items by the 3-cover property. By means
of at most two comparisons, the relative order of a and these (at most)
three items can be determined.

At this point, we find the value for each item a in B,(t), using its
rank in By (t) computed above, the two items b and ¢ in B, (t) that
straddle a, and the ranks of b and ¢ in A, (¢t + 1). Similarly, we find the
value for each item d in By (t), using its rank in B,(t), the two items e
and f in B, (t) that straddle d, and the ranks of e and f in A, (¢t + 1).
This information is needed for computing R(A,(t 4+ 1), B.(t + 1)) and
R(A,(t+1),By(t +1)).

Now, we show how to compute R(A,(t 4+ 1), B.(t + 1)) and R(A,
(t+1),By(t + 1)) can be found by a similar means. For each item
ain A,(t + 1), we want to determine its rank in B, (¢ + 1). Given the
ranks for an item from A, (¢) in both B.(t) and B,(t), we can imme-
diately deduce the rank of this item in A,(t + 1) = B.(t) U By(t)
(the new rank is just the sum of the two old ranks). Similarly, we

48

Parallel Algorithms

obtain the ranks for items from A, (t) in A,(t + 1). This yields the
ranks of items from B,(¢t) in B,(t + 1) (for each item in B,(t)
came from A,(t), and B,(t + 1) comprises every fourth or second
item in A,(t + 1), or every item in A,(t + 1)). Consequently, for
a € B,(t),rank(a, By(t + 1)) = trank(a, A, (t + 1)), if in stage t + 1 «
is active or in the first stage after being complete, rank(a, B,(t + 1)) =
irank(a, A, (t + 1)), if in stage ¢t + 1 z is in the second stage after
being complete, and rank(a, B,(t+ 1)) = rank(a, A,(t+ 1)), if in
stage t + 1 = is in the third stage after being complete. For exam-
ple, in Fig. 2.22, if ¢ = 4, then we have Ay(4) = {2,5,7,8},
Bb(4) = {8},141,(5) = Ab(4), Bb(5) = {5,8}, and rank(S,Bb(5)) =
srank(8, 4,(5)) = 2 (note that stages 4 and 5 are in parts (c) and
(d) of the figure). Thus, for every item in A, (¢t 4+ 1) that came from
B, (t) we have its rank in B, (t+ 1); it remains to compute the rank for
those items in A, (¢t + 1) that came from B, (t).

Let a be an item in By (t). We compute rank(a, B, (t 4+ 1)) as follows:
Recall that for each item a from B, (t), we computed the straddling
items b and ¢ from B, (¢). (See Fig. 2.24.) We know the ranks r and ¢ of b
and ¢, respectively, in B, (t+1) (as asserted in the previous paragraph).
Every item of rank r or less in B, (¢ + 1) is smaller than a, while every
item of rank greater than ¢ is larger than a. Thus, the only items about
which there is any doubt concerning their size relative to a are the items
with rank s, < s < t. But there are at most three such items by the
3-cover property. As before, the relative order of a and these (at most)
three items can be determined by means of at most two comparisons.

b
AGHD) o P e e e « from B.()
v a y

o from Bx(t)

Bx(t+1)
a0 0 ©O©0 ©0 0 0 0 0 0 ©

<a >a

Fig. 2.24. Computing rank(a, Bz(t + 1)) for a € By(t).

Shared-memory Computers (PRAM) 49

2.13.3 Analysis of the algorithm

It is not difficult to prove that the merge step takes O(1) time at each stage
of the algorithm, given that we assign a processor to every array element.
Hence, the total running time is ©(logn). Now, we estimate the number of
processors needed, which is equal to the total array elements at any stage
of the algorithm. First, we compute the total number of items in the A(t)
arrays. Let v be an internal node, and assume, as before, that and y are
the children of v. If |4, (¢)| # 0 and z is not complete, then

2[4, ()] = Ao (t + 1] = [Bz (t)|+By(t)| = i(|Az(t)|+|Ay(t)|) = %IAx(t)l,

that is, | A, ()] = 1|44 (t)]. So the total size of the A(t) arrays at v’s level is
% the size of the A(t) arrays at 2’s level, if 2 is not complete (the number
of nodes at v’s level is % of that at 2’s level). This need not be true at
complete nodes x. It is true for the first stage in which x is complete; but
for the second stage, |A,(t)] = 3|A.(t)|, and so the total size of the A(t)
arrays at v’s level is % of the total size of the arrays at x’s level; likewise, for
the third stage, |4, (t)| = |A.(t)], and so the total size of the A(t) arrays
at v’s level is 1 of the total size of the A(t) arrays at x’s level.

Thus, on the first stage in which x is complete, the total size of the
A(t) arrays is bounded above by n +n/8 +n/64 + --- = n+ n/7; on the
second stage, by n +n/4 +n/32 + -+ = n + 2n/7; on the third stage,
by n+mn/2+4+n/16 + - = n+ 4n/7. Using a similar argument, it can be
shown that on the first stage, the total size of the B(t) arrays is bounded
above by 2n/7; on the second stage, by 4n/7; on the third stage, by 8n/7.
We conclude that the algorithm needs ©(n) processors (so as to have a
processor standing by each item in the A(t) and B(t) arrays) and takes
constant time for the merge step.

The following theorem summarizes the main result. Its proof follows
from Theorem 2.4 and the algorithm’s description and timing analysis.
Recall that the algorithm can be modified to run on the EREW PRAM
with the same complexities.

Theorem 2.5 The pipelined mergesort algorithm sorts a sequence of n
elements in ©(logn) time using ©(n) processors on the EREW PRAM.

50 Parallel Algorithms

2.14 Selection

The problem of selection is defined as follows: Given a sequence A =
(a1, ag,...,a,) of n elements and a positive integer k,1 < k < n, find the
kth smallest element in A. A straightforward solution would be to sort A
in O(logn) time and return the kth smallest element. However, the work
done by this approach is ©(nlogn), which is not optimal. There is an opti-
mal sequential algorithm that runs in ©(n) time. It can be shown that this
sequential algorithm can be parallelized to run on the PRAM in @(1og2 n)
time using n/logn processors. In this section, we present an algorithm,
which is shown as Algorithm PARSELECT, to solve the selection problem,
that runs in time O(lognloglogn) and uses n/logn processors. This algo-
rithm is a modification of the parallel version of the sequential selection
algorithm.

Algorithm 2.19 PARSELECT
Input: A sequence A = {(ai,...,a,) of elements and an integer k, 1 < k < n.

Output: The kth smallest element in A

1. ¢« 1/log (4/3)
2. for j+ 1 to |cloglogn|
3. Divide A into |A]/log|A| groups of log |A| elements each.
4. Find the median of each group individually.
Let the set of medians be M.
5. Sort M and find its median m.
6. Partition A into three sequences:
Ar={a|a<m}
Az ={a|a=m}
Az ={a | a>m}
7. case
‘A1| 2 k: A+ Al
|Ai| + |Az2| > k: return m

|A1] + |A2| < k:
. A= As
9. k+k—]A1] — |Az]
10. end case
11. end for

12. Sort A and return the kth smallest element in A.

Shared-memory Computers (PRAM) 51

The for loop is executed cloglogn times, where ¢ = 1/log (4/3), after
which the number of elements in A drops to O(n/logn). The algorithm
then sorts A using the pipelined mergesort algorithm and the kth smallest
element is returned in O(logn) time, using O(n/logn) processors. Within
the for loop, first A is partitioned into |A|/log|A| blocks of log | A| elements
each. The median of each block is found using one processor in ©(|AJ)
sequential time, and the median of medians m is computed by sorting the
set M using the pipelined mergesort algorithm in ©(log(]A|/log|A|)) =
O(logn) time, using O(|A|/log|A|) processors. A is then partitioned to Ay,
of elements smaller than m, A, of elements equal to m and A3 of elements
greater than m. If |[A;]| < k < |A;| + |As2|, the algorithm terminates and
returns m. Else, if [A;| > k, A is set to A;. Otherwise, if |A;| 4+ |Az| < k,
then A is set to Az and k is set to k — |A1]| — | As|.

Partitioning A can be achieved by labeling the elements in A with num-
bers 1,2 and 3 according to whether a < m,a = m or a > m, respectively.
Then, the parallel prefix algorithm can be used to extract and compact
the arrays Aj, A2 and Asz. This can be achieved in ©(log|A|) time using
O(]A]/log|A|) = O(n/logn) processors. It follows that the for loop takes
O(logn) time in each iteration.

If we let s denote the group size, then the median of medians m is
smaller than (and greater than) at least (|A|/2s)(s/2) = |A|/4 elements.
That is, it is greater than (and smaller than) at most 3|A|/4 elements
(Exercise 2.17). Thus, in the second iteration, |A| < 3n/4, and in the jth
iteration |A| < (3/4)’n. Consequently, after |cloglogn| iterations, the size

of A is at most
3 cloglogn
(Z) Xn

= (logn)cle /4 x
n
(log n)clog (4/3)
n
(log r)1°% (4/3)/ 108 (473)
n

- logn

Therefore, in Step 12, there will be enough processors to sort A in
O(logp) = O(logn) time. Since the time required in each iteration is

52 Parallel Algorithms

O(logn), the running time of the algorithm is O(log n loglogn). The work
done in each iteration is O(|A|). Hence, the total work done is at most

n+ (3/4)n+ (3/4)*n 4+ --- 4 (3/4)lelosloenly — 9(n),

which is optimal. However, the cost, which is O(nloglogn), is not optimal.

2.15 Multiselection

Let A = (a1, aq,...,a,) be a sequence of n elements drawn from a linearly
ordered set, and let K = (k1,ka,...,k,) be a sorted sequence of positive
integers between 1 and n. The multiselection problem is to select the k;th
smallest element for all values of ¢, 1 < ¢ < r. To make the presentation sim-
ple, we will assume that all elements in A are distinct. Consider Algorithm
PARMULTISELECT1. The algorithm initially uses n/logn processors. In the
two recursive calls, it uses p|A;|/|A| and p|As|/|A| processors, where p is
the current number of processors. The recurrence for the running time of
this divide and conquer algorithm is T'(n, r) = T'(n,r/2)+ O(logn loglogn)
since we used the parallel algorithm for selection, Algorithm PARSELECT, of
Section 2.14. As the recursion depth is log r, the solution to this recurrence
is T'(n,r) = O(lognloglognlogr).

Algorithm 2.20 PARMULTISELECT1
Input: A sequence A = (a1, az,...,an) of n elements, and a sorted sequence
of r positive integers K = (k1, k2, ..., kr). The number of processors p.

Output: The k;th smallest element in 4, 1 <7 <.

1. 7+ |K]|
2. If r > 0 then

Set k = kH/g].V
Use Algorithm PARSELECT to find a, the kth smallest element in A.

Output a.

Let A1 = (a; | ai < a) and Az = {a; | ai > a).
Let K1 = (ki, k2, ..., krr/2'|71> and

Ky = (krpjo141 — K krrjogee — ko oo ke — k).
8. PARMULTISELECT1 (A1, K1, p|A1|/|A]).

9. PARMULTISELECT1 (A2, K2, p|Az|/|A|).

10. end if

NS oW

Shared-memory Computers (PRAM) 53

In the remaining of this section, we present an efficient algorithm to
solve this problem that runs in time

T(n,p) = O((n/p + ts(p,p))(logr +log(n/p)))

on the PRAM with p processors, r < p < n, where ts(p,p) is the time
needed to sort p elements using p processors. If p = n/logn, the running
time becomes T'(n,n/logn) = O(log n(logr + loglogn)).

In the algorithm to be presented, we will use the following notation
to repeatedly partition A into smaller subsets: Let a € A with rank k,.
Partition A into two subsets A’ = {z € A|x < a} and A" = {x €
A | x > a}. This partitioning of A induces the following bipartitioning of
K:B ={keK|k<kand B ={k—k, | k€ Kand k > k,}. In
this case, we will call each of (A, B’) and (A", B"”) a selection pair. Let
(A, B’) be a selection pair. We will label (4’, B’) as “active” if |B’| > 0;
otherwise it will be called “inactive”. The algorithm is given as Algorithm
PARMULTISELECT?Z2.

We turn to the analysis of the algorithm. First, we allocate a number
of processors for each active set. Specifically, we assign p’ = (|A|/s)p pro-
cessors for active set (A, B), where s is the number of remaining elements
computed in Line 15. There are enough processors for all active sets. The
set A is partitioned into p’ groups of w = |A|/p’ = s/p elements each. Note
that w < n/p = q. The median of medians m is smaller than (and greater
than) at least (JA|/2w)(w/2) = |A|/4 elements. That is, it is greater than
(and smaller than) at most 3|A|/4 elements (Exercise 2.17). Hence, after
clogr iterations, the size of each subset is at most

3 clogr y
1 n

— Tclog(3/4) NE)
n
=)
n
rlog (4/3)/log (4/3)
n

r

54 Parallel Algorithms

Algorithm 2.21 PARMULTISELECT2

Input: A sequence A = (ai1,...,an) of elements and a sorted sequence of
positive integers B = (ki,k2,...,kr), 1 < k; < n. The number of]
processors p.

Output: The k;th smallest element in A, 1 <7 <.

1. L+ {(A, B)}; Mark (A, B) “active”; s<—n; ¢+ n/p.

2. ¢+ 1/log(4/3)
3. Repeat Steps 4-16 c(logr + log q) times.
4. for each active pair (A, B) € £ do in parallel
5. Assign p’ = (|A]/s)p processors for active set (A, B).
6. if |[A| < p’ then sort A and return the k;th smallest element for
1<i<|Bl
else do
w<— |A|/p" = s/p. Partition A into p’ subsequences
A1, Aa, ..., Ay of size at most w < ¢ each. Find the
median m; of each A;. Sort these medians to obtain the
median of medians m.
9. Find k, the rank of m in A.
10. Partition A into A’ and A”, where A’ (resp. A”) is the set of

elements in A less than or equal to (resp. greater than) m.
11. Partition B into B’ and B”, where B’ (resp. B") is the set

of elements in B less than or equal to (resp. greater than) k.
Subtract k from each rank in B”.

12. Replace (A, B) in £ by (A’, B’) and (A", B").

13. If B’ is empty, then mark (A’, B") as “inactive”; otherwise
mark it as “active”. If B” is empty, then mark (A", B"”) as
“inactive”; otherwise mark it as “active”. Discard inactive

pairs.
14. end if
15. Let s be the number of all remaining elements.
16. end for

17. Sort all partitions A in all active pairs (A, B) € £, and for each element
in B return its corresponding element in A.

We observe that if A is partitioned into more than r subsets, then at
most r of these subsets are active, and the rest are inactive, since the num-
ber of ranks in B is < r. Consequently, after clogr iterations, there are
at most r subsets of size at most n/r each. Clearly, after clogq additional

Shared-memory Computers (PRAM) 55

iterations, the size of active subsets in the first stage will be reduced fur-
ther by a factor of ¢, so that the size of each subset is upperbounded by
n/rq = p/r. In other words, after clog ¢ additional iterations, there are at
most r subsets of size at most p/r each.

Now, we compute the overall time needed by the algorithm in the first
log r iterations. Consider an arbitrary iteration where there are a number
of subsets of total size less than or equal to n. We analyze the running
time taken by a pair (A4, B) of maximum size, that is, | 4] < n is maximum
among all active pairs. Finding the medians m; takes O(q) sequential time.
Sorting the medians can be done in ts(|A|/w,p") = ts(p',p") < ts(p,p)
parallel time. Computing k, the rank of m in A, and the sets A’ and A”
can be achieved in O(w 4 logp’) = O(q + log p) parallel time using parallel
prefix and compaction. Since K is sorted, both B’ and B” are computed
using parallel p-search in O(log,, r) = O(log r/ log p’) time. Hence, the time
needed by the first logr iterations is

log? r
@ ((Q+ts(p,p) +logp)logr + —= ,) :
logp
Observe that t5(p,p) > logp and since r < p, we have

log?® r - logplogr
logp’ = logyp’

< logplogr.

Hence, the above expression reduces to

O((q + ts(p,p)) logr) = O((n/p + ts(p, p)) log 7).

The time taken by the next log q iterations is asymptotically the same as
that taken by the first log r iterations, except that the number of iterations
log r is replaced by log gq. Hence, the remaining iterations can be completed
in time O((q + ts(p, p))log q) = O((n/p + ts(p, p)) log(n/p)).

As to the sorting step in Line 17 of the algorithm, we have at most r
subsets of size at most n/rq = p/r each to be sorted. If we allocate p/r pro-
cessors to each of the r subsets, the time needed for sorting is ts(p/r, p/r),
which is negligible.

It follows that the time complexity of the algorithm is

T(n,p) = O((n/p + ts(p,p))(logr +log(n/p))).

56 Parallel Algorithms

If, for example, we set p =n'~¢, 0 < € < 1, we may use a simple O(log? p)
sorting algorithm, and the above expression reduces to

T(n,n'~) = O((n* + log” p)(log r + log(n)))
= O(n(logr + log(n))),

which is optimal for » > n€, since the cost of the algorithm will be O(n logr).
If, on the other hand, we set p = n/logn and use the pipelined mergesort
algorithm of Section 2.13, the time complexity becomes

T(n,n/logn) = O((logn + log(n/logn))(logr + loglogn))
= O(logn(logr + loglogn)),

which is optimal for r > logn. This is superior to the running time of
Algorithm PARMULTISELECT1. If we let » = O(logn), the time complexity
becomes O(lognloglogn), which is the same as the running time for the
classical selection of one element presented in Section 2.14. In the special
case when r = 1 and p = n/logn, the running time reduces to that of the
O(logn loglogn) parallel selection algorithm of Section 2.14.

2.16 Matrix Multiplication

Given two n x n matrices A and B, consider the problem of computing the
product C' = AB, where n = 2 for some positive integer k. Assume that
there are n? processors available, labeled P; ;1,1 <14,7,1 <n. Each entry
ci,; of C is the dot product of two vectors: row i of A and column j of B.
First we present an algorithm for the dot product. Algorithm bOTPRODUCT
computes the dot product of two given vectors row ¢ of A and column j
of B of dimension n each using n processors. Lines 1 and 2 compute
W = Ali,*|B[*,j] in ©(1) time. The rest of the algorithm is similar to
Algorithm PARADDITION in Section 2.2. The second for loop copies the
numbers in W into V[n],V[n + 1],...,V[2n — 1], which correspond to the
leaves of the binary tree. The for loop in Line 5 is repeated £ = logn
times, once for each internal level of the tree. The for loop at line 6 is for
performing 2" additions in parallel, r = k—1,k—2,...,0. (See Section 2.2).

Shared-memory Computers (PRAM)

57

Algorithm 2.22 DOTPRODUCT
Input: Two n X n matrices A and B and two indices ¢ and j, n = 2~.

Output: The dot product of row i of A and column j of B.

for [+ 1 to n do in parallel
W]+ Ali, 1] = B[l, j]

end for

for (<1 to n do in parallel
V[i+n—1]« W]

end for

for r< k — 1 downto 0 do
for t< 2" to 2""! — 1 do in parallel

Vit]« V[2t] + V[2t + 1]

end for

. end for

. return V[1]

© 0N O W=

—_ ==
O~ o

The algorithm for matrix multiplication is a parallelization of the

tradi-

tional ©(n?) time sequential algorithm. It is shown as Algorithm PARMA-

TRIXMULT. It uses n® processors. The n processors P; j 1, P jo2,...
compute C[i, j] using Algorithm DOTPRODUCT.

7Pi,j,n

Algorithm 2.23 PARMATRIXMULT
Input: Two n X n matrices A and B, n = 2",

Output: The product C' = AB.

1. for i+ 1 to n do in parallel
2 for j< 1 to n do in parallel
3. C[i, j]+ DOTPRODUCT(A, B, 1, j)
4. end for
5. end for

6. return C

Thus, the running time of the algorithm is dominated by the call to
Algorithm DoTPRODUCT, which takes ©(logn) time. The work done by the
algorithm can be computed as follows. Line 3 is executed n? times, and in
each call to Algorithm DOTPRODUCT, it performs ©(n) operations. Hence,
the work done by the algorithm is ©(n?). Notice that the algorithm requires

concurrent read capability, and hence it runs on the CREW PRAM.

58 Parallel Algorithms

2.17 Transitive Closure

Assume that an n x n adjacency matrix representation of a directed graph
G = (V, E) is given, where |V| = n. In such a representation, A(i,j) =1 if
and only if there is an edge from v; to v; in E, and A(i, j) = 0 if (v;,v;) ¢ E.
The transitive closure of A is represented as an n X n Boolean matrix A*
in which A*(i,7) = 1 if and only if there is a path in G from v; to v,.
A*(i,7) = 0 if no such path exists. One way to obtain the transitive clo-
sure of A is to compute A™ by performing [logn] operations of squaring the
matrix: Ax A = A%, A2 x A? = A*, and so on until a matrix A™ is obtained
where m > n. Here, we use the Boolean matrix multiplication method, in
which the operations of scalar multiplication and addition in the standard
matrix multiplication are replaced by the logical “AND” and “OR” opera-
tions, respectively. Since there are [logn] matrix multiplications, A* = A™
can be obtained in time ©(log”n) with ©(n?) processors on the CREW
PRAM using Boolean matrix multiplication (see Section 2.16). The total
number of operations is O(n3logn).

2.18 Shortest Paths

Let G = (V, E) be a weighted directed graph on n vertices, in which each
edge (i,7) has a weight wli, j]. If there is no edge from vertex i to vertex j,
then wli, j] = co. For simplicity, we will assume that V' = {1,2,...,n}. We
assume that G does not have negative weight cycles, that is, cycles whose
total weight is negative. The problem is to find the distance from each
vertex to all other vertices, where the distance from vertex ¢ to vertex j is
the length of a shortest path from 7 to j. Let ¢ and j be two different vertices
in V. Define dﬁj to be the length of a shortest path from ¢ to j that contains
at most k edges, 1 < k < n — 1. Thus, for example, d; ; = wli,j], di;
the length of a shortest path from i to j that contains at most two edges,
and so on. Then, by definition, d;f;l is the length of a shortest path from i
to j, i.e., the distance from ¢ to j. Given this definition, we can compute

is

d¥ ; recursively as follows.

0 ifi=j
ko o T -
di ; = ¢ wli, j] ifk=1

min {d} +d}?} if k> 2.

Shared-memory Computers (PRAM) 59

Let DF be the matrix whose entries are df,j, 1 < 4,5 < n. Then, DF
can be obtained from D*/2 by squaring, except that the operations “+”
and “min” replace the usual matrix operations “x” and “+”, respectively.
Letting D' = (d} ;), we can use the operations “+” and “min” to evaluate
D2, D* ..., D™, where m is the smallest power of 2 > n — 1. This takes
[log(n — 1)] matrix multiplications. Hence, the running time is ©(log®n)
using ©(n?) processors on the CREW PRAM (see Section 2.16). The total

number of operations is O(n3logn).
2.19 Minimum Spanning Trees

Let G = (V, E) be a weighted undirected graph on n vertices, in which each
edge (7, 7) has a weight w[i, j]. If there is no edge from vertex i to vertex j,
then wli, j] = co. We will assume that V = {1,2,...,n}. A spanning tree T
of G is a subgraph T = (V| E’) such that T is a tree. In what follows, we
present an algorithm to construct a minimum spanning tree for a graph that
is denoted by its weight matrix. We will assume without loss of generality
that the weights are distinct. If they are not distinct, each weight of an
edge e can be appended by the label of that edge. The algorithm to be
presented is based on the following theorem whose proof is easy.

Theorem 2.6 Let G = (V, E) be a weighted undirected graph. Partition
the set of vertices into {Vi,V2}. Let e be the edge of minimum weight
connecting Vi and V. Then e belong to the minimum weight spanning
tree.

A rooted directed tree of G is a tree in which every edge is directed and
every vertex has outdegree 1. A rooted star is a rooted directed tree in
which every vertex is directly connected to the root. Figure 2.25(a) shows
a directed rooted tree, and Fig. 2.25(b) shows a rooted star.

The algorithm for finding a minimum spanning tree is given as Algo-
rithm PRAMMST. The algorithm proceeds through stages. In the beginning,
there is a forest of trees consisting of all vertices and no edges. Each tree con-
sists of exactly one vertex. Subsequently, during each stage, the edge with
the minimum weight incident on each tree is selected. The newly selected
edges are added to the current forest to yield a new forest. This continues
until there is only one tree in the forest, that is, the minimum spanning
tree.

60 Parallel Algorithms

(a) (b)

Fig. 2.25. (a) A directed rooted tree. (b) A rooted star.

Algorithm 2.24 PRAMMST
Input: A graph G represented by its n X n weight matrix W.

Output: A minimum spanning tree 7' of G.
1. T« {}; m=n.

2. while m > 1 do
3. for all vertices v € V(G) do

4 let C(v) = u, where W (v,u) = min{W (v,z) | # v}.
5. T+ TU{(u,v)}

6 end for

7 Shrink each directed tree of the forest defined by C to a

rooted star. Set m<— Number of rooted stars.

8. Compress each rooted star to a supervertex. Assign the
labels (numbers) 1,2,3,...,m to these supervertices.

9. Let W' be the reduced m x m adjacency matrix of the graph
whose rows and columns correspond to the newly created
supervertices.

10. Set W+« W'. Let G be the corresponding graph.
11. end while

In the algorithm, the vector C' defined by the newly selected edges
defines directed rooted trees. These rooted trees are converted to rooted
stars. Every star is then compressed into a superverter. In other words,
replace each star by a new vertex. Label these new vertices as 1,2,...,m,
where m is the number of stars. Let W’ be the reduced m x m adjacency
matrix of the graph whose rows and columns correspond to the newly cre-
ated supervertices. We store the edge (x,y) of the original graph next to the
W'(i,7) entry, where (z,y) is the edge of minimum weight connecting the
trees corresponding to supervertices ¢ and j. This will enable us to recover
an edge in the original graph quickly. It can be shown that the construction
of the matrix W’ from W takes O(logn) time using O(n?) processors on

Shared-memory Computers (PRAM) 61

the CREW PRAM (Exercise 2.49). The foregoing procedure of compressing
nodes, finding minimum-weight incident edges, and reducing the adjacency
matrix is continued until there is only one tree spanning all the vertices of G.

Example 2.15 Consider the graph shown in Fig. 2.26(a). During the first
iteration of the while loop, the adjacency vector C' is given by C(1)=2,
C2)=1,C3)=1,C4)=8,C()=17,C(6)=3,C(7) =5,and C(8) =4,
and the following edges are added to T: (1,2),(1,3),(4,8),(5,7),(3,6).
Hence, there are three rooted directed trees as shown in Fig. 2.26(b).
By Step 7, the rooted trees are converted to rooted stars as shown in
Fig. 2.26(c), and m is set to 3. The new matrix W with the newly
assigned labels, and augmented with the minimum weight edges is then
given by

00 5,(2,4) 10,(4,5)
5,(2,4) 00 12,(3,7)
10,(4,5) 12,(3,7) 00
The corresponding graph is shown in Fig. 2.26(d). The vertices in this

graph were labeled as 1, 2, and 3. Thus, vertex 1 represents the set {4, 8},
vertex 2 represents the set {1,2,3,6}, and vertex 3 represents the set {5, 7}.

{1,2,3,6} {5,7}

Fig. 2.26. Example of the construction of minimum spanning tree.

62 Parallel Algorithms

{1,2,3,4}
J(4.5)
{5.6,7.8}

Fig. 2.27. Example of the construction of minimum spanning tree.

Hence, during the second iteration, C'(1) = 2,C(2) = 1 and C(3) = 1,
and the following edges are added to T (2,4), (4,5). Figure 2.26(e) shows
the new rooted tree. Figure 2.26(f) shows the new star formed from the
directed rooted tree in Fig. 2.26(e). Next, m is set to 1, and the while loop
terminates. Figure 2.26(g) shows the resulting minimum spanning tree. [

Example 2.16 Consider the graph shown in Fig. 2.27(a). During the
first iteration of the while loop, the adjacency vector C is given by
C(1)=2,0(2) =1,C(3) =4,C(4) =3,C(5) =6,C(6) =5,C(7) = 8, and
C(8) = 7, and the following edges are added to T (1,2),(3,4), (5,6), (7, 8).
Hence, there are four rooted directed trees as shown in Fig. 2.27(b).
By Step 7, the rooted trees are converted to rooted stars as shown in
Fig. 2.27(c), and m is set to 4. The new matrix W with the newly assigned
labels, and augmented with the minimum weight edges is then given by

o 5(2,3) oo 8(L8)
5,(2,3) 00 7,(4,5) 00

o 7,45 oo 6,(6,7)
8,(1,8) 00 6,(6,7) 00

Shared-memory Computers (PRAM) 63

The corresponding graph is shown in Fig. 2.27(d). The vertices in this
graph were labeled as 1, 2, 3 and 4. Thus, vertex 1 represents the set
{1, 2}, vertex 2 represents the set {3,4}, vertex 3 represents the set {5,6}
and vertex 4 represents the set {7,8}. Hence, during the second iteration,
C(1) = 2,C(2) = 1,C(3) = 4 and C(4) = 3, and the edges (2,3) and
(6,7) are added to T. Thus, there are two rooted directed trees as shown
in Fig. 2.27(e). By Step 7, the rooted trees are converted to rooted stars
as shown in Fig. 2.27(f), and m is set to 2. The new matrix W with the
newly assigned labels, and augmented with the minimum weight edges is
then given by

00 7,(4,5)
7,(4,5) 00

The corresponding graph is shown in Fig. 2.27(g). During the third itera-
tion, the vector C' is given by C(1) = 2 and C(2) = 1, and the edge (4,5)
is added to T. Figure 2.27(h) shows the new rooted tree. Figure 2.27(i)
shows the new star formed from the directed rooted tree in Fig. 2.27(h).
Next, m is set to 1, and the while loop terminates. Figure 2.27(j) shows
the resulting minimum spanning tree. O

The running time is computed as follows. Step 4 of computing C' takes
O(logm) = O(logn) time using O(m?) = O(n?) processors, since it com-
putes m minima; one minimum per row. Step 7 of shrinking trees into stars
takes O(logm) = O(logn) using O(n) processors by the technique of pointer
jumping. As noted above, the construction of the m x m matrix in Step 9
takes O(logn) time using O(n?) processors. Steps 7 and 9 require simulta-
neous memory access, and hence the algorithm works on the CREW model.
After each iteration of the while loop, the number of stars is reduced by at
least a half, and hence there are at most log n iterations. It follows that the
overall running time of the algorithm is O(log®n) using a total of O(n?)
processors.

2.20 Computing the Convex Hull of a Set of Points

Let S = {p1,p2,...,pn} be aset of n points in the plane, where n is a power
of 2. The convex hull of S, denoted by CH(.S), is the smallest convex poly-
gon containing all the points of S. The convex hull is usually represented

64 Parallel Algorithms

(a) °) ¢ o)
(b) D
CH(S)

Fig. 2.28. (a) The set of points S. (b) Convex hull of S. (¢) Convex hulls of Sy
and Ss.

by a list of points, called vertices, ordered clockwise (or counterclockwise).
See Figs. 2.28(a) and (b) for an example, in which S consists of 32 points.
In what follows, we present a divide-and-conquer parallel algorithm to find
CH(S) in ©(logn) time using O(n) processors on the CREW PRAM.

As a preprocessing step, the points in S are first sorted in ascending
order of their z-coordinates in ©(logn) time using the pipelined merge-
sort algorithm. So, assume that z(p1) < x(p2) < -+ < x(p), where
x(p;) denotes the a-coordinate of point p;. We will assume for simplic-
ity that no three points of S are collinear, and no two points have the
same x-coordinate. Next, the set of points S is divided into two halves

Sl = <p17p27' . '7pn/2> and S2 = <pn/2+17pn/2+27 s 7pn> NOW7 we recur-
sively determine the two convex hulls of the two halves CH(S)) and

Shared-memory Computers (PRAM) 65

CH(S2). Figure 2.28(c) shows the two convex hulls of the points in part (a)
of the figure.

Consider the convex hull CH(S) shown in Fig. 2.28(b). Here, u and v
are the two points with minimum and maximum z-coordinates, respectively
(recall that no two points have the same a-coordinate). These two points
are clearly part of CH(S). The polygonal chain defined by the edges from
u to v in clockwise traversal is called the upper hull UH(S). The lower
hull, LH(S), is defined similarly as the polygonal chain defined by the
edges from v to u in clockwise traversal. The algorithm, after determining
CH(S1) and CH(S>), proceeds by constructing the upper and lower hulls
of S. The upper hull of S, UH(S), is constructed by joining UH(S;) and
UH (S2) by a line segment, called a tangent, such that C H(S7) and C H (S2)
are below it. The lower hull LH(S) is constructed in a similar manner to
obtain the desired CH(S). In what follows, we compute the upper tangent
and upper hull UH(S).

Let (z1,22,...,z,) and (y1,¥y2,...,ys) be the upper hulls UH(S;) and
UH(S3) of S1 and S, respectively. We now show how to find the line of
the tangent z*y* with the property that both of UH(S1) and UH(Ss) are
below it. That is, z*y* is a tangent to both UH (S1) and U H (S2). The most
crucial phase of the algorithm is the identification of the upper and lower
tangents. We outline the steps of the algorithm for determining x*y* in the
following two observations.

Observation 2.2 If z; is a vertex of UH(S1), its tangent line Z;0; with
UH (S2) can be found in ©(1) time using /s processors.

Proof. We find the vertex v; in UH(S2) such that Z;v; is a tangent of
UH (S5) as follows. Let y; be any vertex in UH (S2), and let y;_1 and y;41
be the two vertices to the left and right of y;, respectively. If z;y,y;-1 is
a right turn and z;y;y,11 is a left turn, then v; is to the right of y; (see
Fig. 2.29(a)). If x;y;yj—1 is a left turn and x;y;yj4+1 is a right turn, then
v; is to the left of y; (see Fig. 2.29(b)). If both x;y,;y;—1 and z;y,y,4+1 are
right turns, then v; = y; (see Fig. 2.29(c)). Hence, we do parallel search on
the set of vertices of UH (S3) using /s processors to identify the vertex yy
such that v; = yg. There are log ;s = 2 iterations in this search, which
implies that the running time is ©(1). O

66 Parallel Algorithms

}?+1

UH(S,)

Fig. 2.29. Tangents to UH(S2).

Observation 2.3 The common tangent z*y* of UH(S7) and UH(S2) can
be determined in ©(1) time using /r/s processors.

Proof. Let Z;u; be a tangent to UH(S3) at v; determined as described
in Observation 2.2, and let x;_1 and x;;1 be the two vertices to the left and
right of x;, respectively. If Z;7; is also a tangent to UH (Sy), then z* = ;.
If ;@0 is a left turn, then a* is to the left of x; (see Fig. 2.30(a)). If
x;—12;v; is a right turn, then a* is to the right of z; (see Fig. 2.30(b)).
This allows us to determine, for any given vertex x; of UH (S7), whether
the vertex x* appears to the left of, to the right of, or equal to z; in ©(1)
time. Thus, to locate z*, we do double parallel search, the outer search is on
the vertices of UH (S1), and for each vertex x; in UH (S1), we do the inner
parallel search on the vertices of U H(S3). The parallel search performed on
the set of vertices of U H (S2) is done as outlined in Observation 2.2 to obtain
the tangent T;7; and next, we the test for the location of z* relative to x; as
stated above. We will use /r processors for the outer search on the vertices
of UH(S1), and so there are log, 5 = 2 iterations in this search. We use NG
processors for the inner search on the vertices of UH (S2), which amounts

Shared-memory Computers (PRAM) 67

Fig. 2.30. Tangents to UH(S1).

5 UH(S) e y

yj+l
Yo"

Fig. 2.31. Upper hull of S, UH(S).

to two iterations for the inner search. Thus, the total number of processors
used is v/7v/s < n, that is, \/s processors for every vertex considered in
UH(S}). It follows that the overall running time to find the upper tangent
is ©(1) using v/rv/s < n processors. O

Observations 2.2 and 2.3 provide the steps for finding the upper common
tangent z*y*. The lower common tangent can be found in a similar fashion.
It remains to finish the construction of CH(S). Let z; = z* and y; = y*.
To construct UH (S), first, we remove the vertices x;1, Z;12,...,z, from
UH(S1) and remove the vertices y1,¥ya,...,y;—1 from UH(S2) to obtain
UH'(S1) and UH'(S2), respectively. That is, UH'(S1) = (x1,22,...,x;)
and UH'(S2) = (y;, Yj+1,- -, Ys). Next, connecting x; in UH'(S1) to y; in
UH’(S2) by the edge e = z*y* = Z;y; yields the desired upper hull UH(S)
(see Fig. 2.31). Finally, the problem of computing LH (S) can be solved in
a similar fashion.

68 Parallel Algorithms

The above discussion is summarized in Algorithm PARCONVEXHULL.
The recurrence for the running time of the algorithm is T'(n) = T'(n/2) +
O(1), which implies a running time of ©(log n). Clearly, there are concurrent
read operations, and hence the algorithm works on the CREW PRAM.

Algorithm 2.25 PARCONVEXHULL
Input: A set S = {p1,...,pn} of n points in the plane, where n is a power of 2.

Output: The convex hull of S, CH(S).
1. Sort The points in S in nondecreasing order of their xz-coordinates.

2. CH(S)+ ch(S)
3. return CH(S)

Procedure ch(S)
1. if |S| <4 then

2 compute CH(S) by a straightforward method.

3 return (CH(S))

4. end if

5. Divide S into two halves S1 = (p1,p2,...,Dns2) and S» =

<pn/2+1:pn/2+27 o 7pn>
CH(S1)< ch(S1); CH(S2) <« ch(S2)
Let UH(S1)4« (z1,22,...,zr) and UH(S2)+ (y1,y2,...,ys) be the
upper hulls of S7 and Sa, respectively.
8. Find the common upper tangent 7;7;.
9. UH'(S1)+ (w1, m2,...,x;) and UH'(S2) 4 (Y5, Yj+1,-- -, Ys)-
10. UH(S)«+ UH'(S1) UUH'(S2) UZ;y;.
11. Repeat Steps 7 to 10 to find the lower hull of S, LH(S).
12. CH(S)« UH(S)ULH(S)
13. return CH(S)

o

2.21 Bibliographic Notes

There are a number of books on parallel algorithms on the PRAM. These
include Akl [4], Akl [5], Akl [6], Akl and Lyons [8], Chaudhuri [21],
Cosnard and Trystram [29], Gibbons and Rytter [37], Grama, Gupta,
Karypis and Kumar [39], Horowitz, Sahni and Rajasekaran [43], JaJ4 [44],
Lakshmivarahan and Dhall [53], Miller and Boxer [66], Roosta [77],
and Xavier and Iyengar [104]. Prefix computations are described in
Lakshmivarahan and Dhall [53], which is a book devoted to parallel prefix
computations. The O(loglogn) time algorithm for merging on the PRAM

Shared-memory Computers (PRAM) 69

is due to Kruscal [49]. The O(loglogn) time algorithm for computing the
maximum as well as algorithms for merging and sorting were given in
Shiloach and Vishkin [87]. Bitonic and odd-even sorting networks were
described in Batcher [15]. Multiselection on the PRAM is a modification
of an algorithm in Alsuwaiyel [11]. The pipelined mergesort algorithm is
due to Cole [26]. A survey of parallel sorting and selection algorithms can
be found in Rajasekaran [75]. The ideas for selection on the PRAM are
from Akl([7] and Vishkin [102]. The algorithm for the minimum spanning
tree problem is due to Sollin, and was inspired by the one presented in
J4J4 [44]. Parallel algorithms for graph problems on the PRAM can be
found in Gibbons and Rytter [37]. Parallel algorithms for problems in com-
putational geometry on the PRAM can be found in Akl and Lyons [8]. The
divide-and-conquer approach for computing the planar convex hull is due
to Shamos [82]. For more references on parallel algorithms on the PRAM,
see for instance J&J4 [44].

2.22 Exercises

2.1. Give a parallel algorithm to compute the maximum of n numbers
in the sequence (x1,x2,...,2,) on the EREW PRAM. What is the
running time of your algorithm?

2.2. Consider Algorithm SORTINGCREW presented in Section 2.4.1. Sup-
pose we change the outer loop in Line 3 to sequential and change the

inner loop in Line 4 to parallel, will the algorithm still work on the
CREW PRAM? Explain.

2.3. Use parallel prefix to compute the sequence of maximums

x1, max{xy, e}, max{xy, o, x3},..., max{wy, xa,...,x,} for the
sequence S = (x1,2a,...,Tn).
2.4. Let S = (x1,29,...,x,) be a sequence of integers. Give an algorithm

to rearrange the elements of S so that all negative integers precede
all positive integers. For example, if S = (3,-2,1,—5,4,—6,7), the
result should be (=2, —5,—6,3,1,4,7).

70

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

2.12.

2.13.

Parallel Algorithms

Give an algorithm to broadcast an item z stored in processor P, to
all other processors in the EREW PRAM with n = 2* processors.
What is the running time of your algorithm?

Consider Algorithm PARQUICKSORT in Section 2.5.2 for parallel
quicksort. What is the cost of the algorithm on average? How about
in the worst case?

What is the number of parallel steps in Algorithm PARSEARCH for
parallel search discussed in Section 2.67

Apply Algorithm PARSEARCH for parallel search using two processors
on the sequence

S=(1,2,5,7,8,11,12,15,19) and z =38.
How many parallel steps are there?

Illustrate the operation of Algorithm PARRANK in Section 2.9.1 for
computing the ranks of B in A on the input:

A=(1,4,7,10,12,14,19,20) and B = (5,11,15,18).

[lustrate the operation of Algorithm ODDEVENMERGE in Section 2.11
for odd—even merging on the input:

A=(2,56,8) and B=(1,3,7,9).

Do Exercise 2.10 with the following modification. Merge A,qq with
Boaa and Aeyen With Beyen. (See Exercise 2.46).

Let A,B,C,D and FE be as defined in Algorithm ODDEVENMERGE
discussed in Section 2.11, and assume the elements in A U B are
distinct. Given a sequence X and an element x, recall that rank(z, X)
is the number of elements in X less than x. Express rank(z, C') and
rank(z, D) in terms of rank(x, A) and rank(z, B).

Use the result of Exercise 2.12 to show that for ¢ € C, either ¢ is in
its correct position in F or to the left of it.

2.14.

2.15.

2.16.

2.17.

2.18.

2.19.

2.20.

2.21.

2.22.

2.23.

Shared-memory Computers (PRAM) 71

Use the result of Exercise 2.12 to show that for d € D, either d is in
its correct position in E or to the right of it.

[lustrate the operation of the bitonic sort network shown in Fig. 2.21
on the input sequence (6,7,1,4,2,5,8,3).

Give an example of a bitonic sequence with one local maximum and
one local minimum.

In Algorithm PARSELECT for selection discussed in Section 2.14, show
that in each iteration, the median of medians m is greater than and
smaller than at most 3|A|/4 elements.

Consider Algorithm PARMULTISELECT]1 for multiselection discussed
in Section 2.15. Compare the algorithm given with direct application
of Algorithm PARSELECT given in Section 2.14.

Repeat Exercise 2.18 with the second algorithm for multiselection for
the PRAM, Algorithm PARMULTISELECT2.

Suggest an algorithm for sorting using multisession. What is the time
complexity of your algorithm?

Consider the algorithm for matrix multiplication discussed in Sec-
tion 2.16. What is the cost of the algorithm? What modification
should be done in order to make the total cost O(n3)?

Let P be a simple polygon (that is not necessarily convex) with n
vertices, and let x be a point. Assume that there are n processors,
each assigned to one edge. Give an efficient parallel algorithm to
decide whether z is in the interior of P. (Hint: Draw a horizontal
line L such that z lies on L. Count how many times L intersects
with the edges of P).

Let x1, 29, ..., 2, be n Boolean variables. Show how to find the log-
ical OR of these variables in O(1) time on the COMMON CRCW
PRAM with n processors.

72

2.24.

2.25.

2.26.

2.27.

2.28.

2.29.

2.30.

Parallel Algorithms

Let (z1,22,...,2,) be a sequence of n distinct numbers. Show how
to find the maximum of these numbers in O(1) time on the CRCW
PRAM with n? processors.

Let (z1,22,...,2,) be a sequence of n distinct numbers. Show how
to find the maximum of these numbers in O(loglogn) time on the
CRCW PRAM with n processors. Hint: Partition the input into \/n
parts and recursively find the maximum in each part. Use Exer-
cise 2.24.

Let S be a sequence of n distinct numbers and x € S. The rank
of z in S is the number of elements in S less than z. Show how to
compute the rank of z in S in O(logn) time on the CREW PRAM
with n processors.

Let S be a sequence of n integers, and x an integer. Show how to
compute rank(z, S) and the rank of z in S, in O(logn) time on the
EREW PRAM using O(n) operations.

Let S = {x1,22,...,2,} be n numbers and k an integer, 1 < k < n.
Show how to find the kth smallest element in S in O(logn) time on
the CREW PRAM with n? processors.

Let S = (x1,22,...,2,) be a sequence of n numbers. Consider
the simple recursive algorithm for parallel prefix that divides the
sequence S into two halves: S1 = (x1,22,...,2,/2) and Sy =
(Tp /241, Tn/242,- -+ Tn), and then calls the algorithm recursively on
each of S7 and S>.

(a) Write down the detailed algorithm.

(b) Will the algorithm work on the EREW PRAM?

(¢) What is the total work done by the algorithm?

(d) Will Brent’s Theorem (Theorem 2.1) help in reducing the
number of processors without increasing the running time
complexity?

Let (x1,22,...,2,) be a sequence of n numbers. The prefix minima
is to compute for each 7, 1 <14 < n, the minimum among the elements
{z1,29,...,2;}. Develop an algorithm to compute the prefix minima
that runs in time O(logn) on the EREW PRAM.

2.31.

2.32.

2.33.

2.34.

2.35.

2.36.

2.37.

2.38.

Shared-memory Computers (PRAM) 73

Do Exercise 2.30 using suffix minima instead, that is, compute
for each i, 1 < i < n, the minimum among the elements

{xi,xiﬂ, e ,LL’n}.

Let (z1,22,...,2,) be a sequence of n numbers. The suffiz compu-
tation problem is to compute the suffixes z,,, 2, _10Zyn,..., L1 0Tz 0
-+ 0 xp. Give an O(logn) time algorithm to solve this problem on
the CREW PRAM with n processors.

Do Exercise 2.32 for the case of EREW PRAM.

Let T1,T5,...,T,, be m directed and rooted binary trees on n ver-
tices. Each node has a pointer to its parent, except the root which
points to itself. Design a parallel algorithm to allow each vertex to
know the identity of the tree to which it belongs (The trees are iden-
tified by their roots. The roots are numbered 1,2,...,m).

Compute the next and succ functions as describe in Table 2.1 (page
25) for all vertices in the tree shown in Fig. 2.32. Use the obtained
values to derive an Euler tour.

Use the Euler tour technique to direct the tree shown in Fig. 2.32,
where vertex 1 is to be set as the root.

Use the Euler tour technique to assign levels to the vertices in the
tree shown in Fig. 2.32.

In a postorder traversal of a tree T' at the root r, the subtrees of r
are traversed from left to right in postorder followed by r. Develop
an algorithm to determine the postorder numbering of the vertices
in a rooted tree. What is the time complexity of your algorithm?

Fig. 2.32. A tree.

74

2.39.

2.40.

2.41.

2.42.

2.43.

2.44.

2.45.

2.46.

2.47.

Parallel Algorithms

©, @
O—@—©
ONO ®

Fig. 2.33. A rooted tree.

Apply the algorithm developed in Exercise 2.38 on the tree shown in
Fig. 2.33.

Parallelize Horner’s rule to evaluate a polynomial of degree n under
the EREW PRAM in time O(logn).

Let (x1,29,...,2,) be a sequence of n distinct numbers. Design a
parallel algorithm for the CREW PRAM to sort this sequence in
time O(logn). Assume an unlimited number of processors.

Let n be a positive integer. Consider the problem of computing the
polynomials z; = 2%, for 1 < i < n. Show how to compute the z/’s in
O(logn) time. Specify the PRAM model used.

Consider Algorithm PARQUICKSORT presented in Section 2.5.2. Sup-
pose we always select the median as the pivot (see Section 2.14).
What will be the running time of the algorithm?

Let A and B be two sequences of distinct number sorted in ascend-
ing order, where |A| = |B| = n. Design an O(1) time algorithm to
merge A and B on the CREW PRAM. Assume an unlimited number
of processors.

Apply Brent’s theorem on Algorithm PARMERGE presented in Sec-
tion 2.9.2.

In Algorithm ODDEVENMERGE in Section 2.11, Aeyen is merged with
Boqq and Ayqq is merged with Beyen. Rewrite the algorithm with the
modification so that it merges A,qq wWith Bogq and Aeven With Beyen-
It is important to know that this will change the step of traversing
the shuffle of C' and D.

Let G = (V, E) be an undirected graph with n vertices. Give an algo-
rithm to decide whether G contains a triangle, that is, three mutually

2.48.

2.49.

2.50.

2.51.

2.52.

2.53.

Shared-memory Computers (PRAM) 75

adjacent vertices. Assume that G is represented by its adjacency
matrix. Your algorithm should run in O(logn) time on the CRCW
PRAM with n? processors.

Prove Theorem 2.6.

Show that the reduced adjacency matrix in the minimum spanning
tree algorithm of Section 2.18 can be constructed in time O(logn)
using O(n?) processors on the CREW PRAM.

Show the steps of computing a minimum spanning tree on the graph
shown in Fig. 2.34.

Show the steps of computing a minimum spanning tree on the graph
shown in Fig. 2.35.

Let G = (V, E) be an undirected graph. G is bipartite if and only
if V' can be partitioned into two parts V; and Vs, such that every
edge connects a vertex in Vi with a vertex in Va. Equivalently, G is
bipartite if and only if it contains no odd-length cycles. Develop an
algorithm to test whether G is bipartite.

Illustrate the operation of the bitonic sort network shown in Fig. 2.21
on the input (6,7,1,4,2,5,8,3).

Fig. 2.35. An undirected graph.

76

2.54.

2.55.

2.56.

2.57.

2.58.

Parallel Algorithms

Let A, A’,C and C’ be sorted sequences such that C is a 3-cover
for A and C" is a 3-cover for A’. Is C'U C’ necessarily a 3-cover for
AU A’? See Section 2.13 for the definition of 3-cover.

Illustrate the operation of the pipelined mergesort algorithm on the
input (6,7,1,4,2,5,8,3).

Prove Observation 2.1.

Let W, X and Y be three sorted sequences such that Y = WUX, and
WNX = ¢. Assume that R(S,S) is known for any sequence S, where
R(A, B) is the cross ranks of A in B as defined in Section 2.13. Show
how to compute R(W, X) and R(X,W) in O(1) time using O(]Y])
Processors.

Parallelize the ©(n) time sequential algorithm for selection using
n/logn processors on the PRAM. Analyze your algorithm.

1.

1.
2.
3.

4.

Algorithm 2.26 SELECT
Input: An array A[l..n] of n elements and an integer k, 1 < k < n.

Output: The kth smallest element in A.

Procedure select(A, k)

select(A, k)

n<+ |A]

if n < 44 then sort A and return (A[k])

Let ¢ = |n/5]. Divide A into ¢ groups of 5 elements each. If 5 does not
divide p, then discard the remaining elements.

Sort each of the ¢ groups individually and extract its median. Let the set
of medians be M.

mm<— select(M, [q/2]) {mm is the median of medians}

Partition A into three arrays:

A1 ={a | a <mm}

As ={a | a=mm}

As ={a | a > mm}

case

|A1] > k: return select(A1, k)

|Ai| + |A2| > k: return mm

|A1| + |A2| < k: return select(As, k — |A1] — |Az|)

end case

2.59.

2.23

2.1.

2.2,

2.3.

2.4.

Shared-memory Computers (PRAM) 7

Let A = (a1, aq,...,a,) be asequence of numbers and let k be a given
integer between 1 and n. Design and analyze a parallel algorithm to
find all k& smallest items in A. Do not use multiselection. What model
of computation did you use?

Solutions

Give a parallel algorithm to compute the maximum of n numbers
in the sequence (x1,x2,...,2,) on the EREW PRAM. What is the
running time of your algorithm?

Similar to Algorithm PARADDITION for parallel addition discussed in
Section 2.2.

Consider Algorithm SORTINGCREW presented in Section 2.4.1. Sup-
pose we change the outer loop in Line 3 to sequential and change the
inner loop in Line 4 to parallel, will the algorithm still work on the
CREW PRAM? Explain.

No, since there will be concurrent writes. For instance, comparing
A[l] with A[2] and comparing A[1] with A[3] will take place simul-
taneously, and hence the statement r[1]< r[1] + 1 may be executed
at least twice at the same time.

Use parallel prefix to compute the sequence of maximums
x1, max{xy, 2}, max{xy, 2,23}, ..., max{xy, xa,...,x,} for the
sequence S = (X1, Ta,...,Tn).

Similar to Algorithm PARPREFIX for parallel prefix discussed in Sec-
tion 2.5.

Let S = (x1,x2,...,x,) be a sequence of integers. Give an algorithm
to rearrange the elements of S so that all negative integers precede
all positive integers. For example, if S = (3,—-2,1,—5,4,—6,7), the
result should be (—2,—5,—6,3,1,4,7).

Use array packing; — similar to Example 2.2.

78

2.5.

2.6.

2.7.

2.8.

2.9.

Parallel Algorithms

Give an algorithm to broadcast an item z stored in processor P, to
all other processors in the EREW PRAM with n = 2* processors.
What is the running time of your algorithm?

First, Py writes x to global memory, and P; reads . Py and P; then
broadcast x to P, and Ps simultaneously. Py, P;, P, and P5; then
broadcast = to Py, Ps, Ps and Py, and so on. The running time is
O(logn).

Consider Algorithm PARQUICKSORT in Section 2.5.2 for parallel
quicksort. What is the cost of the algorithm on average? How about
in the worst case?

The cost of the algorithm on average is ©(nlog?n), and ©(n?logn)
in the worst case.

What is the number of parallel steps in Algorithm PARSEARCH for
parallel search discussed in Section 2.67

The number of parallel steps is at most log, ;n + 1.

Apply Algorithm PARSEARCH for parallel search using two processors
on the sequence

S=(1,2,5,7,8,11,12,15,19) and =z =28.
How many parallel steps are there?
Initially, the algorithm divides S into three subsequences
(1,2,5), (7,8,11), (12,15,19).

The two processors compare x with elements at the internal bound-
aries, that is, 5 and 11. Since 8 > 5 and 8 < 11, the search area is
reduced to (7,8). Finally, the two processors perform two compar-
isons simultaneously and one of them returns 342 = 5 . The number
of parallel steps is 2.

Illustrate the operation of Algorithm PARRANK in Section 2.9.1 for
computing the ranks of B in A on the input:

A=(1,4,7,10,12,14,19,20) and B = (5,11,15,18).

Similar to Examples 2.9 and 2.10.

2.10.

2.11.

2.12.

2.13.

Shared-memory Computers (PRAM) 79

Illustrate the operation of Algorithm ODDEVENMERGE in Section 2.11
for odd—even merging on the input:

A=(2,56,8) and B=(1,37,09).

Similar to Example 2.11.

Do Exercise 2.10 with the following modification. Merge A,qq with
Boaa and Agyen with Beyen. (See Exercise 2.46).

Similar to Exercise 2.10.

Let A,B,C,D and E be as defined in Algorithm ODDEVENMERGE
discussed in Section 2.11, and assume the elements in A U B are
distinct. Given a sequence X and an element z, recall that rank(z, X)
is the number of elements in X less than x. Express rank(z, C') and
rank(z, D) in terms of rank(x, A) and rank(z, B).

Let x € AU B. Then,
[rank(x, A) rank(z, B)

ank(z,C) = +
r (?) 2 | 2 _7
and
k [rank T
rank(z, D) rank(z, A) rank(z, B)

Use the result of Exercise 2.12 to show that for ¢ € C, either ¢ is in
its correct position in F or to the left of it.

For z € X, let pos(z, X) be the position of z in the sequence X, where
pos(z,X) > 0. For ¢ € C, let r; = rank(c, A) and ro = rank(c, B),
and r. = r{ + r9. Either ¢ € A or ¢ € B. If ¢ € A, then r{ is even
since pos(c, A) is even, and it follows that the position of ¢ in E is
pos(c, E) = 2 rank(c,C) = 2[5] + 2| 2|
< r1 4+ (re) since 71 is even
=re..

Since r. —1=r;+ (ra — 1) < 2[%} + 2L%J = pos(c, E), we have

re —1 < pos(c, E) < re. (2.5)

80

2.14.

2.15.

2.16.

2.17.

Parallel Algorithms

Thus, either pos(c, E) = r. — 1 or pos(c, E) = r.. That is, either ¢ is
in its correct position in E or to the left of it.

On the other hand, if ¢ € B, then rq is odd since pos(c, B) is odd,
and we get the same inequalities.
Use the result of Exercise 2.12 to show that for d € D, either d is in

its correct position in E or to the right of it.

For z € X, let pos(x, X) be the position of 2 in the sequence X,
where pos(z, X) > 0. For d € D, let r3 = rank(d, A), r4 = rank(d, B)
and rg = r3 + rq. If d € A then r3 is odd since pos(d, A) is odd. It
follows that if d € A, then the position of d in F is

pos(d, E) = 2 rank(d, D) + 1 =2 2| +2[%]| +1
< (rg3 —1)4 (r4 + 1)+ 1 since r3 is odd
=rqg+1.
Since rq = (rs — 1) + (ra) + 1 < 2| 2| +2[%] + 1 = pos(d, E), we
have
rqa <pos(d,E) <rg+1. (2.6)
Thus, either pos(d, E) = ry4 or pos(d, E) = rq + 1. That is, either d
is in its correct position in E or to the right of it.
If d € B, then 74 is even, and we get the same inequalities.
Ilustrate the operation of the bitonic sort network shown in Fig. 2.21
on the input sequence (6,7,1,4,2,5,8,3).
Similar to Fig. 2.21.
Give an example of a bitonic sequence with one local maximum and
one local minimum.
The sequence (2,1,4,3) is such an example.
In Algorithm PARSELECT for selection discussed in Section 2.14, show

that in each iteration, the median of medians m is greater than and
smaller than at most 3|A|/4 elements.

Let r = |A|/log|A| be the number of groups, and s = log|A| be
the size of each group. Let the groups be g1, g9, ..., g, with medians

2.18.

2.19.

2.20.

Shared-memory Computers (PRAM) 81

my, ma, ... my, where m; < m;41, 1 <i <r—1. Then, the median of
medians m > m,; for 1 <14 < r/2. Hence, m is greater than or equal

to at least 5 elements in groups g1, g, ..., g,/2. Thus, m > at least
g X % = “24' elements. It follows that m < at most % elements.

Similarly, m > at most % elements.

Consider Algorithm PARMULTISELECT1 for multiselection discussed
in Section 2.15. Compare the algorithm given with direct application
of Algorithm PARSELECT given in Section 2.14.

Direct application of Algorithm PARSELECT r times takes
r x O(lognloglogn) = O(rlognloglogn),

using n/logn processors. On the other hand, Algorithm PARMULTI-
SELECT1 takes

O(logrlognloglogn).

which is less than direct application for any r that is asymmetrically
more than constant.

Repeat Exercise 2.18 with the second algorithm for multiselection for
the PRAM, Algorithm PARMULTISELECT2.

Direct application of Algorithm PARSELECT r times takes
r x O(lognloglogn) = O(rlognloglogn),

using n/logn processors. On the other hand, Algorithm PARMULTI-
SELECT2 takes

O(log n(log r + loglogn)).

which is less than direct application for any r that is asymmetrically
more than constant.

Suggest an algorithm for sorting using multisession. What is the time
complexity of your algorithm?

82

2.21.

2.22,

2.23.

2.24.

Parallel Algorithms

Use Algorithm PARMULTISELECT2 on the PRAM with n/logn pro-
cessors. Setting r = n, its running time becomes

O(logn(log r + loglogn)) = O(log® n),
which is cost optimal.

Consider the algorithm for matrix multiplication discussed in Sec-
tion 2.16. What is the cost of the algorithm? What modification
should be done in order to make the total cost O(n?).

The cost is ©(n®logn). To make the total cost O(n?), reduce the
number of processors to O(n?/logn).

Let P be a simple polygon (that is not necessarily convex) with n
vertices, and let z be a point. Assume that there are n processors,
each assigned to one edge. Give an efficient parallel algorithm to
decide whether x is in the interior of P. (Hint: Draw a horizontal
line L such that z lies on L. Count how many times L intersects
with the edges of P).

As suggested by the hint. Assign one edge of the polygon to each
processor. Each processor stores a 1 if its assigned edge intersects
the line L and 0 otherwise. Finally, perform the sum of these stored
values and test whether it is even or odd. The total time is ©(logn).

Let x1,29,...,z, be n Boolean variables. Show how to find the log-
ical OR of these variables in O(1) time on the COMMON CRCW
PRAM with n processors.

Let y hold the output. Initially, set y = 0. Each processor P; executes
the command: if ; = 1 then y = 1. Then all processors P; with
z; = 1 will write the same value. Hence, the output is y = 1 using
the COMMON PRAM if and only if at least one z; is 1.

Let (x1,23,...,x,) be a sequence of n distinct numbers. Show how
to find the maximum of these numbers in O(1) time on the CRCW
PRAM with n? processors.

2.25.

2.26.

2.27.

Shared-memory Computers (PRAM) 83

Label the n? processors as P;;, 1 < 4,5 < n. Let processors
Pi1,Pia,..., P, define group ¢, 1 <7 < n. Then, group ¢ will com-
pute y;, which is the OR of z} 1,2} 5, ..., 7] ,,, where z} ; = (z; < x;),
as shown in the solution of Exercise 2.23. Clearly, y; is 0 if and only
if x; is the maximum. Each processor P; executes the command:
if y; = 0 then output z;. Only one processor will succeed and out-
put its element. The reason concurrent writes are needed is the com-

putation of the OR’s.

Let (x1,23,...,2,) be a sequence of n distinct numbers. Show how
to find the maximum of these numbers in O(loglogn) time on the
CRCW PRAM with n processors. Hint: Partition the input into y/n
parts and recursively find the maximum in each part. Use Exer-
cise 2.24.

Partition the input into v/n parts and recursively find the maximum
in each part. Each part is assigned \/n processors to find the maxi-
mum recursively (number of elements equals number of processors).
Let the maximums be 2,25, ..., x’\/ﬁ Use Exercise 2.24 to find the
maximum of a},z},... ,:C/\/E using n processors in O(1) time. The
running time is given by the recurrence T'(n) = T'(y/n) + O(1) whose
solution is T'(n) = O(loglogn).

Let S be a sequence of n distinct numbers and x € S. The rank
of x in S is the number of elements in S less than x. Show how to
compute the rank of z in S in O(logn) time on the CREW PRAM
with n processors.

Let S = {(a1,as2,...,a,). Compute Afi] = (a; < z) for 1 < ¢ < n.
Let r be the sum of 1’s in array A. Output r: r can be found by
addition or parallel prefix in O(logn) time. The reason concurrent
reads are required is so that all processors read x at the same time.

Let S be a sequence of n integers, and = an integer. Show how to
compute rank(z,S), the rank of 2 in S, in O(logn) time on the
EREW PRAM using O(n) operations.

84

2.28.

2.29.

Parallel Algorithms

To adapt the solution of Exercise 2.26 to the EREW PRAM, first
broadcast x to all processors, say B[i] = = for 1 < i < n, then
compute (A[i] < Bli]) for 1 < i < n. To broadcast x, first P; copies
B[1] = x to BJ2]. Next, P, and P» copy B[1] and B[2] to B[3] and
B[4], respectively. Next, Py, P2, P3 and P, copy B[1], B[2], B[3] and
B[4] to B[5], B[6], B[7] and B|[8], respectively, and so on. The number
of writes is equal to 1 +2 4+ 4 + --- + 2 = 2n — 1, where k = logn.
The number of comparisons (A[i]] < Bli]) is n, which is equal to
the number of assignments. Hence, the total number of operations

is O(n).

Let S = {x1,x2,...,2,} be n numbers and k an integer, 1 < k < n.
Show how to find the kth smallest element in S in O(logn) time on
the CREW PRAM with n? processors.

Assume the z;’s are distinct. Label the n? processors as P j, 1 <
i,7 < n. Let processors P 1, P 2,...,P;, define group 7, 1 <i < n.
For i = 1,2,...,n, we use Exercise 2.26 to find the rank of x; in
group ¢, and store it in B[i], 1 < i < n. Now, for i« = 1,2,...,n,
processor P, 1 outputs z; if its rank BJ[i] is equal to k — 1. Note that
exactly one processor will output the kth smallest element, so there
are no concurrent writes. The running time is O(logn) and the fact
that it runs on the CREW PRAM follows from Exercise 2.26.

Let S = (x1,x2,...,2,) be a sequence of n numbers. Consider
the simple recursive algorithm for parallel prefix that divides the
sequence S into two halves: S1 = (x1,22,...,2,/2) and Sy =
(Tp /241, Tn/242,- -+ Tn), and then calls the algorithm recursively on
each of S7 and S>.

(a) Write down the detailed algorithm.

(b) Will the algorithm work on the EREW PRAM?

(c) What is the total work done by the algorithm?

(d) Will Brent’s Theorem (Theorem 2.1) help in reducing the
number of processors without increasing the running time
complexity?

(a) The algorithm is shown as Algorithm PARPREFIX2.
(b) The algorithm will not work on the EREW PRAM. There are
concurrent reads of s, ;.

Shared-memory Computers (PRAM) 85

Algorithm 2.27 PARPREFIX2
Input: X = (z1,22,...,Tns), a sequences of n numbers, where n = 2k,
Output: S = (s1, 82, ..., Sn), the prefix sums of X.
1. if n =1 then return z;
2. else do
3. X1 :<:C17:C27"'7xn/2>
4 X2 = <xn/2+lxn/2+27"'7mn>
5 S1 <4 PARPREFIX2(X1)
6. S2 4~ PARPREFIX2(X2)
7. for j< (n/2+1) to n do in parallel
8 Sj4— Sj + Sn/2
9 end for
10. return S; US>
(c¢) The total number of operations (additions) done by the algo-
rithm is given by the recurrence W(n) = 2W(n/2)+n/2, whose
solution is W(n) = ©O(nlogn), which is the total work per-
formed by the algorithm.
(d) Brent’s Theorem does not help in reducing the number of pro-
cessors, since the total number of operations is ©(nlogn).
2.30. Let (x1,x9,...,2,) be a sequence of n numbers. The prefiz minima
is to compute for each 7, 1 <14 < n, the minimum among the elements
{z1,22,...,2;}. Develop an algorithm to compute the prefix minima
that runs in time O(logn) on the EREW PRAM.
This is the parallel prefix problem using the associative binary oper-
ation MIN.
2.31. Do Exercise 2.30 using suffiz minima instead, that is, compute
for each 7, 1 < ¢ < n, the minimum among the elements
{Ii, Li41ye-- ,In}.
The algorithm is similar to Algorithm PARPREFIXREC. It is shown as
Algorithm PSMINIMA.
2.32. Let (x1,29,...,2,) be a sequence of n numbers. The suffiz compu-
tation problem is to compute the suffixes z,,,x,_10Zyn,..., L1 0T 0

-+ 0 xp. Give an O(logn) time algorithm to solve this problem on
the CREW PRAM with n processors.

86 Parallel Algorithms

Algorithm 2.28 PSMINIMA
Input: X = (z1,22,...,Tns), a sequences of n numbers, where n = 2k,

Output: S = (s1, S2,...,8n), where s; = min{x;, zi41,...,2,} are the suffiy
minima.
Sn 4 T,
if n =1 then return S = (z,)
for i+ 1 to n/2 do in parallel
Z2i—1 4+ min{xo;_1, T2}
end for
Recursively compute the prefix minima of (z1,zs,...,zn—1) and store
them in (s1,83,...,8n—1)
for i+ 1 to (n/2) — 1 do in parallel
S2i 4+ min{wa;, $2i41
end for
return S = (s1,52,...,5n)

OOt =

H
O © o

The algorithm is similar to Algorithm PARPREFIX2 in the solution of
Exercise 2.29. It is shown as Algorithm PARSUFFIX.

Algorithm 2.29 PARSUFFIX
Input: X = (z1,22,...,2n), a sequences of n numbers, where n = 2k,

Output: S = (s1,82,...,8n), where s; = 2, 0Lj41 0 -0 Zyp.

1. if n =1 then return z;
2. else do
X1 = <:C17:C27 .. 7xn/2>
4 X2 = <xn/2+lxn/2+27"'7xn>
5 S1 4 PARSUFFIX(X})
6. S2 4~ PARSUFFIX(X2)
7. for j< 1 to n/2 do in parallel
8
9
10.

w

5 <85 0 S(n/2)+1
. end for
return S; U Sy

2.33. Do Exercise 2.32 for the case of EREW PRAM.

The algorithm is a generalization of Algorithm PSMINIMA in the solu-
tion of Exercise 2.31. Replace the MIN operator with o.

2.34. Let T1,T5,...,T,, be m directed and rooted binary trees on n ver-
tices. Each node has a pointer to its parent, except the root which

2.35.

2.36.

2.37.

2.38.

Shared-memory Computers (PRAM) 87

Fig. 2.36. A tree.

points to itself. Design a parallel algorithm to allow each vertex to
know the identity of the tree to which it belongs. The trees are iden-
tified by their roots. The roots are numbered 1,2,...,m.

Use pointer jumping to let each node point to its root. Then assign
root(s) « succ(s) for all nodes s.

Compute the next and succ functions as describe in Table 2.1 (page
25) for all vertices in the tree shown in Fig. 2.36. Use the obtained
values to derive an Euler tour.

Similar to Example 2.6.

Use the Euler tour technique to direct the tree shown in Fig. 2.36,
where vertex 1 is to be set as the root.

Similar to Example 2.7.

Use the Euler tour technique to assign levels to the vertices in the
tree shown in Fig. 2.36.

Similar to Example 2.8.

In a postorder traversal of a tree T' at the root r, the subtrees of r
are traversed from left to right in postorder followed by r. Develop
an algorithm to determine the postorder numbering of the vertices
in a rooted tree. What is the time complexity of your algorithm?

Construct an Euler tour 7. Then, 7 visits each vertex v several times,
and we only need to record the last visit, which happens when the
edge (v, p(v)) is visited. The detailed algorithm is given as Algorithm
TREEPOSTORDER.

The time complexity is dominated by computing the prefix sums,
which is ©(logn) using O(n) processors on the EREW PRAM.

88

Parallel Algorithms

U W N =

Algorithm 2.30 TREEPOSTORDER
Input: A tree T on n vertices rooted at .

Output: Assign postorder numbers to all vertices in 7T'.

. Find an Euler tour 7 for the tree 7T'.

. Assign the weights w(p(v),v) = 0 and w(v,p(v)) =1, v # .
. Apply parallel prefix on the set of edges of 7.

. Set postorder(v) to the prefix sum of the edge (v, p(v)).

. Set postorder(r) to n.

2) @
O—B—)
ONO ®

Fig. 2.37. A rooted tree.

Fig. 2.38.

Postorder numbering of the vertices in a rooted tree.

2.39. Apply the algorithm developed in Exercise 2.38 on the tree shown in
Fig. 2.37.

See Fig. 2.38. The edges in the tour are assigned 0 and 1 in
Fig. 2.38(a). Parallel prefix is applied in Fig. 2.38(b), and the pos-
torder numbers are shown in Fig. 2.38(c).

2.40. Parallelize Horner’s rule to evaluate a polynomial of degree n under
the EREW PRAM in time O(logn).

f(z)

2 -1
ap +arr +asx” + - +ap_12"

ao + z(ar +x(az + z((. .. 2(an—2 + an_17)...))))

2.41.

2.42.

2.43.

2.44.

Shared-memory Computers (PRAM) 89

= ao + z(a1 + z(az + ((. .. #(an/2—2 + an/2-12) .. .))))
+ xn/z(an/Q + w<an/2+1 + w((ln/2+2 + CE((. w(an_g

+ap—12)...)))).

Thus, recursively compute the two halves, and multiply the right
half by x"/2, which is computed by doubling in each recursive call:
T4— X * X

Let (x1,x9,...,2,) be a sequence of n distinct numbers. Design a
parallel algorithm for the CREW PRAM to sort this sequence in
time O(logn). Assume an unlimited number of processors.

Use n groups of processors. Each group gi, 1 < k < n, consists of n?
processors, and uses Exercise 2.28 to find the kth smallest element
on the CREW PRAM.

Let n be a positive integer. Consider the problem of computing the
polynomials y; = 2*, for 1 < i < n. Show how to compute the y;’s in
O(logn) time.

Use parallel prefix.

Consider Algorithm PARQUICKSORT presented in Section 2.5.2. Sup-
pose we always select the median as the pivot (see Section 2.14).
What will be the running time of the algorithm?

We will use n/logn processors. The running time for finding the
median is that for selection, which is O(lognloglogn). Since there
are logn levels, the overall running time is O(log2 nloglogn).

Let A and B be two sequences of distinct number sorted in ascend-
ing order, where |A| = |B| = n. Design an O(1) time algorithm to
merge A and B on the CREW PRAM. Assume an unlimited number
of processors.

Let C be the array that will hold the merge of A and B. We will
use n-ary search (parallel search using n processors for each element-
search). Associate n processors with each element of A and B. Let
Pi1,P;5,..., P, bethe n processors associated with A[i]. Processor

90

2.45.

2.46.

2.47.

2.48.

Parallel Algorithms

P, ; tests whether B[j] < A[i] and B[j + 1] > A[4]. If this is the case,
then rank(A[i], B) = j, and we set C[i + j] = A[i]. This is done for
each element of A. We repeat the procedure for array B. The total
number of processors needed is 2n2.

Apply Brent’s theorem on Algorithm PARMERGE presented in Sec-
tion 2.9.2.

The amount of work done by Algorithm PARMERGE is O(n loglogn),
assuming n = m. Since the work is equal to the cost, Brent’s
theorem is of no help in reducing the cost by reducing the number
of processors.

In Algorithm ODDEVENMERGE in Section 2.11, Agyepn is merged with
Boad and Agqq is merged with Beyen. Rewrite the algorithm with the
modification that it merges Ayoqq with Bogq and Aeyen with Beyen. It
is important to know that this will change the step of traversing the
shuffle of C' and D.

In this case, we traverse F starting from dy. Thus, we compare dy
with ¢y, dy with ¢o, and so on.

Let G = (V, E) be an undirected graph with n vertices. Give an algo-
rithm to decide whether G contains a triangle, that is, three mutu-
ally adjacent vertices. Assume that G is represented by its adjacency
matrix. Your algorithm should run in O(logn) time on the CRCW
PRAM with n? processors.

Let A be the n x n adjacency matrix. There is a triangle in G if and
only if there is a 1 in the diagonal of A3. Thus, to test for the presence
of a triangle, compute A% in ©(logn) time, and test its diagonal for
the occurrence of 1 by taking the OR of the diagonal elements in
O(1) time as explained in Exercise 2.23.

Prove Theorem 2.6.

Let T be a spanning tree, and let {V;,V2} be a partition of the
vertices. Let e be an edge connecting V7 and Vs in T'. Suppose there
is another edge €’ connecting V4 and V3 in G such that w(e’) < w(e).
Consider the tree T’ obtained from T by replacing edge e by edge ¢/,
that is, 7/ = T — {e} U {€’}. Then, the total cost of T” is less than
that of T.

Shared-memory Computers (PRAM) 91

Fig. 2.39. Connections between two rooted stars. Some of the weights may be oco.

2.49.

2.50.

2.51.

Fig. 2.40. An undirected graph.

Show that the reduced adjacency matrix in the minimum spanning
tree algorithm of Section 2.18 can be constructed in time O(logn)
using O(n?) processors on the CREW PRAM.

If r and s are the roots of two stars, then the (r,s) entry of the
reduced matrix W’ is computed as

W (r,s) = min{W(i,j) | C(é)) =r and C(j) = s}.

See Fig. 2.39. Let n; and ns be the number of nodes in stars r
and s, respectively. The edge of minimum weight can be determined
in time O(log(ni + n2)) = O(logn) using O(ning) processors by
computing n; minima using parallel prefix, and then computing the
minimum of these minima. The total number of processors used is
> ming, which is less than or equal to the total number of edges =
O(n?). Since all W'(r,s)’s can be computed in parallel, the con-
struction of the matrix W’ from W takes O(logn) time using O(n?)
processors on the CREW PRAM.

Show the steps of computing a minimum spanning tree on the graph
shown in Fig. 2.40.

Similar to Examples 2.15 and 2.16.

Show the steps of computing a minimum spanning tree on the graph
shown in Fig. 2.41.

Similar to Examples 2.15 and 2.16.

92

2.52.

2.53.

2.54.

2.55.

Parallel Algorithms

Fig. 2.41. An undirected graph.

Let G = (V, E) be an undirected graph. G is bipartite if and only
if V' can be partitioned into two parts Vi and V5 such that every
edge connects a vertex in Vi with a vertex in Va. Equivalently, G is
bipartite if and only if it contains no odd-length cycles. Develop an
algorithm to test whether G is bipartite.

First, find a spanning tree T for G. Next, make T" directed, and find
the level of each vertex. Let Vi be the set of vertices at even levels,
and let V5 be the set of vertices at odd levels. Test whether two
adjacent vertices (in G) are both in V; or in V. If there exists an
edge (u,v) in E such that u and v are both in V; or both in V53,
then G is not bipartite.

Ilustrate the operation of the bitonic sort network shown in Fig. 2.21
on the input (6,7,1,4,2,5,8,3).

Similar to the example shown in the Fig. 2.21.

Let A, A’,C and C’ be sorted sequences such that C is a 3-cover
for A and C" is a 3-cover for A’. Is C'U C’ necessarily a 3-cover for
AU A’? See Section 2.13 for the definition of 3-cover.

No, as evident from the following counterexample: Let A = (2,5,6,7),
A’ =(1,3,4,8),C = (2,7) and C" = (1,8). Then, CUC" = (1,2,7,8)
and AUA = (1,2,3,4,5,6,7,8). There are 5 elements in A U A’
between 2 and 7.

Illustrate the operation of the pipelined mergesort algorithm on the
input (6,7,1,4,2,5,8,3).

Similar to the example shown in Fig. 2.22.

2.56.

2.57.

2.58.

2.59.

Shared-memory Computers (PRAM) 93

Prove Observation 2.1.

Let C = (c1,¢2,...) and D = (dy,ds,...). Let d; and d; 11 be two
adjacent elements in D, and assume that there are no elements in C'
between them. Let c; be the element in C' immediately before d;, and
¢;j+1 the element in C' immediately following d;+1 (including —oo and
+00). Since C' is a 3-cover for A, there are at most three elements
in A between ¢; and ¢;41. It follows that there are at most three
elements in A between d; and d;11. The other case where there are
elements in C' between d; and d;; is similar.

Let W, X and Y be three sorted sequences such that Y = WUX, and
WNX = ¢. Assume that R(S,S) is known for any sequence S, where
R(A, B) is the cross ranks of A in B as defined in Section 2.13. Show
how to compute R(W, X) and R(X,W) in O(1) time using O(]Y])
Processors.

For any a € X, r(a,X) = r(a,Y) — r(a, W), where r(a, W) is the
rank of a in W. This takes care of R(W, X). Computing R(X, W) is

similar.

Parallelize the ©(n) time sequential algorithm for selection using
n/logn processors on the PRAM. Analyze your algorithm.

Each step of the sequential algorithm is done in parallel using the
available processors. Dividing the inputs into groups of 5 elements
will meaning unclear. Sorting the log n-element groups takes © (log n)
sequential time (each group is assigned one processor). Computing
A1, Ay and As takes ©(logn) time using parallel prefix and packing
as explained in the parallel quicksort algorithm in Section 2.5.2. The
recursive calls take T'(n/logn) and T'(3n/4). Hence the running time
is given by the recurrence T'(n) < T'(3n/4) + T'(n/logn) + ©(logn),
whose solution is T'(n) = O(log® n).

Let A = (aj,as, ..., a,) be asequence of numbers and let k be a given
integer between 1 and n. Design and analyze a parallel algorithm to
find all £ smallest items in A. Do not use multiselection. What model
of computation did you use?

Use Exercise 2.28 to find the kth smallest element on the CREW
PRAM with n? processors and call it z. For 1 <i < n, let B[i] = 1

94

Parallel Algorithms

if a; < x and B[i] = 0 otherwise. Now use parallel prefix and pack-
ing to move the k smallest elements to the beginning of A or to any
other location. The model used is the CREW. To solve this prob-
lem more efficiently, use the parallel selection algorithm discussed in
Section 2.14 on the EREW PRAM using n/logn processors only.

Chapter 3

The Hypercube

3.1 Introduction

The hypercube is one of the most popular, versatile and efficient topological
structures of interconnection networks. It has many excellent features, and
thus became the first choice of topological structure in parallel processing
and computing systems. Let d > 0. The d-dimensional hypercube H; has
n = 2% nodes and d2%! edges. Each node corresponds to a d-bit binary
string, and two nodes are linked by an edge if and only if their binary strings
differ in precisely one bit. Each node is incident to d = logn other nodes,
one for each bit position. Figure 3.1 shows the d-dimensional hypercubes
ford=1,2,3.

An edge in the hypercube is called a dimension k edge if it links two
nodes that differ in their kth bit position.

In the d-dimensional hypercube Hy, for any k < d, the removal of the
dimension k edges leaves two disjoint copies of a (d — 1)-dimensional hyper-
cube. Conversely, a d-dimensional hypercube H; can be constructed from
two (d—1)-dimensional hypercubes H,_1 by simply connecting the ith node
of one Hy_1 to the ith node of the other Hy_ 1. Thus, a hypercube has a
simple recursive structure. For example, see Fig. 3.2. The d-dimensional
hypercube H; has a diameter d, which is low, and a high bisection width
of 24-1,

Let Gy = (V1,Eq) and G2 = (Va, E3) be two undirected graphs. The
Cartesian product of G; and G5 is an undirected graph, denoted by G x Ga,
where V(G1 x G3) = Vi x Va. There are two distinct vertices zjxo and

95

96 Parallel Algorithms

—_

00 01

(=]

H; H,

Fig. 3.1. d-dimensional hypercube for d =1, 2, 3.

e ..
l .W.

y1y2, where x1,y1 € V(G1) and 29,y2 € V(G2), are linked by an edge in
G X G if and only if either 1 = y1 and (22, y2) € E(G2), or x5 = y2 and
(x1,y1) € E(Gy). Examples of Cartesian products are shown in Figs. 3.1
and 3.2, where Hy = Hy; X Hy, H3 = Hy x Hy and Hy = Hs X Hy. Let Ky
be the complete graph on two vertices. Then, Hy can be defined recursively
as follows:

H1:K2, Hd:Hd,1XH1:H1XH1X"'XH1, d22
d

3.2 The Butterfly

The butterfly interconnection network is closely related to the hypercube.
Th d-dimensional butterfly By consists of n = (d + 1)2¢ processors and

The Hypercube 97

level0 level 1 level 2 level 3
row 000 O O

level 0 level 1 level 2 row 010

row 00

row 011
level 0 level 1

row 0 row 01 row 100
row 101

row 10
row 110
row 1 row 11 row 111

B By B3

Fig. 3.3. d-dimensional butterfly for d = 1,2, 3.

d29+1! links. Each processor in By is represented by the pair (u,4), where 4
is the level or dimension of the processor, 0 < i < d, and u is a d-bit binary
number that denotes the row of the processor. Two processors (u,4) and
(v,7) are connected by a link if and only if j = ¢ + 1 and either u and
v are identical, or v and v differ in exactly the jth bit. Figure 3.3 shows
the d-dimensional butterfly for d = 1,2,3. If w and v are identical, the
link is said to be a straight link, otherwise it is called a cross link. Edges
connecting processors on levels ¢ and ¢ + 1 are called level i + 1 edges.

There are structural similarities between the hypercube and the butter-
fly. In particular, the ith node of Hy corresponds naturally to the ith row
of By, and the ith dimension edge (u,v) of Hy corresponds to cross edges
((uy,i —1),(v,7)) and ((v,7 — 1), (u,7)) in level i of By. We can obtain the
hypercube Hy from the butterfly By by merging all nodes in the same row
in By, and then removing the extra copy of each edge.

The butterfly has a simple recursive structure. Figure 3.4 shows a
3-dimensional butterfly with level 3 nodes removed. The result is two
2-dimensional butterflies, one consisting of even rows (solid edges), and

98 Parallel Algorithms

level0 level 1 level 2

row 001

row 010

row 011

row 100

row 101

row 110

O—O
// \ /
ow il Q---G---0

Fig. 3.4. Recursive structure of the butterfly.

the other of odd rows (dashed edges). Alternatively, we could remove the
level 0 nodes of By to obtain two identical Bg_1’s.

A useful property of the d-dimensional butterfly is that the level 0 pro-
cessor in any row w is linked to the level d processor in any row v by a
unique path of length d. The path traverses each level exactly once, using
the cross edge from level i to level ¢ 4+ 1 if and only if u and v differ in the
(i + 1)th bit. We will call this path the greedy path. Figure 3.5(a) shows
the greedy path from (000, 0) to (110, 3). It follows that the diameter of the
d-dimensional butterfly is 2d = O (logn). Figure 3.5(b) shows a 2%-leaf com-
plete binary tree contained within the d-dimensional butterfly. The leaves
of the tree are the level d nodes of the butterfly.

An algorithm that runs on the butterfly is called a normal butterfly algo-
rithm if no two processors at different levels are active at the same time.
That is, at any given time, only processors in the same level are participat-
ing in the computation. A single step of a normal butterfly algorithm can
be simulated in one step of the hypercube.

The Hypercube 99

level 0 level 1 level2 level 3 level 3 level2 levell level O

row 000

row 001

row 010

row 011

Tow 101

row 110

row 111

Fig. 3.5. (a) The greedy path from (000, 0) to (110, 3). (b) A complete binary
tree contained within Bs.

3.3 Embeddings of the Hypercube

There is an ever-growing interest in the portability of algorithms developed
for architectures based on other topologies, such as linear arrays, rings,
two-dimensional meshes, and complete binary trees, into the hypercube.
Let G = (V, E,) and H = (V},, E}) be two undirected graphs, called the
guest and host graphs, respectively. An embedding of G into H is defined
by two mappings: ¢ : V; — V} from the set of vertices of G to the set
of vertices of H, and ¢ : B, — II(H) from the set of edges of G to the
set of paths in H. Note that a path may consist of one edge, so in some
embeddings, the mapping is ¢ : E; — E}, in which edges in G are mapped
to edges in H.

100 Parallel Algorithms

There are some important properties associated with an embedding:

e Dilation. The dilation of an embedding is the maximum length of a path
in TI(H) mapped to by one single edge of G. It measures how much an
edge in G is stretched in H.

e Congestion. The congestion of an embedding is the maximum number
of edges in G mapped to one single edge in H. This counts the maximum
number of paths in the image of ¥ that pass through one particular edge
in H.

e Expansion. The expansion of an embedding is defined by %

e Load. This is the maximum number of nodes in G that are mapped to
one single node in H.

Example 3.1 Consider the two graphs G and H shown in Fig. 3.6.
Define the embedding functions ¢ and ¢ by: ¢(a) = w, ¢(b) = x, P(c) = z,
¥((a,b)) = w,z,9((b,c)) = z,z, and P((a,c)) = w,y,z. Since the edge
(a,c) is mapped to the path w,y, z, the dilation is 2. All edges of H are
used at most once, and hence the congestion is 1. The expansion is 4/3.
The load is 1. 0

3.3.1 Gray codes

A Gray code is an ordering of all possible d-bit binary sequences so that
for all k£ > 0, k and k + 1 differ in exactly one bit. The sequence of 3-bit
numbers corresponding to 0,1,...,7 is 000,001,011,010,110,111, 101, 100.
The Gray code of d bits is denoted by G4, which is defined recursively as

G1={0,1} and Gpy1 = {0G, 1GE},

a b w X
G H

Fig. 3.6. Example of graph embedding.

The Hypercube 101

000
0G2 001
00 011
0 0G, o1 010
G —> G —> G
1 2 3
1 1GR 11
1 10 110
1GR 111
Z2 101
100
Fig. 3.7. Construction of G3.
100 4
0 00 10 000 (*
101
1 Oty 11 001 011

Fig. 3.8. Pictorial illustration of the construction of Gs.

where 0G}, and 1G}, denote prefixing each element in the sequence Gy, with 0
and 1, respectively, and G5 denotes Gy, in reverse order. Thus, for example,
to construct the sequence G, we do the following steps (see Fig. 3.7):

(1) Write down the sequence for G; columnwise, that is 2.

(2) Next, construct G as 105{1?

(3) Repeat step 2 to get Gy as G2

1GE:
Figure 3.8 shows the recursive construction of G3 pictorially. Note that
this is a Hamiltonian cycle in Hs.

3.3.2 FEmbedding of a linear array into the hypercube

The embedding of a linear array with n = 2¢ processors into Hy is straight-
forward (see Fig. 3.9). As we saw above, renumbering the hypercube proces-
sors using the Gray code induces a Hamiltonian cycle. Hence, a linear array
or a ring with n = 2¢ processors can be embedded into Hy with dilation 1
and congestion 1.

102 Parallel Algorithms

000|001(010|011{100|101 |110 (111

Fig. 3.9. Embedding of a linear array into the hypercube.

Row 1 1G2 100|101 | 111|110

Row 0 OG2 000 (001 (011]010

Fig. 3.10. Embedding of a mesh into the hypercube.

3.3.3 Embedding of a mesh into the hypercube

The linear array is really a 1-dimensional mesh. Although the word mesh
usually refers to the 2-dimensional mesh, there are d-dimesional meshes
in general with dimensions rq,79,...,74. A d-dimesional mesh is the cross
product (Cartesian product) of d arrays. This is similar to the hypercube
in which a d-dimesional hypercube is the cross product of d hypercubes
of dimension 2. A 2-dimesional mesh can be embedded by extending the
idea discussed above for the case of linear arrays to two dimensions. Let M
be a mesh with 2" rows and 2¢ columns. We treat each row independently
as a linear array. Next, we generate the numbers 0,1,...,2° — 1 in Gray
code and prefix each processor number in row j with the number j in
Gray code. Figure 3.10 provides an example of embedding a mesh with
21 x 22 nodes into Hj. First, label each node in row 0 with the numbers

The Hypercube 103

000 010 100 110

Fig. 3.11. An example of embedding of a binary tree with 7 nodes into the
hypercube with 8 nodes.

0,1,2,3(00,01,11,10) using G5 code. Do the same for row 1. Finally, prefix
each node label in rows 0 and 1 with 0 and 1, respectively.

3.3.4 FEmbedding of a binary tree into the hypercube

There are several embeddings of binary trees into hypercubes.

Example 3.2 Consider the embedding of a complete binary tree with
7 nodes into a hypercube with 8 nodes shown in Fig. 3.11. The embedding
shown is inorder since the nodes of the binary tree are labeled inorder.
Since the edge (a, ¢) is mapped to the path 011,111,101, whose length is 2
(which is maximum) the dilation is 2. In fact, the dilation can be found
from the binary labels on the tree by computing the Hamming distance
between adjacent nodes in the binary tree. For instance, the Hamming
distance between 001 and 010 in the tree is 2. All edges of the hypercube
are used at most twice, and hence the congestion is 2. The expansion is
8/7, and the load is 1. O

Theorem 3.1 It is impossible to embed a complete binary tree T" with
n — 1 nodes into a hypercube H with n > 8 nodes with dilation 1.

Proof. Assume n = 2¢. Since T has n — 1 nodes, the number of leaves in
T is n/2. Suppose for the sake of contradiction that a complete binary tree
with n — 1 nodes is a subgraph of the d-dimensional hypercube H;. A node
in Hy has even parity if the number of ones in its binary string is even;

104 Parallel Algorithms

000 001 010 011 100 101 110 111

Fig. 3.12. One possible embedding of a binary tree with n leaves into the hyper-
cube with n nodes with dilation 1.

otherwise it has odd parity. It is easy to see that the number of nodes of even
parity is n/2, and the number of nodes of odd parity is n/2. Assume without
loss of generality that the hypercube node that contains the root of T" has
even parity. Since the neighbors of this node have odd parity, the children
of the root of T" are contained in odd parity hypercube nodes. Similarly,
the grandchildren of the root of T' are contained in even parity hypercube
nodes, and so on. Hence, the leaves and their grandparents, which account
for n/2 +n/8 = 5n/8 nodes, must all be contained in hypercube nodes of
the same parity. This is impossible, as there are only n/2 nodes with the
same parity in Hy. It follows that 7" is not a subgraph of Hg. O

It is possible, however, to embed a complete binary tree T" with n leaves
into a hypercube H with n nodes with dilation 1. Note that the tree has
a total of 2n-1 nodes. In this embedding, the ith leaf of the binary tree T’
is mapped to the ¢th node of the hypercube, and each internal node of T
is mapped to the same hypercube node as its leftmost descendant leaf. See
Fig. 3.12.

3.4 Broadcasting in the Hypercube

Broadcasting a datum z from processor Py to all other processors in the
d-dimensional hypercube can be achieved as follows. In the first step, Py
sends x to P;. In step 2, Py and P; send in parallel = to P, and Ps. In
step 3, Py, P1, P> and Ps send in parallel x to Py, Ps, Ps and P;. The formal
algorithm is shown as Algorithm HCBROADCAST. The notation j(¥) denotes
j with the ith bit complemented, 0 < i < d — 1. For example, 101 = 001.
The total number of steps in the algorithm is d.

The Hypercube 105

Algorithm 3.1 HCBROADCAST
Input: z.

Output: Broadcast x from Py to all other processors.

1. for i+ 0tod—1do

2. for all j < 2" and j < ;¥ do in parallel
3. Processor P; sends x to processor ij
4. end for

5. end for

3.5 Semigroup Operations

The hypercube is ideal for semigroup operations, e.g., addition and find-
ing the maximum. Assume that n numbers are distributed, one per pro-
cessor. Then, in order to compute a semigroup operation over this set of
numbers, the technique of reduction is used as shown in Algorithm HCSUM
for the case of the binary operation of addition. The notation i) means i
with the [th bit complemented. After d steps, the final result will be known
to processor Py. The instruction A[i] <« A[i] + A[i(V] involves two substeps;
in the first substep, A[i] is copied from processor P; to processor P;u), and
in the second substep, the addition operation is performed. Clearly, the
number of parallel steps in the algorithm is d = O(logn).

Algorithm 3.2 HCSUM

Input: A sequence of numbers A[j],0 < j < n—1, stored in Py, P1,..., Pr_1.
where n = 24,

Output: Z;:OI Alj] stored in Pp.

1. for [+ d — 1 downto 0 do

2. for all i,0<i<2' —1 do in parallel
3. Ali] « Af] + A[iY)

4 end for

5. end for

3.6 Permutation Routing on the Hypercube

Consider the problem of routing in the d-dimensional hypercube H,; with
n = 2¢ processors. We consider this the problem of permutation routing in
which every processor tries to send to a different destination. Processor 4

106 Parallel Algorithms

wants to send a packet v; to destination 6(7). We also assume oblivious
routing, in which the route taken by packet v; depends only on the destina-
tion 4(4), and not on any other packet’s destination 6(j). A collision occurs
when two packets arrive at the same processor at the same time, and try
to leave along the same link. To deal with collisions, every processor has
a queue and a prioritizing scheme for each incoming packet. If incoming
packets try to leave along the same link, they are placed in a queue and
then sent off in different time steps.

3.6.1 The greedy algorithm

A straightforward method for oblivious routing is called bit fizing, which
works by taking the bit address of the source processor and changing one
bit at a time to the address of the destination processor. Each time a bit
is changed, the packet is forwarded to a neighboring processor. Clearly, bit
fixing is an optimal routing scheme for a single packet. If the source i and
destination j differ by k bits, then the packet must traverse at least k links
in the hypercube to get to its destination. Bit fixing takes exactly k steps.
However, the queue size can be as large as O(y/n), as is evident from the
following theorem.

Theorem 3.2 The maximum queue size of the greedy algorithm for
permutation routing on the d-dimensional hypercube is O(y/n).

Proof. Notice that during bit fixing routing, an intermediate address
is always of the form z = y;---ypxpy1---xq, where z; is a bit of the
source address, and y; is a bit of the destination address. If two packets
collide, that means their destination addresses agree in their first k bits,
and their source addresses agree in their last d — k bits, where 1 < k < d.
There are 2* packets with source addresses agreeing on x4 1 - - - 24, and 2¢7F
packets with destination addresses agreeing on y; ...y, that may end up
at processor P,. Therefore, if we let S be the set of packets that collide
at processor P,, then |S| < 22:1 min{2* 29-%} since k ranges between 1
and d. Assume without loss of generality that d is even. Then,

d
S| <) min{2*,277%}
k=1

The Hypercube 107

/2 d
S S
k=1 k=d/2+1
d/2 d/2—1
SR
k=1 k=0
=3 %2923
= 0(2%?)
= O0(V/n).
It follows that the maximum queue size is O(y/n). O

3.6.2 The randomized algorithm

If we have to route many packets, bit fixing can cause many collisions, as
shown in Theorem 3.2. In fact, so can any deterministic oblivious routing
strategy. We have the following theorem, which is quite general:

Theorem 3.3 Any deterministic oblivious permutation routing scheme
for a parallel machine with n processors, each with d outward links requires

Q(y/n/d) steps.

Luckily, we can avoid this bad case by using a randomized routing
scheme. In fact, most permutations cause very few collisions. So, the idea
is to first route all the packets using a random permutation, and then from
there to their final destination. That is,

(a) Phase 1. Choose a random permutation o of {1,2,...,n}. Route
packet v; to destination o(4) using bit fixing.
(b) Phase 2. Route packet v; from o(i) to destination d(¢) using bit fixing.

The following observation about bit fixing during one of the two phases
above is important.

Observation 3.1 Two packets can come together along a route and then
separate, but only once. That is, a pair of routes can look like Fig 3.13(a),
but part (b) of the figure is impossible.

108 Parallel Algorithms

(a) (b)
Fig. 3.13. Packets collision.

To see this, notice that during bit fixing routing, an intermediate address
is always of the form v ...yrxgr1 ... 24, where x; is a bit of the source
address, and y; is a bit of the destination address. If two routes collide at
the kth step, that means their destination addresses agree in their first k
bits, and the source addresses agree in their d—k bits. At each time step, we
add one more bit of the destination address, which means we increment k.
Eventually, the destination bits must disagree since the destinations are
different. Let ko be the value of k£ at which this happens. Then, the yg,
destination bit is different for the two packets. At this point, the two packets
separate, and they will never collide again, because all the later intermediate
destinations will include the yy, bit. Observation 3.1 is the crux of the proof
of the following theorem:

Theorem 3.4 Let S be the set of packets whose routes intersect v;’s
route. Then, the delay of packet v; is < |S].

Notice that whenever the routes of two packets intersect, one of the
packets may be delayed by one time step. Once that packet is delayed by
one time step at the first shared node, it will flow along the shared route
behind the other packet, and will not be delayed any more by that packet.
If the same route intersects other routes, each of them may add a delay
of one time step. This happens either because another packet collides with
the current packet along a shared route, or because another packet collides
with a packet that is ahead of the current packet along a part of the route
which is shared by all three. In either case, an extra delay of at most one
results.

To get the running time of this scheme, we compute the expected value
of the size of the set S above. Define the indicator random variable X ;
which is 1 when the routes of packets v; and v; share at least one edge,
and Xj; ; is 0 otherwise. Then, by the above theorem, the expected delay

of packet v; is the expected size of S, which is E[Z};l Xl-,j]. It is rather

The Hypercube 109

difficult to get an estimate of this quantity. It is easier to think of Y'(e),
which is the number of routes that pass through a given edge e. Now,
suppose the route of packet v; consists of the edges (e1, e, ..., ex). Then,
we have >0 X j < S5, Y (er). Hence,

k
> Y(a)
=1

E Zn:xi,j <E
j=1

To use this bound, we next compute E[Y (e)]. Notice that
E[Y (e)] = (sum of lengths of all routes)/(total edges in the network).

The sum of lengths of all routes is the expected length of a route times n (the
number of all routes). The average length of a route is d/2 because a d-bit
source differs from a random destination address in d/2 bits on average. So,
the sum of route lengths is nd/2. The total number of edges in the network
is the number of nodes times the number of outbound links, which is nd.
So, E[Y (e)] = (nd/2)/(nd) = 1/2. Thus, if the path for packet v; has k
edges along it, then

k

_ ;E[Y(el)] _ g <dx

/J,ZE iXi’j SE

Jj=1

d
.

DN | =

> V(e
=1

Now, we can apply Chernoff bound in Theorem A.3 to the probability
of there being a substantial number of paths intersecting v;’s path. The
Chernoff bound is

Pr ZXM' > 140l < 27 0m,

j=1

We now compute the probability that v; is delayed at least 3d steps. So,
we require that (14 d)u = 3d. Notice that we do not actually know what u
is, but we have a bound for it of u < d/2. It follows that ud > 2.5d. Thus,
the probability that v; is delayed by at least 3d steps is bounded above by
9—2.5d_

This is a bound for the probability that a given packet is delayed more
than 3d steps. But we want to get a bound for the probability that no

110 Parallel Algorithms

packet gets delayed more than 3d steps. For that it is enough to use Boole’s
inequality for probabilities as a bound:

Boole’s inequality: For any finite sequence of events £,&s,...,&,,
Pri&iU& U---UE,] < Pr[&] +Pr[&]+ -+ Prl&,). (3.1)

There are n = 2¢ routes in total, and the probability that one of these
takes more than 3d steps is bounded above by 2927254 = 2-1.5d_Go we
can make the following assertion: With probability at least 1 —271-54
packet reaches its destination (i) in 4d or fewer steps. The 4d comes from
the delay time 3d plus the time for bit fixing steps, which is < d. Notice
that all of this applies to just one phase of the algorithm. So, the full
algorithm(two phases) routes all packets to their destinations with high

every

probability in 8d or fewer steps.

3.7 Permutation Routing on the Butterfly

Consider the problem of sending packets from level 0 to level d in the
d-dimensional butterfly By. Processor (i,0) in level 0 wants to send a
packet v; to destination (4(i),d) in level d. We consider the problem of
permutation routing in which every processor in level 0 tries to send to a
different destination in level d. That is, the function (i) is a permutation.

A simple process for routing a single packet obliviously is called bit
fixing. For definitions of bit fixing, its lower bound, collision and oblivious
routing, see Section 3.6. Next we discuss in detail a randomized routing
scheme for the butterfly. This scheme consists of three phases.

(a) Phase 1. Choose a random permutation o of {1,2,...,2¢}. Route
packet v; to destination (o(i),d) using the greedy path.

(b) Phase 2. Route packet v; from (o(i), d) to destination row but in level 0
(6(7),0) using the greedy path.

(c) Phase 3. Route packet v; from (§(7),0) in level 0 to (4(i),d) in level d
through direct links.

In what follows, we analyze Phase 1; Phase 2 is the reverse of Phase 1,
and Phase 3 takes d steps.

Let S be the set of packets whose routes intersect v;’s route. Define the
indicator random variable X; ; which is 1 when the routes of packets v;

The Hypercube 111

and v; share at least one edge, and X; ; is 0 otherwise. Then, by Theo-
rem 3.4, the expected delay of packet v; is the expected size of S, which is

d
E{Z?Zl Xi,j}. It is rather difficult to get an estimate of this quantity. It

is easier to think of Y'(e), which is the number of routes that pass through
a given edge e. Now, suppose the route of packet v; consists of the edges

(e1,€2,...,¢eq4). Then, we have Zfil Xi; < 27:1 Y (e;). Hence,

> Y(a)

=1

2d
E|) X,;| <E
j=1

To use this bound, we next compute E[Y (e;)]. Consider the link ¢; at level [,
which connects level [— 1 node to level [node. The number of packets that
can potentially go through e; is 2!~! since there are only 2!~! processors
at level 0 for which there are greedy paths through this link. In fact, if
er = ((u,l —1),(v,1)), then u is the root of a complete binary tree with
2!=1 Jeaves in level 0. Now, we compute the probability that packet v; will
go through link e;. Consider what happens to packet v; in level 0, when
it wants to move to level 1. There are two links to choose from to go to
level 1, either the direct link or the cross link. Thus, it takes one of these
two links with probability 1/2. It follows that in order for packet v; to go
through link e;, it has to go through [links with probability (1/2)!. Clearly,
Y (e;) has the binomial distribution with parameters 2!=! and (1/2)" (see
Section A.4.3). Hence, E[Y (¢;)] = 2!=! x (1/2)! = 1/2. Thus,

2d
E|) X,;| <E
j=1

Now, we can apply Chernoff bound in Theorem A.3 to the probability
of there being a substantial number of paths intersecting v;’s path. The
Chernoff bound is

2d

Pr ZXi,j > (L4 0)u| <27

j=1

We compute the probability that v; is delayed at least 3d steps. So, we
require that (1 + 0)pu = 3d. Notice that we do not actually know what p
is, but we have a bound for it of u < d/2. It follows that pd > 2.5d. Thus,

112 Parallel Algorithms

the probability that v; is delayed by at least 3d steps is bounded above by
9—2.5d

This is a bound for the probability that a given packet is delayed more
than 3d steps. But we want to get a bound for the probability that no
packet gets delayed more than 3d steps. For that, it is enough to use Boole’s
inequality for probabilities as a bound (Eq. (3.1)): There are 2¢ routes
in total, and the probability that one of these takes more than 3d steps
is bounded above by 2427254
assertion: With probability at least 1 — 271%¢ every packet v; reaches its

= 27154 S0 we can make the following

phase 1 destination (o(i),d) in 4d or fewer steps. The 4d comes from the
delay time 3d plus the time for bit fixing steps, which is d. Notice that all of
this applies to just one phase of the algorithm. So, the full algorithm(three
phases) routes all packets to their destinations with high probability in
4d + 4d + d = 9d or fewer steps.

3.8 Computing Parallel Prefix on the Hypercube

The parallel prefix problem was defined in Section 2.5. In this section,
we show how to compute it on the hypercube. Let Hy be a d-dimensional
hypercube, where each processor P; contains item ;, 0 < i <n—1 = 2%—1.
Assume that each processor has two registers: s and z. The algorithm is
shown as Algorithm HCPARPREFIX. The notation j(*) means j with the ith
bit complemented, 0 <7 < d — 1, where ¢ = 0 corresponds to the rightmost
least significant binary digit. For example, 100" = 110. s; computes the
sum zgoxo---ox;, and z; is a temporary variable. Initially, s; = z; = @5,
0<i<n-—1.

Algorithm 3.3 HCPARPREFIX
Input: X = (zo,z1,...,Zn-1), a sequences of n numbers, where n = 24,

Output: S = (so,81,...,8n—1), the prefix sums of X.

1. for i+ 0tod—1do
2 for all j < j(i) do in parallel
3. Zj(i) = Zj() © Zj
4. Sj(i) < Sj(i) 0 zj
5 Zj 4= Z(0)
6 end for
7. end for

The Hypercube 113

(a) 110 x4 x, |111 (b) 110 | %6 267|111
S6-6 S6.7
100| x x 100 %4-5 245
4 5 101
101 S44 Sq5
010 *; *3 o011 23 23
010 Syn 5541011
000| *o x oo1 000 20-1 20-1
S00 So. | 001
110 | 247 247|111 110 | %07 207|111
(© 4.6 547 (d) S0-6 50.7
100 %4-7 247)101 100 %0-7 20-7(101
S44 S45 S04 So5
03 203 o9 209
010 s, 505|011 010]s,, 503|011
Z Z z z
03 0-3 07 0-7
000 5 50,1001 0001 5., 5.1 1001

Fig. 3.14. Example of computing parallel prefix on the 3-dimensional hypercube.

Figure 3.14 illustrates the operation of the algorithm on the
3-dimensional hypercube. For clarity, the intermediate calculations have
been shown with indices of the form s;_;, which is equal to z;0x; 10 - -0x;,
0 <4 < j <n—1. The same thing applies to z;—,. Figure 3.14(b) shows the
contents of registers after the computations in the first iteration (i = 0).
Parts (c) and (d) show the contents of registers after the computations in
the second and third iterations (i = 1 and 2). There are d = log n iterations
in the algorithm, each takes ©(1) time. Hence, its running time is ©(logn).

3.9 Hyperquicksort

Quicksort is a very popular sorting algorithm. There have been numerous
attempts to parallelize it for a variety of machines and models of com-
putation; see Section 2.5.2 for an example. One attempt is hyperquick-
sort, which is targeted for the case of hypercubes with p < n, where n is
the number of items and p is the number of processors. The algorithm is
shown as Algorithm HCHYPERQUICKSORT. Initially, it is assumed that the

114 Parallel Algorithms

n elements are evenly distributed among the p = 2¢ processors, so that
every processor contains n/p elements.

Algorithm 3.4 HCHYPERQUICKSORT
Input: X = (z1,22,...,Zs), a sequences of n numbers.

Output: X sorted in ascending order.

1. Each processor sorts its n/p items using a sequential sorting algorithm.

2. Processor Py determines the median m of its elements and broadcasts it
to all other processors.

3. Every processor P; partitions its items into X of items < m and Y of
items > m.

4. Let the two subcubes of size 297! each be L and U. Every processor P;
in L sends its set Y to its adjacent processor P; in U. Likewise, P; sends
its set X to P;.

5. Every processor merges the elements that it already has with those it
received from its adjacent processor.

6. Repeat Steps 2-5 to recursively sort L and U in parallel until the subcubes
consist of one processor.

Clearly, Algorithm HCHYPERQUICKSORT sorts its input. What remains
is to find its running time. Assume that the data is balanced, so that after
Step 5 is executed, each processor has ©(n/p) elements. In this case, the
recursion depth is O(logp) = O(d). Step 1 takes O((n/p)log(n/p)) time.
Determining the median in Step 2 takes ©(1) time since the items in each
processor are sorted. Broadcasting m takes O(d) time in one recursive call
foratotal of d+ (d— 1)+ (d—2)+--- = @ = ©(d?) in all recursive
calls. Step 3 takes ©(n/p) time. Step 4 of data transmission takes ©(n/p)
time. By the end of this step, every element in L is < every element in U.
Step 5 of merging the two sets takes ©(n/p) time.

It can be shown that if the data is initially distributed in a random
fashion, the expected running time of the algorithm is

© ((n/p)log(n/p) + d* + dn/p) .

The (n/p)log(n/p) term represents the sorting step. The d? term repre-
sents broadcasting as stated above, and the dn/p term represents the time
required for exchanging and merging sets of elements in all recursive calls.
One disadvantage of the algorithm is that the elements may not be evenly
distributed after the algorithm terminates.

The Hypercube 115

3.10 Sample Sort

Sample sort is a generalization of quicksort, in which a sample of size s is
selected, and the input is partitioned into s + 1 parts, where all elements
in one part are less than all elements in the next part. Each part is then
sorted separately. Let n be the number of elements, and p the number
of processors, where n > p?. Let S = {a1,as,...,a,} be the sequence of
elements to be sorted, and assume they are distinct.

Parallel sample sort consists of the following steps: In the beginning, it is
assumed that each processor has a list of w = % items, which it sorts using a
sequential sorting algorithm. Define a regular sample X = XoUX 1U--- X},
to be a set of p(p — 1) elements, where

X = {a@/p)+jws Q@u/p)+jws - > Wp—1yw/p)+jwt, 0<J<p—1

In other words, from each of the p lists, p — 1 samples are chosen, evenly
spaced throughout the list. Next, X is sorted using a sequential sorting
algorithm. This can be achieved by letting each processor send its sample
of p — 1 elements to processor Py, which then sorts the whole sample of
p(p — 1) elements (Exercise 3.9). Let this ordered sample be

bi,ba, ..., bp(pfl)'

Next, choose

Y =b(p/2), bpt(p/2)5 - -+ Dp—2)p+(n/2)

as the p — 1 pivots for partitioning .S, which we will refer to as

Y, 925 -5 Yp-1)-

In other words, the p(p — 1) samples are sorted and p — 1 elements evenly
spaced throughout the sorted list, are chosen to be the pivots.

The partitioning of S is accomplished as follows. Each processor finds
where each of the p — 1 pivots divides its list using binary search, after
which each of the p sorted lists of S have been divided into p sorted sublists
with the property that every item in every list’s ith sorted sublist is greater
than any item in any list’s (¢ — 1)th sorted sublist, for 2 <14 < p.

Finally, each processor P;, 1 < ¢ < p, performs a p-way mergesort to
merge all the ¢th sorted sublists of p lists. Note that, unlike in the first step,
in which each processor sorts a contiguous block of items, each processor

116 Parallel Algorithms

merges p sublists stored in p different areas. Because of the demarcations
established before, their merges are completely independent of each other.
The above description is summarized in Algorithm SAMPLESORT.

Algorithm 3.5 SAMPLESORT
Input: S = (a1, a2,...,an), a sequences of n numbers.

Output: S sorted in ascending order.

1. Set w+ 2.

2. Each processor sorts its list of size w.

3. Each processor chooses evenly spaced p — 1 samples from its list. Let X
be the set of p(p — 1) samples.

4. Sort X using a sequential sorting algorithm. Let this ordered sample be
b1,b2, ..., byp—1)-

5. Choose Y = b(,/2), bpt(p/2)5 - -+ » D(p—2)p+(p/2) @s the p — 1 pivots.

6. Each processor P; finds where each of the p—1 pivots divides its list using
binary search, and divides its list into p sublists.

7. Each processor P;, 1 < i < p, performs a p-way mergesort to merge all
the ith sorted sublists of p lists.

Example 3.3 Figure 3.15 provides an illustration of Algorithm SAMPLE-
SORT for the case n = 24 and p = 3. The input is given in Fig. 3.15(a),
which is divided into three parts, one part per processor. The set X of

(a)
! [12]17[15]21] 8 |3 [14[9 | [18] 4 [10]5 [23[16]24]19] [7 [20] 1 [11]6 | 2 [13]22]

b
) [3]8]9]12]14]15[17]21] [4 5 [10]16]18]19]23]24] [1 [2] 6] 7 [11]13]20[22]

()
[9 [15[10[19] 6 [13]
(d)
6 [9]r0[13]15[19]
()
[3]8]9]4]5][1]2]6]7] [12]1a[15]10]11[13] [17]21]16]18]19]23]24]20]22]

(f)
[1]2]3]4]5]6]7][8]9] [10[11]12]13]14]15] [16] 17]18]19]20]21]22]23]24]

Fig. 3.15. TIllustration of Algorithm SAMPLESORT.

The Hypercube 117

sample elements is shown as the shaded items in Fig. 3.15(b). These items
are shown in Fig. 3.15(c). Sorting this sample and choosing p—1 = 2 pivots
is shown in Fig. 3.15(d). Figure 3.15(e) shows the contents of each processor
after merging the sublists, and Fig. 3.15(f) shows the sorted items. (]

Theorem 3.5 In the last step of Algorithm SAMPLESORT, each processor
merges less than or equal to 2w = 27" elements.

Proof. Consider any processor P;, 1 < i < p. There are three cases.

Case 1: i = 1. All the items to be merged by processor P; must be < y;.
Since there are p? — p — £ samples which are > y, there are at least
(p*—p— %)% elements of S which are > y;. In other words, there are at

most n — (p* —p — 2)5 = (p+ %)% < 2w elements of S which are < y;.

Case 2: 1 = p. All the items to be merged by processor P, must be > y,_;.
Since there are (p — 2)p + § samples which are < y, 1, there are at least
(p? —2p+ 5 % elements of S which are < y,_1. In other words, there are at
most n— (p? —2p+ 5)% = (2p—%)% < 2w elements of S which are > yp,_1.

Case 31 < i < p. All the items to be merged by processor P, must
be > y;_1 and < y;. Since there are (i — 2)p + § samples which are < y;_1,
there are at least ((i — 2)p + £)% elements of S which are < ;1. On the
other hand, there are (p —i)p — & samples which are > y;. Thus, there are
at least ((p—i)p— §)% elements of S which are > y;. Combining these two

inequalities, there are at most

n—((i—2)p+§>%—((p—i)p—§

w w
) — =2p— =2w
p
elements of S for processor P; to merge.
It follows that no processor merges more than 2w = 27" elements in the last
step of the algorithm. O

Now, we analyze the running time of the algorithm. Step 2 of sequential
sorting takes ©(wlogw). Step 4 of sorting the sample takes ©(p? log p?). In
Step 5, each processor performs p — 1 binary searches in O(plogw) time.
By Theorem 3.5, in the last step of merging the sublists, the size of data
to be merged by any processor is less than or equal to 2w, and hence the

118 Parallel Algorithms

time needed by this step is O(w log p). Hence, the total running time is
T(n,p) = O(wlogw +wlogp+ plogw + p*log p?) = O(wlogw + p* log p?),

since n > p?. When n > p?, the running time becomes

TW)z@@ﬂgw)z@(%kgg).

3.11 Selection on the Hypercube

Recall the problem of selection discussed in Section 2.14: Given a
sequence A = (a1, as,...,a,) of n elements and a positive integer k,1 <
k < n, find the kth smallest element in A. In this section, we develop an
algorithm that runs on the hypercube with p < n processors. The algorithm
is shown as Algorithm HCSELECT.

Algorithm 3.6 HCSELECT
Input: A sequence A = (a1,...,a,) of elements and an integer k, 1 < k < n.

Output: The kth smallest element in A.

[y

if |A] < p then sort A and return the kth smallest element.

. for i<- 0 to p — 1 do in parallel
Processor P; computes the median m; of its local n/p elements
using an optimal sequential algorithm for selection. Let the set of
medians be M.

end for

Sort M and find its median m.

Broadcast m to all p processors.

Partition A into three sequences:

Ar={a|a<m}

Az ={a|a=m}

As={a | a>m}

8. case
9. |A1| Z k‘:

10. Distribute Ay evenly over all processors

11. HCSELECT(A1, k)

12. |A1] + |A2| > k: return m

13. |[A1] + |A2| < k:

14. Distribute A3 evenly over all processors

15. kK — |A1| — |As|

16. HCSELECT(As, k)

17. end case

w

N otk

The Hypercube 119

The time complexity of the algorithm can be computed as follows: Step 3
of the algorithm takes O(n/p) time using an optimal sequential algorithm
for selection. The sorting step in Line 4 takes t4(p,p) time, which is the
time needed to sort p elements using p processors. Broadcasting m in Step 5
requires O(log p) time. Partitioning A into A;, As and Az can be done by
first each processor splitting its data, and then computing the global sizes
of Ay, As and As. This takes O(n/p + log p) time using parallel prefix and
compaction. The load balancing problem (see Section 3.13) is to redistribute
data items stored in a hypercube such that the number of items in different
processors differ by at most one after the redistribution. We use a load
balancing algorithm that has a time complexity of O(M + log p) where M
is the maximum number of items at any processor before the redistribution.
Thus, data distribution in Steps 10 and 14 takes O(n/p + logp) time.

The median of medians m is smaller than (and greater than) at least
(lA]/2p)(p/2) = |A]/4 elements. That is, it is greater than (and smaller
than) at most 3|A|/4 elements (Exercise 2.17). Hence, the recursive call
takes at most T'(3n/4). This implies the following recurrence for the running
time:

O(n) ifp=1
T(n,p) = { O(ts(p,p)) ifp>n
T(3n/4,p)+O(n/p+ts(p,p)) ifl<p<n.

The recursion depth is logn — logp, since the recursion ceases when n
becomes less than p. The solution to this recurrence is

T(n,p) = O(n/p+ts(p,p)(logn —logp)) = O(n/p + ts(p,p) log(n/p)).

If, for example, we let p = n/logn and use the O(log ploglog p) time sorting
algorithm, then the time complexity becomes

T(n,n/logn) = O(logn + log ploglogplog(logn))
= O(logn + logn(loglogn)?)
= O(logn(loglogn)?).

3.12 Multiselection on the Hypercube

Let A = (a1,as,...,a,) be a sequence of n distinct elements drawn from a
linearly ordered set, and let K = (ki, k2, ..., k) be a sequence of positive

120 Parallel Algorithms

integers between 1 and n. The multiselection problem is to select the k;th
smallest element for all values of 7,1 < i < r. The hypercube structure
is ideal for parallel execution of balanced divide-and-conquer algorithms.
This leads to the following idea of the multiselection algorithm: First, use
Algorithm HCSELECT to find the median m of A. Use m as a splitter to
partition A into A; of items smaller than or equal to m, and As of items
larger than m. This induces a bipartition of B into two subsequences —
By of items less than k = [n/2], and Bz of items greater than k. The
algorithm is then recursively called in parallel with (Ay, By) and (A, Bs).
Note that since the elements are distinct, |A;| = [n/2] and |A3]| = [n/2].
Following this idea, the algorithm is shown as Algorithm HCMULTISELECT.
In cube(s,d), s is the starting address of the cube and d is its dimension.
Initially, the algorithm is called with HCMULTISELECT(A, B, cube(0,logp)).

In Step 13, A; is discarded, since |By| = 0. Similarly, in Step 16, A
is discarded, since |Bs| = 0. Let @ denote our hypercube with p = 24
processors. Q can be divided into two disjoint halves L and U, where L
consists of processors with addresses Ox, and U consists of processors with
addresses 1z. Now, we show how to move the elements in A; and As to L
and U, respectively, as stated in Steps 19 and 20. Every processor P in)
logically partitions its local set of data into two groups X and Y, where X
contains those elements less than or equal to the median m, and Y con-
tains those elements greater than m. This requires O(n/p) sequential time.
Now, each processor Py, in L sends its set Y to its adjacent processor P,
in U. Likewise, each processor Pj, in U sends its set X to its adjacent
processor Py, in L. Notice that when this step is complete, all elements
less than or equal to m are in L, while all elements greater than m are
in U. This step requires O(n/p) time for the transmission of data. It is
followed by load balancing (see Section 3.13). The load balancing problem
is to redistribute data items stored in a hypercube such that the number of
items in different processors differ by at most one after the redistribution.
The load balancing algorithm that we will use has a time complexity of

The Hypercube 121

Algorithm 3.7 HCMULTISELECT
Input: A sequence A = (ai,...,an) of elements and a sequence of positive

Output: The k;th smallest element in A, 1 <7 <.

1.
2.
. else if |[A|] < p then sort A and return the k;th smallest element,

20.

21.
22.
23.
24.

. else if |B| = 1 then use Algorithm HCSELECT to find the kith smallest
. else do Steps 6 to 24

. k< [|A]/2].

. Partition A into A1 and Az, where A1 (resp. A2) is the set of elements in

. Partition B into B; and Bz, where Bi (resp. B2) is the set of elements

. case

integers B = (k1,ka,...,kr), 1 < k; < n. cube(s,d), the starting
address of the cube s and its dimension d.

d
p— 27,
if p = 1 then use a sequential multiselection algorithm and exit.

1<i <
element.

Use Algorithm HCSELECT to find the median element m
Broadcast m to all p processors.

A less than or equal to (resp. greater than) m.

in B less than or equal to (resp. greater than) k. Subtract k from each
item in Bs.

|Bi| = 0:
Distribute Az evenly over all processors
HCMULTISELECT (A2, B2, s, d)
|B2| = 0:
Distribute Ay evenly over all processors
HCMULTISELECT(A1, B1, s, d)
|B1| > 0 and ‘BQ‘ > 0:
Distribute A; evenly over all processors in
L = cube(, s) d-1
Distribute Az evenly over all processors in
U = cube(, s +2¢471) d-1
do in parallel
HCMULTISELECT (A1, B1, cube(s,d — 1))
HCMULTISELECT(Az2, B2, cube(s + 2771 d — 1))
end case

122 Parallel Algorithms

O(M + logp) where M is the maximum number of items at any processor
before the redistribution. Thus, it runs in time O(n/p + logp).

The time complexity of the algorithm can be computed as follows:
finding the median m by Algorithm HCSELECT in Step 6 requires O(n/p +
ts(p,p)log(n/p)) time, where ts(p,p) is the time needed to sort p ele-
ments using p processors. Partitioning A into A; and As can be done by
each processor splitting its data in time O(n/p). Data redistribution takes
O(n/p + logp) time. This implies the following recurrence for the running
time:

O(nlogr) ifp=1

O(Z + t.(p, p) log(2)) fr=1
T(n,r,p) <

O(ts(p,p)) ip=zmn

T(5,r=1,5) +0(F +ts(pp)log(3)) if1<p, r<n.

In the worst case, the recursion depth is min{r, logp,logn} = min{r,logp}
since p < n. It follows that the solution to this recurrence is

T(n,r,p) = O((n/p + ts(p,p) log(n/p)) min{r,log p}).

If we use the O(log ploglogp) time sorting algorithm, then the time com-
plexity becomes

T(n,r,p) = O((n/p + log ploglog plog(n/p)) min{r,log p}).

If we let p = n'=€ for 0 < € < 1, then there is always a constant ng such
that n/p = n° > logploglogplog(n/p) holds for all n > ng. This shows
that T'(n,r,n'=¢) = O(n min{r, logn'=¢}).

3.13 Load Balancing on the Hypercube

The load balancing problem on the hypercube is to redistribute data items
stored in a hypercube such that the number of items in different processors
differ by at most one after the redistribution. In this section, we present a
simple load balancing algorithm on the hypercube. Assume that it takes one
time unit to move one item from one processor to a neighboring processor.

The Hypercube 123

Thus, moving k units of load from one processor to a neighboring processor
takes k units of time. Suppose we have a hypercube with n = 2% processors
such that each processor P; has L; units of load. In the load balancing
problem, it is requited to redistribute the load so that if L/ is the load
on processor P; after the redistribution, then | Lj — L | <1 for every pair
of processors P; and P;. We are interested in balancing load as well as
minimizing the load transfer time. The load can be balanced such that
| L; — L | <1 for every pair of processors P; and P; by balancing across
each of the d dimensions of the hypercube.

Now, we describe the algorithm in connection with the example shown
in Fig. 3.16. Consider an eight-processor hypercube with the initial load
distribution shown in Fig. 3.16(a). We consider the dimensions of the
hypercube in the order 2,1,0. When considering dimension 2, we ensure
that the total loads of the two subhypercubes of size 4 differ by at most
one. The total load in the subhypercube { Py, P1, P2, Ps} is 56, while that
in the subhypercube {Py, Ps, Ps, Pr} is 48. After balancing across dimen-
sion 2, each of these subhypercubes will have a total load of 52. We use
the embedding of a hypercube into a binary tree, as shown in Fig. 3.12.
Thus, the processors will communicate using the binary tree of Fig. 3.16(b).
Note that the tree levels are numbered 0, 1, 2, 3 such that the root is at
level 0.

First, we perform an upward pass starting from level 2 (the level above
the leaves) up to the root. During this pass, level 2 and level 1 nodes com-
pute the total load in the leaves of the subtrees of which they are the
root. This gives the numbers next to each node at levels 2 and 1. Now,
at the root, we compute the load difference § between the two subhyper-
cubes of size 4. Since § = 8, 4 units of load have to be transferred from
the hypercube { Py, P1, P, P3} to the hypercube { Py, Ps, Ps, P;}. To get the
actual processor-to-processor load transfer, we make a pass down the tree as
shown by the downward arrows in Fig. 3.16(b). P, on level 1 knows that its
hypercube has to transfer 4 units of load to hypercube {Py, Ps, Ps, P7}. It
attempts to do this by having each of its size-2 hypercubes transfer 4/2 = 2
units. This is possible as one size-2 hypercube has 30 units and the other
has 26. On level 2, Py has to allocate a 2-unit data transfer from {Py, Py}
and processor P; has to allocate a 2-unit transfer from { P, Ps}. This is
accomplished by having each of the processors { Py, P, P», P3} transfer 1

124 Parallel Algorithms

(a)

10 20 14 12 8 8

15 17

(d)
3=10 8=2 8=2 8=0
$¥IYS:
TS s s Wt
8 18 4 12 14 3

12 13 1

(e)
13 13 13 13 13 13 13 13
Fig. 3.16. Load balancing algorithm on the 3-dimensional hypercube.

unit of load to their neighboring processors across dimension 2, i.e, proces-
sors Py, P;, P> and Ps transfer 1 unit each to processors Py, Ps, Ps and P,
respectively. During the load allocation downward pass, we are repeatedly
in the situation shown in Fig. 3.17. Here, a and b are hypercube loads com-
puted in the upward pass, w is the load to be allocated at this level by P;,

The Hypercube 125

[
x/\y

a b
Fig. 3.17. Load allocation downward pass.

|»
®

a

Fig. 3.18. The last iteration of the downward pass.

and x + y = w. From the nature of the downward pass, we have w < a + b.
We would like to have z = y, i.e., z = [w/2] and y = |w/2]. This is pos-
sible only if ¢ > [w/2] and b > |w/2]. In case a < [w/2], we set = = a,
and y = w — x. In case b < |w/2], we set y = b, and © = w — b. In the last
iteration of the downward pass, the situation is shown in Fig. 3.18. Here, a
is the current load in processor P;, and w < a. Processor P; is to transfer
w load units to its neighbor along the balancing dimension. Following this,
the load in processor P; is a — w.

Now, in our example, the numbers below the leaf nodes of Fig. 3.16(c)
give the load in each processor following the dimension 2 balancing. Next,
we balance across dimension 1. For this, pairs of hypercubes with two pro-
cessors each are considered. The hypercubes { Py, P1} and { P, P} balance
load as do the hypercubes {Py, Ps} and {Ps, Pr}. This is done in parallel.
Figure 3.16(c) shows the two pass process. Processors Py and P; are to
transfer one unit each to processors P» and Pj, respectively, and processors
P, and P; are to transfer 4 units each to processors Ps and P, respectively.
The load in each processor after this load transfer is given below the leaves
of Fig. 3.16(d). In the third and final load balancing iteration, load is bal-
anced in pairs of processors that differ in bit 0. Figure 3.16(d) shows the
computation. After the required load redistribution, each processor has 13
units of load (Fig. 3.16(e)).

126 Parallel Algorithms

The load balancing algorithm for general d is summarized in Algorithm
HCLOADBALANCE. There are d — 1 iterations, and each upward and down-
ward pass of a tree of height r takes ©(r) = O(logd) time. Hence, the
overall running time of the algorithm is O(d? + m). Here, m = Z‘j;ol m,
where m; is the maximum load transferred between a pair of processors
when balancing along dimension i. From the above discussion, it follows
that | L; — L’ | <1 for all 4 and j. Finally, we note that the load balancing
problem can be solved in time O(logp + M), where p is the number of
processors and M is the maximum number of items at any processor before

the distribution (see the bibliographic notes).

Algorithm 3.8 HCLOADBALANCE
Input: A d-dimensional hypercube with loads L;, 0 < i < 2%

Output: Perform load balancing on the hypercube.

1. for r<—d — 1 downto 0 do

2. Perform an upward pass computing the sum of loads in the
subtree leaves.

3 Perform a downward pass to compute the load to be transferred.

4. Transfer load.

5. end for

3.14 Computing Parallel Prefix on the Butterfly

The parallel prefix problem was defined in Section 2.5. In this section, we
show how to compute this problem on the butterfly. For simplicity, we will
assume addition as the binary operation. Recall from Section 3.2 that a
complete binary tree with 2¢ leaves corresponding to level 0 processors, and
rooted at (0, d) is a subgraph of the d-dimensional butterfly (see Fig. 3.5(b)).
Assume that each processor has two registers: s and z. Register s at node v,
denoted by s(v), contains the sum of all items at the leaves of the subtree
rooted at v, and z(v) contains the sum of all items at the leaves of the
subtree rooted at the left child of node v. Initially, the items z1,zo,..., T,
are input to the n = 27 processors at level 0 in registers z and s. The
algorithm consists of two passes: Bottom-up and top-down. It is shown as
Algorithm BFPARPREFIX.

Obtaining the running time is straightforward; it is ©(d) in both the
bottom-up phase and the top-down phase.

The Hypercube 127

(a) §=9 (b) 5=9] &
z=5 :&’2:5 XL
§=5 §=4 §=5 §=4
z=3 z=1 =3 =1
§=3 §=2 s=1 §=3 §=3 §=2 §=1 §=3
7=3 =2 z7=1 7=3 =3 7=2 z=1 =3
$=9 5§=9
d
(C) 7=5 () =5
=5 s=4 5=5 s=4
O'/ Z=3\\3 5/ z=1 \6 Z=3\ =1
§=3 §=2 s=1 §=3 §=3 §=5 §=6| [$§=9
z=3| [z=2] |2=1] [2=3 z=3| |z2=2| [z=1] [z=3

Fig. 3.19. Example of computing parallel prefix on the 2-dimensional butterfly.

Algorithm 3.9 BFPARPREFIX
Input: X = (z1,22,...,Tns), a sequences of n numbers, where n = 24,

Output: S = (s1,82,...,), the prefix sums of X.

(a) Bottom-up phase. See Fig. 3.19(a). Each leaf node [sends its item
s(1) to its parent. Each internal node v upon receipt of two s-values s(x)
and s(y) from its children z and y computes their sum and stores it in
register s(v). It also stores s(z), the left child sum, in register z(v).

(b) Top-down phase. See Figs. 3.19(b-d). Initially, the root sends 0 to its
left child and z to its right child. Each node v upon receipt of value y
from its parent does the following: If v is a leaf, it sets s(v) = s(v) + y;
otherwise it sends y to its left child, and sends y + z(v) to its right child.
At the end, the s value at the ith leaf contains s; = x1 + x2 + - - - + x4,
1<i<n.

3.15 Odd—-Even Merging and Sorting on the Butterfly

In this section, we implement odd-even merging and sorting on the
d-dimensional butterfly, where n = 2%; odd-even merging and sorting on
the PRAM were discussed in Section 2.11. Let A = (ag, a1, ..., a,/2—1) and
B = (bo, b1, ..,b,/2_1) be two sorted sequences of n/2 elements each. Ini-
tially, A and B are input into level d of the d-dimensional butterfly, where

128 Parallel Algorithms

(a) level3 level2 level 1 level0 (b) level3 level 2 level 1 level 0

(c) level 3 level 2 level 1 level0 (d) level 3 level 2 level 1 level O

Fig. 3.20. Odd-even merging on the butterfly.

the a;’s are input to the lower half, and the b;’s are input to the upper
half (see Fig. 3.20(a)). The odd—even merging method is outlined in Algo-
rithm BFODDEVENMERGE. It is important to note that the butterfly has
a recursive structure; the even rows of the d-dimensional butterfly and the

The Hypercube 129

Algorithm 3.10 BFODDEVENMERGE

Input: Two sorted sequences A = (ao, a1, ...,a,/2-1) and
B = (bo,b1,...,b,/2-1) of n/2 elements each, where n = 2¢. A and B
are stored in level d of the butterfly.

Output: The elements in S = AU B in sorted order.

1. if n = 2 then merge the two elements and exit. e Move the a;’s to level
d—1 along the straight edges and the b;’s to level d—1 along the cross edge
as shown in Fig. 3.20(b). This is equivalent to partitioning the input into
Acven, Aoddy Beven, and Bogq, and storing them in the (d — 1)-dimensional
butterflies.

2. Recursively merge Acyen and Boaq to obtain C' = (co, 1, ..., Cp/2—1) using
the even (d — 1)-dimensional butterfly.

3. Recursively merge Aoqq and Beven to obtain D = (do,d1,...,dp/2—1)
using the odd (d — 1)-dimensional butterfly.

4. Let E’ be the shuffle of C' and D, that is,

E" = {co,do,c1,d1,...,Cnsa—1,dns2—1). Starting from co in E’, compare
each ¢; with the following d;, and switch them if they are out of order to
obtain the sorted sequence E = (eo,€e1,...,€n—1).

5. return S = F.

odd rows contain a (d — 1)-dimensional butterfly each (refer to Fig. 3.4).
These two (d — 1)-dimensional butterflies will henceforth be referred to as
the even and odd butterflies. In Fig. 3.20(b), the even (d — 1)-dimensional
butterfly and the odd (d — 1)-dimensional butterfly are shown with thick
and dashed lines, respectively.

The first step in the algorithm is to move the a;’s to level d—1 along the
straight edges and the b;’s to level d — 1 along the cross edges in one step
as shown in Fig. 3.20(b). This is equivalent to partitioning the input into
Aevens Aodd, Beven, and Boqq and storing them in the (d — 1)-dimensional
butterflies. Next, the algorithm recursively merges Aeyen with Bogqq to pro-
duce C, and recursively merges Beyen With Agqq to produce D using the
even and odd (d — 1)-dimensional butterflies, respectively (see Figs. 3.20(b)
and (c)). Here C' = {co,c1,...,¢nj2-1) and D = (do,dy, ..., dp/a—1). Let E’
be the shuffle of C' and D, that is, £/ = (co,do,c1,d1,...,Chja—1,dn/2-1)
(see Fig. 3.20(c)). E’ is scanned from left to right (in one step) for pairs
that are out of order, which are ordered, if necessary. In other words,
starting from ¢y, compare each ¢; with the following d;, and switch them

130 Parallel Algorithms

if they are out of order. This is accomplished by letting the even rows
at level d compute min{c;,d;} and the odd rows at level d compute
max{¢;,d; }. The result of the comparisons and exchanges, which is the
sequence F = (eg, e1,...,e,_1) is then stored in level d of the d-dimensional
butterfly as the desired sorted sequence (see Fig. 3.20(d)).

The analysis of the algorithm is straightforward. Step 1 takes ©(1)
time. Steps 2 and 3 take T'(n/2) time each. Step 4 takes O(1) time.
Hence, the running time of the algorithm is governed by the recurrence
T(n) = T(n/2) + O(1), whose solution is T'(n) = O(logn). The proof of
correctness is given by Theorem 2.2 in Section 2.11.

Example 3.4 Consider merging the two sorted sequences A = (1, 3,5, 8)
and B = (2,4,6,7) on the 3-dimensional butterfly shown in Fig. 3.21(a).
The a;’s are first moved to level 2 along the straight edges and the b;’s
are moved to level 2 along the cross edge as shown in Fig. 3.20(b). This
is equivalent to partitioning the input into Aeven, Aodd, Beven and Bogd
and storing them in the 2-dimensional butterflies. Thus, Aeven = {1,5},
Aoda = {3,8}, Beven = {2,6} and Boga = {4,7}. Acven and Bogq are
merged recursively as well as Agqq and Beyen in the 2-dimensional butter-
flies, and the two sequences C' = (1,4,5,7) and D = (2, 3,6, 8) are formed as
shown in Figs. 3.21(b) and (c). Finally, the elements in each pair (¢;,d;) in
the sequence E' = (1,2,4,3,5,6,7,8), which is the shuffle of C' and D, are
compared and exchanged if they are out of order as shown in Fig. 3.21(d).
The pair (4, 3) is out of order, so 4 and 3 are interchanged. The sorted
sequence is F = (1,2,3,4,5,6,7,8) as shown in Fig. 3.21(d). O

The algorithm for sorting is given as Algorithm BFODDEVENMERGE-
SORT. It is similar to Algorithm ODDEVENMERGESORT for the PRAM in
Section 2.11 Initially, the input sequence is input to level d of the butterfly.

The Hypercube 131

(a) level 3 level 2 level 1 level0 (b)level 3 level 2 level 1 level O

Fig. 3.21. Example of odd—even merging on the butterfly.

132 Parallel Algorithms

First, the algorithm recursively sorts each half separately using the two
(d—1)-dimensional butterflies in Steps 3 and 4. Next, the two sorted halves
are merged using Algorithm BFODDEVENMERGE in Step 5.

Algorithm 3.11 BFODDEVENMERGESORT
Input: A sequence S = (ao, a1,...,an—1) where n = 24,

Output: The elements of S in sorted order.

Sy <(lo7 Aty ..., an/2,1>.

Sa 4= <an/27 An/241y -+ an*1>'

S| < BFODDEVENMERGESORT(S1)
S5 <« BFODDEVENMERGESORT(S2)
S« BFODDEVENMERGE(S], S5)
return S

O T W=

The running time of the algorithm is governed by the recurrence T'(n) =
T(n/2) 4+ ©(logn), whose solution is T'(n) = O(log? n).

3.16 Matrix Multiplication on the Hypercube

Consider the problem of matrix multiplication on the hypercube: Given two
square matrices A and B of order n x n, find their product C' = A x B.
Note that the matrices are indexed from 0 to n — 1. Thus, the matrix A
has the form:

ap,o ap,1 ceeQOn—1

at,o ar,i ain—1

an—-1,0 Gn-1,1 --- An—-1n—1

The Hypercube 133

Assume that there are n® = 23" processors Py, Py, ..., P,s_;. The pro-
cessors will also be referred to by the triple (1,4,7), 0 < 1,i,5 < n— 1. So,
if the index of a processor has the binary representation bs,._1b3,._5 ... bg,
then the binary representations of [,i and j are

b37"71b3r72 B b27“7 b2r71b27"72 cee b?“7 brflbr72 cee bOv

respectively. In particular, if we fix any index [, ¢, or j, and vary the remain-
ing indices over all its possible values, we obtain a subcube of dimension 2r,
and if we fix any pair of indices [,7, and j, and vary the remaining index
over all its possible values, we obtain a subcube of dimension r.

Initially, the input elements of A and B are distributed over the n?
processors P(0,4,7), 0 < 4,7 < n — 1, so that A(0,7,j) = a;; and
B(0,4,j) = b;;. There are three registers associated with every processor
P(l,4,7), namely A(l,4,7), B(l,i,7) and C(l,4,j). The desired final config-

uration is
C(0,4,5)=c¢ij, 0<i,j<n-1,

where

n—1
Ci,j = Zai,lbl,j~ (32)
=0

The algorithm computes the product matrix C' by directly making use
of (3.2). The algorithm has three phases. In the first phase, elements of A
and B are redistributed over the n® processors so that we have A(l,i,j) =
a;; and B(l,i,j) = b ;. In the second phase, the products C(l,4,j) =
A(l,i,5) x B(l,i,7) = a; ;b ; are computed. Finally, in the third phase, the
sums Z?:_ol C,i,; are computed. An outline of the algorithm is shown as
follows.

134 Parallel Algorithms

For 0 <l<n-—1,set A(l,3,j)< A(0,4,5) and B(l,1,j) < B(0,1, 7).

Set A(l,4,7)+ A(l,i,1),0< j <n — 1.

Set B(l,4,7)« B(l,1,5),0<i<n—1.

For each 0 < 4,7 < n — 1, processor P(l,i,j) computes the product
C(l,i,7)« A(l,4, 5) x B(l,4,).

5. For each 0 < 4,7 < m — 1, processors P(l,7,7), where 0 <1 < n — 1,
compute the sum C(0,4,7) = Y10 C(l,i, 7).

b ol

In Step 1, the contents of registers A and B in the processors of subcube
I = 0 are broadcast to all other processors. In Step 2, a copy of the contents
of register A of each processor in column [is sent to all processors in the
same row, and in Step 3, a copy of the contents of register B of each proces-
sor in row [is sent to all processors in the same column. Thus, after Step 2
is completed, A(l,,7) = a;;, and after Step 3 is completed, B(l,4,j) = by ;.
Step 5 performs the sum 27;01 C(l,i,7). This is a typical hypercube sum
operation for each pair (4, j) applied on subcubes with processors P(l,i,j),
0 <Il<n-—1 (see Algorithm HCSUM in Section 3.5).

Example 3.5 Consider multiplying the two 4 x4 matrices on a hypercube
with n = 2% = 64 processors, where

1 2 3 4 1 -2 -3 -4
5 6 7 8 5 -6 -7 -8
A=19 10 11 12 and B=1\ o 10 11 _12
13 14 15 16 ~13 —14 -15 —16

Figure 3.22(a) shows the initial input stored in registers A and B (Only
the first 16 processors are shown in the figure). Figure 3.22(b) shows the
result of applying Step 2 of the algorithm’s outline. As shown in the figure,
the A registers in the first 16 processors contain the first column of matrix A,
that is, A(0,4,7) = a;,0. Figure 3.22(c) shows the result of applying Step 3
of the algorithm’s outline. As shown in the figure, the B registers in the first
16 processors contain the first row of matrix A, that is, B(0,4,7) = by ;. O

The details of the algorithm are given as Algorithm HCMATRIXMULT. In
the algorithm, S (b, = d) denotes the set of processor labels t,0 <t < n3—1,

The Hypercube 135

14
14

00110
0 e
ik
-11

001000 001001 000000 000001

00011

—000010

1
001000 001001 000000 000001

001000 001001 000000 000001

Fig. 3.22. Illustration of matrix multiplication on the hypercube.

136 Parallel Algorithms

whose binary representation is bs,_j...bg+1dbg—1...bg. For instance, in
the algorithm, S(by = 0) means all labels ¢ with binary representation
bsr—1...bg410bk_1 ...bo. The notation t(*) means t with the kth bit com-
plemented. For example, if t = 001011, then ¢t(* = 011011.

Algorithm 3.12 HCMATRIXMULT
Input: Two n X n matrices A and B.

Output: The product C' = A x B.

1. for k< 3r — 1 downto 2r do
2 for all ¢t € S(by = 0) do in parallel
3 At(k) «— Ay
4. Bt(k) < Bt
5. end for
6. end for

7. for k< r —1 downto 0 do

8. for all ¢t € S(by, = bar+x) do in parallel
9. Ay — Ay

10. end for

11. end for

12. for k< 2r — 1 downto r do

13. for all t € S(by = by4x) do in parallel

14. B,y <+ By
15. end for
16. end for

17. for t+ 0 to n® — 1 do in parallel

18. Ci+ Ay X By

19. end for

20. for k< 2r to 3r — 1 do

21. for all ¢t € S(by = 0) do in parallel

22. Ci+Cy + Cy
23. end for
24. end for

The running time is computed as follows: the for loops in Steps 1, 7,
and 12 are iterated O(r) = ©(logn) times. Steps 17-19 take ©(1) time, and
Steps 20—24 take ©(logn) time. Hence, the overall running time is ©(logn).
The total cost of the algorithm is n3 x ©(logn) = O(n3logn), which is not
optimal.

(a) 110

The Hypercube

100 101
3 4
010| N
1 2
000| 6 |001
(c) 110 4 | 4
7 8
2 | 2 101
100 : p
3 3
010| 7 3
1 1
001
000| ¢
() 110 3
100(14 16 (101
010| 15 18
000| 5 6 |001

Fig. 3.23. Example of matrix multiplication on the hypercube.

1 (b) 110 3 4
7 8
A
2
100 1 101
5 6
N
011 3 4
010 7 N
1 2
00| 4 ¢ oot
e (d) o[4 4
7 N 8
100] 2 2 o1
7 8
011 3 3
010| ¢ S
b, L
000 | 1 (001
5 6
1 (f) 110
100 101
A
011 010 43 50
y A
000[19 22 (001

111

011

111

011

111

011

137

Example 3.6 Figure 3.23 shows an example of running Algorithm HCMA-

TRIXMULT on the two matrices

1
3 4

|

| -]

5 6
78

138 Parallel Algorithms

There are n = 2% = 8 processors. Figure 3.23(a) shows the initial input.
Figures. 3.23(b)—(d) show the results of applying Steps 1-14 of the algo-
rithm. The products of A and B registers are shown in Fig. 3.23(e), and
the sum of these products is shown in Fig. 3.23(f). O

3.17 Bibliographic Notes

There are a number of books that cover parallel algorithms on the hyper-
cube. These include Akl [4], Akl [5], Cosnard and Trystram [29], Grama,
Gupta, Karypis and Kumar [39], Horowitz, Sahni and Rajasekaran [43],
Lakshmivarahan and Dhall [52], Leighton [57], and Miller and Boxer [66].
An assortment of matrix problems can be found/is embedded in
Lakshmivarahan and Dhall [52]. For a survey of parallel sorting and selec-
tion algorithms, see Rajasekaran [75]. Parallel algorithms for many prob-
lems, including problems in computational geometry on the mesh can be
found in Leighton [57]. Randomized routing in the hypercube and the but-
terfly are based on Valiant[100] and Valiant and Brebner[101]. Selection on
the hypercube is from Chandran and Rosenfeld [20]. Hyperquicksort is due
to Wagar[93]. Sample sort is from Shi and Schaeffer [86]. Multiselection
on the hypercube is from Shen [83] and Shen [84]. The O(lognloglogn)
time algorithm for sorting on the hypercube can be found in Cypher and
Plaxton [30]. The load balancing algorithm is from Woo and Sahni [99].
The load balancing problem can be solved in time O(logp + M), where p
is the number of processors and M is the maximum number of items at
any processor before the distribution. For more on load balancing, see Jan
and Huang [45], J4J4 and Ryu [46], and Plaxton [74]. Parallel matrix mul-
tiplication on the hypercube is due to Dekel, Nassimi and Sahni [33]. For
more references on parallel algorithms on the hypercube interconnection
network, see for instance Leighton [57].

3.18 Exercises

3.1. Give an O(d) time algorithm for broadcasting in the d-dimensional
hypercube Hy if the origin of the message is an arbitrary processor.

3.2. Design a recursive algorithm to compute the sum of n numbers on
the hypercube with n = 2% processors. What is the time complexity
of your algorithm?

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

The Hypercube 139

Design a recursive algorithm to compute the prefix sums of n num-
bers on the hypercube with n = 2¢ processors. What is the time
complexity of your algorithm?

Describe how to implement the odd—even merge sort on a hypercube
of dimension d.

Design an algorithm to rearrange a sequence of m numbers dis-
tributed one number per processor in a d-dimensional hypercube,
where n = 2%, so that all numbers smaller than or equal to the aver-
age precede all numbers greater than the average. Your algorithm
should run in ©(logn) time.

Explain how to compute the prefix sums of n numbers on a hypercube
with p processors, where p < n. What is the running time of your
algorithm?

Explain how to run the algorithm for quicksort designed for the
PRAM and discussed in Section 2.5.2 on the hypercube with n
Processors.

Illustrate the operation of Algorithm SAMPLESORT discussed in
Section 3.10 on the input

18,12,23,14,15,16,7,21,20,19, 11, 2,24, 14,5,6,17, 1,

where n = 18 and p = 3.

In Algorithm SAMPLESORT discussed in Section 3.10, each processor
sends its sample of (p — 1) elements to Py, which in turn collects a
sample of p(p — 1) elements. Explain how this data transmission can
be achieved, and analyze its cost.

A sorting method known as BUCKETSORT works as follows. Let S
be a sequence of n numbers within a reasonable range, say all num-
bers are between 1 and m, where m is not too large compared to n.
The numbers are distributed into k buckets, with the first bucket
containing those numbers between 1 and |m/k], the second bucket
containing those numbers between |m/k| +1 to |2m/k|, and so on.

140

3.11.

3.12.

3.13.

3.14.

3.15.

3.16.

3.17.

3.18.

3.19.

3.20.

Parallel Algorithms

The numbers in each bucket are then sorted using an optimal sorting
algorithm. Show how to parallelize the algorithm.

Analyze the running time of Algorithm BUCKETSORT in the solution
to Exercise 3.10.

Consider the algorithm for permutation routing in the hypercube
discussed in Section 3.6. What is the probability that the algorithm
will route all packets to their destinations in 8d steps or fewer?

Consider Algorithm HCSELECT for selection on the hypercube dis-
cussed in Section 3.11. For what values of p is the algorithm optimal?

Consider Algorithm PARSELECT for selection on the EREW PRAM
presented in Section 2.14. Suppose we simulate this algorithm to
run on the hypercube with n/logn processors. What will be the
running time of the algorithm? Compare this with that of Algorithm
HCSELECT for selection on the hypercube presented in Section 3.11.
(See Exercise 3.21).

Outline an algorithm to find all the kth largest elements in a hyper-
cube with p < n processors. What is the running time of your
algorithm?

Consider Algorithm HCMULTISELECT for multiselection on the hyper-
cube discussed in Section 3.12. For what values of r is the algorithm
cost optimal when the number of processors is n'!=¢?

Consider Algorithm HCMULTISELECT for multiselection on the hyper-
cube discussed in Section 3.12. Compare the algorithm given with
direct application of Algorithm HCSELECT given in Section 3.11.

Construct the Gray code sequence Gj.

Consider the two graphs shown in Fig. 3.24. Find an embedding of G
into H. What are the dilation, congestion, expansion and load of your
embedding?

Give an embedding similar to the one given in Example 3.2, except
that it is postorder, that is, the nodes of the binary tree are labeled

3.21.

3.22.

3.23.

3.24.

3.25.

3.26.

3.27.

The Hypercube 141

a b W x

G H

Fig. 3.24. Exercise 3.19.

in postorder traversal. What are the dilation, congestion, expansion
and load of the embedding?

Explain how to simulate an EREW PRAM on a hypercube with n
Processors.

Compute the bisection width of the d-dimensional butterfly By.

Design an algorithm to compute the sum of n numbers on the hyper-
cube with p processors, 1 < p < n. Is your algorithm always optimal?

Explain how to compute the maximum of 2¢~! numbers distributed
arbitrarily in a hypercube with 2¢ processors. What is the running
time of your algorithm?

Consider the partial permutation routing problem on the hypercube
in which every processor is the source of at most one packet and the
destination of at most one packet. Will Theorem 3.2 hold for this
routing problem?

Consider the many-to-many routing problem on the hypercube in
which every processor is the source of r packets and the destination
of r packets. Suppose we run the greedy algorithm for routing on the
hypercube to solve this problem. What will be the maximum queue
size?

Give an O(nd) time algorithm for the problem of routing in the
d-dimensional hypercube if every processor has a packet to be sent
to every other processor, where n = 2¢. Hint: Use randomized routing
n times.

142

3.28.

3.29.

3.30.

3.31.

3.32.

3.33.

3.34.

3.35.

3.36.

3.37.

Parallel Algorithms

Give an O(n) time algorithm for the problem in Exercise 3.27.

Apply Algorithm HCPARPREFIX for computing parallel prefix on the
hypercube on the input sequence (1,2, 3,4,5,6,7,8). Assume a hyper-
cube with 8 processors.

Give an algorithm to evaluate the polynomial a,_12" ' +a,_s2" 2+
--++ a1x + ap at the point zg on the d-dimensional hypercube Hy
with n = 24 processors. Assume that each a; is stored in processor P;,
0<i<n-—1.

Consider a hypercube with four processors { Py, P1, Ps, P} with ini-
tial loads 8, 2, 6, 4. Perform load balancing on the hypercube so that,
at the end, each processor has the same load.

Redo Exercise 3.31 using the algorithm presented in Section 3.13.

Consider a hypercube with eight processors { Py, P, . .., Pr} with ini-
tial loads 8,5,6,4,7,2,5, 3. Perform load balancing on the hypercube
using the algorithm described in Section 3.13 so that, at the end, each
processor has approximately the same load.

Suggest a heuristic to improve the performance of the load balancing
algorithm discussed in Section 3.13.

Illustrate the operation of Algorithm BFODDEVENMERGE for merging
on the butterfly to merge the two sorted sequences A = (1,4,6,9)
and B = (2,5,7,8) on the 3-dimensional butterfly.

Use the matrix multiplication algorithm on the hypercube discussed
in Section 3.16 to compute the product C' = A x B of the two 2 x 2
matrices A and B shown below. Assume a hypercube with n = 23 = 8
Processors.

1 3 21
A [H] e me]2

Suggest an algorithm for computing the transitive closure of an adja-
cency matrix A on the hypercube. What is the running time of the
algorithm?

3.38.

3.39.

3.40.

3.41.

The Hypercube 143

Suggest an algorithm for computing the shortest paths in a directed
graph G represented by its adjacency matrix A on the hypercube.
What is the running time of the algorithm?

Let S = (xo,x1,...,2,—1) be a sequence of numbers stored in a
hypercube with n processors where z; is stored in P;, 0 < 7 < n,
and let y be stored in Fy. Give an algorithm to count the number of
elements in S that are larger than y.

Following the example shown in Fig. 3.19, show how to compute the
prefix sums of the sequence (1,2, 3,4) on the 2-dimensional butterfly.

The d-dimensional cube-connected cycles (CCC) is constructed from
the d-dimensional hypercube by replacing each node with a cycle of
length d (see Fig. 3.25). The nodes in the cycle corresponding to
node z in the hypercube are labeled as (z,1), (z,2),..., (z,d). Node
(x,14) is connected to node (y,j) if and only if z =y and |i —j| =1
(mod d) or i = j and = and y are connected in the corresponding
hypercube. The CCC has d2? nodes. Derive an algorithm to find
the sum of n = d2¢ numbers stored in the CCC, one number per
processor. The resulting sum should be stored in processor Pga 1).

(110,1) (111,1)
.

.\. (111,3)

(011,3)

(011 2)

(000, 1) (001,1)

Fig. 3.25. 3-dimensional cube-connected cycles (CCC).

144

3.42

3.43

3.44

3.45

3.46

3.47

3.19

3.1.

3.2.

Parallel Algorithms

What are the degree and diameter of the d-dimensional cube-
connected cycles described in Exercise 3.417

What is the bisection width of the d-dimensional cube-connected
cycles described in Exercise 3.417

Give an algorithm for computing the prefix sums on the
d-dimensional cube-connected cycles described in Exercise 3.41. Your
algorithm should run in O(d) = O(logn) time.

Give an embedding function from the d-dimensional hypercube to
the d-dimensional cube-connected cycles(CCC) network described in
Exercise 3.41. What is the dilation of the embedding?

What is the congestion of the embedding in Exercise 3.457

Explain how to simulate a hypercube with 2¢ processors on the cube-
connected cycles with d2¢ processors described in Exercise 3.41.

Solutions

Give an O(d) time algorithm for broadcasting in the d-dimensional
hypercube Hy if the origin of the message is an arbitrary processor.

Let P; be the origin of broadcasting datum x. First, transfer x from
P; to Py using bit fixing in O(d) steps, then broadcast it to all other
processors in O(d) time as shown in Algorithm HCBROADCAST.

Design a recursive algorithm to compute the sum of n numbers on
the hypercube with n = 2% processors. What is the time complexity
of your algorithm?

Let the two halves of the hypercube be 0H;_1 and 1H4_1, where
0H;_1 is the subcube with 0 leading binary digits in its labels, and
1H4_1 is the subcube with 1 leading binary digits in its labels. The
idea is to store the sum in all processors. Every processor has a
register ¢ for storing the (partial) sums. See Algorithm HCSUMREC.
The running time is given by the recurrence T'(n) = T'(n/2)+0(1) =
O(logn).

The Hypercube 145

Algorithm 3.13 HCSUMREC
Input: n numbers 1,2, ..., 2, stored in Hg, one element per processor.

Output: The sum of the numbers stored in all processors of Hyg.

1.
2.
3.

if n = 1 then set the t register to the z-value and exit

Recursively find the sum in each subcube

Each processor with label Oy in 0H4—1 adds the content of its ¢ register
to the t register of processor with label 1y in subcube 1H4_1.

Processor with label 1y in subcube 1Hg_1 copies the content of its ¢
register back to the ¢ register of processor with label Oy in subcube 0Hg_;.

3.3.

Design a recursive algorithm to compute the prefix sums of n num-
bers on the hypercube with n = 2¢ processors. What is the time
complexity of your algorithm?

The idea is similar to that in the solution to Exercise 3.2. We compute
both the prefix sums and the sum of the numbers simultaneously.
Define 0H;_1 and 1H4_1 as in the solution of Exercise 3.2. Every
processor P; has two registers s; for storing the prefix sums and ¢; for
storing the (partial) sums. See Algorithm HCPREFIXSUMREC. After
Step 4, all processors have the prefix sums and the same total. The
running time is given by the recurrence T'(n) = T'(n/2) + O(1) =
O(logn).

Algorithm 3.14 HCPREFIXSUMREC
Input: n numbers 1,2, ..., 2, stored in Hg, one element per processor.

Output: The prefix sums of s1,s2,...,Sn.

1.
2.
3.

if n = 1 then copy the z-value to registers s and ¢ and exit
Recursively find the prefix sums in each subcube

Each processor P; with label Oy adds the content of its ¢; register to
register s; of processor P; with label 1y.

Each processor P; with label Oy adds the content of its t; register to
register t; of processor P; with label 1y.

Processor 1y in subcube 1H,_1 copies the content of its ¢ register back
to the t register of processor Oy in subcube 0Hy_1.

146

3.4.

3.5.

3.6.

3.7.

Parallel Algorithms

Describe how to implement the odd—even merge sort on a hypercube
of dimension d.

We adapt Algorithm BFODDEVENMERGE for the butterfly discussed
in Section 3.15. The algorithm is normal for the butterfly since at any
given time, only processors in the same level are participating in the
computation, which means a single step of the butterfly algorithm
can be simulated in one step of the hypercube. Hence, the algo-
rithm can be implemented to run on the hypercube in time ©(d?) =

O(log® n).

Design an algorithm to rearrange a sequence of n numbers distributed
one number per processor in a d-dimensional hypercube, where n =
2450 that all numbers smaller than or equal to the average precede
all numbers greater than the average. Your algorithm should run in
O(logn) time.

This is a direct application of parallel prefix. First, find the sum,
divide it by n to obtain the average v. Next, broadcast v to all pro-
cessors in the hypercube. Label all elements < v with 1 and the
others with 0. Finally, apply packing and route each element to its
proper location.

Explain how to compute the prefix sums of n numbers on a hypercube
with p processors, where p < n. What is the running time of your
algorithm?

Divide the input into p groups of n/p elements each. Find the prefix
sums individually and sequentially in each group in ©(n/p) time. Let
the final prefix sums (the totals of all groups) be S = s1,s2,...,5p.
Apply parallel prefix on the sequence S in O(logp) time. Finally,
update the prefix sums in all groups sequentially in O(n/p) time.
The overall running time is O(n/p + log p) time.

Explain how to run the algorithm for quicksort designed for the
PRAM and discussed in Section 2.5.2 on the hypercube with n
Processors.

The algorithm runs on the hypercube with no modifications.

3.8.

3.9.

3.10.

The Hypercube 147

Illustrate the operation of Algorithm SAMPLESORT discussed in
Section 3.10 on the input

18,12,23,14,15,16,7,21,20,19,11,2,24,14,5,6,17, 1,
where n = 18 and p = 3.

Similar to Example 3.3.

In Algorithm SAMPLESORT discussed in Section 3.10, each processor
sends its sample of (p — 1) elements to Py, which in turn collects a
sample of p(p — 1) elements. Explain how this data transmission can
be achieved, and analyze its cost.

Each odd-numbered processor sends its sample to its (even-
numbered) neighbor. Next, each even-numbered processor combines
the sample it has received from its neighbor with its own sam-
ple. This process of sending to neighbors continues until proces-
sor Py receives all the p(p — 1) samples. The total time taken is
(P=1+2(p—1) +4(p—1)+ -+ 2027 (p — 1) = O(p?).

A sorting method known as BUCKETSORT works as follows. Let S
be a sequence of n numbers within a reasonable range, say all num-
bers are between 1 and m, where m is not too large compared to n.
The numbers are distributed into k& buckets, with the first bucket
containing those numbers between 1 and |m/k], the second bucket
containing those numbers between |m/k| +1 to |2m/k|, and so on.
The numbers in each bucket are then sorted using an optimal sorting
algorithm. Show how to parallelize the algorithm.

Let the number of processors be p, and set the number of buckets
k = p. Assign n/p elements to each processor. Each processor par-
titions its assigned elements into p partitions, one for each of the p
buckets. Next, each processor sends each part of its bucket to the
appropriate processor, and retains its part. Each processor then com-
bines the p — 1 parts received from the other p — 1 processors with
its retained elements. Finally, each processor sorts its items using

148

3.11.

3.12.

3.13.

3.14.

Parallel Algorithms

an optimal sequential sorting algorithm. Note that we have assumed
that the processors know the interval [1..m].

Analyze the running time of Algorithm BUCKETSORT in the solution
to Exercise 3.10.

Initially, assume that each processor has n/p elements stored in its
local memory. Partitioning the items in each bucket into p blocks
takes O(%log m) time using binary search. Sending data to their
processors can be achieved in O(% log p) time. The sorting step takes
©(5 log) time. Hence, the total running time is

(C] (ﬁlogﬁ + E1og77"mL Elog;p> .
p p p p

If m = O(n), then the running time becomes ©(3 logn), since p < n.

Consider the algorithm for permutation routing in the hypercube
discussed in Section 3.6. What is the probability that the algorithm
will route all packets to their destinations in 8d steps or fewer?

With probability at least 1 — 27124 every packet v; reaches its des-
tination o(¢) in 4d or fewer steps. So, the full algorithm (two phases)
routes all packets to their destinations in 8d or fewer steps with prob-
ability (1 —27159) x (1 —27154) = (1 —27159)2,

Consider Algorithm HCSELECT for selection on the hypercube dis-
cussed in Section 3.11. For what values of p is the algorithm optimal?

Since the lower bound for any sequential selection algorithm is ©(n),
the lower bound for the parallel version is Q(n/p). Therefore, the
algorithm is optimal for all values of p = n¢, 0 < € < 1. In this case,
the running time of the algorithm is ©(n'~¢).

Consider Algorithm PARSELECT for selection on the EREW PRAM
presented in Section 2.14. Suppose we simulate this algorithm to
run on the hypercube with n/logn processors. What will be the
running time of the algorithm? Compare this with that of Algorithm
HCSELECT for selection on the hypercube presented in Section 3.11.
(See Exercise 3.21).

3.15.

3.16.

3.17.

The Hypercube 149

The running time will be
O(log nloglog nlogp) = O(log® nloglogn).

This is much slower than Algorithm HCSELECT, which runs in time
O(log n(loglogn)?).

Outline an algorithm to find all the kth largest elements in a hyper-
cube with p < n processors. What is the running time of your
algorithm?

First, find the kth smallest element x using the algorithm for selec-
tion. Next, broadcast = to all processors. Finally, each processor out-
puts all elements greater than or equal to . The running time is
O(n/p + Ts(n,p) + logp) = O(n/p + Ts(n,p)), where Ty(n,p) is the
time required by the selection algorithm.

Consider Algorithm HCMULTISELECT for multiselection on the hyper-

cube discussed in Section 3.12. For what values of r is the algorithm
l—e?

cost optimal when the number of processors is n
When p = n'~¢, the running time is

T(n,r,n*"¢) = O(n min{r,logn'~}).

Since the lower bound for any sequential multiselection algorithm is
Q(nlogr), the lower bound for the parallel version is Q((n/p)logr).
Hence, the algorithm is cost optimal for r > p = n!'~¢.

Consider Algorithm HCMULTISELECT for multiselection on the hyper-
cube discussed in Section 3.12. Compare the algorithm given with
direct application of Algorithm HCSELECT given in Section 3.11.

Direct application of Algorithm HCSELECT r times takes
rx O(n/p +ts(p,p)(logn —logp)) = O(rn/p + rts(p,p) log(n/p)).
On the other hand, Algorithm HCMULTISELECT takes

O((n/p + ts(p, p)log(n/p)) min{r,log p}),

which is less than direct application for r > log p.

150

3.18.

3.19.

3.20.

3.21.

Parallel Algorithms

a b W x

G H

Fig. 3.26. Exercise 3.19.

Construct the Gray code sequence Gj.

Similar to Fig. 3.7.

Consider the two graphs shown in Fig. 3.26. Find an embedding of G
into H. What are the dilation, congestion, expansion and load of your
embedding?

Define the embedding functions ¢ and ¢ by: ¢(a) = w,d(b)
"E7¢(C) = y7¢(d) =% ’L/J((G,b)) = wawaw«b’ C)) =Y, w«cﬂ d))
y,z and 9((a,d)) = w, z. Since each edge of G is mapped to exactly
one edge of H, the dilation is 1. All edges of H are used at most
once, and hence the congestion is 1. The expansion is 3/3 = 1, and
the load is 1.

Give an embedding similar to the one given in Example 3.2, except
that it is postorder, that is, the nodes of the binary tree are labeled
in postorder traversal. What are the dilation, congestion, expansion
and load of the embedding?

Similar to Example 3.2.

Explain how to simulate an EREW PRAM on a hypercube with n
Processors.

The simulation is done using routing. PRAM processor local com-
putation is done locally, while a read/write by PRAM processor i
to PRAM memory j can be simulated by a packet going through
the network from the node simulating ¢ to the node simulating j.
Thus, simulating a PRAM with p processors on a hypercube with

3.22.

3.23.

The Hypercube 151

the same number of processors is a packet routing problem. Since
the hypercube can route a packets in O(logp) steps, it can simulate
any EREW PRAM with p processors with an O(logp) factor delay.

Compute the bisection width of the d-dimensional butterfly By.

Figure 3.3 shows the d-dimensional butterfly for d = 1,2,3. From
the figure, it is clear that for j > 1, B; can be divided into two
halves with 2 x 2971 = 29 connections between them. To construct
a bisection width of this size, simply remove the cross edges from a
single level.

Design an algorithm to compute the sum of n numbers on the hyper-
cube with p processors, 1 < p < n. Is your algorithm always optimal?

Assume that each processor P; contains at least one number; if not
then let P; contain 0. First, compute the sum of the numbers in each
processors. Next, compute the sum of the p = 2% resulting numbers
using the technique of reduction, which is a method similar to the
method used in broadcasting in the hypercube, but in reverse order.
This is shown in Algorithm Hcsum. Here the notation (Y means j
with the ith bit complemented, 0 < i < d — 1. If the numbers are
distributed evenly among the p processors, so that each processor
contains n/p numbers, then the running time is O(max{%, d}), which
is optimal. Otherwise, the algorithm is not optimal, as the running
time may be as large as ©(n). In this case, data redistribution may be
helpful if it takes o(m), where m is the maximum number of elements
in all processors.

1.
2
3.
4
5.

Algorithm 3.15 HCSUM
Input: zo,z1,...,294_1.

Output: The sum of the numbers zo,z1,...,25¢_; stored in processors

13(),1317 .. .,P2d71 of Hd.

for i+~d—1,d—2,...,1,0 do
for all j < 2" and j < j¥ do in parallel
Tj—Tj+ Ty
end for
end for

152

3.24.

3.25.

3.26.

3.27.

3.28.

Parallel Algorithms

Explain how to compute the maximum of 2¢~! numbers distributed
arbitrarily in a hypercube with 2¢ processors. What is the running
time of your algorithm?

The first step is to route these numbers so that they occupy one half
of the hypercube. This routing step takes ©(logn) time. Next, the
maximum of these numbers is computed in ©(logn) time. The total
running time is ©(logn).

Another alternative is to use parallel prefix to pack the numbers
in the first 2971 processors and then find their sum using the lower
half of the hypercube.

Consider the partial permutation routing problem on the hypercube
in which every processor is the source of at most one packet and the
destination of at most one packet. Will Theorem 3.2 hold for this
routing problem?

Theorem 3.2 holds for partial permutation routing, and the proof
works with no modifications.

Consider the many-to-many routing problems on the hypercube in
which every processor is the source of r packets and the destination
of r packets. Suppose we run the greedy algorithm for routing on the
hypercube to solve this problem. What will be the maximum queue
size?

Theorem 3.2 no longer holds for many-to-many routing. In the proof
of Theorem 3.2, a < 72 — 1 and b < r297% — 1, and hence the
maximum queue size will be O(ry/n).

Give an O(nd) time algorithm for the problem of routing in the
d-dimensional hypercube if every processor has a packet to be sent to
every other processor, where n = 2¢. Hint: Use randomized routing n
times.

Use randomized routing sequentially n times. Each run takes O(d)
time for a total of O(nd).
Give an O(n) time algorithm for the problem in Exercise 3.27.

Use randomized routing in parallel n times. This takes O(d) parallel
steps. However, there are queues that will expand the running time.
There are n(n — 1) paths, and hence each node of the hypercube is

3.29.

3.30.

3.31.

The Hypercube 153

included in @ = n — 1 paths. This results in a queue of size
O(n) at each node. This means the running time will be expanded
to O(n) + O(d) = O(n).

Apply Algorithm HCPARPREFIX for computing parallel prefix on the
hypercube on the input sequence (1,2, 3,4,5,6,7,8). Assume a hyper-
cube with 8 processors.

Similar to the example in Fig. 3.14.

Give an algorithm to evaluate the polynomial a,_12" ' +a,_22" 2+
--++ a1x + ap at the point zg on the d-dimensional hypercube Hy
with n = 2¢ processors. Assume that each a; is stored in processor P;,
0<i<n-—1.

First, use parallel prefix to compute 1, zq, 23, ... ,ngl in processors
Py, P1,...,P,_1. Next, within each processor, multiply a; x :Eg, 0<

1 < n — 1. Finally, use Algorithm HCSUM in Exercise 3.23 above to
find the desired sum. The running time is ©(logn).

Consider a hypercube with four processors { Py, P1, P», P} with ini-
tial loads 8, 2, 6, 4. Perform load balancing on the hypercube so that,
at the end, each processor has the same load.

Consider the hypercube with four processors shown in Fig. 3.27(a).
The number next to a processor is its initial load. The sum of the
initial loads is 20, and so, after balancing, each processor will have
5 units of load. One way to accomplish this is to have processor Py
send 3 units to processor P; and to have processor P send, in parallel,
one unit to processor Ps;. The time needed for this is 3 units as the

8 3 2 8 4 2

&= &=
IT ll
= B—®

6 ! 4 6 4

(a) (b)
Fig. 3.27. Exercise 3.31.

154

3.32.

3.33.

3.34.

3.35.

3.36.

Parallel Algorithms

transfer from processor P, to processor Pj is overlapped with the
transfer from processor Py to processor P;.

Another possibility is shown in Fig. 3.27(b). In this scheme, pro-
cessor Py sends 4 units to processor P;. After this transmission is
completed, processor P» sends one unit to processor Py and proces-
sor P; sends, in parallel, one unit to processor P;. The total time is
5 units.

Redo Exercise 3.31 using the algorithm presented in Section 3.13.

Similar to the example described in Section 3.13.

Consider a hypercube with eight processors { Py, Py, ..., Pr} with ini-
tial loads 8,5,6,4,7,2,5, 3. Perform load balancing on the hypercube
using the algorithm described in Section 3.13 so that, at the end, each
processor has approximately the same load.

Similar to the example described in Section 3.13.

Suggest a heuristic to improve the performance of the load balancing
algorithm discussed in Section 3.13.

A simple heuristic is to select the next dimension to balance across,
as the dimension that maximizes s; = max|L; — L; | such that P; is
a neighbor of P; along an unselected dimension. So, first, each pro-
cessor P; computes r; and s; such that s; = max | L; — L; |, where P;
is a neighbor of P;, along an unselected dimension. r; is such that
si = |L; — L; |, where j is s;’s neighbor along dimension r;. Next,
the maximum of the s;’s is computed. If this maximum is s;, then
dimension 7; is selected. The time required to select the next dimen-
sion is O(d), and the total time spent on determining the order of
dimensions is O(d?), which does not affect the time complexity of
the algorithm.

Illustrate the operation of Algorithm BFODDEVENMERGE for merging
on the butterfly to merge the two sorted sequences A = (1,4,6,9)
and B = (2,5,7,8) on the 3-dimensional butterfly.

Similar to Example 3.4.

Use the matrix multiplication algorithm on the hypercube discussed
in Section 3.16 to compute the product C'= A x B of the two 2 x 2

3.37.

3.38.

3.39.

3.40.

The Hypercube 155

matrices A and B shown below. Assume a hypercube with n = 23 = 8

1 3 2 1
A [H] e me]2

Similar to Example 3.6.

processors.

Suggest an algorithm for computing the transitive closure of an adja-
cency matrix A on the hypercube. What is the running time of the
algorithm?

Use an algorithm analogous to the one for the PRAM presented
in Section 2.17. Recall that this algorithm computes the transitive
closure by squaring the adjacency matrix [logn| times. Thus, the
running time is O(log? n) using O(n®) processors.

Suggest an algorithm for computing the shortest paths in a directed
graph G represented by its adjacency matrix A on the hypercube.
What is the running time of the algorithm?

Use an algorithm analogous to the one for the PRAM presented in
Section 2.18. Recall that this algorithm computes the shortest paths
by first computing a matrix similar to the transitive closure matrix
using repeated squaring of the weight matrix [logn] times. Hence,
the running time is O(log® n) using O(n?) processors.

Let S = (xg,21,...,2,—1) be a sequence of numbers stored in a
hypercube with n processors where z; is stored in P;, 0 < i < n,
and let y be stored in Py. Give an algorithm to count the number of
elements in S that are larger than y.

First, broadcast y to all processors. Next, each processor P; sets
zi = 1if x; > y and z; = 0 if x; < y. Finally, find the sum of
2i,0 < i <n—1,in all processors, and store the sum, which is the
number of 1s, in Py.

Following the example shown in Fig. 3.19, show how to compute the
prefix sums of the sequence (1,2, 3,4) on the 2-dimensional butterfly.

Similar to Fig. 3.19.

156

3.41.

3.42.

3.43.

Parallel Algorithms

(110,1) (111,1)
O Q

(000,1) (001,1)

Fig. 3.28. 3-dimensional cube-connected cycles (CCC).

The d-dimensional cube-connected cycles (CCC) is constructed from
the d-dimensional hypercube by replacing each node with a cycle
of length d (see Fig. 3.28). The nodes in the cycle corresponding
to node z in the hypercube are labeled as (x,1),(z,2),...,(z,d).
Node (z,4) is connected to node (y,j) if and only if z = y and
|i—j| =1 (mod d) or i = j and = and y are connected in the corre-
sponding hypercube. The CCC has d2? nodes. Derive an algorithm
to find the sum of n = d2¢ numbers stored in the CCC — one num-
ber per processor. The resulting sum should be stored in processor

P(Od,l)'

Let the cycles of the CCC be C1,Cy,...,Cha, and let t; be the sum
of all numbers in cycle C;. First, find the sum ¢; in each cycle and
broadcast it to all processors in the same cycle. This takes ©(d)
time. Next, find the sum of all totals ¢; and store it in Pa ;). The
rest, i.e., finding the total of these sums is similar to finding the sum
of 2¢ numbers in the hypercube (see, for example, Exercise 3.2).

What are the degree and diameter of the d-dimensional cube-
connected cycles described in Exercise 3.417
Its degree is 3, and its diameter is ©(d) = ©(logn).

What is the bisection width of the d-dimensional cube-connected
cycles described in Exercise 3.417

The Hypercube 157

If we consider a d-dimensional cube-connected cycles with n = d2¢
processors and cut it by a line into two halves, the line will cut
2¢=1 links. Hence, the bisection width of the d-dimensional CCC is
©(n/logn).

3.44. Give an algorithm for computing the prefix sums on the
d-dimensional cube-connected cycles described in Exercise 3.41. Your
algorithm should run in O(d) = O(logn) time.

Similar to finding the sum in CCC and finding the prefix sums in the
hypercube; see Exercises 3.41 and 3.3.

3.45. Give an embedding function from the d-dimensional hypercube to
the d-dimensional cube-connected cycles(CCC) network described in
Exercise 3.41. What is the dilation of the embedding?

Map node x in the hypercube to node (z,1) in the CCC, and map
the edge (z,y) in the hypercube to edge ((z, 1), (v,1)) (see Fig. 3.29).
The dilation of the embedding is 1 + 2[d/2] = ©(d).

3.46. What is the congestion of the embedding in Exercise 3.457

Consider Fig. 3.30, which shows a cycle of length d in the
d-dimensional cube-connected cycles. It is easy to see that the edge
((00...0,1),(00...0,2) is used by |d/2| paths. Hence, the conges-
tion is |d/2| = ©(d).

(11L1)

Q
\o (111,3)

@,
O
((011,3)
o]

O (011,2)

1101
()

(000,1) (001,1)

Fig. 3.29. Embedding of d-dimensional hypercube into the d-dimensional cube-
connected cycles.

158 Parallel Algorithms

Fig. 3.30. A cycle in the d-dimensional cube-connected cycles.

3.47. Explain how to simulate a hypercube with 2¢ processors on the cube-
connected cycles with d2¢ processors described in Exercise 3.41.

Any step of the hypercube can be simulated in d steps on the CCC
by using one cycle of the CCC to simulate the action of one node of
the hypercube.

Chapter 4

The Linear Array and the Mesh

4.1 Introduction

Linear arrays are the simplest example of a fixed-connection network. An
example of a linear array is shown in Fig. 4.1(a). It consists of n proces-
sors Py, Ps, ..., P,, where each interior processor is connected with bidi-
rectional links to its left neighbor and its right neighbor. The outermost
processors P; and P, have just one connection each. If we connect them by
a link, we obtain a ring, which is a simple extension of the linear array (see
Fig. 4.1(b)).

A two-dimensional mesh is an extension of the linear array to two dimen-
sions. A mesh of size n consists of n simple processors arranged in a square
lattice. To simplify our exposition, it is assumed that n = 4* for some posi-
tive integer k. For all 4, j, 1 < 4, j < v/n, and processor P; ; representing the
processor in row ¢ and column j is connected via bidirectional communica-
tion links to its four neighbors, processors P;+1,; and F; j+1 — assuming
they exist. (See Fig. 4.1(c)).

A torus is simply a mesh with wraparound connections; each row and
each column has a wraparound connection. Fig. 4.2 depicts a torus on 16
processors.

159

160 Parallel Algorithms

(a) (c) 1 2 v
L |
P L) B B 2
(b)
A B P P, Vi

Fig. 4.1. (a) A linear array. (b) A ring. (¢) A mesh.

T

J J

Fig. 4.2. A torus on 16 processors.

The communication diameter of a mesh of size n is 2(y/n—1) = O(y/n),
and this can be seen by examining the distance between processors in oppo-
site corners of the mesh. This means if a processor in one corner of the mesh
needs data from a processor in another corner of the mesh sometime during
the execution of an algorithm, then a lower bound on the running time of
the algorithm is Q(y/n).

There is no linear ordering on the set of processors in the mesh. However,
there are several two-dimensional orderings, called indexing schemes, like
row-major and snakelike shown in Fig. 4.3.

The Linear Array and the Mesh

1 2 3 4 1 2 3 4
5 6 7 8 8 7 6 5
9 10 11 12 9 10 11 12
13 14 15 | 16 16 15 14 | 13

(a) (b)

Fig. 4.3. Mesh indexing schemes. (a) Row-major (b) Snakelike.

Fig. 4.4. Embedding a linear array into a mesh.

4.2 Embedding between a Mesh and a Linear Array

161

We consider the problem of embedding between a mesh and a linear array
with the same number of processors. Embedding a linear array into the
mesh is obvious; it is illustrated in Fig. 4.4. This mapping has dilation 1,
since every edge of the linear array is mapped to one edge of the mesh. The
congestion is also 1, since every edge of the mesh is used by exactly one

edge of the linear array, as is evident from the figure.

Now, consider inverting the above mapping to obtain the embedding of
the mesh into the linear array illustrated in Fig. 4.5. Edge e; in the mesh
is mapped to the path from s to t in the linear array, which is of length 7.

162 Parallel Algorithms

T
1 E TP I
1 ED TP
B B+

Linear array

Fig. 4.5. Embedding a mesh into a linear array.

It is not hard to see that this is maximum, and in general, the dilation of
this embedding of the mesh into the linear array is 24/n — 1. Now, consider
the number of edges of the mesh mapped to edge (y, z) in the linear array.
It is evident from the figure that there are 4 edges of the mesh mapped
to this edge in the linear array. Specifically, ey, es, e3 and e4 in the mesh
are all mapped to paths that contain edge (y,z) in the linear array. For
example, the edge e in the mesh is mapped to the path u,w,y, z,x,v in
the linear array. Hence, the congestion of the mapping in Fig. 4.5 is 4. It is
not difficult to see that, in general, it is \/n.

4.3 Broadcasting in the Linear Array and the Mesh

Let L be a linear array of n processors. To broadcast a datum x from P; to
all other processors, x is sent to Ps, Ps, ..., P, in this order. The number of
steps is n — 1 = ©(n). If the origin of broadcasting is not Py, say P;(i < n),
x is sent in both directions in parallel. The number of steps in this case is
equal to the maximum of the distances from P; to P; and P,.

Let M be a mesh of size n. Broadcasting a datum « from P, ; to all other
processors can be achieved in two phases. First, x is sent to all processors
in row 1. Next, = is sent in parallel from all processors in row 1 along
all columns of the mesh. The total number of steps in the two phases is
2(vn—1) = 6(Vn).

If the origin of broadcasting is P; ; (which is different from P; 1), then
broadcasting of = to all other processors can be achieved in two phases: in

The Linear Array and the Mesh 163

phase 1, x is sent to all processors in row 7. In phase 2, z is sent in parallel
from all processors in row i along all columns in M. The running time is

(/7).

4.4 Computing Parallel Prefix on the Mesh

The parallel prefix problem was defined in Section 2.5. In this section, we
show how to compute it on the linear array and the mesh. For simplicity,
we will assume addition as the binary operation. Let L be a linear array
with n processors, where each processor P; contains item z;, 1 < 7 < n.
Assume that each processor P; has register s;. The algorithm is shown as
Algorithm LAPARPREFIX. In this algorithm, s;_; is passed to P;,2 <i <mn,
where x; is added to it to produce s;, as in the sequential algorithm. The
algorithm runs in time O(n).

Algorithm 4.1 LAPARPREFIX
Input: X = (z1,22,...,2n), a sequences of n numbers.

Output: S = (s1, 82, ..., Sn), the prefix sums of X.

1. S1<T1

2. for i< 2 to n do

3. Processor P; computes s; < s;—1 + ;.
4. end for

Now, we consider computing parallel prefix on the mesh. Let M be a
/1 x y/n mesh, and assume the row-major indexing scheme. The algorithm
is given as Algorithm MESHPARPREFIX. First, the individual prefix sums of
all rows are computed using Algorithm LAPARPREFIX. For 1 < i < /n,
let the prefix sums of row i be yi;1,¥i2,...,y; /n- Note that these are not
the final prefix sums, except for row 1. Next, the prefix sums of column /n
are computed, again using Algorithm LAPARPREFIX. These are denoted
by s1,/ms 82, yms - - -+ Sym,yme and they are the final prefix sums for column
v/n. Finally, for all processors P; j,2 < i < \/n,1 < j < y/n —1, we set
Si,j < Yi,j + S;_1,m- This implies broadcasting s,_; to row i.

Steps 1-3 take ©(y/n) time. Step 4 takes O(y/n) time too. Steps 5-9
take ©(1) time plus the time needed for broadcasting, which is ©(y/n).
Hence, the total running time of the algorithm is ©(y/n).

164 Parallel Algorithms

Algorithm 4.2 MESHPARPREFIX
Input: X = (z;; | 1 <4,j < +/n), a sequences of n numbers.

Output: S = (s;,; | 1 <4,j < +/n), the prefix sums of X.

[y

. for i+~ 1 to y/n do in parallel
Use Algorithm LAPARPREFIX to compute the prefix sums of row i.
Let these be yi,1,¥i,2, -, ¥, /n-
end for
Use Algorithm LAPARPREFIX to compute the prefix sums
of column /n. Let these be S1,y /73 82, /s -+ > Sy /i
for i+ 2 to y/n do in parallel
for j+ 1 to y/n —1 do in parallel
Sij 4 Yij + Si 1, /m
end for
end for

N

> o

© 0N o

4.5 0Odd—Even Transposition Sort

This sorting algorithm is for linear arrays (and rows and columns of
meshes). The algorithm is very simple. It alternates between odd steps
and even steps. At odd steps, we compare the contents of processors P;
and Py, P3 and Py, and so on exchanging values if necessary. At even steps,
we repeat the same procedure on processors P, and Ps, P, and Ps, and so
on. The algorithm takes n steps to sort its input (x1,x2,...,x,), one item
x; per processor P;; 1 <4 < n. Hence its running time is O(n).

Theorem 4.1 Odd—even transposition sort correctly sorts any sequence
of numbers.

Proof. By Lemma 2.1 in Section 2.10, we may assume that the input
sequence X consists of 0’s and 1’s. We prove by induction on | X| that the
algorithm sorts the binary sequence X. If n = 1 or 2, then the hypothesis
is true. So assume it is true for all sequences of size k,1 < k < n — 1.
Let X = (z1,22,...,2,) stored in processors Pi, P, ..., P,. Let z; be the
rightmost 1, where 1 < j < n. z; will start moving rightward in the first
or second step of the algorithm. Once it starts moving, it will subsequently
move rightward in each step until it reaches the right end — that is, until
Zn, = 1. Now, it remains to sort X' = (z1,22,...,2,—1) In processors
Py, P, ..., P, 1. Byinduction, X’ will be sorted by the algorithm. It follows
that X will be sorted correctly by the algorithm. O

The Linear Array and the Mesh

odd
even 3
odd
even 1

Example 4.1 An example of the algorithm is shown in Fig. 4.6.

4.6 Shearsort

H
-
H

.E
E-

-]
-]
N
-]

Fig. 4.6. Example of odd—even transposition sort.

H
H

H
H

165

O

This sorting algorithm is for meshes, and it sorts n items in a /n X v/n
mesh in snakelike order. It consists of 2log+/n + 1 = logn + 1 phases. The
algorithm alternates between odd and even phases. At odd phases, it sorts
the rows of the mesh, and at even phases, it sorts its columns. The odd
rows are sorted so that smaller numbers move leftward, and the even rows

are sorted so that smaller numbers move rightward. The columns are sorted

so that smaller numbers move upward. Odd—even transposition sort may

be used to sort the rows and columns. In this case, the running time of the
algorithm is ©(y/nlogn). An outline of the algorithm is given as Algorithm

SHEARSORT.

Algorithm 4.3 SHEARSORT

. for i<~ 1 to logn+1

1
2
3. else sort all columns
4. end for

Input: A sequence S = (a1, az, ...

L Qn).

Output: The elements in S in sorted order.

if 7 is odd then sort all rows in snake-like order

166 Parallel Algorithms

@ @36 2 15 MR 2 615> ©OF 4 6 3
381612 3 16 12 8 3| < 2 7 8 5
713 1 10 17 10 13| > 1411 9 13
5 914 11 14119 5| <« 16 12 10 15

Input Sort rows Sort columns

Di3 4 6|>©0 3 4 2 O n 2 3 4] >
8 7 5 2| <« 8 7 5 6 8 7 6 5| «—
9 1113 14| 5 9 1112 10 9 1011 12|
16 15 12 10 16 15 13 14 16 15 14 13
Sort rows Sort columns Sort rows

Fig. 4.7. An illustration of Algorithm SHEARSORT.

Example 4.2 An illustration of Algorithm SHEARSORT is given in
Fig. 4.7. O

Theorem 4.2 Algorithm SHEARSORT correctly sorts any sequence of n
numbers on a /n x y/n mesh in 2log+/n + 1 phases.

Proof. By Lemma 2.1 in Section 2.10, we may assume that the input
consists of 0’s and 1’s. So, let the input be initially stored in the \/n x v/n
mesh, one number per processor. A row of the mesh will be called dirty if
it consists of both 0’s and 1’s, and clean if it consists of only 0’s or only 1’s.
Initially, there may be as many as /n dirty rows. During the execution of
the algorithm, there will be rows all 0’s followed by dirty rows followed by
rows with all 1’s. After the algorithm terminates, there will be at most one
dirty row. Let an iteration of the algorithm consist of two phases, a row sort
phase and a column sort phase. We will show that after each iteration, at
least half of the dirty rows become clean. This will imply that after log(y/n)
iterations there will be at most one dirty row, which can be sorted using
an additional sorting phase for a total of 2log(y/n) + 1 = logn + 1 phases.
Thus, it remains to show that the number of dirty rows will decrease by a
factor of at least 2 in each iteration.

Consider two adjacent rows in an iteration after the phase of row sorting.
There are three possibilities according to whether there are more 0’s than
1’s (Fig. 4.8(a)), more 1’s than 0’s (Fig. 4.8(b)), or an equal number of
0’s and 1’s (Fig. 4.8(c)). Now, after sorting the columns of the mesh, each

The Linear Array and the Mesh 167

0.... 01...1 0..01....... 1 0...01...1
1...10........ 0 | DO 10....0 I.....10......0
(a) more Os (b) more 1s (c) equal Os & 1s

Fig. 4.8. Dirty rows after rows are sorted.

one of these three cases will contribute at least one clean row. If there are
more 0’s than 1’s (part (a) of the figure), then after sorting the columns,
there will be at least one more clean row consisting of all 0’s. If there are
more 1’s than 0’s (part (b) of the figure), then after sorting the columns,
there will be at least one more clean row consisting of all 1’s. If there are
equal number of 0’s and 1’s (part (c) of the figure), then after sorting the
columns, there will be two more clean rows one consisting of all 0’s and
one consisting of all 1’s. Thus the number of dirty rows will decrease by a
factor of at least 2 in each iteration. O

Corollary 4.1 If the number of dirty rows is k, then Algorithm SHEAR-
SORT performs 2log k + 1 phases.

4.7 A Simple ©(y/n) Time Algorithm for Sorting on the Mesh

In this section, we derive a simple ©(y/n) time algorithm for sorting n
numbers on the /n x y/n mesh. It is a divide-and-conquer algorithm, where
the mesh is first partitioned into four submeshes of size 4 X 4 each. The
algorithm first sorts each quadrant recursively in snake-like order. It then
sorts the rows of the entire mesh in snake-like order, and finally performs five
phases of Algorithm SHEARSORT. It is shown as Algorithm MESHSORTREC.

Algorithm 4.4 MESHSORTREC
Input: A sequence S = (a1, az,...,an).

Output: The elements in S in sorted order.

Partition the mesh into four quadrants of size 4 X 4 each.
Recursively sort each quadrant in snake-like order.

Sort the rows of the entire mesh in snake-like order.

Sort the columns top-down.

Perform five phases of Algorithm SHEARSORT.

Al S

168 Parallel Algorithms

(a) (b) (c)

01111101 0000[0000 00000000
10100101 0000[0000 00000000«
01001100 I11r1r1i11 1111111 1f—>
00111000 11111111 1111111 1]«
11001111 0000[0000 00000000
00101101 0000[1110 11100000«
10101001 011 1{1 111 o1111111—>
10010101 11111111 11111111«
Input Sort recursively Sort rows
(d) (e)

00000000 00000000 —

00000000 00000000 «

00000000 00000000 —»

01100000 11000000 «

11111111 11111111

11111111 11111111 «

11111111 11111111 -

11111111 11111111 <«

Sort columns Apply shear sort

Fig. 4.9. An illustration of Algorithm MESHSORTREC on input of 0’s and 1’s.

(a) (b) 0 (c)
0 0
JV: balancdd rows 0
! 1 . 1 . 4 dirty rows
Bordering 0 4 Bordering
0 ‘O/ rows balancéfd rows rows 1
ff
1 1 1
After recursive After sorting After sorting
calls by rows by columns

Fig. 4.10. Proof of Theorem 4.3.

Example 4.3 An illustration of Algorithm MESHSORTREC on input of
0’s and 1’s is shown in Fig. 4.9. (]

Theorem 4.3 Algorithm MESHSORTREC correctly sorts any sequence
of n numbers on a \/n X \/n mesh.

Proof. By the zero-one principle (Lemma 2.1 in Section 2.10), we may
consider any input sequence of 0’s and 1’s. See Fig. 4.10. After the recursive

The Linear Array and the Mesh 169

calls, the data in each quadrant is such that all but at most one of the rows
are either all 0’s or all 1’s (see Fig 4.10(a)). A row in the mesh is balanced if
the left half consists of all 0’s, the right half consists of all 1’s, or vice-versa.
Thus, in the entire mesh, all, but at most four of the rows are either all 0’s,
all 1’s or balanced. Call these four lines the borderline rows.

After sorting all rows, the borderline rows are sorted and both blocks
of balanced rows alternate between 1’s to the left and 1’s to the right (see
Fig 4.10(b)).

After sorting all columns, the (at most) four borderline rows will be
contiguous (see Fig 4.10(c)), and since there are at most four dirty rows,
then by Corollary 4.1, only 2log4 + 1 = 5 phases of Algorithm SHEARSORT
are required to sort the numbers. 0

4.8 0Odd—Even Merging and Sorting on the Mesh

In this section, we implement odd—even merging and sorting on a \/n X /n
mesh; odd-even merging and sorting on the PRAM were discussed in
Section 2.11. Let A = (ag,a1,...,a,/2-1) and B = (b, b1,...,bn/2_1)
be two sorted sequences of n distinct numbers, where n is a power of 4.
Initially, A and B are input in the first and second /n/2 columns of the
mesh. The odd-even merging method is outlined in Algorithm MESHOD-
DEVENMERGE. k, the number of columns, is input to the algorithm. In
the beginning, k = /n, which is a power of 2. The algorithm divides
the input into Aeven, Aodd, Beven, and Bodd, and each part occupies k/4
columns. Next, Aoqq and Byqq are interchanged, and the algorithm recur-
sively merges Aeyen With Bogqq to produce C, and recursively merges Beoyen
with Aoqq to produce D. C' and D are then shuffled into E, which is scanned
from left to right (in one parallel step) for pairs that are out of order, which
are ordered, if necessary.

Notice that the algorithm is general for any mesh with & columns and
\V/n rows, where k is a power of 2. We express the running time of the
algorithm in terms of the number of columns k, 2 < k < /n. Step 1
takes T'(2) = ©(y/n) time, which is the time needed to merge in a linear
array with 2y/n processors. Steps 2 and 3 take O(k) time, as data has to
be routed from left to right and from right to left. Step 4 of interchanging

170 Parallel Algorithms

Algorithm 4.5 MESHODDEVENMERGE

Input: Two sorted sequences A = (ao,a1,...,a,/2-1) and B =
(bo,b1,...,by/2—1) of n/2 elements each sorted in ascending order,
where n = 4% > 4, number of columns k, 2 < k < y/n.

Output: The elements in S = AU B in sorted order.

1. if £k = 2 then merge the two columns using an algorithm for the linear
array to produce a sorted snake with two columns and /n rows. Exit.

2. Let Aeven = (G0,0z2,...,0n/2-2) and Agad = (a1,as,...,a,/2-1) be the
even and odd subsequences of A, respectively. Aeven and Aoqq are snakes
with k/4 columns and \/n rows each.

3. Let Beven = <bo7 ba, ... s bn/2,2> and Boga = <b17 1737 e bn/2,1> be the
even and odd subsequences of B, respectively. Beven and Bogq are snakes
with k/4 columns and \/n rows each.

4. Interchange Agqa with Bodda. Thus Aeven and Boaq occupy the first k/2
columns, and Beven and Aoqq occupy the next k/2 columns.

5. Recursively merge Acven and Boad to obtain C' = (co,c1,...,Cn/2-1), &
mesh of k/2 columns and \/n rows.

6. Recursively merge Aoaa and Beven to obtain D = (do,d1,...,dp/2-1), &
mesh of k/2 columns and \/n rows.

7. Let E be the shuffle of C' and D, that is,

E= <CO7 d07 C1, di,..., Cn/2—1, dn/271>-

8. Traverse the pairs (¢;,d;) in E, 0 < i < n/2 — 1, and interchange the
elements in each pair if they are out of order to obtain the sorted sequence
S = (s0,81,...,8n—1) in a mesh with k columns and \/n rows.

9. return S

columns takes O (k) time. Steps 5 and 6 take T'(k/2) time. Step 7 of shuffling
columns takes O (k) time. Step 8 takes ©(1) time. Hence, the running time
of the algorithm is governed by the recurrence T'(k) = T(k/2) + O(k),
whose solution is T'(k) = O(k) + T(2) = ©(k) + O(y/n). When k = /n,
T(y/n) = ©(y/n). The proof of correctness is given by Theorem 2.2 in
Section 2.11.

Example 4.4 Consider the mesh shown in Fig. 4.11. It consists of four
rows and four columns. The first input A is in the first half of the mesh,
in the first two columns in a snakelike order. The second input B is in
the last two columns in a snakelike order. A = (3,5,6,9,11, 13,14, 16) and
B =(1,2,4,7,8,10,12,15). First we partition A and B into their even and

The Linear Array and the Mesh 171

Input A, A, B, B, A, By B, A,
5112 315112 3(2]1|5
916(7|4 6lol4]7 6(7]4]9
11{13]8 (10 11{13| 810 11{10(8 |13
161415 |12 1416|1215 1415[12]16
(a) (b) (c)
Merge recursively Shuffle Compare-exchange
21314 2 (13[4 1(2]3] 4
716|815 8[7]5]6 gl7]6]s
1011 | 9|12 10| 9 [11]12 9 101112
15(14 (16|13 16]15(13 | 14 161151413

(d) (e) ®)

Fig. 4.11. An example of odd—even merging on the mesh.

odd parts. The even parts are shown in shaded squares of Fig. 4.11(a).
Thus, Aeven = {3,6,11, 14} is in the first column (see part (b) of the figure)
and Aogqa = {5,9,13,16} is in the second column. Beyen = {1,4,8,12} is
shown in the third column, and Boqq = {2,7, 10,15} is in the last column.
These are shown in part (b) of the figure. In part (c) of the figure, Agqq is
interchanged with Byqq. So, the first two columns are merged recursively
to produce C' = (2,3,6,7,10,11,14,15) in snakelike order, and the last
two columns are merged recursively to produce D = (1,4,5,8,9,12,13,16)
in snakelike order. In Fig. 4.11(e), C' and D are shuffled to produce
E = (2,1,3,4,6,5,7,8,10,9,11,12,14,13,15,16), which spans the four
columns in a snakelike order. The pair (2, 1) is out of order, so 2 and 1 are
exchanged. The same applies to the pair (6, 5), etc. The sorted sequence
is $=1(1,2,3,4,5,6,7,8,9,10,11,12,13, 14,15, 16) shown in part (f) of the
figure. (]

The algorithm for sorting is given as Algorithm MESHODDEVENSORT. It
is similar to Algorithm ODDEVENMERGESORT for the PRAM in Section 2.11.

172 Parallel Algorithms

Algorithm 4.6 MESHODDEVENSORT
Input: A sequence S = (ag,a1,...,an—1) where n is a power of 4.

Output: The elements in S in sorted order.

S1+ <a0, A1y .-y an/2,1>.

S ¢ <an/27 An /2415 -+ an*1>‘

S} < MESHODDEVENSORT(S1)

S5 < MESHODDEVENSORT(.S2)
S« MESHODDEVENMERGE(S], S3)
return S

AN

The running time of the algorithm is governed by the recurrence T'(n) =
T(n/2)+0(y/n), whose solution is T'(n) = O(y/n). The cost of the algorithm
is O(v/n) x n = O(n'?).

4.9 Routing on the Linear Array and the Mesh

We consider the problem of permutation routing on the linear array and the
mesh with n processors, in which every processor tries to send to a different
destination.

4.9.1 Routing in the linear array

Consider the problem of permutation routing in a linear array with n pro-
cessors. Note that n — 1 is a lower bound on the worst case number of steps
needed to route a packet at processor P; to processor P;, since ¢ and j may
be equal to 1 and n, respectively. Consider the following greedy method of
routing a packet v from processor P; to processor P;. If P; is to the left of
P;, then move v to the left one step, and if P; is to the right of F;, then move
v to the right one step. This greedy approach is guaranteed to deliver v to
P; using the least number of steps, which is the distance between P; and
P;, that is |i — j|. Note that no two packets moving in the same direction
will contend for the same link. However, two packets may use the same
(bidirectional) link if they are moving in opposite directions.

The Linear Array and the Mesh 173

4.9.2 Deterministic routing in the mesh

The greedy algorithm for permutation routing in the \/n X \/n mesh is a
generalization of that in the linear array. Let v be a packet to be routed
from processor P; ; to processor P} ;. The algorithm consists of two phases.
In the first phase, v is routed along column j towards row k, which is
the destination row. In the second phase, v is routed along row k towards
its destination processor Py ;. In each phase, a row or column is treated
like a linear array with y/n processors. In the first phase, there is no con-
tention on the links, which implies that all packets will arrive to their
destination row in at most y/n — 1 steps. In the second phase, however,
many packets may pile up at an intermediate processor. For example, con-
sider the case in which all processors in column 1 need to send to row
V/n/2. At each single step, processor P, /i/2,1 receives two packets; one
from the top and another from the bottom. This results in half of the
incoming packets piling up at this intermediate processor. However, using
the right protocol to arbitrate link contention results in an efficient imple-
mentation of phase 2. By giving priority to packets that need to go far-
thest, routing in the second phase can be accomplished in at most /n — 1
steps. It follows that using the farthest-first heuristic, all packets can be
routed to their destinations in at most 24/n — 2 steps. To see this, con-
sider the instance in which there is only one queue) in row i. Let the
packets stored in @ be u; 1, u;2, ..., where the u; ;’s are sorted in decreas-
ing order of the distance from their destinations. Initially, u;, is allowed
to move to its destination without delay. Its destination can be as far as
v/n, which means the distance between @ and the target of u; 1 is at most
v/n — 1. In the next step, u; 2 is allowed to move to its destination with-
out delay; it follows w; 1 and never collides with it. Note in this case that
the destination of u; o can be as far as y/n — 1 because of the assump-
tion of permutation routing. Hence, it will take u; 2 to reach its destination
1++v/n—2=/n—1steps. In general, it will take u; 5 to reach its destina-
tion in at most k — 1+ +/n — k = \/n — 1 steps. The generalization to more
than one queue is straightforward.

174 Parallel Algorithms

4.9.3 Randomized routing on the mesh

Although, as we have shown, the greedy algorithm is optimal in the sense
that it uses the least amount of time, it suffers from large queues being built
up at intermediate processors. This makes the greedy algorithm impractical.
In this section, we show that using randomization, the maximum queue size
can be reduced drastically without increasing the routing time substantially.
We show that, using randomization, the routing time is 3v/n+o(y/n) using
queues of size O(logn) with high probability. Let v be a packet with source
P; ; and destination P ;. The algorithm routes v in three phases:

Phase 1: Route v to a random intermediate processor in column j, say
processor P, ;.

Phase 2: Send v along the same row r to its destination column /.

Phase 3: Send v to its final destination, i.e., to processor Py ;.

In phase 1, assume that edge contention is resolved using the farthest-
first protocol. Thus, each packet moves without contention to its randomly
chosen row, and thus suffers no delays. Hence, as discussed in Section 4.9.1
for routing in the linear array, phase 1 is completed within \/n — 1 steps
or less.

We will assume that edge contention in phase 2 is resolved by giving
priority at a processor to the packet which most recently entered that pro-
cessor. Thus, once a packet starts moving in a row, it never stops until
it reaches its destination column. Consider a packet that starts moving
at processor P, ; in phase 2. This packet may be delayed by all packets
originating at processors P.1, P, o,..., P, ;. There are at most \/n pack-
ets at the end of phase 1 at processor P, ; in column j. Each packet at
column j ends up at processor P, ; with probability ﬁ For 1 < s <,

define the random variable X, ; to be the number of packets at processor
P, s at the start of phase 2. Then, X, ; has the binomial distribution with

E(X, | = V/n x ﬁ =1 (see Section A.4.3). Let

The Linear Array and the Mesh 175

That is, Y; counts the total number of packets at processors P, i, P2,
., P ; at the start of phase 2. By linearity of expectations (see
Section A.4.3),

=E ZXT‘,S‘| :ZE[XT,S] :lej-

(See Section A.4.3). Now, we can apply Chernoff bound in Theorem A.3 to
the probability of there being a substantial number of packets delaying a
particular packet v at processor P, ;. The Chernoff bound is

J
S X > (140

s=1

Pr[Y; > (14 6)u] = Pr < e HA (5 < 2e—1).

We compute the probability that v is delayed by j++/4(c + 1)j Inn packets,

¢ > 0. So, we require that (1+6)u = j++/4(c+ 1)jlnnord = 7&(%1)31:171
That is,

2
Pr [Y >+ /4(c+1) ylnn} <e (C“)h‘”) /4 _ ,~(e+1)Inn

=n L

Thus, the probability that v is delayed by j + \/4(c + 1)jlnn packets
is bounded above by n=¢71 ¢ > 0. This is a bound for the probability
that a given packet is delayed more than j + \/4(c+ 1)jlnn steps. But
we want to get a bound for the probability that no packet gets delayed
more than j + y/4(c+ 1)jInn steps. For that, it is enough to use Boole’s
inequality for probabilities as a bound (Eq. (3.1)): There are n packets in
total, and the probability that one of these packets is delayed by more than
j + /4(c+1)jlnn steps is bounded above by n x n=¢"! = n=¢ ¢ > 0.
Notice that if a packet at processor P, ; is delayed by j + /4(c+ 1)jlnn,
then it takes j + y/4(c+ 1)jlnn + /n — j steps for this packet to reach
its correct column. This is at most /n + o(y/n) steps So we can make the
following assertion: With probability at least 1 — —= every packet reaches

nc

its phase 2 destination in /n + o(y/n) or fewer steps.

176 Parallel Algorithms

In phase 3, each packet is in its correct column, and there is at most one
packet destined for each processor. We will assume that edge contention in
phase 3 is resolved using the farthest-first protocol. Hence, this phase is
completed within \/n — 1 steps or less. Thus, the overall running time of
the randomized algorithm is 3y/n + o(y/n) with probability at least 1 — -,
c>0.

Now, we bound the queue size in all processors. At the end of phase 1 and
during phase 2, the number of packets that can accumulate at any processor
is at most y/n. Recall that the random variable X, , denotes the number
of packets at processor P, at the start of phase 2, and that X, ; has the
binomial distribution with p = E[X, ;] = v/n X ﬁ =1 (see Section A.4.3).
Now, we can apply the Chernoff bound in Theorem A.3 to the probability
of there being a substantial number of packets at processor P, s at the end
of phase 1 and during phase 2. The Chernoff bound is

Pr(X,>(1+0)u] <27 (§>2—1).

We compute the probability that there are more than 1+ (1 + ¢)logn
packets, ¢ > 0, at processor P, s, where 1 = 1. So, we require that (1+0)pu =
14+ (1+4c¢)logn, or § = (1+ c)logn. That is,

Pr [an >1+ (1 -+ c) 10gn] < 2*(1+c) logn
_ (4o,

Using Boole’s inequality (Eq. (3.1)), the probability that there is at least
one processor with queue size more than 1 + (1 + ¢)logn is at most n x
n~+e) = p=c¢ Tt follows that in phases 1 and 2, the queue size is at
most 1 + (¢ + 1)logn = O(logn) with probability at least 1 — . Since
queues can never increase during phase 3, the queue size during this phase is
O(logn).

In summary, the above randomized algorithm runs in time 3/n+o(y/n)
steps and uses queues of size O(log n) with probability at least 1—O(1/n¢),
¢ > 0. The running time can be reduced to 2v/n + o(y/n) by dividing
each column to strips of size % and routing each packet in phase 1 to
a random location in its own strip. The analysis is similar to the above.
Thus, we conclude that there is a randomized algorithm that runs in time

The Linear Array and the Mesh 177

2y/n + o(y/n) steps and uses queues of size O(logn) with probability at
least 1 — O(1/n°), ¢ > 0.

4.10 Matrix Multiplication on the Mesh

Consider the problem of matrix multiplication on the mesh: Given two
square matrices A and B of order /n x y/n, find their product C' = AB.

4.10.1 The first algorithm

In this section, we show how to perform matrix multiplication C = AB of
dimensions /n X v/n on a 2y/n X 24/n mesh. It is assumed that matrix A
is stored in the lower-left quadrant, matrix B is stored in the upper-right
quadrant, and the resultant matrix C' is to be computed in the lower-right
quadrant (see Fig. 4.12 for the case v/n = 4).

Initially, the values of the ¢; ;s are set to 0. At time 1, row 1 of matrix A
moves one step to the right and column 1 of matrix B moves one step down,
and the product of a; 5b z, is computed and added to cy,1. At time 2,
row 1 of matrix A and column 1 of matrix B continue moving in the same
directions, and row 2 of matrix A and column 2 of matrix B start moving
left to right, and top down, respectively. In general, at time k, the kth
row of matrix A and the kth column of matrix B start moving right and

Gr| G2| d3 | Ya | | C2| 3| i

By | Do| B3| Da| Q1| 2| 3| 4

G| G| B3| Ba| G| G| B3| G4

gy | Y| Y3 | Ya | Ca1| Ca2| Ca3 | Caa

Fig. 4.12. Matrix multiplication, the first algorithm.

178 Parallel Algorithms

Table 4.1. Computing ci1,1 and c1,2 by the first matrix multiplication
algorithm.

Time c11 C12

1 a14ba1 0

2 a14ba1 + a13b31 a14ba2

3 a14ba1 + a13b31 + a12021 a14bs2 + a13bszz

4 a14ba1 + a13b31 + a12b21 + a11b11 @14baz + a13b32 + a12b22

5 a14ba1 + a13b31 + @12b21 + a11b11 @14baz + a13bs2 + a12b22 + a11bi2

down, respectively. Each processor P;; upon receiving data from its left
and top neighbors, computes the product of these values and adds them to
the partial sum ¢; j. At time k+ 1, each processor sends the values received
during time k to its neighboring processors in the direction they are moving.
Therefore, at time /n, the \/nth row of matrix A and the y/nth column of
matrix B start moving right and down, respectively, and additional \/n — 1
steps are needed to reach the processor holding ¢ s 5. Clearly, the running
time of the algorithm is ©(y/n).

Example 4.5 Table 4.1 shows the results of the computations of ¢; 1 and
c1,2 using the first matrix multiplication algorithm. The values of ¢;,; and
c1,2 are determined incrementally starting at 0. Note that some of the other
computations for the rest of the ¢; ;’s are done concurrently. g

4.10.2 The second algorithm

In this section, we show how to compute the matrix product C' = AB of
dimensions y/n X y/n on a mesh of size n, that is, a \/n X \/n mesh. Assume
that the mesh is a wrap-around mesh (torus), so additions of indices are to
be carried out modulo y/n. Initially, the input matrices are stored in the
mesh, where processor F; ; holds the elements a; ; and b; ;, and the output
elements are to be stored in ¢; ;. The algorithm consists of two phases; the
first phase is the shifting phase, and the second phase is the multiplication
phase.

In the shifting phase, the a; ;’s are shifted to the left, and the b; ;’s are
shifted upwards as follows. The a; ;’s in the first row are shifted to the
left by one position, those as ;’s in the second row by two positions, and in

The Linear Array and the Mesh 179

4 4 a3 Ay 4 | Y3 Ay)
by | by by by by | by by3 by
Dy | 4 D3 by Gy | Dy by (%)
by | by by byy by | by by by
G| B | Gy Ay B | By | apn a3
by, by, byy by by, by by by,
L Y] Y3 Ay Uy Yy U3 U
by, by, by by by, by, by byy

(a) (b)

Fig. 4.13. Matrix multiplication, the second algorithm. (a) Initial input.
(b) After the shifting phase.

general, the elements a; ; in the ith row are shifted to the left by 7 positions.
The b; 1’s in the first column are shifted upwards by one position, those
bi2’s in the second column by two positions, and in general, the elements
b;; in the jth column are shifted upwards by j positions. So, the data
is rearranged so that processor P; ; holds a;,+; and b;; ;. Figure 4.13(a)
shows the initial input, and Fig. 4.13(b) shows the input after the shifting
phase.

In the multiplication phase, P;; evaluates ¢;; by computing the dot
product ¢i;1 = Zk‘/jl a1,kbg,1 as in the traditional matrix multiplication
method. It does this using the following steps (see Fig. 4.13(b)):

(1) Set c171<—a172b271.
(2) Shift the first row to the left and the first column upwards, and set
cr,1¢ci,1 +ai3bs .

(3) Shift the first row to the left and the first column upwards, and set
1,14 C11 + a1, /n b\/ﬁ,l (in Fig. 4.13(b), \/ﬁ = 4)

(4) Shift the first row to the left and the first column upwards, and compute
the final result ¢1,14=c¢c11 + @1,1011.

The computation of the rest of ¢; ;s is done in a similar fashion. The algo-
rithm is shown as Algorithm MESHMATRIXMULT. For clarity, the a; ;’s and
bi;’s will be renamed so that the contents of P;; after shifting will be

180 Parallel Algorithms

Algorithm 4.7 MESHMATRIXMULT
Input: Two /n X y/n matrices A and B.

Output: The product C' = A x B.

1. for i< 1 to y/n do in parallel

2 Shift row i to the left ¢ positions
3. end for

4. for j+ 1 to y/n do in parallel

5. Shift column j upwards j positions
6. end for

7. for i+ 1 to \/n do in parallel

8 for j+ 1 to \/n do in parallel

9. Ci,j < aiyjbi,j
10. end for
11. end for

12. for k<« 1 to y/n — 1 do in parallel
13. for i+ 1 to \/n do in parallel

14. for j< 1 to v/n do in parallel
15. Q54— Qi 541

16. bi,j<— bi+1,j

17. Ci,j < Cij +am~b¢7j

18. end for

19. end for

20. end for

called a; ; and b; ;. Recall that additions of indices are to be carried out
modulo /n.

Clearly, both the first phase and the second phase take ©(y/n) time,
and hence the running time of the entire algorithm is ©(y/n)

4.11 Computing the Transitive Closure on the Mesh

Let A be a v/n x y/n adjacency matrix of a directed graph G. The transitive
closure of G is represented as a y/n x y/n Boolean matrix A* in which
A*(i,j) = 1 if and only if there is a path in G from i to j, where we
assume that the set of vertices is {1,2,...,y/n}. Computing the transitive
closure is critical to a variety of efficient solutions to fundamental graph
problems.

Define A% (i, j) to be 1 if and only if there is a path from i to j that
passes by vertices in the set {1,2,...,k}, and 0 otherwise. A°(i,j) = A(i, j)

The Linear Array and the Mesh 181

is 1 if and only if there is an edge in G from i to j. Define aﬁj = Ak(i,).
A¥(i, 5) is computed from the recurrence

AR, 5) =AM, G) V(ARG k) A AT (R, 5))s ARG 5) = A).
(4.1)
By Eq. (4.1), we see that
ARk, k) = AP Yk k) V(AR (R k) A AR (B k) = AR (kLK) (4.2)
ARk, j) = ARk,) v (AR (R k) A AR (R,) = AR,), (43)
and
AF(i k) = ARY(0 k) v (AR k) A AR (R k) = ARG K). (4.4)

The algorithm to be presented makes use of Egs. (4.1)—(4.4) to compute
the transitive closure of A efficiently in parallel. Assume the n processors
are numbered Py 1, P12, ..., P 5 /5. The algorithm consists of \/n phases,
where in phase k, the rows of AF are computed from the rows of A*~! for
1 < k < /n. The rows of the matrix A = A are entered from the top of
the mesh starting from row 1 one at a time (see Fig. 4.14(a)), and travel
in a systolic fashion to the bottom of the mesh, where they exit starting
from row 1. We will distinguish between two states of matrix rows. The first
state is the “unmarked” state, where all rows are in the unmarked state by
default. So, all rows start as unmarked rows once they enter the mesh from
the top. The second state is the “marked” state. Matrix row ¢ enters the
marked state once it bypasses all marked rows, and stops moving downward
when reaching row i of the mesh in step 2i — 1. It stays as a marked row
until all other rows in the matrix pass over it at step v/n + 2i — 1, where it
becomes an unmarked row and starts moving downward again towards the
bottom of the mesh.

Consider Fig. 4.14 in which the process is shown using a mesh with four
rows. The shaded rectangles are marked rows, while the small white rectan-
gles are unmarked rows. First, row 1 of the input matrix A is entered into
row 1 of the mesh (see Fig. 4.14(b)). It immediately becomes a marked row
in step 1. The first phase commences next where rows 2,3, ..., 1/n, which
are unmarked rows, pass over the first marked row (see Figs. 4.14(c)—(e)).
Consider the first time unmarked row 2 is moved to the first row of

182 Parallel Algorithms

row 4
row % row 4
row row 3 row 4
@ row1) qowr ©PVE @ L. @
row 1 row 1 row 1
s row 2 row 3 TOW 421
TOW
row 2 Tow 3
) (g) (h)) 6)
row 1
oW 2 TOW 2 >
Tow 4 Tow [o
row 3 oW 3 row 3
row 3 Tow 4 Tow 1 ToW 2 10w 3
— row 4 row 4
row [row 2
() 1) (m) row !
I:‘ Marked rows
;g: ‘31 row 4 D Unmarked rows
row 2 row 3 row 4
row 1 row 2 row 3
row 1 row 2

row 1

Fig. 4.14. Computing the transitive closure on the mesh, where /n = 4.

the mesh next to the marked row 1 (see Fig. 4.14(c)). First, processor
Py 1 broadcasts ag,l to all other processors in the first row of the mesh.
Next, for each j,1 < j < /n, ag,j is updated to aé,j using the formula
aé,j = ag’j V(a9 /\a?,j). Next, row 2 of the matrix is moved to row 2 of the
mesh and becomes a marked row (Fig. 4.14(d)). Later, when unmarked row ¢
meets marked row 1, processor P; ; broadcasts a?,l to all other processors
in the first row of the mesh. Next, for each 7,1 < j < /n, a?’j is updated to
i; using the formula a; ; = af ;v (a ; Aaf ;). As the unmarked rows of A°
pass over the first marked row, they are thus updated to become the rows
of A'. Once processing row i is complete by marked rows 1,2,...,7 — 1, it

a

is moved to row i of the mesh and becomes a marked row (see, for example,
row 3 in Fig. 4.14(f)).

The Linear Array and the Mesh 183

It should be emphasized, however, that, by Eq. (4.3), the kth row is not
processed during the kth phase. This is why, for example, row 1 was not
processed in the first phase. In general, the kth phase is accomplished as
rows 1,2,...,k—1land k+1,k+2,...,1/n pass over the marked row k in
some order. By the time an unmarked row reaches the kth marked row in
the kth row of the mesh, it has already been updated to be a row of A¥~1.
(See Figs. 4.14(d)-(h)). As the unmarked ith row passes over the marked

kth row, processor P j broadcasts af;l to all processors in the kth row
k—1

of the mesh. Processor Py ; in this row can update a; ;

aﬁj = ai;l Y (ai;l A azgl).

Recall that marked row ¢ will be stored in the ith row of the mesh in
step 2i—1, and at step /n—+2i—1, it becomes an unmarked row and begins
moving downward. It will exit the mesh from the bottom at step 2v/n+i—1.
The remaining parts of Figs. 4.14 depict the rest of the algorithm. It follows
that after a total of 3y/n — 1 steps excluding data broadcasting, A* = AV"™
will have been output from the bottom of the mesh. This implies that the
overall running time is ©(y/n) excluding data broadcasting.

Broadcasting of data items can be accomplished efficiently by interleav-
ing it with updating the matrix elements. Figure 4.15 shows how broad-
casting at multiple rows can be interleaved with row computations. In
Fig. 4.15(a), broadcasting of af , in a 4 x 4 mesh is shown for 0 < k < 3.
Note that broadcasting many elements can take place concurrently in the
same row. For example, broadcasting of ag)l may be in progress in row 1

using the formula

while ag)l is moving to the right.
In Fig. 4.16, the overall data flow for the construction of transitive clo-
sure is shown without the details of synchronization; delays are required in

Fig. 4.15. Interleaving broadcasting with updating elements of the transitive
closure in a 4 x 4 mesh.

184 Parallel Algorithms

(a)

Fig. 4.16. Data flow in computing the transitive closure in a 4 x 4 mesh.

O—®@ &
@

Fig. 4.17. An undirected graph with three connected components.

some data transmissions. As shown in Fig. 4.16(b), each processor computes
aﬁj using the formula af"’j = ai}l \Y (aﬁgl A azgl). Thus, the construction
of the transitive closure is not performed row by row; each element of the
matrix moves downward independently.

The foregoing description implies that the overall running time of the

construction of transitive closure on a v/n x \/n mesh, including broadcast-

ing, is O(y/n).

4.12 Connected Components

Let G = (V, E) be an undirected graph with adjacency matrix A and tran-
sitive closure matrix A* = {a;,;}. A* partitions V into connected compo-
nents, where two vertices a; and a; are in the same connected component
if and only if there is a path in G between them, that is, if and only if

*
i,j
Thus, to compute the connected components of GG, we compute the tran-
sitive closure A*. For example, the connected components in Fig. 4.17 are

{1,2,3,4},{5,6},{7}.

a; . = 1. Figure 4.17 shows a graph with three connected components.

The Linear Array and the Mesh 185

4.13 Shortest Paths

Let G = (V, E) be a weighted directed graph on n vertices with no loops, in
which each edge (7, j) has a weight wl[é, j]. If there is no edge from vertex i
to vertex j, then wli,j] = oo. For simplicity, we will assume that V =
{1,2,...,y/n}. We assume that G does not have negative weight cycles,
that is, cycles whose total weight is negative. The problem is to find the
distance from each vertex to all other vertices, where the distance from
vertex i to vertex j is the length of a shortest path from i to j. Let 4
and j be two different vertices in V. Define A (i,5) to be the shortest
distance from ¢ to j that passes by vertices in the set {1,2,...,k}, and
A%@i,5) = w(i, 7). A*(i,4) is computed from the recurrence

AR(i, 5) = min{AF 1 (i, 5), AF1 (i, k) + ANk, 5) s AL 5) = AGL).
(4.5)
By Eq. (4.5), we see that

A (k, j) = min{ A" (k,), A¥ (K, k) + AM (K, 5)} = AFTN(K, 5), (4.6)
and
Ak (i k) = min{ AL (i, k), ARG k) + ARk k)Y = AR k). (4.7)

Notice the resemblance between Eqs. 4.1-4.4 and Eqs. 4.5-4.7. Hence,
the algorithm for transitive closure on the /n x y/n mesh discussed in
Section 4.11 can be used with simple modifications. Specifically, V and A in
Eqgs. 4.1-4.4 and the rest of the algorithm for transitive closure are replaced
by min and +. It follows that computing all shortest paths can be effected
in ©(y/n) time on a y/n x y/n mesh, which is optimal.

4.14 Computing the Convex Hull of a Set of Points
on the Mesh

Let S = {p1,p2,...,pn} be aset of n points in the plane stored in a y/nx+/n
mesh one point per processor, where n is a power of 4. For definitions related
to the convex hull, refer to Section 2.20; In this section, we present two

186 Parallel Algorithms

algorithms for computing the convex hull of S, CH(S), on the v/n x \/n
mesh; the first runs in time O(y/nlogn) and the other in time ©(y/n).

4.14.1 The first algorithm

The first algorithm is almost a straightforward implementation of the
PRAM algorithm presented in Section 2.20, and given in Algorithm PAR-
CONVEXHULL. The algorithm consists of repeated applications of the steps
given in Observations 2.2 and 2.3.

As a preprocessing step, the points in S are first sorted in ascend-
ing order of their z-coordinates in ©(y/n) time. So, assume that z(p;) <
x(p2) < ... < x(pn), where x(p;) denotes the z-coordinate of point p;. We
will assume for simplicity that no three points of S are collinear, and no
two points have the same z-coordinate. Next, the set of points S is divided
into four parts S1 = {p1,p2,.. - Pnjats S2 = {Pnjat1,Pnjat2s---Pnj2}

S3 = {pn/2+1apn/2+27---7p3n/4} and Sy = {pSn/4+17p3n/4+27---7pn}7
and arranged in the mesh as shown in Fig. 4.18(b). Now, we recursively

determine the four convex hulls of the four parts CH(S1), CH(S3), CH(S3)
and CH(Sy4). Figure 4.18(c) shows the four convex hulls of the points in
part (a) of the figure.

From CH(S1) and CH(S3), we identify CH(S; U S3), and denote the
set of vertices representing S; U Sy as P. From CH(S3) and CH(Sy), we
identify C'H(S3USy), and denote the set of vertices representing S3 U.Sy as
Q. From CH(P) and CH(Q), we identify CH (P UQ), which is the desired
convex hull CH(S). In what follows, we turn our attention to computing
the upper hull of P, UH (P). Computing the lower hull of P, LH(P), and
hence CH(P) can be determined in a similar fashion and in parallel with
UH(P). Finally, finding CH(Q), and hence CH(S) can be achieved by a
similar means.

The steps for finding UH (P) and hence LH(P) are similar to those
described in Section 2.20. In each iteration of the binary search, vertex x;
of UH(S;) is broadcast to the processors holding the vertices of UH (S2)
and one of those processors succeeds in finding its tangent line z;v; with

UH (S3). Clearly, this takes ©(y/n) time on the @ X @ mesh. Since there
are O(logn) iterations in the binary search for finding the upper common
tangent, the overall running time for finding this tangent is O(y/nlogn).
Recall that the computation of LH(P) is done in parallel with that of

The Linear Array and the Mesh 187

(a) ° ® ° o L
[° ° L[] o * ° o oV
ue o ° o
S, S, s, s,
CIN
M S5
()
v
UH(S,) UH(S,) UH(S;) UH(S,)

Fig. 4.18. (a) The set of points S. (b) Arrangement of the subsets on the mesh.
(c) Convex hulls of S1, S2, S3 and Sy.

UH(P). Clearly, the remaining work of finding UH (P) and then CH(P)
takes ©(y/n) time. Hence the overall running time for finding CH(P) from
CH(S1) ad CH(S2) is O(y/nlogn). It should be noted that finding CH(P)
and CH(Q) are done concurrently, and it remains to find CH(S), which
asymptotically takes the same running time. It follows that the running
time of the algorithm obeys the recurrence T'(n) = T'(n/4) +O(y/nlogn) =
O(y/nlogn).

4.14.2 The second algorithm

The algorithm to be presented is similar to the first algorithm. However,
the main difference is in the binary search and how it is conducted. In this
algorithm, the number of elements considered in iteration i is O(1/n/2%),

188 Parallel Algorithms

which results in ©(y/n) running time for the binary search. This is to be
contrasted to the first algorithm in which each iteration takes O(y/n) for a
total of O(y/nlogn).

In what follows, we describe in detail finding the tangents using binary
search for the two sets S7 and S5. The rest of the algorithm is similar to
that of the first algorithm.

The correctness of the algorithm hinges on the following lemma (see
Fig. 4.19). Here v and u are the vertices with the minimum and maximum
x-coordinates in C'H(S7), respectively, and v’ and u’ are the vertices with
minimum and maximum z-coordinate in C'H (S5), respectively.

Lemma 4.1 Let w be a vertex of CH(Sy). If there is another vertex w’
of CH(S3) such that ww’ is the common upper tangent of CH(S;) and
CH(S2), then all vertices in C'H (S2) must lie below the line passing by Tw
and some points in C'H (S2) must lie above the line passing by wy, where
and y are the two vertices in CH (S7) immediately succeeding and preceding
w in counterclockwise order.

Proof. The tangent line must lie entirely within the wedge defined by
Tw and wy. If Tw is not above all points in CH(S3), then any line that
passes by w and lies entirely inside the wedge either intersects CH(S2) at
more than one point or lies below the line v/u/. On the other hand, if wy is
above C'H(S3), then this wedge does not contain a point from CH(Sz). In
both cases, there does not exist a common upper tangent ww’ of CH(Si)
and CH(S5). O

Lemma 4.1 suggests the following method for identifying the vertex w.
We perform binary search on the set of vertices of C'H(S7). Initially, w is
assigned the hull vertex in C'H(S7) that is half the way between w and
v in counterclockwise order. Next, in each iteration, we do one of the
following according to the result of the test implied by Lemma 4.1 (see
Fig. 4.19).

(a) If all vertices in CH(S2) lie below the line passing by Tw and some
points in CH(S3) lie above the line passing by wy, then w,z and y
have been identified.

(b) If Tw is not above C'H (S2), then assign the vertex x to u and recompute
w as the middle between u and v in counterclockwise order.

The Linear Array and the Mesh 189

Fig. 4.19. Proof of Lemma 4.1

(c) If (a) above is not satisfied and ZTw is above CH(Ss), then assign ver-
tex y to v and recompute w as the middle between u and v in counter-
clockwise order.

Example 4.6 Consider Fig. 4.20 in which the steps of binary search are
shown. In Fig. 4.20(a), the two convex hulls are shown. w is set half the
way between v and u, in counterclockwise order. The extension of the line
Tw crosses CH (S2) at more than one point. Hence, the vertex x is assigned
to u. w is recomputed as half the way between v and v and x and y are
relocated as shown in Fig. 4.20(b). y is assigned to the vertex before w in
counterclockwise order, which happens to be u. Next, since the extensions
of both Tw and wy are above CH(Ss), v is set equal to y in Fig. 4.20(c).
Then, w,z and y are recomputed as shown in Fig. 4.20(c). In this part of
the figure, u = v = w, and the test in (a) above is satisfied, so the search is
halted, and w is declared as one end of the tangent line. O

If we perform binary search naturally, each iteration takes O(y/n) for a
total of O(y/nlogn). Hence, an approach is needed to reduce the running
time. We will succeed if we can reduce the running time of the ith iteration
of binary search to ©(y/n/2%). Luckily, this can be done by eliminating
half of the vertices in CH(S7) and CH(S3) from future consideration by
binary search. Thus, after the end of each iteration of the binary search, the
remaining vertices in CH(S7) and CH(S2) are compressed using parallel
prefix. Hence, in the ith iteration, the binary search is performed on ©(n/2¢)
vertices, which means that the ith iteration takes ©(1/n/2?%) time, including
the time required for broadcasting and data compression. This implies that

190 Parallel Algorithms

Fig. 4.20. Example of binary search.

the total running time for the binary search is Z?Z%Og ™) O(y/n/2%), which
is O(y/n).

Note that in each iteration, w,z and y are broadcast to the processors
holding hull vertices in C'H(S2) above the line w/v’. Then, the equations of
the two lines Tw and wy are computed. The results of the tests given in
(a)—(c) above are sent to the vertices of CH(S7) above the line va.

The Linear Array and the Mesh 191

Similar computations of all the above are performed to identify
w',w'z’ y'w’ for CH(Sy). Tt is important that identifying w and w’ be
done simultaneously, and so is data compression for the remaining data of
CH(S1) and CH(S3). This is to ensure that half the number of hull vertices
after compression in CH(S7) between v and u and in CH(S3) between v’
and v’ are eliminated from further inspection in subsequent iterations of
the two binary searches.

Let P = S;USy and Q = S3 U Sy. Now, we construct CH(P) =
CH(S1) UCH(S2) by connecting w and w’ and z and z’ by two edges,
where 2z’ is the lower tangent. Also, the vertices inside the quadrilateral
defined by w,w’,z and 2’ are removed. At the same time, we construct
CH(Q)=CH(S3) UCH(Sy4), and finally CH(S)= CH(P) U CH(Q). Note
that the computations of CH(P) and CH(Q) are done concurrently. The
above discussion implies that the overall running time of the algorithm
obeys the recurrence T'(n) = T'(n/4) + ©(y/n) = ©(y/n).

4.15 Labeling Connected Components

In this section, we consider the problem of labeling figures, i.e., connected
black components, of a digitized black picture on a white background. The
components are represented as n contiguous 0-1 pixel values stored on a
v/ X /n mesh, where n is a power of 4. Two black pixels are neighbors
if and only if they are adjacent horizontally, vertically or diagonally. Two
black pixels are connected if they are in the same connected component.
Every processor that contains a black pixel uses its snake-like index as
the initial label of its pixel. When a labeling algorithm terminates, every
processor that contain a black pixel will store the minimum label in the
component that it belongs to. Figure 4.21 depicts an example in which
part (a) is the initial input, and part (b) is the final assignment of labels
to connected components.

4.15.1 The propagation algorithm

The first algorithm is a simple propagation algorithm. In this algorithm,
every processor that contains a black pixel (black processor) defines its ini-
tial label as its snake-like index. During each subsequent iteration of the
algorithm, every black processor sends its current component label to its
(at most) eight black neighbors. Every black processors then compares its

192 Parallel Algorithms

1|{1flo]lof1r]o]1]1 1|1 1 1] 1
ofo|tr]1|tf1fo]1 1| 1]|1]1 1
ofojloJo]ofofo]o

1 1 0 1 110 0]0 28 | 28 28 | 28
tjfo|l1r]o|1rf1]o]1 28 28 28 | 28 40
ojlofol1|[1]lo]ofo 28| 28
of1]oJlo|lo[fo]o]oO 57

ofo |1 |11]1|1L]|1 57| 57| 57| 57| 57| 57

(a) (b)

Fig. 4.21. Labeling connected components.

label with the (at most) eight labels just received, and keeps the mini-
mum of these labels as its component label. This process is repeated for
each black processor until all neighboring black processors have the same
label.

Let d be the maximum internal distance between any processor P con-
taining a black pixel and the processor P’ containing the pixel of minimum
label in its component, where the distance is measured in terms of the
number of black pixels between P and P’. Then, the maximum number of
iterations of the algorithm is d. For instance, in Fig. 4.22, d = 4. It is easy
to see that d can be as large as O(n) as shown in the instance in Fig. 4.23.
Hence, the running time of the propagation algorithm is O(n).

Example 4.7 An example of the propagation algorithm is shown in
Fig. 4.22. The number of steps is 4. O

4.15.2 The recursive algorithm

The large cost of the propagation algorithm calls for another alternative
that labels the components in o(n) time. One possibility is an algorithm that
uses divide-and-conquer to label the figures in time O(y/n) regardless of the
number or shape of the figures. In this algorithm, the pixels are partitioned
into four equal quadrants, where the components in each quadrant are
labeled independently. After the recursive calls, the only components that
may have an incorrect label are those that have a pixel on the border

The Linear Array and the Mesh

193

11213 7|8 1 1 {2 717
9 8
17 21 22 24 17 211 21 9
32 17
34 36 | 3738 32 36| 36| 37
41 41
49| 50| 51 | 52 5455 56 49 | 49| 50 | 51 54| 54 | 41
() (b)
1 1 {1 707 1 1 {1 77
7 7
17 211 21 8 17 21| 21 7
17 17
17 36| 36| 36 17 36| 36| 36
41 41
49| 49| 49 [50 5414141 49 | 49| 49 | 49 41| 41| 41
(c) (d)
Fig. 4.22. Labeling connected components using the propagation method.

Fig. 4.23.

17

18

19

20

21

22

23

24

32

33

34

35

36

37

38

39

40

41

49

50

51

52

53

54

55

56

Worst case instance of the propagation method.

194 Parallel Algorithms
1{r{fojoj1]0]|1]1 1]1 5 S
ofof|1|1]|1]1f0]1 1(1}5]5
ololoflo|O]o]|o]oO
tl1{ol1]1]ofo]1 31(31] [29]28 25
tfoj1|lof1]1fo]1 331 [35] IB7 40
ofojof1]1|of1]o0 35137 |40
oft{olo|oloflo]o 50
ofoft|tf1]1fr]1 50[50f57(57[57] 57

(a) (b)
1|1 1 55 1[1 1 1|1
111115 5 1l1]1]1 1
31(31| [28]28 25| |31[31| |2828 25
331 [35] [28 40 (33| (35| |28 40
28 (28 40 28128 40
50 50
50]50]50] 57(57| 57, 50(50]50{50(50(50
(c) (d)
1|1 1 1|1 1|1 1 1|1
1111 1 1l11]1 1
28[28| [28]28 25 |28|28 |28(28 25
28| (28] [28 25| |28 28| |28 25
28128 40 28 (28 25
50 50
50(50]50(50{50] 50| 50]50]50(50{50] 50|

Fig. 4.24.

between the quadrants. An example is shown in Fig. 4.24. Part (b) of the
figure is the result of the recursive calls on the instance shown in part (a).

Next, we merge components that cross the quadrant boundaries. This
will be accomplished in two phases. In the first phase, we update the labels
of pixels in components that cross the vertical boundary. In the second
phase, we update the labels of pixels in components that cross the horizontal

boundary.

(e)

()

The recursive algorithm for labeling connected components.

The Linear Array and the Mesh 195

First, we describe how to merge components around the vertical bound-
ary. The first step is to apply the propagation algorithm on pixels inside the
vertical strip consisting of the two middle columns. This will take O(y/n)
time since the number of pixels is 2y/n.

For clarity, we will now use the two-dimensional numbering of proces-
sors. Assume that there are two registers associated with every processor in
the vertical strip: o; ; and §; ;, 1 < i < +/n, \/TE <j< \/Tﬁ—i—l. oy, ; will hold
the label of the pixel in processor F; ; just after the recursive calls, and 3; ;
will hold the label of the pixel in processor P; ; just after the propagation
process in the vertical boundary (for white pixels, a; ; = £;; = 0 shown
as blank in the figure). Figure 4.24(c) depicts the two columns associated
with Fig. 4.24(b) after applying the propagation algorithm on their pixels.
For instance, as shown in these two figures, a1 5 =5 and 815 = 1.

We copy the o and 3 values in column 4 to all columns all the way to

the left of the mesh, and the « and (3 values in column 4 +1 to all columns

all the way to the right. In other words, for each row i, we copy «; /5, and
Bi,my/2 all the way to the left, and copy a; /m/o41 and B; 5m/241 all the
way to the right. (See Exercise 4.39 for the o and f values corresponding to
Fig. 4.24(c)). Then, we pipeline all («; j, 8;,;) pairs vertically through every
pixel. Each time a new pair arrives, we test its a value with the label of the
current processor. If they are equal, we set the value of the pixel label equal
to the 8 value of the pair. Thus, every processor will inspect y/n pairs, and
will process them in O(y/n) time. Since this is done in parallel among all
columns, the total time for all columns is O(y/n). Figure 4.24(d) shows the
labels after the (vertical) updates.

The second phase is symmetrical to the first phase, in which we process
the horizontal strip consisting of the two middle horizontal rows. Assume
in this phase that there are two registers associated with every processor
in the horizontal strip: «; ; and £;;, 1 < j < /n, 4 <i< \/Tﬁ +1,
where the § values are as defined in phase 1, and the a values are the
pixel values after the vertical update discussed above. We copy the o and 3
values in row 4 + 1 to all rows all the way to the bottom. Note that we
do not need to copy row \/TE to the top half of the mesh, since all labels
in the upper half of the mesh are smaller than the labels in the lower half.
Figure 4.24(e) depicts the two horizontal rows associated with Fig. 4.24(b)
after applying the propagation algorithm on their pixels. Figure 4.24(f)
shows the final labels. As in the first phase, the second phase will take

196 Parallel Algorithms

O(y/n) time. Tt follows that the overall time taken by the algorithm is
given by the recurrence T'(n) = T'(n/4) + O(yv/n) = O(/n).

4.16 Columnsort

The r x s two-dimensional mesh is a generalization of the square mesh.
It has r rows and s columns. Columnsort is a sorting algorithm designed
especially for the r x s mesh in which r > 2(s—1)2. The algorithm is shown
as Algorithm COLUMNSORT. It is a generalization of Algorithm ODDEVEN-
MERGE for odd-even merging. Assume an r x s mesh, where r > 2(s — 1)
n =rs and s | r, where n is the number of elements to be sorted. The algo-
rithm sorts into column-major order, so after completion of the algorithm,
the (i,7)th entry, 0 < i <r —1,0 < j < s — 1, will contain the kth item,
where k = ¢ + jr.

There are eight steps in the algorithm. In Steps 1, 3, 5 and 7, the ele-
ments within each column are sorted. In Step 2, the elements are permuted
by performing a row-column transformation that corresponds to a trans-
pose of the matrix that defines the mesh, as shown in Fig. 4.25. Step 4 is
the reverse of Step 2, as shown in the same figure.

Step 6 of the algorithm consists of a shift of the elements by |r/2]
positions, as shown in Fig. 4.26, and Step 8 is the reverse of Step 6.

a gm transpose a bec
b h n > |d e f
c i o g hi
d jp untranspose ikl
e k q m n o
f 1 r p q r

Fig. 4.25. Transpose and untranspose operations.

a gm shift edjop
b h n -oe k q
c i o ~o f 1 1
djp unshift agm*®
e k q b hn o«
f 1 r ci o

Fig. 4.26. Shift and unshift operations.

The Linear Array and the Mesh 197

Algorithm 4.8 COLUMNSORT
Input: X = (zo,21,...,Tn-1), a sequences of n numbers, where n = rs.

Output: X sorted in ascending order.

Sort each column.

Perform a row-column transposition.

Sort each column.

Perform the inverse transformation of Step 2.
Sort each column.

Shift the entries by [r/2]| positions.

Sort each column.

Perform the inverse of Step 6.

PN O W=

As will be shown in Lemmas 4.2 and 4.3 below, after Step 4, every ele-
ment will be within (s — 1)? of its correct sorted position. In the special
case where r = n/2 and s = 2, the algorithm reduces to Algorithm ODDE-
VENMERGE. In Algorithm ODDEVENMERGE, the input sequence is divided
into two subsequences of n/2 elements each. These two subsequences are
sorted as done in Step 1 of the algorithm. Then, the odd-index numbers
in each subsequence are combined to form a new subsequence, as are the
even-index numbers. This corresponds to the transpose operation in Step 2
of Algorithm COLUMNSORT. Next, each subsequence is sorted, as is done in
Step 3 of Algorithm COLUMNSORT. In Algorithm ODDEVENMERGE, this is
done by calling the algorithm recursively. After sorting, the subsequences
are shuffled together, as is done in Step 4 of Algorithm COLUMNSORT. At
this point, every number is within (s — 1)? = 1 of its correct sorted posi-
tion, so each number is compared and possibly exchanged with its neighbor,
which completes the sorting. In Step 5 of Algorithm COLUMNSORT, all but
the top and bottom numbers in each column are compared to their neigh-
bors by sorting the columns. Steps 6-8 ensure that comparisons are made
between numbers at the bottom of one column and the top of the next
column.

Example 4.8 An illustration of the algorithm is shown in Fig. 4.27. The
input is shown in Fig. 4.27(a). Notice that, for simplicity, we have chosen
r =6 and s = 3 even though it does not satisfy the constraint r > 2(s—1)2.

The results of applying Steps 1-8 are shown in Figs. 4.27(b)—(i). O

An equivalent sorting method is given by Algorithm COLUMNSORT2.
Here, the shift operation has been replaced by sorting the columns in

198 Parallel Algorithms

@512 ®P3 1 01@E 5 6 @Do 2 6103 10
144 7 5 4 2 10 14 17 14 7 25 14
10113 6 8 7 1 4 8 305 8 68 16
316 9 1011 9 1isie6l |9 12 13 |1 9 11
178 2 1415 12 02 7 1014 16| |4 1215
511 0 17 16 13 9 1213 111517 [71317
Input Step 1 Step 2 Step 3 Step 4
O o310 ©®Feg915MWre3 915 D06 12

15 11 0 612 16 -0 410 16 17 13
28 14 0 713 17 o 51117 28 14
49 15 0310 0612 o 39 15
612 16 1511 o 1713 41016
71317 2 814 o 2 814 51117
Step 5 Step 6 Step 7 Step 8

Fig. 4.27. Illustration of Algorithm COLUMNSORT.

alternating order in Step 5, and applying two steps of Odd-Even trans-
position sort to each row in Step 6.

Algorithm 4.9 COLUMNSORT2
Input: X = (zo,21,...,Tn-1), a sequences of n numbers, where n = rs.

Output: X sorted in ascending order.

Sort each column.

Perform a row-column transposition.

Sort each column.

Perform the inverse transformation of Step 2.

Sort each column in alternating order.

Apply two steps of Odd-Even transposition sort to each row.
Sort each column.

OOt W

Example 4.9 An illustration of Algorithm COLUMNSORT2 is shown in
Fig. 4.28. The input is shown in Fig. 4.28(a). The results of applying Steps
1-7 are shown in Figs. 4.28(b)—(h). O

We now prove the correctness of Algorithm COLUMNSORT. Recall that
rank(z, S) is the number of elements less than z in S.

The Linear Array and the Mesh 199

@F o 3 1107 7 7|DT 7 7
4 16 1 4 5 6 10 15 18 2 5 8
18 514 7 9 8 359 3.6 9
2 17 8 1011 12 1116 17 10 13 14
15116 151613 1 6 8 111517
10 313 18 17 14 12 13 14 1216 18
Input Step 1 Step 2 Step 3

©Om 3 ®Omaai] @ ™ 713
4 615 2 1312 2 1213 2 8 14
7 917 4 1015 4 1015 3 915
2 1012 5 9 16 5 9 16 4 10 16
51316 7 6 17 6 7 17 5 1117
8 1418 8 3 18 3 8 18 6 1218
Step 4 Step 5 Step 6 Step 7

Fig. 4.28. Illustration of Algorithm COLUMNSORT2.

Lemma 4.2 Let S be a sequence of rs elements to be sorted by Algorithm
COLUMNSORT in an r x s mesh, and let x be any element in S that is in
position (i, j) of the mesh after Step 3 of the algorithm. Then, rank(zx, S)
is at least is + js — (s — 1)2.

Proof. From the position of x after Step 3, we know that x is greater
than or equal to at least 7 4+ 1 elements in the jth column of the mesh after
Step 2. Let ay, denote the number of these ¢ + 1 elements that originally
come from column £ of the mesh, i.e., before Step 2 transposed the elements.
By definition,

s—1
it1=ay (4.8)
k=0

Since only the jth and every sth element thereafter of the sorted kth column
after Step 1 appear in the jth column after Step 2, this means that x is
greater than or equal to at least (o —1)s+j+1 elements in the kth column
of the mesh after Step 1. Hence, the true rank of z is at least

s—1

D Nk —1)s+j+1] - 1. (4.9)

k=0

200 Parallel Algorithms

Substituting ¢ + 1 for Z;;é ay in (4.9) and simplifying, we find that the
true rank of z is at least

is+js— (s —1)%
g

Example 4.10 We illustrate the proof of Lemma 4.2. Let z = 12 in
Fig. 4.27. As is evident from Fig. 4.27(d), ¢ = 3 and j = 1 (Recall that
indices start from 0). After Step 3 (Fig. 4.27(d)), there are i + 1 = 4
elements on or above the (i,j)th entry. These elements are {2,4,5,12}.
Thus, ap = a3 = 1 and as = 2. The true rank of x is at least is+ js — (s —
1)2=3x3+1x3—-4=38. O

Lemma 4.3 Let S be a sequence of rs elements to be sorted by Algorithm
COLUMNSORT in an r X s mesh, and let be any element in S that is in
position (7,) of the mesh after Step 3 of the algorithm. Then, rank(z, S)
is at most is + Js.

Proof. We use an argument similar to that in Lemma 4.2. From the
position of z after Step 3, we know that x is less than or equal to at least
r — 1 elements in the jth column of the mesh after Step 2. Let) denote
the number of these r — i elements that originally come from column k of
the mesh, i.e., before Step 2 transposed the elements. By definition,

s—1
r—i=>Y_ P (4.10)
k=0

Since only the jth and every sth element thereafter of the sorted kth column
after Step 1 appear in the jth column after Step 2, this means that x is
less than or equal to at least (Sx — 1)s + s — j elements in the kth column
of the mesh after Step 1. Hence, the number of elements greater than or
equal to x is at least

s—1

> 1Bk —1)s + s — 3. (4.11)

k=0

The Linear Array and the Mesh 201

Substituting 7 — 4 for Z;;é B in (4.11) and simplifying, we find that the
number of elements greater than or equal to z is at least

(r—i)s—js=rs—is—js.
Hence, the true rank of x is at most
rs—(rs—is—js) =is+js.

d

Example 4.11 We illustrate the proof of Lemma 4.3. Let z = 5 in
Fig. 4.27. As is evident from Fig. 4.27(d), ¢ = 2 and j = 1 (Recall that
indices start from 0). After Step 3 (Fig. 4.27(d)), there are r—i =6—-2=4
elements on or below the (i, 7)th entry. These elements are {5,12,14,15}.
Thus, By = 2,81 = P2 = 1. The true rank of z is at most is + js =
2x3+1x3=09. g

Theorem 4.4 Let S be a sequence of rs elements to be sorted by Algo-
rithm COLUMNSORT in an r x s mesh, and let « be any element in S that
is in position (4,7) of the mesh after Step 3 of the algorithm. Then, the
position of z after Step 4 is within (s — 1) from its correct position.

Proof. Consider an element x that is in position (4, j) of the mesh after
Step 3. Clearly, x is sent to a position in Step 4 that corresponds to a
rank of

is+j (4.12)

in the sorted list. (Recall our convention that the smallest number has
rank zero). By Lemma 4.2, rank(x, S) is at least is + js — (s — 1)?. Hence,
subtracting this quantity from (4.12), the position of x after Step 4 is at
most

(is+j) = (is+js—(s—1)?) =(s = 1) —j(s = 1) < (s — 1)?

beyond its correct position. By Lemma 4.3, rank(z, S) is at most is + js.
Hence, subtracting (4.12) from this quantity, the position of = after Step 4

202 Parallel Algorithms

is at most
(is +js) = (is +5) = j(s = 1) < (s = 1)?

short of its correct sorted position. Thus, we have established that every
element is within (s—1)? of its correct position after Step 4 of the algorithm.
O

Theorem 4.5 Algorithm COLUMNSORT correctly sorts an arbitrary
sequence of 7s elements in an 7 x s mesh with r > 2(s — 1)2.

Proof. By Theorem 4.4, we only need to show that Steps 5-8 will be
sufficient to finish the sorting. For simplicity, we assume that every number
is within |r/2] of its correct sorted position. Since r > 2(s — 1)2, we are
always guaranteed that this condition is met after completion of Step 4.
After Step 5, every number that belongs in the top half of column j is
in the top half of column j or the bottom half of column j — 1, and every
number that belongs in the bottom half of column j is in the bottom half of
column j or the top half of column j+ 1. Otherwise, some number would be
more than |r/2] away from its correct position. Hence, Steps 6-8 complete
the sorting. 0

4.17 3-dimensional Mesh
1/3 can be viewed as a connection of
m successive levels of 2-D meshes of size m x m. It has n = m?3 processors
and 3m? — 3m? links. Two processors are connected by a two-way link if
and only if they differ in precisely one coordinate and if the absolute value
of the difference in that coordinate is 1 (see Fig. 4.29). In this figure, m = 4
and n = 64.

In 3-D mesh, the degree of each node is between 3 and 6, so meshes are
not regular. Of course, the degree of a corner vertex is less than the degree
of an internal vertex. The diameter is 3(m — 1) = O(n'/3).

A 3-dimensional mesh of sides m = n

4.17.1 Sorting on 3-dimensional meshes

3

Consider the problem of sorting n = m> numbers on a 3-dimensional mesh

with n processors in lexicographic zyx-order. In a zyz-ordering, elements

The Linear Array and the Mesh

) O
.(3;(7(3 (3,0,3)

0.3.0) (03.1) (032) (033)

Fig. 4.29. A 3-dimensional mesh.

of processors in the plane with coordinate z = 0 come first, followed by
those with z = 1, and so on. The xy-planes are sorted in yz-order, that is,
in columnwise order. The following algorithm needs just five steps, where
each step sorts numbers within 2-D meshes. These steps are outlined in

Algorithm THREEDMESHSORT.

Algorithm 4.10 THREEDMESHSORT
Input: n = m® elements stored in a 3-D mesh.

Output: The elements sorted in ascending zyz-order.

Sort all xz-planes in zz-order.
Sort all yz-planes in zy-order.

N

in parallel.
5. Sort all zy-planes in yx-order.

Sort all xy-planes in yx-order. Reverse the order on every other plane.
Perform one Odd-Even and one even-odd transposition within all columns

204 Parallel Algorithms

Recall that a dirty row is a row consisting of 0’s and 1’s. A dirty plane
is one containing at least one dirty row or column. A z-column is a column
of processors parallel to the z-axis. A O-row is a row of 0’s and no 1’s.

Theorem 4.6 Algorithm THREEDMESHSORT correctly sorts a given
sequence of numbers in zyz-order.

Proof. By the zero-one principle (Lemma 2.1 in Section 2.10), we may
consider any input sequence of 0’s and 1’s. After Step 1 is completed, in
every zz-plane, there is at most one dirty row and therefore the difference
in the number of zeroes between any two z-columns in the same zz-plane
is at most one. Hence, any two yz-planes can differ in at most m 0’s. It
follows that after Step 2 is completed, the difference in the number of
0-rows between any two yz-planes is at most one, which means that all
dirty rows can span at most two adjacent xy-planes. If there is only one
dirty xy-plane, we can go directly to Step 5 and we are done. If there are
two dirty xy-planes, Steps 3 and 4 eliminate at least one of them and Step 5
completes the sorting. O

Example 4.12 Figure 4.30 illustrates the algorithm on a sequence of 0’s
and 1’s shown in part (a). First, the zz-planes are sorted in Fig. 4.30 (b).
Next, the yz-planes are sorted in Fig. 4.30 (c). In this part of the figure,
both the middle and top zy-planes are dirty, and so Steps 3 and 4 are
needed, as shown in parts (d) and (e) of the figure. Finally, Fig. 4.30(f)
shows the result after Step 5 is executed, in which the input is sorted. Note
that there is only one dirty plane, the middle zy-plane. 0

Example 4.13 Figure 4.31 illustrates the algorithm on a sequence of
integers shown in part (a). First, the zz-planes are sorted in Fig. 4.31 (b).
Next, the yz-planes are sorted in Fig. 4.31 (c). The zy-planes are then

The Linear Array and the Mesh 205

Nr

=

&

@
))
4 1 a
CasIE; BORe0
\XJ/ 0 f(\(k
© 0
vl 0 o
© ©
D i
L
rD 1 1
1 i]
q\)\ D 0 ’ T
)) 0
rr/@g\ e ¢ 0 0
\/@ 1 0 et 0
© 0 @
© I(

Fig. 4.30. Sorting in the 3-D mesh of 0’s and 1’s

sorted in reverse order according to Step 3 of the algorithm as shown in
part (d) of the figure. Next, two iterations of odd—even sort are executed,
and the result is shown in Fig. 4.31(e). Finally, Fig. 4.31(f) shows the result
after Step 5 is executed, in which the input is sorted. O

206 Parallel Algorithms

Fig. 4.31. Sorting in the 3-D mesh of arbitrary numbers

4.18 Bibliographic Notes

There are a number of books that cover parallel algorithms on the mesh.
These include Akl [4], Akl [5], Akl [6], Cosnard and Trystram [29], Grama,
Gupta, Karypis and Kumar [39], Horowitz, Sahni and Rajasekaran [43],
Leighton [57], Miller and Boxer [66], and Miller and Stout [67]. A survey of
parallel sorting and selection algorithms can be found in Rajasekaran [75].
Parallel algorithms for many problems including problems in computa-
tional geometry on the mesh can be found in Miller and Stout [67], and
Leighton [57]. The randomized algorithm for packet routing is due to

The Linear Array and the Mesh 207

Valiant and Brebner[101]. For deterministic algorithms on routing, see

Leighton, Makedon and Tollis [58], and Nassimi [71]. Shearsort was pre-

sented independently by Sado and Igarashi[79] and Scherson, Sen and

Shamir [81]. The odd-even mergesort on the mesh can be found in
Thompson and Kung [92]. The algorithm for transitive closure is due
to Christopher [24]. The algorithm presented is a modified version of
the algorithm presented in Leighton [57]. Columnsort algorithm is from
Leighton [56]. For more references on parallel algorithms on the mesh inter-
connection network, see for instance Miller and Stout [67].

4.19

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

Exercises

What are the expansion and load of the embedding of the linear
array into the mesh shown in Fig. 4.4 (page 161)? How about the
embedding of the mesh into the linear array shown in Fig. 4.57

Explain how to broadcast an item z in an arbitrary processor to all
other processors in the ring with n processors.

Describe an algorithm to find the sum of all elements {x1, xa, ..., z,}
stored in a v/n x v/n mesh and store the sum in all processors. How
many steps are required by the algorithm?

One method to smooth a picture is as follows. Let p be the pixel in
the middle of a square of a 3 x 3 square of pixels. Replace the value
of p by the average of all the 3 x 3 pixels. Suggest a computation
model to solve this problem, and show how to solve it.

What is the bisection width of the \/n x y/n mesh? Assume /n is

even.

Give a lower bound on the problems of sorting and routing on the
mesh.

What is the bisection width of the /n x y/n torus? Assume /n is
even (see Fig. 4.2).

Give a recursive algorithm to find the maximum of n numbers stored
in a y/n X y/n mesh. Analyze its running time.

208

4.9.

4.10.

4.11.

4.12.

4.13.

Parallel Algorithms

Give a recursive algorithm to find the prefix sums of n numbers
x1,%2,..., %, stored in a /n X \/n mesh. Analyze its running time.

Mlustrate your solution to Exercise 4.9 on the input (1,2,3,...,16).

The transpose of a matrix A, denoted by AT, is the matrix whose
columns are the rows of A. That is, if

ai,i 1,2 .. Q1n

az 1 2.2 c.. Q2n
A =

ap1 Ap2 ... dnn

then

ai,1 a2 1 <o Qp

CL1)2 a2,2 e an,Q
AT =

A1n QA2n .. Qpn

Given the matrix A stored one element per processor in an n X n
mesh, show how to compute A”7. What is the number of steps in
your algorithm?

Apply the algorithm for odd—even transposition sort on the input
(3,7,5,2). Assume a linear array with four processors.

Consider Algorithm MERGE-SPLIT, which is a generalization of odd—
even transposition sort for the case p < n. Let S be a sequence
of numbers to be sorted, and assume that each of the p proces-
sors in the linear array holds a subsequence of S of length n/p.
In Algorithm MERGE-SPLIT, the comparison-exchange operations of
odd-even transposition sort are replaced with merge-split operations
on subsequences. Let S; denote the subsequence held by processor P;.
In Step 1, each P; sorts S; using a sequential algorithm. In Step 2
each odd-numbered processor P; merges the two subsequences .S;
and S;41, into a sorted sequence S. It retains the first half of S]

4.14.

4.15.

4.16.

4.17.

4.18.

4.19.

4.20.

The Linear Array and the Mesh 209

and assigns to its neighbor P;;1 the second half. Step 3 is identical
to 2 except that it is performed by all even-numbered processors.
Steps 2 and 3 are repeated alternately. After [p/2] iterations, no
further exchange of elements can take place between two processors,
where an iteration consists of Steps 2 and 3. Analyze the running
time of this algorithm.

Do Exercise 4.13 for the case p = logn. Is the algorithm optimal?

Consider the problem of permutation routing on the mesh with n
processors, in which every processor tries to send to a different des-
tination. Outline a sorting-based algorithm to route every packet to
its destination. Compare your algorithm with the greedy algorithm.

Modify your algorithm in Exercise 4.15 so that it works for the more
general one-to-one routing problem, in which not every processor is
the source of a packet. Note here that no processors P; and P; send
to the same destination.

Illustrate the operation of the odd-even merging algorithm on the
input:

A=(1,9,8,17,3,11,14,12) and B = (2,5,15,7,13,9,16,10).
Assume a mesh of 16 processors.

Show how to compute the prefix sums on the mesh for the snakelike
indexing scheme.

In a window broadcast, we start with data in the top left w x w
submesh of a \/n x v/n mesh, where w | \/n, that is, w divides /n.
Following the window broadcast operation, the initial w X w win-
dow tiles the entire mesh. Outline an algorithm to implement this
operation. What is the running time of your algorithm?

Give an algorithm to evaluate the polynomial a,,_ 12" ' +a, 22" 24
<+ + a1 + ap at the point xo on the \/n x \/n mesh. Assume that
each a; is stored in processor P;, 0 < i < n — 1 (the processors
are indexed as Py, Py, ..., P,—1). What is the running time of your
algorithm?

210

4.21.

4.22.

4.23.

4.24.

4.25.

4.26.

4.27.

4.28.

4.29.

Parallel Algorithms

Consider the following method for sorting on the mesh. The method
alternately sorts all rows from left to right and all columns from
top to bottom. Will this method always work in sorting any input?
Assume an unlimited amount of time.

Consider sorting the rows and then the columns of a 2 x n mesh M.
Does this leave the rows in sorted order?

This is a generalization of Exercise 4.22. Consider sorting the rows
and then the columns of a general n x n mesh. Does this leave the
rows in sorted order?

Let A = (a1,as,...,a,) be a sequence of elements stored in the
processors of a \/n x y/n mesh, one element per processor, and let
be a given element. Design an algorithm for the search problem in
the mesh: If a; = z for some i, 1 < ¢ < n, then return ¢, else return 0.
Analyze its running time.

How many steps are required by the matrix multiplication algorithm
on the mesh of Section 4.10.17

Show the results of the computations of ¢; 3 and ¢;,4 in the matrix
multiplication algorithm on the mesh of Section 4.10.1.

Give an algorithm for the y/n X y/n mesh to determine whether a
given graph G is cyclic or acyclic. What is the running time of your
algorithm?

Let GG be a connected undirected and unweighted graph on n vertices.
A breadth-first spanning tree for GG is a spanning tree that can be
obtained by performing breadth-first traversal on G starting at some
vertex, say r. Equivalently, a breadth-first spanning tree of G is a
tree in which every path from the root to any vertex is of shortest
length, where the distance is measured in terms of number of edges.
Present an efficient algorithm to find such a tree for the /n x \/n
mesh. What is the running time of your algorithm?

Suggest another algorithm for computing the transitive closure of a
matrix A different from the one given in Section 4.11. What is the
running time of the algorithm?

4.30.

4.31.

4.32.

4.33.

4.34.

4.35.

4.36.

The Linear Array and the Mesh 211

Suggest another algorithm for computing the shortest paths in a
directed graph G different from the one given in Section 4.13. What
is the running time of the algorithm?

[lustrate the operation of Algorithm COLUMNSORT discussed in
Section 4.16 on the input

17,1,18,12,8,10,11,2,4,14,5,6,9,13,15,16, 7, 3,
where n = 18. Assume an r x s mesh, where r = 6 and s = 3.

Illustrate the operation of Algorithm COLUMNSORT2 discussed in Sec-
tion 4.16 on the input

8,10,11,2,4,14,5,6,17,1,18,12,9,13,15,16,7, 3,
where n = 18. Assume an r x s mesh, where r = 6 and s = 3.

Explain why Algorithm COLUMNSORT does not work on square
meshes.

This exercise is similar to Exercise 2.12. Consider Algorithm
COLUMNSORT discussed in Section 4.16. If we let s = 2, then the
algorithm reduces to Algorithm ODDEVENMERGE in Section 2.11 for
odd-even merging with the even part of A merged with the even
part of B and the odd part A merged with the odd part of B. Let A
and B be the first and second columns after Step 1, respectively.
Let C' and D be the first and second columns after Step 3, respec-
tively. Let E be the whole list after Step 5. Assume the elements
in AU B are distinct. Given a sequence X and an element z, recall
that rank(x, X) is the number of elements in X less than x. Express
rank(z, C') and rank(z, D) in terms of rank(z, A) and rank(z, B).

This exercise is similar to Exercise 2.13. Use the result of Exercise
4.34 to show that for ¢ € C, either c is in its correct position in E or
to the right of it.

This exercise is similar to Exercise 2.14. Use the result of Exercise
4.34 to show that for d € D, either d is in its correct position in F
or to the left of it.

212

4.37.

4.38.

4.39.

4.20

4.1.

4.2.

Parallel Algorithms

)\/_.
W/
)

oL

4 hN
(

o da

Fig. 4.32. Exercise 4.37.

Fig. 4.33. Exercise 4.38.

Illustrate the operation of the algorithm for sorting on a
3-dimensional mesh/sorting on 3-dimensional meshes on the input
shown in Fig. 4.32.

Illustrate the operation of the algorithm for sorting on a
3-dimensional mesh/sorting on 3-dimensional meshes on the input
shown in Fig. 4.33.

Compute the values of o and g corresponding to Fig. 4.24(c).

Solutions

What are the expansion and load of the embedding of the linear array
into the mesh shown in Fig. 4.47 How about the embedding of the
mesh into the linear array shown in Fig. 4.57

In both embeddings, the expansion is 1. The load is also 1 in both
embeddings, as precisely one node is mapped to each image node.

Explain how to broadcast an item x in an arbitrary processor to all
other processors in the ring with n processors.

4.3.

4.4.

4.5.

4.6.

4.7.

The Linear Array and the Mesh 213

One copy of & moves n/2 steps to the left, and another copy moves
n/2 steps to the right.

Describe an algorithm to find the sum of all elements {x1, xo, ..., z,}
stored in a \/n x y/n mesh and store the sum in all processors. How
many steps are required by the algorithm?

Find the sum of all numbers and store it in processor P;. Next,
broadcast the sum to all other processors. The number of steps is
(2y/n — 2) + (2¢/n — 2) = 4y/n — 4. See Exercise 8.5 for a more
efficient implementation.

One method to smooth a picture is as follows. Let p be the pixel in
the middle of a square of a 3 x 3 square of pixels. Replace the value
of p by the average of all the 3 x 3 pixels. Suggest a computation
model to solve this problem, and show how to solve it.

The mesh is the natural model to solve this problem. Do smoothing
for all squares in parallel.

What is the bisection width of the /n x y/n mesh? Assume /n is

even.

If we consider a mesh of size n, and cut it by a line through the
center, the line will cut v/n links. Hence, the bisection width of the
mesh is /n.

Give a lower bound on the problems of sorting and routing on the
mesh.

Since all n data items may have to cross from one side of the mesh
to the other, at least [n/y/n] = Q(y/n) time is required just to get
data across the middle of the mesh (see Exercise 4.5). That is, the
lower bound is ©(y/n)

What is the bisection width of the \/n x y/n torus? Assume /n is
even (see Fig. 4.2).

If we consider a torus of size n, and cut it by a line through the
center, the line will cut 2/n links. Hence, the bisection width of the
torus is 24/n.

214

4.8.

4.9.

4.10.

Parallel Algorithms

Give a recursive algorithm to find the maximum of n numbers stored
in a y/n X y/n mesh. Analyze its running time.

Assume the processors are numbered as Pi, P, ..., P,, and that n
is a power of 4. Partition the mesh into four submeshes of the same
size, that is, of size 4 X 4 each. Recursively find the maximum in
each quadrant, and store the result in the processor near the center of
the mesh. Finally, find the maximum of the four computed maxima,
and route it to processor P;. The running time is governed by the
recurrence T'(n) = T'(n/4)+0©(y/n), whose solution is T'(n) = ©(y/n).

Give a recursive algorithm to find the prefix sums of n numbers
x1,T2,. .., %, stored in a \/n X \/n mesh. Analyze its running time.

Assume that n is a power of 4. For convenience, assume also the
proximity indexing scheme shown in Fig. 6.7. First, partition the
mesh into four submeshes of the same size, that is, of size 4 X 4
each. Recursively find the prefix sum in each quadrant, and store the
final prefix sum y; in the processor closest to the center of the mesh.
This takes ©(y/n) time since it requires sending the final sums to the
appropriate processors near the center. At this point, y; = x1 + x2 +
C Tt Tpgas Y2 = Xpjagr T Tpjaqo T T Tnyo, Y3 = Tnjopr T Tnjopo
©F X3p/4, and Y4 = T3,/441 + T3pjaq2 + 00 + Tn. Next, find the
prefix sums of y1,y2,ys3,ys and store them in registers z1, 29, 23, 24.
Now, rotate the values stored in registers z;; that is, for j = 1,2, 3,
set zj414 z;, and set z; < 0. Note that finding the prefix sums of
Y1, Y2, Y3, ya and rotating the z;’s take constant time. Finally, for j =
1,2,3,4, broadcast z; to all processors in quadrant j, and add z; to all
prefix sums computed earlier in quadrant j. This broadcasting step
takes ©(y/n) time. It follows that the running time of the algorithm is
governed by the recurrence T'(n) = T'(n/4) + ©(y/n), whose solution
is T'(n) = ©(y/n). A summary of the algorithm is shown as Algorithm
MESHPREFIXSUMREC.

Mlustrate your solution to Exercise 4.9 on the input (1,2,3,...,16).

The algorithm in the solution of Exercise 4.9 is illustrated in
Figs. 4.34 and 4.35. The input is shown in Fig. 4.34(a). The pre-
fix sums of the four partitions are shown in Fig. 4.34(b). Part (¢) of
the figure shows the four final prefix sums — that is, the totals of

The Linear Array and the Mesh 215

Algorithm 4.11 MESHPREFIXSUMREC

Input: n numbers x1,x2,..., 2, stored in a mesh of size n, one element per
processor.
Output: The prefix sums s1, S2,..., Sn.
1. if n =1 then set s1 + z; and exit
2. Partition the mesh into four submeshes of size 4 X 4 each. Recursively

find the prefix sum in each quadrant, and store the final prefix sum in the
processor closest to the center of the mesh in register y;, 7 = 1,2, 3,4.
Find the prefix sums of y1,y2, y3,y4 and store them in z1, 22, 23, 24.
Rotate the values stored in z;: for j = 1,2, 3: set zj41 4 25, and set 21 < 0.
For j = 1,2, 3,4, broadcast z; to all processors in quadrant j.

Every processor P; in the mesh sets s; < s; + 2;.

AN

all elements in each quadrant. These are the contents of registers y;,
j = 1,2,3,4. The prefix sums of these four values is computed in
part (d). Next, these prefix sums are rotated in part (e), and y; is
set to 0. Now, these entries are broadcast in all four quadrants as
shown in part (f). Finally, Fig. 4.35 shows the final prefixes after
summing the entries in part (f) with those in part (b) of Fig. 4.34.

4.11. The transpose of a matrix A, denoted by A”. is the matrix whose
columns are the rows of A. That is, if

al,l CLLQ e al,n
ag)l a2,2 e ag’n
A =
an,l an,g e an,n
then
ar,i @21 c.. Qp1
a2 @22 <. Qp2
AT =

A1n QA2n .. Qpn

216 Parallel Algorithms

(a) quadrant 1 quadrant 2 (b)
1 4 5 6 1 10| s 11
2 3 8 7 3 6 26 | 18
15 14 9 10 42 27 9 19
16 13 12 11 58 13 | 42 30

quadrant4 quadrant 3

(c) (d)

58 42 136 | 78

78 36 78 78 36 36

78 78 36 36

Fig. 4.34. Example of Algorithm MESHPREFIXSUMREC for finding the prefix sums
on the mesh recursively (Exercise 4.10).

1 10 15 21

3 6 36 28

120 | 105] 45 55

136 | 91 78 66

Fig. 4.35. Solution to Exercise 4.10 continued.

4.12.

4.13.

The Linear Array and the Mesh 217

Given the matrix A stored one element per processor in an n X n
mesh, show how to compute A”7. What is the number of steps in
your algorithm?

This is a special case of the routing problem. Assume the processors
are numbered as Py 1, Pi2,..., P, . The elements in the diagonal
will not change; only elements below the diagonal and elements above
the diagonal will change. The elements of A will move in parallel. An
element below the diagonal stored in processor F; ; moves rightward
until it reaches the diagonal where it switches direction and moves
upward until it reaches processor P; ;. An element above the diagonal
stored in processor Pj; moves downward until it reaches the diag-
onal where it switches direction and moves leftward until it reaches
processor P ;. The number of steps is 2n — 2 since element a; ,, in
processor P ,, requires this number of moves.

Apply the algorithm for odd—even transposition sort on the input
(3,7,5,2). Assume a linear array with four processors.

Similar to Example 4.1.

Consider Algorithm MERGE-SPLIT, which is a generalization of odd—
even transposition sort for the case p < n. Let S be a sequence
of numbers to be sorted, and assume that each of the p proces-
sors in the linear array holds a subsequence of S of length n/p.
In Algorithm MERGE-SPLIT, the comparison-exchange operations of
odd-even transposition sort are replaced with merge-split operations
on subsequences. Let S; denote the subsequence held by processor P;.
In Step 1, each P; sorts S; using a sequential algorithm. In Step 2
each odd-numbered processor P; merges the two subsequences .S;
and S;41, into a sorted sequence Sj. It retains the first half of S]
and assigns to its neighbor P;;1 the second half. Step 3 is identical
to 2 except that it is performed by all even-numbered processors.
Steps 2 and 3 are repeated alternately. After [p/2] iterations, no
further exchange of elements can take place between two processors,
where an iteration consists of Steps 2 and 3. Analyze the running
time of this algorithm.

There are p phases, where an iteration consists of two phases. The
first phase, the sorting step, takes O(% log %) time. The merge-split

218

4.14.

4.15.

4.16.

4.17.

Parallel Algorithms

phases after that take O(%) time each for a total of O(n) time. Hence,
the running time is O(max{%log 2:,n}).

Do Exercise 4.13 for the case p = logn. Is the algorithm optimal?
If p = logn, then the running time is ©(n), which is optimal.

Consider the problem of permutation routing on the mesh with n
processors, in which every processor tries to send to a different des-
tination. Outline a sorting-based algorithm to route every packet to
its destination. Compare your algorithm with the greedy algorithm.

Sort the packets into column-major order according to the column
destination of each packet. It can be shown that this algorithm uses
queues of size 1, since there is never any contention for edges. If we
use a ©(y/n) sorting algorithm, the running time will be ©(y/n).
However, the running time is more than the greedy algorithm by a
constant factor.

Modify your algorithm in Exercise 4.15 so that it works for the more
general one-to-one routing problem, in which not every processor is
the source of a packet. Note here that no processors P; and P; send
to the same destination.

First, sort the packets into column-major order according to the col-
umn destination of each packet. Then, route each packet to its correct
column, and then on to its correct destination. It can be shown that
this algorithm uses queues of size 1, since there is never any con-
tention for edges. If we use a ©(y/n) sorting algorithm, the running
time will be ©(y/n). However, the running time is more than the
greedy algorithm by a constant factor.

Illustrate the operation of the odd-even merging algorithm on the
input:

A=1(1,9,8,17,3,11,14,12) and B = (2,5,15,7,13,9,16,10).

Assume a mesh of 16 processors.

Similar to Example 4.4.

4.18.

4.19.

4.20.

4.21.

The Linear Array and the Mesh 219

Show how to compute the prefix sums on the mesh for the snakelike
indexing scheme.

Similar to that for the row-major indexing scheme discussed in Sec-
tion 4.4.

In a window broadcast, we start with data in the top left w x w
submesh of a v/n X /n mesh, where w | \/n, that is w divides /n.
Following the window broadcast operation, the initial w X w win-
dow tiles the entire mesh. Outline an algorithm to implement this
operation. What is the running time of your algorithm?

The data in the initial window simply moves to the bottom and to
the right. The algorithm takes 2(y/n — w) steps.

Give an algorithm to evaluate the polynomial a,_12" ' +a,_s2" 2+
<-4+ a1x + ap at the point xo on the v/n X \/n mesh. Assume that
each a; is stored in processor P;, 0 < i < n — 1 (the processors

are indexed as Py, Py, ..., P,—1). What is the running time of your
algorithm?
Compute the sequence 1,z 22, ..., xg_l using parallel prefix. Each

z} is stored in P;, 0 < j < n—1. Next, compute the products a; x z}),
0 < j < n — 1. Finally, compute the sum ag + a;xo + azx3 + - +
an—175". The total running time is ©(y/n).

Consider the following method for sorting on the mesh. The method
alternately sorts all rows from left to right and all columns from
top to bottom. Will this method always work in sorting any input?
Assume an unlimited amount of time.

The method will not work in sorting any input. We will succeed in
showing this, if we can exhibit an example in which the method does

not terminate, or terminates before sorting the input. We will choose
T1,1 T1,2

)

the latter. Let pg —

2,1 T22
where 11 = 3,212 = 2,221 = 1 and 22 = 4. After sorting by rows
and then by columns, M becomes:

Mh’2 3‘

1 3
M, = .
1 4 ‘ ‘

2 4

220

4.22.

4.23.

Parallel Algorithms

Clearly, M, is sorted by rows and by columns, but the input is not
sorted. So, the method terminated without sorting the input.

Consider sorting the rows and then the columns of a 2 x n mesh M.
Does this leave the rows in sorted order?

Call a column Cj of the mesh “good” if sorting that column leaves the
rows sorted. We prove by induction on the number of columns that
all columns are good, and hence sorting the mesh by columns leaves
the rows sorted. If all columns are unsorted, then there is nothing
to prove, as exchanging the two rows leaves them sorted. So, assume
without loss of generality that column C7 = (1,1, %2,1) is sorted, that
is, £1,1 < x2,1. Hence, column (' is good by assumption. Assume for
the induction hypothesis that column Cy_; is good, 1 < k < n. We
show that column CY is also good. We have the following situation:

M =

11 e Tlk—-1 L1k o---
r21 oo T2Ek—1 T2k

By induction, 1 -1 < 22, 5-1 < 2. If 215 > 224, then we have
the following situation after sorting column Cj:

M =

11 e Tlk—1 X2k .-
r21 .. T2k—1 L1k

In this case, we have x1 j—1 < @2,k-1 < T2,k < 21k, Whence zq 1 <
Zo, and 29 1 < x1,%. Thus, column C}, is good, and, by induction,
all columns are good. It follows that if all columns are sorted, then
the rows will remain sorted.

This is a generalization of Exercise 4.22. Consider sorting the rows
and then the columns of a general n x n mesh. Does this leave the
rows in sorted order?

Call a column Cj of the mesh “good” if sorting that column leaves the
rows sorted. We prove by induction on the number of columns that
all columns are good, and hence sorting the mesh by columns leaves
the rows sorted. Let the first column be C; = (x11,221,...,%n,1)
and let Oy after sorting be O} = (7 1,251, ...,2;,1). Thus, we have
:17;-,1 < z;; for 1 < j < n. Since row ¢ is sorted, and since x’i)l <
231, we have :zzg,l < ;2. Therefore, we may assume without loss of

4.24.

The Linear Array and the Mesh 221

generality that column Cj is sorted. Hence, column Cj is good by
assumption. Assume for the induction hypothesis that column Cj_4
is good, 1 < k < n. We show that column C} is also good. We have
the following situation:

Tik—1 Tik

We show that sorting column £ leaves the rows sorted. We will use
selection sort algorithm to sort column k. Recall that this algorithm
sorts by interchanging the elements to be sorted if they are out of
order. Let x;3 and x;, where ¢ < j, be the next two numbers
in column % to be interchanged because x;; > x;,. We have the
following situation for columns k£ — 1 and k after the interchange of
25 and T i

Tik—1 Tk

LTjk—1 Tik

where z; 1 < x5 and x; -1 < 2. By Exercise 4.22, exchanging
z; 1 and x5 will leave the two rows i and j sorted. Now, the pro-
cedure is repeated for each pair x j and x; ; that are out of order
until column k is sorted. Thus, column CY is good, and, by induction,
all columns are good. It follows that if all columns are sorted, then
the rows will remain sorted.

Let A = (a1,as,...,a,) be a sequence of elements stored in the
processors of a y/n x y/n mesh, one element per processor, and let x
be a given element. Design an algorithm for the search problem in
the mesh: If a; = z for some i, 1 < ¢ < n, then return i, else return 0.
Analyze its running time.

222

4.25.

4.26.

4.27.

4.28.

Parallel Algorithms

Assume the processors are numbered Py, Ps, ..., P,. First, initialize
the search index k< 0, which is stored in P;. Next broadcast x to
all processors in O(y/n) time. Each processor P; now compares a,
with z. If a; = z, then processor P; sends j to Py in ©(y/n) time,
which sets k< j. Note that we have assumed here that the a;’s are
distinct. The total running time is O(y/n).

How many steps are required by the matrix multiplication algorithm
on the mesh of Section 4.10.17

The /nth row (and column) will start moving in the y/nth step,
and it needs \/n — 1 steps to arrive at the processor holding ¢ NooE
Hence, the total number of steps is 24/n — 1.

Show the results of the computations of ¢; 3 and ¢;,4 in the matrix
multiplication algorithm on the mesh of Section 4.10.1.

Similar to Table 4.1 in Example 4.5.

Give an algorithm for the y/n X y/n mesh to determine whether a
given graph G is cyclic or acyclic. What is the running time of your
algorithm?

Let A be the adjacency matrix of G. Find A*, the transitive closure
of A. G is cyclic if and only if there is a 1 in the diagonal of A*. The
running time is ©(y/n).

Let GG be a connected undirected and unweighted graph on n vertices.
A breadth-first spanning tree for GG is a spanning tree that can be
obtained by performing breadth-first traversal on G starting at some
vertex, say r. Equivalently, a breadth-first spanning tree of G is a
tree in which every path from the root to any vertex is of shortest
length, where the distance is measured in terms of number of edges.
Present an efficient algorithm to find such a tree for the /n x \/n
mesh. What is the running time of your algorithm?

Define the weight matrix w by: wli, j] = 1 if there is an edge between 4
and 7, and wli, j] = oo if there is no such edge. Use the shortest paths
algorithm to find the distance d[r, j] from r to every other vertex j.
Then, d[r, j] is the level of vertex j. For all vertices in V(G) — {r},
select an edge that connects a vertex at level [to a vertex at level

4.29.

4.30.

4.31.

4.32.

4.33.

The Linear Array and the Mesh 223

[— 1. The resulting tree is a breadth-first spanning tree for G. The
running time is O(y/n).

Suggest another algorithm for computing the transitive closure of a
matrix A different from the one given in Section 4.11. What is the
running time of the algorithm?

Use an algorithm analogous to the one for the PRAM presented
in Section 2.17. Recall that this algorithm computes the transitive
closure by squaring the adjacency matrix [logn| times. Thus, the
running time is O(y/nlogn).

Suggest another algorithm for computing the shortest paths in a
directed graph G different from the one given in Section 4.13. What
is the running time of the algorithm?

Use an algorithm analogous to the one for the PRAM presented in
Section 2.18. The running time is ©(y/nlogn).

[lustrate the operation of Algorithm COLUMNSORT discussed in Sec-
tion 4.16 on the input

17,1,18,12,8,10,11,2,4,14,5,6,9,13,15,16,7, 3,
where n = 18. Assume an r X s mesh, where r = 6 and s = 3.

Similar to Example 4.8.

Ilustrate the operation of Algorithm COLUMNSORT2 discussed in Sec-
tion 4.16 on the input

8,10,11,2,4,14,5,6,17,1,18,12,9,13,15,16,7, 3,
where n = 18. Assume an r X s mesh, where r = 6 and s = 3.

Similar to Example 4.9.

Explain why Algorithm COLUMNSORT does not work on square
meshes.

Note that after Step 4, every number will be within (s — 1)? of its
correct sorted position. Thus, if we let 7 = s = \/n, every number
will be within (y/n —1)? = ©(n) of its correct sorted position, which

224

4.34.

4.35.

Parallel Algorithms

means that nothing is gained by applying the algorithm on a square
mesh.

This exercise is similar to Exercise 2.12. Consider Algorithm
COLUMNSORT discussed in Section 4.16. If we let s = 2, then the
algorithm reduces to Algorithm ODDEVENMERGE in Section 2.11 for
odd-even merging with the even part of A merged with the even
part of B and the odd part A merged with the odd part of B. Let A
and B be the first and second columns after Step 1, respectively.
Let C' and D be the first and second columns after Step 3, respec-
tively. Let E be the whole list after Step 5. Assume the elements
in AU B are distinct. Given a sequence X and an element z, recall
that rank(x, X) is the number of elements in X less than x. Express
rank(z, C') and rank(z, D) in terms of rank(z, A) and rank(z, B).

Let x € AU B. Then,

rank(z, C) = [rank(x,A)—‘ . [rank(x,B)—‘v

2 2

and

rank(z, D) = rank(%“‘)J N {mk(%B)J

This exercise is similar to Exercise 2.13. Use the result of Exer-
cise 4.34 to show that for ¢ € C, either c is in its correct position in
FE or to the right of it.

For x € X, let pos(z, X) be the position of z in the sequence X, where
pos(xz, X) > 0. Thus, if X is sorted, then pos(xz, X) = rank(z, X).
For ¢ € C, let r1 = rank(c, A) and ry = rank(c, B), and r. = rq + ro.
Either ¢ € A or ¢ € B. If ¢ € A, then r;y is even since pos(c, A) is
even, and it follows that the position of ¢ in E is

pos(c, E) = 2 rank(c, C')
23] +23
<ri+(re+1), since r; is even
=r.+ 1.
Since r. =11 + 19 < 2{%1 + 2[%} = pos(c, E), we have

re <pos(c, E) <r.+ 1. (4.13)

4.36.

4.37.

The Linear Array and the Mesh 225

Thus, either pos(c, E) = r. or pos(c, E) = r. + 1. That is, either ¢ is
in its correct position in E or to the right of it.

On the other hand, if ¢ € B, then 72 is even since pos(c, B) is even,
and we get the same inequalities.

This exercise is similar to Exercise 2.14. Use the result of Exer-
cise 4.34 to show that for d € D, either d is in its correct position in
FE or to the left of it.

For z € X, let pos(z, X) be the position of z in the sequence X, where
pos(z, X) > 0. Thus, if X is sorted, then pos(z, X) = rank(z, X).
For d € D, let r5 = rank(d, A),r4 = rank(d, B) and rq = r3 + rq. If
d € A then rj is odd since pos(d, A) is odd. It follows that if d € A,
then the position of d in F is

pos(d, E) = 2 rank(d, D

23] + 2[%‘J
(rg — 1)+ (rq) + 1, since 73 is odd
rd.

A ||

Since rq — 1 = (rg — 1) + (ra) < 2| 2| + 2| %] +1 = pos(d, E), we
have

rqa — 1 <pos(d, E) < rqy. (4.14)

Thus, either pos(d, E) = ry4 or pos(d, E) = rq — 1. That is, either d
is in its correct position in E or to the left of it.
If d € B, then 74 is odd, and we get the same inequalities.

Illustrate the operation of the algorithm for sorting on a
3-dimensional mesh/sorting on 3-dimensional meshes on the input
shown in Fig. 4.36.

1
i

~

1 1
0

(

5 1
1

a

Fig. 4.36. Exercise 4.37.

226 Parallel Algorithms

Fig. 4.37. Exercise 4.38.

Sty |95
? 141 |11
1|11 {rpr|sptsi|s|>s
% ? 111 prjrgrfi |1
291291292928 |28 (28 |28
%g %g 28 | 28] 28 23 28 § 28 |28 |28
3737137 |37
% 28 | 28 | 28 |28
35 |37 35(35]135|35 |37 |37 |37 | 37
28 |28 28128128128 [28 § 28 |28 | 28
50| 50 50 |57
28 % 50 | 50 28 50 |50

() (b)
Fig. 4.38. The values of o and 3 corresponding to Fig. 4.24(c)(Exercise 4.39).

Similar to Example 4.12.

4.38. Illustrate the operation of the algorithm for sorting on 3-dimensional
mesh on the input shown in Fig. 4.37.

Similar to Example 4.13.

4.39. Compute the values of o and 8 corresponding to Fig. 4.24(c).

The values of o and 3 corresponding to Fig. 4.24(c) are shown in
Fig. 4.38. Part (a) of the figure shows the values of o and computed
in the middle two columns, and part (b) shows the a and f values
after copying them to their corresponding rows. In this figure, « is
shown on the top and 8 on the bottom. The values with « = =10
are not shown.

Chapter 5

Fast Fourier Transform

5.1 Introduction

The Fourier transform has a wide range of applications in science and engi-
neering. We will describe a version of Fourier transform called discrete
Fourier transform(DFT), and present a fast method for computing the
DFT, called the fast Fourier transform(FFT).

Let r and 6 be the polar coordinates of the point (z,y) corresponding
to the complex number z = x + iy, where i = \/—1. Since x = r cosf and
y = rsinf, z can be written in polar form as z = r(cosd + isinf). Using
i 0

Euler’s formula e = cos@ + isin 6, z can also be written as z = re®.

For n > 2, the n distinct roots of the equation 2™ — 1 = 0 are called the
n roots of unity. Define the complex number
w=e?2m/" = cos%7T + ¢sin 27”
w is called a primitive nth root of unity, which means w™ = 1 and w? # 1
for 0 < j < n. If w™ = 1, then (w/)" = (w")’ = 1. Hence, the remaining
complex roots of unity are the powers of w. That is, 1 = w°,w,w?, ... w1
constitute the n distinct roots of unity, where

ZCOS# + 4 sin 27k,

k _ ei27rk/n Zrl

w

Pictorially, these roots are distributed in the complex plane evenly
around the circumference of the unit circle. Figure 5.1 illustrates the n
roots of unity for n = 2,4, 8, which are powers of 2. As shown in the figure,

227

228 Parallel Algorithms

w=
(a) n=2 (b) n=4. !
w=-1 o= 1 o’=-1 o= 1
o= -i
(c) n=8. o’=-i
o= -(1/2) + (1/2)i o'= (172) + (1/2)i
(04= -1 =1
o’=-(112) -(112)i w'= (1/2) (1/2)i
o’=i

Fig. 5.1. The n roots of unity for n = 2,4, 8.

the pairs w’/ and w/t"/2 are symmetrically located with respect to the ori-

gin. Algebraically, we have w/t"/2 = —u)J (Property 5.2), and in particular,
w2 = —1.
Let a be the column vector [ag, a1, ...,a,_1]T, where n is a power of 2.

Let F,, be the Vandermonde matrix

1 1 1

1 2 wn—l

1 w2 4 w2n72

1 wn—2 w2(n72) L w(nfl)(n72)
1 wn—l w2(n—1) o w(n—1)2

Then, the product b = F,,a is called the Discrete Fourier Transform (DFT)
of a.

Thus, computing the DE'T b of a vector a is equivalent to evaluating the
polynomial P(z) = ap+ajz+...+a,_ 12" ' at the points 1,w,w?, ... w1

Fast Fourier Transform 229

It is easy to see that the DFT of a vector a can be computed in ©(n?)
sequential time and ©(logn) parallel time using n?/logn processors on
the PRAM. We now show that it can be computed in optimal ©(nlogn)
sequential time and O (log n) parallel time using n processors on the PRAM.
The efficiency of the algorithm is based on the following properties of the
n roots of unity.

2

Property 5.1 For even n, if w is an nth root of unity, then w” is an
(n/2)th root of unity.
Property 5.2 For even n, wht7/2 = —u)F,
For 0 <1i < mn/2, b; can be expressed as
n—1
b = (W a;
7=0
= (w)%ap + (w)lar + - + (W) lan_1
= (w)%ap + (w)2as + - + (W) 2an_s
+ (W) lar + (w)Pag + -+ (W) lan_s
(n/2)-1 (n/2-1
= Y Whay+ Y (@) aym
j=0 j=0
(n/2-1 /-1
= Y (@Vagy+w Y (@ag. (5.1)
j=0 j=0
Since
(w”("m))k _ Wk . if k is even
—wkif & is odd,
we have
(/-1 /21
bivm = », @Wag;—w' Y (wagpa. (5.2)
j=0 j=0

By Egs. (5.1) and (5.2), F,a is computed recursively from F{,, 2)a. and
F(n/2ya0, where a. and a, are, respectively, the even and odd parts of a.

230 Parallel Algorithms

Let
ap ai
a2 asg
c= F(n/2) a4 and d= F(n/2) as
An—2 an—1

Then, for 0 <i < n/2, Egs. (5.1) and (5.2) can be rewritten as
b, = ¢; + w'd;, (5.3)
and
biyns2 = Ci — wid;. (5.4)

On the PRAM, this gives rise to the recurrence T'(n) = T'(n/2) + O(1),
which solves for T'(n) = ©(log n). The number of processors needed is O(n).

Example 5.1 Let a = [1,2,3,4]7. In this example, we compute Fja,
where
1 1 1 1
1 ¢+ -1 —
B=1y 201 4
1 —i -1 3

e = (1 1) e (1 2) ()= (2 maa= (1 2)(2)-
(_62) . By Eq. (5.3), bo = co +idp = 10, and by = ¢; +i'dy = —2 — 2i,

since w = i. By Eq. (5.4), by = c9—i%dp = —2, and b3 = ¢ —ild; = —2+2i.
Hence,

10
—2—-2

_9)
-2+ 2

b:F4a:

as can be verified by direct multiplication. O

Fast Fourier Transform 231

level 3 level 2 level 1 level O

Fig. 5.2. Implementation of FFT on the butterfly for n = 8.

5.2 Implementation on the Butterfly

By Eqgs. 5.3 and 5.4, the implementation of the Fourier transform on the
d-dimensional butterfly, where n = 2%, is straightforward. These two equa-
tions are implemented naturally on the butterfly as shown in Fig. 5.2 for
n = 8. The b;’s are computed recursively in level 0, and ¢;’s and d;’s are
computed recursively in level 1, and so on. As an example in the figure, b3
is computed as bz = c3 + w3ds and bg is computed as bg = ¢y — w?ds.

Each parallel step is carried out by one level of the butterfly. Hence,
the number of parallel steps can be expressed by the recurrence T'(n) =
T(n/2) + 1, whence the number of steps is equal to d = logn.

5.3 Iterative FFT on the Butterfly

Unfolding recursion in the FFT algorithm discussed above results in a
simple iterative procedure for computing F,,a on the d-dimensional but-
terfly, where n = 2. The algorithm proceeds in the reverse order, from
level d to level 0, where the processors in level d contain the input.

232 Parallel Algorithms

If a = [a1,a,...,a,]7, then a; is stored in node (j%,d), where j¥ is the
number whose representation in binary is the reverse of the representation
of j. For example, if j = 1, and the number of bits is 3, then j® = 4.
The reason for this renumbering is that in the recursive algorithm, the
items are divided into even and odd. The items are divided into two halves;
those even in the upper half have 0 as their most significant bit, and those
odd in the lower half have 1 as their most significant bit. Appending 0’s
and 1’s is repeated recursively with repeated divisions into even and odd
halves.

The algorithm proceeds in d phases corresponding to levels d — 1,
d — 2,...,0, where the output of each phase except the last is the input
to the next. Each phase is carried out in one parallel step, for a total of d
parallel steps. In phase 1, the algorithm starts by evaluating the contents
of the processors at level d — 1. Each pair of consecutive processors perform
the multiplication Fhu, where u is the vector of corresponding pair of val-
ues entered at level d. Fhu is not computed using the recursive algorithm
discussed above, or using direct matrix multiplication; it is computed using
Egs. (5.3) and (5.4). There are n/2 computations of the products Fypu.
Next, in phase 2, each group of four consecutive processors in level d — 2
perform the multiplication Fyv using Egs. (5.3) and (5.4), where v is the
vector of corresponding four elements computed in phase 1 while processing
level d — 1. There are n/4 computations of the products Fyv. This process
of doubling the group size in each phase and computing the Fourier trans-
forms using Egs. (5.3) and (5.4) is repeated in the following phases, phases
3,4,...,d, until the final product Fj,a is computed. In general, in phase j,
n/27 computations of Fy;w in level d — j are carried out using Egs. (5.3)
and (5.4).

Example 5.2 (See Fig. 5.3). As in Example 5.1, let a = [1,2,3,4]T. We
compute Fya. The input is entered into level d = 2, where a; is stored in
node (j%,d), as explained above. In phase 1 of the algorithm, the contents
of the processors at level d — 1 = 1 are evaluated. Each pair of consecutive
processors perform the multiplication Fhru using Eqs. 5.3 and 5.4, where u
is the vector of corresponding pair of values entered at level 2. For example,
the contents of node (0, 1) are computed as co + (—1)%o = 1+ (-1)°3 =4
(here w = —1). Similarly, the contents of node (1,1) are computed as

Fast Fourier Transform 233

level 2 level] om=-1 level 0 w=1i
0 .0 !
ot d0= 10 1
4% !
S) , i
cl+td1=-2-21 3
< }
d, i
b J :
> ¢, zd0= 2 3
a i
d,
‘cl—td1=—2+21 i

Fig. 5.3. Iterative FFT on the butterfly.

co — (=1)%y = 1 — (-1)"3 = —2. Hence, Fhu = (1 j1> (é) = f2).

Likewise, in the lower half of level 1, (} jl> (i) = (f2>. Next, in
phase 2, the group of four consecutive processors in level 0 perform the
multiplication Fyv using Eqs. 5.3 and 5.4, where v = [4, —2,6, —2]7 is the
vector of corresponding four elements computed in phase 1. For example,
the contents of node (0,0) are computed as cg + i%dy = 4 + %6 = 10
(here w = 1¢). Similarly, the contents of node (1,0) are computed as
c1 +idy = —2 +i(—2) = —2 — 2i. Likewise, the contents of nodes (2,0)
and (3,0) are computed as —2 and —2 + 24, respectively. Hence,

1 1 1 1 4 10
1 i -1 —i —92 99

Paa=FRv=1, 4 | 6 |~)
1 —i -1 i —92 9249

This conforms with the result obtained in Example 5.1. O

234 Parallel Algorithms

5.4 The Inverse Fourier Transform

The inverse of the matrix F,, turns out to be easy to describe:
for 1 < k < n, the kth row of nF, ! is the n — kth row of F,:

1 1 1 .. 1
1 won—l 2= wn=1?
. 111 w2 w2(n72) L w(nfl)(n72)
R z z
1 w2 w4 w2n—1
w w2 wn—l

1 1 1 . 1
1 wt w2 . w (=1
1 w2 w4 e wT2nmD)
Fil=—
" n . .
1 wf(n72) w72(n72) wf(n72)(n71)
1 (-1 ,y=2n-1) w—(n=1)?
That is,
_ w™
(Fn 1)1.7 = n

So, the inverse of F}, is 1/n times the Fourier transform matrix of a different
primitive root of unity, namely w=?.

To show that it is indeed the inverse of F,,, we need the following
property.

Property 5.3 Since

we have

”iwij _ {0 if i # 0(mod n)

n if i = 0(mod n).

Fast Fourier Transform 235

By Property 5.3, we have

1= ,
(Fn X Fn_l)ij = — E oﬂkw_kj
n
k=0

1 n—1

—— k(i—j)
=2

k=0
=1ifi=j and 0 otherwise.

Example 5.3
L1l 11 11
e] 1 (I
1 =i -1 i 1 i -1
as can be easily verified. O

Clearly, the algorithm for the inverse Fourier transform is the same as
the algorithm for FFT described above.
5.5 Product of Polynomials

Let f(z) be a polynomial of degree n — 1, that is,
f@)=as+arx+---+ 12"t
A point-value representation of f(z) is a sequence of n (point, value) pairs

(o, f (o)), (w1, f (1)), s (n1, f(€n-1)))

such that the x;’s are distinct. The process of computing the coefficients of
f(x) from its point-value representation is called interpolation. For example,
the pairs ((0,1), (2,3)) is a representation of the polynomial f(z) =z + 1,
whose coefficients can be obtained by interpolating this sequence of (point,
value) pairs.

236 Parallel Algorithms

Let f(z) and g(x) be two polynomials of degree n — 1, where
n—1 . n—1 .
flz) = Z a;z’ and g(x) = ijx],
§=0 §=0

where n is a power of 2. The product polynomial h(x) is given by

where ¢o,,—1 = 0.

Recall that if a is a vector of n coefficients of the polynomial f(z), then
F,a denotes the vector consisting of the values of f(z) evaluated at the n
roots of unity. Likewise, F},b denotes the vector consisting of the values of
g(z) evaluated at the n roots of unity. That is,

Fw?) ao g(w®) bo

fwh) ay g(wh) b1

) =F, : and : =F, .
f(wnil) Ap—1 g(wnil) bn—1

By inverting F),, we can perform the process of interpolation, which in
the above functions obtains the a;’s from the vector of f(w;)’s, and the b;’s
from the vector of g(w;)’s. That is,

ao Fw?) bo 9(w’)
S f(c'vl) - b'l e g(c.vl)
Flr) b gl
The componentwise product of vectors F,a and F,b is
F(w?)g(w?)

flwhg(w?h)

gl)

where f(w')g(w’) = h(w'), 0 < i < n — 1. By taking the inverse Fourier
transform of the componentwise product of vectors F,a and F;,,b, we can
obtain h(x) in its coefficient form. There is a little difficulty, however. Given

Fast Fourier Transform 237

a polynomial p(z) of degree m in its (point, value) pairs, it is well-known
that m + 1 points are needed in order to reconstruct p(z) in its coefficient
form. The componentwise product of Fj,a and F,b provides the values of
h(z) at only n points, but h(x) is of degree 2n — 2. Hence, we extend f(x)
and g(z) to degree 2n — 1 by adding zeros for the terms with degree n
through 2n — 1. Thus, define a’ = [ag,a1,4a2,...,a,-1,0,0,...,0]7, and
b’ = [bo,b1,b2, ..., bn_1,0,0,...,0]7. We compute the coefficients of h(x)
as

Co f(wo)g(wo)
c1 _ -1 flwhg(wh)
027;71 f(Wanl)'g(wznfl)

Note here that w is the 2nth primitive root of unity. In summary, to con-
struct the product h(z) = f(x)g(z), we do the following steps:

(1)
(2)
(3) Interpolate by computing the inverse Fourier transform ¢ = F2_nld.
(4) Output ¢ = [co,c1, ¢, -, con1]T.

Compute ¢; = Fy,a’, and cg = Fy,,b’.
Perform the componentwise product d = ¢1 ® ca.

Steps 1 and 3 take O(logn) parallel time on the d-dimensional butter-
fly using ©(nlogn) operations. Step 2 takes ©(1) parallel time. Hence, the
algorithm for computing the product of two polynomials requires O (nlogn)
operations, and runs in ©(logn) parallel time on the log n-dimensional but-
terfly. This is much more efficient than the ©(n?) direct multiplication algo-
rithm.

Example 5.4 Let f(x) =142z and g(z) = 1+ 32. We will compute the
product h(xz) = f(x)g(z) using the fast Fourier transform. Write f(x) = ax,
where a = [1,2], and x = [1,2]7, and g(x) = bx, where b = [1,3]. Let
a’ =11,2,0,0]" and b’ = [1,3,0,0]”. Then,

I
—
—
I
—
S O N
|
—

1
1
cp = F,a = X
1

238 Parallel Algorithms

Similarly,
1 1 1 1 1 4
1 i -1 —i 3 1+ 3i
— b = —
C2 =1 1 -1 1 -1 0)
1 —i -1 i 0 1—3i

Now, we compute c; ® co, which is the componentwise multiplication
of ciand cs.

3 4 12
14 2¢ 143 -5+ 51
ave=| 4 |91 o |7 2
1—2i 1—3i —5— 51
Next, we interpolate.
c=F;(c1®ca)
1 1 1 1 12 4 1
R B A S =5+5i | _1[120] 5
N 1 -1 1 -1 2 4| 24 6
1 ¢ =1 —i —5— 51 0 0

Hence, h(z) = 1+ 5z + 622, as can be verified by direct multiplication. [J
Computing the product of more than two polynomials can be found in

the exercises (see Exercises 5.5, 5.6 and 5.7).

5.6 Computing the Convolution of Two Vectors
Given two vectors
a=ag,a1,...,ap—1 and b =1bg,by,...,by_1,

the convolution of a and b, denoted by a ® b, is defined as the vector
c=[co,C1,--Cmin_1]T, such that

7
C; = E ajbi,j,
=0

Fast Fourier Transform 239

where a; = 0 for j >n—1, and b; = 0 for j > m — 1. Convolution is closely
related to polynomial multiplication. So, if

n—1 m—1
flx) = Z ajz’ and g(x) = Z bjat,
j=0 §=0

then the kth term in f(z)g(z) is the kth element in the vector a®b. Thus,
to find the convolution of a and b, use the DFT algorithm to compute the
product f(x)g(z), and extract the coefficients of the resulting multiplica-
tion. When n = m, the running time on the PRAM or the butterfly is
O(logn) using O(n) processors.

Example 5.5 Let a=[1,2]7 and b = [1,3]”. Then,
f(x)g(x) = (agbo) + (apby + a1bo)x + (agby + arby + asbo)x? = 1+ 5x + 622
Note that as = b2 = 0. It follows that Co = aobo =]., C1 = a0b1 + a1b0 = 5,

and Coy = aobg + a1b1 + a2b0 =6. [l

5.7 The Product of a Toeplitz Matrix and a Vectors

A Toeplitz matrix T is defined as an n x n matrix in which T'[¢, j] =T[i — 1,
j—1] for 2 < i, j < n. Equivalently, the elements in each diagonal are equal.
The entries of T" will be indexed as shown below

thot tneo ... ta t to
tn tho1 tpn_o - to t
tn+1 tn tnfl tn72 v t2
ton—3 ton—4a ... tn th—1 tp—2
lon—2 ton—-3 ... tny1 tn lnp-a

A Toeplitz matrix can conveniently be represented by the vector t of
2n — 1 entries appearing in the first row and first column. That is, t =
[to,t1, - -, tan—a]”

240 Parallel Algorithms

Example 5.6 Let

4 3 2 1

5 4 3 2

T= 6 5 4 3

7 6 5 4
Then, T is defined by the vector t = [1,2,3,4,5,6,7]". O
Let a = [ag,a1,...,a,_1]7 be a vector of n elements, and let 7" be a

Toeplitz matrix. We are interested in computing the product b = T'a. Using
direct matrix by vector multiplication, the kth entry in b is given by

n—1
bk = Z ajtn+k,j,1. (55)
7=0

Now, consider computing the convolution ¢ of a and t given by

%
C; = E ajti_j,
3=0

Substituting n + k — 1 for 7 yields

n+k—1
Cnik—1 = g Ajtpik—j-1
=0

n—1
= Z jtptk—j—1, (5.6)
7=0

since a; = 0 for j > n— 1. Comparing the right hand sides of Eq. (5.5) with
Eq. (5.6), we see that they are identical. Hence, by, = ¢pip—1-

Following this, to compute the product T'a, we compute a ® t and set
bi, = Cnyk—1. This takes ©(logn) time using O(n) processors on the PRAM
and butterfly.

Example 5.7 Consider computing he product Ta, where

1
2
d =
an a 3
4

N O Ot
D Ut
T = W N
=W N

Fast Fourier Transform 241

First, the vector t is determined to be [1,2,3,4,5,6,7]7. Computing the
convolution a ® t yields the vector ¢, which is equal to [1,4, 10, 20, 30, 40,
50,52,45,28]T. Hence, bo = C440—-1 = €3 = 20, bl = C441-1 = €4 = 30,
b2 = C442-1 = C5 = 40, and b3 = C443-1 = Cg = 50. That iS, Ta =
[20, 30,40,50]%, as can be verified by direct multiplication. O

5.8 Using Modular Arithmetic

In many applications, the aim is always to perform error-free computations
of the fast Fourier transform. It turns out that this can be achieved by per-
forming the FFT computations in modulo arithmetic. Let m be a positive
integer. The set Z7, is the set of positive integers relatively prime to m. For
example, Z5 = {1,2,4,5,7,8}. It is a group under multiplication modulo m.
An element « is a primitive root of unity for a group if it generates such
a multiplicative group. For instance, a« = 2 generates all elements of the
multiplicative group Zg under the operation of multiplication modulo 9.
That is, 2° = 1,2! = 2,22 = 4,23 = 8,2% = 7,2° = 5, where all powers are
computed modulo 9. There are no primitive roots for Z = {1, 3,5, 7}.

Let n =2, a=2%1=mn/2and m = o' +1 = 2¥ + 1. Then, a is a
primitive root of unity over the set of integers modulo m. It is not hard
to see that the fast Fourier transform works correctly by replacing w by a.
Figure 5.4 illustrates the n roots of unity for n = 8 (mod 17) generated
by the primitive root 2. As shown in the figure, the pairs o/ and o/*"/2
are symmetrically located with respect to the origin. Algebraically, we have

R e—— (Property 5.2), and in particular, a™? = —1. In this section,
4
8 2
16 1
15 9
13

Fig. 5.4. The 8 roots of unity mod 17 generated by the primitive root 2.

242 Parallel Algorithms

all arithmetic will be done modulo m; we will simply write x + y to mean

x +y (mod m).
Using « as a primitive root of unity, the transformation matrix F,

looks like:

1 1 1 1

1 o a? a1

1 052 014 a2n72

1 a2 a2(n—2) o a(n—l)(n—Z)

1 a1t a2(n—1) CY(n—l)Q

whose inverse is
1 1 1 . 1
1 a~ ! a2 . a~ (=1
1 a2 a~? . a—2(n=1)
Fl=n"t

1 057<n72) a72(n72) L af(n72)(n71)
T P U P Gt

It is clear that F}, and F), ! are obtained from the usual FFT matrices
by substituting « for w.

Example 5.8 Let n =8, =2 and m = 17. Then,

1

2 4 8 16 15 13 9
4 16 13 1 4 16 13
§ 13 2 16 9 4 15
16 1 16 1 16 16
15 4 9 16 2 13 8
13 16 4 1 13 16

9 13 15 16 8 4 2

Fy

—

N = e e T T = T = S =

Fast Fourier Transform 243

and
15 15 15 15 15 15 15 15
15 16 8 4 2 1 9 13
15 8 2 9 15 8 2 9
Lo l1so4 9 16 2 13 8 1
=l 9 15 2 15 2 15 2|
15 1 8 13 2 16 9 4
5 9 2 8 15 9 2 8

5 13 9 1 2 4 8 16

The second row of Fg contains the powers of a = 2, the third contains the
powers of a® = 4, and so on. On the other hand, the second row of Fy '
contains the powers of a=! = 27! = 9 multiplied by 87! = 15 = —2 . For

example, the second entry in the second row is '8! =9 x (-2) = —18 =
—1 = 16. The third row contains the powers of a=2 = 272 = 13 multiplied
by 81 =15 = —2, and so on. O

Example 5.9 Let f(z) =14 2z and g(z) = 1 4+ 3z. We will compute
the product h(z) = f(x)g(z) using FFT modulo 17. Let n = 4, = 4 and
m = 17. Then,

11 1 1 13 13 13 13
|1 o4 16 13 |13 16 4 1
=11 16 1 16 and - Fym=ha 43y
1 13 16 4 13 1 4 16

Write f(z) = ax, where a = [1,2], and x = [1,2]7, and g(z) = bx, where
b = [1,3]. Let a’ = [1,2,0,0]” and b’ = [1,3,0,0]”. Then,

1 1 1 1 1 3
1 16 13| [2 9

_ A _
cao=Fa =196 1 16|06
1 13 16 4/ \o 10

Similarly,

1 1 1 1\ /1 4
1 16 13| [3 13

. /I _
c2=Fb =16 1 6o |15
1 13 16 4/ \o 6

244 Parallel Algorithms

Now, we compute c; ® co, which is the componentwise multiplication
of ciand cs.

3 4 12

9 13 15

L= 1619157 | 2
10 6 9

Next, we interpolate.

13 13 13 13\ /12
_ 13 16 4 1|15
c=Fl@oe) =5)y g || e |

13 1 4 16 9

S O Ot =

Hence, h(z) = 1 + 5z + 622, as can be verified by direct multiplication. [J

5.9 Bibliographic Notes

The fast Fourier transform is created by Cooley and Tukey [27]. See also
Kronsjo [48] and Winograd [98]. Blahut [16] and McClellan [64] cover many
fast Fourier transform algorithms for computing DFT and convolution. See,
for example, Borodin and Moenck [17] and Fiduccia [36] for algorithms for
polynomial evaluation and interpolation using the fast Fourier transform.
For a good introduction to fast Fourier transform using modular arithmetic,
see Lakshmivarahan and Dhall [52].

5.10 Exercises

5.1. Prove Property 5.1: For even n, if w is an nth root of unity, then w?
is an (n/2)th root of unity.

5.2. Prove Property 5.2: For even n, wFtm/2 = k.

1

5.3. Show that if w is a primitive nth root of unity, then w™" is also a

primitive nth root of unity.

5.4. Let f(z) = 24 2 and g(z) = 3 + 22. Compute the product h(x) =
f(x)g(x) using fast Fourier transform.

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

5.14.

5.15.

5.16.

5.17.

Fast Fourier Transform 245

Let fi(z), fo(x) and fs(z) be three polynomials of degree n — 1
each. Apply DFT to find their multiplication fi(x)f2(x)fs3(z) on
the PRAM with O(n) processors. What is the running time of your
algorithm?

Generalize Exercise 5.5 to k > 2 polynomials of degree n — 1 each.
Your algorithm should run in time O(logkn) on the PRAM. How
many processors are needed?

Let fi(x) =14 2z, fo(z) =1+ 32 and f3(x) = 1 + 2. Apply Exer-
cise 5.6 to compute the product g(z) = fi(x)f2(x)f3(x) using fast
Fourier transform.

Give an efficient algorithm to compute (1+z)™. What is the running
time of your algorithm? How many processors are required by your
algorithm?

Carry out the DFT algorithm to find the convolution of the two
vectors [2,3]7 and [4,1]7.

Is the sum of two Toeplitz matrices Toeplitz? Prove your answer.
Is the product of two Toeplitz matrices Toeplitz? Prove your answer.

How quickly can you multiply two Toeplitz matrices A and B?
Explain.

Let n =4,a = 2 and m = 5 in the specification of FFT in modular
arithmetic. Compute Fy and F, *.

Use your answer to Exercise 5.13 to find the product f(z)g(z), where
f(z) =2+ 2 and g(x) = 3 + 2z in modular arithmetic.

Evaluate f(z) = (1 + 2 + 22)? in modular arithmetic. You may use
Fy and Fy ! in Example 5.8. Note that a = 2 and m = 17.

Let a = [2,1]7 and b = [4,3]T. Use your answer to Exercise 5.13 to
find the convolution of a and b in modular arithmetic.

Is it possible to have n = 6, « = 2 and m = 9 in the specification of
FFT in modular arithmetic? Explain.

246

5.18.

5.19.

5.11

5.1.

5.2,

5.3.

5.4.

5.5.

Parallel Algorithms

What are the primitive roots of unity of Z} = {1,2,3,4}?

How many primitive roots (generators) are there for 7?7

Solutions

Prove Property 5.1: For even n, if w is an nth root of unity, then w?
is an (n/2)th root of unity.

(w?)* = (w*)2. That is, the powers of w? are

W2 Wt W22 200/2),

Moreover, (w?)"/? =w" = 1, and (w?)! =w? # 1 for 0 < j < n/2.

Prove Property 5.2: For even n, whtm/2 = —wF.

Whtn/2 = R s W2 = Wk X (=1) = =P,

Show that if w is a primitive nth root of unity, then w™! is also a
primitive nth root of unity.

The n powers of w™! are w™ (w12 (w13 ..., (w)", or
whw 2, w3, ..., w™™. Multiplying by w” yields the sequence
wrmh w2 w3, WP These are precisely the n powers of w. It

follows that w™! is a primitive nth roots of unity.

Let f(x) = 2+« and g(x) = 3 + 2z. Compute the product h(z) =
f(x)g(x) using fast Fourier transform.

Similar to Example 5.4.

Let fi(z), fo(x) and fs(z) be three polynomials of degree n — 1
each. Apply DFT to find their multiplication fi(x)f2(x)fs3(z) on
the PRAM with O(n) processors. What is the running time of your
algorithm?

First, note that the degree of the product is 3n — 3. Let m be the
least power of 2 greater than or equal to 3n — 2. Let a;,as and ag
be the vectors of coefficients of f1(z), f2(z) and fs(x), respectively.
The steps for the construction of the product g(x) = f1(z)f2(x) f3(x)
are shown in Algorithm pOLYNOMIALMULTIPL. Steps 1 and 3 take

Fast Fourier Transform 247

Algorithm 5.1 POLYNOMIALMULTIP1
Input: Three polynomials f1(x), f2(z) and f3(z).

Output: The product g(z) = fi(x) fo(z) f3(x).

1. Compute d; = F,a%, d2 = Fj,a5, and ds = F,a5, where a3, a5 and aj
are a1, az and ag padded with Os to length m.

2. Perform the componentwise product ¢ =di ® d2 ® ds.

3. Interpolate by computing the inverse Fourier transform
e=F,lc.

4. Output e = [eg,e1,€a,...,em—1]7; € is the vector of coefficients of the
product g(z).
©(logn) parallel time on the PRAM using O(n) processors. Step 2
takes ©(1) parallel time. Hence, the algorithm for computing the
product of three polynomials runs in ©(logn) parallel time on the
PRAM with O(n) processors.

5.6. Generalize Exercise 5.5 to k > 2 polynomials of degree n — 1 each.

Your algorithm should run in time O(logkn) on the PRAM. How
many processors are needed?

First, note that the degree of the product is kn — k. Let m be the
least power of 2 greater than or equal to kn—k+1. Let a1, as, ..., ak
be the vectors of the coefficients of the k polynomials. The idea
is to evaluate the polynomials at m points, multiply them compo-
nentwise, and then interpolate by applying the inverse DFT. The
steps for the construction of the product g(z) = f1(z)fa(x) ... fu(z)
are shown in Algorithm POLYNOMIALMULTIP2. Steps 1 and 3 take

Algorithm 5.2 POLYNOMIALMULTIP2
Input: k > 2 polynomials f1(x), fa(x),..., fx(z) of degree n — 1.

Output: The product g(z) = fi(x)f2(z) ... fu(z).

1.

2.

3.

Compute d1 = F,a}, d2 = F,as, ..., dx = Fhay, where aj, a5, ... a,
are ai,az,...,akx padded with Os to length m.
Perform the componentwise product c =d1 ©®d2 ® ... ® dk.

Interpolate by computing the inverse Fourier transform

e=F,lc.

Output e = [eo,e1,€2,...,em—1]7; e is the vector of coefficients of the
product g(z).

248

5.7.

Parallel Algorithms

O(log kn) parallel time on the PRAM using O(kn) processors, since
there are O(kn) coefficients in c. Computing the componentwise
product in Step 2 can be done recursively in O(logn) time using
O(kn) processors. It follows that the running time of the algorithm
is O(logn + log kn) = O(log kn) on the PRAM with O(kn) proces-

SOT'S.

Let fi(x) = 14 2z, fo(x) = 1 + 3z and f5(x) = 1 + x. Apply Exer-
cise 5.6 to compute the product g(z) = fi(x)f2(x)f3(x) using fast
Fourier transform.

Write fi(x) = a1x, f2(x) = agx and f3(x) = agx, where a; = [1, 2],
az = [1,3], az = [1,1] and x = [1,2]7. Let aj = [1,2,0,0]7, a} =
1,3,0,0]” and a4 = [1,1,0,0]T. Then,

1 1 1 1 1 3
1 i -1 —i 2 1424
_ I _
a=ha=1 5 0] |o| 7| =
1 —: =1 2 0 1—2
Similarly,
1 1 1 1 1 4
1 ¢ -1 — 3 1+ 3¢
_ r_ _
c2=Fax=1, 1 _q||o| 7| =2 |
1 - =1 1 0 1—3t
and
1 1 1 1 1 2
1 ¢ -1 —1 1 1+1
_ I _
cs=haz=\ 1 1 _jl|o| 7| o
1 —: -1 1 0 1—1

Now, we compute ¢ = ¢1 ® c2 ® cg, which is the componentwise
multiplication of ¢y, co and c3.

3 4 2 24
12| [1+3i] |1+i| _|-10
T |9 2 |9 0 [T o

1—-2¢ 1—-3¢ 1—1 —10

5.8.

5.9.

5.10.

Fast Fourier Transform 249

Finally, we interpolate:

1 1 1 1 24 4 1
101 —i -1 il |-10] 1]24 6

p-l. 1t _1 _
e=Fre=711 1 1]| o 1|44 11
1 i -1 —i]|-10 924 6

Hence, g(x) = 1 + 62 + 1122 + 623, and we can verify this by direct
multiplication.

Give an efficient algorithm to compute (1+z)™. What is the running
time of your algorithm? How many processors are required by your
algorithm?

We use the fast Fourier transform. This is similar to Exercise 5.6
with k replaced by n, and n replaced by 2. The highest degree in
the product is n, so let m be the least power of 2 greater than or
equal to n + 1. Let a = [1,1,0,0...,0] (m — 2 0s). Compute the
componentwise product c =a®a®...,®a (n times). This is equal
to [ap+al+...+a? _]T. These powers can be computed in ©(logn)
time by assigning each number to one processor, which raises that
number to the nth power in sequential O(logn) time. Thus, this step
can be done in parallel in ©(logn) time. Finally, apply the inverse
DFT on c to obtain the final result. Since there are O(n) coefficients
in ¢, applying the inverse DFT requires ©(logn) time. It follows that
the running time of the algorithm is ©(logn) on the PRAM using
O(n) processors.

Carry out the DFT algorithm to find the convolution of the two
vectors [2,3]T and [4,1]7.

Similar to Example 5.5.

Is the sum of two Toeplitz matrices Toeplitz? Prove your answer.

Yes. Let A+ B = C, where A and B are Toeplitz. Then, ¢; ; = a;; +
bi,j = Qj—1,5—1 + bifl,jfl =Ci—1,5—1- It follows that C'is Toeplitz.

250

5.11.

5.12.

5.13.

5.14.

5.15.

Parallel Algorithms

Is the product of two Toeplitz matrices Toeplitz? Prove your answer.

No. Let
1 1
A= 1 1
1 1
Then,
2 3
A2=1[1 1 2],
1 2

which is not Toeplitz.

How quickly can you multiply two Toeplitz matrices A and B?
Explain.

Treat B as a sequence of vectors, and apply the convolution method
individually to multiply A by each vector. This results in time com-
plexity nx ©(logn) = ©(nlogn) parallel time using O(n) processors.
If the number of processors is O(n?), then the running time reduces
to ©(logn), as all matrix by vector multiplications can be carried
out in parallel using the convolution method.

Let n = 4,a = 2 and m = 5 in the specification of FFT in modular
arithmetic. Compute Fy and F, *.

Fy = and F;'=

— =
W = N
I e
N = W o=
= e e
W N
— o =
N O

Use your answer to Exercise 5.13 to find the product f(x)g(z), where
f(z) =2+ 2 and g(x) = 3 + 2z in modular arithmetic.

Similar to Example 5.9.

Evaluate f(z) = (1 + 2 + 2?)? in modular arithmetic. You may use
Fy and Fg ! in Example 5.8. Note that a = 2 and m = 17.

5.16.

5.17.

5.18.

5.19.

Fast Fourier Transform 251

Similar to Example 5.9.

Let a = [2,1]7 and b = [4,3]7. Use your answer to Exercise 5.13 to
find the convolution of a and b in modular arithmetic.

Similar to Example 5.5

Is it possible to have n = 6, = 2 and m = 9 in the specification of
FFT in modular arithmetic? Explain.

No, it is impossible since 6 is not invertible modulo 9; 6 and 9 are
not relatively prime. 67! is needed to compute the inverse.

What are the primitive roots of unity of Z} = {1,2,3,4}?

There are two of them: 2 and 3.

How many primitive roots (generators) are there for Z 7

If there is one generator, then there are ¢(¢(m)) generators, where
¢(k) is the number of elements less than k and relatively prime to k.
For example, for m = 5, there are ¢(¢(5)) = ¢(4) = 2 generators.
Note that these generators generate all elements in the group.

This page intentionally left blank

Chapter 6

Tree-based Networks

6.1 The Tree Network

A tree of size n = 2" is an interconnection network constructed from a
complete binary tree with n processors in the base level Py, Ps, ..., P,, and
a total of 2n — 1 = 2"*1 — 1 processors. Here h = logn is the height of the
tree. Each tree has h + 1 levels: 0,1,...,h. The leaf nodes at level h are
connected by two-way communication links to their parents only, and the
root is connected to its two children. Every other processor is connected by
two-way communication links to its parent and its two children. Therefore,
the tree has degree 3. See Fig. 6.1 for an eight-leaf tree.

The communication diameter of a tree of size n is only ©(logn), which
is very low compared to a linear array of the same size. This is true since
any two processors in the tree can communicate in O(logn) time. However,
it may require as much as 2logn = Q(logn) time for communication that
requires an exchange of information between two arbitrary processors. This
makes the tree ideal for computing problems like semigroup operations, e.g.,
summation and finding the maximum, which require O(logn) time. How-
ever, for problems that demand extensive data movement such as sorting
and routing data in the base, Q(n) time may be required, since only ©(1)
wires cross the middle of the tree, which means that the bisection width of
the tree is (1) — and that is very low. For instance, it may be required to
move data from the n/2 left processors to the n/2 right processors, which
requires §2(n) time, since the root serves as a bottleneck.

253

254 Parallel Algorithms

Fig. 6.1. A tree of size 8.

An algorithm that runs on the tree is called normal tree algorithm if no
two processors at different levels are active at the same time. That is, at
any given time, only processors in the same level are participating in the
computation. A single step of a normal tree algorithm can be simulated in
one step of the hypercube, given the embedding shown in Fig. 3.12.

6.1.1 Semigroup operations

Due to its low communication diameter, the tree is ideal for semigroup
operations, e.g., addition and finding the maximum. These operations can
be performed in O(logn) time as follows. Assume that n pieces of data are
distributed one per base processor. Then, in order to compute a semigroup
operation o over this set of data, it can be applied to disjoint pairs of partial
results in parallel as data moves up the tree level by level. After O(logn)
steps, the final result will be known to the root processor. Naturally, if all
processors need to know the final result, it can be broadcast from the root
to all other processors in ©(logn) time. This means a cost of O(nlogn) on
a tree with n base processors, which is a factor of O(logn) from optimal.
Thus, the tree provides a major benefit over the linear array and the mesh
in terms of combining information.

6.1.2 Sorting by minimum extraction

Assume that a tree with n leaves is available for sorting the sequence
(x1,22,...,2,) of distinct integers. The n integers are initially loaded into
the leaf processors. Now, each internal processor determines the smaller

Tree-based Networks 255

of the two integers held by its children and routes it to its parent. After
logn + 1 steps, the minimum element exits the machine from the root, and
is placed in a memory buffer for storing the output. If the process is con-
tinued, the next element in increasing order is obtained at every other step.
Thus, as mentioned above, the first element requires logn + 1 steps to exit
the root. Each one of the remaining n — 1 elements requires two steps to be
produced. It follows that a constant multiple of 2n+logn — 1 time units are
needed to produce the sorted sequence. Hence, the running time is O(n),
and since there are 2n — 1 processors, the cost is ©(n?).

6.1.3 Sorting by partitioning

Assume that a tree with & = logn leaves is available for sorting a sequence
of n = 2¥ numbers. Each processor at level j, 0 < j < log k, can store n /27
elements and can execute a median finding and sorting algorithm. The n
numbers are initially loaded into the root processor. First, the root finds
the median and splits the sequence into two halves, where the half with
numbers less than or equal to the median is passed to its left child, and
the other half with numbers greater than the median is passed to its right
child. Upon receiving its half, each child finds the median of its subsequence
and passes those elements less than or equal to the median to its left child
and passes those elements larger than the median to its right child. This
process of finding the median, partitioning and passing elements continues
until the leaf nodes are reached. Finally, each leaf node sorts its n/logn
elements and places them in the output buffer. The algorithm is shown as
Algorithm TREESORT

The running time of the algorithm is computed as follows. Finding the
median and splitting the sequence at level j takes ©(n/27). The sorting step
takes ©((n/logn)log(n/logn)) = O(n) time. The time needed to find the
median and output the sequences at level j is ©(n/27). Hence, the overall
running time of the algorithm is expressed as

k
O(n) + > _O(n/27) = O(n) + O(n) = O(n).

=0

The total cost of the algorithm is logn x ©(n) = ©(nlogn), which is
optimal.

256 Parallel Algorithms

Algorithm 6.1 TREESORT
Input: A sequence of n numbers, where n = 2*.

Output: The input sorted in ascending order.

1. for j<-0to logk —1

2. for all processors P at level j
3. Processor P finds the median m and routes all elements < m
to the left child and all elements > m to the right child.

4. end for

5. for all leaf processors P

6 Processor P sorts the currently held elements and places
them in the output buffer.

7. end for

6.1.4 Selection

Recall the problem of selection discussed in Section 2.14: Given a
sequence A = (a1,as,...,a,) of n elements and a positive integer k,1 <
k < n, find the kth smallest element in A. In this section we consider the
problem of finding the k’th smallest element in a sequence of n elements
stored at the leaves of an n-leaf tree of height h, where n = 2" and h = 2™.
A straightforward solution would be to sort A and return the kth small-
est element. However, sorting on the tree is expensive, and takes a lot of
time. The easiest selection problem is £ = 1, which amounts to finding the
minimum in O(logn) time. We observe that if we adopt a modification of
the sorting method of minimum extraction outlined above, then the kth
smallest element can be found in O(logn + k) time, which in the worst case
is ©(n), e.g., finding the median.

We will simplify discussion by assuming that all the elements are dis-
tinct. The algorithm is given as Algorithm TREESELECT (see Fig. 6.2). Ini-
tially, each item is “active”, and may later become “inactive” when it is
known that it cannot be the answer.

Steps 3 to 13 are repeated until the kth smallest element is found. In
each iteration, y/n recursive calls are executed on /n elements each to
find the median of each group. Thus, there are \/n parallel simultaneous
calls plus one call to find the median of medians med. Let T(n) denote
the total running time. Then, these calls take 27(y/n). In each iteration,
at least 1/4 of the elements will be deactivated, and hence the number of
iterations is at most log,/3n = ch, where ¢ = 1/log(4/3) (see Section 2.14

Tree-based Networks 257

med O

< vii subtrees >

Fig. 6.2. Illustration of Algorithm TREESELECT.

Algorithm 6.2 TREESELECT
Input: A sequence of n numbers, where n = 2" and an integer k, 1 < k < n.

Output: The kth smallest element in the sequence.

1. if n < 2 then return the answer.

2. else repeat Steps 3 to 13

3. Each processor at level log n/2 computes the median of the active items
beneath it. It stores this median as its value.

4. The root computes recursively the median of medians of the items found
in the previous step, call this med.

5. The root transmits med to all processors in the base.

6. Each base processor sends up a 1 if its item is less than or equal to med.
These 1’s are summed on their way up to the root. Let s be the sum of
these 1’s.

7. if k = s then return med

8. else if k < s then

9. Deactivate all items in the base > med

10. else

11. Deactivate all items in the base < med
12. Set k< k — s

13. end if

and Exercise 2.17). Broadcasting and summing the 1’s takes O(logn). To see
how much time the algorithm takes, it is easiest to work with the height of
the tree (i.e., h = logn) instead of its width. The running time can therefore

258 Parallel Algorithms

be expressed by the recurrence:

1 ifh=1
T(h) = {ch x (2T(h/2) +bh) if h>1,

for some constant b. We proceed to solve this recurrence as follows. Rewrite
the recurrence as

F(m) = 1 ifm=0
o e2m2f(m — 1) + cb2?™ if m >0,
since h = 2™. Expanding this recurrence yields

f(m) = 2™ f(m — 1) + cb2?™

= 52575 f(m — 5) 4 cb2*™
X (6424171710+C3b23m76+62b22m73+Cb2m71+1)

— ngjm*j(j*3)/2f(m -+ cb22m (Cjzjm*j(ﬁl)/?
+ -4 C424m—10 =+ C323m—6 +C222m—3 +C2m—1 + 1)

— Cm2m2—m(m—3)/2f<0) + Cb22m(Cm—12(m—1)m—(m—1)(m)/2
+ -4 C424m—10 + C323m—6 +6222771—3 +62m_1 + 1)

= mom(m+3)/2 4 .po2m 75 Joim=i(G+1)/2
§=0
< PRI/ | g92m s g rTglm=Dm((m=1)(m)/2)
= ¢ pmH3)/2 4 p92m gy i cmgm(m=1)/2
= MREB/2 L xom x mommE3)/2
= ¢ R(H/2 4 e p(m3)/2
= O(mc™h(m+3)/2)

= O(loglogn closlog "(log n)(log log "*3)/2).

Hence, T'(n) = o(n) for any € > 0.

Tree-based Networks 259

9

(a) k

417143 12615 7135112 110916 4 1714312615 7 135112 1109 16

(c) 10 k=4;s=4

O activated

O deactivated

41714312615 7135112 1109 16

Fig. 6.3. Example 6.1 for the selection algorithm on the tree.

Example 6.1 Figure 6.3 illustrates the operation of Algorithm TREESE-
LECT. In this example, we use the algorithm to find the 9th smallest element
of the 16 items: 4, 17, 14, 3, 12, 6, 15, 7,13, 5, 11, 2, 1, 10, 9, 16. Fig. 6.3(a)
shows the initial input, which is entered at the leaves. In part (b) of the
figure, v/n = 4 calls are executed in parallel, and then one call with the
medians resulting from these 4 calls as the input. This results in 5 being
the median of medians. After broadcasting 5, processors with elements 1,
2,3, 4 and 5 send a 1 each to the root for a total of s = 5, which is shown
in Fig. 6.3(b). The deactivated processors are shown as white. More 5 calls
are executed in Fig. 6.3(c), after which the 9th smallest element, 10, is
found. O

6.1.5 The one-dimensional pyramid

A one-dimensional pyramid, or simply a 1-pyramid, of size n is an inter-
connection network obtained from the tree of processors with n leaves by
adding two-way communication links between adjacent processors at the
same level. Thus, it forms a linear array at each level. See Fig. 6.4 for an
eight-leaf 1-pyramid. Like the tree, communication diameter of a 1-pyramid
of size n is only ©(logn).

260 Parallel Algorithms

avas

o/ Y

Fig. 6.4. A tree with horizontal links (1-pyramid) of size 8.

6.2 The Pyramid

A two-dimensional pyramid or simply a pyramid of size n = 4% is an
interconnection network that can be viewed as a full 4-ary tree of height
logy n (see Fig. 6.5). It has logsn + 1 levels numbered 0,1,...,log, n. For
simplicity, we will assume that the base is at level 0, and the root is at
level log, n. The base consists of n processors arranged in the form of a
/1 x y/n mesh of processors. In general, level k consists of a mesh of n/4*
processors. In particular, level log, n consists of one processor referred to
as the apez. A pyramid of size n has a total of (4n — 1)/3 processors. Each
processor at level k is connected via bidirectional communication links to
its nine neighbors (if they exist): four siblings at level k, four children at
level £ — 1 and a parent at level k + 1.

The pyramid can be projected into a regular pattern in the plane, which
makes it ideal for VLSI implementation and provides the possibility of con-
structing pyramids with thousands or millions of processors (see Fig. 6.6).
A pyramid may be regarded as a combination of a mesh and a tree machine
architecture.

One advantage of the pyramid over the mesh is that the communication
diameter of the pyramid of size n is only O(logn). This is true since any two
processors in the pyramid can communicate through the apex in O(logn)
time. However, it may require Q(logn) time for communication that require
exchange of information between two arbitrary processors. This makes the
pyramid suitable for problems like semigroup operations, e.g., summation
and finding the maximum, which require O(log n) time. However, for prob-
lems that demand extensive data movement such as sorting and routing all
data in the base, Q(y/n) time is required (Exercise 6.8).

eeeeee

eeeeee

eeeeee

262 Parallel Algorithms

1 4 5 6
\ | \
| | |
22— 3 §—1—7 1 ——2‘

\

| | 1
15——14 9 —1 10 4 —3
‘ | ‘ Level 2
‘ ‘ ! Level 1
16 13 ——12——11

Level 0

Fig. 6.7. Proximity indexing scheme for the three levels of a pyramid of size 16.

6.2.1 Computing parallel prefix on the pyramid

The parallel prefix problem was defined in Section 2.5. In this section, we
show how to compute it on the pyramid. For simplicity, we will assume
addition as the binary operation. We will also assume the proximity index-
ing scheme shown in Fig. 6.7. In this ordering scheme, consecutive elements
are physically contiguous. Assume that each processor has four registers:
Rl, Rg,Rg and R4.

Initially, the items 1,2, ..., x, are input to the n = 4% processors at
level 0. The algorithm consists of two passes: Bottom-up and top-down. It
is given as Algorithm PYRAMIDPARPREFIX.

Example 6.2 Consider Fig. 6.8(a) in which is shown the base of a
2-dimensional pyramid with 16 numbers stored in it. In this figure, pro-
cessors are shown by squares (of varying sizes) and registers are shown by
circles. Initially, each processor Py ; of the base sends its value z; to its
parent. Each processor of level 1 computes sequentially the four prefixes of
the four values received from its children in level 0, which are then stored
orderly in its four data registers Ry, Ra, R3 and Ry, as shown in Fig. 6.8(b).
Notice that there are four processors in this part of the figure. Each pro-
cessor of level 1 then sends to its parent in level 2 (the apex) the fourth
prefixes Ry, as shown in Fig. 6.8(c). The apex then computes the prefix
sums of these values as shown in Fig. 6.8(d). In part (e) of the figure, it
shifts these prefixes by one register so that R; is stored in register R; 1,
1 <4 <3, and puts 0 in R;. It then copies the contents of the four registers

Tree-based Networks 263

Algorithm 6.3 PYRAMIDPARPREFIX
Input: X = (z1,22,...,%xs), a sequences of n numbers, where n = 4% stored
at the base of the pyramid.

Output: S = (s1,82,...,), the prefix sums of X.
(a) Bottom-up phase.

(1) Each processor Py,; of the base sends its value z; to its parent.

(2) for k=1,2,...,log,n do
Each processor Py ; of level k computes sequentially the four prefixes
of the four values received from its children, which are then stored
orderly in the four data registers R1, R2, Rz and R4, then sends to
its parent the fourth prefix R4. As k = log, n, the apex contains in
its four registers the four prefixes s, /4, 5n/2, S3n/4, Sn-

(b) Top-down phase.

(1) The apex moves the contents of register R; into register Riy1, 1 <
1 < 3, and puts 0 into R;. Then, it sends these values orderly to its
four children (i.e., R1 goes to the first child, Rs to the second, etc.)

(2) for k=1log,n—1,...,1do
Each processor Py ; adds sequentially the value received from its
parent to the values stored in its four data registers. Then, each
processor Py ; moves the contents of its register R;, 1 < i < 3 into
its register R;+1, and moves the contents of its register R4 into the
register Ry of processor Py ;41 (if it exists, processor Py 1 puts 0 into
its register R1). Finally, Py ; sends the values stored in Ri, Ra, R3
and R4 orderly to its four children.

(3) Each processor Py ; at the base adds the value received from the
parent to its x; value. Now, each processor F,; at the base contains
the partial sum s;.

into the four processors in level 1, as shown in Fig. 6.8(f). Each processor
Py ; then adds sequentially the value received from its parent to the values
stored in its four data registers, as shown in Fig. 6.8(g). Then, each proces-
sor Pp ; in level 1 moves the contents of its register R;, 1 <14 < 3, into its
register R; 11, and moves the contents of its register R4 into the register Ry
of processor P j1 (if it exists, processor P 1 puts 0 into its register Ry).
This is shown in Fig. 6.8(h). Next, P; ; sends the values stored in R1, Ra, R3
and R4 orderly to its four children in level 0. Finally, each processor P ;
at the base adds the value received from its parent to its x; value. Now,
each processor Py ; at the base contains the partial sum s;. This is shown
in Fig. 6.8(i). d

264 Parallel Algorithms

Bottom-up Top-down

(e)
@ (0)10)
(0 00
) 0

(©) (®)

; ;5%%
(h)
6 A9 A14A13 g)%gi 10
412137
* 2 6/\23 21
1 f12)10) 37\/24 27
(4036)34
(a) (i)
% 14»5476 % 10——15—+—21
| |
N { { N { N
413 ‘14w2 6——9 2‘4«w 23
N N
i Al
{ { N { x w
5 1—-2—-3 45 | 37136134
: Processor Q : Register

Fig. 6.8. Example of computing parallel prefix on the pyramid.

6.3 Mesh of Trees

A mesh of trees of size n, where we assume for simplicity that n is a perfect
square, is an interconnection network constructed from a y/n x y/n mesh, in
which the processors of every row and column are the leaves of a complete

Tree-based Networks 265

Fig. 6.9. A mesh of trees of size 16. (a) Regular. (b) With base connections.

binary tree. The base consists of n processors arranged in the form of a
v/n x y/n mesh. The base processors are either disjoint or have connections
as in the regular mesh (see Fig. 6.9(a) and (b)). The mesh of trees of size
n has 3n — 2/n processors. Each row or column has v/n processors at level
log \/n. All row trees are disjoint, and all column trees are disjoint. Every
row tree has exactly one leaf processor in common with every column tree.
In each tree, the leaf and the root has degree 2, and every other processor
has degree 3. Like the pyramid, the communication diameter of the mesh
of trees of size n is only ©(logn), which is very low compared to a mesh
of the same size. This is true since any two processors in the mesh of
trees can communicate in O(logn) time. However, it may require as much
as 4log\/n = Q(logn) time for communication that requires exchanging
of information between two arbitrary processors. This makes the mesh of
trees suitable for problems like semigroup operations, e.g., summation and
finding the maximum, which require O(logn) time. However, for problems
that demand extensive data movement such as sorting and routing all data
in the base, Q(y/n) time may be required, since only \/n wires cross the
middle of the mesh of trees.

The processor connections in the base may be added, but this does
not improve the computing power of the mesh of trees; it is only useful
in applications like image processing where direct connections between the
base processors is desirable. The mesh of trees has a recursive structure. If
we remove all the 24/n roots and their incident edges, we will be left with

NARATS

four copies of the 5= x 5= mesh of trees. For instance, Fig. 6.10 shows the

266 Parallel Algorithms

Fig. 6.10. Recursive structure of the mesh of trees.

four copies of the 2 x 2 mesh of trees resulting from removing the roots and
their incident edges in Fig. 6.9 (a). Henceforth, the processors of the base
will be numbered as P; j,1 <1i,j < /n.

The trees in the mesh of trees simplify many computations that can
be completed in O(logn) time. For instance, to broadcast a datum z from
Py 1 to all other processors in the base, first x is broadcast to the first
row tree (the topmost tree). From the leaves of this tree, \/n copies are
passed to all column trees, where z is passed to the leaves of those column
trees. The semigroup operations like summation and finding the maximum
are straightforward. For instance, to find the sum of n numbers stored
in the base, y/n row sums are first found by row trees and stored in the
first column, followed by summing those totals in the first column tree and
storing the final sum in P ;.

6.3.1 Sorting on the mesh of trees

The bisection width of the mesh of trees has a lower bound of 2(y/n), which
means that it is not suitable for sorting data of size in the order of Q(n)
efficiently, since £2(y/n) of the data might have to move from one side of the
base to the opposite side. However, for a smaller amount of data, it may be
possible to sort more efficiently. Consider, for instance, sorting /n numbers
ar,as,...,a ; stored in processors P11, P12,..., P, 4 in the base — that

Tree-based Networks 267

is, in the first row. We compute the rank of each element r(a;), which is the
number of items less than a;, and store a; in processor number r(a;) 4+ 1 in
the first row. For simplicity, assume that all items are distinct. First, for 1 <
J < +/n, we use the column trees to broadcast a; in column j, after which
processor P; ; will store a copy of a;, 1 < i < y/n. Next, for 1 <i < /n,
we broadcast a; from processor P; ; in row 7 to all processors in row i. Now,
every processor P; ; in the base contains the pair (a;,a;). Row 7 will now
be responsible for finding 7(a;), the rank of a;; it achieves this by counting
the elements a; smaller than a,. Specifically, if a; < a;, then we store 1 in
P ;, else we store 0 in P; ;, and so finding the rank amounts to counting
the number of 1’s, and storing the sum in all processors P; ; in row i. The
sum can easily be found using a row tree, which is then broadcast from the
root to its leaves. Finally, a column broadcast is used within every column
to broadcast a; from processor P ,.(4,)+1 t0 processor Py ,(q;)+1 (recall that
all processors in row i contain a;). It is easy to see that computing the rank
and broadcasting a; to its final destination takes O(logn) time. It follows
that the overall time taken by the algorithm is ©(logn), which is optimal
since the diameter is ©(logn). The cost is ©(nlogn), which is not optimal
in view of the ©(y/nlogn) time sequential algorithm. An outline of the
above description is given as Algorithm MOTSORT.

Algorithm 6.4 MOTSORT

Input: v/n numbers a1, as, .. .,/ stored in processors P11, Pi2,..., P /m
in the base.

Output: Sort the numbers and store them in P11, P12,..., P /.

for j+ 1 to y/n do in parallel
Use column tree j to broadcast a; to processors P; ;, 1 < i < /n.
end for
for i+ 1 to y/n do in parallel
broadcast a; from processor P;; in row ¢ to all processors in row i.
end for
for i+ 1 to \/n do in parallel
for j+ 1 to \/n do in parallel
if a; < a4, then store 1 in P; ;, else store 0 in P; ;.
end for
Compute the sum of 1’s in row ¢ and store it in all processors P; ;
of row i.
Perform column broadcasts to broadcast a; from processor
P (a;)+1 to processor Py ,.(q;)41-
. end for

PO OO W

— — =
[}

—_
w

268 Parallel Algorithms

7 4 5 6 7 4 5 6
7 4 5 6
7 4 5 6
7 4 5 6
(a) (b)

7 7,4 7,5 7,6 0 1 1 1
4,7 4 4.5 4,6 0 0 0 0
57 | 54 5 5,6 0 1 0 0
6,7 6.4 6,5 6 0 1 1 0

(c) (d)

3 3 3 3 4 5 6 7

0 0 0 0

1 1 1 1

2 2 2 2

(e) ()

Fig. 6.11. Sorting on the mesh of trees.

Example 6.3 Consider Fig. 6.11(a), in which the numbers 7,4, 5,6 are
to be sorted in a mesh of trees of size 16; only the base is shown in the
figure. First, for 1 < j < 4, we use the column trees to broadcast a; in
column j as shown in Fig. 6.11(b), after which processor P; ; will store a
copy of aj, 1 < ¢ < 4. Next, for 1 <17 <4, we broadcast a; from processor
P; ; in row i to all processors in row ¢. Now, every processor P; ; in the base
contains the pair (a;,a;) (see Fig. 6.11(c)). Next, we compute the rank of
a; by counting the number of elements a; smaller than a;. Specifically, if

Tree-based Networks 269

a; < a;, then we store 1 in P, ;, else we store 0 in P; ; (see Fig. 6.11(d)).
Now, finding the rank amounts to counting the number of 1’s, and storing
the sum in all processors F; ; in row 7. The sum can easily be found using
a row tree, which is then broadcast from the root to its leaves, as shown
in Fig. 6.11(e). Finally, a column broadcast is used within every column to
broadcast a; from processor P ;.(q,)4+1 to processor P ,(q,)41, as shown in
Fig. 6.11(F). O

6.3.2 Routing in the mesh of trees

The bisection width of the mesh of trees has a lower bound of Q(y/n),
which means that, as in the case of sorting, it is not suitable for routing
data of size in the order of Q(n), since Q(y/n) of the data might have to
move from one side of the base to the opposite side. However, for a smaller
amount of data, it may be possible to route data more efficiently. Con-
sider, for instance, routing \/n packets vy, v, ..., v v stored in processors
Py, Pra,..., Py s in the base, that is, in the first row to destination pro-
cessors P\/ﬁ’g(vl),P\/ﬁ’J(l&),...,P\/ﬁ,(;(,uﬁ). First, for 1 < j < /n, we use
the column trees to send v; to processor Pj ;. Next, for 1 < j < \/n, we use
the row trees to send v; to processor P s(,;). Finally, for 1 <j < Vn, we
use the column trees to send v; to processor P 5(,,)- Each of these steps of
data movements takes ©(logn) time. It follows that the overall time taken
by the algorithm is ©(logn). An outline of the above description is given
as Algorithm MOTROUTE.

Algorithm 6.5 MOTROUTE
Input: \/n packets v, v, ..., v,/ stored in processors P11, Pi2,..., P s in
the base, and destinations d(v1),0(v2),. .., (v z).

Output: Route the packets to destination processors

P rmson)s Pums(os)s - Pumso m)-

for j+ 2 to y/n do in parallel
Use column tree j to send v; to processor P; ;.
end for
for j< 1 to /n do in parallel
Use row tree j to send v; to processor Pj’g(vj).
end for
for j< 1 to /n do in parallel
Use column tree d(vj;) to send v; to processor P /7 60;)-
end for

© 0N O W=

270 Parallel Algorithms

v, v, vy v, v,
V2
V3
Va
3(v3) 8(vy) 8(v)) 8(vy) d(vy) d(vy) Bd(v)) 8(vy)
(a) (b)
Vi
V2

V3
vy vy | vy v, v,
3(vy) 8(vy) 8(v)) 8(vy) 3(vy) d(vy) (v 8(vy)

(c) (d)

Fig. 6.12. Routing on the mesh of trees.

Example 6.4 Figure 6.12(a) shows an example in which the packets
V1, V2, U3, V4, initially in processors Py 1, P12, P13, P14 are to be routed in
a mesh of trees of size 16 to processors Pi3, Py 4, P11, Pi2 in this order.
Only the base is shown in the figure. First, for 1 < j < 4, we use the
column trees to send v; to processor P;; as shown in Fig. 6.12(b). Next,
for 1 < j <4, we use the row trees to send v; to processor P; 5(,,) as shown
in Fig. 6.12(c). Finally, for 1 < j < 4, we use the column trees to send v;
to processor Py s(,,) as shown in Fig. 6.12(d). O

6.4 Computing Parallel Prefix on the Mesh of Trees

The parallel prefix problem was defined in Section 2.5. In this section, we
show how to compute it on the mesh of trees assuming addition as the
binary operation. So, given a sequence of n numbers (z; ; | 1 <1i,j < \/n)
stored in the base processors, we consider the problem of finding their

Tree-based Networks 271

prefix sums (s; ; | 1 < i,j < y/n) on the mesh of trees. For simplicity, we
will assume without loss of generality that the mesh of trees has mesh con-
nections. We will also assume the row major ordering scheme. We will use
Algorithm BFPARPREFIX used for binary trees in Section 3.14 to compute
parallel prefix on the butterfly. We assume there are n registers y; ; associ-
ated with the n processors of the base. Also, we assume there are \/n regis-
ters z; associated with processor Py /s, P /s -, P my and n— 2y/n+1
registers l; ; associated with processor P; ;, 2 < i< /n,1<j < n—1
First, the prefix sums of all rows are computed individually in parallel
using Algorithm BFPARPREFIX for binary trees. This takes ©(logn) time.
For 1 < i < \/n, let the prefix sums of row i be y; 1,2, .. +Yi,m- Note
that these are not the final prefix sums, except for row 1. Next, the prefix
sums of column /n are computed, again using Algorithm BFPARPREFIX.
These are denoted by sy, S2 /ms - - - Sy/m,m» and they are the final prefix
sums for column /n. This also takes O(logn) time. Next, for all processors
P; jm, we set zi<—5; s, 1 <i < y/n. This is followed by setting z; < z;_1,
2 < i < /n (recall that there are mesh connections). Now, for rows i,
2 < i < /n, we broadcast z; to row tree i, after which z; is copied to all
leaves of row tree ¢ and stored in register /; ;, 1 < j < y/n — 1. Finally, for
2<i<y/n,1<j<yn—1weexecute the assignment s; ;< y;; + ;.

Algorithm 6.6 MOTPARPREFIX
Input: X = (z;,; | 1 <i,j < +/n), a sequences of n numbers.

Output: S = (s;,; | 1 < 4,5 < /n), the prefix sums of X.

[y

. for i+~ 1 to y/n do in parallel
Use Algorithm BFPARPREFIX to compute the prefix sums of row i.
Let these be yi,1,¥i,2, -, ¥, /m-

3. end for

4. Use Algorithm BFPARPREFIX to compute the prefix sums

of column /n. Let these be S1,u/ms 82, /ms - -y Sy /i

5. for all processors P; /., set zi<s; /m, 1 <1< \/{

6. for i+ 2 to /n do in parallel z; + z;_1

7. Broadcast z; to row tree i, 2 < i < y/n, and store z; in the register l; ; of

every leaf.

8. for i+ 2 to y/n do in parallel

9. for j< 1 to y/n—1 do in parallel
10. Si i Yij —‘rli,j
11. end for
12. end for

N

272 Parallel Algorithms

1 4 2 3 1 5 7 10
5 3 1 2 5 8 9 11
4 6 3 2 4 10 13 15
1 3 4 5 1 4 8 13
(a) (b)
1 5 7 10 1 5 7 10
5 8 9 21 15 18 19 21
4 10 13 36 25 31 34 36
1 4 9 49 37 39 45 49

(c) (d)

Fig. 6.13. TIllustration of the operation of Algorithm MOTPARPREFIX.

Broadcasting takes ©(logn) time, and the parallel assignments take con-
stant time. It follows that the running time of the algorithm is ©(logn).
An outline of the above description is given as Algorithm MOTPARPREFIX.

Example 6.5 Figure 6.13 shows an illustration of the operation of Algo-
rithm MOTPARPREFIX. The input is given in Fig. 6.13(a). Fig. 6.13(b)
shows the prefixes of all rows individually. In part (c), the prefix sums
of column /n are computed, and in part (d) the final prefix sums are
shown. (]

6.5 Comparison Between the Mesh of Trees and the Pyramid

At first glance, the structure of the mesh of trees appears to be similar to
that of the pyramid. They are both constructed from the combination of
trees and the mesh. Moreover, both have ©(n) processors, ©/n bisection

Tree-based Networks 273

width and O(logn) diameter. The difference between the two is that in
the case of the pyramid, the apex is a bottleneck, while in the case of the
mesh of trees, there is no such bottleneck. So, one might expect that the
mesh of trees is more powerful than the pyramid. In fact, due to its ©y/n
bisection width, this is not the case in problems that require extensive data
movement. It is only in the case of some problems with moderate amounts of
data movement — that the mesh of trees can solve faster than the pyramid.

6.6 Bibliographic Notes

There are a number of books that cover parallel algorithms on the tree,
pyramid and mesh of trees. These include Akl [4], Akl [5], Akl [6],
Leighton [57], and Miller and Stout [67]. The algorithm for selection on
the tree machine is from Stout [89]. The pyramid has long been proposed
for performing high-speed low-level image processing computations. See, for
instance, Cantoni and Levialdi [19], and Rosenfeld [78]. Parallel prefix com-
putation on the pyramid computer is from Cinque and Bongiovanni [25].
Detailed parallel algorithms for many problems on the pyramid can be
found in Miller and Stout [67]. The mesh of trees was proposed indepen-
dently by several authors; see, for instance, Leighton [55]. Parallel algo-
rithms for many problems on the mesh of trees can be found in Leighton [57].
For more references on parallel algorithms on the tree, pyramid and mesh of
trees interconnection networks, see, for instance, Leighton [57], and Miller
and Stout [67].

6.7 Exercises

6.1. Design an algorithm to find the sum of n numbers on a tree network
with n leaf processors. The input numbers are stored at the leaves,
and the output is to be stored in the root processor. What is the
time complexity of your algorithm?

6.2. Design an algorithm to find the maximum of n numbers on a tree-
connected computer with O(logn) processors. The input numbers
are stored at the leaves, and the output is to be stored in the root
processor. What is the time complexity of your algorithm?

274

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

6.13.

6.14.

Parallel Algorithms

Give a recursive algorithm for finding the maximum in the tree
machine.

[lustrate the operation of Algorithm TREESELECT to find the 13th
smallest element of the 16 items: 7, 10, 15, 13,2, 9, 5, 12, 3, 8, 11, 4,
6, 14, 17, 16 on the tree machine with 16 processors.

(a) What is the bisection width of the 1-dimensional pyramid?
(b) Give a lower bound on the problems of sorting and routing on
the 1-dimensional pyramid.

What is the diameter of the 2-dimensional pyramid?

Use Algorithm PYRAMIDPARPREFIX to compute the prefix sums of
the 16 numbers: 2, 1,1, 3,2, 1, 2,4, 3,5, 1, 4, 2, 1, 3, 1 stored in the
base of a 2-dimensional pyramid.

(a) Compute the bisection width of the 2-dimensional pyramid.
(b) Give a lower bound on the problems of sorting and routing on
the 2-dimensional pyramid.

Assume that a digitized black/white picture is initially stored one
pixel per processor in the base of the pyramid. Give an algorithm to
find the area of the picture, that is, the total number of black pixels
in the picture, on the pyramid machine.

Give an algorithm to determine whether there are more black pixels
than white pixels in a digitized picture consisting of n pixels stored
in the base of the pyramid of size n (refer to Exercise 6.9).

Give an algorithm to determine the sum of n numbers stored in the
base of the pyramid.

Explain how to compute parallel prefix of n numbers on the pyramid
of size O(n/logn) processors. What is the cost of your algorithm?

Assess the pyramid machine in terms of sorting and routing.

What is the diameter of the mesh of trees?

6.15.

6.16.

6.17.

6.18.

6.19.

6.20.

6.21.

6.8

6.1.

6.2.

Tree-based Networks 275

Give an algorithm for finding the sum of n numbers on the mesh
of trees of size n. The numbers are initially loaded into the mesh of
trees, one element per processor, and their sum is to be stored in the
topleft processor.

(a) Compute the bisection width of the mesh of trees.
(b) Give a lower bound on the problems of sorting and routing n
items on the mesh of trees of size n.

Use Algorithm MOTSORT to sort the 4 numbers: 2, 1, 3, 5 on the
mesh of trees of size 16.

Give an assessment of the mesh of trees in terms of sorting and
routing.

Use Algorithm MOTROUTE to route the numbers 5, 3,2, 4, initially
stored in processors Pj 1, P12, P13, P14 in a mesh of trees of size 16
to processors Py 2, Py 3, Py 1, Ps4 in this order.

Let A be an algorithm that runs on the pyramid of size n in time
t(n). What will be the running time of A when simulated on the
mesh of trees of the same size? Explain.

Generalize Exercise 6.20 to any network. That is, what will be the
running time of A when simulated on a network of the same size?

Solutions

Design an algorithm to find the sum of n numbers on a tree network
with n leaf processors. The input numbers are stored at the leaves,
and the output is to be stored in the root processor. What is the
time complexity of your algorithm?

Similar to finding the sum on the PRAM using the tree method. The
time complexity is ©(logn).

Design an algorithm to find the maximum of n numbers on a tree-
connected computer with O(logn) processors. The input numbers

276

6.3.

6.4.

6.5.

6.6.

6.7.

Parallel Algorithms

are stored at the leaves, and the output is to be stored in the root
processor. What is the time complexity of your algorithm?

Assign O(n/logn) elements to each leaf processor. Initially, each
leaf processor finds the maximum of its assigned elements. The rest
is as in Exercise 6.1. The running time is O(n/logn + loglogn) =
O(n/logn).

Give a recursive algorithm for finding the maximum in the tree
machine.

Recursively find the two individual maxima in the two subtrees of
the root, and compute their maximum.

[lustrate the operation of Algorithm TREESELECT to find the 13th
smallest element of the 16 items: 7, 10, 15, 13,2, 9, 5, 12, 3, 8, 11, 4,
6, 14, 17, 16 on the tree machine with 16 processors.

Similar to Example 6.1.

(a) What is the bisection width of the 1-dimensional pyramid?
(b) Give a lower bound on the problems of sorting and routing on
the 1-dimensional pyramid.

(a) If we consider a 1-dimensional pyramid of size n, and cut it by
a line slightly off-center, the line will cut logn + 1 links. Hence, the
bisection width of the 1-dimensional pyramid is logn + 1.

(b) Since all n data items at the leaves of the 1-dimensional
pyramid may have to cross from one side to the other, at least
[n/(logn +1)] = Q(n/logn) time is required just to get data across
the middle of the 1-dimensional pyramid (see Exercise 6.5(a)). Hence,
the lower bound is Q(n/logn).

What is the diameter of the 2-dimensional pyramid?
The diameter of the 2-dimensional pyramid is 2log, n.
Use Algorithm PYRAMIDPARPREFIX to compute the prefix sums of

the 16 numbers: 2, 1,1, 3, 2,1, 2,4, 3,5, 1,4, 2, 1, 3, 1 stored in the
base of a 2-dimensional pyramid.

Similar to Example 6.2.

6.8.

6.9.

Tree-based Networks 277

(a) Compute the bisection width of the 2-dimensional pyramid.
(b) Give a lower bound on the problems of sorting and routing on
the 2-dimensional pyramid.

(a) Consider the number of links crossing the middle of the pyramid
of size n. In the base of the pyramid, there are y/n links crossing the
middle of the pyramid, in the next level, there are y/n/2 such links,
and so forth. Thus, the total number of links that cross the middle
of the pyramid is

log, n—1
vn o
> - = 2v/n — 2.
j=0

Hence, the bisection width of the 2-dimensional pyramid is 2,/n—2 =

o(vn).

(b) Since all n data items in the base of the pyramid may have to cross
from one side of the base mesh to the other, at least [n/(2y/n — 2)| =
Q(y/n) time is required just to get data across the middle of the
pyramid (see Exercise 6.8 (a)). That is, the lower bound is Q(y/n).

Assume that a digitized black/white picture is initially stored one
pixel per processor in the base of the pyramid. Give an algorithm to
find the area of the picture, that is, the total number of black pixels
in the picture, on the pyramid machine.

The area of the picture can be determined as follows: In stage 1 of
the algorithm, every processor in level 1 obtains the values of the
pixels stored in its four children in the base processors, computes the
number of black pixels, and sends the count to its parent. In general,
at stage j,1 < j < log,n, of the algorithm, every processor P at
level j obtains the values of the pixels stored in its four children at
level 7 — 1, and computes the total number of black pixels in the
subpyramid under P. Finally, at the final stage, the apex obtains the
values of the pixels stored in its four children at level log, n — 1, and
computes the total number of black pixels in the pyramid. The total
number of stages is log, n, and each stage takes ©(1) time for a total
of O(logn).

278

6.10.

6.11.

6.12.

6.13.

6.14.

6.15.

Parallel Algorithms

Give an algorithm to determine whether there are more black pixels
than white pixels in a digitized picture consisting of n pixels stored
in the base of the pyramid of size n (refer to Exercise 6.9).

Similar to the bit counting problem in Exercise 6.9.

Give an algorithm to determine the sum of n numbers stored in the
base of the pyramid.

Similar to the bit counting problem in Exercise 6.9.

Explain how to compute parallel prefix of n numbers on the pyramid
of size O(n/logn) processors. What is the cost of your algorithm?

Assign O(log n) elements to each leaf processor in the base. First, find
the prefix sums in each group in the base sequentially in O(logn)
time. Next, apply the prefix sums algorithm for the pyramid on
the final sums of all groups in time O(log(n/logn)) = O(logn).
Finally, update the prefix sums in all groups in the base sequentially
in O(logn) time. The running time is O(logn).

Assess the pyramid machine in terms of sorting and routing.

By Exercise 6.8(b), it takes Q(y/n) time to sort n numbers on the
pyramid. This shows that the pyramid is a poor choice for problems
that require intensive data movements such as sorting, routing and
some problems in computational geometry.

What is the diameter of the mesh of trees?

The diameter of the mesh of trees is the smallest distance between
two processors in opposite corners, which is 4|logn|.

Give an algorithm for finding the sum of n numbers on the mesh
of trees of size n. The numbers are initially loaded into the mesh of
trees — one element per processor, and their sum is to be stored in
the topleft processor.

First, each row tree finds the sum of the elements stored at its leaves
and stores the sum in its root in O(logn) time. Next, the sums in
all these roots are routed to the leaves of the leftmost column tree
in O(logn) time. Finally, the elements at the leaves of this column

6.16.

6.17.

6.18.

6.19.

6.20.

Tree-based Networks 279

tree are summed and their sum is routed to the topleft processor in
©(logn) time. The total running time is G (logn).

(a) Compute the bisection width of the mesh of trees.
(b) Give a lower bound on the problems of sorting and routing n
items on the mesh of trees of size n.

(a) The number of links crossing the middle of the mesh of trees
of size n (without the base connections) is y/n. Thus, the bisection
width of the mesh of trees is v/n = O(y/n).

(b) Since all n data items in the base of the mesh of trees may
have to cross from one side of the base mesh to the other, at least
[n/yv/n] = Q(y/n) time is required just to get data across the middle
of the mesh of trees (see Exercise 6.16 (a)). That is, the lower bound

is O(y/n).

Use Algorithm MOTSORT to sort the 4 numbers: 2, 1, 3, 5 on the
mesh of trees of size 16.

Similar to Example 6.3.

Give an assessment of the mesh of trees in terms of sorting and
routing.

By Exercise 6.16(b), it takes Q(y/n) time to sort or route n num-
bers on the mesh of trees. It follows that the mesh of trees is not a
good choice for problems that require intensive data movements such
as sorting, routing and some problems in computational geometry.
However, unlike the pyramid, the mesh of trees is capable of sorting
a restricted amount of data in certain configurations in ©(logn) time
(see Section 6.3.1).

Use Algorithm MOTROUTE to route the numbers 5, 3,2, 4, initially
stored in processors Pj 1, P12, P13, P14 in a mesh of trees of size 16
to processors Py 2, Py 3, Py 1, Ps4 in this order.

Similar to Example 6.4.
Let A be an algorithm that runs on the pyramid of size n in time

t(n). What will be the running time of A when simulated on the
mesh of trees of the same size? Explain.

280

6.21.

Parallel Algorithms

There will be a slow-down by a factor of O(logn) — that is, the
running time will be O(t(n) logn). To see this, let P; and P; be two
adjacent processors on the pyramid machine, and suppose they are
mapped to processors P, and P; on the mesh of trees. The transfer
of data between processors P; and P; on the pyramid, which takes
constant time, is simulated in O(logn) time between processors P
and P, on the mesh of trees.

Generalize Exercise 6.20 to any network. That is, what will be the
running time of A when simulated on a network of the same size?

The mesh of trees with n processors can simulate any network of the
same size with a slow-down factor of O(logn). The justification is
the same as that of Exercise 6.20.

Chapter 7

The Star Network

7.1 Introduction

An efficient interconnection topology usually possesses the following prop-
erties: small diameter, low degree, high connectivity, regularity, node sym-
metry, and a simple routing algorithm. The small diameter shortens the
message routing delay while the low degree of nodes is necessary to limit
the number of input-output ports to some acceptable value. Regular graphs
with the property of node symmetry play the most important role in net-
work design, due to the simplicity of designing routing algorithms. One of
the most efficient interconnection networks has been the well-known binary
hypercube; it has been used to design various commercial multiprocessor
machines and it has been extensively studied. Another regular interconnec-
tion network was proposed as an attractive alternative to the hypercube,
called the star. The star, also called d-star, is node and edge symmetric,
and strongly hierarchical as is the case with the hypercube. Let d be a
positive integer. The d-dimensional star, denoted by Sy, is defined as fol-
lows. Consider the n = d! permutations with d symbols, typically 1 to d.
d! processors are defined, one per permutation, such that two processors
are connected by a bidirectional link if and only if their corresponding per-
mutations differ only in the leftmost and any other position. That is, there
is a connection between processor F, and processor Pg if and only if
can be obtained from « by interchanging the first and the jth symbols of
a, 2 < j < d (see Fig. 7.1). For example, consider the case when d = 3.

281

282 Parallel Algorithms

@)
(a)
12 21
(b)
123
321 213
231 312

132
(c) (d)

Fig. 7.1. d-dimensional star interconnection network; d = 1,2, 3, 4.

In this case, there are six processors: Pjos, P32, Po13, Pos1, P312 and Psaq.
Figure 7.1(c) shows the connections between these processors.

The d-dimensional star can also be defined by recursive construc-
tion, where it is constructed from d copies of (d — 1)-stars, denoted by
Sa—1(1),S4-1(2),...,S4-1(d), as follows. Here, the vertices of Sy_1(i) are
labeled by the (d — 1)-permutations of the symbols 1,2, ..., d except i. We
add the symbol i at the end of each label of S;_1(i). For example, the four
S3’s in Fig. 7.1(d) are constructed from the S3 in Fig. 7.1(c) by appending
the digit i, 1 < i < 4. Two vertices in two different substars are connected if
and only if one permutation can be obtained from the other by exchanging
the first and last symbols. For instance, in Fig. 7.1(d), processor 1234 is
connected to processor 4231.

The d-dimensional star S; compares with the hypercube favorably in
several aspects. Its diameter is [3(d — 1)/2] = O(d), and its degreeis d—1 =
O(d), which are sublogarithmic in term of the number of processors (Notice
that d < log(d!) = ©(dlogd)). Like the hypercube, the star graph is vertex-
symmetric in the sense that any two vertices are similar, that is, the graph
looks the same when viewed from any vertex. Each edge connects an odd

The Star Network 283

permutation with an even permutation, and so 5, is bipartite, and contains
no Cy (the cycle on 4 vertices).

7.2 Ranking of the Processors

For some problems, e.g., the problem of sorting, it is imperative to impose
a linear order on the processors. Let P, and P3 be two processors of Sy,
where @ = aqas ...aq and § = by1bs ... by. The ordering < on the processors
is defined as follows: P, < Pg (or aw < f3) if there exists an 4,1 < i < d, such
that a; = b, for j > ¢ and a; > b;. For example, 2314 < 3214. To see this, let
1 = 2; then azas = b3bs and ay > by. The rank of a processor P3, denoted
by r(Pg) is defined as the number of processors P, such that P, < Pg plus
one. Table 7.1 shows the ranks of the processors of the 4-dimensional star.

Figure 7.2 shows the star in Fig. 7.1(d) redrawn with processors’ ranks.

The labels in Table 7.1 and their corresponding ranks can be generalized
for any dimension d as follows. We describe the procedure for generating

Table 7.1. The ranks of processors of the 4-dimensional star.

label r label r label r label r label r label r

1234 1 2134 2 1324 3 3124 4 2314 5 3214 6
1243 7 2143 8 1423 9 4123 10 2413 11 4213 12
1342 13 3142 14 1432 15 4132 16 3412 17 4312 18
2341 19 3241 20 2431 21 4231 22 3421 23 4321 24

Fig. 7.2. 4-dimensional star interconnection network with processors’ ranks.

284 Parallel Algorithms

the labels in connections with the example 4-dimensional star. There are

four steps to follow:

(1) Generate the 4! permutations of {1,2,3,4}.
1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431,
3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213, 42314312, 4321.
(2) Revere their order.
4321,4312,4231,4213,4132,4123, 3421, 3412, 3241, 3214, 3142, 3124,
92431,2413, 2341, 2314, 2143, 2134, 1432, 1423, 1342, 1324, 1243, 1234.
(3) Reverse every item in the list.
1234, 2134, 1324, 3124, 2314, 3214, 1243, 2143, 1423, 4123, 2413, 4213,
1342, 3142, 1432, 4132, 3412, 4312, 2341, 3241, 2431, 4231, 3421, 4321.

(4) Partition the list of 24 items into four sublists of six elements each

corresponding to the four substars.

1234 < 2134 < 1324 < 3124 < 2314 < 3214 <
1243 < 2143 < 1423 < 4123 < 2413 < 4213 <
1342 < 3142 < 1432 < 4132 < 3412 < 4312 <
2341 < 3241 < 2431 < 4231 < 3421 < 4321.

Obtaining this set of labels can be achieved in parallel using the routine

given in Algorithm STARLABELS.

Algorithm 7.1 STARLABELS(d)
Input: An integer d > 1

Output: Generate the labels of star Sy.

1. If d = 1 then return {1}.
2. Recursively generate all (d — 1)-permutations
A=a1,az,...,0(-1y of the symbols {1,2,...,d — 1}:
A< STARLABELS(d — 1).
for j<1to (d —1)! do in parallel
Bo,j < Append d to a;
end for
for i+ 1tod—1,do
for j<1to (d —1)! do in parallel
Bi,; < Interchange symbols d —iand d —i+ 1 in [Bi_1,;
end for
end for
return {f;; |[0<i<d—-1,1<j<(d-1)!}

e e R

— =

The Star Network 285
Assume that the labels are arranged into the rectangular table
{Bijl0<i<d-11<j<(d—1)}

of dimensions d x (d — 1)! such that the entries in row ¢ are the labels
for substar Sq_1(d — i), 0 < i < d — 1. We now show how to fill out
this table by showing how to obtain each row of the table from its pre-
decessor. The first step is to recursively generate all (d — 1)-permutations
A = aq,0,...,ag-1y of the symbols {1,2,...,d — 1}. Append the sym-
bol d to each a; to form the first row of the table. This is done in Steps 3
to 5. Next, interchange the symbols d and d — 1 in each [y ; to form the
second row of the table. Thus, the symbol d — 1 is the last symbol in every
label of the second row. This is followed by the row that consists of labels
in which d — 1 and d — 2 are exchanged, which will make the symbol d — 2
the last symbol in every label of the third row. This procedure continues
until the last row is computed, in which 2 and 1 are exchanged. Thus, the
symbol 1 is the last symbol in every label of the last row. This procedure
for processing all the remaining d — 1 rows is done in Steps 6 to 10.

The ranks are computed simply as increasing from left to right and from
top to bottom. In fact, the rank of processor F; ; is given by the formula
r(P;,;) =i x (d—1)!+j. This guarantees that those ranks in the same row
are localized to one substar.

The running time of Algorithm STARLABELS(d) is given by the recur-
rence T(d) = T(d — 1) + O(d), which leads to a running time of T'(n) =
O(d?).

7.3 Routing between Substars

Let Sg—1(a) and Sg_1(b) be two different substars of a star Sy, and suppose
we want to transfer data from Sg_1(a) to Sq—1(b) such that data from two
source processors go to different destination processors. That is, no two
sources send to the same destination. There are two types of routes as
shown in Fig. 7.3: Direct and indirect. In a direct route, there is a direct
link between the source and destination, as shown in part (a) of the figure.
The other type, shown in part (b) of the figure, is the indirect route, which

286 Parallel Algorithms

1234 4231

3214

(a)

Fig. 7.3. Routes between two substars: (a) Direct. (b) Indirect.

consists of a path from the source to the destination. Specifically, there is
a path of three links connecting the source to the destination.

The method of routing between the two substars is accomplished by
Algorithm STARROUTE. In the algorithm, both « and (§ consist of d — 2
symbols. Clearly, the running time of the algorithm is ©(1).

Algorithm 7.2 STARROUTE(a,b)
Input: Two integers a and b, 1 < a < b < d.

Output: Send data from Sq—1(a) to Sq—1(b).

1. There are (d — 2)! processors P, with label u = baa. These processors
send their data immediately in one step from P, in Sq—1(a) to P, in
Sa—1(b), where v = aab.

2. The remaining (d —1)! — (d — 2)! processors Py, in Sq—1(a) with w = caa,
¢ # a,b, send their data from Sq_1(a) to Py in Sq—1(b), where z = ¢fb in
three substeps:

(a) First, data is sent from processors P, in Sq_1(a) to processors P, in
Sa—1(c), where y = aac.

(b) Next, processors P, send the data they received to P. in the same
substar Sq—1(c), where z = bfc.

(c¢) Finally, processors P, send the data they received to P, in Sq_1(b),
where x = ¢fb, as stated above.

The Star Network 287

Example 7.1 Suppose we want to carry on data transfers from S3(4) to
S3(1) in Fig. 7.1(d). The following steps will take place.

(1) 1234 — 4231,

(2) 1324 — 4321,

(3) 3214 — 4213 — 1243 — 3241,

(4) 2314 — 4312 — 1342 — 2341,

(5) 2134 — 4132 — 1432 — 2431, and

(6) 3124 — 4123 — 1423 — 3421. O

7.4 Computing Parallel Prefix on the Star

In this section, assume that the d! processors are numbered by their ranks,
that is by the integers 1 to d!. It is important that every processor P,
knows its label o as well as its rank r(P,). This can be done in ©(d?)
time (Exercise 7.1). For convenience, we will assume addition as the binary
operation. Let a sequence of elements (a1, as,...,aq) be given, stored in
the processors of Sy, one element per processor. Thus a; is initially stored
in P;, where the index 7 is the rank of the processor, as explained above.
The problem is to find the prefix sums of (a1, as, ..., aq), which are a1, a1 +
as,a1+as+as,...,a1+as+---+aq. For simplicity, we will assume that d
is a power of 2; otherwise, it would only make the presentation complex
(see Example 7.2).

We divide the d substars into groups. Initially, there are d groups,
each containing only one substar and the algorithm is applied recur-
sively to that substar. Next, there are d/2 groups: {Sq—1(1),S4-1(2)},
{Sa-1(3),Sa—1(4)}, ..., {Sa-1(d — 1), S4—1(d)}. In the next iteration, there
are d/4 groups: {Sq—1(1), Sq-1(2), Sa—1(3), Sa—1(4)}, ..., {Sa-1(d—3), Sa—1
(d—2),S4-1(d — 1), S4-1(d)}, and so on. Suppose that we have com-
puted the prefix sums for two groups of substars as follows. Group 1:
Sa—1(2),Sa—1(i +1),...,Sq-1(i + s), and Group 2: Sy_1(i + s + 1), Sq—1
(i4+s+2),...,5-1(i +2s+1). Here, s = 1,2,4,.... There are two vari-
ables associated with each processor, x and y, for storing the partial prefix
sum so far and the total sum of values in the group to which it belongs,
respectively. Let the total sum in Group 1 be y; and the total sum in

288 Parallel Algorithms

Group 2 be yo. We first use Algorithm STARROUTE in Section 7.3 to send
y1 to every processor in Group 2 and y2 to every processor in Group 1. The
prefix sums of processors in Group 1, the x1’s, remain the same, while the
prefix sum x5 in a processor in Group 2 becomes x2 + y1. The total sum for
all processors in both groups becomes 41 4 y2. It is important to note that
all of these steps require ©(1) time. Now, combining Group 1 and Group 2
forms a single group. The steps just described are then used to merge the
new group with another group formed in the same way. This continues until
all the prefix sums have been computed.

The above procedure induces a binary tree for the computation of the
prefix sums (see Fig. 7.4 for example). When the recursion terminates, each
processor in the group holds the variables x and y required at the beginning
of the merging phase. The groups are now merged in pairs, as described in
the previous paragraph.

The merging process is performed as follows. We first merge d/2 consec-
utive pairs of substars to yield d/2 groups of size 2. Next, we merge d/4 pairs
of consecutive 2-substar groups to yield d/4 groups of size 4. Continuing
this way, in the jth iteration, we merge d/2’ pairs of groups of size 2771
to yield d/27 groups of size 27. Algorithm STARPARPREFIX implements this
idea. The algorithm maintains the variable s which is the size of groups

S— 1) it it (11 11] fi
LT S S RN I

/
Ist iteration l l l l
_ (1] [4]
Recursive
Processors P PR Py £y Py i
Input

Fig. 7.4. Illustration of computing the prefix sums on the star.

The Star Network 289

Algorithm 7.3 STARPARPREFIX

Input: A sequence of d! values (ai,as2,...,aq) stored in d! processors
P1, P, ..., Py, where d is a power of 2.

Output: The prefix sums of the sequence.

1. Recursively find the prefix sums in all (d — 1)-substars in parallel. Store
the prefix sums of a (d — 1)-substar in the x registers, and the totals in
the y registers of all its processors.
t1
while t < d/2
st t<— 2s; 14 0; v d/ft
for k< 0 to v — 1 do in parallel
ikt
for j<i+1to i+ s do in parallel
Sa—1(j) sends to Sg_1(j + s) its y1 register, and
Si—1(j + s) sends to Sg—1(j) its y2 register using
Algorithm STARROUTE in Section 7.3
9. Each processor in Sq_1(j) adds y2 to its y1 register.
10. Each processor in Sg—1(j + s) adds y1 to its z1 and 1
registers.
11. end for
12. end for
13. end while

PN O

to be merged as discussed above. Initially, s is set to 1, and is doubled in
each iteration of the while loop. i 4+ 1, i 4+ s and 7 + ¢, where t = 2s, define
the boundaries of the two groups to be merged. The while loop is exe-
cuted log(d/2) = O(logd) times. Step 8 takes ©(1) time (see Section 7.3).
Hence, the above description of the algorithm leads to a running time of
T(d)=T(d—1)+6(logd) = O(dlogd).

Example 7.2 Let d = 3, so the number of processors is n = d! = 6
Note here that d is not a power of 2. Figure 7.4 shows an illustration of
the flow of Algorithm STARPARPREFIX. There are 6 processors numbered
P, P, ..., Ps. The input is shown in the bottom: 1,3, 1,2, 3, 1. The results
of the initial recursive calls are shown in the lowest level of the tree. For
example, the prefix sums computed recursively in processors P; and P»
are 1 and 4, shown in the top box, and the sum of values is shown as 4
in the bottom box. In the next level, processors P;, P, are merged with
processors P3, Py, and the prefix sums are shown as 1,4,5,7 and the total
is 7. There is no other group to merge with processors P5, Ps, so they are

290 Parallel Algorithms

passed to the next iteration. In the last iteration, the group of processors
Py, Py, Py, Py are merged with the group of processors Ps, Ps. The resulting
prefix sums are 1,4,5,7,10,11 and the total sum is 11.]

7.5 Computing the Maximum

In this section, we show how to compute the maximum of d! numbers stored
one per processor of a d-dimensional star. The algorithm to be presented is
a modification of the algorithm for computing parallel prefix, as discussed
in Section 7.4. In fact, the following algorithm is a simplification of it.
Instead of discussing the differences between the two algorithms, we will
present the maximum finding algorithm for completeness. Assume that the
d! processors are numbered by the integers 0 to d! — 1. Let a sequence of
elements (ag,ai,...,aq—1) be given, stored in the processors of Sy, one
element per processor. Thus a; is initially stored in P;, where the index 7 is
the rank of the processor minus 1, as described in Section 7.2. For simplicity,
we will assume that d is a power of 2; otherwise, it would only make the
presentation complex (see Example 7.3).

We divide the d substars into groups. Initially, there are d groups,
each containing only one substar and the algorithm is applied recursively
to that substar. Next, there are d/2 groups: {Sg—1(1),Sq-1(2)}, {Sa-1(3),
Sa—1(4)}, ..., {Sa=1(d — 1), Sq—1(d)}. In the next iteration, there are d/4
groups: {Sd_l(l), Sd_1(2), Sd_1(3), Sd_1(4)}, RN {Sd_l(d — 3), Sd—l
(d—2),S4-1(d — 1), S4-1(d)}, and so on. Suppose that we have com-
puted the maximum for two groups of substars as follows. Group 1:
Sa—1(2),Sa—1(i +1),...,Sq—1(i + s), and Group 2: Sy_1(i + s + 1), Sq—1
(i4+s42),...,5-1(t +2s 4+ 1), where s = 1,2,4,.... Suppose also that
each processor holds the variable x for storing the maximum so far in the
group to which it belongs. Let the maximum in Group 1 be x; and the max-
imum in Group 2 be x5. We first use Algorithm STARROUTE to send x7 to
every processor in Group 2 and x5 to every processor in Group 1. Then, the
maximums in processors in Group 1 and in processors in Group 2 become
max{z1,x2}. All of these steps require ©(1) time since routing takes ©(1)
time, as described in Section 7.3. Group 1 and Group 2 now form a single
group. The steps just described are then used to merge the new group with
another group formed in the same way. This continues until the maximum
has been computed.

The Star Network 291

2nd iteration
P

P2345P6

T

1st iteration
L P4
Recursive

Processors 1 P’3 P4 P5 P6
Input I

Fig. 7.5. Illustration of computing the maximum on the star.

/U;UH

The above procedure induces a binary tree for the computation of the
maximum (see Fig. 7.5 for example). When the recursion terminates, each
processor in the group holds the variable x required at the beginning of
the merging phase for holding the maximum. The groups are now merged
in pairs, as described in the previous paragraph. The merging process is
performed as follows. We first merge d/2 consecutive pairs of substars to
yield d/2 groups of size 2. Next, we merge d/4 pairs of consecutive 2-substar
groups to yield d/4 groups of size 4. Continuing this way, in the jth iteration,
we merge d/2’ pairs of groups of size 297! to yield d/27 groups of size 2.
Algorithm STARMAX implements this idea. The algorithm maintains the
variable s which is the size of the groups to be merged as discussed above.
Initially, s is set to 1, and is doubled in each iteration of the while loop. i+1,
i+ s and i+ t, where ¢t = 2s define the boundaries of the two groups to be
merged. The while loop is executed log(d/2) = O(log d) times. Step 8 takes
O(1) time (see Section 7.3). Hence, the above description of the algorithm
leads to a running time of T'(d) = T'(d — 1) + ©(logd) = O(dlogd).

Example 7.3 Let d = 3, so the number of processors is n = d! = 6. Note
here that d is not a power of 2. Figure 7.5 shows an illustration of the flow
of Algorithm STARMAX. There are 6 processors numbered Pi, Ps, ..., Ps.
The input is shown in the bottom: 2,3,7,5,4,1. The results of the initial

292 Parallel Algorithms

Algorithm 7.4 STARMAX

Input: A sequence of d! values (ao,a1,...,aq—1) stored in d! processors
(ao,a1,...,aq—1), where d is a power of 2.

Output: The maximum of all values.

1. Recursively find the maximum in all (d — 1)-substars in parallel. Store
the maximum of a (d — 1)-substar in the x registers of all its processors.
t+1
while t <d/2
s t; t< 2s; 1< 0; v d/t
for k<0 to v —1 do in parallel
14kt
for j<—i+1to i+ s do in parallel
Sa—1(j) sends to Sg—1(j + s) its x1 register, and
Sa—1(j + s) sends to Sg—1(j) its =2 register using
Algorithm STARROUTE in Section 7.3
9. Each processor in Sg—1(j) updates its x register to
max{z1,z2}.
10. Each processor in Sq—1(j + s) updates its z register to
max{z1,z2}.
11. end for
12. end for
13. end while

PN O W

recursive calls is shown in the lowest level of the tree. For example, the max-
imum computed in processors P; and P is 3, and it is stored in both proces-
sors. In the next level, processors Py, P, are merged with processors P, Py,
and the maximum is shown as 7, again stored in all four processors. There
is no other group to merge with processors Ps, P, so they are passed to the
next iteration. In the last iteration, the group of processors P, Py, P53, Py
are merged with the group of processors Ps, Ps. The resulting maximum
is 7, stored in all processors. O

7.6 Neighborhood Broadcasting and Recursive Doubling

Assume that the source processor P,, where xz = afc, wants to send a
message in its substar Sy_1(c) to the d — 2 processors

bBec, for all b # a,c.

The technique of recursive doubling is used to generate the labels of proces-
sors in substar Sy_1(c) reachable from the source processor P, efficiently.

The Star Network 293

It is important to note that the generated labels have distinct starting
symbols, that is, no two labels have the same starting symbol. Initially,
the source processor is the only one with the message. In one step, it
sends the message through a direct link to one of its neighbors. Now
two processors have the message and they in turn send the message to
two other processors in such a way that the source sends its message to
another neighbor in one step and the neighbor which has received the
message in the previous step sends the message to one of its neighbors
in one step. The number of processors with the message is now four (the
source processor and the other three processors) and these four proces-
sors send the message to four more processors in the same substar in the
same fashion. The algorithm continues until all d — 2 processors receive the
message.

One possible implementation is given in Algorithm STARRECDUB. Given
the source processor & = ajasas . .. agq, the algorithm simply selects the mid-
dle symbol and exchanges it with the first symbol to obtain the label 3. It
then transmits the message to the processor with the newly generated label,
and repeats the same procedure recursively on the left half of o and the right
half of 8 in parallel. The initial call of the algorithm is STARRECDUB(«, 1, d),
where « is the source label. The number of labels generated by the algo-
rithm is d — 1, that is, d — 2 plus the source processor label. Recall that the
generated labels have distinct starting symbols. This procedure of repetitive
doubling leads to a running time of T'(d) = T'(d/2) + ©(1) = O(logd).

Algorithm 7.5 STARRECDUB
Input: A processor label o = ai1,a2,...,a4, and two integers [and h,
1< 1 < h < d
Output: d — 1 processor labels 8; = bibz...,bq, where bg = aq, with the
property that the first symbol b, is different in all labels ;.

1. if h > [then

2 m+ |(L+h)/2]

3 B4 swap a1 and a,, in a.

4 Output g

5. do in parallel

6 Recursively call STARRECDUB(a, [, m)

7 Recursively call STARRECDUB(S, m + 1, h)
8 end

9. end if

294 Parallel Algorithms

Example 7.4 Consider applying the algorithm on the label 1234.
STARRECDUB(1234, 1,4) results in 3 labels: 2134,1234 and 3124. Apply-
ing the algorithm on the label 12345, STARRECDUB(12345,1,5) results
in 4 labels: 32145,21345,12345 and 42135. Observe that the gen-
erated labels have distinct starting symbols. If we choose a =
5234161011987, the call STARRECDUB(5234161011987,1,11) results in 10
labels: 6234151011987, 3254161011987, 2534161011987, 5234161011987,
1254361011987, 4253161011987, 9234151011687, 1123415106987,
1023415611987, 8234151011697. O

Example 7.5 The algorithm can be applied on general labels, not just
those composed of digits. If we choose a =abcdefghk, the call STARREC-
DUB(abcdefghk, 1, 9) results in 8 labels: ebedafghk, cbadefghk, bacdefghk,
abcdefghk, dbacefghk, gbcedafehk, fbedaeghk, hbedafegk. O

7.7 Broadcasting in the Star

In this section, we discuss broadcasting in the d-dimensional star Sy. In
the description that follows, note that u, v, z,y and 3 are permutations, so
they don’t have repeated symbols. Further, if one of them is combined with
other symbols, e.g., a,b and ¢, then it is assumed that they do not contain
these symbols, and these symbols themselves are different. We assume that
there is a message to be broadcast from processor P,, where x = a(b,
1 < a,b <d, in substar Sy_1(b) to all other processors in the star S;. The
action of broadcasting can be accomplished in the following three steps.

(1) Use the algorithm for neighborhood broadcasting discussed in
Section 7.6 to broadcast the message to the d — 2 processors

cpb, for all c# a,b

in the substar Sy_1(b) containing the source processor.

(2) In this step, each of the d — 1 processors P,, where u = ¢f8b, ¢ # b, in
substar Sy_1(b), sends the message it received in Step 1 to processor
P,, where v = bfc in substar Sq_1(c).

(3) Finally, all processors P,, where y = bfc, in substars Sq_1(c),
c e {1,2,...,d} — {b}, recursively broadcast the message in substars
Si—1(c). The source processor P,, where x = afb, recursively broad-
casts the message in Sg_1(b).

The Star Network 295

4231

3142

Fig. 7.6. Example of broadcasting in the star.

The above procedure leads to the following recurrence for the running
time: T'(d) = T(d — 1) + ©(log d), whose solution is ©(dlogd) = O(logd!).

Example 7.6 The algorithm for broadcasting in the star is illustrated
in Fig. 7.6. Initially, processor 1234 in the star S; holds the message to
be broadcast. By Step 1 and Example 7.4, the message is propagated to
processors 2134 and 3214, as shown in Fig. 7.6 (b), in which the processors
that hold the message are shown as dark nodes, and the message transmis-
sions are shown by thick lines. After Step 2 of the algorithm, the message is
transmitted to processors 4231, 4132 and 4213, as shown in Fig. 7.6 (¢) by
the dark nodes. Finally, as shown in Fig. 7.6 (d), the message is broadcast
recursively in all substars. O

296 Parallel Algorithms

7.8 The Arrangement Graph

The family of arrangement graphs is a generalization of the star graph
topology. It is a family of graphs that contains the star graphs. The (d, k)-
arrangement graph, denoted by Ag j, is characterized by the two positive
integers d and k, where 1 < k < d. Its nodes consist of the (df—!k)! per-
mutations (arrangements) of d symbols, typically 1,2,...,d, taken k at a
time. The edges connect nodes that are different in exactly one of their
positions. The arrangement graph addresses a major drawback of the star
graph, which is scalability; to go from dimension d to dimension d + 1,
the number of processors in the star graph grows from d! to (d + 1)!. Fur-
ther, the arrangement graphs are more flexible than the star graphs in
terms of choosing the main design parameters such as degree and diameter.
Figure 7.7 shows different arrangement graphs.

The (d, k)-arrangement graph has d!/(d — k)! nodes, and is regular
of degree k(d — k). Its diameter is [3k/2]|. As in the hypercube and the
star, it is vertex-transitive, and has a hierarchical structure. The (d,1)-
arrangement graph Ag, is Ky, the complete graph on d vertices. The
(d,d — 1)-arrangement graph Ay 4—; is isomorphic to the usual star graph.
In Fig. 7.7, Az 2 is Cg, the cycle on 6 vertices; it is also S3, the star graph

Ay Az Az
. 12 13
| 2
— o 3 23
3 2 31 21
Ay Ayn Ay

Fig. 7.7. Arrangement graphs.

The Star Network 297

on 6 vertices, and A4 3 is Sy, the star graph on 24 vertices; it is the same
as the graph shown in Fig. 7.1(d).

7.9 The (d, k)-Star Graph

A major practical difficulty with the d-star is the restriction on the number
of nodes: d! for a d-star . The set of values of d! is spread widely over the
set of integers; so, one may be faced with the choice of either too few or
too many available nodes. To relax the restriction of the number of nodes
d! in the d-star, the class of generalized star graphs, called arrangement
graphs, was discovered. The arrangement graph was discussed in the pre-
vious section. When designing an interconnection network based on the
arrangement graph, we can make a more suitable choice for the number of
nodes by tuning the two parameters d and k. Nevertheless, the degree of
the resulting network, which is k(d — k), may be very high. This is a very
significant factor from the architectural point of view since the relatively
high node degree results in additional difficulty in interconnection and extra
complexity in processor design.

As an alternative to overcome the difficulties mentioned above for the
star graph and the arrangement graph, another generalization of the star
graph, called the (d, k)-star, was proposed. As in the arrangement graph,
the (d, k)-star graph, denoted by Sy, consists of the ﬁ permutations
(arrangements) of d symbols, typically 1,2,...,d, taken k at a time. It is
regular of degree d — 1, number of nodes d!/(d—k)!, and diameter 2k — 1 for
k< |d/2] and k+ |(d —1)/2] for k > |d/2] + 1. The (d, k)-star preserves
many attractive properties of the d-star graph such as node symmetry, low
degree, small diameter, hierarchical structure, maximal fault tolerance, and
simple shortest routing. In addition, the (d,d — 1)-star is isomorphic to the
d-star, and hence, all these properties can be derived for the d-star graph
as it is a special case of the (d, k)-star graph. A (4,2)-dimensional and a
(5,2)-dimensional star connection network are each shown in Fig 7.8. It is
important to note that Sy, can be formed by interconnecting d Sq—1 x—1’s.
Fig 7.8(a) shows that Sio can be viewed as an interconnection of four
S3.1’s through 2-edges (see next paragraph), and Fig 7.8(b) shows that S5 o
can be viewed as an interconnection of five Sy 1’s through 2-edges. In fact,

298 Parallel Algorithms

12

Fig. 7.8. (4, 2)-dimensional and (5,2)-dimensional star connection networks.

like the d-star graph Sy, Sqr can be decomposed into Sy—1x—1’s along
any dimension ¢,2 < ¢ < k. That is, an Sq) can be decomposed into d
node-disjoint Sq—1, —1’s different ways by fixing the symbol in any position
1,2 < ¢ < k. This decomposition can be carried out recursively on each
Si—1,k—1 to obtain smaller subgraphs.

Let d and k be two integers satisfying: 1 < k < d — 1. For simplicity, let
(d) ={1,2,...,d} and (k) = {1,2,...,k}. A (d, k)-star graph is specified
by two integers d and k, where 1 < k < d—1. The node set of Sy j, is denoted
by {a1az...ar | a; € (d) and a; # a; for i # j}. The adjacency is defined as
follows: ajas . .. a;...ay is adjacent to (1) a;az ... aq ...ax through an edge
of dimension ¢, where 2 < ¢ < k (interchange a1 with a;), and (2) zas ... ag
through dimension 1, where z € (d) — {a; | 1 < i < k}. The edges of type
(1) are referred to as i-edges (e.g., 2-edges and 3-edges), and the edges of
type (2) are referred to as 1-edges. Note that the degree of each node is
d — 1; each node is connected with (d — k) 1-edges, and an i-edge for each
1,2 < i < k. Let u be a node, and v a neighbor of u. v is called a 1-neighbor
of u if they are connected by a 1-edge, and it is called an i-neighbor of w if
they are connected by an i-edge.

Example 7.7 Consider the graph shown in Fig 7.9(a) (it is the same as
the graph shown in Fig. 7.8(a)). (d) = {1,2,3,4}. The edge (21, 31) is a
1-edge since 31 is obtained from 21 by replacing 2 in 21 with 3 € (d)—{2, 1}.
On the other hand, the edge (21, 12) is a 2-edge since 12 is obtained from

The Star Network 299

123

Fig. 7.9. (4,2) and (4, 3)-dimensional star connection networks.

21 by swapping a; and as. Hence, 31 is a 1-neighbor of 21 and 12 is a
2-neighbor of 21.

Now, consider Fig 7.9(b). (d) = {1,2,3,4}. The edge (431, 231) is a
1-edge since 231 is obtained from 431 by replacing 4 in 431 with 2 € (d) —
{4,3,1}. On the other hand, the edge (431, 341) is a 2-edge since 341 is
obtained from 431 by swapping a; and as, and the edge (431, 134) is a
3-edge since 134 is obtained from 431 by swapping a; and as. Hence, 231
is a 1-neighbor of 431, 341 is a 2-neighbor of 431 and 134 is a 3-neighbor
of 431. All dashed lines in the figure are 1-edges. O

In Sq, given an arbitrary node u, there exists a cycle between v and
all u’s 1-neighbors (Exercise 7.14). In Sq 1, given two nodes which are not
connected by a 1-edge, then cycles formed with these two nodes with their
1-neighbors are disjoint from each other. It can be shown that Sg ; can be

decomposed into @iy vertex- disjoint cycles of length d — k + 1.

d— k+1

Theorem 7.1 In Sy, for any node v, v and all its 1-neighbors form a
clique K441 of size d — k + 1.

Proof. Given any node v = ajas...ay and its 1-neighbor set, which is
denoted by U, we need to prove that any two nodes in U are connected
with each other by an edge. Suppose x and y are two nodes in U. Let

300 Parallel Algorithms

T =1das...ax and y = jas...ap, x # y implies ¢ # j. By definition of the
(d, k)-star graph, there is also a 1-edge between x and y, which means every
two nodes in U are connected to each other. Hence, v and its 1-neighbors
form a clique with d — k& + 1 nodes. O

In fact, there are ; cliques each with d — k + 1 nodes in Sg .

d!
(d—k+1)

Example 7.8 In Fig. 7.9, the dashed subgraphs are cliques. For instance,
the nodes {21, 31,41} form a clique of size 3 in part (a) of the figure, and
the nodes {431,231} form a clique of size 2 in part (b) of the figure. O

7.10 Sorting in the Sg , Star

In this section, we develop a simple sorting algorithm for the (d, k)-star by
embedding a 2-dimensional mesh into Sy 1. For convenience, we will refer to
a processor and its label interchangeably. In this embedding, the vertices of
Sa.r are arranged into a 2-dimensional d x gz:lgi mesh in row-major order.
The nodes are labeled as described in Section 7.2; we repeat this description

for Sy 2. There are four steps to follow:

(1) Generate the 12 2-permutations of {1,2,3,4}.
12,13,14,21,23,24,31, 32, 34,41,42,43

(2) Revere their order.
43,42,41,34,32,31,24,23,21,14, 13, 12.

(3) Reverse every item in the list.
34,24, 14,43,23,13,42,32,12,41, 31, 21.

(4) Partition the list of 12 items into four sublists of three elements each
corresponding to the four substars.
34 <24 <14 — S42(4)
43 <23 <13 — S42(3)
42 <32 <12 — S42(2)
41 <31 <21 — Sy 2(1)

This ordering suggests the embedding shown in Fig. 7.10. It is important
to note that in this embedding each column consists of processors with the
same rank in their respective substar. For instance, processors 24, 23, 32
and 31 have rank 2 in their substars.

The Star Network 301

34 24 14

43 23 13

42 32 12

41 31 21

Fig. 7.10. Example of embedding a mesh into a (4, 2)-dimensional star.

Now, we apply Algorithm SHEARSORT of Section 4.6, which sorts the
rows and columns alternately logd times. This is described in Algorithm
STARDKSORT.

Algorithm 7.6 STARDKSORT
Input: A sequence of n = (df!kﬁ
Sd k-

Output: The sequence sorted in snakelike order.

elements (a1, as,...,as) stored in (d, k)-star

1. If k = 1 then sort the elements in Sq_x41,1 = Kq—r+1 using a straight-
forward method.
2. for i< 1 to logd do
3 for j< 1 to d do in parallel
4. Recursively sort Sq—1,5—1(j) in forward direction if j is odd
and in reverse direction if j is even.
5. Sort the columns in upward direction.
6. end for
7. end for

In Step 1, the star reduces to a clique Sgq_j41,1, which can be sorted
using a sorting algorithm for the PRAM in time O(log(d — k + 1)) since
all processors are connected. The inner loop from Step 3 to Step 6, which
constitutes one of the logd phases of the algorithm, alternates between
sorting the rows and sorting the columns. In sorting the rows, the elements
in Sg—1%,-1(4),1 < j < d, are sorted recursively in parallel, where sorting
is in the forward direction for odd j and in the reverse direction for even j.

In algorithm SHEARSORT, each column sorting is done in O(d) time.
Since each edge of the mesh is mapped to a path of length O(d), each
step of the mesh is simulated by O(d) steps of the star. It follows that the

302 Parallel Algorithms

running time of each iteration of the algorithm is given by the recurrence
t(d,k)=t(d—1,k—1)+O0(d)O(d); t(d—k+1,1)=0(og(d—k+ 1)),
whose solution is

t(d, k) = O(d*) +O((d — 1)*) + -+ O((d — k + 1)*) + O(log(d — k + 1))
= O(kd?),

since the depth of recursion is min{d, k} = k. Thus, the overall running
time in all logd iterations of the algorithm is T'(d, k) = O(kd? log d).

Unraveling recursion leads to a recursion tree similar to that for the
(4, 3)-star shown in Fig. 7.11.

As shown in the figure, sorting a (4, 3)-star induces four sorting instances
of (3,2)-stars, which in turn induce 12 sorting instances of (2, 1)-stars, i.e.,
cliques. These cliques of size 2 are shown in Fig. 7.9 as dashed edges. In
general, sorting a (d, k)-star induces d sorting instances of (d — 1,k — 1)-
stars, which in turn induces (d — 1) sorting instances of (d — 2, k — 2)-stars
and so on. This continues until the base of recursion is reached, in which
m instances of (d — k + 1,1)-stars, i.e., cliques, are generated. Thus
the problem of sorting reduces to sorting columns of stars of decreasing
sizes. Since each step, e.g., element comparison, requires O(d) low-level
routing steps, each column sorting takes O(d?) time (as explained above).

2341134 | 324 | 124 | 314 | 214
243 | 143 | 423 | 123 | 413 | 213
342 1142 [432 | 132 | 412 | 312
341|241 | 431 | 231 | 421 | 321

YEARNN

234|134 2431143 342|142 341 | 241
324 | 124 4231123 432132 4311 231
314 | 214 413|213 312 421 | 321

JI1 AN SIS /N

234 | 324|314 | | 243 | [423 |[413 | [342| (432 | |412] |341|[431|]421
134 | [124 || 214 | 143] | 123 |[213| [142 | [132 | | 312] |241|[231]| 321

Fig. 7.11. Recursion tree for sorting on the (d, k)-star.

The Star Network 303

This leads to a running time of
O(d*) +0((d = 1)*) 4+ --- +0O((d — k)*) + O(log(d — k + 1)) = O(kd?)

for each iteration, for an overall running time of O(kd? log d), which matches
the above derivation. Exercise 7.18 shows how to improve the running time
to O(kdlogd).

7.11 Bibliographic Notes

The star network was proposed by Akers, Harel and Krishnamurthy as an
alternative to the hypercube [1]. A good introduction to the star network
can be found in the book by Akl [5]. For more on the star graphs and the
more general Cayley graphs, see for example, Akers and Krishnamurthy [2].
See also Dietzfelbinger, Madhavapeddy and Sudborough [34]. Algorithms
for optimal broadcasting in the star graph can be found in Mendia and
Sarkar [65], and Sheu, Wu and Chen [85]. Arrangement graphs were intro-
duced by Day and Tripathy [32] as a generalization of the star graphs. For
routing, broadcasting, prefix sums, and sorting algorithms on the arrange-
ment graph, see Li and Qiu [59]. The (n, k)-star graph was proposed by
Chiang and Chen as a generalized star graph [23]. Topological properties
of the (n,k)-star graph can be found in Chiang [22] and He [42]. Many
algorithms for the star graph (see, e.g., Akl, Qiu and Stojmenovic [9]) may
adapt to the (n, k)-star graph with slight modifications. For more references
on the star network, see Akl [5].

7.12 Exercises

7.1. Given a permutation m = k1ks ... kg, show how to compute its rank
efficiently.

7.2. Analyze the sequential running time of Algorithm STARLABELS.

7.3. Analyze the parallel running time of Algorithm STARLABELS using
the star graph as a model. That is, given a star graph of processors,
how long does it take for the processors to know their ranks?

304

7.4.

7.5.

7.6.

7.7.

7.8.

7.9.

7.10.

7.11.

7.12.

7.13.

7.14.

7.15.

Parallel Algorithms

Show the steps for data transfers from S3(2) to S3(3) in the star Sy
such that no two sources send to the same destination (see Fig. 7.3).

[lustrate the operation of Algorithm STARPARPREFIX for computing
parallel prefix on the star described in Section 7.4 to find the prefix
sums of 2,1, 3, 1,4, 2. Assume a 3-dimensional star with 6 processors.

Illustrate the operation of Algorithm STARMAX for computing the
maximum on the star described in Section 7.5 to find the maximum
of 3,5,8,1,5,2. Assume a 3-dimensional star with 6 processors.

Apply Algorithm STARRECDUB in Section 7.6 on the label 21435.

Show that any neighborhood broadcasting algorithm on a network
with degree d must require Q(log d).

Ilustrate the operation of the algorithm for broadcasting in the star
discussed in Section 7.7 to broadcast a datum initially stored in pro-
cessor 2134 of the star Sy.

Show that any broadcasting algorithm on a graph with n nodes must
require time Q(logn).

Show that the arrangement graph A4 o can be partitioned into cliques
of size 3, i.e., triangles.

Generalize the result of Exercise 7.11 for the arrangement graph A, .
That is, show that the arrangement graph A, can be partitioned
into cliques of size d — k + 1.

Show that the (d, k)-star Sq1 is a clique Kjy.

In Sgk, given an arbitrary node u, show that there exists a cycle
between u and all w’s 1-neighbors.

Explain how to find simple disjoint paths (linear arrays) of length d
in the (d, k)-star.

7.16.

7.17.

7.18.

7.19.

7.20.

7.21.

7.13

7.1.

7.2.

The Star Network 305

Apply Exercise 7.15 on the embedding of S, 3 shown in Fig. 7.11 to
obtain 6 disjoint paths (linear arrays) of length 4.

Prove the correctness of your solution to Exercise 7.15.

Use the result of Exercise 7.15 to improve the running time of the
sorting algorithm presented in Section 7.10.

A dominating set S in a graph G = (V, E) is a subset of V such that
every element x € V isin S or adjacent to an element y in S. Explain
how to find a dominating set of minimum size in the (d, k)-star.

Apply Exercise 7.19 on the embedding of S4 3 shown in Fig. 7.11 to
obtain 4 dominating sets of minimum size.

Prove your answer to Exercise 7.19.

Solutions

Given a permutation m = k1ks ... kg, show how to compute its rank
efficiently.

Let permutation m = kiks . .. kq be given. Then, its rank r(7) is given
by

d d
r(w)_1+z<|kii > m) x (i — 1)1,

l=i+1

where t; = 1 if k; > k;, and 0 otherwise. This is shown in pseudocode
in Algorithm COMPSTARRANK. Its running time is computed as fol-
lows. Steps 5 and 7 are executed ©(d) times each. Hence, the total
running time is ©(d?).

Analyze the sequential running time of Algorithm STARLABELS.

Each table entry takes constant time to produce. This implies a run-
ning time of O(d!). So, it is linear in the number of processors.

306 Parallel Algorithms
Algorithm 7.7 COMPSTARRANK(Sq)
Input: d-dimensional star Sy
Output: Generate the ranks of S,.
1. for j< 1 to d! do in parallel
2 r<1
3 Let permutation 7; = k1ka ... kq
4 t+1
5 for i+— 2 to d do
6 S<4— k‘l — 1
7 for [+ i+ 1to d do
8. if k;, > k; then s+ s—1
9. end for
10 tetx (i—1)
11 r<r+|s| xt
12 end for
13. end for
7.3. Analyze the parallel running time of Algorithm STARLABELS using

7.4.

7.5.

7.6.

7.7.

the star graph as a model. That is, given a star graph of processors,
how long does it take for the processors to know their ranks?

All columns of the table can be evaluated in parallel. Each column can
be evaluated sequentially in time ©(d). This implies the running time
recurrence T'(d) = T'(d — 1) + ©(d), whose solution is T'(d) = ©(d?).

Show the steps for data transfers from S5(2) to S5(3) in the star Sy
such that no two sources send to the same destination (see Fig. 7.3).

Similar to Example 7.1.

Illustrate the operation of Algorithm STARPARPREFIX for computing
parallel prefix on the star described in Section 7.4 to find the prefix
sums of 2,1,3,1,4,2. Assume a 3-dimensional star with 6 processors.

Similar to Example 7.2.

Illustrate the operation of Algorithm STARMAX for computing the
maximum on the star described in Section 7.5 to find the maximum
of 3,5,8,1,5,2. Assume a 3-dimensional star with 6 processors.

Similar to Example 7.3.

Apply Algorithm STARRECDUB in Section 7.6 on the label 21435.
Similar to Example 7.4.

7.8.

7.9.

7.10.

7.11.

The Star Network 307

Show that any neighborhood broadcasting algorithm on a network
with degree d must require Q(logd).

At each time unit, one processor with the messages can only send
to one of its neighbors, so after every step, the number of neighbors
which have received the information can at most double. The maxi-
mum number of neighbors of a node is d, so the least time to solve
the neighborhood broadcasting problem must be Q(logd).

Ilustrate the operation of the algorithm for broadcasting in the star
discussed in Section 7.7 to broadcast a datum initially stored in
processor 2134 of the star Sy.

Similar to Example 7.6.

Show that any broadcasting algorithm on a graph with n nodes must
require time Q(logn).

Note that after each time unit the number of processors that have
received the information being broadcast can at most double.

Show that the arrangement graph A4 o can be partitioned into cliques
of size 3, i.e., triangles.

|V (A4,2)
3

Ay 2 can be partitioned into | = 4 triangles in two ways as

shown in Fig. 7.12.

(a)

Fig. 7.12. Two partitions of the arrangement graph A4 2 into four triangles (dark

edges).

308

7.12.

7.13.

7.14.

7.15.

Parallel Algorithms

Generalize the result of Exercise 7.11 for the arrangement graph Ay j.
That is, show that the arrangement graph A, can be partitioned
into cliques of size d — k + 1.

Let I; ={1,2,...,d}, and for a fixed i, 1 <14 <k, let
V.= {a1 ...ai_lbiai+1 LG | b ely— {al,...,ai_l,ai+1,...ak}.

Then, |V;| = d — k+ 1. There are |PZ_,| such V;’s, where P | is the
number of permutations of d items taken k at a time. It is easy to
see that the subgraph induced by V; is a complete graph K4_41. In
particular, Ky 41 = Kgif k=1, and Kg_y41 = Ko if k=d — 1.

Show that the (d, k)-star Sq1 is a clique Kjy.
By Theorem 7.1 (All edges are 1-edges).

In Sgk, given an arbitrary node u, show that there exists a cycle
between v and all u’s 1-neighbors.

Since Sg is node-symmetric, we may assume without loss of gen-
erality that v = 123...k. Then, u is connected by a l-edge to
(k4+1)23...k, which in turn is connected to (k+2)23. ..k, and so on.
Hence, 123...k,(k+1)23.. .k, (k+2)23...k,...,d23 ...k, 123 .. .k
is a cycle in Sg .

Explain how to find simple disjoint paths (linear arrays) of length d
in the (d, k)-star.

If we exchange the 1st symbol with the kth symbol in the
2-dimensional embedding, then the columns constitute simple paths
of length d. See Table 7.2 for example. For instance, one possible
simple path is, 42,32, 23, 13.

Table 7.2.

path 1 path2 path3

43 42 41
34 32 31
24 23 21

14 13 12

The Star Network 309

Table 7.3.

path 1 path2 path3 path4 path5 path6

432 431 423 421 413 412
342 341 324 321 314 312
243 241 234 231 214 213
143 142 134 132 124 123

7.16. Apply Exercise 7.15 on the embedding of S4 3 shown in Fig. 7.11 to
obtain 6 disjoint paths (linear arrays) of length 4.

From the first column of Table 7.3, we obtain the path
432,342,243,143. The other paths can be found similarly.

7.17. Prove the correctness of your solution to Exercise 7.15.

Any column of the two dimensional embedding looks like the
following

ald
Oég(d —].)
Oé3(d — 2)

ad_12

adl.

If we swap the first and kth symbol, we obtain

310

7.18.

7.19.

7.20.

7.21.

Parallel Algorithms

Now, exchanging d in df; with (d-1) yields (d — 1)82, exchanging
(d—1) in dBy with (d — 2) yields (d — 2)8s3, and so on. Thus, df,
(d—1)Ba2...,284-1,184 is a simple path of length d — 1. In other
words, it represents d processors forming a linear array.

Use the result of Exercise 7.15 to improve the running time of the
sorting algorithm presented in Section 7.10.

Do the following steps.
(1) Preprocessing step: Before the algorithm starts, copy the con-
tents of every processor aab to processor baa.
(2) Sort as in Algorithm STARDKSORT.
(3) Postprocessing step: After the sorting algorithm halts, copy
back the contents of every processor baa to processor aab.

Both the preprocessing and postprocessing steps take ©(1) time. It
follows that performing the above procedure will reduce the time
complexity to O(kdlogd), that is, it will be faster by a factor of
O(d), as the algorithm will work on columns of adjacent elements.

A dominating set S in a graph G = (V, E) is a subset of V such that
every element x € V isin S or adjacent to an element y in S. Explain
how to find a dominating set of minimum size in the (d, k)-star.

If we exchange the 1st symbol with the kth symbol in the
2-dimensional embedding as in the previous exercises, then the rows
constitute dominating sets of minimum size. See Table 7.2. For exam-
ple, one possible dominating set of minimum size is, 43,42, 41.

Apply Exercise 7.19 on the embedding of S, 3 shown in Fig. 7.11 to
obtain 4 dominating sets of minimum size.

From the first row of Table 7.3, we obtain the dominating set
432,431,423,421,413,412. The other dominating sets can be found
similarly.

Prove your answer to Exercise 7.19.

First, note that all elements in the same row start with the same
symbol. This means that they form an independent set, that is, no
one is connected to the other. Next, each row of elements of the form

The Star Network 311

aaq, aqs, ..., acq_1y consists of all permutations of the symbols in
{1,2,...,d} — {a} prefixed with the symbol a. Hence, if 8 is any
permutation that does not start with a, then it must be a neighbor of
one of these (d —1)! permutations. This implies that this dominating
set is of minimum size.

This page intentionally left blank

Chapter 8

Optical Transpose Interconnection
System (OTIS)

8.1 Introduction

When communication distances exceed a few millimeters, optical intercon-
nects provide speed and power advantages over electronic interconnects.
Therefore, in the construction of very large multiprocessor machines, it is
prudent to interconnect physically close processors using electronic inter-
connects and to use optical interconnects for pairs of processors that are
distant. This led to the introduction of optical transpose interconnection
system (OTIS). Specifically, in OTIS, there are n? processors organized
into n groups of n processors each. The intergroup interconnects are opti-
cal, while the intragroup interconnects are electronic. It can be shown that
when the number of groups equals the number of processors, the band-
width and power efficiency are maximized, and system area and volume
are minimized. Each processor is indexed by the pair (g,p), 0 < g,p < n,
where ¢ is the group index, i.e., the group the processor is in, and p is the
processor index within each group. Processor p in group g is connected to
processor g in group p, 0 < p, g < n. Every group can be realized as one of
the well-studied interconnection networks, e.g., mesh, hypercube, butterfly,
mesh of trees, and so forth. This results in OTIS-Mesh, OTIS-Hypercube,
OTIS-butterfly, and so on.

313

314 Parallel Algorithms

Optical links have much larger bandwidth than electronic links do, and
transfer times including latency are different on optical and electronic links.
Therefore, we will occasionally count communication along optical and elec-
tronic interconnects separately. However, we use the simplifying assumption
that any constant amount of data can be communicated over an optical link
during an optical communication step, while only a unit amount of data
can be communicated over an electronic communication step.

8.2 The OTIS-Mesh

The OTIS-Mesh consists of n groups of n processors each, where each group
of processors forms a /n X v/n mesh. Processor p in mesh (group) g is
connected to processor g in mesh (group) p, 0 < g¢,p < n. Figure 8.1
shows an OTIS-Mesh with 4 meshes of 4 processors each for a total of 16
processors. In this figure, the optical links are shown in thick lines. As shown
in the figure, processor (00,01) is connected to processor (01,00), processor
(01, 10) is connected to processor (10,01), and so forth. Figure 8.2 shows an
OTIS-Mesh with 9 meshes of 9 processors each for a total of 81 processors.

group 01

group 00

group 10 group 11

10) (u

11 10

N N
Fig. 8.1. OTIS-Mesh with 16 processors.

Optical Transpose Interconnection System (OTIS) 315

8.2.1 Data movements in the OTIS-Mesh

Consider embedding a /1 x y/n X y/nx y/n 4-dimensional mesh on the OTIS-
Mesh. Corresponding to this embedding, the processors in the OTIS-Mesh
can be labeled by the quadruple (4, j,k,1), where 0 < 4,4, k,l < /n — 1.
Here, the group number is i/n+ j and the processor number in each group
is ky/n + I. Each move in the 4-D mesh can be simulated by at most three
moves in the OTIS-Mesh as follows. The 4-D mesh moves (¢, 7, k£ 1,1) and
(i, 7, k,1+1) take one electronic move each, since they are local to the group.
The 4-D mesh move (i £ 1, 4, k, 1) can be simulated by one electronic move

group 12
00 01

group 20 group 21 group 22

Fig. 8.2. OTIS-Mesh with 81 processors (only some of the optical links are
shown).

316 Parallel Algorithms

and two optical moves as follows
<i7j7 I€7l)0H (k7l7i7j)%(k7l7i +]‘7‘7’)0H (7; + 17j7 k’ l)’

where - is an electronic move and -2- is an optical move. In some
data movements, we will use the letters u,v,x and y to refer to the four
dimensions of the 4-D mesh as well as its embedding on the OTIS-Mesh.
Thus, each move along the z and y dimensions takes one step, and each
move along the u and v dimensions takes three steps.

8.2.2 Broadcasting in the OTIS-Mesh

Assume the data is initially in the single processor (0,0) (processor 0 in
group 0), and it is to be broadcast to all processors in the OTIS-Mesh.
The algorithm, shown as Algorithm OTISMESHBROADCAST, consists of three
steps. After Step 1, = is broadcast to all processors in group 0. Following
Step 2, processor 0 of each group has a copy of z, and following Step 3,
each processor in the OTIS-Mesh has a copy of x.

Algorithm 8.1 OTISMESHBROADCAST
Input: z stored in processor (0,0).

Output: Broadcast x to all other processors.

1. Processor (0,0) broadcasts x to all processors in its group, group 0.

2. Perform an OTIS move. That is, all processors in group 0 send their data
to processors in other groups using optical links (see Fig. 8.2).

3. Processor (g,0) in every group g broadcasts its data to all processors
within its group.

Steps 1 and 3 take 2(y/n—1) electronic moves each, and Step 2 takes one
OTIS move. The total is 41/ — 3 steps. The above discussion assumes that
the origin of broadcasting is processor 0. Generalizing to other processors
is straightforward.

8.2.3 Semigroup operations on the OTIS-Mesh

Consider performing semigroup operations, e.g., addition, on the OTIS-
Mesh. Assume the operation of addition and that n numbers are dis-
tributed one per processor. The 2-tuple index (g,p) of a processor may
be transformed into a scalar i = gn + p with 0 < i < n?. Let x; be the

Optical Transpose Interconnection System (OTIS) 317

data stored in processor i, 0 <1 < n2. Notice that the sum is to be stored
in all processors of the OTIS-Mesh. The algorithm, shown as Algorithm
OTISMESHSUM, consists of three steps. After Step 1, the sum of all values
in every group is computed and stored in all processors of that group. Fol-
lowing Step 2, for all groups ¢,0 < g < n — 1, processor (p, g) contains the
sum of all elements in group p, and following Step 3, each processor in the
OTIS-Mesh has a copy of the desired sum xg + 21 + -+ Tp_1.

Algorithm 8.2 OTISMESHSUM
Input: z; stored in processor i, 0 < i < n?.

Output: The sum of values x; stored in all processors.

1. Each group performs the sum of its local data.

2. Perform an OTIS move. That is, for all groups g and all processors p,
(g,p) sends the local sum in its group computed in Step 1 to processor
(p, g) using optical links.

3. Each group computes the total of its local sums computed in Step 1.

Steps 1 and 3 take 4(y/n — 1) electronic moves each (Exercise 4.3), and
Step 2 takes one OTIS move. The total is 8(y/n — 1) electronic moves and
one OTIS move.

Example 8.1 Consider running Algorithm OTISMESHSUM for finding the
sum on the OTIS-Mesh with 16 processors (see Fig. 8.1). The contents of
the processors will be represented by a set of four sets, each representing
a group of processors. Suppose that initially the contents of the processors
are

{{1,2,1,3},{2,4,1,3},{1,3,2,4},{2,4,1,2} }.
Following the first step, computing the local sums, we obtain
{{7, 7,7,7},{10,10, 10,10}, {10, 10, 10, 10}, {9, 9, 9,9}}.
After performing the OTIS move in Step 2, the contents become
{{7,10,10,9},{7,10,10,9},{7,10,10,9},{7,10,10,9} }.
Finally, after performing the addition in Step 3, we obtain
{{36, 36, 36,36}, {36, 36, 36,36}, {36, 36, 36,36}, {36, 36, 36, 36}},

318 Parallel Algorithms

which is the desired sum. Note that all processors contain the final
sum. (]

8.2.4 Parallel prefix in OTIS-Mesh

The parallel prefix problem for the mesh was discussed in Section 4.4. In
this section, we show how to compute it on the OTIS-Mesh. For simplicity,
we will assume addition as the binary operation. The 2-tuple index (g, p)
of a processor may be transformed into a scalar i = gn+p with 0 <14 < n?.
Let x; be the data stored in processor i. It is required to compute the prefix
sums xg, ro+z1, To+r1+Te, ..., ro+x1+- - -+xy—1. The algorithm is shown
as Algorithm OTISMESHPARPREFIX. It consists of six phases. (Recall that
processor p in group g is denoted by (g,p)). In Phase 1 of the algorithm,
each group computes its local prefix sums. After Phase 2, the partial sum
computed in processor (g,n — 1) is copied to processor (n — 1,¢) for all
9,0 < g <n-—1. As a result, group n — 1 will hold the partial sums stored
in all processors (g,n — 1). Let these sums be sg, $1,...,5,-1. Phase 3
computes the modified partial sums in group n — 1:

p—1

tp=Y s;, 0<p<n-—1
=0

These valves are then copied to processors (g,n — 1) in Phase 4 for all
9,0 < g < n—1. The data in processor (g,n — 1) is then broadcast to all
processors in group ¢ for all g,0 < g < n — 1. Finally, in Phase 6, each
processor (g,p) in the OTIS-Mesh adds the local prefix sum computed in
Phase 1 and the modified prefix sum ¢, it received in Phase 5.

The analysis of the algorithm is straightforward. Phases 1 and 3 take
O(y/n) steps each. Broadcasting in Phase 5 costs ©(y/n) time and addition
in Phase 6 takes ©(1) time. Phases 2 and 4 take one OTIS move each. It
follows that the running time is ©(y/n).

Example 8.2 Consider finding the prefix sums in the OTIS-Mesh with 16
processors (see Fig. 8.1). The contents of the processors will be represented
by a set of four sets, each representing a group of processors. Initially, the
contents of the processors are

{{1727 173}7 {2747 173}7 {1737274}7 {2747 172}}

Optical Transpose Interconnection System (OTIS) 319

Algorithm 8.3 OTISMESHPARPREFIX
Input: z; stored in processor i, 0 < i < n?.

Output: Compute the prefix sums of the x;’s.

1. Perform a local prefix sum within each group as discussed in Section 4.4.

2. Perform an OTIS move of the prefix sums computed in Phase 1 for all
processors (g,n — 1). That is, for all groups g, copy the contents of pro-
cessor (g,m — 1) to processor (n — 1,g) in group n — 1. Call these sums
50,81y-++58Sn—1-

3. Group n — 1 computes a modified prefix sum of the values s; received in
Phase 2. In this modification, processor (n — 1,p) computes
ty=3""0s;,0<p<n—1

4. Perform an OTIS move of the modified prefix sums computed in Phase 3.
That is, for all groups g, copy t4 that is computed in the previous phase
to processor (g,n — 1) in group g.

5. Each group g performs a local broadcast of the modified prefix sum ¢4
received by its processor (g,n — 1).

6. Each processor (g,p) in the OTIS-Mesh adds the local prefix sum com-
puted in Phase 1 and the modified prefix sum ¢4 it received in Phase 5.

After computing the local prefix sums in Phase 1, we obtain
{{1,3,4,7},{2,6,7,10},{1,4,6,10},{2,6,7,9} }.
The contents after Phase 2 change as follows
{{1, 3,4,7},{2,6,7,10},{1,4,6,10},{(2,7), (6,10), (7,10), (9,9)} }-

Here, the fourth group consists of pairs of values; the first value in each
group-processor pair (3, p) is the local prefix sum computed earlier and the
second is the prefix sum s, of group p received in Phase 2. So, in group 3,
so = 7,51 = 10,89 = 10 and s3 = 9. Following Phase 3, the contents become

{{1,3,4,7},{2,6,7,10},{1,4,6,10}, {(2,0), (6,7), (7,17), (9,27)} }.

Here, 0,7,17,27 are the modified prefix sums ¢, of 7,10,10,9 stored in
group 3. Following Phase 4, the contents of the processors become

{{1,3,4,(7,0)},{2,6,7,(10,7)},{1,4,6, (10, 17)}, {(2,0), (6,7), (7,17), (9,27)} },

that is, the contents of group 3 are copied to processors (g, 3) in all groups g.
After broadcasting in Phase 5, the contents are represented by the pairs

{{(1,0),(3,0),(4,0), (7,00}, {(2,7),(6,7),(7,7), (10, 7)},

320 Parallel Algorithms

{(1,17), (4,17),(6,17), (10, 17)}, {(2,27), (6,27), (7,27), (9,27)} }.
Finally, after addition in Phase 6, the contents in all processors become
{{1,3,4,7}, {9,13,14,17},{18,21, 23,27}, {29,33,34,36}},

which are the desired prefix sums, as can be seen by inspection. O

8.2.5 Shift operations on the OTIS-Mesh

In this operation, data in all groups is shifted to the right (or left) along one
of its coordinates by k positions, where —/n < k < y/n. For example, data
is shifted from (u,v,z,y) to (u + k,v,z,y) along coordinate u, or shifted
from (u,v,z,y) to (u,v, z+k,y) along coordinate z:. Here, we have assumed
that the processors are labeled by the quadruple (u, v, z,y). Shifting along
coordinates x and y is straightforward, as it is a standard mesh operation.
Hence, we will concentrate on shifting along coordinates u and v. Algorithm
OTISMESHSHIFT describes how to shift along coordinate u or along coordi-
nate v. In Step 1, for all groups ¢g,0 < g < n — 1, processor (g,p) copies
its element to processor (p,g), and following Step 2, the elements in each
group are shifted. Shifting is performed along x coordinate if the original
shifting is by u, and is done along y coordinate if the original shifting is
by v. Finally, after Step 3, for all groups ¢,0 < g < n — 1, processor (g, p)
copies its element to processor (p, g).

Steps 1 and 3 take one OTIS move each, and Step 2 takes k electronic
moves.

Algorithm 8.4 OTISMESHSHIFT
Input: n? elements stored in OTIS-Mesh and an integer k, —/n < k < \/n.

Output: The elements are shifted to the right or the bottom by &k positions
along the u or v coordinates.

1. Perform an OTIS move. That is, for all groups ¢g and all processors p,
(g,p) sends its element to processor (p, g) using optical links.

2. Each group shifts its local data along coordinate x or y row-wise or
column-wise.

3. Perform an OTIS move as in Step 1.

Example 8.3 Consider running Algorithm OTISMESHSHIFT for shifting
the elements in the OTIS-Mesh with 16 processors one element to the right

Optical Transpose Interconnection System (OTIS) 321

along the u-coordinate (see Fig. 8.1). The contents of the processors will be
represented by a set of four sets, each representing a group of processors.
Suppose that initially the contents of the processors are

{{1,2,3,4},{5,6,7,8}, {9,10,11,12}, {13, 14, 15,16} }.

It is important to note that each set of four numbers constitutes a 2 x 2
mesh. Following Step 1, we obtain

{{1, 5,9,13},{2,6,10,14},{3,7,11,15},{4,8,12,16} }.
After Step 2, the contents of the processors become
{{0,1,0,9},{0,2,0,10},{0,3,0,11},{0,4,0,12} }.
Finally, following Step 3, we obtain
{{0,0,0,0},{1,2,3,4},{0,0,0,0},{9,10,11,12} }
which is the desired result. O

Example 8.4 Consider running Algorithm OTISMESHSHIFT — for shift-
ing the elements in the OTIS-Mesh with 16 processors — one element to
the right along the v-coordinate (see Fig. 8.1). Suppose that initially the
contents of the processors are

{{1,2,3,4},{5,6,7,8},{9,10,11,12},{13,14,15,16} }.
Following Step 1, we obtain
{{1,5,9, 13},1{2,6,10,14},{3,7,11,15},{4, 8,12, 16}}.
After Step 2, the contents of the processors become
{{0,0, 1,5},{0,0,2,6},{0,0,3,7}, {0,0,4,8}}.
Finally, following Step 3, we obtain
{{0,0,0,0}, {0,0,0,0},{1,2,3,4}, {5,6, 7,8}},

which is the desired result. O

322 Parallel Algorithms

8.2.6 Permutation routing in OTIS-Mesh

We consider the problem of permutation routing in the OTIS-Mesh with n?
processors, in which every processor tries to send to a different destination.
We will denote a processor Py in group (4, j) by the quadruple (i, 7, k,1).

8.2.6.1 Deterministic routing in the OTIS-Mesh

The greedy algorithm for permutation routing in the OTIS-Mesh is a gen-
eralization of the greedy algorithm for the 2-dimensional mesh discussed
in Section 4.9.2. Let be a packet to be routed from processor (u, v, z,y)
to processor (u/,v’,2’,y"). The greedy algorithm consists of the following
phases.

Phase 1: Route 7 from processor (u,v,x,y) to processor (u,v,u’,v’) as
detailed in Section 4.9.2.

Phase 2: Send 7 from processor (u,v,u’,v") to processor (u’, v, u,v) using
one optical move.

Phase 3: Route 7 from processor (u’,v’,u,v) to processor (u/,v', 2’ y') as
detailed in Section 4.9.2.

Phases 1 and 3 take at most 2,/n — 2 steps each, and Phase 2 takes
one step for a total of at most 41/n — 3 steps. However, many packets may
pile up at intermediate processors. Moreover, many packets may pile up at
processor (u,v,u’,v") after Phase 1; in the worst case all processors from
group (u,v) may want to send to all processors in group (u’,v’). In this
case, O(n) packets may accumulate at processor (u,v,u’,v’) after Phase 1.
This implies that the delay, and hence the total number of steps, is O(n).

8.2.6.2 Randomized routing in the OTIS-Mesh

As pointed out in the previous section, the greedy algorithm may result in
large queue sizes and hence large delays. This renders the greedy algorithm
impractical. To circumvent this difficulty, we use randomization. One pos-
sibility is to use the randomized algorithm of Section 4.9.3 twice for both
phases 1 and 3 of the greedy algorithm of the previous section. However,
this will not prevent the accumulation of packets at intermediate proces-
sors, which may result from many packets sent from one particular group
to another group. Hence, we use randomization to first send the packets to

Optical Transpose Interconnection System (OTIS) 323

random locations within the OTIS-Mesh. The proposed randomized algo-

rithm consists of the following four phases. Recall that the source packet is
m at (u,v,z,y) and is destined to (u',v’, 2, y").

Phase 1:

Phase 2:

Phase 3:

Phase 4:

Route 7 to a random processor (v, v”, 2", y"). It first chooses u”
randomly and moves to (u”,v,z,y). It then chooses v randomly
and moves to (u”,v”, z,y), then chooses 2" randomly and moves
to (u”’,v"”, 2" y) and finally chooses y” randomly and moves to
(u”,v" 2" y"). Traversing in the u, v dimensions can be converted
to traversals in the z,y dimensions as follows. First, m moves
from the source processor (u,v,xz,y) to processor (u,v,u’”,v)
along the x-dimension, then moves along the transpose connec-
tion to (u”,v,u,v), and finally in the (u”, v) group to (v, v,z,y).
Similarly, it then moves from (u”,v,z,y) to (u”,v”, z,y). Next,
it moves in group (u”,v”) to (u”,v”,2” y") first on the a-
dimension and then on the y-dimension. It can be shown using
an analysis similar to that in Section 4.9.3 that this takes at
most 4v/n 4 o(y/n) steps using queues of size O(logn) with high
probability.

Route 7 from processor (u”,v"”, 2", y") to processor (u”,v"” u’,v").
This can be done by traveling first along the x-dimension and
then along the y-dimension. It can be shown that the delay is
o(y/n). Since the distance traveled is at most y/n, routing along
the a-dimension takes at most y/n + o(y/n) with high probability.
Similarly, routing along the y-direction takes at most /n+o(y/n).
Hence, this data movement, which is local to group (u”,v"), takes
at most 2v/n + o(y/n) steps with high probability.

Send 7 from processor (u”, v, u’,v") to processor (u',v',u”,v")
using one optical move.

Route 7 from processor (v, v, u”,v") to the destination processor
(u', v, 2',y"). Tt does this by traveling first along the z-dimension
and then along the y-dimension. As in Phase 2, this involves rout-
ing local to group (v, v’), and it takes at most 2v/n+ o(y/n) steps
with high probability.

In all phases, the farthest-destination-first priority scheme is employed.
The total number of steps is 8y/n + o(y/n) using queues of size O(logn)
with high probability.

324 Parallel Algorithms

8.2.7 Sorting on OTIS-Mesh

Sorting on the OTIS-Mesh can be achieved by simulating an algorithm for
sorting on the 4-dimensional mesh. It is not difficult to extend the algorithm
for sorting on the 3-dimensional mesh described in Section 4.17.1 so that it
runs on the 4-dimensional mesh using O(y/n) steps. The algorithm for the
3-dimensional mesh can be generalized to 4-dimensions by replacing planes
by 3-dimensional meshes with side length /n. Sorting in planes becomes
sorting in 3-dimensional meshes as described in Section 4.17.1. The result
is an algorithm that runs in O(y/n) steps. (See the Bibliographic notes for
more discussion of sorting on the 4-dimensional mesh and the OTIS-Mesh).

8.3 The OTIS-Hypercube

The OTIS-Hypercube consists of n = 2¢ groups of n processors each for a
total of n? processors, where each group of processors forms a conventional
hypercube with n = 2. Processor p in hypercube (group) g is connected
to processor g in hypercube (group) p, 0 < g,p < n. Figure 8.3 shows
an OTIS-Hypercube with 8 hypercubes of 8 processors each for a total
of 64 processors. The thick lines represent optical links and the thin lines
represent connections within the hypercubes. The number below each group
is its number. For clarity, only some of the optical connections are shown
in the figure.

As shown in the figure, processor (000,010) is connected to processor
(010,000), processor (101,111) is connected to processor (111,101), and so
forth. Each processor in the OTIS-Hypercube has degree d + 1; there are d
connections to other processors in its group as well as one optical link. The
diameter of the OTIS-Hypercube is 2d + 1; the shortest distance between
processors (0,0) and (n —1,n— 1) is 2d + 1 (Exercise 8.10).

8.3.1 Simulation of an n?-processor hypercube

An n2-processor OTIS-Hypercube can simulate a regular n2-processor
hypercube. A processor (g,p) of the OTIS-Hypercube can be represented
by the 2d bits

9d—19d—2 - - -, 9oPd—1Pd—2 - - - Po,

Optical Transpose Interconnection System (OTIS)

100 101 _ 100 101)
000 001 000 001
1o 111
110
010
100 — 011 100 101 010 011
| oot 100 000 001 101
000
119 1 110 m
010
010 011 011
000 001
100, 101
000 001 100 101]
001
o 11 000
010 110 111
011 011/
100 10}, 110 .
000 001
1o 111
010
011
010
Fig. 8.3. OTIS-Hypercube with 64 processors. Only some of the optical links
are shown.

where g4—1g4—2 .- . go is the group address and py_1pg—2...po is the local
processor address. A hypercube move moves data from processor with
label ¢ to processor ¢¥), where ¢(%) is obtained from the binary represen-
tation of ¢ by complementing the kth bit. When £ is in the lower half, the
move is done in the hypercube by a local intragroup hypercube move. When
k is in the upper half, the move is done in the group using the following
steps.

(9a-19d—2 - - -, gopd—1Pd—2 - - - Po)
<= (Pd—1Pd—2 - - -, P0gd—19d—2 - --Gj - - - 90)
<= (Pd—1Pd—2 - - -+ Pogd—19d—2 - - - Tj - - - 9o)
= (9d—19d—2- -G - - - JoPd—1Pd—2 - - - 0),

326 Parallel Algorithms

Here, - is an electronic move and -%— is an optical move. The foregoing
discussion proves the following theorem.

Theorem 8.1 An n?-processor OTIS-Hypercube can simulate an
n2-processor hypercube with a slowdown factor of at most 3.

Although the OTIS-Hypercube has many attractive properties, it suffers
from having limited optical connections between the different groups. When
data is to be transferred between two different groups, it creates a conges-
tion problem to most of the paths that have to pass through this optical link
because only one optical link connects two different groups. However, the
hardware cost of the OTIS-Hypercube is mush less than that of the hyper-
cube. To see this, consider comparing an n2-processor OTIS-Hypercube
with a hypercube with the same number of processors. A hypercube with n?
processors has dn? links, while an n2-processor OTIS-Hypercube has n?
hypercubes each with (1/2)dn internal links, and (n/2)(n—1) links between
groups for a total of (1/2)dn?+ (1/2)(n? —n) links. This means a reduction
in the number of links by a factor of almost 2.

8.3.2 Broadcasting in the OTIS-Hypercube

The algorithm for broadcasting in the OTIS-Hypercube is similar to that
for the OTIS-Mesh discussed in Section 8.2.2, and outlined in Algorithm
OTISMESHBROADCAST. Steps 1 and 3 of Algorithm OTISMESHBROADCAST
when adapted for the OTIS-Hypercube take logn electronic moves each,
and Step 2 takes one OTIS move. The total is 2logn + 1 steps.

8.3.3 Semigroup operations on the OTIS-Hypercube

The algorithm for semigroup operations in the OTIS-Hypercube is similar
to that for the OTIS-Mesh discussed in Section 8.2.3, and the algorithm for
addition is similar to Algorithm OTISMESHSUM. Steps 1 and 3 of Algorithm
OTISMESHSUM — when adapted for the OTIS-Hypercube — take logn elec-
tronic moves each, and Step 2 takes one OTIS move. The total is 2logn
electronic moves and one OTIS move.

Alternatively, we may use the technique of reduction as outlined in
Algorithm OTISHCADDITION. In this algorithm, the data in each group g is
first added, and the sum is stored in processor (g,0). The contents of all
processors (g,0) are then transferred to group 0 using one optical move.

Optical Transpose Interconnection System (OTIS) 327

Finally, group 0 computes the sum of the contents in all its processors
and stores the result in processor (0,0). Notice that the sum is stored in
processor (0,0) only. The analysis of the algorithm is similar to that of the
previous algorithm, that is, the running time is 2 logn electronic moves and
one optical move.

Algorithm 8.5 OTISHCADDITION
Input: z; stored in processor i, 0 < i < n?.

Output: The sum of values z; in all processors.

1. Each group g performs addition of its local data and stores the sum in
processor (g,0) of group 0.

2. Each group g moves the content of its processor (g, 0) to processor (0, g).

3. Group 0 performs addition of the sums computed in Step 1 and stores
the total in processor (0, 0).

Example 8.5 Consider running Algorithm OTISHCADDITION for finding
the sum on the OTIS-Hypercube with 16 processors (see Fig. 8.1). The
contents of the processors will be represented by a set of four sets, each
representing a group of processors. Suppose that initially the contents of
the processors are

{{1,2,1,3},{2,4,1,3},{1,3,2,4},{2,4,1,2} }.
Following the first step, computing the local sums, we obtain
{{7,95,95,95}, {10, z, 2, 2}, {10, z, &, a }, {Q,x,x,x}},

where x stands for anything. After performing the OTIS move in Step 3,
the contents become

{{7,10,10,9},{10, z, 2,2}, {10, , z, 2}, {9, x, z, x} },
Finally, after performing the addition in Step 3, we obtain
{{367 :177 :177 :17}7 {107 x? x? x}? {107 I’? I’? I}’ {97 x? x? x}}? |:|

8.3.4 Sorting and routing in the OTIS-Hypercube

Theorem 8.1 can be employed to simulate sorting and routing on the OTIS-
Hypercube. For sorting, Algorithm SAMPLESORT discussed in Section 3.10

for the hypercube can be used. The running time will be © (% log %), where

328 Parallel Algorithms

p is the number of processors and n is the number of elements. Here, we
have assumed that the number of processors is less than the number of
elements.

Alternatively, Algorithm BFODDEVENMERGESORT for odd—even sorting
on the butterfly network discussed in Section 3.9 can also be used, since it
is a normal butterfly algorithm (see definition of normal butterfly algorithm
in Section 3.2). The running time will be ©(log® n).

The problem of routing in the OTIS-Hypercube can be solved by simu-
lating the randomized algorithm for routing in the hypercube discussed in
Section 3.6.2. When adapting this algorithm on an n?-hypercube, its run-
ning time becomes at most 8 x 2d = 16d steps with high probability. Hence,
by Theorem 8.1, the running time on the OTIS-Hypercube will be at most
3 x 16d = 48d = O(logn) steps with high probability.

8.4 Other OTIS Networks

8.4.1 The OTIS-Star

The OTIS-Star consists of n = d! groups of n processors each, where each
group of processors forms a d-dimensional star. Processor p in star (group) g
is connected to processor g in star (group) p, 0 < g,p < n. Figure 8.4 shows
an OTIS-Star with 6 stars of 6 processors each for a total of 36 proces-
sors. As shown in the figure, processor (123, 213) is connected to processor
(213,123), processor (123,132) is connected to processor (132,123), and so
forth. The diameter of the OTIS-Star is 2|3(d — 1)/2] + 1 = O(d), and its
degree is d, which are sublogarithmic in terms of the number of processors
(Notice that d < log(d!)? = ©(dlogd)).

8.4.2 The OTIS-MOT

The OTIS-MOT consists of n groups of n processors each, where each
group of processors forms a mesh of trees. In this construction, it is more
convenient to use a slightly different model of mesh of trees than the one
described in Section 6.3; see Fig. 8.5 for an example. In this figure, each
node is labeled with the row and column numbers. Here, the processors
in each row are connected to form a binary tree, and the processors in
each column are connected to form a binary tree. The roots of these binary
trees are the processors in the leftmost column and topmost row. The total

Optical Transpose Interconnection System (OTIS) 329

312 231

132

312

0 231

O 132

132

Fig. 8.4. OTIS-Star with 36 processors (only some of the optical links are
shown).

Fig. 8.5. Mesh of trees with 16 processors.

330 Parallel Algorithms

gl
&R

group 20 group 21 group 22

Fig. 8.6. OTIS-MOT with 81 processors (only some of the optical links are
shown).

number of processors in this model is n, which is the same as that of the
/1 x y/n mesh.

Processor p in mesh of trees (group) ¢ is connected to processor g in
mesh of trees (group) p, 0 < g,p < n. Figure 8.6 shows an OTIS-MOT
with 9 groups of 9 processors each for a total of 81 processors. As shown in
the figure, processor (00,01) is connected to processor (01,00), processor
(00, 22) is connected to processor (22,00), and so forth.

8.5 Bibliographic Notes

Optical transpose interconnection system (OTIS) technologies have been
proposed and investigated in Marsden, Marchand, Harvey and Esener [63],

Optical Transpose Interconnection System (OTIS) 331

Szymanski [90] and Szymanski and Hinton [91]. Topological properties of
OTIS networks were studied in Day and Al-Ayyoub [31]. A number of
algorithms have been developed for the OTIS networks such as Akhgari,
Ziaie and Ghodsi [3], Gupta, Singh and Bhati [41], Gupta and Sarkar [40],
Lucas and Jana [60], Najaf-abadi and Sarbazi-azad [70], Osterloh [73],
Rajasekaran and Sahni [76], Wang and Sahni ([95], [96], [97]) and Zane,
Marchand, Pahuri and Esener [103]. Algorithms for basic operations on the
OTIS-mesh can be found in Wang and Sahni [95]. The randomized routing
algorithm for the OTIS-mesh in Section 8.2.6.2 is a modification of an algo-
rithm presented in Rajasekaran and Sahni [76]. An O(y/n) time algorithm
for sorting can be obtained by simulating an algorithm with similar com-
plexity for the 4-dimensional mesh as suggested in Section 8.2.7. Another
possibility is to use Kunde’s sorting algorithm for the 4-dimensional mesh
in Kunde [47]. The sorting algorithm presented in this paper is for the more
general r-dimensional meshes, r > 3. There are some complex algorithms
for sorting on the OTIS-mesh. The deterministic algorithm in Wang and
Sahni [95] for the OTIS-mesh runs in O(y/n) steps, and the randomized
algorithm in Rajasekaran and Sahni [76] runs in time O(y/n) with high
probability. Algorithms for the OTIS-hypercube have been developed in
Sahni and Wang [80] and Wang and Sahni [94]. A comparative evalua-
tion of adaptive and deterministic routing in the OTIS-hypercubes appears
in Najaf-abadi and Sarbazi-azad [69]. Theorem 8.1 can be found in Zane,
Marchand, Pahuri and Esener [103]. The OTIS-Star was studied by Awwad
[13], Al-Sadi, Awwad, and AlBdaiwi [10] and Awwad and Al-Sadi [14]. Sort-
ing and routing on OTIS-Mesh of trees can be found in Lucas and Jana
[60] and Lucas and Jana [61]. Algorithms for OTIS-Hyper Hexa-Cell can
be found in Gupta and Sarkar [40] and Gupta, Singh and Bhati [41] (For
definitions of the hyper hexa-cell and the OTIS-Hyper Hexa-Cell, see also
Mahafzah, Hamad, Ahmad and Abu-Kabeer [62]).

8.6 Exercises

8.1. Suppose we want to move data from processor p; in group g; to
processor ps in group go. One possibility is to use the sequence of
moves:

* *

(91,p1)-= (91,92)-"> (92, 91)-= (92,p2),

332

8.2.

8.3.

8.4.

8.5.

8.6.

8.7.

8.8.

8.9.

8.10.

Parallel Algorithms

. . *
where <= is an optical move and <= stands for a sequence of zero
or more electronic moves. Suggest another sequence of moves.

Is Algorithm OTISMESHBROADCAST discussed in Section 8.2.2 for
broadcasting in the OTIS-Mesh optimal? Justify your answer.

In a window broadcast, we start with data in the top left w x w
submesh of a single group g, where w | y/n, that is w divides \/n.
Following the window broadcast operation, the initial w x w window
tiles the entire OTIS-Mesh. (See Exercise 4.19). Outline an algorithm
to implement this operation. What is the running time of your algo-
rithm?

Apply the addition algorithm for the OTIS-Mesh discussed in Sec-
tion 8.2.3 on the input

{{1,3,2,4},{2,1,5,1},{2,4,5,1},{2,1,3,2} }.

Explain how to implement Step 1 in Algorithm OTISMESHSUM of
Section 8.2.3 efficiently.

Apply the parallel prefix algorithm for the OTIS-Mesh discussed in
Section 8.2.4 on the input

{{2747 27 1}7 {1737 174}7 {57 27 17 3}7 {27 3757 1}}

Illustrate the operation of Algorithm OTISMESHSHIFT in Section 8.2.5
given the processor contents

{{3,8,1,14},{2,13,5,11}, {9, 7,10,6}, {4, 15,12,8} }.

Assume an OTIS-Mesh with 16 processors, and the elements are to
be shifted along the u-coordinate.

Repeat Exercise 8.7 with shifting the elements along the v-coordinate
instead.

Modify the algorithm for randomized routing in the OTTS-Mesh dis-
cussed in Section 8.2.6.2 so that it runs in time 4y/n + o(y/n).

Verify that the diameter of the OTIS-Hypercube is 2d + 1.

8.11.

8.12.

8.13.

8.14.

8.15.

8.16.

8.17.

8.18.

8.19.

8.20.

8.21.

8.22.

Optical Transpose Interconnection System (OTIS) 333

Analyze the running time of the algorithm in Section 8.3.2 for broad-
casting in the OTIS-Hypercube by simulating an n?-hypercube.

Analyze the running time of the algorithm in Section 8.3.3 for addi-
tion in the OTIS-Hypercube by simulating an n2-hypercube.

Suppose that each of the n groups in an OTIS-Hypercube has a
datum in an arbitrary processor. Give an algorithm to collect these n
data items in a specified group k so that group k£ will have one item
per processor.

[lustrate your solution to Exercise 8.13 given the processor contents

{{:C,:B, 1,2}, {2, z,z, 2}, {x,x, 2,3}, {x,x,4,x}},

which are to be sent to group 2. Assume an OTIS-Hypercube with
four groups. Here, = stands for anything, and the contents of the
processors are represented by a set of four sets, each representing a
group of processors.

Suppose that group k in an OTIS-Hypercube has n data items
located one per processor. Give an algorithm to replicate these items
in each of the n groups.

Illustrate your solution to Exercise 8.15 for replicating the numbers
{1,7,3,4} in group 2 in an OTIS-Hypercube with four groups.

Outline a deterministic algorithm for routing on the OTIS-
Hypercube.

Discuss the drawbacks of the deterministic algorithm for routing in
the OTIS-Hypercube in Exercise 8.17.

Outline an algorithm for broadcasting a datum in processor (g, p) in
the OTIS-Star.

What is the degree of OTIS-MOT?

What is the diameter of OTIS-MOT with n? processors? Assume the
mesh of trees depicted in Fig. 8.5.

Give two nodes in the OTIS-MOT shown in Fig. 8.6 that realize the
diameter derived in the solution to Exercise 8.21

334

Parallel Algorithms

8.7 Solutions

8.1.

8.2.

8.3.

Suppose we want to move data from processor p; in group ¢; to
processor ps in group go. One possibility is to use the sequence of
moves:

* *

(91,p1)-= (91,92)-"> (92, 91)-= (92,p2),

. . *
where <= is an optical move and <= stands for a sequence of zero
or more electronic moves. Suggest another sequence of moves.

One possibility is the sequence:

(91,71)-% (g1,02)-2> (92, 91)-%> (P2, 92)~2> (g2, P2)-

Is Algorithm OTISMESHBROADCAST discussed in Section 8.2.2 for
broadcasting in the OTIS-Mesh optimal? Justify your answer.

Algorithm OTISMESHBROADCAST for broadcasting in the OTIS-Mesh
is optimal since the diameter of the OTIS-Mesh is 44/n — 3; the
distance between processor (0,0) and processor (n — 1,n — 1) is

4y/m = 3.

In a window broadcast, we start with data in the top left w x w
submesh of a single group g, where w | y/n, that is w divides y/n.
Following the window broadcast operation, the initial w x w window
tiles the entire OTIS-Mesh. (See Exercise 4.19). Outline an algorithm
to implement this operation. What is the running time of your algo-
rithm?

The algorithm is shown as Algorithm OTISMESHWINBROADCAST. Fol-
lowing Step 1, the initial window properly tiles the group g. In Step 2,
data d(g,p) from processor (g,p) is moved to (p,g), 0 < p < n.In
Step 3, d(g,p) is broadcast to all processors (p, k), 0 < p,k < n.
Finally, in Step 4, d(g,p) is moved to (k,p), 0 < k,p < n. By Exer-
cise 4.19, Step 1 takes 2(y/n — w) electronic moves. Steps 2 and 4
take one OTIS move each. Step 3 takes 2(y/n — 1) electronic moves.
The total is 4y/n — 2w — 2 electronic and two OTIS moves.

Optical Transpose Interconnection System (OTIS) 335

Algorithm 8.6 OTISMESHWINBROADCAST

1.

2.

3.

4.

Do a window broadcast within the initial group ¢ as outlined in the
solution of Exercise 4.19.

Perform an OTIS move. That is, all processors in group g send their data
to processors in other groups using optical links.

Perform data broadcast from processor g of each group to all processors
of that group.

Perform an OTIS move.

8.4.

8.5.

8.6.

8.7.

Apply the addition algorithm for the OTIS-Mesh discussed in Sec-
tion 8.2.3 on the input

{{1,3,2,4},{2,1,5,1},{2,4,5,1},{2,1,3,2} }.
Similar to Example 8.1.

Explain how to implement Step 1 in Algorithm OTISMESHSUM of
Section 8.2.3 efficiently.

If we compute the sum in processor (0,0), it will take 4(y/n — 1);
2(y/n—1) for transferring the elements to processor (0, 0) and 2(y/n—
1) for broadcasting the sum. So, we compute the sum in the middle
processor instead. In this case, the number of steps will be 24/n;
\/n for transferring the elements to the middle processor and +/n for
broadcasting the sum.

Apply the parallel prefix algorithm for the OTIS-Mesh discussed in
Section 8.2.4 on the input

{{2747 27 1}7 {1737 174}7 {57 27]-7 3}7 {27 3757 1}}

Similar to Example 8.2.

[lustrate the operation of Algorithm OTISMESHSHIFT in Section 8.2.5
given the processor contents

{{3,8,1,14},{2,13,5,11},{9,7,10,6}, {4,15,12,8} }.

Assume an OTIS-Mesh with 16 processors, and the elements are to
be shifted along the u-coordinate.

Similar to Example 8.3.

336

8.8.

8.9.

8.10.

8.11.

8.12.

Parallel Algorithms

Repeat Exercise 8.7 with shifting the elements along the v-coordinate
instead.

Similar to Example 8.4.

Modify the algorithm for randomized routing in the OTTS-Mesh dis-
cussed in Section 8.2.6.2 so that it runs in time 4y/n + o(y/n).

One possibility is the following modification to Phase 1. Partition
the OTIS-Mesh into slices, i.e., 4-D submeshes, of size

NN NN
q q q q

each, 1 < ¢ < /n. In the first phase, a packet traverses to a random
processor (u”,v”,x” y") in its own slice of origin. The rest of the
algorithm is as in Section 8.2.6.2. The maximum distance traveled in
the first phase becomes < 44/n/q. Thus, the time needed for Phase 1
is 4y/n/q + o(y/n), and the total time of the algorithm becomes at
most 4v/n+4y/n/q+ o(y/n). Choose a suitable ¢ such as ¢ = logn so
that the total time of the algorithm becomes at most 4y/n + o(y/n).

Verify that the diameter of the OTIS-Hypercube is 2d + 1.
To go from (0,0) to (n — 1,n — 1), follow the path:

(0,0~ (0,n—1)2>(n—1,00-(n—1,n—1),
where -2 is an optical move and - stands for electronic moves.
The total number of stepsisd+1+d = 2d + 1.
Analyze the running time of the algorithm in Section 8.3.2 for broad-
casting in the OTIS-Hypercube by simulating an n2-hypercube.

Since the cost of broadcasting in an n? hypercube is logn? = 2logn
steps, by Theorem 8.1, direct simulation of an n? hypercube costs at
most 3 x 2logn = 6logn steps (electronic and optical).

Analyze the running time of the algorithm in Section 8.3.3 for addi-
tion in the OTIS-Hypercube by simulating an n2-hypercube.

Since the cost of addition in an n? hypercube is logn? = 2logn steps,
by Theorem 8.1, direct simulation of an n? hypercube costs at most
3 x 2logn = 6logn steps (electronic and optical).

Optical Transpose Interconnection System (OTIS) 337

8.13. Suppose that each of the n groups in an OTIS-Hypercube has a

datum in an arbitrary processor. Give an algorithm to collect these n
data items in a specified group k so that group k£ will have one item
per processor.

See Algorithm OTISHCPROBLEMI1. Step 1 takes no more than logn
electronic moves, and Step 2 takes one optical move. (See Exer-
cise 8.14).

Algorithm 8.7 OTISHCPROBLEM1

1. For 0 < g <n—1, group g sends its datum to processor k in that group.
2. For 0 < g < n — 1, the datum from processor k of group ¢ is sent to
processor g of group k using one optical move.

8.14. Illustrate your solution to Exercise 8.13 given the processor contents

8.15.

{{:C,:E, 1,2}, {2, z, 2,2}, {x,x, 2,3}, {x,x,4,x}},

which are to be sent to group 2. Assume an OTIS-Hypercube with
four groups. Here, = stands for anything, and the contents of the
processors are represented by a set of four sets, each representing a
group of processors.

Initially, the contents of the processors are

{{I,I,]_,I}, {27I7I7I}7 {I,I,I,g}, {I,I,4,I}}.

In the first step, group g, 0 < g < 3, sends its datum to processor 2
in that group. Following this step, we obtain

{{x,x, 1,2}, {x, 2,2, 2}, {x, 2,3, 2}, {x,x,4,x}},

Finally, the datum from processor 2 of group g, 0 < g < 3, is sent to
processor g of group 2. After this final step, we obtain

{{:C,:E,:E,CB}, {z,z,z,2},{1,2,3,4}, {:C,:U,:E,:E}}.

Suppose that group k in an OTIS-Hypercube has n data items located
one per processor. Give an algorithm to replicate these items in each
of the n groups.

See Algorithm OTISHCPROBLEM2. After Step 1, each group has one
item, and the data is replicated after Step 3. Steps 1 and 3 take

338

Parallel Algorithms

one optical move each, and Step 2 takes logn electronic moves. (See
Exercise 8.16).

1.

2.

3.

Algorithm 8.8 OTISHCPROBLEM2

For all p, 0 < p < n—1, processor p of group k sends its item to processor k
of group p using one optical move.

Each group replicates its item in all of its processors by broadcasting it
to all processors.

For all p,g, 0 < p,g < n — 1, processor p of group g sends its item to
processor g of group p using one optical move.

8.16.

8.17.

Ilustrate your solution to Exercise 8.15 for replicating the numbers
{1,7,3,4} in group 2 in an OTIS-Hypercube with four groups.

The contents of the processors will be represented by a set of four

sets, each representing a group of processors. Initially, the contents
of the processors are

{{:C,:E,:E,CB}, {1,7,3,4},{z,z,z, x}, {x,x,x,x}},

where z stands for anything. In the first step, processor p of group 2
sends its item to processor 2 of group p. Following this step, we obtain

{{:E7]‘7'1:7 x}? {x7 77:177:17}7 {:E737 x? x}? {x7 47:177:17}}7

Now, each group replicates its item in all of its processors by broad-
casting it to all processors in its group. The contents become

{{1,1,1,1},{7,7,7,7},{3,3,3,3},{4,4,4,4} }

Finally, each processor p of group ¢ sends its item to processor g of
group p. After this final step, we obtain

{{1,7,3,4},{1,7,3,4},{1,7,3,4},{1,7,3,4} }.

Outline a deterministic algorithm for routing on the OTIS-
Hypercube.

8.18.

Optical Transpose Interconnection System (OTIS) 339

Use one of the paths shown in the solution of Exercise 8.1 to route
the source packet to its destination. For example, use the sequence

(91,71)-> (g1, 92)-2> (92, 91)-= (ga,p2)-

Here, <5 is a sequence of zero or more electronic moves and -2 is
an optical move. For routing within the hypercubes, use the greedy
algorithm of Section 3.6.1.

Discuss the drawbacks of the deterministic algorithm for routing in
the OTIS-Hypercube in Exercise 8.17.

The major drawback is that many packets may pile up at inter-
mediate processors. In particular, all processors from group g; may
want to send to all processors in group g¢». In this case, ©(n) packets
may accumulate at processor (g1, g2) before transmitting the packets
along the optical link between processors (g1, g2) and (g2, g1). This
implies that the delay, and hence the total number of steps, is O(n).

1.
2.

3.

Algorithm 8.9 OTISSTARBROADCAST
Input: z stored in processor (g,p).

Output: Broadcast x to all other processors.

Processor (g,p) broadcasts z to all processors in its group, group g.
Perform an OTIS move. That is, all processors in group g send their data
to processors in other groups using optical links.

Processor (g',p’) in every group g’ broadcasts its data to all processors
within its group.

8.19.

8.20.

8.21.

Outline an algorithm for broadcasting a datum in processor (g, p) in
the OTIS-Star.

The algorithm is similar to that in Section 8.2.2 for broadcasting
in the mesh. It is shown as Algorithm OTISSTARBROADCAST. The
algorithm for broadcasting in the star discussed in Section 7.7 may
be used to broadcast in individual stars.

What is the degree of OTIS-MOT?
The degree of OTIS-MOT is 5, as can be seen from Fig. 8.6. In this

figure, the degree of node 00 in group 10 is 5, and it is maximum.

What is the diameter of OTIS-MOT with n? processors? Assume the
mesh of trees depicted in Fig. 8.5.

340 Parallel Algorithms

group 20 group 21 group 22

Fig. 8.7. Solution to Exercise 8.22.

The underlying mesh is of size n, and each binary tree has v/n nodes
(see Fig. 8.5). Thus, the height of each binary tree is |[log+/n]. It
follows that the diameter of the mesh of trees is 4|log v/n |, and hence
the diameter of the OTIS-MOT with n? processors is 8|log v/n|+1 =
O(logn).

8.22. Give two nodes in the OTIS-MOT shown in Fig. 8.6 that realize the
diameter derived in the solution to Exercise 8.21

The two nodes (11,12) and (21, 22) realize the OTIS-MOT diameter.
The distance between these two nodes is 8|log /9] +1 = 9. The path
between these two nodes is shown in thick lines in Fig. 8.7.

Chapter 9

Systolic Computation

9.1 Introduction

Systolic computation refers to one in which the processors, usually called
processing elements (PE’s), are arranged in a very regular way (most often,
as one or two-dimensional arrays), and so the data moves through them
in a regular fashion. Processors are usually primitive, and perform very
simple operations on the data they receive, e.g., computing the maximum
and minimum of two items. A systolic array is an on-chip multi-processor
architecture. It was proposed as an architectural solution to the anticipated
on-chip communication bottleneck of modern, very large-scale integration
(VLSI) technology. A systolic array features a mesh-connected array of
identical, simple PE’s. In a systolic system, data flows from the computer
memory in a rhythmic fashion, passing through many processing elements
before it returns to memory. A systolic array is often configured into a
linear array, a two-dimensional rectangular mesh array, or sometimes, a
two dimensional hexagonal mesh array. In a systolic array, every PE is
connected only to its nearest neighboring PEs through a dedicated, buffered
local bus/dedicated, buffered local buses. This localized interconnects, and
regular array configuration allow a systolic array to grow in size without
incurring excessive on-chip global interconnect delays due to long wires.
In the rest of this chapter, we will use the terms “PE” and “processor”
interchangeably.

341

342 Parallel Algorithms

a
33
(a)
a3 423
3] a2 a13
a2 a12

ary

Lo

—> —>—> X > X2 > X3 |—

(b) ain

yin—»| y | yout

Fig. 9.1. Systolic matrix-vector multiplication.

9.2 Matrix-vector Multiplication

In this section, we present a simple example of systolic arrays. Consider
performing the multiplication y = Ax, where A is an n x n matrix, and x is
an nx 1 vector. One possible systolic array to solve this problem consists of n
processors arranged in the form of a linear array. It is assumed that these
processors are capable of performing scalar addition and multiplication of
real numbers. Figure 9.1 shows an example of this array and arrangement of
the input for n = 3. As shown in the figure, there are 3 processors, and data
from the matrix A arrives in a systolic fashion, while the x;’s are preloaded
to the processors. The initial arrangement and data movements of the a; ;’s
is such that column k is delayed by k cycles. The y;’s are initially set to
zero, and their values are accumulated in the PEs. Thus, in the first cycle,
Y1 is set to ai121, in the next cycle, y; is set to a11x1 + a12x2 and yo is set
to ag,1x1, and so on.

9.3 Computing the Convolution of Two Sequences

Let (x1,29,...,2,) and (w1, ws,...,wk) be two sequences of real num-
bers. The convolution of these two sequences is defined as the sequence

Systolic Computation 343

(Y1,Y2,- -, Ynt1—k), Where y; = w1 z; + wakip1 + - - - + WeLipk—1. The ele-
ments of the sequence (wy,ws, ..., wy) are called weights. The convolution
of these two sequences can be expressed by the matrix-vector product

T T2 T3 Tk w1 Y1

T2 T3 Ty Lr+1 w2 Y2

x3 T4 Ts Th42 w3z | = Y3
Tn+l—k Tn42—k LTnt+3—k --- Tn Wi Yn+1—k

In what follows, we present two approaches for systolic computations to
compute the convolution of two sequences, one semisystolic and the other
systolic. The basic principles of these designs were previously proposed
for circuits to implement a pattern matching processor and polynomial
multiplication. For simplicity, we will assume in the rest of this section that
k=3.

9.3.1 Semisystolic solution

In this design, a bus is used for global data communication, and this is
why it is referred to as “semisystolic”. The z;’s are broadcast, results are
moved, and weights stay in the PEs. The systolic array and its cell definition
are depicted in Fig. 9.2. The weights are preloaded to the cells, one at each
cell, and stay at the cells throughout the computation. The partial results y;
move systolically from cell to cell in the left-to-right direction during each
cycle. At the beginning of a cycle, one x; is broadcast to all the cells, and

(@ 23,73 %]] l
Y3 Yo Y1

—S> 5 W o Wy > W3 >

yin—»| y |— yout

Fig. 9.2. Semisystolic convolution.

344 Parallel Algorithms

Table 9.1. Convolution using the semisystolic design.

Cycle Y1 Y2 Y3
1 wi1T1 0 0
2 wWi1T1 + w2 wW1T2 0
3 w1T1 + WaT2 + W3T3 W1T2 + W2T3 wW1T3
4 Output Y1 W1T2 + w23 + w3xry W1T3 + W2r4g
5 Output yo wW1T3 + Walg + W3Ts
6 Output ys
() !
X3 ol va [Ty [T [
—>)Hﬁ > 71>
(b)
W out <«—| le— win
xin —» y > x out

Fig. 9.3. Systolic convolution.

one y;, which is initialized as zero, enters the leftmost cell. Thus, during the
first cycle, wyxy is accumulated to y; at the leftmost cell, and during the
second cycle, wize and woxs are accumulated to yo and y; at the leftmost
and middle cells respectively. Starting from the third cycle, the final values
of y1,y2, ... are output from the rightmost cell, one y; per cycle.

Example 9.1 Table 9.1 shows the results of the computation of the
convolution of the two sequences (x1, x2, 23, x4, z5) and (wy,wq,ws). O

9.3.2 Pure systolic solution

An alternative to the semisystolic design is a pure systolic one in which each
partial result y; stays at a cell to accumulate its terms, and the x;’s and w;’s
move in opposite directions. The systolic array and its cell definition are
depicted in Fig. 9.3. Thus, in this design, the x;’s and w;’s move systolically
in opposite directions such that when an x meets a w at a cell, they are
multiplied and the resulting product is accumulated to the y staying at

Systolic Computation 345

Table 9.2. Convolution using the systolic design.

Cycle Y1 Y2 Y3

1 wi1T1 0 0

3 wW1Tr1 + waxo w1T2 0

5 w1T1 + WaT2 + W3T3 W1T2 + W2T3 wW1T3

7 Output Y1 wi1T2 + w23 + w3xrys W1T3 + Wak4g

9 Output yo wW1T3 + Walg + W3Ts
11 Output y3

that cell. The difficulty with this design is that the x;’s and w;’s move
twice as fast toward each other. The solution is to move data at half the
speed. Thus, to ensure that each x; is able to meet every w;, consecutive z;’s
on the = data stream are separated by two cycle times and so are the w;’s
on the w data stream. In this design, a tag bit is associated with the first
weight, wy, to trigger the output and reset the accumulator contents of
a cell. It can be easily checked that the y;’s will output from the systolic
output path in the natural ordering y1,ys, Specifically, when wy, leaves
processor P; (k = 3 in the figure), the final value of y; is computed, and it
can move out of the array through the data path below the array. Notice,
however, that in this design only about one half the cells are doing useful
work at any time.

Example 9.2 Table 9.2 shows the results of the computation of the
convolution of the two sequences (1,22, 23,24, x5) and (w1, ws, ws). It is
similar to Table 9.1 except that the cycle numbers are incremented by 2 in
this design. O

9.4 A Zero-time VLSI Sorter

Basically, this sorter consists of a linear array of n/2 cells, where n is
assumed to be even. Each cell can store two items of the sequence to be
sorted. Figure 9.4 depicts the block diagram of the sorter. As shown in the
figure, there is only one connection between a cell and each of its upper
and its lower neighboring cells. There are two phases: The up-down phase
and the bottom-up phase. In both phases, after comparison, one of the two

346 Parallel Algorithms

' A :
[lem @ tem] | Cellt

' Y .
i{Item ® Item |; Cell2

Cell n/2

&) : Comparator

Fig. 9.4. Block diagram of the sorter.

items moves to the next neighboring cell through this connection. Since
the data flow is the same for all cells at any given time, this removed item
occupies the newly-created space in the next cell; the removed item at the
bottom cell is moved out of the array in a downward data flow, while the
item at the top cell is moved out of the array in an upward data flow.
The initial sequence to be sorted is entered into the sorter one item at
each step. After the last item has been entered, the data flow direction is
reversed, and the sorted sequence is then extracted as output, also serially.
Each step, executed synchronously and simultaneously by all the cells, has
two phases:

(1) Compare: The two items in each and every cell are compared to each
other.

(2) Transfer: Subject to the result of the comparison, the desired sorting
order (ascending or descending), and the sorting state (input or out-
put), one or the other of the two items is transferred to a neighboring
cell and the original cell receives an item from the other neighboring cell.

Example 9.3 Figures 9.5 and 9.6 show an example of sorting the
sequence (4,3, 1,6,2,5) in ascending order. Here, co represents the largest
item possible. At the input stage (Fig. 9.5), the larger of the two items

Systolic Computation 347

<« pL—OOL
<« w—oun
<« Lw—oU
<« —ooun

<« —onowm

<« aow

oo 4 | 4 4|3 @3 13
oo © | oo oo 0 | oc 4 |
OO oo | oo OO o0 | oo OO 0 | oo

0 [} 0
Compare Transfer Compare Transfer =~ Compare Transfer
5 Step 1 Step 2 Step 3
2 5 5
6 2 2 5 5
v v v v A

1|3 1|6 6 1|2 1@ 115
@oo 403 @3 613 @3 213
°° ®© | o oo 4 | o0 4 416

=) o) 0
Compare Transfer Compare Transfer =~ Compare Transfer

Step 4 Step 5 Step 6

Fig. 9.5. Input stage in the zero-time sorter: Larger items are circled and trans-
ferred.

in each cell is transferred down, while at the output stage (Figs. 9.6), the
smaller of the two items is transferred up. O

Note that at the end of the input stage (step 6 in the above example),
the smallest item must be in the top cell and the second smallest must be
in either the top or the second cell. In general, the kth smallest item must
be in one of the top k cells. This is why the output sequence is sorted.

9.5 An On-chip Bubble Sorter

The basic component of the bubble sorter is the compare/steer unit, which
is shown in Fig. 9.7. It consists of four interconnected cells: A, B, C and D.
The sorter consists of a stack of n comparators that work synchronously in
one of two modes: downward and upward (see Fig. 9.8). In the downward
mode, cell A in every unit receives its input from the unit above or from
outside, the content of C' is routed to B, and the content of D, which is

348 Parallel Algorithms

W =

@5 2|5 @5 3|5 @
@3 43 4@ 416 @6 w| 6
@6 w | 6 oo@ o | oo oo w |

A A A A A A

o oo oo oo oo oo
Compare Transfer Compare Transfer Compare Transfer

Step 7 Step 8 Step 9 \

1 1 2

1 1 2 2 3

1 2 2 3 3 4
2 3 3 4 14 5
3 4 4 5 5 6

@5 6|5 6@ 6 | @oo o | w
00@ oo | oo OO o | oo 00 o0 | o
oo o | o oo w | o oo w0 | o

A A A A A

oo) oo) 5]
Compare Transfer ~Compare Transfer =~ Compare Transfer

Step 10 Step 11 Step 12

Fig. 9.6. Output stage in the zero-time sorter: Smaller items are circled and
transferred.

A | C | C=min(AB)
N
D=max(AB) | D *«— B

¥ t

Fig. 9.7. A compare/steer unit (comparator).

the larger of the two numbers, is moved to the next comparator below.
Next, the contents of A and B are compared, and the minimum and maxi-
mum are delivered to C' and D, respectively. That is, C' = min{A, B} and
D = max{A, B}. In the upward mode, an outside key is loaded from the
bottom into cell B of the unit, and an inside key previously at D is loaded
into A. After loading, the comparison is executed, and the minimum is

Systolic Computation 349

SN

NS

NS

¥ 0
Fig. 9.8. Sorter.

delivered to C' and the maximum to D. Loading and comparing are exe-
cuted almost simultaneously, so all these operations are performed in all
comparators in every period, which we will take for convenience as one unit.

During the downward input phase, n keys are loaded into n units in 2n
periods. During the upward output phase, each unit delivers the smaller
key to its upper unit in every period, outputting one item per period from
the sorted keys. The sorting time is completely absorbed into input/output
time. So, it takes 2n periods to sort n numbers.

Example 9.4 Figures 9.9 and 9.10 illustrate the action of the sorter
during the sorting of an input of six numbers, 4, 3, 1, 6, 2, and 5 in the
downward and upward phases, respectively. Initially, at time ¢g, the contents
of the buffer cells in each comparator are all set to co. During the first cycle,
the first number 4 is compared to oo and routed to the upper right cell.
During the second cycle, the number 3 is loaded and compared to 4; then
the number 3 is routed to the upper right cell and 4 is routed to the lower
left cell of the first unit. During the third cycle, as the third number is
being loaded into the first unit, the number 4 is loaded into the second
unit. In other words, the larger of the two numbers will be pushed out
of the comparator in which it resides. At the end of time ts, the upper
right cell of the first unit contains 1 and the lower left cell contains 3; and

350 Parallel Algorithms

5
2 5
6 2 5
1 6 2 5
3 1 6 2 5
4 3 1 6 2 5
v v v v 7 v v
e 3 1 1 1 1
P I 2 I e R 3TV PR v v
[e'e] [ele] 2] 3
Il | | | | | |
) v o v o v) 4 6 Y 3 v
L L L L L Il 1
v v
M © v) v © v © M 59 4 4
v v v v v v v
) 0)))) 6
7 v 17 17 v 7 7
to 4 t 3 Y ts L6
Fig. 9.9. Up-down sorter.
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4 5 6
4 4 4 4 4 4
2
R NENPYEERPYE 6 =
5 A 5 A 5 A 6 N © N)
o0
TSN I S P T S P [l
4 6 o0 o0 o =<}
: - 4 A 4
6 o =) =) 0 [}
4 4
o 0 %) [} [="<] o
4 4 4 + 4 +
47 tg L9 Y0 41 2

Fig. 9.10. Bottom-up sorter.

the upper right cell of the second unit contains 4 and the lower left cell
contains co. At the end of time tg, all the six numbers have been loaded
into the sorter, thus completing the input downward phase. From time ¢7
on, the output upward phase begins. Note that in the input phase the oo’s
are pushed out of the bottom of the sorter; in the output phase the co’s
are pushed back into the sorter from the bottom. At the end of time ¢7, the

Systolic Computation 351

smallest number 1 is out and the second smallest 2 is in the upper right cell
of the first unit awaiting to be output. In this output phase, the smaller of
the two numbers within each comparator is popped up, leaving the unit it
resides in and entering the unit on top of it. In the case of the top unit, the
smaller number is delivered as output. Thus, the sorter continues to put out
the numbers in order. At the end of time ¢15 all data in the sorter will have
been output in ascending order as desired. At the same time, the sorter is
automatically reset to its initial state (all oo) and is ready to accept the
next input sequence. 0

Theorem 9.1 The sorter correctly sorts the input numbers.

Assume the elements to be sorted are distinct, and n is even. Let C; and
D, denote the contents stored in cells C' and D of the ith comparator.
First, we show that min{C;y1, D; 1} > min{C;, D;}. Tt is the function of
the ith comparator to push down the larger of its two keys in the input
phase, and to pop up the smaller of the two keys in the output phase. In
input phase, the keys C;41 and D;;1 are obtained via comparator i. Hence,
the pushed key C;+1 or D;y; must be greater than or equal to the key in
comparator ¢ against which it was compared. Similarly, in the output phase,
the popped up key C; or D; is obtained from comparator i+ 1, hence it must
be smaller than or equal to the key in comparator ¢+ 1 against which it was
compared. In both cases, it follows that min{C;y1, D;11} > min{C;, D;}.
Consequently, the kth smallest element is in one of the top k& comparators.
To see this, assume that the kth smallest element = is not in the first &
comparators, that is, it is in comparator j for some j > k. Then, since
min{C1, D1} < min{Cy, Do} < --- < min{C}, D;} < x, at least k elements
are smaller than x, which is a contradiction. It follows that after n keys have
been read into the sorter, the minimum must be in the top comparator, the
second smallest must be either in the first or second comparator, and so on.
Thus, the first element to be output must be the smallest, followed by the
second smallest, etc.

9.6 Bibliographic Notes

Systolic array (Arnould, Kung, Menzilcioglu and Sarocky [12], Kung [50],
Kung [51]) is an on-chip multi-processor architecture proposed by

352

Parallel Algorithms

H.T. Kung in late 1970’s. It is proposed as an architectural solution to
the anticipated on-chip communication bottleneck of modern very large-
scale integration (VLSI) technology. For more on matrix-vector multipli-
cation using less than n PEs, see Navarro, Llaberia and Valero [72], and
Stojanovic, Milovanovic, Stojcev and Milovanovic [88]. Several variants of
systolic architectures for the convolution problem can be found in Kung [50].
The zero-time sorter is due to Miranker, Tang and Wong [68]. Bubble sorter
is from Lee, Hsu and Wong[54].

9.7

9.1.

9.2.

9.3.

9.4.

9.5.

9.6.

9.7.

9.8.

9.9.

Exercises

Design another systolic array for the matrix-vector product such that
n=4.

How many steps are required to finish the computation in the systolic
array for the matrix-vector product discussed in Section 9.27

Design a systolic array for the matrix-vector product in which the
x-values enter from the left of the array, and the product y-values
stay. How many steps are required to finish the computation?

Design a two-dimensional systolic array for the problem of multiply-
ing two 3 x 3 matrices A and B to produce the 3 x 3 matrix C.
Assume that the products — that is, the ¢; ;’s, will stay in the array.

How many steps are required to finish the computation in the systolic
array for the matrix-matrix product in Exercise 9.47

What is the main drawback of the systolic array design for convolu-
tion described in Section 9.3.17

Design another semisystolic array for convolution similar to the one
described in Section 9.3.1 in which the z;’s are broadcast, the results
stay and the weights move.

What is the main drawback of the systolic array design for convolu-
tion described in Section 9.3.27

Suggest a simple systolic array for sorting, and explain how it works.

9.10

9.11

9.12

9.13

9.14

9.8

9.1.

9.2.

9.3.

9.4.

Systolic Computation 353

Illustrate the operation of the zero-time sorter on the input sequence
(3,6,2,1,3,5).

Explain how the zero-time sorter can sort in descending order.

What modification should be done to the zero-time sorter algorithm
if the sequence is entered and extracted from the bottom port?

Illustrate the operation of the bubble sorter on the input
(3,6,2,1,3,5).

Explain how to make the bubble sorter output the numbers in
descending order.

Solutions

Design another systolic array for the matrix-vector product such that
n =4.

Similar to Fig. 9.1.

How many steps are required to finish the computation in the systolic
array for the matrix-vector product discussed in Section 9.27

It takes 2n — 1 steps to produce the vector product y.

Design a systolic array for the matrix-vector product in which the
x-values enter from the left of the array, and the product y-values
stay. How many steps are required to finish the computation?

The systolic array is shown in Fig. 9.11. It takes 2n —1 steps to finish
the computation.

Design a two-dimensional systolic array for the problem of multiply-
ing two 3 x 3 matrices A and B to produce the 3 x 3 matrix C.
Assume that the products, that is, the ¢; ;’s, will stay in the array.

Arrange the rows and columns of A and B so that the ith row of A is
input to the ¢th column of the array from the top, and the jth column
of B is input to the jth row of the array from the left (see Fig. 9.12).

354 Parallel Algorithms

a33
a3 a3
a3 a2 a3

X3 Y X4y
—>——>—> V| > Y2 > V3

Fig. 9.11. Systolic matrix-vector multiplication.

433
23 432
@13 42 a3

412 a1
an

Lo

by by byp — € o €1 o €31

|

b3y byy b
32
2 e —> 12 > 22 > 32
byy byy Pi3 —l 3 L €23 || €33

Fig. 9.12. Systolic matrix multiplication.

The elements of A move downwards while the elements of B move in
the left-to-right direction.

9.5. How many steps are required to finish the computation in the systolic
array for the matrix-matrix product in Exercise 9.47

It takes 3n — 2 steps to finish the matrix-matrix multiplication.

Systolic Computation 355

win—| y |— wout

Fig. 9.13. Systolic convolution for Exercise 9.7.

input —»|
output <—

Fig. 9.14. Systolic sorting on linear array for Exercise 9.9.

9.6. What is the main drawback of the systolic array design for convolu-
tion described in Section 9.3.17

The main drawback is that using the bus may be impractical for
implementation. As the number of cells increases, wires become too
long for the bus.

9.7. Design another semisystolic array for convolution similar to the one
described in Section 9.3.1 in which the z;’s are broadcast, results stay
and the weights move.

The z;’s are broadcast, results stay and the weights circulate around
the array of cells. See Fig. 9.13. The first weight w; is associated
with a tag bit that signals the accumulator to output and reset its
contents.

9.8. What is the main drawback of the systolic array design for convolu-
tion described in Section 9.3.27

The main drawback is that the computation of the y;’s takes twice
as long, as input moves at half the speed.

356

9.9.

9.10.

9.11.

9.12.

9.13.

9.14.

Parallel Algorithms

Suggest a simple systolic array for sorting, and explain how it works.
A linear array of processors can be used to sort as follows (see
Fig. 9.14). Each interior processor is connected by two-directional
links to its left and right neighbors. The input stream enters from the
leftmost end of the linear array. During the input phase, each proces-
sor, upon receiving a new element, compares its content with the cur-
rent element, keeps the smaller of the two and passes the larger one to
the right. After the input is consumed, the output phase commences,
in which the elements exit from the leftmost processor one at a time.

Illustrate the operation of the zero-time sorter on the input sequence
(3,6,2,1,3,5).
Similar to Example 9.3.

Explain how the zero-time sorter can sort in descending order.

The same principle of sorting in ascending order applies to the
descending sort; we only have to replace oo by —oo, the smallest
item, and interchange larger and smaller.

What modification should be done to the zero-time sorter algorithm
if the sequence is entered and extracted from the bottom port?

In this case, the larger of the two items is moved up instead, and the
smaller is moved down.

Illustrate the operation of the bubble sorter on the input
(3,6,2,1,3,5).
Similar to Example 9.4.

Explain how to make the bubble sorter output the numbers in
descending order.

There are two possibilities. The first approach is to still use the same
sorting mechanism, except that we add a multiplier on top of the
sorter, which multiplies each input/output datum by —1. The sec-
ond approach is to exchange the input and output ports. That is,
to let the input data enter the sorter from the lower right end (i.e.,
where the number co enters) and output data then comes out from
the lower left end (i.e., where oo comes out). In addition to the I/O
port exchange, the sorter must be initialized to contain a number
known to be smaller than the input data.

Appendix A

Mathematical Preliminaries

A.1 Asymptotic Notations

A.1.1 The O-notation

Definition A.1 Let f(n) and g(n) be two functions from the set of nat-
ural numbers to the set of nonnegative real numbers. f(n) is said to be
O(g(n)) if there exists a natural number ny and a constant ¢ > 0 such that

Vnzmng, f(n) < cg(n).

Consequently, if lim,,_,~ f(n)/g(n) exists, then

i M oo implies f(n) = n
Ay 7 plies f(n) = O(g(n)).

Informally, this definition says that f grows no faster than some constant
times g. The O-notation can also be used in equations as a simplification
tool. For instance, instead of writing

f(n) =5n® 4+ n? — 2n + 13,
we may write
f(n) =5n* 4+ O(n?).

This is helpful if we are not interested in the details of the lower order
terms.

357

358 Parallel Algorithms

A.1.2 The Q-notation

Definition A.2 Let f(n) and g(n) be two functions from the set of nat-
ural numbers to the set of nonnegative real numbers. f(n) is said to be
Q(g(n)) if there exists a natural number ng and a constant ¢ > 0 such that

V' n>ng, f(n)>cg(n).

Consequently, if lim,,_,~ f(n)/g(n) exists, then

i m implies f(n) = n
nhﬁngo o) # 0 implies f(n) = Q(g(n)).

Informally, this definition says that f grows at least as fast as some
constant times g. It is clear from the definition that

f(n)is Q(g(n)) if and only if g(n) is O(f(n)).

A.1.3 The ®-notation

Definition A.3 Let f(n) and g(n) be two functions from the set of nat-
ural numbers to the set of nonnegative real numbers. f(n) is said to be
O(g(n)) if there exists a natural number ng and two positive constants c¢;
and co such that

V'n >mng, cig(n) < f(n) < cag(n).

Consequently, if lim,,_,~ f(n)/g(n) exists, then

i M—cim ies f(n) = n
g&mm— plies f(n) = ©(g(n)),

where c is a constant strictly greater than 0.
An important consequence of the above definition is that
f(n) = ©(g(n)) if and only if f(n) = O(g(n)) and f(n) = Q(g(n)).

Unlike the previous two notations, the ©-notation gives an exact picture of
the rate of growth of the running time of an algorithm.

Mathematical Preliminaries 359

A.1.4 The o-notation

Definition A.4 Let f(n) and g(n) be two functions from the set of nat-
ural numbers to the set of nonnegative real numbers. f(n) is said to be
o(g(n)) if for every constant ¢ > 0 there exists a positive integer ng such
that f(n) < cg(n) for all n > ng. Consequently, if lim,, .o f(n)/g(n) exists,
then

lim Fn) = 0 implies f(n) = o(g(n)).

n—o0 g(n)

Informally, this definition says that f(n) becomes insignificant relative
to g(n) as n approaches infinity. It follows from the definition that

f(n) = o(g(n)) if and only if f(n) = O(g(n)), but g(n) # O(f(n)).

For example, nlogn is o(n?) is equivalent to saying that nlogn is O(n?)
but n? is not O(nlogn).
A.2 Divide-and-conquer Recurrences

Lemma A.1 Let a and ¢ be nonnegative integers, b, d and x nonnegative
constants, and let n = ¢¥, for some nonnegative integer k. Then, the solution

d itn=1
Jn) = {af(n/c) +bn® ifn>2

to the recurrence

is

f(n) =bn”log,n + dn” if a=c",
bc* be*

f(n)<d+ <)nl"gca< <)nf if a#c
a—c® a—c®

Corollary A.1 Let a and ¢ be nonnegative integers, b,d and = nonneg-
ative constants, and let n = ¢, for some nonnegative integer k. Then, the
solution to the recurrence

d ifn=1
fn) = {af(n/c) +bn* ifn>2

360 Parallel Algorithms

satisfies
f(n) = bn”log,n + dn” if a=c",
bCL‘
f(n)§< ¢)nz if a<c”,
¢t —a
be® log. a : T
f(n) < (d+ —— | n it a>c".
a—c

Proof. If a < ¢%, then log.a < z, or n'°8% < n® If a > c*, then
log,a > x, or n'°%® > n®. The rest of the proof follows immediately from
Lemma A.1. O

Theorem A.1 Let a and ¢ be nonnegative integers, b, d and x nonnegative
constants, and let n = ¥, for some nonnegative integer k. Then, the solution
to the recurrence

F(n) = d ifn=1
= af(n/c)+bn* ifn>2
is
O(n®) ita<c”.
f(n) =< O(n"logn) ifa=c".
O(n'°s:2) ifa > .

In particular, if z = 1, then

O(n) ifa<ec.
f(n) =4 O(nlogn) ifa=c.
O(n'sca) ifa > ec.

Example A.1 Consider the recurrence
1 ifn=1
f(n) = {f(n/2)+\/ﬁ if n > 2.
By Corollary A.1, since a = b= 1,¢ =2,z = 0.5, we have

V2
V2 -1

fn) < Vn=0(vn). 0

Mathematical Preliminaries 361

Example A.2 Consider the recurrence

F(n) = 1 ifn=1
 f(n/2) + h(n) ifn>2.
Then,
= n
S =3 n ()
=0
If we let h(n) = logn, and n = 2*, then the solution to the recurrence

1 ifn=1
fn) = {f(n/2) +logn ifn>2

is

k r k k(k+1)
n) =Y log(n/2") =) (logn—i)=Y» (k—i)=——-">=0(log’n).
f();g(/);(g);() 5 (log” n)
O
A.3 Summations
The arithmetic series:
- n(n+1
=1 e (A1)
j=1
The sum of squares:
L nn+1)2n+1
Zﬂ = ()6() =0(n?). (A.2)
j=1
The geometric series:
= |
> = —=0(c"), c#1 (A.3)
j=0 -
If ¢ = 2, we have
ol =2mt 1 =002 (A.4)

362 Parallel Algorithms

If ¢ = 1/2, we have

2":23—2——<2—@<). (A.5)

7=0

When |c¢| < 1 and the sum is infinite, we have the infinite geometric series

S 1
> = =0(1), |c| <1 (A.6)
A 1—c
j=0
Differentiating both sides of Eq. (A.3) and multiplying by ¢ yields

nc"t2 —pentt —entl ¢
Z]CJ chj = P =0(nc"), c#1. (A7)

Letting ¢ = 1/2 in Eq. (A.7) yields

A.4 Probability

A.4.1 Random wvariables and expectation

A random variable X is a function from the sample space to the set of real
numbers. For example, we may let X denote the number of heads appearing
when throwing 3 coins. Then, the random variable X takes on one of the
values 0, 1, 2, and 3 with probabilities

Pr[X =0] =Pr[{TTT}]| = %, Pr[X =1]=Pr{HTT,THT, TTH}| =
%, Pr[X = 2] = Pr[{HHT,HTH,THH}] = 2 and Pr[X = 3| =

Pr[{HHH}| = %. ’

Mathematical Preliminaries 363

The ezpected value of a (discrete) random variable X with range S is
defined as

E[X] =) aPr[X =a].

For example, if we let X denote the number appearing when throwing a
die, then the expected value of X is

6
1
E[X]:ZkPr[X:k]:g(1+2+3+4+5+6):; (A.10)
k=1

E[X] represents the mean of the random variable X and is often writ-
ten as px or simply pu. An important and useful property is linearity of
expectation:

E

> x| - 3o
i=1 i=1
which is always true regardless of independence.

A.4.2 Bernoulli distribution

A Bernoulli trial is an experiment with exactly two outcomes, e.g., flipping
a coin. These two outcomes are often referred to as success and failure with
probabilities p and ¢ = 1 — p, respectively. Let X be the random variable
corresponding to the toss of a biased coin with probability of heads % and
probability of tails % If we label the outcome as successful when heads
appear, then

Y 1 if the trial succeeds
T 10 if it fails.

A random variables that assumes only the numbers 0 and 1 is called an
indicator random variable. The expected value and variance of an indicator
random variable with probability of success p are given by

E[X]=p and var[X]=pq=p(l-p).

364 Parallel Algorithms

A.4.3 Binomial distribution

Let X = Z?:lXi, where the X;’s are indicator random variables corre-
sponding to n independent Bernoulli trials with parameter p (identically
distributed). Then, X is said to have the binomial distribution with param-
eters p and n. The probability that there are exactly k successes is given by

Pr[X =k = (Z) P ",
where ¢ = 1 — p. The expected value and variance of X are given by:

E[X]=np and var[X]=npg=np(l—p).

The first equality follows from the linearity of expectations, and the second
follows from the fact that all X;'s are pairwise independent.

For example, the probabilities of getting k heads, 0 < k < 4, when
tossing a fair coin 4 times are

1 1 1 1
16" 4° 8 4 16°
E[X] =4 x (1/2) = 2, and var[X] = 4 x (1/2) x (1/2) = L.

3
8

A.4.4 Chernoff bounds

Let X1, Xs,..., X, be a collection of n independent indicator random
variables representing Bernoulli trials such that each X; has probability
Pr[X; = 1] = p;. We are interested in bounding the probability that their
sum X = > X, will deviate from the mean p = E[X] by a multiple of .

A441 Lower tail
Theorem A.2 Let § be some constant in the interval (0,1). Then,
e a
PI'[X < (1 — 5)#] < (m) ,

which can be simplified to

PrX < (1—8)u] < e 19/

Mathematical Preliminaries 365

A.4.4.2 Upper tail

Theorem A.3 Let § > 0 Then,
el "
PI‘[X > (]. +5)u] < (W) s
which can be simplified to
Pr(X > (1+)u| < eTHIA i S < 2 — 1,
and

Pr(X > (14 0)u] <27 if § > 2e— 1.

Example A.3 We seek the probability that the number of heads in a
sequence of n flips of a fair coin is at least 2n/3.
Let p = E[X] = n/2. Solving for 4,

2n
14+ =—
(1+0)p 3

gives 6 = % We apply Chernoff bound of Theorem A.3. Since § < 2e — 1,
we have

Pr {X > %”] < e Ho/A
_ o (n/2)(1/9)/4

_ e—n/72.

So, we see that there is an exponential fall off. O

This page intentionally left blank

Bibliography

Akers, S. B., Harel, D. and Krishnamurthy, B., “The star graph: An
attractive alternative to the n-cube”, Proceeding of the International
Conference on Parallel Processing, 393-400, 1987.

Akers, S. B. and Krishnamurthy, B., “A group-theoretic model for
symmetric interconnection networks”, IEEE Transactions on Com-
puters, 38(4), 555-566, 1989.

Akhgari, E., Ziaie, A. and Ghodsi, M., “Sorting on OTIS-Networks”,
In: Sarbazi-Azad, H., Parhami, B., Miremadi SG. and Hessabi, S.
(eds.) Advances in Computer Science and Engineering. CSICC 2008.
Communications in Computer and Information Science, Vol. 6.
Springer, Berlin, Heidelberg, 871-875, 2008.

Akl S. G., The Design and Analysis of Parallel Algorithms, Prentice
Hall, Englewood Cliffs, New Jersey, 1989.

Akl S. G., Parallel Computation: Models and Methods, Prentice Hall,
Upper Saddle River, Florida, 1997.

AKl, S. G., Parallel Sorting Algorithms, Academic Press, Englewood
Cliffs, NJ, 1985.

Akl S. G., “An optimal algorithm for parallel selection”, Information
Processing Letters, 19, 47-50, 1984.

Akl S. G. and Lyons, K. A.; Parallel Computational Geometry, Pren-
tice Hall, Englewood Cliffs, New Jersey, 1993.

Akl S. G., Qiu, K. and Stojmenovic, I., “Fundamental algorithms for
the star and pancake interconnection networks with applications to
computational geometry”, Networks, Special Issue: Interconnection
Networks and Algorithms, 23, 215-226, 1993.

367

368

[10]

Parallel Algorithms

Al-Sadi, J., Awwad, A. M. and AlBdaiwi, “Efficient routing algorithms
on OTIS-Star network”, Proceedings of the IASTED International
Conference on Advances in Computer Science and Technology, Virgin
Islands, U.S.A., ACTA Press, 157-162, 2004.

Alsuwaiyel, M.H., “An efficient and adaptive algorithm for multi-
selection on the PRAM”, Proceeding of the International Confer-
ence on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPDO01) Nagoya, Japan, 140-143,
2001.

Arnould, E., Kung, H., Menzilcioglu, O. and Sarocky, K., “A systolic
array computer”, Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing, 10, 232235, 1985.

Awwad, A. M.,“OTIS-Star: An attractive alternative network”, Pro-
ceedings of the 4th WSEAS International Conference on Software
Engineering, Parallel & Distributed Systems, 37-41, 2005.

Awwad, A. M. and Al-Sadi, J., “Investigating the distributed load
balancing approach for OTIS-Star topology”, International Journal
of Computer Science and Information Security (IJCSIS), 14, no. 3,
163-171, 2016.

Batcher, K., “Sorting networks and their applications”, AFIPS Spring
Joint Computing Conference, Atlantic City, NJ, 307-314, 1968.
Blahut, R. E., Fast Algorithms for Digital Signal Processing, Addison
Wesley, Reading, MA, 1985.

Borodin, A. and Moenck, R., “Fast modular transforms”, Journal of
Computer and System Sciences, 8, 366386, 1974.

L. E. Cannon, “A cellular computer to implement the Kalman filter
algorithm”, Ph.D. Thesis, Montana State University, 1969.

Cantoni, V. and Levialdi, S., Eds. Pyramidal Systems for Computer
Vision, Springer, Berlin, 1986.

Chandran, S. and Rosenfeld, A., “Order statistics on a hypercube”,
Information Processing Letters, 27, 129-132, 1988.

Chaudhuri, P., Parallel Algorithms: Design and Analysis, Prentice
Hall, Sydney, Australia, 1992.

Chiang, W. K., “Topological properties of the (n,k)-star graph”,
International Journal of Foundations of Computer Science, 9(2),
235248, 1998.

Chiang, W. K. and Chen, R. J., “The (n, k)-star graph: A generalized
star graph”, Information Processing Letters, 56, 259-264, 1995.
Christopher, T., “An implementation of Warshalls algorithm for tran-
sitive closure on a cellular computer, Technical Report 36, Institute
for Computer Research, University of Chicago, Chicago, IL, 1973.

[25]
[26]

[27]

Bibliography 369

Cinque, L. and Bongiovanni, G., “Parallel prefix computation on a
pyramid computer”, Pattern Recognition Letters, 16, 19-22, 1995.
Cole, R., “Parallel merge sort”, STAM Journal on Computing, 17(4),
770-785, 1988.

Cooley, J. M. and Tukey, J. W., “An algorithm for machine calcu-
lation of complex Fourier series”, Mathematics of Computation, 19,
297-301, 1965.

Cook, S. A., “A taxonomy of problems with fast parallel algorithms”,
Information and Control, 64, 2—22, 1985.

Cosnard, M. and Trystram, D., Parallel Algorithms and Architectures,
International Thomson Computer Press, London, 1995.

Cypher, R. and Plaxton, G., “Deterministic sorting in nearly log-
arithmic time on the hypercube and related computers”, In Pro-
ceeding of the 22nd ACM Symp. Theory of Computing, ACM Press,
1990.

Day, K. and Al-Ayyoub, A., “Topological properties of OTIS-
networks”, IEEE Transactions on Parallel and Distributed Systems,
13(4), 359-366, 2002.

Day, K. and Tripathy, A., “Arrangement graphs: A class of generalized
star graph”, Information Processing Letters, 42, 235-241, 1992.
Dekel, E., Nassimi, D. and Sahni, S.,“Parallel matrix and graph algo-
rithms”, SIAM Journal on Computing, 10(4), pp. 307-315, 1981.
Dietzfelbinger, M., Madhavapeddy, S. and Sudborough, I. H., “Three
disjoint path paradigms in star networks”, Proceedings of the Third
IEEE Symposium on Parallel and Distributed Processing, 400—406,
1991.

Durad, M. H., Akhtar, M. N. and Irfan-ul-Haq, “Performance anal-
ysis of parallel sorting algorithms Using MPI”, 2014 12th Interna-
tional Conference on Frontiers of Information Technology, Islamabad,
pp. 202-207, 2014.

Fiduccia, C. M., “Polynomial evaluation via the division algo-
rithm:The fast Fourier transform revisited”, In Proceeding of the
fourth ACM Symposium on Theory of Computing, Denver, CO, 88—
93, 1972.

Gibbons, A. and Rytter, W., Efficient Parallel Algorithms,
Cambridge University Press, London, 1990.

Greenlaw, R., Hoover, J. and Ruzzo, W., Limits to Parallel Compu-
tation: P-completeness Theory, Oxford University Press, New York,
1995.

370 Parallel Algorithms

[39] Grama, A., Gupta, A., Karypis, G. and Kumar, V., Introduction to
Parallel Computing, Addison-Wesley, New York, 2003.

[40] Gupta, A. and Sarkar, B. K., “Shortest path routing on OTIS hyper
hexa-cell”, 2017 8th International Conference on Computing, Com-
munication and Networking Technologies (ICCCNT), pp. 1-6, 2017.

[41] Gupta, A., Singh, H. and Bhati, A., “Efficient parallel algorithm for
mapping LaGrange’s interpolation on OTIS and BSN hyper hexa-
cell”, 2020 International Conference on Emerging Smart Computing
and Informatics (ESCI), AISSMS Institute of Information Technol-
ogy, Pune, India, pp. 82-87, 2020.

[42] He, L., “Properties and Algorithms of the (n,k)-Star Graphs”,
Ms Thesis, Faculty of Mathematics and Science, Brock University,
St. Catharines, Ontario, Canada, 2008.

[43] Horowitz, E., Sahni, S. and Rajasekaran, S., Computer Algorithms,
Computer Science Press, Rockville, MD, 1998.

[44] J&J4, J., An Introduction to Parallel Algorithms, Addison-Wesley,
Reading, MA, 1992.

[45] Jan, G. E. and Huang, Y. S., “A simple algorithm for optimal load
balancing on hypercube multiprocessors, Proceedings of 2001 Interna-
tional Conference on Parallel and Distributed Processing Techniques
and Applications, Las Vegas, Nevada, USA, 17, 2001.

[46] J&J4, J. and Ryu, K. W., “Load balancing on the hypercube and
related networks”, The Proceeding of the 1990 International Confer-
ence on Parallel Processing, pp. 1203-1210, 1990.

[47] Kunde, M., “Ruting and sorting on mesh-connected arrays”, Pro-
ceeding of Third Agean Workshop on Computing: VLSI Algorithms
and Architectures, Vol. 319 of Lecture notes in computer science,
pp- 423-433, Springer-Verlag, 1988.

[48] Kronsjo, L. Algorithms: Their Complexity and Efficiency, Wiley,
New York, NY, 1987.

[49] Kruscal, C., “Searching, merging and sorting in parallel computa-
tion”, IEEE Transactions on Computers, C-32(10), 942-946, 1983.

[50] Kung, H.T., “Why systolic architectures?”, IEEE Computers, 15,
3746, 1982.

[51] Kung, S.Y., VLSI Array Processors. Prentice Hall, Englewood Cliffs,
NJ, 1988.

[62] Lakshmivarahan, S. and Dhall, S. K., Analysis and Design of Par-
allel Algorithms: Arithmetic and Matriz Problems, McGraw-Hill,
New York, 1990.

[53]

[54]

[55]
[56]

[57]

[58]

[61]

[62]

[63]

[64]

[65]

Bibliography 371

Lakshmivarahan, S. and Dhall, S. K., Parallel Computing Using the
Prefiz Problem, Oxford University Press, New York, 1994.

Lee, D.T., Hsu, C. and Wong, C. K., “An on-chip compare/steer
bubble sorter”, IEEE Transactions on Computers, c-30(6), 396-404,
1981.

Leighton, F.T., Complexity Issues in VLSI, MIT Press, Cambridge,
MA, 1983.

Leighton, F.T., “Tight bounds on the complexity of parallel sorting”,
IEEE Transactions on Computers, c-34(4), 344-354, 1985.
Leighton, F.T., Introduction to Parallel Algorithms and Architec-
tures: Arrays, Trees and Hypercubes, Morgan Kaufmann Publishers,
San Mateo, CA, 1992.

Leighton, F.T., Makedon, F. and Tollis, I., “A 2n — 2 step algorithm
for routing in an n x n mesh”, Proceeding of the ACM Symposium on
Parallel Algorithms and Architectures, 328-335, 1989.

Li, Y. and Qiu, K.,“Routing, broadcasting, prefix sums, and sort-
ing algorithms on the arrangement graph”, 2009 15th International
Conference on Parallel and Distributed Systems, 324-331, 2009.
Lucas, K. T. and Jana, P. K., “An efficient parallel sorting algorithm
on OTIS mesh of trees”, 2009 IEEE International Advance Comput-
ing Conference (IACC 2009), 175-180, 2009.

Lucas, K. T. and Jana, P. K., “Sorting and routing on OTIS mesh of
trees”, Parallel Processing Letters, 20, no. 2, 145-154, 2010.
Mahafzah, B. A., Sleit, A., Hamad, N. A., Ahmad, E. F. and
Abu-Kabeer, T. M., “The OTIS hyper hexa-cell optoelectronic archi-
tecture”, J. Computing, 94(5), 411-432, 2012.

Marsden, G., Marchand, P., Harvey, P. and Esener, S., “Optional
transpose interconnection system architecture”, Optics Letters,
18(13), 1083-1085, 1993.

McClellan, J. H. and Rader, C. M. Number Theory in Digital Signal
Processing, Prentice Hall, Englewood Cliffs, NJ, 1979.

Mendia, V. E. and Sarkar, D., “Optimal broadcasting on the star
graph”, IEEFE Transactions on Parallel and Distributed Systems, 3(4),
389-396, 1992.

Miller, R. and Boxer, L., Algorithms Sequential & Parallel, Prentice-
Hall, Englewood Cliffs, NJ, 2000.

Miller, R. and Stout, Q. F., Parallel Algorithms for Regular Architec-
tures: Meshes and Pyramids, MIT Press, Cambridge, MA, 1996.
Miranker, G., Tang, L. and Wong, C. K., “A zero-time VLSI sorter”,
IBM J. Res. Develop., 27(2), 140-147, 1983.

372

[69]

Parallel Algorithms

Najaf-abadi, H. H. and Sarbazi-azad, H.,“Comparative evaluation
of adaptive and deterministic routing in the OTIS-hypercube”,
Proceeding of the 9th Asia-Pacific Computer Systems Architecture
Conference (ACSAC), in LNCS 3189, pp. 349-362, 2004.
Najaf-abadi, H. H. and Sarbazi-azad, H.,“An empirical comparison
of OTIS-mesh and OTIS-hypercube multicomputer systems under
deterministic routing”, Proceeding of the 14th IEEE International
Parallel and Distributed Processing Symposium, p. 262-a, IEEE Press,
New York, 2005.

Nassimi, D. and Sahni, S., “Parallel permutation and sorting algo-
rithms and a generalized interconnection network”, Journal of the
ACM, 29(3), 642667, 1982.

Navarro, J., Llaberia, J. and Valero, M., “Partitioning: An essential
step in mapping algorithms into systolic array processors”, Computer,
20(7), 77-89, July 1987.

Osterloh, A. “Sorting on the OTIS-mesh”, 19th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2000),
269274, 2000.

Plaxton, C. G. “Load balancing, selection and sorting on the hyper-
cube”, Proceeding of the 1989 ACM Symposium on Parallel Algo-
rithms and Architectures, 64-73, 1989.

Rajasekaran, S., “Sorting and selection on interconnection networks”,
DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 21, 275-296, 1995.

Rajasekaran, S. and Sahni, S., “Randomized routing, selection, and
sorting on the OTIS-mesh”, IEEE Transactions on Parallel and
Distributed Systems, 9(9), 833-840, 1998.

Roosta, S. H., Parallel Processing and Parallel Algorithms: Theory
and Computation, Springer-Verlag, New York, 2000.

Rosenfeld, A., Ed. Multiresolution Image Processing and Analysis,
Springer, Berlin, 1984.

Sado, K. and Igarashi, Y., “Some parallel sorts on a mesh-connected
processor array and their time efficiency”, Journal of Parallel and
Distributed Computing, 3, 398-410, 1986.

Sahni, S. and Wang, C-F., “BPC permutations on the OTIS-
hypercube optoelectronic computer”, Informatica, 22, 263-269, 1998.
Scherson, 1., Sen, S. and Shamir, A., “Shear-sort: A true two-
dimensional sorting technique for VLSI networks”, Proceeding of the
International Conference on Parallel Processing, 903-908, 1986.
Shamos, M. 1., “Computational Geometry”, PhD Thesis, Department
of Computer Science, Yale University, New Haven, CT, 1978.

[83]

[84]

[85]

Bibliography 373

Shen, H., “Efficient parallel multiselection on hypercubes”, Proceeding
of the 1997 International Symp. on Parallel Architectures, Algorithms
and Networks (I-SPAN), IEEE CS Press, 338-342, 1997.

Shen, H., “Optimal multiselection in hypercubes”, Parallel Algo-
rithms and Applications, 14, 203-212, 2000.

Sheu, J. P., Wu, C. T. and Chen, T. S., “An optimal broadcasting
algorithm without message redundancy in star graphs”, IEEE Trans-
actions on Parallel and Distributed Systems, 6(6), 653658, 1995.
Shi, H. and Schaeffer, J., “Parallel sorting by regular sampling”, Jour-
nal of Parallel and Distributed Computing, 14, 361-372, 1990.
Shiloach, Y. and Vishkin, U., “Finding the maximum, merging and
sorting in a parallel computation model”, Journal of Algorithms, 2(1),
88-102, 1981.

Stojanovic, N. M. ;Milovanovic, I. Z.,Stojcev, M. K. and Milovanovic,
E. 1., “Matrix-vector Multiplication on a Fixed Size Unidirectional
Systolic Array”, 2007 8th International Conference on Telecom-
munications in Modern Satellite, Cable and Broadcasting Services,
457-460, 2007.

Stout, Q., “Sorting, merging, selecting, and filtering on tree and pyra-
mid machines”, Proceeding of the 1983 International Conference on
Parallel Processing, 214-221, 1983.

Szymanski, T., “Hypermesh optical interconnection networks for par-
allel computing ”, Journal of Parallel and Distributed Computing, 26,
1-23, 1995.

Szymanski, T. and Hinton, H., “Architecture of a terabit free-space
intelligent optical backplane”, Journal of Parallel and Distributed
Computing, 55(1), 1-31, 1998.

Thompson, C. and Kung, H., “Sorting on a mesh-connected parallel
computer”, Communication of the ACM, 20(4), 263-271, 1977.
Wagar, B., “Hyperquicksort: A fast sorting algorithm for hyper-
cubes”, in Hypercube Multiprocessors, M.T. Health, ed., STAM, 292—
299, 1987.

Wang, C-F., “Algorithms for the OTIS optoelectronic computer”,
PhD thesis, Dept. of Computer Science, Univ. of Florida, 1998.
Wang, C-F. and Sahni, S., “Basic operations on the OTIS-mesh opto-
electronic computer”, IEEFE Transactions on Parallel and Distributed
Systems, 9(12), 1226-1236, 1998.

Wang, C-F. and Sahni, S., “Image processing on the OTIS-mesh opto-
electronic computer”, IEFEFE Transactions on Parallel and Distributed
Systems, 11(2), 97-109, 2000.

374

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Parallel Algorithms

Wang, C-F. and Sahni, S., “Matrix multiplication on the OTIS-mesh
optoelectronic computer”, IEEE Transactions on Computers, 50(7),
635646, 2001.

Winograd, S. Arithmetic Complexity of Computation, STAM Pub-
lishers, 1980.

Woo, J. and Sahni, S., “Load balancing on a hypercube”, 1991 Pro-
ceedings of the Fifth International Parallel Processing Symposium,
525-530, 1991.

Valiant, L. G., “A scheme for fast parallel communication”, STAM
Journal on Computing, 11, 350-361, 1982.

Valiant, L. G. and Brebner, G. L., “Universal schemes for parallel
communication”, Proceedings of the 13th ACM Symposium on Theory
of Computing, Milwaukee, WI, 263277, 1-9, 1981.

Vishkin, U., “An optimal parallel algorithm for selection”, Advances
in Computing Research, JAI Press Inc., Greenwich, CT, 1987.

Zane, F., Marchand, P., Pahuri, R. and Esener, S., “Scalable net-
work architectures using the optical transpose interconnection system
(OTIS)”, Proceeding of the Second International Conference Mas-
sively Parallel Processing Using Optical Interconnections (MPPOI’
96), 114-121, 1996.

Xavier, C. and lyengar, S. S., Introduction to Parallel Algorithms,
John Wiley, New York, 1998.

Index

O(1) time, 11

A

acyclic graph, 210, 222
ARBITRARY, 8

area of a picture, 274, 277
arrangement graph, 296, 304, 307-308
array packing, 16-17, 77

B

balanced tree method, 8

Bernoulli distribution, 363

Bernoulli trial, 363

BFODDEVENMERGE algorithm,
128-129, 132, 142, 146, 154

BFODDEVENMERGESORT algorithm,
130, 132, 328

BFPARPREFIX algorithm, 126-127, 271

binomial distribution, 364

bipartite graph, 75, 92

bisection width, 95, 141, 151, 207,
213, 274-277, 279

bisection width of a network, 4

bisection width of the butterfly, 141,
151

bisection width of the hypercube, 95

bisection width of the mesh, 207, 213

bisection width of the torus, 207, 213

bit fixing, 106-107, 110, 144

bitonic merging, 39-40

bitonic merging and sorting, 35, 43

bitonic sequence, 35, 37

bitonic sort network, 71, 80

bitonic sorting, 40, 75, 92

BITONICMERGE algorithm, 39-42

BITONICSORT algorithm, 4041

bottom-up merge sorting, 31

breadth-first spanning tree, 210, 222

Brent theorem, 10, 74, 90

broadcasting, 70, 78, 104, 138, 144,
162, 207, 212, 294-295, 304, 307,
316, 326, 332-334, 336, 339

broadcasting in OTIS-Mesh, 316, 332,
334

broadcasting in the hypercube, 104,
138, 144

broadcasting in the mesh, 162

broadcasting in the OTIS-Hypercube,
326, 333, 336

broadcasting in the OTIS-Star, 333,
339

broadcasting in the ring, 207, 212

broadcasting in the star network,
294-295, 304, 307

BUCKETSORT, 139-140, 147-148

butterfly, 96, 98, 110

376 Parallel Algorithms

bisection width of, 141, 151

odd—even merging and sorting on,
127, 130

odd—even merging on, 127, 130,
142, 154

parallel prefix on, 126, 143, 155

permutation routing in, 110

prefix sum on, 126, 143, 155

C

CCC, see cube-connected cycles, 143,
364-365
lower tail, 364
upper tail, 365

columnsort, 196-198, 211, 223-225

COLUMNSORT algorithm, 196-202,
211, 223-224

COLUMNSORT2 algorithm, 197-199,
211, 223

COMMON, 7

component labeling, 191-192, 212,
226

concurrent read concurrent write,
7

concurrent read exclusive write, 7

congestion, 161

connected components, 184

convex hull, 185, 187, 189
on the mesh, 185, 187, 189, 191
parallel algorithm, 63, 68

convolution, 238-239, 245, 249,
342-345, 352, 355
computing, 238-239, 245, 249
systolic array for, 342-345, 352, 355

CRCW, 7-8

CREW, 7

cube-connected cycles, 143, 156
bisection width of, 144, 156
degree of, 144, 156
diameter of, 144, 156
embedding of hypercube into, 144,

157

parallel prefix on, 144, 157
prefix sum on, 144, 157

simulating a hypercube on, 144,
158
sum on, 143, 156
cyclic graph, 210, 222

D

1-dimensional pyramid, 259
bisection width of, 274, 276
lower bound on routing, 274,
276
lower bound on sorting, 274, 276
2-dimensional pyramid, 260
bisection width of, 274, 277
diameter of, 274, 276
lower bound on routing, 274, 277
lower bound on sorting, 274, 277
3-dimensional mesh, 202
sorting on, 202, 204, 212, 225, 226
data movements in OTIS-Mesh, 315
degree of OTIS-mesh of trees, 333,
339
degree of a network, 4
depth-first numbering in a tree, 24
deterministic routing on
OTIS-Hypercube, 333, 339
deterministic routing on OTIS-Mesh,
322
deterministic routing on the mesh,
173
DFT, see discrete Fourier transform,
228
diameter, 274, 276, 278
of OTIS-mesh of trees, 333,
339-340
diameter of a network, 4
dilation, 161
dimension k edge, 95
directing a tree, 25-26, 73, 87
DIRECTINGTREE algorithm, 25
discrete Fourier transform, 228
divide and conquer recurrence, 359
dominating set, 305, 310
DOTPRODUCT algorithm, 56-57

Index

E

embedding, 140, 144, 150, 157, 161,
207, 212
linear array into the mesh, 161,
207, 212
mesh into linear array, 161, 207,
212
embedding of a binary tree into
hypercube, 103, 140, 150
embedding of a linear array into
hypercube, 101

embedding of a mesh into hypercube,

102
embedding of cube-connected cycles
into hypercube, 144, 157
embeddings of the hypercube, 99
enumeration sort, 11
ERCW, 7
EREW, 7
Euler circuit, 22
Euler tour, 22, 24, 73, 87
Eulerian graph, 22
exclusive read concurrent write, 7
exclusive read exclusive write, 7
expectation, 362
expected value, 363

F

fast Fourier Transform, 227
fast Fourier transform, 227, 244-247,
249
convolution, 238-239, 245, 249
implementation on the butterfly,
231
inverse, 234
iterative on the butterfly, 231
modular arithmetic, 241, 243,
245-246, 250-251
product of polynomials, 235, 237,
243-249
Toeplitz matrix, 239-240, 245,
249-250
FFT, see fast Fourier transform, 227

377

Fourier transform, see fast Fourier
transform, 227

G

Gray codes, 100
greedy path in butterfly, 98

H

HCBROADCAST algorithm, 104-105,
144
HCHYPERQUICKSORT algorithm,
113-114
HCLOADBALANCE algorithm, 126
HCMULTISELECT algorithm, 120-121,
140, 149
HCPARPREFIX algorithm, 112, 142,
153
HCSELECT algorithm, 118, 120-122,
140, 148-149
HCSUM algorithm, 105, 134
Horner’s rule, 74, 88
hypercube, 95, 99
bisection width of, 95
broadcasting in, 104, 138, 144
computing maximum on, 141, 152
computing parallel prefix on, 139,
145-146
computing prefix sum on, 139,
145-146
computing sum on, 138, 141, 144,
151
embedding of a binary tree into,
103
embedding of a linear array into,
101
embedding of a mesh into, 102
load balancing on, 122, 138, 142,
153-154
matrix multiplication on, 132, 134,
137, 142, 155
multiselection on, 140, 149
odd—even merging on, 139, 146
parallel prefix on, 112, 142, 153
parallel quicksort on, 139, 146

378 Parallel Algorithms

permutation routing in, 105-107,
140, 148
prefix sum on, 112, 142, 153
routing in, 140, 148
routing on, 141-142, 152
sorting on, 113, 115, 139, 147
hyperquicksort, 113

I

indicator random variable, 363
interconnection networks, 3
interpolation, 235, 236

L

labeling connected components,
191-192, 212, 226
LAPARPREFIX algorithm, 163-164
linear array, 159
broadcasting in, 162
merge-split sort on, 208-209,
217-218
linearity of expectation, 363

load balancing, 122, 138, 142, 153-154

lower bound, 274-277, 279

M

many-to-many routing on the
hypercube, 141-142, 152

mathematical notations
O-notation, see O-notation, 357
()-notation, see 2-notation, 358

matrix multiplication, 56, 132, 134,
137, 142, 155, 177-178, 210, 222

matrix multiplication on the
hypercube, 132, 134, 137

matrix multiplication on the mesh,
177-178, 210, 222

matrix multiplication on the PRAM,
56, 71, 82, 177-178

matrix—matrix multiplication,
352-354

matrix-vector multiplication, 342,
352-353

maximum, 69, 72, 77, 82-83, 141,
152, 207, 214, 273-276, 290-291,
304, 306

mean, 363

merge-split sort, 208-209, 217-218

mergesort, 76, 92-93
pipelined mergesort, 43, 49

MERGESORT algorithm, 40

merging, 27, 30, 33, 35, 39, 70-71, 74,
79-80, 8990, 169-170, 211,
224-225
odd—even, 33, 70-71, 79-80, 211,

224-225

merging by ranking, 27, 30

mesh
deterministic routing on, 173
one-to-one routing on, 209, 218
permutation routing on, 172-174,

209, 218
randomized routing on, 174
mesh network, 159
3-dimensional, 202
bisection width of, 207, 213
broadcasting in, 162
component labeling, 191-192, 212,
226

computing maximum on, 207, 214

computing transpose of a matrix
on, 208, 215

odd—even merging and sorting on,
169-171, 209, 218

odd—even merging on, 209, 218

odd—even transposition sort on,
164-165, 208, 217

parallel prefix on, 163, 208-209,
214, 219

permutation routing on, 207, 213

prefix sum on, 163, 208-209, 214,
219

routing on, 207, 213

searching in, 210, 221

sorting on, 202, 204, 207, 210,
212213, 219-220, 225-226

window broadcast in, 209, 219

Index

with wraparound connections, 159
mesh of trees, 264, 275, 278
bisection width of, 275, 279
comparison with pyramid, 272
computing sum on, 275, 278
diameter of, 274, 278
lower bound on routing, 275, 279
lower bound on sorting, 275, 279
parallel prefix on, 270, 272
prefix sum on, 270, 272
routing on, 269-270, 275, 279
sorting on, 266, 268, 275, 279
MESHODDEVENMERGE algorithm,
169-170, 172
MESHODDEVENSORT algorithm,
171-172
MESHPARPREFIX algorithm, 163-164
MESHSORTREC algorithm, 167-168
minimum spanning tree, 59, 61-62,
75, 90-92
MODPARSEARCH algorithm, 27-29
multiselection, 52, 71, 81, 119, 140,
149
multiselection on the hypercube, 119,
140, 149

N

O-notation, 358

normal butterfly algorithm, 98
normal tree algorithm, 254
nth root of unity, 227, 244, 246

(0]

O-notation, 357-359

Q-notation, 358

oblivious sorting algorithm, 32

odd—even merging, 33, 70-71, 74,
79-80, 90, 127, 130, 139, 142, 146,
154, 209, 211, 218, 224225

odd—even merging and sorting, 127,
130, 169-171, 209, 218

odd—even transposition sort, 164-165,
208, 217

379

ODDEVENMERGE algorithm, 33-35,
70, 74, 79, 90, 196-197, 211, 224
ODDEVENMERGESORT algorithm,
34-35, 130, 171
on-chip bubble sorter, 347, 349, 353,
356
Optical transpose interconnection
system, 313
OR computing logical, 71, 82
OTIS, 313
data movement in, 331, 334
OTIS-Hypercube, 324
broadcasting in, 326, 333, 336
computing sum on, 326, 333, 336
deterministic routing on, 333, 339
permutation routing on, 327, 333,
338-339
routing on, 327, 333, 338-339
semigroup operations on, 326
simulation of hypercube on, 324
sorting on, 327
OTIS-Mesh, 314
broadcasting in, 316, 332, 334
computing sum on, 316, 332, 335
data movements in, 315
deterministic routing on, 322
parallel prefix on, 318, 332, 335
permutation routing on, 322, 332,
336
prefix sum on, 318, 332, 335
randomized routing on, 322, 332,
336
routing on, 322, 332, 336
semigroup operations on, 316
shift operations on, 320-321, 332,
335-336
sorting on, 324
window broadcast in, 332, 334
OTIS-Mesh of trees, 328
degree of, 333, 339
diameter of, 333, 339-340
OTIS-Star, 328
broadcasting in, 333, 339
OTISHCADDITION algorithm, 326-327

380 Parallel Algorithms

OTISMESHBROADCAST algorithm, 316,
326, 332, 334

OTISMESHPARPREFIX algorithm,
318-319

OTISMESHSHIFT algorithm, 320-321,
332, 335

OTISMESHSUM algorithm, 317, 326,
332, 335

P

PARADDITION algorithm, 8-9, 11, 56,
7

parallel architectures
classifications of, 1, 5

parallel merging, 74, 89-90

parallel multiselection, 56

parallel prefix, 14, 72, 84, 112, 126,
139, 142-146, 153, 155, 157, 163,
208-209, 214, 219, 262, 270, 272,
274, 276, 278, 287, 289, 304, 306,
318, 332, 335

parallel prefix on the butterfly, 126,
143, 155

parallel prefix on the cube-connected
cycles, 144, 157

parallel prefix on the hypercube, 112,
142, 153

parallel prefix on the mesh, 163,
208-209, 214, 219

parallel prefix on the mesh of trees,
270, 272

parallel prefix on the OTIS-Mesh,
318, 332, 335

parallel prefix on the pyramid, 262,
274, 276, 278

parallel prefix on the star network,
287, 289, 304, 306

parallel quicksort, 18, 70, 74, 78, 89,
139, 146

parallel search, 18, 21, 70, 78

parallel sorting, 74, 89

PARBOTTOMUPSORT algorithm, 31, 43

PARCONVEXHULL algorithm, 68, 186

PARMATRIXMULT algorithm, 57

PARMERGE algorithm, 30-31, 74, 90

PARMULTISELECT1 algorithm, 52, 56,
71, 81

PARMULTISELECTZ2 algorithm, 53-54,
71, 81-82

PARPREFIX algorithm, 14-15, 77

PARPREFIXREC algorithm, 15-16, 85

PARQUICKSORT algorithm, 18, 70, 74,
78, 89

PARRANK algorithm, 28-30, 70, 78

PARSEARCH algorithm, 20-21, 27, 70,
78

PARSELECT algorithm, 50, 52, 71,
80-81, 140, 148

partial permutation routing on the
hypercube, 141, 152

permutation routing on OTIS-Mesh,
322

permutation routing on the butterfly,
110

permutation routing on the
hypercube, 105-107, 140, 148

permutation routing on the mesh,
207, 213

permutation routing on the
OTIS-Hypercube, 327, 333,
338-339

permutation routing on the
OTIS-Mesh, 322, 332, 336

picture
area of, 274, 277

pipelined mergesort, 43, 49, 76, 92-93

PJUMPING algorithm, 21-22

point-value representation, 235

pointer jumping, 21, 73, 87

polygon, 71, 82

polynomial evaluation, 142, 153, 209,
219

postorder numbering in a tree, 73,
87-88

PRAM, 2, 7-8
array packing on, 77
broadcasting in, 70, 78
computing logical OR on, 71, 82

Index

computing maximum on, 69, 72,

77, 82-83

computing parallel prefix on, 72, 84
computing prefix minima on, 72, 85

computing ranks on, 70, 72, 78, 83
computing suffix minima on, 73, 85
matrix multiplication on, 71, 82
merging on, 74, 89-90
multiselection on, 71, 81
odd-even merging on, 70, 79
parallel quicksort on, 70, 78, 139,
146
parallel search on, 70, 78
selection on, 72, 76, 84, 89, 93
simulating on a hypercube,
140-141, 148, 150

sorting on, 74, 89
suffix computation on, 73, 8586

PRAMMST algorithm, 59-60

prefix minima, 72, 85

prefix sum, 112, 126, 139, 142-146,
153, 155, 157, 163, 208-209, 214,
219, 262, 270, 272, 274, 276, 278,
287, 289, 304, 306, 318, 332, 335

prefix sum on the butterfly, 126, 143,
155

prefix sum on the cube-connected
cycles, 144, 157

prefix sum on the hypercube, 112,
142, 153

prefix sum on the mesh, 163,
208-209, 214, 219

prefix sum on the mesh of trees, 270,
272

prefix sum on the OTIS-Mesh, 318,
332, 335

prefix sum on the pyramid, 262, 274,
276, 278

prefix sum on the star network, 287,
289, 304, 306

prefix sums, 14, 72, 84

primitive nth root of unity, 227

PRIORITY, 8

probability, 362

381

processing element, 3

Product of polynomials, 235, 237,
243, 245, 248

pyramid network, 260, 274, 278
bisection width of, 274, 277
comparison with mesh of trees, 272
computing sum on, 274, 278
diameter of, 274, 276
lower bound on routing, 274, 277
lower bound on sorting, 274, 277
parallel prefix on, 262, 274, 276,

278

prefix sum on, 262, 274, 276, 278
routing on, 274, 278
sorting on, 274, 278

PYRAMIDPARPREFIX algorithm,
262-274, 276

Q
quicksort, 70, 74, 78, 89, 139, 146
quicksort on the hypercube, 139, 146

R

random variables, 362

randomized routing on OTIS-Mesh,
322, 332, 336

randomized routing on the mesh, 174

rank, 11, 70, 72, 78, 83, 303, 305
computing, 27, 30

recurrence relation
divide and conquer, see divide and

conquer recurrence, 359

recursive doubling, 292, 294, 304, 306

reduction, 105, 151

ring, 159
broadcasting in, 207, 212

roots of unity, 227

routing, 105-107, 110, 140-142, 148,
152, 172-174, 207, 209, 213, 218,
269-270, 274-275, 278-279, 322,
327, 332-333, 336, 338—-339
many-to-many routing on the

hypercube, 141-142, 152

382 Parallel Algorithms

partial permutation routing on the
hypercube, 141, 152
routing on mesh of trees, 275, 279
routing on OTIS-Mesh, 322
routing on pyramid network, 274, 278
routing on the butterfly, 110
routing on the hypercube, 105-107
routing on the linear array, 172
routing on the mesh, 172-173, 209,
218

S

(d, k)-Star, 297-298, 300, 304-305,
308-310
dominating set in, 305, 310

sample sort, 115, 139, 147

SAMPLESORT algorithm, 116-117, 139,
147, 327

searching, 5, 18, 21, 70, 78, 210, 221

SELECT algorithm, 76

selection, 50, 71-72, 76-77, 80, 84, 89,
93, 118, 140, 148-149, 256, 259,
274, 276
on the hypercube, 118, 140,

148-149

sequential, 76

semigroup operations
in the hypercube, 105

semigroup operations on
OTIS-Hypercube, 326

semigroup operations on the
OTIS-Mesh, 316

semigroup operations on tree
network, 254

semisystolic, 343-344, 352, 355

shared-memory computers, 2, 7

shearsort, 165-166

SHEARSORT algorithm, 165-167, 169

shift, 320-321, 332, 335-336

shift operations on the OTIS-Mesh,
320-321, 332, 335-336

shortest paths, 58, 143, 155, 185, 211,
223

simulating a network on mesh of
trees, 275, 280
simulating a pyramid on mesh of
trees, 275, 279
simulation, 275, 279-280
of hypercube on OTIS-Hypercube,
324
smoothing a picture, 207, 213
sorter
on-chip bubble sorter, 347, 349,
353, 356
zero-time sorter, 345-346, 353, 356
sorting, 11, 18, 35, 43, 74, 89, 113,
115, 139, 147, 164-171, 196-198,
202, 204, 207213, 217-220, 223,
225-226, 254-255, 266, 268,
274-275, 278-279, 300, 305, 310,
324, 327, 352, 356
bitonic sorting, 40
bucketsort, 139-140, 147-148
hyperquicksort, 113
odd-even, 33
on linear array, 352, 356
parallel bottom-up, 31
parallel quicksort, 18
pipelined mergesort, 43, 49
sample sort, 115, 139, 147
sorting by minimum extraction, 254
sorting by partitioning, 255
sorting on (d, k)-Star, 300, 305, 310
sorting on 3-dimensional mesh, 202,
204, 212, 225-226
sorting on CRCW PRAM, 11
sorting on mesh of trees, 266, 268,
275, 279
sorting on OTIS-Hypercube, 327
sorting on OTIS-Mesh, 324
sorting on pyramid network, 274, 278
sorting on the mesh
odd—even mergesort, 169, 171
recursive algorithm, 167-168
shearsort, 165-166
SORTINGCRCW algorithm, 11-14, 69,
7

Index

spanning tree, 59, 61-62, 75, 90-92,
210, 222
star network, 281
(d, k)-Star, 297-298, 300, 304-305,
308-310
broadcasting in, 294-295, 304, 307
computing maximum on, 290291,
304, 306
computing ranks, 303, 305
labels, 303, 305-306
neighborhood broadcasting in, 292,
294, 304, 306-307
parallel prefix on, 287, 289, 304,
306
prefix sum on, 287, 289, 304, 306
ranking of the processors in, 283
routing between substars, 285, 287
sorting in (d, k)-Star, 300, 305, 310
STARDKSORT algorithm, 301, 310
STARLABELS algorithm, 284-285, 303,
305-306
STARMAX algorithm, 291-292, 304,
306
STARPARPREFIX algorithm, 288-289,
304, 306
STARRECDUB algorithm, 293-294,
304, 306
STARROUTE algorithm, 286, 288290,
292
suffix, 73, 85
suffix minima, 73, 85-86
sum, b, 138, 141, 143-144, 151, 156,
273-275, 278, 316, 326, 332-333,
335-336

383

summation, 361
formulas, 362
systolic computation, 341

T

tail bounds, 365

Toeplitz matrix, 239-240, 245,
249-250
computing, 239-240, 245, 249-250

topology of a network, 4

torus, 159
bisection width of, 207, 213

transitive closure, 58, 142, 155, 180,
210, 223

transpose of a matrix, 208, 215

tree network, 253, 273-276
computing maximum on, 273-276
computing sum on, 273, 275
selection on, 256, 259, 274, 276
semigroup operations on, 254
sorting on, 254-255

TREELEVELS algorithm, 26

\%
vertex level in a tree, 2627, 73, 87

W
window broadcast, 209, 219, 332, 334

V/

zero-one principle, 32
zero-time VLSI sorter, 345-346, 353,
356

	Contents
	Preface
	About the Author
	1. Introduction
	1.1 Classifications of Parallel Architectures
	1.2 Shared-Memory Computers
	1.3 Interconnection-Network Computers
	1.4 Two Simple Examples

	2. Shared-memory Computers (PRAM)
	2.1 Introduction
	2.2 The Balanced Tree Method
	2.3 Brent Theorem
	2.4 Sorting in Θ(1) Time on the CRCW PRAM Model
	2.4.1 Implementation on the CREW PRAM model
	2.4.2 Implementation on the EREW PRAM model

	2.5 Parallel Prefix
	2.5.1 Array packing
	2.5.2 Parallel quicksort

	2.6 Parallel Search
	2.7 Pointer Jumping
	2.8 Euler Tour
	2.8.1 Directing a tree
	2.8.2 Computing vertex levels in a tree

	2.9 Merging by Ranking
	2.9.1 Computing ranks
	2.9.2 Merging
	2.9.3 Parallel bottom-up merge sorting

	2.10 The Zero-one Principle
	2.11 Odd–Even Merging
	2.12 Bitonic Merging and Sorting
	2.12.1 Bitonic sorting

	2.13 Pipelined Mergesort
	2.13.1 The algorithm
	2.13.2 Computing and maintaining ranks
	2.13.3 Analysis of the algorithm

	2.14 Selection
	2.15 Multiselection
	2.16 Matrix Multiplication
	2.17 Transitive Closure
	2.18 Shortest Paths
	2.19 Minimum Spanning Trees
	2.20 Computing the Convex Hull of a Set of Points
	2.21 Bibliographic Notes
	2.22 Exercises
	2.23 Solutions

	3. The Hypercube
	3.1 Introduction
	3.2 The Butterfly
	3.3 Embeddings of the Hypercube
	3.3.1 Gray codes
	3.3.2 Embedding of a linear array into the hypercube
	3.3.3 Embedding of a mesh into the hypercube
	3.3.4 Embedding of a binary tree into the hypercube

	3.4 Broadcasting in the Hypercube
	3.5 Semigroup Operations
	3.6 Permutation Routing on the Hypercube
	3.6.1 The greedy algorithm
	3.6.2 The randomized algorithm

	3.7 Permutation Routing on the Butterfly
	3.8 Computing Parallel Prefix on the Hypercube
	3.9 Hyperquicksort
	3.10 Sample Sort
	3.11 Selection on the Hypercube
	3.12 Multiselection on the Hypercube
	3.13 Load Balancing on the Hypercube
	3.14 Computing Parallel Prefix on the Butterfly
	3.15 Odd–Even Merging and Sorting on the Butterfly
	3.16 Matrix Multiplication on the Hypercube
	3.17 Bibliographic Notes
	3.18 Exercises
	3.19 Solutions

	4. The Linear Array and the Mesh
	4.1 Introduction
	4.2 Embedding between a Mesh and a Linear Array
	4.3 Broadcasting in the Linear Array and the Mesh
	4.4 Computing Parallel Prefix on the Mesh
	4.5 Odd–Even Transposition Sort
	4.6 Shearsort
	4.7 A Simple Θ(√n) Time Algorithm for Sorting on the Mesh
	4.8 Odd–Even Merging and Sorting on the Mesh
	4.9 Routing on the Linear Array and the Mesh
	4.9.1 Routing in the linear array
	4.9.2 Deterministic routing in the mesh
	4.9.3 Randomized routing on the mesh

	4.10 Matrix Multiplication on the Mesh
	4.10.1 The first algorithm
	4.10.2 The second algorithm

	4.11 Computing the Transitive Closure on the Mesh
	4.12 Connected Components
	4.13 Shortest Paths
	4.14 Computing the Convex Hull of a Set of Points on the Mesh
	4.14.1 The first algorithm
	4.14.2 The second algorithm

	4.15 Labeling Connected Components
	4.15.1 The propagation algorithm
	4.15.2 The recursive algorithm

	4.16 Columnsort
	4.17 3-dimensional Mesh
	4.17.1 Sorting on 3-dimensional meshes

	4.18 Bibliographic Notes
	4.19 Exercises
	4.20 Solutions

	5. Fast Fourier Transform
	5.1 Introduction
	5.2 Implementation on the Butterfly
	5.3 Iterative FFT on the Butterfly
	5.4 The Inverse Fourier Transform
	5.5 Product of Polynomials
	5.6 Computing the Convolution of Two Vectors
	5.7 The Product of a Toeplitz Matrix and a Vectors
	5.8 Using Modular Arithmetic
	5.9 Bibliographic Notes
	5.10 Exercises
	5.11 Solutions

	6. Tree-based Networks
	6.1 The Tree Network
	6.1.1 Semigroup operations
	6.1.2 Sorting by minimum extraction
	6.1.3 Sorting by partitioning
	6.1.4 Selection
	6.1.5 The one-dimensional pyramid

	6.2 The Pyramid
	6.2.1 Computing parallel prefix on the pyramid

	6.3 Mesh of Trees
	6.3.1 Sorting on the mesh of trees
	6.3.2 Routing in the mesh of trees

	6.4 Computing Parallel Prefix on the Mesh of Trees
	6.5 Comparison Between the Mesh of Trees and the Pyramid
	6.6 Bibliographic Notes
	6.7 Exercises
	6.8 Solutions

	7. The Star Network
	7.1 Introduction
	7.2 Ranking of the Processors
	7.3 Routing between Substars
	7.4 Computing Parallel Prefix on the Star
	7.5 Computing the Maximum
	7.6 Neighborhood Broadcasting and Recursive Doubling
	7.7 Broadcasting in the Star
	7.8 The Arrangement Graph
	7.9 The (d, k)-Star Graph
	7.10 Sorting in the Sd,k Star
	7.11 Bibliographic Notes
	7.12 Exercises
	7.13 Solutions

	8. Optical Transpose Interconnection System (OTIS)
	8.1 Introduction
	8.2 The OTIS-Mesh
	8.2.1 Data movements in the OTIS-Mesh
	8.2.2 Broadcasting in the OTIS-Mesh
	8.2.3 Semigroup operations on the OTIS-Mesh
	8.2.4 Parallel prefix in OTIS-Mesh
	8.2.5 Shift operations on the OTIS-Mesh
	8.2.6 Permutation routing in OTIS-Mesh
	8.2.6.1 Deterministic routing in the OTIS-Mesh
	8.2.6.2 Randomized routing in the OTIS-Mesh

	8.2.7 Sorting on OTIS-Mesh

	8.3 The OTIS-Hypercube
	8.3.1 Simulation of an n2-processor hypercube
	8.3.2 Broadcasting in the OTIS-Hypercube
	8.3.3 Semigroup operations on the OTIS-Hypercube
	8.3.4 Sorting and routing in the OTIS-Hypercube

	8.4 Other OTIS Networks
	8.4.1 The OTIS-Star
	8.4.2 The OTIS-MOT

	8.5 Bibliographic Notes
	8.6 Exercises
	8.7 Solutions

	9. Systolic Computation
	9.1 Introduction
	9.2 Matrix-vector Multiplication
	9.3 Computing the Convolution of Two Sequences
	9.3.1 Semisystolic solution
	9.3.2 Pure systolic solution

	9.4 A Zero-time VLSI Sorter
	9.5 An On-chip Bubble Sorter
	9.6 Bibliographic Notes
	9.7 Exercises
	9.8 Solutions

	Appendix A Mathematical Preliminaries
	A.1 Asymptotic Notations
	A.1.1 The O-notation
	A.1.2 The Ω-notation
	A.1.3 The Θ-notation
	A.1.4 The o-notation

	A.2 Divide-and-conquer Recurrences
	A.3 Summations
	A.4 Probability
	A.4.1 Random variables and expectation
	A.4.2 Bernoulli distribution
	A.4.3 Binomial distribution
	A.4.4 Chernoff bounds
	A.4.4.1 Lower tail
	A.4.4.2 Upper tail

	Bibliography
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /URWChanceryL-MediItal
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 30
 30
 30
 30
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.177000
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /URWChanceryL-MediItal
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 30
 30
 30
 30
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.177000
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /URWChanceryL-MediItal
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 30
 30
 30
 30
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.177000
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /URWChanceryL-MediItal
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 30
 30
 30
 30
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.177000
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /URWChanceryL-MediItal
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 30
 30
 30
 30
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.177000
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /URWChanceryL-MediItal
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 30
 30
 30
 30
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.177000
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /URWChanceryL-MediItal
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 30
 30
 30
 30
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.177000
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /URWChanceryL-MediItal
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 30
 30
 30
 30
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.177000
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /URWChanceryL-MediItal
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 30
 30
 30
 30
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.177000
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /URWChanceryL-MediItal
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 30
 30
 30
 30
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.177000
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /URWChanceryL-MediItal
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 30
 30
 30
 30
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.177000
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /URWChanceryL-MediItal
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 30
 30
 30
 30
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.177000
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /URWChanceryL-MediItal
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 30
 30
 30
 30
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.177000
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

