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Preface

In the last few decades, there has been an explosion of interest in the field

of parallel computation. From the computer scientist’s point of view, this

has provided a challenging range of problems with new ground rules for the

design and analysis of parallel algorithms.

This text is meant to be an introduction to the field of parallel algo-

rithms and to techniques for efficient parallelization. The emphasis is upon

designing algorithms within the timeless and abstract context of a high-

level programming language, rather than depending upon highly detailed

machine architectures.

Although the main theme of the book is algorithm design using different

models of computation, it also emphasizes the other major component in

algorithmic design: the analysis of parallel algorithms. It covers the analysis

of most of the algorithms presented in detail. The focus of the presentation

is on practical applications of algorithm design using different models of

parallel computation. Each model is illustrated by providing an adequate

number of algorithms to solve some problems that quite often arise in many

applications in science and engineering.

The style of presentation of algorithms is straightforward, and uses

pseudocode that is similar to the syntax of structured programming

languages, e.g., if-then-else, for and while constructs. The pseudocode is

sometimes intermixed with English whenever necessary. Describing a por-

tion of an algorithm in English is indeed instructive; it conveys the idea

with minimum effort on the part of the reader. However, sometimes it is

both easier and more formal to use a pseudocode statement.

vii



May 7, 2022 11:44 Parallel Algorithms 9in x 6in b4591-fm page viii

viii Parallel Algorithms

The book is largely self-contained, presuming no special knowledge of

parallel computers or particular mathematics. However, the reader familiar

with elementary ideas from the areas of discrete mathematics, data struc-

tures and sequential algorithms will be at an advantage. Most chapters

include examples and illustrations. In addition, the solutions to all exer-

cises are included at the end of each chapter.

The book is intended as a text in the field of the design and analysis

of parallel algorithms. It includes adequate material for a course in parallel

algorithms in the undergraduate or graduate levels.

The author would like to thank those who have critically offered sugges-

tions, including the students of the parallel algorithms course at KFUPM.

Special thanks go to Wasfi Al-Khatib and Sultan Almuhammadi for their

valuable discussions and comments.

M. H. Alsuwaiyel

Khobar, Saudi Arabia
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Chapter 1

Introduction

With the growing number of areas in which computers are being used,

there is an ever-increasing demand for more computing power. A means

to attain very high computational speeds is to use a parallel computer,

meaning, a computer that possesses several processing units, or processors.

In this case, the problem is broken down into smaller parts, which are solved

simultaneously, each by a different processor.

A parallel algorithm, as opposed to a traditional sequential algorithm, is

an algorithm which can do multiple operations in a given time. In sequential

algorithms, an algorithm is described and analyzed using the random-access

machine (RAM) as a model of computation. By contrast, in parallel algo-

rithms, an algorithm is described and analyzed using different models, one

of which is the so-called parallel random-access machine (PRAM). The pur-

pose of this chapter is to introduce parallel architectures and models, and

illustrate parallel algorithms through simple examples.

1.1 Classifications of Parallel Architectures

There are four classifications of parallel architectures based upon the num-

ber of concurrent instruction streams and data streams available in the

architecture.

(a) Single instruction stream, single data stream (SISD): Most conventional

computers with one central processing unit (CPU) belong to this class.

Examples of SISD architecture are the traditional uniprocessor machines

1
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like older personal computers and mainframe computers. By 2010, many

personal computers had multiple cores.

(b) Single instruction stream, multiple data streams (SIMD): This cate-

gory includes machines with a single program and multiple CPUs. In this

class, a parallel computer consists of p identical processors. All processors

operate under the control of a single instruction stream issued by a central

control unit. Processors communicate among themselves during computa-

tion in order to exchange data or intermediate results in two ways, giving

rise to two subclasses: SIMD computers where communication is effected

through a shared memory, and those where it is done via an interconnection

network.

(c) Multiple instruction streams, single data stream (MISD): This architec-

ture is uncommon and unrealistic.

(d) Multiple instruction streams, multiple data streams (MIMD): This class

of computers is the most general and most powerful. In this class, there are

p processors, p streams of instructions, and p streams of data. The machines

that fall into this category are capable of executing several programs inde-

pendently. They include multi-core superscalar processors, and distributed

systems, using either one shared memory space or a distributed memory

space. In MIMD, processors may have multiple processing cores that can

execute different instructions on different data. Most parallel computers, as

of 2013, are MIMD systems.

1.2 Shared-Memory Computers

This class is also known in the literature as the Parallel Random-Access

Machine (PRAM) model. It assumes that there is a random-access shared

memory, such that any processor can access any variable with unit cost.

This assumption of unit-cost access (regardless of the size of the mem-

ory) is unrealistic, but it makes the analysis of parallel algorithms easier.

The programs written on these machines are, in general, of type SIMD.

These kinds of algorithms are useful for understanding the exploitation of

concurrency, for they divide the original problem into similar subproblems

and then solve them in parallel. The introduction of the formal PRAM

model had the aim of quantifying analysis of parallel algorithms in a way

analogous to the RAM model. The structure of the PRAM is shown in

Fig. 1.1. Here, multiple processors are attached to a single block of memory.
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Processor 1

Processor 2

Processor 3

Processor n

 SharedMemory
memory access

  unit

Fig. 1.1. Parallel random access machine (PRAM).

Processor 1

Memory 1 Memory 2 Memory 3 Memory n

Processor 2 Processor 3 Processor n

Communication network

Fig. 1.2. Interconnection network.

The processors can communicate among themselves through the shared

memory only. A memory access unit connects the processors with the shared

memory block.

1.3 Interconnection-Network Computers

Interconnection networks or distributed memory machines are constructed

as processor-memory pairs and connected to each other in a well-defined

pattern. These processor-memory pairs are often referred to as processing

elements or PEs, or sometimes just as processors. An interconnection net-

work may be viewed as an undirected graph G = (V,E), where V is the

set of nodes or processors, and E is the set of two-way links. Processors

communicate between each other by sending messages. The structure of

the interconnection network is shown in Fig. 1.2.
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The topology of a network refers to its general infrastructure — the

pattern in which multiple processors are connected. This pattern could

either be regular or irregular, though many multi-core architectures today

use highly regular interconnection networks. On one extreme, there is the

complete graph, which models an interconnection network where every pro-

cessor is connected to every other processor. This kind of connection is pro-

hibitive, as it is impractical. On the other extreme, the line graph, which

models the linear array, connects each node to one or two other nodes. In

between, there is a multitude of interconnection networks that have both

advantages and disadvantages. For instance, there is the hypercube, the

mesh, the tree and the pyramid, to mention a few.

The degree of a network is the maximum degree of any vertex in the

underlying graph. The degree of processor P corresponds to the number

of processors directly connected to P . Naturally, networks of high degree

become very difficult to manufacture. Therefore, it is desirable to use net-

works of low degree, especially if the network is to be scaled to an extremely

large number of processors. In a network with n processors, a constant

degree is preferable to one that is a function of n. For example, the degree

of the mesh network is 4, while that of the hypercube is logn.

The network diameter is defined as the maximum shortest path dis-

tance between any two processors. A low communication diameter is highly

desirable, because it allows for efficient communication between arbitrary

processors. For instance, the diameter of the hypercube with n processors

is logn, while the diameter of a mesh with the same number of processors

is 2
√
n− 2.

The bisection width of an interconnection network is the minimum num-

ber of links that have to be removed in order to disconnect the network

into two approximately equal-sized subnetworks. In general, machines with

a high bisection width are difficult to build, but they provide users with the

possibility of moving large amounts of data efficiently. The bisection width

implies a lower bound on the computations in an interconnection network,

especially in algorithms that require massive data movements. For instance,

in the problem of sorting n elements, Ω(n) data items may have to be moved

from one half of the network to the other. For example, the bisection width

of the hypercube is Θ(n), and it admits sorting algorithms in the order of

Θ(log2 n) and Θ(logn log logn), while the bisection width of the mesh is

Θ(
√
n), which explains why sorting on the mesh is Ω(

√
n).
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1.4 Two Simple Examples

Now, we present two simple examples of parallel algorithms, and define and

illustrate some of the performance measures that are used in the analysis

of parallel algorithms.

Example 1.1 Consider the problem of adding n numbers s = a1 +

a2 + · · · + an, where n = 2k for some nonnegative integer k. Sequentially,

the expression can be computed by scanning the input from left to right

in the obvious way using n − 1 additions. In parallel, b1 = a1 + a2, b2 =

a3 + a4, . . . , bn/2 = an−1 + an are computed in one parallel step using n/2

processors to produce a new expression b1 + b2 + · · · + bn/2 consisting of

n/2 operands. Then c1 = b1 + b2, c2 = b3 + b4, . . . , cn/4 = bn/2−1 + bn/2
are computed in one parallel step using n/4 processors to produce a new

expression c1 + c2 + · · · + cn/4 consisting of n/4 operands. This process

continues until there is only one value left. The total number of parallel

steps is k = logn using n/2 processors. �

Example 1.2 Recall the search problem: Given a set X = {x1, x2, . . . ,

xn} of n unordered and distinct elements, and an element y, determine j

such that y = xj if y ∈ X and j = 0 otherwise. n comparisons are needed

in the worst case to solve this problem sequentially. In parallel, assume

there are n processors P1, P2, . . . , Pn, and that xi is stored in Pi, 1 ≤
i ≤ n. Initially, P1 sets j = 0. Then all processors Pi compare y with xi

simultaneously. If y ∈ X , only one processor Pk will succeed in setting

j = k. It follows that the problem can be solved in two parallel steps

using n processors. Notice that concurrent read capability is required, as

all processors need to read y at the same time. �

Unlike in sequential algorithms, the performance measures include the

number of processors and communication cost. Let n be the input size,

and p the number of processors. Then, T (n, p), or simply T (n) if p is

known from the context, denotes the running time of the algorithm using p

processors. If the algorithm has two parameters, n and m, then we write

T (n,m, p). We may also write T (n, p) or T (n,m) if m or p are known from

the context. In Example 1.1, T (n, n/2) = Θ(logn), while in Example 1.2,

T (n, n) = Θ(1). The cost of an algorithm is the product of the running

time and number of processors, e.g., C(n, p) = pT (n, p). In Example 1.1,
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C(n, n/2) = Θ(n logn), while in Example 1.2, C(n, n) = Θ(n). The work

done by an algorithm is the total number of operations done by individ-

ual processors. It is less than or equal to the cost of the algorithm. In

Example 1.1, W (n, n/2) = n/2 + n/4 + · · · + 1 = n − 1 = Θ(n), while in

Example 1.2, W (n, n) = Θ(n), since there are n comparisons.

The ratio S(p) = T (n, 1)/T (n, p) is called the speedup of the algo-

rithm, where T (n, 1) should be taken from the best sequential algorithm.

An algorithm achieves a perfect speedup if S(p) = p. In Example 1.1,

S(n/2) = Θ(n/ logn), while in Example 1.2, S(n) = Θ(n). A useful measure

of the utilization of the processors is the efficiency of a parallel algorithm,

which is defined as E(n, p) = S(p)/p = T (n, 1)/pT (n, p). The efficiency is

the ratio of the time used by one processor with a sequential algorithm

and the total time used by p processors, which is the cost of the algo-

rithm. The efficiency indicates the percentage of the processors’ time that

is not wasted, compared to the sequential algorithm. If E(n, p) = 1, then

the amount of work done by all processors throughout the execution of

the algorithm is equal to the amount of work required by the sequential

algorithm. In this case, we get optimal usage of the processors. All in all,

the goal is to maximize efficiency. In Example 1.1, E(n, n/2) = Θ(1/ logn),

while in Example 1.2, E(n, n) = Θ(n)/nΘ(1) = Θ(1).
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Shared-memory Computers (PRAM)

2.1 Introduction

The parallel random-access machine (PRAM) was intended as the parallel-

computing analogy to the random-access machine (RAM). It is used to

model parallel algorithmic performance such as time complexity, where the

number of processors assumed is typically also stated. As in the RAM,

the PRAM model neglects issues such as synchronization and communica-

tion, but includes the number of processors. Algorithm cost, for instance, is

estimated using two parameters: time × number of processors. Read/write

conflicts are resolved by one of the following models:

• Exclusive read exclusive write (EREW): In this strategy, every processor

can read or write to a memory cell at a time.

• Concurrent read exclusive write (CREW): Here, multiple processors can

read a memory cell but only one can write to it at a time.

• Exclusive read concurrent write (ERCW): This is never considered.

• Concurrent read concurrent write (CRCW): In this strategy, multiple

processors can read from or write to the same memory cell at the same

time.

In the CRCW model, the writes cause some discrepancies, and hence

the write is further defined as:

• COMMON: If all processors write the same value, it is successful; other-

wise it is illegal.

7
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• ARBITRARY: Only one arbitrary attempt by an arbitrary processor is

successful.

• PRIORITY: Processors are ranked, and the processor with the maximum

rank can write.

Array reduction uses associative binary operations (e.g., SUM, Logical

AND or MAX) of processor contents. Only either the maximum of proces-

sors’ contents, or the sum of all contents in all processors can be written.

In the PRAM, there is no limit on the number of processors in the

machine. Any memory location is accessible from any processor, and there

is no limit on the amount of shared memory in the system.

2.2 The Balanced Tree Method

The balanced tree method is one of the parallel algorithmic design tech-

niques usually implemented either as the main component or as a subtask

of the parallel algorithm. Let ◦ be a binary associative operation (e.g.,

+,×,min,max), and consider computing the expression

s = a1 ◦ a2 ◦ · · · ◦ an,

where n = 2k for some nonnegative integer k (see Example 1.1). Sequen-

tially, the expression can be computed by scanning the input from left to

right. In parallel, b1 = a1 ◦ a2, b2 = a3 ◦ a4, . . . , bn/2 = an−1 ◦ an are com-

puted in one parallel step to produce a new expression s = b1 ◦b2 ◦ · · ·◦bn/2
consisting of n/2 operands. This process continues until there is only one

value to compute. This procedure defines a complete binary tree where

the input is initially at its leaves, and each internal node corresponds to

a subproblem, while the root corresponds to the overall problem. Each

leaf node is assigned a processor Pi, 1 ≤ i ≤ n. The internal nodes at

level j, 0 ≤ j ≤ k − 1, are assigned processors P1, P2, . . . , P2j . The compu-

tations at the internal nodes of the same level are performed in one parallel

step. Figure 2.1 depicts a typical complete binary tree for n = 8. It has

2n− 1 nodes. Note that it is represented by the array B[1..2n− 1], where

the children for B[j], 1 ≤ j ≤ n− 1, are stored at B[2j] and B[2j + 1]. For

j, 1 ≤ j ≤ n− 1, if B[2j] = x and B[2j + 1] = y, then B[j] = x ◦ y.
Algorithm paraddition performs the operation of addition on n

numbers stored initially in array A[1..n]. The first for loop copies the
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Fig. 2.1. The computation of s = a1 ◦ a2 ◦ · · · ◦ an.

numbers in A into B[n], B[n + 1], . . . , B[2n − 1], which correspond to the

leaves of the binary tree. The for loop in Line 3 is repeated k = logn

times, once for each internal level of the tree. The for loop at line 4 is for

performing 2i additions in parallel, i = k − 1, k − 2, . . . , 0.

Algorithm 2.1 paraddition
Input: A[1..n], an array of n numbers, where n = 2k.

Output: A[1] + A[2] + · · ·+ A[n].

1. for j← 1 to n do in parallel
2. B[j + n− 1]← A[j]
3. for i← k − 1 downto 0 do
4. for j← 2i to 2i+1 − 1 do in parallel
5. B[j]← B[2j] +B[2j + 1]
6. end for
7. end for
8. return B[1]

The running time of the algorithm is equal to the depth of the binary

tree, which is Θ(logn). The work done by the algorithm is proportional to

the number of additions performed in the internal nodes, which is n − 1.

The cost of the algorithm is n×Θ(logn) = Θ(n logn).
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2.3 Brent Theorem

Consider the algorithm for finding the maximum of n numbers on the

EREWPRAM using the balanced tree method (see Fig. 2.1). The algorithm

uses n/2 processors. Note that n/2 processors are only required by the first

step of the algorithm. In the second step, only n/4 processors are needed.

In the third step, only n/8 processors are needed, and so on. Therefore, in

a very short time, most of the processors will be idle. The running time of

the algorithm is Θ(logn). We can reduce the number of processors signifi-

cantly without affecting the time complexity as follows. Let the number of

processors be n/ logn, and assign logn numbers to each processor. Now,

each processor finds the maximum in its group sequentially using logn− 1

comparisons, and the parallel algorithm continues to find the maximum of

the n/ logn group maxima. Thus, the running time is still Θ(logn), while

the cost of the algorithm is reduced from Θ(n logn) to Θ(n). The following

theorem, known as Brent’s theorem, generalizes the above discussion.

Theorem 2.1 Suppose an algorithm Ap performs tp parallel steps using p

processors on the PRAM such that the total number of operations over all

processors is s, and let q = s/tp. Then, there exists an algorithm Aq that

performs at most 2tp parallel steps using q processors. Moreover, if the

sequential time complexity is O(s), then the cost of Aq is optimal.

Proof. Let si, 1 ≤ i ≤ tp, be the number of operations performed by

all p processors in step i of Algorithm Ap. Let Algorithm Aq emulate Ap

by replacing each parallel step i of Ap by �si/q� parallel steps. The total

number of parallel steps performed by algorithm Aq is thus

tq =

tp∑
i=1

⌈
si
q

⌉

=

tp∑
i=1

⌈
si × tp
s

⌉

≤
tp∑
i=1

(
si × tp
s

+ 1

)
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= tp +
tp
s

tp∑
i=1

si

= 2tp,

since
∑tp

i=1 si = s. The new cost of the algorithm is ≤ 2tp× s
tp

= 2s = O(s).

Hence, if the sequential time complexity is O(s), then Algorithm Aq is cost-

optimal. �

Thus, in O-notation, if the original running time is O(tp), and the work

is O(s), then the number of processors can be reduced to O(s/tp) without

increasing the running time. Recall Algorithm paraddition in Section 2.2

for the addition of n numbers using n processors. The running time of the

algorithm is Θ(logn) and it performs a total of O(n) operations. Its cost is

Θ(n logn). By Brent Theorem, the number of processors can be reduced to

n/logn without changing the time complexity. The new cost is Θ(n), which

is optimal.

2.4 Sorting in Θ(1) Time on the CRCW PRAM Model

Let A[1..n] be an array of n elements to be sorted on the CRCW PRAM

model with n2 processors. We use the SUM criterion for resolving write

conflicts. In other words, if k processors need to write x1, x2, . . . , xk simul-

taneously in the same memory location, then the sum x1 + x2 + · · · + xk
is written in that memory location. Assume for simplicity that the ele-

ments are distinct. The rank of element A[i] is defined to be the number

of elements in A less than A[i]. Algorithm sortingcrcw performs the

operation of sorting on A. There are concurrent writes in Line 3, as more

than one processor may attempt to write to the same memory location. For

instance, A[1] will be compared with A[1], A[2], A[3], . . . , A[n] simultane-

ously, and many processors may attempt to execute the statement r[i]← 1

at the same time. These concurrent writes are resolved using the sum oper-

ation. Specifically, the sum of all 1’s will be assigned to r[i], which is the

rank of A[i]. Note that there are no write conflicts in the assignment in

Line 7. Clearly, the running time of the algorithm is Θ(1), and its cost is

Θ(n2). The above algorithm is also sometimes referred to as enumeration

sort.
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Algorithm 2.2 sortingcrcw
Input: A[1..n], an array of n elements.

Output: A[1..n] sorted in ascending order.

1. for i← 1 to n do in parallel
2. for j← 1 to n do in parallel
3. if A[i] > A[j] then r[i]← 1 else r[i]← 0
4. end for
5. end for
6. for i← 1 to n do in parallel
7. A[r[i] + 1]←A[i]
8. end for

2.4.1 Implementation on the CREW PRAM model

The above algorithm can be implemented to run on the CREW PRAM

with n processors only, but the running time will increase substantially.

The CREW algorithm is shown as Algorithm sortingcrew.

Algorithm 2.3 sortingcrew
Input: A[1..n], an array of n elements.

Output: A[1..n] sorted in ascending order.

1. for i← 1 to n do in parallel
2. r[i]← 0
3. for i← 1 to n do in parallel
4. for j← 1 to n do
5. if A[i] > A[j] then r[i]← r[i] + 1
6. end for
7. end for
8. for i← 1 to n do in parallel
9. B[r[i] + 1]← A[i]

10. end for
11. return B

The difference between this algorithm and Algorithm sortingcrcw for

the CRCW PRAM is that the for loop in Line 4 is now sequential. There

are no concurrent writes, but there are concurrent reads. For instance,

comparing A[1] with any pair of A[1], A[2], A[3], . . . , A[n] will not take

place simultaneously, and hence the statement r[1]← r[1] + 1 will not be

executed more than once at the same time. However, A[1], for example,

will be fetched n times simultaneously when comparing A[1], A[2], . . . , A[n]
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with A[1]. Clearly, the running time is Θ(n), and the cost is Θ(n2). We will

see later in this chapter that sorting n elements on the CREW PRAM can

be effected in optimal Θ(logn) time using n processors.

2.4.2 Implementation on the EREW PRAM model

The above CREW algorithm can be implemented to run on the EREW

PRAM with n processors without increasing the running time or cost; we

only need to take care of concurrent reads. The EREW algorithm is given as

Algorithm sortingerew. In this algorithm, A[j] is compared starting with

Algorithm 2.4 sortingerew
Input: A[1..n], an array of n elements.

Output: A[1..n] sorted in ascending order.

1. for j← 1 to n do in parallel
2. r[j]← 0
3. C[j]← A[j]
4. end for
5. for i← 1 to n− 1 do
6. for j← 1 to n do in parallel
7. k← i+ j (mod n) if k = 0 then k← n
8. if A[j] > C[k] then r[j]← r[j] + 1
9. end for

10. end for
11. for i← 1 to n do in parallel
12. B[r[i] + 1]← A[i]
13. end for
14. return B

the element at distance i. Figure 2.2 depicts an example of the comparisons

performed by the algorithm on 8 elements. In this figure, comparing x

and y is shown by an arrow from x to y. As is evident from the figure,

there are no concurrent reads or concurrent writes. In the first iteration of

the outer for loop, A[1] is compared with C[2] = A[2], A[2] is compared

with C[3] = A[3], etc. (see Fig. 2.2(a)). In the second iteration, that is,

when i = 2, A[1] is compared with C[3] = A[3], A[2] is compared with

C[4] = A[4], etc. (see Fig. 2.2(b)). In the third iteration, that is, when i = 3,

A[1] is compared with C[4] = A[4], A[2] is compared with C[5] = A[5], etc.

(see Fig. 2.2(c)). Finally, in the last iteration, when i = n − 1, A[1] is

compared with C[n] = A[n], A[2] is compared with C[1] = A[1], and so
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3 51 862

(a)

31 5 862

(b)

4 731

4 7

4 7

5 862

(c)

Fig. 2.2. Example of the action of Algorithm sortingerew.

forth. Clearly, the running time is Θ(n), and the cost is Θ(n2). We will see

later in this chapter that sorting n elements on the EREW PRAM can be

achieved in optimal Θ(logn) time using n processors.

2.5 Parallel Prefix

Let X = 〈x1, x2, . . . , xn〉 be a sequence of n numbers, where n = 2k for

a nonnegative integer k. Let ◦ be a binary associative operation defined

on X . The prefix sums problem is to compute the n partial sums: s1 = x1,

s2 = x1◦x2, . . . , si = x1◦x2◦· · ·◦xi, . . . , sn = x1◦x2◦· · ·◦xn. It is also called
the scan or the scan operation. We will call s1, s2, . . . , sn the prefix sums.

Algorithm parprefix is a simple iterative procedure to compute the prefix

sums. The algorithm uses n processors. There are k = logn iterations in the

outer loop in Step 5. Since the time needed for the loop in Step 6 is Θ(1),

the running time of the algorithm is Θ(logn). Its cost is n × Θ(logn) =

Θ(n logn), which is not optimal in view of the Θ(n) time complexity for the

sequential algorithm. The work can be computed as follows. The number

of operations done by Step 6 in the first iteration is n − 1, and in the

jth iteration it is n − 2j−1. Thus, W (n) =
∑k

j=1(n − 2j−1) = Θ(n logn).

The cost can be reduced to Θ(n) by reducing the number of processors to

n/ logn, and making some simple modifications.
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Algorithm 2.5 parprefix
Input: X = 〈x1, x2, . . . , xn〉, a sequences of n numbers, where n = 2k.

Output: S = 〈s1, s2, . . . , sn〉, the prefix sums of X.

1. for i← 1 to n do in parallel
2. si← xi

3. end for
4. t ← 1
5. for j← 1 to k do
6. for i← t+ 1 to n do in parallel
7. si← si−t ◦ si
8. end for
9. t← 2t

10. end for
11. return S

Another algorithm for computing the prefix sums is shown as Algorithm

parprefixrec, which is recursive. First, it recursively computes the prefix

sums s2, s4, s6 . . . , sn. It then computes s1, s3, s5, . . . , sn−1 using the com-

bined divide-and-conquer step. Except for the recursive call, the parallel

time is Θ(1). Hence, T (n) = Θ(logn). We compute the work done by the

algorithm as follows. There are n/2 and n/2 − 1 iterations in the loops

in Steps 3 and 7, respectively. Therefore W (n) = W (n/2) + Θ(n) = Θ(n).

The cost, however, is not optimal since the number of processors needed is

n/2 for a total cost of Θ(n logn).

Algorithm 2.6 parprefixrec
Input: X = 〈x1, x2, . . . , xn〉, a sequences of n numbers, where n = 2k.

Output: S = 〈s1, s2, . . . , sn〉, the prefix sums of X.

1. s1← x1

2. if n = 1 then return S = 〈x1〉
3. for i← 1 to n/2 do in parallel
4. x2i← x2i−1 ◦ x2i

5. end for
6. Recursively compute the prefix sums of 〈x2, x4, . . . , xn〉 and store them

in 〈s2, s4, . . . , sn〉
7. for i← 2 to n/2 do in parallel
8. s2i−1← s2(i−1) ◦ x2i−1

9. end for
10. return S = 〈s1, s2, . . . , sn〉
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1 Input

Add odd to even

Find prefix sums of even

Add computed prefix sums to odd

Final prefix sums1

2
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6 7
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8

Fig. 2.3. Example of recursive parallel prefix, Algorithm parprefixrec.

There are no concurrent reads or writes in the above two algorithms,

and hence they run on the EREW PRAM.

Example 2.1 Figure 2.3 shows an example of the recursive parallel prefix

algorithm, parprefixrec. We will use addition as the binary operation.

The input is given in Line 1. In Line 2, the odd-indexed numbers are added

to the even-indexed numbers. In Line 3, the prefix sums are computed

recursively for the even-indexed numbers. These prefix sums are shown

in boldface: 3, 10, 21, 36. These prefixes are added to the odd-indexed

numbers, which results in the odd-indexed prefix sums. These prefix sums

are shown in Line 5 in boldface: 6, 15, 28. The last line shows the final

prefix sums. �

2.5.1 Array packing

Let A = 〈a1, a2, . . . , an〉 be an array of n elements such that t of them are

“marked” and the remaining n − t elements are “unmarked”. The array

packing problem consists of creating another array D where all the marked

elements are moved to the lower part of D and the unmarked ones to

the upper part of the array D without changing their relative order. One

method of packing consists of assigning a value of 1 to each of the marked

elements and a value of 0 to each of the unmarked elements. A new array

B = 〈b1, b2, . . . , bn〉 is used to hold the 0–1 values, with bi = 1 if and only

if ai is marked. Now, if we apply the prefix sums algorithm to the array B

and store the prefix sums in C = 〈c1, c2, . . . , cn〉, the ranks of the marked
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elements will be computed in C. Specifically, if ai is marked, then it is stored

in D at position ci. So, the marked elements are moved to the first t cells

of array D. Likewise, the ranks of the unmarked elements are computed

by interchanging 0’s and 1’s in array B. Finally, the prefix computation is

run again and the unmarked elements are moved to the last n − t cells of

array D.

Example 2.2 We now illustrate array packing explained above. Refer-

ring to Fig 2.4, the problem requires us to pack the even elements to the

left. The first row, part (a), contains the input array A. The second row,

part (b), contains the 0–1 values in array B. Array C in part (c) of the

figure contains the result of applying parallel prefix on array B. Array D

in part (d) contains the even numbers packed in their positions as given

in array C. If we now interchange 0’s and 1’s in B, then we can pack the

odd numbers using the same procedure to pack the even numbers. This is

shown in Figs. 2.4(e)–(g).

�

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 2.4. Example of array packing.
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2.5.2 Parallel quicksort

A parallel version of the quicksort algorithm for the EREW PRAM with

n processors is shown as Algorithm parquicksort. As in the sequential

quicksort algorithm, the pivot v is chosen as A[1]. First, the pivot is copied

n times to avoid concurrent reads. This can be done by a broadcasting

procedure in time Θ(logn)(see Exercise 2.5). Next, array packing is used

to partition the array A into two parts, one with elements less than v and

one with elements greater than v. This takes Θ(logn) time as explained in

Section 2.5.1. Next, these two parts are sorted recursively into A1 and A2,

whose concatenation together with v is returned as the sorted array. In the

worst case, the recursion depth can be as large as Θ(n), causing the running

time to be Θ(n logn). However, the average recursion depth is Θ(logn), for

a total running time of Θ(log2 n).

Algorithm 2.7 parquicksort
Input: An array A[1..n] of n distinct numbers.

Output: A sorted in ascending order.

1. if n = 1 then return A
2. v←A[1]
3. Let B[i] = v for 1 ≤ i ≤ n
4. for i← 1 to n do in parallel
5. if A[i] < B[i] then C[i]← 1
6. else if A[i] > B[i] then C[i]← 0
7. end for
8. Pack the numbers in A marked 1 in C at the beginning of A followed by

v followed by the numbers in A marked 0 in C
9. Let w be the position of v in A

10. do in parallel
11. A1← parquicksort(A, 1, w − 1)
12. A2← parquicksort(A,w + 1, n)
13. A←A1||v||A2, the concatenation of A1, v and A2

14. return A

2.6 Parallel Search

Consider the search problem: Given a sequence S = 〈a1, a2, . . . , an〉 of n
distinct elements drawn from a linearly ordered set such that a1 < a2 <

· · · < an, and an element x, find the index k, 1 ≤ k ≤ n, such that x = ak
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if x ∈ S and 0 otherwise. Assume that we have a CREW PRAM with p

processors, 1 ≤ p < n. For convenience, let n = (p+1)q. First, the sequence

S is divided into p+1 subsequences of q elements each, and x is compared

to the elements at the p internal boundaries of these subsequences. That

is, the algorithm compares x with p elements simultaneously; processor Pi

compares x with aiq for 1 ≤ i ≤ p. We have the following cases:

(1) If for some i, 1 ≤ i ≤ p, x = aiq, the algorithm returns k = iq and

halts.

(2) x < aq, and hence only the elements less than aq are kept for the next

stage. This is shown as the shaded area in Fig. 2.5(a). In this case, the

algorithm returns the index of x in 〈a1, a2, . . . , aq−1〉.
(3) x > apq, and hence only the elements greater than apq are kept for the

next stage. This is shown as the shaded area in Fig. 2.5(b). In this case,

the algorithm returns pq plus the index of x in 〈apq+1, apq+2, . . . , an〉.
(4) There exists an i, 1 ≤ i < p, such that x > aiq and x < a(i+1)q. The

next stage performs the search on 〈aiq+1, aiq+2, . . . , a(i+1)q−1〉. This is

shown as the shaded area in Fig. 2.5(c). In this case, the algorithm

returns iq plus the index of x in 〈aiq+1, aiq+2, . . . , a(i+1)q−1〉.

(a)

(b)

(c)

Fig. 2.5. Parallel search.
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The above discussion is summarized in Algorithm parsearch. In

Step 1, all processors read x simultaneously in one step. Step 2 is the stop-

ping condition for recursion, which happens when the number of remain-

ing elements drops as or below the number of processors. In this case, n

processors are allocated, and each processor tests one element for equality

against x. If one processor finds element ai = x, it sets k = i. The remaining

steps are as explained above.

The size of the recursive call is approximately n
p+1 . Hence, the running

time is given by the recurrence T (n) = T (n/(p+1))+Θ(1) whose solution

is T (n) = Θ(logp+1 n) = Θ( logn
log(p+1) ). There are at most p element compar-

isons in each stage for a total of Θ(p logp+1 n). Hence, the work done by the

algorithm is W (n) = Θ(p logp+1 n). If p = nε, 0 < ε < 1, then T (n) = Θ(1)

and W (n) = Θ(nε).

Algorithm 2.8 parsearch
Input: A sequence S = 〈a1, a2, . . . , an〉 of n distinct elements such that

a1 < a2 < · · · < an, and an element x.

Output: The index k, 1 ≤ k ≤ n, such that x = ak if x ∈ S and 0 otherwise.

1. Initialize: k← 0, All processors read x
2. if n ≤ p use n processors to compare x with ai, 1 ≤ i ≤ n, and return k.
3. q← n/(p+ 1)
4. for i← 1 to p do in parallel
5. Processor Pi compares x with aiq

6. if x = aiq return k = iq
7. if x < aq then
8. let S′ = 〈a1, a2, . . . , aq−1〉
9. k← parsearch(S′, x)

10. return k
11. else if x > apq then
12. let S′ = 〈apq+1, apq+2, . . . , an〉
13. k← parsearch(S′, x)
14. return k + pq
15. else let i be such that x > aiq and x < a(i+1)q. do
16. let S′ = 〈aiq+1, aiq+2, . . . , a(i+1)q−1〉
17. k← parsearch(S′, x)
18. return k + iq
19. end if
20. return k = 0
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Example 2.3 We apply Algorithm parsearch for parallel search using

two processors on the sequence S = 〈1, 3, 4, 6, 9, 12, 14, 15, 20〉 and x = 8.

Initially, the algorithm divides S into three subsequences

〈1, 3, 4〉, 〈6, 9, 12〉, 〈14, 15, 20〉.
The two processors compare x with elements at the internal boundaries,

that is, 4 and 12. Since 8 > 4 and 8 < 12, the search area is reduced to

〈6, 9〉. Finally, the two processors perform two comparisons simultaneously

and both of them return 0 indicating that x is not found. The number of

parallel steps is 2. �

Example 2.4 We apply Algorithm parsearch for parallel search using

two processors on the same sequence in Example 2.3 and x = 14. Initially,

the algorithm divides S into three subsequences

〈1, 3, 4〉, 〈6, 9, 12〉, 〈14, 15, 20〉.
The two processors compare x with elements at the internal boundaries,

that is, 4 and 12. 14 > a6 = 12, so the search area is reduced to 〈14, 15, 20〉.
Now, the number of remaining elements is greater than p, so the algorithm

performs one more iteration and divides these elements into three subse-

quences 〈14〉, 〈15〉 and 〈20〉. In this iteration, q = n/(p + 1) = 3/3 = 1.

Since x = aq = a1 = 14, the algorithm returns 6 + 1 = 7. The number of

parallel steps is 3. �

2.7 Pointer Jumping

Let L denote a linked list of n elements, and let us associate a processor

with each element in the list. Each element x has two fields: succ(x) and

dist(x). succ(x) is a pointer that points to the next element in the list. The

succ field of the last element points to itself, that is, succ(L(n)) = L(n).

The other field dist is initially 1 if succ(x) 
= x and 0 if succ(x) = x. An

algorithm is required to be developed to compute: for each element x —

its distance from the end of the list and to store it in dist(x). Algorithm

pjumping computes the distances from each node to the end of the list

using a technique called pointer jumping or doubling.
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Algorithm 2.9 pjumping
Input: A Linked list L = (dist(x), succ(x)), 1 ≤ x ≤ n.

Output: dist(x), 1 ≤ x ≤ n, the distance of x from the end of the list.

1. for x← 1 to n do in parallel
2. s(x)← succ(x)
3. while s(x) �= s(s(x)) do
4. dist(x)← dist(x) + dist(s(x))
5. s(x)← s(s(x))
6. end while
7. end for

Pointer jumping consists of updating the successor of each node by

that node successor’s successor. Thus, the distance between a node and its

successor doubles unless it is its own successor. Hence, after k iterations,

the distance between a node x and its successor is 2k unless succ(x) is the

last element in the list. It follows that the while loop is executed �logn�
times, which means the parallel time complexity of the algorithm is T (n) =

Θ(logn). Its cost, however, is Θ(n logn) since there are n processors.

Example 2.5 Figure 2.6 illustrates the algorithm for a list of seven

elements. Each pointer s(x) is shown as an arc from one element to another,

and the arc from element x is labelled with the current value of dist(x).

The original list is shown on the top of the figure, and the rest of the figure

shows the lists after each of the three iterations. �

2.8 Euler Tour

The Euler tour technique on trees is a very powerful tool when designing

parallel algorithms for trees. Let G be a directed graph. An Euler circuit in

G is a cycle that visits each edge exactly once. G is said to be Eulerian if it

has an Euler circuit. It is well-known that G is Eulerian if and only if the

indegree of each vertex is equal to its outdegree. Let T = (V,E) be a given

tree, and let T ′ = (V,E′) be obtained from T by replacing each edge (u, v)

of T by two directed edges (u, v) and (v, u) in opposite directions. Then, T ′

is Eulerian since the indegree of each vertex is equal to its outdegree (see

Fig. 2.7). We now show how to construct an Euler circuit in T , which is

commonly known as Euler tour.
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Fig. 2.6. Pointer jumping.
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(a) (b)

Fig. 2.7. (a) A tree. (b) A directed tree.

A tree T is represented by its adjacency lists as shown in Fig. 2.8 for

the adjacency lists of the graph shown in Fig. 2.7(a). The edges in each list

are listed in a counterclockwise order. We define the function next(e) to

be the edge following edge e in the adjacency lists. Note that the lists are

circular, so if e is the last edge in its list, then next(e) is the first edge in

the list. Each edge (i, j) in the adjacency lists has two pointers, one to the

next edge and the other to the edge (j, i).

An Euler tour can be defined by specifying the successor function

succ(e), which gives the next edge in the tour. Let v be a vertex in the
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2 (2,1)

3 (3,1)

5 (5,4)

6 (6,4)

4 (4,1) (4,6) (4,5)

1 (1,2) (1,3) (1,4)

Fig. 2.8. Adjacency lists of the tree in Fig. 2.7(a).

(undirected) tree T , and suppose that its degree is d. Let the vertices

adjacent to v be u0, u1, . . . , ud−1 listed in counterclockwise order. Then,

succ((ui, v)) = (v, u(i+1)mod d). The successor function can also be obtained

directly from the adjacency lists using the equation

succ((i, j)) = next((j, i)).

If the resulting tour is τ = e1, e2, . . . , ek, then τ defines a depth-first order

on the set of vertices.

Example 2.6 Consider the tree shown in Fig. 2.7(a). Vertex 1 has the

adjacent vertices 2, 3 and 4, in this order. Hence, succ((2, 1)) = (1, 3),

succ((3, 1)) = (1, 4), and succ((1, 2)) = (2, 1). Using the next function,

succ((2, 1)) = next((1, 2)) = (1, 3), and so on. The next and succ functions

for all edges in the tree are shown in Table 2.1. It follows that the Euler

tour starting from edge (1, 2) is

τ = (1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 6), (6, 4), (4, 5), (5, 4), (4, 1), (1, 2).

The above Euler tour τ defines the following depth-first ordering on the set

of vertices: 1, 2, 1, 3, 1, 4, 6, 4, 5, 4, 1. �

Clearly, using the two pointers in each node of the adjacency lists, it

takes Θ(1) time to find succ(e), and hence, the Euler tour can be computed

in Θ(1) steps using O(n) processors on the EREW PRAM.
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Table 2.1. The next and successor functions.

edge e next(e) succ(e)

(1,2) (1,3) (2,1)
(1,3) (1,4) (3,1)
(1,4) (1,2) (4,6)
(2,1) (2,1) (1,3)
(3,1) (3,1) (1,4)
(4,1) (4,6) (1,2)
(4,6) (4,5) (6,4)
(4,5) (4,1) (5,4)
(5,4) (5,4) (4,1)
(6,4) (6,4) (4,5)

2.8.1 Directing a tree

The Euler tour technique on trees can be used to make a tree directed. The

first step is to assign a root, which we will assume to be the first vertex in

the tour r. This can be done by deleting the last edge in the tour, which

converts the Euler circuit into an Euler path. Next, we assign 1 to every

edge in the resulting tour, and apply the prefix sums algorithm on the set of

edges defined by the tour. Finally, for each edge (u, v) assign the parent of v

p(v) = u whenever the prefix sum of (u, v) is smaller than the prefix sum

of (v, u). The algorithm is given as Algorithm directingtree. Clearly,

the algorithm runs in O(log n) time using O(n) processors on the EREW

PRAM.

Algorithm 2.10 directingtree
Input: A tree T and a vertex r in T .

Output: Assign parents to all nodes in T except r.

1. Find an Euler tour τ for the tree T .
2. Remove the last edge (x, r) from τ .
3. Assign 1 to every edge of the tour τ .
4. Apply parallel prefix on the set of edges of τ .
5. Assign p(r) = 0, p(x) = r, and for each other edge (u, v) assign p(v) = u

whenever the prefix sum of (u, v) is smaller than the prefix sum of (v, u).
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Fig. 2.9. Directing the tree in Fig. 2.7(a).

Example 2.7 We convert the tree shown in Fig. 2.7(a) into a directed

tree rooted at vertex 1. Consider the tree shown in Fig. 2.9(a), which is the

tree in Fig. 2.7(b) with assigned weights of 1 to all edges. The last edge

in the tour τ has been deleted. The prefix sums are shown in Fig. 2.9(b),

and the rooted tree is shown in Fig. 2.9(c). Note, for example, that 4 is the

parent of 6 since the prefix sum on edge (4, 6) is smaller than the prefix

sum on edge (6, 4) in Fig. 2.9(b). �

2.8.2 Computing vertex levels in a tree

Let T be a tree rooted at vertex r. The vertex level of a vertex v is the

distance between v and the root r measured in the number of edges. Note

that we have assumed here that T is rooted. Let τ be the Euler path starting

at r. On this path, assign the weights w(p(v), v) = 1 and w(v, p(v)) = −1,
and perform parallel prefix on τ . Finally, set level(v) to the prefix sum of the

edge (p(v), v). The algorithm is given as Algorithm treelevels. Clearly,

the algorithm runs in O(log n) time using O(n) processors on the EREW

PRAM.

Algorithm 2.11 treelevels
Input: A tree T rooted at r.

Output: Assign levels to all nodes in T .

1. Find an Euler tour τ for the tree T .
2. Remove the last edge from τ .
3. Assign the weights w(p(v), v) = 1 and w(v, p(v)) = −1.
4. Apply parallel prefix on the set of edges of τ .
5. Set level(v) to the prefix sum of the edge (p(v), v).
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Fig. 2.10. Computing levels of the vertices in the tree shown in Fig. 2.7(a).

Example 2.8 We compute the levels of the vertices in the tree shown

in Fig. 2.7(a), where vertex 1 is the root. Consider the tree shown in

Fig. 2.10(a), which is the tree in Fig. 2.7(b) with assigned weights of 1

and −1 as explained above. The last edge in the tour τ has been deleted.

The prefix sums are shown in Fig. 2.10(b), and the tree with levels of the

vertices is shown in Fig. 2.10(c). �

2.9 Merging by Ranking

Given a sequence S and an element x, let rank(x, S) be the number of

elements in S less than x. It is not hard to modify Algorithm parsearch

given in Section 2.6 so that on input S and x, it returns rank(x, S). We will

refer to the modified algorithm as Algorithm modparsearch.

2.9.1 Computing ranks

Let A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bm〉 be two sequences of n+m

distinct numbers, each sorted in increasing order. The problem of mergingA

and B into a new sequence C = 〈c1, c2, . . . , cm+n〉 may be solved in parallel

by computing for each x ∈ A ∪ B, rA = rank(x,A) and rB = rank(x,B),

and setting ck = x, where k = rA + rB + 1. The ranks of all items in

B are found in parallel, where a processor Pi is assigned to each element

bi ∈ B. To find rank(bi, A), Pi performs binary search on A, and this is

done for all bi ∈ B in parallel. To compute the rank of bi in B, we use the

identity rank(bi, B) = i − 1. Next, we repeat the above procedure for all

items aj ∈ A to find rank(aj, B) and set rank(aj, A) = j − 1. The above

algorithm works on the CREW PRAM in time O(max{logn, logm}).
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Fig. 2.11. Computing rank(B,A).

In the following, we present a faster algorithm that runs in time

O(log logn) for the case m = n. First, we develop an algorithm for comput-

ing rank(B,A) = {rank(b, A) | b ∈ B}; finding rank(A,B) can be achieved

in a similar fashion. For clarity, let s =
√
m. First, use Algorithm mod-

parsearch to compute in parallel the ranks of bs, b2s, . . . , bm, using
√
n

processors for each rank. Call these ranks r(s), r(2s), . . . , r(m). This divides

the remaining elements in B into s subsequences B0, B1, . . . , Bs−1 of s− 1

elements each, where B0 = {b1, b2, . . . , bs−1}, B1 = {bs+1, bs+2, . . . , b2s−1},
and in general Bi = {bis+1, bis+2, . . . , b(i+1)s−1}. This induces a par-

tition of {a1, a2, . . . , ar(m)} into s subsequences A0, A1, . . . , As−1, where

A0 = {a1, a2, . . . , ar(s)}, A1 = {ar(s)+1, ar(s)+2, . . . , ar(2s)}, and in general

Ai = {ar(is)+1, ar(is)+2, . . . , ar((i+1)s)} (see Fig 2.11).

Note that |Ai| may vary; it may be 0 or n. Let bis+j ∈ Bi. Then, we

should search for rank(bis+j, Ai) in Ai, and compute rank(bis+j , A) from

the equation

rank(bis+j, A) = rank(bis, A) + rank(bis+j , Ai). (2.1)

Note that this means

If rank(b(i+1)s, A) = rank(bis, A), then rank(bis+j, Ai) = 0.

Thus, the problem of computing the ranks of B in A reduces to computing

the ranks of Bi in Ai, 0 ≤ i ≤ s − 1. Call the algorithm recursively on

(Ai, Bi) to compute rank(Bi, Ai) for 0 ≤ i ≤ s−1. For bis+j ∈ Bi, let ri(j) =

rank(bis+j , Ai). Thus, as stated in Eq. 2.1, rank(bis+j , A) = r(is) + ri(j).

The above discussion is outlined in Algorithm parrank. The algo-

rithm returns R = {r(1), r(2), . . . , r(m)}, a set of m ranks, where
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r(i) = rank(bi, A). In Line 8, the algorithm returns Ri= {ri(1), ri(2), . . . ,
ri(s− 1)}, a set of s− 1 ranks corresponding to rank(Bi, Ai).

Algorithm 2.12 parrank
Input: A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bm〉 are two sequences of

n+m distinct numbers, each sorted in increasing order.

Output: rank(B,A) = {rank(bi, A) | bi ∈ B}.
1. if m < 4 then for i← 1 to m do in parallel
2. Use Algorithm modparsearch to compute

r(i) = rank(bi, A) using n processors.
3. for i← 1 to s do in parallel
4. Use Algorithm modparsearch to compute

r(is) = rank(bis, A) using
√
n processors.

5. end for
6. r(0)← 0
7. for i← 0 to s− 1 do in parallel
8. if r(is) = r((i+ 1)s) then Ri←{0, 0, . . . , 0}
9. else

10. Ri← parrank(Ai, Bi)
11. for j← 1 to s− 1 do in parallel
12. r(is+ j)← r(is) + ri(j)
13. end for
14. end if
15. end for
16. return R = {r(1), r(2), . . . , r(m)}

It is easy to see that the number of processors used by the algorithm

is O(
√
m
√
n) = O(m + n) as required by Steps 3 and 4 of the algorithm.

Steps 1–4 take constant time. Step 10 takes at most T (n,
√
m) time since

|Ai| can be as large as n. Hence, the running time is given by the recurrence

T (n,m) ≤
{
O(1) if m < 4

T (n,
√
m) +O(1) if m ≥ 4,

whose solution is T (n,m) = O(log logm). The work done by Steps 1–2 of

the algorithm is O(n). The number of operations done by Steps 3 and 4

is O(
√
m
√
n) = O(m + n) since the call to Algorithm modparsearch

performs O(
√
n)×O(1) = O(

√
n) operations. The work done by Steps 7–16

of the algorithm except for the recursive calls is O(m). It follows that the

overall work done by the algorithm is W (n,m) = O((n +m) log logm).
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Example 2.9 Let A = 〈10, 30, 40, 60, 70, 90, 110, 120〉 and B =

〈20, 50, 80, 100〉, som = 4 and n = 8. s = 2, b2 = 50 and b4 = 100. First, the

ranks of b2 and b4 are computed: r(2) = 3 and r(4) = 6. Next, B0, B1, A0

and A1 are computed: B0 = {20}, B1 = {80}, A0 = {10, 30, 40} and

A1 = {60, 70, 90}. Now, the algorithm recursively computes the ranks of B0

in A0 and B1 in A1: r0(1) = 1 (which is the rank of 20 in A0), so R0 = {1},
and r1(1) = 2 (which is the rank of 80 in A1), so R1 = {2}. Finally, we
compute the ranks of B0 in A and B1 in A: r(1) = r(0)+ r0(1) = 0+ 1 = 1

and r(3) = r(2) + r1(1) = 3 + 2 = 5. It follows that R = R(B,A) =

{1, 3, 5, 6}. �

Example 2.10 Suppose we change B in Example 2.9 to B = 〈7, 8,
80, 100〉. Then, b2 = 8, r(2) = 0 and B0 = {7}. Also, A0 = {} and A1 =

{10, 30, 40, 60, 70, 90}. By Step 8 of the algorithm, since r(0) = r(2), R0 =

{0} and thus the algorithm will not be called recursively on A0 and B0.

Consequently, r(1) = r(0) + r0(1) = 0 + 0 = 0. �

2.9.2 Merging

To merge A and B, we only need to compute rank(B,A) and rank(A,B).

Algorithm parmerge merges A and B into a sequence C. It is assumed

here that |A| = |B| = n. Let bi ∈ B. Then, the index of bi in C is equal to

rank(bi, B) + rank(bi, A) + 1 = (i − 1) + r(i) + 1 = r(i) + i. Similarly, for

aj ∈ A, the index of aj in C is equal to rank(aj, A) + rank(aj, B) + 1 =

(j − 1) + r(j) + 1 = r(j) + j.

Algorithm 2.13 parmerge
Input: A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bn〉 are two sequences of 2n

distinct numbers each sorted in increasing order.

Output: A sequence C = 〈c1, c2, . . . , c2n〉 which is the merge of A and B.

1. {r(1), r(2), . . . , r(n)}← parrank(A,B) (Find rank(B,A))

2. {r′(1), r′(2), . . . , r′(n)}← parrank(B,A) (Find rank(A,B))

3. for i← 1 to n do in parallel

4. ci+r(i)← bi

5. ci+r′(i)← ai

6. end for

7. return C
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Clearly, the running time of Algorithm parmerge is T (n) =

O(log logn). The cost of the algorithm is C(n) = O(n log logn).

2.9.3 Parallel bottom-up merge sorting

The algorithm for bottom-up sorting works by merging pairs of consecutive

elements, then merging consecutive pairs to form 4-element sequences, and

so on. This algorithm can easily be parallelized as shown in Algorithm

parbottomupsort. Note here that n = 2k for some positive integer k.

Algorithm 2.14 parbottomupsort
Input: A = 〈a1, a2, . . . , an〉, a sequences of n distinct numbers, where n = 2k.

Output: A sorted in increasing order.

1. for j← 1 to n do in parallel

2. S0,j← aj

3. end for

4. for i← 1 to k do

5. t← n/2i

6. for j← 1 to t do in parallel

7. Si,j← parmerge(Si−1,2j−1, Si−1,2j)

8. end for

9. end for

10. A← Sk,1

11. return A

Algorithm parbottomupsort defines a (conceptual) complete binary

tree whose nodes are the sequences Si,j , 0 ≤ i ≤ k, 1 ≤ j ≤ 2k−i. Ini-

tially, the elements are stored at the leaves S0,j, 1 ≤ j ≤ n. Subsequently,

the sequence Si,j corresponding to an internal node is computed by merg-

ing its children Si−1,2j−1 and Si−1,2j . Now, we compute the running time

of the algorithm. Algorithm parmerge is called in Step 7, and it takes

O(log log |Si−1,2j−1|) = O(log log 2i−1). This is repeated in the for loop in

Step 4 k times, for sizes 1, 2, 4, . . . , n/2. Hence, the running time is

T (n) =

k∑
i=1

O(log log 2i−1)
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=

k∑
i=1

O(log(i− 1))

=

k∑
i=1

O(log k)

= O(k log k)

= O(log n log logn).

2.10 The Zero-one Principle

A sorting algorithm is called oblivious if it consists of comparison-exchange

operations that are prescribed and independent of the input elements and

results of comparisons between them. The zero-one principle states that if a

comparison-based oblivious algorithm sorts any sequence of zeros and ones,

then it sorts any sequence of arbitrary values. It really simplifies the proofs

of correctness of many oblivious sorting algorithms.

Lemma 2.1 If an oblivious comparison-exchange algorithm sorts any

sequence of zeros and ones, then it sorts any sequence of arbitrary values.

Proof. Suppose for the sake of contradiction that an oblivious

comparison-exchange algorithm sorts all sequences of zeros and ones, but

fails to sort the input sequence 〈x1, x2, . . . , xn〉 of arbitrary numbers. Let π

be a permutation such that xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n), and for some per-

mutation σ 
= π, let the output of the algorithm be xσ(1), xσ(2), . . . , xσ(n).

Then, there exists some integer j such that xσ(i) = xπ(i) for i < j and

xσ(j) > xπ(j). Hence, there must exist k > j such that xσ(k) = xπ(j). For

1 ≤ i ≤ n, define yi = 0 if xi ≤ xπ(j), and yi = 1 if xi > xπ(j). Now, con-

sider the action of the algorithm on input 〈y1, y2, . . . , yn〉 of 0’s and 1’s. The

algorithm will perform the same set of comparison-exchange operations as

it did for the original input 〈x1, x2, . . . , xn〉. In particular, the output of the

algorithm on the yi’s input will be

yσ(1), yσ(2), . . . , yσ(j−1), yσ(j), . . . , yσ(k) . . . = 0, 0, . . . , 0, 1, . . . , 0, . . . ,

which is not sorted. This contradicts the assumption that the algorithm

sorts all sequences of zeros and ones. �
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2.11 Odd–Even Merging

Let A = 〈a0, a1, . . . , an−1〉 and B = 〈b0, b1, . . . , bn−1〉 be two sorted

sequences of 2n distinct numbers, where n is a power of 2. The odd–even

merging method is summarized in Algorithm oddevenmerge.

Algorithm 2.15 oddevenmerge
Input: Two sorted sequences A = 〈a0, a1, . . . , an−1〉 and

B = 〈b0, b1, . . . , bn−1〉 of n elements each sorted in ascending order,
where n = 2k.

Output: The elements in S = A ∪B in sorted order.

1. if n ≤ 2 return the merge of A and B, and exit.

2. Let Aeven = 〈a0, a2, . . . , an−2〉 and Aodd = 〈a1, a3, . . . , an−1〉 be the even
and odd subsequences of A, respectively.

3. Let Beven = 〈b0, b2, . . . , bn−2〉 and Bodd = 〈b1, b3, . . . , bn−1〉 be the even
and odd subsequences of B, respectively.

4. Recursively merge Aeven and Bodd to obtain C = 〈c0, c1, . . . , cn−1〉.
5. Recursively merge Aodd and Beven to obtain D = 〈d0, d1, . . . , dn−1〉.
6. Let E be the shuffle of C and D, that is,

E = 〈c0, d0, c1, d1, . . . , cn−1, dn−1〉.
7. Traverse the pairs (ci, di) in E, 0 ≤ i ≤ n − 1, and interchange the

elements in each pair if they are out of order to obtain the sorted sequence
S = 〈s0, s1, . . . , s2n−1〉

8. return S

After the execution of Step 6, we have s0 = min{c0, d0}, s1 =

max{c0, d0}, s2 = min{c1, d1}, s3 = max{c1, d1}, . . . , s2n−2 = min{cn−1,

dn−1}, s2n−1 = max{cn−1, dn−1}.
The algorithm uses 2n processors on the EREW PRAM. Obviously,

the time needed in each recursive call is Θ(1). Hence, the running time of

the algorithm is governed by the recurrence T (n) = T (n/2) + Θ(1), whose

solution is T (n) = Θ(logn). The work done by the algorithm is given by

the recurrence W (n) = 2W (n/2) + Θ(n), and hence W (n) = Θ(n logn).

Example 2.11 Let A = 〈1, 3, 4, 7〉 and B = 〈2, 5, 6, 8〉. Then, Aeven =

{1, 4}, Aodd = {3, 7}, Beven = {2, 6}, Bodd = {5, 8}, C = 〈1, 4, 5, 8〉 and
D = 〈2, 3, 6, 7〉. E = 〈1, 2, 4, 3, 5, 6, 8, 7〉. The pair (4, 3) is out of order,

so 4 and 3 are exchanged. The same applies to the pair (8, 7). The sorted

sequence is S = 〈1, 2, 3, 4, 5, 6, 7, 8〉. See Fig. 2.12. �
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Fig. 2.12. An example of odd–even merging.

Theorem 2.2 Algorithm oddevenmerge correctly merges A and B

into S.

Proof. Let A,B,C,D and E be as defined in Algorithm oddevenmerge,

and assume the elements in A ∪ B are distinct. By the zero-one principle

(Lemma 2.1, we may assume that A and B consist of zeros and ones. Let x

and y be the number of zeros in A and B, respectively. Then, Aeven has

�x2 � zeros, Aodd has �x2 � zeros, Beven has � y2 � zeros, and Bodd has � y2 � zeros.
Consequently, C has w = �x2 �+ � y2 � zeros and D has z = �x2 �+ � y2� zeros.
Clearly, w and z differ by at most 1, and hence we have the following three

cases. If w = z or w = z + 1, then

E = 0, 0, . . . , 0︸ ︷︷ ︸
w+z

, 1, 1, . . . , 1,

and E is sorted. If, however, w = z − 1, then

E = 0, 0, . . . , 0︸ ︷︷ ︸
2w

, 1, 0, 1, . . . , 1,

and E will be sorted after making one exchange of 0 and 1. �

The algorithm for sorting is given as Algorithm oddevenmergesort.

The running time of the algorithm is Θ(log2 n). Its work is Θ(n log2 n).
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Algorithm 2.16 oddevenmergesort
Input: A sequence S = 〈a0, a1, . . . , an−1〉 where n is a power of 2.

Output: The elements in S in sorted order.

1. S1← 〈a0, a1, . . . , an/2−1〉.
2. S2← 〈an/2, an/2+1, . . . , an−1〉.
3. S′

1 ← oddevenmergesort(S1)

4. S′
2 ← oddevenmergesort(S2)

5. S← oddevenmerge(S′
1, S

′
2)

6. return S

2.12 Bitonic Merging and Sorting

A sequence S = 〈a1, a2, . . . , an〉 is monotonically increasing if a1 ≤ a2 ≤
· · · ≤ an, and is monotonically decreasing if a1 ≥ a2 ≥ · · · ≥ an. A

sequence is monotone if it is monotonically increasing or monotonically

decreasing. A monotone sequence can be represented pictorially as shown

in Fig. 2.13(a), where there is a point for each item in the sequence. The

sequence corresponding to this diagram is T = 〈a1, . . . , ai, . . . , aj, . . . , an〉,
where 1 < i < j < n. However, if we are not interested in the actual values

of the items in the sequence, but only in their relative order, then we can

simply represent a monotone sequence by a line segment. An example is

shown in Fig. 2.13(b) for the monotonically increasing sequence T above.

Figure 2.13(c) shows a generic monotone sequence in which the items and

their number are immaterial. Thus, the diagram shown in Fig. 2.13(c) is

the representation of any monotonically increasing sequence. Similarly, a

monotonically decreasing sequence can be represented by a line segment

with negative slope.

an

ai
a1

aj

1 i j n

an

ai

a1

aj

1 i j n

(c)(b)(a)

Fig. 2.13. A monotone sequence.
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A sequence S = 〈a1, a2, . . . , an〉 is bitonic if it monotonically increases

and then monotonically decreases, that is, there is an i, 1 ≤ i ≤ n, such

that

a1 ≤ a2 ≤ · · · ≤ ai ≥ ai+1 ≥ ai+2 ≥ · · · ≥ an,

or can be circularly shifted to become monotonically increasing and then

monotically decreasing. Thus, a sequence is also bitonic if it is monotone.

For example, the sequence 〈1, 3, 5, 7, 4, 2〉 is bitonic, while 〈1, 3, 1, 2〉 is not.
The sequence 〈7, 8, 3, 1, 0, 4〉 is also a bitonic sequence, because it is a cyclic

shift of 〈0, 4, 7, 8, 3, 1〉. We will represent a bitonic sequence by a diagram

consisting of a polygonal chain composed of line segments intersecting at

their internal endpoints, with at most one local maximum and one local

minimum. Each line segment represents a monotone sequence. Figure 2.14

shows the diagrams of two bitonic sequences. In part (a) there is one local

maximum, and in part (b) there is one local maximum and one local

minimum. If the number of line segments is 1 or 2, then the diagram is

a bitonic sequence. If the number of line segments is more than 2, then the

diagram is a bitonic sequence if and only if there does not exist a horizon-

tal line that intersects the polygonal chain at more than 2 points. To see

this, consider Fig. 2.15, which shows the diagram of a sequence with three

intersections of the polygonal chain with a horizontal line.

The sequence corresponding to this diagram is 〈a1, . . . , ai, . . . , aj ,
. . . , an〉, where 1 < i < j < n, with the following inequalities: a1 > ai, ai <

aj , aj > an and an < a1. If this sequence is bitonic, then the sequence

α = 〈a1, ai, aj , an〉 such that a1 > ai < aj > an < a1 is bitonic. Then,

it is possible through circular shifts to transform α into two monotonic

(a) (b)

Fig. 2.14. Bitonic sequences.
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1 i j n

Fig. 2.15. A non-bitonic sequences.

sequences, one increasing followed by one decreasing. It can be shown, how-

ever, that α cannot be converted to such a sequence. Hence, the sequence

is not bitonic.

Now, consider the sequence α′ obtained from α by increasing the value

of an so that an > a1. Then, we have a1 > ai < aj > an > a1, and thus α′

is bitonic, as it can be transformed into α′′ = 〈ai, aj , an, a1〉, which consists

of two monotonic sequences. The diagram of α′ is similar to the one shown

in Fig. 2.14(b); there does not exist a horizontal line that intersects this

diagram at more than 2 points. The diagram of α′′ is similar to the one

shown in Fig. 2.14(a).

Example 2.12 Consider the sequence α = 〈4, 1, 6, 3〉. Its diagram is the

one shown in Fig. 2.15. In this sequence, 4 > 1 < 6 > 3 < 4, so α is

obviously not a bitonic sequence. However, if we change 3 to 5 to obtain

α′ = 〈4, 1, 6, 5〉, the new sequence is bitonic since in this case 4 > 1 <

6 > 5 > 4. Its diagram is similar to the one shown in Fig. 2.14(b). With

one cyclic shift, α′ is converted to α′′ = 〈1, 6, 5, 4〉, which consists of two

monotonic sequences — one increasing and one decreasing. Its diagram is

similar to the one shown in Fig. 2.14(a). �

Let S = 〈a1, a2, . . . , an〉 be a bitonic sequence. Define

S1 = 〈min(a1, an/2+1),min(a2, an/2+2), . . . ,min(an/2, an)〉, (2.2)

and

S2 = 〈max(a1, an/2+1),max(a2, an/2+2), . . . ,max(an/2, an)〉. (2.3)
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z

(a) (b)

Fig. 2.16. Bitonic sequences.
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Fig. 2.17. Bitonic sequences example.

Then, both S1 and S2 are bitonic sequences. Moreover,

max(S1) ≤ min(S2). (2.4)

Consider, for example, the bitonic sequence u, v, w, x, y shown in

Fig. 2.16(a). Here, the line segment u, v accounts for approximately half

the elements in the sequence. Shift the line segment u, v to the right until

the vertex u is aligned vertically with w. The resulting line segment u′, v′

intersects the line segment x, y at the vertex z. Then, S1 = u′, z, y and

S2 = w, x, z, v′ as shown in Fig. 2.16(b) are bitonic. It is clear from the

figure that max(S1) ≤ min(S2).

Example 2.13 Consider the bitonic sequence S = 〈2, 3, 5, 7, 9, 10, 8, 6, 4, 1〉
shown in Fig. 2.17(a). If we apply the procedure described above for split-

ting this sequence, we obtain the two bitonic sequences S1 = 〈2, 3, 5, 4, 1〉
and S2 = 〈9, 10, 8, 6, 7〉 shown in Fig. 2.17(b). S2 is a cyclic shift of the

sequence 〈10, 8, 6, 7, 9〉. Furthermore, max(S1) = 5 ≤ 6 = min(S2). �

By Eq. (2.4), every element of the sequence S1 is less than or equal

to every element of the sequence S2. Thus, the problem of sorting the
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elements in S is reduced to sorting the elements in S1 and S2 separately.

This is summarized in Algorithm bitonicmerge. It is important to note

that the input to the algorithm is a bitonic sequence S of length n, where n

is a power of 2, and the output is the elements in S in sorted order. The

algorithm first computes S1 and S2 as in Eqs. 2.2 and 2.3. Now, S1 and S2

are bitonic sequences, so the algorithm recursively computes the two sorted

sequences S′
1 and S′

2, and returns their concatenation sequence S′
1||S′

2.

Algorithm 2.17 bitonicmerge
Input: A bitonic sequence S = 〈a1, a2, . . . , an〉, where n is a power of 2.

Output: The elements in S in sorted order.

1. if |S| = 1 then return S

2. for i← 1 to n/2 do in parallel

3. if ai > ai+n/2 then interchange ai and ai+n/2

4. end for

5. S1 = 〈a1, a2, . . . , an/2〉
6. S2 = 〈an/2+1, an/2+2, . . . , an〉
7. S′

1 ← bitonicmerge(S1)

8. S′
2 ← bitonicmerge(S2)

9. return S′
1||S′

2, the concatenation of S′
1 and S′

2

Algorithm bitonicmerge works on the EREW PRAM with n pro-

cessors. The running time is Θ(logn) and the total amount of work is

Θ(n logn), which is not optimal in view of the O(n) time sequential

algorithm.

Example 2.14 Consider the instance given in Fig. 2.18. Line 1 is the

input bitonic sequence. Line 2 shows the first split into two bitonic

sequences. Lines 3 and 4 show the second and third splits, respectively. �

Fig. 2.18. Bitonic merge example for n = 8.



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch02 page 40

40 Parallel Algorithms

(a) (b)

Fig. 2.19. (a) Increasing comparator. (b) Decreasing comparator.

Fig. 2.20. Bitonic merge network for n = 8.

A comparator is a devise with two inputs x and y, and two outputs

min(x, y) and max(x, y). It is either an increasing comparator, shown in

Fig. 2.19(a), or decreasing comparator, shown in Fig. 2.19(b). A network

of comparators is composed solely of wires and comparators. Algorithm

bitonicmerge can be implemented on a network of comparators, also

called a merging network, as illustrated in Fig. 2.20. A sample input of a

bitonic sequence OR bitonic sequences are shown on the wires. The merging

network with n inputs consists of logn columns, called stages.

2.12.1 Bitonic sorting

Bitonic sorting essentially works like Algorithm mergesort in that it

divides the input into two halves, sorts each half recursively and uses Algo-

rithm bitonicmerge to merge the two sorted sequences. It is given in

Algorithm bitonicsort. To merge two monotonic sequences S′
1 and S′

2

sorted in ascending order, first reverse S′
2 and form the bitonic sequence

S3 obtained by concatenating S′
1 and S′′

2 , where S
′′
2 is the reverse of S′

2.

Finally, apply Algorithm bitonicmerge to S3.
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Algorithm 2.18 bitonicsort
Input: A sequence S of n elements, where n is a power of 2.

Output: The elements in S in sorted order.

1. if |S| > 1 then

2. S1← 〈a1, a2, . . . , an/2〉
3. S2← 〈an/2+1, an/2+2, . . . , an〉
4. S′

1← bitonicsort(S1)

5. S′
2← bitonicsort(S2)

6. S′′
2← Reverse of S′

2

7. S3← S′
1||S′′

2 , the concatenation of S′
1 and S′′

2

8. S← bitonicmerge(S3)

9. return S

10. end if

The algorithm uses n processors on the EREW PRAM. Obviously, the

time needed in each recursive call is Θ(logn). Hence, the running time of

the algorithm is governed by the recurrence

T (n) =

{
c if n = 1

T (n/2) + Θ(logn) if n ≥ 2,

whose solution is T (n) = Θ(log2 n). The work done by the algorithm is

W (n) = Θ(n log2 n), which is not optimal.

Theorem 2.3 Algorithm bitonicsort correctly sorts a given sequence

of numbers in ascending order.

Proof. By the zero-one principle (Lemma 2.1, we may assume that the

input consists of 0’s and 1’s. Let A and B be two strings of 0’s and 1’s such

that |A|+ |B| = n, and assume without loss of generality that n = 2m ≥ 2.

The proof is by induction on m. If m = 1, then clearly the input will

be sorted, so assume that the algorithm correctly sorts its input for all

powers h, 1 ≤ h < m, and let |A|+ |B| = 2m. First, A and B will be sorted

separately, and B will be reversed, and so they will look like the following:

A = 0i1j , B = 1k0l.

Next, some 1’s in A will be swapped with 0’s in B by Step 3 of Algorithm

bitonicmerge. Let A′ and B′ be A and B after swapping, respectively.
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If j ≤ l, all 1’s in A will be swapped with 0’s in B, and A′ will consist of
0’s only. In this case, A′ and B′ will look like:

A′ = 0i+j , B′ = 1k0l−j1j.

If, however, j > l, then l 1’s in A will be swapped with l 0’s in B, and A′

and B′ will look like the following:

A′ = 0i1j−l0l, B′ = 1k+l.

Finally, A′ and B′ will be merged separately and concatenated by Algorithm

bitonicmerge to produce A′′||B′′, which is sorted in ascending order. �

We can derive a sorting network by unrolling recursion as follows:

Starting from n = 1, any sequence of length 1 is monotonic, and hence

any sequence of length 2 is bitonic. In the first stage of bitonic sort,

bitonic sequences of size 2 are merged to create ordered lists of size 2.

If these sequences alternate between being ordered into increasing and

decreasing order, then at the end of this stage of merging, we have n/4

bitonic sequences of size 4. In the next stage, bitonic sequences of size 4

are merged into sorted sequences of size 4, alternately into increasing and

decreasing orders so as to form n/8 bitonic sequences of size 8. Given an

unordered sequence of size n, exactly logn stages of merging are required to

produce a completely ordered sequence. Figure 2.21 shows a bitonic sorting

Merge (2) Merge (4) Merge (8)

Fig. 2.21. Bitonic sort network for n = 8.
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network with sample input of size 8. This network has three stages labeled

Merge(2), Merge(4) and Merge(8). Stage 3 in the figure is identical to the

merging network of Fig. 2.20.

2.13 Pipelined Mergesort

Recall the parallel bottom-up merge sorting algorithm, Algorithm par-

bottomupsort, discussed in Section 2.9.3. The algorithm works by merg-

ing pairs of consecutive elements, then merging consecutive pairs to form

4-element sequences, and so on. The running time of the algorithm was

shown to be O(log n log logn). In fact, there is a Ω(log logn)-time-lower

bound for merging two sorted sequences of n elements using n processors

on the CREW PRAM. In this section, we sketch an optimal Θ(logn) time

algorithm for sorting n items on the CREW PRAM with Θ(n) processors.

The algorithm can be modified to work on the EREWPRAM with the same

time complexity. It is a modification of Algorithm parbottomupsort, in

which merges are pipelined efficiently. We will assume in this section that

the elements to be sorted are all distinct and that n is a power of 2.

Let a, b and c be three numbers such that a < c. We say that b is

between a and c if a ≤ b < c. We also say that a and c straddle b.

Given a sequence A and an element a, recall that rank(a,A) denotes the

number of elements in A less than a. We will assume that all sequences

and arrays are implicitly augmented with −∞ and ∞, so the rank of the

minimum element is 1, not 0. Given two arrays A and B, the cross rank

R(A,B) = 〈rank(a,B) | a ∈ A〉. Let a and b be two adjacent items in B (if

necessary, we let a = −∞ or b = ∞). We define the range [a, b) to be the

interval induced by item a (including the cases a = −∞ and b = ∞). Let

C be a sorted sequence of numbers. C will be called a 3-cover or simply a

cover of A if each interval induced by consecutive elements of C contains

at most three elements from A. More precisely, for any two consecutive ele-

ments a and c in C∞, the set {b ∈ A | a ≤ b < c} has at most 3 elements,

where C∞ = {−∞} ∪ C ∪ {+∞}. For example, if C contains the numbers

9, 18 and 30 while A contains 1, 5, 20, 23, 25 and 35, then C is a 3-cover for

A. If, however, A also contains 28, then C is not a 3-cover for A, since in

this case the number of elements between 18 and 30 is more than 3.
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2.13.1 The algorithm

The sorting algorithm is described in terms of a complete binary tree T with

n leaves. Initially, the n elements to be sorted are placed at the leaves of T ,

one element per leaf, and the internal nodes contain empty sequences. Let v

be an internal node in the tree. Lv will denote the sequence of leaves of the

subtree Tv rooted at v. In the course of the algorithm, the internal nodes

of T will contain sorted sequences of elements. The task of node v is to sort

the sequence Lv. The algorithm goes through stages t, 1 ≤ t ≤ 3 logn− 2.

By Av(t) we denote the sequence associated with node v at stage t. The

items in Av(t) will be a rough sample of the items in Lv. As the algorithm

proceeds, the size of Av(t) increases, and Av(t) becomes a more accurate

approximation of Lv, and it will always be a sorted subsequence of Lv. We

say that node v is complete at stage t if and only if Av(t) = Lv; otherwise v

is said to be active. Throughout the algorithm, node v from its left son x

a sorted sequence Bx(t), and from its right son y a sorted sequence By(t)

hence producing the sequence Bv(t + 1), which is sent to the parent of v.

In each of these sequences, the size of the next object is twice as big as the

size of the preceding one. That is, for all nodes v,

|Av(t+ 1)| = 2|Av(t)|, and |Bv(t+ 1)| = 2|Bv(t)|.

We explain the processing performed in one stage at an arbitrary internal

node v of the tree. The array Av(t) is the array at hand at the start of

the stage; Av(t+1) is the array at hand at the start of the next stage, and

Av(t−1) is the array at hand at the start of the previous stage, if any. Also,

in each stage, we will create an array Bv(t) at node v; Bv(t+1), Bv(t− 1)

are the corresponding arrays in respectively, the next, and previous, stage.

Bv(t) is a sorted array comprising every fourth item in Av(t), for the active

node v.

The computation performed during each stage at each internal node v

comprises the following two phases:

(1) Compute Bv(t)← α(Av(t)) and send it to the parent of v, where

α(Av(t)) is computed as follows: If v is active, then α(Av(t)) consists

of every fourth element of Av(t). During the first stage after v becomes

complete, α(Av(t)) consists of every fourth element of Av(t). During

the second stage after v becomes complete, α(Av(t)) consists of every
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second element of Av(t), while in the third stage α(Av(t)) consists of

every element of Av(t).

(2) If v is active, then merge Bx(t) with By(t) using the cover Av(t) to

obtain Av(t+ 1). That is, Av(t+ 1)←Bx(t) ∪By(t), where ∪ denotes

merging. If v is complete, then v ignores its inputs Bx(t) and By(t).

By (1) above, three stages after node v becomes complete, its parent

becomes complete too. The exception is in stage 1 in which the nodes at

the level before the last merge their inputs and become complete in one

stage. Hence, the total number of stages of the algorithm is 3 logn− 2.

Figure 2.22 illustrates the flow of the algorithm with n = 8 by depicting

stages 2–7, that is, after nodes d, e, f and g become complete. Note that

the total number of stages is 3 log 8 − 2 = 7. In part (c) of this figure, we

have Aa(4) = {}, Bb(4) = 〈8〉 and Bc(4) = 〈6〉. In part (d) of this figure,

we have Aa(5) = 〈6, 8〉, Bb(5) = 〈5, 8〉 and Bc(5) = 〈3, 6〉.
The proof of the following theorem is omitted.

(a) (b)

(c) (d)

(e) (f)

Fig. 2.22. The flow of the algorithm with n = 8.
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Theorem 2.4 Bv(t) is a 3-cover of Bv(t+ 1).

We will need the following observation to show that the merge can be

performed in O(1) time.

Observation 2.1 Let A and C be two sorted sequences such that C is a

cover for A. Then, for any sorted sequence D, C ∪D is a cover for A, where

∪ denotes the merge operation.

By the above theorem, Bx(t− 1) is a 3-cover for Bx(t) for each node x.

By the above observation, since Av(t) = Bx(t− 1) ∪By(t − 1), we deduce

Av(t) is a 3-cover for Bx(t); similarly, Av(t) is a 3-cover for By(t). Since

Av(t+ 1) = Bx(t) ∪By(t), it follows that Av(t) is a 3-cover for Av(t+ 1).

We will assume that R(Av(t), Bx(t)) and R(Av(t), By(t)) are available.

Let a be an item in Bx(t); the rank of a in Av(t+1) = Bx(t)∪By(t) is equal

to the sum of its ranks in Bx(t) and By(t). So to perform the merge we

compute the cross ranks R(Bx(t), By(t)) and R(By(t), Bx(t)) (the method

is given below).

2.13.2 Computing and maintaining ranks

In order for the algorithm to perform the merges quickly in Θ(1) time, we

show how to compute the ranks in Θ(1) time. We compute and maintain

ranks as described in the following steps.

(1) The first step is to compute R(Bx(t), Av(t)) and R(By(t), Av(t)). For

two adjacent items a and b with a < b, recall that the interval induced

by item a is the range [a, b) (including the cases a = −∞ and b =∞).

Let u be an item in Av(t); u may be −∞. Consider the interval I(u)

in Av(t) induced by u, and consider the set of items X(u) in Bx(t)

contained in I(u) (there are at most three items in X(u) by the 3-cover

property). X(u) can be found in Θ(1) time since R(Av(t), Bx(t)) is

available, which means rank(u,Bx) is known. Each item a in X(u) is

given its rank in Av(t) as rank(a,Av(t)) = rank(u,Av(t)) + 1 (note

that all elements are distinct, which means a > u). For example, in

Fig. 2.22(d), with t = 5, we have Aa(5) = {6, 8}, Bb(5) = {5, 8}.
If we let u = −∞, then I(u) = (−∞, 6) and X(u) = {5}. Hence,
rank(5, Aa(5)) = 0 + 1 = 1. This takes care of R(Bx(t), Av(t)). We

repeat the symmetrical procedure to compute R(By(t), Av(t)). These
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Fig. 2.23. Computing R(Bx(t), By(t)).

ranks are needed for computing R(Bx(t), By(t)) and R(By(t), Bx(t)),

which are required by the merge step Av(t+ 1)←Bx(t) ∪By(t).

(2) Now, we show how to compute R(Bx(t), By(t)); R(By(t), Bx(t)) can be

found in a similar fashion. Let a be an item in Bx(t); we show how to

compute its rank in By(t). (See Fig. 2.23.) We determine the two items

b and c in Av(t) that straddle a, using rank(a,Av(t)) computed above.

Suppose that b and c have ranks r and t, respectively, in By(t). Then, all

items of rank r or less are smaller than item a (recall we assumed that

all the inputs were distinct), while all items of rank greater than t are

larger than item a; thus the only items about which there is any doubt

as to their sizes relative to a are the items with rank s, r < s ≤ t. But

there are at most three such items by the 3-cover property. By means

of at most two comparisons, the relative order of a and these (at most)

three items can be determined.

(3) At this point, we find the value for each item a in Bx(t), using its

rank in By(t) computed above, the two items b and c in By(t) that

straddle a, and the ranks of b and c in Av(t+1). Similarly, we find the

value for each item d in By(t), using its rank in Bx(t), the two items e

and f in Bx(t) that straddle d, and the ranks of e and f in Av(t+ 1).

This information is needed for computing R(Av(t+ 1), Bx(t + 1)) and

R(Av(t+ 1), By(t+ 1)).

(4) Now, we show how to compute R(Av(t + 1), Bx(t + 1)) and R(Av

(t + 1), By(t + 1)) can be found by a similar means. For each item

a in Av(t + 1), we want to determine its rank in Bx(t + 1). Given the

ranks for an item from Av(t) in both Bx(t) and By(t), we can imme-

diately deduce the rank of this item in Av(t + 1) = Bx(t) ∪ By(t)

(the new rank is just the sum of the two old ranks). Similarly, we
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obtain the ranks for items from Ax(t) in Ax(t + 1). This yields the

ranks of items from Bx(t) in Bx(t + 1) (for each item in Bx(t)

came from Ax(t), and Bx(t + 1) comprises every fourth or second

item in Ax(t + 1), or every item in Ax(t + 1)). Consequently, for

a ∈ Bx(t), rank(a,Bx(t+ 1)) = 1
4 rank(a,Ax(t + 1)), if in stage t+ 1 x

is active or in the first stage after being complete, rank(a,Bx(t+ 1)) =
1
2 rank(a,Ax(t+ 1)), if in stage t + 1 x is in the second stage after

being complete, and rank(a,Bx(t+ 1)) = rank(a,Ax(t+ 1)), if in

stage t + 1 x is in the third stage after being complete. For exam-

ple, in Fig. 2.22, if t = 4, then we have Ab(4) = {2, 5, 7, 8},
Bb(4) = {8}, Ab(5) = Ab(4), Bb(5) = {5, 8}, and rank(8, Bb(5)) =
1
2 rank(8, Ab(5)) = 2 (note that stages 4 and 5 are in parts (c) and

(d) of the figure). Thus, for every item in Av(t + 1) that came from

Bx(t) we have its rank in Bx(t+1); it remains to compute the rank for

those items in Av(t+ 1) that came from By(t).

Let a be an item in By(t). We compute rank(a,Bx(t+ 1)) as follows:

Recall that for each item a from By(t), we computed the straddling

items b and c from Bx(t). (See Fig. 2.24.) We know the ranks r and t of b

and c, respectively, in Bx(t+1) (as asserted in the previous paragraph).

Every item of rank r or less in Bx(t+ 1) is smaller than a, while every

item of rank greater than t is larger than a. Thus, the only items about

which there is any doubt concerning their size relative to a are the items

with rank s, r < s ≤ t. But there are at most three such items by the

3-cover property. As before, the relative order of a and these (at most)

three items can be determined by means of at most two comparisons.

Fig. 2.24. Computing rank(a,Bx(t+ 1)) for a ∈ By(t).
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2.13.3 Analysis of the algorithm

It is not difficult to prove that the merge step takes Θ(1) time at each stage

of the algorithm, given that we assign a processor to every array element.

Hence, the total running time is Θ(logn). Now, we estimate the number of

processors needed, which is equal to the total array elements at any stage

of the algorithm. First, we compute the total number of items in the A(t)

arrays. Let v be an internal node, and assume, as before, that x and y are

the children of v. If |Av(t)| 
= 0 and x is not complete, then

2|Av(t)| = |Av(t+ 1)| = |Bx(t)|+ |By(t)| = 1

4
(|Ax(t)|+ |Ay(t)|) = 1

2
|Ax(t)|,

that is, |Av(t)| = 1
4 |Ax(t)|. So the total size of the A(t) arrays at v’s level is

1
8 the size of the A(t) arrays at x’s level, if x is not complete (the number

of nodes at v’s level is 1
2 of that at x’s level). This need not be true at

complete nodes x. It is true for the first stage in which x is complete; but

for the second stage, |Av(t)| = 1
2 |Ax(t)|, and so the total size of the A(t)

arrays at v’s level is 1
4 of the total size of the arrays at x’s level; likewise, for

the third stage, |Av(t)| = |Ax(t)|, and so the total size of the A(t) arrays

at v’s level is 1
2 of the total size of the A(t) arrays at x’s level.

Thus, on the first stage in which x is complete, the total size of the

A(t) arrays is bounded above by n + n/8 + n/64 + · · · = n + n/7; on the

second stage, by n + n/4 + n/32 + · · · = n + 2n/7; on the third stage,

by n + n/2 + n/16 + · · · = n + 4n/7. Using a similar argument, it can be

shown that on the first stage, the total size of the B(t) arrays is bounded

above by 2n/7; on the second stage, by 4n/7; on the third stage, by 8n/7.

We conclude that the algorithm needs Θ(n) processors (so as to have a

processor standing by each item in the A(t) and B(t) arrays) and takes

constant time for the merge step.

The following theorem summarizes the main result. Its proof follows

from Theorem 2.4 and the algorithm’s description and timing analysis.

Recall that the algorithm can be modified to run on the EREW PRAM

with the same complexities.

Theorem 2.5 The pipelined mergesort algorithm sorts a sequence of n

elements in Θ(logn) time using Θ(n) processors on the EREW PRAM.
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2.14 Selection

The problem of selection is defined as follows: Given a sequence A =

〈a1, a2, . . . , an〉 of n elements and a positive integer k, 1 ≤ k ≤ n, find the

kth smallest element in A. A straightforward solution would be to sort A

in Θ(logn) time and return the kth smallest element. However, the work

done by this approach is Θ(n logn), which is not optimal. There is an opti-

mal sequential algorithm that runs in Θ(n) time. It can be shown that this

sequential algorithm can be parallelized to run on the PRAM in Θ(log2 n)

time using n/ logn processors. In this section, we present an algorithm,

which is shown as Algorithm parselect, to solve the selection problem,

that runs in time O(log n log logn) and uses n/ logn processors. This algo-

rithm is a modification of the parallel version of the sequential selection

algorithm.

Algorithm 2.19 parselect
Input: A sequence A = 〈a1, . . . , an〉 of elements and an integer k, 1 ≤ k ≤ n.

Output: The kth smallest element in A

1. c← 1/ log (4/3)

2. for j← 1 to �c log log n�
3. Divide A into |A|/ log |A| groups of log |A| elements each.

4. Find the median of each group individually.

Let the set of medians be M .

5. Sort M and find its median m.

6. Partition A into three sequences:

A1 = {a | a < m}
A2 = {a | a = m}
A3 = {a | a > m}

7. case

|A1| ≥ k: A←A1

|A1|+ |A2| ≥ k: return m

|A1|+ |A2| < k:

8. A = A3

9. k← k − |A1| − |A2|
10. end case

11. end for

12. Sort A and return the kth smallest element in A.
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The for loop is executed c log logn times, where c = 1/ log (4/3), after

which the number of elements in A drops to O(n/ logn). The algorithm

then sorts A using the pipelined mergesort algorithm and the kth smallest

element is returned in O(log n) time, using O(n/ logn) processors. Within

the for loop, first A is partitioned into |A|/ log |A| blocks of log |A| elements

each. The median of each block is found using one processor in Θ(|A|)
sequential time, and the median of medians m is computed by sorting the

set M using the pipelined mergesort algorithm in Θ(log(|A|/ log |A|)) =

O(log n) time, using Θ(|A|/ log |A|) processors. A is then partitioned to A1,

of elements smaller than m, A2 of elements equal to m and A3 of elements

greater than m. If |A1| < k ≤ |A1| + |A2|, the algorithm terminates and

returns m. Else, if |A1| ≥ k, A is set to A1. Otherwise, if |A1| + |A2| < k,

then A is set to A3 and k is set to k − |A1| − |A2|.
Partitioning A can be achieved by labeling the elements in A with num-

bers 1, 2 and 3 according to whether a < m, a = m or a > m, respectively.

Then, the parallel prefix algorithm can be used to extract and compact

the arrays A1, A2 and A3. This can be achieved in Θ(log |A|) time using

O(|A|/ log |A|) = O(n/ logn) processors. It follows that the for loop takes

O(log n) time in each iteration.

If we let s denote the group size, then the median of medians m is

smaller than (and greater than) at least (|A|/2s)(s/2) = |A|/4 elements.

That is, it is greater than (and smaller than) at most 3|A|/4 elements

(Exercise 2.17). Thus, in the second iteration, |A| ≤ 3n/4, and in the jth

iteration |A| ≤ (3/4)jn. Consequently, after �c log logn� iterations, the size

of A is at most (
3

4

)c log logn

× n

= (logn)c log (3/4) × n
=

n

(logn)c log (4/3)

=
n

(logn)log (4/3)/ log (4/3)

=
n

logn
= p.

Therefore, in Step 12, there will be enough processors to sort A in

O(log p) = O(log n) time. Since the time required in each iteration is
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O(log n), the running time of the algorithm is O(log n log logn). The work

done in each iteration is O(|A|). Hence, the total work done is at most

n+ (3/4)n+ (3/4)2n+ · · ·+ (3/4)�c log log n�n = Θ(n),

which is optimal. However, the cost, which is O(n log logn), is not optimal.

2.15 Multiselection

Let A = 〈a1, a2, . . . , an〉 be a sequence of n elements drawn from a linearly

ordered set, and let K = 〈k1, k2, . . . , kr〉 be a sorted sequence of positive

integers between 1 and n. The multiselection problem is to select the kith

smallest element for all values of i, 1 ≤ i ≤ r. To make the presentation sim-

ple, we will assume that all elements in A are distinct. Consider Algorithm

parmultiselect1. The algorithm initially uses n/ logn processors. In the

two recursive calls, it uses p|A1|/|A| and p|A2|/|A| processors, where p is

the current number of processors. The recurrence for the running time of

this divide and conquer algorithm is T (n, r) = T (n, r/2)+O(logn log logn)

since we used the parallel algorithm for selection, Algorithm parselect, of

Section 2.14. As the recursion depth is log r, the solution to this recurrence

is T (n, r) = O(log n log logn log r).

Algorithm 2.20 parmultiselect1
Input: A sequence A = 〈a1, a2, . . . , an〉 of n elements, and a sorted sequence

of r positive integers K = 〈k1, k2, . . . , kr〉. The number of processors p.

Output: The kith smallest element in A, 1 ≤ i ≤ r.

1. r← |K|
2. If r > 0 then

3. Set k = k�r/2�.v
4. Use Algorithm parselect to find a, the kth smallest element in A.

5. Output a.

6. Let A1 = 〈ai | ai < a〉 and A2 = 〈ai | ai > a〉.
7. Let K1 = 〈k1, k2, . . . , k�r/2�−1〉 and

K2 = 〈k�r/2�+1 − k, k�r/2�+2 − k, . . . , kr − k〉.
8. parmultiselect1(A1,K1, p|A1|/|A|).
9. parmultiselect1(A2,K2, p|A2|/|A|).

10. end if
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In the remaining of this section, we present an efficient algorithm to

solve this problem that runs in time

T (n, p) = O((n/p+ ts(p, p))(log r + log(n/p)))

on the PRAM with p processors, r ≤ p < n, where ts(p, p) is the time

needed to sort p elements using p processors. If p = n/ logn, the running

time becomes T (n, n/ logn) = O(log n(log r + log logn)).

In the algorithm to be presented, we will use the following notation

to repeatedly partition A into smaller subsets: Let a ∈ A with rank ka.

Partition A into two subsets A′ = {x ∈ A | x ≤ a} and A′′ = {x ∈
A | x > a}. This partitioning of A induces the following bipartitioning of

K: B′ = {k ∈ K | k ≤ ka} and B′′ = {k − ka | k ∈ K and k > ka}. In
this case, we will call each of (A′, B′) and (A′′, B′′) a selection pair . Let

(A′, B′) be a selection pair. We will label (A′, B′) as “active” if |B′| > 0;

otherwise it will be called “inactive”. The algorithm is given as Algorithm

parmultiselect2.

We turn to the analysis of the algorithm. First, we allocate a number

of processors for each active set. Specifically, we assign p′ = (|A|/s)p pro-

cessors for active set (A,B), where s is the number of remaining elements

computed in Line 15. There are enough processors for all active sets. The

set A is partitioned into p′ groups of w = |A|/p′ = s/p elements each. Note

that w ≤ n/p = q. The median of medians m is smaller than (and greater

than) at least (|A|/2w)(w/2) = |A|/4 elements. That is, it is greater than

(and smaller than) at most 3|A|/4 elements (Exercise 2.17). Hence, after

c log r iterations, the size of each subset is at most

(
3

4

)c log r

× n

= rc log (3/4) × n
=

n

rc log (4/3)

=
n

rlog (4/3)/ log (4/3)

=
n

r
.
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Algorithm 2.21 parmultiselect2
Input: A sequence A = 〈a1, . . . , an〉 of elements and a sorted sequence of

positive integers B = 〈k1, k2, . . . , kr〉, 1 ≤ ki ≤ n. The number of
processors p.

Output: The kith smallest element in A, 1 ≤ i ≤ r.

1. L← {(A,B)}; Mark (A,B) “active”; s← n; q← n/p.

2. c← 1/ log (4/3)

3. Repeat Steps 4–16 c(log r + log q) times.

4. for each active pair (A,B) ∈ L do in parallel

5. Assign p′ = (|A|/s)p processors for active set (A,B).

6. if |A| ≤ p′ then sort A and return the kith smallest element for
1 ≤ i ≤ |B|.

7. else do

8. w← |A|/p′ = s/p. Partition A into p′ subsequences

A1, A2, . . . , Ap′ of size at most w ≤ q each. Find the

median mi of each Ai. Sort these medians to obtain the

median of medians m.

9. Find k, the rank of m in A.

10. Partition A into A′ and A′′, where A′ (resp. A′′) is the set of

elements in A less than or equal to (resp. greater than) m.
11. Partition B into B′ and B′′, where B′ (resp. B′′) is the set

of elements in B less than or equal to (resp. greater than) k.

Subtract k from each rank in B′′.

12. Replace (A,B) in L by (A′, B′) and (A′′, B′′).

13. If B′ is empty, then mark (A′, B′) as “inactive”; otherwise

mark it as “active”. If B′′ is empty, then mark (A′′, B′′) as
“inactive”; otherwise mark it as “active”. Discard inactive

pairs.

14. end if

15. Let s be the number of all remaining elements.

16. end for

17. Sort all partitions A in all active pairs (A,B) ∈ L, and for each element
in B return its corresponding element in A.

We observe that if A is partitioned into more than r subsets, then at

most r of these subsets are active, and the rest are inactive, since the num-

ber of ranks in B is ≤ r. Consequently, after c log r iterations, there are

at most r subsets of size at most n/r each. Clearly, after c log q additional
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iterations, the size of active subsets in the first stage will be reduced fur-

ther by a factor of q, so that the size of each subset is upperbounded by

n/rq = p/r. In other words, after c log q additional iterations, there are at

most r subsets of size at most p/r each.

Now, we compute the overall time needed by the algorithm in the first

log r iterations. Consider an arbitrary iteration where there are a number

of subsets of total size less than or equal to n. We analyze the running

time taken by a pair (A,B) of maximum size, that is, |A| ≤ n is maximum

among all active pairs. Finding the medians mi takes O(q) sequential time.

Sorting the medians can be done in ts(|A|/w, p′) = ts(p
′, p′) ≤ ts(p, p)

parallel time. Computing k, the rank of m in A, and the sets A′ and A′′

can be achieved in O(w + log p′) = O(q + log p) parallel time using parallel

prefix and compaction. Since K is sorted, both B′ and B′′ are computed

using parallel p′-search in O(logp′ r) = O(log r/ log p′) time. Hence, the time

needed by the first log r iterations is

O

(
(q + ts(p, p) + log p) log r +

log2 r

log p′

)
.

Observe that ts(p, p) ≥ log p and since r ≤ p, we have

log2 r

log p′
≤ log p log r

log p′
≤ log p log r.

Hence, the above expression reduces to

O((q + ts(p, p)) log r) = O((n/p+ ts(p, p)) log r).

The time taken by the next log q iterations is asymptotically the same as

that taken by the first log r iterations, except that the number of iterations

log r is replaced by log q. Hence, the remaining iterations can be completed

in time O((q + ts(p, p)) log q) = O((n/p+ ts(p, p)) log(n/p)).

As to the sorting step in Line 17 of the algorithm, we have at most r

subsets of size at most n/rq = p/r each to be sorted. If we allocate p/r pro-

cessors to each of the r subsets, the time needed for sorting is ts(p/r, p/r),

which is negligible.

It follows that the time complexity of the algorithm is

T (n, p) = O((n/p+ ts(p, p))(log r + log(n/p))).
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If, for example, we set p = n1−ε, 0 < ε < 1, we may use a simple O(log2 p)

sorting algorithm, and the above expression reduces to

T (n, n1−ε) = O((nε + log2 p)(log r + log(nε)))

= O(nε(log r + log(nε))),

which is optimal for r ≥ nε, since the cost of the algorithm will be O(n log r).

If, on the other hand, we set p = n/ logn and use the pipelined mergesort

algorithm of Section 2.13, the time complexity becomes

T (n, n/ logn) = O((log n+ log(n/ logn))(log r + log logn))

= O(log n(log r + log logn)),

which is optimal for r ≥ logn. This is superior to the running time of

Algorithm parmultiselect1. If we let r = O(log n), the time complexity

becomes O(logn log logn), which is the same as the running time for the

classical selection of one element presented in Section 2.14. In the special

case when r = 1 and p = n/ logn, the running time reduces to that of the

O(log n log logn) parallel selection algorithm of Section 2.14.

2.16 Matrix Multiplication

Given two n×n matrices A and B, consider the problem of computing the

product C = AB, where n = 2k for some positive integer k. Assume that

there are n3 processors available, labeled Pi,j,l, 1 ≤ i, j, l ≤ n. Each entry

ci,j of C is the dot product of two vectors: row i of A and column j of B.

First we present an algorithm for the dot product. Algorithm dotproduct

computes the dot product of two given vectors row i of A and column j

of B of dimension n each using n processors. Lines 1 and 2 compute

W = A[i, ∗]B[∗, j] in Θ(1) time. The rest of the algorithm is similar to

Algorithm paraddition in Section 2.2. The second for loop copies the

numbers in W into V [n], V [n+ 1], . . . , V [2n− 1], which correspond to the

leaves of the binary tree. The for loop in Line 5 is repeated k = logn

times, once for each internal level of the tree. The for loop at line 6 is for

performing 2r additions in parallel, r = k−1, k−2, . . . , 0. (See Section 2.2).
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Algorithm 2.22 dotproduct
Input: Two n× n matrices A and B and two indices i and j, n = 2k.

Output: The dot product of row i of A and column j of B.

1. for l← 1 to n do in parallel
2. W [l]← A[i, l] ∗B[l, j]
3. end for
4. for l← 1 to n do in parallel
5. V [l + n− 1]←W [l]
6. end for
7. for r← k − 1 downto 0 do
8. for t← 2r to 2r+1 − 1 do in parallel
9. V [t]← V [2t] + V [2t + 1]

10. end for
11. end for
12. return V [1]

The algorithm for matrix multiplication is a parallelization of the tradi-

tional Θ(n3) time sequential algorithm. It is shown as Algorithm parma-

trixmult. It uses n3 processors. The n processors Pi,j,1, Pi,j,2, . . . , Pi,j,n

compute C[i, j] using Algorithm dotproduct.

Algorithm 2.23 parmatrixmult
Input: Two n× n matrices A and B, n = 2k.

Output: The product C = AB.

1. for i← 1 to n do in parallel
2. for j← 1 to n do in parallel
3. C[i, j]← dotproduct(A,B, i, j)
4. end for
5. end for
6. return C

Thus, the running time of the algorithm is dominated by the call to

Algorithm dotproduct, which takes Θ(logn) time. The work done by the

algorithm can be computed as follows. Line 3 is executed n2 times, and in

each call to Algorithm dotproduct, it performs Θ(n) operations. Hence,

the work done by the algorithm is Θ(n3). Notice that the algorithm requires

concurrent read capability, and hence it runs on the CREW PRAM.
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2.17 Transitive Closure

Assume that an n× n adjacency matrix representation of a directed graph

G = (V,E) is given, where |V | = n. In such a representation, A(i, j) = 1 if

and only if there is an edge from vi to vj in E, and A(i, j) = 0 if (vi, vj) /∈ E.

The transitive closure of A is represented as an n × n Boolean matrix A∗

in which A∗(i, j) = 1 if and only if there is a path in G from vi to vj .

A∗(i, j) = 0 if no such path exists. One way to obtain the transitive clo-

sure of A is to compute An by performing �logn� operations of squaring the
matrix: A×A = A2, A2×A2 = A4, and so on until a matrix Am is obtained

where m ≥ n. Here, we use the Boolean matrix multiplication method, in

which the operations of scalar multiplication and addition in the standard

matrix multiplication are replaced by the logical “AND” and “OR” opera-

tions, respectively. Since there are �logn� matrix multiplications, A∗ = An

can be obtained in time Θ(log2 n) with Θ(n3) processors on the CREW

PRAM using Boolean matrix multiplication (see Section 2.16). The total

number of operations is Θ(n3 logn).

2.18 Shortest Paths

Let G = (V,E) be a weighted directed graph on n vertices, in which each

edge (i, j) has a weight w[i, j]. If there is no edge from vertex i to vertex j,

then w[i, j] =∞. For simplicity, we will assume that V = {1, 2, . . . , n}. We

assume that G does not have negative weight cycles, that is, cycles whose

total weight is negative. The problem is to find the distance from each

vertex to all other vertices, where the distance from vertex i to vertex j is

the length of a shortest path from i to j. Let i and j be two different vertices

in V . Define dki,j to be the length of a shortest path from i to j that contains

at most k edges, 1 ≤ k ≤ n − 1. Thus, for example, d1i,j = w[i, j], d2i,j is

the length of a shortest path from i to j that contains at most two edges,

and so on. Then, by definition, dn−1
i,j is the length of a shortest path from i

to j, i.e., the distance from i to j. Given this definition, we can compute

dki,j recursively as follows.

dki,j =

⎧⎪⎨
⎪⎩

0 if i = j

w[i, j] if k = 1

minl{dk/2i,l + d
k/2
l,j } if k ≥ 2.
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Let Dk be the matrix whose entries are dki,j , 1 ≤ i, j ≤ n. Then, Dk

can be obtained from Dk/2 by squaring, except that the operations “+”

and “min” replace the usual matrix operations “×” and “+”, respectively.

Letting D1 = (d1i,j), we can use the operations “+” and “min” to evaluate

D2, D4, . . . , Dm, where m is the smallest power of 2 ≥ n − 1. This takes

�log(n− 1)� matrix multiplications. Hence, the running time is Θ(log2 n)

using Θ(n3) processors on the CREW PRAM (see Section 2.16). The total

number of operations is Θ(n3 logn).

2.19 Minimum Spanning Trees

Let G = (V,E) be a weighted undirected graph on n vertices, in which each

edge (i, j) has a weight w[i, j]. If there is no edge from vertex i to vertex j,

then w[i, j] =∞. We will assume that V = {1, 2, . . . , n}. A spanning tree T

of G is a subgraph T = (V,E′) such that T is a tree. In what follows, we

present an algorithm to construct a minimum spanning tree for a graph that

is denoted by its weight matrix. We will assume without loss of generality

that the weights are distinct. If they are not distinct, each weight of an

edge e can be appended by the label of that edge. The algorithm to be

presented is based on the following theorem whose proof is easy.

Theorem 2.6 Let G = (V,E) be a weighted undirected graph. Partition

the set of vertices into {V1, V2}. Let e be the edge of minimum weight

connecting V1 and V2. Then e belong to the minimum weight spanning

tree.

A rooted directed tree of G is a tree in which every edge is directed and

every vertex has outdegree 1. A rooted star is a rooted directed tree in

which every vertex is directly connected to the root. Figure 2.25(a) shows

a directed rooted tree, and Fig. 2.25(b) shows a rooted star.

The algorithm for finding a minimum spanning tree is given as Algo-

rithm prammst. The algorithm proceeds through stages. In the beginning,

there is a forest of trees consisting of all vertices and no edges. Each tree con-

sists of exactly one vertex. Subsequently, during each stage, the edge with

the minimum weight incident on each tree is selected. The newly selected

edges are added to the current forest to yield a new forest. This continues

until there is only one tree in the forest, that is, the minimum spanning

tree.
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(a) (b)

Fig. 2.25. (a) A directed rooted tree. (b) A rooted star.

Algorithm 2.24 prammst
Input: A graph G represented by its n× n weight matrix W .

Output: A minimum spanning tree T of G.

1. T←{}; m = n.
2. while m > 1 do
3. for all vertices v ∈ V (G) do
4. let C(v) = u, where W (v, u) = min{W (v, x) | x �= v}.
5. T← T ∪ {(u, v)}
6. end for
7. Shrink each directed tree of the forest defined by C to a

rooted star. Set m← Number of rooted stars.
8. Compress each rooted star to a supervertex. Assign the

labels (numbers) 1, 2, 3, . . . ,m to these supervertices.
9. Let W ′ be the reduced m×m adjacency matrix of the graph

whose rows and columns correspond to the newly created
supervertices.

10. Set W←W ′. Let G be the corresponding graph.
11. end while

In the algorithm, the vector C defined by the newly selected edges

defines directed rooted trees. These rooted trees are converted to rooted

stars. Every star is then compressed into a supervertex. In other words,

replace each star by a new vertex. Label these new vertices as 1, 2, . . . ,m,

where m is the number of stars. Let W ′ be the reduced m×m adjacency

matrix of the graph whose rows and columns correspond to the newly cre-

ated supervertices. We store the edge (x, y) of the original graph next to the

W ′(i, j) entry, where (x, y) is the edge of minimum weight connecting the

trees corresponding to supervertices i and j. This will enable us to recover

an edge in the original graph quickly. It can be shown that the construction

of the matrix W ′ from W takes O(log n) time using O(n2) processors on
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the CREW PRAM (Exercise 2.49). The foregoing procedure of compressing

nodes, finding minimum-weight incident edges, and reducing the adjacency

matrix is continued until there is only one tree spanning all the vertices ofG.

Example 2.15 Consider the graph shown in Fig. 2.26(a). During the first

iteration of the while loop, the adjacency vector C is given by C(1)= 2,

C(2) = 1, C(3) = 1, C(4) = 8, C(5) = 7, C(6) = 3, C(7) = 5, and C(8) = 4,

and the following edges are added to T : (1, 2), (1, 3), (4, 8), (5, 7), (3, 6).

Hence, there are three rooted directed trees as shown in Fig. 2.26(b).

By Step 7, the rooted trees are converted to rooted stars as shown in

Fig. 2.26(c), and m is set to 3. The new matrix W with the newly

assigned labels, and augmented with the minimum weight edges is then

given by ⎡
⎢⎣
∞ 5, (2, 4) 10, (4, 5)

5, (2, 4) ∞ 12, (3, 7)

10, (4, 5) 12, (3, 7) ∞

⎤
⎥⎦ .

The corresponding graph is shown in Fig. 2.26(d). The vertices in this

graph were labeled as 1, 2, and 3. Thus, vertex 1 represents the set {4, 8},
vertex 2 represents the set {1, 2, 3, 6}, and vertex 3 represents the set {5, 7}.
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Fig. 2.26. Example of the construction of minimum spanning tree.
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Fig. 2.27. Example of the construction of minimum spanning tree.

Hence, during the second iteration, C(1) = 2, C(2) = 1 and C(3) = 1,

and the following edges are added to T : (2, 4), (4, 5). Figure 2.26(e) shows

the new rooted tree. Figure 2.26(f) shows the new star formed from the

directed rooted tree in Fig. 2.26(e). Next, m is set to 1, and the while loop

terminates. Figure 2.26(g) shows the resulting minimum spanning tree. �

Example 2.16 Consider the graph shown in Fig. 2.27(a). During the

first iteration of the while loop, the adjacency vector C is given by

C(1) = 2, C(2) = 1, C(3) = 4, C(4) = 3, C(5) = 6, C(6) = 5, C(7) = 8, and

C(8) = 7, and the following edges are added to T : (1, 2), (3, 4), (5, 6), (7, 8).

Hence, there are four rooted directed trees as shown in Fig. 2.27(b).

By Step 7, the rooted trees are converted to rooted stars as shown in

Fig. 2.27(c), and m is set to 4. The new matrix W with the newly assigned

labels, and augmented with the minimum weight edges is then given by⎡
⎢⎢⎢⎢⎣
∞ 5, (2, 3) ∞ 8, (1, 8)

5, (2, 3) ∞ 7, (4, 5) ∞
∞ 7, (4, 5) ∞ 6, (6, 7)

8, (1, 8) ∞ 6, (6, 7) ∞

⎤
⎥⎥⎥⎥⎦ .
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The corresponding graph is shown in Fig. 2.27(d). The vertices in this

graph were labeled as 1, 2, 3 and 4. Thus, vertex 1 represents the set

{1, 2}, vertex 2 represents the set {3, 4}, vertex 3 represents the set {5, 6}
and vertex 4 represents the set {7, 8}. Hence, during the second iteration,

C(1) = 2, C(2) = 1, C(3) = 4 and C(4) = 3, and the edges (2, 3) and

(6, 7) are added to T . Thus, there are two rooted directed trees as shown

in Fig. 2.27(e). By Step 7, the rooted trees are converted to rooted stars

as shown in Fig. 2.27(f), and m is set to 2. The new matrix W with the

newly assigned labels, and augmented with the minimum weight edges is

then given by [
∞ 7, (4, 5)

7, (4, 5) ∞

]
.

The corresponding graph is shown in Fig. 2.27(g). During the third itera-

tion, the vector C is given by C(1) = 2 and C(2) = 1, and the edge (4, 5)

is added to T . Figure 2.27(h) shows the new rooted tree. Figure 2.27(i)

shows the new star formed from the directed rooted tree in Fig. 2.27(h).

Next, m is set to 1, and the while loop terminates. Figure 2.27(j) shows

the resulting minimum spanning tree. �

The running time is computed as follows. Step 4 of computing C takes

O(logm) = O(log n) time using O(m2) = O(n2) processors, since it com-

putes m minima; one minimum per row. Step 7 of shrinking trees into stars

takesO(logm) = O(log n) usingO(n) processors by the technique of pointer

jumping. As noted above, the construction of the m×m matrix in Step 9

takes O(log n) time using O(n2) processors. Steps 7 and 9 require simulta-

neous memory access, and hence the algorithm works on the CREW model.

After each iteration of the while loop, the number of stars is reduced by at

least a half, and hence there are at most logn iterations. It follows that the

overall running time of the algorithm is O(log2 n) using a total of O(n2)

processors.

2.20 Computing the Convex Hull of a Set of Points

Let S = {p1, p2, . . . , pn} be a set of n points in the plane, where n is a power

of 2. The convex hull of S, denoted by CH(S), is the smallest convex poly-

gon containing all the points of S. The convex hull is usually represented



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch02 page 64

64 Parallel Algorithms

(c)

(b)

v

u

(a)

v

u

CH(S)

CH(S )
1

CH(S )2

Fig. 2.28. (a) The set of points S. (b) Convex hull of S. (c) Convex hulls of S1

and S2.

by a list of points, called vertices, ordered clockwise (or counterclockwise).

See Figs. 2.28(a) and (b) for an example, in which S consists of 32 points.

In what follows, we present a divide-and-conquer parallel algorithm to find

CH(S) in Θ(logn) time using O(n) processors on the CREW PRAM.

As a preprocessing step, the points in S are first sorted in ascending

order of their x-coordinates in Θ(logn) time using the pipelined merge-

sort algorithm. So, assume that x(p1) ≤ x(p2) ≤ · · · ≤ x(pn), where

x(pi) denotes the x-coordinate of point pi. We will assume for simplic-

ity that no three points of S are collinear, and no two points have the

same x-coordinate. Next, the set of points S is divided into two halves

S1 = 〈p1, p2, . . . , pn/2〉 and S2 = 〈pn/2+1, pn/2+2, . . . , pn〉. Now, we recur-

sively determine the two convex hulls of the two halves CH(S!) and
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CH(S2). Figure 2.28(c) shows the two convex hulls of the points in part (a)

of the figure.

Consider the convex hull CH(S) shown in Fig. 2.28(b). Here, u and v

are the two points with minimum and maximum x-coordinates, respectively

(recall that no two points have the same x-coordinate). These two points

are clearly part of CH(S). The polygonal chain defined by the edges from

u to v in clockwise traversal is called the upper hull UH(S). The lower

hull, LH(S), is defined similarly as the polygonal chain defined by the

edges from v to u in clockwise traversal. The algorithm, after determining

CH(S1) and CH(S2), proceeds by constructing the upper and lower hulls

of S. The upper hull of S, UH(S), is constructed by joining UH(S1) and

UH(S2) by a line segment, called a tangent, such that CH(S1) and CH(S2)

are below it. The lower hull LH(S) is constructed in a similar manner to

obtain the desired CH(S). In what follows, we compute the upper tangent

and upper hull UH(S).

Let 〈x1, x2, . . . , xr〉 and 〈y1, y2, . . . , ys〉 be the upper hulls UH(S1) and

UH(S2) of S1 and S2, respectively. We now show how to find the line of

the tangent x∗y∗ with the property that both of UH(S1) and UH(S2) are

below it. That is, x∗y∗ is a tangent to both UH(S1) and UH(S2). The most

crucial phase of the algorithm is the identification of the upper and lower

tangents. We outline the steps of the algorithm for determining x∗y∗ in the

following two observations.

Observation 2.2 If xi is a vertex of UH(S1), its tangent line xivi with

UH(S2) can be found in Θ(1) time using
√
s processors.

Proof. We find the vertex vi in UH(S2) such that xivi is a tangent of

UH(S2) as follows. Let yj be any vertex in UH(S2), and let yj−1 and yj+1

be the two vertices to the left and right of yj , respectively. If xiyjyj−1 is

a right turn and xiyjyj+1 is a left turn, then vi is to the right of yj (see

Fig. 2.29(a)). If xiyjyj−1 is a left turn and xiyjyj+1 is a right turn, then

vi is to the left of yj (see Fig. 2.29(b)). If both xiyjyj−1 and xiyjyj+1 are

right turns, then vi = yj (see Fig. 2.29(c)). Hence, we do parallel search on

the set of vertices of UH(S2) using
√
s processors to identify the vertex yk

such that vi = yk. There are log√s s = 2 iterations in this search, which

implies that the running time is Θ(1). �
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Fig. 2.29. Tangents to UH(S2).

Observation 2.3 The common tangent x∗y∗ of UH(S1) and UH(S2) can

be determined in Θ(1) time using
√
r
√
s processors.

Proof. Let xivi be a tangent to UH(S2) at vi determined as described

in Observation 2.2, and let xi−1 and xi+1 be the two vertices to the left and

right of xi, respectively. If xivi is also a tangent to UH(S1), then x
∗ = xi.

If xi−1xivi is a left turn, then x∗ is to the left of xi (see Fig. 2.30(a)). If

xi−1xivi is a right turn, then x∗ is to the right of xi (see Fig. 2.30(b)).

This allows us to determine, for any given vertex xi of UH(S1), whether

the vertex x∗ appears to the left of, to the right of, or equal to xi in Θ(1)

time. Thus, to locate x∗, we do double parallel search, the outer search is on

the vertices of UH(S1), and for each vertex xi in UH(S1), we do the inner

parallel search on the vertices of UH(S2). The parallel search performed on

the set of vertices of UH(S2) is done as outlined in Observation 2.2 to obtain

the tangent xivi and next, we the test for the location of x∗ relative to xi as

stated above. We will use
√
r processors for the outer search on the vertices

of UH(S1), and so there are log√r r = 2 iterations in this search. We use
√
s

processors for the inner search on the vertices of UH(S2), which amounts
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Fig. 2.30. Tangents to UH(S1).
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Fig. 2.31. Upper hull of S, UH(S).

to two iterations for the inner search. Thus, the total number of processors

used is
√
r
√
s ≤ n, that is,

√
s processors for every vertex considered in

UH(S1). It follows that the overall running time to find the upper tangent

is Θ(1) using
√
r
√
s ≤ n processors. �

Observations 2.2 and 2.3 provide the steps for finding the upper common

tangent x∗y∗. The lower common tangent can be found in a similar fashion.

It remains to finish the construction of CH(S). Let xi = x∗ and yj = y∗.
To construct UH(S), first, we remove the vertices xi+1, xi+2, . . . , xr from

UH(S1) and remove the vertices y1, y2, . . . , yj−1 from UH(S2) to obtain

UH ′(S1) and UH ′(S2), respectively. That is, UH ′(S1) = 〈x1, x2, . . . , xi〉
and UH ′(S2) = 〈yj , yj+1, . . . , ys〉. Next, connecting xi in UH ′(S1) to yj in

UH ′(S2) by the edge e = x∗y∗ = xiyj yields the desired upper hull UH(S)

(see Fig. 2.31). Finally, the problem of computing LH(S) can be solved in

a similar fashion.
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The above discussion is summarized in Algorithm parconvexhull.

The recurrence for the running time of the algorithm is T (n) = T (n/2) +

Θ(1), which implies a running time of Θ(logn). Clearly, there are concurrent

read operations, and hence the algorithm works on the CREW PRAM.

Algorithm 2.25 parconvexhull
Input: A set S = {p1, . . . , pn} of n points in the plane, where n is a power of 2.

Output: The convex hull of S, CH(S).

1. Sort The points in S in nondecreasing order of their x-coordinates.
2. CH(S)← ch(S)
3. return CH(S)

Procedure ch(S)

1. if |S| ≤ 4 then
2. compute CH(S) by a straightforward method.
3. return (CH(S))
4. end if
5. Divide S into two halves S1 = 〈p1, p2, . . . , pn/2〉 and S2 =
〈pn/2+1, pn/2+2, . . . , pn〉.

6. CH(S1)← ch(S1); CH(S2)← ch(S2)
7. Let UH(S1)← 〈x1, x2, . . . , xr〉 and UH(S2)← 〈y1, y2, . . . , ys〉 be the

upper hulls of S1 and S2, respectively.
8. Find the common upper tangent xiyj .
9. UH ′(S1)← 〈x1, x2, . . . , xi〉 and UH ′(S2)← 〈yj , yj+1, . . . , ys〉.

10. UH(S)← UH ′(S1) ∪ UH ′(S2) ∪ xiyj .
11. Repeat Steps 7 to 10 to find the lower hull of S,LH(S).
12. CH(S)← UH(S) ∪ LH(S)
13. return CH(S)

2.21 Bibliographic Notes

There are a number of books on parallel algorithms on the PRAM. These

include Akl [4], Akl [5], Akl [6], Akl and Lyons [8], Chaudhuri [21],

Cosnard and Trystram [29], Gibbons and Rytter [37], Grama, Gupta,

Karypis and Kumar [39], Horowitz, Sahni and Rajasekaran [43], JáJá [44],

Lakshmivarahan and Dhall [53], Miller and Boxer [66], Roosta [77],

and Xavier and Iyengar [104]. Prefix computations are described in

Lakshmivarahan and Dhall [53], which is a book devoted to parallel prefix

computations. The O(log logn) time algorithm for merging on the PRAM
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is due to Kruscal [49]. The O(log logn) time algorithm for computing the

maximum as well as algorithms for merging and sorting were given in

Shiloach and Vishkin [87]. Bitonic and odd–even sorting networks were

described in Batcher [15]. Multiselection on the PRAM is a modification

of an algorithm in Alsuwaiyel [11]. The pipelined mergesort algorithm is

due to Cole [26]. A survey of parallel sorting and selection algorithms can

be found in Rajasekaran [75]. The ideas for selection on the PRAM are

from Akl( [7] and Vishkin [102]. The algorithm for the minimum spanning

tree problem is due to Sollin, and was inspired by the one presented in

JáJá [44]. Parallel algorithms for graph problems on the PRAM can be

found in Gibbons and Rytter [37]. Parallel algorithms for problems in com-

putational geometry on the PRAM can be found in Akl and Lyons [8]. The

divide-and-conquer approach for computing the planar convex hull is due

to Shamos [82]. For more references on parallel algorithms on the PRAM,

see for instance JáJá [44].

2.22 Exercises

2.1. Give a parallel algorithm to compute the maximum of n numbers

in the sequence 〈x1, x2, . . . , xn〉 on the EREW PRAM. What is the

running time of your algorithm?

2.2. Consider Algorithm sortingcrew presented in Section 2.4.1. Sup-

pose we change the outer loop in Line 3 to sequential and change the

inner loop in Line 4 to parallel, will the algorithm still work on the

CREW PRAM? Explain.

2.3. Use parallel prefix to compute the sequence of maximums

x1,max{x1, x2},max{x1, x2, x3}, . . . ,max{x1, x2, . . . , xn} for the

sequence S = 〈x1, x2, . . . , xn〉.

2.4. Let S = 〈x1, x2, . . . , xn〉 be a sequence of integers. Give an algorithm

to rearrange the elements of S so that all negative integers precede

all positive integers. For example, if S = 〈3,−2, 1,−5, 4,−6, 7〉, the
result should be 〈−2,−5,−6, 3, 1, 4, 7〉.
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2.5. Give an algorithm to broadcast an item x stored in processor P0 to

all other processors in the EREW PRAM with n = 2k processors.

What is the running time of your algorithm?

2.6. Consider Algorithm parquicksort in Section 2.5.2 for parallel

quicksort. What is the cost of the algorithm on average? How about

in the worst case?

2.7. What is the number of parallel steps in Algorithm parsearch for

parallel search discussed in Section 2.6?

2.8. Apply Algorithm parsearch for parallel search using two processors

on the sequence

S = 〈1, 2, 5, 7, 8, 11, 12, 15, 19〉 and x = 8.

How many parallel steps are there?

2.9. Illustrate the operation of Algorithm parrank in Section 2.9.1 for

computing the ranks of B in A on the input:

A = 〈1, 4, 7, 10, 12, 14, 19, 20〉 and B = 〈5, 11, 15, 18〉.

2.10. Illustrate the operation of Algorithm oddevenmerge in Section 2.11

for odd–even merging on the input:

A = 〈2, 5, 6, 8〉 and B = 〈1, 3, 7, 9〉.

2.11. Do Exercise 2.10 with the following modification. Merge Aodd with

Bodd and Aeven with Beven. (See Exercise 2.46).

2.12. Let A,B,C,D and E be as defined in Algorithm oddevenmerge

discussed in Section 2.11, and assume the elements in A ∪ B are

distinct. Given a sequenceX and an element x, recall that rank(x,X)

is the number of elements in X less than x. Express rank(x,C) and

rank(x,D) in terms of rank(x,A) and rank(x,B).

2.13. Use the result of Exercise 2.12 to show that for c ∈ C, either c is in
its correct position in E or to the left of it.
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2.14. Use the result of Exercise 2.12 to show that for d ∈ D, either d is in

its correct position in E or to the right of it.

2.15. Illustrate the operation of the bitonic sort network shown in Fig. 2.21

on the input sequence 〈6, 7, 1, 4, 2, 5, 8, 3〉.

2.16. Give an example of a bitonic sequence with one local maximum and

one local minimum.

2.17. In Algorithm parselect for selection discussed in Section 2.14, show

that in each iteration, the median of medians m is greater than and

smaller than at most 3|A|/4 elements.

2.18. Consider Algorithm parmultiselect1 for multiselection discussed

in Section 2.15. Compare the algorithm given with direct application

of Algorithm parselect given in Section 2.14.

2.19. Repeat Exercise 2.18 with the second algorithm for multiselection for

the PRAM, Algorithm parmultiselect2.

2.20. Suggest an algorithm for sorting using multisession. What is the time

complexity of your algorithm?

2.21. Consider the algorithm for matrix multiplication discussed in Sec-

tion 2.16. What is the cost of the algorithm? What modification

should be done in order to make the total cost O(n3)?

2.22. Let P be a simple polygon (that is not necessarily convex) with n

vertices, and let x be a point. Assume that there are n processors,

each assigned to one edge. Give an efficient parallel algorithm to

decide whether x is in the interior of P . (Hint : Draw a horizontal

line L such that x lies on L. Count how many times L intersects

with the edges of P ).

2.23. Let x1, x2, . . . , xn be n Boolean variables. Show how to find the log-

ical OR of these variables in O(1) time on the COMMON CRCW

PRAM with n processors.
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2.24. Let 〈x1, x2, . . . , xn〉 be a sequence of n distinct numbers. Show how

to find the maximum of these numbers in O(1) time on the CRCW

PRAM with n2 processors.

2.25. Let 〈x1, x2, . . . , xn〉 be a sequence of n distinct numbers. Show how

to find the maximum of these numbers in O(log logn) time on the

CRCW PRAM with n processors. Hint : Partition the input into
√
n

parts and recursively find the maximum in each part. Use Exer-

cise 2.24.

2.26. Let S be a sequence of n distinct numbers and x ∈ S. The rank

of x in S is the number of elements in S less than x. Show how to

compute the rank of x in S in O(log n) time on the CREW PRAM

with n processors.

2.27. Let S be a sequence of n integers, and x an integer. Show how to

compute rank(x, S) and the rank of x in S, in O(log n) time on the

EREW PRAM using O(n) operations.

2.28. Let S = {x1, x2, . . . , xn} be n numbers and k an integer, 1 ≤ k ≤ n.
Show how to find the kth smallest element in S in O(log n) time on

the CREW PRAM with n2 processors.

2.29. Let S = 〈x1, x2, . . . , xn〉 be a sequence of n numbers. Consider

the simple recursive algorithm for parallel prefix that divides the

sequence S into two halves: S1 = 〈x1, x2, . . . , xn/2〉 and S2 =

〈xn/2+1, xn/2+2, . . . , xn〉, and then calls the algorithm recursively on

each of S1 and S2.

(a) Write down the detailed algorithm.

(b) Will the algorithm work on the EREW PRAM?

(c) What is the total work done by the algorithm?

(d) Will Brent’s Theorem (Theorem 2.1) help in reducing the

number of processors without increasing the running time

complexity?

2.30. Let 〈x1, x2, . . . , xn〉 be a sequence of n numbers. The prefix minima

is to compute for each i, 1 ≤ i ≤ n, the minimum among the elements

{x1, x2, . . . , xi}. Develop an algorithm to compute the prefix minima

that runs in time O(log n) on the EREW PRAM.
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2.31. Do Exercise 2.30 using suffix minima instead, that is, compute

for each i, 1 ≤ i ≤ n, the minimum among the elements

{xi, xi+1, . . . , xn}.

2.32. Let 〈x1, x2, . . . , xn〉 be a sequence of n numbers. The suffix compu-

tation problem is to compute the suffixes xn, xn−1 ◦ xn, . . . , x1 ◦ x2 ◦
· · · ◦ xn. Give an O(log n) time algorithm to solve this problem on

the CREW PRAM with n processors.

2.33. Do Exercise 2.32 for the case of EREW PRAM.

2.34. Let T1, T2, . . . , Tm be m directed and rooted binary trees on n ver-

tices. Each node has a pointer to its parent, except the root which

points to itself. Design a parallel algorithm to allow each vertex to

know the identity of the tree to which it belongs (The trees are iden-

tified by their roots. The roots are numbered 1, 2, . . . ,m).

2.35. Compute the next and succ functions as describe in Table 2.1 (page

25) for all vertices in the tree shown in Fig. 2.32. Use the obtained

values to derive an Euler tour.

2.36. Use the Euler tour technique to direct the tree shown in Fig. 2.32,

where vertex 1 is to be set as the root.

2.37. Use the Euler tour technique to assign levels to the vertices in the

tree shown in Fig. 2.32.

2.38. In a postorder traversal of a tree T at the root r, the subtrees of r

are traversed from left to right in postorder followed by r. Develop

an algorithm to determine the postorder numbering of the vertices

in a rooted tree. What is the time complexity of your algorithm?

1

3

4 5

8

2

6

7

Fig. 2.32. A tree.
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Fig. 2.33. A rooted tree.

2.39. Apply the algorithm developed in Exercise 2.38 on the tree shown in

Fig. 2.33.

2.40. Parallelize Horner’s rule to evaluate a polynomial of degree n under

the EREW PRAM in time O(logn).

2.41. Let 〈x1, x2, . . . , xn〉 be a sequence of n distinct numbers. Design a

parallel algorithm for the CREW PRAM to sort this sequence in

time O(log n). Assume an unlimited number of processors.

2.42. Let n be a positive integer. Consider the problem of computing the

polynomials x′i = xi, for 1 ≤ i ≤ n. Show how to compute the x′i’s in
O(log n) time. Specify the PRAM model used.

2.43. Consider Algorithm parquicksort presented in Section 2.5.2. Sup-

pose we always select the median as the pivot (see Section 2.14).

What will be the running time of the algorithm?

2.44. Let A and B be two sequences of distinct number sorted in ascend-

ing order, where |A| = |B| = n. Design an O(1) time algorithm to

merge A and B on the CREW PRAM. Assume an unlimited number

of processors.

2.45. Apply Brent’s theorem on Algorithm parmerge presented in Sec-

tion 2.9.2.

2.46. In Algorithm oddevenmerge in Section 2.11, Aeven is merged with

Bodd and Aodd is merged with Beven. Rewrite the algorithm with the

modification so that it merges Aodd with Bodd and Aeven with Beven.

It is important to know that this will change the step of traversing

the shuffle of C and D.

2.47. Let G = (V,E) be an undirected graph with n vertices. Give an algo-

rithm to decide whether G contains a triangle, that is, three mutually



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch02 page 75

Shared-memory Computers (PRAM) 75

adjacent vertices. Assume that G is represented by its adjacency

matrix. Your algorithm should run in O(log n) time on the CRCW

PRAM with n3 processors.

2.48. Prove Theorem 2.6.

2.49. Show that the reduced adjacency matrix in the minimum spanning

tree algorithm of Section 2.18 can be constructed in time O(log n)

using O(n2) processors on the CREW PRAM.

2.50. Show the steps of computing a minimum spanning tree on the graph

shown in Fig. 2.34.

2.51. Show the steps of computing a minimum spanning tree on the graph

shown in Fig. 2.35.

2.52. Let G = (V,E) be an undirected graph. G is bipartite if and only

if V can be partitioned into two parts V1 and V2, such that every

edge connects a vertex in V1 with a vertex in V2. Equivalently, G is

bipartite if and only if it contains no odd-length cycles. Develop an

algorithm to test whether G is bipartite.

2.53. Illustrate the operation of the bitonic sort network shown in Fig. 2.21

on the input 〈6, 7, 1, 4, 2, 5, 8, 3〉.

1
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Fig. 2.34. An undirected graph.
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Fig. 2.35. An undirected graph.
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2.54. Let A,A′, C and C′ be sorted sequences such that C is a 3-cover

for A and C′ is a 3-cover for A′. Is C ∪ C′ necessarily a 3-cover for

A ∪ A′? See Section 2.13 for the definition of 3-cover.

2.55. Illustrate the operation of the pipelined mergesort algorithm on the

input 〈6, 7, 1, 4, 2, 5, 8, 3〉.

2.56. Prove Observation 2.1.

2.57. LetW,X and Y be three sorted sequences such that Y =W ∪X , and

W ∩X = φ. Assume that R(S, S) is known for any sequence S, where

R(A,B) is the cross ranks of A in B as defined in Section 2.13. Show

how to compute R(W,X) and R(X,W ) in O(1) time using O(|Y |)
processors.

2.58. Parallelize the Θ(n) time sequential algorithm for selection using

n/ logn processors on the PRAM. Analyze your algorithm.

Algorithm 2.26 select
Input: An array A[1..n] of n elements and an integer k, 1 ≤ k ≤ n.

Output: The kth smallest element in A.

1. select(A, k)

Procedure select(A, k)

1. n← |A|
2. if n < 44 then sort A and return (A[k])
3. Let q = �n/5�. Divide A into q groups of 5 elements each. If 5 does not

divide p, then discard the remaining elements.
4. Sort each of the q groups individually and extract its median. Let the set

of medians be M .
5. mm← select(M, �q/2�) {mm is the median of medians}
6. Partition A into three arrays:

A1 = {a | a < mm}
A2 = {a | a = mm}
A3 = {a | a > mm}

7. case
|A1| ≥ k: return select(A1, k)
|A1|+ |A2| ≥ k: return mm
|A1|+ |A2| < k: return select(A3, k − |A1| − |A2|)

8. end case
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2.59. Let A = 〈a1, a2, . . . , an〉 be a sequence of numbers and let k be a given

integer between 1 and n. Design and analyze a parallel algorithm to

find all k smallest items in A. Do not use multiselection. What model

of computation did you use?

2.23 Solutions

2.1. Give a parallel algorithm to compute the maximum of n numbers

in the sequence 〈x1, x2, . . . , xn〉 on the EREW PRAM. What is the

running time of your algorithm?

Similar to Algorithm paraddition for parallel addition discussed in

Section 2.2.

2.2. Consider Algorithm sortingcrew presented in Section 2.4.1. Sup-

pose we change the outer loop in Line 3 to sequential and change the

inner loop in Line 4 to parallel, will the algorithm still work on the

CREW PRAM? Explain.

No, since there will be concurrent writes. For instance, comparing

A[1] with A[2] and comparing A[1] with A[3] will take place simul-

taneously, and hence the statement r[1]← r[1] + 1 may be executed

at least twice at the same time.

2.3. Use parallel prefix to compute the sequence of maximums

x1,max{x1, x2},max{x1, x2, x3}, . . . ,max{x1, x2, . . . , xn} for the

sequence S = 〈x1, x2, . . . , xn〉.

Similar to Algorithm parprefix for parallel prefix discussed in Sec-

tion 2.5.

2.4. Let S = 〈x1, x2, . . . , xn〉 be a sequence of integers. Give an algorithm

to rearrange the elements of S so that all negative integers precede

all positive integers. For example, if S = 〈3,−2, 1,−5, 4,−6, 7〉, the
result should be 〈−2,−5,−6, 3, 1, 4, 7〉.

Use array packing; — similar to Example 2.2.
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2.5. Give an algorithm to broadcast an item x stored in processor P0 to

all other processors in the EREW PRAM with n = 2k processors.

What is the running time of your algorithm?

First, P0 writes x to global memory, and P1 reads x. P0 and P1 then

broadcast x to P2 and P3 simultaneously. P0, P1, P2 and P3 then

broadcast x to P4, P5, P6 and P7, and so on. The running time is

Θ(logn).

2.6. Consider Algorithm parquicksort in Section 2.5.2 for parallel

quicksort. What is the cost of the algorithm on average? How about

in the worst case?

The cost of the algorithm on average is Θ(n log2 n), and Θ(n2 logn)

in the worst case.

2.7. What is the number of parallel steps in Algorithm parsearch for

parallel search discussed in Section 2.6?

The number of parallel steps is at most logp+1 n+ 1.

2.8. Apply Algorithm parsearch for parallel search using two processors

on the sequence

S = 〈1, 2, 5, 7, 8, 11, 12, 15, 19〉 and x = 8.

How many parallel steps are there?

Initially, the algorithm divides S into three subsequences

〈1, 2, 5〉, 〈7, 8, 11〉, 〈12, 15, 19〉.
The two processors compare x with elements at the internal bound-

aries, that is, 5 and 11. Since 8 > 5 and 8 < 11, the search area is

reduced to 〈7, 8〉. Finally, the two processors perform two compar-

isons simultaneously and one of them returns 3+2 = 5 . The number

of parallel steps is 2.

2.9. Illustrate the operation of Algorithm parrank in Section 2.9.1 for

computing the ranks of B in A on the input:

A = 〈1, 4, 7, 10, 12, 14, 19, 20〉 and B = 〈5, 11, 15, 18〉.

Similar to Examples 2.9 and 2.10.
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2.10. Illustrate the operation of Algorithm oddevenmerge in Section 2.11

for odd–even merging on the input:

A = 〈2, 5, 6, 8〉 and B = 〈1, 3, 7, 9〉.

Similar to Example 2.11.

2.11. Do Exercise 2.10 with the following modification. Merge Aodd with

Bodd and Aeven with Beven. (See Exercise 2.46).

Similar to Exercise 2.10.

2.12. Let A,B,C,D and E be as defined in Algorithm oddevenmerge

discussed in Section 2.11, and assume the elements in A ∪ B are

distinct. Given a sequenceX and an element x, recall that rank(x,X)

is the number of elements in X less than x. Express rank(x,C) and

rank(x,D) in terms of rank(x,A) and rank(x,B).

Let x ∈ A ∪B. Then,

rank(x,C) =

⌈
rank(x,A)

2

⌉
+

⌊
rank(x,B)

2

⌋
,

and

rank(x,D) =

⌊
rank(x,A)

2

⌋
+

⌈
rank(x,B)

2

⌉
.

2.13. Use the result of Exercise 2.12 to show that for c ∈ C, either c is in
its correct position in E or to the left of it.

For x ∈ X , let pos(x,X) be the position of x in the sequenceX , where

pos(x,X) ≥ 0. For c ∈ C, let r1 = rank(c, A) and r2 = rank(c, B),

and rc = r1 + r2. Either c ∈ A or c ∈ B. If c ∈ A, then r1 is even

since pos(c, A) is even, and it follows that the position of c in E is

pos(c, E) = 2 rank(c, C) = 2
⌈
r1
2

⌉
+ 2
⌊
r2
2

⌋
≤ r1 + (r2) since r1 is even

= rc.

Since rc − 1 = r1 + (r2 − 1) ≤ 2
⌈
r1
2

⌉
+ 2
⌊
r2
2

⌋
= pos(c, E), we have

rc − 1 ≤ pos(c, E) ≤ rc. (2.5)
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Thus, either pos(c, E) = rc − 1 or pos(c, E) = rc. That is, either c is

in its correct position in E or to the left of it.

On the other hand, if c ∈ B, then r2 is odd since pos(c, B) is odd,

and we get the same inequalities.

2.14. Use the result of Exercise 2.12 to show that for d ∈ D, either d is in

its correct position in E or to the right of it.

For x ∈ X , let pos(x,X) be the position of x in the sequence X ,

where pos(x,X) ≥ 0. For d ∈ D, let r3 = rank(d,A), r4 = rank(d,B)

and rd = r3 + r4. If d ∈ A then r3 is odd since pos(d,A) is odd. It

follows that if d ∈ A, then the position of d in E is

pos(d,E) = 2 rank(d,D) + 1 = 2
⌊
r3
2

⌋
+ 2
⌈
r4
2

⌉
+ 1

≤ (r3 − 1) + (r4 + 1) + 1 since r3 is odd

= rd + 1.

Since rd = (r3 − 1) + (r4) + 1 ≤ 2
⌊
r3
2

⌋
+ 2
⌈
r4
2

⌉
+ 1 = pos(d,E), we

have

rd ≤ pos(d,E) ≤ rd + 1. (2.6)

Thus, either pos(d,E) = rd or pos(d,E) = rd + 1. That is, either d

is in its correct position in E or to the right of it.

If d ∈ B, then r4 is even, and we get the same inequalities.

2.15. Illustrate the operation of the bitonic sort network shown in Fig. 2.21

on the input sequence 〈6, 7, 1, 4, 2, 5, 8, 3〉.
Similar to Fig. 2.21.

2.16. Give an example of a bitonic sequence with one local maximum and

one local minimum.

The sequence 〈2, 1, 4, 3〉 is such an example.

2.17. In Algorithm parselect for selection discussed in Section 2.14, show

that in each iteration, the median of medians m is greater than and

smaller than at most 3|A|/4 elements.

Let r = |A|/ log |A| be the number of groups, and s = log |A| be
the size of each group. Let the groups be g1, g2, . . . , gr with medians



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch02 page 81

Shared-memory Computers (PRAM) 81

m1,m2, . . .mr, where mi ≤ mi+1, 1 ≤ i ≤ r−1. Then, the median of

medians m ≥ mi for 1 ≤ i ≤ r/2. Hence, m is greater than or equal

to at least s
2 elements in groups g1, g2, . . . , gr/2. Thus, m ≥ at least

r
2 × s

2 = |A|
4 elements. It follows that m ≤ at most 3|A|

4 elements.

Similarly, m ≥ at most 3|A|
4 elements.

2.18. Consider Algorithm parmultiselect1 for multiselection discussed

in Section 2.15. Compare the algorithm given with direct application

of Algorithm parselect given in Section 2.14.

Direct application of Algorithm parselect r times takes

r ×O(log n log logn) = O(r logn log logn),

using n/ logn processors. On the other hand, Algorithm parmulti-

select1 takes

O(log r logn log logn).

which is less than direct application for any r that is asymmetrically

more than constant.

2.19. Repeat Exercise 2.18 with the second algorithm for multiselection for

the PRAM, Algorithm parmultiselect2.

Direct application of Algorithm parselect r times takes

r ×O(log n log logn) = O(r logn log logn),

using n/ logn processors. On the other hand, Algorithm parmulti-

select2 takes

O(log n(log r + log logn)).

which is less than direct application for any r that is asymmetrically

more than constant.

2.20. Suggest an algorithm for sorting using multisession. What is the time

complexity of your algorithm?
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Use Algorithm parmultiselect2 on the PRAM with n/ logn pro-

cessors. Setting r = n, its running time becomes

O(logn(log r + log logn)) = O(log2 n),

which is cost optimal.

2.21. Consider the algorithm for matrix multiplication discussed in Sec-

tion 2.16. What is the cost of the algorithm? What modification

should be done in order to make the total cost O(n3).

The cost is Θ(n3 logn). To make the total cost O(n3), reduce the

number of processors to O(n3/ logn).

2.22. Let P be a simple polygon (that is not necessarily convex) with n

vertices, and let x be a point. Assume that there are n processors,

each assigned to one edge. Give an efficient parallel algorithm to

decide whether x is in the interior of P . (Hint: Draw a horizontal

line L such that x lies on L. Count how many times L intersects

with the edges of P ).

As suggested by the hint. Assign one edge of the polygon to each

processor. Each processor stores a 1 if its assigned edge intersects

the line L and 0 otherwise. Finally, perform the sum of these stored

values and test whether it is even or odd. The total time is Θ(logn).

2.23. Let x1, x2, . . . , xn be n Boolean variables. Show how to find the log-

ical OR of these variables in O(1) time on the COMMON CRCW

PRAM with n processors.

Let y hold the output. Initially, set y = 0. Each processor Pi executes

the command: if xi = 1 then y = 1. Then all processors Pj with

xj = 1 will write the same value. Hence, the output is y = 1 using

the COMMON PRAM if and only if at least one xi is 1.

2.24. Let 〈x1, x2, . . . , xn〉 be a sequence of n distinct numbers. Show how

to find the maximum of these numbers in O(1) time on the CRCW

PRAM with n2 processors.
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Label the n2 processors as Pi,j , 1 ≤ i, j ≤ n. Let processors

Pi,1, Pi,2, . . . , Pi,n define group i, 1 ≤ i ≤ n. Then, group i will com-

pute yi, which is the OR of x′i,1, x
′
i,2, . . . , x

′
i,n, where x

′
i,j = (xi < xj),

as shown in the solution of Exercise 2.23. Clearly, yi is 0 if and only

if xi is the maximum. Each processor Pi executes the command:

if yi = 0 then output xi. Only one processor will succeed and out-

put its element. The reason concurrent writes are needed is the com-

putation of the OR’s.

2.25. Let 〈x1, x2, . . . , xn〉 be a sequence of n distinct numbers. Show how

to find the maximum of these numbers in O(log logn) time on the

CRCW PRAM with n processors. Hint: Partition the input into
√
n

parts and recursively find the maximum in each part. Use Exer-

cise 2.24.

Partition the input into
√
n parts and recursively find the maximum

in each part. Each part is assigned
√
n processors to find the maxi-

mum recursively (number of elements equals number of processors).

Let the maximums be x′1, x′2, . . . , x′√n
. Use Exercise 2.24 to find the

maximum of x′1, x′2, . . . , x′√n
using n processors in O(1) time. The

running time is given by the recurrence T (n) = T (
√
n)+O(1) whose

solution is T (n) = O(log logn).

2.26. Let S be a sequence of n distinct numbers and x ∈ S. The rank

of x in S is the number of elements in S less than x. Show how to

compute the rank of x in S in O(log n) time on the CREW PRAM

with n processors.

Let S = 〈a1, a2, . . . , an〉. Compute A[i] = (ai < x) for 1 ≤ i ≤ n.

Let r be the sum of 1’s in array A. Output r: r can be found by

addition or parallel prefix in O(log n) time. The reason concurrent

reads are required is so that all processors read x at the same time.

2.27. Let S be a sequence of n integers, and x an integer. Show how to

compute rank(x, S), the rank of x in S, in O(log n) time on the

EREW PRAM using O(n) operations.
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To adapt the solution of Exercise 2.26 to the EREW PRAM, first

broadcast x to all processors, say B[i] = x for 1 ≤ i ≤ n, then

compute (A[i] < B[i]) for 1 ≤ i ≤ n. To broadcast x, first P1 copies

B[1] = x to B[2]. Next, P1 and P2 copy B[1] and B[2] to B[3] and

B[4], respectively. Next, P1, P2, P3 and P4 copy B[1], B[2], B[3] and

B[4] to B[5], B[6], B[7] and B[8], respectively, and so on. The number

of writes is equal to 1 + 2 + 4 + · · ·+ 2k = 2n− 1, where k = logn.

The number of comparisons (A[i] < B[i]) is n, which is equal to

the number of assignments. Hence, the total number of operations

is Θ(n).

2.28. Let S = {x1, x2, . . . , xn} be n numbers and k an integer, 1 ≤ k ≤ n.
Show how to find the kth smallest element in S in O(log n) time on

the CREW PRAM with n2 processors.

Assume the xi’s are distinct. Label the n2 processors as Pi,j , 1 ≤
i, j ≤ n. Let processors Pi,1, Pi,2, . . . , Pi,n define group i, 1 ≤ i ≤ n.

For i = 1, 2, . . . , n, we use Exercise 2.26 to find the rank of xi in

group i, and store it in B[i], 1 ≤ i ≤ n. Now, for i = 1, 2, . . . , n,

processor Pi,1 outputs xi if its rank B[i] is equal to k − 1. Note that

exactly one processor will output the kth smallest element, so there

are no concurrent writes. The running time is O(log n) and the fact

that it runs on the CREW PRAM follows from Exercise 2.26.

2.29. Let S = 〈x1, x2, . . . , xn〉 be a sequence of n numbers. Consider

the simple recursive algorithm for parallel prefix that divides the

sequence S into two halves: S1 = 〈x1, x2, . . . , xn/2〉 and S2 =

〈xn/2+1, xn/2+2, . . . , xn〉, and then calls the algorithm recursively on

each of S1 and S2.

(a) Write down the detailed algorithm.

(b) Will the algorithm work on the EREW PRAM?

(c) What is the total work done by the algorithm?

(d) Will Brent’s Theorem (Theorem 2.1) help in reducing the

number of processors without increasing the running time

complexity?

(a) The algorithm is shown as Algorithm parprefix2.

(b) The algorithm will not work on the EREW PRAM. There are

concurrent reads of sn/2.



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch02 page 85

Shared-memory Computers (PRAM) 85

Algorithm 2.27 parprefix2
Input: X = 〈x1, x2, . . . , xn〉, a sequences of n numbers, where n = 2k.

Output: S = 〈s1, s2, . . . , sn〉, the prefix sums of X.

1. if n = 1 then return x1

2. else do
3. X1 = 〈x1, x2, . . . , xn/2〉
4. X2 = 〈xn/2+1xn/2+2, . . . , xn〉
5. S1← parprefix2(X1)
6. S2← parprefix2(X2)
7. for j← (n/2 + 1) to n do in parallel
8. sj← sj + sn/2

9. end for
10. return S1 ∪ S2

(c) The total number of operations (additions) done by the algo-

rithm is given by the recurrenceW (n) = 2W (n/2)+n/2, whose

solution is W (n) = Θ(n logn), which is the total work per-

formed by the algorithm.

(d) Brent’s Theorem does not help in reducing the number of pro-

cessors, since the total number of operations is Θ(n logn).

2.30. Let 〈x1, x2, . . . , xn〉 be a sequence of n numbers. The prefix minima

is to compute for each i, 1 ≤ i ≤ n, the minimum among the elements

{x1, x2, . . . , xi}. Develop an algorithm to compute the prefix minima

that runs in time O(log n) on the EREW PRAM.

This is the parallel prefix problem using the associative binary oper-

ation MIN.

2.31. Do Exercise 2.30 using suffix minima instead, that is, compute

for each i, 1 ≤ i ≤ n, the minimum among the elements

{xi, xi+1, . . . , xn}.
The algorithm is similar to Algorithm parprefixrec. It is shown as

Algorithm psminima.

2.32. Let 〈x1, x2, . . . , xn〉 be a sequence of n numbers. The suffix compu-

tation problem is to compute the suffixes xn, xn−1 ◦ xn, . . . , x1 ◦ x2 ◦
· · · ◦ xn. Give an O(log n) time algorithm to solve this problem on

the CREW PRAM with n processors.
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Algorithm 2.28 psminima
Input: X = 〈x1, x2, . . . , xn〉, a sequences of n numbers, where n = 2k.

Output: S = 〈s1, s2, . . . , sn〉, where si = min{xi, xi+1, . . . , xn} are the suffix
minima.

1. sn← xn

2. if n = 1 then return S = 〈xn〉
3. for i← 1 to n/2 do in parallel
4. x2i−1← min{x2i−1, x2i}
5. end for
6. Recursively compute the prefix minima of 〈x1, x3, . . . , xn−1〉 and store

them in 〈s1, s3, . . . , sn−1〉
7. for i← 1 to (n/2) − 1 do in parallel
8. s2i← min{x2i, s2i+1}
9. end for

10. return S = 〈s1, s2, . . . , sn〉

The algorithm is similar to Algorithm parprefix2 in the solution of

Exercise 2.29. It is shown as Algorithm parsuffix.

Algorithm 2.29 parsuffix
Input: X = 〈x1, x2, . . . , xn〉, a sequences of n numbers, where n = 2k.

Output: S = 〈s1, s2, . . . , sn〉, where si = xi ◦ xi+1 ◦ · · · ◦ xn.

1. if n = 1 then return x1

2. else do
3. X1 = 〈x1, x2, . . . , xn/2〉
4. X2 = 〈xn/2+1xn/2+2, . . . , xn〉
5. S1← parsuffix(X1)
6. S2← parsuffix(X2)
7. for j← 1 to n/2 do in parallel
8. sj← sj ◦ s(n/2)+1

9. end for
10. return S1 ∪ S2

2.33. Do Exercise 2.32 for the case of EREW PRAM.

The algorithm is a generalization of Algorithm psminima in the solu-

tion of Exercise 2.31. Replace the MIN operator with ◦.

2.34. Let T1, T2, . . . , Tm be m directed and rooted binary trees on n ver-

tices. Each node has a pointer to its parent, except the root which
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Fig. 2.36. A tree.

points to itself. Design a parallel algorithm to allow each vertex to

know the identity of the tree to which it belongs. The trees are iden-

tified by their roots. The roots are numbered 1, 2, . . . ,m.

Use pointer jumping to let each node point to its root. Then assign

root(s) ← succ(s) for all nodes s.

2.35. Compute the next and succ functions as describe in Table 2.1 (page

25) for all vertices in the tree shown in Fig. 2.36. Use the obtained

values to derive an Euler tour.

Similar to Example 2.6.

2.36. Use the Euler tour technique to direct the tree shown in Fig. 2.36,

where vertex 1 is to be set as the root.

Similar to Example 2.7.

2.37. Use the Euler tour technique to assign levels to the vertices in the

tree shown in Fig. 2.36.

Similar to Example 2.8.

2.38. In a postorder traversal of a tree T at the root r, the subtrees of r

are traversed from left to right in postorder followed by r. Develop

an algorithm to determine the postorder numbering of the vertices

in a rooted tree. What is the time complexity of your algorithm?

Construct an Euler tour τ . Then, τ visits each vertex v several times,

and we only need to record the last visit, which happens when the

edge (v, p(v)) is visited. The detailed algorithm is given as Algorithm

treepostorder.

The time complexity is dominated by computing the prefix sums,

which is Θ(logn) using O(n) processors on the EREW PRAM.
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Algorithm 2.30 treepostorder
Input: A tree T on n vertices rooted at r.

Output: Assign postorder numbers to all vertices in T .

1. Find an Euler tour τ for the tree T .
2. Assign the weights w(p(v), v) = 0 and w(v, p(v)) = 1, v �= r.
3. Apply parallel prefix on the set of edges of τ .
4. Set postorder(v) to the prefix sum of the edge (v, p(v)).
5. Set postorder(r) to n.
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7

Fig. 2.37. A rooted tree.
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Fig. 2.38. Postorder numbering of the vertices in a rooted tree.

2.39. Apply the algorithm developed in Exercise 2.38 on the tree shown in

Fig. 2.37.

See Fig. 2.38. The edges in the tour are assigned 0 and 1 in

Fig. 2.38(a). Parallel prefix is applied in Fig. 2.38(b), and the pos-

torder numbers are shown in Fig. 2.38(c).

2.40. Parallelize Horner’s rule to evaluate a polynomial of degree n under

the EREW PRAM in time O(logn).

f(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1

= a0 + x(a1 + x(a2 + x((. . . x(an−2 + an−1x) . . .))))
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= a0 + x(a1 + x(a2 + x((. . . x(an/2−2 + an/2−1x) . . .))))

+ xn/2(an/2 + x(an/2+1 + x(an/2+2 + x((. . . x(an−2

+ an−1x) . . .)))).

Thus, recursively compute the two halves, and multiply the right

half by xn/2, which is computed by doubling in each recursive call:

x← x ∗ x.

2.41. Let 〈x1, x2, . . . , xn〉 be a sequence of n distinct numbers. Design a

parallel algorithm for the CREW PRAM to sort this sequence in

time O(log n). Assume an unlimited number of processors.

Use n groups of processors. Each group gk, 1 ≤ k ≤ n, consists of n2

processors, and uses Exercise 2.28 to find the kth smallest element

on the CREW PRAM.

2.42. Let n be a positive integer. Consider the problem of computing the

polynomials yi = xi, for 1 ≤ i ≤ n. Show how to compute the yi’s in

O(log n) time.

Use parallel prefix.

2.43. Consider Algorithm parquicksort presented in Section 2.5.2. Sup-

pose we always select the median as the pivot (see Section 2.14).

What will be the running time of the algorithm?

We will use n/ logn processors. The running time for finding the

median is that for selection, which is O(log n log logn). Since there

are logn levels, the overall running time is O(log2 n log logn).

2.44. Let A and B be two sequences of distinct number sorted in ascend-

ing order, where |A| = |B| = n. Design an O(1) time algorithm to

merge A and B on the CREW PRAM. Assume an unlimited number

of processors.

Let C be the array that will hold the merge of A and B. We will

use n-ary search (parallel search using n processors for each element-

search). Associate n processors with each element of A and B. Let

Pi,1, Pi,2, . . . , Pi,n be the n processors associated with A[i]. Processor
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Pi,j tests whether B[j] < A[i] and B[j +1] > A[i]. If this is the case,

then rank(A[i], B) = j, and we set C[i + j] = A[i]. This is done for

each element of A. We repeat the procedure for array B. The total

number of processors needed is 2n2.

2.45. Apply Brent’s theorem on Algorithm parmerge presented in Sec-

tion 2.9.2.

The amount of work done by Algorithm parmerge is O(n log logn),

assuming n = m. Since the work is equal to the cost, Brent’s

theorem is of no help in reducing the cost by reducing the number

of processors.

2.46. In Algorithm oddevenmerge in Section 2.11, Aeven is merged with

Bodd and Aodd is merged with Beven. Rewrite the algorithm with the

modification that it merges Aodd with Bodd and Aeven with Beven. It

is important to know that this will change the step of traversing the

shuffle of C and D.

In this case, we traverse E starting from d0. Thus, we compare d0
with c1, d1 with c2, and so on.

2.47. Let G = (V,E) be an undirected graph with n vertices. Give an algo-

rithm to decide whether G contains a triangle, that is, three mutu-

ally adjacent vertices. Assume that G is represented by its adjacency

matrix. Your algorithm should run in O(log n) time on the CRCW

PRAM with n3 processors.

Let A be the n× n adjacency matrix. There is a triangle in G if and

only if there is a 1 in the diagonal of A3. Thus, to test for the presence

of a triangle, compute A3 in Θ(logn) time, and test its diagonal for

the occurrence of 1 by taking the OR of the diagonal elements in

O(1) time as explained in Exercise 2.23.

2.48. Prove Theorem 2.6.

Let T be a spanning tree, and let {V1, V2} be a partition of the

vertices. Let e be an edge connecting V1 and V2 in T . Suppose there

is another edge e′ connecting V1 and V2 in G such that w(e′) < w(e).

Consider the tree T ′ obtained from T by replacing edge e by edge e′,
that is, T ′ = T − {e} ∪ {e′}. Then, the total cost of T ′ is less than

that of T .
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Fig. 2.39. Connections between two rooted stars. Some of the weights may be∞.
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Fig. 2.40. An undirected graph.

2.49. Show that the reduced adjacency matrix in the minimum spanning

tree algorithm of Section 2.18 can be constructed in time O(log n)

using O(n2) processors on the CREW PRAM.

If r and s are the roots of two stars, then the (r, s) entry of the

reduced matrix W ′ is computed as

W ′(r, s) = min{W (i, j) | C(i) = r and C(j) = s}.
See Fig. 2.39. Let n1 and n2 be the number of nodes in stars r

and s, respectively. The edge of minimum weight can be determined

in time O(log(n1 + n2)) = O(log n) using O(n1n2) processors by

computing n1 minima using parallel prefix, and then computing the

minimum of these minima. The total number of processors used is∑
n1n2, which is less than or equal to the total number of edges=

O(n2). Since all W ′(r, s)’s can be computed in parallel, the con-

struction of the matrix W ′ from W takes O(log n) time using O(n2)

processors on the CREW PRAM.

2.50. Show the steps of computing a minimum spanning tree on the graph

shown in Fig. 2.40.

Similar to Examples 2.15 and 2.16.

2.51. Show the steps of computing a minimum spanning tree on the graph

shown in Fig. 2.41.

Similar to Examples 2.15 and 2.16.
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Fig. 2.41. An undirected graph.

2.52. Let G = (V,E) be an undirected graph. G is bipartite if and only

if V can be partitioned into two parts V1 and V2 such that every

edge connects a vertex in V1 with a vertex in V2. Equivalently, G is

bipartite if and only if it contains no odd-length cycles. Develop an

algorithm to test whether G is bipartite.

First, find a spanning tree T for G. Next, make T directed, and find

the level of each vertex. Let V1 be the set of vertices at even levels,

and let V2 be the set of vertices at odd levels. Test whether two

adjacent vertices (in G) are both in V1 or in V2. If there exists an

edge (u, v) in E such that u and v are both in V1 or both in V2,

then G is not bipartite.

2.53. Illustrate the operation of the bitonic sort network shown in Fig. 2.21

on the input 〈6, 7, 1, 4, 2, 5, 8, 3〉.

Similar to the example shown in the Fig. 2.21.

2.54. Let A,A′, C and C′ be sorted sequences such that C is a 3-cover

for A and C′ is a 3-cover for A′. Is C ∪ C′ necessarily a 3-cover for

A ∪ A′? See Section 2.13 for the definition of 3-cover.

No, as evident from the following counterexample: Let A = 〈2, 5, 6, 7〉,
A′ = 〈1, 3, 4, 8〉, C = 〈2, 7〉 and C′ = 〈1, 8〉. Then, C∪C′ = 〈1, 2, 7, 8〉
and A ∪ A′ = 〈1, 2, 3, 4, 5, 6, 7, 8〉. There are 5 elements in A ∪ A′

between 2 and 7.

2.55. Illustrate the operation of the pipelined mergesort algorithm on the

input 〈6, 7, 1, 4, 2, 5, 8, 3〉.

Similar to the example shown in Fig. 2.22.
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2.56. Prove Observation 2.1.

Let C = 〈c1, c2, . . .〉 and D = 〈d1, d2, . . .〉. Let di and di+1 be two

adjacent elements in D, and assume that there are no elements in C

between them. Let cj be the element in C immediately before di, and

cj+1 the element in C immediately following di+1 (including −∞ and

+∞). Since C is a 3-cover for A, there are at most three elements

in A between ci and ci+1. It follows that there are at most three

elements in A between di and di+1. The other case where there are

elements in C between di and di+1 is similar.

2.57. LetW,X and Y be three sorted sequences such that Y =W ∪X , and

W ∩X = φ. Assume that R(S, S) is known for any sequence S, where

R(A,B) is the cross ranks of A in B as defined in Section 2.13. Show

how to compute R(W,X) and R(X,W ) in O(1) time using O(|Y |)
processors.

For any a ∈ X , r(a,X) = r(a, Y ) − r(a,W ), where r(a,W ) is the

rank of a in W . This takes care of R(W,X). Computing R(X,W ) is

similar.

2.58. Parallelize the Θ(n) time sequential algorithm for selection using

n/ logn processors on the PRAM. Analyze your algorithm.

Each step of the sequential algorithm is done in parallel using the

available processors. Dividing the inputs into groups of 5 elements

will meaning unclear. Sorting the logn-element groups takes Θ(logn)

sequential time (each group is assigned one processor). Computing

A1, A2 and A3 takes Θ(logn) time using parallel prefix and packing

as explained in the parallel quicksort algorithm in Section 2.5.2. The

recursive calls take T (n/ logn) and T (3n/4). Hence the running time

is given by the recurrence T (n) ≤ T (3n/4) + T (n/ logn) + Θ(logn),

whose solution is T (n) = O(log2 n).

2.59. Let A = 〈a1, a2, . . . , an〉 be a sequence of numbers and let k be a given

integer between 1 and n. Design and analyze a parallel algorithm to

find all k smallest items in A. Do not use multiselection. What model

of computation did you use?

Use Exercise 2.28 to find the kth smallest element on the CREW

PRAM with n2 processors and call it x. For 1 ≤ i ≤ n, let B[i] = 1
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if ai ≤ x and B[i] = 0 otherwise. Now use parallel prefix and pack-

ing to move the k smallest elements to the beginning of A or to any

other location. The model used is the CREW. To solve this prob-

lem more efficiently, use the parallel selection algorithm discussed in

Section 2.14 on the EREW PRAM using n/ logn processors only.
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Chapter 3

The Hypercube

3.1 Introduction

The hypercube is one of the most popular, versatile and efficient topological

structures of interconnection networks. It has many excellent features, and

thus became the first choice of topological structure in parallel processing

and computing systems. Let d ≥ 0. The d-dimensional hypercube Hd has

n = 2d nodes and d2d−1 edges. Each node corresponds to a d-bit binary

string, and two nodes are linked by an edge if and only if their binary strings

differ in precisely one bit. Each node is incident to d = logn other nodes,

one for each bit position. Figure 3.1 shows the d-dimensional hypercubes

for d = 1, 2, 3.

An edge in the hypercube is called a dimension k edge if it links two

nodes that differ in their kth bit position.

In the d-dimensional hypercube Hd, for any k ≤ d, the removal of the

dimension k edges leaves two disjoint copies of a (d−1)-dimensional hyper-

cube. Conversely, a d-dimensional hypercube Hd can be constructed from

two (d−1)-dimensional hypercubesHd−1 by simply connecting the ith node

of one Hd−1 to the ith node of the other Hd−1. Thus, a hypercube has a

simple recursive structure. For example, see Fig. 3.2. The d-dimensional

hypercube Hd has a diameter d, which is low, and a high bisection width

of 2d−1.

Let G1 = (V1, E1) and G2 = (V2, E2) be two undirected graphs. The

Cartesian product of G1 and G2 is an undirected graph, denoted by G1×G2,

where V (G1 × G2) = V1 × V2. There are two distinct vertices x1x2 and

95



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch03 page 96

96 Parallel Algorithms

Fig. 3.1. d-dimensional hypercube for d = 1, 2, 3.
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Fig. 3.2. The construction of H4 from two H3’s.

y1y2, where x1, y1 ∈ V (G1) and x2, y2 ∈ V (G2), are linked by an edge in

G1 ×G2 if and only if either x1 = y1 and (x2, y2) ∈ E(G2), or x2 = y2 and

(x1, y1) ∈ E(G1). Examples of Cartesian products are shown in Figs. 3.1

and 3.2, where H2 = H1 ×H1, H3 = H2 ×H1 and H4 = H3 ×H1. Let K2

be the complete graph on two vertices. Then, Hd can be defined recursively

as follows:

H1 = K2, Hd = Hd−1 ×H1 = H1 ×H1 × · · · ×H1︸ ︷︷ ︸
d

, d ≥ 2.

3.2 The Butterfly

The butterfly interconnection network is closely related to the hypercube.

Th d-dimensional butterfly Bd consists of n = (d + 1)2d processors and
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B1 B2 B3

Fig. 3.3. d-dimensional butterfly for d = 1, 2, 3.

d2d+1 links. Each processor in Bd is represented by the pair (u, i), where i

is the level or dimension of the processor, 0 ≤ i ≤ d, and u is a d-bit binary

number that denotes the row of the processor. Two processors (u, i) and

(v, j) are connected by a link if and only if j = i + 1 and either u and

v are identical, or u and v differ in exactly the jth bit. Figure 3.3 shows

the d-dimensional butterfly for d = 1, 2, 3. If u and v are identical, the

link is said to be a straight link, otherwise it is called a cross link. Edges

connecting processors on levels i and i + 1 are called level i+ 1 edges.

There are structural similarities between the hypercube and the butter-

fly. In particular, the ith node of Hd corresponds naturally to the ith row

of Bd, and the ith dimension edge (u, v) of Hd corresponds to cross edges

((u, i − 1), (v, i)) and ((v, i − 1), (u, i)) in level i of Bd. We can obtain the

hypercube Hd from the butterfly Bd by merging all nodes in the same row

in Bd, and then removing the extra copy of each edge.

The butterfly has a simple recursive structure. Figure 3.4 shows a

3-dimensional butterfly with level 3 nodes removed. The result is two

2-dimensional butterflies, one consisting of even rows (solid edges), and
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Fig. 3.4. Recursive structure of the butterfly.

the other of odd rows (dashed edges). Alternatively, we could remove the

level 0 nodes of Bd to obtain two identical Bd−1’s.

A useful property of the d-dimensional butterfly is that the level 0 pro-

cessor in any row u is linked to the level d processor in any row v by a

unique path of length d. The path traverses each level exactly once, using

the cross edge from level i to level i+ 1 if and only if u and v differ in the

(i + 1)th bit. We will call this path the greedy path. Figure 3.5(a) shows

the greedy path from (000, 0) to (110, 3). It follows that the diameter of the

d-dimensional butterfly is 2d = Θ(logn). Figure 3.5(b) shows a 2d-leaf com-

plete binary tree contained within the d-dimensional butterfly. The leaves

of the tree are the level d nodes of the butterfly.

An algorithm that runs on the butterfly is called a normal butterfly algo-

rithm if no two processors at different levels are active at the same time.

That is, at any given time, only processors in the same level are participat-

ing in the computation. A single step of a normal butterfly algorithm can

be simulated in one step of the hypercube.
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(a) (b)

Fig. 3.5. (a) The greedy path from (000, 0) to (110, 3). (b) A complete binary
tree contained within B3.

3.3 Embeddings of the Hypercube

There is an ever-growing interest in the portability of algorithms developed

for architectures based on other topologies, such as linear arrays, rings,

two-dimensional meshes, and complete binary trees, into the hypercube.

Let G = (Vg, Eg) and H = (Vh, Eh) be two undirected graphs, called the

guest and host graphs, respectively. An embedding of G into H is defined

by two mappings: φ : Vg → Vh from the set of vertices of G to the set

of vertices of H , and ψ : Eg → Π(H) from the set of edges of G to the

set of paths in H . Note that a path may consist of one edge, so in some

embeddings, the mapping is ψ : Eg → Eh in which edges in G are mapped

to edges in H .
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There are some important properties associated with an embedding:

• Dilation. The dilation of an embedding is the maximum length of a path

in Π(H) mapped to by one single edge of G. It measures how much an

edge in G is stretched in H .

• Congestion. The congestion of an embedding is the maximum number

of edges in G mapped to one single edge in H . This counts the maximum

number of paths in the image of ψ that pass through one particular edge

in H .

• Expansion. The expansion of an embedding is defined by
|Vh|
|Vg| .

• Load. This is the maximum number of nodes in G that are mapped to

one single node in H .

Example 3.1 Consider the two graphs G and H shown in Fig. 3.6.

Define the embedding functions φ and ψ by: φ(a) = w, φ(b) = x, φ(c) = z,

ψ((a, b)) = w, x, ψ((b, c)) = x, z, and ψ((a, c)) = w, y, z. Since the edge

(a, c) is mapped to the path w, y, z, the dilation is 2. All edges of H are

used at most once, and hence the congestion is 1. The expansion is 4/3.

The load is 1. �

3.3.1 Gray codes

A Gray code is an ordering of all possible d-bit binary sequences so that

for all k ≥ 0, k and k + 1 differ in exactly one bit. The sequence of 3-bit

numbers corresponding to 0, 1, . . . , 7 is 000, 001, 011, 010, 110, 111, 101, 100.

The Gray code of d bits is denoted by Gd, which is defined recursively as

G1 = {0, 1} and Gk+1 = {0Gk, 1G
R
k },

Fig. 3.6. Example of graph embedding.
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Fig. 3.7. Construction of G3.

Fig. 3.8. Pictorial illustration of the construction of G3.

where 0Gk and 1Gk denote prefixing each element in the sequenceGk with 0

and 1, respectively, and GR
k denotes Gk in reverse order. Thus, for example,

to construct the sequence G3, we do the following steps (see Fig. 3.7):

(1) Write down the sequence for G1 columnwise, that is 0
1 .

(2) Next, construct G2 as 0G1

1GR
1
.

(3) Repeat step 2 to get G3 as 0G2

1GR
2
.

Figure 3.8 shows the recursive construction of G3 pictorially. Note that

this is a Hamiltonian cycle in H3.

3.3.2 Embedding of a linear array into the hypercube

The embedding of a linear array with n = 2d processors into Hd is straight-

forward (see Fig. 3.9). As we saw above, renumbering the hypercube proces-

sors using the Gray code induces a Hamiltonian cycle. Hence, a linear array

or a ring with n = 2d processors can be embedded into Hd with dilation 1

and congestion 1.



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch03 page 102

102 Parallel Algorithms

000 001 010 011 100 101 110 111

Fig. 3.9. Embedding of a linear array into the hypercube.

Fig. 3.10. Embedding of a mesh into the hypercube.

3.3.3 Embedding of a mesh into the hypercube

The linear array is really a 1-dimensional mesh. Although the word mesh

usually refers to the 2-dimensional mesh, there are d-dimesional meshes

in general with dimensions r1, r2, . . . , rd. A d-dimesional mesh is the cross

product (Cartesian product) of d arrays. This is similar to the hypercube

in which a d-dimesional hypercube is the cross product of d hypercubes

of dimension 2. A 2-dimesional mesh can be embedded by extending the

idea discussed above for the case of linear arrays to two dimensions. Let M

be a mesh with 2r rows and 2c columns. We treat each row independently

as a linear array. Next, we generate the numbers 0, 1, . . . , 2c − 1 in Gray

code and prefix each processor number in row j with the number j in

Gray code. Figure 3.10 provides an example of embedding a mesh with

21 × 22 nodes into H3. First, label each node in row 0 with the numbers
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Fig. 3.11. An example of embedding of a binary tree with 7 nodes into the
hypercube with 8 nodes.

0, 1, 2, 3(00, 01, 11, 10) using G2 code. Do the same for row 1. Finally, prefix

each node label in rows 0 and 1 with 0 and 1, respectively.

3.3.4 Embedding of a binary tree into the hypercube

There are several embeddings of binary trees into hypercubes.

Example 3.2 Consider the embedding of a complete binary tree with

7 nodes into a hypercube with 8 nodes shown in Fig. 3.11. The embedding

shown is inorder since the nodes of the binary tree are labeled inorder.

Since the edge (a, c) is mapped to the path 011, 111, 101, whose length is 2

(which is maximum) the dilation is 2. In fact, the dilation can be found

from the binary labels on the tree by computing the Hamming distance

between adjacent nodes in the binary tree. For instance, the Hamming

distance between 001 and 010 in the tree is 2. All edges of the hypercube

are used at most twice, and hence the congestion is 2. The expansion is

8/7, and the load is 1. �

Theorem 3.1 It is impossible to embed a complete binary tree T with

n− 1 nodes into a hypercube H with n ≥ 8 nodes with dilation 1.

Proof. Assume n = 2d. Since T has n−1 nodes, the number of leaves in

T is n/2. Suppose for the sake of contradiction that a complete binary tree

with n− 1 nodes is a subgraph of the d-dimensional hypercube Hd. A node

in Hd has even parity if the number of ones in its binary string is even;
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Fig. 3.12. One possible embedding of a binary tree with n leaves into the hyper-
cube with n nodes with dilation 1.

otherwise it has odd parity. It is easy to see that the number of nodes of even

parity is n/2, and the number of nodes of odd parity is n/2. Assume without

loss of generality that the hypercube node that contains the root of T has

even parity. Since the neighbors of this node have odd parity, the children

of the root of T are contained in odd parity hypercube nodes. Similarly,

the grandchildren of the root of T are contained in even parity hypercube

nodes, and so on. Hence, the leaves and their grandparents, which account

for n/2 + n/8 = 5n/8 nodes, must all be contained in hypercube nodes of

the same parity. This is impossible, as there are only n/2 nodes with the

same parity in Hd. It follows that T is not a subgraph of Hd. �

It is possible, however, to embed a complete binary tree T with n leaves

into a hypercube H with n nodes with dilation 1. Note that the tree has

a total of 2n-1 nodes. In this embedding, the ith leaf of the binary tree T

is mapped to the ith node of the hypercube, and each internal node of T

is mapped to the same hypercube node as its leftmost descendant leaf. See

Fig. 3.12.

3.4 Broadcasting in the Hypercube

Broadcasting a datum x from processor P0 to all other processors in the

d-dimensional hypercube can be achieved as follows. In the first step, P0

sends x to P1. In step 2, P0 and P1 send in parallel x to P2 and P3. In

step 3, P0, P1, P2 and P3 send in parallel x to P4, P5, P6 and P7. The formal

algorithm is shown as Algorithm hcbroadcast. The notation j(i) denotes

j with the ith bit complemented, 0 ≤ i ≤ d− 1. For example, 1012 = 001.

The total number of steps in the algorithm is d.
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Algorithm 3.1 hcbroadcast
Input: x.

Output: Broadcast x from P0 to all other processors.

1. for i← 0 to d− 1 do
2. for all j < 2i and j < j(i) do in parallel
3. Processor Pj sends x to processor Pj(i)

4. end for
5. end for

3.5 Semigroup Operations

The hypercube is ideal for semigroup operations, e.g., addition and find-

ing the maximum. Assume that n numbers are distributed, one per pro-

cessor. Then, in order to compute a semigroup operation over this set of

numbers, the technique of reduction is used as shown in Algorithm hcsum

for the case of the binary operation of addition. The notation i(l) means i

with the lth bit complemented. After d steps, the final result will be known

to processor P0. The instruction A[i]←A[i] +A[i(l)] involves two substeps;

in the first substep, A[i] is copied from processor Pi to processor Pi(l) , and

in the second substep, the addition operation is performed. Clearly, the

number of parallel steps in the algorithm is d = Θ(logn).

Algorithm 3.2 hcsum
Input: A sequence of numbers A[j], 0 ≤ j ≤ n− 1, stored in P0,P1, . . . , Pn−1.

where n = 2d.

Output:
∑n−1

j=0 A[j] stored in P0.

1. for l← d− 1 downto 0 do
2. for all i, 0 ≤ i ≤ 2l − 1 do in parallel
3. A[i]←A[i] +A[i(l)]
4. end for
5. end for

3.6 Permutation Routing on the Hypercube

Consider the problem of routing in the d-dimensional hypercube Hd with

n = 2d processors. We consider this the problem of permutation routing in

which every processor tries to send to a different destination. Processor i
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wants to send a packet vi to destination δ(i). We also assume oblivious

routing, in which the route taken by packet vi depends only on the destina-

tion δ(i), and not on any other packet’s destination δ(j). A collision occurs

when two packets arrive at the same processor at the same time, and try

to leave along the same link. To deal with collisions, every processor has

a queue and a prioritizing scheme for each incoming packet. If incoming

packets try to leave along the same link, they are placed in a queue and

then sent off in different time steps.

3.6.1 The greedy algorithm

A straightforward method for oblivious routing is called bit fixing, which

works by taking the bit address of the source processor and changing one

bit at a time to the address of the destination processor. Each time a bit

is changed, the packet is forwarded to a neighboring processor. Clearly, bit

fixing is an optimal routing scheme for a single packet. If the source i and

destination j differ by k bits, then the packet must traverse at least k links

in the hypercube to get to its destination. Bit fixing takes exactly k steps.

However, the queue size can be as large as O(
√
n), as is evident from the

following theorem.

Theorem 3.2 The maximum queue size of the greedy algorithm for

permutation routing on the d-dimensional hypercube is O(
√
n).

Proof. Notice that during bit fixing routing, an intermediate address

is always of the form z = y1 · · · ykxk+1 · · ·xd, where xi is a bit of the

source address, and yj is a bit of the destination address. If two packets

collide, that means their destination addresses agree in their first k bits,

and their source addresses agree in their last d − k bits, where 1 ≤ k ≤ d.

There are 2k packets with source addresses agreeing on xk+1 · · ·xd, and 2d−k

packets with destination addresses agreeing on y1 . . . yk that may end up

at processor Pz. Therefore, if we let S be the set of packets that collide

at processor Pz , then |S| ≤
∑d

k=1 min{2k, 2d−k}, since k ranges between 1

and d. Assume without loss of generality that d is even. Then,

|S| ≤
d∑

k=1

min{2k, 2d−k}
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=

d/2∑
k=1

2k +

d∑
k=d/2+1

2d−k

=

d/2∑
k=1

2k +

d/2−1∑
k=0

2k

= 3× 2d/2 − 3.

= O(2d/2)

= O(
√
n).

It follows that the maximum queue size is O(
√
n). �

3.6.2 The randomized algorithm

If we have to route many packets, bit fixing can cause many collisions, as

shown in Theorem 3.2. In fact, so can any deterministic oblivious routing

strategy. We have the following theorem, which is quite general:

Theorem 3.3 Any deterministic oblivious permutation routing scheme

for a parallel machine with n processors, each with d outward links requires

Ω(
√
n/d) steps.

Luckily, we can avoid this bad case by using a randomized routing

scheme. In fact, most permutations cause very few collisions. So, the idea

is to first route all the packets using a random permutation, and then from

there to their final destination. That is,

(a) Phase 1. Choose a random permutation σ of {1, 2, . . . , n}. Route

packet vi to destination σ(i) using bit fixing.

(b) Phase 2. Route packet vi from σ(i) to destination δ(i) using bit fixing.

The following observation about bit fixing during one of the two phases

above is important.

Observation 3.1 Two packets can come together along a route and then

separate, but only once. That is, a pair of routes can look like Fig 3.13(a),

but part (b) of the figure is impossible.
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(b)(a)

Fig. 3.13. Packets collision.

To see this, notice that during bit fixing routing, an intermediate address

is always of the form y1 . . . ykxk+1 . . . xd, where xi is a bit of the source

address, and yj is a bit of the destination address. If two routes collide at

the kth step, that means their destination addresses agree in their first k

bits, and the source addresses agree in their d−k bits. At each time step, we

add one more bit of the destination address, which means we increment k.

Eventually, the destination bits must disagree since the destinations are

different. Let k0 be the value of k at which this happens. Then, the yk0

destination bit is different for the two packets. At this point, the two packets

separate, and they will never collide again, because all the later intermediate

destinations will include the yk0 bit. Observation 3.1 is the crux of the proof

of the following theorem:

Theorem 3.4 Let S be the set of packets whose routes intersect vi’s

route. Then, the delay of packet vi is ≤ |S|.
Notice that whenever the routes of two packets intersect, one of the

packets may be delayed by one time step. Once that packet is delayed by

one time step at the first shared node, it will flow along the shared route

behind the other packet, and will not be delayed any more by that packet.

If the same route intersects other routes, each of them may add a delay

of one time step. This happens either because another packet collides with

the current packet along a shared route, or because another packet collides

with a packet that is ahead of the current packet along a part of the route

which is shared by all three. In either case, an extra delay of at most one

results.

To get the running time of this scheme, we compute the expected value

of the size of the set S above. Define the indicator random variable Xi,j

which is 1 when the routes of packets vi and vj share at least one edge,

and Xi,j is 0 otherwise. Then, by the above theorem, the expected delay

of packet vi is the expected size of S, which is E
[∑n

j=1Xi,j

]
. It is rather
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difficult to get an estimate of this quantity. It is easier to think of Y (e),

which is the number of routes that pass through a given edge e. Now,

suppose the route of packet vi consists of the edges (e1, e2, . . . , ek). Then,

we have
∑n

j=1Xi,j ≤
∑k

l=1 Y (el). Hence,

E

⎡
⎣ n∑
j=1

Xi,j

⎤
⎦ ≤ E

[
k∑

l=1

Y (el)

]
.

To use this bound, we next compute E[Y (e)]. Notice that

E[Y (e)] = (sum of lengths of all routes)/(total edges in the network).

The sum of lengths of all routes is the expected length of a route times n (the

number of all routes). The average length of a route is d/2 because a d-bit

source differs from a random destination address in d/2 bits on average. So,

the sum of route lengths is nd/2. The total number of edges in the network

is the number of nodes times the number of outbound links, which is nd.

So, E[Y (e)] = (nd/2)/(nd) = 1/2. Thus, if the path for packet vi has k

edges along it, then

μ = E

⎡
⎣ n∑
j=1

Xi,j

⎤
⎦ ≤ E

[
k∑

l=1

Y (el)

]
=

k∑
l=1

E[Y (el)] =
k

2
≤ d× 1

2
=
d

2
.

Now, we can apply Chernoff bound in Theorem A.3 to the probability

of there being a substantial number of paths intersecting vi’s path. The

Chernoff bound is

Pr

⎡
⎣ n∑
j=1

Xi,j > (1 + δ)μ

⎤
⎦ < 2−δμ.

We now compute the probability that vi is delayed at least 3d steps. So,

we require that (1+ δ)μ = 3d. Notice that we do not actually know what μ

is, but we have a bound for it of μ ≤ d/2. It follows that μδ ≥ 2.5d. Thus,

the probability that vi is delayed by at least 3d steps is bounded above by

2−2.5d.

This is a bound for the probability that a given packet is delayed more

than 3d steps. But we want to get a bound for the probability that no
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packet gets delayed more than 3d steps. For that it is enough to use Boole’s

inequality for probabilities as a bound:

Boole’s inequality: For any finite sequence of events E1, E2, . . . , En,

Pr[E1 ∪ E2 ∪ · · · ∪ En] ≤ Pr[E1] +Pr[E2] + · · ·+Pr[En]. (3.1)

There are n = 2d routes in total, and the probability that one of these

takes more than 3d steps is bounded above by 2d2−2.5d = 2−1.5d. So we

can make the following assertion: With probability at least 1− 2−1.5d every

packet reaches its destination σ(i) in 4d or fewer steps. The 4d comes from

the delay time 3d plus the time for bit fixing steps, which is ≤ d. Notice

that all of this applies to just one phase of the algorithm. So, the full

algorithm(two phases) routes all packets to their destinations with high

probability in 8d or fewer steps.

3.7 Permutation Routing on the Butterfly

Consider the problem of sending packets from level 0 to level d in the

d-dimensional butterfly Bd. Processor (i, 0) in level 0 wants to send a

packet vi to destination (δ(i), d) in level d. We consider the problem of

permutation routing in which every processor in level 0 tries to send to a

different destination in level d. That is, the function δ(i) is a permutation.

A simple process for routing a single packet obliviously is called bit

fixing. For definitions of bit fixing, its lower bound, collision and oblivious

routing, see Section 3.6. Next we discuss in detail a randomized routing

scheme for the butterfly. This scheme consists of three phases.

(a) Phase 1. Choose a random permutation σ of {1, 2, . . . , 2d}. Route

packet vi to destination (σ(i), d) using the greedy path.

(b) Phase 2. Route packet vi from (σ(i), d) to destination row but in level 0

(δ(i), 0) using the greedy path.

(c) Phase 3. Route packet vi from (δ(i), 0) in level 0 to (δ(i), d) in level d

through direct links.

In what follows, we analyze Phase 1; Phase 2 is the reverse of Phase 1,

and Phase 3 takes d steps.

Let S be the set of packets whose routes intersect vi’s route. Define the

indicator random variable Xi,j which is 1 when the routes of packets vi
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and vj share at least one edge, and Xi,j is 0 otherwise. Then, by Theo-

rem 3.4, the expected delay of packet vi is the expected size of S, which is

E
[∑2d

j=1Xi,j

]
. It is rather difficult to get an estimate of this quantity. It

is easier to think of Y (e), which is the number of routes that pass through

a given edge e. Now, suppose the route of packet vi consists of the edges

(e1, e2, . . . , ed). Then, we have
∑2d

j=1Xi,j ≤
∑d

l=1 Y (el). Hence,

E

⎡
⎣ 2d∑
j=1

Xi,j

⎤
⎦ ≤ E

[
d∑

l=1

Y (el)

]
.

To use this bound, we next compute E[Y (el)]. Consider the link el at level l,

which connects level l− 1 node to level l node. The number of packets that

can potentially go through el is 2l−1 since there are only 2l−1 processors

at level 0 for which there are greedy paths through this link. In fact, if

el = ((u, l − 1), (v, l)), then u is the root of a complete binary tree with

2l−1 leaves in level 0. Now, we compute the probability that packet vi will

go through link el. Consider what happens to packet vi in level 0, when

it wants to move to level 1. There are two links to choose from to go to

level 1, either the direct link or the cross link. Thus, it takes one of these

two links with probability 1/2. It follows that in order for packet vi to go

through link el, it has to go through l links with probability (1/2)l. Clearly,

Y (el) has the binomial distribution with parameters 2l−1 and (1/2)l (see

Section A.4.3). Hence, E[Y (el)] = 2l−1 × (1/2)l = 1/2. Thus,

E

⎡
⎣ 2d∑
j=1

Xi,j

⎤
⎦ ≤ E

[
d∑

l=1

Y (el)

]
=

d∑
l=1

E[Y (el)] =
d

2
.

Now, we can apply Chernoff bound in Theorem A.3 to the probability

of there being a substantial number of paths intersecting vi’s path. The

Chernoff bound is

Pr

⎡
⎣ 2d∑
j=1

Xi,j > (1 + δ)μ

⎤
⎦ < 2−δμ.

We compute the probability that vi is delayed at least 3d steps. So, we

require that (1 + δ)μ = 3d. Notice that we do not actually know what μ

is, but we have a bound for it of μ ≤ d/2. It follows that μδ ≥ 2.5d. Thus,
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the probability that vi is delayed by at least 3d steps is bounded above by

2−2.5d.

This is a bound for the probability that a given packet is delayed more

than 3d steps. But we want to get a bound for the probability that no

packet gets delayed more than 3d steps. For that, it is enough to use Boole’s

inequality for probabilities as a bound (Eq. (3.1)): There are 2d routes

in total, and the probability that one of these takes more than 3d steps

is bounded above by 2d2−2.5d = 2−1.5d. So we can make the following

assertion: With probability at least 1 − 2−1.5d, every packet vi reaches its

phase 1 destination (σ(i), d) in 4d or fewer steps. The 4d comes from the

delay time 3d plus the time for bit fixing steps, which is d. Notice that all of

this applies to just one phase of the algorithm. So, the full algorithm(three

phases) routes all packets to their destinations with high probability in

4d+ 4d+ d = 9d or fewer steps.

3.8 Computing Parallel Prefix on the Hypercube

The parallel prefix problem was defined in Section 2.5. In this section,

we show how to compute it on the hypercube. Let Hd be a d-dimensional

hypercube, where each processor Pi contains item xi, 0 ≤ i ≤ n−1 = 2d−1.
Assume that each processor has two registers: s and z. The algorithm is

shown as Algorithm hcparprefix. The notation j(i) means j with the ith

bit complemented, 0 ≤ i ≤ d− 1, where i = 0 corresponds to the rightmost

least significant binary digit. For example, 1001 = 110. sj computes the

sum x0 ◦ x2 ◦ · · · ◦ xj , and zj is a temporary variable. Initially, si = zi = xi,

0 ≤ i ≤ n− 1.

Algorithm 3.3 hcparprefix
Input: X = 〈x0, x1, . . . , xn−1〉, a sequences of n numbers, where n = 2d.

Output: S = 〈s0, s1, . . . , sn−1〉, the prefix sums of X.

1. for i← 0 to d− 1 do
2. for all j < j(i) do in parallel
3. zj(i)← zj(i) ◦ zj
4. sj(i)← sj(i) ◦ zj
5. zj← zj(i)
6. end for
7. end for
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(a) (b)

(c) (d)

Fig. 3.14. Example of computing parallel prefix on the 3-dimensional hypercube.

Figure 3.14 illustrates the operation of the algorithm on the

3-dimensional hypercube. For clarity, the intermediate calculations have

been shown with indices of the form si−j , which is equal to xi◦xi+1◦· · ·◦xj ,
0 ≤ i ≤ j ≤ n−1. The same thing applies to zi−j . Figure 3.14(b) shows the

contents of registers after the computations in the first iteration (i = 0).

Parts (c) and (d) show the contents of registers after the computations in

the second and third iterations (i = 1 and 2). There are d = logn iterations

in the algorithm, each takes Θ(1) time. Hence, its running time is Θ(logn).

3.9 Hyperquicksort

Quicksort is a very popular sorting algorithm. There have been numerous

attempts to parallelize it for a variety of machines and models of com-

putation; see Section 2.5.2 for an example. One attempt is hyperquick-

sort, which is targeted for the case of hypercubes with p < n, where n is

the number of items and p is the number of processors. The algorithm is

shown as Algorithm hchyperquicksort. Initially, it is assumed that the
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n elements are evenly distributed among the p = 2d processors, so that

every processor contains n/p elements.

Algorithm 3.4 hchyperquicksort
Input: X = 〈x1, x2, . . . , xn〉, a sequences of n numbers.

Output: X sorted in ascending order.

1. Each processor sorts its n/p items using a sequential sorting algorithm.
2. Processor P0 determines the median m of its elements and broadcasts it

to all other processors.
3. Every processor Pi partitions its items into X of items ≤ m and Y of

items > m.
4. Let the two subcubes of size 2d−1 each be L and U . Every processor Pi

in L sends its set Y to its adjacent processor Pj in U . Likewise, Pj sends
its set X to Pi.

5. Every processor merges the elements that it already has with those it
received from its adjacent processor.

6. Repeat Steps 2–5 to recursively sort L and U in parallel until the subcubes
consist of one processor.

Clearly, Algorithm hchyperquicksort sorts its input. What remains

is to find its running time. Assume that the data is balanced, so that after

Step 5 is executed, each processor has Θ(n/p) elements. In this case, the

recursion depth is O(log p) = O(d). Step 1 takes Θ((n/p) log(n/p)) time.

Determining the median in Step 2 takes Θ(1) time since the items in each

processor are sorted. Broadcasting m takes Θ(d) time in one recursive call

for a total of d + (d − 1) + (d − 2) + · · · = d(d+1)
2 = Θ(d2) in all recursive

calls. Step 3 takes Θ(n/p) time. Step 4 of data transmission takes Θ(n/p)

time. By the end of this step, every element in L is ≤ every element in U .

Step 5 of merging the two sets takes Θ(n/p) time.

It can be shown that if the data is initially distributed in a random

fashion, the expected running time of the algorithm is

Θ
(
(n/p) log(n/p) + d2 + dn/p

)
.

The (n/p) log(n/p) term represents the sorting step. The d2 term repre-

sents broadcasting as stated above, and the dn/p term represents the time

required for exchanging and merging sets of elements in all recursive calls.

One disadvantage of the algorithm is that the elements may not be evenly

distributed after the algorithm terminates.
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3.10 Sample Sort

Sample sort is a generalization of quicksort, in which a sample of size s is

selected, and the input is partitioned into s + 1 parts, where all elements

in one part are less than all elements in the next part. Each part is then

sorted separately. Let n be the number of elements, and p the number

of processors, where n ≥ p2. Let S = {a1, a2, . . . , an} be the sequence of

elements to be sorted, and assume they are distinct.

Parallel sample sort consists of the following steps: In the beginning, it is

assumed that each processor has a list of w = n
p items, which it sorts using a

sequential sorting algorithm. Define a regular sample X = X0∪X1∪· · ·Xp−1

to be a set of p(p− 1) elements, where

Xj = {a(w/p)+jw, a(2w/p)+jw , . . . , a((p−1)w/p)+jw}, 0 ≤ j ≤ p− 1.

In other words, from each of the p lists, p − 1 samples are chosen, evenly

spaced throughout the list. Next, X is sorted using a sequential sorting

algorithm. This can be achieved by letting each processor send its sample

of p − 1 elements to processor P0, which then sorts the whole sample of

p(p− 1) elements (Exercise 3.9). Let this ordered sample be

b1, b2, . . . , bp(p−1).

Next, choose

Y = b(p/2), bp+(p/2), . . . , b(p−2)p+(p/2)

as the p− 1 pivots for partitioning S, which we will refer to as

y1, y2, . . . , y(p−1).

In other words, the p(p− 1) samples are sorted and p− 1 elements evenly

spaced throughout the sorted list, are chosen to be the pivots.

The partitioning of S is accomplished as follows. Each processor finds

where each of the p − 1 pivots divides its list using binary search, after

which each of the p sorted lists of S have been divided into p sorted sublists

with the property that every item in every list’s ith sorted sublist is greater

than any item in any list’s (i − 1)th sorted sublist, for 2 ≤ i ≤ p.
Finally, each processor Pi, 1 ≤ i ≤ p, performs a p-way mergesort to

merge all the ith sorted sublists of p lists. Note that, unlike in the first step,

in which each processor sorts a contiguous block of items, each processor
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merges p sublists stored in p different areas. Because of the demarcations

established before, their merges are completely independent of each other.

The above description is summarized in Algorithm samplesort.

Algorithm 3.5 samplesort
Input: S = 〈a1, a2, . . . , an〉, a sequences of n numbers.

Output: S sorted in ascending order.

1. Set w← n
p
.

2. Each processor sorts its list of size w.
3. Each processor chooses evenly spaced p − 1 samples from its list. Let X

be the set of p(p− 1) samples.
4. Sort X using a sequential sorting algorithm. Let this ordered sample be

b1, b2, . . . , bp(p−1).
5. Choose Y = b(p/2), bp+(p/2), . . . , b(p−2)p+(p/2) as the p− 1 pivots.

6. Each processor Pi finds where each of the p−1 pivots divides its list using
binary search, and divides its list into p sublists.

7. Each processor Pi, 1 ≤ i ≤ p, performs a p-way mergesort to merge all
the ith sorted sublists of p lists.

Example 3.3 Figure 3.15 provides an illustration of Algorithm sample-

sort for the case n = 24 and p = 3. The input is given in Fig. 3.15(a),

which is divided into three parts, one part per processor. The set X of

12 17 15 21 8 3 14 9 18 4 10 5 23 16 24 19 7 20 1 11 6 2 13 22
(a)

3 8 9 12 14 15 17 21 4 5 10 16 18 19 23 24 1 2 6 7 11 13 20 22
(b)

9 15 10 19 6 13

(c)

6 9 10 13 15 19
(d)

3 8 9 4 5 1 2 6 7 12 14 15 10 11 13 17 21 16 18 19 23 24 20 22

(e)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(f)

Fig. 3.15. Illustration of Algorithm samplesort.
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sample elements is shown as the shaded items in Fig. 3.15(b). These items

are shown in Fig. 3.15(c). Sorting this sample and choosing p−1 = 2 pivots

is shown in Fig. 3.15(d). Figure 3.15(e) shows the contents of each processor

after merging the sublists, and Fig. 3.15(f) shows the sorted items. �

Theorem 3.5 In the last step of Algorithm samplesort, each processor

merges less than or equal to 2w = 2n
p elements.

Proof. Consider any processor Pi, 1 ≤ i ≤ p. There are three cases.

Case 1: i = 1. All the items to be merged by processor P1 must be ≤ y1.

Since there are p2 − p − p
2 samples which are > y1, there are at least

(p2 − p − p
2 )

w
p elements of S which are > y1. In other words, there are at

most n− (p2 − p− p
2 )

w
p = (p+ p

2 )
w
p < 2w elements of S which are ≤ y1.

Case 2: i = p. All the items to be merged by processor Pp must be > yp−1.

Since there are (p − 2)p + p
2 samples which are ≤ yp−1, there are at least

(p2−2p+ p
2 )

w
p elements of S which are ≤ yp−1. In other words, there are at

most n− (p2−2p+ p
2 )

w
p = (2p− p

2 )
w
p < 2w elements of S which are > yp−1.

Case 3: 1 < i < p. All the items to be merged by processor Pi must

be> yi−1 and ≤ yi. Since there are (i− 2)p+ p
2 samples which are ≤ yi−1,

there are at least ((i − 2)p+ p
2 )

w
p elements of S which are ≤ yi−1. On the

other hand, there are (p− i)p− p
2 samples which are > yi. Thus, there are

at least ((p− i)p− p
2 )

w
p elements of S which are > yi. Combining these two

inequalities, there are at most

n−
(
(i − 2)p+

p

2

) w
p
−
(
(p− i)p− p

2

) w
p

= 2p
w

p
= 2w

elements of S for processor Pi to merge.

It follows that no processor merges more than 2w = 2n
p elements in the last

step of the algorithm. �

Now, we analyze the running time of the algorithm. Step 2 of sequential

sorting takes Θ(w logw). Step 4 of sorting the sample takes Θ(p2 log p2). In

Step 5, each processor performs p − 1 binary searches in O(p logw) time.

By Theorem 3.5, in the last step of merging the sublists, the size of data

to be merged by any processor is less than or equal to 2w, and hence the
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time needed by this step is O(w log p). Hence, the total running time is

T (n, p) = Θ(w logw+w log p+ p logw+ p2 log p2) = Θ(w logw+ p2 log p2),

since n ≥ p2. When n ≥ p3, the running time becomes

T (n) = Θ(w logw) = Θ

(
n

p
log

n

p

)
.

3.11 Selection on the Hypercube

Recall the problem of selection discussed in Section 2.14: Given a

sequence A = 〈a1, a2, . . . , an〉 of n elements and a positive integer k, 1 ≤
k ≤ n, find the kth smallest element in A. In this section, we develop an

algorithm that runs on the hypercube with p < n processors. The algorithm

is shown as Algorithm hcselect.

Algorithm 3.6 hcselect
Input: A sequence A = 〈a1, . . . , an〉 of elements and an integer k, 1 ≤ k ≤ n.

Output: The kth smallest element in A.

1. if |A| ≤ p then sort A and return the kth smallest element.
2. for i← 0 to p− 1 do in parallel
3. Processor Pi computes the median mi of its local n/p elements

using an optimal sequential algorithm for selection. Let the set of
medians be M .

4. end for
5. Sort M and find its median m.
6. Broadcast m to all p processors.
7. Partition A into three sequences:

A1 = {a | a < m}
A2 = {a | a = m}
A3 = {a | a > m}

8. case
9. |A1| ≥ k:

10. Distribute A1 evenly over all processors
11. hcselect(A1, k)
12. |A1|+ |A2| ≥ k: return m
13. |A1|+ |A2| < k:
14. Distribute A3 evenly over all processors
15. k← k − |A1| − |A2|
16. hcselect(A3, k)
17. end case
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The time complexity of the algorithm can be computed as follows: Step 3

of the algorithm takes O(n/p) time using an optimal sequential algorithm

for selection. The sorting step in Line 4 takes ts(p, p) time, which is the

time needed to sort p elements using p processors. Broadcastingm in Step 5

requires O(log p) time. Partitioning A into A1, A2 and A3 can be done by

first each processor splitting its data, and then computing the global sizes

of A1, A2 and A3. This takes O(n/p+ log p) time using parallel prefix and

compaction. The load balancing problem (see Section 3.13) is to redistribute

data items stored in a hypercube such that the number of items in different

processors differ by at most one after the redistribution. We use a load

balancing algorithm that has a time complexity of O(M + log p) where M

is the maximum number of items at any processor before the redistribution.

Thus, data distribution in Steps 10 and 14 takes O(n/p+ log p) time.

The median of medians m is smaller than (and greater than) at least

(|A|/2p)(p/2) = |A|/4 elements. That is, it is greater than (and smaller

than) at most 3|A|/4 elements (Exercise 2.17). Hence, the recursive call

takes at most T (3n/4). This implies the following recurrence for the running

time:

T (n, p) =

⎧⎨
⎩
O(n) if p = 1

O(ts(p, p)) if p ≥ n
T (3n/4, p) +O(n/p+ ts(p, p)) if 1 < p < n.

The recursion depth is logn − log p, since the recursion ceases when n

becomes less than p. The solution to this recurrence is

T (n, p) = O(n/p+ ts(p, p)(logn− log p)) = O(n/p+ ts(p, p) log(n/p)).

If, for example, we let p = n/ logn and use the O(log p log log p) time sorting

algorithm, then the time complexity becomes

T (n, n/ logn) = O(log n+ log p log log p log(log n))

= O(log n+ logn(log logn)2)

= O(log n(log logn)2).

3.12 Multiselection on the Hypercube

Let A = 〈a1, a2, . . . , an〉 be a sequence of n distinct elements drawn from a

linearly ordered set, and let K = 〈k1, k2, . . . , kr〉 be a sequence of positive
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integers between 1 and n. The multiselection problem is to select the kith

smallest element for all values of i, 1 ≤ i ≤ r. The hypercube structure

is ideal for parallel execution of balanced divide-and-conquer algorithms.

This leads to the following idea of the multiselection algorithm: First, use

Algorithm hcselect to find the median m of A. Use m as a splitter to

partition A into A1 of items smaller than or equal to m, and A2 of items

larger than m. This induces a bipartition of B into two subsequences —

B1 of items less than k = �n/2
, and B2 of items greater than k. The

algorithm is then recursively called in parallel with (A1, B1) and (A2, B2).

Note that since the elements are distinct, |A1| = �n/2
 and |A2| = �n/2�.
Following this idea, the algorithm is shown as Algorithm hcmultiselect.

In cube(s, d), s is the starting address of the cube and d is its dimension.

Initially, the algorithm is called with hcmultiselect(A,B, cube(0, log p)).

In Step 13, A1 is discarded, since |B1| = 0. Similarly, in Step 16, A2

is discarded, since |B2| = 0. Let Q denote our hypercube with p = 2d

processors. Q can be divided into two disjoint halves L and U , where L

consists of processors with addresses 0x, and U consists of processors with

addresses 1x. Now, we show how to move the elements in A1 and A2 to L

and U , respectively, as stated in Steps 19 and 20. Every processor P in Q

logically partitions its local set of data into two groups X and Y , where X

contains those elements less than or equal to the median m, and Y con-

tains those elements greater than m. This requires O(n/p) sequential time.

Now, each processor P0x in L sends its set Y to its adjacent processor P1x

in U . Likewise, each processor P1x in U sends its set X to its adjacent

processor P0x in L. Notice that when this step is complete, all elements

less than or equal to m are in L, while all elements greater than m are

in U . This step requires O(n/p) time for the transmission of data. It is

followed by load balancing (see Section 3.13). The load balancing problem

is to redistribute data items stored in a hypercube such that the number of

items in different processors differ by at most one after the redistribution.

The load balancing algorithm that we will use has a time complexity of
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Algorithm 3.7 hcmultiselect
Input: A sequence A = 〈a1, . . . , an〉 of elements and a sequence of positive

integers B = 〈k1, k2, . . . , kr〉, 1 ≤ ki ≤ n. cube(s, d), the starting
address of the cube s and its dimension d.

Output: The kith smallest element in A, 1 ≤ i ≤ r.

1. p← 2d.
2. if p = 1 then use a sequential multiselection algorithm and exit.
3. else if |A| ≤ p then sort A and return the kith smallest element,

1 ≤ i ≤ r.
4. else if |B| = 1 then use Algorithm hcselect to find the k1th smallest

element.
5. else do Steps 6 to 24
6. Use Algorithm hcselect to find the median element m
7. Broadcast m to all p processors.
8. k← �|A|/2	.
9. Partition A into A1 and A2, where A1 (resp. A2) is the set of elements in

A less than or equal to (resp. greater than) m.
10. Partition B into B1 and B2, where B1 (resp. B2) is the set of elements

in B less than or equal to (resp. greater than) k. Subtract k from each
item in B2.

11. case
12. |B1| = 0:
13. Distribute A2 evenly over all processors
14. hcmultiselect(A2, B2, s, d)
15. |B2| = 0:
16. Distribute A1 evenly over all processors
17. hcmultiselect(A1, B1, s, d)
18. |B1| > 0 and |B2| > 0:
19. Distribute A1 evenly over all processors in

L = cube(, s) d-1
20. Distribute A2 evenly over all processors in

U = cube(, s+ 2d−1) d-1
21. do in parallel
22. hcmultiselect(A1, B1, cube(s, d− 1))
23. hcmultiselect(A2, B2, cube(s+ 2d−1, d− 1))
24. end case
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O(M + log p) where M is the maximum number of items at any processor

before the redistribution. Thus, it runs in time O(n/p+ log p).

The time complexity of the algorithm can be computed as follows:

finding the median m by Algorithm hcselect in Step 6 requires O(n/p+

ts(p, p) log(n/p)) time, where ts(p, p) is the time needed to sort p ele-

ments using p processors. Partitioning A into A1 and A2 can be done by

each processor splitting its data in time O(n/p). Data redistribution takes

O(n/p + log p) time. This implies the following recurrence for the running

time:

T (n, r, p) ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

O(n log r) if p = 1

O(np + ts(p, p) log(
n
p )) if r = 1

O(ts(p, p)) if p ≥ n
T (n2 , r − 1, p2 ) +O(np + ts(p, p) log(

n
p )) if 1 < p, r < n.

In the worst case, the recursion depth is min{r, log p, logn} = min{r, log p}
since p < n. It follows that the solution to this recurrence is

T (n, r, p) = O((n/p+ ts(p, p) log(n/p))min{r, log p}).
If we use the O(log p log log p) time sorting algorithm, then the time com-

plexity becomes

T (n, r, p) = O((n/p+ log p log log p log(n/p))min{r, log p}).
If we let p = n1−ε for 0 < ε < 1, then there is always a constant n0 such

that n/p = nε > log p log log p log(n/p) holds for all n > n0. This shows

that T (n, r, n1−ε) = O(nε min{r, logn1−ε}).

3.13 Load Balancing on the Hypercube

The load balancing problem on the hypercube is to redistribute data items

stored in a hypercube such that the number of items in different processors

differ by at most one after the redistribution. In this section, we present a

simple load balancing algorithm on the hypercube. Assume that it takes one

time unit to move one item from one processor to a neighboring processor.
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Thus, moving k units of load from one processor to a neighboring processor

takes k units of time. Suppose we have a hypercube with n = 2d processors

such that each processor Pi has Li units of load. In the load balancing

problem, it is requited to redistribute the load so that if L′
i is the load

on processor Pi after the redistribution, then |L′
i − L′

j | ≤ 1 for every pair

of processors Pi and Pj . We are interested in balancing load as well as

minimizing the load transfer time. The load can be balanced such that

|L′
i − L′

j | ≤ 1 for every pair of processors Pi and Pj by balancing across

each of the d dimensions of the hypercube.

Now, we describe the algorithm in connection with the example shown

in Fig. 3.16. Consider an eight-processor hypercube with the initial load

distribution shown in Fig. 3.16(a). We consider the dimensions of the

hypercube in the order 2, 1, 0. When considering dimension 2, we ensure

that the total loads of the two subhypercubes of size 4 differ by at most

one. The total load in the subhypercube {P0, P1, P2, P3} is 56, while that

in the subhypercube {P4, P5, P6, P7} is 48. After balancing across dimen-

sion 2, each of these subhypercubes will have a total load of 52. We use

the embedding of a hypercube into a binary tree, as shown in Fig. 3.12.

Thus, the processors will communicate using the binary tree of Fig. 3.16(b).

Note that the tree levels are numbered 0, 1, 2, 3 such that the root is at

level 0.

First, we perform an upward pass starting from level 2 (the level above

the leaves) up to the root. During this pass, level 2 and level 1 nodes com-

pute the total load in the leaves of the subtrees of which they are the

root. This gives the numbers next to each node at levels 2 and 1. Now,

at the root, we compute the load difference δ between the two subhyper-

cubes of size 4. Since δ = 8, 4 units of load have to be transferred from

the hypercube {P0, P1, P2, P3} to the hypercube {P4, P5, P6, P7}. To get the

actual processor-to-processor load transfer, we make a pass down the tree as

shown by the downward arrows in Fig. 3.16(b). P0 on level 1 knows that its

hypercube has to transfer 4 units of load to hypercube {P4, P5, P6, P7}. It
attempts to do this by having each of its size-2 hypercubes transfer 4/2 = 2

units. This is possible as one size-2 hypercube has 30 units and the other

has 26. On level 2, P0 has to allocate a 2-unit data transfer from {P0, P1}
and processor P2 has to allocate a 2-unit transfer from {P2, P3}. This is

accomplished by having each of the processors {P0, P1, P2, P3} transfer 1
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Fig. 3.16. Load balancing algorithm on the 3-dimensional hypercube.

unit of load to their neighboring processors across dimension 2, i.e, proces-

sors P0, P1, P2 and P3 transfer 1 unit each to processors P4, P5, P6 and P7,

respectively. During the load allocation downward pass, we are repeatedly

in the situation shown in Fig. 3.17. Here, a and b are hypercube loads com-

puted in the upward pass, w is the load to be allocated at this level by Pi,
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Fig. 3.17. Load allocation downward pass.
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Fig. 3.18. The last iteration of the downward pass.

and x+ y = w. From the nature of the downward pass, we have w ≤ a+ b.

We would like to have x ≈ y, i.e., x = �w/2
 and y = �w/2�. This is pos-

sible only if a ≥ �w/2
 and b ≥ �w/2�. In case a < �w/2
, we set x = a,

and y = w − x. In case b < �w/2�, we set y = b, and x = w − b. In the last

iteration of the downward pass, the situation is shown in Fig. 3.18. Here, a

is the current load in processor Pi, and w ≤ a. Processor Pi is to transfer

w load units to its neighbor along the balancing dimension. Following this,

the load in processor Pi is a− w.
Now, in our example, the numbers below the leaf nodes of Fig. 3.16(c)

give the load in each processor following the dimension 2 balancing. Next,

we balance across dimension 1. For this, pairs of hypercubes with two pro-

cessors each are considered. The hypercubes {P0, P1} and {P2, P3} balance
load as do the hypercubes {P4, P5} and {P6, P7}. This is done in parallel.

Figure 3.16(c) shows the two pass process. Processors P0 and P1 are to

transfer one unit each to processors P2 and P3, respectively, and processors

P4 and P5 are to transfer 4 units each to processors P6 and P7, respectively.

The load in each processor after this load transfer is given below the leaves

of Fig. 3.16(d). In the third and final load balancing iteration, load is bal-

anced in pairs of processors that differ in bit 0. Figure 3.16(d) shows the

computation. After the required load redistribution, each processor has 13

units of load (Fig. 3.16(e)).
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The load balancing algorithm for general d is summarized in Algorithm

hcloadbalance. There are d− 1 iterations, and each upward and down-

ward pass of a tree of height r takes Θ(r) = O(log d) time. Hence, the

overall running time of the algorithm is O(d2 +m). Here, m =
∑d−1

i=0 mi,

where mi is the maximum load transferred between a pair of processors

when balancing along dimension i. From the above discussion, it follows

that |L′
i − L′

j | ≤ 1 for all i and j. Finally, we note that the load balancing

problem can be solved in time O(log p + M), where p is the number of

processors andM is the maximum number of items at any processor before

the distribution (see the bibliographic notes).

Algorithm 3.8 hcloadbalance
Input: A d-dimensional hypercube with loads Li, 0 ≤ i ≤ 2d.

Output: Perform load balancing on the hypercube.

1. for r← d− 1 downto 0 do
2. Perform an upward pass computing the sum of loads in the

subtree leaves.
3. Perform a downward pass to compute the load to be transferred.
4. Transfer load.
5. end for

3.14 Computing Parallel Prefix on the Butterfly

The parallel prefix problem was defined in Section 2.5. In this section, we

show how to compute this problem on the butterfly. For simplicity, we will

assume addition as the binary operation. Recall from Section 3.2 that a

complete binary tree with 2d leaves corresponding to level 0 processors, and

rooted at (0, d) is a subgraph of the d-dimensional butterfly (see Fig. 3.5(b)).

Assume that each processor has two registers: s and z. Register s at node v,

denoted by s(v), contains the sum of all items at the leaves of the subtree

rooted at v, and z(v) contains the sum of all items at the leaves of the

subtree rooted at the left child of node v. Initially, the items x1, x2, . . . , xn
are input to the n = 2d processors at level 0 in registers z and s. The

algorithm consists of two passes: Bottom-up and top-down. It is shown as

Algorithm bfparprefix.

Obtaining the running time is straightforward; it is Θ(d) in both the

bottom-up phase and the top-down phase.
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(a) (b)

(c) (d)

Fig. 3.19. Example of computing parallel prefix on the 2-dimensional butterfly.

Algorithm 3.9 bfparprefix
Input: X = 〈x1, x2, . . . , xn〉, a sequences of n numbers, where n = 2d.

Output: S = 〈s1, s2, . . . , sn〉, the prefix sums of X.

(a) Bottom-up phase. See Fig. 3.19(a). Each leaf node l sends its item
s(l) to its parent. Each internal node v upon receipt of two s-values s(x)
and s(y) from its children x and y computes their sum and stores it in
register s(v). It also stores s(x), the left child sum, in register z(v).
(b) Top-down phase. See Figs. 3.19(b-d). Initially, the root sends 0 to its
left child and z to its right child. Each node v upon receipt of value y
from its parent does the following: If v is a leaf, it sets s(v) = s(v) + y;
otherwise it sends y to its left child, and sends y + z(v) to its right child.
At the end, the s value at the ith leaf contains si = x1 + x2 + · · · + xi,
1 ≤ i ≤ n.

3.15 Odd–Even Merging and Sorting on the Butterfly

In this section, we implement odd–even merging and sorting on the

d-dimensional butterfly, where n = 2d; odd–even merging and sorting on

the PRAM were discussed in Section 2.11. Let A = 〈a0, a1, . . . , an/2−1〉 and
B = 〈b0, b1, . . . , bn/2−1〉 be two sorted sequences of n/2 elements each. Ini-

tially, A and B are input into level d of the d-dimensional butterfly, where
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Fig. 3.20. Odd–even merging on the butterfly.

the ai’s are input to the lower half, and the bi’s are input to the upper

half (see Fig. 3.20(a)). The odd–even merging method is outlined in Algo-

rithm bfoddevenmerge. It is important to note that the butterfly has

a recursive structure; the even rows of the d-dimensional butterfly and the
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Algorithm 3.10 bfoddevenmerge
Input: Two sorted sequences A = 〈a0, a1, . . . , an/2−1〉 and

B = 〈b0, b1, . . . , bn/2−1〉 of n/2 elements each, where n = 2d. A and B
are stored in level d of the butterfly.

Output: The elements in S = A ∪B in sorted order.

1. if n = 2 then merge the two elements and exit. e Move the ai’s to level
d−1 along the straight edges and the bi’s to level d−1 along the cross edge
as shown in Fig. 3.20(b). This is equivalent to partitioning the input into
Aeven, Aodd, Beven, and Bodd, and storing them in the (d−1)-dimensional
butterflies.

2. Recursively merge Aeven andBodd to obtain C = 〈c0, c1, . . . , cn/2−1〉 using
the even (d− 1)-dimensional butterfly.

3. Recursively merge Aodd and Beven to obtain D = 〈d0, d1, . . . , dn/2−1〉
using the odd (d− 1)-dimensional butterfly.

4. Let E′ be the shuffle of C and D, that is,
E′ = 〈c0, d0, c1, d1, . . . , cn/2−1, dn/2−1〉. Starting from c0 in E′, compare
each ci with the following di, and switch them if they are out of order to
obtain the sorted sequence E = 〈e0, e1, . . . , en−1〉.

5. return S = E.

odd rows contain a (d − 1)-dimensional butterfly each (refer to Fig. 3.4).

These two (d − 1)-dimensional butterflies will henceforth be referred to as

the even and odd butterflies. In Fig. 3.20(b), the even (d− 1)-dimensional

butterfly and the odd (d − 1)-dimensional butterfly are shown with thick

and dashed lines, respectively.

The first step in the algorithm is to move the ai’s to level d−1 along the

straight edges and the bi’s to level d − 1 along the cross edges in one step

as shown in Fig. 3.20(b). This is equivalent to partitioning the input into

Aeven, Aodd, Beven, and Bodd and storing them in the (d − 1)-dimensional

butterflies. Next, the algorithm recursively merges Aeven with Bodd to pro-

duce C, and recursively merges Beven with Aodd to produce D using the

even and odd (d−1)-dimensional butterflies, respectively (see Figs. 3.20(b)

and (c)). Here C = 〈c0, c1, . . . , cn/2−1〉 and D = 〈d0, d1, . . . , dn/2−1〉. Let E′

be the shuffle of C and D, that is, E′ = 〈c0, d0, c1, d1, . . . , cn/2−1, dn/2−1〉
(see Fig. 3.20(c)). E′ is scanned from left to right (in one step) for pairs

that are out of order, which are ordered, if necessary. In other words,

starting from c0, compare each ci with the following di, and switch them
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if they are out of order. This is accomplished by letting the even rows

at level d compute min{ci, di} and the odd rows at level d compute

max{ci, di}. The result of the comparisons and exchanges, which is the

sequence E = 〈e0, e1, . . . , en−1〉 is then stored in level d of the d-dimensional

butterfly as the desired sorted sequence (see Fig. 3.20(d)).

The analysis of the algorithm is straightforward. Step 1 takes Θ(1)

time. Steps 2 and 3 take T (n/2) time each. Step 4 takes Θ(1) time.

Hence, the running time of the algorithm is governed by the recurrence

T (n) = T (n/2) + Θ(1), whose solution is T (n) = Θ(logn). The proof of

correctness is given by Theorem 2.2 in Section 2.11.

Example 3.4 Consider merging the two sorted sequences A = 〈1, 3, 5, 8〉
and B = 〈2, 4, 6, 7〉 on the 3-dimensional butterfly shown in Fig. 3.21(a).

The ai’s are first moved to level 2 along the straight edges and the bi’s

are moved to level 2 along the cross edge as shown in Fig. 3.20(b). This

is equivalent to partitioning the input into Aeven, Aodd, Beven and Bodd

and storing them in the 2-dimensional butterflies. Thus, Aeven = {1, 5},
Aodd = {3, 8}, Beven = {2, 6} and Bodd = {4, 7}. Aeven and Bodd are

merged recursively as well as Aodd and Beven in the 2-dimensional butter-

flies, and the two sequences C = 〈1, 4, 5, 7〉 andD = 〈2, 3, 6, 8〉 are formed as

shown in Figs. 3.21(b) and (c). Finally, the elements in each pair (ci, di) in

the sequence E′ = 〈1, 2, 4, 3, 5, 6, 7, 8〉, which is the shuffle of C and D, are

compared and exchanged if they are out of order as shown in Fig. 3.21(d).

The pair (4, 3) is out of order, so 4 and 3 are interchanged. The sorted

sequence is E = 〈1, 2, 3, 4, 5, 6, 7, 8〉 as shown in Fig. 3.21(d). �

The algorithm for sorting is given as Algorithm bfoddevenmerge-

sort. It is similar to Algorithm oddevenmergesort for the PRAM in

Section 2.11 Initially, the input sequence is input to level d of the butterfly.
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Fig. 3.21. Example of odd–even merging on the butterfly.
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First, the algorithm recursively sorts each half separately using the two

(d−1)-dimensional butterflies in Steps 3 and 4. Next, the two sorted halves

are merged using Algorithm bfoddevenmerge in Step 5.

Algorithm 3.11 bfoddevenmergesort
Input: A sequence S = 〈a0, a1, . . . , an−1〉 where n = 2d.

Output: The elements of S in sorted order.

1. S1← 〈a0, a1, . . . , an/2−1〉.
2. S2← 〈an/2, an/2+1, . . . , an−1〉.
3. S′

1 ← bfoddevenmergesort(S1)
4. S′

2 ← bfoddevenmergesort(S2)
5. S← bfoddevenmerge(S′

1, S
′
2)

6. return S

The running time of the algorithm is governed by the recurrence T (n) =

T (n/2) + Θ(logn), whose solution is T (n) = Θ(log2 n).

3.16 Matrix Multiplication on the Hypercube

Consider the problem of matrix multiplication on the hypercube: Given two

square matrices A and B of order n × n, find their product C = A × B.

Note that the matrices are indexed from 0 to n − 1. Thus, the matrix A

has the form:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a0,0 a0,1 . . . a0,n−1

a1,0 a1,1 . . . a1,n−1

...
...

...

an−1,0 an−1,1 . . . an−1,n−1

⎤
⎥⎥⎥⎥⎥⎥⎦ .
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Assume that there are n3 = 23r processors P0, P1, . . . , Pn3−1. The pro-

cessors will also be referred to by the triple (l, i, j), 0 ≤ l, i, j ≤ n− 1. So,

if the index of a processor has the binary representation b3r−1b3r−2 . . . b0,

then the binary representations of l, i and j are

b3r−1b3r−2 . . . b2r, b2r−1b2r−2 . . . br, br−1br−2 . . . b0,

respectively. In particular, if we fix any index l, i, or j, and vary the remain-

ing indices over all its possible values, we obtain a subcube of dimension 2r,

and if we fix any pair of indices l, i, and j, and vary the remaining index

over all its possible values, we obtain a subcube of dimension r.

Initially, the input elements of A and B are distributed over the n2

processors P (0, i, j), 0 ≤ i, j ≤ n − 1, so that A(0, i, j) = ai,j and

B(0, i, j) = bi,j . There are three registers associated with every processor

P (l, i, j), namely A(l, i, j), B(l, i, j) and C(l, i, j). The desired final config-

uration is

C(0, i, j) = ci,j , 0 ≤ i, j ≤ n− 1,

where

ci,j =
n−1∑
l=0

ai,lbl,j. (3.2)

The algorithm computes the product matrix C by directly making use

of (3.2). The algorithm has three phases. In the first phase, elements of A

and B are redistributed over the n3 processors so that we have A(l, i, j) =

ai,l and B(l, i, j) = bl,j . In the second phase, the products C(l, i, j) =

A(l, i, j)×B(l, i, j) = ai,lbl,j are computed. Finally, in the third phase, the

sums
∑n−1

l=0 Cl,i,j are computed. An outline of the algorithm is shown as

follows.
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1. For 0 ≤ l ≤ n− 1, set A(l, i, j)← A(0, i, j) and B(l, i, j)←B(0, i, j).
2. Set A(l, i, j)←A(l, i, l), 0 ≤ j ≤ n− 1.
3. Set B(l, i, j)← B(l, l, j), 0 ≤ i ≤ n− 1.
4. For each 0 ≤ i, j ≤ n − 1, processor P (l, i, j) computes the product

C(l, i, j)←A(l, i, j)×B(l, i, j).
5. For each 0 ≤ i, j ≤ n − 1, processors P (l, i, j), where 0 ≤ l ≤ n − 1,

compute the sum C(0, i, j) =
∑n−1

l=0 C(l, i, j).

In Step 1, the contents of registers A and B in the processors of subcube

l = 0 are broadcast to all other processors. In Step 2, a copy of the contents

of register A of each processor in column l is sent to all processors in the

same row, and in Step 3, a copy of the contents of register B of each proces-

sor in row l is sent to all processors in the same column. Thus, after Step 2

is completed, A(l, i, j) = ai,l, and after Step 3 is completed, B(l, i, j) = bl,j.

Step 5 performs the sum
∑n−1

l=0 C(l, i, j). This is a typical hypercube sum

operation for each pair (i, j) applied on subcubes with processors P (l, i, j),

0 ≤ l ≤ n− 1 (see Algorithm hcsum in Section 3.5).

Example 3.5 Consider multiplying the two 4×4 matrices on a hypercube

with n = 26 = 64 processors, where

A =

⎡
⎢⎢⎣

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

⎤
⎥⎥⎦ and B =

⎡
⎢⎢⎣
−1 −2 −3 −4
−5 −6 −7 −8
−9 −10 −11 −12
−13 −14 −15 −16

⎤
⎥⎥⎦ .

Figure 3.22(a) shows the initial input stored in registers A and B (Only

the first 16 processors are shown in the figure). Figure 3.22(b) shows the

result of applying Step 2 of the algorithm’s outline. As shown in the figure,

the A registers in the first 16 processors contain the first column of matrixA,

that is, A(0, i, j) = ai,0. Figure 3.22(c) shows the result of applying Step 3

of the algorithm’s outline. As shown in the figure, the B registers in the first

16 processors contain the first row of matrix A, that is, B(0, i, j) = b0,j . �

The details of the algorithm are given as Algorithm hcmatrixmult. In

the algorithm, S(bk = d) denotes the set of processor labels t, 0 ≤ t ≤ n3−1,
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Fig. 3.22. Illustration of matrix multiplication on the hypercube.
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whose binary representation is b3r−1 . . . bk+1dbk−1 . . . b0. For instance, in

the algorithm, S(bk = 0) means all labels t with binary representation

b3r−1 . . . bk+10bk−1 . . . b0. The notation t(k) means t with the kth bit com-

plemented. For example, if t = 001011, then t(4) = 011011.

Algorithm 3.12 hcmatrixmult
Input: Two n× n matrices A and B.

Output: The product C = A×B.

1. for k← 3r − 1 downto 2r do
2. for all t ∈ S(bk = 0) do in parallel
3. At(k)←At

4. Bt(k)←Bt

5. end for
6. end for
7. for k← r − 1 downto 0 do
8. for all t ∈ S(bk = b2r+k) do in parallel
9. At(k)←At

10. end for
11. end for
12. for k← 2r − 1 downto r do
13. for all t ∈ S(bk = br+k) do in parallel
14. Bt(k)←Bt

15. end for
16. end for
17. for t← 0 to n3 − 1 do in parallel
18. Ct←At ×Bt

19. end for
20. for k← 2r to 3r − 1 do
21. for all t ∈ S(bk = 0) do in parallel
22. Ct←Ct + Ct(k)

23. end for
24. end for

The running time is computed as follows: the for loops in Steps 1, 7,

and 12 are iterated Θ(r) = Θ(logn) times. Steps 17–19 take Θ(1) time, and

Steps 20–24 take Θ(logn) time. Hence, the overall running time is Θ(logn).

The total cost of the algorithm is n3×Θ(logn) = Θ(n3 logn), which is not

optimal.
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Fig. 3.23. Example of matrix multiplication on the hypercube.

Example 3.6 Figure 3.23 shows an example of running Algorithm hcma-

trixmult on the two matrices

A =

[
1 2

3 4

]
and B =

[
5 6

7 8

]
.
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There are n = 23 = 8 processors. Figure 3.23(a) shows the initial input.

Figures. 3.23(b)–(d) show the results of applying Steps 1–14 of the algo-

rithm. The products of A and B registers are shown in Fig. 3.23(e), and

the sum of these products is shown in Fig. 3.23(f). �

3.17 Bibliographic Notes

There are a number of books that cover parallel algorithms on the hyper-

cube. These include Akl [4], Akl [5], Cosnard and Trystram [29], Grama,
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Lakshmivarahan and Dhall [52]. For a survey of parallel sorting and selec-

tion algorithms, see Rajasekaran [75]. Parallel algorithms for many prob-

lems, including problems in computational geometry on the mesh can be

found in Leighton [57]. Randomized routing in the hypercube and the but-

terfly are based on Valiant[100] and Valiant and Brebner[101]. Selection on

the hypercube is from Chandran and Rosenfeld [20]. Hyperquicksort is due

to Wagar[93]. Sample sort is from Shi and Schaeffer [86]. Multiselection

on the hypercube is from Shen [83] and Shen [84]. The O(log n log logn)

time algorithm for sorting on the hypercube can be found in Cypher and

Plaxton [30]. The load balancing algorithm is from Woo and Sahni [99].

The load balancing problem can be solved in time O(log p +M), where p

is the number of processors and M is the maximum number of items at

any processor before the distribution. For more on load balancing, see Jan

and Huang [45], JáJá and Ryu [46], and Plaxton [74]. Parallel matrix mul-

tiplication on the hypercube is due to Dekel, Nassimi and Sahni [33]. For

more references on parallel algorithms on the hypercube interconnection

network, see for instance Leighton [57].

3.18 Exercises

3.1. Give an O(d) time algorithm for broadcasting in the d-dimensional

hypercube Hd if the origin of the message is an arbitrary processor.

3.2. Design a recursive algorithm to compute the sum of n numbers on

the hypercube with n = 2d processors. What is the time complexity

of your algorithm?
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3.3. Design a recursive algorithm to compute the prefix sums of n num-

bers on the hypercube with n = 2d processors. What is the time

complexity of your algorithm?

3.4. Describe how to implement the odd–even merge sort on a hypercube

of dimension d.

3.5. Design an algorithm to rearrange a sequence of n numbers dis-

tributed one number per processor in a d-dimensional hypercube,

where n = 2d, so that all numbers smaller than or equal to the aver-

age precede all numbers greater than the average. Your algorithm

should run in Θ(logn) time.

3.6. Explain how to compute the prefix sums of n numbers on a hypercube

with p processors, where p < n. What is the running time of your

algorithm?

3.7. Explain how to run the algorithm for quicksort designed for the

PRAM and discussed in Section 2.5.2 on the hypercube with n

processors.

3.8. Illustrate the operation of Algorithm samplesort discussed in

Section 3.10 on the input

18, 12, 23, 14, 15, 16, 7, 21, 20, 19, 11, 2, 24, 14, 5, 6, 17, 1,

where n = 18 and p = 3.

3.9. In Algorithm samplesort discussed in Section 3.10, each processor

sends its sample of (p − 1) elements to P0, which in turn collects a

sample of p(p− 1) elements. Explain how this data transmission can

be achieved, and analyze its cost.

3.10. A sorting method known as bucketsort works as follows. Let S

be a sequence of n numbers within a reasonable range, say all num-

bers are between 1 and m, where m is not too large compared to n.

The numbers are distributed into k buckets, with the first bucket

containing those numbers between 1 and �m/k�, the second bucket

containing those numbers between �m/k�+1 to �2m/k�, and so on.
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The numbers in each bucket are then sorted using an optimal sorting

algorithm. Show how to parallelize the algorithm.

3.11. Analyze the running time of Algorithm bucketsort in the solution

to Exercise 3.10.

3.12. Consider the algorithm for permutation routing in the hypercube

discussed in Section 3.6. What is the probability that the algorithm

will route all packets to their destinations in 8d steps or fewer?

3.13. Consider Algorithm hcselect for selection on the hypercube dis-

cussed in Section 3.11. For what values of p is the algorithm optimal?

3.14. Consider Algorithm parselect for selection on the EREW PRAM

presented in Section 2.14. Suppose we simulate this algorithm to

run on the hypercube with n/ logn processors. What will be the

running time of the algorithm? Compare this with that of Algorithm

hcselect for selection on the hypercube presented in Section 3.11.

(See Exercise 3.21).

3.15. Outline an algorithm to find all the kth largest elements in a hyper-

cube with p < n processors. What is the running time of your

algorithm?

3.16. Consider Algorithm hcmultiselect for multiselection on the hyper-

cube discussed in Section 3.12. For what values of r is the algorithm

cost optimal when the number of processors is n1−ε?

3.17. Consider Algorithm hcmultiselect for multiselection on the hyper-

cube discussed in Section 3.12. Compare the algorithm given with

direct application of Algorithm hcselect given in Section 3.11.

3.18. Construct the Gray code sequence G4.

3.19. Consider the two graphs shown in Fig. 3.24. Find an embedding of G

intoH . What are the dilation, congestion, expansion and load of your

embedding?

3.20. Give an embedding similar to the one given in Example 3.2, except

that it is postorder, that is, the nodes of the binary tree are labeled
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Fig. 3.24. Exercise 3.19.

in postorder traversal. What are the dilation, congestion, expansion

and load of the embedding?

3.21. Explain how to simulate an EREW PRAM on a hypercube with n

processors.

3.22. Compute the bisection width of the d-dimensional butterfly Bd.

3.23. Design an algorithm to compute the sum of n numbers on the hyper-

cube with p processors, 1 ≤ p < n. Is your algorithm always optimal?

3.24. Explain how to compute the maximum of 2d−1 numbers distributed

arbitrarily in a hypercube with 2d processors. What is the running

time of your algorithm?

3.25. Consider the partial permutation routing problem on the hypercube

in which every processor is the source of at most one packet and the

destination of at most one packet. Will Theorem 3.2 hold for this

routing problem?

3.26. Consider the many-to-many routing problem on the hypercube in

which every processor is the source of r packets and the destination

of r packets. Suppose we run the greedy algorithm for routing on the

hypercube to solve this problem. What will be the maximum queue

size?

3.27. Give an O(nd) time algorithm for the problem of routing in the

d-dimensional hypercube if every processor has a packet to be sent

to every other processor, where n = 2d. Hint : Use randomized routing

n times.
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3.28. Give an O(n) time algorithm for the problem in Exercise 3.27.

3.29. Apply Algorithm hcparprefix for computing parallel prefix on the

hypercube on the input sequence 〈1, 2, 3, 4, 5, 6, 7, 8〉. Assume a hyper-

cube with 8 processors.

3.30. Give an algorithm to evaluate the polynomial an−1x
n−1+an−2x

n−2+

· · · + a1x + a0 at the point x0 on the d-dimensional hypercube Hd

with n = 2d processors. Assume that each ai is stored in processor Pi,

0 ≤ i ≤ n− 1.

3.31. Consider a hypercube with four processors {P0, P1, P2, P3} with ini-

tial loads 8, 2, 6, 4. Perform load balancing on the hypercube so that,

at the end, each processor has the same load.

3.32. Redo Exercise 3.31 using the algorithm presented in Section 3.13.

3.33. Consider a hypercube with eight processors {P0, P1, . . . , P7} with ini-

tial loads 8, 5, 6, 4, 7, 2, 5, 3. Perform load balancing on the hypercube

using the algorithm described in Section 3.13 so that, at the end, each

processor has approximately the same load.

3.34. Suggest a heuristic to improve the performance of the load balancing

algorithm discussed in Section 3.13.

3.35. Illustrate the operation of Algorithm bfoddevenmerge for merging

on the butterfly to merge the two sorted sequences A = 〈1, 4, 6, 9〉
and B = 〈2, 5, 7, 8〉 on the 3-dimensional butterfly.

3.36. Use the matrix multiplication algorithm on the hypercube discussed

in Section 3.16 to compute the product C = A×B of the two 2× 2

matrices A and B shown below. Assume a hypercube with n = 23 = 8

processors.

A =

[
1 3

2 4

]
and B =

[
2 1

4 3

]
.

3.37. Suggest an algorithm for computing the transitive closure of an adja-

cency matrix A on the hypercube. What is the running time of the

algorithm?
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3.38. Suggest an algorithm for computing the shortest paths in a directed

graph G represented by its adjacency matrix A on the hypercube.

What is the running time of the algorithm?

3.39. Let S = 〈x0, x1, . . . , xn−1〉 be a sequence of numbers stored in a

hypercube with n processors where xi is stored in Pi, 0 ≤ i < n,

and let y be stored in P0. Give an algorithm to count the number of

elements in S that are larger than y.

3.40. Following the example shown in Fig. 3.19, show how to compute the

prefix sums of the sequence 〈1, 2, 3, 4〉 on the 2-dimensional butterfly.

3.41. The d-dimensional cube-connected cycles (CCC) is constructed from

the d-dimensional hypercube by replacing each node with a cycle of

length d (see Fig. 3.25). The nodes in the cycle corresponding to

node x in the hypercube are labeled as (x, 1), (x, 2), . . . , (x, d). Node

(x, i) is connected to node (y, j) if and only if x = y and | i− j | = 1

(mod d) or i = j and x and y are connected in the corresponding

hypercube. The CCC has d2d nodes. Derive an algorithm to find

the sum of n = d2d numbers stored in the CCC, one number per

processor. The resulting sum should be stored in processor P(0d,1).

(000,1)
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Fig. 3.25. 3-dimensional cube-connected cycles (CCC).
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3.42. What are the degree and diameter of the d-dimensional cube-

connected cycles described in Exercise 3.41?

3.43. What is the bisection width of the d-dimensional cube-connected

cycles described in Exercise 3.41?

3.44. Give an algorithm for computing the prefix sums on the

d-dimensional cube-connected cycles described in Exercise 3.41. Your

algorithm should run in O(d) = O(log n) time.

3.45. Give an embedding function from the d-dimensional hypercube to

the d-dimensional cube-connected cycles(CCC) network described in

Exercise 3.41. What is the dilation of the embedding?

3.46. What is the congestion of the embedding in Exercise 3.45?

3.47. Explain how to simulate a hypercube with 2d processors on the cube-

connected cycles with d2d processors described in Exercise 3.41.

3.19 Solutions

3.1. Give an O(d) time algorithm for broadcasting in the d-dimensional

hypercube Hd if the origin of the message is an arbitrary processor.

Let Pi be the origin of broadcasting datum x. First, transfer x from

Pi to P0 using bit fixing in O(d) steps, then broadcast it to all other

processors in O(d) time as shown in Algorithm hcbroadcast.

3.2. Design a recursive algorithm to compute the sum of n numbers on

the hypercube with n = 2d processors. What is the time complexity

of your algorithm?

Let the two halves of the hypercube be 0Hd−1 and 1Hd−1, where

0Hd−1 is the subcube with 0 leading binary digits in its labels, and

1Hd−1 is the subcube with 1 leading binary digits in its labels. The

idea is to store the sum in all processors. Every processor has a

register t for storing the (partial) sums. See Algorithm hcsumrec.

The running time is given by the recurrence T (n) = T (n/2)+Θ(1) =

Θ(logn).
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Algorithm 3.13 hcsumrec
Input: n numbers x1, x2, . . . , xn stored in Hd, one element per processor.

Output: The sum of the numbers stored in all processors of Hd.

1. if n = 1 then set the t register to the x-value and exit
2. Recursively find the sum in each subcube
3. Each processor with label 0y in 0Hd−1 adds the content of its t register

to the t register of processor with label 1y in subcube 1Hd−1.
4. Processor with label 1y in subcube 1Hd−1 copies the content of its t

register back to the t register of processor with label 0y in subcube 0Hd−1.

3.3. Design a recursive algorithm to compute the prefix sums of n num-

bers on the hypercube with n = 2d processors. What is the time

complexity of your algorithm?

The idea is similar to that in the solution to Exercise 3.2. We compute

both the prefix sums and the sum of the numbers simultaneously.

Define 0Hd−1 and 1Hd−1 as in the solution of Exercise 3.2. Every

processor Pi has two registers si for storing the prefix sums and ti for

storing the (partial) sums. See Algorithm hcprefixsumrec. After

Step 4, all processors have the prefix sums and the same total. The

running time is given by the recurrence T (n) = T (n/2) + Θ(1) =

Θ(logn).

Algorithm 3.14 hcprefixsumrec
Input: n numbers x1, x2, . . . , xn stored in Hd, one element per processor.

Output: The prefix sums of s1, s2, . . . , sn.

1. if n = 1 then copy the x-value to registers s and t and exit
2. Recursively find the prefix sums in each subcube
3. Each processor Pi with label 0y adds the content of its ti register to

register sj of processor Pj with label 1y.
4. Each processor Pi with label 0y adds the content of its ti register to

register tj of processor Pj with label 1y.
5. Processor 1y in subcube 1Hd−1 copies the content of its t register back

to the t register of processor 0y in subcube 0Hd−1.
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3.4. Describe how to implement the odd–even merge sort on a hypercube

of dimension d.

We adapt Algorithm bfoddevenmerge for the butterfly discussed

in Section 3.15. The algorithm is normal for the butterfly since at any

given time, only processors in the same level are participating in the

computation, which means a single step of the butterfly algorithm

can be simulated in one step of the hypercube. Hence, the algo-

rithm can be implemented to run on the hypercube in time Θ(d2) =

Θ(log2 n).

3.5. Design an algorithm to rearrange a sequence of n numbers distributed

one number per processor in a d-dimensional hypercube, where n =

2d, so that all numbers smaller than or equal to the average precede

all numbers greater than the average. Your algorithm should run in

Θ(logn) time.

This is a direct application of parallel prefix. First, find the sum,

divide it by n to obtain the average v. Next, broadcast v to all pro-

cessors in the hypercube. Label all elements ≤ v with 1 and the

others with 0. Finally, apply packing and route each element to its

proper location.

3.6. Explain how to compute the prefix sums of n numbers on a hypercube

with p processors, where p < n. What is the running time of your

algorithm?

Divide the input into p groups of n/p elements each. Find the prefix

sums individually and sequentially in each group in Θ(n/p) time. Let

the final prefix sums (the totals of all groups) be S = s1, s2, . . . , sp.

Apply parallel prefix on the sequence S in Θ(log p) time. Finally,

update the prefix sums in all groups sequentially in Θ(n/p) time.

The overall running time is Θ(n/p+ log p) time.

3.7. Explain how to run the algorithm for quicksort designed for the

PRAM and discussed in Section 2.5.2 on the hypercube with n

processors.

The algorithm runs on the hypercube with no modifications.
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3.8. Illustrate the operation of Algorithm samplesort discussed in

Section 3.10 on the input

18, 12, 23, 14, 15, 16, 7, 21, 20, 19, 11, 2, 24, 14, 5, 6, 17, 1,

where n = 18 and p = 3.

Similar to Example 3.3.

3.9. In Algorithm samplesort discussed in Section 3.10, each processor

sends its sample of (p − 1) elements to P0, which in turn collects a

sample of p(p− 1) elements. Explain how this data transmission can

be achieved, and analyze its cost.

Each odd-numbered processor sends its sample to its (even-

numbered) neighbor. Next, each even-numbered processor combines

the sample it has received from its neighbor with its own sam-

ple. This process of sending to neighbors continues until proces-

sor P0 receives all the p(p − 1) samples. The total time taken is

(p− 1) + 2(p− 1) + 4(p− 1) + · · ·+ 2�log p�(p− 1) = Θ(p2).

3.10. A sorting method known as bucketsort works as follows. Let S

be a sequence of n numbers within a reasonable range, say all num-

bers are between 1 and m, where m is not too large compared to n.

The numbers are distributed into k buckets, with the first bucket

containing those numbers between 1 and �m/k�, the second bucket

containing those numbers between �m/k�+1 to �2m/k�, and so on.

The numbers in each bucket are then sorted using an optimal sorting

algorithm. Show how to parallelize the algorithm.

Let the number of processors be p, and set the number of buckets

k = p. Assign n/p elements to each processor. Each processor par-

titions its assigned elements into p partitions, one for each of the p

buckets. Next, each processor sends each part of its bucket to the

appropriate processor, and retains its part. Each processor then com-

bines the p− 1 parts received from the other p − 1 processors with

its retained elements. Finally, each processor sorts its items using
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an optimal sequential sorting algorithm. Note that we have assumed

that the processors know the interval [1..m].

3.11. Analyze the running time of Algorithm bucketsort in the solution

to Exercise 3.10.

Initially, assume that each processor has n/p elements stored in its

local memory. Partitioning the items in each bucket into p blocks

takes O(np logm) time using binary search. Sending data to their

processors can be achieved in O(np log p) time. The sorting step takes

Θ(np log n
p ) time. Hence, the total running time is

Θ

(
n

p
log

n

p
+
n

p
logm+

n

p
log p

)
.

If m = O(n), then the running time becomes Θ(np logn), since p < n.

3.12. Consider the algorithm for permutation routing in the hypercube

discussed in Section 3.6. What is the probability that the algorithm

will route all packets to their destinations in 8d steps or fewer?

With probability at least 1− 2−1.5d, every packet vi reaches its des-

tination σ(i) in 4d or fewer steps. So, the full algorithm (two phases)

routes all packets to their destinations in 8d or fewer steps with prob-

ability (1− 2−1.5d)× (1− 2−1.5d) = (1 − 2−1.5d)2.

3.13. Consider Algorithm hcselect for selection on the hypercube dis-

cussed in Section 3.11. For what values of p is the algorithm optimal?

Since the lower bound for any sequential selection algorithm is Ω(n),

the lower bound for the parallel version is Ω(n/p). Therefore, the

algorithm is optimal for all values of p = nε, 0 < ε < 1. In this case,

the running time of the algorithm is Θ(n1−ε).

3.14. Consider Algorithm parselect for selection on the EREW PRAM

presented in Section 2.14. Suppose we simulate this algorithm to

run on the hypercube with n/ logn processors. What will be the

running time of the algorithm? Compare this with that of Algorithm

hcselect for selection on the hypercube presented in Section 3.11.

(See Exercise 3.21).
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The running time will be

O(log n log logn log p) = O(log2 n log logn).

This is much slower than Algorithm hcselect, which runs in time

O(log n(log logn)2).

3.15. Outline an algorithm to find all the kth largest elements in a hyper-

cube with p < n processors. What is the running time of your

algorithm?

First, find the kth smallest element x using the algorithm for selec-

tion. Next, broadcast x to all processors. Finally, each processor out-

puts all elements greater than or equal to x. The running time is

O(n/p+ Ts(n, p) + log p) = O(n/p + Ts(n, p)), where Ts(n, p) is the

time required by the selection algorithm.

3.16. Consider Algorithm hcmultiselect for multiselection on the hyper-

cube discussed in Section 3.12. For what values of r is the algorithm

cost optimal when the number of processors is n1−ε?

When p = n1−ε, the running time is

T (n, r, n1−ε) = O(nε min{r, logn1−ε}).

Since the lower bound for any sequential multiselection algorithm is

Ω(n log r), the lower bound for the parallel version is Ω((n/p) log r).

Hence, the algorithm is cost optimal for r ≥ p = n1−ε.

3.17. Consider Algorithm hcmultiselect for multiselection on the hyper-

cube discussed in Section 3.12. Compare the algorithm given with

direct application of Algorithm hcselect given in Section 3.11.

Direct application of Algorithm hcselect r times takes

r ×O(n/p+ ts(p, p)(logn− log p)) = O(rn/p+ rts(p, p) log(n/p)).

On the other hand, Algorithm hcmultiselect takes

O((n/p+ ts(p, p) log(n/p))min{r, log p}),

which is less than direct application for r > log p.
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Fig. 3.26. Exercise 3.19.

3.18. Construct the Gray code sequence G4.

Similar to Fig. 3.7.

3.19. Consider the two graphs shown in Fig. 3.26. Find an embedding of G

intoH . What are the dilation, congestion, expansion and load of your

embedding?

Define the embedding functions φ and ψ by: φ(a) = w, φ(b) =

x, φ(c) = y, φ(d) = z, ψ((a, b)) = w, x, ψ((b, c)) = x, y, ψ((c, d)) =

y, z and ψ((a, d)) = w, z. Since each edge of G is mapped to exactly

one edge of H , the dilation is 1. All edges of H are used at most

once, and hence the congestion is 1. The expansion is 3/3 = 1, and

the load is 1.

3.20. Give an embedding similar to the one given in Example 3.2, except

that it is postorder, that is, the nodes of the binary tree are labeled

in postorder traversal. What are the dilation, congestion, expansion

and load of the embedding?

Similar to Example 3.2.

3.21. Explain how to simulate an EREW PRAM on a hypercube with n

processors.

The simulation is done using routing. PRAM processor local com-

putation is done locally, while a read/write by PRAM processor i

to PRAM memory j can be simulated by a packet going through

the network from the node simulating i to the node simulating j.

Thus, simulating a PRAM with p processors on a hypercube with
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the same number of processors is a packet routing problem. Since

the hypercube can route a packets in O(log p) steps, it can simulate

any EREW PRAM with p processors with an O(log p) factor delay.

3.22. Compute the bisection width of the d-dimensional butterfly Bd.

Figure 3.3 shows the d-dimensional butterfly for d = 1, 2, 3. From

the figure, it is clear that for j > 1, Bj can be divided into two

halves with 2 × 2d−1 = 2d connections between them. To construct

a bisection width of this size, simply remove the cross edges from a

single level.

3.23. Design an algorithm to compute the sum of n numbers on the hyper-

cube with p processors, 1 ≤ p < n. Is your algorithm always optimal?

Assume that each processor Pi contains at least one number; if not

then let Pi contain 0. First, compute the sum of the numbers in each

processors. Next, compute the sum of the p = 2d resulting numbers

using the technique of reduction, which is a method similar to the

method used in broadcasting in the hypercube, but in reverse order.

This is shown in Algorithm hcsum. Here the notation j(i) means j

with the ith bit complemented, 0 ≤ i ≤ d − 1. If the numbers are

distributed evenly among the p processors, so that each processor

contains n/p numbers, then the running time is O(max{np , d}), which
is optimal. Otherwise, the algorithm is not optimal, as the running

time may be as large as Θ(n). In this case, data redistribution may be

helpful if it takes o(m), wherem is the maximum number of elements

in all processors.

Algorithm 3.15 hcsum
Input: x0, x1, . . . , x2d−1.

Output: The sum of the numbers x0, x1, . . . , x2d−1 stored in processors
P0, P1, . . . , P2d−1 of Hd.

1. for i← d− 1, d− 2, . . . , 1, 0 do
2. for all j < 2i and j < j(i) do in parallel
3. xj← xj + xj(i)

4. end for
5. end for
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3.24. Explain how to compute the maximum of 2d−1 numbers distributed

arbitrarily in a hypercube with 2d processors. What is the running

time of your algorithm?

The first step is to route these numbers so that they occupy one half

of the hypercube. This routing step takes Θ(logn) time. Next, the

maximum of these numbers is computed in Θ(logn) time. The total

running time is Θ(logn).

Another alternative is to use parallel prefix to pack the numbers

in the first 2d−1 processors and then find their sum using the lower

half of the hypercube.

3.25. Consider the partial permutation routing problem on the hypercube

in which every processor is the source of at most one packet and the

destination of at most one packet. Will Theorem 3.2 hold for this

routing problem?

Theorem 3.2 holds for partial permutation routing, and the proof

works with no modifications.

3.26. Consider the many-to-many routing problems on the hypercube in

which every processor is the source of r packets and the destination

of r packets. Suppose we run the greedy algorithm for routing on the

hypercube to solve this problem. What will be the maximum queue

size?

Theorem 3.2 no longer holds for many-to-many routing. In the proof

of Theorem 3.2, a ≤ r2k − 1 and b ≤ r2d−k − 1, and hence the

maximum queue size will be O(r
√
n).

3.27. Give an O(nd) time algorithm for the problem of routing in the

d-dimensional hypercube if every processor has a packet to be sent to

every other processor, where n = 2d. Hint : Use randomized routing n

times.

Use randomized routing sequentially n times. Each run takes O(d)

time for a total of O(nd).

3.28. Give an O(n) time algorithm for the problem in Exercise 3.27.

Use randomized routing in parallel n times. This takes O(d) parallel

steps. However, there are queues that will expand the running time.

There are n(n − 1) paths, and hence each node of the hypercube is
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included in n(n−1)
n = n − 1 paths. This results in a queue of size

O(n) at each node. This means the running time will be expanded

to O(n) +O(d) = O(n).

3.29. Apply Algorithm hcparprefix for computing parallel prefix on the

hypercube on the input sequence 〈1, 2, 3, 4, 5, 6, 7, 8〉. Assume a hyper-

cube with 8 processors.

Similar to the example in Fig. 3.14.

3.30. Give an algorithm to evaluate the polynomial an−1x
n−1+an−2x

n−2+

· · · + a1x + a0 at the point x0 on the d-dimensional hypercube Hd

with n = 2d processors. Assume that each ai is stored in processor Pi,

0 ≤ i ≤ n− 1.

First, use parallel prefix to compute 1, x0, x
2
0, . . . , x

n−1
0 in processors

P0, P1, . . . , Pn−1. Next, within each processor, multiply ai × xi0, 0 ≤
i ≤ n − 1. Finally, use Algorithm hcsum in Exercise 3.23 above to

find the desired sum. The running time is Θ(logn).

3.31. Consider a hypercube with four processors {P0, P1, P2, P3} with ini-

tial loads 8, 2, 6, 4. Perform load balancing on the hypercube so that,

at the end, each processor has the same load.

Consider the hypercube with four processors shown in Fig. 3.27(a).

The number next to a processor is its initial load. The sum of the

initial loads is 20, and so, after balancing, each processor will have

5 units of load. One way to accomplish this is to have processor P0

send 3 units to processor P1 and to have processor P2 send, in parallel,

one unit to processor P3. The time needed for this is 3 units as the

P
2

P
3

P
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P
1

6
1

8

(a) (b)
4
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P
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P
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Fig. 3.27. Exercise 3.31.
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transfer from processor P2 to processor P3 is overlapped with the

transfer from processor P0 to processor P1.

Another possibility is shown in Fig. 3.27(b). In this scheme, pro-

cessor P0 sends 4 units to processor P1. After this transmission is

completed, processor P2 sends one unit to processor P0 and proces-

sor P1 sends, in parallel, one unit to processor P3. The total time is

5 units.

3.32. Redo Exercise 3.31 using the algorithm presented in Section 3.13.

Similar to the example described in Section 3.13.

3.33. Consider a hypercube with eight processors {P0, P1, . . . , P7} with ini-

tial loads 8, 5, 6, 4, 7, 2, 5, 3. Perform load balancing on the hypercube

using the algorithm described in Section 3.13 so that, at the end, each

processor has approximately the same load.

Similar to the example described in Section 3.13.

3.34. Suggest a heuristic to improve the performance of the load balancing

algorithm discussed in Section 3.13.

A simple heuristic is to select the next dimension to balance across,

as the dimension that maximizes si = max |Li − Lj | such that Pj is

a neighbor of Pi along an unselected dimension. So, first, each pro-

cessor Pi computes ri and si such that si = max |Li − Lj |, where Pj

is a neighbor of Pi, along an unselected dimension. ri is such that

si = |Li − Lj |, where j is si’s neighbor along dimension ri. Next,

the maximum of the si’s is computed. If this maximum is sl, then

dimension rl is selected. The time required to select the next dimen-

sion is O(d), and the total time spent on determining the order of

dimensions is O(d2), which does not affect the time complexity of

the algorithm.

3.35. Illustrate the operation of Algorithm bfoddevenmerge for merging

on the butterfly to merge the two sorted sequences A = 〈1, 4, 6, 9〉
and B = 〈2, 5, 7, 8〉 on the 3-dimensional butterfly.

Similar to Example 3.4.

3.36. Use the matrix multiplication algorithm on the hypercube discussed

in Section 3.16 to compute the product C = A×B of the two 2× 2
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matrices A and B shown below. Assume a hypercube with n = 23 = 8

processors.

A =

[
1 3

2 4

]
and B =

[
2 1

4 3

]
.

Similar to Example 3.6.

3.37. Suggest an algorithm for computing the transitive closure of an adja-

cency matrix A on the hypercube. What is the running time of the

algorithm?

Use an algorithm analogous to the one for the PRAM presented

in Section 2.17. Recall that this algorithm computes the transitive

closure by squaring the adjacency matrix �logn
 times. Thus, the

running time is O(log2 n) using O(n3) processors.

3.38. Suggest an algorithm for computing the shortest paths in a directed

graph G represented by its adjacency matrix A on the hypercube.

What is the running time of the algorithm?

Use an algorithm analogous to the one for the PRAM presented in

Section 2.18. Recall that this algorithm computes the shortest paths

by first computing a matrix similar to the transitive closure matrix

using repeated squaring of the weight matrix �logn
 times. Hence,

the running time is O(log2 n) using O(n3) processors.

3.39. Let S = 〈x0, x1, . . . , xn−1〉 be a sequence of numbers stored in a

hypercube with n processors where xi is stored in Pi, 0 ≤ i < n,

and let y be stored in P0. Give an algorithm to count the number of

elements in S that are larger than y.

First, broadcast y to all processors. Next, each processor Pi sets

zi = 1 if xi > y and zi = 0 if xi ≤ y. Finally, find the sum of

zi, 0 ≤ i ≤ n − 1, in all processors, and store the sum, which is the

number of 1s, in P0.

3.40. Following the example shown in Fig. 3.19, show how to compute the

prefix sums of the sequence 〈1, 2, 3, 4〉 on the 2-dimensional butterfly.

Similar to Fig. 3.19.
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Fig. 3.28. 3-dimensional cube-connected cycles (CCC).

3.41. The d-dimensional cube-connected cycles (CCC) is constructed from

the d-dimensional hypercube by replacing each node with a cycle

of length d (see Fig. 3.28). The nodes in the cycle corresponding

to node x in the hypercube are labeled as (x, 1), (x, 2), . . . , (x, d).

Node (x, i) is connected to node (y, j) if and only if x = y and

| i− j | = 1 (mod d) or i = j and x and y are connected in the corre-

sponding hypercube. The CCC has d2d nodes. Derive an algorithm

to find the sum of n = d2d numbers stored in the CCC — one num-

ber per processor. The resulting sum should be stored in processor

P(0d,1).

Let the cycles of the CCC be C1, C2, . . . , C2d , and let ti be the sum

of all numbers in cycle Ci. First, find the sum ti in each cycle and

broadcast it to all processors in the same cycle. This takes Θ(d)

time. Next, find the sum of all totals ti and store it in P(0d,1). The

rest, i.e., finding the total of these sums is similar to finding the sum

of 2d numbers in the hypercube (see, for example, Exercise 3.2).

3.42. What are the degree and diameter of the d-dimensional cube-

connected cycles described in Exercise 3.41?

Its degree is 3, and its diameter is Θ(d) = Θ(logn).

3.43. What is the bisection width of the d-dimensional cube-connected

cycles described in Exercise 3.41?
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If we consider a d-dimensional cube-connected cycles with n = d2d

processors and cut it by a line into two halves, the line will cut

2d−1 links. Hence, the bisection width of the d-dimensional CCC is

Θ(n/ logn).

3.44. Give an algorithm for computing the prefix sums on the

d-dimensional cube-connected cycles described in Exercise 3.41. Your

algorithm should run in O(d) = O(log n) time.

Similar to finding the sum in CCC and finding the prefix sums in the

hypercube; see Exercises 3.41 and 3.3.

3.45. Give an embedding function from the d-dimensional hypercube to

the d-dimensional cube-connected cycles(CCC) network described in

Exercise 3.41. What is the dilation of the embedding?

Map node x in the hypercube to node (x, 1) in the CCC, and map

the edge (x, y) in the hypercube to edge ((x, 1), (y, 1)) (see Fig. 3.29).

The dilation of the embedding is 1 + 2�d/2� = Θ(d).

3.46. What is the congestion of the embedding in Exercise 3.45?

Consider Fig. 3.30, which shows a cycle of length d in the

d-dimensional cube-connected cycles. It is easy to see that the edge

((00 . . . 0, 1), (00 . . .0, 2) is used by �d/2� paths. Hence, the conges-

tion is �d/2� = Θ(d).

(000,1)

(000,2)(000,3)

(001,1)

(001,2)

(011,2)

(011,3)

(011,1)(010,1)
(010,2)

(010,3)(100,3)

(100,2) (100,1)
(110,3)

(110,1) (111,1)

(111,2)

(101,2)

(101,3)
(101,1)

(110,2) (111,3)

(001,3)

Fig. 3.29. Embedding of d-dimensional hypercube into the d-dimensional cube-
connected cycles.
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(00...0,1) (00...0,2)

Fig. 3.30. A cycle in the d-dimensional cube-connected cycles.

3.47. Explain how to simulate a hypercube with 2d processors on the cube-

connected cycles with d2d processors described in Exercise 3.41.

Any step of the hypercube can be simulated in d steps on the CCC

by using one cycle of the CCC to simulate the action of one node of

the hypercube.
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Chapter 4

The Linear Array and the Mesh

4.1 Introduction

Linear arrays are the simplest example of a fixed-connection network. An

example of a linear array is shown in Fig. 4.1(a). It consists of n proces-

sors P1, P2, . . . , Pn, where each interior processor is connected with bidi-

rectional links to its left neighbor and its right neighbor. The outermost

processors P1 and Pn have just one connection each. If we connect them by

a link, we obtain a ring, which is a simple extension of the linear array (see

Fig. 4.1(b)).

A two-dimensionalmesh is an extension of the linear array to two dimen-

sions. A mesh of size n consists of n simple processors arranged in a square

lattice. To simplify our exposition, it is assumed that n = 4k for some posi-

tive integer k. For all i, j, 1 ≤ i, j ≤ √n, and processor Pi,j representing the

processor in row i and column j is connected via bidirectional communica-

tion links to its four neighbors, processors Pi±1,j and Pi,j±1 — assuming

they exist. (See Fig. 4.1(c)).

A torus is simply a mesh with wraparound connections; each row and

each column has a wraparound connection. Fig. 4.2 depicts a torus on 16

processors.

159
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Fig. 4.1. (a) A linear array. (b) A ring. (c) A mesh.

Fig. 4.2. A torus on 16 processors.

The communication diameter of a mesh of size n is 2(
√
n−1) = Θ(

√
n),

and this can be seen by examining the distance between processors in oppo-

site corners of the mesh. This means if a processor in one corner of the mesh

needs data from a processor in another corner of the mesh sometime during

the execution of an algorithm, then a lower bound on the running time of

the algorithm is Ω(
√
n).

There is no linear ordering on the set of processors in the mesh. However,

there are several two-dimensional orderings, called indexing schemes, like

row-major and snakelike shown in Fig. 4.3.



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch04 page 161

The Linear Array and the Mesh 161

(a) (b)

Fig. 4.3. Mesh indexing schemes. (a) Row-major (b) Snakelike.

Fig. 4.4. Embedding a linear array into a mesh.

4.2 Embedding between a Mesh and a Linear Array

We consider the problem of embedding between a mesh and a linear array

with the same number of processors. Embedding a linear array into the

mesh is obvious; it is illustrated in Fig. 4.4. This mapping has dilation 1,

since every edge of the linear array is mapped to one edge of the mesh. The

congestion is also 1, since every edge of the mesh is used by exactly one

edge of the linear array, as is evident from the figure.

Now, consider inverting the above mapping to obtain the embedding of

the mesh into the linear array illustrated in Fig. 4.5. Edge e1 in the mesh

is mapped to the path from s to t in the linear array, which is of length 7.
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Fig. 4.5. Embedding a mesh into a linear array.

It is not hard to see that this is maximum, and in general, the dilation of

this embedding of the mesh into the linear array is 2
√
n− 1. Now, consider

the number of edges of the mesh mapped to edge (y, z) in the linear array.

It is evident from the figure that there are 4 edges of the mesh mapped

to this edge in the linear array. Specifically, e1, e2, e3 and e4 in the mesh

are all mapped to paths that contain edge (y, z) in the linear array. For

example, the edge e2 in the mesh is mapped to the path u,w, y, z, x, v in

the linear array. Hence, the congestion of the mapping in Fig. 4.5 is 4. It is

not difficult to see that, in general, it is
√
n.

4.3 Broadcasting in the Linear Array and the Mesh

Let L be a linear array of n processors. To broadcast a datum x from P1 to

all other processors, x is sent to P2, P3, . . . , Pn in this order. The number of

steps is n− 1 = Θ(n). If the origin of broadcasting is not P1, say Pi(i < n),

x is sent in both directions in parallel. The number of steps in this case is

equal to the maximum of the distances from Pi to P1 and Pn.

LetM be a mesh of size n. Broadcasting a datum x from P1,1 to all other

processors can be achieved in two phases. First, x is sent to all processors

in row 1. Next, x is sent in parallel from all processors in row 1 along

all columns of the mesh. The total number of steps in the two phases is

2(
√
n− 1) = Θ(

√
n).

If the origin of broadcasting is Pi,j (which is different from P1,1), then

broadcasting of x to all other processors can be achieved in two phases: in
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phase 1, x is sent to all processors in row i. In phase 2, x is sent in parallel

from all processors in row i along all columns in M . The running time is

Θ(
√
n).

4.4 Computing Parallel Prefix on the Mesh

The parallel prefix problem was defined in Section 2.5. In this section, we

show how to compute it on the linear array and the mesh. For simplicity,

we will assume addition as the binary operation. Let L be a linear array

with n processors, where each processor Pi contains item xi, 1 ≤ i ≤ n.

Assume that each processor Pi has register si. The algorithm is shown as

Algorithm laparprefix. In this algorithm, si−1 is passed to Pi, 2 ≤ i ≤ n,
where xi is added to it to produce si, as in the sequential algorithm. The

algorithm runs in time Θ(n).

Algorithm 4.1 laparprefix
Input: X = 〈x1, x2, . . . , xn〉, a sequences of n numbers.

Output: S = 〈s1, s2, . . . , sn〉, the prefix sums of X.

1. s1← x1

2. for i← 2 to n do
3. Processor Pi computes si← si−1 + xi.
4. end for

Now, we consider computing parallel prefix on the mesh. Let M be a√
n×√n mesh, and assume the row-major indexing scheme. The algorithm

is given as Algorithm meshparprefix. First, the individual prefix sums of

all rows are computed using Algorithm laparprefix. For 1 ≤ i ≤ √n,
let the prefix sums of row i be yi,1, yi,2, . . . , yi,

√
n. Note that these are not

the final prefix sums, except for row 1. Next, the prefix sums of column
√
n

are computed, again using Algorithm laparprefix. These are denoted

by s1,
√
n, s2,

√
n, . . . , s

√
n,

√
n, and they are the final prefix sums for column√

n. Finally, for all processors Pi,j , 2 ≤ i ≤ √n, 1 ≤ j ≤ √n − 1, we set

si,j← yi,j + si−1,
√
n. This implies broadcasting si−1,

√
n to row i.

Steps 1–3 take Θ(
√
n) time. Step 4 takes Θ(

√
n) time too. Steps 5–9

take Θ(1) time plus the time needed for broadcasting, which is Θ(
√
n).

Hence, the total running time of the algorithm is Θ(
√
n).
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Algorithm 4.2 meshparprefix
Input: X = 〈xi,j | 1 ≤ i, j ≤ √n〉, a sequences of n numbers.

Output: S = 〈si,j | 1 ≤ i, j ≤ √n〉, the prefix sums of X.

1. for i← 1 to
√
n do in parallel

2. Use Algorithm laparprefix to compute the prefix sums of row i.
Let these be yi,1, yi,2, . . . , yi,√n.

3. end for
4. Use Algorithm laparprefix to compute the prefix sums

of column
√
n. Let these be s1,√n, s2,√n, . . . , s√n,

√
n.

5. for i← 2 to
√
n do in parallel

6. for j← 1 to
√
n− 1 do in parallel

7. si,j← yi,j + si−1,
√

n

8. end for
9. end for

4.5 Odd–Even Transposition Sort

This sorting algorithm is for linear arrays (and rows and columns of

meshes). The algorithm is very simple. It alternates between odd steps

and even steps. At odd steps, we compare the contents of processors P1

and P2, P3 and P4, and so on exchanging values if necessary. At even steps,

we repeat the same procedure on processors P2 and P3, P4 and P5, and so

on. The algorithm takes n steps to sort its input 〈x1, x2, . . . , xn〉, one item

xi per processor Pi, 1 ≤ i ≤ n. Hence its running time is Θ(n).

Theorem 4.1 Odd–even transposition sort correctly sorts any sequence

of numbers.

Proof. By Lemma 2.1 in Section 2.10, we may assume that the input

sequence X consists of 0’s and 1’s. We prove by induction on |X | that the
algorithm sorts the binary sequence X . If n = 1 or 2, then the hypothesis

is true. So assume it is true for all sequences of size k, 1 ≤ k ≤ n − 1.

Let X = 〈x1, x2, . . . , xn〉 stored in processors P1, P2, . . . , Pn. Let xj be the

rightmost 1, where 1 ≤ j ≤ n. xj will start moving rightward in the first

or second step of the algorithm. Once it starts moving, it will subsequently

move rightward in each step until it reaches the right end — that is, until

xn = 1. Now, it remains to sort X ′ = 〈x1, x2, . . . , xn−1〉 in processors

P1, P2, . . . , Pn−1. By induction,X
′ will be sorted by the algorithm. It follows

that X will be sorted correctly by the algorithm. �
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Fig. 4.6. Example of odd–even transposition sort.

Example 4.1 An example of the algorithm is shown in Fig. 4.6. �

4.6 Shearsort

This sorting algorithm is for meshes, and it sorts n items in a
√
n×√n

mesh in snakelike order. It consists of 2 log
√
n+ 1 = logn+ 1 phases. The

algorithm alternates between odd and even phases. At odd phases, it sorts

the rows of the mesh, and at even phases, it sorts its columns. The odd

rows are sorted so that smaller numbers move leftward, and the even rows

are sorted so that smaller numbers move rightward. The columns are sorted

so that smaller numbers move upward. Odd–even transposition sort may

be used to sort the rows and columns. In this case, the running time of the

algorithm is Θ(
√
n logn). An outline of the algorithm is given as Algorithm

shearsort.

Algorithm 4.3 shearsort
Input: A sequence S = 〈a1, a2, . . . , an〉.
Output: The elements in S in sorted order.

1. for i← 1 to log n+ 1
2. if i is odd then sort all rows in snake-like order
3. else sort all columns
4. end for
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4  6    2   15

8 16 12  3

7 13  1   10

5  9  14  11
Input

(a)

Sort rows

2   4    6   15

16 12  8    3

1  7    10 13

14 11 9   5

(b)

Sort columns

1   4    6    3

2   7    8    5

14 11  9   13

16 12 10 15

(c)

Sort rows

1  3    4    6

8  7    5    2

9  11 13 14

16 15 12 10

(d)

Sort columns

1   3    4    2

8   7    5    6

9  11 12  10

16 15 13 14

(e)

Sort rows

1   2    3    4

8   7    6    5

9  10 11 12

16 15 14 13

(f)

Fig. 4.7. An illustration of Algorithm shearsort.

Example 4.2 An illustration of Algorithm shearsort is given in

Fig. 4.7. �

Theorem 4.2 Algorithm shearsort correctly sorts any sequence of n

numbers on a
√
n×√n mesh in 2 log

√
n+ 1 phases.

Proof. By Lemma 2.1 in Section 2.10, we may assume that the input

consists of 0’s and 1’s. So, let the input be initially stored in the
√
n×√n

mesh, one number per processor. A row of the mesh will be called dirty if

it consists of both 0’s and 1’s, and clean if it consists of only 0’s or only 1’s.

Initially, there may be as many as
√
n dirty rows. During the execution of

the algorithm, there will be rows all 0’s followed by dirty rows followed by

rows with all 1’s. After the algorithm terminates, there will be at most one

dirty row. Let an iteration of the algorithm consist of two phases, a row sort

phase and a column sort phase. We will show that after each iteration, at

least half of the dirty rows become clean. This will imply that after log(
√
n)

iterations there will be at most one dirty row, which can be sorted using

an additional sorting phase for a total of 2 log(
√
n) + 1 = logn+ 1 phases.

Thus, it remains to show that the number of dirty rows will decrease by a

factor of at least 2 in each iteration.

Consider two adjacent rows in an iteration after the phase of row sorting.

There are three possibilities according to whether there are more 0’s than

1’s (Fig. 4.8(a)), more 1’s than 0’s (Fig. 4.8(b)), or an equal number of

0’s and 1’s (Fig. 4.8(c)). Now, after sorting the columns of the mesh, each
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(a) (b) (c)

Fig. 4.8. Dirty rows after rows are sorted.

one of these three cases will contribute at least one clean row. If there are

more 0’s than 1’s (part (a) of the figure), then after sorting the columns,

there will be at least one more clean row consisting of all 0’s. If there are

more 1’s than 0’s (part (b) of the figure), then after sorting the columns,

there will be at least one more clean row consisting of all 1’s. If there are

equal number of 0’s and 1’s (part (c) of the figure), then after sorting the

columns, there will be two more clean rows one consisting of all 0’s and

one consisting of all 1’s. Thus the number of dirty rows will decrease by a

factor of at least 2 in each iteration. �

Corollary 4.1 If the number of dirty rows is k, then Algorithm shear-

sort performs 2 log k + 1 phases.

4.7 A Simple Θ(
√
n) Time Algorithm for Sorting on the Mesh

In this section, we derive a simple Θ(
√
n) time algorithm for sorting n

numbers on the
√
n×√nmesh. It is a divide-and-conquer algorithm, where

the mesh is first partitioned into four submeshes of size
√
n
2 ×

√
n
2 each. The

algorithm first sorts each quadrant recursively in snake-like order. It then

sorts the rows of the entire mesh in snake-like order, and finally performs five

phases of Algorithm shearsort. It is shown as Algorithm meshsortrec.

Algorithm 4.4 meshsortrec
Input: A sequence S = 〈a1, a2, . . . , an〉.
Output: The elements in S in sorted order.

1. Partition the mesh into four quadrants of size
√

n
2
×

√
n
2

each.
2. Recursively sort each quadrant in snake-like order.
3. Sort the rows of the entire mesh in snake-like order.
4. Sort the columns top-down.
5. Perform five phases of Algorithm shearsort.
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0 1 1 1 1 1 0 1 
1 0 1 0 0 1 0 1 
0 1 0 0 1 1 0 0 
0 0 1 1 1 0 0 0 
1 1 0 0 1 1 1 1 
0 0 1 0 1 1 0 1 
1 0 1 0 1 0 0 1 
1 0 0 1 0 1 0 1 

Input

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0
0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Sort recursively

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Sort rows

Apply shear sort

0  0  0  0  0  0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Sort columns

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

(a)

(d) (e)

(b) (c)

Fig. 4.9. An illustration of Algorithm meshsortrec on input of 0’s and 1’s.

Bordering
rows

After recursive
calls

After sorting
by rows

After sorting
by columns

(a)
0

0

0

0

1

1

1

1

4 Bordering
rows

(b)

0

0

1

1

balanced rows

balanced rows

(c)

0

1

4 dirty rows

Fig. 4.10. Proof of Theorem 4.3.

Example 4.3 An illustration of Algorithm meshsortrec on input of

0’s and 1’s is shown in Fig. 4.9. �

Theorem 4.3 Algorithm meshsortrec correctly sorts any sequence

of n numbers on a
√
n×√n mesh.

Proof. By the zero-one principle (Lemma 2.1 in Section 2.10), we may

consider any input sequence of 0’s and 1’s. See Fig. 4.10. After the recursive
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calls, the data in each quadrant is such that all but at most one of the rows

are either all 0’s or all 1’s (see Fig 4.10(a)). A row in the mesh is balanced if

the left half consists of all 0’s, the right half consists of all 1’s, or vice-versa.

Thus, in the entire mesh, all, but at most four of the rows are either all 0’s,

all 1’s or balanced. Call these four lines the borderline rows.

After sorting all rows, the borderline rows are sorted and both blocks

of balanced rows alternate between 1’s to the left and 1’s to the right (see

Fig 4.10(b)).

After sorting all columns, the (at most) four borderline rows will be

contiguous (see Fig 4.10(c)), and since there are at most four dirty rows,

then by Corollary 4.1, only 2 log 4+ 1 = 5 phases of Algorithm shearsort

are required to sort the numbers. �

4.8 Odd–Even Merging and Sorting on the Mesh

In this section, we implement odd–even merging and sorting on a
√
n×√n

mesh; odd–even merging and sorting on the PRAM were discussed in

Section 2.11. Let A = 〈a0, a1, . . . , an/2−1〉 and B = 〈b0, b1, . . . , bn/2−1〉
be two sorted sequences of n distinct numbers, where n is a power of 4.

Initially, A and B are input in the first and second
√
n/2 columns of the

mesh. The odd–even merging method is outlined in Algorithm meshod-

devenmerge. k, the number of columns, is input to the algorithm. In

the beginning, k =
√
n, which is a power of 2. The algorithm divides

the input into Aeven, Aodd, Beven, and Bodd, and each part occupies k/4

columns. Next, Aodd and Bodd are interchanged, and the algorithm recur-

sively merges Aeven with Bodd to produce C, and recursively merges Beven

with Aodd to produceD. C and D are then shuffled into E, which is scanned

from left to right (in one parallel step) for pairs that are out of order, which

are ordered, if necessary.

Notice that the algorithm is general for any mesh with k columns and√
n rows, where k is a power of 2. We express the running time of the

algorithm in terms of the number of columns k, 2 ≤ k ≤ √n. Step 1

takes T (2) = Θ(
√
n) time, which is the time needed to merge in a linear

array with 2
√
n processors. Steps 2 and 3 take Θ(k) time, as data has to

be routed from left to right and from right to left. Step 4 of interchanging
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Algorithm 4.5 meshoddevenmerge
Input: Two sorted sequences A = 〈a0, a1, . . . , an/2−1〉 and B =

〈b0, b1, . . . , bn/2−1〉 of n/2 elements each sorted in ascending order,
where n = 4k ≥ 4, number of columns k, 2 ≤ k ≤ √n.

Output: The elements in S = A ∪B in sorted order.

1. if k = 2 then merge the two columns using an algorithm for the linear
array to produce a sorted snake with two columns and

√
n rows. Exit.

2. Let Aeven = 〈a0, a2, . . . , an/2−2〉 and Aodd = 〈a1, a3, . . . , an/2−1〉 be the
even and odd subsequences of A, respectively. Aeven and Aodd are snakes
with k/4 columns and

√
n rows each.

3. Let Beven = 〈b0, b2, . . . , bn/2−2〉 and Bodd = 〈b1, b3, . . . , bn/2−1〉 be the
even and odd subsequences of B, respectively. Beven and Bodd are snakes
with k/4 columns and

√
n rows each.

4. Interchange Aodd with Bodd. Thus Aeven and Bodd occupy the first k/2
columns, and Beven and Aodd occupy the next k/2 columns.

5. Recursively merge Aeven and Bodd to obtain C = 〈c0, c1, . . . , cn/2−1〉, a
mesh of k/2 columns and

√
n rows.

6. Recursively merge Aodd and Beven to obtain D = 〈d0, d1, . . . , dn/2−1〉, a
mesh of k/2 columns and

√
n rows.

7. Let E be the shuffle of C and D, that is,
E = 〈c0, d0, c1, d1, . . . , cn/2−1, dn/2−1〉.

8. Traverse the pairs (ci, di) in E, 0 ≤ i ≤ n/2 − 1, and interchange the
elements in each pair if they are out of order to obtain the sorted sequence
S = 〈s0, s1, . . . , sn−1〉 in a mesh with k columns and

√
n rows.

9. return S

columns takes Θ(k) time. Steps 5 and 6 take T (k/2) time. Step 7 of shuffling

columns takes Θ(k) time. Step 8 takes Θ(1) time. Hence, the running time

of the algorithm is governed by the recurrence T (k) = T (k/2) + Θ(k),

whose solution is T (k) = Θ(k) + T (2) = Θ(k) + Θ(
√
n). When k =

√
n,

T (
√
n) = Θ(

√
n). The proof of correctness is given by Theorem 2.2 in

Section 2.11.

Example 4.4 Consider the mesh shown in Fig. 4.11. It consists of four

rows and four columns. The first input A is in the first half of the mesh,

in the first two columns in a snakelike order. The second input B is in

the last two columns in a snakelike order. A = 〈3, 5, 6, 9, 11, 13, 14, 16〉 and
B = 〈1, 2, 4, 7, 8, 10, 12, 15〉. First we partition A and B into their even and
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(a) (b) (c)

(d) (e) (f)

Fig. 4.11. An example of odd–even merging on the mesh.

odd parts. The even parts are shown in shaded squares of Fig. 4.11(a).

Thus, Aeven = {3, 6, 11, 14} is in the first column (see part (b) of the figure)

and Aodd = {5, 9, 13, 16} is in the second column. Beven = {1, 4, 8, 12} is
shown in the third column, and Bodd = {2, 7, 10, 15} is in the last column.

These are shown in part (b) of the figure. In part (c) of the figure, Aodd is

interchanged with Bodd. So, the first two columns are merged recursively

to produce C = 〈2, 3, 6, 7, 10, 11, 14, 15〉 in snakelike order, and the last

two columns are merged recursively to produce D = 〈1, 4, 5, 8, 9, 12, 13, 16〉
in snakelike order. In Fig. 4.11(e), C and D are shuffled to produce

E = 〈2, 1, 3, 4, 6, 5, 7, 8, 10, 9, 11, 12, 14, 13, 15, 16〉, which spans the four

columns in a snakelike order. The pair (2, 1) is out of order, so 2 and 1 are

exchanged. The same applies to the pair (6, 5), etc. The sorted sequence

is S = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16〉 shown in part (f) of the

figure. �

The algorithm for sorting is given as Algorithm meshoddevensort. It

is similar to Algorithm oddevenmergesort for the PRAM in Section 2.11.
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Algorithm 4.6 meshoddevensort
Input: A sequence S = 〈a0, a1, . . . , an−1〉 where n is a power of 4.

Output: The elements in S in sorted order.

1. S1← 〈a0, a1, . . . , an/2−1〉.
2. S2← 〈an/2, an/2+1, . . . , an−1〉.
3. S′

1 ← meshoddevensort(S1)
4. S′

2 ← meshoddevensort(S2)
5. S← meshoddevenmerge(S′

1, S
′
2)

6. return S

The running time of the algorithm is governed by the recurrence T (n) =

T (n/2)+Θ(
√
n), whose solution is T (n) = Θ(

√
n). The cost of the algorithm

is Θ(
√
n)× n = Θ(n1.5).

4.9 Routing on the Linear Array and the Mesh

We consider the problem of permutation routing on the linear array and the

mesh with n processors, in which every processor tries to send to a different

destination.

4.9.1 Routing in the linear array

Consider the problem of permutation routing in a linear array with n pro-

cessors. Note that n− 1 is a lower bound on the worst case number of steps

needed to route a packet at processor Pi to processor Pj , since i and j may

be equal to 1 and n, respectively. Consider the following greedy method of

routing a packet v from processor Pi to processor Pj . If Pj is to the left of

Pi, then move v to the left one step, and if Pj is to the right of Pi, then move

v to the right one step. This greedy approach is guaranteed to deliver v to

Pj using the least number of steps, which is the distance between Pi and

Pj , that is |i− j|. Note that no two packets moving in the same direction

will contend for the same link. However, two packets may use the same

(bidirectional) link if they are moving in opposite directions.
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4.9.2 Deterministic routing in the mesh

The greedy algorithm for permutation routing in the
√
n×√n mesh is a

generalization of that in the linear array. Let v be a packet to be routed

from processor Pi,j to processor Pk,l. The algorithm consists of two phases.

In the first phase, v is routed along column j towards row k, which is

the destination row. In the second phase, v is routed along row k towards

its destination processor Pk,l. In each phase, a row or column is treated

like a linear array with
√
n processors. In the first phase, there is no con-

tention on the links, which implies that all packets will arrive to their

destination row in at most
√
n − 1 steps. In the second phase, however,

many packets may pile up at an intermediate processor. For example, con-

sider the case in which all processors in column 1 need to send to row√
n/2. At each single step, processor P√

n/2,1 receives two packets; one

from the top and another from the bottom. This results in half of the

incoming packets piling up at this intermediate processor. However, using

the right protocol to arbitrate link contention results in an efficient imple-

mentation of phase 2. By giving priority to packets that need to go far-

thest, routing in the second phase can be accomplished in at most
√
n− 1

steps. It follows that using the farthest-first heuristic, all packets can be

routed to their destinations in at most 2
√
n − 2 steps. To see this, con-

sider the instance in which there is only one queue Q in row i. Let the

packets stored in Q be ui,1, ui,2, . . ., where the ui,j ’s are sorted in decreas-

ing order of the distance from their destinations. Initially, ui,1 is allowed

to move to its destination without delay. Its destination can be as far as√
n, which means the distance between Q and the target of ui,1 is at most√
n − 1. In the next step, ui,2 is allowed to move to its destination with-

out delay; it follows ui,1 and never collides with it. Note in this case that

the destination of ui,2 can be as far as
√
n − 1 because of the assump-

tion of permutation routing. Hence, it will take ui,2 to reach its destination

1+
√
n− 2 =

√
n− 1 steps. In general, it will take ui,k to reach its destina-

tion in at most k− 1+
√
n− k =

√
n− 1 steps. The generalization to more

than one queue is straightforward.
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4.9.3 Randomized routing on the mesh

Although, as we have shown, the greedy algorithm is optimal in the sense

that it uses the least amount of time, it suffers from large queues being built

up at intermediate processors. This makes the greedy algorithm impractical.

In this section, we show that using randomization, the maximum queue size

can be reduced drastically without increasing the routing time substantially.

We show that, using randomization, the routing time is 3
√
n+o(

√
n) using

queues of size O(log n) with high probability. Let v be a packet with source

Pi,j and destination Pk,l. The algorithm routes v in three phases:

Phase 1: Route v to a random intermediate processor in column j, say

processor Pr,j .

Phase 2: Send v along the same row r to its destination column l.

Phase 3: Send v to its final destination, i.e., to processor Pk,l.

In phase 1, assume that edge contention is resolved using the farthest-

first protocol. Thus, each packet moves without contention to its randomly

chosen row, and thus suffers no delays. Hence, as discussed in Section 4.9.1

for routing in the linear array, phase 1 is completed within
√
n − 1 steps

or less.

We will assume that edge contention in phase 2 is resolved by giving

priority at a processor to the packet which most recently entered that pro-

cessor. Thus, once a packet starts moving in a row, it never stops until

it reaches its destination column. Consider a packet that starts moving

at processor Pr,j in phase 2. This packet may be delayed by all packets

originating at processors Pr,1, Pr,2, . . . , Pr,j . There are at most
√
n pack-

ets at the end of phase 1 at processor Pr,j in column j. Each packet at

column j ends up at processor Pr,j with probability 1√
n
. For 1 ≤ s ≤ j,

define the random variable Xr,s to be the number of packets at processor

Pr,s at the start of phase 2. Then, Xr,s has the binomial distribution with

E[Xr,s] =
√
n× 1√

n
= 1 (see Section A.4.3). Let

Yj =

j∑
s=1

Xr,s.



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch04 page 175

The Linear Array and the Mesh 175

That is, Yj counts the total number of packets at processors Pr,1, Pr,2,

. . . , Pr,j at the start of phase 2. By linearity of expectations (see

Section A.4.3),

μ = E[Yj ] = E

[
j∑

s=1

Xr,s

]
=

j∑
s=1

E [Xr,s] =

j∑
s=1

1 = j.

(See Section A.4.3). Now, we can apply Chernoff bound in Theorem A.3 to

the probability of there being a substantial number of packets delaying a

particular packet v at processor Pr,j . The Chernoff bound is

Pr [Yj > (1 + δ)μ] = Pr

[
j∑

s=1

Xr,s > (1 + δ)μ

]
< e−μδ2/4; (δ < 2e− 1).

We compute the probability that v is delayed by j+
√

4(c+ 1)j lnn packets,

c > 0. So, we require that (1+δ)μ = j+
√
4(c+ 1)j lnn or δ =

√
4(c+1)j lnn

j .

That is,

Pr
[
Yj > j +

√
4(c+ 1)j lnn

]
< e

−
(√

4(c+1) lnn
)2

/4
= e−(c+1) lnn

= n−c−1.

Thus, the probability that v is delayed by j +
√
4(c+ 1)j lnn packets

is bounded above by n−c−1, c > 0. This is a bound for the probability

that a given packet is delayed more than j +
√
4(c+ 1)j lnn steps. But

we want to get a bound for the probability that no packet gets delayed

more than j +
√
4(c+ 1)j lnn steps. For that, it is enough to use Boole’s

inequality for probabilities as a bound (Eq. (3.1)): There are n packets in

total, and the probability that one of these packets is delayed by more than

j +
√
4(c+ 1)j lnn steps is bounded above by n × n−c−1 = n−c, c > 0.

Notice that if a packet at processor Pr,j is delayed by j +
√
4(c+ 1)j lnn,

then it takes j +
√
4(c+ 1)j lnn +

√
n − j steps for this packet to reach

its correct column. This is at most
√
n+ o(

√
n) steps. So we can make the

following assertion: With probability at least 1 − 1
nc every packet reaches

its phase 2 destination in
√
n+ o(

√
n) or fewer steps.
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In phase 3, each packet is in its correct column, and there is at most one

packet destined for each processor. We will assume that edge contention in

phase 3 is resolved using the farthest-first protocol. Hence, this phase is

completed within
√
n − 1 steps or less. Thus, the overall running time of

the randomized algorithm is 3
√
n+ o(

√
n) with probability at least 1− 1

nc ,

c > 0.

Now, we bound the queue size in all processors. At the end of phase 1 and

during phase 2, the number of packets that can accumulate at any processor

is at most
√
n. Recall that the random variable Xr,s denotes the number

of packets at processor Pr,s at the start of phase 2, and that Xr,s has the

binomial distribution with μ = E[Xr,s] =
√
n× 1√

n
= 1 (see Section A.4.3).

Now, we can apply the Chernoff bound in Theorem A.3 to the probability

of there being a substantial number of packets at processor Pr,s at the end

of phase 1 and during phase 2. The Chernoff bound is

Pr [Xr,s > (1 + δ)μ] < 2−δμ; (δ > 2e− 1).

We compute the probability that there are more than 1 + (1 + c) logn

packets, c > 0, at processor Pr,s, where μ = 1. So, we require that (1+δ)μ =

1 + (1 + c) logn, or δ = (1 + c) logn. That is,

Pr [Xr,s > 1 + (1 + c) log n] < 2−(1+c) logn

= n−(1+c).

Using Boole’s inequality (Eq. (3.1)), the probability that there is at least

one processor with queue size more than 1 + (1 + c) logn is at most n ×
n−(1+c) = n−c. It follows that in phases 1 and 2, the queue size is at

most 1 + (c + 1) logn = O(log n) with probability at least 1 − 1
nc . Since

queues can never increase during phase 3, the queue size during this phase is

O(log n).

In summary, the above randomized algorithm runs in time 3
√
n+o(

√
n)

steps and uses queues of size O(log n) with probability at least 1−O(1/nc),

c > 0. The running time can be reduced to 2
√
n + o(

√
n) by dividing

each column to strips of size
√
n

logn and routing each packet in phase 1 to

a random location in its own strip. The analysis is similar to the above.

Thus, we conclude that there is a randomized algorithm that runs in time
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2
√
n + o(

√
n) steps and uses queues of size O(log n) with probability at

least 1−O(1/nc), c > 0.

4.10 Matrix Multiplication on the Mesh

Consider the problem of matrix multiplication on the mesh: Given two

square matrices A and B of order
√
n×√n, find their product C = AB.

4.10.1 The first algorithm

In this section, we show how to perform matrix multiplication C = AB of

dimensions
√
n×√n on a 2

√
n× 2

√
n mesh. It is assumed that matrix A

is stored in the lower-left quadrant, matrix B is stored in the upper-right

quadrant, and the resultant matrix C is to be computed in the lower-right

quadrant (see Fig. 4.12 for the case
√
n = 4).

Initially, the values of the ci.j ’s are set to 0. At time 1, row 1 of matrix A

moves one step to the right and column 1 of matrix B moves one step down,

and the product of a1,
√
nb

√
n,1 is computed and added to c1,1. At time 2,

row 1 of matrix A and column 1 of matrix B continue moving in the same

directions, and row 2 of matrix A and column 2 of matrix B start moving

left to right, and top down, respectively. In general, at time k, the kth

row of matrix A and the kth column of matrix B start moving right and

a11

a21 a22 a23 a24

a34a33a32a31

a41 a42 a43 a44

a12 a13 a14 c11

c21 c22 c23 c24

c34c33c32c31

c41 c42 c43 c44

c12 c13 c14

b11

b21 b22 b23 b24

b34b33b32b31

b41 b42 b43 b44

b12 b13 b14

Fig. 4.12. Matrix multiplication, the first algorithm.
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Table 4.1. Computing c1,1 and c1,2 by the first matrix multiplication
algorithm.

Time c11 c12

1 a14b41 0
2 a14b41 + a13b31 a14b42
3 a14b41 + a13b31 + a12b21 a14b42 + a13b32
4 a14b41 + a13b31 + a12b21 + a11b11 a14b42 + a13b32 + a12b22
5 a14b41 + a13b31 + a12b21 + a11b11 a14b42 + a13b32 + a12b22 + a11b12

down, respectively. Each processor Pi,j upon receiving data from its left

and top neighbors, computes the product of these values and adds them to

the partial sum ci,j . At time k+1, each processor sends the values received

during time k to its neighboring processors in the direction they are moving.

Therefore, at time
√
n, the

√
nth row of matrix A and the

√
nth column of

matrix B start moving right and down, respectively, and additional
√
n− 1

steps are needed to reach the processor holding c√n,
√
n. Clearly, the running

time of the algorithm is Θ(
√
n).

Example 4.5 Table 4.1 shows the results of the computations of c1,1 and

c1,2 using the first matrix multiplication algorithm. The values of c1,1 and

c1,2 are determined incrementally starting at 0. Note that some of the other

computations for the rest of the ci,j ’s are done concurrently. �

4.10.2 The second algorithm

In this section, we show how to compute the matrix product C = AB of

dimensions
√
n×√n on a mesh of size n, that is, a

√
n×√n mesh. Assume

that the mesh is a wrap-around mesh (torus), so additions of indices are to

be carried out modulo
√
n. Initially, the input matrices are stored in the

mesh, where processor Pi,j holds the elements ai,j and bi,j, and the output

elements are to be stored in ci,j . The algorithm consists of two phases; the

first phase is the shifting phase, and the second phase is the multiplication

phase.

In the shifting phase, the ai,j ’s are shifted to the left, and the bi,j’s are

shifted upwards as follows. The a1,j ’s in the first row are shifted to the

left by one position, those a2,j ’s in the second row by two positions, and in
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b34

a32
b23
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b12

a34
b41

a41
b11

a42
b22

a43
b33

a44
b44

a13
b32

a14
b43

a11
b14

(a) (b)

Fig. 4.13. Matrix multiplication, the second algorithm. (a) Initial input.
(b) After the shifting phase.

general, the elements ai,j in the ith row are shifted to the left by i positions.

The bi,1’s in the first column are shifted upwards by one position, those

bi,2’s in the second column by two positions, and in general, the elements

bi,j in the jth column are shifted upwards by j positions. So, the data

is rearranged so that processor Pi,j holds ai,i+j and bi+j,j . Figure 4.13(a)

shows the initial input, and Fig. 4.13(b) shows the input after the shifting

phase.

In the multiplication phase, P1,1 evaluates c1,1 by computing the dot

product c1,1 =
∑√

n
k=1 a1,kbk,1 as in the traditional matrix multiplication

method. It does this using the following steps (see Fig. 4.13(b)):

(1) Set c1,1← a1,2b2,1.

(2) Shift the first row to the left and the first column upwards, and set

c1,1← c1,1 + a1,3b3,1.
...

(3) Shift the first row to the left and the first column upwards, and set

c1,1← c1,1 + a1,
√
n b

√
n,1 (in Fig. 4.13(b),

√
n = 4).

(4) Shift the first row to the left and the first column upwards, and compute

the final result c1,1← c1,1 + a1,1b1,1.

The computation of the rest of ci,j ’s is done in a similar fashion. The algo-

rithm is shown as Algorithm meshmatrixmult. For clarity, the ai,j ’s and

bi,j ’s will be renamed so that the contents of Pi,j after shifting will be
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Algorithm 4.7 meshmatrixmult
Input: Two

√
n×√n matrices A and B.

Output: The product C = A×B.

1. for i← 1 to
√
n do in parallel

2. Shift row i to the left i positions
3. end for
4. for j← 1 to

√
n do in parallel

5. Shift column j upwards j positions
6. end for
7. for i← 1 to

√
n do in parallel

8. for j← 1 to
√
n do in parallel

9. ci,j← ai,jbi,j
10. end for
11. end for
12. for k← 1 to

√
n− 1 do in parallel

13. for i← 1 to
√
n do in parallel

14. for j← 1 to
√
n do in parallel

15. ai,j← ai,j+1

16. bi,j← bi+1,j

17. ci,j← ci,j + ai,jbi,j
18. end for
19. end for
20. end for

called ai,j and bi,j . Recall that additions of indices are to be carried out

modulo
√
n.

Clearly, both the first phase and the second phase take Θ(
√
n) time,

and hence the running time of the entire algorithm is Θ(
√
n)

4.11 Computing the Transitive Closure on the Mesh

Let A be a
√
n×√n adjacency matrix of a directed graph G. The transitive

closure of G is represented as a
√
n × √n Boolean matrix A∗ in which

A∗(i, j) = 1 if and only if there is a path in G from i to j, where we

assume that the set of vertices is {1, 2, . . . ,√n}. Computing the transitive

closure is critical to a variety of efficient solutions to fundamental graph

problems.

Define Ak(i, j) to be 1 if and only if there is a path from i to j that

passes by vertices in the set {1, 2, . . . , k}, and 0 otherwise. A0(i, j) = A(i, j)
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is 1 if and only if there is an edge in G from i to j. Define aki,j = Ak(i, j).

Ak(i, j) is computed from the recurrence

Ak(i, j) = Ak−1(i, j) ∨ (Ak−1(i, k) ∧ Ak−1(k, j)); A0(i, j) = A(i, j).

(4.1)

By Eq. (4.1), we see that

Ak(k, k) = Ak−1(k, k) ∨ (Ak−1(k, k) ∧ Ak−1(k, k)) = Ak−1(k, k), (4.2)

Ak(k, j) = Ak−1(k, j) ∨ (Ak−1(k, k) ∧ Ak−1(k, j)) = Ak−1(k, j), (4.3)

and

Ak(i, k) = Ak−1(i, k) ∨ (Ak−1(i, k) ∧ Ak−1(k, k)) = Ak−1(i, k). (4.4)

The algorithm to be presented makes use of Eqs. (4.1)–(4.4) to compute

the transitive closure of A efficiently in parallel. Assume the n processors

are numbered P1,1, P1,2, . . . , P√
n,

√
n. The algorithm consists of

√
n phases,

where in phase k, the rows of Ak are computed from the rows of Ak−1 for

1 ≤ k ≤ √n. The rows of the matrix A0 = A are entered from the top of

the mesh starting from row 1 one at a time (see Fig. 4.14(a)), and travel

in a systolic fashion to the bottom of the mesh, where they exit starting

from row 1. We will distinguish between two states of matrix rows. The first

state is the “unmarked” state, where all rows are in the unmarked state by

default. So, all rows start as unmarked rows once they enter the mesh from

the top. The second state is the “marked” state. Matrix row i enters the

marked state once it bypasses all marked rows, and stops moving downward

when reaching row i of the mesh in step 2i − 1. It stays as a marked row

until all other rows in the matrix pass over it at step
√
n+2i− 1, where it

becomes an unmarked row and starts moving downward again towards the

bottom of the mesh.

Consider Fig. 4.14 in which the process is shown using a mesh with four

rows. The shaded rectangles are marked rows, while the small white rectan-

gles are unmarked rows. First, row 1 of the input matrix A0 is entered into

row 1 of the mesh (see Fig. 4.14(b)). It immediately becomes a marked row

in step 1. The first phase commences next where rows 2, 3, . . . ,
√
n, which

are unmarked rows, pass over the first marked row (see Figs. 4.14(c)–(e)).

Consider the first time unmarked row 2 is moved to the first row of
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Fig. 4.14. Computing the transitive closure on the mesh, where
√
n = 4.

the mesh next to the marked row 1 (see Fig. 4.14(c)). First, processor

P1,1 broadcasts a02,1 to all other processors in the first row of the mesh.

Next, for each j, 1 ≤ j ≤ √n, a02,j is updated to a12,j using the formula

a12,j = a02,j ∨ (a02,1∧a01,j). Next, row 2 of the matrix is moved to row 2 of the

mesh and becomes a marked row (Fig. 4.14(d)). Later, when unmarked row i

meets marked row 1, processor P1,1 broadcasts a0i,1 to all other processors

in the first row of the mesh. Next, for each j, 1 ≤ j ≤ √n, a0i,j is updated to

a1i,j using the formula a1i,j = a0i,j ∨ (a0i,1∧a01,j). As the unmarked rows of A0

pass over the first marked row, they are thus updated to become the rows

of A1. Once processing row i is complete by marked rows 1, 2, . . . , i − 1, it

is moved to row i of the mesh and becomes a marked row (see, for example,

row 3 in Fig. 4.14(f)).
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It should be emphasized, however, that, by Eq. (4.3), the kth row is not

processed during the kth phase. This is why, for example, row 1 was not

processed in the first phase. In general, the kth phase is accomplished as

rows 1, 2, . . . , k− 1 and k+ 1, k+ 2, . . . ,
√
n pass over the marked row k in

some order. By the time an unmarked row reaches the kth marked row in

the kth row of the mesh, it has already been updated to be a row of Ak−1.

(See Figs. 4.14(d)-(h)). As the unmarked ith row passes over the marked

kth row, processor Pk,k broadcasts ak−1
i,k to all processors in the kth row

of the mesh. Processor Pk,j in this row can update ak−1
i,j using the formula

aki,j = ak−1
i,j ∨ (ak−1

i,k ∧ ak−1
k,j ).

Recall that marked row i will be stored in the ith row of the mesh in

step 2i−1, and at step
√
n+2i−1, it becomes an unmarked row and begins

moving downward. It will exit the mesh from the bottom at step 2
√
n+i−1.

The remaining parts of Figs. 4.14 depict the rest of the algorithm. It follows

that after a total of 3
√
n− 1 steps excluding data broadcasting, A∗ = A

√
n

will have been output from the bottom of the mesh. This implies that the

overall running time is Θ(
√
n) excluding data broadcasting.

Broadcasting of data items can be accomplished efficiently by interleav-

ing it with updating the matrix elements. Figure 4.15 shows how broad-

casting at multiple rows can be interleaved with row computations. In

Fig. 4.15(a), broadcasting of ak4,k in a 4 × 4 mesh is shown for 0 ≤ k ≤ 3.

Note that broadcasting many elements can take place concurrently in the

same row. For example, broadcasting of a03,1 may be in progress in row 1

while a04,1 is moving to the right.

In Fig. 4.16, the overall data flow for the construction of transitive clo-

sure is shown without the details of synchronization; delays are required in

a4,1
0

a4,2
1

a4,4
3

a4,3
2

ai, k
k-1

ai, k
k-1 ai, k

k-1

(b)
(a)

Fig. 4.15. Interleaving broadcasting with updating elements of the transitive
closure in a 4× 4 mesh.
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(a)

ai, j
k-1

ai, j
k

ak, j
k-1ai, k

k-1 ai, k
k-1

(b)

Fig. 4.16. Data flow in computing the transitive closure in a 4× 4 mesh.

1 2 5

6

7

34

Fig. 4.17. An undirected graph with three connected components.

some data transmissions. As shown in Fig. 4.16(b), each processor computes

aki,j using the formula aki,j = ak−1
i,j ∨ (ak−1

i,k ∧ ak−1
k,j ). Thus, the construction

of the transitive closure is not performed row by row; each element of the

matrix moves downward independently.

The foregoing description implies that the overall running time of the

construction of transitive closure on a
√
n×√n mesh, including broadcast-

ing, is Θ(
√
n).

4.12 Connected Components

Let G = (V,E) be an undirected graph with adjacency matrix A and tran-

sitive closure matrix A∗ = {ai,j}. A∗ partitions V into connected compo-

nents, where two vertices ai and aj are in the same connected component

if and only if there is a path in G between them, that is, if and only if

a∗i,j = 1. Figure 4.17 shows a graph with three connected components.

Thus, to compute the connected components of G, we compute the tran-

sitive closure A∗. For example, the connected components in Fig. 4.17 are

{1, 2, 3, 4}, {5, 6}, {7}.
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4.13 Shortest Paths

Let G = (V,E) be a weighted directed graph on n vertices with no loops, in

which each edge (i, j) has a weight w[i, j]. If there is no edge from vertex i

to vertex j, then w[i, j] = ∞. For simplicity, we will assume that V =

{1, 2, . . . ,√n}. We assume that G does not have negative weight cycles,

that is, cycles whose total weight is negative. The problem is to find the

distance from each vertex to all other vertices, where the distance from

vertex i to vertex j is the length of a shortest path from i to j. Let i

and j be two different vertices in V . Define Ak(i, j) to be the shortest

distance from i to j that passes by vertices in the set {1, 2, . . . , k}, and
A0(i, j) = w(i, j). Ak(i, j) is computed from the recurrence

Ak(i, j) = min{Ak−1(i, j), Ak−1(i, k) +Ak−1(k, j)}; A0(i, j) = A(i, j).

(4.5)

By Eq. (4.5), we see that

Ak(k, j) = min{Ak−1(k, j), Ak−1(k, k) +Ak−1(k, j)} = Ak−1(k, j), (4.6)

and

Ak(i, k) = min{Ak−1(i, k), Ak−1(i, k) +Ak−1(k, k)} = Ak−1(i, k). (4.7)

Notice the resemblance between Eqs. 4.1–4.4 and Eqs. 4.5–4.7. Hence,

the algorithm for transitive closure on the
√
n×√n mesh discussed in

Section 4.11 can be used with simple modifications. Specifically, ∨ and ∧ in

Eqs. 4.1–4.4 and the rest of the algorithm for transitive closure are replaced

by min and +. It follows that computing all shortest paths can be effected

in Θ(
√
n) time on a

√
n×√n mesh, which is optimal.

4.14 Computing the Convex Hull of a Set of Points

on the Mesh

Let S = {p1, p2, . . . , pn} be a set of n points in the plane stored in a
√
n×√n

mesh one point per processor, where n is a power of 4. For definitions related

to the convex hull, refer to Section 2.20; In this section, we present two
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algorithms for computing the convex hull of S, CH(S), on the
√
n × √n

mesh; the first runs in time O(
√
n logn) and the other in time Θ(

√
n).

4.14.1 The first algorithm

The first algorithm is almost a straightforward implementation of the

PRAM algorithm presented in Section 2.20, and given in Algorithm par-

convexhull. The algorithm consists of repeated applications of the steps

given in Observations 2.2 and 2.3.

As a preprocessing step, the points in S are first sorted in ascend-

ing order of their x-coordinates in Θ(
√
n) time. So, assume that x(p1) ≤

x(p2) ≤ . . . ≤ x(pn), where x(pi) denotes the x-coordinate of point pi. We

will assume for simplicity that no three points of S are collinear, and no

two points have the same x-coordinate. Next, the set of points S is divided

into four parts S1 = {p1, p2, . . . , pn/4}, S2 = {pn/4+1, pn/4+2, . . . , pn/2},
S3 = {pn/2+1, pn/2+2, . . . , p3n/4} and S4 = {p3n/4+1, p3n/4+2, . . . , pn},
and arranged in the mesh as shown in Fig. 4.18(b). Now, we recursively

determine the four convex hulls of the four parts CH(S1), CH(S2), CH(S3)

and CH(S4). Figure 4.18(c) shows the four convex hulls of the points in

part (a) of the figure.

From CH(S1) and CH(S2), we identify CH(S1 ∪ S2), and denote the

set of vertices representing S1 ∪ S2 as P . From CH(S3) and CH(S4), we

identify CH(S3∪S4), and denote the set of vertices representing S3∪S4 as

Q. From CH(P ) and CH(Q), we identify CH(P ∪Q), which is the desired

convex hull CH(S). In what follows, we turn our attention to computing

the upper hull of P , UH(P ). Computing the lower hull of P , LH(P ), and

hence CH(P ) can be determined in a similar fashion and in parallel with

UH(P ). Finally, finding CH(Q), and hence CH(S) can be achieved by a

similar means.

The steps for finding UH(P ) and hence LH(P ) are similar to those

described in Section 2.20. In each iteration of the binary search, vertex xi
of UH(S1) is broadcast to the processors holding the vertices of UH(S2)

and one of those processors succeeds in finding its tangent line xivi with

UH(S2). Clearly, this takes Θ(
√
n) time on the

√
n
2 ×

√
n
2 mesh. Since there

are O(log n) iterations in the binary search for finding the upper common

tangent, the overall running time for finding this tangent is O(
√
n logn).

Recall that the computation of LH(P ) is done in parallel with that of
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(b)
S1 S2
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v
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S1 S2 S3 S4

(c)

v

u

S4

UH(S )1 UH(S )2 UH(S )3 UH(S )4

Fig. 4.18. (a) The set of points S. (b) Arrangement of the subsets on the mesh.
(c) Convex hulls of S1, S2, S3 and S4.

UH(P ). Clearly, the remaining work of finding UH(P ) and then CH(P )

takes Θ(
√
n) time. Hence the overall running time for finding CH(P ) from

CH(S1) ad CH(S2) is O(
√
n log n). It should be noted that finding CH(P )

and CH(Q) are done concurrently, and it remains to find CH(S), which

asymptotically takes the same running time. It follows that the running

time of the algorithm obeys the recurrence T (n) = T (n/4)+O(
√
n log n) =

O(
√
n logn).

4.14.2 The second algorithm

The algorithm to be presented is similar to the first algorithm. However,

the main difference is in the binary search and how it is conducted. In this

algorithm, the number of elements considered in iteration i is O(
√
n/2i),
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which results in Θ(
√
n) running time for the binary search. This is to be

contrasted to the first algorithm in which each iteration takes O(
√
n) for a

total of O(
√
n logn).

In what follows, we describe in detail finding the tangents using binary

search for the two sets S1 and S2. The rest of the algorithm is similar to

that of the first algorithm.

The correctness of the algorithm hinges on the following lemma (see

Fig. 4.19). Here v and u are the vertices with the minimum and maximum

x-coordinates in CH(S1), respectively, and v
′ and u′ are the vertices with

minimum and maximum x-coordinate in CH(S2), respectively.

Lemma 4.1 Let w be a vertex of CH(S1). If there is another vertex w′

of CH(S2) such that ww′ is the common upper tangent of CH(S1) and

CH(S2), then all vertices in CH(S2) must lie below the line passing by xw

and some points in CH(S2) must lie above the line passing by wy, where x

and y are the two vertices in CH(S1) immediately succeeding and preceding

w in counterclockwise order.

Proof. The tangent line must lie entirely within the wedge defined by

xw and wy. If xw is not above all points in CH(S2), then any line that

passes by w and lies entirely inside the wedge either intersects CH(S2) at

more than one point or lies below the line v′u′. On the other hand, if wy is

above CH(S2), then this wedge does not contain a point from CH(S2). In

both cases, there does not exist a common upper tangent ww′ of CH(S1)

and CH(S2). �

Lemma 4.1 suggests the following method for identifying the vertex w.

We perform binary search on the set of vertices of CH(S1). Initially, w is

assigned the hull vertex in CH(S1) that is half the way between u and

v in counterclockwise order. Next, in each iteration, we do one of the

following according to the result of the test implied by Lemma 4.1 (see

Fig. 4.19).

(a) If all vertices in CH(S2) lie below the line passing by xw and some

points in CH(S2) lie above the line passing by wy, then w, x and y

have been identified.

(b) If xw is not above CH(S2), then assign the vertex x to u and recompute

w as the middle between u and v in counterclockwise order.



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch04 page 189

The Linear Array and the Mesh 189

CH(S )
1

CH(S )2

w w’

x
y

v

v’

u u’

Fig. 4.19. Proof of Lemma 4.1

(c) If (a) above is not satisfied and xw is above CH(S2), then assign ver-

tex y to v and recompute w as the middle between u and v in counter-

clockwise order.

Example 4.6 Consider Fig. 4.20 in which the steps of binary search are

shown. In Fig. 4.20(a), the two convex hulls are shown. w is set half the

way between v and u, in counterclockwise order. The extension of the line

xw crosses CH(S2) at more than one point. Hence, the vertex x is assigned

to u. w is recomputed as half the way between u and v and x and y are

relocated as shown in Fig. 4.20(b). y is assigned to the vertex before w in

counterclockwise order, which happens to be u. Next, since the extensions

of both xw and wy are above CH(S2), v is set equal to y in Fig. 4.20(c).

Then, w, x and y are recomputed as shown in Fig. 4.20(c). In this part of

the figure, u = v = w, and the test in (a) above is satisfied, so the search is

halted, and w is declared as one end of the tangent line. �

If we perform binary search naturally, each iteration takes Θ(
√
n) for a

total of Θ(
√
n logn). Hence, an approach is needed to reduce the running

time. We will succeed if we can reduce the running time of the ith iteration

of binary search to Θ(
√
n/2i). Luckily, this can be done by eliminating

half of the vertices in CH(S1) and CH(S2) from future consideration by

binary search. Thus, after the end of each iteration of the binary search, the

remaining vertices in CH(S1) and CH(S2) are compressed using parallel

prefix. Hence, in the ith iteration, the binary search is performed on Θ(n/2i)

vertices, which means that the ith iteration takes Θ(
√
n/2i) time, including

the time required for broadcasting and data compression. This implies that
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u = y
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y

x

CH(S )1 CH(S )2

y

u

wx

CH(S )1 CH(S )2
v

(a)

(b)

(c)

Fig. 4.20. Example of binary search.

the total running time for the binary search is
∑O(log n)

i=0 Θ(
√
n/2i), which

is Θ(
√
n).

Note that in each iteration, w, x and y are broadcast to the processors

holding hull vertices in CH(S2) above the line u′v′. Then, the equations of

the two lines xw and wy are computed. The results of the tests given in

(a)–(c) above are sent to the vertices of CH(S1) above the line vu.
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Similar computations of all the above are performed to identify

w′, w′x′, y′w′ for CH(S2). It is important that identifying w and w′ be

done simultaneously, and so is data compression for the remaining data of

CH(S1) and CH(S2). This is to ensure that half the number of hull vertices

after compression in CH(S1) between v and u and in CH(S2) between v
′

and u′ are eliminated from further inspection in subsequent iterations of

the two binary searches.

Let P = S1 ∪ S2 and Q = S3 ∪ S4. Now, we construct CH(P ) =

CH(S1) ∪ CH(S2) by connecting w and w′ and z and z′ by two edges,

where zz′ is the lower tangent. Also, the vertices inside the quadrilateral

defined by w,w′, z and z′ are removed. At the same time, we construct

CH(Q) = CH(S3) ∪CH(S4), and finally CH(S)= CH(P ) ∪ CH(Q). Note

that the computations of CH(P ) and CH(Q) are done concurrently. The

above discussion implies that the overall running time of the algorithm

obeys the recurrence T (n) = T (n/4) + Θ(
√
n) = Θ(

√
n).

4.15 Labeling Connected Components

In this section, we consider the problem of labeling figures, i.e., connected

black components, of a digitized black picture on a white background. The

components are represented as n contiguous 0–1 pixel values stored on a√
n×√n mesh, where n is a power of 4. Two black pixels are neighbors

if and only if they are adjacent horizontally, vertically or diagonally. Two

black pixels are connected if they are in the same connected component.

Every processor that contains a black pixel uses its snake-like index as

the initial label of its pixel. When a labeling algorithm terminates, every

processor that contain a black pixel will store the minimum label in the

component that it belongs to. Figure 4.21 depicts an example in which

part (a) is the initial input, and part (b) is the final assignment of labels

to connected components.

4.15.1 The propagation algorithm

The first algorithm is a simple propagation algorithm. In this algorithm,

every processor that contains a black pixel (black processor) defines its ini-

tial label as its snake-like index. During each subsequent iteration of the

algorithm, every black processor sends its current component label to its

(at most) eight black neighbors. Every black processors then compares its
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Fig. 4.21. Labeling connected components.

label with the (at most) eight labels just received, and keeps the mini-

mum of these labels as its component label. This process is repeated for

each black processor until all neighboring black processors have the same

label.

Let d be the maximum internal distance between any processor P con-

taining a black pixel and the processor P ′ containing the pixel of minimum

label in its component, where the distance is measured in terms of the

number of black pixels between P and P ′. Then, the maximum number of

iterations of the algorithm is d. For instance, in Fig. 4.22, d = 4. It is easy

to see that d can be as large as Θ(n) as shown in the instance in Fig. 4.23.

Hence, the running time of the propagation algorithm is O(n).

Example 4.7 An example of the propagation algorithm is shown in

Fig. 4.22. The number of steps is 4. �

4.15.2 The recursive algorithm

The large cost of the propagation algorithm calls for another alternative

that labels the components in o(n) time. One possibility is an algorithm that

uses divide-and-conquer to label the figures in time O(
√
n) regardless of the

number or shape of the figures. In this algorithm, the pixels are partitioned

into four equal quadrants, where the components in each quadrant are

labeled independently. After the recursive calls, the only components that

may have an incorrect label are those that have a pixel on the border
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Fig. 4.22. Labeling connected components using the propagation method.
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Fig. 4.23. Worst case instance of the propagation method.
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Fig. 4.24. The recursive algorithm for labeling connected components.

between the quadrants. An example is shown in Fig. 4.24. Part (b) of the

figure is the result of the recursive calls on the instance shown in part (a).

Next, we merge components that cross the quadrant boundaries. This

will be accomplished in two phases. In the first phase, we update the labels

of pixels in components that cross the vertical boundary. In the second

phase, we update the labels of pixels in components that cross the horizontal

boundary.
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First, we describe how to merge components around the vertical bound-

ary. The first step is to apply the propagation algorithm on pixels inside the

vertical strip consisting of the two middle columns. This will take O(
√
n)

time since the number of pixels is 2
√
n.

For clarity, we will now use the two-dimensional numbering of proces-

sors. Assume that there are two registers associated with every processor in

the vertical strip: αi,j and βi,j , 1 ≤ i ≤ √n,
√
n
2 ≤ j ≤

√
n
2 +1. αi,j will hold

the label of the pixel in processor Pi,j just after the recursive calls, and βi,j
will hold the label of the pixel in processor Pi,j just after the propagation

process in the vertical boundary (for white pixels, αi,j = βi,j = 0 shown

as blank in the figure). Figure 4.24(c) depicts the two columns associated

with Fig. 4.24(b) after applying the propagation algorithm on their pixels.

For instance, as shown in these two figures, α1,5 = 5 and β1,5 = 1.

We copy the α and β values in column
√
n
2 to all columns all the way to

the left of the mesh, and the α and β values in column
√
n
2 +1 to all columns

all the way to the right. In other words, for each row i, we copy αi,
√
n/2 and

βi,
√
n/2 all the way to the left, and copy αi,

√
n/2+1 and βi,

√
n/2+1 all the

way to the right. (See Exercise 4.39 for the α and β values corresponding to

Fig. 4.24(c)). Then, we pipeline all (αi,j , βi,j) pairs vertically through every

pixel. Each time a new pair arrives, we test its α value with the label of the

current processor. If they are equal, we set the value of the pixel label equal

to the β value of the pair. Thus, every processor will inspect
√
n pairs, and

will process them in O(
√
n) time. Since this is done in parallel among all

columns, the total time for all columns is O(
√
n). Figure 4.24(d) shows the

labels after the (vertical) updates.

The second phase is symmetrical to the first phase, in which we process

the horizontal strip consisting of the two middle horizontal rows. Assume

in this phase that there are two registers associated with every processor

in the horizontal strip: αi,j and βi,j , 1 ≤ j ≤ √n,
√
n
2 ≤ i ≤

√
n
2 + 1 ,

where the β values are as defined in phase 1, and the α values are the

pixel values after the vertical update discussed above. We copy the α and β

values in row
√
n
2 + 1 to all rows all the way to the bottom. Note that we

do not need to copy row
√
n
2 to the top half of the mesh, since all labels

in the upper half of the mesh are smaller than the labels in the lower half.

Figure 4.24(e) depicts the two horizontal rows associated with Fig. 4.24(b)

after applying the propagation algorithm on their pixels. Figure 4.24(f)

shows the final labels. As in the first phase, the second phase will take
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O(
√
n) time. It follows that the overall time taken by the algorithm is

given by the recurrence T (n) = T (n/4) + Θ(
√
n) = Θ(

√
n).

4.16 Columnsort

The r × s two-dimensional mesh is a generalization of the square mesh.

It has r rows and s columns. Columnsort is a sorting algorithm designed

especially for the r×s mesh in which r ≥ 2(s−1)2. The algorithm is shown

as Algorithm columnsort. It is a generalization of Algorithm oddeven-

merge for odd–even merging. Assume an r× s mesh, where r ≥ 2(s− 1)2,

n = rs and s | r, where n is the number of elements to be sorted. The algo-

rithm sorts into column-major order, so after completion of the algorithm,

the (i, j)th entry, 0 ≤ i ≤ r − 1, 0 ≤ j ≤ s − 1, will contain the kth item,

where k = i+ jr.

There are eight steps in the algorithm. In Steps 1, 3, 5 and 7, the ele-

ments within each column are sorted. In Step 2, the elements are permuted

by performing a row-column transformation that corresponds to a trans-

pose of the matrix that defines the mesh, as shown in Fig. 4.25. Step 4 is

the reverse of Step 2, as shown in the same figure.

Step 6 of the algorithm consists of a shift of the elements by �r/2

positions, as shown in Fig. 4.26, and Step 8 is the reverse of Step 6.

a   g   m

b   h   n

c   i    o

d   j    p

e    k   q

f    l    r

a    b   c

d   e   f

g    h   i

j    k    l

m  n   o

p   q    r

transpose

untranspose

Fig. 4.25. Transpose and untranspose operations.
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     d    j   p

     e    k   q

     f    l    r
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 c   i    o

8
8

8

8-

8-

8-

Fig. 4.26. Shift and unshift operations.
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Algorithm 4.8 columnsort
Input: X = 〈x0, x1, . . . , xn−1〉, a sequences of n numbers, where n = rs.

Output: X sorted in ascending order.

1. Sort each column.
2. Perform a row-column transposition.
3. Sort each column.
4. Perform the inverse transformation of Step 2.
5. Sort each column.
6. Shift the entries by 	r/2
 positions.
7. Sort each column.
8. Perform the inverse of Step 6.

As will be shown in Lemmas 4.2 and 4.3 below, after Step 4, every ele-

ment will be within (s − 1)2 of its correct sorted position. In the special

case where r = n/2 and s = 2, the algorithm reduces to Algorithm odde-

venmerge. In Algorithm oddevenmerge, the input sequence is divided

into two subsequences of n/2 elements each. These two subsequences are

sorted as done in Step 1 of the algorithm. Then, the odd-index numbers

in each subsequence are combined to form a new subsequence, as are the

even-index numbers. This corresponds to the transpose operation in Step 2

of Algorithm columnsort. Next, each subsequence is sorted, as is done in

Step 3 of Algorithm columnsort. In Algorithm oddevenmerge, this is

done by calling the algorithm recursively. After sorting, the subsequences

are shuffled together, as is done in Step 4 of Algorithm columnsort. At

this point, every number is within (s − 1)2 = 1 of its correct sorted posi-

tion, so each number is compared and possibly exchanged with its neighbor,

which completes the sorting. In Step 5 of Algorithm columnsort, all but

the top and bottom numbers in each column are compared to their neigh-

bors by sorting the columns. Steps 6–8 ensure that comparisons are made

between numbers at the bottom of one column and the top of the next

column.

Example 4.8 An illustration of the algorithm is shown in Fig. 4.27. The

input is shown in Fig. 4.27(a). Notice that, for simplicity, we have chosen

r = 6 and s = 3 even though it does not satisfy the constraint r ≥ 2(s−1)2.

The results of applying Steps 1–8 are shown in Figs. 4.27(b)–(i). �

An equivalent sorting method is given by Algorithm columnsort2.

Here, the shift operation has been replaced by sorting the columns in
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Fig. 4.27. Illustration of Algorithm columnsort.

alternating order in Step 5, and applying two steps of Odd-Even trans-

position sort to each row in Step 6.

Algorithm 4.9 columnsort2
Input: X = 〈x0, x1, . . . , xn−1〉, a sequences of n numbers, where n = rs.

Output: X sorted in ascending order.

1. Sort each column.
2. Perform a row-column transposition.
3. Sort each column.
4. Perform the inverse transformation of Step 2.
5. Sort each column in alternating order.
6. Apply two steps of Odd-Even transposition sort to each row.
7. Sort each column.

Example 4.9 An illustration of Algorithm columnsort2 is shown in

Fig. 4.28. The input is shown in Fig. 4.28(a). The results of applying Steps

1–7 are shown in Figs. 4.28(b)–(h). �

We now prove the correctness of Algorithm columnsort. Recall that

rank(x, S) is the number of elements less than x in S.
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7  9   12

4  16  1

18  5  14

2  17  8

15 11 6

10  3  13

Input

(a) 2   3    1

4   5    6

7   9    8

10 11 12

15 16 13

18 17 14

Step 1

(b)

Step 2

2   4    7

10 15 18

3   5    9

11 16 17

1   6    8

12 13 14

(c)

Step 3

1   4    7

2   5    8

3   6    9

10 13 14

11 15 17

12 16 18

(d)

Step 4

1   3  11

4   6  15

7   9  17

2  1012

5 13 16

8 14 18

(e)

Step 5

1  14 11

2  13 12

4  10 15

5   9   16

7   6   17

8   3  18

(f)

Step 6

1  11 14

2  12 13

4  10 15

5   9   16

6   7   17

3   8  18

(g)

Step 7

1   7   13

2   8   14

3   9   15

4  10 16

5  11 17

6  12 18

(h)

Fig. 4.28. Illustration of Algorithm columnsort2.

Lemma 4.2 Let S be a sequence of rs elements to be sorted by Algorithm

columnsort in an r × s mesh, and let x be any element in S that is in

position (i, j) of the mesh after Step 3 of the algorithm. Then, rank(x, S)

is at least is+ js− (s− 1)2.

Proof. From the position of x after Step 3, we know that x is greater

than or equal to at least i+1 elements in the jth column of the mesh after

Step 2. Let αk denote the number of these i + 1 elements that originally

come from column k of the mesh, i.e., before Step 2 transposed the elements.

By definition,

i+ 1 =

s−1∑
k=0

αk. (4.8)

Since only the jth and every sth element thereafter of the sorted kth column

after Step 1 appear in the jth column after Step 2, this means that x is

greater than or equal to at least (αk−1)s+j+1 elements in the kth column

of the mesh after Step 1. Hence, the true rank of x is at least

s−1∑
k=0

[(αk − 1)s+ j + 1]− 1. (4.9)
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Substituting i + 1 for
∑s−1

k=0 αk in (4.9) and simplifying, we find that the

true rank of x is at least

is+ js− (s− 1)2.

�

Example 4.10 We illustrate the proof of Lemma 4.2. Let x = 12 in

Fig. 4.27. As is evident from Fig. 4.27(d), i = 3 and j = 1 (Recall that

indices start from 0). After Step 3 (Fig. 4.27(d)), there are i + 1 = 4

elements on or above the (i, j)th entry. These elements are {2, 4, 5, 12}.
Thus, α0 = α1 = 1 and α2 = 2. The true rank of x is at least is+ js− (s−
1)2 = 3× 3 + 1× 3− 4 = 8. �

Lemma 4.3 Let S be a sequence of rs elements to be sorted by Algorithm

columnsort in an r × s mesh, and let x be any element in S that is in

position (i, j) of the mesh after Step 3 of the algorithm. Then, rank(x, S)

is at most is+ js.

Proof. We use an argument similar to that in Lemma 4.2. From the

position of x after Step 3, we know that x is less than or equal to at least

r − i elements in the jth column of the mesh after Step 2. Let βk denote

the number of these r − i elements that originally come from column k of

the mesh, i.e., before Step 2 transposed the elements. By definition,

r − i =
s−1∑
k=0

βk. (4.10)

Since only the jth and every sth element thereafter of the sorted kth column

after Step 1 appear in the jth column after Step 2, this means that x is

less than or equal to at least (βk − 1)s+ s− j elements in the kth column

of the mesh after Step 1. Hence, the number of elements greater than or

equal to x is at least

s−1∑
k=0

[(βk − 1)s+ s− j]. (4.11)
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Substituting r − i for ∑s−1
k=0 βk in (4.11) and simplifying, we find that the

number of elements greater than or equal to x is at least

(r − i)s− js = rs− is− js.

Hence, the true rank of x is at most

rs− (rs − is− js) = is+ js.

�

Example 4.11 We illustrate the proof of Lemma 4.3. Let x = 5 in

Fig. 4.27. As is evident from Fig. 4.27(d), i = 2 and j = 1 (Recall that

indices start from 0). After Step 3 (Fig. 4.27(d)), there are r− i = 6−2 = 4

elements on or below the (i, j)th entry. These elements are {5, 12, 14, 15}.
Thus, β0 = 2, β1 = β2 = 1. The true rank of x is at most is + js =

2× 3 + 1× 3 = 9. �

Theorem 4.4 Let S be a sequence of rs elements to be sorted by Algo-

rithm columnsort in an r × s mesh, and let x be any element in S that

is in position (i, j) of the mesh after Step 3 of the algorithm. Then, the

position of x after Step 4 is within (s− 1)2 from its correct position.

Proof. Consider an element x that is in position (i, j) of the mesh after

Step 3. Clearly, x is sent to a position in Step 4 that corresponds to a

rank of

is+ j (4.12)

in the sorted list. (Recall our convention that the smallest number has

rank zero). By Lemma 4.2, rank(x, S) is at least is+ js− (s− 1)2. Hence,

subtracting this quantity from (4.12), the position of x after Step 4 is at

most

(is+ j)− (is+ js− (s− 1)2) = (s− 1)2 − j(s− 1) ≤ (s− 1)2

beyond its correct position. By Lemma 4.3, rank(x, S) is at most is + js.

Hence, subtracting (4.12) from this quantity, the position of x after Step 4
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is at most

(is+ js)− (is+ j) = j(s− 1) ≤ (s− 1)2

short of its correct sorted position. Thus, we have established that every

element is within (s−1)2 of its correct position after Step 4 of the algorithm.

�

Theorem 4.5 Algorithm columnsort correctly sorts an arbitrary

sequence of rs elements in an r × s mesh with r ≥ 2(s− 1)2.

Proof. By Theorem 4.4, we only need to show that Steps 5–8 will be

sufficient to finish the sorting. For simplicity, we assume that every number

is within �r/2
 of its correct sorted position. Since r ≥ 2(s − 1)2, we are

always guaranteed that this condition is met after completion of Step 4.

After Step 5, every number that belongs in the top half of column j is

in the top half of column j or the bottom half of column j − 1, and every

number that belongs in the bottom half of column j is in the bottom half of

column j or the top half of column j+1. Otherwise, some number would be

more than �r/2
 away from its correct position. Hence, Steps 6–8 complete

the sorting. �

4.17 3-dimensional Mesh

A 3-dimensional mesh of sides m = n1/3 can be viewed as a connection of

m successive levels of 2-D meshes of size m×m. It has n = m3 processors

and 3m3 − 3m2 links. Two processors are connected by a two-way link if

and only if they differ in precisely one coordinate and if the absolute value

of the difference in that coordinate is 1 (see Fig. 4.29). In this figure, m = 4

and n = 64.

In 3-D mesh, the degree of each node is between 3 and 6, so meshes are

not regular. Of course, the degree of a corner vertex is less than the degree

of an internal vertex. The diameter is 3(m− 1) = Θ(n1/3).

4.17.1 Sorting on 3-dimensional meshes

Consider the problem of sorting n = m3 numbers on a 3-dimensional mesh

with n processors in lexicographic zyx-order. In a zyx-ordering, elements
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(3,0,0)

(3,1,0)

(3,2,0)

(3,3,0)

(0,0,0)

(0,1,0)

(0,2,0)

(0,3,0) (0,3,1) (0,3,2) (0,3,3)

(0,2,1) (0,2,2) (0,2,3)

(0,1,1) (0,1,2) (0,1,3)

(0,0,1) (0,0,2) (0,0,3)

(3,3,1) (3,3,2) (3,3,3)

(3,2,1) (3,2,2) (3,2,3)

(3,1,1) (3,1,2) (3,1,3)

(3,0,1) (3,0,2) (3,0,3)

Fig. 4.29. A 3-dimensional mesh.

of processors in the plane with coordinate z = 0 come first, followed by

those with z = 1, and so on. The xy-planes are sorted in yx-order, that is,

in columnwise order. The following algorithm needs just five steps, where

each step sorts numbers within 2-D meshes. These steps are outlined in

Algorithm threedmeshsort.

Algorithm 4.10 threedmeshsort
Input: n = m3 elements stored in a 3-D mesh.

Output: The elements sorted in ascending zyx-order.

1. Sort all xz-planes in zx-order.
2. Sort all yz-planes in zy-order.
3. Sort all xy-planes in yx-order. Reverse the order on every other plane.
4. Perform one Odd-Even and one even-odd transposition within all columns

in parallel.
5. Sort all xy-planes in yx-order.
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Recall that a dirty row is a row consisting of 0’s and 1’s. A dirty plane

is one containing at least one dirty row or column. A z-column is a column

of processors parallel to the z-axis. A 0-row is a row of 0’s and no 1’s.

Theorem 4.6 Algorithm threedmeshsort correctly sorts a given

sequence of numbers in zyx-order.

Proof. By the zero-one principle (Lemma 2.1 in Section 2.10), we may

consider any input sequence of 0’s and 1’s. After Step 1 is completed, in

every xz-plane, there is at most one dirty row and therefore the difference

in the number of zeroes between any two z-columns in the same xz-plane

is at most one. Hence, any two yz-planes can differ in at most m 0’s. It

follows that after Step 2 is completed, the difference in the number of

0-rows between any two yz-planes is at most one, which means that all

dirty rows can span at most two adjacent xy-planes. If there is only one

dirty xy-plane, we can go directly to Step 5 and we are done. If there are

two dirty xy-planes, Steps 3 and 4 eliminate at least one of them and Step 5

completes the sorting. �

Example 4.12 Figure 4.30 illustrates the algorithm on a sequence of 0’s

and 1’s shown in part (a). First, the xz-planes are sorted in Fig. 4.30 (b).

Next, the yz-planes are sorted in Fig. 4.30 (c). In this part of the figure,

both the middle and top xy-planes are dirty, and so Steps 3 and 4 are

needed, as shown in parts (d) and (e) of the figure. Finally, Fig. 4.30(f)

shows the result after Step 5 is executed, in which the input is sorted. Note

that there is only one dirty plane, the middle xy-plane. �

Example 4.13 Figure 4.31 illustrates the algorithm on a sequence of

integers shown in part (a). First, the xz-planes are sorted in Fig. 4.31 (b).

Next, the yz-planes are sorted in Fig. 4.31 (c). The xy-planes are then
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Fig. 4.30. Sorting in the 3-D mesh of 0’s and 1’s

sorted in reverse order according to Step 3 of the algorithm as shown in

part (d) of the figure. Next, two iterations of odd–even sort are executed,

and the result is shown in Fig. 4.31(e). Finally, Fig. 4.31(f) shows the result

after Step 5 is executed, in which the input is sorted. �
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Fig. 4.31. Sorting in the 3-D mesh of arbitrary numbers
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4.19 Exercises

4.1. What are the expansion and load of the embedding of the linear

array into the mesh shown in Fig. 4.4 (page 161)? How about the

embedding of the mesh into the linear array shown in Fig. 4.5?

4.2. Explain how to broadcast an item x in an arbitrary processor to all

other processors in the ring with n processors.

4.3. Describe an algorithm to find the sum of all elements {x1, x2, . . . , xn}
stored in a

√
n×√n mesh and store the sum in all processors. How

many steps are required by the algorithm?

4.4. One method to smooth a picture is as follows. Let p be the pixel in

the middle of a square of a 3× 3 square of pixels. Replace the value

of p by the average of all the 3 × 3 pixels. Suggest a computation

model to solve this problem, and show how to solve it.

4.5. What is the bisection width of the
√
n × √n mesh? Assume

√
n is

even.

4.6. Give a lower bound on the problems of sorting and routing on the

mesh.

4.7. What is the bisection width of the
√
n × √n torus? Assume

√
n is

even (see Fig. 4.2).

4.8. Give a recursive algorithm to find the maximum of n numbers stored

in a
√
n×√n mesh. Analyze its running time.
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4.9. Give a recursive algorithm to find the prefix sums of n numbers

x1, x2, . . . , xn stored in a
√
n×√n mesh. Analyze its running time.

4.10. Illustrate your solution to Exercise 4.9 on the input 〈1, 2, 3, . . . , 16〉.

4.11. The transpose of a matrix A, denoted by AT , is the matrix whose

columns are the rows of A. That is, if

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
...

...
...

an,1 an,2 . . . an,n

⎤
⎥⎥⎥⎥⎥⎥⎦

then

AT =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1,1 a2,1 . . . an,1

a1,2 a2,2 . . . an,2

...
...

...
...

a1,n a2,n . . . an,n

⎤
⎥⎥⎥⎥⎥⎥⎦

Given the matrix A stored one element per processor in an n × n
mesh, show how to compute AT . What is the number of steps in

your algorithm?

4.12. Apply the algorithm for odd–even transposition sort on the input

〈3, 7, 5, 2〉. Assume a linear array with four processors.

4.13. Consider Algorithm merge-split, which is a generalization of odd–

even transposition sort for the case p < n. Let S be a sequence

of numbers to be sorted, and assume that each of the p proces-

sors in the linear array holds a subsequence of S of length n/p.

In Algorithm merge-split, the comparison-exchange operations of

odd–even transposition sort are replaced with merge-split operations

on subsequences. Let Si denote the subsequence held by processor Pi.

In Step 1, each Pi sorts Si using a sequential algorithm. In Step 2

each odd-numbered processor Pi merges the two subsequences Si

and Si+1, into a sorted sequence S′
i. It retains the first half of S′

i
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and assigns to its neighbor Pi+1 the second half. Step 3 is identical

to 2 except that it is performed by all even-numbered processors.

Steps 2 and 3 are repeated alternately. After �p/2� iterations, no

further exchange of elements can take place between two processors,

where an iteration consists of Steps 2 and 3. Analyze the running

time of this algorithm.

4.14. Do Exercise 4.13 for the case p = logn. Is the algorithm optimal?

4.15. Consider the problem of permutation routing on the mesh with n

processors, in which every processor tries to send to a different des-

tination. Outline a sorting-based algorithm to route every packet to

its destination. Compare your algorithm with the greedy algorithm.

4.16. Modify your algorithm in Exercise 4.15 so that it works for the more

general one-to-one routing problem, in which not every processor is

the source of a packet. Note here that no processors Pi and Pj send

to the same destination.

4.17. Illustrate the operation of the odd–even merging algorithm on the

input:

A = 〈1, 9, 8, 17, 3, 11, 14, 12〉 and B = 〈2, 5, 15, 7, 13, 9, 16, 10〉.

Assume a mesh of 16 processors.

4.18. Show how to compute the prefix sums on the mesh for the snakelike

indexing scheme.

4.19. In a window broadcast, we start with data in the top left w × w

submesh of a
√
n ×√n mesh, where w | √n, that is, w divides

√
n.

Following the window broadcast operation, the initial w × w win-

dow tiles the entire mesh. Outline an algorithm to implement this

operation. What is the running time of your algorithm?

4.20. Give an algorithm to evaluate the polynomial an−1x
n−1+an−2x

n−2+

· · · + a1x + a0 at the point x0 on the
√
n ×√n mesh. Assume that

each ai is stored in processor Pi, 0 ≤ i ≤ n − 1 (the processors

are indexed as P0, P1, . . . , Pn−1). What is the running time of your

algorithm?
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4.21. Consider the following method for sorting on the mesh. The method

alternately sorts all rows from left to right and all columns from

top to bottom. Will this method always work in sorting any input?

Assume an unlimited amount of time.

4.22. Consider sorting the rows and then the columns of a 2× n mesh M .

Does this leave the rows in sorted order?

4.23. This is a generalization of Exercise 4.22. Consider sorting the rows

and then the columns of a general n × n mesh. Does this leave the

rows in sorted order?

4.24. Let A = 〈a1, a2, . . . , an〉 be a sequence of elements stored in the

processors of a
√
n×√n mesh, one element per processor, and let x

be a given element. Design an algorithm for the search problem in

the mesh: If ai = x for some i, 1 ≤ i ≤ n, then return i, else return 0.

Analyze its running time.

4.25. How many steps are required by the matrix multiplication algorithm

on the mesh of Section 4.10.1?

4.26. Show the results of the computations of c1,3 and c1,4 in the matrix

multiplication algorithm on the mesh of Section 4.10.1.

4.27. Give an algorithm for the
√
n×√n mesh to determine whether a

given graph G is cyclic or acyclic. What is the running time of your

algorithm?

4.28. Let G be a connected undirected and unweighted graph on n vertices.

A breadth-first spanning tree for G is a spanning tree that can be

obtained by performing breadth-first traversal on G starting at some

vertex, say r. Equivalently, a breadth-first spanning tree of G is a

tree in which every path from the root to any vertex is of shortest

length, where the distance is measured in terms of number of edges.

Present an efficient algorithm to find such a tree for the
√
n×√n

mesh. What is the running time of your algorithm?

4.29. Suggest another algorithm for computing the transitive closure of a

matrix A different from the one given in Section 4.11. What is the

running time of the algorithm?
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4.30. Suggest another algorithm for computing the shortest paths in a

directed graph G different from the one given in Section 4.13. What

is the running time of the algorithm?

4.31. Illustrate the operation of Algorithm columnsort discussed in

Section 4.16 on the input

17, 1, 18, 12, 8, 10, 11, 2, 4, 14, 5, 6, 9, 13, 15, 16, 7, 3,

where n = 18. Assume an r × s mesh, where r = 6 and s = 3.

4.32. Illustrate the operation of Algorithm columnsort2 discussed in Sec-

tion 4.16 on the input

8, 10, 11, 2, 4, 14, 5, 6, 17, 1, 18, 12, 9, 13, 15, 16, 7, 3,

where n = 18. Assume an r × s mesh, where r = 6 and s = 3.

4.33. Explain why Algorithm columnsort does not work on square

meshes.

4.34. This exercise is similar to Exercise 2.12. Consider Algorithm

columnsort discussed in Section 4.16. If we let s = 2, then the

algorithm reduces to Algorithm oddevenmerge in Section 2.11 for

odd–even merging with the even part of A merged with the even

part of B and the odd part A merged with the odd part of B. Let A

and B be the first and second columns after Step 1, respectively.

Let C and D be the first and second columns after Step 3, respec-

tively. Let E be the whole list after Step 5. Assume the elements

in A ∪ B are distinct. Given a sequence X and an element x, recall

that rank(x,X) is the number of elements in X less than x. Express

rank(x,C) and rank(x,D) in terms of rank(x,A) and rank(x,B).

4.35. This exercise is similar to Exercise 2.13. Use the result of Exercise

4.34 to show that for c ∈ C, either c is in its correct position in E or

to the right of it.

4.36. This exercise is similar to Exercise 2.14. Use the result of Exercise

4.34 to show that for d ∈ D, either d is in its correct position in E

or to the left of it.
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Fig. 4.32. Exercise 4.37.

23

19

2

14
15

25

11
26

6

18
27

5 22

1

7

24

17

812

10

21

16
13

20

4
9

3

Fig. 4.33. Exercise 4.38.

4.37. Illustrate the operation of the algorithm for sorting on a

3-dimensional mesh/sorting on 3-dimensional meshes on the input

shown in Fig. 4.32.

4.38. Illustrate the operation of the algorithm for sorting on a

3-dimensional mesh/sorting on 3-dimensional meshes on the input

shown in Fig. 4.33.

4.39. Compute the values of α and β corresponding to Fig. 4.24(c).

4.20 Solutions

4.1. What are the expansion and load of the embedding of the linear array

into the mesh shown in Fig. 4.4? How about the embedding of the

mesh into the linear array shown in Fig. 4.5?

In both embeddings, the expansion is 1. The load is also 1 in both

embeddings, as precisely one node is mapped to each image node.

4.2. Explain how to broadcast an item x in an arbitrary processor to all

other processors in the ring with n processors.
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One copy of x moves n/2 steps to the left, and another copy moves

n/2 steps to the right.

4.3. Describe an algorithm to find the sum of all elements {x1, x2, . . . , xn}
stored in a

√
n×√n mesh and store the sum in all processors. How

many steps are required by the algorithm?

Find the sum of all numbers and store it in processor P1. Next,

broadcast the sum to all other processors. The number of steps is

(2
√
n − 2) + (2

√
n − 2) = 4

√
n − 4. See Exercise 8.5 for a more

efficient implementation.

4.4. One method to smooth a picture is as follows. Let p be the pixel in

the middle of a square of a 3× 3 square of pixels. Replace the value

of p by the average of all the 3 × 3 pixels. Suggest a computation

model to solve this problem, and show how to solve it.

The mesh is the natural model to solve this problem. Do smoothing

for all squares in parallel.

4.5. What is the bisection width of the
√
n × √n mesh? Assume

√
n is

even.

If we consider a mesh of size n, and cut it by a line through the

center, the line will cut
√
n links. Hence, the bisection width of the

mesh is
√
n.

4.6. Give a lower bound on the problems of sorting and routing on the

mesh.

Since all n data items may have to cross from one side of the mesh

to the other, at least �n/√n� = Ω(
√
n) time is required just to get

data across the middle of the mesh (see Exercise 4.5). That is, the

lower bound is Θ(
√
n)

4.7. What is the bisection width of the
√
n × √n torus? Assume

√
n is

even (see Fig. 4.2).

If we consider a torus of size n, and cut it by a line through the

center, the line will cut 2
√
n links. Hence, the bisection width of the

torus is 2
√
n.
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4.8. Give a recursive algorithm to find the maximum of n numbers stored

in a
√
n×√n mesh. Analyze its running time.

Assume the processors are numbered as P1, P2, . . . , Pn, and that n

is a power of 4. Partition the mesh into four submeshes of the same

size, that is, of size
√
n
2 ×

√
n
2 each. Recursively find the maximum in

each quadrant, and store the result in the processor near the center of

the mesh. Finally, find the maximum of the four computed maxima,

and route it to processor P1. The running time is governed by the

recurrence T (n) = T (n/4)+Θ(
√
n), whose solution is T (n) = Θ(

√
n).

4.9. Give a recursive algorithm to find the prefix sums of n numbers

x1, x2, . . . , xn stored in a
√
n×√n mesh. Analyze its running time.

Assume that n is a power of 4. For convenience, assume also the

proximity indexing scheme shown in Fig. 6.7. First, partition the

mesh into four submeshes of the same size, that is, of size
√
n
2 ×

√
n
2

each. Recursively find the prefix sum in each quadrant, and store the

final prefix sum yj in the processor closest to the center of the mesh.

This takes Θ(
√
n) time since it requires sending the final sums to the

appropriate processors near the center. At this point, y1 = x1 +x2+

· · ·+xn/4, y2 = xn/4+1+xn/4+2+ · · ·+xn/2, y3 = xn/2+1+xn/2+2+

· · · + x3n/4, and y4 = x3n/4+1 + x3n/4+2 + · · · + xn. Next, find the

prefix sums of y1, y2, y3, y4 and store them in registers z1, z2, z3, z4.

Now, rotate the values stored in registers zj ; that is, for j = 1, 2, 3,

set zj+1← zj, and set z1← 0. Note that finding the prefix sums of

y1, y2, y3, y4 and rotating the zj ’s take constant time. Finally, for j =

1, 2, 3, 4, broadcast zj to all processors in quadrant j, and add zj to all

prefix sums computed earlier in quadrant j. This broadcasting step

takes Θ(
√
n) time. It follows that the running time of the algorithm is

governed by the recurrence T (n) = T (n/4)+Θ(
√
n), whose solution

is T (n) = Θ(
√
n). A summary of the algorithm is shown as Algorithm

meshprefixsumrec.

4.10. Illustrate your solution to Exercise 4.9 on the input 〈1, 2, 3, . . . , 16〉.
The algorithm in the solution of Exercise 4.9 is illustrated in

Figs. 4.34 and 4.35. The input is shown in Fig. 4.34(a). The pre-

fix sums of the four partitions are shown in Fig. 4.34(b). Part (c) of

the figure shows the four final prefix sums — that is, the totals of
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Algorithm 4.11 meshprefixsumrec
Input: n numbers x1, x2, . . . , xn stored in a mesh of size n, one element per

processor.

Output: The prefix sums s1, s2, . . . , sn.

1. if n = 1 then set s1← x1 and exit
2. Partition the mesh into four submeshes of size

√
n
2
×

√
n
2

each. Recursively
find the prefix sum in each quadrant, and store the final prefix sum in the
processor closest to the center of the mesh in register yj , j = 1, 2, 3, 4.

3. Find the prefix sums of y1, y2, y3, y4 and store them in z1, z2, z3, z4.
4. Rotate the values stored in zj : for j = 1, 2, 3: set zj+1← zj , and set z1← 0.
5. For j = 1, 2, 3, 4, broadcast zj to all processors in quadrant j.
6. Every processor Pi in the mesh sets si← si + zj .

all elements in each quadrant. These are the contents of registers yj,

j = 1, 2, 3, 4. The prefix sums of these four values is computed in

part (d). Next, these prefix sums are rotated in part (e), and y1 is

set to 0. Now, these entries are broadcast in all four quadrants as

shown in part (f). Finally, Fig. 4.35 shows the final prefixes after

summing the entries in part (f) with those in part (b) of Fig. 4.34.

4.11. The transpose of a matrix A, denoted by AT , is the matrix whose

columns are the rows of A. That is, if

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
...

...
...

an,1 an,2 . . . an,n

⎤
⎥⎥⎥⎥⎥⎥⎦

then

AT =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1,1 a2,1 . . . an,1

a1,2 a2,2 . . . an,2

...
...

...
...

a1,n a2,n . . . an,n

⎤
⎥⎥⎥⎥⎥⎥⎦
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Fig. 4.34. Example of Algorithm meshprefixsumrec for finding the prefix sums
on the mesh recursively (Exercise 4.10).
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Fig. 4.35. Solution to Exercise 4.10 continued.
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Given the matrix A stored one element per processor in an n × n
mesh, show how to compute AT . What is the number of steps in

your algorithm?

This is a special case of the routing problem. Assume the processors

are numbered as P1,1, P1,2, . . . , Pn,n. The elements in the diagonal

will not change; only elements below the diagonal and elements above

the diagonal will change. The elements of A will move in parallel. An

element below the diagonal stored in processor Pi,j moves rightward

until it reaches the diagonal where it switches direction and moves

upward until it reaches processor Pj,i. An element above the diagonal

stored in processor Pk,l moves downward until it reaches the diag-

onal where it switches direction and moves leftward until it reaches

processor Pl,k. The number of steps is 2n − 2 since element a1,n in

processor P1,n requires this number of moves.

4.12. Apply the algorithm for odd–even transposition sort on the input

〈3, 7, 5, 2〉. Assume a linear array with four processors.

Similar to Example 4.1.

4.13. Consider Algorithm merge-split, which is a generalization of odd–

even transposition sort for the case p < n. Let S be a sequence

of numbers to be sorted, and assume that each of the p proces-

sors in the linear array holds a subsequence of S of length n/p.

In Algorithm merge-split, the comparison-exchange operations of

odd–even transposition sort are replaced with merge-split operations

on subsequences. Let Si denote the subsequence held by processor Pi.

In Step 1, each Pi sorts Si using a sequential algorithm. In Step 2

each odd-numbered processor Pi merges the two subsequences Si

and Si+1, into a sorted sequence S′
i. It retains the first half of S′

i

and assigns to its neighbor Pi+1 the second half. Step 3 is identical

to 2 except that it is performed by all even-numbered processors.

Steps 2 and 3 are repeated alternately. After �p/2� iterations, no

further exchange of elements can take place between two processors,

where an iteration consists of Steps 2 and 3. Analyze the running

time of this algorithm.

There are p phases, where an iteration consists of two phases. The

first phase, the sorting step, takes O(np log n
p ) time. The merge-split



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch04 page 218

218 Parallel Algorithms

phases after that takeO(np ) time each for a total of O(n) time. Hence,

the running time is O(max{np log n
p , n}).

4.14. Do Exercise 4.13 for the case p = logn. Is the algorithm optimal?

If p = logn, then the running time is Θ(n), which is optimal.

4.15. Consider the problem of permutation routing on the mesh with n

processors, in which every processor tries to send to a different des-

tination. Outline a sorting-based algorithm to route every packet to

its destination. Compare your algorithm with the greedy algorithm.

Sort the packets into column-major order according to the column

destination of each packet. It can be shown that this algorithm uses

queues of size 1, since there is never any contention for edges. If we

use a Θ(
√
n) sorting algorithm, the running time will be Θ(

√
n).

However, the running time is more than the greedy algorithm by a

constant factor.

4.16. Modify your algorithm in Exercise 4.15 so that it works for the more

general one-to-one routing problem, in which not every processor is

the source of a packet. Note here that no processors Pi and Pj send

to the same destination.

First, sort the packets into column-major order according to the col-

umn destination of each packet. Then, route each packet to its correct

column, and then on to its correct destination. It can be shown that

this algorithm uses queues of size 1, since there is never any con-

tention for edges. If we use a Θ(
√
n) sorting algorithm, the running

time will be Θ(
√
n). However, the running time is more than the

greedy algorithm by a constant factor.

4.17. Illustrate the operation of the odd–even merging algorithm on the

input:

A = 〈1, 9, 8, 17, 3, 11, 14, 12〉 and B = 〈2, 5, 15, 7, 13, 9, 16, 10〉.

Assume a mesh of 16 processors.

Similar to Example 4.4.
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4.18. Show how to compute the prefix sums on the mesh for the snakelike

indexing scheme.

Similar to that for the row-major indexing scheme discussed in Sec-

tion 4.4.

4.19. In a window broadcast, we start with data in the top left w × w

submesh of a
√
n × √n mesh, where w | √n, that is w divides

√
n.

Following the window broadcast operation, the initial w × w win-

dow tiles the entire mesh. Outline an algorithm to implement this

operation. What is the running time of your algorithm?

The data in the initial window simply moves to the bottom and to

the right. The algorithm takes 2(
√
n− w) steps.

4.20. Give an algorithm to evaluate the polynomial an−1x
n−1+an−2x

n−2+

· · · + a1x + a0 at the point x0 on the
√
n ×√n mesh. Assume that

each ai is stored in processor Pi, 0 ≤ i ≤ n − 1 (the processors

are indexed as P0, P1, . . . , Pn−1). What is the running time of your

algorithm?

Compute the sequence 1, x0, x
2
0, . . . , x

n−1
0 using parallel prefix. Each

xj0 is stored in Pj , 0 ≤ j ≤ n−1. Next, compute the products aj×xj0,
0 ≤ j ≤ n − 1. Finally, compute the sum a0 + a1x0 + a2x

2
0 + · · · +

an−1x
n−1
0 . The total running time is Θ(

√
n).

4.21. Consider the following method for sorting on the mesh. The method

alternately sorts all rows from left to right and all columns from

top to bottom. Will this method always work in sorting any input?

Assume an unlimited amount of time.

The method will not work in sorting any input. We will succeed in

showing this, if we can exhibit an example in which the method does

not terminate, or terminates before sorting the input. We will choose

the latter. Let M =

∣∣∣∣∣x1,1 x1,2

x2,1 x2,2

∣∣∣∣∣
where x1,1 = 3, x1,2 = 2, x2,1 = 1 and x2,2 = 4. After sorting by rows

and then by columns, M becomes:

Mh =

∣∣∣∣2 3

1 4

∣∣∣∣ Mv =

∣∣∣∣1 3

2 4

∣∣∣∣ .



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch04 page 220

220 Parallel Algorithms

Clearly, Mv is sorted by rows and by columns, but the input is not

sorted. So, the method terminated without sorting the input.

4.22. Consider sorting the rows and then the columns of a 2× n mesh M .

Does this leave the rows in sorted order?

Call a column Cj of the mesh “good” if sorting that column leaves the

rows sorted. We prove by induction on the number of columns that

all columns are good, and hence sorting the mesh by columns leaves

the rows sorted. If all columns are unsorted, then there is nothing

to prove, as exchanging the two rows leaves them sorted. So, assume

without loss of generality that column C1 = 〈x1,1, x2,1〉 is sorted, that
is, x1,1 < x2,1. Hence, column C1 is good by assumption. Assume for

the induction hypothesis that column Ck−1 is good, 1 < k < n. We

show that column Ck is also good. We have the following situation:

M =

∣∣∣∣∣x1,1 . . . x1,k−1 x1,k . . .

x2,1 . . . x2,k−1 x2,k . . .

∣∣∣∣∣ .
By induction, x1,k−1 < x2,k−1 < x2,k. If x1,k > x2,k, then we have

the following situation after sorting column Ck:

M =

∣∣∣∣∣x1,1 . . . x1,k−1 x2,k . . .

x2,1 . . . x2,k−1 x1,k . . .

∣∣∣∣∣ .
In this case, we have x1,k−1 < x2,k−1 < x2,k < x1,k, whence x1,k−1 <

x2,k and x2,k−1 < x1,k. Thus, column Ck is good, and, by induction,

all columns are good. It follows that if all columns are sorted, then

the rows will remain sorted.

4.23. This is a generalization of Exercise 4.22. Consider sorting the rows

and then the columns of a general n × n mesh. Does this leave the

rows in sorted order?

Call a column Cj of the mesh “good” if sorting that column leaves the

rows sorted. We prove by induction on the number of columns that

all columns are good, and hence sorting the mesh by columns leaves

the rows sorted. Let the first column be C1 = 〈x1,1, x2,1, . . . , xn,1〉
and let C1 after sorting be C′

1 = 〈x′1,1, x′2,1, . . . , x′n,1〉. Thus, we have

x′j,1 ≤ xj,1 for 1 ≤ j ≤ n. Since row i is sorted, and since x′i,1 ≤
xi,1, we have x′i,1 ≤ xi,2. Therefore, we may assume without loss of



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch04 page 221

The Linear Array and the Mesh 221

generality that column C1 is sorted. Hence, column C1 is good by

assumption. Assume for the induction hypothesis that column Ck−1

is good, 1 < k < n. We show that column Ck is also good. We have

the following situation:

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣

...
...

. . . xi,k−1 xi,k . . .
...

...

. . . xj,k−1 xj,k . . .
...

...

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

We show that sorting column k leaves the rows sorted. We will use

selection sort algorithm to sort column k. Recall that this algorithm

sorts by interchanging the elements to be sorted if they are out of

order. Let xi,k and xj,k, where i < j, be the next two numbers

in column k to be interchanged because xi,k > xj,k. We have the

following situation for columns k − 1 and k after the interchange of

xi,k and xj,k:

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣

...
...

. . . xi,k−1 xj,k . . .
...

...

. . . xj,k−1 xi,k . . .
...

...

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where xi,k−1 < xi,k and xj,k−1 < xj,k. By Exercise 4.22, exchanging

xi,k and xj,k will leave the two rows i and j sorted. Now, the pro-

cedure is repeated for each pair xi′,k and xj′,k that are out of order

until column k is sorted. Thus, column Ck is good, and, by induction,

all columns are good. It follows that if all columns are sorted, then

the rows will remain sorted.

4.24. Let A = 〈a1, a2, . . . , an〉 be a sequence of elements stored in the

processors of a
√
n×√n mesh, one element per processor, and let x

be a given element. Design an algorithm for the search problem in

the mesh: If ai = x for some i, 1 ≤ i ≤ n, then return i, else return 0.

Analyze its running time.
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Assume the processors are numbered P1, P2, . . . , Pn. First, initialize

the search index k← 0, which is stored in P1. Next broadcast x to

all processors in Θ(
√
n) time. Each processor Pj now compares aj

with x. If aj = x, then processor Pj sends j to P1 in Θ(
√
n) time,

which sets k← j. Note that we have assumed here that the aj ’s are

distinct. The total running time is Θ(
√
n).

4.25. How many steps are required by the matrix multiplication algorithm

on the mesh of Section 4.10.1?

The
√
nth row (and column) will start moving in the

√
nth step,

and it needs
√
n− 1 steps to arrive at the processor holding c√n,

√
n.

Hence, the total number of steps is 2
√
n− 1.

4.26. Show the results of the computations of c1,3 and c1,4 in the matrix

multiplication algorithm on the mesh of Section 4.10.1.

Similar to Table 4.1 in Example 4.5.

4.27. Give an algorithm for the
√
n×√n mesh to determine whether a

given graph G is cyclic or acyclic. What is the running time of your

algorithm?

Let A be the adjacency matrix of G. Find A∗, the transitive closure

of A. G is cyclic if and only if there is a 1 in the diagonal of A∗. The
running time is Θ(

√
n).

4.28. Let G be a connected undirected and unweighted graph on n vertices.

A breadth-first spanning tree for G is a spanning tree that can be

obtained by performing breadth-first traversal on G starting at some

vertex, say r. Equivalently, a breadth-first spanning tree of G is a

tree in which every path from the root to any vertex is of shortest

length, where the distance is measured in terms of number of edges.

Present an efficient algorithm to find such a tree for the
√
n×√n

mesh. What is the running time of your algorithm?

Define the weight matrix w by: w[i, j] = 1 if there is an edge between i

and j, and w[i, j] =∞ if there is no such edge. Use the shortest paths

algorithm to find the distance d[r, j] from r to every other vertex j.

Then, d[r, j] is the level of vertex j. For all vertices in V (G) − {r},
select an edge that connects a vertex at level l to a vertex at level
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l − 1. The resulting tree is a breadth-first spanning tree for G. The

running time is Θ(
√
n).

4.29. Suggest another algorithm for computing the transitive closure of a

matrix A different from the one given in Section 4.11. What is the

running time of the algorithm?

Use an algorithm analogous to the one for the PRAM presented

in Section 2.17. Recall that this algorithm computes the transitive

closure by squaring the adjacency matrix �logn� times. Thus, the

running time is Θ(
√
n logn).

4.30. Suggest another algorithm for computing the shortest paths in a

directed graph G different from the one given in Section 4.13. What

is the running time of the algorithm?

Use an algorithm analogous to the one for the PRAM presented in

Section 2.18. The running time is Θ(
√
n logn).

4.31. Illustrate the operation of Algorithm columnsort discussed in Sec-

tion 4.16 on the input

17, 1, 18, 12, 8, 10, 11, 2, 4, 14, 5, 6, 9, 13, 15, 16, 7, 3,

where n = 18. Assume an r × s mesh, where r = 6 and s = 3.

Similar to Example 4.8.

4.32. Illustrate the operation of Algorithm columnsort2 discussed in Sec-

tion 4.16 on the input

8, 10, 11, 2, 4, 14, 5, 6, 17, 1, 18, 12, 9, 13, 15, 16, 7, 3,

where n = 18. Assume an r × s mesh, where r = 6 and s = 3.

Similar to Example 4.9.

4.33. Explain why Algorithm columnsort does not work on square

meshes.

Note that after Step 4, every number will be within (s − 1)2 of its

correct sorted position. Thus, if we let r = s =
√
n, every number

will be within (
√
n− 1)2 = Θ(n) of its correct sorted position, which
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means that nothing is gained by applying the algorithm on a square

mesh.

4.34. This exercise is similar to Exercise 2.12. Consider Algorithm

columnsort discussed in Section 4.16. If we let s = 2, then the

algorithm reduces to Algorithm oddevenmerge in Section 2.11 for

odd–even merging with the even part of A merged with the even

part of B and the odd part A merged with the odd part of B. Let A

and B be the first and second columns after Step 1, respectively.

Let C and D be the first and second columns after Step 3, respec-

tively. Let E be the whole list after Step 5. Assume the elements

in A ∪ B are distinct. Given a sequence X and an element x, recall

that rank(x,X) is the number of elements in X less than x. Express

rank(x,C) and rank(x,D) in terms of rank(x,A) and rank(x,B).

Let x ∈ A ∪B. Then,

rank(x,C) =

⌈
rank(x,A)

2

⌉
+

⌈
rank(x,B)

2

⌉
,

and

rank(x,D) =

⌊
rank(x,A)

2

⌋
+

⌊
rank(x,B)

2

⌋
.

4.35. This exercise is similar to Exercise 2.13. Use the result of Exer-

cise 4.34 to show that for c ∈ C, either c is in its correct position in

E or to the right of it.

For x ∈ X , let pos(x,X) be the position of x in the sequenceX , where

pos(x,X) ≥ 0. Thus, if X is sorted, then pos(x,X) = rank(x,X).

For c ∈ C, let r1 = rank(c, A) and r2 = rank(c, B), and rc = r1 + r2.

Either c ∈ A or c ∈ B. If c ∈ A, then r1 is even since pos(c, A) is

even, and it follows that the position of c in E is

pos(c, E) = 2 rank(c, C)

= 2
⌈
r1
2

⌉
+ 2
⌈
r2
2

⌉
≤ r1 + (r2 + 1), since r1 is even

= rc + 1.

Since rc = r1 + r2 ≤ 2
⌈
r1
2

⌉
+ 2
⌈
r2
2

⌉
= pos(c, E), we have

rc ≤ pos(c, E) ≤ rc + 1. (4.13)



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch04 page 225

The Linear Array and the Mesh 225

Thus, either pos(c, E) = rc or pos(c, E) = rc + 1. That is, either c is

in its correct position in E or to the right of it.

On the other hand, if c ∈ B, then r2 is even since pos(c, B) is even,

and we get the same inequalities.

4.36. This exercise is similar to Exercise 2.14. Use the result of Exer-

cise 4.34 to show that for d ∈ D, either d is in its correct position in

E or to the left of it.

For x ∈ X , let pos(x,X) be the position of x in the sequenceX , where

pos(x,X) ≥ 0. Thus, if X is sorted, then pos(x,X) = rank(x,X).

For d ∈ D, let r3 = rank(d,A), r4 = rank(d,B) and rd = r3 + r4. If

d ∈ A then r3 is odd since pos(d,A) is odd. It follows that if d ∈ A,
then the position of d in E is

pos(d,E) = 2 rank(d,D) + 1

= 2
⌊
r3
2

⌋
+ 2
⌊
r4
2

⌋
+ 1

≤ (r3 − 1) + (r4) + 1, since r3 is odd

= rd.

Since rd − 1 = (r3 − 1) + (r4) ≤ 2
⌊
r3
2

⌋
+ 2
⌊
r4
2

⌋
+ 1 = pos(d,E), we

have

rd − 1 ≤ pos(d,E) ≤ rd. (4.14)

Thus, either pos(d,E) = rd or pos(d,E) = rd − 1. That is, either d

is in its correct position in E or to the left of it.

If d ∈ B, then r4 is odd, and we get the same inequalities.

4.37. Illustrate the operation of the algorithm for sorting on a

3-dimensional mesh/sorting on 3-dimensional meshes on the input

shown in Fig. 4.36.
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Fig. 4.36. Exercise 4.37.
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Fig. 4.37. Exercise 4.38.
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Fig. 4.38. The values of α and β corresponding to Fig. 4.24(c)(Exercise 4.39).

Similar to Example 4.12.

4.38. Illustrate the operation of the algorithm for sorting on 3-dimensional

mesh on the input shown in Fig. 4.37.

Similar to Example 4.13.

4.39. Compute the values of α and β corresponding to Fig. 4.24(c).

The values of α and β corresponding to Fig. 4.24(c) are shown in

Fig. 4.38. Part (a) of the figure shows the values of α and β computed

in the middle two columns, and part (b) shows the α and β values

after copying them to their corresponding rows. In this figure, α is

shown on the top and β on the bottom. The values with α = β = 0

are not shown.
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Chapter 5

Fast Fourier Transform

5.1 Introduction

The Fourier transform has a wide range of applications in science and engi-

neering. We will describe a version of Fourier transform called discrete

Fourier transform(DFT), and present a fast method for computing the

DFT, called the fast Fourier transform(FFT).

Let r and θ be the polar coordinates of the point (x, y) corresponding

to the complex number z = x + iy, where i =
√−1. Since x = r cos θ and

y = rsin θ, z can be written in polar form as z = r(cos θ + isin θ). Using

Euler’s formula eiθ = cos θ + isin θ, z can also be written as z = reiθ .

For n ≥ 2, the n distinct roots of the equation xn− 1 = 0 are called the

n roots of unity. Define the complex number

ω = ei2π/n = cos 2π
n + i sin 2π

n .

ω is called a primitive nth root of unity, which means ωn = 1 and ωj �= 1

for 0 < j < n. If ωn = 1, then (ωj)n = (ωn)j = 1. Hence, the remaining

complex roots of unity are the powers of ω. That is, 1 = ω0, ω, ω2, . . . , ωn−1

constitute the n distinct roots of unity, where

ωk = ei2πk/n = cos 2πk
n + i sin 2πk

n .

Pictorially, these roots are distributed in the complex plane evenly

around the circumference of the unit circle. Figure 5.1 illustrates the n

roots of unity for n = 2, 4, 8, which are powers of 2. As shown in the figure,

227
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ω = 10ω = -1  
ω = 10ω = -12  

ω = -i3

ω = i1

ω = 10ω = -14

ω = -i2

ω = i6

ω = (1/2) + (1/2)i1ω = -(1/2) + (1/2)i3

ω = -(1/2) -(1/2)i5 ω = (1/2) -(1/2)i7

(a)  n = 2. (b)  n = 4.

(c)  n = 8.

Fig. 5.1. The n roots of unity for n = 2, 4, 8.

the pairs ωj and ωj+n/2 are symmetrically located with respect to the ori-

gin. Algebraically, we have ωj+n/2 = −ωj (Property 5.2), and in particular,

ωn/2 = −1.
Let a be the column vector [a0, a1, . . . , an−1]

T , where n is a power of 2.

Let Fn be the Vandermonde matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2n−2

...
...

...
...

...

1 ωn−2 ω2(n−2) . . . ω(n−1)(n−2)

1 ωn−1 ω2(n−1) . . . ω(n−1)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Then, the product b = Fna is called the Discrete Fourier Transform (DFT)

of a.

Thus, computing the DFT b of a vector a is equivalent to evaluating the

polynomial P (x) = a0+a1x+. . .+an−1x
n−1 at the points 1, ω, ω2, . . . , ωn−1.
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It is easy to see that the DFT of a vector a can be computed in Θ(n2)

sequential time and Θ(logn) parallel time using n2/ logn processors on

the PRAM. We now show that it can be computed in optimal Θ(n logn)

sequential time and Θ(logn) parallel time using n processors on the PRAM.

The efficiency of the algorithm is based on the following properties of the

n roots of unity.

Property 5.1 For even n, if ω is an nth root of unity, then ω2 is an

(n/2)th root of unity.

Property 5.2 For even n, ωk+n/2 = −ωk.

For 0 ≤ i < n/2, bi can be expressed as

bi =

n−1∑
j=0

(ωi)jaj

= (ωi)0a0 + (ωi)1a1 + · · ·+ (ωi)n−1an−1

= (ωi)0a0 + (ωi)2a2 + · · ·+ (ωi)n−2an−2

+(ωi)1a1 + (ωi)3a3 + · · ·+ (ωi)n−1an−1

=

(n/2)−1∑
j=0

(ωi)2ja2j +

(n/2)−1∑
j=0

(ωi)2j+1a2j+1

=

(n/2)−1∑
j=0

(ω2i)ja2j + ωi

(n/2)−1∑
j=0

(ω2i)ja2j+1. (5.1)

Since

(ωi+(n/2))k =

{
ωki if k is even

−ωki if k is odd,

we have

bi+(n/2) =

(n/2)−1∑
j=0

(ω2i)ja2j − ωi

(n/2)−1∑
j=0

(ω2i)ja2j+1. (5.2)

By Eqs. (5.1) and (5.2), Fna is computed recursively from F(n/2)ae and

F(n/2)ao, where ae and ao are, respectively, the even and odd parts of a.



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch05 page 230

230 Parallel Algorithms

Let

c = F(n/2)

⎛
⎜⎜⎜⎜⎜⎝

a0
a2
a4
...

an−2

⎞
⎟⎟⎟⎟⎟⎠ and d = F(n/2)

⎛
⎜⎜⎜⎜⎜⎝

a1
a3
a5
...

an−1

⎞
⎟⎟⎟⎟⎟⎠

Then, for 0 ≤ i < n/2, Eqs. (5.1) and (5.2) can be rewritten as

bi = ci + ωidi, (5.3)

and

bi+n/2 = ci − ωidi. (5.4)

On the PRAM, this gives rise to the recurrence T (n) = T (n/2)+Θ(1),

which solves for T (n) = Θ(logn). The number of processors needed is Θ(n).

Example 5.1 Let a = [1, 2, 3, 4]T . In this example, we compute F4a,

where

F4 =

⎛
⎜⎜⎝

1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠ .

Since F2 =
(

1 1
1 −1

)
, c =

(
1 1
1 −1

)(
1
3

)
=
(

4
−2

)
, and d =

(
1 1
1 −1

)(
2
4

)
=(

6
−2

)
. By Eq. (5.3), b0 = c0 + i0d0 = 10, and b1 = c1 + i1d1 = −2 − 2i,

since ω = i. By Eq. (5.4), b2 = c0−i0d0 = −2, and b3 = c1−i1d1 = −2+2i.

Hence,

b = F4a =

⎛
⎜⎜⎝

10

−2− 2i

−2
−2 + 2i

⎞
⎟⎟⎠ ,

as can be verified by direct multiplication. �
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level 3 level 2 level 1 level 0
c0 b0

c1 b1

c2 b2

c3 b3

d0 b4

d1 b5

d2 b6

d3 b7

Fig. 5.2. Implementation of FFT on the butterfly for n = 8.

5.2 Implementation on the Butterfly

By Eqs. 5.3 and 5.4, the implementation of the Fourier transform on the

d-dimensional butterfly, where n = 2d, is straightforward. These two equa-

tions are implemented naturally on the butterfly as shown in Fig. 5.2 for

n = 8. The bi’s are computed recursively in level 0, and ci’s and di’s are

computed recursively in level 1, and so on. As an example in the figure, b3
is computed as b3 = c3 + ω3d3 and b6 is computed as b6 = c2 − ω2d2.

Each parallel step is carried out by one level of the butterfly. Hence,

the number of parallel steps can be expressed by the recurrence T (n) =

T (n/2) + 1, whence the number of steps is equal to d = logn.

5.3 Iterative FFT on the Butterfly

Unfolding recursion in the FFT algorithm discussed above results in a

simple iterative procedure for computing Fna on the d-dimensional but-

terfly, where n = 2d. The algorithm proceeds in the reverse order, from

level d to level 0, where the processors in level d contain the input.
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If a = [a1, a2, . . . , an]
T , then aj is stored in node (jR, d), where jR is the

number whose representation in binary is the reverse of the representation

of j. For example, if j = 1, and the number of bits is 3, then jR = 4.

The reason for this renumbering is that in the recursive algorithm, the

items are divided into even and odd. The items are divided into two halves;

those even in the upper half have 0 as their most significant bit, and those

odd in the lower half have 1 as their most significant bit. Appending 0’s

and 1’s is repeated recursively with repeated divisions into even and odd

halves.

The algorithm proceeds in d phases corresponding to levels d − 1,

d − 2, . . . , 0, where the output of each phase except the last is the input

to the next. Each phase is carried out in one parallel step, for a total of d

parallel steps. In phase 1, the algorithm starts by evaluating the contents

of the processors at level d−1. Each pair of consecutive processors perform

the multiplication F2u, where u is the vector of corresponding pair of val-

ues entered at level d. F2u is not computed using the recursive algorithm

discussed above, or using direct matrix multiplication; it is computed using

Eqs. (5.3) and (5.4). There are n/2 computations of the products F2u.

Next, in phase 2, each group of four consecutive processors in level d − 2

perform the multiplication F4v using Eqs. (5.3) and (5.4), where v is the

vector of corresponding four elements computed in phase 1 while processing

level d− 1. There are n/4 computations of the products F4v. This process

of doubling the group size in each phase and computing the Fourier trans-

forms using Eqs. (5.3) and (5.4) is repeated in the following phases, phases

3, 4, . . . , d, until the final product Fna is computed. In general, in phase j,

n/2j computations of F2jw in level d − j are carried out using Eqs. (5.3)

and (5.4).

Example 5.2 (See Fig. 5.3). As in Example 5.1, let a = [1, 2, 3, 4]T . We

compute F4a. The input is entered into level d = 2, where aj is stored in

node (jR, d), as explained above. In phase 1 of the algorithm, the contents

of the processors at level d− 1 = 1 are evaluated. Each pair of consecutive

processors perform the multiplication F2u using Eqs. 5.3 and 5.4, where u

is the vector of corresponding pair of values entered at level 2. For example,

the contents of node (0, 1) are computed as c0 + (−1)0d0 = 1+ (−1)03 = 4

(here ω = −1). Similarly, the contents of node (1, 1) are computed as
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c + (-1) d = 40

0

0
c + i d  = 100

0
0

c + i d  = -2 - 2i11

c  - i d  = -20
0

0

c  - i d  = -2 + 2i11

c - (-1) d = -20

0

0

c + (-1) d = 60

0

0

c - (-1) d = -20

0

0

3 

1 

2 

4 

level 2 level 1 level 0ω = −1 ω = i

0c

0c

1c

1c

0c

0c

0c

0c 0d

0d
1d

1d

0d

0d

0d

0d

Fig. 5.3. Iterative FFT on the butterfly.

c0 − (−1)0d0 = 1 − (−1)03 = −2. Hence, F2u =
(

1 1
1 −1

)(
1
3

)
=
(

4
−2

)
.

Likewise, in the lower half of level 1,
(

1 1
1 −1

)(
2
4

)
=
(

6
−2

)
. Next, in

phase 2, the group of four consecutive processors in level 0 perform the

multiplication F4v using Eqs. 5.3 and 5.4, where v = [4,−2, 6,−2]T is the

vector of corresponding four elements computed in phase 1. For example,

the contents of node (0, 0) are computed as c0 + i0d0 = 4 + i06 = 10

(here ω = i). Similarly, the contents of node (1, 0) are computed as

c1 + id1 = −2 + i(−2) = −2 − 2i. Likewise, the contents of nodes (2, 0)

and (3, 0) are computed as −2 and −2 + 2i, respectively. Hence,

F4a = F4v =

⎛
⎜⎜⎝

1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠
⎛
⎜⎜⎝

4

−2
6

−2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

10

−2− 2i

−2
−2 + 2i

⎞
⎟⎟⎠ .

This conforms with the result obtained in Example 5.1. �
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5.4 The Inverse Fourier Transform

The inverse of the matrix Fn turns out to be easy to describe:

for 1 ≤ k < n, the kth row of nF−1
n is the n− kth row of Fn:

F−1
n =

1

n

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

1 ωn−1 ω2(n−1) . . . ω(n−1)2

1 ωn−2 ω2(n−2) . . . ω(n−1)(n−2)

...
...

...
...

...

1 ω2 ω4 . . . ω2n−1

1 ω ω2 . . . ωn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Simplifying yields another easy description of F−1
n :

F−1
n =

1

n

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

1 ω−1 ω−2 . . . ω−(n−1)

1 ω−2 ω−4 . . . ω−2(n−1)

...
...

...
...

...

1 ω−(n−2) ω−2(n−2) . . . ω−(n−2)(n−1)

1 ω−(n−1) ω−2(n−1) . . . ω−(n−1)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

That is,

(F−1
n )ij =

ω−ij

n
.

So, the inverse of Fn is 1/n times the Fourier transform matrix of a different

primitive root of unity, namely ω−1.

To show that it is indeed the inverse of Fn, we need the following

property.

Property 5.3 Since

n−1∑
j=0

ωj =
ωn − 1

ω − 1
=

1− 1

ω − 1
= 0,

we have

n−1∑
j=0

ωij =

{
0 if i �≡ 0(mod n)

n if i ≡ 0(mod n).
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By Property 5.3, we have

(Fn × F−1
n )ij =

1

n

n−1∑
k=0

ωikω−kj

=
1

n

n−1∑
k=0

ωk(i−j)

= 1 if i = j and 0 otherwise.

Example 5.3

Since F4 =

⎛
⎜⎜⎝
1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠, F−1

4 =
1

4

⎛
⎜⎜⎝
1 1 1 1

1 −i −1 i

1 −1 1 −1
1 i −1 −i

⎞
⎟⎟⎠

as can be easily verified. �

Clearly, the algorithm for the inverse Fourier transform is the same as

the algorithm for FFT described above.

5.5 Product of Polynomials

Let f(x) be a polynomial of degree n− 1, that is,

f(x) = a0 + a1x+ · · ·+ an−1x
n−1.

A point-value representation of f(x) is a sequence of n (point, value) pairs

〈(x0, f(x0)), (x1, f(x1)), . . . , (xn−1, f(xn−1))〉

such that the xj ’s are distinct. The process of computing the coefficients of

f(x) from its point-value representation is called interpolation. For example,

the pairs 〈(0, 1), (2, 3)〉 is a representation of the polynomial f(x) = x+ 1,

whose coefficients can be obtained by interpolating this sequence of (point,

value) pairs.
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Let f(x) and g(x) be two polynomials of degree n− 1, where

f(x) =

n−1∑
j=0

ajx
j and g(x) =

n−1∑
j=0

bjx
j ,

where n is a power of 2. The product polynomial h(x) is given by

h(x) = f(x)g(x) =

2n−1∑
j=0

cjx
j ,

where c2n−1 = 0.

Recall that if a is a vector of n coefficients of the polynomial f(x), then

Fna denotes the vector consisting of the values of f(x) evaluated at the n

roots of unity. Likewise, Fnb denotes the vector consisting of the values of

g(x) evaluated at the n roots of unity. That is,⎛
⎜⎜⎜⎝

f(ω0)

f(ω1)
...

f(ωn−1)

⎞
⎟⎟⎟⎠ = Fn

⎛
⎜⎜⎜⎝

a0
a1
...

an−1

⎞
⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎝

g(ω0)

g(ω1)
...

g(ωn−1)

⎞
⎟⎟⎟⎠ = Fn

⎛
⎜⎜⎜⎝

b0
b1
...

bn−1

⎞
⎟⎟⎟⎠ .

By inverting Fn, we can perform the process of interpolation, which in

the above functions obtains the ai’s from the vector of f(ωi)’s, and the bi’s

from the vector of g(ωi)’s. That is,⎛
⎜⎜⎜⎝

a0
a1
...

an−1

⎞
⎟⎟⎟⎠ = F−1

n

⎛
⎜⎜⎜⎝

f(ω0)

f(ω1)
...

f(ωn−1)

⎞
⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎝

b0
b1
...

bn−1

⎞
⎟⎟⎟⎠ = F−1

n

⎛
⎜⎜⎜⎝

g(ω0)

g(ω1)
...

g(ωn−1)

⎞
⎟⎟⎟⎠ .

The componentwise product of vectors Fna and Fnb is⎛
⎜⎜⎜⎝

f(ω0)g(ω0)

f(ω1)g(ω1)
...

f(ωn−1)g(ωn−1)

⎞
⎟⎟⎟⎠ ,

where f(ωi)g(ωi) = h(ωi), 0 ≤ i ≤ n − 1. By taking the inverse Fourier

transform of the componentwise product of vectors Fna and Fnb, we can

obtain h(x) in its coefficient form. There is a little difficulty, however. Given
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a polynomial p(x) of degree m in its (point, value) pairs, it is well-known

that m+ 1 points are needed in order to reconstruct p(x) in its coefficient

form. The componentwise product of Fna and Fnb provides the values of

h(x) at only n points, but h(x) is of degree 2n− 2. Hence, we extend f(x)

and g(x) to degree 2n − 1 by adding zeros for the terms with degree n

through 2n − 1. Thus, define a′ = [a0, a1, a2, . . . , an−1, 0, 0, . . . , 0]
T , and

b′ = [b0, b1, b2, . . . , bn−1, 0, 0, . . . , 0]
T . We compute the coefficients of h(x)

as ⎛
⎜⎜⎜⎝

c0
c1
...

c2n−1

⎞
⎟⎟⎟⎠ = F−1

2n

⎛
⎜⎜⎜⎝

f(ω0)g(ω0)

f(ω1)g(ω1)
...

f(ω2n−1)g(ω2n−1)

⎞
⎟⎟⎟⎠ .

Note here that ω is the 2nth primitive root of unity. In summary, to con-

struct the product h(x) = f(x)g(x), we do the following steps:

(1) Compute c1 = F2na
′, and c2 = F2nb

′.
(2) Perform the componentwise product d = c1 	 c2.

(3) Interpolate by computing the inverse Fourier transform c = F−1
2n d.

(4) Output c = [c0, c1, c2, . . . , c2n−1]
T .

Steps 1 and 3 take Θ(logn) parallel time on the d-dimensional butter-

fly using Θ(n logn) operations. Step 2 takes Θ(1) parallel time. Hence, the

algorithm for computing the product of two polynomials requires Θ(n logn)

operations, and runs in Θ(logn) parallel time on the logn-dimensional but-

terfly. This is much more efficient than the Θ(n2) direct multiplication algo-

rithm.

Example 5.4 Let f(x) = 1+2x and g(x) = 1+3x. We will compute the

product h(x) = f(x)g(x) using the fast Fourier transform. Write f(x) = ax,

where a = [1, 2], and x = [1, x]T , and g(x) = bx, where b = [1, 3]. Let

a′ = [1, 2, 0, 0]T and b′ = [1, 3, 0, 0]T . Then,

c1 = F4a
′ =

⎛
⎜⎜⎝
1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1

2

0

0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

3

1 + 2i

−1
1− 2i

⎞
⎟⎟⎠ .
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Similarly,

c2 = F4b
′ =

⎛
⎜⎜⎝
1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1

3

0

0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

4

1 + 3i

−2
1− 3i

⎞
⎟⎟⎠ .

Now, we compute c1 	 c2, which is the componentwise multiplication

of c1and c2.

c1 	 c2 =

⎛
⎜⎜⎝

3

1 + 2i

−1
1− 2i

⎞
⎟⎟⎠	

⎛
⎜⎜⎝

4

1 + 3i

−2
1− 3i

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

12

−5 + 5i

2

−5− 5i

⎞
⎟⎟⎠ .

Next, we interpolate.

c = F−1
4 (c1 	 c2)

=
1

4

⎛
⎜⎜⎝
1 1 1 1

1 −i −1 i

1 −1 1 −1
1 i −1 −i

⎞
⎟⎟⎠
⎛
⎜⎜⎝

12

−5 + 5i

2

−5− 5i

⎞
⎟⎟⎠ =

1

4

⎛
⎜⎜⎝

4

20

24

0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1

5

6

0

⎞
⎟⎟⎠ .

Hence, h(x) = 1 + 5x+ 6x2, as can be verified by direct multiplication. �

Computing the product of more than two polynomials can be found in

the exercises (see Exercises 5.5, 5.6 and 5.7).

5.6 Computing the Convolution of Two Vectors

Given two vectors

a = a0, a1, . . . , an−1 and b = b0, b1, . . . , bm−1,

the convolution of a and b, denoted by a ⊗ b, is defined as the vector

c = [c0, c1, . . . , cm+n−1]
T , such that

ci =

i∑
j=0

ajbi−j ,
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where aj = 0 for j > n−1, and bj = 0 for j > m−1. Convolution is closely

related to polynomial multiplication. So, if

f(x) =
n−1∑
j=0

ajx
j and g(x) =

m−1∑
j=0

bjx
j ,

then the kth term in f(x)g(x) is the kth element in the vector a⊗b. Thus,

to find the convolution of a and b, use the DFT algorithm to compute the

product f(x)g(x), and extract the coefficients of the resulting multiplica-

tion. When n = m, the running time on the PRAM or the butterfly is

Θ(logn) using O(n) processors.

Example 5.5 Let a = [1, 2]T and b = [1, 3]T . Then,

f(x)g(x) = (a0b0)+ (a0b1+ a1b0)x+(a0b2+ a1b1+ a2b0)x
2 = 1+5x+6x2.

Note that a2 = b2 = 0. It follows that c0 = a0b0 = 1, c1 = a0b1 + a1b0 = 5,

and c2 = a0b2 + a1b1 + a2b0 = 6. �

5.7 The Product of a Toeplitz Matrix and a Vectors

A Toeplitz matrix T is defined as an n×n matrix in which T [i, j] =T [i− 1,

j−1] for 2 ≤ i, j ≤ n. Equivalently, the elements in each diagonal are equal.

The entries of T will be indexed as shown below⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

tn−1 tn−2 . . . t2 t1 t0
tn tn−1 tn−2 . . . t2 t1
tn+1 tn tn−1 tn−2 . . . t2
...

...
...

... . . .
...

t2n−3 t2n−4 . . . tn tn−1 tn−2

t2n−2 t2n−3 . . . tn+1 tn tn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

A Toeplitz matrix can conveniently be represented by the vector t of

2n − 1 entries appearing in the first row and first column. That is, t =

[t0, t1, . . . , t2n−2]
T .
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Example 5.6 Let

T =

⎛
⎜⎜⎝
4 3 2 1

5 4 3 2

6 5 4 3

7 6 5 4

⎞
⎟⎟⎠

Then, T is defined by the vector t = [1, 2, 3, 4, 5, 6, 7]T . �

Let a = [a0, a1, . . . , an−1]
T be a vector of n elements, and let T be a

Toeplitz matrix. We are interested in computing the product b = Ta. Using

direct matrix by vector multiplication, the kth entry in b is given by

bk =

n−1∑
j=0

ajtn+k−j−1. (5.5)

Now, consider computing the convolution c of a and t given by

ci =

i∑
j=0

ajti−j ,

Substituting n+ k − 1 for i yields

cn+k−1 =

n+k−1∑
j=0

ajtn+k−j−1

=

n−1∑
j=0

ajtn+k−j−1, (5.6)

since aj = 0 for j > n−1. Comparing the right hand sides of Eq. (5.5) with

Eq. (5.6), we see that they are identical. Hence, bk = cn+k−1.

Following this, to compute the product Ta, we compute a ⊗ t and set

bk = cn+k−1. This takes Θ(logn) time using O(n) processors on the PRAM

and butterfly.

Example 5.7 Consider computing he product Ta, where

T =

⎛
⎜⎜⎝
4 3 2 1

5 4 3 2

6 5 4 3

7 6 5 4

⎞
⎟⎟⎠ and a =

⎛
⎜⎜⎝

1

2

3

4

⎞
⎟⎟⎠ .
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First, the vector t is determined to be [1, 2, 3, 4, 5, 6, 7]T . Computing the

convolution a ⊗ t yields the vector c, which is equal to [1, 4, 10, 20, 30, 40,

50, 52, 45, 28]T . Hence, b0 = c4+0−1 = c3 = 20, b1 = c4+1−1 = c4 = 30,

b2 = c4+2−1 = c5 = 40, and b3 = c4+3−1 = c6 = 50. That is, Ta =

[20, 30, 40, 50]T , as can be verified by direct multiplication. �

5.8 Using Modular Arithmetic

In many applications, the aim is always to perform error-free computations

of the fast Fourier transform. It turns out that this can be achieved by per-

forming the FFT computations in modulo arithmetic. Let m be a positive

integer. The set Z∗
m is the set of positive integers relatively prime to m. For

example, Z∗
9 = {1, 2, 4, 5, 7, 8}. It is a group under multiplication modulom.

An element α is a primitive root of unity for a group if it generates such

a multiplicative group. For instance, α = 2 generates all elements of the

multiplicative group Z∗
9 under the operation of multiplication modulo 9.

That is, 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 7, 25 = 5, where all powers are

computed modulo 9. There are no primitive roots for Z∗
8 = {1, 3, 5, 7}.

Let n = 2j, α = 2k, l = n/2 and m = αl + 1 = 2kl + 1. Then, α is a

primitive root of unity over the set of integers modulo m. It is not hard

to see that the fast Fourier transform works correctly by replacing ω by α.

Figure 5.4 illustrates the n roots of unity for n = 8 (mod 17) generated

by the primitive root 2. As shown in the figure, the pairs αj and αj+n/2

are symmetrically located with respect to the origin. Algebraically, we have

αj+n/2 = −αj (Property 5.2), and in particular, αn/2 = −1. In this section,

2

4

8

16

15

13

9

1

Fig. 5.4. The 8 roots of unity mod 17 generated by the primitive root 2.
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all arithmetic will be done modulo m; we will simply write x + y to mean

x+ y (mod m).

Using α as a primitive root of unity, the transformation matrix Fn

looks like:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

1 α α2 . . . αn−1

1 α2 α4 . . . α2n−2

...
...

...
...

...

1 αn−2 α2(n−2) . . . α(n−1)(n−2)

1 αn−1 α2(n−1) . . . α(n−1)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

whose inverse is

F−1
n = n−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

1 α−1 α−2 . . . α−(n−1)

1 α−2 α−4 . . . α−2(n−1)

...
...

...
...

...

1 α−(n−2) α−2(n−2) . . . α−(n−2)(n−1)

1 α−(n−1) α−2(n−1) . . . α−(n−1)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

It is clear that Fn and F−1
n are obtained from the usual FFT matrices

by substituting α for ω.

Example 5.8 Let n = 8, α = 2 and m = 17. Then,

F8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1

1 2 4 8 16 15 13 9

1 4 16 13 1 4 16 13

1 8 13 2 16 9 4 15

1 16 1 16 1 16 1 16

1 15 4 9 16 2 13 8

1 13 16 4 1 13 16 4

1 9 13 15 16 8 4 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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and

F−1
8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

15 15 15 15 15 15 15 15

15 16 8 4 2 1 9 13

15 8 2 9 15 8 2 9

15 4 9 16 2 13 8 1

15 2 15 2 15 2 15 2

15 1 8 13 2 16 9 4

15 9 2 8 15 9 2 8

15 13 9 1 2 4 8 16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

The second row of F8 contains the powers of α = 2, the third contains the

powers of α2 = 4, and so on. On the other hand, the second row of F−1
8

contains the powers of α−1 = 2−1 = 9 multiplied by 8−1 = 15 = −2 . For

example, the second entry in the second row is α−18−1 = 9×(−2) = −18 =

−1 = 16. The third row contains the powers of α−2 = 2−2 = 13 multiplied

by 8−1 = 15 = −2, and so on. �

Example 5.9 Let f(x) = 1 + 2x and g(x) = 1 + 3x. We will compute

the product h(x) = f(x)g(x) using FFT modulo 17. Let n = 4, α = 4 and

m = 17. Then,

F4 =

⎛
⎜⎜⎝
1 1 1 1

1 4 16 13

1 16 1 16

1 13 16 4

⎞
⎟⎟⎠ and F−1

4 =

⎛
⎜⎜⎝
13 13 13 13

13 16 4 1

13 4 13 4

13 1 4 16

⎞
⎟⎟⎠ .

Write f(x) = ax, where a = [1, 2], and x = [1, x]T , and g(x) = bx, where

b = [1, 3]. Let a′ = [1, 2, 0, 0]T and b′ = [1, 3, 0, 0]T . Then,

c1 = F4a
′ =

⎛
⎜⎜⎝
1 1 1 1

1 4 16 13

1 16 1 16

1 13 16 4

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1

2

0

0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

3

9

16

10

⎞
⎟⎟⎠ .

Similarly,

c2 = F4b
′ =

⎛
⎜⎜⎝
1 1 1 1

1 4 16 13

1 16 1 16

1 13 16 4

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1

3

0

0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

4

13

15

6

⎞
⎟⎟⎠ .
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Now, we compute c1 	 c2, which is the componentwise multiplication

of c1and c2.

c1 	 c2 =

⎛
⎜⎜⎝

3

9

16

10

⎞
⎟⎟⎠	

⎛
⎜⎜⎝

4

13

15

6

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

12

15

2

9

⎞
⎟⎟⎠ .

Next, we interpolate.

c = F−1
4 (c1 	 c2) =

⎛
⎜⎜⎝
13 13 13 13

13 16 4 1

13 4 13 4

13 1 4 16

⎞
⎟⎟⎠
⎛
⎜⎜⎝

12

15

2

9

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1

5

6

0

⎞
⎟⎟⎠ .

Hence, h(x) = 1 + 5x+ 6x2, as can be verified by direct multiplication. �

5.9 Bibliographic Notes

The fast Fourier transform is created by Cooley and Tukey [27]. See also

Kronsjo [48] and Winograd [98]. Blahut [16] and McClellan [64] cover many

fast Fourier transform algorithms for computing DFT and convolution. See,

for example, Borodin and Moenck [17] and Fiduccia [36] for algorithms for

polynomial evaluation and interpolation using the fast Fourier transform.

For a good introduction to fast Fourier transform using modular arithmetic,

see Lakshmivarahan and Dhall [52].

5.10 Exercises

5.1. Prove Property 5.1: For even n, if ω is an nth root of unity, then ω2

is an (n/2)th root of unity.

5.2. Prove Property 5.2: For even n, ωk+n/2 = −ωk.

5.3. Show that if ω is a primitive nth root of unity, then ω−1 is also a

primitive nth root of unity.

5.4. Let f(x) = 2 + x and g(x) = 3 + 2x. Compute the product h(x) =

f(x)g(x) using fast Fourier transform.
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5.5. Let f1(x), f2(x) and f3(x) be three polynomials of degree n − 1

each. Apply DFT to find their multiplication f1(x)f2(x)f3(x) on

the PRAM with O(n) processors. What is the running time of your

algorithm?

5.6. Generalize Exercise 5.5 to k ≥ 2 polynomials of degree n − 1 each.

Your algorithm should run in time O(log kn) on the PRAM. How

many processors are needed?

5.7. Let f1(x) = 1 + 2x, f2(x) = 1 + 3x and f3(x) = 1 + x. Apply Exer-

cise 5.6 to compute the product g(x) = f1(x)f2(x)f3(x) using fast

Fourier transform.

5.8. Give an efficient algorithm to compute (1+x)n. What is the running

time of your algorithm? How many processors are required by your

algorithm?

5.9. Carry out the DFT algorithm to find the convolution of the two

vectors [2, 3]T and [4, 1]T .

5.10. Is the sum of two Toeplitz matrices Toeplitz? Prove your answer.

5.11. Is the product of two Toeplitz matrices Toeplitz? Prove your answer.

5.12. How quickly can you multiply two Toeplitz matrices A and B?

Explain.

5.13. Let n = 4, α = 2 and m = 5 in the specification of FFT in modular

arithmetic. Compute F4 and F−1
4 .

5.14. Use your answer to Exercise 5.13 to find the product f(x)g(x), where

f(x) = 2 + x and g(x) = 3 + 2x in modular arithmetic.

5.15. Evaluate f(x) = (1 + x + x2)2 in modular arithmetic. You may use

F8 and F−1
8 in Example 5.8. Note that α = 2 and m = 17.

5.16. Let a = [2, 1]T and b = [4, 3]T . Use your answer to Exercise 5.13 to

find the convolution of a and b in modular arithmetic.

5.17. Is it possible to have n = 6, α = 2 and m = 9 in the specification of

FFT in modular arithmetic? Explain.
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5.18. What are the primitive roots of unity of Z∗
5 = {1, 2, 3, 4}?

5.19. How many primitive roots (generators) are there for Z∗
m?

5.11 Solutions

5.1. Prove Property 5.1: For even n, if ω is an nth root of unity, then ω2

is an (n/2)th root of unity.

(w2)k = (wk)2. That is, the powers of ω2 are

ω2, ω4, . . . , ω2(n/2−1), ω2(n/2).

Moreover, (ω2)n/2 = ωn = 1, and (ω2)j = ω2j �= 1 for 0 < j < n/2.

5.2. Prove Property 5.2: For even n, ωk+n/2 = −ωk.

ωk+n/2 = ωk × ωn/2 = ωk × (−1) = −ωk.

5.3. Show that if ω is a primitive nth root of unity, then ω−1 is also a

primitive nth root of unity.

The n powers of ω−1 are ω−1, (ω−1)2, (ω−1)3, . . . , (ω−1)n, or

ω−1, ω−2, ω−3, . . . , ω−n. Multiplying by ωn yields the sequence

ωn−1, ωn−2, ωn−3, . . . , ω0. These are precisely the n powers of ω. It

follows that ω−1 is a primitive nth roots of unity.

5.4. Let f(x) = 2 + x and g(x) = 3 + 2x. Compute the product h(x) =

f(x)g(x) using fast Fourier transform.

Similar to Example 5.4.

5.5. Let f1(x), f2(x) and f3(x) be three polynomials of degree n − 1

each. Apply DFT to find their multiplication f1(x)f2(x)f3(x) on

the PRAM with O(n) processors. What is the running time of your

algorithm?

First, note that the degree of the product is 3n − 3. Let m be the

least power of 2 greater than or equal to 3n − 2. Let a1, a2 and a3
be the vectors of coefficients of f1(x), f2(x) and f3(x), respectively.

The steps for the construction of the product g(x) = f1(x)f2(x)f3(x)

are shown in Algorithm polynomialmultip1. Steps 1 and 3 take
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Algorithm 5.1 polynomialmultip1
Input: Three polynomials f1(x), f2(x) and f3(x).

Output: The product g(x) = f1(x)f2(x)f3(x).

1. Compute d1 = Fma′
1, d2 = Fma′

2, and d3 = Fma′
3, where a′

1,a
′
2 and a′

3

are a1,a2 and a3 padded with 0s to length m.
2. Perform the componentwise product c = d1 � d2 � d3.
3. Interpolate by computing the inverse Fourier transform

e = F−1
m c.

4. Output e = [e0, e1, e2, . . . , em−1]
T ; e is the vector of coefficients of the

product g(x).

Θ(logn) parallel time on the PRAM using O(n) processors. Step 2

takes Θ(1) parallel time. Hence, the algorithm for computing the

product of three polynomials runs in Θ(logn) parallel time on the

PRAM with O(n) processors.

5.6. Generalize Exercise 5.5 to k ≥ 2 polynomials of degree n − 1 each.

Your algorithm should run in time O(log kn) on the PRAM. How

many processors are needed?

First, note that the degree of the product is kn − k. Let m be the

least power of 2 greater than or equal to kn−k+1. Let a1, a2, . . . , ak
be the vectors of the coefficients of the k polynomials. The idea

is to evaluate the polynomials at m points, multiply them compo-

nentwise, and then interpolate by applying the inverse DFT. The

steps for the construction of the product g(x) = f1(x)f2(x) . . . fk(x)

are shown in Algorithm polynomialmultip2. Steps 1 and 3 take

Algorithm 5.2 polynomialmultip2
Input: k ≥ 2 polynomials f1(x), f2(x), . . . , fk(x) of degree n− 1.

Output: The product g(x) = f1(x)f2(x) . . . fk(x).

1. Compute d1 = Fma′
1, d2 = Fma′

2, . . . , dk = Fma′
k, where a′

1,a
′
2, . . . ,a

′
k

are a1,a2, . . . ,ak padded with 0s to length m.
2. Perform the componentwise product c = d1 � d2 � . . .� dk.
3. Interpolate by computing the inverse Fourier transform

e = F−1
m c.

4. Output e = [e0, e1, e2, . . . , em−1]
T ; e is the vector of coefficients of the

product g(x).
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O(log kn) parallel time on the PRAM using O(kn) processors, since

there are O(kn) coefficients in c. Computing the componentwise

product in Step 2 can be done recursively in Θ(logn) time using

O(kn) processors. It follows that the running time of the algorithm

is O(log n + log kn) = O(log kn) on the PRAM with O(kn) proces-

sors.

5.7. Let f1(x) = 1 + 2x, f2(x) = 1 + 3x and f3(x) = 1 + x. Apply Exer-

cise 5.6 to compute the product g(x) = f1(x)f2(x)f3(x) using fast

Fourier transform.

Write f1(x) = a1x, f2(x) = a2x and f3(x) = a3x, where a1 = [1, 2],

a2 = [1, 3], a3 = [1, 1] and x = [1, x]T . Let a′1 = [1, 2, 0, 0]T , a′2 =

[1, 3, 0, 0]T and a′3 = [1, 1, 0, 0]T . Then,

c1 = F4a
′
1 =

⎡
⎢⎢⎣
1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎦
⎡
⎢⎢⎣
1

2

0

0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

3

1 + 2i

−1
1− 2i

⎤
⎥⎥⎦ .

Similarly,

c2 = F4a
′
2 =

⎡
⎢⎢⎣
1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎦
⎡
⎢⎢⎣
1

3

0

0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4

1 + 3i

−2
1− 3i

⎤
⎥⎥⎦ ,

and

c3 = F4a
′
3 =

⎡
⎢⎢⎣
1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎦
⎡
⎢⎢⎣
1

1

0

0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2

1 + i

0

1− i

⎤
⎥⎥⎦ .

Now, we compute c = c1 	 c2 	 c3, which is the componentwise

multiplication of c1, c2 and c3.

c =

⎡
⎢⎢⎣

3

1 + 2i

−1
1− 2i

⎤
⎥⎥⎦	

⎡
⎢⎢⎣

4

1 + 3i

−2
1− 3i

⎤
⎥⎥⎦	

⎡
⎢⎢⎣

2

1 + i

0

1− i

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

24

−10
0

−10

⎤
⎥⎥⎦ .
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Finally, we interpolate:

e = F−1
4 c =

1

4

⎡
⎢⎢⎣
1 1 1 1

1 −i −1 i

1 −1 1 −1
1 i −1 −i

⎤
⎥⎥⎦
⎡
⎢⎢⎣

24

−10
0

−10

⎤
⎥⎥⎦ =

1

4

⎡
⎢⎢⎣

4

24

44

24

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1

6

11

6

⎤
⎥⎥⎦ .

Hence, g(x) = 1 + 6x+ 11x2 + 6x3, and we can verify this by direct

multiplication.

5.8. Give an efficient algorithm to compute (1+x)n. What is the running

time of your algorithm? How many processors are required by your

algorithm?

We use the fast Fourier transform. This is similar to Exercise 5.6

with k replaced by n, and n replaced by 2. The highest degree in

the product is n, so let m be the least power of 2 greater than or

equal to n + 1. Let a = [1, 1, 0, 0 . . . , 0] (m − 2 0s). Compute the

componentwise product c = a	 a	 . . . ,	a (n times). This is equal

to [an0 +a
n
1 + . . .+a

n
m−1]

T . These powers can be computed in Θ(logn)

time by assigning each number to one processor, which raises that

number to the nth power in sequential Θ(logn) time. Thus, this step

can be done in parallel in Θ(logn) time. Finally, apply the inverse

DFT on c to obtain the final result. Since there are O(n) coefficients

in c, applying the inverse DFT requires Θ(logn) time. It follows that

the running time of the algorithm is Θ(logn) on the PRAM using

O(n) processors.

5.9. Carry out the DFT algorithm to find the convolution of the two

vectors [2, 3]T and [4, 1]T .

Similar to Example 5.5.

5.10. Is the sum of two Toeplitz matrices Toeplitz? Prove your answer.

Yes. Let A+B = C, where A and B are Toeplitz. Then, ci,j = ai,j +

bi,j = ai−1,j−1 + bi−1,j−1 = ci−1,j−1. It follows that C is Toeplitz.
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5.11. Is the product of two Toeplitz matrices Toeplitz? Prove your answer.

No. Let

A =

⎛
⎝1 1 1

0 1 1

1 0 1

⎞
⎠ .

Then,

A2 =

⎛
⎝2 2 3

1 1 2

2 1 2

⎞
⎠ ,

which is not Toeplitz.

5.12. How quickly can you multiply two Toeplitz matrices A and B?

Explain.

Treat B as a sequence of vectors, and apply the convolution method

individually to multiply A by each vector. This results in time com-

plexity n×Θ(logn) = Θ(n logn) parallel time using O(n) processors.

If the number of processors is O(n2), then the running time reduces

to Θ(logn), as all matrix by vector multiplications can be carried

out in parallel using the convolution method.

5.13. Let n = 4, α = 2 and m = 5 in the specification of FFT in modular

arithmetic. Compute F4 and F−1
4 .

F4 =

⎛
⎜⎜⎝
1 1 1 1

1 2 4 3

1 4 1 4

1 3 4 2

⎞
⎟⎟⎠ and F−1

4 =

⎛
⎜⎜⎝
4 4 4 4

4 2 1 3

4 1 4 1

4 3 1 2

⎞
⎟⎟⎠ .

5.14. Use your answer to Exercise 5.13 to find the product f(x)g(x), where

f(x) = 2 + x and g(x) = 3 + 2x in modular arithmetic.

Similar to Example 5.9.

5.15. Evaluate f(x) = (1 + x + x2)2 in modular arithmetic. You may use

F8 and F−1
8 in Example 5.8. Note that α = 2 and m = 17.
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Similar to Example 5.9.

5.16. Let a = [2, 1]T and b = [4, 3]T . Use your answer to Exercise 5.13 to

find the convolution of a and b in modular arithmetic.

Similar to Example 5.5

5.17. Is it possible to have n = 6, α = 2 and m = 9 in the specification of

FFT in modular arithmetic? Explain.

No, it is impossible since 6 is not invertible modulo 9; 6 and 9 are

not relatively prime. 6−1 is needed to compute the inverse.

5.18. What are the primitive roots of unity of Z∗
5 = {1, 2, 3, 4}?

There are two of them: 2 and 3.

5.19. How many primitive roots (generators) are there for Z∗
m?

If there is one generator, then there are φ(φ(m)) generators, where

φ(k) is the number of elements less than k and relatively prime to k.

For example, for m = 5, there are φ(φ(5)) = φ(4) = 2 generators.

Note that these generators generate all elements in the group.
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Chapter 6

Tree-based Networks

6.1 The Tree Network

A tree of size n = 2h is an interconnection network constructed from a

complete binary tree with n processors in the base level P1, P2, . . . , Pn, and

a total of 2n− 1 = 2h+1 − 1 processors. Here h = logn is the height of the

tree. Each tree has h + 1 levels: 0, 1, . . . , h. The leaf nodes at level h are

connected by two-way communication links to their parents only, and the

root is connected to its two children. Every other processor is connected by

two-way communication links to its parent and its two children. Therefore,

the tree has degree 3. See Fig. 6.1 for an eight-leaf tree.

The communication diameter of a tree of size n is only Θ(logn), which

is very low compared to a linear array of the same size. This is true since

any two processors in the tree can communicate in O(log n) time. However,

it may require as much as 2 logn = Ω(log n) time for communication that

requires an exchange of information between two arbitrary processors. This

makes the tree ideal for computing problems like semigroup operations, e.g.,

summation and finding the maximum, which require O(log n) time. How-

ever, for problems that demand extensive data movement such as sorting

and routing data in the base, Ω(n) time may be required, since only Θ(1)

wires cross the middle of the tree, which means that the bisection width of

the tree is Θ(1) — and that is very low. For instance, it may be required to

move data from the n/2 left processors to the n/2 right processors, which

requires Ω(n) time, since the root serves as a bottleneck.

253
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Fig. 6.1. A tree of size 8.

An algorithm that runs on the tree is called normal tree algorithm if no

two processors at different levels are active at the same time. That is, at

any given time, only processors in the same level are participating in the

computation. A single step of a normal tree algorithm can be simulated in

one step of the hypercube, given the embedding shown in Fig. 3.12.

6.1.1 Semigroup operations

Due to its low communication diameter, the tree is ideal for semigroup

operations, e.g., addition and finding the maximum. These operations can

be performed in Θ(logn) time as follows. Assume that n pieces of data are

distributed one per base processor. Then, in order to compute a semigroup

operation ◦ over this set of data, it can be applied to disjoint pairs of partial

results in parallel as data moves up the tree level by level. After Θ(logn)

steps, the final result will be known to the root processor. Naturally, if all

processors need to know the final result, it can be broadcast from the root

to all other processors in Θ(logn) time. This means a cost of Θ(n logn) on

a tree with n base processors, which is a factor of Θ(logn) from optimal.

Thus, the tree provides a major benefit over the linear array and the mesh

in terms of combining information.

6.1.2 Sorting by minimum extraction

Assume that a tree with n leaves is available for sorting the sequence

〈x1, x2, . . . , xn〉 of distinct integers. The n integers are initially loaded into

the leaf processors. Now, each internal processor determines the smaller
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of the two integers held by its children and routes it to its parent. After

logn+1 steps, the minimum element exits the machine from the root, and

is placed in a memory buffer for storing the output. If the process is con-

tinued, the next element in increasing order is obtained at every other step.

Thus, as mentioned above, the first element requires logn+ 1 steps to exit

the root. Each one of the remaining n− 1 elements requires two steps to be

produced. It follows that a constant multiple of 2n+logn−1 time units are

needed to produce the sorted sequence. Hence, the running time is Θ(n),

and since there are 2n− 1 processors, the cost is Θ(n2).

6.1.3 Sorting by partitioning

Assume that a tree with k = logn leaves is available for sorting a sequence

of n = 2k numbers. Each processor at level j, 0 ≤ j ≤ log k, can store n/2j

elements and can execute a median finding and sorting algorithm. The n

numbers are initially loaded into the root processor. First, the root finds

the median and splits the sequence into two halves, where the half with

numbers less than or equal to the median is passed to its left child, and

the other half with numbers greater than the median is passed to its right

child. Upon receiving its half, each child finds the median of its subsequence

and passes those elements less than or equal to the median to its left child

and passes those elements larger than the median to its right child. This

process of finding the median, partitioning and passing elements continues

until the leaf nodes are reached. Finally, each leaf node sorts its n/ logn

elements and places them in the output buffer. The algorithm is shown as

Algorithm treesort

The running time of the algorithm is computed as follows. Finding the

median and splitting the sequence at level j takes Θ(n/2j). The sorting step

takes Θ((n/ logn) log(n/ logn)) = Θ(n) time. The time needed to find the

median and output the sequences at level j is Θ(n/2j). Hence, the overall

running time of the algorithm is expressed as

Θ(n) +

k∑
j=0

Θ(n/2j) = Θ(n) + Θ(n) = Θ(n).

The total cost of the algorithm is log n × Θ(n) = Θ(n logn), which is

optimal.
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Algorithm 6.1 treesort
Input: A sequence of n numbers, where n = 2k.

Output: The input sorted in ascending order.

1. for j← 0 to log k − 1
2. for all processors P at level j
3. Processor P finds the median m and routes all elements ≤ m

to the left child and all elements > m to the right child.
4. end for
5. for all leaf processors P
6. Processor P sorts the currently held elements and places

them in the output buffer.
7. end for

6.1.4 Selection

Recall the problem of selection discussed in Section 2.14: Given a

sequence A = 〈a1, a2, . . . , an〉 of n elements and a positive integer k, 1 ≤
k ≤ n, find the kth smallest element in A. In this section we consider the

problem of finding the k’th smallest element in a sequence of n elements

stored at the leaves of an n-leaf tree of height h, where n = 2h and h = 2m.

A straightforward solution would be to sort A and return the kth small-

est element. However, sorting on the tree is expensive, and takes a lot of

time. The easiest selection problem is k = 1, which amounts to finding the

minimum in Θ(logn) time. We observe that if we adopt a modification of

the sorting method of minimum extraction outlined above, then the kth

smallest element can be found in Θ(logn+k) time, which in the worst case

is Θ(n), e.g., finding the median.

We will simplify discussion by assuming that all the elements are dis-

tinct. The algorithm is given as Algorithm treeselect (see Fig. 6.2). Ini-

tially, each item is “active”, and may later become “inactive” when it is

known that it cannot be the answer.

Steps 3 to 13 are repeated until the kth smallest element is found. In

each iteration,
√
n recursive calls are executed on

√
n elements each to

find the median of each group. Thus, there are
√
n parallel simultaneous

calls plus one call to find the median of medians med. Let T (n) denote

the total running time. Then, these calls take 2T (
√
n). In each iteration,

at least 1/4 of the elements will be deactivated, and hence the number of

iterations is at most log4/3 n = ch, where c = 1/ log(4/3) (see Section 2.14
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Fig. 6.2. Illustration of Algorithm treeselect.

Algorithm 6.2 treeselect
Input: A sequence of n numbers, where n = 2h and an integer k, 1 ≤ k ≤ n.

Output: The kth smallest element in the sequence.

1. if n ≤ 2 then return the answer.
2. else repeat Steps 3 to 13
3. Each processor at level log n/2 computes the median of the active items

beneath it. It stores this median as its value.
4. The root computes recursively the median of medians of the items found

in the previous step, call this med.
5. The root transmits med to all processors in the base.
6. Each base processor sends up a 1 if its item is less than or equal to med.

These 1’s are summed on their way up to the root. Let s be the sum of
these 1’s.

7. if k = s then return med
8. else if k < s then
9. Deactivate all items in the base ≥ med

10. else
11. Deactivate all items in the base ≤ med
12. Set k← k − s
13. end if

and Exercise 2.17). Broadcasting and summing the 1’s takesO(log n). To see

how much time the algorithm takes, it is easiest to work with the height of

the tree (i.e., h = logn) instead of its width. The running time can therefore
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be expressed by the recurrence:

T (h) =

{
1 if h = 1

ch× (2T (h/2) + bh) if h > 1,

for some constant b. We proceed to solve this recurrence as follows. Rewrite

the recurrence as

f(m) =

{
1 if m = 0

c2m2f(m− 1) + cb22m if m > 0,

since h = 2m. Expanding this recurrence yields

f(m) = c2m+1f(m− 1) + cb22m

...

= c525m−5f(m− 5) + cb22m

× (c424m−10 + c3b23m−6 + c2b22m−3 + cb2m−1 + 1
)

...

= cj2jm−j(j−3)/2f(m− j) + cb22m
(
cj2jm−j(j+1)/2

+ · · ·+ c424m−10 + c323m−6 + c222m−3 + c2m−1 + 1
)

...

= cm2m
2−m(m−3)/2f(0) + cb22m

(
cm−12(m−1)m−(m−1)(m)/2

+ · · ·+ c424m−10 + c323m−6 + c222m−3 + c2m−1 + 1
)

= cm2m(m+3)/2 + cb22m
m−1∑
j=0

cj2jm−j(j+1)/2

≤ cmh(m+3)/2 + cb22m ×m× cm−12(m−1)m−((m−1)(m)/2)

= cmh(m+3)/2 + b22m ×m× cm2m(m−1)/2

= cmh(m+3)/2 + b ×m× cm2m(m+3)/2

= cmh(m+3)/2 + bmcmh(m+3)/2

= O(mcmh(m+3)/2)

= O(log logn clog logn(log n)(log logn+3)/2).

Hence, T (n) = o(nε) for any ε > 0.
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Fig. 6.3. Example 6.1 for the selection algorithm on the tree.

Example 6.1 Figure 6.3 illustrates the operation of Algorithm treese-

lect. In this example, we use the algorithm to find the 9th smallest element

of the 16 items: 4, 17, 14, 3, 12, 6, 15, 7,13, 5, 11, 2, 1, 10, 9, 16. Fig. 6.3(a)

shows the initial input, which is entered at the leaves. In part (b) of the

figure,
√
n = 4 calls are executed in parallel, and then one call with the

medians resulting from these 4 calls as the input. This results in 5 being

the median of medians. After broadcasting 5, processors with elements 1,

2, 3, 4 and 5 send a 1 each to the root for a total of s = 5, which is shown

in Fig. 6.3(b). The deactivated processors are shown as white. More 5 calls

are executed in Fig. 6.3(c), after which the 9th smallest element, 10, is

found. �

6.1.5 The one-dimensional pyramid

A one-dimensional pyramid, or simply a 1-pyramid, of size n is an inter-

connection network obtained from the tree of processors with n leaves by

adding two-way communication links between adjacent processors at the

same level. Thus, it forms a linear array at each level. See Fig. 6.4 for an

eight-leaf 1-pyramid. Like the tree, communication diameter of a 1-pyramid

of size n is only Θ(logn).
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Fig. 6.4. A tree with horizontal links (1-pyramid) of size 8.

6.2 The Pyramid

A two-dimensional pyramid or simply a pyramid of size n = 4d is an

interconnection network that can be viewed as a full 4-ary tree of height

log4 n (see Fig. 6.5). It has log4 n + 1 levels numbered 0, 1, . . . , log4 n. For

simplicity, we will assume that the base is at level 0, and the root is at

level log4 n. The base consists of n processors arranged in the form of a√
n×√n mesh of processors. In general, level k consists of a mesh of n/4k

processors. In particular, level log4 n consists of one processor referred to

as the apex. A pyramid of size n has a total of (4n− 1)/3 processors. Each

processor at level k is connected via bidirectional communication links to

its nine neighbors (if they exist): four siblings at level k, four children at

level k − 1 and a parent at level k + 1.

The pyramid can be projected into a regular pattern in the plane, which

makes it ideal for VLSI implementation and provides the possibility of con-

structing pyramids with thousands or millions of processors (see Fig. 6.6).

A pyramid may be regarded as a combination of a mesh and a tree machine

architecture.

One advantage of the pyramid over the mesh is that the communication

diameter of the pyramid of size n is only Θ(logn). This is true since any two

processors in the pyramid can communicate through the apex in O(log n)

time. However, it may require Ω(logn) time for communication that require

exchange of information between two arbitrary processors. This makes the

pyramid suitable for problems like semigroup operations, e.g., summation

and finding the maximum, which require O(log n) time. However, for prob-

lems that demand extensive data movement such as sorting and routing all

data in the base, Ω(
√
n) time is required (Exercise 6.8).
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Level 0

Level 1

Level 2

Fig. 6.5. A pyramid of size 16.

Fig. 6.6. A pyramid of size 16.
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2 3 8 7
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16

Level 0

1 2

4 3

Level 1

1

Level 2

13 12 11

Fig. 6.7. Proximity indexing scheme for the three levels of a pyramid of size 16.

6.2.1 Computing parallel prefix on the pyramid

The parallel prefix problem was defined in Section 2.5. In this section, we

show how to compute it on the pyramid. For simplicity, we will assume

addition as the binary operation. We will also assume the proximity index-

ing scheme shown in Fig. 6.7. In this ordering scheme, consecutive elements

are physically contiguous. Assume that each processor has four registers:

R1, R2, R3 and R4.

Initially, the items x1, x2, . . . , xn are input to the n = 4d processors at

level 0. The algorithm consists of two passes: Bottom-up and top-down. It

is given as Algorithm pyramidparprefix.

Example 6.2 Consider Fig. 6.8(a) in which is shown the base of a

2-dimensional pyramid with 16 numbers stored in it. In this figure, pro-

cessors are shown by squares (of varying sizes) and registers are shown by

circles. Initially, each processor P0,j of the base sends its value xj to its

parent. Each processor of level 1 computes sequentially the four prefixes of

the four values received from its children in level 0, which are then stored

orderly in its four data registers R1, R2, R3 and R4, as shown in Fig. 6.8(b).

Notice that there are four processors in this part of the figure. Each pro-

cessor of level 1 then sends to its parent in level 2 (the apex) the fourth

prefixes R4, as shown in Fig. 6.8(c). The apex then computes the prefix

sums of these values as shown in Fig. 6.8(d). In part (e) of the figure, it

shifts these prefixes by one register so that Ri is stored in register Ri+1,

1 ≤ i ≤ 3, and puts 0 in R1. It then copies the contents of the four registers
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Algorithm 6.3 pyramidparprefix
Input: X = 〈x1, x2, . . . , xn〉, a sequences of n numbers, where n = 4d stored

at the base of the pyramid.

Output: S = 〈s1, s2, . . . , sn〉, the prefix sums of X.

(a) Bottom-up phase.

(1) Each processor P0,j of the base sends its value xj to its parent.
(2) for k = 1, 2, . . . , log4 n do

Each processor Pk,j of level k computes sequentially the four prefixes
of the four values received from its children, which are then stored
orderly in the four data registers R1, R2, R3 and R4, then sends to
its parent the fourth prefix R4. As k = log4 n, the apex contains in
its four registers the four prefixes sn/4, sn/2, s3n/4, sn.

(b) Top-down phase.

(1) The apex moves the contents of register Ri into register Ri+1, 1 ≤
i ≤ 3, and puts 0 into R1. Then, it sends these values orderly to its
four children (i.e., R1 goes to the first child, R2 to the second, etc.)

(2) for k = log4 n− 1, . . . , 1 do
Each processor Pk,j adds sequentially the value received from its
parent to the values stored in its four data registers. Then, each
processor Pk,j moves the contents of its register Ri, 1 ≤ i ≤ 3 into
its register Ri+1, and moves the contents of its register R4 into the
register R1 of processor Pk,j+1 (if it exists, processor Pk,1 puts 0 into
its register R1). Finally, Pk,j sends the values stored in R1, R2, R3

and R4 orderly to its four children.
(3) Each processor P0,j at the base adds the value received from the

parent to its xj value. Now, each processor P0,j at the base contains
the partial sum sj .

into the four processors in level 1, as shown in Fig. 6.8(f). Each processor

P1,j then adds sequentially the value received from its parent to the values

stored in its four data registers, as shown in Fig. 6.8(g). Then, each proces-

sor P1,j in level 1 moves the contents of its register Ri, 1 ≤ i ≤ 3, into its

register Ri+1, and moves the contents of its register R4 into the register R1

of processor P1,j+1 (if it exists, processor P1,1 puts 0 into its register R1).

This is shown in Fig. 6.8(h). Next, P1,j sends the values stored in R1, R2, R3

and R4 orderly to its four children in level 0. Finally, each processor P0,j

at the base adds the value received from its parent to its xj value. Now,

each processor P0,j at the base contains the partial sum sj . This is shown

in Fig. 6.8(i). �



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch06 page 264

264 Parallel Algorithms

10 14

9 12

10 24

45 36

4 2

9 1

2 10

6 9

3 7

12 10

5 11

14 13

0 10

36 24

0 10

36 24

40 38

45 37

2 10

6 9

27 31

36 34

15 21

24 23

38 37

40 36

0 9

2 6

24 27

34 31

10 15

23 21

(b)

(c)

(d)
(e)

(f)

(g)

(h)

Bottom-up Top-down

5 62 1

4 3 1 2

2 1 3 4

5 1 2 3

(a)

15 212 10

6 9 24 23

40 38 27 31

45 37 36 34

(i)

: Processor : Register

Fig. 6.8. Example of computing parallel prefix on the pyramid.

6.3 Mesh of Trees

A mesh of trees of size n, where we assume for simplicity that n is a perfect

square, is an interconnection network constructed from a
√
n×√n mesh, in

which the processors of every row and column are the leaves of a complete
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(a) (b)

Fig. 6.9. A mesh of trees of size 16. (a) Regular. (b) With base connections.

binary tree. The base consists of n processors arranged in the form of a√
n×√n mesh. The base processors are either disjoint or have connections

as in the regular mesh (see Fig. 6.9(a) and (b)). The mesh of trees of size

n has 3n− 2
√
n processors. Each row or column has

√
n processors at level

log
√
n. All row trees are disjoint, and all column trees are disjoint. Every

row tree has exactly one leaf processor in common with every column tree.

In each tree, the leaf and the root has degree 2, and every other processor

has degree 3. Like the pyramid, the communication diameter of the mesh

of trees of size n is only Θ(logn), which is very low compared to a mesh

of the same size. This is true since any two processors in the mesh of

trees can communicate in O(log n) time. However, it may require as much

as 4 log
√
n = Ω(logn) time for communication that requires exchanging

of information between two arbitrary processors. This makes the mesh of

trees suitable for problems like semigroup operations, e.g., summation and

finding the maximum, which require O(log n) time. However, for problems

that demand extensive data movement such as sorting and routing all data

in the base, Ω(
√
n) time may be required, since only

√
n wires cross the

middle of the mesh of trees.

The processor connections in the base may be added, but this does

not improve the computing power of the mesh of trees; it is only useful

in applications like image processing where direct connections between the

base processors is desirable. The mesh of trees has a recursive structure. If

we remove all the 2
√
n roots and their incident edges, we will be left with

four copies of the
√
n
2 ×

√
n
2 mesh of trees. For instance, Fig. 6.10 shows the
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Fig. 6.10. Recursive structure of the mesh of trees.

four copies of the 2×2 mesh of trees resulting from removing the roots and

their incident edges in Fig. 6.9 (a). Henceforth, the processors of the base

will be numbered as Pi,j , 1 ≤ i, j ≤ √n.
The trees in the mesh of trees simplify many computations that can

be completed in Θ(logn) time. For instance, to broadcast a datum x from

P1,1 to all other processors in the base, first x is broadcast to the first

row tree (the topmost tree). From the leaves of this tree,
√
n copies are

passed to all column trees, where x is passed to the leaves of those column

trees. The semigroup operations like summation and finding the maximum

are straightforward. For instance, to find the sum of n numbers stored

in the base,
√
n row sums are first found by row trees and stored in the

first column, followed by summing those totals in the first column tree and

storing the final sum in P1,1.

6.3.1 Sorting on the mesh of trees

The bisection width of the mesh of trees has a lower bound of Ω(
√
n), which

means that it is not suitable for sorting data of size in the order of Ω(n)

efficiently, since Ω(
√
n) of the data might have to move from one side of the

base to the opposite side. However, for a smaller amount of data, it may be

possible to sort more efficiently. Consider, for instance, sorting
√
n numbers

a1, a2, . . . , a√n stored in processors P1,1, P1,2, . . . , P1,
√
n in the base — that
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is, in the first row. We compute the rank of each element r(ai), which is the

number of items less than ai, and store ai in processor number r(ai) + 1 in

the first row. For simplicity, assume that all items are distinct. First, for 1 ≤
j ≤ √n, we use the column trees to broadcast aj in column j, after which

processor Pi,j will store a copy of aj , 1 ≤ i ≤ √n. Next, for 1 ≤ i ≤ √n,
we broadcast ai from processor Pi,i in row i to all processors in row i. Now,

every processor Pi,j in the base contains the pair (ai, aj). Row i will now

be responsible for finding r(ai), the rank of ai; it achieves this by counting

the elements aj smaller than ai. Specifically, if aj < ai, then we store 1 in

Pi,j , else we store 0 in Pi,j , and so finding the rank amounts to counting

the number of 1’s, and storing the sum in all processors Pi,j in row i. The

sum can easily be found using a row tree, which is then broadcast from the

root to its leaves. Finally, a column broadcast is used within every column

to broadcast ai from processor Pi,r(ai)+1 to processor P1,r(ai)+1 (recall that

all processors in row i contain ai). It is easy to see that computing the rank

and broadcasting ai to its final destination takes Θ(logn) time. It follows

that the overall time taken by the algorithm is Θ(logn), which is optimal

since the diameter is Θ(logn). The cost is Θ(n logn), which is not optimal

in view of the Θ(
√
n logn) time sequential algorithm. An outline of the

above description is given as Algorithm motsort.

Algorithm 6.4 motsort
Input:

√
n numbers a1, a2, . . . , a√

n stored in processors P1,1, P1,2, . . . , P1,
√

n

in the base.
Output: Sort the numbers and store them in P1,1, P1,2, . . . , P1,

√
n.

1. for j← 1 to
√
n do in parallel

2. Use column tree j to broadcast aj to processors Pi,j , 1 ≤ i ≤ √n.
3. end for
4. for i← 1 to

√
n do in parallel

5. broadcast ai from processor Pi,i in row i to all processors in row i.
6. end for
7. for i← 1 to

√
n do in parallel

8. for j← 1 to
√
n do in parallel

9. if aj < ai, then store 1 in Pi,j , else store 0 in Pi,j .
10. end for
11. Compute the sum of 1’s in row i and store it in all processors Pi,j

of row i.
12. Perform column broadcasts to broadcast ai from processor

Pi,r(ai)+1 to processor P1,r(ai)+1.
13. end for
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Fig. 6.11. Sorting on the mesh of trees.

Example 6.3 Consider Fig. 6.11(a), in which the numbers 7, 4, 5, 6 are

to be sorted in a mesh of trees of size 16; only the base is shown in the

figure. First, for 1 ≤ j ≤ 4, we use the column trees to broadcast aj in

column j as shown in Fig. 6.11(b), after which processor Pi,j will store a

copy of aj , 1 ≤ i ≤ 4. Next, for 1 ≤ i ≤ 4, we broadcast ai from processor

Pi,i in row i to all processors in row i. Now, every processor Pi,j in the base

contains the pair (ai, aj) (see Fig. 6.11(c)). Next, we compute the rank of

ai by counting the number of elements aj smaller than ai. Specifically, if
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aj < ai, then we store 1 in Pi,j , else we store 0 in Pi,j (see Fig. 6.11(d)).

Now, finding the rank amounts to counting the number of 1’s, and storing

the sum in all processors Pi,j in row i. The sum can easily be found using

a row tree, which is then broadcast from the root to its leaves, as shown

in Fig. 6.11(e). Finally, a column broadcast is used within every column to

broadcast ai from processor Pi,r(ai)+1 to processor P1,r(ai)+1, as shown in

Fig. 6.11(f). �

6.3.2 Routing in the mesh of trees

The bisection width of the mesh of trees has a lower bound of Ω(
√
n),

which means that, as in the case of sorting, it is not suitable for routing

data of size in the order of Ω(n), since Ω(
√
n) of the data might have to

move from one side of the base to the opposite side. However, for a smaller

amount of data, it may be possible to route data more efficiently. Con-

sider, for instance, routing
√
n packets v1, v2, . . . , v√n stored in processors

P1,1, P1,2, . . . , P1,
√
n in the base, that is, in the first row to destination pro-

cessors P√
n,δ(v1), P

√
n,δ(v2), . . . , P

√
n,δ(v√n)

. First, for 1 ≤ j ≤ √n, we use

the column trees to send vj to processor Pj,j . Next, for 1 ≤ j ≤ √n, we use
the row trees to send vj to processor Pj,δ(vj). Finally, for 1 ≤ j ≤ √n, we
use the column trees to send vj to processor P√

n,δ(vj). Each of these steps of

data movements takes Θ(logn) time. It follows that the overall time taken

by the algorithm is Θ(logn). An outline of the above description is given

as Algorithm motroute.

Algorithm 6.5 motroute
Input:

√
n packets v1, v2, . . . , v√n stored in processors P1,1, P1,2, . . . , P1,

√
n in

the base, and destinations δ(v1), δ(v2), . . . , δ(v√n).

Output: Route the packets to destination processors
P√

n,δ(v1)
, P√

n,δ(v2)
, . . . , P√

n,δ(v√n).

1. for j← 2 to
√
n do in parallel

2. Use column tree j to send vj to processor Pj,j .
3. end for
4. for j← 1 to

√
n do in parallel

5. Use row tree j to send vj to processor Pj,δ(vj).
6. end for
7. for j← 1 to

√
n do in parallel

8. Use column tree δ(vj) to send vj to processor P√
n,δ(vj)

.
9. end for
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Fig. 6.12. Routing on the mesh of trees.

Example 6.4 Figure 6.12(a) shows an example in which the packets

v1, v2, v3, v4, initially in processors P1,1, P1,2, P1,3, P1,4 are to be routed in

a mesh of trees of size 16 to processors P4,3, P4,4, P4,1, P4,2 in this order.

Only the base is shown in the figure. First, for 1 ≤ j ≤ 4, we use the

column trees to send vj to processor Pj,j as shown in Fig. 6.12(b). Next,

for 1 ≤ j ≤ 4, we use the row trees to send vj to processor Pj,δ(vj) as shown

in Fig. 6.12(c). Finally, for 1 ≤ j ≤ 4, we use the column trees to send vj
to processor P4,δ(vj) as shown in Fig. 6.12(d). �

6.4 Computing Parallel Prefix on the Mesh of Trees

The parallel prefix problem was defined in Section 2.5. In this section, we

show how to compute it on the mesh of trees assuming addition as the

binary operation. So, given a sequence of n numbers 〈xi,j | 1 ≤ i, j ≤ √n〉
stored in the base processors, we consider the problem of finding their
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prefix sums 〈si,j | 1 ≤ i, j ≤ √n〉 on the mesh of trees. For simplicity, we

will assume without loss of generality that the mesh of trees has mesh con-

nections. We will also assume the row major ordering scheme. We will use

Algorithm bfparprefix used for binary trees in Section 3.14 to compute

parallel prefix on the butterfly. We assume there are n registers yi,j associ-

ated with the n processors of the base. Also, we assume there are
√
n regis-

ters zi associated with processor P1,
√
n, P2,

√
n, . . . , P

√
n,

√
n, and n−2

√
n+1

registers li,j associated with processor Pi,j , 2 ≤ i ≤ √n, 1 ≤ j ≤ √n − 1.

First, the prefix sums of all rows are computed individually in parallel

using Algorithm bfparprefix for binary trees. This takes Θ(logn) time.

For 1 ≤ i ≤ √n, let the prefix sums of row i be yi,1, yi,2, . . . , yi,
√
n. Note

that these are not the final prefix sums, except for row 1. Next, the prefix

sums of column
√
n are computed, again using Algorithm bfparprefix.

These are denoted by s1,
√
n, s2,

√
n, . . . , s

√
n,

√
n, and they are the final prefix

sums for column
√
n. This also takes Θ(logn) time. Next, for all processors

Pi,
√
n, we set zi← si,

√
n, 1 ≤ i ≤

√
n. This is followed by setting zi← zi−1,

2 ≤ i ≤ √n (recall that there are mesh connections). Now, for rows i,

2 ≤ i ≤ √n, we broadcast zi to row tree i, after which zi is copied to all

leaves of row tree i and stored in register li,j , 1 ≤ j ≤ √n− 1. Finally, for

2 ≤ i ≤ √n, 1 ≤ j ≤ √n − 1 we execute the assignment si,j← yi,j + li,j .

Algorithm 6.6 motparprefix
Input: X = 〈xi,j | 1 ≤ i, j ≤ √n〉, a sequences of n numbers.

Output: S = 〈si,j | 1 ≤ i, j ≤ √n〉, the prefix sums of X.

1. for i← 1 to
√
n do in parallel

2. Use Algorithm bfparprefix to compute the prefix sums of row i.
Let these be yi,1, yi,2, . . . , yi,√n.

3. end for
4. Use Algorithm bfparprefix to compute the prefix sums

of column
√
n. Let these be s1,√n, s2,√n, . . . , s√n,

√
n.

5. for all processors Pi,
√

n, set zi← si,√n, 1 ≤ i ≤ √n.
6. for i← 2 to

√
n do in parallel zi← zi−1

7. Broadcast zi to row tree i, 2 ≤ i ≤ √n, and store zi in the register li,j of
every leaf.

8. for i← 2 to
√
n do in parallel

9. for j← 1 to
√
n− 1 do in parallel

10. si,j← yi,j + li,j
11. end for
12. end for
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Fig. 6.13. Illustration of the operation of Algorithm motparprefix.

Broadcasting takes Θ(logn) time, and the parallel assignments take con-

stant time. It follows that the running time of the algorithm is Θ(logn).

An outline of the above description is given as Algorithm motparprefix.

Example 6.5 Figure 6.13 shows an illustration of the operation of Algo-

rithm motparprefix. The input is given in Fig. 6.13(a). Fig. 6.13(b)

shows the prefixes of all rows individually. In part (c), the prefix sums

of column
√
n are computed, and in part (d) the final prefix sums are

shown. �

6.5 Comparison Between the Mesh of Trees and the Pyramid

At first glance, the structure of the mesh of trees appears to be similar to

that of the pyramid. They are both constructed from the combination of

trees and the mesh. Moreover, both have Θ(n) processors, Θ
√
n bisection
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width and Θ(logn) diameter. The difference between the two is that in

the case of the pyramid, the apex is a bottleneck, while in the case of the

mesh of trees, there is no such bottleneck. So, one might expect that the

mesh of trees is more powerful than the pyramid. In fact, due to its Θ
√
n

bisection width, this is not the case in problems that require extensive data

movement. It is only in the case of some problems with moderate amounts of

data movement — that the mesh of trees can solve faster than the pyramid.

6.6 Bibliographic Notes

There are a number of books that cover parallel algorithms on the tree,

pyramid and mesh of trees. These include Akl [4], Akl [5], Akl [6],

Leighton [57], and Miller and Stout [67]. The algorithm for selection on

the tree machine is from Stout [89]. The pyramid has long been proposed

for performing high-speed low-level image processing computations. See, for

instance, Cantoni and Levialdi [19], and Rosenfeld [78]. Parallel prefix com-

putation on the pyramid computer is from Cinque and Bongiovanni [25].

Detailed parallel algorithms for many problems on the pyramid can be

found in Miller and Stout [67]. The mesh of trees was proposed indepen-

dently by several authors; see, for instance, Leighton [55]. Parallel algo-

rithms for many problems on the mesh of trees can be found in Leighton [57].

For more references on parallel algorithms on the tree, pyramid and mesh of

trees interconnection networks, see, for instance, Leighton [57], and Miller

and Stout [67].

6.7 Exercises

6.1. Design an algorithm to find the sum of n numbers on a tree network

with n leaf processors. The input numbers are stored at the leaves,

and the output is to be stored in the root processor. What is the

time complexity of your algorithm?

6.2. Design an algorithm to find the maximum of n numbers on a tree-

connected computer with O(log n) processors. The input numbers

are stored at the leaves, and the output is to be stored in the root

processor. What is the time complexity of your algorithm?
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6.3. Give a recursive algorithm for finding the maximum in the tree

machine.

6.4. Illustrate the operation of Algorithm treeselect to find the 13th

smallest element of the 16 items: 7, 10, 15, 13, 2, 9, 5, 12, 3, 8, 11, 4,

6, 14, 17, 16 on the tree machine with 16 processors.

6.5. (a) What is the bisection width of the 1-dimensional pyramid?

(b) Give a lower bound on the problems of sorting and routing on

the 1-dimensional pyramid.

6.6. What is the diameter of the 2-dimensional pyramid?

6.7. Use Algorithm pyramidparprefix to compute the prefix sums of

the 16 numbers: 2, 1, 1, 3, 2, 1, 2, 4, 3, 5, 1, 4, 2, 1, 3, 1 stored in the

base of a 2-dimensional pyramid.

6.8. (a) Compute the bisection width of the 2-dimensional pyramid.

(b) Give a lower bound on the problems of sorting and routing on

the 2-dimensional pyramid.

6.9. Assume that a digitized black/white picture is initially stored one

pixel per processor in the base of the pyramid. Give an algorithm to

find the area of the picture, that is, the total number of black pixels

in the picture, on the pyramid machine.

6.10. Give an algorithm to determine whether there are more black pixels

than white pixels in a digitized picture consisting of n pixels stored

in the base of the pyramid of size n (refer to Exercise 6.9).

6.11. Give an algorithm to determine the sum of n numbers stored in the

base of the pyramid.

6.12. Explain how to compute parallel prefix of n numbers on the pyramid

of size O(n/logn) processors. What is the cost of your algorithm?

6.13. Assess the pyramid machine in terms of sorting and routing.

6.14. What is the diameter of the mesh of trees?
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6.15. Give an algorithm for finding the sum of n numbers on the mesh

of trees of size n. The numbers are initially loaded into the mesh of

trees, one element per processor, and their sum is to be stored in the

topleft processor.

6.16. (a) Compute the bisection width of the mesh of trees.

(b) Give a lower bound on the problems of sorting and routing n

items on the mesh of trees of size n.

6.17. Use Algorithm motsort to sort the 4 numbers: 2, 1, 3, 5 on the

mesh of trees of size 16.

6.18. Give an assessment of the mesh of trees in terms of sorting and

routing.

6.19. Use Algorithm motroute to route the numbers 5, 3, 2, 4, initially

stored in processors P1,1, P1,2, P1,3, P1,4 in a mesh of trees of size 16

to processors P4,2, P4,3, P4,1, P4,4 in this order.

6.20. Let A be an algorithm that runs on the pyramid of size n in time

t(n). What will be the running time of A when simulated on the

mesh of trees of the same size? Explain.

6.21. Generalize Exercise 6.20 to any network. That is, what will be the

running time of A when simulated on a network of the same size?

6.8 Solutions

6.1. Design an algorithm to find the sum of n numbers on a tree network

with n leaf processors. The input numbers are stored at the leaves,

and the output is to be stored in the root processor. What is the

time complexity of your algorithm?

Similar to finding the sum on the PRAM using the tree method. The

time complexity is Θ(logn).

6.2. Design an algorithm to find the maximum of n numbers on a tree-

connected computer with O(log n) processors. The input numbers



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch06 page 276

276 Parallel Algorithms

are stored at the leaves, and the output is to be stored in the root

processor. What is the time complexity of your algorithm?

Assign O(n/ logn) elements to each leaf processor. Initially, each

leaf processor finds the maximum of its assigned elements. The rest

is as in Exercise 6.1. The running time is O(n/ logn + log logn) =

O(n/ logn).

6.3. Give a recursive algorithm for finding the maximum in the tree

machine.

Recursively find the two individual maxima in the two subtrees of

the root, and compute their maximum.

6.4. Illustrate the operation of Algorithm treeselect to find the 13th

smallest element of the 16 items: 7, 10, 15, 13, 2, 9, 5, 12, 3, 8, 11, 4,

6, 14, 17, 16 on the tree machine with 16 processors.

Similar to Example 6.1.

6.5. (a) What is the bisection width of the 1-dimensional pyramid?

(b) Give a lower bound on the problems of sorting and routing on

the 1-dimensional pyramid.

(a) If we consider a 1-dimensional pyramid of size n, and cut it by

a line slightly off-center, the line will cut logn+ 1 links. Hence, the

bisection width of the 1-dimensional pyramid is logn+ 1.

(b) Since all n data items at the leaves of the 1-dimensional

pyramid may have to cross from one side to the other, at least

�n/(logn+ 1)	 = Ω(n/ logn) time is required just to get data across

the middle of the 1-dimensional pyramid (see Exercise 6.5(a)). Hence,

the lower bound is Ω(n/ logn).

6.6. What is the diameter of the 2-dimensional pyramid?

The diameter of the 2-dimensional pyramid is 2 log4 n.

6.7. Use Algorithm pyramidparprefix to compute the prefix sums of

the 16 numbers: 2, 1, 1, 3, 2, 1, 2, 4, 3, 5, 1, 4, 2, 1, 3, 1 stored in the

base of a 2-dimensional pyramid.

Similar to Example 6.2.
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6.8. (a) Compute the bisection width of the 2-dimensional pyramid.

(b) Give a lower bound on the problems of sorting and routing on

the 2-dimensional pyramid.

(a) Consider the number of links crossing the middle of the pyramid

of size n. In the base of the pyramid, there are
√
n links crossing the

middle of the pyramid, in the next level, there are
√
n/2 such links,

and so forth. Thus, the total number of links that cross the middle

of the pyramid is

log4 n−1∑
j=0

√
n

2j
= 2
√
n− 2.

Hence, the bisection width of the 2-dimensional pyramid is 2
√
n−2 =

Θ(
√
n).

(b) Since all n data items in the base of the pyramid may have to cross

from one side of the base mesh to the other, at least �n/(2√n− 2)	 =
Ω(
√
n) time is required just to get data across the middle of the

pyramid (see Exercise 6.8 (a)). That is, the lower bound is Ω(
√
n).

6.9. Assume that a digitized black/white picture is initially stored one

pixel per processor in the base of the pyramid. Give an algorithm to

find the area of the picture, that is, the total number of black pixels

in the picture, on the pyramid machine.

The area of the picture can be determined as follows: In stage 1 of

the algorithm, every processor in level 1 obtains the values of the

pixels stored in its four children in the base processors, computes the

number of black pixels, and sends the count to its parent. In general,

at stage j, 1 ≤ j ≤ log4 n, of the algorithm, every processor P at

level j obtains the values of the pixels stored in its four children at

level j − 1, and computes the total number of black pixels in the

subpyramid under P . Finally, at the final stage, the apex obtains the

values of the pixels stored in its four children at level log4 n− 1, and

computes the total number of black pixels in the pyramid. The total

number of stages is log4 n, and each stage takes Θ(1) time for a total

of Θ(logn).
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6.10. Give an algorithm to determine whether there are more black pixels

than white pixels in a digitized picture consisting of n pixels stored

in the base of the pyramid of size n (refer to Exercise 6.9).

Similar to the bit counting problem in Exercise 6.9.

6.11. Give an algorithm to determine the sum of n numbers stored in the

base of the pyramid.

Similar to the bit counting problem in Exercise 6.9.

6.12. Explain how to compute parallel prefix of n numbers on the pyramid

of size O(n/logn) processors. What is the cost of your algorithm?

AssignO(log n) elements to each leaf processor in the base. First, find

the prefix sums in each group in the base sequentially in O(log n)

time. Next, apply the prefix sums algorithm for the pyramid on

the final sums of all groups in time O(log(n/ logn)) = O(log n).

Finally, update the prefix sums in all groups in the base sequentially

in O(log n) time. The running time is O(log n).

6.13. Assess the pyramid machine in terms of sorting and routing.

By Exercise 6.8(b), it takes Ω(
√
n) time to sort n numbers on the

pyramid. This shows that the pyramid is a poor choice for problems

that require intensive data movements such as sorting, routing and

some problems in computational geometry.

6.14. What is the diameter of the mesh of trees?

The diameter of the mesh of trees is the smallest distance between

two processors in opposite corners, which is 4
logn�.

6.15. Give an algorithm for finding the sum of n numbers on the mesh

of trees of size n. The numbers are initially loaded into the mesh of

trees — one element per processor, and their sum is to be stored in

the topleft processor.

First, each row tree finds the sum of the elements stored at its leaves

and stores the sum in its root in Θ(logn) time. Next, the sums in

all these roots are routed to the leaves of the leftmost column tree

in Θ(logn) time. Finally, the elements at the leaves of this column
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tree are summed and their sum is routed to the topleft processor in

Θ(logn) time. The total running time is Θ(logn).

6.16. (a) Compute the bisection width of the mesh of trees.

(b) Give a lower bound on the problems of sorting and routing n

items on the mesh of trees of size n.

(a) The number of links crossing the middle of the mesh of trees

of size n (without the base connections) is
√
n. Thus, the bisection

width of the mesh of trees is
√
n = Θ(

√
n).

(b) Since all n data items in the base of the mesh of trees may

have to cross from one side of the base mesh to the other, at least

�n/√n	 = Ω(
√
n) time is required just to get data across the middle

of the mesh of trees (see Exercise 6.16 (a)). That is, the lower bound

is Θ(
√
n).

6.17. Use Algorithm motsort to sort the 4 numbers: 2, 1, 3, 5 on the

mesh of trees of size 16.

Similar to Example 6.3.

6.18. Give an assessment of the mesh of trees in terms of sorting and

routing.

By Exercise 6.16(b), it takes Ω(
√
n) time to sort or route n num-

bers on the mesh of trees. It follows that the mesh of trees is not a

good choice for problems that require intensive data movements such

as sorting, routing and some problems in computational geometry.

However, unlike the pyramid, the mesh of trees is capable of sorting

a restricted amount of data in certain configurations in Θ(logn) time

(see Section 6.3.1).

6.19. Use Algorithm motroute to route the numbers 5, 3, 2, 4, initially

stored in processors P1,1, P1,2, P1,3, P1,4 in a mesh of trees of size 16

to processors P4,2, P4,3, P4,1, P4,4 in this order.

Similar to Example 6.4.

6.20. Let A be an algorithm that runs on the pyramid of size n in time

t(n). What will be the running time of A when simulated on the

mesh of trees of the same size? Explain.
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There will be a slow-down by a factor of O(log n) — that is, the

running time will be O(t(n) log n). To see this, let Pi and Pj be two

adjacent processors on the pyramid machine, and suppose they are

mapped to processors Pk and Pl on the mesh of trees. The transfer

of data between processors Pi and Pj on the pyramid, which takes

constant time, is simulated in O(log n) time between processors Pk

and Pl on the mesh of trees.

6.21. Generalize Exercise 6.20 to any network. That is, what will be the

running time of A when simulated on a network of the same size?

The mesh of trees with n processors can simulate any network of the

same size with a slow-down factor of O(log n). The justification is

the same as that of Exercise 6.20.
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Chapter 7

The Star Network

7.1 Introduction

An efficient interconnection topology usually possesses the following prop-

erties: small diameter, low degree, high connectivity, regularity, node sym-

metry, and a simple routing algorithm. The small diameter shortens the

message routing delay while the low degree of nodes is necessary to limit

the number of input-output ports to some acceptable value. Regular graphs

with the property of node symmetry play the most important role in net-

work design, due to the simplicity of designing routing algorithms. One of

the most efficient interconnection networks has been the well-known binary

hypercube; it has been used to design various commercial multiprocessor

machines and it has been extensively studied. Another regular interconnec-

tion network was proposed as an attractive alternative to the hypercube,

called the star. The star, also called d-star, is node and edge symmetric,

and strongly hierarchical as is the case with the hypercube. Let d be a

positive integer. The d-dimensional star, denoted by Sd, is defined as fol-

lows. Consider the n = d! permutations with d symbols, typically 1 to d.

d! processors are defined, one per permutation, such that two processors

are connected by a bidirectional link if and only if their corresponding per-

mutations differ only in the leftmost and any other position. That is, there

is a connection between processor Pα and processor Pβ if and only if β

can be obtained from α by interchanging the first and the jth symbols of

α, 2 ≤ j ≤ d (see Fig. 7.1). For example, consider the case when d = 3.

281



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch07 page 282

282 Parallel Algorithms

1

12 21

123

321 213

312

132

231

1234

3214

2314

1324

3142

2134 2431

3421

1243

2143

4132

3412

4312 1432

1342 4123

14234213

2413
4321

2341

3241

4231

3124

(a)

(b)

(c) (d)

Fig. 7.1. d-dimensional star interconnection network; d = 1, 2, 3, 4.

In this case, there are six processors: P123, P132, P213, P231, P312 and P321.

Figure 7.1(c) shows the connections between these processors.

The d-dimensional star can also be defined by recursive construc-

tion, where it is constructed from d copies of (d − 1)-stars, denoted by

Sd−1(1), Sd−1(2), . . . , Sd−1(d), as follows. Here, the vertices of Sd−1(i) are

labeled by the (d− 1)-permutations of the symbols 1, 2, . . . , d except i. We

add the symbol i at the end of each label of Sd−1(i). For example, the four

S3’s in Fig. 7.1(d) are constructed from the S3 in Fig. 7.1(c) by appending

the digit i, 1 ≤ i ≤ 4. Two vertices in two different substars are connected if

and only if one permutation can be obtained from the other by exchanging

the first and last symbols. For instance, in Fig. 7.1(d), processor 1234 is

connected to processor 4231.

The d-dimensional star Sd compares with the hypercube favorably in

several aspects. Its diameter is �3(d− 1)/2� = Θ(d), and its degree is d−1 =

Θ(d), which are sublogarithmic in term of the number of processors (Notice

that d < log(d!) = Θ(d log d)). Like the hypercube, the star graph is vertex-

symmetric in the sense that any two vertices are similar, that is, the graph

looks the same when viewed from any vertex. Each edge connects an odd
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permutation with an even permutation, and so Sn is bipartite, and contains

no C4 (the cycle on 4 vertices).

7.2 Ranking of the Processors

For some problems, e.g., the problem of sorting, it is imperative to impose

a linear order on the processors. Let Pα and Pβ be two processors of Sd,

where α = a1a2 . . . ad and β = b1b2 . . . bd. The ordering ≺ on the processors

is defined as follows: Pα ≺ Pβ (or α ≺ β) if there exists an i, 1 ≤ i ≤ d, such
that aj = bj for j > i and ai > bi. For example, 2314 ≺ 3214. To see this, let

i = 2; then a3a4 = b3b4 and a2 > b2. The rank of a processor Pβ , denoted

by r(Pβ) is defined as the number of processors Pα such that Pα ≺ Pβ plus

one. Table 7.1 shows the ranks of the processors of the 4-dimensional star.

Figure 7.2 shows the star in Fig. 7.1(d) redrawn with processors’ ranks.

The labels in Table 7.1 and their corresponding ranks can be generalized

for any dimension d as follows. We describe the procedure for generating

Table 7.1. The ranks of processors of the 4-dimensional star.

label r label r label r label r label r label r

1234 1 2134 2 1324 3 3124 4 2314 5 3214 6
1243 7 2143 8 1423 9 4123 10 2413 11 4213 12
1342 13 3142 14 1432 15 4132 16 3412 17 4312 18
2341 19 3241 20 2431 21 4231 22 3421 23 4321 24

1
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Fig. 7.2. 4-dimensional star interconnection network with processors’ ranks.
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the labels in connections with the example 4-dimensional star. There are

four steps to follow:

(1) Generate the 4! permutations of {1, 2, 3, 4}.
1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431,

3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213, 42314312, 4321.

(2) Revere their order.

4321, 4312, 4231, 4213, 4132, 4123, 3421, 3412, 3241, 3214, 3142, 3124,

2431, 2413, 2341, 2314, 2143, 2134, 1432, 1423, 1342, 1324, 1243, 1234.

(3) Reverse every item in the list.

1234, 2134, 1324, 3124, 2314, 3214, 1243, 2143, 1423, 4123, 2413, 4213,

1342, 3142, 1432, 4132, 3412, 4312, 2341, 3241, 2431, 4231, 3421, 4321.

(4) Partition the list of 24 items into four sublists of six elements each

corresponding to the four substars.

1234 ≺ 2134 ≺ 1324 ≺ 3124 ≺ 2314 ≺ 3214 ≺
1243 ≺ 2143 ≺ 1423 ≺ 4123 ≺ 2413 ≺ 4213 ≺
1342 ≺ 3142 ≺ 1432 ≺ 4132 ≺ 3412 ≺ 4312 ≺
2341 ≺ 3241 ≺ 2431 ≺ 4231 ≺ 3421 ≺ 4321.

Obtaining this set of labels can be achieved in parallel using the routine

given in Algorithm starlabels.

Algorithm 7.1 starlabels(d)
Input: An integer d ≥ 1

Output: Generate the labels of star Sd.

1. If d = 1 then return {1}.
2. Recursively generate all (d− 1)-permutations

A = α1, α2, . . . , α(d−1)! of the symbols {1, 2, . . . , d− 1}:
A← starlabels(d− 1).

3. for j← 1 to (d− 1)! do in parallel
4. β0,j← Append d to αj

5. end for
6. for i← 1 to d− 1,do
7. for j← 1 to (d− 1)! do in parallel
8. βi,j← Interchange symbols d− i and d− i+ 1 in βi−1,j

9. end for
10. end for
11. return {βi,j | 0 ≤ i ≤ d− 1, 1 ≤ j ≤ (d− 1)!}
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Assume that the labels are arranged into the rectangular table

{βi,j | 0 ≤ i ≤ d− 1, 1 ≤ j ≤ (d− 1)!}

of dimensions d × (d − 1)! such that the entries in row i are the labels

for substar Sd−1(d − i), 0 ≤ i ≤ d − 1. We now show how to fill out

this table by showing how to obtain each row of the table from its pre-

decessor. The first step is to recursively generate all (d − 1)-permutations

A = α1, α2, . . . , α(d−1)! of the symbols {1, 2, . . . , d − 1}. Append the sym-

bol d to each αj to form the first row of the table. This is done in Steps 3

to 5. Next, interchange the symbols d and d − 1 in each β0,j to form the

second row of the table. Thus, the symbol d− 1 is the last symbol in every

label of the second row. This is followed by the row that consists of labels

in which d− 1 and d− 2 are exchanged, which will make the symbol d− 2

the last symbol in every label of the third row. This procedure continues

until the last row is computed, in which 2 and 1 are exchanged. Thus, the

symbol 1 is the last symbol in every label of the last row. This procedure

for processing all the remaining d− 1 rows is done in Steps 6 to 10.

The ranks are computed simply as increasing from left to right and from

top to bottom. In fact, the rank of processor Pi,j is given by the formula

r(Pi,j) = i× (d− 1)!+ j. This guarantees that those ranks in the same row

are localized to one substar.

The running time of Algorithm starlabels(d) is given by the recur-

rence T (d) = T (d − 1) + Θ(d), which leads to a running time of T (n) =

Θ(d2).

7.3 Routing between Substars

Let Sd−1(a) and Sd−1(b) be two different substars of a star Sd, and suppose

we want to transfer data from Sd−1(a) to Sd−1(b) such that data from two

source processors go to different destination processors. That is, no two

sources send to the same destination. There are two types of routes as

shown in Fig. 7.3: Direct and indirect. In a direct route, there is a direct

link between the source and destination, as shown in part (a) of the figure.

The other type, shown in part (b) of the figure, is the indirect route, which
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(a) (b)

3214

1243

4213

3241

1234 4231

Fig. 7.3. Routes between two substars: (a) Direct. (b) Indirect.

consists of a path from the source to the destination. Specifically, there is

a path of three links connecting the source to the destination.

The method of routing between the two substars is accomplished by

Algorithm starroute. In the algorithm, both α and β consist of d − 2

symbols. Clearly, the running time of the algorithm is Θ(1).

Algorithm 7.2 starroute(a, b)
Input: Two integers a and b, 1 ≤ a < b ≤ d.

Output: Send data from Sd−1(a) to Sd−1(b).

1. There are (d − 2)! processors Pu with label u = bαa. These processors
send their data immediately in one step from Pu in Sd−1(a) to Pv in
Sd−1(b), where v = aαb.

2. The remaining (d−1)!− (d−2)! processors Pw in Sd−1(a) with w = cαa,
c �= a, b, send their data from Sd−1(a) to Px in Sd−1(b), where x = cβb in
three substeps:

(a) First, data is sent from processors Pw in Sd−1(a) to processors Py in
Sd−1(c), where y = aαc.

(b) Next, processors Py send the data they received to Pz in the same
substar Sd−1(c), where z = bβc.

(c) Finally, processors Pz send the data they received to Px in Sd−1(b),
where x = cβb, as stated above.
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Example 7.1 Suppose we want to carry on data transfers from S3(4) to

S3(1) in Fig. 7.1(d). The following steps will take place.

(1) 1234→ 4231,

(2) 1324→ 4321,

(3) 3214→ 4213→ 1243→ 3241,

(4) 2314→ 4312→ 1342→ 2341,

(5) 2134→ 4132→ 1432→ 2431, and

(6) 3124→ 4123→ 1423→ 3421. �

7.4 Computing Parallel Prefix on the Star

In this section, assume that the d! processors are numbered by their ranks,

that is by the integers 1 to d!. It is important that every processor Pα

knows its label α as well as its rank r(Pα). This can be done in Θ(d2)

time (Exercise 7.1). For convenience, we will assume addition as the binary

operation. Let a sequence of elements 〈a1, a2, . . . , ad!〉 be given, stored in

the processors of Sd, one element per processor. Thus ai is initially stored

in Pi, where the index i is the rank of the processor, as explained above.

The problem is to find the prefix sums of 〈a1, a2, . . . , ad!〉, which are a1, a1+

a2, a1+a2+a3, . . . , a1+a2+ · · ·+ad!. For simplicity, we will assume that d

is a power of 2; otherwise, it would only make the presentation complex

(see Example 7.2).

We divide the d substars into groups. Initially, there are d groups,

each containing only one substar and the algorithm is applied recur-

sively to that substar. Next, there are d/2 groups: {Sd−1(1), Sd−1(2)},
{Sd−1(3), Sd−1(4)}, . . . , {Sd−1(d− 1), Sd−1(d)}. In the next iteration, there

are d/4 groups: {Sd−1(1), Sd−1(2), Sd−1(3), Sd−1(4)}, . . . , {Sd−1(d−3), Sd−1

(d − 2), Sd−1(d − 1), Sd−1(d)}, and so on. Suppose that we have com-

puted the prefix sums for two groups of substars as follows. Group 1:

Sd−1(i), Sd−1(i + 1), . . . , Sd−1(i + s), and Group 2: Sd−1(i + s + 1), Sd−1

(i + s + 2), . . . , Sd−1(i + 2s + 1). Here, s = 1, 2, 4, . . .. There are two vari-

ables associated with each processor, x and y, for storing the partial prefix

sum so far and the total sum of values in the group to which it belongs,

respectively. Let the total sum in Group 1 be y1 and the total sum in
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Group 2 be y2. We first use Algorithm starroute in Section 7.3 to send

y1 to every processor in Group 2 and y2 to every processor in Group 1. The

prefix sums of processors in Group 1, the x1’s, remain the same, while the

prefix sum x2 in a processor in Group 2 becomes x2+y1. The total sum for

all processors in both groups becomes y1 + y2. It is important to note that

all of these steps require Θ(1) time. Now, combining Group 1 and Group 2

forms a single group. The steps just described are then used to merge the

new group with another group formed in the same way. This continues until

all the prefix sums have been computed.

The above procedure induces a binary tree for the computation of the

prefix sums (see Fig. 7.4 for example). When the recursion terminates, each

processor in the group holds the variables x and y required at the beginning

of the merging phase. The groups are now merged in pairs, as described in

the previous paragraph.

The merging process is performed as follows. We first merge d/2 consec-

utive pairs of substars to yield d/2 groups of size 2. Next, we merge d/4 pairs

of consecutive 2-substar groups to yield d/4 groups of size 4. Continuing

this way, in the jth iteration, we merge d/2j pairs of groups of size 2j−1

to yield d/2j groups of size 2j. Algorithm starparprefix implements this

idea. The algorithm maintains the variable s which is the size of groups

P1 P2 P3
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P4

P4

1Input

Processors

Recursive

1st iteration

2nd iteration

3 1 2 3 1
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Fig. 7.4. Illustration of computing the prefix sums on the star.
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Algorithm 7.3 starparprefix
Input: A sequence of d! values 〈a1, a2, . . . , ad!〉 stored in d! processors

P1, P2, . . . , Pd!, where d is a power of 2.

Output: The prefix sums of the sequence.

1. Recursively find the prefix sums in all (d − 1)-substars in parallel. Store
the prefix sums of a (d − 1)-substar in the x registers, and the totals in
the y registers of all its processors.

2. t← 1
3. while t ≤ d/2
4. s← t; t← 2s; i← 0; v← d/t
5. for k← 0 to v − 1 do in parallel
6. i← kt
7. for j← i+ 1 to i+ s do in parallel
8. Sd−1(j) sends to Sd−1(j + s) its y1 register, and

Sd−1(j + s) sends to Sd−1(j) its y2 register using
Algorithm starroute in Section 7.3

9. Each processor in Sd−1(j) adds y2 to its y1 register.
10. Each processor in Sd−1(j + s) adds y1 to its x1 and y1

registers.
11. end for
12. end for
13. end while

to be merged as discussed above. Initially, s is set to 1, and is doubled in

each iteration of the while loop. i+1, i+ s and i+ t, where t = 2s, define

the boundaries of the two groups to be merged. The while loop is exe-

cuted log(d/2) = Θ(log d) times. Step 8 takes Θ(1) time (see Section 7.3).

Hence, the above description of the algorithm leads to a running time of

T (d) = T (d− 1) + Θ(log d) = Θ(d log d).

Example 7.2 Let d = 3, so the number of processors is n = d! = 6.

Note here that d is not a power of 2. Figure 7.4 shows an illustration of

the flow of Algorithm starparprefix. There are 6 processors numbered

P1, P2, . . . , P6. The input is shown in the bottom: 1, 3, 1, 2, 3, 1. The results

of the initial recursive calls are shown in the lowest level of the tree. For

example, the prefix sums computed recursively in processors P1 and P2

are 1 and 4, shown in the top box, and the sum of values is shown as 4

in the bottom box. In the next level, processors P1, P2 are merged with

processors P3, P4, and the prefix sums are shown as 1, 4, 5, 7 and the total

is 7. There is no other group to merge with processors P5, P6, so they are



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch07 page 290

290 Parallel Algorithms

passed to the next iteration. In the last iteration, the group of processors

P1, P2, P3, P4 are merged with the group of processors P5, P6. The resulting

prefix sums are 1, 4, 5, 7, 10, 11 and the total sum is 11. �

7.5 Computing the Maximum

In this section, we show how to compute the maximum of d! numbers stored

one per processor of a d-dimensional star. The algorithm to be presented is

a modification of the algorithm for computing parallel prefix, as discussed

in Section 7.4. In fact, the following algorithm is a simplification of it.

Instead of discussing the differences between the two algorithms, we will

present the maximum finding algorithm for completeness. Assume that the

d! processors are numbered by the integers 0 to d! − 1. Let a sequence of

elements 〈a0, a1, . . . , ad!−1〉 be given, stored in the processors of Sd, one

element per processor. Thus ai is initially stored in Pi, where the index i is

the rank of the processor minus 1, as described in Section 7.2. For simplicity,

we will assume that d is a power of 2; otherwise, it would only make the

presentation complex (see Example 7.3).

We divide the d substars into groups. Initially, there are d groups,

each containing only one substar and the algorithm is applied recursively

to that substar. Next, there are d/2 groups: {Sd−1(1), Sd−1(2)}, {Sd−1(3),

Sd−1(4)}, . . . , {Sd−1(d− 1), Sd−1(d)}. In the next iteration, there are d/4

groups: {Sd−1(1), Sd−1(2), Sd−1(3), Sd−1(4)}, . . . , {Sd−1(d − 3), Sd−1

(d − 2), Sd−1(d − 1), Sd−1(d)}, and so on. Suppose that we have com-

puted the maximum for two groups of substars as follows. Group 1:

Sd−1(i), Sd−1(i + 1), . . . , Sd−1(i + s), and Group 2: Sd−1(i + s + 1), Sd−1

(i + s + 2), . . . , Sd−1(i + 2s + 1), where s = 1, 2, 4, . . .. Suppose also that

each processor holds the variable x for storing the maximum so far in the

group to which it belongs. Let the maximum in Group 1 be x1 and the max-

imum in Group 2 be x2. We first use Algorithm starroute to send x1 to

every processor in Group 2 and x2 to every processor in Group 1. Then, the

maximums in processors in Group 1 and in processors in Group 2 become

max{x1, x2}. All of these steps require Θ(1) time since routing takes Θ(1)

time, as described in Section 7.3. Group 1 and Group 2 now form a single

group. The steps just described are then used to merge the new group with

another group formed in the same way. This continues until the maximum

has been computed.
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Fig. 7.5. Illustration of computing the maximum on the star.

The above procedure induces a binary tree for the computation of the

maximum (see Fig. 7.5 for example). When the recursion terminates, each

processor in the group holds the variable x required at the beginning of

the merging phase for holding the maximum. The groups are now merged

in pairs, as described in the previous paragraph. The merging process is

performed as follows. We first merge d/2 consecutive pairs of substars to

yield d/2 groups of size 2. Next, we merge d/4 pairs of consecutive 2-substar

groups to yield d/4 groups of size 4. Continuing this way, in the jth iteration,

we merge d/2j pairs of groups of size 2j−1 to yield d/2j groups of size 2j.

Algorithm starmax implements this idea. The algorithm maintains the

variable s which is the size of the groups to be merged as discussed above.

Initially, s is set to 1, and is doubled in each iteration of thewhile loop. i+1,

i+ s and i+ t, where t = 2s define the boundaries of the two groups to be

merged. The while loop is executed log(d/2) = Θ(log d) times. Step 8 takes

Θ(1) time (see Section 7.3). Hence, the above description of the algorithm

leads to a running time of T (d) = T (d− 1) + Θ(log d) = Θ(d log d).

Example 7.3 Let d = 3, so the number of processors is n = d! = 6. Note

here that d is not a power of 2. Figure 7.5 shows an illustration of the flow

of Algorithm starmax. There are 6 processors numbered P1, P2, . . . , P6.

The input is shown in the bottom: 2, 3, 7, 5, 4, 1. The results of the initial
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Algorithm 7.4 starmax
Input: A sequence of d! values 〈a0, a1, . . . , ad!−1〉 stored in d! processors

〈a0, a1, . . . , ad!−1〉, where d is a power of 2.

Output: The maximum of all values.

1. Recursively find the maximum in all (d − 1)-substars in parallel. Store
the maximum of a (d− 1)-substar in the x registers of all its processors.

2. t← 1
3. while t ≤ d/2
4. s← t; t← 2s; i← 0; v← d/t
5. for k← 0 to v − 1 do in parallel
6. i← kt
7. for j← i+ 1 to i+ s do in parallel
8. Sd−1(j) sends to Sd−1(j + s) its x1 register, and

Sd−1(j + s) sends to Sd−1(j) its x2 register using
Algorithm starroute in Section 7.3

9. Each processor in Sd−1(j) updates its x register to
max{x1, x2}.

10. Each processor in Sd−1(j + s) updates its x register to
max{x1, x2}.

11. end for
12. end for
13. end while

recursive calls is shown in the lowest level of the tree. For example, the max-

imum computed in processors P1 and P2 is 3, and it is stored in both proces-

sors. In the next level, processors P1, P2 are merged with processors P3, P4,

and the maximum is shown as 7, again stored in all four processors. There

is no other group to merge with processors P5, P6, so they are passed to the

next iteration. In the last iteration, the group of processors P1, P2, P3, P4

are merged with the group of processors P5, P6. The resulting maximum

is 7, stored in all processors. �

7.6 Neighborhood Broadcasting and Recursive Doubling

Assume that the source processor Px, where x = aβc, wants to send a

message in its substar Sd−1(c) to the d− 2 processors

bβc, for all b 	= a, c.

The technique of recursive doubling is used to generate the labels of proces-

sors in substar Sd−1(c) reachable from the source processor Px efficiently.
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It is important to note that the generated labels have distinct starting

symbols, that is, no two labels have the same starting symbol. Initially,

the source processor is the only one with the message. In one step, it

sends the message through a direct link to one of its neighbors. Now

two processors have the message and they in turn send the message to

two other processors in such a way that the source sends its message to

another neighbor in one step and the neighbor which has received the

message in the previous step sends the message to one of its neighbors

in one step. The number of processors with the message is now four (the

source processor and the other three processors) and these four proces-

sors send the message to four more processors in the same substar in the

same fashion. The algorithm continues until all d− 2 processors receive the

message.

One possible implementation is given in Algorithm starrecdub. Given

the source processor α = a1a2a3 . . . ad, the algorithm simply selects the mid-

dle symbol and exchanges it with the first symbol to obtain the label β. It

then transmits the message to the processor with the newly generated label,

and repeats the same procedure recursively on the left half of α and the right

half of β in parallel. The initial call of the algorithm is starrecdub(α, 1, d),

where α is the source label. The number of labels generated by the algo-

rithm is d− 1, that is, d− 2 plus the source processor label. Recall that the

generated labels have distinct starting symbols. This procedure of repetitive

doubling leads to a running time of T (d) = T (d/2) + Θ(1) = Θ(log d).

Algorithm 7.5 starrecdub
Input: A processor label α = a1, a2, . . . , ad, and two integers l and h,

1 ≤ l ≤ h ≤ d.

Output: d − 1 processor labels βj = b1b2 . . . , bd, where bd = ad, with the
property that the first symbol b1 is different in all labels βj .

1. if h > l then
2. m← �(l + h)/2	
3. β← swap a1 and am in α.
4. Output β
5. do in parallel
6. Recursively call starrecdub(α, l,m)
7. Recursively call starrecdub(β,m+ 1, h)
8. end
9. end if
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Example 7.4 Consider applying the algorithm on the label 1234.

starrecdub(1234, 1, 4) results in 3 labels: 2134,1234 and 3124. Apply-

ing the algorithm on the label 12345, starrecdub(12345, 1, 5) results

in 4 labels: 32145,21345,12345 and 42135. Observe that the gen-

erated labels have distinct starting symbols. If we choose α =

5234161011987, the call starrecdub(5234161011987, 1, 11) results in 10

labels: 6234151011987, 3254161011987, 2534161011987, 5234161011987,

1254361011987, 4253161011987, 9234151011687, 1123415106987,

1023415611987, 8234151011697. �

Example 7.5 The algorithm can be applied on general labels, not just

those composed of digits. If we choose α =abcdefghk, the call starrec-

dub(abcdefghk, 1, 9) results in 8 labels: ebcdafghk, cbadefghk, bacdefghk,

abcdefghk, dbacefghk, gbcdafehk, fbcdaeghk, hbcdafegk. �

7.7 Broadcasting in the Star

In this section, we discuss broadcasting in the d-dimensional star Sd. In

the description that follows, note that u, v, x, y and β are permutations, so

they don’t have repeated symbols. Further, if one of them is combined with

other symbols, e.g., a, b and c, then it is assumed that they do not contain

these symbols, and these symbols themselves are different. We assume that

there is a message to be broadcast from processor Px, where x = aβb,

1 ≤ a, b ≤ d, in substar Sd−1(b) to all other processors in the star Sd. The

action of broadcasting can be accomplished in the following three steps.

(1) Use the algorithm for neighborhood broadcasting discussed in

Section 7.6 to broadcast the message to the d− 2 processors

cβb, for all c 	= a, b

in the substar Sd−1(b) containing the source processor.

(2) In this step, each of the d − 1 processors Pu, where u = cβb, c 	= b, in

substar Sd−1(b), sends the message it received in Step 1 to processor

Pv, where v = bβc in substar Sd−1(c).

(3) Finally, all processors Py , where y = bβc, in substars Sd−1(c),

c ∈ {1, 2, . . . , d} − {b}, recursively broadcast the message in substars

Sd−1(c). The source processor Px, where x = aβb, recursively broad-

casts the message in Sd−1(b).
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Fig. 7.6. Example of broadcasting in the star.

The above procedure leads to the following recurrence for the running

time: T (d) = T (d− 1) + Θ(log d), whose solution is Θ(d log d) = Θ(log d!).

Example 7.6 The algorithm for broadcasting in the star is illustrated

in Fig. 7.6. Initially, processor 1234 in the star S4 holds the message to

be broadcast. By Step 1 and Example 7.4, the message is propagated to

processors 2134 and 3214, as shown in Fig. 7.6 (b), in which the processors

that hold the message are shown as dark nodes, and the message transmis-

sions are shown by thick lines. After Step 2 of the algorithm, the message is

transmitted to processors 4231, 4132 and 4213, as shown in Fig. 7.6 (c) by

the dark nodes. Finally, as shown in Fig. 7.6 (d), the message is broadcast

recursively in all substars. �
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7.8 The Arrangement Graph

The family of arrangement graphs is a generalization of the star graph

topology. It is a family of graphs that contains the star graphs. The (d, k)-

arrangement graph, denoted by Ad,k, is characterized by the two positive

integers d and k, where 1 ≤ k < d. Its nodes consist of the d!
(d−k)! per-

mutations (arrangements) of d symbols, typically 1, 2, . . . , d, taken k at a

time. The edges connect nodes that are different in exactly one of their

positions. The arrangement graph addresses a major drawback of the star

graph, which is scalability; to go from dimension d to dimension d + 1,

the number of processors in the star graph grows from d! to (d + 1)!. Fur-

ther, the arrangement graphs are more flexible than the star graphs in

terms of choosing the main design parameters such as degree and diameter.

Figure 7.7 shows different arrangement graphs.

The (d, k)-arrangement graph has d!/(d − k)! nodes, and is regular

of degree k(d − k). Its diameter is �3k/2�. As in the hypercube and the

star, it is vertex-transitive, and has a hierarchical structure. The (d, 1)-

arrangement graph Ad,1 is Kd, the complete graph on d vertices. The

(d, d− 1)-arrangement graph Ad,d−1 is isomorphic to the usual star graph.

In Fig. 7.7, A3,2 is C6, the cycle on 6 vertices; it is also S3, the star graph

A2,1 A3,1 A3,2

A4,1 A4,2 A4,3

1 2

1

23

12

2131

32

13

23

Fig. 7.7. Arrangement graphs.
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on 6 vertices, and A4,3 is S4, the star graph on 24 vertices; it is the same

as the graph shown in Fig. 7.1(d).

7.9 The (d, k)-Star Graph

A major practical difficulty with the d-star is the restriction on the number

of nodes: d! for a d-star . The set of values of d! is spread widely over the

set of integers; so, one may be faced with the choice of either too few or

too many available nodes. To relax the restriction of the number of nodes

d! in the d-star, the class of generalized star graphs, called arrangement

graphs, was discovered. The arrangement graph was discussed in the pre-

vious section. When designing an interconnection network based on the

arrangement graph, we can make a more suitable choice for the number of

nodes by tuning the two parameters d and k. Nevertheless, the degree of

the resulting network, which is k(d − k), may be very high. This is a very

significant factor from the architectural point of view since the relatively

high node degree results in additional difficulty in interconnection and extra

complexity in processor design.

As an alternative to overcome the difficulties mentioned above for the

star graph and the arrangement graph, another generalization of the star

graph, called the (d, k)-star, was proposed. As in the arrangement graph,

the (d, k)-star graph, denoted by Sd,k, consists of the
d!

(d−k)! permutations

(arrangements) of d symbols, typically 1, 2, . . . , d, taken k at a time. It is

regular of degree d−1, number of nodes d!/(d−k)!, and diameter 2k−1 for

k < �d/2� and k + �(d− 1)/2� for k ≥ �d/2�+ 1. The (d, k)-star preserves

many attractive properties of the d-star graph such as node symmetry, low

degree, small diameter, hierarchical structure, maximal fault tolerance, and

simple shortest routing. In addition, the (d, d− 1)-star is isomorphic to the

d-star, and hence, all these properties can be derived for the d-star graph

as it is a special case of the (d, k)-star graph. A (4, 2)-dimensional and a

(5, 2)-dimensional star connection network are each shown in Fig 7.8. It is

important to note that Sd,k can be formed by interconnecting d Sd−1,k−1’s.

Fig 7.8(a) shows that S4,2 can be viewed as an interconnection of four

S3,1’s through 2-edges (see next paragraph), and Fig 7.8(b) shows that S5,2

can be viewed as an interconnection of five S4,1’s through 2-edges. In fact,
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Fig. 7.8. (4, 2)-dimensional and (5, 2)-dimensional star connection networks.

like the d-star graph Sd, Sd,k can be decomposed into Sd−1,k−1’s along

any dimension i, 2 ≤ i ≤ k. That is, an Sd,k can be decomposed into d

node-disjoint Sd−1,k−1’s different ways by fixing the symbol in any position

i, 2 ≤ i ≤ k. This decomposition can be carried out recursively on each

Sd−1,k−1 to obtain smaller subgraphs.

Let d and k be two integers satisfying: 1 ≤ k ≤ d− 1. For simplicity, let

〈d〉 = {1, 2, . . . , d} and 〈k〉 = {1, 2, . . . , k}. A (d, k)-star graph is specified

by two integers d and k, where 1 ≤ k ≤ d−1. The node set of Sd,k is denoted

by {a1a2 . . . ak | ai ∈ 〈d〉 and ai 	= aj for i 	= j}. The adjacency is defined as

follows: a1a2 . . . ai . . . ak is adjacent to (1) aia2 . . . a1 . . . ak through an edge

of dimension i, where 2 ≤ i ≤ k (interchange a1 with ai), and (2) xa2 . . . ak
through dimension 1, where x ∈ 〈d〉 − {ai | 1 ≤ i ≤ k}. The edges of type

(1) are referred to as i-edges (e.g., 2-edges and 3-edges), and the edges of

type (2) are referred to as 1-edges. Note that the degree of each node is

d− 1; each node is connected with (d− k) 1-edges, and an i-edge for each

i, 2 ≤ i ≤ k. Let u be a node, and v a neighbor of u. v is called a 1-neighbor

of u if they are connected by a 1-edge, and it is called an i-neighbor of u if

they are connected by an i-edge.

Example 7.7 Consider the graph shown in Fig 7.9(a) (it is the same as

the graph shown in Fig. 7.8(a)). 〈d〉 = {1, 2, 3, 4}. The edge (21, 31) is a

1-edge since 31 is obtained from 21 by replacing 2 in 21 with 3 ∈ 〈d〉−{2, 1}.
On the other hand, the edge (21, 12) is a 2-edge since 12 is obtained from
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Fig. 7.9. (4, 2) and (4, 3)-dimensional star connection networks.

21 by swapping a1 and a2. Hence, 31 is a 1-neighbor of 21 and 12 is a

2-neighbor of 21.

Now, consider Fig 7.9(b). 〈d〉 = {1, 2, 3, 4}. The edge (431, 231) is a

1-edge since 231 is obtained from 431 by replacing 4 in 431 with 2 ∈ 〈d〉 −
{4, 3, 1}. On the other hand, the edge (431, 341) is a 2-edge since 341 is

obtained from 431 by swapping a1 and a2, and the edge (431, 134) is a

3-edge since 134 is obtained from 431 by swapping a1 and a3. Hence, 231

is a 1-neighbor of 431, 341 is a 2-neighbor of 431 and 134 is a 3-neighbor

of 431. All dashed lines in the figure are 1-edges. �

In Sd,k, given an arbitrary node u, there exists a cycle between u and

all u’s 1-neighbors (Exercise 7.14). In Sd,k, given two nodes which are not

connected by a 1-edge, then cycles formed with these two nodes with their

1-neighbors are disjoint from each other. It can be shown that Sd,k can be

decomposed into d!
(d−k+1)! vertex-disjoint cycles of length d− k + 1.

Theorem 7.1 In Sd,k, for any node v, v and all its 1–neighbors form a

clique Kd−k+1 of size d− k + 1.

Proof. Given any node v = a1a2 . . . ak and its 1-neighbor set, which is

denoted by U , we need to prove that any two nodes in U are connected

with each other by an edge. Suppose x and y are two nodes in U . Let
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x = ia2 . . . ak and y = ja2 . . . ak, x 	= y implies i 	= j. By definition of the

(d, k)-star graph, there is also a 1-edge between x and y, which means every

two nodes in U are connected to each other. Hence, v and its 1-neighbors

form a clique with d− k + 1 nodes. �

In fact, there are d!
(d−k+1)! cliques each with d− k + 1 nodes in Sd,k.

Example 7.8 In Fig. 7.9, the dashed subgraphs are cliques. For instance,

the nodes {21, 31, 41} form a clique of size 3 in part (a) of the figure, and

the nodes {431, 231} form a clique of size 2 in part (b) of the figure. �

7.10 Sorting in the Sd,k Star

In this section, we develop a simple sorting algorithm for the (d, k)-star by

embedding a 2-dimensional mesh into Sd,k. For convenience, we will refer to

a processor and its label interchangeably. In this embedding, the vertices of

Sd,k are arranged into a 2-dimensional d× (d−1)!
(d−k)! mesh in row-major order.

The nodes are labeled as described in Section 7.2; we repeat this description

for S4,2. There are four steps to follow:

(1) Generate the 12 2-permutations of {1, 2, 3, 4}.
12, 13, 14, 21, 23, 24, 31, 32, 34, 41, 42, 43

(2) Revere their order.

43, 42, 41, 34, 32, 31, 24, 23, 21, 14, 13, 12.

(3) Reverse every item in the list.

34, 24, 14, 43, 23, 13, 42, 32, 12, 41, 31, 21.

(4) Partition the list of 12 items into four sublists of three elements each

corresponding to the four substars.

34 ≺ 24 ≺ 14 → S4,2(4)

43 ≺ 23 ≺ 13 → S4,2(3)

42 ≺ 32 ≺ 12 → S4,2(2)

41 ≺ 31 ≺ 21 → S4,2(1)

This ordering suggests the embedding shown in Fig. 7.10. It is important

to note that in this embedding each column consists of processors with the

same rank in their respective substar. For instance, processors 24, 23, 32

and 31 have rank 2 in their substars.
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Fig. 7.10. Example of embedding a mesh into a (4, 2)-dimensional star.

Now, we apply Algorithm shearsort of Section 4.6, which sorts the

rows and columns alternately log d times. This is described in Algorithm

stardksort.

Algorithm 7.6 stardksort
Input: A sequence of n = d!

(d−k)!
elements 〈a1, a2, . . . , an〉 stored in (d, k)-star

Sd,k.

Output: The sequence sorted in snakelike order.

1. If k = 1 then sort the elements in Sd−k+1,1 = Kd−k+1 using a straight-
forward method.

2. for i← 1 to log d do
3. for j← 1 to d do in parallel
4. Recursively sort Sd−1,k−1(j) in forward direction if j is odd

and in reverse direction if j is even.
5. Sort the columns in upward direction.
6. end for
7. end for

In Step 1, the star reduces to a clique Sd−k+1,1, which can be sorted

using a sorting algorithm for the PRAM in time O(log(d − k + 1)) since

all processors are connected. The inner loop from Step 3 to Step 6, which

constitutes one of the log d phases of the algorithm, alternates between

sorting the rows and sorting the columns. In sorting the rows, the elements

in Sd−1,k−1(j), 1 ≤ j ≤ d, are sorted recursively in parallel, where sorting

is in the forward direction for odd j and in the reverse direction for even j.

In algorithm shearsort, each column sorting is done in O(d) time.

Since each edge of the mesh is mapped to a path of length O(d), each

step of the mesh is simulated by O(d) steps of the star. It follows that the
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running time of each iteration of the algorithm is given by the recurrence

t(d, k) = t(d− 1, k − 1) +O(d)O(d); t(d− k + 1, 1) = O(log(d− k + 1)),

whose solution is

t(d, k) = O(d2) +O((d− 1)2) + · · ·+O((d− k + 1)2) +O(log(d− k + 1))

= O(kd2),

since the depth of recursion is min{d, k} = k. Thus, the overall running

time in all log d iterations of the algorithm is T (d, k) = O(kd2 log d).

Unraveling recursion leads to a recursion tree similar to that for the

(4, 3)-star shown in Fig. 7.11.

As shown in the figure, sorting a (4, 3)-star induces four sorting instances

of (3, 2)-stars, which in turn induce 12 sorting instances of (2, 1)-stars, i.e.,

cliques. These cliques of size 2 are shown in Fig. 7.9 as dashed edges. In

general, sorting a (d, k)-star induces d sorting instances of (d − 1, k − 1)-

stars, which in turn induces (d− 1) sorting instances of (d− 2, k− 2)-stars

and so on. This continues until the base of recursion is reached, in which
d!

(d−k+1)! instances of (d − k + 1, 1)-stars, i.e., cliques, are generated. Thus

the problem of sorting reduces to sorting columns of stars of decreasing

sizes. Since each step, e.g., element comparison, requires O(d) low-level

routing steps, each column sorting takes O(d2) time (as explained above).

234 134 324 124 314 214
243

4

143 423 123 413 213
342

3

142 432 132 412

1

312
341 241 431 231 421

2

321

234 134
324 124
314 214

243 143
423 123
413 213

342 142
432 132
412 312

341 241
431 231
421 321

234
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314
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423
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341
241

431
231

421
321

Fig. 7.11. Recursion tree for sorting on the (d, k)-star.
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This leads to a running time of

O(d2) +O((d − 1)2) + · · ·+O((d − k)2) +O(log(d− k + 1)) = O(kd2)

for each iteration, for an overall running time of O(kd2 log d), which matches

the above derivation. Exercise 7.18 shows how to improve the running time

to O(kd log d).

7.11 Bibliographic Notes

The star network was proposed by Akers, Harel and Krishnamurthy as an

alternative to the hypercube [1]. A good introduction to the star network

can be found in the book by Akl [5]. For more on the star graphs and the

more general Cayley graphs, see for example, Akers and Krishnamurthy [2].

See also Dietzfelbinger, Madhavapeddy and Sudborough [34]. Algorithms

for optimal broadcasting in the star graph can be found in Mendia and

Sarkar [65], and Sheu, Wu and Chen [85]. Arrangement graphs were intro-

duced by Day and Tripathy [32] as a generalization of the star graphs. For

routing, broadcasting, prefix sums, and sorting algorithms on the arrange-

ment graph, see Li and Qiu [59]. The (n, k)-star graph was proposed by

Chiang and Chen as a generalized star graph [23]. Topological properties

of the (n, k)-star graph can be found in Chiang [22] and He [42]. Many

algorithms for the star graph (see, e.g., Akl, Qiu and Stojmenovic [9]) may

adapt to the (n, k)-star graph with slight modifications. For more references

on the star network, see Akl [5].

7.12 Exercises

7.1. Given a permutation π = k1k2 . . . kd, show how to compute its rank

efficiently.

7.2. Analyze the sequential running time of Algorithm starlabels.

7.3. Analyze the parallel running time of Algorithm starlabels using

the star graph as a model. That is, given a star graph of processors,

how long does it take for the processors to know their ranks?
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7.4. Show the steps for data transfers from S3(2) to S3(3) in the star S4

such that no two sources send to the same destination (see Fig. 7.3).

7.5. Illustrate the operation of Algorithm starparprefix for computing

parallel prefix on the star described in Section 7.4 to find the prefix

sums of 2, 1, 3, 1, 4, 2. Assume a 3-dimensional star with 6 processors.

7.6. Illustrate the operation of Algorithm starmax for computing the

maximum on the star described in Section 7.5 to find the maximum

of 3, 5, 8, 1, 5, 2. Assume a 3-dimensional star with 6 processors.

7.7. Apply Algorithm starrecdub in Section 7.6 on the label 21435.

7.8. Show that any neighborhood broadcasting algorithm on a network

with degree d must require Ω(log d).

7.9. Illustrate the operation of the algorithm for broadcasting in the star

discussed in Section 7.7 to broadcast a datum initially stored in pro-

cessor 2134 of the star S4.

7.10. Show that any broadcasting algorithm on a graph with n nodes must

require time Ω(log n).

7.11. Show that the arrangement graph A4,2 can be partitioned into cliques

of size 3, i.e., triangles.

7.12. Generalize the result of Exercise 7.11 for the arrangement graph Ad,k.

That is, show that the arrangement graph Ad,k can be partitioned

into cliques of size d− k + 1.

7.13. Show that the (d, k)-star Sd,1 is a clique Kd.

7.14. In Sd,k, given an arbitrary node u, show that there exists a cycle

between u and all u’s 1-neighbors.

7.15. Explain how to find simple disjoint paths (linear arrays) of length d

in the (d, k)-star.
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7.16. Apply Exercise 7.15 on the embedding of S4,3 shown in Fig. 7.11 to

obtain 6 disjoint paths (linear arrays) of length 4.

7.17. Prove the correctness of your solution to Exercise 7.15.

7.18. Use the result of Exercise 7.15 to improve the running time of the

sorting algorithm presented in Section 7.10.

7.19. A dominating set S in a graph G = (V,E) is a subset of V such that

every element x ∈ V is in S or adjacent to an element y in S. Explain

how to find a dominating set of minimum size in the (d, k)-star.

7.20. Apply Exercise 7.19 on the embedding of S4,3 shown in Fig. 7.11 to

obtain 4 dominating sets of minimum size.

7.21. Prove your answer to Exercise 7.19.

7.13 Solutions

7.1. Given a permutation π = k1k2 . . . kd, show how to compute its rank

efficiently.

Let permutation π = k1k2 . . . kd be given. Then, its rank r(π) is given

by

r(π) = 1 +

d∑
i=2

(
|ki − i−

d∑
l=i+1

tl|
)
× (i− 1)!,

where ti = 1 if ki > kl, and 0 otherwise. This is shown in pseudocode

in Algorithm compstarrank. Its running time is computed as fol-

lows. Steps 5 and 7 are executed Θ(d) times each. Hence, the total

running time is Θ(d2).

7.2. Analyze the sequential running time of Algorithm starlabels.

Each table entry takes constant time to produce. This implies a run-

ning time of Θ(d!). So, it is linear in the number of processors.
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Algorithm 7.7 compstarrank(Sd)
Input: d-dimensional star Sd

Output: Generate the ranks of Sd.

1. for j← 1 to d! do in parallel
2. r← 1
3. Let permutation πj = k1k2 . . . kd
4. t← 1
5. for i← 2 to d do
6. s← ki − i
7. for l← i+ 1 to d do
8. if ki > kl then s← s− 1
9. end for

10. t← t× (i− 1)
11. r← r+ | s | ×t
12. end for
13. end for

7.3. Analyze the parallel running time of Algorithm starlabels using

the star graph as a model. That is, given a star graph of processors,

how long does it take for the processors to know their ranks?

All columns of the table can be evaluated in parallel. Each column can

be evaluated sequentially in time Θ(d). This implies the running time

recurrence T (d) = T (d− 1) + Θ(d), whose solution is T (d) = Θ(d2).

7.4. Show the steps for data transfers from S3(2) to S3(3) in the star S4

such that no two sources send to the same destination (see Fig. 7.3).

Similar to Example 7.1.

7.5. Illustrate the operation of Algorithm starparprefix for computing

parallel prefix on the star described in Section 7.4 to find the prefix

sums of 2, 1, 3, 1, 4, 2. Assume a 3-dimensional star with 6 processors.

Similar to Example 7.2.

7.6. Illustrate the operation of Algorithm starmax for computing the

maximum on the star described in Section 7.5 to find the maximum

of 3, 5, 8, 1, 5, 2. Assume a 3-dimensional star with 6 processors.

Similar to Example 7.3.

7.7. Apply Algorithm starrecdub in Section 7.6 on the label 21435.

Similar to Example 7.4.
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7.8. Show that any neighborhood broadcasting algorithm on a network

with degree d must require Ω(log d).

At each time unit, one processor with the messages can only send

to one of its neighbors, so after every step, the number of neighbors

which have received the information can at most double. The maxi-

mum number of neighbors of a node is d, so the least time to solve

the neighborhood broadcasting problem must be Ω(log d).

7.9. Illustrate the operation of the algorithm for broadcasting in the star

discussed in Section 7.7 to broadcast a datum initially stored in

processor 2134 of the star S4.

Similar to Example 7.6.

7.10. Show that any broadcasting algorithm on a graph with n nodes must

require time Ω(log n).

Note that after each time unit the number of processors that have

received the information being broadcast can at most double.

7.11. Show that the arrangement graph A4,2 can be partitioned into cliques

of size 3, i.e., triangles.

A4,2 can be partitioned into
|V (A4,2)|

3 = 4 triangles in two ways as

shown in Fig. 7.12.

42

14

24
13

23 21 4143

3212

34 31

42

14

24
13

23 21 4143

3212

34 31

(a) (b)

Fig. 7.12. Two partitions of the arrangement graph A4,2 into four triangles (dark
edges).
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7.12. Generalize the result of Exercise 7.11 for the arrangement graph Ad,k.

That is, show that the arrangement graph Ad,k can be partitioned

into cliques of size d− k + 1.

Let Id = {1, 2, . . . , d}, and for a fixed i, 1 ≤ i ≤ k, let
Vi = {a1 . . . ai−1biai+1 . . . ak | bi ∈ Id − {a1, . . . , ai−1, ai+1, . . . ak}.

Then, |Vi| = d− k+1. There are |P d
k−1| such Vi’s, where P d

k−1 is the

number of permutations of d items taken k at a time. It is easy to

see that the subgraph induced by Vi is a complete graph Kd−k+1. In

particular, Kd−k+1 = Kd if k = 1, and Kd−k+1 = K2 if k = d− 1.

7.13. Show that the (d, k)-star Sd,1 is a clique Kd.

By Theorem 7.1 (All edges are 1-edges).

7.14. In Sd,k, given an arbitrary node u, show that there exists a cycle

between u and all u’s 1-neighbors.

Since Sd,k is node-symmetric, we may assume without loss of gen-

erality that u = 123 . . . k. Then, u is connected by a 1-edge to

(k+1)23 . . . k, which in turn is connected to (k+2)23 . . . k, and so on.

Hence, 123 . . . k, (k + 1)23 . . . k, (k + 2)23 . . . k, . . . , d23 . . . k, 123 . . . k

is a cycle in Sd,k.

7.15. Explain how to find simple disjoint paths (linear arrays) of length d

in the (d, k)-star.

If we exchange the 1st symbol with the kth symbol in the

2-dimensional embedding, then the columns constitute simple paths

of length d. See Table 7.2 for example. For instance, one possible

simple path is, 42, 32, 23, 13.

Table 7.2.

path 1 path 2 path 3

43 42 41
34 32 31
24 23 21
14 13 12
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Table 7.3.

path 1 path 2 path 3 path 4 path 5 path 6

432 431 423 421 413 412
342 341 324 321 314 312
243 241 234 231 214 213
143 142 134 132 124 123

7.16. Apply Exercise 7.15 on the embedding of S4,3 shown in Fig. 7.11 to

obtain 6 disjoint paths (linear arrays) of length 4.

From the first column of Table 7.3, we obtain the path

432, 342, 243, 143. The other paths can be found similarly.

7.17. Prove the correctness of your solution to Exercise 7.15.

Any column of the two dimensional embedding looks like the

following

α1d

α2(d− 1)

α3(d− 2)
...

αd−12

αd1.

If we swap the first and kth symbol, we obtain

dβ1
(d− 1)β2
(d− 2)β3

...

2βd−1

1βd.
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Now, exchanging d in dβ1 with (d-1) yields (d − 1)β2, exchanging

(d − 1) in dβ2 with (d − 2) yields (d − 2)β3, and so on. Thus, dβ1,

(d − 1)β2, . . . , 2βd−1, 1βd is a simple path of length d − 1. In other

words, it represents d processors forming a linear array.

7.18. Use the result of Exercise 7.15 to improve the running time of the

sorting algorithm presented in Section 7.10.

Do the following steps.

(1) Preprocessing step: Before the algorithm starts, copy the con-

tents of every processor aαb to processor bαa.

(2) Sort as in Algorithm stardksort.

(3) Postprocessing step: After the sorting algorithm halts, copy

back the contents of every processor bαa to processor aαb.

Both the preprocessing and postprocessing steps take Θ(1) time. It

follows that performing the above procedure will reduce the time

complexity to O(kd log d), that is, it will be faster by a factor of

O(d), as the algorithm will work on columns of adjacent elements.

7.19. A dominating set S in a graph G = (V,E) is a subset of V such that

every element x ∈ V is in S or adjacent to an element y in S. Explain

how to find a dominating set of minimum size in the (d, k)-star.

If we exchange the 1st symbol with the kth symbol in the

2-dimensional embedding as in the previous exercises, then the rows

constitute dominating sets of minimum size. See Table 7.2. For exam-

ple, one possible dominating set of minimum size is, 43, 42, 41.

7.20. Apply Exercise 7.19 on the embedding of S4,3 shown in Fig. 7.11 to

obtain 4 dominating sets of minimum size.

From the first row of Table 7.3, we obtain the dominating set

432, 431, 423, 421, 413, 412. The other dominating sets can be found

similarly.

7.21. Prove your answer to Exercise 7.19.

First, note that all elements in the same row start with the same

symbol. This means that they form an independent set, that is, no

one is connected to the other. Next, each row of elements of the form
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aα1, aα2, . . . , aα(d−1)! consists of all permutations of the symbols in

{1, 2, . . . , d} − {a} prefixed with the symbol a. Hence, if β is any

permutation that does not start with a, then it must be a neighbor of

one of these (d−1)! permutations. This implies that this dominating

set is of minimum size.
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Chapter 8

Optical Transpose Interconnection
System (OTIS)

8.1 Introduction

When communication distances exceed a few millimeters, optical intercon-

nects provide speed and power advantages over electronic interconnects.

Therefore, in the construction of very large multiprocessor machines, it is

prudent to interconnect physically close processors using electronic inter-

connects and to use optical interconnects for pairs of processors that are

distant. This led to the introduction of optical transpose interconnection

system (OTIS). Specifically, in OTIS, there are n2 processors organized

into n groups of n processors each. The intergroup interconnects are opti-

cal, while the intragroup interconnects are electronic. It can be shown that

when the number of groups equals the number of processors, the band-

width and power efficiency are maximized, and system area and volume

are minimized. Each processor is indexed by the pair (g, p), 0 ≤ g, p < n,

where g is the group index, i.e., the group the processor is in, and p is the

processor index within each group. Processor p in group g is connected to

processor g in group p, 0 ≤ p, g < n. Every group can be realized as one of

the well-studied interconnection networks, e.g., mesh, hypercube, butterfly,

mesh of trees, and so forth. This results in OTIS-Mesh, OTIS-Hypercube,

OTIS-butterfly, and so on.

313
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Optical links have much larger bandwidth than electronic links do, and

transfer times including latency are different on optical and electronic links.

Therefore, we will occasionally count communication along optical and elec-

tronic interconnects separately. However, we use the simplifying assumption

that any constant amount of data can be communicated over an optical link

during an optical communication step, while only a unit amount of data

can be communicated over an electronic communication step.

8.2 The OTIS-Mesh

The OTIS-Mesh consists of n groups of n processors each, where each group

of processors forms a
√
n×√n mesh. Processor p in mesh (group) g is

connected to processor g in mesh (group) p, 0 ≤ g, p < n. Figure 8.1

shows an OTIS-Mesh with 4 meshes of 4 processors each for a total of 16

processors. In this figure, the optical links are shown in thick lines. As shown

in the figure, processor (00, 01) is connected to processor (01, 00), processor

(01, 10) is connected to processor (10, 01), and so forth. Figure 8.2 shows an

OTIS-Mesh with 9 meshes of 9 processors each for a total of 81 processors.

01 00

11

01

01

11

00

10

00

10

01

11

00

10

11 10

group 00

group 10 group 11

group 01

Fig. 8.1. OTIS-Mesh with 16 processors.
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8.2.1 Data movements in the OTIS-Mesh

Consider embedding a
√
n×√n×√n×√n 4-dimensional mesh on the OTIS-

Mesh. Corresponding to this embedding, the processors in the OTIS-Mesh

can be labeled by the quadruple (i, j, k, l), where 0 ≤ i, j, k, l ≤ √n − 1.

Here, the group number is i
√
n+ j and the processor number in each group

is k
√
n+ l. Each move in the 4-D mesh can be simulated by at most three

moves in the OTIS-Mesh as follows. The 4-D mesh moves (i, j, k± 1, l) and

(i, j, k, l±1) take one electronic move each, since they are local to the group.

The 4-D mesh move (i± 1, j, k, l) can be simulated by one electronic move

01 0200

10

20 21 22

11 12

01 0200

10

20 21 22

11 12

01 0200

10

20 21 22

11 12

01 0200

10

20 21 22

11 12

01 0200
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20 21 22

11 12

01

02

00
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20 21 22

11 12

01 0200
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20 21 22

11 12

01 0200

10

20 21 22

11 12

01 0200

10

20 21 22

11 12

group 00

group 11 group 12group 10

group 20 group 21 group 22

group 01 group 02

Fig. 8.2. OTIS-Mesh with 81 processors (only some of the optical links are
shown).
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and two optical moves as follows

(i, j, k, l)−→o (k, l, i, j)−→e (k, l, i+ 1, j)−→o (i+ 1, j, k, l),

where −→e is an electronic move and −→o is an optical move. In some

data movements, we will use the letters u, v, x and y to refer to the four

dimensions of the 4-D mesh as well as its embedding on the OTIS-Mesh.

Thus, each move along the x and y dimensions takes one step, and each

move along the u and v dimensions takes three steps.

8.2.2 Broadcasting in the OTIS-Mesh

Assume the data is initially in the single processor (0, 0) (processor 0 in

group 0), and it is to be broadcast to all processors in the OTIS-Mesh.

The algorithm, shown as Algorithm otismeshbroadcast, consists of three

steps. After Step 1, x is broadcast to all processors in group 0. Following

Step 2, processor 0 of each group has a copy of x, and following Step 3,

each processor in the OTIS-Mesh has a copy of x.

Algorithm 8.1 otismeshbroadcast
Input: x stored in processor (0, 0).

Output: Broadcast x to all other processors.

1. Processor (0, 0) broadcasts x to all processors in its group, group 0.
2. Perform an OTIS move. That is, all processors in group 0 send their data

to processors in other groups using optical links (see Fig. 8.2).
3. Processor (g, 0) in every group g broadcasts its data to all processors

within its group.

Steps 1 and 3 take 2(
√
n−1) electronic moves each, and Step 2 takes one

OTIS move. The total is 4
√
n− 3 steps. The above discussion assumes that

the origin of broadcasting is processor 0. Generalizing to other processors

is straightforward.

8.2.3 Semigroup operations on the OTIS-Mesh

Consider performing semigroup operations, e.g., addition, on the OTIS-

Mesh. Assume the operation of addition and that n numbers are dis-

tributed one per processor. The 2-tuple index (g, p) of a processor may

be transformed into a scalar i = gn + p with 0 ≤ i < n2. Let xi be the
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data stored in processor i, 0 ≤ i < n2. Notice that the sum is to be stored

in all processors of the OTIS-Mesh. The algorithm, shown as Algorithm

otismeshsum, consists of three steps. After Step 1, the sum of all values

in every group is computed and stored in all processors of that group. Fol-

lowing Step 2, for all groups g, 0 ≤ g ≤ n− 1, processor (p, g) contains the

sum of all elements in group p, and following Step 3, each processor in the

OTIS-Mesh has a copy of the desired sum x0 + x1 + · · ·+ xn−1.

Algorithm 8.2 otismeshsum
Input: xi stored in processor i, 0 ≤ i < n2.

Output: The sum of values xi stored in all processors.

1. Each group performs the sum of its local data.
2. Perform an OTIS move. That is, for all groups g and all processors p,

(g, p) sends the local sum in its group computed in Step 1 to processor
(p, g) using optical links.

3. Each group computes the total of its local sums computed in Step 1.

Steps 1 and 3 take 4(
√
n− 1) electronic moves each (Exercise 4.3), and

Step 2 takes one OTIS move. The total is 8(
√
n− 1) electronic moves and

one OTIS move.

Example 8.1 Consider running Algorithm otismeshsum for finding the

sum on the OTIS-Mesh with 16 processors (see Fig. 8.1). The contents of

the processors will be represented by a set of four sets, each representing

a group of processors. Suppose that initially the contents of the processors

are {{1, 2, 1, 3}, {2, 4, 1, 3}, {1, 3, 2, 4}, {2, 4, 1, 2}}.
Following the first step, computing the local sums, we obtain{{7, 7, 7, 7}, {10, 10, 10, 10}, {10, 10, 10, 10}, {9, 9, 9, 9}}.
After performing the OTIS move in Step 2, the contents become{{7, 10, 10, 9}, {7, 10, 10, 9}, {7, 10, 10, 9}, {7, 10, 10, 9}}.
Finally, after performing the addition in Step 3, we obtain{{36, 36, 36, 36}, {36, 36, 36, 36}, {36, 36, 36, 36}, {36, 36, 36, 36}},
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which is the desired sum. Note that all processors contain the final

sum. �

8.2.4 Parallel prefix in OTIS-Mesh

The parallel prefix problem for the mesh was discussed in Section 4.4. In

this section, we show how to compute it on the OTIS-Mesh. For simplicity,

we will assume addition as the binary operation. The 2-tuple index (g, p)

of a processor may be transformed into a scalar i = gn+p with 0 ≤ i < n2.

Let xi be the data stored in processor i. It is required to compute the prefix

sums x0, x0+x1, x0+x1+x2, . . . , x0+x1+· · ·+xn−1. The algorithm is shown

as Algorithm otismeshparprefix. It consists of six phases. (Recall that

processor p in group g is denoted by (g, p)). In Phase 1 of the algorithm,

each group computes its local prefix sums. After Phase 2, the partial sum

computed in processor (g, n − 1) is copied to processor (n − 1, g) for all

g, 0 ≤ g ≤ n− 1. As a result, group n− 1 will hold the partial sums stored

in all processors (g, n − 1). Let these sums be s0, s1, . . . , sn−1. Phase 3

computes the modified partial sums in group n− 1:

tp =

p−1∑
j=0

sj, 0 ≤ p ≤ n− 1.

These valves are then copied to processors (g, n − 1) in Phase 4 for all

g, 0 ≤ g ≤ n − 1. The data in processor (g, n − 1) is then broadcast to all

processors in group g for all g, 0 ≤ g ≤ n − 1. Finally, in Phase 6, each

processor (g, p) in the OTIS-Mesh adds the local prefix sum computed in

Phase 1 and the modified prefix sum tg it received in Phase 5.

The analysis of the algorithm is straightforward. Phases 1 and 3 take

Θ(
√
n) steps each. Broadcasting in Phase 5 costs Θ(

√
n) time and addition

in Phase 6 takes Θ(1) time. Phases 2 and 4 take one OTIS move each. It

follows that the running time is Θ(
√
n).

Example 8.2 Consider finding the prefix sums in the OTIS-Mesh with 16

processors (see Fig. 8.1). The contents of the processors will be represented

by a set of four sets, each representing a group of processors. Initially, the

contents of the processors are{{1, 2, 1, 3}, {2, 4, 1, 3}, {1, 3, 2, 4}, {2, 4, 1, 2}}.
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Algorithm 8.3 otismeshparprefix
Input: xi stored in processor i, 0 ≤ i < n2.

Output: Compute the prefix sums of the xi’s.

1. Perform a local prefix sum within each group as discussed in Section 4.4.
2. Perform an OTIS move of the prefix sums computed in Phase 1 for all

processors (g, n− 1). That is, for all groups g, copy the contents of pro-
cessor (g, n − 1) to processor (n − 1, g) in group n − 1. Call these sums
s0, s1, . . . , sn−1.

3. Group n− 1 computes a modified prefix sum of the values sj received in
Phase 2. In this modification, processor (n− 1, p) computes
tp =

∑p−1
j=0 sj , 0 ≤ p ≤ n− 1.

4. Perform an OTIS move of the modified prefix sums computed in Phase 3.
That is, for all groups g, copy tg that is computed in the previous phase
to processor (g, n− 1) in group g.

5. Each group g performs a local broadcast of the modified prefix sum tg
received by its processor (g, n− 1).

6. Each processor (g, p) in the OTIS-Mesh adds the local prefix sum com-
puted in Phase 1 and the modified prefix sum tg it received in Phase 5.

After computing the local prefix sums in Phase 1, we obtain{{1, 3, 4, 7}, {2, 6, 7, 10}, {1, 4, 6, 10}, {2, 6, 7, 9}}.
The contents after Phase 2 change as follows{{1, 3, 4, 7}, {2, 6, 7, 10}, {1, 4, 6, 10}, {(2, 7), (6, 10), (7, 10), (9, 9)}}.
Here, the fourth group consists of pairs of values; the first value in each

group-processor pair (3, p) is the local prefix sum computed earlier and the

second is the prefix sum sp of group p received in Phase 2. So, in group 3,

s0 = 7, s1 = 10, s2 = 10 and s3 = 9. Following Phase 3, the contents become{{1, 3, 4, 7}, {2, 6, 7, 10}, {1, 4, 6, 10}, {(2, 0), (6, 7), (7, 17), (9, 27)}}.
Here, 0, 7, 17, 27 are the modified prefix sums tp of 7, 10, 10, 9 stored in
group 3. Following Phase 4, the contents of the processors become

{{1, 3, 4, (7, 0)}, {2, 6, 7, (10, 7)}, {1, 4, 6, (10, 17)}, {(2, 0), (6, 7), (7, 17), (9, 27)}},

that is, the contents of group 3 are copied to processors (g, 3) in all groups g.

After broadcasting in Phase 5, the contents are represented by the pairs{{(1, 0), (3, 0), (4, 0), (7, 0)}, {(2, 7), (6, 7), (7, 7), (10, 7)},
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{(1, 17), (4, 17), (6, 17), (10, 17)}, {(2, 27), (6, 27), (7, 27), (9, 27)}}.
Finally, after addition in Phase 6, the contents in all processors become{{1, 3, 4, 7}, {9, 13, 14, 17}, {18, 21, 23, 27}, {29, 33, 34, 36}},
which are the desired prefix sums, as can be seen by inspection. �

8.2.5 Shift operations on the OTIS-Mesh

In this operation, data in all groups is shifted to the right (or left) along one

of its coordinates by k positions, where −√n < k <
√
n. For example, data

is shifted from (u, v, x, y) to (u + k, v, x, y) along coordinate u, or shifted

from (u, v, x, y) to (u, v, x+k, y) along coordinate x. Here, we have assumed

that the processors are labeled by the quadruple (u, v, x, y). Shifting along

coordinates x and y is straightforward, as it is a standard mesh operation.

Hence, we will concentrate on shifting along coordinates u and v. Algorithm

otismeshshift describes how to shift along coordinate u or along coordi-

nate v. In Step 1, for all groups g, 0 ≤ g ≤ n − 1, processor (g, p) copies

its element to processor (p, g), and following Step 2, the elements in each

group are shifted. Shifting is performed along x coordinate if the original

shifting is by u, and is done along y coordinate if the original shifting is

by v. Finally, after Step 3, for all groups g, 0 ≤ g ≤ n− 1, processor (g, p)

copies its element to processor (p, g).

Steps 1 and 3 take one OTIS move each, and Step 2 takes k electronic

moves.

Algorithm 8.4 otismeshshift
Input: n2 elements stored in OTIS-Mesh and an integer k, −√n < k <

√
n.

Output: The elements are shifted to the right or the bottom by k positions
along the u or v coordinates.

1. Perform an OTIS move. That is, for all groups g and all processors p,
(g, p) sends its element to processor (p, g) using optical links.

2. Each group shifts its local data along coordinate x or y row-wise or
column-wise.

3. Perform an OTIS move as in Step 1.

Example 8.3 Consider running Algorithm otismeshshift for shifting

the elements in the OTIS-Mesh with 16 processors one element to the right
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along the u-coordinate (see Fig. 8.1). The contents of the processors will be

represented by a set of four sets, each representing a group of processors.

Suppose that initially the contents of the processors are{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}.
It is important to note that each set of four numbers constitutes a 2 × 2

mesh. Following Step 1, we obtain{{1, 5, 9, 13}, {2, 6, 10, 14}, {3, 7, 11, 15}, {4, 8, 12, 16}}.
After Step 2, the contents of the processors become{{0, 1, 0, 9}, {0, 2, 0, 10}, {0, 3, 0, 11}, {0, 4, 0, 12}}.
Finally, following Step 3, we obtain{{0, 0, 0, 0}, {1, 2, 3, 4}, {0, 0, 0, 0}, {9, 10, 11, 12}},
which is the desired result. �

Example 8.4 Consider running Algorithm otismeshshift — for shift-

ing the elements in the OTIS-Mesh with 16 processors — one element to

the right along the v-coordinate (see Fig. 8.1). Suppose that initially the

contents of the processors are{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}.
Following Step 1, we obtain{{1, 5, 9, 13}, {2, 6, 10, 14}, {3, 7, 11, 15}, {4, 8, 12, 16}}.
After Step 2, the contents of the processors become{{0, 0, 1, 5}, {0, 0, 2, 6}, {0, 0, 3, 7}, {0, 0, 4, 8}}.
Finally, following Step 3, we obtain{{0, 0, 0, 0}, {0, 0, 0, 0}, {1, 2, 3, 4}, {5, 6, 7, 8}},
which is the desired result. �
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8.2.6 Permutation routing in OTIS-Mesh

We consider the problem of permutation routing in the OTIS-Mesh with n2

processors, in which every processor tries to send to a different destination.

We will denote a processor Pk,l in group (i, j) by the quadruple (i, j, k, l).

8.2.6.1 Deterministic routing in the OTIS-Mesh

The greedy algorithm for permutation routing in the OTIS-Mesh is a gen-

eralization of the greedy algorithm for the 2-dimensional mesh discussed

in Section 4.9.2. Let π be a packet to be routed from processor (u, v, x, y)

to processor (u′, v′, x′, y′). The greedy algorithm consists of the following

phases.

Phase 1: Route π from processor (u, v, x, y) to processor (u, v, u′, v′) as

detailed in Section 4.9.2.

Phase 2: Send π from processor (u, v, u′, v′) to processor (u′, v′, u, v) using
one optical move.

Phase 3: Route π from processor (u′, v′, u, v) to processor (u′, v′, x′, y′) as

detailed in Section 4.9.2.

Phases 1 and 3 take at most 2
√
n − 2 steps each, and Phase 2 takes

one step for a total of at most 4
√
n− 3 steps. However, many packets may

pile up at intermediate processors. Moreover, many packets may pile up at

processor (u, v, u′, v′) after Phase 1; in the worst case all processors from

group (u, v) may want to send to all processors in group (u′, v′). In this

case, Θ(n) packets may accumulate at processor (u, v, u′, v′) after Phase 1.
This implies that the delay, and hence the total number of steps, is O(n).

8.2.6.2 Randomized routing in the OTIS-Mesh

As pointed out in the previous section, the greedy algorithm may result in

large queue sizes and hence large delays. This renders the greedy algorithm

impractical. To circumvent this difficulty, we use randomization. One pos-

sibility is to use the randomized algorithm of Section 4.9.3 twice for both

phases 1 and 3 of the greedy algorithm of the previous section. However,

this will not prevent the accumulation of packets at intermediate proces-

sors, which may result from many packets sent from one particular group

to another group. Hence, we use randomization to first send the packets to
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random locations within the OTIS-Mesh. The proposed randomized algo-

rithm consists of the following four phases. Recall that the source packet is

π at (u, v, x, y) and is destined to (u′, v′, x′, y′).

Phase 1: Route π to a random processor (u′′, v′′, x′′, y′′). It first chooses u′′

randomly and moves to (u′′, v, x, y). It then chooses v′′ randomly

and moves to (u′′, v′′, x, y), then chooses x′′ randomly and moves

to (u′′, v′′, x′′, y) and finally chooses y′′ randomly and moves to

(u′′, v′′, x′′, y′′). Traversing in the u, v dimensions can be converted

to traversals in the x, y dimensions as follows. First, π moves

from the source processor (u, v, x, y) to processor (u, v, u′′, v)
along the x-dimension, then moves along the transpose connec-

tion to (u′′, v, u, v), and finally in the (u′′, v) group to (u′′, v, x, y).
Similarly, it then moves from (u′′, v, x, y) to (u′′, v′′, x, y). Next,
it moves in group (u′′, v′′) to (u′′, v′′, x′′, y′′) first on the x-

dimension and then on the y-dimension. It can be shown using

an analysis similar to that in Section 4.9.3 that this takes at

most 4
√
n+ o(

√
n) steps using queues of size O(log n) with high

probability.

Phase 2: Route π from processor (u′′, v′′, x′′, y′′) to processor (u′′, v′′, u′, v′).
This can be done by traveling first along the x-dimension and

then along the y-dimension. It can be shown that the delay is

o(
√
n). Since the distance traveled is at most

√
n, routing along

the x-dimension takes at most
√
n+ o(

√
n) with high probability.

Similarly, routing along the y-direction takes at most
√
n+o(

√
n).

Hence, this data movement, which is local to group (u′′, v′′), takes
at most 2

√
n+ o(

√
n) steps with high probability.

Phase 3: Send π from processor (u′′, v′′, u′, v′) to processor (u′, v′, u′′, v′′)
using one optical move.

Phase 4: Route π from processor (u′, v′, u′′, v′′) to the destination processor

(u′, v′, x′, y′). It does this by traveling first along the x-dimension

and then along the y-dimension. As in Phase 2, this involves rout-

ing local to group (u′, v′), and it takes at most 2
√
n+o(

√
n) steps

with high probability.

In all phases, the farthest-destination-first priority scheme is employed.

The total number of steps is 8
√
n + o(

√
n) using queues of size O(log n)

with high probability.
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8.2.7 Sorting on OTIS-Mesh

Sorting on the OTIS-Mesh can be achieved by simulating an algorithm for

sorting on the 4-dimensional mesh. It is not difficult to extend the algorithm

for sorting on the 3-dimensional mesh described in Section 4.17.1 so that it

runs on the 4-dimensional mesh using O(
√
n) steps. The algorithm for the

3-dimensional mesh can be generalized to 4-dimensions by replacing planes

by 3-dimensional meshes with side length
√
n. Sorting in planes becomes

sorting in 3-dimensional meshes as described in Section 4.17.1. The result

is an algorithm that runs in O(
√
n) steps. (See the Bibliographic notes for

more discussion of sorting on the 4-dimensional mesh and the OTIS-Mesh).

8.3 The OTIS-Hypercube

The OTIS-Hypercube consists of n = 2d groups of n processors each for a

total of n2 processors, where each group of processors forms a conventional

hypercube with n = 2d. Processor p in hypercube (group) g is connected

to processor g in hypercube (group) p, 0 ≤ g, p < n. Figure 8.3 shows

an OTIS-Hypercube with 8 hypercubes of 8 processors each for a total

of 64 processors. The thick lines represent optical links and the thin lines

represent connections within the hypercubes. The number below each group

is its number. For clarity, only some of the optical connections are shown

in the figure.

As shown in the figure, processor (000, 010) is connected to processor

(010, 000), processor (101, 111) is connected to processor (111, 101), and so

forth. Each processor in the OTIS-Hypercube has degree d+1; there are d

connections to other processors in its group as well as one optical link. The

diameter of the OTIS-Hypercube is 2d + 1; the shortest distance between

processors (0, 0) and (n− 1, n− 1) is 2d+ 1 (Exercise 8.10).

8.3.1 Simulation of an n2-processor hypercube

An n2-processor OTIS-Hypercube can simulate a regular n2-processor

hypercube. A processor (g, p) of the OTIS-Hypercube can be represented

by the 2d bits

gd−1gd−2 . . . , g0pd−1pd−2 . . . p0,
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Fig. 8.3. OTIS-Hypercube with 64 processors. Only some of the optical links
are shown.

where gd−1gd−2 . . . g0 is the group address and pd−1pd−2 . . . p0 is the local

processor address. A hypercube move moves data from processor with

label q to processor q(k), where q(k) is obtained from the binary represen-

tation of q by complementing the kth bit. When k is in the lower half, the

move is done in the hypercube by a local intragroup hypercube move. When

k is in the upper half, the move is done in the group using the following

steps.

(gd−1gd−2 . . . , g0pd−1pd−2 . . . p0)

−→o (pd−1pd−2 . . . , p0gd−1gd−2 . . . gj . . . g0)

−→e (pd−1pd−2 . . . , p0gd−1gd−2 . . . gj . . . g0)

−→o (gd−1gd−2 . . . gj . . . g0pd−1pd−2 . . . , p0),
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Here, −→e is an electronic move and −→o is an optical move. The foregoing

discussion proves the following theorem.

Theorem 8.1 An n2-processor OTIS-Hypercube can simulate an

n2-processor hypercube with a slowdown factor of at most 3.

Although the OTIS-Hypercube has many attractive properties, it suffers

from having limited optical connections between the different groups. When

data is to be transferred between two different groups, it creates a conges-

tion problem to most of the paths that have to pass through this optical link

because only one optical link connects two different groups. However, the

hardware cost of the OTIS-Hypercube is mush less than that of the hyper-

cube. To see this, consider comparing an n2-processor OTIS-Hypercube

with a hypercube with the same number of processors. A hypercube with n2

processors has dn2 links, while an n2-processor OTIS-Hypercube has n2

hypercubes each with (1/2)dn internal links, and (n/2)(n−1) links between
groups for a total of (1/2)dn2+(1/2)(n2−n) links. This means a reduction

in the number of links by a factor of almost 2.

8.3.2 Broadcasting in the OTIS-Hypercube

The algorithm for broadcasting in the OTIS-Hypercube is similar to that

for the OTIS-Mesh discussed in Section 8.2.2, and outlined in Algorithm

otismeshbroadcast. Steps 1 and 3 of Algorithm otismeshbroadcast

when adapted for the OTIS-Hypercube take logn electronic moves each,

and Step 2 takes one OTIS move. The total is 2 logn+ 1 steps.

8.3.3 Semigroup operations on the OTIS-Hypercube

The algorithm for semigroup operations in the OTIS-Hypercube is similar

to that for the OTIS-Mesh discussed in Section 8.2.3, and the algorithm for

addition is similar to Algorithm otismeshsum. Steps 1 and 3 of Algorithm

otismeshsum — when adapted for the OTIS-Hypercube — take logn elec-

tronic moves each, and Step 2 takes one OTIS move. The total is 2 logn

electronic moves and one OTIS move.

Alternatively, we may use the technique of reduction as outlined in

Algorithm otishcaddition. In this algorithm, the data in each group g is

first added, and the sum is stored in processor (g, 0). The contents of all

processors (g, 0) are then transferred to group 0 using one optical move.
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Finally, group 0 computes the sum of the contents in all its processors

and stores the result in processor (0, 0). Notice that the sum is stored in

processor (0, 0) only. The analysis of the algorithm is similar to that of the

previous algorithm, that is, the running time is 2 logn electronic moves and

one optical move.

Algorithm 8.5 otishcaddition
Input: xi stored in processor i, 0 ≤ i < n2.

Output: The sum of values xi in all processors.

1. Each group g performs addition of its local data and stores the sum in
processor (g, 0) of group 0.

2. Each group g moves the content of its processor (g, 0) to processor (0, g).
3. Group 0 performs addition of the sums computed in Step 1 and stores

the total in processor (0, 0).

Example 8.5 Consider running Algorithm otishcaddition for finding

the sum on the OTIS-Hypercube with 16 processors (see Fig. 8.1). The

contents of the processors will be represented by a set of four sets, each

representing a group of processors. Suppose that initially the contents of

the processors are{{1, 2, 1, 3}, {2, 4, 1, 3}, {1, 3, 2, 4}, {2, 4, 1, 2}}.
Following the first step, computing the local sums, we obtain{{7, x, x, x}, {10, x, x, x}, {10, x, x, x}, {9, x, x, x}},
where x stands for anything. After performing the OTIS move in Step 3,

the contents become{{7, 10, 10, 9}, {10, x, x, x}, {10, x, x, x}, {9, x, x, x}},
Finally, after performing the addition in Step 3, we obtain{{36, x, x, x}, {10, x, x, x}, {10, x, x, x}, {9, x, x, x}}, �

8.3.4 Sorting and routing in the OTIS-Hypercube

Theorem 8.1 can be employed to simulate sorting and routing on the OTIS-

Hypercube. For sorting, Algorithm samplesort discussed in Section 3.10

for the hypercube can be used. The running time will be Θ
(

n
p log n

p

)
, where
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p is the number of processors and n is the number of elements. Here, we

have assumed that the number of processors is less than the number of

elements.

Alternatively, Algorithm bfoddevenmergesort for odd–even sorting

on the butterfly network discussed in Section 3.9 can also be used, since it

is a normal butterfly algorithm (see definition of normal butterfly algorithm

in Section 3.2). The running time will be Θ(log2 n).

The problem of routing in the OTIS-Hypercube can be solved by simu-

lating the randomized algorithm for routing in the hypercube discussed in

Section 3.6.2. When adapting this algorithm on an n2-hypercube, its run-

ning time becomes at most 8×2d = 16d steps with high probability. Hence,

by Theorem 8.1, the running time on the OTIS-Hypercube will be at most

3× 16d = 48d = Θ(logn) steps with high probability.

8.4 Other OTIS Networks

8.4.1 The OTIS-Star

The OTIS-Star consists of n = d! groups of n processors each, where each

group of processors forms a d-dimensional star. Processor p in star (group) g

is connected to processor g in star (group) p, 0 ≤ g, p < n. Figure 8.4 shows

an OTIS-Star with 6 stars of 6 processors each for a total of 36 proces-

sors. As shown in the figure, processor (123, 213) is connected to processor

(213, 123), processor (123, 132) is connected to processor (132, 123), and so

forth. The diameter of the OTIS-Star is 2�3(d− 1)/2�+ 1 = Θ(d), and its

degree is d, which are sublogarithmic in terms of the number of processors

(Notice that d < log(d!)2 = Θ(d log d)).

8.4.2 The OTIS-MOT

The OTIS-MOT consists of n groups of n processors each, where each

group of processors forms a mesh of trees. In this construction, it is more

convenient to use a slightly different model of mesh of trees than the one

described in Section 6.3; see Fig. 8.5 for an example. In this figure, each

node is labeled with the row and column numbers. Here, the processors

in each row are connected to form a binary tree, and the processors in

each column are connected to form a binary tree. The roots of these binary

trees are the processors in the leftmost column and topmost row. The total
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Fig. 8.6. OTIS-MOT with 81 processors (only some of the optical links are
shown).

number of processors in this model is n, which is the same as that of the√
n×√n mesh.

Processor p in mesh of trees (group) g is connected to processor g in

mesh of trees (group) p, 0 ≤ g, p < n. Figure 8.6 shows an OTIS-MOT

with 9 groups of 9 processors each for a total of 81 processors. As shown in

the figure, processor (00, 01) is connected to processor (01, 00), processor

(00, 22) is connected to processor (22, 00), and so forth.
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OTIS networks were studied in Day and Al-Ayyoub [31]. A number of

algorithms have been developed for the OTIS networks such as Akhgari,

Ziaie and Ghodsi [3], Gupta, Singh and Bhati [41], Gupta and Sarkar [40],

Lucas and Jana [60], Najaf-abadi and Sarbazi-azad [70], Osterloh [73],

Rajasekaran and Sahni [76], Wang and Sahni ([95], [96], [97]) and Zane,

Marchand, Pahuri and Esener [103]. Algorithms for basic operations on the

OTIS-mesh can be found in Wang and Sahni [95]. The randomized routing

algorithm for the OTIS-mesh in Section 8.2.6.2 is a modification of an algo-

rithm presented in Rajasekaran and Sahni [76]. An O(
√
n) time algorithm

for sorting can be obtained by simulating an algorithm with similar com-

plexity for the 4-dimensional mesh as suggested in Section 8.2.7. Another

possibility is to use Kunde’s sorting algorithm for the 4-dimensional mesh

in Kunde [47]. The sorting algorithm presented in this paper is for the more

general r-dimensional meshes, r ≥ 3. There are some complex algorithms

for sorting on the OTIS-mesh. The deterministic algorithm in Wang and

Sahni [95] for the OTIS-mesh runs in O(
√
n) steps, and the randomized

algorithm in Rajasekaran and Sahni [76] runs in time O(
√
n) with high

probability. Algorithms for the OTIS-hypercube have been developed in

Sahni and Wang [80] and Wang and Sahni [94]. A comparative evalua-

tion of adaptive and deterministic routing in the OTIS-hypercubes appears

in Najaf-abadi and Sarbazi-azad [69]. Theorem 8.1 can be found in Zane,

Marchand, Pahuri and Esener [103]. The OTIS-Star was studied by Awwad
[13], Al-Sadi, Awwad, and AlBdaiwi [10] and Awwad and Al-Sadi [14]. Sort-

ing and routing on OTIS-Mesh of trees can be found in Lucas and Jana
[60] and Lucas and Jana [61]. Algorithms for OTIS-Hyper Hexa-Cell can

be found in Gupta and Sarkar [40] and Gupta, Singh and Bhati [41] (For

definitions of the hyper hexa-cell and the OTIS-Hyper Hexa-Cell, see also

Mahafzah, Hamad, Ahmad and Abu-Kabeer [62]).

8.6 Exercises

8.1. Suppose we want to move data from processor p1 in group g1 to

processor p2 in group g2. One possibility is to use the sequence of

moves:

(g1, p1)−→e∗ (g1, g2)−→o (g2, g1)−→e∗ (g2, p2),
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where −→o is an optical move and −→e∗ stands for a sequence of zero

or more electronic moves. Suggest another sequence of moves.

8.2. Is Algorithm otismeshbroadcast discussed in Section 8.2.2 for

broadcasting in the OTIS-Mesh optimal? Justify your answer.

8.3. In a window broadcast, we start with data in the top left w × w

submesh of a single group g, where w | √n, that is w divides
√
n.

Following the window broadcast operation, the initial w×w window

tiles the entire OTIS-Mesh. (See Exercise 4.19). Outline an algorithm

to implement this operation. What is the running time of your algo-

rithm?

8.4. Apply the addition algorithm for the OTIS-Mesh discussed in Sec-

tion 8.2.3 on the input{{1, 3, 2, 4}, {2, 1, 5, 1}, {2, 4, 5, 1}, {2, 1, 3, 2}}.
8.5. Explain how to implement Step 1 in Algorithm otismeshsum of

Section 8.2.3 efficiently.

8.6. Apply the parallel prefix algorithm for the OTIS-Mesh discussed in

Section 8.2.4 on the input{{2, 4, 2, 1}, {1, 3, 1, 4}, {5, 2, 1, 3}, {2, 3, 5, 1}}.
8.7. Illustrate the operation of Algorithm otismeshshift in Section 8.2.5

given the processor contents{{3, 8, 1, 14}, {2, 13, 5, 11}, {9, 7, 10, 6}, {4, 15, 12, 8}}.
Assume an OTIS-Mesh with 16 processors, and the elements are to

be shifted along the u-coordinate.

8.8. Repeat Exercise 8.7 with shifting the elements along the v-coordinate

instead.

8.9. Modify the algorithm for randomized routing in the OTIS-Mesh dis-

cussed in Section 8.2.6.2 so that it runs in time 4
√
n+ o(

√
n).

8.10. Verify that the diameter of the OTIS-Hypercube is 2d+ 1.
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8.11. Analyze the running time of the algorithm in Section 8.3.2 for broad-

casting in the OTIS-Hypercube by simulating an n2-hypercube.

8.12. Analyze the running time of the algorithm in Section 8.3.3 for addi-

tion in the OTIS-Hypercube by simulating an n2-hypercube.

8.13. Suppose that each of the n groups in an OTIS-Hypercube has a

datum in an arbitrary processor. Give an algorithm to collect these n

data items in a specified group k so that group k will have one item

per processor.

8.14. Illustrate your solution to Exercise 8.13 given the processor contents{{x, x, 1, x}, {2, x, x, x}, {x, x, x, 3}, {x, x, 4, x}},
which are to be sent to group 2. Assume an OTIS-Hypercube with

four groups. Here, x stands for anything, and the contents of the

processors are represented by a set of four sets, each representing a

group of processors.

8.15. Suppose that group k in an OTIS-Hypercube has n data items

located one per processor. Give an algorithm to replicate these items

in each of the n groups.

8.16. Illustrate your solution to Exercise 8.15 for replicating the numbers

{1, 7, 3, 4} in group 2 in an OTIS-Hypercube with four groups.

8.17. Outline a deterministic algorithm for routing on the OTIS-

Hypercube.

8.18. Discuss the drawbacks of the deterministic algorithm for routing in

the OTIS-Hypercube in Exercise 8.17.

8.19. Outline an algorithm for broadcasting a datum in processor (g, p) in

the OTIS-Star.

8.20. What is the degree of OTIS-MOT?

8.21. What is the diameter of OTIS-MOT with n2 processors? Assume the

mesh of trees depicted in Fig. 8.5.

8.22. Give two nodes in the OTIS-MOT shown in Fig. 8.6 that realize the

diameter derived in the solution to Exercise 8.21



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch08 page 334

334 Parallel Algorithms

8.7 Solutions

8.1. Suppose we want to move data from processor p1 in group g1 to

processor p2 in group g2. One possibility is to use the sequence of

moves:

(g1, p1)−→e∗ (g1, g2)−→o (g2, g1)−→e∗ (g2, p2),

where −→o is an optical move and −→e∗ stands for a sequence of zero

or more electronic moves. Suggest another sequence of moves.

One possibility is the sequence:

(g1, p1)−→e∗ (g1, p2)−→o (p2, g1)−→e∗ (p2, g2)−→o (g2, p2).

8.2. Is Algorithm otismeshbroadcast discussed in Section 8.2.2 for

broadcasting in the OTIS-Mesh optimal? Justify your answer.

Algorithm otismeshbroadcast for broadcasting in the OTIS-Mesh

is optimal since the diameter of the OTIS-Mesh is 4
√
n − 3; the

distance between processor (0, 0) and processor (n − 1, n − 1) is

4
√
n− 3.

8.3. In a window broadcast, we start with data in the top left w × w

submesh of a single group g, where w | √n, that is w divides
√
n.

Following the window broadcast operation, the initial w×w window

tiles the entire OTIS-Mesh. (See Exercise 4.19). Outline an algorithm

to implement this operation. What is the running time of your algo-

rithm?

The algorithm is shown as Algorithm otismeshwinbroadcast. Fol-

lowing Step 1, the initial window properly tiles the group g. In Step 2,

data d(g, p) from processor (g, p) is moved to (p, g), 0 ≤ p < n. In

Step 3, d(g, p) is broadcast to all processors (p, k), 0 ≤ p, k < n.

Finally, in Step 4, d(g, p) is moved to (k, p), 0 ≤ k, p < n. By Exer-

cise 4.19, Step 1 takes 2(
√
n − w) electronic moves. Steps 2 and 4

take one OTIS move each. Step 3 takes 2(
√
n− 1) electronic moves.

The total is 4
√
n− 2w − 2 electronic and two OTIS moves.
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Algorithm 8.6 otismeshwinbroadcast

1. Do a window broadcast within the initial group g as outlined in the
solution of Exercise 4.19.

2. Perform an OTIS move. That is, all processors in group g send their data
to processors in other groups using optical links.

3. Perform data broadcast from processor g of each group to all processors
of that group.

4. Perform an OTIS move.

8.4. Apply the addition algorithm for the OTIS-Mesh discussed in Sec-

tion 8.2.3 on the input{{1, 3, 2, 4}, {2, 1, 5, 1}, {2, 4, 5, 1}, {2, 1, 3, 2}}.
Similar to Example 8.1.

8.5. Explain how to implement Step 1 in Algorithm otismeshsum of

Section 8.2.3 efficiently.

If we compute the sum in processor (0, 0), it will take 4(
√
n − 1);

2(
√
n−1) for transferring the elements to processor (0, 0) and 2(

√
n−

1) for broadcasting the sum. So, we compute the sum in the middle

processor instead. In this case, the number of steps will be 2
√
n;√

n for transferring the elements to the middle processor and
√
n for

broadcasting the sum.

8.6. Apply the parallel prefix algorithm for the OTIS-Mesh discussed in

Section 8.2.4 on the input{{2, 4, 2, 1}, {1, 3, 1, 4}, {5, 2, 1, 3}, {2, 3, 5, 1}}.
Similar to Example 8.2.

8.7. Illustrate the operation of Algorithm otismeshshift in Section 8.2.5

given the processor contents{{3, 8, 1, 14}, {2, 13, 5, 11}, {9, 7, 10, 6}, {4, 15, 12, 8}}.
Assume an OTIS-Mesh with 16 processors, and the elements are to

be shifted along the u-coordinate.

Similar to Example 8.3.
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8.8. Repeat Exercise 8.7 with shifting the elements along the v-coordinate

instead.

Similar to Example 8.4.

8.9. Modify the algorithm for randomized routing in the OTIS-Mesh dis-

cussed in Section 8.2.6.2 so that it runs in time 4
√
n+ o(

√
n).

One possibility is the following modification to Phase 1. Partition

the OTIS-Mesh into slices, i.e., 4-D submeshes, of size
√
n

q
×
√
n

q
×
√
n

q
×
√
n

q

each, 1 ≤ q ≤ √n. In the first phase, a packet traverses to a random

processor (u′′, v′′, x′′, y′′) in its own slice of origin. The rest of the

algorithm is as in Section 8.2.6.2. The maximum distance traveled in

the first phase becomes ≤ 4
√
n/q. Thus, the time needed for Phase 1

is 4
√
n/q + o(

√
n), and the total time of the algorithm becomes at

most 4
√
n+4

√
n/q+o(

√
n). Choose a suitable q such as q = logn so

that the total time of the algorithm becomes at most 4
√
n+ o(

√
n).

8.10. Verify that the diameter of the OTIS-Hypercube is 2d+ 1.

To go from (0, 0) to (n− 1, n− 1), follow the path:

(0, 0)−→e (0, n− 1)−→o (n− 1, 0)−→e (n− 1, n− 1),

where −→o is an optical move and −→e stands for electronic moves.

The total number of steps is d+ 1 + d = 2d+ 1.

8.11. Analyze the running time of the algorithm in Section 8.3.2 for broad-

casting in the OTIS-Hypercube by simulating an n2-hypercube.

Since the cost of broadcasting in an n2 hypercube is logn2 = 2 logn

steps, by Theorem 8.1, direct simulation of an n2 hypercube costs at

most 3× 2logn = 6 logn steps (electronic and optical).

8.12. Analyze the running time of the algorithm in Section 8.3.3 for addi-

tion in the OTIS-Hypercube by simulating an n2-hypercube.

Since the cost of addition in an n2 hypercube is logn2 = 2 logn steps,

by Theorem 8.1, direct simulation of an n2 hypercube costs at most

3× 2logn = 6 logn steps (electronic and optical).
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8.13. Suppose that each of the n groups in an OTIS-Hypercube has a

datum in an arbitrary processor. Give an algorithm to collect these n

data items in a specified group k so that group k will have one item

per processor.

See Algorithm otishcproblem1. Step 1 takes no more than logn

electronic moves, and Step 2 takes one optical move. (See Exer-

cise 8.14).

Algorithm 8.7 otishcproblem1

1. For 0 ≤ g ≤ n− 1, group g sends its datum to processor k in that group.
2. For 0 ≤ g ≤ n − 1, the datum from processor k of group g is sent to

processor g of group k using one optical move.

8.14. Illustrate your solution to Exercise 8.13 given the processor contents{{x, x, 1, x}, {2, x, x, x}, {x, x, x, 3}, {x, x, 4, x}},
which are to be sent to group 2. Assume an OTIS-Hypercube with

four groups. Here, x stands for anything, and the contents of the

processors are represented by a set of four sets, each representing a

group of processors.

Initially, the contents of the processors are{{x, x, 1, x}, {2, x, x, x}, {x, x, x, 3}, {x, x, 4, x}}.
In the first step, group g, 0 ≤ g ≤ 3, sends its datum to processor 2

in that group. Following this step, we obtain{{x, x, 1, x}, {x, x, 2, x}, {x, x, 3, x}, {x, x, 4, x}},
Finally, the datum from processor 2 of group g, 0 ≤ g ≤ 3, is sent to

processor g of group 2. After this final step, we obtain{{x, x, x, x}, {x, x, x, x}, {1, 2, 3, 4}, {x, x, x, x}}.
8.15. Suppose that group k in an OTIS-Hypercube has n data items located

one per processor. Give an algorithm to replicate these items in each

of the n groups.

See Algorithm otishcproblem2. After Step 1, each group has one

item, and the data is replicated after Step 3. Steps 1 and 3 take
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one optical move each, and Step 2 takes logn electronic moves. (See

Exercise 8.16).

Algorithm 8.8 otishcproblem2

1. For all p, 0 ≤ p ≤ n−1, processor p of group k sends its item to processor k
of group p using one optical move.

2. Each group replicates its item in all of its processors by broadcasting it
to all processors.

3. For all p, g, 0 ≤ p, g ≤ n − 1, processor p of group g sends its item to
processor g of group p using one optical move.

8.16. Illustrate your solution to Exercise 8.15 for replicating the numbers

{1, 7, 3, 4} in group 2 in an OTIS-Hypercube with four groups.

The contents of the processors will be represented by a set of four

sets, each representing a group of processors. Initially, the contents

of the processors are

{{x, x, x, x}, {1, 7, 3, 4}, {x, x, x, x}, {x, x, x, x}},
where x stands for anything. In the first step, processor p of group 2

sends its item to processor 2 of group p. Following this step, we obtain

{{x, 1, x, x}, {x, 7, x, x}, {x, 3, x, x}, {x, 4, x, x}},
Now, each group replicates its item in all of its processors by broad-

casting it to all processors in its group. The contents become

{{1, 1, 1, 1}, {7, 7, 7, 7}, {3, 3, 3, 3}, {4, 4, 4, 4}},
Finally, each processor p of group g sends its item to processor g of

group p. After this final step, we obtain

{{1, 7, 3, 4}, {1, 7, 3, 4}, {1, 7, 3, 4}, {1, 7, 3, 4}}.
8.17. Outline a deterministic algorithm for routing on the OTIS-

Hypercube.
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Use one of the paths shown in the solution of Exercise 8.1 to route

the source packet to its destination. For example, use the sequence

(g1, p1)−→e∗ (g1, g2)−→o (g2, g1)−→e∗ (g2, p2).

Here, −→e∗ is a sequence of zero or more electronic moves and −→o is

an optical move. For routing within the hypercubes, use the greedy

algorithm of Section 3.6.1.

8.18. Discuss the drawbacks of the deterministic algorithm for routing in

the OTIS-Hypercube in Exercise 8.17.

The major drawback is that many packets may pile up at inter-

mediate processors. In particular, all processors from group g1 may

want to send to all processors in group g2. In this case, Θ(n) packets

may accumulate at processor (g1, g2) before transmitting the packets

along the optical link between processors (g1, g2) and (g2, g1). This

implies that the delay, and hence the total number of steps, is O(n).

Algorithm 8.9 otisstarbroadcast
Input: x stored in processor (g, p).

Output: Broadcast x to all other processors.

1. Processor (g, p) broadcasts x to all processors in its group, group g.
2. Perform an OTIS move. That is, all processors in group g send their data

to processors in other groups using optical links.
3. Processor (g′, p′) in every group g′ broadcasts its data to all processors

within its group.

8.19. Outline an algorithm for broadcasting a datum in processor (g, p) in

the OTIS-Star.

The algorithm is similar to that in Section 8.2.2 for broadcasting

in the mesh. It is shown as Algorithm otisstarbroadcast. The

algorithm for broadcasting in the star discussed in Section 7.7 may

be used to broadcast in individual stars.

8.20. What is the degree of OTIS-MOT?

The degree of OTIS-MOT is 5, as can be seen from Fig. 8.6. In this

figure, the degree of node 00 in group 10 is 5, and it is maximum.

8.21. What is the diameter of OTIS-MOT with n2 processors? Assume the

mesh of trees depicted in Fig. 8.5.
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Fig. 8.7. Solution to Exercise 8.22.

The underlying mesh is of size n, and each binary tree has
√
n nodes

(see Fig. 8.5). Thus, the height of each binary tree is �log√n�. It
follows that the diameter of the mesh of trees is 4�log√n�, and hence

the diameter of the OTIS-MOT with n2 processors is 8�log√n�+1 =

Θ(logn).

8.22. Give two nodes in the OTIS-MOT shown in Fig. 8.6 that realize the

diameter derived in the solution to Exercise 8.21

The two nodes (11, 12) and (21, 22) realize the OTIS-MOT diameter.

The distance between these two nodes is 8�log√9�+1 = 9. The path

between these two nodes is shown in thick lines in Fig. 8.7.
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Chapter 9

Systolic Computation

9.1 Introduction

Systolic computation refers to one in which the processors, usually called

processing elements (PE’s), are arranged in a very regular way (most often,

as one or two-dimensional arrays), and so the data moves through them

in a regular fashion. Processors are usually primitive, and perform very

simple operations on the data they receive, e.g., computing the maximum

and minimum of two items. A systolic array is an on-chip multi-processor

architecture. It was proposed as an architectural solution to the anticipated

on-chip communication bottleneck of modern, very large-scale integration

(VLSI) technology. A systolic array features a mesh-connected array of

identical, simple PE’s. In a systolic system, data flows from the computer

memory in a rhythmic fashion, passing through many processing elements

before it returns to memory. A systolic array is often configured into a

linear array, a two-dimensional rectangular mesh array, or sometimes, a

two dimensional hexagonal mesh array. In a systolic array, every PE is

connected only to its nearest neighboring PEs through a dedicated, buffered

local bus/dedicated, buffered local buses. This localized interconnects, and

regular array configuration allow a systolic array to grow in size without

incurring excessive on-chip global interconnect delays due to long wires.

In the rest of this chapter, we will use the terms “PE” and “processor”

interchangeably.

341
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Fig. 9.1. Systolic matrix-vector multiplication.

9.2 Matrix-vector Multiplication

In this section, we present a simple example of systolic arrays. Consider

performing the multiplication y = Ax, where A is an n×n matrix, and x is

an n×1 vector. One possible systolic array to solve this problem consists of n

processors arranged in the form of a linear array. It is assumed that these

processors are capable of performing scalar addition and multiplication of

real numbers. Figure 9.1 shows an example of this array and arrangement of

the input for n = 3. As shown in the figure, there are 3 processors, and data

from the matrix A arrives in a systolic fashion, while the xi’s are preloaded

to the processors. The initial arrangement and data movements of the ai,j ’s

is such that column k is delayed by k cycles. The yi’s are initially set to

zero, and their values are accumulated in the PEs. Thus, in the first cycle,

y1 is set to a11x1, in the next cycle, y1 is set to a11x1 + a12x2 and y2 is set

to a2,1x1, and so on.

9.3 Computing the Convolution of Two Sequences

Let 〈x1, x2, . . . , xn〉 and 〈w1, w2, . . . , wk〉 be two sequences of real num-

bers. The convolution of these two sequences is defined as the sequence
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〈y1, y2, . . . , yn+1−k〉, where yi = w1xi + w2xi+1 + · · ·+ wkxi+k−1. The ele-

ments of the sequence 〈w1, w2, . . . , wk〉 are called weights. The convolution

of these two sequences can be expressed by the matrix-vector product⎛
⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 . . . xk

x2 x3 x4 . . . xk+1

x3 x4 x5 . . . xk+2

...
...

... . . .
...

xn+1−k xn+2−k xn+3−k . . . xn

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

w1

w2

w3

...

wk

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

y1

y2

y3
...

yn+1−k

⎞
⎟⎟⎟⎟⎟⎟⎠.

In what follows, we present two approaches for systolic computations to

compute the convolution of two sequences, one semisystolic and the other

systolic. The basic principles of these designs were previously proposed

for circuits to implement a pattern matching processor and polynomial

multiplication. For simplicity, we will assume in the rest of this section that

k = 3.

9.3.1 Semisystolic solution

In this design, a bus is used for global data communication, and this is

why it is referred to as “semisystolic”. The xi’s are broadcast, results are

moved, and weights stay in the PEs. The systolic array and its cell definition

are depicted in Fig. 9.2. The weights are preloaded to the cells, one at each

cell, and stay at the cells throughout the computation. The partial results yi
move systolically from cell to cell in the left-to-right direction during each

cycle. At the beginning of a cycle, one xi is broadcast to all the cells, and

w1

w

x in

y in y out

x 1x 2x 3

y 3 y 2 y 1 w2 w3

(a)

(b)

Fig. 9.2. Semisystolic convolution.
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Table 9.1. Convolution using the semisystolic design.

Cycle y1 y2 y3

1 w1x1 0 0
2 w1x1 +w2x2 w1x2 0
3 w1x1 +w2x2 + w3x3 w1x2 + w2x3 w1x3

4 Output y1 w1x2 + w2x3 + w3x4 w1x3 + w2x4

5 Output y2 w1x3 + w2x4 + w3x5

6 Output y3

y 3

y w in
x in x out

w out

x 1

x 2x 3

w1
y 2 y 1

(a)

(b)

Fig. 9.3. Systolic convolution.

one yi, which is initialized as zero, enters the leftmost cell. Thus, during the

first cycle, w1x1 is accumulated to y1 at the leftmost cell, and during the

second cycle, w1x2 and w2x2 are accumulated to y2 and y1 at the leftmost

and middle cells respectively. Starting from the third cycle, the final values

of y1, y2, . . . are output from the rightmost cell, one yi per cycle.

Example 9.1 Table 9.1 shows the results of the computation of the

convolution of the two sequences 〈x1, x2, x3, x4, x5〉 and 〈w1, w2, w3〉. �

9.3.2 Pure systolic solution

An alternative to the semisystolic design is a pure systolic one in which each

partial result yi stays at a cell to accumulate its terms, and the xi’s and wi’s

move in opposite directions. The systolic array and its cell definition are

depicted in Fig. 9.3. Thus, in this design, the xi’s and wi’s move systolically

in opposite directions such that when an x meets a w at a cell, they are

multiplied and the resulting product is accumulated to the y staying at
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Table 9.2. Convolution using the systolic design.

Cycle y1 y2 y3

1 w1x1 0 0
3 w1x1 +w2x2 w1x2 0
5 w1x1 +w2x2 + w3x3 w1x2 + w2x3 w1x3

7 Output y1 w1x2 + w2x3 + w3x4 w1x3 + w2x4

9 Output y2 w1x3 + w2x4 + w3x5

11 Output y3

that cell. The difficulty with this design is that the xi’s and wi’s move

twice as fast toward each other. The solution is to move data at half the

speed. Thus, to ensure that each xi is able to meet every wi, consecutive xi’s

on the x data stream are separated by two cycle times and so are the wi’s

on the w data stream. In this design, a tag bit is associated with the first

weight, w1, to trigger the output and reset the accumulator contents of

a cell. It can be easily checked that the yi’s will output from the systolic

output path in the natural ordering y1, y2, . . .. Specifically, when wk leaves

processor Pi (k = 3 in the figure), the final value of yi is computed, and it

can move out of the array through the data path below the array. Notice,

however, that in this design only about one half the cells are doing useful

work at any time.

Example 9.2 Table 9.2 shows the results of the computation of the

convolution of the two sequences 〈x1, x2, x3, x4, x5〉 and 〈w1, w2, w3〉. It is

similar to Table 9.1 except that the cycle numbers are incremented by 2 in

this design. �

9.4 A Zero-time VLSI Sorter

Basically, this sorter consists of a linear array of n/2 cells, where n is

assumed to be even. Each cell can store two items of the sequence to be

sorted. Figure 9.4 depicts the block diagram of the sorter. As shown in the

figure, there is only one connection between a cell and each of its upper

and its lower neighboring cells. There are two phases: The up-down phase

and the bottom-up phase. In both phases, after comparison, one of the two
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Item Item

Item Item

Item Item

Item Item

Cell 1

Cell 2

Cell n/2

: Comparator

Fig. 9.4. Block diagram of the sorter.

items moves to the next neighboring cell through this connection. Since

the data flow is the same for all cells at any given time, this removed item

occupies the newly-created space in the next cell; the removed item at the

bottom cell is moved out of the array in a downward data flow, while the

item at the top cell is moved out of the array in an upward data flow.

The initial sequence to be sorted is entered into the sorter one item at

each step. After the last item has been entered, the data flow direction is

reversed, and the sorted sequence is then extracted as output, also serially.

Each step, executed synchronously and simultaneously by all the cells, has

two phases:

(1) Compare: The two items in each and every cell are compared to each

other.

(2) Transfer: Subject to the result of the comparison, the desired sorting

order (ascending or descending), and the sorting state (input or out-

put), one or the other of the two items is transferred to a neighboring

cell and the original cell receives an item from the other neighboring cell.

Example 9.3 Figures 9.5 and 9.6 show an example of sorting the

sequence 〈4, 3, 1, 6, 2, 5〉 in ascending order. Here, ∞ represents the largest

item possible. At the input stage (Fig. 9.5), the larger of the two items
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Fig. 9.5. Input stage in the zero-time sorter: Larger items are circled and trans-
ferred.

in each cell is transferred down, while at the output stage (Figs. 9.6), the

smaller of the two items is transferred up. �

Note that at the end of the input stage (step 6 in the above example),

the smallest item must be in the top cell and the second smallest must be

in either the top or the second cell. In general, the kth smallest item must

be in one of the top k cells. This is why the output sequence is sorted.

9.5 An On-chip Bubble Sorter

The basic component of the bubble sorter is the compare/steer unit, which

is shown in Fig. 9.7. It consists of four interconnected cells: A,B,C and D.

The sorter consists of a stack of n comparators that work synchronously in

one of two modes: downward and upward (see Fig. 9.8). In the downward

mode, cell A in every unit receives its input from the unit above or from

outside, the content of C is routed to B, and the content of D, which is
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A

DD = max(A,B)

C = min(A,B)C

B

Fig. 9.7. A compare/steer unit (comparator).

the larger of the two numbers, is moved to the next comparator below.

Next, the contents of A and B are compared, and the minimum and maxi-

mum are delivered to C and D, respectively. That is, C = min{A,B} and
D = max{A,B}. In the upward mode, an outside key is loaded from the

bottom into cell B of the unit, and an inside key previously at D is loaded

into A. After loading, the comparison is executed, and the minimum is
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Fig. 9.8. Sorter.

delivered to C and the maximum to D. Loading and comparing are exe-

cuted almost simultaneously, so all these operations are performed in all

comparators in every period, which we will take for convenience as one unit.

During the downward input phase, n keys are loaded into n units in 2n

periods. During the upward output phase, each unit delivers the smaller

key to its upper unit in every period, outputting one item per period from

the sorted keys. The sorting time is completely absorbed into input/output

time. So, it takes 2n periods to sort n numbers.

Example 9.4 Figures 9.9 and 9.10 illustrate the action of the sorter

during the sorting of an input of six numbers, 4, 3, 1, 6, 2, and 5 in the

downward and upward phases, respectively. Initially, at time t0, the contents

of the buffer cells in each comparator are all set to∞. During the first cycle,

the first number 4 is compared to ∞ and routed to the upper right cell.

During the second cycle, the number 3 is loaded and compared to 4; then

the number 3 is routed to the upper right cell and 4 is routed to the lower

left cell of the first unit. During the third cycle, as the third number is

being loaded into the first unit, the number 4 is loaded into the second

unit. In other words, the larger of the two numbers will be pushed out

of the comparator in which it resides. At the end of time t3, the upper

right cell of the first unit contains 1 and the lower left cell contains 3; and
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the upper right cell of the second unit contains 4 and the lower left cell

contains ∞. At the end of time t6, all the six numbers have been loaded

into the sorter, thus completing the input downward phase. From time t7
on, the output upward phase begins. Note that in the input phase the ∞’s

are pushed out of the bottom of the sorter; in the output phase the ∞’s

are pushed back into the sorter from the bottom. At the end of time t7, the



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-ch09 page 351

Systolic Computation 351

smallest number 1 is out and the second smallest 2 is in the upper right cell

of the first unit awaiting to be output. In this output phase, the smaller of

the two numbers within each comparator is popped up, leaving the unit it

resides in and entering the unit on top of it. In the case of the top unit, the

smaller number is delivered as output. Thus, the sorter continues to put out

the numbers in order. At the end of time t12 all data in the sorter will have

been output in ascending order as desired. At the same time, the sorter is

automatically reset to its initial state (all ∞) and is ready to accept the

next input sequence. �

Theorem 9.1 The sorter correctly sorts the input numbers.

Assume the elements to be sorted are distinct, and n is even. Let Ci and

Di denote the contents stored in cells C and D of the ith comparator.

First, we show that min{Ci+1, Di+1} ≥ min{Ci, Di}. It is the function of

the ith comparator to push down the larger of its two keys in the input

phase, and to pop up the smaller of the two keys in the output phase. In

input phase, the keys Ci+1 and Di+1 are obtained via comparator i. Hence,

the pushed key Ci+1 or Di+1 must be greater than or equal to the key in

comparator i against which it was compared. Similarly, in the output phase,

the popped up key Ci orDi is obtained from comparator i+1, hence it must

be smaller than or equal to the key in comparator i+1 against which it was

compared. In both cases, it follows that min{Ci+1, Di+1} ≥ min{Ci, Di}.
Consequently, the kth smallest element is in one of the top k comparators.

To see this, assume that the kth smallest element x is not in the first k

comparators, that is, it is in comparator j for some j > k. Then, since

min{C1, D1} ≤ min{C2, D2} ≤ · · · ≤ min{Cj , Dj} ≤ x, at least k elements

are smaller than x, which is a contradiction. It follows that after n keys have

been read into the sorter, the minimum must be in the top comparator, the

second smallest must be either in the first or second comparator, and so on.

Thus, the first element to be output must be the smallest, followed by the

second smallest, etc.

9.6 Bibliographic Notes

Systolic array (Arnould, Kung, Menzilcioglu and Sarocky [12], Kung [50],
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the anticipated on-chip communication bottleneck of modern very large-

scale integration (VLSI) technology. For more on matrix-vector multipli-

cation using less than n PEs, see Navarro, Llaberia and Valero [72], and

Stojanovic, Milovanovic, Stojcev and Milovanovic [88]. Several variants of

systolic architectures for the convolution problem can be found in Kung [50].

The zero-time sorter is due to Miranker, Tang and Wong [68]. Bubble sorter

is from Lee, Hsu and Wong[54].

9.7 Exercises

9.1. Design another systolic array for the matrix-vector product such that

n = 4.

9.2. How many steps are required to finish the computation in the systolic

array for the matrix-vector product discussed in Section 9.2?

9.3. Design a systolic array for the matrix-vector product in which the

x-values enter from the left of the array, and the product y-values

stay. How many steps are required to finish the computation?

9.4. Design a two-dimensional systolic array for the problem of multiply-

ing two 3 × 3 matrices A and B to produce the 3 × 3 matrix C.

Assume that the products — that is, the ci,j ’s, will stay in the array.

9.5. How many steps are required to finish the computation in the systolic

array for the matrix-matrix product in Exercise 9.4?

9.6. What is the main drawback of the systolic array design for convolu-

tion described in Section 9.3.1?

9.7. Design another semisystolic array for convolution similar to the one

described in Section 9.3.1 in which the xi’s are broadcast, the results

stay and the weights move.

9.8. What is the main drawback of the systolic array design for convolu-

tion described in Section 9.3.2?

9.9. Suggest a simple systolic array for sorting, and explain how it works.
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9.10. Illustrate the operation of the zero-time sorter on the input sequence

〈3, 6, 2, 1, 3, 5〉.

9.11. Explain how the zero-time sorter can sort in descending order.

9.12. What modification should be done to the zero-time sorter algorithm

if the sequence is entered and extracted from the bottom port?

9.13. Illustrate the operation of the bubble sorter on the input

〈3, 6, 2, 1, 3, 5〉.

9.14. Explain how to make the bubble sorter output the numbers in

descending order.

9.8 Solutions

9.1. Design another systolic array for the matrix-vector product such that

n = 4.

Similar to Fig. 9.1.

9.2. How many steps are required to finish the computation in the systolic

array for the matrix-vector product discussed in Section 9.2?

It takes 2n− 1 steps to produce the vector product y.

9.3. Design a systolic array for the matrix-vector product in which the

x-values enter from the left of the array, and the product y-values

stay. How many steps are required to finish the computation?

The systolic array is shown in Fig. 9.11. It takes 2n−1 steps to finish

the computation.

9.4. Design a two-dimensional systolic array for the problem of multiply-

ing two 3 × 3 matrices A and B to produce the 3 × 3 matrix C.

Assume that the products, that is, the ci,j ’s, will stay in the array.

Arrange the rows and columns of A and B so that the ith row of A is

input to the ith column of the array from the top, and the jth column

of B is input to the jth row of the array from the left (see Fig. 9.12).
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Fig. 9.12. Systolic matrix multiplication.

The elements of A move downwards while the elements of B move in

the left-to-right direction.

9.5. How many steps are required to finish the computation in the systolic

array for the matrix-matrix product in Exercise 9.4?

It takes 3n− 2 steps to finish the matrix-matrix multiplication.
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Fig. 9.13. Systolic convolution for Exercise 9.7.

input
output

Fig. 9.14. Systolic sorting on linear array for Exercise 9.9.

9.6. What is the main drawback of the systolic array design for convolu-

tion described in Section 9.3.1?

The main drawback is that using the bus may be impractical for

implementation. As the number of cells increases, wires become too

long for the bus.

9.7. Design another semisystolic array for convolution similar to the one

described in Section 9.3.1 in which the xi’s are broadcast, results stay

and the weights move.

The xi’s are broadcast, results stay and the weights circulate around

the array of cells. See Fig. 9.13. The first weight w1 is associated

with a tag bit that signals the accumulator to output and reset its

contents.

9.8. What is the main drawback of the systolic array design for convolu-

tion described in Section 9.3.2?

The main drawback is that the computation of the yi’s takes twice

as long, as input moves at half the speed.
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9.9. Suggest a simple systolic array for sorting, and explain how it works.

A linear array of processors can be used to sort as follows (see

Fig. 9.14). Each interior processor is connected by two-directional

links to its left and right neighbors. The input stream enters from the

leftmost end of the linear array. During the input phase, each proces-

sor, upon receiving a new element, compares its content with the cur-

rent element, keeps the smaller of the two and passes the larger one to

the right. After the input is consumed, the output phase commences,

in which the elements exit from the leftmost processor one at a time.

9.10. Illustrate the operation of the zero-time sorter on the input sequence

〈3, 6, 2, 1, 3, 5〉.
Similar to Example 9.3.

9.11. Explain how the zero-time sorter can sort in descending order.

The same principle of sorting in ascending order applies to the

descending sort; we only have to replace ∞ by −∞, the smallest

item, and interchange larger and smaller.

9.12. What modification should be done to the zero-time sorter algorithm

if the sequence is entered and extracted from the bottom port?

In this case, the larger of the two items is moved up instead, and the

smaller is moved down.

9.13. Illustrate the operation of the bubble sorter on the input

〈3, 6, 2, 1, 3, 5〉.
Similar to Example 9.4.

9.14. Explain how to make the bubble sorter output the numbers in

descending order.

There are two possibilities. The first approach is to still use the same

sorting mechanism, except that we add a multiplier on top of the

sorter, which multiplies each input/output datum by −1. The sec-

ond approach is to exchange the input and output ports. That is,

to let the input data enter the sorter from the lower right end (i.e.,

where the number ∞ enters) and output data then comes out from

the lower left end (i.e., where ∞ comes out). In addition to the I/O

port exchange, the sorter must be initialized to contain a number

known to be smaller than the input data.
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Mathematical Preliminaries

A.1 Asymptotic Notations

A.1.1 The O-notation

Definition A.1 Let f(n) and g(n) be two functions from the set of nat-

ural numbers to the set of nonnegative real numbers. f(n) is said to be

O(g(n)) if there exists a natural number n0 and a constant c > 0 such that

∀ n ≥ n0, f(n) ≤ cg(n).
Consequently, if limn→∞ f(n)/g(n) exists, then

lim
n→∞

f(n)

g(n)
�=∞ implies f(n) = O(g(n)).

Informally, this definition says that f grows no faster than some constant

times g. The O-notation can also be used in equations as a simplification

tool. For instance, instead of writing

f(n) = 5n3 + 7n2 − 2n+ 13,

we may write

f(n) = 5n3 + O(n2).

This is helpful if we are not interested in the details of the lower order

terms.

357
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A.1.2 The Ω-notation

Definition A.2 Let f(n) and g(n) be two functions from the set of nat-

ural numbers to the set of nonnegative real numbers. f(n) is said to be

Ω(g(n)) if there exists a natural number n0 and a constant c > 0 such that

∀ n ≥ n0, f(n) ≥ cg(n).
Consequently, if limn→∞ f(n)/g(n) exists, then

lim
n→∞

f(n)

g(n)
�= 0 implies f(n) = Ω(g(n)).

Informally, this definition says that f grows at least as fast as some

constant times g. It is clear from the definition that

f(n) is Ω(g(n)) if and only if g(n) is O(f(n)).

A.1.3 The Θ-notation

Definition A.3 Let f(n) and g(n) be two functions from the set of nat-

ural numbers to the set of nonnegative real numbers. f(n) is said to be

Θ(g(n)) if there exists a natural number n0 and two positive constants c1
and c2 such that

∀ n ≥ n0, c1g(n) ≤ f(n) ≤ c2g(n).
Consequently, if limn→∞ f(n)/g(n) exists, then

lim
n→∞

f(n)

g(n)
= c implies f(n) = Θ(g(n)),

where c is a constant strictly greater than 0 .

An important consequence of the above definition is that

f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) = Ω(g(n)).

Unlike the previous two notations, the Θ-notation gives an exact picture of

the rate of growth of the running time of an algorithm.
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A.1.4 The o-notation

Definition A.4 Let f(n) and g(n) be two functions from the set of nat-

ural numbers to the set of nonnegative real numbers. f(n) is said to be

o(g(n)) if for every constant c > 0 there exists a positive integer n0 such

that f(n) < cg(n) for all n ≥ n0. Consequently, if limn→∞ f(n)/g(n) exists,

then

lim
n→∞

f(n)

g(n)
= 0 implies f(n) = o(g(n)).

Informally, this definition says that f(n) becomes insignificant relative

to g(n) as n approaches infinity. It follows from the definition that

f(n) = o(g(n)) if and only if f(n) = O(g(n)), but g(n) �= O(f(n)).

For example, n logn is o(n2) is equivalent to saying that n logn is O(n2)

but n2 is not O(n log n).

A.2 Divide-and-conquer Recurrences

Lemma A.1 Let a and c be nonnegative integers, b, d and x nonnegative

constants, and let n = ck, for some nonnegative integer k. Then, the solution

to the recurrence

f(n) =

{
d if n = 1

af(n/c) + bnx if n ≥ 2

is

f(n) = bnx logc n+ dnx if a = cx,

f(n) =

(
d+

bcx

a− cx
)
nlogc a −

(
bcx

a− cx
)
nx if a �= cx.

Corollary A.1 Let a and c be nonnegative integers, b, d and x nonneg-

ative constants, and let n = ck, for some nonnegative integer k. Then, the

solution to the recurrence

f(n) =

{
d if n = 1

af(n/c) + bnx if n ≥ 2
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satisfies

f(n) = bnx logc n+ dnx if a = cx,

f(n) ≤
(

bcx

cx − a
)
nx if a < cx,

f(n) ≤
(
d+

bcx

a− cx
)
nlogc a if a > cx.

Proof. If a < cx, then logc a < x, or nlogc a < nx. If a > cx, then

logc a > x, or nlogc a > nx. The rest of the proof follows immediately from

Lemma A.1. �

Theorem A.1 Let a and c be nonnegative integers, b, d and x nonnegative

constants, and let n = ck, for some nonnegative integer k. Then, the solution

to the recurrence

f(n) =

{
d if n = 1

af(n/c) + bnx if n ≥ 2

is

f(n) =

⎧⎨
⎩

Θ(nx) if a < cx.

Θ(nx logn) if a = cx.

Θ(nlogc a) if a > cx.

In particular, if x = 1, then

f(n) =

⎧⎨
⎩

Θ(n) if a < c.

Θ(n logn) if a = c.

Θ(nlogc a) if a > c.

Example A.1 Consider the recurrence

f(n) =

{
1 if n = 1

f(n/2) +
√
n if n ≥ 2.

By Corollary A.1, since a = b = 1, c = 2, x = 0.5, we have

f(n) ≤
√
2√

2− 1

√
n = Θ(

√
n). �
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Example A.2 Consider the recurrence

f(n) =

{
1 if n = 1

f(n/2) + h(n) if n ≥ 2.

Then,

f(n) =

n∑
i=0

h
( n
2i

)
.

If we let h(n) = logn, and n = 2k, then the solution to the recurrence

f(n) =

{
1 if n = 1

f(n/2) + logn if n ≥ 2

is

f(n) =

k∑
i=0

log(n/2i) =

k∑
i=0

(logn− i) =
k∑

i=0

(k − i) = k(k + 1)

2
= Θ(log2 n).

�

A.3 Summations

The arithmetic series:

n∑
j=1

j =
n(n+ 1)

2
= Θ(n2). (A.1)

The sum of squares:

n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

6
= Θ(n3). (A.2)

The geometric series:

n∑
j=0

cj =
cn+1 − 1

c− 1
= Θ(cn), c �= 1. (A.3)

If c = 2, we have

n∑
j=0

2j = 2n+1 − 1 = Θ(2n). (A.4)



May 7, 2022 11:14 Parallel Algorithms 9in x 6in b4591-app page 362

362 Parallel Algorithms

If c = 1/2, we have

n∑
j=0

1

2j
= 2− 1

2n
< 2 = Θ(1). (A.5)

When | c | < 1 and the sum is infinite, we have the infinite geometric series

∞∑
j=0

cj =
1

1− c = Θ(1), | c | < 1. (A.6)

Differentiating both sides of Eq. (A.3) and multiplying by c yields

n∑
j=0

jcj =

n∑
j=1

jcj =
ncn+2 − ncn+1 − cn+1 + c

(c− 1)2
= Θ(ncn), c �= 1. (A.7)

Letting c = 1/2 in Eq. (A.7) yields

n∑
j=0

j

2j
=

n∑
j=1

j

2j
= 2− n+ 2

2n
= Θ(1). (A.8)

Differentiating both sides of Eq. (A.6) and multiplying by c yields

∞∑
j=0

jcj =
c

(1− c)2 = Θ(1), | c | < 1. (A.9)

A.4 Probability

A.4.1 Random variables and expectation

A random variable X is a function from the sample space to the set of real

numbers. For example, we may letX denote the number of heads appearing

when throwing 3 coins. Then, the random variable X takes on one of the

values 0, 1, 2, and 3 with probabilities

Pr[X = 0] = Pr[{TTT }] = 1
8 , Pr[X = 1] = Pr[{HTT, THT, TTH}] =

3
8 , Pr[X = 2] = Pr[{HHT,HTH, THH}] = 3

8 and Pr[X = 3] =

Pr[{HHH}] = 1
8 .
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The expected value of a (discrete) random variable X with range S is

defined as

E[X ] =
∑
x∈S

xPr[X = x].

For example, if we let X denote the number appearing when throwing a

die, then the expected value of X is

E[X ] =

6∑
k=1

kPr[X = k] =
1

6
(1 + 2 + 3 + 4 + 5 + 6) =

7

2
. (A.10)

E[X ] represents the mean of the random variable X and is often writ-

ten as μX or simply μ. An important and useful property is linearity of

expectation:

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi],

which is always true regardless of independence.

A.4.2 Bernoulli distribution

A Bernoulli trial is an experiment with exactly two outcomes, e.g., flipping

a coin. These two outcomes are often referred to as success and failure with

probabilities p and q = 1 − p, respectively. Let X be the random variable

corresponding to the toss of a biased coin with probability of heads 1
3 and

probability of tails 2
3 . If we label the outcome as successful when heads

appear, then

X =

{
1 if the trial succeeds

0 if it fails.

A random variables that assumes only the numbers 0 and 1 is called an

indicator random variable. The expected value and variance of an indicator

random variable with probability of success p are given by

E[X ] = p and var[X ] = pq = p(1− p).
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A.4.3 Binomial distribution

Let X =
∑n

i=1Xi, where the Xi’s are indicator random variables corre-

sponding to n independent Bernoulli trials with parameter p (identically

distributed). Then, X is said to have the binomial distribution with param-

eters p and n. The probability that there are exactly k successes is given by

Pr[X = k] =

(
n

k

)
pkqn−k,

where q = 1− p. The expected value and variance of X are given by:

E[X ] = np and var[X ] = npq = np(1− p).

The first equality follows from the linearity of expectations, and the second

follows from the fact that all Xi
′s are pairwise independent.

For example, the probabilities of getting k heads, 0 ≤ k ≤ 4, when

tossing a fair coin 4 times are

1

16
,
1

4
,
3

8
,
1

4
,

1

16
.

E[X ] = 4× (1/2) = 2, and var[X ] = 4× (1/2)× (1/2) = 1.

A.4.4 Chernoff bounds

Let X1, X2, . . . , Xn be a collection of n independent indicator random

variables representing Bernoulli trials such that each Xi has probability

Pr[Xi = 1] = pi. We are interested in bounding the probability that their

sum X =
∑n

i=1Xi will deviate from the mean μ = E[X ] by a multiple of μ.

A.4.4.1 Lower tail

Theorem A.2 Let δ be some constant in the interval (0,1). Then,

Pr[X < (1− δ)μ] <
(

e−δ

(1− δ)(1−δ)

)μ

,

which can be simplified to

Pr[X < (1− δ)μ] < e−μδ2/2
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A.4.4.2 Upper tail

Theorem A.3 Let δ > 0 Then,

Pr[X > (1 + δ)μ] <

(
eδ

(1 + δ)(1+δ)

)μ

,

which can be simplified to

Pr[X > (1 + δ)μ] < e−μδ2/4 if δ < 2e− 1,

and

Pr[X > (1 + δ)μ] < 2−δμ if δ > 2e− 1.

Example A.3 We seek the probability that the number of heads in a

sequence of n flips of a fair coin is at least 2n/3.

Let μ = E[X ] = n/2. Solving for δ,

(1 + δ)μ =
2n

3

gives δ = 1
3 . We apply Chernoff bound of Theorem A.3. Since δ < 2e − 1,

we have

Pr

[
X ≥ 2n

3

]
< e−μδ2/4

= e−(n/2)(1/9)/4

= e−n/72.

So, we see that there is an exponential fall off. �
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Θ(1) time, 11

A

acyclic graph, 210, 222
ARBITRARY, 8
area of a picture, 274, 277
arrangement graph, 296, 304, 307–308
array packing, 16–17, 77

B

balanced tree method, 8
Bernoulli distribution, 363
Bernoulli trial, 363
bfoddevenmerge algorithm,

128–129, 132, 142, 146, 154
bfoddevenmergesort algorithm,

130, 132, 328
bfparprefix algorithm, 126–127, 271
binomial distribution, 364
bipartite graph, 75, 92
bisection width, 95, 141, 151, 207,

213, 274–277, 279
bisection width of a network, 4
bisection width of the butterfly, 141,

151
bisection width of the hypercube, 95
bisection width of the mesh, 207, 213
bisection width of the torus, 207, 213

bit fixing, 106–107, 110, 144

bitonic merging, 39–40

bitonic merging and sorting, 35, 43

bitonic sequence, 35, 37

bitonic sort network, 71, 80

bitonic sorting, 40, 75, 92

bitonicmerge algorithm, 39–42

bitonicsort algorithm, 40–41

bottom-up merge sorting, 31

breadth-first spanning tree, 210, 222

Brent theorem, 10, 74, 90

broadcasting, 70, 78, 104, 138, 144,
162, 207, 212, 294–295, 304, 307,
316, 326, 332–334, 336, 339

broadcasting in OTIS-Mesh, 316, 332,
334

broadcasting in the hypercube, 104,
138, 144

broadcasting in the mesh, 162

broadcasting in the OTIS-Hypercube,
326, 333, 336

broadcasting in the OTIS-Star, 333,
339

broadcasting in the ring, 207, 212

broadcasting in the star network,
294–295, 304, 307

bucketsort, 139–140, 147–148

butterfly, 96, 98, 110
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bisection width of, 141, 151
odd–even merging and sorting on,

127, 130
odd–even merging on, 127, 130,

142, 154
parallel prefix on, 126, 143, 155
permutation routing in, 110
prefix sum on, 126, 143, 155

C

CCC, see cube-connected cycles, 143,
364–365
lower tail, 364
upper tail, 365

columnsort, 196–198, 211, 223–225
columnsort algorithm, 196–202,

211, 223–224
columnsort2 algorithm, 197–199,

211, 223
COMMON, 7
component labeling, 191–192, 212,

226
concurrent read concurrent write,

7
concurrent read exclusive write, 7
congestion, 161
connected components, 184
convex hull, 185, 187, 189

on the mesh, 185, 187, 189, 191
parallel algorithm, 63, 68

convolution, 238–239, 245, 249,
342–345, 352, 355
computing, 238–239, 245, 249
systolic array for, 342–345, 352, 355

CRCW, 7–8
CREW, 7
cube-connected cycles, 143, 156

bisection width of, 144, 156
degree of, 144, 156
diameter of, 144, 156
embedding of hypercube into, 144,

157
parallel prefix on, 144, 157
prefix sum on, 144, 157

simulating a hypercube on, 144,
158

sum on, 143, 156

cyclic graph, 210, 222

D

1-dimensional pyramid, 259

bisection width of, 274, 276

lower bound on routing, 274,
276

lower bound on sorting, 274, 276

2-dimensional pyramid, 260

bisection width of, 274, 277

diameter of, 274, 276

lower bound on routing, 274, 277

lower bound on sorting, 274, 277

3-dimensional mesh, 202

sorting on, 202, 204, 212, 225, 226

data movements in OTIS-Mesh, 315

degree of OTIS-mesh of trees, 333,
339

degree of a network, 4

depth-first numbering in a tree, 24

deterministic routing on
OTIS-Hypercube, 333, 339

deterministic routing on OTIS-Mesh,
322

deterministic routing on the mesh,
173

DFT, see discrete Fourier transform,
228

diameter, 274, 276, 278

of OTIS-mesh of trees, 333,
339–340

diameter of a network, 4

dilation, 161

dimension k edge, 95

directing a tree, 25–26, 73, 87

directingtree algorithm, 25

discrete Fourier transform, 228

divide and conquer recurrence, 359

dominating set, 305, 310

dotproduct algorithm, 56–57
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E

embedding, 140, 144, 150, 157, 161,
207, 212

linear array into the mesh, 161,
207, 212

mesh into linear array, 161, 207,
212

embedding of a binary tree into
hypercube, 103, 140, 150

embedding of a linear array into
hypercube, 101

embedding of a mesh into hypercube,
102

embedding of cube-connected cycles
into hypercube, 144, 157

embeddings of the hypercube, 99

enumeration sort, 11

ERCW, 7

EREW, 7

Euler circuit, 22

Euler tour, 22, 24, 73, 87

Eulerian graph, 22

exclusive read concurrent write, 7

exclusive read exclusive write, 7

expectation, 362

expected value, 363

F

fast Fourier Transform, 227

fast Fourier transform, 227, 244–247,
249

convolution, 238–239, 245, 249

implementation on the butterfly,
231

inverse, 234

iterative on the butterfly, 231

modular arithmetic, 241, 243,
245–246, 250–251

product of polynomials, 235, 237,
243–249

Toeplitz matrix, 239–240, 245,
249–250

FFT, see fast Fourier transform, 227

Fourier transform, see fast Fourier
transform, 227

G

Gray codes, 100
greedy path in butterfly, 98

H

hcbroadcast algorithm, 104–105,
144

hchyperquicksort algorithm,
113–114

hcloadbalance algorithm, 126
hcmultiselect algorithm, 120–121,

140, 149
hcparprefix algorithm, 112, 142,

153
hcselect algorithm, 118, 120–122,

140, 148–149
hcsum algorithm, 105, 134
Horner’s rule, 74, 88
hypercube, 95, 99

bisection width of, 95
broadcasting in, 104, 138, 144
computing maximum on, 141, 152
computing parallel prefix on, 139,

145–146
computing prefix sum on, 139,

145–146
computing sum on, 138, 141, 144,

151
embedding of a binary tree into,

103
embedding of a linear array into,

101
embedding of a mesh into, 102
load balancing on, 122, 138, 142,

153–154
matrix multiplication on, 132, 134,

137, 142, 155
multiselection on, 140, 149
odd–even merging on, 139, 146
parallel prefix on, 112, 142, 153
parallel quicksort on, 139, 146
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permutation routing in, 105–107,
140, 148

prefix sum on, 112, 142, 153
routing in, 140, 148

routing on, 141–142, 152
sorting on, 113, 115, 139, 147

hyperquicksort, 113

I

indicator random variable, 363
interconnection networks, 3
interpolation, 235, 236

L

labeling connected components,
191–192, 212, 226

laparprefix algorithm, 163–164
linear array, 159

broadcasting in, 162
merge-split sort on, 208–209,

217–218
linearity of expectation, 363

load balancing, 122, 138, 142, 153–154
lower bound, 274–277, 279

M

many-to-many routing on the
hypercube, 141–142, 152

mathematical notations
O-notation, see O-notation, 357

Ω-notation, see Ω-notation, 358
matrix multiplication, 56, 132, 134,

137, 142, 155, 177–178, 210, 222
matrix multiplication on the

hypercube, 132, 134, 137
matrix multiplication on the mesh,

177–178, 210, 222

matrix multiplication on the PRAM,
56, 71, 82, 177–178

matrix–matrix multiplication,
352–354

matrix-vector multiplication, 342,
352–353

maximum, 69, 72, 77, 82–83, 141,
152, 207, 214, 273–276, 290–291,
304, 306

mean, 363

merge-split sort, 208–209, 217–218
mergesort, 76, 92–93

pipelined mergesort, 43, 49

mergesort algorithm, 40
merging, 27, 30, 33, 35, 39, 70–71, 74,

79–80, 89–90, 169–170, 211,
224–225
odd–even, 33, 70–71, 79–80, 211,

224–225

merging by ranking, 27, 30
mesh

deterministic routing on, 173

one-to-one routing on, 209, 218
permutation routing on, 172–174,

209, 218

randomized routing on, 174
mesh network, 159

3-dimensional, 202
bisection width of, 207, 213

broadcasting in, 162
component labeling, 191–192, 212,

226

computing maximum on, 207, 214
computing transpose of a matrix

on, 208, 215

odd–even merging and sorting on,
169–171, 209, 218

odd–even merging on, 209, 218

odd–even transposition sort on,
164–165, 208, 217

parallel prefix on, 163, 208–209,
214, 219

permutation routing on, 207, 213
prefix sum on, 163, 208–209, 214,

219
routing on, 207, 213
searching in, 210, 221

sorting on, 202, 204, 207, 210,
212–213, 219–220, 225–226

window broadcast in, 209, 219
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with wraparound connections, 159

mesh of trees, 264, 275, 278

bisection width of, 275, 279

comparison with pyramid, 272

computing sum on, 275, 278

diameter of, 274, 278

lower bound on routing, 275, 279

lower bound on sorting, 275, 279

parallel prefix on, 270, 272

prefix sum on, 270, 272

routing on, 269–270, 275, 279

sorting on, 266, 268, 275, 279

meshoddevenmerge algorithm,
169–170, 172

meshoddevensort algorithm,
171–172

meshparprefix algorithm, 163–164

meshsortrec algorithm, 167–168

minimum spanning tree, 59, 61–62,
75, 90–92

modparsearch algorithm, 27–29

multiselection, 52, 71, 81, 119, 140,
149

multiselection on the hypercube, 119,
140, 149

N

Θ-notation, 358

normal butterfly algorithm, 98

normal tree algorithm, 254

nth root of unity, 227, 244, 246

O

O-notation, 357–359

Ω-notation, 358

oblivious sorting algorithm, 32

odd–even merging, 33, 70–71, 74,
79–80, 90, 127, 130, 139, 142, 146,
154, 209, 211, 218, 224–225

odd–even merging and sorting, 127,
130, 169–171, 209, 218

odd–even transposition sort, 164–165,
208, 217

oddevenmerge algorithm, 33–35,
70, 74, 79, 90, 196–197, 211, 224

oddevenmergesort algorithm,
34–35, 130, 171

on-chip bubble sorter, 347, 349, 353,
356

Optical transpose interconnection
system, 313

OR computing logical, 71, 82
OTIS, 313

data movement in, 331, 334
OTIS-Hypercube, 324

broadcasting in, 326, 333, 336
computing sum on, 326, 333, 336
deterministic routing on, 333, 339
permutation routing on, 327, 333,

338–339
routing on, 327, 333, 338–339
semigroup operations on, 326

simulation of hypercube on, 324
sorting on, 327

OTIS-Mesh, 314
broadcasting in, 316, 332, 334
computing sum on, 316, 332, 335
data movements in, 315
deterministic routing on, 322
parallel prefix on, 318, 332, 335
permutation routing on, 322, 332,

336
prefix sum on, 318, 332, 335
randomized routing on, 322, 332,

336

routing on, 322, 332, 336
semigroup operations on, 316
shift operations on, 320–321, 332,

335–336
sorting on, 324
window broadcast in, 332, 334

OTIS-Mesh of trees, 328
degree of, 333, 339
diameter of, 333, 339–340

OTIS-Star, 328
broadcasting in, 333, 339

otishcaddition algorithm, 326–327
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otismeshbroadcast algorithm, 316,
326, 332, 334

otismeshparprefix algorithm,
318–319

otismeshshift algorithm, 320–321,
332, 335

otismeshsum algorithm, 317, 326,
332, 335

P

paraddition algorithm, 8–9, 11, 56,
77

parallel architectures
classifications of, 1, 5

parallel merging, 74, 89–90
parallel multiselection, 56
parallel prefix, 14, 72, 84, 112, 126,

139, 142–146, 153, 155, 157, 163,
208–209, 214, 219, 262, 270, 272,
274, 276, 278, 287, 289, 304, 306,
318, 332, 335

parallel prefix on the butterfly, 126,
143, 155

parallel prefix on the cube-connected
cycles, 144, 157

parallel prefix on the hypercube, 112,
142, 153

parallel prefix on the mesh, 163,
208–209, 214, 219

parallel prefix on the mesh of trees,
270, 272

parallel prefix on the OTIS-Mesh,
318, 332, 335

parallel prefix on the pyramid, 262,
274, 276, 278

parallel prefix on the star network,
287, 289, 304, 306

parallel quicksort, 18, 70, 74, 78, 89,
139, 146

parallel search, 18, 21, 70, 78
parallel sorting, 74, 89
parbottomupsort algorithm, 31, 43
parconvexhull algorithm, 68, 186
parmatrixmult algorithm, 57

parmerge algorithm, 30–31, 74, 90

parmultiselect1 algorithm, 52, 56,
71, 81

parmultiselect2 algorithm, 53–54,
71, 81–82

parprefix algorithm, 14–15, 77

parprefixrec algorithm, 15–16, 85
parquicksort algorithm, 18, 70, 74,

78, 89
parrank algorithm, 28–30, 70, 78

parsearch algorithm, 20–21, 27, 70,
78

parselect algorithm, 50, 52, 71,
80–81, 140, 148

partial permutation routing on the
hypercube, 141, 152

permutation routing on OTIS-Mesh,
322

permutation routing on the butterfly,
110

permutation routing on the
hypercube, 105–107, 140, 148

permutation routing on the mesh,
207, 213

permutation routing on the
OTIS-Hypercube, 327, 333,
338–339

permutation routing on the
OTIS-Mesh, 322, 332, 336

picture
area of, 274, 277

pipelined mergesort, 43, 49, 76, 92–93
pjumping algorithm, 21–22

point-value representation, 235
pointer jumping, 21, 73, 87

polygon, 71, 82
polynomial evaluation, 142, 153, 209,

219
postorder numbering in a tree, 73,

87–88

PRAM, 2, 7–8
array packing on, 77

broadcasting in, 70, 78
computing logical OR on, 71, 82
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computing maximum on, 69, 72,
77, 82–83

computing parallel prefix on, 72, 84

computing prefix minima on, 72, 85
computing ranks on, 70, 72, 78, 83
computing suffix minima on, 73, 85

matrix multiplication on, 71, 82
merging on, 74, 89–90
multiselection on, 71, 81

odd-even merging on, 70, 79
parallel quicksort on, 70, 78, 139,

146
parallel search on, 70, 78
selection on, 72, 76, 84, 89, 93

simulating on a hypercube,
140–141, 148, 150

sorting on, 74, 89

suffix computation on, 73, 85–86
prammst algorithm, 59–60

prefix minima, 72, 85
prefix sum, 112, 126, 139, 142–146,

153, 155, 157, 163, 208–209, 214,
219, 262, 270, 272, 274, 276, 278,
287, 289, 304, 306, 318, 332, 335

prefix sum on the butterfly, 126, 143,
155

prefix sum on the cube-connected
cycles, 144, 157

prefix sum on the hypercube, 112,
142, 153

prefix sum on the mesh, 163,
208–209, 214, 219

prefix sum on the mesh of trees, 270,
272

prefix sum on the OTIS-Mesh, 318,
332, 335

prefix sum on the pyramid, 262, 274,
276, 278

prefix sum on the star network, 287,
289, 304, 306

prefix sums, 14, 72, 84
primitive nth root of unity, 227

PRIORITY, 8
probability, 362

processing element, 3

Product of polynomials, 235, 237,
243, 245, 248

pyramid network, 260, 274, 278

bisection width of, 274, 277

comparison with mesh of trees, 272

computing sum on, 274, 278

diameter of, 274, 276

lower bound on routing, 274, 277

lower bound on sorting, 274, 277

parallel prefix on, 262, 274, 276,
278

prefix sum on, 262, 274, 276, 278

routing on, 274, 278

sorting on, 274, 278

pyramidparprefix algorithm,
262–274, 276

Q

quicksort, 70, 74, 78, 89, 139, 146

quicksort on the hypercube, 139, 146

R

random variables, 362

randomized routing on OTIS-Mesh,
322, 332, 336

randomized routing on the mesh, 174

rank, 11, 70, 72, 78, 83, 303, 305

computing, 27, 30

recurrence relation

divide and conquer, see divide and
conquer recurrence, 359

recursive doubling, 292, 294, 304, 306

reduction, 105, 151

ring, 159

broadcasting in, 207, 212

roots of unity, 227

routing, 105–107, 110, 140–142, 148,
152, 172–174, 207, 209, 213, 218,
269–270, 274–275, 278–279, 322,
327, 332–333, 336, 338–339

many-to-many routing on the
hypercube, 141–142, 152



May 7, 2022 11:16 Parallel Algorithms 9in x 6in b4591-index page 382

382 Parallel Algorithms

partial permutation routing on the
hypercube, 141, 152

routing on mesh of trees, 275, 279

routing on OTIS-Mesh, 322

routing on pyramid network, 274, 278

routing on the butterfly, 110

routing on the hypercube, 105–107

routing on the linear array, 172

routing on the mesh, 172–173, 209,
218

S

(d, k)-Star, 297–298, 300, 304–305,
308–310

dominating set in, 305, 310

sample sort, 115, 139, 147

samplesort algorithm, 116–117, 139,
147, 327

searching, 5, 18, 21, 70, 78, 210, 221

select algorithm, 76

selection, 50, 71–72, 76–77, 80, 84, 89,
93, 118, 140, 148–149, 256, 259,
274, 276

on the hypercube, 118, 140,
148–149

sequential, 76

semigroup operations

in the hypercube, 105

semigroup operations on
OTIS-Hypercube, 326

semigroup operations on the
OTIS-Mesh, 316

semigroup operations on tree
network, 254

semisystolic, 343–344, 352, 355

shared-memory computers, 2, 7

shearsort, 165–166

shearsort algorithm, 165–167, 169

shift, 320–321, 332, 335–336

shift operations on the OTIS-Mesh,
320–321, 332, 335–336

shortest paths, 58, 143, 155, 185, 211,
223

simulating a network on mesh of
trees, 275, 280

simulating a pyramid on mesh of
trees, 275, 279

simulation, 275, 279–280
of hypercube on OTIS-Hypercube,

324
smoothing a picture, 207, 213

sorter
on-chip bubble sorter, 347, 349,

353, 356

zero-time sorter, 345–346, 353, 356
sorting, 11, 18, 35, 43, 74, 89, 113,

115, 139, 147, 164–171, 196–198,
202, 204, 207–213, 217–220, 223,
225–226, 254–255, 266, 268,
274–275, 278–279, 300, 305, 310,
324, 327, 352, 356

bitonic sorting, 40
bucketsort, 139–140, 147–148
hyperquicksort, 113
odd-even, 33

on linear array, 352, 356
parallel bottom-up, 31
parallel quicksort, 18
pipelined mergesort, 43, 49

sample sort, 115, 139, 147
sorting by minimum extraction, 254
sorting by partitioning, 255
sorting on (d, k)-Star, 300, 305, 310

sorting on 3-dimensional mesh, 202,
204, 212, 225–226

sorting on CRCW PRAM, 11
sorting on mesh of trees, 266, 268,

275, 279
sorting on OTIS-Hypercube, 327
sorting on OTIS-Mesh, 324

sorting on pyramid network, 274, 278
sorting on the mesh

odd–even mergesort, 169, 171
recursive algorithm, 167–168

shearsort, 165–166
sortingcrcw algorithm, 11–14, 69,

77
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spanning tree, 59, 61–62, 75, 90–92,
210, 222

star network, 281
(d, k)-Star, 297–298, 300, 304–305,

308–310
broadcasting in, 294–295, 304, 307
computing maximum on, 290–291,

304, 306
computing ranks, 303, 305
labels, 303, 305–306
neighborhood broadcasting in, 292,

294, 304, 306–307
parallel prefix on, 287, 289, 304,

306
prefix sum on, 287, 289, 304, 306
ranking of the processors in, 283
routing between substars, 285, 287
sorting in (d, k)-Star, 300, 305, 310

stardksort algorithm, 301, 310
starlabels algorithm, 284–285, 303,

305–306
starmax algorithm, 291–292, 304,

306
starparprefix algorithm, 288–289,

304, 306
starrecdub algorithm, 293–294,

304, 306
starroute algorithm, 286, 288–290,

292
suffix, 73, 85
suffix minima, 73, 85–86
sum, 5, 138, 141, 143–144, 151, 156,

273–275, 278, 316, 326, 332–333,
335–336

summation, 361
formulas, 362

systolic computation, 341

T

tail bounds, 365
Toeplitz matrix, 239–240, 245,

249–250
computing, 239–240, 245, 249–250

topology of a network, 4
torus, 159

bisection width of, 207, 213
transitive closure, 58, 142, 155, 180,

210, 223
transpose of a matrix, 208, 215
tree network, 253, 273–276

computing maximum on, 273–276
computing sum on, 273, 275
selection on, 256, 259, 274, 276
semigroup operations on, 254
sorting on, 254–255

treelevels algorithm, 26

V

vertex level in a tree, 26–27, 73, 87

W

window broadcast, 209, 219, 332, 334

Z

zero-one principle, 32
zero-time VLSI sorter, 345–346, 353,

356
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