

GRAPHS,
ALGORITHMS,

AND OPTIMIZATION
Second edition

DISCRETE
MATHEMATICS
ITS APPLICATIONS

R. B. J. T. Allenby and Alan Slomson, How to Count: An Introduction to Combinatorics,
Third Edition

Craig P. Bauer, Secret History: The Story of Cryptology

Jürgen Bierbrauer, Introduction to Coding Theory, Second Edition

Katalin Bimbó, Combinatory Logic: Pure, Applied and Typed

Katalin Bimbó, Proof Theory: Sequent Calculi and Related Formalisms

Donald Bindner and Martin Erickson, A Student’s Guide to the Study, Practice, and Tools of
Modern Mathematics

Francine Blanchet-Sadri, Algorithmic Combinatorics on Partial Words

Miklós Bóna, Combinatorics of Permutations, Second Edition

Miklós Bóna, Handbook of Enumerative Combinatorics

Miklós Bóna, Introduction to Enumerative and Analytic Combinatorics, Second Edition

Jason I. Brown, Discrete Structures and Their Interactions

Richard A. Brualdi and Dragos̆ Cvetković, A Combinatorial Approach to Matrix Theory and Its
Applications

Kun-Mao Chao and Bang Ye Wu, Spanning Trees and Optimization Problems

Charalambos A. Charalambides, Enumerative Combinatorics

Gary Chartrand and Ping Zhang, Chromatic Graph Theory

Henri Cohen, Gerhard Frey, et al., Handbook of Elliptic and Hyperelliptic Curve Cryptography

Charles J. Colbourn and Jeffrey H. Dinitz, Handbook of Combinatorial Designs, Second Edition

Abhijit Das, Computational Number Theory

Matthias Dehmer and Frank Emmert-Streib, Quantitative Graph Theory:
Mathematical Foundations and Applications

Martin Erickson, Pearls of Discrete Mathematics

Martin Erickson and Anthony Vazzana, Introduction to Number Theory

Titles (continued)

Steven Furino, Ying Miao, and Jianxing Yin, Frames and Resolvable Designs: Uses,
Constructions, and Existence

Mark S. Gockenbach, Finite-Dimensional Linear Algebra

Randy Goldberg and Lance Riek, A Practical Handbook of Speech Coders

Jacob E. Goodman and Joseph O’Rourke, Handbook of Discrete and Computational Geometry,
Second Edition

Jonathan L. Gross, Combinatorial Methods with Computer Applications

Jonathan L. Gross and Jay Yellen, Graph Theory and Its Applications, Second Edition

Jonathan L. Gross, Jay Yellen, and Ping Zhang Handbook of Graph Theory, Second Edition

David S. Gunderson, Handbook of Mathematical Induction: Theory and Applications

Richard Hammack, Wilfried Imrich, and Sandi Klavžar, Handbook of Product Graphs,
Second Edition

Darrel R. Hankerson, Greg A. Harris, and Peter D. Johnson, Introduction to Information Theory
and Data Compression, Second Edition

Darel W. Hardy, Fred Richman, and Carol L. Walker, Applied Algebra: Codes, Ciphers, and
Discrete Algorithms, Second Edition

Daryl D. Harms, Miroslav Kraetzl, Charles J. Colbourn, and John S. Devitt, Network Reliability:
Experiments with a Symbolic Algebra Environment

Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words

Leslie Hogben, Handbook of Linear Algebra, Second Edition

Derek F. Holt with Bettina Eick and Eamonn A. O’Brien, Handbook of Computational Group Theory

David M. Jackson and Terry I. Visentin, An Atlas of Smaller Maps in Orientable and
Nonorientable Surfaces

Richard E. Klima, Neil P. Sigmon, and Ernest L. Stitzinger, Applications of Abstract Algebra
with Maple™ and MATLAB®, Second Edition

Richard E. Klima and Neil P. Sigmon, Cryptology: Classical and Modern with Maplets

Patrick Knupp and Kambiz Salari, Verification of Computer Codes in Computational Science
and Engineering

William L. Kocay and Donald L. Kreher, Graphs, Algorithms, and Optimization, Second Edition

Donald L. Kreher and Douglas R. Stinson, Combinatorial Algorithms: Generation Enumeration
and Search

Hang T. Lau, A Java Library of Graph Algorithms and Optimization

C. C. Lindner and C. A. Rodger, Design Theory, Second Edition

San Ling, Huaxiong Wang, and Chaoping Xing, Algebraic Curves in Cryptography

Nicholas A. Loehr, Bijective Combinatorics

Toufik Mansour, Combinatorics of Set Partitions

Titles (continued)

Toufik Mansour and Matthias Schork, Commutation Relations, Normal Ordering, and Stirling
Numbers

Alasdair McAndrew, Introduction to Cryptography with Open-Source Software

Elliott Mendelson, Introduction to Mathematical Logic, Fifth Edition

Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of Applied
Cryptography

Stig F. Mjølsnes, A Multidisciplinary Introduction to Information Security

Jason J. Molitierno, Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

Richard A. Mollin, Advanced Number Theory with Applications

Richard A. Mollin, Algebraic Number Theory, Second Edition

Richard A. Mollin, Codes: The Guide to Secrecy from Ancient to Modern Times

Richard A. Mollin, Fundamental Number Theory with Applications, Second Edition

Richard A. Mollin, An Introduction to Cryptography, Second Edition

Richard A. Mollin, Quadratics

Richard A. Mollin, RSA and Public-Key Cryptography

Carlos J. Moreno and Samuel S. Wagstaff, Jr., Sums of Squares of Integers

Gary L. Mullen and Daniel Panario, Handbook of Finite Fields

Goutam Paul and Subhamoy Maitra, RC4 Stream Cipher and Its Variants

Dingyi Pei, Authentication Codes and Combinatorial Designs

Kenneth H. Rosen, Handbook of Discrete and Combinatorial Mathematics

Yongtang Shi, Matthias Dehmer, Xueliang Li, and Ivan Gutman, Graph Polynomials

Douglas R. Shier and K.T. Wallenius, Applied Mathematical Modeling: A Multidisciplinary
Approach

Alexander Stanoyevitch, Introduction to Cryptography with Mathematical Foundations and
Computer Implementations

Jörn Steuding, Diophantine Analysis

Douglas R. Stinson, Cryptography: Theory and Practice, Third Edition

Roberto Tamassia, Handbook of Graph Drawing and Visualization

Roberto Togneri and Christopher J. deSilva, Fundamentals of Information Theory and Coding
Design

W. D. Wallis, Introduction to Combinatorial Designs, Second Edition

W. D. Wallis and J. C. George, Introduction to Combinatorics

Jiacun Wang, Handbook of Finite State Based Models and Applications

Lawrence C. Washington, Elliptic Curves: Number Theory and Cryptography, Second Edition

DISCRETE MATHEMATICS AND ITS APPLICATIONS

GRAPHS,
ALGORITHMS,

AND OPTIMIZATION
Second edition

William l. Kocay
University of Manitoba

Winnipeg, Canada

DonalD l. Kreher
Michigan Technological University

Houghton, USA

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20160727

International Standard Book Number-13: 978-1-4822-5116-6 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a photo-
copy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com

The authors would like to take this opportunity to express their appreciation and

gratitude to the following people who have had a very significant effect on their

mathematical development:

Adrian Bondy, Earl Kramer, Spyros Magliveras, Ron Read, and Ralph Stanton.

This book is dedicated to the memory of
William T. Tutte, (1917–2002)

“ the greatest of the graphmen ”

http://taylorandfrancis.com

Contents

Preface xvii

1 Graphs and Their Complements 1

1.1 Introduction . 1

Exercises . 6

1.2 Degree sequences . 8

1.2.1 Havel-Hakimi theorem 14

1.2.2 Erdös-Gallai theorem 15

Exercises . 17

1.3 Analysis . 18

Exercises . 20

1.4 Notes . 21

2 Paths and Walks 23

2.1 Introduction . 23

2.2 Complexity . 26

Exercises . 27

2.3 Walks . 28

Exercises . 28

2.4 The shortest-path problem 29

2.5 Weighted graphs and Dijkstra’s algorithm 33

Exercises . 35

2.6 Data structures . 36

2.7 Floyd’s algorithm . 41

Exercises . 43

2.8 Notes . 43

3 Subgraphs 45

3.1 Counting subgraphs . 45

3.1.1 Möbius inversion . 46

3.1.2 Counting triangles 49

3.2 Multiplying subgraph counts 50

3.3 Mixed subgraphs . 52

3.4 Graph reconstruction . 53

3.4.1 Nash-Williams’ lemma 54

Exercises . 56

ix

x Contents

3.5 Notes . 56

4 Some Special Classes of Graphs 57

4.1 Bipartite graphs . 57

Exercises . 58

4.2 Line graphs . 59

Exercises . 60

4.3 Moore graphs . 62

Exercises . 66

4.4 Euler tours . 67

4.4.1 An Euler tour algorithm 68

Exercises . 71

4.5 Notes . 72

5 Trees and Cycles 73

5.1 Introduction . 73

Exercises . 74

5.2 Fundamental cycles . 74

Exercises . 74

5.3 Co-trees and bonds . 76

Exercises . 78

5.4 Spanning tree algorithms . 80

5.4.1 Prim’s algorithm . 81

5.4.1.1 Data structures 83

Exercises . 84

5.4.2 Kruskal’s algorithm 85

5.4.2.1 Data structures and complexity 85

5.4.3 The Cheriton-Tarjan algorithm 86

Exercises . 87

5.4.4 Leftist binary trees 88

Exercises . 94

5.5 Notes . 94

6 The Structure of Trees 97

6.1 Introduction . 97

6.2 Non-rooted trees . 98

Exercises . 100

6.3 Read’s tree encoding algorithm 100

6.3.1 The decoding algorithm 103

Exercises . 104

6.4 Generating rooted trees . 105

Exercises . 112

6.5 Generating non-rooted trees 113

Exercises . 114

6.6 Prüfer sequences . 114

6.7 Spanning trees . 116

Contents xi

6.8 The matrix-tree theorem . 118

Exercises . 123

6.9 Notes . 124

7 Connectivity 125

7.1 Introduction . 125

Exercises . 127

7.2 Blocks . 128

7.3 Finding the blocks of a graph 131

Exercises . 132

7.4 The depth-first search . 134

7.4.1 Complexity . 140

Exercises . 140

7.5 Sections and modules . 141

Exercises . 144

7.6 Notes . 144

8 Graphs and Symmetry 147

8.1 Groups . 147

8.2 Cayley graphs . 150

8.3 Coset diagrams . 152

8.3.1 Double cosets . 154

8.4 Conjugation, Sylow subgroups 156

8.5 Homomorphisms . 158

8.6 Primitivity and block systems 159

Exercises . 160

8.7 Self-complementary graphs 161

8.8 Pseudo-similar vertices . 163

Exercises . 166

8.9 Notes . 166

9 Alternating Paths and Matchings 169

9.1 Introduction . 169

Exercises . 172

9.2 The Hungarian algorithm . 173

9.2.1 Complexity . 176

Exercises . 177

9.3 Edmonds’ algorithm, blossoms 177

9.3.1 Complexity . 182

9.4 Perfect matchings and 1-factorizations 182

Exercises . 185

9.5 The subgraph problem . 185

9.6 Coverings in bipartite graphs 187

9.7 Tutte’s theorem . 188

Exercises . 190

9.8 Notes . 191

xii Contents

10 Network Flows 193

10.1 Introduction . 193

10.2 The Ford-Fulkerson algorithm 197

Exercises . 205

10.3 Matchings and flows . 206

Exercises . 207

10.4 Menger’s theorems . 208

Exercises . 210

10.5 Disjoint paths and separating sets 210

Exercises . 212

10.6 Notes . 215

11 Hamilton Cycles 217

11.1 Introduction . 217

Exercises . 220

11.2 The crossover algorithm . 220

11.2.1 Complexity . 223

Exercises . 225

11.3 The Hamilton closure . 226

Exercises . 228

11.4 The extended multi-path algorithm 229

11.4.1 Data structures for the segments 232

Exercises . 233

11.5 Decision problems, NP-completeness 233

Exercises . 241

11.6 The traveling salesman problem 242

Exercises . 244

11.7 The ∆TSP . 244

11.8 Christofides’ algorithm . 246

Exercises . 248

11.9 Notes . 249

12 Digraphs 251

12.1 Introduction . 251

12.2 Activity graphs, critical paths 251

12.3 Topological order . 253

Exercises . 256

12.4 Strong components . 256

Exercises . 257

12.4.1 An application to fabrics 262

Exercises . 263

12.5 Tournaments . 264

12.5.1 Modules . 265

Exercises . 266

12.6 2-Satisfiability . 266

Exercises . 269

Contents xiii

12.7 Notes . 269

13 Graph Colorings 271

13.1 Introduction . 271

13.1.1 Intersecting lines in the plane 273

Exercises . 274

13.2 Cliques . 274

13.3 Mycielski’s construction . 278

13.4 Critical graphs . 279

Exercises . 280

13.5 Chromatic polynomials . 281

Exercises . 282

13.6 Edge colorings . 283

Exercises . 291

13.7 Graph homomorphisms . 291

Exercises . 296

13.8 NP-completeness . 297

13.9 Notes . 304

14 Planar Graphs 305

14.1 Introduction . 305

14.2 Jordan curves . 306

14.3 Graph minors, subdivisions 307

Exercises . 311

14.4 Euler’s formula . 311

14.5 Rotation systems . 313

14.6 Dual graphs . 315

14.7 Platonic solids, polyhedra . 319

Exercises . 320

14.8 Triangulations . 321

14.9 The sphere . 324

Exercises . 325

14.10 Whitney’s theorem . 325

14.11 Medial digraphs . 329

Exercises . 331

14.12 The 4-color problem . 332

14.13 Nowhere-zero flows . 335

Exercises . 337

14.14 Straight-line drawings . 337

14.15 Coordinate averaging . 340

14.16 Kuratowski’s theorem . 342

Exercises . 344

14.17 The Hopcroft-Tarjan algorithm 346

14.17.1 Bundles . 349

14.17.2 Switching bundles . 350

14.17.3 The general Hopcroft-Tarjan algorithm 353

xiv Contents

14.18 Notes . 356

15 Graphs and Surfaces 359

15.1 Introduction . 359

15.2 Surfaces . 361

15.2.1 Handles and crosscaps 367

15.2.2 The Euler characteristic and genus of a surface 368

Exercises . 371

15.3 Isometries of surfaces . 372

Exercises . 375

15.4 Graph embeddings, obstructions 376

15.5 Graphs on the torus . 377

Exercises . 385

15.5.1 Platonic maps on the torus 387

15.5.2 Drawing torus maps, triangulations 389

Exercises . 392

15.6 Coordinate averaging . 394

15.7 Graphs on the projective plane 395

15.7.1 The facewidth . 402

15.7.2 Double covers . 405

Exercises . 410

15.8 Embedding algorithms . 412

Exercises . 421

15.9 Heawood’s map coloring theorem 421

Exercises . 423

15.10 Notes . 424

16 The Klein Bottle and the Double Torus 425

16.1 The Klein bottle . 425

16.1.1 Rotation systems . 426

16.1.2 The double cover . 435

Exercises . 436

16.2 The double torus . 437

16.2.1 Isometries of the hyperbolic plane 440

Exercises . 441

16.2.2 The double torus as an octagon 441

Exercises . 447

16.3 Notes . 448

17 Linear Programming 451

17.1 Introduction . 451

17.1.1 A simple example . 451

17.1.2 Simple graphical example 452

17.1.3 Slack and surplus variables 455

Exercises . 457

17.2 The simplex algorithm . 458

Contents xv

17.2.1 Overview . 458

17.2.2 Some notation . 458

17.2.3 Phase 0: finding a basis solution 459

17.2.4 Obtaining a basis feasible solution 460

17.2.5 The tableau . 461

17.2.6 Phase 2: improving a basis feasible solution 462

17.2.7 Unbounded solutions 466

17.2.8 Conditions for optimality 467

17.2.9 Phase 1: initial basis feasible solution 469

17.2.10 An example . 472

17.3 Cycling . 474

Exercises . 476

17.4 Notes . 476

18 The Primal-Dual Algorithm 479

18.1 Introduction . 479

18.2 Alternate form of the primal and its dual 484

18.3 Geometric interpretation . 485

18.3.1 Example . 486

18.4 Complementary slackness . 490

18.5 The dual of the shortest-path problem 491

Exercises . 494

18.6 The primal-dual algorithm 494

18.6.1 Initial feasible solution 498

18.6.2 The shortest-path problem 500

18.6.3 Maximum flow . 503

Exercises . 505

18.7 Notes . 506

19 Discrete Linear Programming 507

19.1 Introduction . 507

19.2 Backtracking . 508

19.3 Branch and bound . 511

Exercises . 521

19.4 Totally unimodular matrices 523

Exercises . 525

19.5 Notes . 525

Bibliography 527

Index 539

http://taylorandfrancis.com

Preface

Our objective in writing this book is to present the theory of graphs from an al-

gorithmic viewpoint. We present the graph theory in a rigorous, but informal style

and cover most of the main areas of graph theory. The ideas of surface topology are

presented from an intuitive point of view. We have also included a discussion on lin-

ear programming that emphasizes problems in graph theory. The text is suitable for

students in computer science or mathematics programs.

Graph theory is a rich source of problems and techniques for programming and

data structure development, as well as for the theory of computing, including NP-

completeness and polynomial reduction.

This book could be used a textbook for a third or fourth year course on graph

algorithms which contains a programming content, or for a more advanced course

at the fourth year or graduate level. It could be used in a course in which the pro-

gramming language is any major programming language (e.g., C, C++, Java). The

algorithms are presented in a generic style and are not dependent on any particular

programming language.

The text could also be used for a sequence of courses like “Graph Algorithms I”

and “Graph Algorithms II”. The courses offered would depend on the selection of

chapters included. A typical course will begin with Chapters 1, 2, 4, and 5. At this

point, a number of options are available.

A possible first course would consist of Chapters 1, 2, 4, 5, 7, 10, 11, 12, 13,

and 14, and a first course stressing optimization would consist of Chapters 1, 2, 3,

5, 10, 11, 12, 17, 18, and 19. Experience indicates that the students consider these

substantial courses. One or two chapters could be omitted for a lighter course.

We would like to thank the many people who provided encouragement while

we wrote this book, pointed out typos and errors, and gave useful suggestions. In

particular, we would like to convey our thanks to Ben Li and John van Rees of the

University of Manitoba for proofreading some chapters.

William Kocay

Donald L. Kreher

August, 2004

xvii

xviii Graphs, Algorithms, and Optimization

Preface to the second edition

The second edition of Graphs, Algorithms, and Optimization contains three com-

pletely new chapters. New material has also been added to previously existing chap-

ters. There is a new chapter on subgraph counting containing identities connecting

various kinds of subgraphs in a graph. The graph reconstruction problem is intro-

duced in this chapter. There is a chapter on graphs and symmetries, where the relation

of permutation groups to graphs is considered. This chapter contains the basic theory

of permutation groups. In particular, groups are used to construct symmetric graphs,

and to understand self-complementary graphs and graphs with pseudo-similar ver-

tices. A chapter on graph embeddings on the Klein bottle and double torus has also

been added.

Some of the new material added to previously existing chapters is :

• A proof of the Erdös-Gallai theorem has been included;

• Sections on isometries of surfaces have been added, according to their applica-

tion to graph embeddings in the plane and torus;

• The treatment of the double cover of graphs on the projective plane has been

expanded;

• Automorphism groups of graph embeddings have been included;

• The proof of the NP-completeness of 3-coloring a graph has been corrected;

• The algorithm using Vizing’s technique for edge-coloring a graph has been im-

proved;

• A section on modules in graphs and digraphs has been added;

• Edmonds’ matching algorithm using blossoms now has a section;

• Nowhere-zero flows are introduced;

• The use of coordinate averaging to produce nice drawings of graphs on surfaces

is introduced;

• The basics of graph homomorphisms are now presented.

Also all the diagrams in the text have been redrawn and enhanced. We convey our

thanks and gratitude to Andrei Gagarin for his help in the proof-reading of this second

edition.

William Kocay

Donald L. Kreher

August, 2016

Preface xix

William Kocay obtained his Ph.D. in Combinatorics and Optimization from the

University of Waterloo in 1979. He is currently a member of the Computer Sci-

ence Department, and an adjunct member of the Mathematics Department, at the

University of Manitoba, and a member of St. Paul’s College, a college affiliated

with the University of Manitoba. He has published numerous research papers,

mostly in graph theory and algorithms for graphs. He was managing editor of the

mathematics journal Ars Combinatoria from 1988 to 1997. He is currently on

the editorial board of that journal. He has had extensive experience developing

software for graph theory and related mathematical structures.

Donald L. Kreher obtained his Ph.D. from the University of Nebraska in 1984.

He has held academic positions at Rochester Institute of Technology and the

University of Wyoming. He is currently a University Professor of Mathematical

Sciences at Michigan Technological University, where he teaches and conducts

research in combinatorics and combinatorial algorithms. He has published nu-

merous research papers and is a co-author of the internationally acclaimed text

“Combinatorial Algorithms: Generation Enumeration and Search”, CRC Press,

1999. He serves on the editorial boards of two journals.

Professor Kreher is the sole recipient of the 1995 Marshall Hall Medal, awarded

by the Institute of Combinatorics and its Applications.

http://taylorandfrancis.com

1

Graphs and Their Complements

1.1 Introduction

The diagram in Figure 1.1 illustrates a graph. It is called the graph of the cube. The

edges of the geometric cube correspond to the line segments connecting the nodes in

the graph, and the nodes correspond to the corners of the cube where the edges meet.

They are the vertices of the cube.

0

1

2

3

4

5

6

7

FIGURE 1.1

The graph of a cube

This diagram is drawn so as to resemble a cube, but if we were to rearrange it,

as in Figure 1.2, it would still be the graph of the cube, although it would no longer

look like a cube. Thus, a graph is a graphical representation of a relation in which

edges connect pairs of vertices.

0

1

2

3

4

5

6

7

FIGURE 1.2

The graph of the cube

1

2 Graphs, Algorithms, and Optimization

DEFINITION 1.1: A simple graph G consists of a vertex set V (G) and an edge

set E(G), where each edge is a pair {u, v} of vertices u, v ∈ V (G).

We denote the set of all pairs of a set V by
(
V
2

)
. Then E(G) ⊆

(
V (G)

2

)
. In the

example of the cube, V (G) = {0, 1, 2, 3, 4, 5, 6, 7}, andE(G) = {01, 13, 23, 02, 45,
57, 67, 46, 15, 37, 26, 04}, where we have used the shorthand notation uv to stand

for the pair {u, v}. If u, v ∈ V (G), then u −→ v means that u is joined to v by

an edge. We say that u and v are adjacent. We use this notation to remind us of the

linked list data structure that we will use to store a graph in the computer. Similarly,

u 6−→ v means that u is not joined to v. We can also express these relations by

writing uv ∈ E(G) or uv 6∈ E(G), respectively. Note that in a simple graph if

u −→ v, then v −→ u. If u is adjacent to each of u1, u2, . . . , uk, then we write

u −→ {u1, u2, . . . , uk}.
These graphs are called simple graphs because each pair u, v of vertices is joined

by at most one edge. Sometimes we need to allow several edges to join the same pair

of vertices. Such a graph is also called a multigraph. An edge can then no longer be

defined as a pair of vertices, (or the multiple edges would not be distinct), but to each

edge there still corresponds a pair {u, v}. We can express this formally by saying that

a graph G consists of a vertex set V (G), an edge set E(G), and a correspondence

ψ : E(G) →
(
V (G)

2

)
. Given an edge e ∈ E(G), ψ(e) is a pair {u, v} which are

the endpoints of e. Different edges can then have the same endpoints. We shall use

simple graphs most of the time, which is why we prefer the simpler definition, but

many of the theorems and techniques will apply to multigraphs as well.

This definition can be further extended to graphs with loops as well. A loop is an

edge in which both endpoints are equal. We can include this in the general definition

of a graph by making the mapping ψ : E(G)→
(
V (G)

2

)
∪V (G). An edge e ∈ E(G)

for which ψ(e) = u ∈ V (G) defines a loop. Figure 1.3(a) shows a graph with

multiple edges and loops. However, we shall use simple graphs most of the time, so

that an edge will be considered to be a pair of vertices.

(a) (b)

FIGURE 1.3

A multigraph (a) and a digraph (b)

Graphs and Their Complements 3

A directed graph or digraph has edges which are ordered pairs (u, v) rather than

unordered pairs {u, v}. In this case an edge is also called an arc. The direction of an

edge is indicated by an arrow in diagrams, as in Figure 1.3(b).

The number of vertices of a graph G is denoted |G|. It is called the order of G.

The number of edges is ε(G). If G is simple, then obviously ε(G) ≤
(
|G|
2

)
, because

E(G) ⊆
(
V (G)

2

)
. We shall often use node or point as synonyms for vertex.

Many graphs have special names. The complete graphKn is a simple graph with

|Kn| = n and ε =
(
n
2

)
. The empty graph Kn is a graph with |Kn| = n and ε = 0.

Kn is the complement of Kn.

FIGURE 1.4

The complete graph K5

DEFINITION 1.2: Let G be a simple graph. The complement of G is G, where

V (G) = V (G) and E(G) =
(
V (G)

2

)
\ E(G).

E(G) consists of all those pairs uv which are not edges of G. Thus, uv ∈ E(G)
if and only if uv 6∈ E(G). Figure 1.5 shows a graph and its complement.

G =

1 2

34

G =

1 2

34

FIGURE 1.5

A graph and its complement

Figure 1.6 shows another graph and its complement. Notice that in this case,

when G is redrawn, it looks identical to G.

In a certain sense, this G and G are the same graph. They are not equal, because

E(G) 6= E(G), but it is clear that they have the same structure. If two graphs have

the same structure, then they can only differ in the names of the vertices. Therefore,

we can rename the vertices of one to make it exactly equal to the other graph. In the

4 Graphs, Algorithms, and Optimization

1

2

34

5

1

2

34

5 −→

1

3

52

4

G G G

FIGURE 1.6

Another graph and its complement

Figure 1.6 example, we can rename the vertices of G by the mapping θ given by

k : 1 2 3 4 5

θ(k) : 1 3 5 2 4
,

then θ(G) would equal G. This kind of equivalence of graphs is known as isomor-

phism. Observe that a one-to-one mapping θ of the vertices of a graph G can be

extended to a mapping of the edges of G by defining θ({u, v}) = {θ(u), θ(v)}.
DEFINITION 1.3: Let G and H be simple graphs. G and H are isomorphic if

there is a one-to-one correspondence θ : V (G) → V (H) such that θ(E(G)) =
E(H), where θ(E(G)) = {θ(uv) : uv ∈ E(G)}.

We write G ∼= H to denote isomorphism. If G ∼= H , then uv ∈ E(G) if and

only if θ(uv) ∈ E(H). One way to determine whether G ∼= H is to try and redraw

G so as to make it look identical to H . We can then read off the mapping θ from the

diagram. However, this is limited to small graphs. For example, the two graphsG and

H shown in Figure 1.7 are isomorphic, because the drawing ofG can be transformed

intoH by first moving vertex 2 to the bottom of the diagram, and then moving vertex

5 to the top. Comparing the two diagrams then gives the mapping

k : 1 2 3 4 5 6

θ(k) : 6 4 2 5 1 3

as an isomorphism.

It is usually more difficult to determine when two graphs G and H are not iso-

morphic than to find an isomorphism when they are isomorphic. One way is to find

a portion of G that cannot be part of H . For example, the graph H of Figure 1.7 is

not isomorphic to the graph of the prism, which is illustrated in Figure 1.8, because

the prism contains a triangle, whereas H has no triangle. A subgraph of a graph G is

a graph K such that V (K) ⊆ V (G) and E(K) ⊆ E(G). If θ : G→ H is a possible

isomorphism, then θ(K) will be a subgraph of H which is isomorphic to K .

A subgraph K is an induced subgraph if for every u, v ∈ V (K) ⊆ V (G), uv ∈
E(K) if and only if uv ∈ E(G). That is, we choose a subset U ⊆ V (G) and all

Graphs and Their Complements 5

G =

1

4

2

5

3

6

H =

1

2

3

4

5

6

FIGURE 1.7

Two isomorphic graphs

edges uv with both endpoints in U . We can also form an edge subgraph or partial

subgraph by choosing a subset of E(G) as the edges of a subgraph K . Then V (K)
will be all vertices which are an endpoint of some edge of K .

FIGURE 1.8

The graph of the prism

The degree of a vertex u ∈ V (G) is DEG(u), the number of edges which con-

tain u. If k = DEG(u) and u −→ {u1, u2, . . . , uk}, then θ(u) −→ {θ(u1), θ(u2),
. . . , θ(uk)}, so that DEG(u) = DEG(θ(u)). Therefore a necessary condition for G
and H to be isomorphic is that they have the same set of degrees. The examples of

Figures 1.7 and 1.8 show that this is not a sufficient condition.

In Figure 1.6, we saw an example of a graph G that is isomorphic to its comple-

ment. There are many such graphs.

DEFINITION 1.4: A simple graph G is self-complementary if G ∼= G.

Lemma 1.1. If G is a self-complementary graph, then |G| ≡ 0 or 1 (mod 4).

Proof. If G ∼= G, then ε(G) = ε(G). But E(G) =
(
V (G)

2

)
\ E(G), so that ε(G) =(

|G|
2

)
− ε(G) = ε(G), so ε(G) = 1

2

(
|G|
2

)
= |G|(|G| − 1)/4. Now |G| and |G| − 1

6 Graphs, Algorithms, and Optimization

TABLE 1.1

Graphs up to 10 vertices

n No. graphs

1 1

2 2

3 4

4 11

5 34

6 156

7 1,044

8 12,346

9 247,688

10 12,005,188

are consecutive integers, so that one of them is odd. Therefore |G| ≡ 0 (mod 4) or

|G| ≡ 1 (mod 4).

So possible orders for self-complementary graphs are 4, 5, 8, 9, 12, 13, . . ., 4k,

4k + 1, etc.

Exercises

1.1.1 The four graphs on three vertices in Figure 1.9 have 0, 1, 2, and 3 edges,

respectively. Every graph on three vertices is isomorphic to one of these

four. Thus, there are exactly four different isomorphism types of graphs

on three vertices.

G1 G2 G3 G4

FIGURE 1.9

Four graphs on three vertices

Find all the different isomorphism types of graph on 4 vertices (there are

11 of them). Hint: Adding an edge to a graph with ε = m, gives a graph

with ε = m + 1. Every graph with ε = m + 1 can be obtained in this

way. Table 1.1 shows the number of isomorphism types of graphs up to

10 vertices.

1.1.2 Determine whether the two graphs shown in Figure 1.10 are isomorphic

to each other or not. If they are isomorphic, find an explicit isomorphism.

Graphs and Their Complements 7

FIGURE 1.10

Two graphs on eight vertices

1.1.3 Determine whether the three graphs shown in Figure 1.11 are isomorphic

to each other or not. If they are isomorphic, find explicit isomorphisms.

FIGURE 1.11

Three graphs on 10 vertices

1.1.4 Find a self-complementary graph on four vertices.

1.1.5 Figure 1.6 illustrates a self-complementary graph, the pentagon, with five

vertices. Find another self-complementary graph on five vertices.

1.1.6 We have seen that the pentagon is a self-complementary graph. Let G
be the pentagon shown in Figure 1.6, with V (G) = {u1, u2, u3, u4, u5}.
Notice that θ = (u1)(u2, u3, u5, u4) is a permutation which maps G to

G; that is, θ(G) = G, and θ(G) = G. θ is called a complementing permu-

tation. Because u2u3 ∈ E(G), it follows that θ(u2u3) = u3u5 ∈ E(G).
Consequently, θ(u3u5) = u5u4 ∈ E(G) again. Applying θ twice more

gives θ(u5u4) = u4u2 ∈ E(G) and θ(u4u2) = u2u3, which is where

we started. Thus, if we choose any edge uiuj and successively apply θ
to it, we alternately get edges of G and G. It follows that the number

of edges in the sequence so-obtained must be even. Use the permutation

(1,2,3,4)(5,6,7,8) to construct a self-complementary graph on eight ver-

tices.

1.1.7 Can the permutation (1,2,3,4,5)(6,7,8) be used as a complementing per-

mutation? Can (1,2,3,4,5,6)(7,8) be? Prove that the only requirement is

that every sequence of edges obtained by successively applying θ be of

even length.

8 Graphs, Algorithms, and Optimization

1.1.8 If θ is any permutation of {1, 2, . . . , n}, then it depends only on the cycle

structure of θ whether it can be used as a complementing permutation.

Discover what condition this cycle structure must satisfy, and prove it

both necessary and sufficient for θ to be a complementing permutation.

1.2 Degree sequences

Theorem 1.2. For any simple graph G we have

∑

u∈V (G)

DEG(u) = 2ε(G).

Proof. An edge uv has two endpoints. Therefore each edge will be counted twice in

the summation, once for u and once for v.

We use δ(G) to denote the minimum degree ofG; that is, δ(G) = MIN{DEG(u) |
u ∈ V (G)}. ∆(G) denotes the maximum degree of G. By Theorem 1.2, the average

degree equals 2ε/|G|, so that δ ≤ 2ε/|G| ≤ ∆.

Corollary 1.3. The number of vertices of odd degree is even.

Proof. Divide V (G) into Vodd = {u | DEG(u) is odd }, and Veven = {u |
deg(u) is even }. Then 2ε =

∑
u∈Vodd

DEG(u)+
∑
u∈Veven

DEG(u). Clearly 2ε and∑
u∈Veven

DEG(u) are both even. Therefore, so is
∑

u∈Vodd
DEG(u), which means

that |Vodd| is even.

DEFINITION 1.5: A graph G is a regular graph if all vertices have the same

degree.G is k-regular if it is regular, of degree k.

For example, the graph of the cube (Figure 1.1) is 3-regular.

Lemma 1.4. If G is simple and |G| ≥ 2, then there are always two vertices of the

same degree.

Proof. In a simple graph, the maximum degree ∆ ≤ |G| − 1. If all degrees were

different, then they would be 0, 1, 2, . . . , |G| − 1. But degree 0 and degree |G| − 1
are mutually exclusive. Therefore there must be two vertices of the same degree.

Let V (G) = {u1, u2, . . . , un}. The degree sequence of G is

DEG(G) = (DEG(u1),DEG(u2), . . . ,DEG(un))

where the vertices are ordered so that

DEG(u1) ≥ DEG(u2) ≥ · · · ≥ DEG(un).

Graphs and Their Complements 9

Sometimes it is useful to construct a graph with a given degree sequence. For ex-

ample, can there be a simple graph with five vertices whose degrees are (4, 3, 3, 2, 1)?
Because there are three vertices of odd degree, Corollary 1.3 tells us that there is no

such graph. We say that a sequence

D = (d1, d2, . . . , dn),

is graphic if

d1 ≥ d2 ≥ · · · ≥ dn,
and there is a simple graph G with DEG(G) = D. So (2, 2, 2, 1) and (4, 3, 3, 2, 1)
are not graphic, whereas (2, 2, 1, 1), (4, 3, 2, 2, 1), and (2, 2, 2, 2, 2, 2, 2) clearly are.

Problem 1.1: Graphic

Instance: a sequence D = (d1, d2, . . . , dn).

Question: is D graphic?

Find: a graph G with DEG(G) = D, if D is graphic.

For example, (7, 6, 5, 4, 3, 3, 2) is not graphic; for any graph G with this degree

sequence has ∆(G) = |G| = 7, which is not possible in a simple graph. Similarly,

(6, 6, 5, 4, 3, 3, 1) is not graphic; here we have ∆(G) = 6, |G| = 7 and δ(G) = 1.

But because two vertices have degree |G| − 1 = 6, it is not possible to have a vertex

of degree one in a simple graph with this degree sequence.

When is a sequence graphic? We want a construction which will find a graph G
with DEG(G) = D, if the sequence D is graphic.

One way is to join up vertices arbitrarily. This does not always work, because

we can get stuck, even if the sequence is graphic. The following algorithm always

produces a graph G with DEG(G) = D, if D is graphic.

procedure GRAPHGEN(D)
Create vertices u1, u2, . . . , un
comment: upon completion, ui will have degree D[i]

graphic ← false “assume not graphic”

i← 1
while D[i] > 0

do





k←D[i]

if there are at least k vertices with DEG > 0

then





join ui to the k vertices of largest degree

decrease each of these degrees by 1

D[i]← 0
comment: vertex ui is now completely joined

else exit “ui cannot be joined”

i← i+ 1
graphic ← true

10 Graphs, Algorithms, and Optimization

This uses a reduction. For example, given the sequence

D = (3, 3, 3, 3, 3, 3),

the first vertex will be joined to the three vertices of largest degree, which will then

reduce the sequence to (∗, 3, 3, 2, 2, 2), because the vertex marked by an asterisk is

now completely joined, and three others have had their degree reduced by 1. At the

next stage, the first remaining vertex will be joined to the three vertices of largest

degree, giving a new sequence (∗, ∗, 2, 2, 1, 1). Two vertices are now completely

joined. At the next step, the first remaining vertex will be joined to two vertices,

leaving (∗, ∗, ∗, 1, 1, 0). The next step joins the two remaining vertices with degree

one, leaving a sequence (∗, ∗, ∗, ∗, 0, 0) of zeroes, which we know to be graphic.

In general, given the sequence

D = (d1, d2, . . . , dn),

where

d1 ≥ d2 ≥ · · · ≥ dn,
the vertex of degree d1 is joined to the d1 vertices of largest degree. This leaves the

numbers

d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn,

in some order. If we rearrange them into descending order, we get the reduced se-

quence D′. Write

D′ = (d′2, d
′
3 . . . , d

′
n),

where the first vertex u1 has been deleted. We now do the same calculation, usingD′

in place of D. Eventually, after joining all the vertices according to their degree, we

either get a graph G with Deg(G) = D or else at some stage, it is impossible to join

some vertex ui.
An excellent data structure for representing the graph G for this problem is to

have an adjacency list for each vertex v ∈ V (G). The adjacency list for a vertex

v ∈ V (G) is a linked list of the vertices adjacent to v. Thus it is a data structure in

which the vertices adjacent to v are arranged in a linear order. A node x in a linked

list has two fields: data〈x〉, and next〈x〉.

u •x:

data〈x〉 next〈x〉

Given a node x in the list, data〈x〉 is the data associated with x and next〈x〉 points to

the successor of x in the list or next〈x〉 = NIL if x has no successor. We can insert

data u into the list pointed to by L with procedure LISTINSERT(), and the first node

on list L can be removed with procedure LISTREMOVEFIRST().

Graphs and Their Complements 11

procedure LISTINSERT(pseudocode)
L, ux← NEWNODE()
data〈x〉 ← u
next〈x〉 ← L
L← x

procedure LISTREMOVEFIRST(L)
x← L
L← next〈x〉
FREENODE(x)

We use an array AdjList [·] of linked lists to store the graph. For each vertex v ∈
V (G), AdjList [v] points to the head of the adjacency lists for v. This data structure

is illustrated in Figure 1.12.

12

3 4 AdjList [1] 2 • 4 • ×

AdjList [2] 1 • 3 • 4 • ×

AdjList [3] 2 • 4 • ×

AdjList [4] 1 • 2 • 3 • ×

FIGURE 1.12

Adjacency lists of a graph

We can use another array of linked lists, Pts[k], being a linked list of the vertices

ui whose degree-to-be di = k. With this data structure, Algorithm 1.2.1 can be

written as follows:

12 Graphs, Algorithms, and Optimization

Algorithm 1.2.1: GRAPHGEN(D)

comment:

{
Assume D is not graphic.

Create and initialize the linked lists Pts[k].

graphic ← false

for k ← 0 to n− 1 do Pts[k]← NIL

for k ← 1 to n do LISTINSERT(Pts[D[k]], k)
comment: Begin with vertex of largest degree.

for k ← n− 1 downto 0
do while Pts[k] 6= NIL

do





comment: These points are to have degree k.

x← Pts[k]
u← data〈x〉
LISTREMOVEFIRST(Pts[k])

comment:

{
Join u to the next k vertices v of largest degree.

If this is not possible, then D is not graphic so exit.

i← k
for j ← 1 to k

do





while Pts[i] = NIL do

{
i← i− 1
if i = 0 exit

x = Pts[i]
v = data〈x〉
LISTREMOVEFIRST(Pts[i])
LISTINSERT(AdjList [u], v)
LISTINSERT(AdjList [v], u)
LISTINSERT(TempList [i], v)

comment:

{
For each such v joined to u if v is on list Pts[j],
then transfer v to Pts[j − 1]

for j ← k downto 1

do





while TempList [j] 6= NIL

do





x = TempList [j]
v = data〈x〉
LISTREMOVEFIRST(TempList [j])
LISTINSERT(Pts [j − 1], v)

comment: u is now completely joined. Choose the next point.
comment: Now every vertex has been successfully joined.

graphic ← true

This program is illustrated in Figure 1.13 for the sequence D = (4, 4, 2, 2, 2, 2),
where n = 6. The diagram shows the linked lists before vertex 1 is joined to vertices

2, 3, 4, and 5, and the new configuration after joining. Care must be used in transfer-

ring the vertices v from Pts[j] to Pts[j − 1], because we do not want to join u to v
more than once. The purpose of the list Pts[0] is to collect vertices which have been

transferred from Pts[1] after having been joined to u. The degrees d1, d2, . . . , dn

Graphs and Their Complements 13

D = (4, 4, 2, 2, 2, 2)

Pts[6] ×

Pts[5] ×

Pts[4] 1 • 2 • ×

Pts[3] ×

Pts[2] 3 • 4 • 5 • 6 • ×

Pts[1] ×

Pts[0] ×

1

2

34

5

(a)

D = (∗, 3, 1, 1, 1, 2)

Pts[6] ×

Pts[5] ×

Pts[4] ×

Pts[3] 2 • ×

Pts[2] 6 • ×

Pts[1] 3 • 4 • 5 • ×

Pts[0] ×

1

2

34

5

(b)

FIGURE 1.13

The linked lists Pts[k]. (a) Before 1 is joined to 2, 3, 4, and 5. (b) After 1 is joined to

2, 3, 4, and 5.

14 Graphs, Algorithms, and Optimization

need not necessarily be in descending order for the program to work, because the

points are placed in the lists Pts[k] according to their degree, thereby sorting them

into buckets. Upon completion of the algorithm vertex k will have degree dk. How-

ever, when this algorithm is done by hand, it is much more convenient to begin with

a sorted list of degrees; for example, D = (4, 3, 3, 3, 2, 2, 2, 2, 1), where n = 9. We

begin with vertex u1, which is to have degree four. It will be joined to the vertices

u2, u3, and u4, all of degree three, and to one of u5, u6, u7, and u8, which have de-

gree two. In order to keep the list of degrees sorted, we choose u8. We then have

u1 −→ {u2, u3, u4, u8}, andD is reduced to (∗, 2, 2, 2, 2, 2, 2, 1, 1). We then choose

u2 and join it to u6 and u7, thereby further reducing D to (∗, ∗, 2, 2, 2, 2, 1, 1, 1, 1).
Continuing in this way, we obtain a graphG.

In general, when constructing G by hand, when uk is to be joined to one of ui
and uj , where di = dj and i < j, then join uk to uj before ui, in order to keep D
sorted in descending order.

We still need to prove that Algorithm 1.2.1 works. It accepts a possible degree

sequence

D = (d1, d2, . . . dn),

and joins u1 to the d1 vertices of largest remaining degree. It then reduces D to new

sequence

D′ = (d′2, d
′
3, . . . d

′
n).

1.2.1 Havel-Hakimi theorem

Theorem 1.5. (Havel-Hakimi theorem) D is graphic if and only if D′ is graphic.

Proof. Suppose D′ is graphic. Then there is a graph G′ with degree sequence D′,

where V (G′) = {u2, u3, . . . , un} with DEG(ui) = d′i. Furthermore

D′ = (d′2, d
′
3, . . . , d

′
n)

consists of the degrees

{d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn}

arranged in descending order. Create a new vertex u1 and join it to vertices of degree

d2 − 1, d3 − 1, . . . , dd1+1 − 1.

Then DEG(u1) = d1. Call the new graphG. Clearly the degree sequence of G is

D = (d1, d2, . . . , dn).

ThereforeD is graphic.

Now suppose D is graphic. Then there is a graph G with degree sequence

D = (d1, d2, . . . , dn),

where V (G) = {u1, u2, . . . , un}, with DEG(ui) = di. If u1 is adjacent to vertices

Graphs and Their Complements 15

u1

u2 u3 u4 x
y

ukuk−1

FIGURE 1.14

Vertices adjacent to u1

of degree d2, d3, . . . , dd1+1, then G′ = G − u1 has degree sequence D′, in which

case D′ is graphic.

Otherwise, u1 is not adjacent to vertices of degree d2, d3, . . . , dd1+1. Let uk
(where k ≥ 2) be the first vertex such that u1 is not joined to uk, but is joined to

u2, u3, . . . , uk−1. (Maybe k = 2.)

Now DEG(u1) = d1 ≥ k, so u1 is joined to some vertex x 6= u2, u3, . . . uk−1. uk
is the vertex of next largest degree, so DEG(uk) ≥ DEG(x). Now x is joined to u1,

while uk is not. Therefore, there is some vertex y such that uk −→ y but x 6−→ y.

Set G← G+ xy + u1uk − u1x− uky.

The degree sequence of G has not changed, and now u1 −→ {u2, u3, . . . , uk}.
Repeat until u1 −→ {u2, u3, . . . , ud1+1}. Then G′ = G − u1 has degree sequence

D′, so that D′ is graphic. (See Figure 1.14.)

Therefore we know the algorithm will terminate with the correct answer, because

it reduces D to D′. So we have an algorithmic test to check whether D is graphic

and to generate a graph whenever one exists.

1.2.2 Erdös-Gallai theorem

There is another way of determining whether D is graphic, without constructing a

graph.

Theorem 1.6. (Erdös-Gallai theorem) Let D = (d1, d2, . . . , dn), where d1 ≥
d2 ≥ · · · ≥ dn. Then D is graphic if and only if

1.
∑n

i=1 di is even; and

2.
∑k

i=1 di ≤ k(k − 1) +
∑n
i=k+1 MIN(k, di), for k = 1, 2, . . . , n.

Proof. SupposeD is graphic. Then
∑n
i=1 di = 2ε, which is even. Let V1 contain the

k vertices of largest degree, and let V2 = V (G) − V1 be the remaining vertices. See

Figure 1.15.

16 Graphs, Algorithms, and Optimization

ε1

V1 V2

ε2

FIGURE 1.15

The vertices V1 of largest degree and the remaining vertices v2

Suppose that there are ε1 edges within V1 and ε2 edges from V1 to V2. Then∑k
i=1 di = 2ε1 + ε2, because each edge within V1 is counted twice in the sum, once

for each endpoint, but edges between V1 and V2 are counted once only. Now ε1 ≤(
k
2

)
, because V1 can induce a complete subgraph at most. Each vertex v ∈ V2 can be

joined to at most k vertices in V1, because |V1| = k, but v can be joined to at most

DEG(v) vertices in V1, if DEG(v) < k. Therefore ε2, the number of edges between

V1 and V2, is at most
∑

v∈V2
MIN(k,DEG(v)), which equals

∑n
i=k+1 MIN(k, di).

This now gives
∑k
i=1 di = 2ε1 + ε2 ≤ k(k − 1) +

∑n
i=k+1 MIN(k, di).

Various proofs of the converse are available. Interesting proofs can be found

in the books by HARARY [80] or BERGE [14]. Here we outline a proof by

CHOUDUM [33]. The proof is by induction on S =
∑n

i=1 di. If S = 2, it is clear that

the result is true. Without loss of generality, we can assume that dn ≥ 1. Let t be the

smallest integer such that dt > dt+1, if there is one. Otherwise, if all di are equal,

we take t = n− 1.

ConstructD′ = (d′1, . . . , d
′
n) fromD as follows: if i 6= t and i 6= n, then d′i = di;

if i = t or i = n, then d′i = di − 1. That is, we are looking for a graph with degree

sequence D in which vertex t is adjacent to vertex n. Then S′ = S − 2. If we can

verify that D′ satisfies the conditions of the theorem, with corresponding graph G′,

we can then construct a graph G with degree sequence D.

Consider Sk =
∑k

i=1 di and S′
k =

∑k
i=1 d

′
i. Let Tk = k(k − 1) +∑n

i=k+1 MIN(di, k), and similarly for T ′
k. If k ≥ t, then S′

k = Sk−1 ≤ Tk−1 ≤ T ′
k.

Thus the conditions of the theorem are satisfied when k ≥ t. If k < t there are

several cases to consider. Note that when k < t, d1 = d2 = . . . = dk, so that

S′
k = Sk = kdk.

If k < t and dk < k, then S′
k = kdk ≤ k(k − 1) ≤ T ′

k.

If k < t and dk = k, then S′
k = kdk = k2 = k(k − 1) + k. Now d′k+1 is

either k or k − 1. Therefore when i > k, MIN(d′i, k) = d′i. If d′k+1 = k, then

S′
k = k(k−1)+d′k+1 ≤ T ′

k. Otherwise d′k+1 = k−1, and S′
k = k(k−1)+d′k+1+1.

If d′k+2 ≥ 1, we obtain S′
k ≤ T ′

k. Otherwise n = k+2 and t = n−1, so that dn = 1,

giving S = (n− 2)2 + (n − 2) + 1, which must be even, so that n is odd. But then

all degrees are odd, which is impossible.

If k < t and dk > k and dn > k, then MIN(di, k) = MIN(d′i, k) = k when i > k.

S′
k = kdk = Sk ≤ Tk = T ′

k.

If k < t and dk > k and dn ≤ k, let r be the first integer such that dr ≤ k.

Graphs and Their Complements 17

Then r > t and MIN(di, k) = di when i ≥ r, so that S′
k = Sk = kdk ≤ Tk =

k(k − 1) + k(r − k − 1) + dr + . . .+ dn = k(r − 2) + (dr + . . .+ dn). We have

T ′
k = Tk − 1.

Now Sk+1 = (k+1)dk ≤ Tk+1 = (k+1)k+(k+1)(r−k−2)+dr+ . . .+dn.

Hence dk ≤ (r − 2) + (dr + . . .+ dn)/(k + 1). Substituting this into the previous

expression gives kdk ≤ k(r−2)+ k
k+1 (dr+ . . .+dn) < Tk. Therefore S′

k = kdk <
Tk. But T ′

k = Tk − 1, so that S′
k ≤ T ′

k.

Thus, S′
k ≤ T ′

k for all k. By induction we know that D′ is graphic. Let G′ be a

simple graph with degree sequence D′. If vertices t and n are not adjacent in G′, we

add the edge {t, n} to obtain a graphG with degree sequenceD. If they are adjacent,

then choose a vertex m such that {t,m} 6∈ E(G′). Because d′m ≥ d′n, there is a

vertex r adjacent to m in G′ such that {r, n} 6∈ E(G′). Remove the edge {m, r} and

add the edges {t,m}, {r, n} to obtain a graph G with degree sequence D.

Conditions 1 and 2 of Theorem 1.6 are known as the Erdös-Gallai conditions.

Exercises

1.2.1 Prove Theorem 1.2 for arbitrary graphs. That is, prove

Theorem 1.7. For any graph G we have

∑

u∈V (G)

Deg(u) + ℓ = 2ε(G).

where ℓ is the number of loops in G and DEG(u) is the number of

edges incident on u. What formula is obtained if loops count two toward

DEG(u)?

1.2.2 We know that a simple graph with n vertices has at least one pair of

vertices of equal degree, if n ≥ 2. Find all simple graphs with exactly

one pair of vertices with equal degrees. What are their degree sequences?

Hint: Begin with n = 2, 3, 4. Use a recursive construction. Can degree 0

or n− 1 occur twice?

1.2.3 Program the GRAPHGEN() algorithm. Input the sequence D =
(d1, d2, . . . , dn) and then construct a graph with that degree sequence, or

else determine that the sequence is not graphic. Use the following input

data:

(a) 4 4 4 4 4

(b) 3 3 3 3 3 3

(c) 3 3 3 3 3 3 3 3

(d) 3 3 3 3 3 3 3 3 3

(e) 2 2 2 2 2 2 2 2 2 2

(f) 7 6 6 6 5 5 2 1

18 Graphs, Algorithms, and Optimization

1.2.4 If G has degree sequence D = (d1, d2, . . . , dn) , what is the degree se-

quence of G?

1.2.5 Let D = (d1, d2, . . . , dn), where d1 ≥ d2 ≥ . . . ≥ dn. Prove that there is

a multigraph with degree sequence D if and only if
∑n

i=1 di is even, and

d1 ≤
∑n
i=2 di.

1.3 Analysis

Let us estimate the number of steps that Algorithm 1.2.1 performs. Consider the loop

structure

for k ← n downto 1
do while Pts[k] 6= NIL

do
{
· · ·

The for-loop performs n iterations. For many of these iterations, the contents of

the while-loop will not be executed, because Pts[k] will be NIL. When the contents

of the loop are executed, vertex u of degree-to-be k will be joined to k vertices. This

means that k edges will be added to the adjacency lists of the graph G being con-

structed. This takes 2k steps, because an edge uv must be added to both GraphAdj [u]
and GraphAdj [v]. It also makes DEG(u) = k. When edge uv is added, v will be

transferred from Pts[j] to Pts[j − 1], requiring additional k steps. Once u has been

joined, it is removed from the list. Write ε = 1
2

∑
i di, the number of edges of G

whenD is graphic. Then, in all, the combination for-while-loop will perform exactly

2ε steps adding edges to the graph and a further ε steps transferring vertices to other

lists, plus n steps for the n iterations of the for-loop. This gives a total of 3ε+n steps

for the for-while-loop. The other work that the algorithm performs is to create and

initialize the lists Pts[·], which takes 2n steps altogether. So we can say that in total,

the algorithm performs 3ε+ 3n steps.

Now it is obvious that each of these “steps” is composed of many other smaller

steps, for there are various comparisons and assignments in the algorithm which we

have not explicitly taken account of (they are subsumed into the steps we have ex-

plicitly counted). Furthermore, when compiled into assembly language, each step

will be replaced by many smaller steps. Assembly language is in turn executed by

the microprogramming of a computer, and eventually we come down to logic gates,

flip-flops, and registers. Because of this fact, and because each computer has its own

architecture and machine characteristics, it is customary to ignore the constant coef-

ficients of the graph parameters ε and n, and to say that the algorithm has order ε+n,

which is denoted by O(ε + n), pronounced “big Oh of ε + n”. A formal definition

is provided by Definition 1.6. Even though the actual running time of a given algo-

rithm depends on the architecture of the machine it is run on, the programmer can

often make a reasonable estimate of the number of steps of some constant size (e.g.,

counting one assignment, comparison, addition, multiplication, etc. as one step), and

Graphs and Their Complements 19

thereby obtain a formula like 3ε+ 3n. Such an algorithm will obviously be superior

to one which takes 15ε+ 12n steps of similar size. Because of this fact, we shall try

to obtain formulas of this form whenever possible, as well as expressing the result in

a form like O(ε+ n).
The complexity of an algorithm is the number of steps it must perform, in the

worst possible case. That is, it is an upper bound on the number of steps. Because

the size of each step is an unknown constant, formulas like 5n2/6 and 25n2 are both

expressed as O(n2). We now give a formal definition of this notation.

DEFINITION 1.6: Suppose f : Z+ → R and g : Z+ → R. We say that f(n) is

O(g(n)) provided that there exist constants c > 0 and n0 ≥ 0 such that 0 ≤ f(n) ≤
c · g(n) for all n ≥ n0.

In other words, f(n) is O(g(n)) provided that f(n) is bounded above by a con-

stant factor times g(n) for large enough n. For example, the function 5n3 + 2n+ 1
is O(n3), because for all n ≥ 1, we have

5n3 + 2n+ 1 ≤ 5n3 + 2n3 + n3 = 8n3.

Hence, we can take c = 8 and n0 = 1, and Definition 1.6 is satisfied.

The notation f(n) is Ω(g(n)) (“big omega”) is used to indicate that f(n) is

bounded below by a constant factor times g(n) for large enough n.

DEFINITION 1.7: Suppose f : Z+ → R and g : Z+ → R. We say that f(n)
is Ω(g(n)) provided that there exist constants c > 0 and n0 ≥ 0 such that f(n) ≥
c · g(n) ≥ 0 for all n ≥ n0.

We say that f(n) is Θ(g(n)) (“big theta”) when f(n) is bounded above and

below by constant factors times g(n). The constant factors may be different. More

precisely:

DEFINITION 1.8: Suppose f : Z+ → R and g : Z+ → R. We say that f(n)
is Θ(g(n)) provided that there exist constants c, c′ > 0 and n0 ≥ 0 such that 0 ≤
c · g(n) ≤ f(n) ≤ c′ · g(n) for all n ≥ n0.

If f(n) is Θ(g(n)), then we say that f and g have the same growth rate.

The bigO-notation is a method of indicating the qualitative nature of the formula,

whether quadratic, linear, logarithmic, exponential, etc. Notice that “equations” in-

volvingO(·) are not really equations, because O(·) can only be used in this sense on

the right hand side of the equals sign. For example, we could also have shown that

10n2 + 4n− 4 is O(n3) or that 10n2 + 4n− 4 is O(2n), but these expressions are

not equal to each other. Given a complexity formula like 10n2+4n− 4, we want the

smallest function f(n) such that 10n2 + 4n− 4 is O(f(n)). Among the useful rules

for working with the O-notation are the following sum and product rules.

Theorem 1.8. Suppose that the two functions f1(n) and f2(n) are both O(g(n)).
Then the function f1(n) + f2(n) is O(g(n)).

Theorem 1.9. Suppose that f1(n) is O(g1(n)) and f2(n) is O(g2(n)). Then the

function f1(n) f2(n) is O(g1(n) g2(n)).

20 Graphs, Algorithms, and Optimization

As examples of the use of these notations, we have that n2 is O(n3), n3 is Ω(n2),
and 2n2 + 3n− sinn+ 1/n is Θ(n2).

Several properties of growth rates of functions that arise frequently in algorithm

analysis follow. The first of these says that a polynomial of degree d, in which the

high-order coefficient is positive, has growth rate nd.

Theorem 1.10. Suppose that ad > 0. Then the function a0 + a1n + · · · + adn
d is

Θ(nd).

The next result says that logarithmic growth does not depend on the base to which

logarithms are computed. It can be proved easily using the formula loga n = loga b ·
logb n.

Theorem 1.11. The function loga n is Θ(logb n) for any a, b > 1.

The next result can be proved using Stirling’s formula. It gives the growth rate of

the factorial function in terms of exponential functions.

Theorem 1.12. The function n! is Θ(nn+1/2e−n) .

Exercises

1.3.1 Show that if G is a simple graph with n vertices and ε edges, then log ε =
O(log n).

1.3.2 Consider the following statements which count the number of edges in a

graph, whose adjacency matrix is Adj .

Edges ← 0
for u← 1 to n− 1

do for v ← u+ 1 to n
do if Adj [u, v] = 1
then Edges ← Edges + 1

Calculate the number of steps the algorithm performs. Then calculate the

number of steps required by the following statements in which the graph

is stored in adjacency lists:

Edges ← 0
for u← 1 to n− 1

do for each v −→ u
do if u < v
then Edges ← Edges + 1

What purpose does the condition u < v fulfill, and how can it be avoided?

1.3.3 Use induction to prove that the following formulas hold:

(a) 1 + 2 + 3 + · · ·+ n =
(
n+1
2

)

Graphs and Their Complements 21

(b)
(
2
2

)
+
(
3
2

)
+
(
4
2

)
+ · · ·+

(
n
2

)
=
(
n+1
3

)
.

(c)
(
t
t

)
+
(
t+1
t

)
+
(
t+2
t

)
+ · · ·+

(
n
t

)
=
(
n+1
t+1

)
.

1.3.4 Show that 3n2 + 12n = O(n2); that is, find constants A and N such that

3n2 + 12n ≤ An2 whenever n ≥ N .

1.3.5 Show that log(n+ 1) = O(log n), where the logarithm is to base 2.

1.3.6 Use the answer to the previous question to prove that

(n+ 1) log(n+ 1) = O(n log n).

1.3.7 Prove that if f1(n) and f2(n) are both O(g(n)), then f1(n) + f2(n) is

O(g(n)).

1.3.8 Prove that if f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then f1(n) f2(n)
is O(g1(n) g2(n)).

1.4 Notes

Some good general books on graph theory are BERGE [14], BOLLOBÁS [20],

BONDY and MURTY [23], CHARTRAND and LESNIAK [31], CHARTRAND and

OELLERMANN [32], DIESTEL [44], GOULD [73], and WEST [189]. A very read-

able introductory book is TRUDEAU [172]. GIBBONS [66] is an excellent treatment

of graph algorithms. A good book discussing the analysis of algorithms is PURDOM

and BROWN [138]. AHO, HOPCROFT, and ULLMAN [1], SEDGEWICK [157] and

WEISS [188] are all excellent treatments of data structures and algorithm analysis.

http://taylorandfrancis.com

2

Paths and Walks

2.1 Introduction

Let u and v be vertices of a simple graph G. A path P from u to v is a sequence of

vertices u0, u1, . . . , uk such that u = u0, v = uk, ui −→ ui+1, and all the ui are

distinct vertices. The length of a path P is ℓ(P), the number of edges it uses. In this

example, ℓ(P) = k, and P is called a uv-path of length k. A uv-path of length 4 is

illustrated in Figure 2.1, with dashed edges.

A cycleC is a sequence of vertices u0, u1, . . . , uk forming a u0uk-path, such that

uk −→ u0. The length of C is ℓ(C), the number of edges that it uses. In this case,

ℓ(C) = k + 1.

A uv-path P connects u to v. The set of all vertices connected to any vertex

u forms a subgraph Cu, the connected component of G containing u. It will often

be the case that Cu contains all of G, in which case G is a connected graph. ω(G)
denotes the number of distinct connected components of G. The graph of Figure 2.1

is disconnected, with ω = 3.

v

u

FIGURE 2.1

A graph with three components

There are several ways of finding the connected components of a graph G. One

way to find the sets Cu for a graphG is as follows:

23

24 Graphs, Algorithms, and Optimization

procedure COMPONENTS(G)
for each u ∈ V (G)

do initialize Cu to contain only u
for each u ∈ V (G)

do

{
for each v −→ u

do if Cu 6= Cv then MERGE(Cu, Cv)

The inner for-loop ensures that, upon completion, if u −→ v, then Cu = Cv , for

any vertices u and v. Therefore, if P = (u0, u1, . . . , uk) is any path, we can be sure

that Cu0
= Cu1

= · · · = Cuk
, so that when the algorithm terminates, each Cu will

contain all the vertices connected to u by any path; that is, Cu will be the connected

component containing u.

The complexity of the algorithm naturally depends upon the data structures used

to program it. This algorithm is a perfect example of the use of the merge-find data

structure. Initially, each Cu = {u} and Cv = {v}. When the edge uv is examined,

Cu and Cv are merged, so that now Cu = Cv = {u, v}. The two operations which

need to be performed are to determine whether Cu = Cv , and to merge Cu and

Cv into one. This can be done very efficiently by choosing a vertex in each Cu as

component representative.

uRep ← COMPREP(Cu)
vRep ← COMPREP(Cv)
if uRep 6= vRep

then MERGE(Cu, Cv)

Initially, Cu = {u}, so that u begins as the representative of Cu. Associated with

each vertex v is a pointer toward the representative of the component containing v.

To find the representative of Cu, we start at u and follow these pointers, until we

come to the component representative. The component representative is marked by a

pointer that is negative. The initial value is −1. The pointers are easily stored as an

array, CompPtr.

COMPREP() is a recursive procedure that follows the component pointers until a

negative value is reached.

procedure COMPREP(u)
if CompPtr[u] < 0

then return (u)

else





theRep ← COMPREP(CompPtr[u])
CompPtr[u]← theRep
return (theRep)

The assignment

CompPtr[u]← theRep

Paths and Walks 25

is called path compression. It ensures that the next time CompPtr(u) is computed,

the representative will be found more quickly. The algorithm COMPONENTS() can

now be written as follows:

Algorithm 2.1.1: COMPONENTS(G)

n← |G|
for u← 1 to n

do CompPtr[u]← −1
for u← 1 to n

do





for each v −→ u

do





uRep ← COMPREP(u)
vRep ← COMPREP(v)
if uRep 6= vRep

then MERGE(uRep, vRep)

The essential step in merging Cu and Cv is to assign either

CompPtr[vRep]← uRep

or

CompPtr[uRep]← vRep

The best one to choose is that which merges the smaller component onto the larger.

We can determine the size of each component by making use of the negative values

of CompPtr[uRep] and CompPtr[vRep]. Initially, CompPtr[u] = −1, indicating a

component of size one.

procedure MERGE(uRep, vRep)
uSize ← −CompPtr[uRep]
vSize ← −CompPtr[vRep]
if uSize < vSize

then

{
CompPtr[uRep]← vRep
CompPtr[vRep]← −(uSize + vSize)

else

{
CompPtr[vRep]← uRep
CompPtr[uRep]← −(uSize + vSize)

When Cu and Cv are merged, the new component representative (either uRep
or vRep) has its CompPtr[·] assigned equal to −(uSize + vSize). The component

pointers can be illustrated graphically. They are shown in Figure 2.2 as arrows. The

merge operation is indicated by the dashed line.

26 Graphs, Algorithms, and Optimization

u

uRep

v

uRep

CompPtr[vRep] = −5

CompPtr[uRep] = −8

FIGURE 2.2

Component representatives

2.2 Complexity

The components algorithm is very efficient. The for-loop which initializes the

CompPtr array requires n steps. If adjacency lists are used to store G, then the total

number of times that the body of the main loop is executed is

∑
DEG(u) = 2ε.

Thus COMPREP() is called 4ε times. How many times is MERGE() called? At each

merge, two existing components are replaced by one, so that at most n−1 merges can

take place. Each merge can be performed using four assignments and a comparison.

It takes n steps to initialize the CompPtr array. Thus the total number of steps is

about 6n+ 4ε·(number of steps per call to COMPREP()). The number of steps each

call to COMPREP() requires depends on the depth of the trees which represent the

components. The depth is changed by path compression, and by merging. It is proved

in AHO, HOPCROFT, and ULLMAN [1], that if there are a total of n points involved,

the number of steps required is O(α(n)), where α(n) is the inverse of the function

A(n), defined recursively as follows.

A(1) = 1

A(k) = 2A(k−1)

Paths and Walks 27

Thus, A(2) = 21 = 2, A(3) = 22 = 4, A(4) = 24 = 16, A(5) = 216 = 65536, etc.

It follows that α(n) ≤ 5, for all n ≤ 65536. So the complexity of Algorithm 2.1.1 is

almost linear, namely, O(n+ εα(n)), where α(n) ≤ 5, for all practical values of n.

Exercises

2.2.1 Assuming the data structures described in Section 2.1, program the

COMPONENTS() algorithm, merging the smaller component onto the

larger. Include an integer variable NComps which contains the current

number of components. Upon completion, its value will equal ω(G).

2.2.2 Algorithm 2.1.1 computes the connected components Cu using the array

CompPtr . If we now want to print the vertices of each distinct Cu, it

cannot be done very efficiently. Show how to use linked lists so that for

each component, a list of the vertices it contains is available. Rewrite the

MERGE() procedure to include this. Is the complexity thereby affected?

2.2.3 In the Algorithm 2.1.1 procedure, the for-loop

for u← 1 to n do

executes the statement uRep ← COMPREP(u) once for every v −→ u.

Show how to make this more efficient by taking the statement uRep ←
COMPREP(u) out of the v-loop, and modifying the MERGE() procedure

slightly. Calculate the new complexity.

2.2.4 Let n = |G|. Show that if ε >
(
n−1
2

)
, then G is connected. Hint: If G is

disconnected, there is a component of size x < n. What is the maximum

number of edges G can then have?

2.2.5 Show that if δ > ⌊(n− 1)/2⌋, then G is connected.

2.2.6 Show that if G is disconnected, then G is connected.

2.2.7 Show that ifG is simple and connected but not complete, thenG has three

vertices u, v, and w such that u −→ v, w, but v 6−→ w.

2.2.8 A longest path in a graph G is any path P such that G contains no path

longer than P . Thus a graph can have several different longest paths (all

of the same length, though). Show that ℓ(P) ≥ δ(G), for any longest

path. Hint: Consider an endpoint of P .

2.2.9 Show that every graphG has a cycle of length at least δ(G)+1, if δ(G) ≥
2. Hint: Consider a longest path.

2.2.10 Prove that in a connected graph, any two longest paths have at least one

vertex in common.

28 Graphs, Algorithms, and Optimization

2.3 Walks

Paths do not contain repeated vertices or edges. A walk in G is any sequence of ver-

tices u0, u1, . . . , uk such that ui −→ ui+1. Thus, in a walk, edges and vertices may

be repeated. Walks are important because of their connection with the adjacency ma-

trix of a graph. LetA be the adjacency matrix ofG, where V (G) = {u1, u2, . . . , un},
such that row and column i of A correspond to vertex ui.

Theorem 2.1. Entry [i, j] of Ak is the number of walks of length k from vertex ui to

uj .

Proof. By induction on k. When k = 1, there is a walk of length 1 from ui to uj if

and only if ui −→ uj , in which case entry A[i, j] = 1. Assume it’s true whenever

k ≤ t and consider At+1. Let W be a uiuj-walk of length t + 1, where t ≥ 2. If ul
is the vertex before uj on W , then W can be written as (W ′, ul, uj), where W ′ is

a uiul-walk of length t. Furthermore, every uiul-walk of length t gives a uiuj-walk

of length t + 1 whenever ul −→ uj . Therefore the number of uiuj-walks of length

t+ 1 is ∑

l

(the number of uiul − walks of length t)(A[l, j]).

But the number of uiul-walks of length t is At[i, l], so that the number of uiuj-walks

of length t+ 1 is
n∑

l=1

At[i, l]A[l, j],

which equals At+1[i, j]. Therefore the result is true when k = t + 1. By induction,

it’s true for all values of k.

Notice that this result is also true for multigraphs, where now A[i, j] is the num-

ber of edges joining ui to uj . For multigraphs, a walk W must be specified by giving

the sequence of edges traversed, as well as the sequence of vertices, because there

can be more than one edge joining the same pair of vertices.

Exercises

2.3.1 Show that A2[i, j] equals the number of uiuj-paths of length 2, if i 6= j,
and that A2[i, i] = DEG(ui).

2.3.2 Show that A3[i, i] equals the number of triangles containing vertex ui.
Find a similar interpretation ofA3[i, j], when i 6= j. (A triangle is a cycle

of length 3.)

2.3.3 Ak contains the number of walks of length k connecting any two vertices.

Multiply Ak by xk, the kth power of a variable x, and sum over k, to get

the matrix power series I + Ax + A2x2 + A3x3 + · · · , where I is the

identity matrix. The sum of this power series is a matrix whose ijth entry

Paths and Walks 29

is a function of x containing the number of uiuj-walks of each length, as

the coefficient of xk. Because the power series expansion of (1− a)−1 is

1 + a + a2 + a3 + · · · , we can write the above matrix as (I − Ax)−1.

That is, the inverse of the matrix (I −Ax) is the walk generating matrix.

Find the walk generating matrix for the graph of Figure 2.3.

FIGURE 2.3

Compute the number of walks in this graph

2.4 The shortest-path problem

The distance from vertex u to v is DIST(u, v), the length of the shortest uv-path. If

G contains no uv-path, then DIST(u, v) =∞. In this section we study the following

two problems.

Problem 2.1: Shortest Path

Instance: a graph G and a vertex u.

Find: DIST(u, v), for all v ∈ V (G).

Problem 2.2: All Paths

Instance: a graph G.

Find: DIST(u, v), for all u, v ∈ V (G).

Given a vertex u, one way of computing DIST(u, v), for all v, is to use a breadth-

first search (BFS), as is done in procedure BFS().

30 Graphs, Algorithms, and Optimization

procedure BFS(G, u)

comment:

{
ScanQ is a queue of vertices

dist [v] will equal DIST(u,v), upon completion

for each v ∈ V (G)
do dist [v]←∞

dist [u]← 0
place u on ScanQ
repeat

select v for the head of ScanQ
for each w −→ v

do if w not on ScanQ

then

{
add w to the end of ScanQ
dist [w]← dist [v] + 1

advance ScanQ
until all of ScanQ has been processed

Procedure BFS() uses a type of data structure called a queue. A queue is an ordered

list in which we usually access only the first or the head of the list and new items

are only placed at the end or tail of the list. This is similar to one’s experience of

waiting in line at the checkout counter of a store. The person at the head of the line is

processed first by the checker and the new customers enter at the end of the line. One

of the most convenient ways to store a queue is as an array. For when an algorithm

builds a queue on an array, all the vertices visited are on the array when the algorithm

completes, ready for input to the next procedure. BFS() works in this way.

The breadth-first search (BFS) algorithm is a fundamental algorithm in graph

theory. It appears in various guises wherever shortest paths are useful (e.g., network

flows, matching theory, coset enumeration, etc.). Figure 2.4 shows the result of ap-

plying a BFS to the Petersen graph, where the vertices are numbered according to

the order in which they were visited by the algorithm, and shaded according to their

distance from vertex 1. The thicker edges show the shortest paths found by the algo-

rithm.

Notice that the first vertex on the ScanQ is u, whose dist [u] = DIST(u, u) = 0.

The next vertices to be placed on the queue will be those adjacent to u, that is, those

at distance 1. When they are placed on the queue, their distance will be computed as

dist [·]← dist [u] + 1.

So we can say that initially, that is, up to vertices of distance one, vertices are placed

on the queue in order of their distance from u; and that when each vertexw is placed

on ScanQ , dist [w] is made equal to DIST(u,w). Assume that this is true for all

vertices of distance k or less, where k ≥ 1. Consider when v is chosen as the first

vertex of distance k on ScanQ . The for-loop examines all vertices w −→ v. If w on

ScanQ already, then there is a uw-path of length ≤ k, and w is ignored. If w is not

Paths and Walks 31

1

4

95

2

3

10

8

7

6

FIGURE 2.4

A breadth-first search

on ScanQ , then DIST(u,w) > k. The uw-path via v has length k+ 1, so w is added

to the queue, and dist [w] is set equal to dist [v] + 1 = k + 1. Because every vertex

at distance k + 1 is adjacent to a vertex at distance k, we can be sure that when all

vertices v on ScanQ at distance k have been scanned, all vertices at distance k + 1
will be on the queue. Thus the assertion that vertices are placed on the queue in order

of their distance from u, and that when each vertex w is placed on ScanQ , dist [w] is

made equal to DIST(u,w), is true up to distance k+1. By induction, it is true for all

distances.

This proof that the BFS() algorithm works illustrates how difficult and cumber-

some it can be to prove that even a simple, intuitively “obvious” algorithm works cor-

rectly. Nevertheless, it is important to be able to prove that algorithms work correctly,

especially the more difficult algorithms. Writing down a proof for an “obvious” algo-

rithm will often reveal hidden bugs that it contains. This proof also illustrates another

feature, namely, proofs that algorithms work tend to use induction, often on the num-

ber of iterations of a main loop.

The complexity of the BFS() is very easy to calculate. The main operations which

are performed are

1. Scan all w −→ v.

2. Select the next v ∈ ScanQ .

3. Determine whether w ∈ ScanQ .

32 Graphs, Algorithms, and Optimization

The first operation is most efficiently done if G is stored in adjacency lists. We want

the second and third operations to take a constant number of steps. We store ScanQ
as an integer array, and also store a boolean array onScanQ to tell whether w ∈
ScanQ . The revised algorithm is Algorithm 2.4.1.

Algorithm 2.4.1: BFS(G, u)

global n
for v ← 1 to n

do

{
dist [v]←∞
onScanQ [v]← false

dist [u]← 0
ScanQ [1]← u
onScanQ [u]← true

QSize ← 1
k← 1
repeat

v ← ScanQ [k]
for each w −→ v

do if not onScanQ [w]

then





QSize ← QSize + 1
ScanQ [QSize]← w
onScanQ [w]← true

dist [w]← dist [v] + 1
k ← k + 1

until k > QSize

The initialization takes 2n steps. The repeat-loop runs at most n times. At most

n vertices are placed on the queue. The for-loop over all w −→ v requires

∑

v

DEG(v) = 2ε

steps, all told. This assumes that the adjacent vertices are stored in a linked list – the

for-loop traverses the adjacency list. Therefore the total number of steps executed is

at most

3n+ 2ε = O(n+ ε) = O(ε).

Notice that in this program we could have dispensed with the array onScanQ , by

using instead dist [w] =∞ to determinew is on ScanQ . Because a breath-first search

always uses a queue but not always a dist [·] array, we have kept the boolean array,

too.

Paths and Walks 33

2.5 Weighted graphs and Dijkstra’s algorithm

A breath-first search calculates DIST(u, v) correctly because in a simple graph, each

edge has “length” one; that is, the length of a path is the number of edges it contains.

In a more general application where graphs are used to model a road network, or

distribution network, etc., we may want to assign a length ≥ 1 to each edge. This is

illustrated in Figure 2.5.

u1

7

4

4

5

96

1

3
8

8

10

3

8

12

6

2

4

12
9

5

3
7

FIGURE 2.5

A weighted graph

This is an example of a weighted graph. Each edge uv ∈ E(G) is assigned a pos-

itive integral weight WT(uv). WT(uv) may represent length, weight, cost, capac-

ity, etc., depending on the application. In a weighted graph, the length of a path

P = (u0, u1, . . . , uk) is

ℓ(P) =

k−1∑

i=0

WT(uiui+1).

The distance between two vertices is now defined as

DIST(u, v) = MIN{ℓ(P) : P is a uv-path}.

A breath-first search will not compute DIST(u, v) correctly in a weighted graph, be-

cause a path with more edges may have the shorter length. There are many algorithms

for computing shortest paths in a weighted graph. Dijkstra’s algorithm is one.

34 Graphs, Algorithms, and Optimization

procedure DIJKSTRA(u)

comment:





Compute DIST(u, v), for all v ∈ V (G)
dist [v] will equal DIST(u, v) upon completion.

Vertices are chosen as u1, u2, . . . , un,
in order of their distance from u.

u1 ← u “the nearest vertex to u ”

for k ← 1 to n− 1

do





comment:

{
u1, u2, . . . , uk are currently known

in this iteration, uk+1 is selected

select v, the nearest vertex to u1, such that v 6∈ {u1, u2, . . . , uk}
uk+1 ← v
assign dist [uk+1]
comment: u1, u2, . . . , uk+1 are now known

comment: all dist [ui] are now known

Dijkstra’s algorithm is an example of a so-called “ greedy” or “myopic” algo-

rithm, that is, an algorithm which always selects the next nearest, or next best, etc.,

on each iteration. Many problems can be solved by greedy algorithms.

We need to know how to choose v, the next nearest vertex to u1, in each itera-

tion. On the first iteration, it will be the vertex v adjacent to u1 such that WT(u1v)
is minimum. This will give {u1, u2} such that DIST(u1, u1) and DIST(u1, u2) are

known. On the next iteration, the vertex v chosen will be adjacent to one of u1 or u2.

The distance to u1 will then be either

DIST(u1, u1) + WT(u1v)

or

DIST(u1, u2) + WT(u2v),

and v will be the vertex for which this sum is minimum.

In general, at the beginning of iteration k, vertices u1, u2, . . . , uk will have been

chosen, and for these vertices,

DIST[ui] = DIST(u1, ui).

The next nearest vertex v must be adjacent to some ui, so that the shortest u1v-

path will have length dist[ui] + WT(uiv), for some i. v is chosen as the vertex for

which this value is a minimum. This is illustrated in Figure 2.6. The refined code for

Dijkstra’s algorithm is Algorithm 2.5.1.

Paths and Walks 35

u1

uk
v

WT(uk, v)

DIST(u1, uk)

FIGURE 2.6

A shortest u1v-path, via vertex uk

Algorithm 2.5.1: DIJKSTRA(u)

comment:





Compute DIST(u, v), for all v ∈ V (G)
dist [v] will equal DIST(u, v) upon completion.

Vertices are chosen as u1, u2, . . . , un,
in order of their distance from u

for each v
do dist [v]←∞

u1 ← u “ the nearest vertex to u ”

dist [u]← 0
for k ← 1 to n− 1

do





comment:

{
u1, u2, . . . , uk are currently known

in this iteration, uk+1 is selected

for each v −→ uk such that v /∈ {u1, u2, . . . , uk}
do dist [v]← MIN(dist [v], dist [uk] + WT(ukv))

pick v 6∈ {u1, u2, . . . , uk} such that dist [v] is minimum

uk+1 ← v

comment:

{
dist [uk+1] now equals DIST(u1, uk+1), and

u1, u2, . . . , uk+1 are now known

Exercises

2.5.1 Prove that Dijkstra’s algorithm works. Use induction on the num-

ber k of iterations to prove that at the beginning of iteration k,

each dist[ui]=DIST(u1, ui), and that for all v 6= ui, for any i,
dist[v] equals the length of a shortest u1v-path using only the vertices

{u1, u2, . . . , uk−1, v}. Conclude that after n − 1 iterations, all distances

dist [v] = DIST(u1, v).

36 Graphs, Algorithms, and Optimization

2.5.2 Assuming thatG is stored in adjacency lists, and that the minimum dist[v]

is computed by scanning all n vertices, show that the complexity of Dijk-

stra’s algorithm is O(ε+ n2).

2.6 Data structures

When computing the distances DIST(u1, v), it would also be a good idea to store a

shortest u1v-path. All the u1v-paths can easily be stored using a single array

PrevPt[v]: the previous point to v on a shortest u1v-path.

Initially, PrevPt [u]← 0. When dist [v] and dist [uk] + WT(ukv) are compared, if the

second choice is smaller, then assign PrevPt [v] ← uk. The shortest u1v-path can

then be printed by the following loop:

repeat
output (v)
v ← PrevPt [v]

until v = 0

The complexity of Dijkstra’s algorithm was calculated in Exercise 2.5.2 as

O(n2 + ε). The term O(n2) arises from scanning up to n vertices in order to se-

lect the minimum vertex v. This scanning can be eliminated if we store the vertices

in a partially ordered structure in which the minimum vertex is always readily avail-

able. A heap is such a structure. In a heap H , nodes are stored so that the smallest

element is always at the top.

A heap is stored as an array, but is viewed as the partially ordered structure shown

in Figure 2.7. Its elements are not sorted, but satisfy the heap property, namely that

H [i] ≤ H [2i] and H [i] ≤ H [2i + 1]; that is, the value stored in each node is less

than or equal to that of either of its children. Therefore,H [1] is the smallest entry in

the array.

The heap in Figure 2.7 has depth four; that is, there are four levels of nodes. A

heap of depth k can contain up to 2k − 1 nodes, so that the depth needed to store N
values is the smallest value of k such that 2k − 1 ≥ N , namely, k = ⌈log(N + 1)⌉,
where the log is to base 2.

If the value stored in a node is changed so that the heap property is no longer

satisfied, it is very easy to update the array so that it again forms a heap. For example,

if H [10] were changed to 4, then the following loop will returnH to heap form. The

movement of data is shown in Figure 2.8.

Paths and Walks 37

3

6 10

7 12 15 10

9 8 16 25 17 30 21

H [1]

H [2] H [3]

H [4] H [5] H [6] H [7]

H [8] H [8] H [9] H [10] H [11] H [12] H [13]

FIGURE 2.7

A heap

procedure FLOATUP(k)
comment: Element H [k] floats up to its proper place in the heap

temp ← H [k]
j ← k/2
while temp < H [j] and j > 0

do




H [k]← H [j]
k← j
j ← k/2

H [k]← temp

Notice the circular movement of data when an altered element floats up to its

proper place in the heap. If some entry in the heap were made larger, sayH [1] became

equal to 10, then a similar loop (Procedure FLOATDOWN) would cause the new value

to float down to its proper place. Because the depth of a heap containing N items is

⌈log(N + 1)⌉, the number of items moved is at most 1 + ⌈log(N + 1)⌉.

38 Graphs, Algorithms, and Optimization

6

12

4

4 3

21

H [2]

H [5]

H [10]

temp

FIGURE 2.8

Updating a heap with FLOATUP

procedure FLOATDOWN(k)

comment:





the entry at H [k] has been increased – it now floats down the

heap to its correct location. There are currently n entries

in the heap, H [1] to H [n]. The array H [·] has been

dimensioned so that H [0] is also available as a sentinel.

H [0] contains a large value bigger than any valid heap entry.

temp ← H [k]
while k + k ≤ n

do





i← k + k “the left child of H [k]”
j ← i+ 1 “the right child of H [k]”
if j > n

then j ← 0 “the sentinel at H [0]”
if H [i] > H [j]

then i← j
comment:H [i] is now the smaller child

if temp ≤ H [i]
then break “break out of loop”

H [k]← H [i]
k← i

H [k]← temp

In order to extract the smallest item from a heap ofN elements, we take its value

from H [1], and then perform the following steps:

Paths and Walks 39

H [1]← H [N]
N ← N − 1
FLOATDOWN(1)

The new H [1] floats down at most 1 + ⌈log N⌉ steps.

There are two ways of building a heap.

procedure BUILDHEAPTOPDOWN(H,N)

comment:

{
The array H contains N entries

transform it into a heap

k ← 1
while k < N

do





comment: the first k values in H already form a heap

k← k + 1
FLOATUP(k)

Using this method, the elements in entries 1, 2, . . . , k already form a subheap

with k entries. On each iteration, a new entry is allowed to float up to its proper

position so that the first k + 1 values now form a heap. There are two nodes on

level two of the heap. The FLOATUP() operation for each of these may require up to

1 + 2 = 3 data items to be moved. On level three there are four nodes. FLOATUP()

may require up to 1 + 3 = 4 data items to be moved for each one. In general, level k
contains 2k−1 nodes, and FLOATUP() may need up to 1 + k data items to be moved

for each. The total number of steps to create a heap with d = ⌈log(N + 1)⌉ levels in

this way is therefore at most

S = 3 · 21 + 4 · 22 + 5 · 23 + · · ·+ (1 + d)2d−1 =

d−1∑

k=2

(1 + k)2k−1.

Therefore

2S = 3.22 + 4.22 + 5.23 + · · ·+ (1 + d)2d,

so that

2S − S = (1 + d)2d − 3 · 21 − (22 + 23 + · · ·+ 2d−1)

= (1 + d)2d − 5− (1 + 2 + 22 + 23 + · · ·+ 2d−1)

= (1 + d)2d − 5− (2d − 1)

= d2d − 4

Thus, it takes O(N logN) steps to build a heap in this way.

The second way of building a heap is to use FLOATDOWN().

40 Graphs, Algorithms, and Optimization

procedure BUILDHEAPBOTTOMUP(H,N)

comment:

{
The array H contains N entries

transform it into a heap

k ← N/2
while k ≥ 1

do





comment:

{
the substructures at nodes H [2k] and H [2k + 1]
already form subheaps

FLOATDOWN(k)
k← k − 1

This way is much more efficient, requiring only O(N) steps, as is proved in

Exercise 2.7.1.

We can use a heapH to store the values dist[v] in Dijkstra’s algorithm. The main

loop now looks like this.

u1 ← u “the nearest vertex to u”

for k ← 1 to n− 1

do





comment: u1, u2, . . . , uk are currently known

for each v −→ uk such that v /∈ u1, u2, . . . , uk

do





if dist [v] > dist [uk] + WT(ukv)

then

{
dist [v]← dist [uk] + WT(ukv)
FLOATUP(v) “which entry corresponds to v?”

choose uk+1 using H [1]
H [1]← H [n− k]
remove last entry from H
FLOATDOWN(1)
comment: u1, u2, . . . , uk+1 are now known

Notice that the FLOATUP(v) operation requires that we also know which node

H [k] in the heap corresponds to the vertex v, and vice versa. This can be done with

an array mapping vertices into the heap. Let us work out the complexity of Dijkstra’s

algorithm using this data structure. It is not possible to get an accurate estimate of the

number of steps performed in this case, but only an upper bound. The initialization

of the heap and dist [·] array take O(n) steps. The inner for-loop executes a total of at

most 2ε if-statements, so that at most 2ε FLOATUP()’s are performed, each requiring

at most 1 + ⌈log(n + 1)⌉ steps. There are also n − 1 FLOATDOWN()’s performed.

Thus the complexity is now

O((2ε+ n)(1 + ⌈log(n+ 1)⌉)) = O(ε log n).

This may be better or worse that the previous estimate of O(n2) obtained when the

minimum vertex is found by scanning up to n vertices on each iteration. If the graph

has few edges, say ε ≤ ∆n/2, where the maximum degree ∆ is some fixed constant,

Paths and Walks 41

or a slowly growing function of n, then Dijkstra’s algorithm will certainly be much

more efficient when a heap is used. Furthermore, it must be remembered that the

complexity estimate using the heap is very much an upper bound, whereas the other

method will always take at least O(n2) steps. If the number of edges is large, say

ε = O(n2), then the heap-version of Dijkstra’s algorithm can spend so much time

keeping the heap up-to-date, that no increase in efficiency is obtained.

2.7 Floyd’s algorithm

Floyd’s algorithm solves the All Paths Problem, computing a matrix of values

Dist [u, v] = DIST(u, v), for all u, v ∈ V (G). Initially, Dist [·, ·] equals the weighted

adjacency matrix A, where

A[u, v] =





WT(u, v), if u −→ v,
∞, if u 6−→ v,
0, if u = v.

Floyd’s algorithm is extremely simple to program.

procedure FLOYD(Dist)
comment: Dist [u, v] will equal DIST(u, v), upon completion

for k ← 1 to n

do





for v ← 1 to n− 1

do

{
for w ← v + 1 to n

do Dist [v, w]← MIN(Dist [v, w],Dist [v, uk] + Dist [uk, w])

The for-loops for v and w together examine
(
n
2

)
pairs vw for each value of u, so

the complexity of the algorithm is

n

(
n

2

)
=

1

2
n3 − 1

2
n2 = O(n3).

The graph is stored as a weighted adjacency matrix, in which non-adjacent ver-

tices v, w can be considered to be joined by an edge of weight∞. Figure 2.9 shows

a weighted graph on which the reader may like to work Floyd’s algorithm by hand.

Let the vertices of G be named u1, u2, . . . , un. In order to prove that Floyd’s

algorithm works, we prove by induction, that at the end of kth iteration of the for-

loop for u, Dist[v, w] is the length of the shortest vw-path which uses only vertices

v, w, and u1, u2, . . . , uk. When k = 0, that is, before the first iteration, Dist[v, w] is

the length of the edge vw, that is, the length of the shortest path using only vertices

v and w. At the end of the first iteration, Dist [v, w] = MIN(WT(v, w),WT(v, u1) +
WT(u1, w)). This is the length of the shortest vw-path using only vertices v, w, and

42 Graphs, Algorithms, and Optimization

u1

u2

u3u4

u5

5

4

4

6

2

2

1

3

u1 u2 u3 u4 u5
u1 0 5 ∞ 3 2
u2 5 0 4 ∞ 2
u3 ∞ 4 0 1 4
u4 3 ∞ 1 0 6
u5 2 2 4 6 0

FIGURE 2.9

A complete weighted graph and its weighted adjacency matrix

u1, because that path either uses u1, or else consists only of the edge vw. Thus, the

statement is true when k = 1.

v

w

ut+1
u1, . . . , ut

u1, . . . , ut

FIGURE 2.10

A path via ut+1

Assume that it is true whenever k ≤ t, and consider iteration t+1. At the end of

the iteration, each

Dist [v, w] = MIN(Dist [v, w],Dist [v, ut+1] +Dist[ut+1, w]). (2.1)

If the shortest vw-path using only vertices v, w, u1, u2, . . . , ut+1 does not use ut+1,

then its length is the previous value of Dist[v, w] from iteration t. If the path does

use ut+1, then the length is given by the second term of Equation 2.1. Therefore,

at the end of the iteration, the value of Dist [v, w] is as required. By induction, it

follows that at the end of the nth iteration, Dist [v, w] = DIST(v, w), for all v and

w. Floyd’s algorithm finds all distances in the graph. It always takes n
(
n
2

)
= O(n3)

steps, irrespective of the number of edges of G. When there are few edges, it is faster

to use Dijkstra’s algorithm n times, once for every starting vertex u. This gives a

complexity of O(εn logn), using a heap, which can be less than O(n3).

Paths and Walks 43

Exercises

2.7.1 Calculate the number of steps needed to construct a heap using the

BUILDHEAPBOTTOMUP() procedure.

2.7.2 The repeat-loop of the FLOATUP() procedure described in Section 2.7

requires k + 2 data items to be moved when an entry floats up k nodes in

the heap. If FLOATUP() is programmed by swapping adjacent elements

instead of moving them in a cycle, calculate the number of items moved

when an entry floats up k nodes. Which is more efficient?

2.7.3 The type of heap discussed in Section 2.6 is called a binary heap, because

each node H [k] has two children, H [2k] and H [2k + 1]. The depth of a

binary heap with N elements is ⌈log(N + 1)⌉. In a ternary heap, node

H [k] has three children, H [3k], H [3k + 1], and H [3k + 2]. What is the

depth of a ternary heap with N nodes? Calculate the number of steps

needed to construct it using the BUILDHEAPBOTTOMUP() procedure.

2.7.4 Program Dijkstra’s algorithm using a binary heap.

2.7.5 Show how to store a complete set of shortest paths in Floyd’s algorithm,

using a matrix PrevPt[v, w], being the previous point to v on a shortest

vw-path. What should the initial value of PrevPt [v, w] be, and how and

when should it be modified?

2.7.6 Ford’s algorithm. Consider the following algorithm to find DIST(u, v),
for a given vertex u ∈ V (G) and all vertices v ∈ V (G).

procedure FORD(u)
for each v ∈ V (G)

do dist [v]←∞
dist [u]← 0
while there is an edge vw such that dist [w] > dist [v] + WT[vw]

do dist [w]← dist [v] + WT[vw]

Prove that Ford’s algorithm correctly computes DIST(u, v). What data

structures are necessary for an efficient implementation of Ford’s algo-

rithm? Analyze the complexity of Ford’s algorithm. Give a numerical es-

timate of the number of steps, as well as a formula of the form O(·).

2.8 Notes

WEISS [188] contains an excellent treatment of the merge-find data structure and

heaps. Dijkstra’s shortest-path algorithm and Floyd’s algorithm are described in most

books on algorithms and data structures.

http://taylorandfrancis.com

3

Subgraphs

3.1 Counting subgraphs

Given a graph G, we have seen two kinds of subgraphs – induced subgraphs, and

edge subgraphs, also known as partial subgraphs. An induced subgraph is de-

termined by a subset of V (G). An edge-subgraph is determined by a subset of

E(G). We will also look at mixed subgraphs later. There are interesting relationships

amongst these kinds of subgraphs.

If H is a graph with |H | ≤ |G|, then following [113], we will write

(
G

H

)

for the number of induced subgraphs of G that are isomorphic to H . For example,(
G
K2

)
counts the number of edges of G;

(
G
K3

)
counts the number of triangles of G. If

P2 represents a path of length two, then
(
G
P2

)
counts the number of induced paths of

length two in G, etc.

Similarly, we use [G
H

]

to denote the number of edge subgraphs ofG that are isomorphic toH . We then have[
G
K2

]
is also the number of edges of G, but

[
G
P2

]
is the number of paths of length

two in G. Now an edge-subgraph isomorphic to P2 can induce either a triangle, or a

P2. Therefore [G
P2

]
=

(
G

P2

)
+ 3

(
G

K3

)

where the coefficient 3 arises because K3 contains three edge-subgraphs P2. We see

that the numbers of induced subgraphs and edge subgraphs are related. Let H be an

edge subgraph of G, and let m = |H |.

Lemma 3.1. [G
H

]
=
∑

|U|=m

[G[U]

H

](G

G[U]

)

Proof. Every subset U ⊆ V (G) with m vertices induces a subgraph G[U] of G.

45

46 Graphs, Algorithms, and Optimization

G[U] contains
[
G[U]
H

]
edge-subgraphs isomorphic to H . Each edge subgraph of G

that is isomorphic to H occurs in exactly one subset U . Therefore the sum counts all

edge subgraphs of G isomorphic to H .

For example, if |H | = 3, there are four possible induced subgraphs of G with

three vertices : K3, P2, K2 +K1, 3K1. If we choose H = P2, the lemma gives the

formula previously found.

We now make a list of all graphs on m vertices, say g1, g2, . . . gM , for some M .

If G is any graph with at least m vertices, then Lemma 3.1 givesM linear equations

relating the M quantities
[
G
gi

]
to the M quantities

(
G
gj

)
.

Lemma 3.2.
[G
gi

]
=

M∑

j=1

[gj
gi

](G
gj

)

Construct a matrix
[
gj
gi

]
, with rows indexed by gi and columns indexed by gj . We

order the graphs gi in order of increasing number of edges. For example, if m = 3,

we take g1 = 3K1, g2 = K2 +K1, g3 = P2, and g4 = K3. The matrix is then given

by 


1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1




Notice that it is upper triangular, with a diagonal of ones, and therefore invertible.

Moreover, the entries of the inverse are integers. When m > 3, there will be several

of the graphs gi with the same number of edges, maybe gi, gi+1, gi+2, The por-

tion of the subgraph matrix they determine will be an identity sub-matrix appearing

along the diagonal.

The quantities
(
G
gj

)
and

[
G
gi

]
form two bases of the vector space of all possible

linear combinations of subgraph counts of G. Lemma 3.2 can be viewed as a change

of basis transformation.

3.1.1 Möbius inversion

The graphs g1, g2, . . . gM on m vertices form a partially ordered set, where gi ≤ gj
if and only if gi is an edge subgraph of gj . For example, when m = 3, the partial

order is illustrated in Figure 3.1. Each gi is represented by a node in the partial order,

with a graph drawn beside it. There is an edge connecting the node representing gi to

the node for gj below it if gj is a subgraph of gi, and there are no subgraphs between

them. The ordered set for m = 4 is shown in Figure 3.2.

Given any graph G, we have two subgraph counting functions
(
G
gi

)
and

[
G
gi

]

defined on each gi in the ordered set. Lemma 3.2 says that if the values
(
G
gj

)
are

Subgraphs 47

FIGURE 3.1

The graphs on three vertices

known, then the values
[
G
gi

]
are determined by those gj such that gj ≥ gi in the

partial order. For example, when m = 4, we have the equation

[
G
]
=

(
G
)
+ 4

(
G
)
+ 2

(
G
)
+ 6

(
G
)
+ 12

(
G
)

(3.1)

The equations of Lemma 3.2 can be inverted, using the partial order. It is clear

that
(
G
Km

)
=
[
G
Km

]
, so that the equation for Km can be inverted. Km is the “top”

graph in the partial order. We then move to the graphs below it. Consider a graph gi
for which we want to determine

(
G
gi

)
in terms of

[
G
gj

]
. Given an occurrence of gi as

an edge subgraph of G, let U denote the subset of V (G) that this occurrence of gi
spans. There may be a gi such that G[U] contains more edges than those of gi, so

that
(
G
gi

)
≤
[
G
gi

]
. If uv is any such edge, then gi + uv = gj , for some j, such that

gi < gj in the partial order. The subset U contains both gi and gj , so that the count[
G
gi

]
contains

(
G
gi

)
, but also other induced subgraphs as well. In order to count only

the induced copies of gi, we must subtract the edge-subgraphs gj contained in
[
G
gi

]
,

Each copy of gj contains
[
gj
gi

]
copies of gi. Therefore we subtract

[
gj
gi

][
G
gj

]
, for each

such gj , giving

[G
gi

]
−
∑

j

[gj
gi

][G
gj

]
(3.2)

where the sum is over all graphs gj with one more edge than gi. If every subset U
containing a subgraph gi induces either gi or a graph with one more edge than gi,
then we now have

(
G
gi

)
, thereby inverting the equation for gi. This will always be the

case when gj ∼= Km.

Otherwise, let xy 6= uv be another edge of G[U] not contained in gi, and let

gℓ = gi + xy and gk = gℓ + uv = gj + xy. The occurrences of gj and of gℓ

48 Graphs, Algorithms, and Optimization

FIGURE 3.2

The graphs on four vertices

contained inG[U] have already been subtracted in Equation (3.2). And becauseG[U]
also contains gk, we find that gk has been subtracted twice – once for gj and once for

gℓ. Therefore it must be added back once to Equation (3.2). Each copy of gk contains[
gk
gi

]
copies of gi, and each of these copies of gi can be extended to a copy of gj and

gℓ contained in gk. This gives

[G
gi

]
−
∑

j

[gj
gi

][G
gj

]
+
∑

k

[gk
gi

][G
gk

]
(3.3)

where the k sum is over all graphs gk with two more edges than gi. We then consider

graphs gr contained inG[U] with three more edges than gi. Each has been subtracted

three times in Equation (3.2), but then added three times in Equation (3.3), and so

must be subtracted again. This pattern continues for all subgraphs ofG[U] with more

edges than gi. The result is given in the following lemma.

Lemma 3.3. (
G

gi

)
=
[G
gi

]
+

M∑

j=1

(−1)ε(gj)−ε(gi)
[gj
gi

][G
gj

]

For example inverting Equation (3.1)

(
G
)

=

[
G
]
− 4

[
G
]
+ 2

[
G
]
− 6

[
G
]
+ 12

[
G
]

is obtained.

Subgraphs 49

This method of overcounting, then alternately subtracting and adding counts is

known as inclusion-exclusion. It is a special case of inversion in a partially ordered

set, known as Möbius inversion. See [15, 183] for further information.

Combining Lemmas 3.2 and 3.3, we have

Corollary 3.4.

M∑

k=1

(−1)ε(gi)−ε(gk)
[gi
gk

][gk
gj

]
= 0 if i 6= j, or 1 if i = j

3.1.2 Counting triangles

Let G be a graph with n vertices and ε edges, and complement G. Suppose that we

want to count the number of triangles in G and G combined. Clearly the number is

(
G
)
+

(
G
)

However (
G
)

=

(
G
)

If we combine this with the identity

(
G
)
+

(
G
)
+

(
G
)
+

(
G
)

=

(
n

3

)

we obtain (
G
)
+

(
G
)

=

(
n

3

)
−
{(G)

+

(
G
)}

Now we can convert the induced subgraph counts to edge subgraph counts, ob-

taining (
G
)

=

[
G
]
− 3

[
G
]

and

(
G
)

=

[
G
]
− 2

[
G
]
+ 3

[
G
]

Adding these gives (
G
)
+

(
G
)

=

[
G
]
−
[
G
]

Now the first of these is easy to evaluate, it consists of an edge and n − 2 more

vertices, so that [
G
]
= (n− 2)ε

50 Graphs, Algorithms, and Optimization

The second term is the total number of ways of choosing two incident edges at every

vertex of G. If vertex u has degree du, then

[
G
]
=
∑

u

(
du
2

)
=

1

2

∑

u

d2u −
1

2

∑

u

du

The second sum is just 2ε. The first sum can be bounded using the Cauchy-Schwartz

inequality
∑

u

d2u ≥
1

n
(
∑

u

du)
2 =

4ε2

n

Substituting into the equation for counting triangles gives

(
G
)
+

(
G
)
≥
(
n

3

)
− ε(n− 1) +

2ε2

n

as a bound on the number of triangles. This is Goodman’s formula [72] for the com-

bined number of triangles inG andG. If n is fixed, this is a quadratic in ε, which has

its minimum value when ε = n(n − 1)/4, if n ≡ 0 or n ≡ 1 (mod 4). Substituting

this into the triangle count gives the minimum value n(n− 1)(n− 5)/24.

3.2 Multiplying subgraph counts

Either of the subgraph counts
(
G
gj

)
and

[
G
gi

]
can be used as the basis of a vector

space or module. In fact, products of the subgraph counts can be expressed as linear

combinations, so that the subgraph counts form an algebra. If we choose two edges

of a graph G, this can be indicated by
(
G
K2

)(
G
K2

)
. There are three possible outcomes

— the same edge is chosen twice, two adjacent edges are chosen, or two independent

edges are chosen. This can be expressed as

(
G

K2

)(
G

K2

)
=

(
G

K2

)
+ 2

(
G

P2

)
+ 2

(
G

2K2

)

The coefficient of 2 arises because P2 and 2K2 each have two edges, either of which

can be chosen first.

This is a special case of a general theorem. Suppose that H1 and H2 are induced

subgraphs of G. An induced subgraph cover of G by H1 and H2 is a pair of subsets

U1, U2 ⊆ V (G) such thatG[U1] ∼= H1 andG[U2] ∼= H2, and U1∪U2 = V (G). That

is, U1 and U2 together cover all of V (G), and they induce H1 and H2, respectively.

Notice that it is not required that U1 and U2 be disjoint. The number of induced

subgraph covers of G by H1 and H2 is denoted
(

G
H1,H2

)
.

Subgraphs 51

Theorem 3.5. Let G be a graph, and let H1, H2 be induced subgraphs of G. Let

m = |V (H1)|+ |V (H2)|, and let U be a subset of V (G). Then

(
G

H1

)(
G

H2

)
=
∑

|U|≤m

(
G[U]

H1, H2

)(
G

G[U]

)

Proof. The left-hand side of the equation asks for the number of induced subgraphs

of G isomorphic to H1, and the number of induced subgraphs isomorphic to H2. If

U1 induces H1, and U2 induces H2, then U = U1 ∪ U2 will induce
(
G[U]
H1,H2

)
copies

ofH1 andH2. Conversely, any induced subgraphG[U] ofG, where |U | ≤ m, which

has an induced subgraph cover byH1 andH2 will contain
(
G[U]
H1,H2

)
copies ofH1 and

H2. An induced cover by H1 and H2 can contain at most m = |V (H1)| + |V (H2)|
vertices.

As an example of the use of this theorem, let H1 = P3 and let H2 = K2. Write

(H1) and (H2) in place of
(
G
H1

)
and

(
G
H2

)
. Theorem 3.5 gives the linear combination

shown in Figure 3.3.

()
() = 3

()
+ 2

()
+ 2

()
+

()

FIGURE 3.3

An example of Theorem 3.5

This theorem has the obvious extension to products of more than two subgraph

counts, e.g.,

(
G

H1

)(
G

H2

)(
G

H3

)
. . . =

∑

|U|≤m

(
G[U]

H1, H2, H3 . . .

)(
G

G[U]

)

A product of subgraph counts can always be written as a linear combination of sub-

graph counts.

An identical result holds for edge subgraphs. An edge subgraph cover of G by

H1 and H2 is a pair of edge subgraphs H ′
1
∼= H1 and H ′

2
∼= H2 of G such that

E(H ′
1)∪E(H ′

2) = E(G). That is, H ′
1 andH ′

2 together cover all the edges ofG. The

number of edge covers of G by H1 and H2 is denoted by
[

G
H1,H2

]
.

Theorem 3.6. Let G be a graph, and let H1, H2 be edge subgraphs of G. Let m =
|E(H1)|+ |E(H2)|. Then

[G
H1

][G
H2

]
=

∑

ε(K)≤m

[K

H1, H2

][G
K

]

where the sum is over all edge subgraphsK of G with at most m edges.

52 Graphs, Algorithms, and Optimization

Proof. The left-hand side of the equation asks for the number of edge subgraphs of

G isomorphic to H1, and the number of edge subgraphs isomorphic to H2. Together

H1 and H2 produce an edge cover of a subgraph K of G. Each edge subgraph K

contains
[

G
H1,H2

]
copies of H1 and H2. Clearly ε(K) ≤ m.

As an example of the use of this theorem, let H1 = P3 and let H2 = K2,

the same graphs as in Figure 3.3. Write [H1] and [H2] in place of
[
G
H1

]
and

[
G
H2

]
.

Theorem 3.6 gives the linear combination

[]
[] = 3

[]
+ 4

[]
+ 2

[]
+ 2

[]
+ 2

[]
+

[]

It holds for any graph G.

This theorem also has the obvious extension to products of more than two sub-

graph counts, eg.,

[G
H1

][G
H2

][G
H3

]
. . . =

∑

ε(K)≤m

[K

H1, H2, H3 . . .

][G
K

]

All products of subgraph counts can always be written as a linear combination of

subgraph counts.

3.3 Mixed subgraphs

Given a graph H with vertex set U = V (H), we consider edge subgraphs of G
isomorphic to H , with certain edges forbidden. An edge-subgraphK of H is chosen

such that G[U] must not contain any edges of K . The pair (H,K) is called a mixed

graph. The edges ofH are required edges, and those ofK are forbidden edges. So we

are looking for edge subgraphsH ofG such thatK is an edge subgraph ofG[V (H)].
The number of mixed subgraphs of G isomorphic to (H,K) is denoted

{ G

H,K

}

For example, suppose that H ∼= P3, a path of length three. Let the endpoints

of the path be u and v, and let K be the edge uv. Then the mixed graph (H,K)
contains a 3-path as required edges and a single forbidden edge, which together form

a 4-cycleC4. The diagonals of the cycle are neither required nor forbidden.H andK
are both edge subgraphs, so that we can also denote

{
G
H,K

}
diagrammatically using

solid edges for H and dotted edges for K , and use the notation for edge subgraphs:




G

 =




G

+ 2




G

+ 2




G



Subgraphs 53

The coefficients 2 arise because the graphs involved each contain two mixed

subgraphs (H,K), that is, a P3 whose endpoints are not adjacent.

Mixed subgraphs are a common generalization of induced subgraphs and edge

subgraphs. For example, given H , we can take K = ∅. Then (H, ∅) is a mixed

subgraph of G if and only if H is an edge subgraph of G. But if we take K = H ,

then (H,H) is a mixed subgraph of G if and only if H is an induced subgraph of G.

Similar to Lemma 3.1, we have

Lemma 3.7. Let G be a graph, and (H,K) a mixed graph. Let m = |V (H)|. Then

{ G

H,K

}
=
∑

|U|=m

{G[U]

H,K

}(G

G[U]

)

Proof. Every mixed subgraph of G isomorphic to (H,K) is contained in a subset U

of V (G), which induces a subgraph G[U]. G[U] accounts for
{
G[U]
H,K

}
mixed sub-

graphs isomorphic to (H,K).

Lemma 3.7 shows that the counts of mixed subgraphs can be written in terms

of the basis of induced subgraphs. Equivalently, they can also be written in terms of

the basis of edge-subgraphs. Identities similar to Theorems 3.5 and 3.6 can also be

written.

3.4 Graph reconstruction

Ulam [182] asked whether the isomorphism type of a graph is determined by its

subgraphs. This problem has become known as Ulam’s problem, or the graph re-

construction problem. Given a graph G, we can form the vertex-deleted subgraphs

G − v, where v ∈ V (G). Ulam asked whether the isomorphism types of the G − v
determine the isomorphism type of G:

IfG andH are graphs with V (G) = V (H), andG−v ∼= H−v, for all v ∈ V (G),
is G ∼= H?

The answer to this question is still unknown. Graphs G and H which satisfy the

hypothesis are said to be reconstructions of each other. If all reconstructions of G
are isomorphic to G, then G is said to be reconstructible. It is easy to see that K2

and 2K1 are reconstructions of each other. However, no other counterexamples are

yet known. A few basic methods related to subgraph counting are presented here,

beginning with Kelly’s lemma.

Lemma 3.8. (Kelly’s lemma) Let g and G be graphs, with |g| < |G|. Then
(
G

g

)
=

1

|G| − |g|
∑

v∈V (G)

(
G− v
g

)

54 Graphs, Algorithms, and Optimization

[G
g

]
=

1

|G| − |g|
∑

v∈V (G)

[G− v
g

]

Proof. A given subgraph g of G is an induced or edge subgraph of G− v whenever

v ∈ V (G)− V (g).

Lemma 3.8 shows how to count all proper subgraphs of G. For example, the

number of edges, the number of triangles, 4-cycles, etc., can all be easily counted.

Some spanning subgraphs can then be counted using Theorems 3.5 and 3.6. For

example, let n = |G|. A spanning tree ofG is an acyclic graph with n−1 edges. Any

subgraph with n− 1 edges is either a spanning tree, or else a graph with fewer than

n vertices. We use Theorem 3.6 to construct a linear combination of edge subgraph

counts for the expression
([G

K2

]

n− 1

)

which counts the subgraphs of G containing n − 1 distinct edges. The result is a

linear combination of subgraph counts for various edge subgraphs with fewer than

n vertices, plus the number of spanning trees. We solve the equation to obtain the

number of spanning trees. For example, when n = 5, we choose four distinct edges

of G. Refer to Figure 3.2 to see that there are four graphs on four vertices with four

edges. Any graph on five vertices with four edges is a spanning tree. Therefore the

number of spanning trees can be written in terms of subgraphs on at most four edges.

Hamilton cycles can be counted in a similar way. See [22] or [113] for further details.

The edge analogue of the graph reconstruction problem is:

Let G and H be graphs with |G| = |H | and ε(G) = ε(H), such that there

is a one-to-one correspondence between E(G) = {e1, e2, . . . , em} and E(H) =
{e′1, e′2, . . . , e′m}, where ei corresponds with e′i, and m = ε(G). Suppose that

G− ei ∼= H − e′i, for all i. Is G ∼= H?

Graphs satisfying this hypothesis are said to be edge-reconstructions of each

other. If all reconstructions of G are isomorphic to G, then G is said to be edge-

reconstructible. It is easy to see that K3 + K1 and K1,3 are edge-reconstructions

of each other. However, no other counterexamples are yet known. Many families of

graphs have been proved to be edge-reconstructible.

There is a vast literature on graph reconstruction. See [22, 21, 131, 113, 139] for

further information. One of the strongest results known is Nash-Williams’ lemma,

described in the next section.

3.4.1 Nash-Williams’ lemma

Let G and H be edge-reconstructions of each other, with V (G) = V (H), such that

G 6∼= H . Let n = |V (G)|. We count various mappings fromG toH . Any permutation

of V (G) will usually map some edges of G to edges of H , and some edges of G to

Subgraphs 55

non-edges ofH . Given a graphK with V (K) ⊆ V (G), we use |G→ H |K to denote

the number of permutations of V (G) such that only the edges of K map to edges of

H . Similarly |K → H | indicates the number of one-to-one mappings of V (K) into

V (H) that map all edges ofK to edges of H . Clearly |K → H | = |AUT(K)| ·
[
H
K

]
.

This is because every edge subgraph of H isomorphic to K can be permuted by

AUT(K) without changing it, and because K can be mapped to any edge subgraph

of H that is isomorphic to K .

We now consider all graphs X that contain K as a spanning edge subgraph, and

sum |G → H |X . This counts all those permutations of V (G) such that at least the

edges of K map to edges of H . Therefore

∑

X

|G→ H |X = |K → H | = |AUT(K)| ·
[H
K

]
(3.4)

where the sum is over all graphsX that contain K as a spanning edge-subgraph.

But the graphs on n vertices form a partially ordered set, as in Figures 3.1 and 3.2,

and we can use inclusion-exclusion, as in Theorem 3.3, to invert this formula. The

result is

|G→ H |K =
∑

X

(−1)ε(X)−ε(K)|AUT(X)| ·
[H
X

]
(3.5)

where the sum is again over all graphsX containingK as a spanning edge subgraph.

Now because G and H are edge-reconstructions of each other, we have
[
G
X

]
=
[
H
X

]

for all edge subgraphs X with fewer than ε(G) edges. And it is clear that both are

zero if X has more than ε(G) edges.

Lemma 3.9. (Nash-Williams’ lemma) LetG andH be edge-reconstructions of each

other. Let K be a graph with |G| vertices. Then

|G→ G|K − |G→ H |K = (−1)ε(G)−ε(K)|AUT(K)|
{[G
K

]
−
[H
K

]}

Proof. We subtract |G → G|K and |G → H |K using Equation (3.5). All terms

cancel except possibly the terms with X = K (when K ∼= G or K ∼= H), thereby

giving the result.

We can chooseK = G in Lemma 3.9. Notice that ifG ∼= H , then
[
G
G

]
=
[
H
G

]
=

1, so that the equation of Lemma 3.9 is zero. But if G 6∼= H , the equation determines

|G→ G|G − |G→ H |G = |AUT(G)| 6= 0.

Consider now graphs G for which ε(G) >
(
n
2

)
. We choose K to be the empty

graph on n vertices. Then |G → G|K counts the number of permutations of V (G)
such that no edge of G is mapped to an edge of G, which must be zero. Therefore

|G→ G|K = |G→ H |K = 0, which implies that
[
G
G

]
=
[
H
G

]
, so thatG ∼= H . This

gives:

Corollary 3.10. A graph G on n vertices with ε(G) >
(
n
2

)
is edge-reconstructible.

This result can be improved slightly. See [22] for further details.

56 Graphs, Algorithms, and Optimization

Exercises

3.4.1 Construct the matrix
[
gj
gi

]
for the 11 graphs on four vertices. Find its

inverse.

3.4.2 Calculate the minimum triangle count for Goodman’s formula when n ≡
2 and n ≡ 3 (mod 4). Find graphs that achieve the minimum.

3.4.3 Construct the subgraph identities for
(
G
P2

)(
G
P2

)
and

[
G
P2

][
G
P2

]
, where P2

is a path of length two.

3.4.4 Construct the subgraph identities for the number of spanning trees in a

graph with six vertices.

3.4.5 Suppose that G = L(H), the line-graph of H . If e ∈ E(H), show that

the vertex-deleted subgraphG− e = L(H − e).
3.4.6 Show that the vertex-deleted subgraphsG−v can be determined from the

edge-deleted subgraphs G− e. Conclude that any graph which is vertex-

reconstructible is also edge-reconstructible.

3.5 Notes

There are many surveys of the graph reconstruction problem. Some of them are

BONDY [22], BONDY and HEMMINGER [21], NASH-WILLIAMS [131], LAURI and

SCAPELLATO [113], and RAMACHANDRAN [139]. Theorems 3.5 and 3.6 are from

KOCAY [106], and are also treated in BONDY [22] and LAURI and SCAPELLATO

[113]. The description of Nash-Williams’ lemma is based on BONDY [22]. It origi-

nally appeared in NASH-WILLIAMS [131].

4

Some Special Classes of Graphs

4.1 Bipartite graphs

A graph G is said to be bipartite if V (G) can be divided into two sets X and Y
such that each edge has one end in X and one end in Y . For example, the cube is

a bipartite graph, where the bipartition (X,Y) is illustrated by the coloring of the

nodes in Figure 4.1.

(a) (b)

FIGURE 4.1

Two bipartite graphs

The maximum number of edges in a simple bipartite graph in which X and Y
are the two sides of the bipartition is clearly |X | · |Y |. The complete bipartite graph

Km,n has |X | = m, |Y | = n, and ε = mn. For example, K3,3 is illustrated in

Figure 4.1.

Lemma 4.1. A simple, bipartite graphG has at most |G|2/4 edges.

Proof. Let G have bipartition (X,Y), where |X | = x and |Y | = n − x, where

n = |G|. Then ε ≤ x(n− x) = nx− x2 = n2/4− (n/2− x)2 ≤ n2/4.

If C = (x1, y1, x2, y2, . . .) is a cycle in a bipartite graph G, then consecutive

vertices of C must be alternately in X and Y , the two sides of the bipartition. It

follows that ℓ(C) is even. In fact, any graph in which all cycles have even length

must be bipartite.

Theorem 4.2. G is bipartite if and only if all cycles of G have even length.

Proof. Let G be a connected graph in which all cycles have even length. Pick any

57

58 Graphs, Algorithms, and Optimization

x ∈ V (G) and set X = {v : DIST(x, v) is even}, and Y = V (G) − X . Clearly

X and Y partition V (G) into two parts. We must show that there are no edges with

both endpoints in X or Y . Suppose that uv is an edge with u, v ∈ X . Let Pu be a

shortest xu-path, that is, a path of length DIST(x, u), and letPv be a shortest xv-path.

Then ℓ(Pu) and ℓ(Pv) are both even. Say ℓ(Pu) ≤ ℓ(Pv). Pu and Pv both begin at

point x. They do not both contain u, or Puuv would be a shortest xv-path of length

ℓ(Pu) + 1, an odd number. So let z be the last point in common to Pu and Pv . This

defines the cycle C = Pu[z, u]uvPv[v, z]. Here Pu[z, u] denotes the portion of Pu
from z to u and Pv[v, z] denotes the portion of Pv from v to z. The length of C is

then ℓ(Pu[z, u]) + ℓ(Pu[v, z]) + 1 = ℓ(Pu) + ℓ(Pv) − 2DIST(x, z) + 1, which is

odd, a contradiction. Therefore no edge uv has both endpoints in X . Similarly, no

edge uv has both endpoints in Y . Because a graph is bipartite if and only if every

component is bipartite, this completes the proof.

u

v

z

x

Pu

Pv

FIGURE 4.2

Two paths in a bipartite graph

Lemma 4.3. If G is a k-regular bipartite graph, where k > 0, with bipartition

(X,Y), then |X | = |Y |.
Proof. Because each edge has one end in X , we can write ε = Σx∈XDEG(x) =
k · |X |. Similarly, ε = Σy∈Y DEG(y) = k · |Y |. Therefore k · |X | = k · |Y |. Because

k > 0, it follows that |X | = |Y |.

Exercises

4.1.1 The k-cube Qk is a graph whose vertex set consists of all binary vectors

of length k:

V (Qk) = {(a1, a2, . . . , ak) : ai ∈ {0, 1}}
Thus there are 2k vertices. The edges of Qk are formed by joining two

vertices
−→
a = (a1, a2, . . . , ak) and

−→

b = (b1, b2, . . . , bk) if
−→
a and

−→

b

Some Special Classes of Graphs 59

differ in exactly one coordinate, that is, ai = bi for all i but one. Q3 is

displayed in Figure 4.3. Prove that Qk is bipartite. Describe a bipartition

of Qk.

000

001

010

011

111

110

101

100

FIGURE 4.3

The 3-cube, Q3

4.1.2 Prove that ε(Qk) = k2k−1.

4.1.3 Describe in pseudo-code an algorithm to find a bipartition of G, or to

determine thatG is not bipartite. Describe the data-structures needed, and

calculate the complexity (should be O(ε)).

4.1.4 Let G be a bipartite simple graph with bipartition (X,Y) and n vertices.

Let δX be the minimum degree among the vertices of X , and δY be the

minimum degree among the vertices of Y . Show that if δX + δY > n/2,

then G is connected, where δX , δY > 0.

4.2 Line graphs

Two edges of a graph G are adjacent if they share a common endpoint. The line-

graph ofG is a graphL(G) which describes the adjacencies of the edges ofG. Thus,

every vertex of L(G) corresponds to an edge uv of G, so that |L(G)| = ε(G). This

is illustrated in Figure 4.4.

A line-graph can always be decomposed into complete subgraphs. For a ver-

tex v ∈ V (G) lies on DEG(v) distinct edges all of which share the endpoint v.

The DEG(v) corresponding vertices of L(G) form a complete subgraph containing(DEG(u)
2

)
edges. Every edge of L(G) is contained in exactly one such complete sub-

graph.

60 Graphs, Algorithms, and Optimization

1

2 3

4
24

14

3423

12

G L(G)

FIGURE 4.4

Constructing a line-graph

G L(G)

DEG(v) edges
(DEG(v)

2

)
edges

FIGURE 4.5

Complete subgraph in a line-graph

This gives the following theorem:

Theorem 4.4. ε(L(G)) =
∑

u∈V (G)

(DEG(u)
2

)

Exercises

4.2.1 Find the line-graph of the cube.

4.2.2 Construct L(K5) and show that it is isomorphic to the Petersen graph.

4.2.3 LetG be any graph. If we insert a vertex of degree two into each edge, we

obtain a new graph S(G), called the subdivision graph ofG. For example,

S(K4) is illustrated in Figure 4.6. Prove that S(G) is always bipartite, and

find a formula for ε(S(G)).

4.2.4 The graphP in Figure 4.7 is called the 3-prism. Find the line-graphs of the

subdivision graphs of K4 and P . Draw them as neatly as possible. What

can you say in general about constructing the line-graph of the subdivision

graph of a 3-regular graph?

4.2.5 We know that ∑

u

DEG(u) = 2ε(G),

Some Special Classes of Graphs 61

K4 S(K4)

FIGURE 4.6

Subdivision graph of K4

FIGURE 4.7

The 3-prism

and that ∑

u

(
DEG(u)

2

)
= ε(L(G)).

Can you find a similar way of interpreting

∑

u

(
DEG(u)

3

)
?

Assume first that there are no triangles in G.

4.2.6 Suppose that a graph G is represented by its adjacency matrix. Write a

program to print out the adjacency lists of L(G), but do not store either

adjacency lists or an adjacency matrix for L(G); just print it out. Also

print out a list of the edges of G, in order to give a numbering to the

vertices of L(G).

4.2.7 Notice that L(K3) ∼= L(K1,3) ∼= K3 (see Figure 4.8). Prove that ifG and

H are any other graphs, then G ∼= H if L(G) ∼= L(H).

L

()
= L

()
=

FIGURE 4.8

Two graphs with isomorphic line-graphs

62 Graphs, Algorithms, and Optimization

4.3 Moore graphs

The length of the shortest cycle in a graph G is called its girth, denoted γ(G). For

example, the cube has girth four. Graphs with fixed degree k and fixed girth often

have interesting properties. For example, letG be a k-regular graph of girth four, and

pick any vertex u in G. There are k vertices at distance one from u. Because G has

no triangles, there are at least k − 1 vertices at distance two from u, as shown in

Figure 4.9. Therefore, |G| ≥ 1 + k + (k − 1) = 2k. There is only one such graph

with |G| = 2k, and that is the complete bipartite graph Kk,k.

1 point

k points

≥ k − 1 points

FIGURE 4.9

Kk,k

Now let G be a k-regular graph of girth five, and let u be any vertex. There are

k vertices at distance one from u. Because G has no 4-cycles, each point at distance

one is adjacent to k−1 more vertices at distance two, so that |G| ≥ 1+k+k(k−1) =
k2 + 1.

Problem. Are there any k-regular graphsG of girth five with |G| = k2 + 1?

These graphs are called Moore graphs. Let n = |G|. A 1-regular graph cannot

have γ = 5, so k ≥ 2. If k = 2, then n = 22 + 1 = 5. G is a cycle of length five.

This is the unique Moore graph of degree two.

If k = 3, then n = 32 + 1 = 10. There are three vertices at distance one from u,

and six at distance two, as illustrated in Figure 4.10. Consider vertex u6. u6 6→ u5,

because this would create a triangle, whereas γ = 5. Without loss of generality,

we can take u6 → u8. Were we now to join u6 → u7, this would create a 4-cycle

(u6, u7, u3, u8), which is not allowed. Therefore, without loss of generality, we can

take u6 → u9. This is shown in Figure 4.10.

There is now only one way of completing the graph so as to maintain γ = 5.

Vertex u9 cannot be joined to u5, u8, or u10. Therefore u9 → u7. Similarly u8 →
u10, etc. The completed graph is shown in Figure 4.10, and has been redrawn in

Figure 4.11 (check that this is the same graph).

Thus, we have proved the following.

Theorem 4.5. The Petersen graph is the unique Moore graph of degree three.

Some Special Classes of Graphs 63

u1

u2 u3 u4

u5 u6 u7 u8 u9 u10

u1

u2 u3 u4

u5 u6 u7 u8 u9 u10

FIGURE 4.10

A Moore graph of degree three

u1

u2

u5u10

u4

u3
u6

u7
u8

u9

FIGURE 4.11

The Petersen graph

There is a very elegant theorem proving that Moore graphs can exist only for

special values of k.

Theorem 4.6. A Moore graph of degree k can exist only if k = 2, 3, 7, or 57.

Proof. Let G be a Moore graph with adjacency matrix A and consider A2. Entry

[i, j] of A2 is the number of uiuj-paths of length two. If ui −→ uj , then there is no

2-path from ui to uj , because γ = 5. Therefore, [A2]ij = 0 if [A]ij = 1.

If ui 6−→ uj then DIST(ui, uj) > 1. It is shown in Exercise 3.3.3 that

DIST(ui, uj) is always at most 2. Therefore, if ui 6−→ uj there must be a 2-path

connecting ui to uj . There cannot be two such 2-paths, for that would create a 4-

cycle containing ui and uj . Therefore, [A2]ij = 1 if [A]ij = 0.

It follows that the matrixA2+A consists of all 1’s off the diagonal. The diagonal

elements all equal k, the degree of G. The number of vertices is n = k2 + 1.

64 Graphs, Algorithms, and Optimization

A2 +A =




k
k

1

1
. . .

k



n×n

We can find the eigenvalues of this matrix. Write B = A2 + A. If x is an eigen-

vector of A with eigenvalue α, then

Bx = (A2 +A)x = AAx +Ax = αAx+ αx = (α2 + α)x

so that β = α2 + α is an eigenvalue of B. To find the eigenvalues of B, we solve

det(λI −B) = 0 for λ.

det(λI −B) =




λ− k
λ− k -1

-1
. . .

λ− k



n×n

Adding rows 2 to n onto row 1 gives

∣∣∣∣∣∣∣∣∣

λ− k − n+ 1 λ− k − n+ 1 · · ·
−1 λ− k

. . .

λ− k

∣∣∣∣∣∣∣∣∣
n×n

= (λ− k − n+ 1)

∣∣∣∣∣∣∣∣∣

1 1 · · ·
−1 λ− k

. . .

λ− k

∣∣∣∣∣∣∣∣∣
n×n

Now add the first row to each row to get

(λ − k − n+ 1)

∣∣∣∣∣∣∣∣∣

1 1 · · ·
0 λ− k + 1

. . .

λ− k + 1

∣∣∣∣∣∣∣∣∣
n×n

= (λ− k − n+ 1)(λ− k + 1)n−1 = 0.

Therefore the eigenvalues of B are

λ =

{
β1 = k + n− 1 (once),

β2 = k − 1 (n-1times).

Some Special Classes of Graphs 65

Because β = α2 + α, we can solve for α = 1
2 (−1±

√
1 + 4β). Should we take

the plus or minus sign? Because n = k2 + 1, the value β1 = k2 + k + 1 gives

α =
1

2
(−1±

√
4k2 + 4k + 1) =

1

2
{−1± (2k + 1)} = k or − k − 1.

Now β1 occurs only once as an eigenvalue, so we must choose only one of these. G
is k-regular, so that the rows of A all sum to k. Thus, if x is the vector of all 1’s, then

Ax = kx, so that k is in fact an eigenvalue of A.

Consider now β2. The corresponding eigenvalues of A are

α =

{
α1 = 1

2 (−1 +
√
4k − 3) (m1 times),

α2 = 1
2 (−1−

√
4k − 3) (m2 times).

The total multiplicity is m1 +m2 = n− 1 = k2. Because the trace of A, that is,

the sum of its diagonal elements, also equals the sum of its eigenvalues, we can write

m1 +m2 = k2 (sum of multiplicities)

α1m1 + α2m2 + k = 0 (sum of eigenvalues)

Solving these equations for m1 and m2 gives

m1 =
−1
2

{−k2 + 2k√
4k − 3

− k2
}

and

m2 =
1

2

{−k2 + 2k√
4k − 3

+ k2
}

The multiplicities m1 and m2 are integers. Consider the fraction

−k2 + 2k√
4k − 3

.

If k = 2, the numerator is 0. If k 6= 2, then
√
4k − 3 must be an integer, so that

4k − 3 is a perfect square, say 4k − 3 = s2. Then

k =
1

4
(s2 + 3),

and

−k2 + 2k =
1

16
(−s4 + 2s2 + 15).

This expression must be divisible by
√
4k − 3 = s. If s does not divide 15, it cannot

be an integer, because the other 2 terms have no s in the denominator. Therefore

s = 1, 3, 5, or 15. The corresponding values of k,m1,m2, α1, and α2 are shown in

the following table:

66 Graphs, Algorithms, and Optimization

s k n m1 m2 α1 α2

1 1 2 1 0 0 −1
3 3 10 4 5 1 −2
5 7 50 21 28 2 −3

15 57 3250 1520 1729 7 −8

The value k = 1 does not correspond to a graph. k = 3 gives the Petersen graph.

There is a unique Moore graph with k = 7 and n = 50, called the Hoffman-Singleton

graph. It is not known whether a Moore graph with k = 57 and n = 3250 exists. The

5-cycle is a Moore graph with k = 2. Its eigenvalues are

α1 =
1

2
(−1 +

√
5)

and

α2 =
1

2
(−1−

√
5),

with multiplicities m1 = m2 = 2.

The diameter of a graph is the maximum distance between any two vertices,

diam(G) = max{DIST(u, v) : u, v ∈ V (G)}.
Thus, Moore graphs have diameter two.

Exercises

4.3.1 Let G be a Moore graph of degree k, with n = k2 + 1 vertices. Let v be

any vertex of G. Prove that there are exactly

k(k − 1)2

2

pentagons containing v. Conclude that G contains

k(k2 + 1)(k − 1)2

10

pentagons, so that k 6≡ 4 (mod 5).

4.3.2 Let G be as in exercise 4.3.1. Prove that every v ∈ V (G) is contained in

exactly
k(k − 1)2(k − 2)

2
hexagons and in

k(k − 1)2(k − 2)(k − 3)

2
heptagons.

4.3.3 Show that in a k-regular graph of girth five, with n = k2 +1 vertices, the

distance DIST(u, v) between any two vertices is at most two. Hint: Show

that DIST(u, v) = 3 implies the existence of a 4-cycle.

Some Special Classes of Graphs 67

4.4 Euler tours

Figure 4.12 shows a drawing ofK5 illustrating a walk in which each edge is covered

exactly once.

FIGURE 4.12

A traversal of K5

A walk which covers each edge of a graphG exactly once is called an Euler trail

in G. A closed Euler trail is called an Euler tour. Thus Figure 4.12 shows that K5

has an Euler tour and we say that K5 is Eulerian. It is easy to prove that a graph is

Eulerian when all its degrees are even.

Theorem 4.7. A connected graphG has an Euler tour if and only if all degrees of G
are even.

Proof. Let W be a closed Euler trail in G, beginning at vertex v. Each time that W
enters a vertex u, it also must exit it. Therefore W uses an even number of edges

at each vertex u 6= v. Because the trail is closed, the same is true of v. Because W
covers every edge of G exactly once, all degrees must be even.

Conversly suppose that all degrees of G are even. The proof is by induction on

the number of edges of G. The smallest connected graphs with even degrees are K1

and K3, and both of these are Eulerian (for K1, W = Ø is an Euler trail). If the

theorem is not true, let G be the smallest graph (i.e., smallest ε) with even degrees

with no closed Euler trail. Clearly δ(G) ≥ 2, so that G contains a cycle, which

is an Eulerian subgraph. Let C be the largest Eulerian subgraph which G contains.

Then ε(C) < ε(G). The complementary subgraphG−C also has even degrees, and

because it is smaller than G, each component of it must be Eulerian. Furthermore,

C intersects each component of G − C. We can now make an Euler trail in G from

C, by inserting into C Euler trails of each componentK of G−C, as the walk in C
reaches each K in turn. Therefore G is Eulerian. By induction, all connected graphs

with even degrees are Eulerian.

68 Graphs, Algorithms, and Optimization

Notice that this theorem is true for multigraphs as well as simple graphs. If a

connected graph G has exactly two vertices, u and v, of odd degree, then we can

add an extra edge uv to G to get G′, which will then have all even degrees. G′ may

now have multiple edges. If we now choose an Euler tour W in G′ beginning at v,

we can number the edges so that the new edge vu is the last edge traversed. Then

W − uv will be an Euler trail in G beginning at u and ending at v. This is illustrated

in Figure 4.13.

u v

FIGURE 4.13

An Euler trail

If there are more than two vertices of odd degree, then it is clear that G cannot

have an Euler trail.

4.4.1 An Euler tour algorithm

The proof of Theorem 4.7 is essentially an algorithm to find an Euler tour in a con-

nected graph G. The algorithm works by building a walk from a starting vertex u. It

takes the first edge e0 = uv incident on u and follows it. Then it takes the first edge

e1 incident on v and follows it, and so forth. Because the degrees are all even, it must

eventually return to u. At this point, it will have found a closed walk in G that is a

sub-tour of an Euler tour. All the vertices visited in the sub-tour are stored on an ar-

ray called the ScanQ . It then repeats this process at u, finding another sub-tour. The

sub-tours are then linked together to create one sub-tour. It continues like this until

all the edges at u have been used up. It then moves to the next vertex on the ScanQ
and builds a sub-tour there, always linking the sub-tours found into the existing tour.

When the algorithm completes, all the vertices of G are in the ScanQ array, because

G is connected. Therefore we have an Euler tour.

The Euler tour is stored as a linked list of edges. This makes it easy to insert

a sub-tour into the list at any location. If e = uv is an edge of G, then we write

nextEdge〈e〉 and prevEdge〈e〉 for the next and previous edges in a tour, respectively.

The adjacency list for vertex u is denoted by Graph [u]. This is a linked list of incident

edges.

When the algorithm begins building a sub-tour at vertex u, it needs to know an

edge at u currently in the Euler tour, if there is one. This is stored as EulerEdge[u]. It

Some Special Classes of Graphs 69

allows the algorithm to insert a sub-tour into the existing tour at that location in the

linked list.

70 Graphs, Algorithms, and Optimization

Algorithm 4.4.1: EULERTOUR(G)

comment: Construct an Euler tour in G

ScanQ [1]← 1
QSize ← 1
k← 1
while k ≤ QSize

do





u← ScanQ [k]
while Graph [u] 6= null

do





e0 ← Graph [u] “First edge at u.”

v ← other endpoint of e0
Remove edge e0 from the graph.

e1 ← e0
while v 6= u

do





if v 6∈ ScanQ

then

{
QSize ← QSize + 1
ScanQ [QSize]← v

e2 ← Graph [v] “First edge at v.”

nextEdge〈e1〉 ← e2
prevEdge〈e2〉 ← e1
if EulerEdge[v] = null

then EulerEdge[v]← e2
e1 ← e2
v ← other endpoint of e1
Remove edge e1 from the graph.

comment: a sub-tour at u has just been completed

prevEdge〈e0〉 ← e1
nextEdge〈e1〉 ← e0
if EulerEdge[u] = NULL

then EulerEdge[u]← e0

else





comment:

{
insert the sub-tour at u into the

existing tour at u

e1 ← EulerEdge[u]
e2 ← prevEdge〈e1〉
e3 ← prevEdge〈e0〉
nextEdge〈e2〉 ← e0
nextEdge〈e3〉 ← e1

k ← k + 1

Some Special Classes of Graphs 71

Algorithm 4.4.1 is very efficient. For each vertex u, all incident edges are con-

sidered. Each edge is linked into the Euler tour. This takes DEG(u) steps. Several

sub-tours at u may be linked into the Euler tour being constructed. There are at most

DEG(u)/2 sub-tours at u. If follows that the complexity is determined by

∑

u

DEG(u) = 2ε(G) = O(ε).

Exercises

4.4.1 Program Algorithm EULERTOUR(G).

4.4.2 Let G be a connected graph in which 2k of the vertices are of odd degree.

Show that there are k trails W1,W2, . . . ,Wk such that, taken together,

W1,W2, . . . ,Wk cover each edge of G exactly once.

4.4.3 Let W be an Euler tour in G. To what subgraph of the line-graph L(G),
does W correspond?

4.4.4 Show that any Euler tour of a graphG can be written as a union of cycles.

4.4.5 What does the following algorithm do when input a connected graph G?

What is its complexity?

procedure TESTGRAPH(G)
ScanQ [1]← 1
QSize ← 1
Tag[1]← 1
k ← 1
while k ≤ QSize

do





for all v −→ u

do





if v 6∈ ScanQ

then





QSize ← QSize + 1
ScanQ [QSize]← v
Tag[v]← −Tag[u]

else if Tag[v] = Tag[u]
then return (false)

k ← k + 1
return (true)

72 Graphs, Algorithms, and Optimization

4.5 Notes

The theorem on Moore graphs is due to HOFFMANN and SINGLETON [85]. The

application of algebraic methods to graph theory is treated in BIGGS [17] and GOD-

SIL and ROYLE [70]. The eigenvalues of graph adjacency matrices is a vast topic.

See the surveys by HOFFMAN [84], SCHWENK and WILSON [156], or the book by

CVETKOVIC, DOOB, and SACHS [39]. An excellent description of Euler tour algo-

rithms can be found in GOULD [73].

5

Trees and Cycles

5.1 Introduction

A tree is a connected graph that has no cycles. Figure 5.1 shows a number of trees.

FIGURE 5.1

Various trees

Trees are the smallest connected graphs; remove any edge from a tree and it

becomes disconnected. As well as being an important class of graphs, trees are im-

portant in computer science as data structures, and as objects constructed by search

algorithms. A fundamental property of trees is that all trees on n vertices have the

same number of edges.

Theorem 5.1. If G is a tree, then ε(G) = |G| − 1.

Proof. The proof is by induction on |G|. If |G| = 1, then G = K1, which is a

connected graph with no cycle, so that ε = 0. Similarly, if |G| = 2, then G = K2,

which has ε = 1. Assume that the result is true whenever |G| ≤ t, and consider a tree

G with |G| = t+ 1. Now G must have a vertex of degree one, or it would contain a

cycle, so let v ∈ V (G) have degree one. ThenG′ = G− v is still connected, and has

no cycle, so it is a tree on t vertices. Therefore ε(G′) = |G′|−1 = |G|−2. It follows

that ε(G) = |G| − 1, so that the result is true when |G| = t + 1. By induction, it

holds for all values of |G|.

We saw in this proof that a tree G with ε > 0 must have a vertex of degree one.

Consider a longest pathP inG. The two endpoints ofP can only be joined to vertices

of P . Because G does not contain any cycles, we can conclude that the endpoints of

a longest path have degree one. Therefore a tree has at least two vertices of degree

one.

73

74 Graphs, Algorithms, and Optimization

In a connected graph, any two vertices are connected by some path. A fundamen-

tal property of trees is that any two vertices are connected by a unique path. For if

there were two uv-paths P andQ, where P 6= Q, then traveling from u to v on P we

could find the first point of P which is not on Q. Continuing on P until we come to

the first point which is again on both P and Q, we could now follow Q back toward

u and so find a cycle, which, however, is not possible in a tree.

Every graph G has subgraphs that are trees. The most important of these are the

spanning trees, that is, trees which span all the vertices of G.

Lemma 5.2. Every connected graph has a spanning tree.

Proof. Let G be a connected graph. If G has no cycles, then G is a spanning tree.

Otherwise choose a cycle C, and remove any edge xy ∈ C from G. G is still con-

nected, because any uv-path which uses xy can now be replaced by a path using

C − xy, so that every u and v are still connected by some path after xy has been

removed. We repeat this as many times as necessary until the resulting graph has no

cycles. It is a spanning tree of the originalG.

Exercises

5.1.1 Describe in pseudo-code an algorithm to find an edge on a cycle, if one

exists.

5.1.2 Make a list of all isomorphism types of trees on 1, 2, 3, 4, 5, and 6 vertices.

5.1.3 Show that there is a tree on n vertices with degree sequence

(d1, d2, . . . , dn) if and only if

n∑

i=1

di = 2(n− 1).

5.2 Fundamental cycles

Figure 5.2 shows a spanning tree of the Petersen graph. If T is a spanning tree of G,

let G−T stand for the graph whose edges are E(G)−E(T). Notice that if any edge

xy ∈ E(G − T) is added to T , then T + xy contains a unique cycle Cxy . This is

because x and y are connected by a unique path Pxy in T . Pxy + xy creates a cycle,

Cxy , called the fundamental cycle of xy with respect to T .

Exercises

5.2.1 Show that G has ε − |G| + 1 fundamental cycles with respect to any

spanning tree T .

5.2.2 Let T be a spanning tree ofG, and letC be a cycle ofG containing exactly

two edges xy and uv of G − T . Prove that C = Cxy ⊕ Cuv , where ⊕
denotes the operation of exclusive OR.

Trees and Cycles 75

FIGURE 5.2

A spanning tree

Every cycle of G can be formed from the fundamental cycles of G with respect

to any spanning tree T .

Theorem 5.3. Let T be a spanning tree of G. Let C be any cycle containing k edges

u1v1, u2v2, . . . , ukvk ofG−T , where k ≥ 1. ThenC = Cu1v1⊕Cu2v2⊕· · ·⊕Cukvk .

Proof. The proof is by induction on k. The result is certainly true when k = 1.

Suppose that the edges uivi occur on C in the order i = 1, 2, . . . , k. These edges

divide the remaining edges of C into a number of paths P1, P2, . . . , Pk , where Pi
connects vi to ui+1. This is shown in Figure 5.3.

Let Ci = Cuivi denote the ith fundamental cycle. Consider C1. It consists of the

edge u1v1 and the unique path P of T connecting v1 to u1. P and P1 both begin at

vertex v1. As we travel onP from v1 toward u1, we eventually come to the first vertex

of P which is not on P1. This is also the last vertex in common with P1, because P
and P1 are both contained in T , which has no cycles. P may intersect several of the

paths Pi. In each case the intersection must consist of a single segment, that is, a

consecutive sequence of vertices of Pi, because T contains no cycles. The last path

which P intersects is Pk, because both P and Pk end with u1. This is illustrated in

Figures 5.3 and 5.4.

Consider now H = C1 ⊕ C. It is a subgraph of G. It consists of that part

of C which is not contained in C1, plus that part of P which is not contained in

C. Thus, the portions common to P and each Pi are discarded, but the new seg-

ments of P which are now added create one or more new cycles. Thus, H consists

of one or more edge-disjoint cycles constructed from edges of T , plus the edges

u2v2, u3v3, . . . , ukvk. Because each of these cycles contains fewer than k edges

of G − T , we can say that H = Cu2v2 ⊕ Cu3v3 ⊕ · · · ⊕ Cukvk . We then have

C1 ⊕ H = (C1 ⊕ C1) ⊕ C = C = Cu1v1 ⊕ Cu2v2 ⊕ · · · ⊕ Cukvk . Therefore the

result is true when C contains k edges of G − T . By induction the result is true for

all values of k.

76 Graphs, Algorithms, and Optimization

u1
v1

u2

v2

u3 v3

u4

v4

u5v5

P1

P2

P3

P4
P5

P

C1

C

FIGURE 5.3

Decomposition into fundamental cycles

Thus the fundamental cycles of G with respect to any spanning tree T generate

all the cycles of G.

5.3 Co-trees and bonds

Let G be a graph. If S ⊂ V (G), then S denotes V (G) − S. The edge-cut [S, S]
consists of all edges of G with one endpoint in S and one endpoint in S. Notice that

G− [S, S] is a disconnected graph. See Figure 5.5.

If T is a spanning tree of G, then the complementary graph T̂ = G− T is called

the co-tree corresponding to T . Now a co-tree T̂ cannot contain any edge-cut of

G. This is because G − T̂ = T , which is connected. If uv is any edge of T , then

T −uv consists of two components, Su, those vertices connected to u, and Sv, those

vertices connected to v. [Su, Sv] is an edge-cut of G. It is contained in T̂ + uv. This

is illustrated in Figure 5.6.

[Su, Sv] is a minimal edge-cut of G, that is, it does not contain any smaller edge-

cuts. For if xy is any edge, where x ∈ Su and y ∈ Sv, then G − [Su, Sv] + xy is

connected. Therefore:

1. A co-tree T̂ contains no edge-cut.

Trees and Cycles 77

u1
v1

u2

v2

u3 v3

u4

v4

u5v5

P1

P2

P3

P4

P5

C1

C

FIGURE 5.4

Decomposition into fundamental cycles

2. If uv is any edge of G − T̂ , then T̂ + uv contains a unique minimal

edge-cut Buv = [Su, Sv].

Compare this with trees:

1. A tree T contains no cycle.

2. If uv is any edge of G − T , then T + uv contains a unique fundamental

cycle Cuv .

The unique edge-cut Buv contained in T̂ + uv is called the fundamental edge-

cut of uv with respect to T̂ . Any minimal edge-cut of G is called a bond. There is a

duality between trees and co-trees, and cycles and bonds (bonds are sometimes called

co-cycles). There is a linear algebra associated with every graph, in which cycles and

bonds generate orthogonal vector spaces, called the cycle space and bond space of

G. Theorem 5.3 shows that the fundamental cycles with respect to any spanning tree

form a basis for the cycle space. Similarly, the fundamental edge-cuts form a basis

for the bond space. See BONDY and MURTY [23] for more information.

78 Graphs, Algorithms, and Optimization

S S

[S, S]

FIGURE 5.5

An edge-cut

Exercises

5.3.1 How may fundamental edge-cuts does G have with respect to a co-tree

T̂ ? What are the dimensions of the cycle space and bond space of G?

5.3.2 Let T be a spanning tree of G, and let edge uv 6∈ T . Let xy be any edge

of the fundamental cycle Cuv , such that xy 6= uv. Then T + uv − xy
is also a spanning tree of G. Thus, spanning trees of G are adjacent via

fundamental cycles. The tree graph of G is Tree(G). Its vertices are the

spanning trees of G, and they are adjacent via fundamental cycles. Show

that Tree(G) is a connected graph.

5.3.3 Show that trees (co-trees) are also adjacent via fundamental edge-cuts.

5.3.4 Let T be a spanning tree of G, and let W be a closed walk in G such that

W uses edges of T and edges u1v1, u2v2, . . . , ukvk of G − T . Describe

the subgraph H = Cu1v1 ⊕ Cu2v2 ⊕ · · · ⊕ Cukvk . What is its relation to

W ?

5.3.5 Let [S, S] be an edge-cut of G. Prove that [S, S] is a bond if and only if

G[S] and G[S] are connected graphs.

5.3.6 Let B1 = [S1, S1] be an edge-cut of G, and let B2 = [S2, S2] be a bond

contained in [S1, S1]; that is, B1 ⊂ B2. (Note: S2 will generally not be a

subset of S1.) Prove that [S1, S1]− [S2, S2] is also an edge-cut.

Trees and Cycles 79

u

v

y

x

FIGURE 5.6

Co-trees and edge-cuts

5.3.7 Use the previous question to prove that every edge-cut can be decomposed

into a disjoint union of bonds.

5.3.8 Find a decomposition of the edge-cut [S, S] in the graph shown in Fig-

ure 5.7 into bonds. The set S is marked by the shading. Is the decompo-

sition unique? (Hint: Redraw the graph so that edges do not cross each

other.)

FIGURE 5.7

Find a decomposition into bonds

5.3.9 Let T be a spanning tree of G. Let uv and xy be edges of T , with corre-

sponding bondsBuv = [Su, Sv] andBxy = [Sx, Sy], whereBuv∩Bxy 6=
Ø. Prove that Buv ⊕Bxy is a bond.

80 Graphs, Algorithms, and Optimization

5.3.10 Prove that any cycle and any bond must intersect in an even number of

edges.

5.4 Spanning tree algorithms

One of the easiest ways to construct a spanning tree of a graphG is to use a breadth-

first search. The following code is adapted from Algorithm 2.4.1. The statements

marked with (⋆) have been added.

Algorithm 5.4.1: BFSEARCH(G, u)

comment: build a breadth-first spanning tree of G

for v ← 1 to |G| do OnScanQ [v]← false

ScanQ [1]← u
OnScanQ [u]← true

QSize ← 1
k← 1
Parent[u]← 0 (⋆)

BFNum[u]← 1 (⋆)

Count ← 1 (⋆)

Tree ← empty list (⋆)

repeat

v ← ScanQ [k]
for each w −→ v

do if not OnScanQ [w]

then





QSize ← QSize + 1
ScanQ [QSize]← w
OnScanQ [w]← true

Parent[w]← v (⋆)

Count ← Count + 1 (⋆)

BFNum[w]← Count (⋆)

add edge vw to Tree (⋆)

k ← k + 1
until k > QSize

A number of arrays ScanQ , OnScanQ , Parent , and BFNum are used in this al-

gorithm, as well as the counters QSize and Count , and the list of edges Tree of the

spanning tree constructed.

BFSEARCH(G, u) visits each vertex of the connected graphG, beginning with u.

The order in which the vertices are visited defines a numbering of the vertices, called

the breadth-first numbering. It is saved in BFNum[·]. This is illustrated in Figure 5.8.

Trees and Cycles 81

4u = 1

2 6

7

3

5

8

1

2 3 4

5 6 7

8

FIGURE 5.8

A breadth-first tree

The search begins at node u, called the root of the spanning tree. In the example

provided in Figure 5.8, u = 1. As each node w is placed on the ScanQ , its parent in

the search tree is saved in Parent[w]. This is represented by the arrows on the tree in

the diagram. Thus, beginning at any node in the graph, we can follow the Parent[·]
values up to the root of the tree. The breadth-first numbering defines a traversal of the

tree, which goes level by level, and from left to right in the drawing. A great many

graph algorithms are built around the breadth-first search. The important property of

breadth-first spanning trees is that the paths it constructs connecting any vertex w to

the root of the tree are shortest paths.

In a weighted graph, different spanning trees will have different weights, where

WT(T) =
∑

uv∈T

WT(uv).

We now want to find a spanning tree T of minimum weight. This is called the mini-

mum spanning tree problem. There are many algorithms which solve it. We present

some of them here.

5.4.1 Prim’s algorithm

The idea here is to pick any u ∈ V (G) and “grow” a tree on it; that is, at each

iteration, we add one more edge to the current tree, until it spans all of V (G). We

must do this in such a way that the resulting tree is minimum.

82 Graphs, Algorithms, and Optimization

Algorithm 5.4.2: PRIM(G)

comment:

{
Tree is a list of edges in a minimum spanning tree.

V T are the vertices in the current tree being grown.

initialize Tree to contain no edges

t← 0 “the number of edges in Tree”

choose any u ∈ V (G)
initialize V T to contain u
comment: the Tree now has 1 node and 0 edges

while t < |G| − 1

do





choose an edge xy of minimum weight, with x ∈ V T and y 6∈ V T
add xy to Tree
add y to V T
t← t+ 1

x

y

V T V T

FIGURE 5.9

Growing a tree with Prim’s algorithm

We first prove that Prim’s algorithm does in fact produce a minimum spanning

tree. Initially, V T contains one vertex, and Tree contains no edges. On each iteration

an edge xy with x ∈ V T and y 6∈ V T is added to Tree, and y is added to V T .

Therefore, the edges of Tree always form a tree which spans V T . After n − 1 iter-

ations, it is a spanning tree of G. Call the tree produced by Prim’s algorithm T , and

suppose that it consists of edges e1, e2, . . . , en−1, chosen in that order. If it is not a

minimum spanning tree, then choose a minimum tree T ∗ which agrees with T on

the first k iterations, but not on iteration k + 1, where k is as large as possible. Then

e1, e2, . . . , ek ∈ T ∗, but ek+1 6∈ T ∗. Consider iteration k + 1, and let ek+1 = xy,

where x ∈ V T and y ∈ V T . Then T ∗ + xy contains a fundamental cycle Cxy .

Cxy must contain another edge uv with u ∈ V T and v ∈ V T . Because Prim’s

algorithm chooses edges by weight, we know that WT(xy) ≤ WT(uv). Now T ′ =
T ∗ + xy − uv is also a spanning tree, and WT(T ′) ≥ WT(T ∗), because T ∗ is a

minimum tree. But WT(T ′) = WT(T ∗)+WT(xy)−WT(uv) ≤ WT(T ∗). Therefore,

WT(T ′) = WT(T ∗) and WT(xy) = WT(uv). It follows that T ′ is also a minimum

Trees and Cycles 83

x

u

y

v

ek+1

Cxy

V T V T

FIGURE 5.10

A fundamental cycle in Prim’s algorithm

tree, and that T ′ contains e1, e2, . . . , ek+1; that is, it agrees with T on k+1 iterations,

a contradiction. Consequently, Prim’s tree T is also a minimum spanning tree.

5.4.1.1 Data structures

The main operation performed in Prim’s algorithm is to select the edge xy, of min-

imum weight, with x ∈ V T and y ∈ V T . One way to do this is to store two values

for each vertex y ∈ V T :

MinWt [y]: the minimum weight WT(xy), over all x −→ y, where x ∈ V T
MinPt [y]: that vertex x ∈ V T with WT(xy) = MinWt [y].

Then to select the minimum edge xy, we need only perform the following steps:

select y ∈ V T with smallest MinWt[y] value

x← MinPt [y]

for each w −→ y do

{
if w ∈ V T

then update MinWt [w]

Let n = |G|. If we scan the set V T in order to select the minimum vertex y on

each iteration, then the first iteration requires scanning n−1 vertices, the second iter-

ation requires n−2 steps, etc., requiring 1+2+ · · ·+(n−1) =
(
n
2

)
in total. The total

number of steps needed to update the MinWt[·] values is at most
∑
y DEG(y) = 2ε

steps, over all iterations. Thus, the complexity when Prim’s algorithm is programmed

like this is

O(2ε+
n2

2
) = O(ε+ n2).

In order to remove the O(n2) term, we could store the vertices V T in a heap H .

Selecting the minimum now requires approximately logn steps. For each w −→ y
we may also have to update H , requiring at most an additional DEG(y) log n steps

per iteration. The total number of steps performed over all iterations is now at most

84 Graphs, Algorithms, and Optimization

n−1∑

k=1

logn+
∑

y

DEG(y) logn ≤ n logn+ 2ε logn.

The complexity of Prim’s algorithm using a heap is therefore O(n log n +
ε logn). If ε is small, this will be better than the previous method. But if ε is large,

this can be worse, depending on how much time is actually spent updating the heap.

Thus we can say that Prim’s algorithm has complexity:

• O(ε+ n2), if the minimum is found by scanning.

• O(n log n+ ε logn), if a heap is used.

Exercises

5.4.1 Work Prim’s algorithm by hand on the graph in Figure 5.11, starting at

the shaded vertex.

12

7

5

1

7

14

10
3

6

16
9

15

FIGURE 5.11

Find a spanning tree

5.4.2 Consider Dijkstra’s shortest-path algorithm, which finds a shortest uv-

path for all v ∈ V (G). For each v, let Pv be the shortest path found.

Show that the collection of paths,
⋃
v Pv , defines a spanning tree of G. Is

it a minimum spanning tree? (Hint: Use induction.)

5.4.3 Program Prim’s algorithm, storing the vertices V T in a heap.

5.4.4 Modify the breadth-first search algorithm to find the fundamental cycles

of G with respect to a BF-tree. Print out the edges on each fundamental

cycle. What is the complexity of the algorithm?

5.4.5 Let G be a weighted graph in which all edge-weights are distinct. Prove

that G has a unique minimum spanning tree.

Trees and Cycles 85

5.4.2 Kruskal’s algorithm

A forest is a graph which need not be connected, but whose every component is a

tree. Prim’s algorithm constructs a spanning tree by growing a tree from some initial

vertex. Kruskal’s algorithm is quite similar, but it begins with a spanning forest and

adds edges until it becomes connected. Initially the forest has n = |G| components

and no edges. Each component is a single vertex. On each iteration, an edge which

connects two distinct components is added, and the two components are merged.

When the algorithm terminates the forest has become a tree.

Algorithm 5.4.3: KRUSKAL(G)

comment:

{
Tree is a list of edges in a minimum spanning tree.

Tu is the component of the forest which contains u.

initialize Tree to contain no edges

for each u ∈ V (G) do initialize Tu to contain only u
t← 0 “the number of edges in Tree”

comment: the forest currently has |G| nodes and 0 edges

while t < |G| − 1

do





Select the next edge xy of minimum weight, and determine

which components x and y are in, say x ∈ Tu and y ∈ Tv
if Tu 6= Tv

then





merge Tu and Tv
add xy to Tree
t← t+ 1

Initially the forest has n components, and each one is a tree with no edges. Each

edge that is added connects two distinct components, so that a cycle is never created.

Whenever an edge is added the two components are merged, so that the number of

components decreases by one. After n−1 iterations, there is only one component left,

which must be a tree T . If T is not a minimum tree, then we can proceed as we did in

Prim’s algorithm. Let T consist of edges e1, e2, . . . , en−1, chosen in that order. Select

a minimum tree T ∗ which contains e1, e2, . . . , ek, but not ek+1, where k is as large as

possible. Consider the iteration in which ek+1 = xy was selected. T ∗+xy contains a

fundamental cycleCxy , which must contain another edge ab incident on Tx. Because

Kruskal’s algorithm chooses edges in order of their weight, WT(xy) ≤ WT(ab).
Then T ′ = T ∗ + xy − ab is a spanning tree for which WT(T ′) ≤ WT(T ∗). But

T ∗ is a minimum tree, so that WT(T ′) = WT(T ∗), and T ′ is also a minimum tree.

T ′ contains edges e1, e2, . . . , ek+1, a contradiction. Therefore, Kruskal’s tree T is a

minimum spanning tree.

5.4.2.1 Data structures and complexity

The main operations in Kruskal’s algorithm are:

86 Graphs, Algorithms, and Optimization

Cxy

y

b

x

a
Tv

Tu

FIGURE 5.12

Growing a forest with Kruskal’s algorithm

1. Choose the next edge xy of minimum weight.

2. Determine that x ∈ Tu and y ∈ Tv.

3. Merge Tu and Tv.

The edges could either be completely sorted by weight, which can be done in

O(ε log ε) steps, or they could be kept in a heap, which makes it easy to find the

minimum edge. Because we may have a spanning tree T before all the edges have

been considered, it is usually better to use a heap. The components Tu can easily be

stored using the merge-find data structure described in Chapter 2.

Each time an edge xy is selected from the heap, it requires approximately log ε
steps to update the heap. In the worse case we may need to consider every edge of

G, giving a bound of ε log ε steps. Similarly, O(εα(n)) steps are needed to build the

components, where n = |G|. Thus, Kruskal’s algorithm can be programmed with a

complexity of O(ε logn + εα(n)), where we have used log ε < 2 logn. Notice that

this can be slightly better than Prim’s algorithm. This is because the term α(n) is

essentially a constant, and because the heap does not need to be constantly updated

as the MinWt[·] value changes.

5.4.3 The Cheriton-Tarjan algorithm

The Cheriton-Tarjan algorithm is a modification of Kruskal’s algorithm designed to

reduce the O(ε log ε) term. It also grows a spanning forest, beginning with a forest

of n = |G| components each consisting of a single node. Now the term O(ε log ε)
comes from selecting the minimum edge from a heap of ε edges. Because every

Trees and Cycles 87

component Tu must eventually be connected to another component, this algorithm

keeps a separate heap PQu for each component Tu, so that initially n smaller heaps

are used. Initially, PQu will contain only DEG(u) edges, because Tu consists only

of vertex u. When Tu and Tv are merged, PQu and PQv must also be merged.

This requires a modification of the data structures, because heaps cannot be merged

efficiently. This is essentially because merging heaps reduces to building a new heap.

Any data structure in which a minimum element can be found efficiently is called a

priority queue. A heap is one form of priority queue, in which elements are stored as

an array, but viewed as a binary tree. There are many other forms of priority queue.

In this algorithm, PQu will stand for a priority queue which can be merged. The

Cheriton-Tarjan algorithm can be described as follows.

It stores a list Tree of the edges of a minimum spanning tree. The components of

the spanning forest are represented as Tu and the priority queue of edges incident on

vertices of Tu is stored as PQu.

Algorithm 5.4.4: CHERITONTARJAN(G)

initialize Tree to contain no edges

for each u ∈ V (G)

do





initialize Tu to contain only u
create PQu
for each v −→ u

do add uv to PQu
comment: each edge will appear in two priority queue

comment: the forest currently has |G| nodes and 0 edges

t← 0
while t < |G| − 1

do





select a component Tu
repeat

select the minimum edge xy ∈ PQu and determine

which components x and y are in, say x ∈ Tu and y ∈ Tv
until Tu 6= Tv
comment: xy connects two different components

merge Tu and Tv
merge PQu and PQv
add xy to Tree
t← t+ 1

Exercises

5.4.1 Prove that the Cheriton-Tarjan algorithm constructs a minimum spanning

tree.

88 Graphs, Algorithms, and Optimization

5.4.2 Show that a heap is best stored as an array. What goes wrong when the

attempt is made to store a heap with pointers?

5.4.3 Show that heaps cannot be merged efficiently. Describe an algorithm to

merge two heaps, both with n nodes, and work out its complexity.

5.4.4 Program Kruskal’s algorithm, using a heap to store the edges, and the

merge-find data structure to store the components.

5.4.4 Leftist binary trees

A leftist binary tree (LB-tree) is a modification of a heap which allows efficient

merging. A node x in an LB-tree has the following four fields:

1. Value〈x〉: the value stored.

2. Left〈x〉: a pointer to the left subtree.

3. Right〈x〉: a pointer to the right subtree.

4. rPath〈x〉: the right-path distance.

An LB-tree satisfies the heap property; namely the entry stored in any node has value

less than or equal to that of its two children:

Value〈x〉 ≤ Value〈Left〈x〉〉

and

Value〈x〉 ≤ Value〈Right〈x〉〉

Therefore the smallest entry in the tree occurs in the top node. Thus, a heap is a

special case of an LB-tree. The distinctive feature of LB-trees is contained in field

rPath [x]. If we begin at any node in an LB-tree and follow Left and Right pointers

in any sequence, we eventually reach a nil pointer. In an LB-tree, the shortest such

path is always the rightmost path. This is true for every node in the tree. The length

of the path for a node x is the rPath〈x〉 value. In the tree shown in Figure 5.13, the

rPath values are shown beside each node.

In summary, an LB-tree is a binary tree which satisfies the heap property, and

whose shortest path to a nil pointer from any node is always the rightmost path. This

means that LB-trees will tend to have more nodes on the left than the right; hence,

the name leftist binary trees.

The rightmost path property makes it possible to merge LB-trees efficiently. Con-

sider the two trees A and B in Figure 5.14 which are to be merged into a tree T .

The top node of T is evidently taken from A, because it has the smaller minimum.

This breaks A into two subtrees, L andR. The three trees B, L, and R are now to be

made into two subtrees of T . The easiest way to do this is first to mergeR andB into

a single tree P , and then take P and L as the new right and left subtrees of T , placing

the one with the smaller rPath value on the right. The recursive merge procedure is

described in Algorithm 5.4.5, and the result of merging A and B of Figure 5.14 is

shown in Figure 5.15.

Trees and Cycles 89

5

6

45

49 50

7

10

21

25

12

2

1

1

0 0

0

1

0

0

0

FIGURE 5.13

A leftist binary tree

Algorithm 5.4.5: LBMERGE(A,B)

comment: Merge non-null LB-trees A and B

if Value〈A〉 > Value〈B〉 then swap A and B
if Right〈A〉 = null then P ← B

else P ← LBMERGE(Right〈A〉, B)
comment: choose the tree with the smaller rPath as right subtree

if Left〈A〉 = null

then





Right〈A〉 ← null

Left〈A〉 ← P
rPath〈A〉 ← 0

else





if rPath〈P 〉 ≤ rPath〈Left〈A〉〉
then Right〈A〉 ← P

else

{
Right〈A〉 ← Left〈A〉
Left〈A〉 ← P

rPath〈A〉 ← rPath〈Right〈A〉〉+ 1
return (A)

Notice that when the top node of A is removed, thereby splitting A into two

subtrees L and R, the left subtree L subsequently becomes one of the subtrees of T .

That is, L is not decomposed in any way, it is simply transferred to T . Furthermore,

L is usually the larger of the two subtrees of A. Let us estimate the number of steps

necessary to merge A and B, with rPath values r1 and r2, respectively. One step is

needed to choose the smaller node A, say, as the new top node. The right subtree R
will have rightmost path length of r1 − 1. When R and B are merged, one of them

90 Graphs, Algorithms, and Optimization

4

8

10

21

11

6

12

5

10

12

14

16

15

15

7

16 9

4
T

A

L R

B

0

FIGURE 5.14

Merging two leftist binary trees

will be similarly decomposed into a left and right subtree. The left subtree is never

broken down. At each step in the recursion, the smaller value is chosen as the new top

node, and its Right becomes the next subtree to be considered; that is, LBMERGE()
follows the rightmost paths of A and B, always choosing the smaller entry of the

two paths. Thus, the rightmost paths of A and B are merged into a single path (see

Figure 5.15). Therefore, the depth of the recursion is at most r1 + r2. At the bottom

of the recursion the rPath values may both equal zero. It then takes about five steps to

merge the two trees. Returning up through the recursion, LBMERGE() compares the

rPath values of L and P , and makes the smaller one into the new right subtree. Also,

the new rPath value is assigned. All this takes about four steps per level of recursion,

so that the total number of steps is at most 5(r1 + r2 + 1).
What is the relation between the rightmost path length of an LB-tree and the

number of nodes it contains? If the rPath value of an LB-tree T is r, then beginning

at the top node, every path to a nil pointer has length at least r. Therefore, T contains

at least a full binary tree of r levels; that is, T has at least 2(r+1) − 1 nodes. The

Trees and Cycles 91

4

5

10

12

14

16

15

15

6

7

16 9

12

8

10

21

11

T

FIGURE 5.15

The merged LB-tree

largest rightmost path length possible if T is to store n nodes is the smallest value of

r such that 2(r+1) − 1 ≥ n, or r ≤ ⌈log n+1
2 ⌉.

If A and B both contain at most n nodes, then r1, r2 ≤ ⌈log n+1
2 ⌉, and

LBMERGE(A, B) takes at most 5(r1 + r2 + 1) ≤ 10 · ⌈log n+1
2 ⌉ + 5 = O(log n)

steps. Thus LB-trees can be merged quite efficiently.

We can use this same method to extract the minimum entry from an LB-tree A,

using at most O(log n) steps:

select minimum as Value〈A〉
A← LBMERGE(Left〈A〉,Right〈A〉)

Consider now how to construct an LB-tree. In Chapter 2 we found that there are

two ways of building a heap, one much more efficient than the other. A similar situa-

tion holds for LB-trees. The most obvious way to build one is to merge successively

each new node into an existing tree:

initialize A, a new LB-tree with one node

repeat
get next value

create and initialize a new LB-tree, B
A← LBMERGE(A,B)

until all values have been inserted

92 Graphs, Algorithms, and Optimization

However, this can easily create LB-trees that are really linear linked lists, as

shown in Figure 5.16. This algorithm then becomes an insertion sort, taking O(n2)
steps, where n is the number of nodes inserted.

3

4

6

12

19

A

FIGURE 5.16

An LB-tree

A better method is to create n LB-trees, each containing only one node, and then

merge them two at a time, until only one tree remains. The trees are kept on a queue,

called the MergeQ .

Algorithm 5.4.6: BUILDLBTREE(MergeQ)

repeat

select A and B, the first two trees of MergeQ
A← LBMERGE(A,B)
put A at end of MergeQ

until MergeQ contains only one tree

return (A)

How many steps are needed to build an LB-tree in this way, if we begin with n
trees of one node each? There will be ⌊n/2⌋ merges of pairs 1-node trees, each of

which takes at most 5 steps. This will leave ⌈n/2⌉ trees on the MergeQ, each with

at most two nodes. These will be taken two at a time, giving ⌊n/4⌋ merges of up to

2-node trees. Similarly there will be ⌊n/8⌋merges of up to 4-node trees, etc. This is

Trees and Cycles 93

summarized in the following table:

tree size # pairs max rPath max r1 + r2 + 1

1 ⌊n/2⌋ 0 1
2 ⌊n/4⌋ 0 1
4 ⌊n/8⌋ 1 3
8 ⌊n/16⌋ 2 4
...

...
...

...

2k ⌊n/2k+1⌋ k − 1 2k − 1

The last step will merge two trees with roughly n/2 nodes each. The maximum

rPath value for these trees will be≤ ⌈log n/2+1
2 ⌉, or approximately ⌈logn⌉− 1. The

total number of steps taken to build the LB-tree is then at most

5⌊n
2
⌋+

⌊log n⌋−1∑

k=1

5(2k − 1)⌊ n

2k+1
⌋ ≤ 5n

2
+ 5n

⌊logn⌋−1∑

k=1

2k − 1

2k+1
.

We can sum this using the same technique as in the heap analysis of Chapter 2, giving

a sum of 10n− 5nr
2r , where r = ⌊logn⌋ − 1. Thus, an LB-tree can be built in O(n)

steps.

We can now fill in the details of the Cheriton-Tarjan spanning tree algorithm.

There are three different kinds of trees involved in the algorithm:

1. A minimum spanning tree is being constructed.

2. The components Tu are merge-find trees.

3. The priority queues PQu are LB-trees.

At the beginning of each iteration, a component Tu is selected, and the minimum

edge xy ∈ PQu is chosen. How is Tu selected? There are several possible strategies.

If we choose the same Tu on each iteration, then the algorithm grows a tree from u;

that is, it reduces to Prim’s algorithm. If we choose the component Tu incident on

the minimum remaining edge, then the algorithm reduces to Kruskal’s algorithm. We

could choose the smallest component Tu, but this would add an extra level of com-

plication, because we would now have to keep a heap of components in order to find

the smallest component quickly. The method which Cheriton and Tarjan recommend

is uniform selection; that is, we keep a queue, TreeQ , of components. Each entry on

the TreeQ contains Tu and PQu. On each iteration, the component Tu at the head of

the queue is selected and the minimum xy ∈ PQu is chosen, say x ∈ Tu and y ∈ Tv,

where Tu 6= Tv. Once Tu and Tv, PQu and PQv have been merged, they are moved

to the end of the TreeQ . Thus, the smaller components will tend to be at the head of

the queue. So the algorithm uses two queues, the MergeQ for constructing LB-trees

and merging them, and the TreeQ for selecting components.

The complexity analysis of the Cheriton-Tarjan algorithm is beyond the scope

of this book. If analyzed very carefully, it can be shown to be O(ε log log ε), if pro-

grammed in a very special way.

94 Graphs, Algorithms, and Optimization

Minimum spanning tree algorithms are a good illustration of the process of al-

gorithm development. We begin with a simple algorithm, like growing a spanning

tree from an initial vertex, and find a complexity of O(n2). We then look for a data

structure or programming technique that will allow the n2 term to be reduced, and

obtain a new algorithm, with complexity O(ε log n), say. We then ask how the ε or

logn term can be reduced, and with much more effort and more sophisticated data

structures, obtain something likeO(
√
ε log n) orO(ε log logn). Invariably, the more

sophisticated algorithms have a higher constant of proportionality, so that improve-

ments in running time are only possible when n and ε become very large. However,

the sophisticated algorithms also indicate that there are theoretical limits of efficiency

for the problem at hand.

Exercises

5.4.1 Prove that the result of LBMERGE(A,B) is always an LB-tree, where A
and B are non-nil LB-trees.

5.4.2 Let A be an LB-tree with n nodes and let B be an arbitrary node in the

tree. Show how to update A if:

(a) Value〈B〉 is increased.

(b) Value〈B〉 is decreased.

(c) Node B is removed.

5.4.3 Delayed Merge. When (Tu, PQu) is selected from the TreeQ , and

merged with (Tv, PQv), the result is moved to the end of the queue. It

may never come to the head of the TreeQ again. In that case, it would

not really be necessary to perform the LBMERGE(PQu, PQv). Cheri-

ton and Tarjan delay the merging of the two by creating a new dummy

node D and making PQu and PQv into its right and left subtrees. D
can be marked as a dummy by setting rPath〈D〉 to −1. Several dummy

nodes may accumulate at the top of the trees PQu. Should a tree with a

dummy node come to the head of the queue, its dummy nodes must be

removed before the minimum edge xy ∈ PQu can be selected. Write

a recursive tree traversal which removes the dummy nodes from an LB-

tree, and places its non-dummy subtrees on the MergeQ . We can then use

BUILDLBTREE() to combine all the subtrees on the MergeQ into one.

5.4.4 Program the Cheriton-Tarjan algorithm, using leftist binary trees with de-

layed merge, to store the priority queues.

5.5 Notes

An excellent description of the cycle space and bond space can be found in BONDY

and MURTY [23]. Kruskal’s and Prim’s algorithms are standard algorithms for mini-

Trees and Cycles 95

mum spanning trees. They are described in most books on algorithms and data struc-

tures. The Cheriton-Tarjan algorithm is from CHERITON and TARJAN [29]. Leftist

binary trees are from KNUTH [103], and are also described in WEISS [188].

http://taylorandfrancis.com

6

The Structure of Trees

6.1 Introduction

The structure of trees is naturally recursive. When trees are used as data structures,

they are typically processed by recursive procedures. Similarly, exhaustive search

programs working by recursion also construct trees as they follow their search paths.

These trees are always rooted trees; that is, they begin at a distinguished node, called

the root vertex, and are usually built outwards from the root. Figure 6.1 shows several

rooted trees, where the root vertex is shaded black.

FIGURE 6.1

Several rooted trees

If T is a tree, then any vertex v can be chosen as the root, thereby making T into

a rooted tree. A rooted tree can always be decomposed into branches. The tree T
shown in Figure 6.2 has three branchesB1, B2, and B3.

FIGURE 6.2

Decomposition into branches

97

98 Graphs, Algorithms, and Optimization

DEFINITION 6.1: Let T have root vertex v. The branches of T are the maximal

subtrees in which v has degree one.

Thus, the root is in every branch, but the branches have no other vertices in com-

mon. The number of branches equals the degree of the root vertex. If we know the

branches of some tree T , then we can easily recombine them to get T . Therefore,

two rooted trees have the same structure; that is, they are isomorphic, if and only if

they have the same number of branches, and their branches have the same structure.

Any vertex of a tree which has degree one is called a leaf . If the root is a leaf,

then T is itself a branch. In this case, let u be the unique vertex adjacent to v, the root

of T . Then T ′ = T − v is a rooted tree, with root u. This is illustrated in Figure 6.3.

T ′ can then be further broken down into branches, which can in turn be reduced to

rooted trees, etc. This gives a recursive decomposition of rooted trees into branches,

and branches into rooted trees.

T

v

u

T ′

u

FIGURE 6.3

Reducing a branch to a rooted tree

This technique can be developed into a method for determining when two rooted

trees have the same structure.

6.2 Non-rooted trees

All non-rooted trees on five and fewer vertices are displayed in Figure 6.4. Table 6.1

gives the number of trees up to 10 vertices.

If a leaf is removed from a tree on n vertices, a tree on n− 1 vertices is obtained.

Thus, one way to list all the trees on n vertices is to begin with a list of those on

n − 1 vertices, and add a leaf in all possible ways, discarding duplicates. How can

we recognize when two trees have the same structure? We shall see that non-rooted

trees can always be considered as rooted trees, by choosing a special vertex as root,

in the center of T , denoted CTR(T). The center is defined recursively.

The Structure of Trees 99

n = 1 n = 2 n = 3 n = 4

n = 5

FIGURE 6.4

The trees on five and fewer vertices

DEFINITION 6.2: Let T be a tree on n vertices.

1. If n = 1, say V (T) = {u}, then CTR(T) = u.

2. If n = 2, say V (T) = {u, v}, then CTR(T) = uv.

3. If n > 2, then T has at least two leaves. Delete all the leaves of T to get

a tree T ′. Then CTR(T) = CTR(T ′).

Thus the center of a tree is either a vertex or an edge, because eventually case

(1) or (2) of the definition is used in determining the center of T . Trees whose center

consists of a single vertex are called central trees. Trees with two vertices in the

center (i.e., CTR(T) is an edge) are called bicentral trees. Figure 6.5 shows two

trees, one central and one bicentral.

FIGURE 6.5

A central tree and a bicentral tree

A central tree can always be considered a rooted tree, by taking the center as the

root. A bicentral tree can also be considered a rooted tree, but we must have a means

of deciding which of two vertices to take as the root. Thus we can say that every tree

is a rooted tree.

100 Graphs, Algorithms, and Optimization

TABLE 6.1

The number of trees up to 10 vertices

n # trees

2 1

3 1

4 2

5 3

6 6

7 11

8 23

9 47

10 106

Exercises

6.2.1 Find the center of the trees shown in Figures 6.1 and 6.3.

6.2.2 Prove that any longest path in a tree T contains the center.

6.2.3 Prove that T is central if DIAM(T) is even, and bicentral if DIAM(T) is

odd.

6.2.4 A binary tree is a rooted tree such that the root vertex has degree two, and

all other vertices which are not leaves have degree three. Show that if T is

a binary tree on n vertices, that n is odd, and that T has (n+1)/2 leaves.

6.3 Read’s tree encoding algorithm

There are a number of interesting algorithms for encoding trees. Here we present one

of Read’s algorithms. It is basically an algorithm to find CTR(T), keeping certain

information for each vertex as it progresses. When the center is reached, a root node

is uniquely chosen. Read’s algorithm encodes a tree as an integer. Its description

reveals a number of interesting properties satisfied by trees.

Let T be a tree whose center is to be found. Instead of actually deleting the leaves

of T , let us simply draw a circle around each one. Draw the circle in such a way that

it encloses all the circles of any adjacent nodes which have been previously circled.

The last vertices to be circled form the center.

This system of nested circles can be redrawn in various ways.

Each circle corresponds to a vertex of T . The largest circle which encloses the

entire system corresponds to the center of T . Two circles correspond to adjacent

vertices if and only if one circle is nested inside the other. The circles not containing

a nested circle are the leaves of T . If we cut off the top and bottom of each circle in

The Structure of Trees 101

FIGURE 6.6

A circled tree

FIGURE 6.7

Nested circles

Figure 6.7, we are left with a set of matched parentheses: (()(()())(()()())). By writing

0 for each left parenthesis and 1 for each right parenthesis, this can be considered a

binary number, 001001011001010111, which represents an integer.

The internal circles in Figure 6.6 have been sorted and arranged in order of in-

creasing complexity. For example, the first inner circle can be denoted 01. This is

less than the second circle, which can be denoted 001011, which in turn is less than

the third circle 00101011, considered as binary numbers. Thus, there is a natural

ordering associated with these systems of nested circles.

The binary number associated with each vertex v is called its tag, denoted t(v).
Initially each leaf has a tag of 01. The algorithm to find CTR(T) constructs the vertex

tags as it proceeds.

102 Graphs, Algorithms, and Optimization

Algorithm 6.3.1: TREEENCODE(T)

comment: construct an integer tree code to represent the tree T

repeat

construct L(T), the set of leaves of T , stored on an array

for each leaf v ∈ L(T)

do





comment: suppose that v −→ {u1, u2, . . . , uk} ⊆ L(T)
sort the tagged vertices adjacent to v by tag,

say t(u1) ≤ t(u2) ≤ · · · ≤ t(uk)
t(v)← 0t(u1)t(u2) · · · t(uk)1 “concatenate them”

T ← T − L(T) “just mark the vertices deleted”

until all of T has been tagged

if L(T) contains one vertex u
then return (t(u))

else

{
comment: L(T) contains two vertices u and v, say t(u) ≤ t(v)
return (0t(u)t′(v))

On the last iteration, when the center was found, either one or two vertices will

have been tagged. They form the center of T . If T is a central tree, with CTR(T) = u,

we choose u as the root of T . Then t(u), the tag of the center, represents the entire

system of nested circles. It is chosen as the encoding of T .

If T is a bicentral tree, with center uv, we must decide which vertex to choose

as the root of T . We arbitrarily choose the one with the larger tag. Suppose that

t(u) ≤ t(v), so that v is chosen as the root. The code for the entire tree is formed by

altering the enclosing circle of v so as to enclose the entire tree. This is illustrated in

Figure 6.8.

u

v

FIGURE 6.8

Choosing the root vertex

Thus, the tree code for T in the bicentral case is the concatenation 0t(u)t′(v),
where t′(v) is formed from t(v) by dropping one initial 0-bit.

The Structure of Trees 103

If t(u) = t(v) for some bicentral tree T , then we can obviously select either u or

v as the root vertex.

The easiest way to store the tags t(v) is as an integer array t[v]. We also need to

store the length ℓ[v], of each tag, that is, its length in bits. Initially each leaf v has

t[v] = 1 and ℓ[v] = 2. To concatenate the tags 0t(u1)t(u2) · · · t(uk)1 we use a loop.

t[v]← 0
for i← 1 to k

do





shift t[v] left ℓ[v] bits

t[v]← t[v] + t[ui]
ℓ[v]← ℓ[v] + ℓ[ui]

t[v]← 2t[v] + 1
ℓ[v]← ℓ[v] + 2

If a primitive left shift operation is not available, one can always store a table of

powers of 2, and use multiplication by 2ℓ[ui] in order to shift t[v] left by ℓ[ui] bits.

6.3.1 The decoding algorithm

If the circles of Figure 6.6 are unnested, they can be redrawn so as to emphasize their

relation to the structure of T .

FIGURE 6.9

Unnested circles

The decoding algorithm scans across the system of nested circles. Each time a

new circle is entered, a vertex is assigned to it. The first circle entered is that corre-

sponding to the root vertex. The decoding algorithm uses a global vertex counter k,

which is initially zero, and constructs a global tree T . It can be programmed to scan

the tree code from right to left as follows:

104 Graphs, Algorithms, and Optimization

Algorithm 6.3.2: TREEDECODE(Tcode, vi)

comment: a new circle has just been entered, from circle vi.

k← k + 1 “create a new vertex”

join vk −→ vi
Tcode ← Tcode/2 “shift right 1 bit”

while Tcode is odd

do





comment: the rightmost bit = 1, a new circle is entered

TREEDECODE(Tcode, vk)
Tcode ← Tcode/2 “shift right 1 bit”

The easiest way to use Algorithm 6.3.2 is to create a dummy vertex v0 which will

only be joined to the root vertex, v1, and then delete v0 once the tree has been con-

structed.

k ← 0
TREEDECODE(Tcode, v0)
delete v0

Exercises

6.3.1 Encode the trees of Figure 6.5 into nested circles by hand. Write down

their tree codes.

6.3.2 Work through Algorithm 6.3.2 by hand, for the tree codes 001011 and

0001011011.

6.3.3 Write Algorithm 6.3.2 so as to scan the tree code from left to right, using

multiplication by 2 to shift Tcode to the right, and using the sign bit of

the code to test each bit. Assume a word length of 32 bits.

6.3.4 Program the encoding and decoding algorithms.

6.3.5 If T has n vertices, what is the total length of its tree code, in bits? How

many 1’s and 0’s does the code contain? How many leading 0’s does the

code begin with? What is the maximum value that n can be if T is to be

encoded in 32 bits?

6.3.6 Let T be a tree. Prove that the tree obtained by decoding

TREEENCODE(T), using the decoding algorithm, is isomorphic to T .

6.3.7 Let T1 and T2 be two trees. Prove that T1 ∼= T2 if and only if

TREEENCODE(T1) = TREEENCODE(T2).

6.3.8 Consider the expression x1x2 · · ·xn+1, where x1, x2, . . . , xn+1 are vari-

ables. If parentheses are inserted so as to take exactly two terms at a time,

we obtain a valid bracketing of the expression, with n pairs of matched

parentheses (e.g., ((x1(x2x3))x4), where n = 3). Each pair of matched

parentheses contains exactly two terms. Describe the type of rooted tree

on n vertices that corresponds to such a valid bracketing. They are called

The Structure of Trees 105

binary plane trees. Each leaf of the tree corresponds to a variable xi and

each internal node corresponds to a pair of matched parentheses, giving

2n+ 1 vertices in total.

6.3.9 Let pn denote the number of binary plane trees with n leaves (e.g., p0 =
0, p1 = 1, p2 = 1, p3 = 2, etc.). We take p1 = 1 corresponding to the

tree consisting of a single node. Let p(x) = p0+p1x+p2x
2+ · · · be the

generating function for the numbers pn, where x is a variable. If T1 and

T2 are two binary plane trees with n1 and n2 leaves, respectively, then

they can be combined by adding a new root vertex, adjacent to the roots

of T1 and T2. This gives a binary plane tree with n1 + n2 leaves. There

are pn1
pn2

ways of constructing a tree in this way. This term arises from

p2(x) as part of the coefficient of xn1+n2 . This holds for all values of n1

and n2. Therefore, we can write p(x) = x + p2(x). Solve this identity

for p(x) in terms of x, and then use the binomial theorem to write it as a

power series in x. Finally, obtain a binomial expression for pn in terms of

n. The numbers pn are called the Catalan numbers. (The answer should

be pn = 1
2n−1

(
2n−1
n

)
.)

6.4 Generating rooted trees

One way to generate a list of all the trees on n vertices would be to add a new leaf to

the trees on n − 1 vertices in all possible ways, and to discard duplicates, using the

tree codes to identify isomorphic trees. However, they can also be generated directly,

one after the other, with no duplicates.

Let T be a central tree, rooted at its center v. Decompose T into its branches

B1, B2, . . . , Bk. Each branch Bi is also rooted at v. Write T = (B1, B2, . . . , Bk)
to indicate the decomposition into branches. Because v is the center of T , it is the

middle vertex of every longest path in T . Therefore, the two “tallest” branches of

T will have equal height, where we define the height of a branch B rooted at v as

h(B) = MAX{DIST(v, w) | w ∈ B}. If the branches of the central tree T have

been ordered by height, so that h(B1) ≥ h(B2) ≥ · · · ≥ h(Bk), then we know

that h(B1) = h(B2). Any rooted tree for which the two highest branches have equal

height is necessarily rooted at its center. Therefore, when generating central trees,

the branches must be ordered by height.

Generating the rooted trees on n vertices in a sequence implies a linear ordering

on the set of of all rooted trees on n vertices. In order to construct a data structure

representing a rooted tree T as a list of branches, we also require a linear order on

the set of all branches. Then we can order the branches of T so that B1 ≥ B2 ≥
· · · ≥ Bk. This will uniquely identify T , as two trees with the same set branches will

have the same ordered set of branches. The smallest possible branch will evidently

be of height one, and have two vertices – it is K1 rooted at a vertex. The tree shown

in Figure 6.10 has five branches of height one; call them elementary branches. The

106 Graphs, Algorithms, and Optimization

next smallest branch is of height two, and has three vertices – it is the path P2 rooted

at a leaf.

Associated with each branch B is a rooted tree, as shown in Figure 6.3, con-

structed by advancing the root to its unique adjacent vertex, and deleting the original

root. We will use the ordering of rooted trees to define recursively an ordering of

all branches, and the ordering of all branches to define recursively an ordering of all

rooted trees. We know that all branches on at most three vertices have already been

linearly ordered.

FIGURE 6.10

A tree with all branches of height one

DEFINITION 6.3: Suppose that all branches on at most m ≥ 2 vertices have

been linearly ordered. Let T = (B1, B2, . . . , Bk) and T ′ = (B′
1, B

′
2, . . . , B

′
ℓ), where

k+ℓ ≥ 3, be any two distinct rooted trees with given branches, such that each branch

has at most m vertices, ordered so that B1 ≥ B2 ≥ · · · ≥ Bk and B′
1 ≥ B′

2 ≥ · · · ≥
B′
ℓ. Suppose that |T | ≤ |T ′|. Then T and T ′ are compared as follows:

1. If |T | < |T ′|, then T < T ′.

2. Otherwise, compare (B1, B2, . . . , Bk) and (B′
1, B

′
2, . . . , B

′
ℓ) lexico-

graphically. That is, find i, the first subscript such that Bi 6= B′
i;

then T < T ′ if Bi < B′
i.

The first condition is to ensure that all rooted trees on n vertices precede all trees

on n+1 vertices in the linear order. The second condition defines an ordering of trees

based on the lexicographic ordering of branches. Notice that if k 6= ℓ, there must be

an i such that Bi 6= B′
i; for if every Bi = B′

i, but k 6= ℓ, then T and T ′ would

have different numbers of vertices, so that condition (1) would apply. This defines a

linear ordering on all rooted trees whose branches all have at most m vertices. This

includes all trees on m+ 1 vertices with at least two branches. In fact, it includes all

rooted trees on m + 1 vertices, except for the path Pm, rooted at a leaf. As this is a

branch on m+ 1 vertices, it is handled by Definition 6.4.

We now have an ordering of rooted trees with at least two branches, based on

the ordering of branches. We can use it in turn to extend the ordering of branches.

Let B and B′ be two distinct branches. In order to compare B and B′, we advance

their roots, as in Figure 6.3, to the unique adjacent vertex in each, and delete the

original root. Let the rooted trees obtained in this way be T and T ′, respectively.

Then B < B′ if T < T ′. In summary, branches are compared as follows:

The Structure of Trees 107

DEFINITION 6.4: Suppose that all rooted trees on ≤ m − 1 vertices have been

linearly ordered, and that all rooted trees on m vertices with at least two branches

have also been linearly ordered. Let B and B′ be branches on m vertices, with cor-

responding rooted trees T and T ′. Suppose that |B| ≤ |B′| and that if |B| = |B′|,
then B is the branch of smaller height. Then B and B′ are compared as follows:

1. If |B| < |B′|, then B < B′.

2. Otherwise, if h(B) < h(B′), then B < B′.

3. Otherwise, B < B′ if T < T ′.

We have a recursive ordering which compares trees by the ordering of their

branches, and branches by the ordering of their trees. We must prove that the def-

inition is valid.

Theorem 6.1. Definitions 6.3 and 6.4 determine a linear order on the set of all

rooted trees.

Proof. Notice that rooted trees have a sub-ordering based on the number of vertices –

all rooted trees on n vertices precede all rooted trees on n+1 vertices. Branches have

an additional sub-ordering based on height – all branches of height h on n vertices

precede all branches of height h + 1 on n vertices. A branch is a special case of a

rooted tree, in which the root vertex has degree one. If a branch B and tree T on n
vertices are compared, where T has at least two branches, then that first branch of

T has fewer than n vertices, so that T < B, by Definition 6.3. Therefore all trees

whose root vertex has degree two or more precede all branches on n vertices.

The definitions are clearly valid for all rooted trees on ≤3 vertices. Suppose that

the set of all rooted trees on ≤n vertices is linearly ordered by these definitions, and

consider two distinct rooted trees

T = (B1, B2, . . . , Bk)

and

T ′ = (B′
1, B

′
2, . . . , B

′
ℓ)

on n + 1 vertices. If k = ℓ = 1, then T and T ′ are both branches. The trees formed

by advancing their root vertices have only n vertices, and so can be compared by

Definition 6.3. Otherwise at least one of T and T ′ has two or more branches. There-

fore at least one of each pair Bi and B′
i of branches has ≤n vertices. Therefore the

branches Bi and B′
i can be compared by Definition 6.4. The conclusion follows by

induction.

In this ordering of branches and trees, the first rooted tree on n vertices is a star

consisting of the tree K1,n−1 rooted at its center. The last rooted tree on n vertices is

a path Pn, rooted at a leaf. The first branch on n vertices is K1,n−1, rooted at a leaf,

and the last branch on n vertices is also the path Pn, rooted at a leaf. The first few

rooted trees are shown in Figure 6.11.

108 Graphs, Algorithms, and Optimization

FIGURE 6.11

The beginning of the linear order of rooted trees

Let T = (B1, B2, . . . , Bk) be the list of branches of a rooted tree T , with

root vertex v. The recursive data structure we use to represent T is a linked list

of branches. Each branch Bi also has root v. It is in turn represented in terms of the

rooted tree T ′, whose root vertex is the unique vertex adjacent to v. Thus, a record

representing a tree T has four fields:

• NodeNum〈T 〉, the node number of the root, which is used for printing.

• nNodes〈T 〉, the number of vertices in the tree.

• FirstBranch〈T 〉, a pointer to the first branch.

• LastBranch〈T 〉, a pointer to the last branch.

Each branch B of T has a corresponding rooted tree T ′. B is represented as a

record having four fields:

• Height〈B〉, the height of the branch.

• NextRoot〈B〉, a pointer to the rooted tree T ′.

• NextBranch〈B〉, a pointer to the next branch of T .

• PrevBranch〈B〉, a pointer to the previous branch of T .

It is not necessary to store the number of vertices of a branchB, as it is given by

nNodes〈NextRoot〈B〉〉 + 1. The functions which compare two trees and branches

are given as follows. They return an integer, whose value is one of three constants,

LessThan, EqualTo, or GreaterThan.

The Structure of Trees 109

Algorithm 6.4.1: COMAPARETREES(T1, T2)

comment: T1 and T2 both have at least one branch

if |T1| < |T2| then return (LessThan)
if |T1| > |T2| then return (GreaterThan)
comment: otherwise |T1| = |T2|
B1 ← FirstBranch〈T1〉
B2 ← FirstBranch〈T2〉
Result ← COMPAREBRANCHES(B1, B2)
while Result = EqualTo

do





if B1 = LastBranch〈T1〉 then return (EqualTo)
B1 ← NextBranch〈B1〉
B2 ← NextBranch〈B2〉
Result ← COMPAREBRANCHES(B1, B2)

return (Result)

Algorithm 6.4.2: COMPAREBRANCHES(B1, B2)

comment:B1 and B2 both have a unique vertex adjacent to the root

if |B1| < |B2| then return (LessThan)
if |B1| > |B2| then return (GreaterThan)
comment: otherwise |B1| = |B2|
if Height〈B1〉 < Height〈B2〉 then return (LessThan)
if Height〈B1〉 > Height〈B2〉 then return (GreaterThan)
comment: otherwise Height〈B1〉 = Height〈B2〉
if Height〈B1〉 = 1 then return (EqualTo)
T1 ← NextRoot〈B1〉
T2 ← NextRoot〈B2〉
return (COMPARETREES(T1, T2))

Using these functions we can generate all rooted trees on n vertices, one after

the other, beginning with the first tree, which consists of a root vertex and n − 1
elementary branches of height one, until the last tree is reached, which has only

one branch, of height n − 1. Written in pseudo-code, the technique is as follows,

where NEXTTREE(T) is a procedure which replaces T with the next tree, and returns

true unless T was the last tree (see Algorithm 6.4.3). FIRSTTREE(n) is a procedure

that constructs the first tree on n vertices.

T ← FIRSTTREE(n)
repeat

PRINTTREE(T)
until not NEXTTREE(T)

110 Graphs, Algorithms, and Optimization

Suppose that T has branch decomposition (B1, B2, . . . , Bk), where B1 ≥ B2 ≥
· · · ≥ Bk. The procedure NEXTTREE(T) works by finding the last branch Bi such

that Bi 6= Bi−1. Then Bi, Bi+1, . . . , Bk is a sequence of isomorphic branches. So

long asBi is not simply a path of length h(Bi), there is a larger branch with the same

number of vertices.Bi is then replaced with the next larger branch and the subsequent

branches Bi+1, Bi+2, . . . , Bk are replaced with a number of elementary branches.

This gives the lexicographically next largest tree. This is illustrated in Figure 6.12.

Here,B2 was replaced with a branch of height three, andB3 was replaced with three

elementary branches.

B1 B1 B1 B1 B2 B3 B4 B5

FIGURE 6.12

Constructing the next tree

But if Bi is simply a path, then it is the last branch with |Bi| vertices. In order

to get the next branch we must add another vertex. Bi is then replaced with the first

branch with one more vertex. This is the unique branch with |Bi| + 1 vertices and

height two. T is then filled in with as many elementary branches as needed. This is

illustrated in Figure 6.13.

B1 B2 B3 B1 B2 B3

FIGURE 6.13

Constructing the next tree

The procedure DELETEBRANCHES(T,B1) destroys all branches of T follow-

ing B1, and returns the number of nodes deleted. Similarly DESTROYTREE(T) is

a procedure that destroys all branches of T , and returns the total number of nodes

deleted.

The Structure of Trees 111

Algorithm 6.4.3: NEXTTREE(T)

B1 ← LastBranch〈T 〉
if B1 = FirstBranch〈T 〉

then





comment: only one branch – advance the root

if nNodes〈T 〉 = Height〈B1〉+ 1 then return (false)
return (NEXTTREE(NextRoot〈B1〉))

comment: otherwise at least two branches

B2 ← PrevBranch〈B1〉
while COMPAREBRANCHES(B1, B2) = EqualTo

do




B1 ← B2

if B1 = FirstBranch〈T 〉 then go to 1
B2 ← PrevBranch〈B2〉

1 : comment: delete the branches of T followingB1

N ← DELETEBRANCHES(T,B1) “N nodes are deleted”

comment: replace B1 with next branch, if possible

if nNodes〈NextRoot〈B1〉〉 > Height〈B1〉

then





NEXTTREE(NextRoot〈B1〉)
fill in T with N elementary branches

return (true)
comment: otherwise construct the first branch with one more node

if N > 0 then



M ← DESTROYTREE(NextRoot〈B1〉) “M nodes are deleted”

NextRoot〈B1〉 ← FIRSTTREE(M + 1)
fill in T with N − 1 elementary branches

return (true)
comment: otherwise there’s no branch following B1 to take a node from

repeat

B1 ← B2

if B1 = FirstBranch〈T 〉 then go to 2
B2 ← PrevBranch〈B1〉

until COMPAREBRANCHES(B1, B2) 6= EqualTo
2 : comment: delete the branches of T followingB1

N ← DELETEBRANCHES(T,B1) “N nodes are deleted”

comment: replace B1 with next branch

if nNodes〈NextRoot〈B1〉〉 > Height〈B1〉
then NEXTTREE(NextRoot〈B1〉)
else NextRoot〈B1〉 ← FIRSTTREE(nNodes〈NextRoot〈B1〉〉+ 1)

fill in T with elementary branches

return (true)

112 Graphs, Algorithms, and Optimization

Theorem 6.2. Let T be a tree on n vertices. Algorithm NEXTTREE(T) constructs

the next tree on n vertices after T in the linear order of trees, if there is one.

Proof. The proof is by induction on n. It is easy to check that it works for trees on

n = 2 and n = 3 vertices. Suppose that it holds up to n − 1 vertices, and let T
have n vertices. Let T = (B1, B2, . . . , Bk) be the branches of T , whereB1 ≥ B2 ≥
· · · ≥ Bk. The algorithm first checks whether there is only one branch. If so, and

T is a branch of height n − 1, it returns false . Otherwise let T ′ be the rooted tree

corresponding to B1 by advancing the root. The algorithm calls NEXTTREE(T ′).
Because T ′ has n− 1 vertices, this gives the next branch following B1 in the linear

order, as required.

Otherwise, T has at least two branches. It finds the branch Bi such that Bi =
Bi+1 = . . . = Bk, but Bi−1 6= Bi, if there is one (possibly i = 1). The first tree

following T must differ from T in Bi, unless i = k and Bi is a path. In the first

case, the algorithm replaces Bi with the next branch in the linear order, and fills in

the remaining branches of T with elementary branches. This is the smallest tree on

n vertices following T . Otherwise i = k and Bi is a path, so that there is no tree

followingBi. Because there are at least two branches, the algorithm finds the branch

Bj such that Bj = Bj+1 = . . . = Bk−1 > Bk (possibly j = 1). It then replaces

Bj with the first branch following it, and fills in T with elementary branches. In each

case the result is the next tree after T .

Exercises

6.4.1 Work through the NEXTTREE(T) algorithm by hand to construct all the

rooted trees on 4, 5, 6, and 7 vertices.

6.4.2 Write the recursive procedure PRINTTREE(T) to print out a tree as shown

in Figure 6.14, according to the distance of each vertex from the root.

2 3

4

5

6 7

8

1

7→ 8

5→ 6, 7

3→ 4

1→ 2, 3, 5

FIGURE 6.14

Printing a rooted tree

The Structure of Trees 113

6.4.3 Write the recursive functions DESTROYTREE(T) and

DELETEBRANCHES(T,B1), both of which return the number of vertices

deleted.

6.4.4 Program the NEXTTREE(T) algorithm, and use it to find the number of

rooted trees up to 10 vertices.

6.5 Generating non-rooted trees

The NEXTTREE(T) algorithm generates the rooted trees on n vertices in sequence,

beginning with the first tree of height 1 and ending with the tree of height n− 1. In

order to generate non-rooted trees, we must root them in the center. Because every

non-rooted tree can be viewed as a rooted tree, all non-rooted trees also occur in the

linear order of trees. Central trees can be generated by modifying NEXTTREE(T)
so that the two highest branches are always required to have equal height. This

can be done with another procedure, NEXTCENTRALTREE(T), which in turn calls

NEXTTREE(T) when forming the next branch. Bicentral trees are slightly more dif-

ficult, because the highest branches B1 and B2 satisfy h(B1) = h(B2) + 1. If we

generate trees in which the heights of the two highest branches differ by one, then

most bicentral trees will be constructed twice, once for each vertex in the center.

For example, Figure 6.15 shows two different branch decompositions of the same

bicentral tree. It would therefore be generated twice, because it has different branch

decompositions with respect to the two possible roots.

T1 T2

FIGURE 6.15

Two decompositions of a bicentral tree

The easiest solution to this is to subdivide the central edge with a new vertex,

taking it as the root. Then each bicentral tree on n vertices corresponds to a unique

central tree on n+ 1 vertices, with exactly two branches. We can construct these by

generating rooted trees with only two branches, which have equal height, and then

ignoring the extra root vertex.

114 Graphs, Algorithms, and Optimization

Exercises

6.5.1 Write and program the procedures NEXTCENTRALTREE(T) and

NEXTBICENTRALTREE(T), and use them to construct all the non-rooted

trees on n vertices, up to n = 15.

6.6 Prüfer sequences

Read’s algorithm encodes a tree according to its isomorphism type, so that isomor-

phic trees have the same code. This can be used to list all the isomorphism types of

trees on n vertices. A related question is to make a list all the trees on the n vertices

Vn = {1, 2, . . . , n}. These are sometimes referred to as labeled trees. For example,

Figure 6.16 illustrates the three distinct, or labeled trees on three vertices, which are

all isomorphic to each other.

1 2 3

2 3 13 1 2

FIGURE 6.16

Three distinct trees on three vertices

Let T be a tree with V (T) = {1, 2, . . . , n}. A Prüfer sequence for T is a special

encoding of T as an integer sequence. For example, the tree of Figure 6.17 with

n = 9 has Prüfer sequence t = (6, 9, 1, 4, 4, 1, 6).

1

8

6

9

4

72
5

3

FIGURE 6.17

Finding the Prüfer sequence of a tree

This is constructed as follows. The leaves of T are L(T) = {2, 3, 5, 7, 8}. The

numerically smallest leaf is 2. Because 2→ 6, we take t1 = 6 as the first member of

The Structure of Trees 115

t. We now set T := T−2, and findL(T) = {3, 5, 7, 8}. We again choose the smallest

leaf, 3, and because 3 → 9, we take t2 = 9 as the second member of the sequence,

and set T := T − 3. Notice that when 3 is deleted, 9 becomes a leaf. Therefore,

on the next iteration we will have L(T) = {5, 7, 8, 9}. The general technique is the

following:

for k ← 1 to n− 2

do





find L(T)
select v ∈ L(T), the smallest leaf

tk ← the unique vertex adjacent to v
T ← T − v

comment: T now has 2 vertices left

This always gives a sequence of n− 2 integers t=(t1, t2, . . . , tn−2), where each

ti ∈ Vn. Notice that at each step, a leaf of T is deleted, so that T is always a tree

throughout all the steps. Because T is a tree, we can always choose a leaf to delete.

When T reduces to a single edge, the algorithm stops. Therefore no leaf of T is ever

chosen as any tk. In fact, if DEG(v) ≥ 2, then v will appear in t each time a leaf

adjacent to v is deleted. When the degree drops to one, v itself becomes a leaf, and

will appear no more in t. Therefore, each vertex v appears in t exactly DEG(v) − 1
times.

Theorem 6.3. Let t = (t1, t2, . . . , tn−2) be any sequence where each ti ∈ Vn =
{1, 2, . . . , n}. Then t is the Prüfer sequence of a tree T on n vertices.

Proof. The sequence t consists of n− 2 integers of Vn. Therefore at least two mem-

bers of Vn are not used in t. Let L be those numbers not used in t. If t were formed

by encoding a graph using the above technique, then the smallest element v ∈ L
must have been a leaf adjacent to t1. So we can join v → t1, and discard t1 from t.
Again we find L, the numbers not used in t, and pick the smallest one, etc. This is

summarized in the following pseudo-code:

N ← {1, 2, . . . , n}
for k ← 1 to n− 2

do





construct L, those numbers of N not used in t
select the smallest v ∈ L
join v −→ tk
discard tk from t
N ← N − v

comment: T now has 2 vertices left, u and v

join u −→ v

This creates a graph T with n − 1 edges. It is the only graph which could have

produced the Prüfer sequence t, using the above encoding technique. Must T be a

tree? If T were not a tree, then it could not be connected, because T has only n− 1
edges. In that case, some component of T would have a cycle C. Now the encoding

technique only deletes leaves. No vertex on a cycle could ever be deleted by this

116 Graphs, Algorithms, and Optimization

method, for the degree of every u ∈ C is always at least two. This means that a graph

containing a cycle would not produce a Prüfer sequence of length n − 2. Therefore

T can have no cycle, which means that it must be a tree.

Thus we see that every tree with vertex set {1, 2, . . . , n} corresponds to a unique

Prüfer sequence, and that every sequence t can only be obtained from one tree. The

corollary is that the number of trees equals the number of sequences. Now it is clear

that there are nn−2 such sequences, because each of the n − 2 elements tk can be

any of the numbers from 1 to n. This result is called Cayley’s theorem.

Theorem 6.4. (Cayley’s theorem) The number of distinct trees on n vertices is

nn−2.

6.7 Spanning trees

Consider the problem of making a list of all the spanning trees of a graph G. If

G ∼= Kn, then there are nn−2 spanning trees, and each one corresponds to a Prüfer

sequence. If G 6∼= Kn, then we can find all the spanning trees of G as follows.

Choose any edge uv of G. First find all the spanning trees that use uv and then find

all the trees that do not use uv. This gives all spanning trees of G. Write τ(G) for

the number of spanning trees of G. The spanning trees T that do not use edge uv are

also spanning trees of G − uv, and their number is τ(G − uv). If T is a spanning

tree that does use uv, then we can contract the edge uv, identifying u and v so that

they become a single vertex. Let T · uv denote the reduced tree. It is a spanning tree

ofG ·uv. Every spanning tree of G ·uv is a contraction T ·uv of some spanning tree

T of G; for just expand the contracted edge back into uv to get T . This gives:

Lemma 6.5. Let G be any graph. Then τ(G) = τ(G − uv) + τ(G · uv).

This applies equally well to simple graphs and multigraphs. It is illustrated in Fig-

ures 6.18 and 6.19.

u v

+

FIGURE 6.18

Deletion and contraction of edge uv

Notice that even when G is a simple graph, G · uv will often be a multigraph, or

have loops. Now loops can be discarded, because they cannot be part of any spanning

The Structure of Trees 117

+

FIGURE 6.19

Finding the number of spanning trees

tree. However multiple edges must be kept, because they correspond to different

spanning trees of G.

In the example of Figure 6.18, the 5-cycle obviously has five spanning trees.

The other graph is then decomposed, giving “trees” which contain some multiple

edges (i.e., replacing the multiple edges with single edges gives a tree). The two such

“trees” shown clearly have two and four spanning trees each, respectively. Therefore

the original graph has 5 + 2 + 4 = 11 spanning trees.

In general, if G has an edge of multiplicity k joining vertices u and v, then delet-

ing any one of the equivalent k edges will give the same number of spanning trees.

Contracting any one of them forces the rest to collapse into loops, which are then

discarded. This gives the following lemma:

Lemma 6.6. Let edge uv have multiplicity k inG. Replace the multiple edges having

endpoints u and v by a single edge uv to get a graph Guv . Then

τ(G) = τ(Guv − uv) + kτ(Guv · uv).

This gives a recursive technique for finding the number of spanning trees of a

connected graph G. G is stored as a weighted simple graph, for which the weight of

an edge represents its multiplicity.

Algorithm 6.7.1: SPTREES(G)

find an edge uv on a cycle

if there is no such edge

then

{
comment:G is a tree

return (product of edge weights)

else return (SPTREES(G− uv) + WT(uv) ∗ SPTREES(G · uv))

This can be expanded to make a list of all spanning trees of G. However, if only

the number of spanning trees is needed, there is a much more efficient method.

118 Graphs, Algorithms, and Optimization

6.8 The matrix-tree theorem

The number of spanning trees of G can be computed as the determinant of a matrix.

Let A(G) denote the adjacency matrix of G. The degree matrix of G is D(G), all of

whose entries are 0, except for the diagonal, which satisfies [D]uu = DEG(u), for

vertex u. The Kirchhoff matrix of G is K(G) = D − A. This matrix is sometimes

also called the Laplacian matrix of G. The number of spanning trees is found from

the Kirchhoff matrix.

First, notice that the row and column sums of K are all 0, because the row and

column sums of A are the degrees of G. Therefore, det(K) = 0. Consider the ex-

pansion of det(K) into cofactors along row u. Write

det(K) =

n∑

v=1

(−1)u+vkuv det(Kuv).

Here kuv denotes the entry in row u and column v of K , and Kuv denotes the

submatrix formed by crossing out row u and column v. The cofactor of kuv is

(−1)u+v det(Kuv). There are n vertices.

Theorem 6.7. (Matrix-Tree Theorem) Let K be the Kirchhoff matrix of G. Then

τ(G) = (−1)u+v det(Kuv), for any row index u and any column index v.

Proof. Notice that the theorem says that all cofactors of K have the same value,

namely, the number of spanning trees of G. The proof is by induction on the number

of vertices and edges of G. Suppose first that G is a disconnected graph; let one of

the components be H . Order the vertices so that vertices of H come before the rest

of G. Then K(G) is a block matrix, as shown in Figure 6.20.

K(G) =

K(H)

0 K(G−H)

0

FIGURE 6.20

Kirchhoff matrix of a disconnected graph

If row u and column v, where u, v ∈ V (H), are crossed off, then the row and

column sums ofG−H will be all 0, so that the cofactor corresponding toKuv will be

The Structure of Trees 119

zero. Similarly, if any other row and column are crossed off, the remaining cofactor

will be zero. Therefore, if G is disconnected, the theorem is true, because τ(G) = 0.

Suppose now that G is a tree. Choose a leaf v and let v −→ u. Without loss

of generality, we can order the vertices so that v is the last vertex. Write K · uv =
K(G · uv). The two Kirchhoff matrices are shown in Figure 6.21, where a = kuu.

u

v

u v

−1 b

−1a u

(v)

u (v)

0 b− 1

0a− 1

K K · uv

FIGURE 6.21

Kirchhoff matrices for a tree

If n = 2, there is only one tree, with Kirchhoff matrix
[

1 −1
−1 1

]
. All the cofactors

have value±1, as desired. If n > 2, we assume that the matrix-tree theorem holds for

all trees with at most n−1 vertices, and formK ·uv. Now det(K ·uv) = 0, because it

is a Kirchhoff matrix. The submatrixKvv differs fromK ·uv only in the single term

a instead of a− 1 in entry uu. When we expand det(Kvv) along row u, all the terms

are identical to expanding det(K · uv) along row u, except for this one. Therefore

det(Kvv)−det(K ·uv) equals the uu-cofactor inK ·uv. By the induction hypothesis,

this is τ(G · uv) = 1. Therefore det(Kvv) = 1. Striking off row and column u from

K , and expanding along row v, shows that det(Kuu) again equals the uu-cofactor in

K · uv, which is 1. Therefore, the uu-cofactor in K equals τ(G). Consider next the

cofactor det(Kxy), where neither x nor y equals u or v. Strike off row x and column

y of K . In order to evaluate (−1)x+y det(Kxy), first add row v to row u, and then

expand the determinant along column v. The value clearly equals the xy-cofactor of

K · uv, which is τ(G) = 1. If x = u but y 6= u or v, a similar argument shows that

the cofactor equals 1. If x = v but y 6= v, then expand along column v to evaluate

(−1)x+y det(Kxy). The result is (−1)x+y(−1)(−1)u+x−1 times the determinant of

(K ·uv)uy . This reduces to (−1)u+y det((K ·uv)uy) = τ(G). Thus, in all cases, the

cofactors equal τ(G) = 1. By induction, the matrix-tree theorem is true for all trees.

If G is a multigraph with n = 2 vertices, then it consists of m parallel edges, for

some m ≥ 1, so that τ(G) = m. It is easy to see that the theorem is true in this case,

as the Kirchhoff matrix is
[
m −m
−m m

]
. Suppose now that it holds for all multigraphs

120 Graphs, Algorithms, and Optimization

u

v

u v

−1 b

−1a u

v

u v

0 b− 1

0a− 1

K K − uv

FIGURE 6.22

Kirchhoff matrices K and K − uv

with fewer than n vertices, where n > 2, and for all multigraphs on n vertices with

less than ε edges, where ε > n−1, because we know that it holds for trees. Choose an

edge uv ofG, and write τ(G) = τ(G−uv)+τ(G·uv). The corresponding Kirchhoff

matrices are illustrated in Figure 6.22, where we write K − uv for K(G− uv).
The diagram is drawn as though the edge uv had multiplicity 1, but the proof is

general, and holds for any multiplicity m ≥ 1. Let a denote the entry kuu and b the

entry kvv .

Consider the vv-cofactor of K . It is nearly identical to the vv-cofactor of

K − uv, differing only in the uu-entry, which is a in K but a − 1 in K − uv.

Expanding det(Kvv) along row u shows that det(Kvv) − det((K − uv)vv) equals

the uu-cofactor of K − uv, with row and column v removed. Comparison with

Figure 6.23 shows that this is identical to the uu-cofactor of K · uv. Therefore

det(Kvv) − det((K − uv)vv) = det((K · uv)uu). By the induction hypothesis,

this gives det(Kvv) = τ(G · uv) + τ(G − uv) = τ(G), as desired.

Consider nowKvu, formed by striking off row v and column u ofK . This matrix

is almost identical to that formed by striking off row v and column u from K − uv.

The only difference is in the uv-entry. Expanding along row u shows that the differ-

ence of the determinants, det(Kvu)−det((K−uv)vu), is (−1)u+v−1(−1) det((K ·
uv)uu). Therefore (−1)v+u det(Kvu) = (−1)v+u det((K − uv)vu) + det((K ·
uv)uu) = τ(K−uv)+τ(K ·uv) = τ(G). Thus, the vu-cofactor and the vv-cofactor

both equal τ(G).
Finally, we show that the remaining entries in row v also have cofactors equal to

τ(G). Consider any entry kvw, where w 6= u, v. Strike off row v and column w of

K and of K − uv. In order to evaluate det(Kvw) and det((K − uv)vw), first add

the remaining part of column v to column u in both matrices. This is illustrated in

Figure 6.24.

The Structure of Trees 121

u

(v)

u (v)

a−1
b−1

cols
u+v

rows u+ v

K · uv

FIGURE 6.23

Kirchhoff matrix K · uv

Kvw and (K − uv)vw are now identical, except for the uv-entry. Expand

det(Kvw) along row u. All terms are equal to the corresponding terms in the

expansion of det((K − uv)vw) along row u, except for the last term. The dif-

ference is (−1)u+v−1(−1) det((K · uv)uw). Therefore (−1)v+w det(Kvw) =
(−1)v+w det((K − uv)vw) + (−1)u+w det((K · uv)uw). As before, we get

(−1)v+w det(Kvw) = τ(G). Thus, all the cofactors of K from row v have equal

value, namely, τ(G). Because v could be any vertex, all the cofactors of K have this

value. This completes the proof of the matrix-tree theorem.

A nice illustration of the use of the matrix-tree theorem is to compute τ(Kn).
The Kirchhoff matrix is

K(Kn) =




n− 1 −1 −1 · · · −1
−1 n− 1 −1 · · · −1
−1 −1 n− 1

...
...

...
. . . −1

−1 −1 · · · −1 n− 1




Strike off the last row and column. In order to evaluate the determinant, add all the

rows to the first row, to get




1 1 · · ·
−1 n− 1

...
. . .

n− 1



(n−1)×(n−1)

122 Graphs, Algorithms, and Optimization

u

v

wu v

−1 b

−1a− 1

cols
u+v

u

v

u vw

0 b− 1

0a− 1

cols
u+v

K K − uv

FIGURE 6.24

Evaluating det(Kvw)

Now add the first row to each row in turn, in order to get n’s on the diagonal and

0’s off the diagonal. Thus, the determinant is nn−2, as expected.

The Kirchhoff matrix was first used to solve electrical circuits. Consider a simple

electrical network consisting of resistors and a battery producing voltage V . Let the

nodes in the network be u1, u2, . . . , un, and suppose that the resistance connecting

ui to uj is rij . The battery causes current to flow in the network, and so sets up

a voltage Vi at each node ui. The current from ui to uj is (Vi − Vj)/rij . This is

illustrated in Figure 6.25.

u1

u2

u3 u4

u5

V

FIGURE 6.25

A simple network of resistors

The law of conservation of charge says that the total current flowing out of node

ui must equal the total current flowing in, that is, not counting the current flowing

The Structure of Trees 123

through the battery,
∑

uj→ui

(Vi − Vj)
rij

= 0,

for all nodes ui. The battery maintains a constant voltage difference of V across

nodes u1 and un, say. Let I denote the current through the battery. Then the u1-

equation must be modified by setting the right-hand side to I instead of 0; and the

un-equation requires the right-hand side to be −I . This gives a system of linear

equations in the variables Vi and I . If we consider the network as a multigraph in

which ui is joined to uj by 1/rij parallel edges, then the diagonal entries of the

matrix corresponding to the equations are the degrees of the nodes. The off-diagonal

entries form the negated adjacency matrix of the network. Thus, this is the Kirchhoff

matrix of the network. Because the Kirchhoff matrix has determinant zero, there is no

unique solution to the system. However, it is voltage differences that are important,

and we know that the battery maintains a constant voltage difference of V . Therefore,

we can arbitrarily set Vn = 0 and V1 = V , so that we can cross off the nth column

from the matrix. The rows are linearly dependent, so that we can also discard any row.

The system then has a unique solution, because striking off a row and column from

the Kirchhoff matrix leaves the spanning tree matrix. Notice that once the current in

each edge is known, each spanning tree of the network will determine the voltage

distribution uniquely, because a spanning tree has a unique path connecting any two

vertices.

Exercises

6.8.1 Find τ(K3,3) using the recursive method.

6.8.2 Find τ(Kn − uv), where uv is any edge of Kn, using the matrix-tree

theorem.

6.8.3 Find τ(Cn), where Cn is the cycle of length n, using the matrix-tree the-

orem.

6.8.4 What is the complexity of finding the determinant of an n × n matrix,

using Gaussian elimination? Accurately estimate an upper bound on the

number of steps needed.

6.8.5 LetG be a graph with n vertices. Replace each edge ofGwithmmultiple

edges to get a graph Gm. Prove that τ(Gm) = mn−1τ(G).

6.8.6 Program the recursive algorithm to find the number of spanning trees. Use

a breadth-first search to find an edge on a cycle.

6.8.7 Solve the electrical circuit of Figure 6.25, taking all resistances equal to

one. Solve for the voltage Vi at each node, the current in each edge, and

the total current I , in terms of the battery voltage V .

124 Graphs, Algorithms, and Optimization

6.9 Notes

Read’s tree encoding algorithm is from READ [142]. Prüfer sequences date back to

1918 – PRÜFER [137]. They are described in several books, including BONDY and

MURTY [23]. The matrix-tree theorem is one of the most fundamental theorems in

graph theory.

7

Connectivity

7.1 Introduction

Trees are the smallest connected graphs. For deleting any edge will disconnect a tree.

The following figure shows three graphs in order of increasing connectivity.

κ = 1 κ = 2 κ = 4
κ′ = 1 κ′ = 3 κ′ = 4

FIGURE 7.1

Three graphs with increasing connectivity

The second graph can be disconnected by deleting the two shaded vertices, but

three edges must be deleted in order to disconnect it. The third graph is complete and

cannot be disconnected by deleting any number of vertices. However, the deletion of

four edges will do so. Thus, connectivity is measured by what must be deleted from

a graph G in order to disconnect it. Because one can delete vertices or edges, there

will be two measures of connectivity.

The vertex-connectivity of G is κ(G), the minimum number of vertices whose

deletion disconnects G. If G cannot be disconnected by deleting vertices, then

κ(G) = |G| − 1. A disconnected graph requires the deletion of 0 vertices, so it

has κ = 0. The complete graph has κ(Kn) = n−1. Hence, κ(K1) = 0, but all other

connected graphs have κ ≥ 1. Any set of vertices whose deletion disconnects G is

called a separating set or vertex cut of G.

The edge-connectivity ofG is κ′(G), the minimum number of edges whose dele-

tion disconnects G. If G has no edges, then κ′(G) = 0. A disconnected graph does

not need any edges to be deleted, and so it has κ′ = 0. K1 also has κ′ = 0 because it

has no edges, but all other connected graphs have κ′ ≥ 1.

125

126 Graphs, Algorithms, and Optimization

The edge-connectivity is always at most δ(G), because deleting the δ edges in-

cident on a vertex of minimum degree will disconnect G. The following inequality

always holds.

Theorem 7.1. κ ≤ κ′ ≤ δ.

Proof. We know that κ′ ≤ δ. We prove that κ ≤ κ′ by induction on κ′. If κ′ = 0,

then either G has no edges, or else it is disconnected. In either case, κ = 0. Suppose

that it is true whenever κ′ ≤ m, and consider κ′ = m + 1. If κ′ = |G| − 1, then

δ = κ′ and thus κ ≤ κ′; so suppose that κ′ < |G| − 1. Let [S, S] be an edge-cut

containing m + 1 edges. Pick any edge uv ∈ [S, S] and form H = G − uv. Then

[S, S]−uv is an edge-cut ofH containingm edges, so κ′(H) ≤ m. By the induction

hypothesis, κ(H) ≤ m. Let U ⊆ V (H) be a minimum separating set of H . Then

|U | ≤ m, and H − U consists of two or more components. We now want to put the

edge uv back. Where does it go?

UCu Cv

m points

u v

FIGURE 7.2

A minimum separating set of H

If H − U had three or more components, then U would also be a separating set

of G, in which case κ(G) ≤ |U | = m. If H − U has exactly two components,

Cu and Cv , containing u and v, respectively, then U will not be a separating set

of G, for the edge uv will keep it connected. However, κ′(G) < |G| − 1, so that

m = κ′ − 1 < |G| − 2. Therefore, one of Cu and Cv contains two or more vertices,

say Cu does. Then U ′ = U ∪ {u} is a separating set of G with m + 1 vertices, so

that κ(G) ≤ κ′(G). By induction, the theorem is true for all values of κ′.

Except for this inequality, the parameters κ, κ′, and δ are free to vary consid-

erably, as shown by CHARTRAND and HARARY [30]. For example, the graph of

Figure 7.3 has κ = 2, κ′ = 3, and δ = 4.

Given any three non-negative integers a, b, and c satisfying a ≤ b ≤ c, we can

easily make a graph with κ = a, κ′ = b, and δ = c, as illustrated in Figure 7.3.

Take two complete graphs G′ and G′′, isomorphic to Kc+1. They have minimum

degree δ = c. Choose any a vertices U ′ ⊆ V (G′), and a corresponding vertices

U ′′ ⊆ V (G′′). Join them up in pairs, using a edges. Then U ′ is a separating set of

the graph, containing a vertices. Now add b−a edges connectingG′ toG′′, such that

Connectivity 127

FIGURE 7.3

A graph with κ = 2, κ′ = 3, and δ = 4

every edge added has one endpoint in U ′. Clearly the graph constructed has κ = a,

κ′ = b, and δ = c.

Exercises

7.1.1 LetG be connected and let uv ∈ E(G). Prove that uv is in every spanning

tree of G if and only if uv is a cut-edge of G.

7.1.2 Show that a connected graph with exactly two vertices that are not cut-

vertices is a tree. Hint: Consider a spanning tree of G.

7.1.3 Prove that if G is a k-regular bipartite graph with k > 1 then G has no

cut-edge.

7.1.4 Prove that if G is connected, with all even degrees, then ω(G − v) ≤
1
2DEG(v), for any v ∈ V (G), where ω(G) is the number of connected

components of G.

7.1.5 Let G be a 3-regular graph.

(a) If κ = 1, show that κ′ = 1.

(b) If κ = 2, show that κ′ = 2.

Conclude that κ = κ′ for 3-regular graphs.

7.1.6 Let G be a 4-regular graph with κ = 1. Prove that κ′ = 2.

7.1.7 Let (d1, d2, . . . , dn), where d1 ≤ d2 ≤ . . . ≤ dn, be the degree sequence

of a graph G. Prove that if dj ≥ j, for j = 1, 2, . . . , n− 1 − dn, then G
is connected.

7.1.8 Give another proof that κ ≤ κ′, as follows. Let [S, S] be a minimum

edge-cut of G, containing κ′ edges. Construct a set U ⊆ S consisting of

all vertices u ∈ S, such that there is an edge uv ∈ [S, S]. Then |U | ≤ κ′.
If U 6= S, then U is a separating set of G with ≤ κ′ vertices. Therefore

κ ≤ κ′. Show how to complete the proof when U = S.

128 Graphs, Algorithms, and Optimization

7.2 Blocks

Any graph G with κ ≥ 1 is connected. Consequently G is said to be 1-connected.

Similarly, if κ ≥ 2, then at least two vertices must be deleted in order to disconnect

G, so G is said to be 2-connected. It is usually easier to determine a lower bound,

such as κ ≥ 2 or κ ≥ 3, than to compute the exact value of κ. In general, G is said

to be k-connected if κ ≥ k, for some integer k.

If G is a disconnected graph, then its structure is determined by its components,

that is, its maximal connected subgraphs. A component which is an isolated vertex

will have κ = 0, but all other components will be 1-connected.

If a connected graphG has a cut-vertex v, then it is said to be separable, because

deleting v separates G into two or more components. A separable graph has κ =
1, but it may have subgraphs which are 2-connected, just as a disconnected graph

has connected subgraphs. We can then find the maximal non-separable subgraphs of

G, just as we found the components of a disconnected graph. This is illustrated in

Figure 7.4.

(a) (b)

FIGURE 7.4

A graph (a) and its blocks (b)

The maximal non-separable subgraphs ofG are called the blocks ofG. The graph

illustrated in Figure 7.4 has eight blocks, held together by cut-vertices. Every sepa-

rable graph will have two or more blocks. Any 2-connected graph is non-separable.

However, K2, a graph which consists of a single edge, is also non-separable, be-

cause it has no cut-vertex. Therefore every edge of G is a non-separable subgraph,

and so will be contained in some maximal non-separable subgraph. Can an edge be

contained in two distinct blocks? We first describe some properties of 2-connected

graphs.

Connectivity 129

Notice that cycles are the smallest 2-connected graphs, because a connected

graph with no cycle is a tree, which is not 2-connected. Any two vertices u and v
on a cycle C divide C into two distinct paths with only the endpoints u and v in

common. Paths which have only their endpoints in common are said to be internally

disjoint; see Figure 7.5.

FIGURE 7.5

Three internally disjoint paths

Theorem 7.2. A graph G with three or more vertices is 2-connected if and only if

every pair of vertices is connected by at least two internally disjoint paths.

Proof. Suppose that every pair of vertices ofG is connected by at least two internally

disjoint paths. If a vertex w is deleted, then every remaining pair of vertices is still

connected by at least one path, so that w is not a cut-vertex. Therefore κ ≥ 2.

Conversly suppose that G be 2-connected, and let u, v ∈ V (G). We prove by

induction on DIST(u, v) that u and v are connected by two internally disjoint paths.

If DIST(u, v) = 1, then G − uv is still connected, because κ′ ≥ κ ≥ 2. Therefore

G − uv contains a uv-path P , so that G has two uv-paths, P and uv. Suppose that

the result holds when DIST(u, v) ≤ m and consider DIST(u, v) = m + 1. Let P
be a uv-path of length m + 1 and let w be the last vertex before v on this path.

Then DIST(u,w) = m, because P is a shortest path. By the induction hypothesis,G
contains internally disjoint uw-paths Pw and Qw.

u v
w

x

R

P

Pw

Qw

FIGURE 7.6

Internally disjoint paths Pw and Qw

130 Graphs, Algorithms, and Optimization

Because G is 2-connected, G − w is still connected, and so has a uv-path R.

R has the endpoint u in common with both Pw and Qw. Let x be the last vertex

common toR and either of Pw orQw, say x ∈ Pw. Then Pw[u, x]R[x, v] andQwwv
are two internally disjoint uv-paths. By induction, the result holds for all pairs u, v
of vertices.

So in a 2-connected graph, every pair u, v, of vertices are connected by at least

two internally disjoint paths P and Q. Because P and Q together form a cycle, we

know that every pair of vertices lies on a cycle. Another consequence of this theorem

is that every pair of edges also lies on a cycle.

Corollary 7.3. A graph G with three or more vertices is 2-connected if and only if

every pair of edges lies on a cycle.

Proof. Let G be 2-connected and pick edges uv, xy ∈ E(G). Subdivide uv with a

new vertex w, and xy with a new vertex z to get a graph G′. Now G has no cut-

vertex, so neither does G′. By the previous theorem, w and z lie on a cycle in G′, so

that uv and xy lie on a cycle in G.

y

z

xu

w

v

FIGURE 7.7

Two edges on a cycle

Conversly suppose now that every pair of edges lies on a cycle. Then every vertex

has degree at least two, because no cycle could pass through an edge incident on a

vertex of degree one. Choose any two vertices u and x. Choose any vertex v adjacent

to u and a vertex y adjacent to x, such that y 6= v. Then the edges uv and xy must

lie on a cycle C. Clearly C contains u and x, so that every pair u, x, of vertices lies

on a cycle. It follows that G is 2-connected.

Lemma 7.4. Each edge uv of G is contained in a unique block.

Proof. Let uv be an edge in a graphG, and letB be a maximal 2-connected subgraph

of G containing uv. If B′ is another maximal 2-connected subgraph containing uv,

whereB 6= B′, then choose any edge xy ∈ B′ \B.B′ contains a cycle C containing

both uv and xy, becauseB′ is 2-connected. The subgraphB∪C is 2-connected, and

Connectivity 131

is larger thanB, a contradiction. Therefore, each edge uv is contained in exactly one

block of G.

7.3 Finding the blocks of a graph

The first algorithm to find the blocks of a graph was discovered by READ [143]. It

uses the fundamental cycles with respect to a spanning tree T . Because each edge

of G is contained in a unique block Buv , the algorithm begins by initializing Buv to

contain only uv and uses the merge-find data structure to construct the full blocks

Buv . For each edge uv 6∈ T , the fundamental cycle Cuv is found. Because Cuv is

2-connected, all its edges are in one block. So upon finding Cuv , we merge all the

blocks Bxy , where xy ∈ Cuv , into one. Any spanning tree T can be used. If we

choose a breadth-first tree, we have Algorithm 7.3.1.

Algorithm 7.3.1: BLOCKS(G)

comment:G is a connected graph

for each uv ∈ E(G)
do initialize Buv to contain uv

pick any vertex x ∈ V (G)
place x on ScanQ
repeat

select u from head of ScanQ
for each v −→ u

do if v 6∈ ScanQ

then





comment: uv forms part of the spanning tree T

add edge uv to T
add v to ScanQ

else





comment: uv creates a fundamental cycle

construct Cuv
for each edge xy ∈ Cuv

do Buv ← Buv ∪Bxy
advance ScanQ

until all vertices on ScanQ are processed

comment: each Buv now consists of the unique block containing uv

Lemma 7.5. At the beginning of each iteration of the repeat loop, eachBuv is either

a single edge, or else is 2-connected.

132 Graphs, Algorithms, and Optimization

Proof. The proof is by induction on the number of iterations of the repeat loop. At

the beginning of the first iteration it is certainly true. Suppose that it is true at the

beginning of the kth iteration. If the edge uv chosen forms part of the spanning

tree T , it will also be true for the (k + 1)st iteration, so suppose that uv creates

a fundamental cycle Cuv . Each Bxy for which xy ∈ Cuv is either a single edge,

or else 2-connected. The new Buv is formed by merging all the Bxy into one, say

Buv = Bx1y1 ∪ Bx2y2 ∪ · · · ∪ Bxmym . Pick any two edges ab, cd ∈ Buv, say

ab ∈ Bxiyi and cd ∈ Bxjyj . We show that Buv contains a cycle containing both

ab and cd. If ab, cd ∈ Cuv , it is certainly true. Otherwise, notice that each Bxiyi

contains some edge ofCuv . Without loss of generality, we can suppose that the edges

xlyl ∈ Cuv , for l = 1, 2, . . . ,m. BecauseBxiyi is 2-connected, it contains a cycleCi
containing both xiyi and ab, andBxjyj contains a cycleCj containing both xjyj and

cd. This is illustrated in Figure 7.8. Then Cuv ⊕Ci ⊕Cj is a cycle contained in Buv
and containing ab and cd. By Corollary 7.3, the new Buv is 2-connected. Therefore

the result is true at the beginning of the (k+1)st iteration. By induction it is true for

all iterations.

Corollary 7.6. Upon completion of Algorithm 7.3.1, each Buv contains the unique

block containing uv.

Proof. By the previous lemma, each Buv will either be a single edge, or else 2-

connected. If Buv is not the unique block B containing uv, then pick some edge

xy ∈ B − Buv . B contains a cycle C containing both uv and xy. By Theorem 5.3,

C can be written in terms of fundamental cycles with respect to the spanning tree T
constructed by Algorithm 7.3.1, C = Cu1v1 ⊕ Cu2v2 ⊕ · · · ⊕ Cumvm . But each of

the fundamental cycles Cuivi will have been processed by the algorithm, so that all

edges of C are contained in one Buv , a contradiction. Therefore, each Buv consists

of the unique block containing uv.

Exercises

7.3.1 Given an edge uv which creates a fundamental cycle Cuv , describe how

to find Cuv using the Parent[·] array created by the BFS.

7.3.2 Let (d1, d2, . . . , dn), where d1 ≤ d2 ≤ . . . ≤ dn, be the degree sequence

of a graph G. Prove that if dj ≥ j + 1, for j = 1, 2, . . . , n − 1 − dn−1,

then G is 2-connected.

7.3.3 Program the BLOCKS() algorithm. One way to store the merge-find sets

Buv is as an n by n matrix BlockRep[·, ·]. Then the two values x ←
BlockRep[u, v] and y ← BlockRep[v, u] together define the edge xy rep-

resenting uv. Another way is to assign a numbering to the edges, and use

a linear array.

7.3.4 Try to estimate the complexity of the algorithm BLOCKS(). It is difficult

to obtain a close estimate because it depends on the sum of the lengths of

all ε− n+ 1 fundamental cycles of G, where n = |G|.

Connectivity 133

Cuv

a b

c d

Bxi,yi

Bxj,yj

FIGURE 7.8

Merging the Bxy

7.3.5 The Block-Cut-Vertex Tree. (See HARARY [80].) Let G be a connected

separable graph. Let B denote the set of blocks of G and C denote the

set of cut-vertices. Each cut-vertex is contained in two or more blocks,

and each block contains one or more cut-vertices. We can form a bipartite

graph BC(G) with vertex-set B ∪ C by joining each B ∈ B to the cut-

vertices v ∈ C that it contains.

(a) Show that BC(G) has no cycles, and consequently is a tree.

(b) In the block-cut-vertex tree BC(G), the degree of each v ∈ C is the

number of blocks of G containing v. Denote this value by b(v), for

any vertex v ∈ V (G). Show that

∑

v∈V (G)

b(v)− 1 =
∑

v∈C

b(v)− 1 = |B| − 1,

so that the number of blocks of G is given by

|B| = 1 +
∑

v∈V (G)

b(v)− 1.

(c) Prove that every separable graph has at least two blocks which contain

only one cut-vertex each.

134 Graphs, Algorithms, and Optimization

7.4 The depth-first search

There is an easier, more efficient way of finding the blocks of a graph than using

fundamental cycles. It was discovered by Hopcroft and Tarjan. It uses a depth-first

search (DFS) to construct a spanning tree. With a depth-first search the fundamental

cycles take a very simple form – essentially we find them for free, as they require

no extra work. The basic form of the depth-first search follows. It is a recursive

procedure, usually organized with several global variables initialized by the calling

procedure. The example following uses a global counter DFCount , and two arrays

DFNum[v] and Parent[v]. Each vertex v is assigned a number DFNum[v], being the

order in which the DFS visits the vertices of G, and a value Parent[v], being the

vertex u from which DFS(v) was called. It is the parent of v in the rooted spanning

tree constructed. Initially all DFNum[·] values are set to 0.

Algorithm 7.4.1: DFS(u)

comment: extend a depth-first search from vertex u

DFCount ← DFCount + 1
DFNum[u]← DFCount
for each v −→ u

do if DFNum[v] = 0

then





comment: v is not visited yet

add edge uv to the spanning tree

Parent[v]← u
DFS(v)

else
{

comment: uv creates a fundamental cycle

The calling procedure can be written as follows:

DFCount ← 0
for u← 1 to n do DFNum[u]← 0
select a staring vertex u
DFS(u)

Figure 7.9 shows a depth-first search in a graph. The numbering of the vertices

shown is that of DFNum[·], the order in which the vertices are visited.

Notice that while visiting vertex u, DFS(v) is called immediately, for each v −→
u discovered. This means that before returning to node u, all vertices that can be

reached from v on paths that do not contain u will be visited; that is, all nodes of

G− u that are reachable from v will be visited. We state this important property as a

lemma. For any vertex u, let A(u) denote u, plus all ancestors of u in the depth-first

tree, where an ancestor of u is either its parent, or any vertex on the unique spanning

tree path from u to the root vertex.

Connectivity 135

2

73

6

5 4

1

9 10

11

8

12

13

14

15

16

FIGURE 7.9

A depth-first search

Lemma 7.7. Suppose that DFS(v) is called while visiting node u. Then DFS(v)
visits every vertex in V (G)−A(u) reachable from v before returning to node u.

Proof. The statement

if DFNum[u] = 0 then · · ·
ensures that no vertex ofA(u) will be visited before returning to node u. To show that

every vertex ofG−A(u) connected to v is visited, let w be a vertex of V (G)−A(u),
with DIST(v, w) = k. The proof is by induction on k. It is clear that all w −→ v
will be visited before returning to u, so that the statement is true when k = 1. If

k > 1, let P be a vw-path of length k, and let x −→ v be the first vertex of P . Now

x will certainly be visited before returning to node u. When x is visited, either w
will already have been visited, or else some DFS(y) called from node x will visit w
before returning to v, because DIST(x,w) = k − 1. Therefore all vertices of G− u
connected to v will be visited before returning to u.

This makes it possible to detect when u is a cut-vertex. It also means that a span-

ning tree constructed by a depth-first search will tend to have few, but long, branches.

The following diagram shows the DF-tree constructed by the DFS in Figure 7.9.

Suppose that while visiting node u, a vertex v −→ u with DFNum[v] 6= 0 is

encountered. This means that v has already been visited, either previously to u, or

as a descendant of u. While visiting v, the edge uv will have been encountered.

Therefore, if v was visited previously, either DFS(u) was called from node v, so that

Parent[u] = v, or else DFS(u) was called from some descendant w of v. So we can

state the following fundamental property of depth-first searches:

Lemma 7.8. Suppose that while visiting vertex u in a depth-first search, edge uv
creating a fundamental cycle is encountered. Then either v is an ancestor of u, or

else u is an ancestor of v.

136 Graphs, Algorithms, and Optimization

1

2

8

11

12

15

16

3

4

5

9

10

13

14
6 7

FIGURE 7.10

A depth-first tree with fronds

Edges which create fundamental cycles with respect to a depth-first spanning tree

T are called fronds of T . Some of the fronds of the graph of Figure 7.9 are shown in

Figure 7.10.

Now suppose that G is a separable graph with a cut-vertex v. v will occur some-

where in T , say that DFS(v) was called from node u, and that node v in turn calls

DFS(w), where u and w are in different blocks. Thus, edges uv and vw do not lie

on any cycle ofG. This is illustrated in Figure 7.11. Consider any descendant x of w
and a frond xy discovered while visiting node x, where y is an ancestor of x. Now y
cannot be an ancestor of v, for then the fundamental cycle Cxy would contain both

edges uv and vw, which is impossible. Therefore either y = v, or else y is a descen-

dant of v. So, for every frond xy, where x is a descendant of w, either y = v, or

else y is a descendant of v. We can recognize cut-vertices during a DFS in this way.

Ancestors of v will have smaller DFNum[·] values than v, and descendants will have

larger values. For each vertex v, we need to consider the endpoints y of all fronds xy
such that x is a descendant of v.

DEFINITION 7.1: Given a depth-first search in a graph G. The low-point of a

vertex v is LowPt [v], the minimum value of DFNum[y], for all edges vy and all

fronds xy, where x is a descendant of v.

We can now easily modify DFS(u) to compute low-points and find cut-vertices.

In addition to the global variables DFCount ,DFNum[·], and Parent[·], the algorithm

keeps a stack of edges. Every edge encountered by the algorithm is placed on the

Connectivity 137

u

w

x

v

FIGURE 7.11

A cut-vertex v in a DF-tree

stack. When a cut-vertex is discovered, edges on the top of the stack will be the

edges of a block of G.

The procedure DFSEARCH(u) considers all v −→ u. If v has been previously

visited, there are two possibilities, either v = Parent[u], or else uv is a frond. When

uv is a frond, there are also two possibilities, either u is an ancestor of v, or v is an

ancestor of u. These two cases are shown in Figure 7.12. The algorithm only needs

those fronds uv for which v is an ancestor of u in order to compute LowPt [u].

138 Graphs, Algorithms, and Optimization

Algorithm 7.4.2: DFBLOCKS(G)

comment:

{
DFS to find the blocks of a connected graph G,

on n vertices.

procedure DFSEARCH(u)
comment: extend a depth-first search from u

DFCount ← DFCount + 1
DFNum[u]← DFCount
for each v −→ u do



if DFNum[v] = 0

then





comment:

{
v is not visited yet,

add uv to the spanning tree

Parent [v]← u
stack uv
LowPt [v]← DFNum[u] “initial value”

DFSEARCH(v)
comment: LowPt [v] is now known

if LowPt [v] = DFNum[u]

then

{
comment: u is a cut-vertex

unstack all edges up to, and including, uv

else





comment: otherwise LowPt [v] < DFNum[u]
if LowPt [v] < LowPt [u]

then LowPt [u]← LowPt [v]

else





comment: v has already been visited

if v 6= Parent [u] then



comment: uv is a frond, it creates a fund. cycle

if DFNum[v] < DFNum[u]

then





comment: v is an ancestor of u
stack uv
if DFNum[v] < LowPt [u]

then LowPt [u]← DFNum[v]

main

DFCount ← 0
for u← 1 to n do DFNum[u]← 0
select a vertex u
LowPt [u]← 1
DFSEARCH(u)

The next thing to notice is that the LowPt [u] is correctly computed. For if u is a

leaf-node of the search tree, then all edges uv are fronds, and v is an ancestor of u.

The algorithm computes LowPt [u] as the minimum DFNum[v], for all such v. There-

Connectivity 139

v

u

v

FIGURE 7.12

Two kinds of fronds

fore, if u is a leaf-node, the low-point is correctly computed. We can now use induc-

tion on the depth of the recursion. If u is not a leaf-node, then some DFSEARCH(v)
will be called from node u. The depth of the recursion from v will be less than that

from u, so that we can assume that DFSEARCH(v) will correctly compute LowPt [v].
Upon returning from this recursive call, LowPt [v] is compared with the current value

of LowPt [u], and the minimum is taken, for every unsearched v −→ u. Therefore,

after visiting node u, LowPt [u] will always have the correct value.

So far the algorithm computes low-points and uses them to find the cut-vertices

of G. We still need to find the edges in each block. While visiting node u, all new

edges uv are stacked. If it is discovered that LowPt [v] = DFNum[u]; so that u is a

cut-vertex, then the edges in the block containing uv are all those edges on the stack

up to, and including, uv.

Theorem 7.9. Each time that

LowPt[v] = DFNum[u]

occurs in DFSEARCH(u), the block containing uv consists of those edges on the

stack up to and including uv.

Proof. Let Buv denote the block containing uv. The proof is by induction on the

number of times that LowPt [v] = DFNum[u] occurs. Consider the first time it oc-

curs. DFSEARCH(v) has just been called, while visiting node u. Edge uv has been

placed on the stack. DFSEARCH(v) constructs the branch of the search tree at u con-

taining v. By Lemma 7.7, this contains all vertices ofG−u connected to v. Call this

140 Graphs, Algorithms, and Optimization

set of vertices B. By the definition of the low-point, there are no fronds joining v or

any descendant of v to any ancestor of u. So u separatesB from the rest of the graph.

ThereforeBuv ⊆ G[B ∪ {u}].
Suppose now that B contained a cut-vertex w. No leaf-node of the DF-tree can

be a cut-vertex, so some DFSEARCH(x) is called while visiting node w. It will visit

all nodes of G − w connected to x. Upon returning to node w, it would find that

LowPt [x] = DFNum[w], which is impossible, because this occurs for the first time at

node u. ThereforeBuv consists of exactly those edges encountered while performing

DFSEARCH(v); that is, those on the stack.

Upon returning from DFS(v) and detecting that LowPt [v] = DFNum[u], all

edges on the stack will be unstacked up to, and including, uv. This is equivalent to

removing all edges ofBuv from the graph. The remainder of the DFS now continues

to work on G − B. Now Buv is an end-block of G (i.e., it has at most one cut-

vertex) for u is the first vertex for which a block is detected. If G is 2-connected,

then G = Buv, and the algorithm is finished. Otherwise, G − B is connected, and

consists of the remaining blocks of G. It has one less block than G, so that each time

LowPt [v] = DFNum[u] occurs in G−B, the edges on the stack will contain another

block. By induction, the algorithm finds all blocks of G.

Each time the condition LowPt [v] = DFNum[u] occurs, the algorithm has found

the edges of a block of G. In this case, u will usually be a cut-vertex of G. The

exception is when u is the root of the DF-tree, because u has no ancestors in the tree.

Exercise 7.4.3 shows how to deal with this situation.

7.4.1 Complexity

The complexity of DFBLOCKS() is very easy to work out. For every u ∈ V (G), all

v −→ u are considered. This takes

∑

u

DEG(u) = 2ε

steps. Each edge is stacked and later unstacked, and a number of comparisons are

performed in order to compute the low-points. So the complexity is O(ε).

Exercises

7.4.1 Can the spanning tree shown in the graph illustrated in Figure 7.13 be a

DF-tree, with the given root-node? If so, assign a DF-numbering to the

vertices.

7.4.2 Program the DFBLOCKS() algorithm to find all the blocks of a connected

graphG. Print a list of the edges in each block. Choose the starting vertex

to be sometimes a cut-vertex, sometimes not.

7.4.3 Modify your program to print also a list of the cut-vertices of G, by stor-

ing them on an array. A vertex u is a cut-vertex if LowPt [v] = DFNum[u]
occurs while visiting edge uv at node u. However, if u is the root-node

Connectivity 141

FIGURE 7.13

Is this a DF spanning tree?

of the DF-tree, then it will also satisfy this condition, even when G is

2-connected. Find a way to modify the algorithm so that it correctly de-

termines when the root-node is a cut-vertex.

7.4.4 A separable graph has κ = 1, but can be decomposed into blocks, its max-

imal non-separable subgraphs. A tree is the only separable graph which

does not have a 2-connected subgraph, so that every block of a tree is an

edge. Suppose thatG has κ = 2. In general,Gmay have 3-connected sub-

graphs. Characterize the class of 2-connected graphs which do not have

any 3-connected subgraphs.

7.4.5 Let G be 3-connected. Prove that every pair of vertices is connected by at

least three internally disjoint paths.

7.4.6 LetG have κ = 2, and consider the problem of finding all separating pairs

{u, v} of G using a DFS. Prove that for every separating pair {u, v}, one

of u and v is an ancestor of the other in any DF-tree. Refer to Figure 7.14.

7.4.7 Suppose that deleting {u, v} separates G into two or more components.

Let G1 denote one component and G2 the rest of G. Show that there are

two possible ways in which a DFS may visit u and v, as illustrated in

Figure 7.14. Devise a DFS which will find all pairs {u, v} which are of

the first type. (Hint: You will need LowPt2 [v], the second low-point of v.

Define it and prove that it works.)

7.5 Sections and modules

Suppose that G is a disconnected graph, with connected components G1, G2, . . . ,
Gk. Algorithms applied to G can usually be applied successively to each Gi. The

complement G is connected, but each subgraph Gi is connected to all other Gj’s

142 Graphs, Algorithms, and Optimization

u

v

u

v

FIGURE 7.14

DFS with separating set {u, v}

by all possible edges. Therefore algorithms applied to G can also be applied succes-

sively to each Gi. We say that each subset V (Gi) ⊆ V (G) is a section of G and of

G. Sections are defined recursively.

DEFINITION 7.2: Given a graph G, with complementG, and vertex set V .

1. V is a section of G and of G.

2. If U ⊆ V induces a connected component of G or of G, then U is a section of

G and G.

3. Let U be a section of G and G. Then any section of G[U] is also a section of

G and G.

If G = Kn, thenG has n connected components, so that each vertex is a section.

Consider G = C4. Then G consists of 2K2. The vertices of each K2 form a section.

And each K2 itself consists of two sections. Thus, C4 can be completely reduced by

its sections. In general, the set of sections of G and G form a decomposition tree.

The tree of sections of C4 is shown in Figure 7.15.

C4

K2 K2

FIGURE 7.15

The sections of C4

Connectivity 143

Let G denote the complement of K4 ∪ K3,3. This is a connected graph, whose

complement has two connected components,K4 andK3,3, each of which is a section

ofG.K4 has four sections consisting of single vertices. And the complement ofK3,3

is disconnected, consisting of two triangles K3. Each K3 in turn has three sections

consisting of single vertices. The complete tree is shown in Figure 7.16. We see that

the decomposition tree of G is required in order to combine the sections and retrieve

G.

K4 ∪K3,3

K4 K3,3

K3 K3

FIGURE 7.16

The sections of the complement of K4 ∪ K3,3

An algorithm for finding the sections of a graph G derives from Definition 7.2.

We start by finding the connected components G1, G2, . . . , Gk of G. If k > 1, then

each component is a section. The algorithm then proceeds recursively, taking in turn

the complement of each Gi. But if G is connected, the algorithm finds the connected

components of G and then proceeds recursively. The decomposition tree can be si-

multaneously constructed.

A proper section of G is a section U , where U 6= V (G). Clearly a connected

graph G whose complement is also connected has no proper sections. Let v be a

vertex in such a G. We now take an arbitrary graph H , and alter G by replacing v
with H . Any edge uv of G is replaced by all possible edges uw, where w ∈ V (H).
The set V (H) now has the property that if ux ∈ E(G) is any edge where u 6∈ V (H)
and x ∈ V (H), then uw ∈ E(G), for all w ∈ V (H). Such a set is called a module

or autonomous set of G.

DEFINITION 7.3: Let G be a graph and let U ⊆ V (G) be a set of vertices of

G. Then U is a module of G if it has the property: if ux ∈ E(G) where u 6∈ U and

x ∈ U , then uw ∈ E(G), for all w ∈ U .

It is clear from the definition that V (G) is a module of G. Similarly every {v},
where v ∈ V (G) is a module, and ∅ is a module ofG. And every section of G is also

a module of G. Every module of G is also a module of G.

Lemma 7.10. Let U1 and U2 be modules of G. Then

1. U1 ∩ U2 is a module of G.

144 Graphs, Algorithms, and Optimization

2. If U1 ∩ U2 6= ∅ then U1 ∪ U2 is a module of G.

3. If U1 ∩ U2 6= ∅, then U1 ∩ U2 is a module of G.

Modules provide a further reduction for graphs with no proper sections. If U is

a module of G, then because every {v} is also a module of G, we see that V (G)
can always be written as a disjoint union of modules, one of which is U . If the set

U is “shrunk” to a single vertex, a smaller graph is obtained. G is then said to be

decomposable. A graph is indecomposable if every module is either the empty set, a

singleton, or all of V (G).

Exercises

7.5.1 Let U be a section of G. Show that U is also a section of G.

7.5.2 Let U be a module of G. Show that U need not be a module of G.

7.5.3 Prove Lemma 7.10.

7.5.4 Let G be a graph with n vertices and no proper sections. Can there be a

module of n− 2 vertices ? Can there be a module of n− 3 vertices ?

7.5.5 Program the algorithm to find the sections and decomposition tree of a

graph G.

7.5.6 Develop an algorithm to find the modules of a graph with no proper sec-

tions.

7.6 Notes

The example of Figure 6.3 is based on HARARY [80]. Read’s algorithm to find the

blocks of a graph is from READ [143]. The depth-first search algorithm is from

HOPCROFT and TARJAN [89]. See also TARJAN [166]. Hopcroft and Tarjan’s appli-

cation of the depth-first search to find the blocks of a graph was a great breakthrough

in algorithmic graph theory. The depth-first search has because been applied to solve

a number of difficult problems, such as determining whether a graph is planar in

linear time, and finding the 3-connected components of a graph.

Algorithms for finding the connectivity and edge-connectivity of a graph are de-

scribed in Chapter 8. An excellent reference for connectivity is TUTTE [177], which

includes a detailed description of the 3-connected components of a graph. A depth-

first seach algorithm to find the 3-connected components of a graph can be found

in HOPCROFT and TARJAN [90]. This algorithm has been carefully analyzed and

improved by GUTWENGER and MUTZEL [77].

Sections were introduced by CORNEIL, LERCHS, BURLINGHAM [37], and also

by GOLDBERG [71], who used them as a reduction in a graph isomorphism algo-

rithm. Modules are presented in a very general setting by SCHMERL and TROTTER

Connectivity 145

in [155]. See also ILLE [91]. Modules are also known as autonomous sets or inter-

vals. A fast algorithm to find the modules of a graph appears in BUER and MÖHRING

[26].

http://taylorandfrancis.com

8

Graphs and Symmetry

8.1 Groups

Groups are necessary for understanding of the symmetry of a graph, and for con-

structing graphs with prescribed symmetry. We outline here the main concepts of

group theory which are used in this book. They are used for constructing vari-

ous graphs. Consider the graph of the cube, illustrated in Figure 8.1. Given a 3-

dimensional cube, it could be rotated in several ways, and the cube would still look

the same. A rotation of the cube can be represented as a permutation of the vertices.

For example, if we imagine an axis of rotation through the front and rear faces of

the cube in Figure 8.1, then a clockwise rotation through π/2 could be represented

by the permutation (1, 3, 5, 7)(2, 4, 6, 8), where the parentheses indicate that the ver-

tices move in two cycles of four vertices each: 1 maps to 3, which maps to 5, which

maps to 7, which maps to 1, etc.

1

2

3

4

5

6

7

8

FIGURE 8.1

The graph of a cube

An automorphism of a graph G is a permutation of V (G), (i.e., a one-to-one

mapping of V (G) onto V (G)), that maps E(G) onto itself. Given a permutation θ,

we write uθ for the image of u under θ. (The functional notation would be θ(u),
however, the exponential notation turns out to be more convenient for permutations

and groups.) If uv ∈ E(G) then θ maps edge uv onto (uv)θ = uθvθ ∈ E(G).
Because an automorphism θ is bijective, given an edge xy ∈ E(G), there can be

only one edge uv such that (uv)θ = xy. It follows that θ also maps non-edges to

non-edges.

Given two automorphsims, θ and φ, they can be composed to obtain θφ: vertex u
maps to uθ under θ, then to uθφ under φ. So the mapping θφ means “first θ, then φ”.

147

148 Graphs, Algorithms, and Optimization

The composition of permutations is also called the product of the permutations, and

is evaluated from left to right.

The set of all automorphisms of a graph G is denoted AUT(G). Observe that

AUT(G) has the following properties:

1. (identity) There is an identity permutation, denoted I ∈ AUT(G), with

the property that Iθ = θI, for all θ ∈ AUT(G).

2. (inverses) Given any θ ∈ AUT(G), the inverse θ−1 is also in AUT(G).

3. (closure) If θ, φ ∈ AUT(G), then the product θφ ∈ AUT(G).

4. (associativity) If θ, φ, ρ ∈ AUT(G), then (θφ)ρ = θ(φρ).

These properties are abstracted and become the axioms of a group: a group is a

set of elements which have a product defined, satisfying the above properties. Two

common types of groups are permutation groups, and groups of invertible matrices

with the operation of matrix multiplication. There are numerous possibilities for a

group’s “product” operation – it could be composition of permutations, multiplica-

tion of matrices, addition or multiplication of numbers, etc. The symmetric group Sn
consists of all n! permutations of n objects. It is easy to see that if a graph G has n
vertices, and AUT(G) = Sn, then either G = Kn, or G = Kn. The order of a group

Γ is |Γ|, its number of elements. We will always use I for the identity element in a

group — all groups will have an element named I.

Many graphs with interesting properties can be constructed from groups. We

outline some of the key ideas required.

Let Γ be a group, say Γ = AUT(G), for some graph G. A subset K ⊆ Γ that is

also a group is called a subgroup. Clearly every subgroup of Γ contains the identity

element I. One way to form a subgroup of Γ is to choose an element θ ∈ Γ, and

construct its powers θ, θ2, θ3, . . ., where θ2 means θθ, etc. Eventually we find that

θk = I, for some non-negative integer k, called the period of θ. We write
〈
θ
〉

for

the subgroup generated by θ, i.e., all powers of θ. Another common way to form a

subgroup of Γ is to choose a vertex v ∈ V (G), and consider all elements that map v
to itself. It is easy to verify that this defines a subgroup, called the stabilizer subgroup

of v, denoted Γv. Similarly, given a subset U ⊆ V (G), the set of elements of Γ that

map U to U is a subgroup, the set-wise stabilizer of U .

Given a subgroup K ⊆ Γ, and an element θ ∈ Γ, the right coset Kθ consists

of the set of elements of K , followed by θ, namely Kθ = {φθ | φ ∈ K}. It is

easy to see that two cosets Kθ1 and Kθ2 are either identical (if θ1θ
−1
2 ∈ K), or

disjoint (if θ1θ
−1
2 6∈ K). It follows that Γ can be written as a disjoint union of distinct

cosets, Γ = Kθ1 + Kθ2 + . . . + Kθm, where it is customary to write the disjoint

union of cosets as a sum. The elements θ1, . . . , θm are called coset representatives.

Therefore |Γ| = m|K|, i.e., the order of a subgroup divides the order of the group.

This is called Lagrange’s theorem. Left cosets θK are defined similarly, giving Γ =
φ1K + φ2K + . . .+ φmK , although we will mostly use right cosets.

We now choose a subgroup K to be Γv, the stabilizer of a vertex v, and write

Γ = Kθ1 + Kθ2 + . . . + Kθm. Every element in the coset Kθi maps v to vθi .

Graphs and Symmetry 149

Hence, the vertices {vθ1 , vθ2 , . . . , vθm} consists of all vertices that Γ maps v to. This

is called the orbit of v. It is denoted by vΓ, or by orb(v). We have

Lemma 8.1. |orb(v)| · |Γv| = |Γ|

We now have sufficient techniques to find AUT(G) when G is the graph of the

cube in Figure 8.1. Choose v = 1. We see that θ = (1, 3, 5, 7)(2, 4, 6, 8) ∈ AUT(G)
and that φ = (1, 2)(3, 4)(5, 6)(7, 8) ∈ AUT(G). Therefore |orb(v)| = 8, from which

|AUT(G)| = 8 · |Γ1|. Referring to the diagram, we see that Γ1 must map {2, 3, 7}
to {2, 3, 7}, it must map {4, 5, 8} to {4, 5, 8}, and it must map 6 to 6. Clearly α =
(2, 3, 7)(4, 5, 8) ∈ Γ1. This is a rotation of the cube along the axis through vertices

1 and 6. We could also fix the edges 12 and 56, and perform an interchange γ =
(3, 7)(4, 8). This is an automorphism of the graph of the cube, although a physical

cube cannot be transformed like this. We conclude that |Γ1| = 6, so that |Γ| = 48.

Furthermore, we have found generators for Γ, that is, every element of Γ can be

written as a product of θ, φ, α, and γ, in some order. We write
〈
θ, φ, α, γ

〉
for the

group generated by these permutations.

Suppose now that a permutation group Γ acting on a set V = {1, 2, . . . , n} has

been given. Usually generators for Γ will be known. For example, Γ could be given

by the generators θ = (1, 3, 5, 7)(2, 4, 6, 8) and φ = (1, 3, 4, 6, 8, 7)(2, 5). One of the

easiest ways to construct a graphG for which Γ acts as a group of automorphisms is

to use algorithm SYMMETRICGRAPH.

procedure SYMMETRICGRAPH(Γ, n, uv)
comment: A group Γ acting on V = {1, 2, . . . , n} is given by a set of generators

comment: Construct a graph G containing edge uv such that Γ ⊆ AUT(G)

comment: ScanQ [1, 2, . . .] is a queue of edges

k ← 1
M ← 1
ScanQ [1]← uv
E(G)← ∅
add uv to E(G)
while k ≤M

do





uv← ScanQ [k]
for each generator θ of Γ

do





xy ← (uv)θ

if uv 6∈ E(G)

then





add uv to E(G)
M ←M + 1
ScanQ [M]← xy

k← k + 1

150 Graphs, Algorithms, and Optimization

An edge uv is given, and the generators of Γ are applied successively

to uv to determine all edges to which elements of Γ can map uv. If algo-

rithm SYMMETRICGRAPH is applied using the group Γ generated by θ =
(1, 3, 5, 7)(2, 4, 6, 8) and φ = (1, 3, 4, 6, 8, 7)(2, 5) on the starting edge uv = 13,

then the graph of the cube of Figure 8.1 is constructed. Clearly every generator of Γ
is an automorphism of the graph G constructed, so that Γ ⊆ AUT(G).

DEFINITION 8.1: A permutation group Γ with just one orbit is said to be tran-

sitive. A graph G such that AUT(G) is transitive is said to be vertex transitive. If the

action of AUT(G) on E(G) is transitive, then G is said to be edge transitive.

The algorithm SYMMETRICGRAPH builds G from an edge uv, hence, it is clear

thatG is edge-transitive. The algorithm could easily be extended to start with several

different edges.

Various algorithms are available for finding generators for AUT(G), given a graph

G. Several references for constructing and programming these algorithms are [107,

111, 124]. Graph isomorphism software can also be downloaded from the internet.

8.2 Cayley graphs

Let Γ be an arbitrary finite group. We construct an edge-colored digraph G from

Γ as follows. The vertices of G are the elements of Γ. Choose a set of elements

S = {θ1, θ2, . . . , θk} that generate Γ. The edge colors will be 1, 2, . . . , k. Vertex

γ ∈ V (G) = Γ is joined by a directed edge of color i to γθi. The result is called a

Cayley digraph of Γ, denoted
−−→
Cay(Γ, S), For example, let Γ be the group generated

by the permutations θ1 = (1, 2, 3, 4) and θ2 = (2, 4). By finding all products of

θ1, θ2 we find that |Γ| = 8. The elements of Γ are:

I, θ1 = (1, 2, 3, 4), θ21 = (1, 3)(2, 4), θ31 = (1, 4, 3, 2)
θ2 = (2, 4), θ2θ1 = (1, 2)(3, 4), θ2θ

2
1 = (1, 3), θ2θ

3
1 = (1, 4)(2, 3)

The resulting Cayley digraph is shown in Figure 8.2. The solid edges represent

θ1. The dotted edges represent θ2, they are actually pairs of edges directed in opposite

directions, because θ2 has period two.

Consider the structure of a Cayley color-digraph. It is a graphical representation

of the group structure of Γ. Choose any vertex γ. There is an arc from γ to γθ1, and

then to γθ21, then to γθ31, etc., finally returning to γ. That is, each vertex of G is part

of a directed cycle of color i, whose length is the period of θi.
An automorphism of an edge-colored digraph is a digraph-automorphism that

maps each arc to an arc of the same color.

Theorem 8.2. Let Γ be a group with generators S = {θ1, . . . , θm}. Let G =−−→
Cay(Γ, S). Every element of AUT(G) corresponds to an element of Γ.

Graphs and Symmetry 151

I

θ1

θ21

θ31

θ2 θ2θ1

θ2θ
2
1θ2θ

3
1

FIGURE 8.2

A Cayley color digraph for Γ =
〈
θ1, θ2

〉

Proof. Let γ ∈ Γ, and let α be a vertex of G. Left multiplication by γ gives a vertex

γα of G. Now G contains an arc (α, αθi) for each color i. It also contains an arc

(γα, γαθi) for each color i. Therefore left multiplication by any element γ ∈ Γ is an

automorphism of G.

Now the permutations θ1, . . . , θm generate Γ, so that α can be mapped to any

β ∈ V (G) by some γ. Thus AUT(G) is transitive on V (G). We now look at the

stabilizer AUT(G)α. Vertex α has exactly one out-arc of color i, for each i, and

exactly one in-arc of color i, for each i. Therefore, the stabilizer has order one, so

that all automorphisms of G =
−−→
Cay(Γ, S) derive from Γ by left multiplication.

Another property of the Cayley color-digraph is that for each θi, the vertices ofG
are distributed uniformly into cycles whose length is the period of θi. In Figure 8.2,

θ1 produces cycles of length 4, and θ2 produces cycles of length 2. Let θ∗1 denote

the permutation of V (G) that derives from right multiplication by θ1. Let θ∗2 denote

the corresponding permutation for θ2. For every product of θ1 and θ2 in Γ, there is

a corresponding product of θ∗1 and θ∗2 . We see that θ∗1 and θ∗2 generate a group Γ∗,

it is called the right regular representation of Γ. Here “right” refers to right multi-

plication, and “regular” refers to the fact that each permutation consists of cycles of

uniform length.

Given any edge-colored digraph, there corresponds a graph obtained by ignoring

the edge-colors and direction of the arcs.

DEFINITION 8.2: Let Γ be a group with generators S = {θ1, . . . , θm}. The

Cayley graph Cay(Γ, S) is formed from the Cayley color-digraph by ignoring the

edge-colors and arc-directions.

The Cayley graph for Figure 8.2 is the graph of the cube. We have already dis-

covered that its automorphism group has order 48, whereas |Γ| = 8. Thus, a Cayley

152 Graphs, Algorithms, and Optimization

graph can have more automorphisms than those arising from the group used to con-

struct it.

DEFINITION 8.3: A Cayley graph G = Cay(Γ, S) for a group Γ is a graphical

regular representation (GRR), if |AUT(G)| = |Γ|.
Much work on graphical regular representations has been done by Godsil,

Watkins, and Imrich.

8.3 Coset diagrams

A Cayley graph is constructed by allowing the elements of a group Γ to act on Γ
by right multiplication. Each element of Γ can be viewed as a coset of the subgroup

{I}. If K is any subgroup of Γ, it is easy to see that the elements of Γ also permute

the right cosets of K by right multiplication. Let Γ = Kγ1 + . . . + Kγm be a

decomposition of Γ into right cosets. Let θ1, . . . θk be generators for Γ. The coset

diagram Γ mod K is an edge-colored directed graph whose vertices are the cosets

of K , with an edge of color i from vertexKγj to vertex Kγjθi = Kγℓ, for some ℓ.
As an example, consider the group Γ of Figure 8.2 with generators θ1 =

(1, 2, 3, 4) and θ2 = (2, 4). Let K =
〈
θ2
〉
, the group generated by θ2. Clearly

|K| = 2, so that there are four cosets. The cosets can be listed as K , Kθ1, Kθ21,

and Kθ31. The coset diagram Γ mod K is shown in Figure 8.3. Notice that a coset

digraph usually contains loops. For if a generator θi ∈ K , thenKθi = K , producing

a loop of color i.
Walks in the coset diagram correspond to products of generators of Γ. For exam-

ple, if we start at the coset labeledK in Figure 8.3 and successively follow the edges

corresponding to θ1, then θ2, then θ1, we obtain the product θ1θ2θ1. Starting at coset

K , this gives the resultKθ1θ2θ1 = K , so that θ1θ2θ1 ∈ K . Because θ1, . . . , θk were

chosen as generators for Γ, it follows that the coset digraph is connected. There is

directed path from any vertex (coset) to any other. Coset diagrams are the basis of

many algorithms for permutation groups. See [27, 158].

Each θi now gives rise to a permutation θ∗i of the cosets, namely θ∗i maps coset

Kγj to Kγjθi = Kγℓ, for some ℓ. Once again we have a representation of Γ by

permutations, Γ∗ =
〈
θ∗1 , θ

∗
2

〉
. In the example of Figure 8.3, the original permutations

are reproduced.

As a larger example, let Γ be the permutation group generated by the permuta-

tions θ = (1, 2, 3, 4, 5, 6), and φ = (1, 2). Γ is the symmetric group S6 consisting

of all permutations of six objects. |Γ| = 6! = 720. Let K be the subgroup generated

by (1, 4, 2, 5, 3, 6) and (1, 6, 2, 5, 3, 4), which has order 36. There are 720/36 = 20
cosets. The coset diagram Γ mod K is shown in Figure 8.4. The solid lines repre-

sent θ∗, and the dotted lines represent φ∗. We see that θ∗ has two cycles of length

6, two cycles of length 3, and two fixed points. And φ∗ consists of ten cycles of

length two. If we number the cosets 1, 2, . . . , 20, we have a permutation representa-

Graphs and Symmetry 153

K

Kθ1

Kθ21

Kθ31

FIGURE 8.3

A coset diagram Γ modK

tion S∗
6 =

〈
θ∗, φ∗

〉
of S6 acting on 20 cosets. It can be checked that this representa-

tion of S6 also has order 720, although it is not always the case that a representation

of a group Γ by cosets of a subgroup has the same order as Γ.

K
θ

FIGURE 8.4

A coset diagram Γ modK

The Cayley graph construction, and the algorithm SYMMETRICGRAPH() both

construct a graph with a given group acting as a group of automorphisms. Sometimes

it is convenient to combine them as follows.

Beginning with a group Γ and generators {θ1, . . . , θk}, and a subgroup K , we

construct a Cayley graph G for Γ. A decomposition of Γ into cosets of K is then

found, {Kγ1, . . . ,Kγm}. New vertices u1, . . . , um are then added to G, such that

ui is adjacent to those vertices ofG that belong to cosetKγi. The result is a graph for

which Γ permutes the vertices of the Cayley graph, and simultaneously permutes the

vertices representing the cosets ofK . An algorithm for finding a coset decomposition

of a permutation group can be found in [27].

154 Graphs, Algorithms, and Optimization

8.3.1 Double cosets

We are now ready to make double coset graphs. Let Γ be a group with a subgroupK ,

and let Kγ1, . . . ,Kγm be a coset decomposition of Γ. Let φ1, . . . , φk be generators

for K . Consider the elements of K , acting on these cosets by right multiplication.

Coset Kγi will be mapped to Kγiφj by generator φj . As φj is varied, all cosets of

K contained in KγiK will form one orbit. KγiK is called a double coset of K . It

is constructed by allowing K to act on its own cosets in Γ. Notice that if γ = I, then

KγK = K , so that K is also a double coset, it forms an orbit of one coset. Most

double cosets KγiK will contain several cosets of K . Notice that the graph of all

cosets acted on by the generators of K is not connected, because φ1, . . . , φk do not

generate all of Γ. Each connected component is a double coset of K . We state this as

a lemma, from which it is obvious that double cosets Kγ1K and Kγ2K are either

identical or disjoint.

Lemma 8.3. The double cosets KγK consist of the connected components of the

graph of right cosets of K in Γ, with K acting by right multiplication on its own

cosets.

The double cosets produce interesting graphs. Let a group Γ with a subgroup K
be given. We construct a graph G whose vertices V (G) are the cosets of K in Γ.

Choose a coset Kγ, for some γ ∈ Γ, where γ 6= I. Suppose that {K,Kγ} is chosen

as an edge of G. We want Γ to act as a group of symmetries on G. So for each

θ ∈ Γ, vertex Kθ of G will be adjacent to vertex Kγθ. Now Γ acts transitively on

the cosets of K , so that G is a vertex-transitive graph. We now look at the stabilizer

subgroup ΓK . It consists of those elements φ ∈ Γ such that Kφ = K , i.e., ΓK = K .

Now when ΓK acts on cosetKγ, it produces the double coset KγK . ThereforeK is

adjacent in G to Kα1,Kα2, . . . ,Kαm, the right cosets of K contained in KγK . G
is called the double coset graph, denoted Γ(K, γ).

There can also be other edges incident on K . Given θ ∈ Γ, there is an edge

{Kθ,Kγθ} in G. It is possible that Kγθ = K . This implies that γθ ∈ K , so that

θ ∈ γ−1K , from which we find thatKθ is a right coset contained in the double coset

Kγ−1K . Now it can be that Kγ−1K = KγK . In this case, the graph G is regular

of degree m. But if Kγ−1K 6= KγK , then G will be regular of degree 2m. We

summarize these facts.

DEFINITION 8.4: Let Γ be a group with a subgroup K . Choose a coset Kγ,

where γ 6= I. The double coset graph Γ(K, γ) has vertex set equal to the right cosets

of K in Γ, and edges {Kθ,Kγθ}, where θ is any element of Γ.

Theorem 8.4. The double coset graph Γ(K, γ) is vertex transitive. Let m be the

number of cosets of K in KγK . Then Γ(K, γ) is regular of degree m or 2m.

We can say more about the numberm of right cosets of K contained in KγK . It

is easy to see that if K is a subgroup of Γ, then so is γ−1Kγ. Let H = K ∩ γ−1Kγ.

Then H is a subgroup of K . Consider a coset Kγαi in KγK , where αi ∈ K , and

suppose that φ is some element of Hαi. Then φ ∈ γ−1Kγαi, so that γφ ∈ Kγαi.

Graphs and Symmetry 155

It follows that Kγφ = Kγαi. But if φ 6∈ Hαi, then Kγφ and Kγαi are different

cosets. It follows thatm is the number of cosets ofH = K∩γ−1Kγ inK . A special

case occurs when γ−1Kγ = K . In this case there is just one coset Kγ in KγK , so

that the double coset graph will have degree one or two.

When Kγ−1K = KγK , the graph Γ(K, γ) has degree m. Furthermore, the

stabilizer ΓK is transitive on the vertices adjacent toK . But whenKγ−1K 6= KγK ,

the degree is 2m, and the stabilizer is not transitive on the adjacent cosets, instead

they divide into two orbits.

As an example of this technique, let Γ be the group of permutations act-

ing on 20 points, with generators θ = (2, 5, 6)(3, 10, 11)(4, 15, 7)(8, 14, 16)
(9, 20, 12)(13, 19, 17) and φ = (1, 5, 4, 3, 2)(6, 10, 9, 8, 7)(11, 15, 14, 13, 12)
(16, 20, 19, 18, 17). Γ is the group of automorphisms of the dodecahedron. It

has order 60. The subgroup K generated by (1, 13)(2, 9)(3, 4)(5, 8)(6, 18)(7, 14)
(10, 12)(11, 19)(15, 17)(16, 20) and (1, 18)(2, 17)(3, 16(4, 20)(5, 19)(6, 13)(7, 12)
(8, 11)(9, 15)(10, 14) is chosen. It has order 4, so that there are 15 cosets. The double

coset KγK is chosen, where γ = (2, 5, 6)(3, 10, 11)(4, 15, 7)(8, 14, 16)(9, 20, 12)
(13, 19, 17). It contains four cosets of K . The resulting double coset graph Γ(K, γ)
is shown in Figure 8.5. The same group Γ acts on this graph of 15 vertices, how-

ever it is now permuting cosets. If we find the automorphism group of the graph, we

find it has order 120. We can say that this graph is a graphical representation of the

group Γ. In general, a group Γ can have many different representations by various

graphs. For a group Γ has many subgroupsK , of various orders, each with a number

of possible double cosets. The result is many different graphs acted on by the same

Γ. The graphs constructed can be very different, yet they are related through their

automorphism groups.

FIGURE 8.5

A double coset graph related to the dodecahedron.

The double cosets KγK are a special case of a more general double coset. If K
and H are two subgroups of Γ, then KγH is the set of right cosets of K of the form

156 Graphs, Algorithms, and Optimization

Kα, where α ∈ H . Similarly, it is also the set of left cosets of H of the form βH ,

where β ∈ K .

8.4 Conjugation, Sylow subgroups

In the previous section, we started with a group Γ and a subgroup K , and allowed

the generators of either Γ or K to act on the cosets of K . This produced a number of

permutation representations of Γ, together with families of vertex-transitive graphs.

There is another way to use the generators of either Γ or K to construct permutation

representations. Given elements γ, θ ∈ Γ, the conjugate of γ by θ is θ−1γθ. It is con-

venient to denote this also by γθ . We see that θ induces a permutation of Γ whereby

every γ ∈ Γ is mapped to γθ, its conjugate under θ. Similarly, if K is a subgroup

of Γ, then θ−1Kθ = Kθ = {φθ | φ ∈ K} is the conjugate of K by θ. The familiar

notions of orbits and stabilizers produce interesting concepts using conjugation.

Let K be a subgroup of the permutation group Γ, acting on the points V =
{1, 2, . . . , n}, and let γ, θ ∈ Γ.

Lemma 8.5. Kθ is a subgroup of Γ. Let ∆ ⊆ V be an orbit of K . Then ∆θ is an

orbit of Kθ.

Proof. Kθ maps ∆θ to (θ−1∆θ)θ
−1Kθ = θ−1∆Kθ = ∆θ .

Lemma 8.6. Let (u1, u2, . . . , um) be a cycle of γ. Then (uθ1, u
θ
2, . . . , u

θ
m) is a cycle

of γθ.

Proof. Point uθi is mapped by γθ to uθθ
−1γθ

i = uθi+1.

We see that conjugate permutations have an identical cycle structure. The stabi-

lizer of γ under conjugation is {θ | γθ = γ}. This is a subgroup of Γ. We have γθ = γ
if and only if γθ = θγ. So the stabilizer consists of all elements of Γ that commute

with γ. This is called the centralizer of γ, and denotedC(γ). By Lemma 8.1 we have

|orb(γ)| · |C(γ)| = |Γ|

The orbit of γ under conjugation consists of those permutations of Γ with the same

cycle structure as γ to which γ can be conjugated. In the case when Γ = Sn, this will

be all permutations with the same cycle structure as γ, called a conjugacy class of

Sn.

The stabilizer of a subgroupK under conjugation is {θ |Kθ = K}. This is called

the normalizer of K , and denotedN(K). By Lemma 8.1 we have

|orb(K)| · |N(K)| = |Γ|

So the number of subgroups conjugate to K is determined by the normalizer. It is a

subgroup of Γ, and we can write the decomposition of Γ into right cosets of N(K)

Graphs and Symmetry 157

as Γ = N(K)γ1 + . . . + N(K)γm. Then it is easy to see that KN(K)γi = Kγi ,

so that Kγ1 ,Kγ2, . . . ,Kγm are all the conjugates of K in Γ. Conjugation of K by

elements of Γ induces a permutation of the subgroupsKγ1 ,Kγ2 , . . . ,Kγm , such that

Kγ = Kθ if and only if γ and θ are in the same coset of N(K).
When N(K) = Γ, only K is conjugate to itself, i.e., Kθ = K , for all θ ∈ Γ. K

is then said to be a normal subgroup, denoted K ⊳ Γ. In this case the right and left

cosets of K are identical, θ−1Kθ = K , so that θK = Kθ. A reduced group Γ/K
can then be constructed whose elements are the cosets of K:

Γ/K = {Kα1,Kα2, . . . ,Kαk}

with the product rule KαiKαj = Kαiαj . Because KαiKαj = αiKKαj =
αiKαj = Kαiαj , the product is well defined, and independent of the coset rep-

resentatives chosen. We see that |Γ/K| = |Γ|/|K|. The identity in Γ/K is I = K .

The group Γ/K is called a quotient group or factor group of Γ.

It is clear that K is a normal subgroup of its normalizer N(K), as Kγ = K , for

all γ ∈ N(K). N(K) is the largest subgroup of Γ in which K is a normal subgroup.

Suppose now that p is a prime dividing |Γ|. Let pk be the highest power of p in |Γ|,
and consider the case when there is a subgroupK of order pk. Such a subgroupK is

called a Sylow p-subgroup. We will soon see that there always is such a subgroup. Γ
acts by conjugation on K , so let Kγ1 ,Kγ2 , . . . ,Kγm be all the subgroups of Γ that

are conjugate to K . Then m = |Γ|/|N(K)|. Now K is a subgroup of N(K), so that

|N(K)| = pkℓ, where ℓ ≥ 1 and |Γ| = pkℓm.

Theorem 8.7. Let K be a Sylow p-subgroup of Γ. The number of conjugates of K
by elements of Γ is congruent to one, mod p.

Proof. We allowK to act on the subgroupsKγ1 ,Kγ2 , . . . ,Kγm by conjugation, and

find its orbits. Without loss of generality, let Kγ1 = K . Clearly Kφ = K , for any

φ ∈ K , so that the subgroup Kγ1 is an orbit containing just one subgroup under

conjugation. If N(K) = Γ, then K ⊳ Γ, so that there is only one conjugate, and we

are done.

Otherwise there are m > 1 conjugates of K in Γ, corresponding to the m cosets

ofN(K). CosetN(K)γi conjugatesK toKγi . NowK⊳N(K), so thatN(K)/K is

a group of order |N(K)|/|K| = ℓ, where gcd(ℓ, p) = 1. ThereforeN(K)/K has no

elements whose period is divisible by p. It follows that the period of any element of

θ ∈ N(K), where θ 6∈ K is not divisible by p. ConsequentlyK is the only one of the

conjugatesKγi that is contained in N(K). It is easy to see that N(Kγi) = N(K)γi .
Now if K 6= Kγi , then K contains an element θ 6∈ Kγi , so that θ 6∈ N(Kγi). It

follows that θ conjugates Kγi to some Kγj where i 6= j. That is, when K acts by

conjugation on Kγ1 ,Kγ2, . . . ,Kγm , there is only one orbit of length one, namely

K . All other orbits have length dividing |K|, so that all other orbits have length, a

non-zero power of p. Thereforem ≡ 1 (mod p).

We would now like to show that a Sylow p-subgroup always exists. First note that

if |Γ| is divisible by p, then Γ must contain an element γ whose period is divisible

158 Graphs, Algorithms, and Optimization

by p. Let the period of γ be piℓ, where gcd(p, ℓ) = 1 and i ≥ 1. Then the period of

γℓ is pi. It follows that Γ always contains an element of order pi. If i > 1, then it

contains elements of order p, p2, . . . , pi, and therefore it also contains subgroups of

these orders.

Theorem 8.8. Let pk be the highest power of the prime p dividing |Γ| = pkm,

where k ≥ 1, and let K be a subgroup of Γ of order pi, where 1 ≤ i < k. Then K is

contained in a subgroup of order pi+1.

Proof. We have already seen that Γ contains a subgroup of order p. The proof

is by induction on k. Consider N(K). Let |N(K)| = pjℓ where j ≥ i and

gcd(p, ℓ) = 1. If j > i, then N(K)/K is a group of order pj−iℓ, and therefore

contains an element of order p. Let Kγ ∈ N(K)/K be an element of order p. Then

{K,Kγ, . . . ,Kγp−1} is a subgroup of N(K)/K of order p. If we add γ as a gener-

ator to K , we obtain a subgroup of order pi+1.

Otherwise j = i. There are pk−im/ℓ conjugates of K in Γ. When K acts by

conjugation on them, K is an orbit of size one. The number of conjugates in any

non-singleton orbit is divisible by p. But p divides the number of conjugates, so that

there is another singleton orbit, say Kγ 6= K . Therefore K ⊆ N(Kγ). It follows

that N(K) contains an element not in K , but whose period is a power of p, so that

j > i, a contradiction.

It follows from Theorem 8.8 that Γ contains a chain of subgroups

K0, K1, . . . , Kk where |Ki| = pi and each Ki is a subgroup of Ki+1, up to Kk.

Notice that if |K| = pi and K is a subgroup of a group H of order pi+1, then there

are p cosets of K in H . Let H act by right multiplication on these cosets. The re-

sulting group is a transitive permutation group acting on p objects, whose order is

a power of p. The stabilizer of any object must fix all p objects, for if the stabilizer

has a non-singleton orbit, the order of H will not be a power of p. It follows that the

order is p, giving K ⊳H . So Γ contains a chain of subgroups,K0 ⊳ K1 ⊳ . . . ⊳ Kk.

Sylow subgroups are a source of many interesting vertex-transitive graphs. Given

a group Γ, it is convenient to choose a subgroupK as a Sylow p-subgroup for some

prime p. Then a double coset graph for K can be an interesting graph. For example,

the subgroup K of order 4 used in Figure 8.5 is a Sylow 2-subgroup of the auto-

morphism group of the dodecahedron. Algorithms for finding Sylow subgroups of a

permutation group Γ can be found in [27, 158].

8.5 Homomorphisms

We have already seen some examples of homomorphisms. Given a group Γ and a

subgroup K , the action of Γ on the cosets of K gives a representation Γ∗ of Γ, such

that to each γ ∈ Γ, there corresponds an h(γ) = γ∗ ∈ Γ∗ which permutes the right

Graphs and Symmetry 159

cosets of K by right multiplication. This mapping h : Γ → Γ∗ has the property that

h(γθ) = h(γ)h(θ), for all γ, θ ∈ Γ. A mapping h from a group Γ to a group Ψ
with this property is called a homomorphism. It is easy to see that h(I) = I and that

h(γ−1) = h(γ)−1 for any homomorphism h.

When K is a normal subgroup of Γ, there is a natural homomorphism h from Γ
to Γ/K = {Kα1, Kα2, . . . , Kαk}, such that every γ ∈ Kαi is mapped to h(γ) =
Kαi. Then every γ ∈ K is mapped to I = K .

DEFINITION 8.5: Let h : Γ → Ψ be a homomorphism. The kernel of h is

Ker(h) = {γ ∈ Γ | h(γ) = I ∈ Ψ}.
Thus, when K is a normal subgroup, the kernel of this natural homomorphism is

K . It is easy to prove that Ker(h) is always a normal subgroup of Γ.

Another example of a homomorphism is when Γ permutes its elements or sub-

groups by conjugation. Let θ ∈ Γ and consider the permutation group induced by

conjugation, whereby every γ ∈ Γ is mapped to γθ . Let the permutation of Γ in-

duced by conjugation be denoted θ′, so that h(θ) = θ′ is a homomorphism. The

kernel of h is Z = {θ ∈ Γ | θγ = γθ, ∀θ ∈ Γ}. Z is called the center of Γ.

Another example of a homomorphism is when Γ permutes the right cosets of a

subgroup K by right multiplication. Every θ ∈ Γ is mapped to a permutation of the

cosets. The kernel of this homomorphism is {θ ∈ Γ | Kγθ = Kγ, ∀γ ∈ Γ}. This is

the largest subgroup of K that is normal in Γ. It is called the core of K . Algorithms

for finding the center and core can be found in [27, 158].

8.6 Primitivity and block systems

Let Γ be a transitive permutation group acting on a set V = {1, 2, . . . , n}. It will

often be the case that Γ will be an automorphism group of a graph with vertex set

V . Γ induces an action on the set of all pairs {u, v}, where u, v ∈ V . Let Γ2 denote

this induced action on
(
V
2

)
. It can have several orbits, even though Γ is transitive.

For example, let Γ be the automorphism group of the graph of the cube, generated

by θ = (1, 3, 5, 7)(2, 4, 6, 8) and φ = (1, 3, 4, 6, 8, 7)(2, 5). Each orbit of Γ2 is the

edge-set of a graph. For example, one of the orbits of Γ2 is the graph of the cube,

shown in Figure 8.1. There are two other orbits, shown in Figure 8.6.

DEFINITION 8.6: Let Γ be a transitive permutation group. If every orbit of Γ2 is

a connected graph, then Γ is said to be primitive. Otherwise Γ is imprimitive.

We see that the automorphism group of the graph of the cube is an imprimitive

group. When an orbit of Γ2 is a disconnected graphG, each automorphism ofGmust

map a connected component ofG to a connected component. Because Γ ⊆ AUT(G),
this property also applies to Γ. ThereforeΓ must permute the connected components.

Given a disconnected orbit G, the collection of vertex-sets of the connected compo-

nents of G is called a block system for Γ.

160 Graphs, Algorithms, and Optimization

1 2

3 4

56

78

1 2 34

5 6 78

FIGURE 8.6

Two orbits of Γ2, finding a block system

DEFINITION 8.7: Let Γ be an imprimitive transitive permutation group act-

ing on a set V . A block system for Γ consists of a collection of disjoint subsets

V1, V2, . . . , Vm ⊆ V , whose union is V , such that Γ induces a permutation of the Vi.

Two block systems for the above Γ are evident from Figure 8.6. One is

{1, 6}, {2, 5}, {3, 8}, {4, 7}. The other is {1, 4, 5, 8}, {2, 3, 6, 7}. It is easy to see

how to find a block system for a group Γ — we simply find the orbits of Γ2, and test

if they are connected graphs.

Let V1, V2, . . . , Vm be a block system for Γ. Let H be the subgroup that maps

each Vi to Vi, i.e., H = {γ ∈ Γ | V γi = Vi, ∀i}. Take any θ ∈ Γ and consider Hθ.

Choose any i and suppose that V θj = Vi. Then Hθ maps Vi to V θ
−1Hθ

i = V Hθj =

V θj = Vi. It follows that Hθ = H , for all θ ∈ Γ, so that H is a normal subgroup.

Therefore when there is a block system, Γ can be factored into a smaller group acting

only on the blocks. If G is any graph for which Γ = AUT(G), then G can also be

factored into a block graph. The vertices of each block Vi are identified into a single

vertex. Two blocks Vi and Vj are adjacent in the block graph if some ui ∈ Vi is

adjacent to some uj ∈ Vj in G. The two block systems for the group of the cube of

Figure 8.6 give two block graphs. The one with four blocks consists of a 4-cycle, the

other consists of a single edge.

When the automorphism group of a vertex-transitive graph has a block system,

the resulting block graph is also vertex-transitive. This is one way of reducing a

vertex-transitive graph to another smaller graph, while preserving much of the sym-

metry.

Exercises

8.6.1 Use the stabilizer subgroup to find generators for AUT(G) when G is the

Petersen graph. Also find |AUT(G)|.
8.6.2 For the group Γ of Figure 8.2, find all elements of the right regular repre-

sentation.

8.6.3 The permutations θ1 = (1, 2, 3, 4) and θ2 = (1, 2) generate S4, which

has order 24. Construct the Cayley color-digraph for generators θ1, θ2.

8.6.4 The permutations θ1 = (1, 7, 5, 2)(3, 6, 8, 4) and

Graphs and Symmetry 161

θ2 = (1, 6)(2, 3)(4, 8)(5, 7) generate a group Γ of order 24 acting on 8

points. Construct the Cayley color-digraph for generators θ1, θ2.

8.6.5 Construct a coset diagram and permutation representation for the group Γ
of the previous question, with subgroupK generated by θ2.

8.6.6 Using the generators θ and φ, assign cosets to the vertices of the coset

digraph of Figure 8.4.

8.6.7 Generators for the automorphism group of the dodecahedron are given

near Figure 8.4. Determine whether it is a primitive group. Find a block

system if there is one, and find its block graph.

8.6.8 Let θ be a permutation of V = {1, 2, . . . , n}, stored as an array: θ[i] is

the vertex that i is mapped to. Write a loop to find θ−1.

8.6.9 Let θ and γ be permutations of V = {1, 2, . . . , n}, stored as arrays. Write

a loop to find γθ.

8.7 Self-complementary graphs

A graph G is said to be self-complementary if G ∼= G. In Chapter 1 we saw that a

self-complementary graph on n vertices must satisfy n ≡ 0 or 1, (mod 4). Suppose

that G is a self-complementary graph, and let θ : V (G)→ V (G) be an isomorphism

mappingG toG. Choose any edge uv ∈ E(G). Then (uv)θ ∈ E(G), so that (uv)θ 6∈
E(G). Consequently (uv)θ

2 6∈ E(G), so that (uv)θ
2 ∈ E(G), and so forth. This

gives:

Lemma 8.9. Let G be a self-complementary graph, and let θ be an isomorphism

mappingG to G. Then θ2 ∈ AUT(G).

Such a θ is called a complementing permutation for G. It follows that

uv, (uv)θ
2

, (uv)θ
4

, . . . is a sequence of edges of G, and that (uv)θ, (uv)θ
3

, . . . is

a sequence of edges of G. Now θ is a permutation of V (G), so that the vertices of

G are decomposed into cycles of θ. Let (u1, u2, . . . , um) be a cycle of θ, so that

(ui)
θ = ui+1, if i < m, and (um)θ = u1. Suppose that m ≥ 2. The pair u1u2 is

either an edge of G or of G, so that successive pairs u1u2, u2u3, . . . are alternately

edges of G and of G. It follows that if m > 1, then m is even. We then consider the

pair u1um/2+1. It is mapped by θm/2 to um/2+1u1, which is in G. This requires that

m/2 be even, so that m ≡ 0, (mod 4).

Theorem 8.10. Let G be a self-complementary graph, and let θ be an isomorphism

mapping G to G. Then the length of every cycle of θ is either 1, or a multiple of 4.

There is at most one cycle of length 1.

Proof. We have already seen that if a cycle has length more than 1, then the length

is a multiple of 4. If there were two cycles of length 1, say (u) and (v), then we find

162 Graphs, Algorithms, and Optimization

that uv ∈ E(G) if and only if (uv)θ = uv ∈ E(G), which is not possible. Therefore

there is at most one cycle of length one.

An example of Theorem 8.10 is shown in Figure 8.7. Here the complementing

permutation is θ = (1, 2, 3, 4, 5, 6, 7, 8). It is easy to map each edge uv of G by θ
and see that it is a non-edge of G.

1

2

3

4

5

6

7

8

θ
−→

1

2

3

4

5

6

7

8

G G

FIGURE 8.7

A self-complementary graph with θ = (1, 2, 3, 4, 5, 6, 7, 8)

Theorem 8.10 gives a simple algorithm to construct self-complementary graphs.

procedure SCGRAPH(n)
comment: n is an integer congruent to 0 or 1 (mod 4)

Create vertices u1, u2, . . . , un
Choose a complementing permutation θ satisfying Theorem 8.10

Mark all pairs uiuj as “unused”

while there is an unused pair

do





uv← an unused pair

assign uv to G
xy ← (uv)θ

assign xy to G
xy ← (xy)θ

while xy 6= uv

do





assign xy to G
xy ← (xy)θ

assign xy to G
xy ← (xy)θ

Graphs and Symmetry 163

The graphs of Figure 8.7 were constructed using this algorithm. The pair 12 was

chosen as an edge ofG, then θ was used to alternately assign edges toG andG. Then

13 was chosen as an edge of G, and so forth, until every pair uv had been assigned

to be an edge of either G or G.

Every self-complementary graph can be constructed using this algorithm. How-

ever, isomorphic copies of each one will be produced very many times. It is possible

to make an algorithm that constructs each self-complementary graph exactly once,

by using a general technique of B.D. McKay [123]. The reader is referred to this

reference for further information.

Some additional techniques for constructing self-complementary graphs can also

be useful. Let θ be a complementing permutation mapping the graph G to G. Sup-

pose that θ has one or more cycles whose length is a multiple of four. For example,

suppose that (u1, . . . , u8)(u9, . . . , u16)(u17, . . . , u20) comprise two cycles of length

eight and a cycle of length four of θ. Let U1 = {u1, . . . , u8}, U2 = {u9, . . . , u16},
and U3 = {u17, . . . , u20}. Then θ maps G[Ui] to G[Ui], so that each G[Ui] is a

self-complementary graph. If H is any self-complementary graph with V (H) = Ui,
then a new self-complementary graph can be constructed fromG andG by replacing

G[Ui] with H , and also replacing G[Ui] with H .

Similarly the edges G[Ui, Uj] between Ui and Uj form part of a bipartite self-

complementary graph. They can also be substituted with the edges of another bi-

partite self-complementary graph with the same bipartition. We state these facts as

lemmas.

Lemma 8.11. Let G be a self-complementary graph with complementing permuta-

tion θ, and let U be the vertices contained in one or more cycles of θ. Let H be

a self-complementary graph with |U | vertices. Then if G[U] is replaced by H , the

result is a self-complementary graph.

Lemma 8.12. Let G be a self-complementary graph with complementing permuta-

tion θ, and let U1, U2 be the vertices contained in two distinct cycles of θ. Let H be

a bipartite self-complementary graph with bipartition (U1, U2). Then if G[U1, U2] is

replaced by H [U1, U2], the result is a self-complementary graph.

8.8 Pseudo-similar vertices

Let G be a graph with a non-identity automorphism θ. Choose a vertex u such that

uθ = v 6= u. Then it is easy to see thatG−u ∼= G−v, as (G−u)θ = Gθ−uθ = G−v.

Vertices u and v are said to be similar vertices. There are graphsG with vertices u, v
such that G−u ∼= G− v, but there is no automorphism relating u to v. Such vertices

are called pseudo-similar vertices. It turns out that a graph G with pseudo-similar

vertices u and v is always an induced subgraph of a graph in which u and v are

similar. An example of a graph with pseudo-similar vertices u and v is shown in

Figure 8.8.

164 Graphs, Algorithms, and Optimization

u = 1

2

3

v = 4

5

6

7

8

9

10

FIGURE 8.8

A graph with pseudo-similar vertices u = 1 and v = 4.

Suppose that u and v are pseudo-similar in G. Let θ be an isomorphism mapping

G − u to G− v. Then uθ is not defined, and there is no vertex w such that wθ = v.

Construct the sequence of vertices U = {v, vθ, vθ2 , . . .}. Now θ is a one-to-one

mapping, and there is no vertex w such that wθ = v. Therefore the sequence must

terminate. It can only terminate at u, as this is the only vertex with no image under

θ. Therefore u = vθ
m

, for some m ≥ 1. Let vi = uθ
i

, for i = 0, 1, . . .m. We can

express the sequence of vertices U as <v0, v1, . . . , vm>, where the angle brackets

indicate that the sequence does not form a cycle. In the example of Figure 8.8 there

is only one possible θ, and this sequence is <4, 3, 2, 1>.

Let W = V (G)− U be the remaining vertices of G, if any. They fall into cycles

of θ, so that θ acts as a permutation on W . In the example of Figure 8.8, W =
{5, 6, 7, 8, 9, 10}, on which θ has a single cycle, namely (5, 7, 10, 6, 9, 8). We write

θ =<4, 3, 2, 1> (5, 7, 10, 6, 9, 8). Let p be the period of θ acting on W . (If W = ∅,
we take p = 1.) We now choose an integer N which is a multiple of p, such that

N ≥ 2(m + 1). We then define new vertices vm+1, vm+2, . . . , vN−1, and extend θ
to θ′ such that vθ

′

i = vi+1, for i = m,m + 1, . . . , N − 2, and vθ
′

N−1 = v0. For all

other vertices, θ and θ′ are defined identically.

Theorem 8.13. Let θ be extended to θ′ as above. Then θ′ is an automorphism of a

graph H such that G is an induced subgraph of H , and u and v are similar in H .

Proof. The vertices of H are V (H) = V (G) ∪ {vm+1, vm+2, . . . , vN−1}, so that θ′

is a permutation of V (H). In G, vertex v is adjacent to a subset X ⊆ W , and to a

subset Y ⊆ U . The edges of H include E(G), plus a number of other edges. As θ

mapsG−u toG−v, it follows that vi is adjacent to the subsetXθi ⊆W inG when

i ≤ m. InH , each vi, where i = 0, 1, . . . , N −1, is adjacent to Xθi . Because N was

chosen as a multiple of p, it follows that Xθ′N = X , so that v0 = vθ
′N

0 is adjacent to

X in both G and H .

Graphs and Symmetry 165

And each vi is also adjacent to Y θ
i

in H . Suppose that vi is adjacent to vj in G,

where i ≤ j. Then j− i ≤ m. Now N was chosen so that N ≥ 2(m+1). Therefore

N + i− j > m. It follows that any edge of H [U] is also an edge of G[U]. Therefore

G is an induced subgraph of H . We see that θ′ ∈ AUT(H), and vθ
′m

= u, so that u
and v are similar in H .

This technique of extending a graph using a mapping θ is often useful in con-

structing graphs with certain properties. If we use the graph of Figure 8.8 as an ex-

ample, we have θ =<4, 3, 2, 1> (5, 7, 10, 6, 9, 8). It has period 6 on U , so that 8 new

vertices are added to obtain V (H). It is not always necessary to choose N ≥ 2m.

This is done in the proof to ensure that G[U] = H [U]. But often N = m + 1 is

sufficient, so long as it is a multiple of p. In general, there may be several possible

choices for θ : G− u→ G− v. Different choices of θ will give different graphsH .

Kimble, Schwenk and Stockmeyer [98] showed that it is possible for all vertices

of a graph to be pseudo-similar. Their construction starts with a group Γ of odd order,

and a GRR (graphical regular representation) of Γ, i.e., a Cayley graph H such that

AUT(H) ∼= Γ. Choose a vertex w ∈ V (H), and let G = H − w.

Lemma 8.14. Let H be a GRR of a group Γ of odd order. Let w ∈ V (H) and let

G = H − w. Then every vertex of G is pseudo-similar to another vertex of G.

Proof. A Cayley graph is vertex-transitive, so that for every u ∈ V (G), there is

an automorphism θu mapping u to w. The period of θu is odd, because |Γ| is odd.

Therefore v = wθu 6= u, but (G−u)θu = (H−{u,w})θu = Hθu−{w, v} = G−v.

The vertices adjacent to w in H have different degree in G from the other vertices.

Therefore every γ ∈ AUT(G) belongs to the stabilizer of w in H . But the stabilizer

has order one. Therefore vertices u and v are not similar inG, but pseudo-similar.

It is known that most non-abelian groups of odd order have GRR’s. In particular

non-abelian groups of order p3, where p is an odd prime always have GRR’s with

one exception [92]. Taking p = 3, there is a group of order 27 with a GRR, giving a

graph on 26 vertices in which all vertices are pseudo-similar.

It is also possible to have pseudo-similar edges in a graph G. Edges uv and xy
are pseudo-similar if they are not similar, and there is an isomorphism θ mapping

G− uv to G− xy. Note that θ is a permutation of V (G). We follow the mapping θ
to discover the structure ofG. Edge xy is an edge ofG−uv, so that (xy)θ is an edge

of G − xy. If xy 6= uv, then (xy)θ is an edge of G − uv, so that (xy)θ
2

is an edge

of G − xy. This argument is repeated until (xy)θ
m

= uv, for some m ≥ 1. Without

loss of generality, we can take xθ
m

= u and yθ
m

= v.

Now uv is not an edge of G − uv, so that (uv)θ is not an edge of G − xy. If

(uv)θ 6= xy, then (uv)θ is also not an edge of G − uv. Therefore (uv)θ
2

is not an

edge of G − xy. If (uv)θ
2 6= xy, then (uv)θ

2

is also not an edge of G − uv. This

argument is repeated until (uv)θ
k

= xy, for some k ≥ 1.

We have a sequence of edges of G: xy, (xy)θ , (xy)θ
2

, . . . , (xy)θ
m−1

, and

a sequence of non-edges of G: uv, (uv)θ, (uv)θ
2

, . . . , (uv)θ
k−1

. If the pairs

166 Graphs, Algorithms, and Optimization

uv, (uv)θ, (uv)θ
2

, . . . , (uv)θ
k−1

are added to E(G), a graph H is obtained such that

(xy)θ
m

= uv and (uv)θ
k

= xy, so that uv and xy are similar in H . This gives:

Theorem 8.15. Let edges uv and xy be pseudo-similar in G. Then G is a subgraph

of a graphH , where V (H) = V (G), such that uv and xy are similar in H .

Note that it is also possible to have similar or pseudo-similar non-edges

in a graph. In Theorem 8.15, it would also be possible to remove the edges

xy, (xy)θ, (xy)θ
2

, . . . , (xy)θ
m−1

from G to obtain a graph with similar non-edges

uv and xy.

Exercises

8.8.1 Use θ = (1, 2, 3, 4)(5, 6, 7, 8) as a complementing permutation to con-

struct a number of self-complementary graphs.

8.8.2 In the graph of Figure 8.9, vertices u and v are pseudo-similar. Determine

all possible isomorphisms θ : G − u→ G − v. For each possible θ, find

a graphH using Theorem 8.13 such that G is an induced subgraph of H ,

and u and v are similar in H .

u v

FIGURE 8.9

A graph with pseudo-similar vertices

8.8.3 When applying Theorem 8.13 to the graph of Figure 8.8, an additional

8 vertices were added to G. Determine whether a smaller number will

suffice.

8.8.4 Use Theorem 8.15 to construct a graph with a pair of pseudo-similar

edges.

8.9 Notes

Some sources for permutation groups and groups acting on graphs are GARDINER

[63], GODSIL and ROYLE [70], HALL [79], and ROTMAN [151]. A representative

selection of papers on GRR’s is GODSIL [68], IMRICH [92], and WATKINS [187].

Two excellent sources for algorithms for permutation groups are BUTLER [27] and

Graphs and Symmetry 167

SERESS [158], for readers who are interested in programming. The theory of self-

complementary graphs was first developed by SACHS [154] and RINGEL [147]. The-

orems 8.13 and 8.15 are from GODSIL and KOCAY [69].

http://taylorandfrancis.com

9

Alternating Paths and Matchings

9.1 Introduction

Matchings arise in a variety of situations as assignment problems, in which pairs of

items are to be matched together, for example, if people are to be assigned jobs, if

sports teams are to matched in a tournament, if tasks are to be assigned to processors

in a computer, whenever objects or people are to be matched on a one-to-one basis.

In a graph G, a matching M is a set of edges such that no two edges of M have

a vertex in common. Figure 9.1 illustrates two matchingsM1 and M2 in a graphG.

u3

u4

u5 u6

u2

u7

u8

u1 u3

u4

u5 u6

u2

u7

u8

u1

M1 M2

FIGURE 9.1

Matchings

LetM havem edges. Then 2m vertices ofG are matched byM . We also say that

a vertex u is saturated by M if it is matched, and unsaturated if it is not matched. In

general, we want M to have as many edges as possible.

DEFINITION 9.1: M is a maximum matching inG if no matching ofG has more

edges.

For example, in Figure 9.1, |M1| = 3 and |M2| = 4. Because |G| = 8, M2 is

a maximum matching. A matching which saturates every vertex is called a perfect

matching. Obviously a perfect matching is always a maximum matching. M1 is not

a maximum matching, but it is a maximal matching; namely,M1 cannot be extended

169

170 Graphs, Algorithms, and Optimization

by the addition of any edge uv of G. However, there is a way to build a bigger

matching out of M1. Let P denote the path (u1, u2, . . . , u6) in Figure 9.1.

DEFINITION 9.2: LetG have a matchingM . An alternating path P with respect

to M is any path whose edges are alternately in M and not in M . If the endpoints of

P are unsaturated, then P is an augmenting path.

So P = (u1, u2, . . . , u6) is an augmenting path with respect to M1. Consider the

subgraph formed by the exclusive or operation M = M1 ⊕ E(P) (also called the

symmetric difference, (M1 −E(P)) ∪ (E(P)−M1)). M contains those edges of P
which are not in M1, namely, u1u2, u3u4, and u5u6. M is a bigger matching than

M1. Notice that M =M2.

Lemma 9.1. Let G have a matching M . Let P be an augmenting path with respect

to M . Then M ′ =M ⊕ E(P) is a matching with one more edge than M .

Proof. Let the endpoints of P be u and v. M ′ has one more edge than M , because u
and v are unsaturated inM , but saturated inM ′. All other vertices that were saturated

in M are still saturated in M ′. So M ′ is a matching with one more edge.

The key result in the theory of matchings is the following:

Theorem 9.2. (Berge’s theorem) A matchingM in G is maximum if and only if G
contains no augmenting path with respect to M .

Proof. IfM were a maximum matching and P an augmenting path, thenM ⊕E(P)
would be a larger matching. So there can be no augmenting path if M is maximum.

Conversly suppose that G has no augmenting path with respect to M . If M is

not maximum, then pick a maximum matching M ′. Clearly |M ′| > |M |. Let H =
M ⊕M ′. Consider the subgraph of G that H defines. Each vertex v is incident on

at most one M -edge and one M ′-edge, so that in H , DEG(v) ≤ 2. Every path in H
alternates between M -edges and M ′-edges. So H consists of alternating paths and

cycles, as illustrated in Figure 9.2.

H

P

M

M ′

FIGURE 9.2

Alternating paths and cycles

Each cycle must clearly have even length, with an equal number of edges of M
and M ′. Because |M ′| > |M |, some path P must have more M ′-edges than M -

edges. It can only begin and end with an M ′-edge, so that P is augmenting with

respect to M . But we began by assuming that G has no augmenting path for M .

Consequently,M was initially a maximum matching.

Alternating Paths and Matchings 171

This theorem tells us how to find a maximum matching in a graph. We begin with

some matching M . If M is not maximum, there will be an unsaturated vertex u. We

then follow alternating paths from u. If some unsaturated vertex v is reached on an

alternating path P , then P is an augmenting uv-path. Set M ← M ⊕ E(P), and

repeat. If the method that we have chosen to follow alternating paths is sure to find

all such paths, then this technique is guaranteed to find a maximum matching in G.

In bipartite graphs it is slightly easier to follow alternating paths and therefore to

find maximum matchings, because of their special properties. Let G have bipartition

(X,Y). If S ⊆ X , then the neighbor set of S is N(S), the set of Y -vertices adjacent

to S. SometimesN(S) is called the shadow set of S. IfG has a perfect matchingM ,

then every x ∈ S will be matched to some y ∈ Y so that |N(S)| ≥ |S|, for every

S ⊆ X . HALL [79] proved that this necessary condition is also sufficient.

S

N(S)

X

Y

FIGURE 9.3

The neighbor set

Theorem 9.3. (Hall’s theorem) Let G have bipartition (X,Y). G has a matching

saturating every x ∈ X if and only if |N(S)| ≥ |S|, for all S ⊆ X .

Proof. We have already discussed the necessity of the conditions. For the converse

suppose that |N(S)| ≥ |S|, for all S ⊆ X . If M does not saturate all of X , pick

an unsaturated u ∈ X , and follow all the alternating paths beginning at u. (See

Figure 9.4.)

Let S ⊆ X be the set ofX-vertices reachable from u on alternating paths, and let

T be the set of Y -vertices reachable. With the exception of u, each vertex x ∈ S is

matched to some y ∈ T , for S was constructed by extending alternating paths from

y ∈ T to x ∈ S whenever xy is a matching edge. Therefore |S| = |T |+ 1.

Now there may be other vertices X − S and Y − T . However, there can be no

edges [S, Y − T], for such an edge would extend an alternating path to a vertex of

Y − T , which is not reachable from u on an alternating path. So every x ∈ S can

only be joined to vertices of T ; that is, T = N(S). It follows that |S| > |N(S)|, a

contradiction. Therefore every vertex of X must be saturated by M .

172 Graphs, Algorithms, and Optimization

S X − S

T Y − T

FIGURE 9.4

Follow alternating paths

Corollary 9.4. Every k-regular bipartite graph has a perfect matching, if k > 0.

Proof. Let G have bipartition (X,Y). Because G is k-regular, ε = k · |X | = k · |Y |,
so that |X | = |Y |. Pick any S ⊆ X . How many edges have one end in S? Exactly

k ·|S|. They all have their other end inN(S). The number of edges with one endpoint

in N(S) is k · |N(S)|. So k · |S| ≤ k · |N(S)|, or |S| ≤ |N(S)|, for all S ⊆ X .

ThereforeG has a perfect matching.

Exercises

9.1.1 Find a formula for the number of perfect matchings of K2n and Kn,n.

9.1.2 (Hall’s theorem.) Let A1, A2, . . ., An be subsets of a set S. A system

of distinct representatives for the family {A1, A2, . . . , An} is a subset

{a1, a2, . . . , an} of S such that a1 ∈ A1, a2 ∈ A2, . . ., am ∈ Am, and

ai 6= aj , for i 6= j. Example:

A1 = students taking computer science 421

A2 = students taking physics 374

A3 = students taking botany 464

A4 = students taking philosophy 221

The sets A1, A2, A3, A4 may have many students in common. Find four

distinct students a1, a2, a3, a4, such that a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, and

a4 ∈ A4 to represent each of the four classes.

Show that {A1, A2, . . . , An} has a system of distinct representatives if

and only if the union of every combination of k of the subsetsAi contains

at least k elements, for all k = 1, 2, . . . , n. (Hint: Make a bipartite graph

A1, A2, . . . , An versus all aj ∈ S, and use Hall’s theorem.)

Alternating Paths and Matchings 173

9.2 The Hungarian algorithm

We are now in a position to construct an algorithm which finds a maximum match-

ing in bipartite graphs, by following alternating paths from each unsaturated u ∈ X .

How can we best follow alternating paths? Let n = |G|. Suppose that we store the

matching as an integer array Match [x], x = 1, 2, . . . , n, where Match [x] is the ver-

tex matched to x (so Match [Match [x]] = x, if x is saturated). We use Match [x] = 0
to indicate that x is unsaturated. We could use either a DFS or BFS to construct the

alternating paths. A DFS is slightly easier to program, but a BF-tree tends to be shal-

lower than a DF-tree, so that a BFS will likely find augmenting paths more quickly,

and find shorter augmenting paths, too. Therefore the BFS is used for matching al-

gorithms.

The array used to represent parents in the BF-tree can be used in combination

with the Match [·] array to store the alternating paths. We write PrevPt [v] for the

parent of v in a BF-tree. It is the previous point to v on an alternating path to the root.

This is illustrated in Figure 9.5.

X

Y

u

PrevPt Match

FIGURE 9.5

Storing the alternating paths

We also need to build the sets S and N(S) as queues, which we store as the

arrays ScanQ andNS, respectively. The algorithm for finding a maximum matching

in bipartite graphs is Algorithm 9.3.1. It is also called the Hungarian algorithm for

maximum matchings in bipartite graphs.

174 Graphs, Algorithms, and Optimization

Algorithm 9.2.1: MAXMATCHING(G)

comment: Hungarian algorithm.G has bipartition (X,Y), and n vertices.

for i← 1 to n do Match [i]← 0
for each u ∈ X

do





comment: u is currently unsaturated

ScanQ [1]← u
QSize ← 1
comment: construct alternating paths from u using a BFS

for i← 1 to n do PrevPt [i]← 0
k ← 1
repeat

x← ScanQ [k]
for each y −→ x do



if y 6∈ NS

then





add y to NS
PrevPt [y]← x
if y is unsaturated

then





comment: augmenting path found

AUGMENT(y)
go to 1 “u is now saturated”

add Match [y] to ScanQ
k ← k + 1 “advance ScanQ”

until k > QSize

comment:





ScanQ now contains a set S, and NS contains

the neighbor-set N(S) such that |S| = |N(S)|+ 1,

no matching can saturate all of S

delete S and N(S) from the graph

1 :
comment: Match [·] now contains a maximum matching

Notice that the algorithm needs to be able to determine whether y ∈ NS. This

can be done by storing a boolean array. Another possibility is to use PrevPt[v] = 0
to indicate that v 6∈ N(S). We can test if y is unsaturated by checking whether

Match [y] = 0. AUGMENT(y) is a procedure that computes M ← M ⊕ E(P),
where P is the augmenting path found. Beginning at vertex y, it alternately follows

PrevPt [·] and Match [·] back to the initial unsaturated vertex, which is the root-node

of the BF-tree being constructed. This is illustrated in Figure 9.6.

Alternating Paths and Matchings 175

Algorithm 9.2.2: AUGMENT(y)

comment: follow the augmenting path, setting M ←M ⊕ E(P)

repeat

w ← PrevP t[y]
Match [y]← w
v ← Match [w]
Match [w]← y
y ← v

until y = 0

u w

v y

FIGURE 9.6

Augmenting the matching

The BFS constructs an alternating search tree. It contains all vertices reachable

from the root-node u on alternating paths. Vertices at even distance from u in the tree

form the set S, and those at odd distance formN(S). The vertices of S are sometimes

called outer vertices, and those of N(S) inner vertices. All the actual searching is

done from the outer vertices.

Theorem 9.5. The Hungarian algorithm constructs a maximum matching in a bi-

partite graph.

Proof. Let G have bipartition (X,Y). If the algorithm saturates every vertex of X ,

then it is certainly a maximum matching. Otherwise some vertex u is not matched. If

there is an augmenting path P from u, it must alternate betweenX and Y , becauseG
is bipartite. The algorithm constructs the sets S and N(S), consisting of all vertices

ofX and Y , respectively, that can be reached on alternating paths. So P will be found

if it exists. If u cannot be saturated, then we know that |S| = |N(S)|+1. Every vertex

of S but u is matched.S andN(S) are then deleted from the graph. Does the deletion

of these vertices affect the rest of the algorithm? As in Hall’s theorem, there are no

edges [S, Y −N(S)]. Suppose that alternating paths from a vertex v ∈ X were being

constructed. If such a path were to reach a vertex y in the deletedN(S), it could only

extend to other vertices of S and N(S). It could not extend to an augmenting path.

176 Graphs, Algorithms, and Optimization

x

y

FIGURE 9.7

The alternating search tree

Therefore these vertices can be deleted. Upon completion, the algorithm will have

produced a matching M for which there are no augmenting paths in the graph. By

Theorem 9.2, M is a maximum matching.

9.2.1 Complexity

Suppose that at the beginning of the for-loop, M has m edges. The largest possi-

ble size of S and N(S) is then m + 1, and m, respectively. The number of edges

[S,N(S)] is at most m(m+1). In the worst possible case, S and N(S) will be built

up to this size, and m(m + 1) edges between them will be encountered. If an aug-

menting path is now found, thenm will increase by one to give a worst case again for

the next iteration. The length of the augmenting path will be at most 2m+ 1, in case

all m matching edges are in the path. The number of steps performed in this iteration

of the for-loop will then be at most m(m+ 1)+ (2m+ 1). Because |X |+ |Y | = n,

the number of vertices, one of |X | and |Y | is ≤ n/2. We can take X as the smaller

side. Summing over all iterations then gives

n
2
−1∑

m=0

m(m+ 1) + (2m+ 1) =
∑

2

(
m+ 1

2

)
+ (2m+ 1)

= 2

(
n/2 + 1

3

)
+ 2

(
n/2

2

)
+
n

2
.

Alternating Paths and Matchings 177

The leading term in the expansion is n3/24, so that the algorithm is of order

O(n3), with a small constant coefficient. It can be improved with a more careful

choice of augmenting paths. HOPCROFT and KARP [87] maintain several augment-

ing paths, and augment simultaneously on all of them to giveO(n2.5). This can also

be accomplished with network flow techniques.

Exercises

9.2.1 Program the Hungarian matching algorithm. The output should consist

of a list of the edges in a maximum matching. If there is no matching

saturating the set X , this should be indicated by printing out the sets S ⊆
X found whose neighbor setN(S) is smaller than S. Use the four sample

graphs listed below for input. The set X is marked by shaded dots, and Y
by open dots.

(a)

(b)

(c)

(d)

9.3 Edmonds’ algorithm, blossoms

When G is not bipartite, the Hungarian algorithm cannot be used to find a maxi-

mum matching in G. Edmonds [47] discovered how to find maximum matchings

efficiently in non-bipartite graphs. Consider the graph G shown in Figure 9.8. Here

the Hungarian algorithm is being used to construct an alternating tree from vertex 1,

so that vertex 1 can be matched.

The alternating tree has been built to its full extent, but no augmenting path was

found. By Berge’s theorem 9.2, the matching can be augmented on the alternating

path [1, 3, 5, 7, 9, 8, 6, 10]. However the algorithm does not find this path. Notice

the odd cycle (5, 6, 8, 9, 7) containing two matching edges. The key to finding all

178 Graphs, Algorithms, and Optimization

1

3

5

7

9

2

4

6

8

10 −→

1

2 3

4 5

10

G G′

FIGURE 9.8

A matching in a non-bipartite graph

augmenting paths in a non-bipartite graph is to find certain odd cycles in which all

vertices but one are matched within the cycle. Such a cycle is called a blossom.

DEFINITION 9.3: Let graph G have a matching M . Let C be the edges of an

odd cycle of G such M ∩C is a matching in C containing all vertices of C, but one.

Then C is called a blossom of G with respect to M . The vertex of C which is not

matched by M ∩ C is called the blossom base.

The Hungarian algorithm can be modified to detect blossoms as the alternating

tree is built, and “shrink” them. If C is a blossom in G, then to shrink C means to

change G into a new graph in which all vertices of C are identified into one vertex.

The result of shrinking the blossom (5, 6, 8, 9, 7) of Figure 9.8 is shown in the same

diagram, where the “meta”-vertex representing the shrunken blossom is shaded. The

reduced graph G′ now has an alternating path [1, 3, 5, 10] to vertex 10. When the

matching in G′ is augmented by following the alternating path from vertex 10 to 1,

there is a corresponding alternating path in G that “travels through the blossom” to

its base. In this case it is [10, 6, 8, 9, 7, 5].
While the alternating tree is being constructed, a blossom may be detected, in

which case it is immediately shrunk, and the algorithm continues. Another blossom

containing the meta-vertex of the previous blossom may be later detected, and im-

mediately shrunk — blossoms are actually recursive structures, they may contain

previously shrunken blossoms, which may in turn contain previously shrunken blos-

soms, etc. We see that in Definition 9.3, some vertices of the graph G may actually

represent blossoms that have already been shrunk.

In order to program Edmonds’ algorithm effectively, we need a data structure

that can store blossoms, which can contain recursively shrunken blossoms. We use a

variation of the Merge-Find data structure, which was described in Chapter 2. Each

blossom is represented by the vertex which is its base. There is an array BasePtr [u]

Alternating Paths and Matchings 179

which points towards the base of the blossom containing vertex u. Initially the ver-

tices are not in any blossom, so we set BasePtr [u] = 0. When a vertex u becomes

part of a blossom, BasePtr [u] will be set to the blossom base. There is a procedure

BLOSSOMBASE(u) which returns the vertex which is the base of the blossom con-

taining u. Similar to the procedure COMPREP() of Chapter 2, we have :

procedure BLOSSOMBASE(u)
if BasePtr[u] = 0

then return (0) “not in any blossom”

if BasePtr[u] = u
then return (u) “u is the blossom base”

theRep ← BLOSSOMBASE(BasePtr [u])
BasePtr [u]← theRep
return (theRep)

Edmonds’ algorithm can now be presented as a breadth-first search to build an al-

ternating tree, while shrinking blossoms as they are discovered. As before, Match [v]
indicates the vertex that v is matched to, it is initially set to 0. PrevPt [v] indicates

the previous vertex in a path from v to the root of the search tree. PrevPt [v] = 0 is

used to indicate that v has not yet been visited. Blossoms are only meaningful with

respect to the alternating search tree as it is being constructed. Therefore all blossoms

are re-initiallized before each iteration of the algorithm.

The vertices of an alternating search tree, as in Figure 9.7, can be classified as in-

ner vertices or outer vertices. All searching is done from outer vertices. The base of a

blossom is always an outer vertex. The inner vertices are not in any blossom. There-

fore when the search tree is built, and a vertex u becomes an outer vertex, a blossom

is created for it, by assigning BasePtr [u] = u. This ensures that BLOSSOMBASE(u)

will return u as the base of its blossom. All outer vertices are at an even distance

from the root of the search tree.

An odd cycle is detected when an edge vw, where v andw are both outer vertices,

is discovered. The alternating paths from v andw through the search tree towards the

root are followed to find the base b of the new blossom, and BasePtr[x] = b is

assigned for each x on these paths. All vertices in the new blossom now become

outer vertices. This is how blossoms are shrunk. The base of a blossom is either the

root of the search tree, or it is matched to vertex Match [v], which is an inner vertex

that is not in any blossom. All outer vertices are placed on a queue called ScanQ . It is

an array containing vertices from which the search tree is extended. When a blossom

is detected and shrunk, all vertices in the blossom are placed on the ScanQ , so that

their incident edges will be visited.

180 Graphs, Algorithms, and Optimization

Algorithm 9.3.1: MAXMATCHING(G)

comment: Edmonds’ matching algorithm.G has n vertices.

for u← 1 to n do Match [u]← 0
for u← 1 to n do BasePtr [u]← 0
for each u ∈ X do if Match [u] = 0

then





comment: u is currently unsaturated

ScanQ [1]← u
BasePtr[u]← u “create a blossom containing u”

QSize ← 1
for v ← 1 to n do PrevPt [v]← 0
comment: construct alternating paths from u using a BFS

k ← 1
repeat

x← ScanQ [k]
xBase ← BLOSSOMBASE(x)
for each y −→ x

do





yBase ← BLOSSOMBASE(y)
if yBase = xBase then go to 1 “ignore edge xy”

if yBase 6= 0

then





comment: x and y are in different blossoms

SHRINKBLOSSOM(x, y, xBase , yBase)
go to 1

comment: otherwise y is not in a blossom

if PrevPt [y] 6= 0 then go to 1 “y is already in the tree”

PrevPt [y]← x “add y to the tree”

if Match [y] = 0

then





comment: augmenting path found

AUGMENT(y)
break

comment: otherwise y is already matched

v ← Match [y]
add v to ScanQ
BasePtr [v]← v “create a blossom containing v”

1 :
k ← k + 1 “advance ScanQ”

until k > QSize
comment: Match [·] now contains a maximum matching

When a blossom has been shrunk, all vertices v in the blossom become outer

vertices, to allow the search tree to be extended from each v. If an unmatched vertex

Alternating Paths and Matchings 181

w is adjacent to one of these blossom vertices, then the algorithm must be able to

follow the alternating path from w to the root of the search tree, in order to augment

the matching. Consider the example shown in Figure 9.9.

v

w

x

FIGURE 9.9

An augmenting path through a blossom

In this example, there is an alternating path from each of v, w, x through the

blossom to the root of the search tree. In order to augment the matching, the algorithm

must be able to follow any of these paths. In general, an alternating path from an inner

vertex y in a search tree is followed by successively iterating

u← PrevPt [y]
y ← Match [u]

until the root of the tree is reached, as in Algorithm 9.2.2. This will also work with

blossoms, so long as PrevPt is assigned correctly. In the trees of Figures 9.7 and 9.8,

arrows are used to indicate PrevPt , so that alternating paths can be followed down

the tree towards the root by using the above statements. In Figure 9.9, the alternating

path fromw simply descends the tree to the root, as in Figure 9.7. But the alternating

path from v or x in Figure 9.9 must first ascend the tree through the blossom, then

travel around the blossom, and down the other side towards the root. This can easily

be effected by extending the definition of PrevPt . When an edge yz in a blossom

has PrevPt [y] = z, being indicated as an arrow pointing down the tree, we can also

assign PrevPt [z] = y when the blossom is shrunk. This will ensure that alternating

paths will be correctly followed through a blossom to its base, from any vertex in the

blossom. This method will clearly work for blossoms which are odd cycles. When an

odd cycle blossom becomes part of a larger blossom, it will still work, because the

alternating path through a blossom always goes to the base, which is matched to an

inner vertex outside the blossom. Therefore this will also work for larger blossoms.

Consequently, Algorithm 9.3.1 will always find an augmenting path from each vertex

u, if one exists, and will therefore always find a maximum matching.

182 Graphs, Algorithms, and Optimization

9.3.1 Complexity

The maximum number of steps will occur if the algorithm builds the alternating tree

as large as possible on each iteration, and then finds an augmenting path. In this case

there will be n/2 iterations of the main loop, and the ith iteration will build a search

tree with i − 1 matching edges. The length of the alternating path found will be at

most 2i + 1, in case all current matching edges are part of the path. The number of

steps required to build the search tree and augment, over all iterations, will then be

at most O(n2), not counting the steps to shrink blossoms.

The Merge-Find data structure has a near linear time performance — for all

values of n within practical bounds, the performance is effectively O(m), where m
is the number of calls to BLOSSOMBASE(). The number of calls will be at most i+1
on iteration i, so that over all iterations, approximately O(n2) calls will be made.

When a blossom is shrunk upon finding an edge vw that creates an odd cycle, the

alternating paths from v and w to the root must be followed to find the base of the

new blossom. This can be done in i steps on iteration i, because there are i− 1 edges

currently in the matching. This also results in O(n2) steps, taken over all iterations.

Thus, Edmonds’ algorithm can be programmed to take O(n2) steps, for all practical

values of n. The algorithm is not difficult to program, and is an excellent exercise in

programming graph algorithms.

9.4 Perfect matchings and 1-factorizations

Given any graph G and positive integer k, a k-factor of G is a spanning subgraph

that is k-regular. Thus a perfect matching is a 1-factor. A 2-factor is a union of cycles

that covers V (G), as illustrated in Figure 9.10.

FIGURE 9.10

2-factors of the cube

The reason for this terminology is as follows. Associate indeterminates x1, x2,

. . ., xn with the n vertices of a graph. An edge connecting vertex i to j can be

represented by the expression xi − xj . Then the entire graph can be represented (up

to sign) by the product P (G) =
∏
ij∈E(G)(xi − xj). For example, if G is the 4-

Alternating Paths and Matchings 183

cycle, this product becomes (x1 − x2)(x2 − x3)(x3 − x4)(x4 − x1). Because the

number of terms in the product is ε(G), when it is multiplied out, there will be ε x’s

in each term. A 1-factor of P (G), for example, (x1 − x2)(x3 − x4), is a factor that

contains each xi exactly once and corresponds to a perfect matching inG. A k-factor

of P (G), is a factor that contains each xi exactly k-times.

With some graphs it is possible to decompose the edge set into perfect matchings.

For example, if G is the cube, we can write E(G) =M1 ∪M2 ∪M3, where

M1 = {12, 34, 67, 85},
M2 = {23, 14, 56, 78},
M3 = {15, 26, 37, 48},

as shown in Figure 9.11. Each edge of G is in exactly one of M1, M2, or M3. Also

P (G) = ±F1F2F3 where

F1 = (x1 − x2)(x3 − x4)(x6 − x7)(x8 − x5),
F2 = (x2 − x3)(x1 − x4)(x5 − x6)(x7 − x8),
F3 = (x1 − x5)(x2 − x6)(x3 − x7)(x4 − x8).

In general, a k-factorization of a graphG is a decomposition of E(G) into H1 ∪
H2 ∪ . . . ∪ Hm, where each Hi is a k-factor, and each Hi and Hj have no edges

in common. If a graph G has a k-factorization, we say that G is k-factorable. The

graph G is k-factorable if and only if P (G) can be written as a product of k-factors.

The decomposition in Figure 9.11 is a 1-factorization of the cube and thus the cube

is 1-factorable.

1

5

2

6

3

7

4

8

FIGURE 9.11

A 1-factorization of the cube

Lemma 9.6. Kn,n is 1-factorable.

Proof. Let (X,Y) be the bipartition of Kn,n, where X = {x0, x1, . . . , xn−1} and

Y = {y0, y1, . . . , yn−1}. DefineM0 = {xiyi | i = 0, 1, . . . , n−1},M1 = {xiyi+1 |
i = 0, 1, . . . , n−1}, etc., where the addition is modulo n. In generalMk = {xiyi+k |

184 Graphs, Algorithms, and Optimization

i = 0, 1, . . . , n− 1}. ClearlyMj andMk have no edges in common, for any j and k,

and togetherM0,M1, . . .,Mn−1 contain all ofE(G). Thus we have a 1-factorization

of Kn,n.

Lemma 9.7. K2n is 1-factorable.

Proof. Let V (K2n) = {0, 1, 2, . . . , 2n − 2} ∪ {∞}. Draw K2n with the vertices

0, 1, . . . , 2n−2 in a circle, placing∞ in the center of the circle. This is illustrated for

n = 4 in Figure 9.12. TakeM0 = {(0,∞), (1, 2n−2), (2, 2n−3), . . . , (n−1, n)} =
{(0,∞)}∪{(i,−i) | i = 1, 2, . . . , n− 1}, where the addition is modulo 2n− 1.M0

is illustrated by the thicker lines in Figure 9.12.

We can then “rotate”M0 by adding one to each vertex, M1 = M0 + 1 = {(i +
1, j + 1) | (i, j) ∈ M0}, where∞ + 1 = ∞, and addition is modulo 2n − 1. It is

easy to see from the diagram that M0 andM1 have no edges in common. Continuing

like this, we have

M0,M1,M2, . . . ,M2n−2,

where Mk =M0 + k. They form a 1-factorization of K2n.

0

1

2

34

5

6

∞

FIGURE 9.12

1-factorizing K2n, where n = 4

We can use a similar technique to find a 2-factorization of K2n+1.

Lemma 9.8. K2n+1 is 2-factorable.

Proof. Let V (K2n+1) = {0, 1, 2, . . . , 2n − 1} ∪ {∞}. As in the previous lemma,

draw the graph with the vertices in a circle, placing∞ in the center. The first 2-factor

is the cycle H0 = (0, 1,−1, 2,−2, . . . , n − 1, n+ 1, n,∞), where the arithmetic is

modulo 2n. This is illustrated in Figure 9.13, with n = 3. We then rotate the cycle to

get H1, H2, . . . , Hn−1, giving a 2-factorization of K2n+1.

Alternating Paths and Matchings 185

0

1

2

3

4

5

∞

FIGURE 9.13

2-factorizing K2n+1, where n = 3

Exercises

9.4.1 Find all perfect matchings of the cube. Find all of its 1-factorizations.

9.4.2 Find all perfect matchings and 1-factorizations of K4 and K6.

9.4.3 Prove that the Petersen graph has no 1-factorization.

9.4.4 Prove that for k > 0 every k-regular bipartite graph is 1-factorable.

9.4.5 Describe another 1-factorization of K2n, when n is even, using the fact

that Kn,n is a subgraph of K2n.

9.4.6 Let M1,M2, . . . ,Mk and M ′
1,M

′
2, . . . ,M

′
k be two 1-factorizations of a

k-regular graph G. The two factorizations are isomorphic if there is an

automorphism θ of G such that for each i, θ(Mi) =M ′
j , for some j; that

is, θ induces a mapping ofM1,M2, . . . ,Mk ontoM ′
1,M

′
2, . . . ,M

′
k. How

many non-isomorphic 1-factorizations are there of K4 and K6?

9.4.7 How many non-isomorphic 1-factorizations are there of the cube?

9.5 The subgraph problem

Let G be a graph and let f : V (G) → {0, 1, 2, . . .} be a function assigning a non-

negative integer to each vertex of G. An f -factor of G is a subgraph H of G such

that deg(u,H) = f(u), for each u ∈ V (G). So a 1-factor is an f -factor in which

each f(u) = 1.

186 Graphs, Algorithms, and Optimization

Problem 9.1: Subgraph Problem

Instance: a graph G and a function f : V (G)→ {0, 1, 2, . . .}.
Find: an f -factor in G, if one exists.

There is an ingenious construction by TUTTE [174], that transforms the sub-

graph problem into the problem of finding a perfect matching in a larger graph G′.

Construct G′ as follows. For each edge e = uv of G, G′ has two vertices eu and

ev, such that euev ∈ E(G′). For each vertex u of G, let m(u) = deg(u) − f(u).
Corresponding to u ∈ V (G), G′ hasm(u) vertices u1, u2, . . . , um(u). For each edge

e = uv ∈ E(G), u1, u2, . . . , um(u) are all adjacent to eu ∈ V (G′). This is illustrated

in Figure 9.14, where deg(u) = 5 and f(u) = 3.

u

a

b

c
d

e
−→ u1 u2

au

bu

cudu

eu

G G′

FIGURE 9.14

Tutte’s transformation

Theorem 9.9. G has an f -factor if and only if G′ has a perfect matching.

Proof. Suppose that G has an f -factor H . Form a perfect matching M in G′ as

follows. For each edge uv ∈ H , euev ∈ M . There are m(u) = deg(u) − f(u)
remaining edges at vertex u ∈ V (G). In G′, these can be matched to the vertices

u1, u2, . . . , um(u) in any order.

Conversely, given a perfect matching M ⊆ G′, the vertices u1, u2, . . . , um(u)

will be matched to m(u) vertices, leaving f(u) adjacent vertices of the form eu not

matched to any ui. They can therefore only be matched to vertices of the form ev
for some v. Thus f(u) edges euev are selected corresponding to each vertex u. This

gives an f -factor of G.

So finding an f -factor in G is equivalent to finding a perfect matching in G′. If

G has n vertices and ε edges, then G′ has

4ε−
∑

f(u)

vertices and

ε+
∑

(deg2(u)− deg(u)f(u))

Alternating Paths and Matchings 187

edges. Finding perfect matchings in non-bipartite graphs is considerably more com-

plicated than in bipartite graphs, but is still very efficient. Edmonds’ algorithm [47]

will find a maximum matching in time O(n3). Thus, the subgraph problem can be

solved using perfect matchings. However, it can be solved more efficiently by a direct

algorithm than by constructingG′ and then finding a maximum matching.

9.6 Coverings in bipartite graphs

A covering or vertex cover of a graph G is a subset U ⊆ V (G) that covers every

edge of G; that is, every edge has at least one endpoint in U .

FIGURE 9.15

Coverings in a graph

In general, we want the smallest covering possible. This is called a minimum cov-

ering. Figure 9.15 shows two coverings, indicated by shaded vertices. The covering

with six vertices is minimal; namely, it has no subset that is a smaller covering. The

other is a minimum covering; namely, G has no smaller covering. This is because

any covering must use at least three vertices of the outer 5-cycle, and at least two

vertices of the inner triangle, giving a minimum of five vertices.

In bipartite graphs, there is a very close relation between minimum coverings and

maximum matchings. In general, let M be a matching in a graph G, and let U be a

covering. Then becauseU covers every edge ofM , |U | ≥ |M |. This is true even if U
is minimum or ifM is maximum. Therefore, we conclude that if |U | = |M | for some

M and U , then U is minimum and M is maximum. In bipartite graphs, equality can

always be achieved.

Theorem 9.10. (König’s theorem) If G is bipartite, then the number of edges in a

maximum matching equals the number of vertices in a minimum covering.

Proof. Let M be a maximum matching, and let (X,Y) be a bipartition of G, where

|X | ≤ |Y |. Let W ⊆ X be the set of all X-vertices not saturated by M . If W = ∅,
then U = X is a covering with |U | = |M |. Otherwise construct the set of all vertices

reachable fromW on alternating paths. Let S be theX-vertices reachable, and T the

188 Graphs, Algorithms, and Optimization

Y -vertices reachable. Take U = T ∪ (X−S). Then U is a covering with |U | = |M |,
as illustrated in Figure 9.16.

S

T

FIGURE 9.16

Minimum covering and maximum matching in a bipartite graph

9.7 Tutte’s theorem

Tutte’s theorem gives a necessary and sufficient condition for any graph to have a

perfect matching.

Let S ⊆ V (G). In general, G − S may have several connected components.

Write odd(G − S) for the number of components with an odd number of vertices.

The following proof of Tutte’s theorem is due to LOVÁSZ [119].

Theorem 9.11. (Tutte’s theorem) A graph G has a perfect matching if and only if

odd(G− S) ≤ |S|, for every subset S ⊆ V (G).

Proof. Suppose that G has a perfect matching M and pick any S ⊆ V (G). Let

G1, G2, . . . , Gm be the odd components of G − S. Each Gi contains at least one

vertex matched by M to a vertex of S. Therefore odd(G − S) = m ≤ |S|. See

Figure 9.17.

Conversly suppose that odd(G − S) = m ≤ |S|, for every S ⊆ V (G). Taking

S = ∅ gives odd(G) = 0, so n = |G| is even. The proof is by reverse induction

on ε(G), for any given n. If G is the complete graph, it is clear that G has a perfect

matching, so the result holds when ε =
(
n
2

)
. Let G be a graph with the largest ε such

that G has no perfect matching. If uv 6∈ E(G), then because G+ uv has more edges

thanG, it must be that G+ uv has a perfect matching. Let S be the set of all vertices

of G of degree n− 1, and let G′ be any connected component of G− S. If G′ is not

a complete graph, then it contains three vertices x, y, z such that x −→ y −→ z, but

Alternating Paths and Matchings 189

Odd components Even components

S

G1 G2 Gm

FIGURE 9.17

Odd and even components of G − S

y

zx

FIGURE 9.18

H = M1 ⊕ M2, case 1

x 6−→ z. Because y 6∈ S, deg(y) < n− 1, so there is a vertex w 6−→ y. Let M1 be a

perfect matching of G+ xz and let M2 be a perfect matching of G+ yw, as shown

in Figures 9.18 and 9.19. Then xz ∈ M1 and yw ∈ M2. Let H = M1 ⊕M2. H
consists of one or more alternating cycles inG. Let Cxz be the cycle ofH containing

xz, and let Cyw be the cycle containing yw.

Case 1. Cxz 6= Cyw.

Form a new matching M by taking M2-edges of Cxz , M1-edges of Cyw, and

M1 edges elsewhere. Then M is a perfect matching of G, a contradiction.

Case 2. Cxz = Cyw = C.

C can be traversed in two possible directions. Beginning with the vertices y, w,

we either come to x first or z first. Suppose it is z. Form a new matching M by

190 Graphs, Algorithms, and Optimization

taking M1-edges between w and z, M2-edges between x and y, and the edge

yz. Then take M1 edges elsewhere. Again M is a perfect matching of G, a

contradiction.

x

y

z

w

FIGURE 9.19

H = M1 ⊕ M2, case 2

We conclude that every component G′ of G − S must be a complete graph.

But then we can easily construct a perfect matching of G as follows. Each even

component of G − S is a complete graph, so it has a perfect matching. Every odd

component is also a complete graph, so is has a near perfect matching, namely, one

vertex is not matched. This vertex can be matched to a vertex of S, because odd(G−
S) ≤ |S|. The remaining vertices of S form a complete subgraph, because they have

degree n− 1, so they also have a perfect matching. It follows that everyG satisfying

the condition of the theorem has a perfect matching.

Tutte’s theorem is a powerful criterion for the existence of a perfect matching.

For example, the following graph has no perfect matching, because G− v has three

odd components.

We can use Tutte’s theorem to prove that every 3-regular graph G without

cut-edges has a perfect matching. Let S ⊆ V (G) be any subset of the vertices.

Let G1, G2, . . . , Gk be the odd components of G − S. Let mi be the number of

edges connecting Gi to S. Then mi > 1, because G has no cut-edge. Because∑
v∈Gi

DEG(v) = 2ε(Gi) + mi = 3|Gi| = an odd number, we conclude that

mi is odd. Therefore mi ≥ 3, for each i. But
∑

v∈S DEG(v) = 3|S| ≥ ∑
imi,

because all of the mi edges have one endpoint in S. It follows that 3|S| ≥ 3k, or

|S| ≥ odd(G − S), for all S ⊆ V (G). Therefore G has a perfect matching M . G
also has a 2-factor, because G−M has degree two.

Exercises

9.7.1 For each integer k > 1, find a k-regular graph with no perfect matching.

9.7.2 A near perfect matching in a graph G is a matching which saturates all

vertices of G but one. A near 1-factorization is a decomposition of E(G)
into near perfect matchings. Prove that K2n+1 has a near 1-factorization.

Alternating Paths and Matchings 191

v

FIGURE 9.20

A 3-regular graph with no perfect matching

9.7.3 Find a condition similar to Tutte’s theorem for a graph to have a near

perfect matching.

9.8 Notes

An alternative description of Edmonds’ algorithm appears in PAPADIMITRIOU and

STEIGLITZ [134]. A good source book for the theory of matchings in graphs is

LOVÁSZ and PLUMMER [120]. Exercise 7.1.2 is from BONDY and MURTY [23].

The proof of Tutte’s theorem presented here is based on a proof by LOVÁSZ [119].

Tutte’s transformation to reduce the subgraph problem to a perfect matching prob-

lem is from TUTTE [174]. His Factor theorem, TUTTE [175], is a solution to the

subgraph problem. It is one of the great theorems of graph theory. The theory of 1-

factorizations has important applications to the theory of combinatorial designs. A

good reference is LINDNER and RODGER [116].

http://taylorandfrancis.com

10

Network Flows

10.1 Introduction

A network is a directed graph used to model the distribution of goods, data, or com-

modities, etc., from their centers of production to their destinations. For example,

Figure 10.1 shows a network in which goods are produced at node s, and shipped

to node t. Each directed edge has a limited capacity, being the maximum number

of goods that can be shipped through that channel per time period (e.g., 3 kilobytes

per second or 3 truckloads per day). The diagram indicates the capacity as a positive

integer associated with each edge. The actual number of goods shipped on each edge

is shown in square brackets beside the capacity. This is called the flow on that edge. It

is a non-negative integer less than or equal to the capacity. Goods cannot accumulate

at any node; therefore, the total in-flow at each node must equal the out-flow at that

node. The problem is to find the distribution of goods that maximizes the net flow

from s to t.
This can be modeled mathematically as follows. When the edges of a graph have

a direction, the graph is called a directed graph or digraph. A networkN is a directed

graph with two special nodes s and t; s is called the source, and t is called the target.

All other vertices are called intermediate vertices. The edges of a directed graph are

ordered pairs (u, v) of vertices, which we denote by
−→
uv . We shall find it convenient

to say that u is adjacent to v even when we do not know the direction of the edge. So

the phrase u is adjacent to v means either
−→
uv or

−→
vu is an edge. Each edge

−→
uv∈ E(N)

has a capacity CAP(
−→
uv), being a positive integer, and a flow f(

−→
uv), a non-negative

integer, such that f(
−→
uv) ≤ CAP(

−→
uv). If v is any vertex of N , the out-flow at v is

f+(v) =
∑

u,v−→u

f(
−→
vu)

where the sum is over all vertices u to which v is joined. The in-flow is the sum over

all incoming edges at v

f−(v) =
∑

u,u−→v

f(
−→
uv)

A valid flow f must satisfy two conditions.

1. Capacity constraint: 0 ≤ f(−→uv) ≤ CAP(
−→
uv), for all

−→
uv∈ E(N).

193

194 Graphs, Algorithms, and Optimization

s

v1

v2

v3

v4

v5

v6

t

8[5]

6[3]

6[3]

4[2] 9[7]

9[9]

7[6]

2[2]

4[4]

5[5]

1[1]

8[6]

7[7]

FIGURE 10.1

A network

2. Conservation condition: f+(v) = f−(v), for all v 6= s, t.

Notice that in Figure 10.1 both these conditions are satisfied. The value of the flow

is the net out-flow at s; in this case, VAL(f) = 20.

In general, there may be in-edges as well as out-edges at s. The net flow from s
to t will then be the out-flow at the source minus the in-flow. This is called the value

of the flow, VAL(f) = f+(s)− f−(s). The max-flow problem is:

Problem 10.1: Max-Flow

Instance: a network N .

Find: a flow f for N of maximum value.

Any flow f that has maximum value for the network N is called a max-flow of N .

This problem was first formulated and solved by Ford and Fulkerson. In this chapter

we shall present the Ford-Fulkerson algorithm, and study several applications of the

max-flow-min-cut theorem.

It is possible that a network encountered in practice will have more than one

source or target. If s1, s2, . . . , sk are all sources in a network N , and t1, t2, . . . , tm
are all targets, we can replace N with a network N ′ with only one source and one

target as follows. Add a vertex s toN , and join it to s1, s2, . . . , sk. Add a vertex t and

join t1, t2, . . . , tm to t. Assign a capacity CAP(
−→
ssi) being the sum of the capacities

Network Flows 195

of the out-edges at si, and a capacity CAP(
−→
tit), being the sum of the capacities of

all incoming edges to ti. Call the resulting network N ′. For every flow in N there

is a corresponding flow in N ′ with equal value, and vice-versa. Henceforth we shall

always assume that all networks have just one source and target. The model we are

using assumes that edges are one-way channels and that goods can only be shipped

in the direction of the arrow. If a two-way channel from u to v is desired, this can

easily be accommodated by two directed edges
−→
uv and

−→
vu .

Let S ⊆ V (N) be a subset of the vertices such that s ∈ S, t 6∈ S. Write S =
V (N) − S. Then [S, S] denotes the set of all edges of N directed from S to S. See

Figure 10.2. Consider the sum

∑

v∈S

(f+(v) − f−(v)). (10.1)

Because f+(v) = f−(v), if v 6= s, this sum equals VAL(f). On the other hand,

f+(v) is the total out-flow at v ∈ S. Consider an out-edge
−→
vu at v. Its flow f(

−→
vu)

contributes to f+(v). It also contributes to f−(u). If u ∈ S, then f(
−→
vu) will appear

twice in the sum 10.1, once for f+(v) and once for f−(u), and will therefore cancel.

See Figure 10.2, where S is the set of shaded vertices. If u 6∈ S, then f(
−→
vu) will

appear in the summation as part of f+(v), but will not be canceled by f−(u). A

similar argument holds if v ∈ S and u ∈ S. Therefore

VAL(f) =
∑

v∈S

(f+(v)− f−(v))

=
∑

−→

vu∈[S,S]

f(
−→
vu)−

∑

−→

vu∈[S,S]

f(
−→
vu)

This says that the value of the flow can be measured across any edge-cut [S, S], such

that s ∈ S and t ∈ S. If we write

f+(S) =
∑

v∈S

f+(v)

and

f−(S) =
∑

v∈S

f−(v)

then

VAL(f) = f+(S)− f−(S).

If we write

f([S, S]) =
∑

−→

vu∈[S,S]

f(
−→
vu)

and

f([S, S]) =
∑

−→

vu∈[S,S]

f(
−→
vu)

196 Graphs, Algorithms, and Optimization

then we can also express this as

VAL(f) = f([S, S])− f([S, S]).

s

v1

v2

v3

v4

v5

v6

t

8[5]

6[3]

6[3]

4[2] 9[7]

9[9]

7[6]

2[2]

4[4]

5[5]

1[1]

8[6]

7[7]

S

FIGURE 10.2

A set S where s ∈ S, t ∈ S

Let K = [S, S] be any edge-cut with s ∈ S and t ∈ S. The capacity of K is

CAP(K) =
∑

−→

uv∈K

CAP(
−→
uv).

This is the sum of the capacities of all edges out of S. The value of any flow in N is

limited by the capacity of any edge-cut K . An edge-cut K is a min-cut if it has the

minimum possible capacity of all edge-cuts in N .

Lemma 10.1. Let K = [S, S] be an edge-cut in a network N with s ∈ S, t ∈ S, and

flow f . Then VAL(f) ≤ CAP(K). If VAL(f) = CAP(K), then f is a max-flow and

K is a min-cut.

Proof. Clearly the maximum possible flow out of S is bounded by CAP(K); that is,

f+(S) ≤ CAP(K). This holds even if K is a min-cut or f a max-flow. The flow

into S is non-negative; that is, f−(S) ≥ 0. Therefore VAL(f) = f+(S)− f−(S) ≤
CAP(K). If VAL(f) = CAP(K), then it must be that f is maximum, for the value

of no flow can exceed the capacity of any cut. Similarly K must be a min-cut. Note

Network Flows 197

that in this situation f+(S) = CAP(K) and f−(S) = 0. That is, every edge
−→
uv

directed out of S satisfies f(
−→
uv) = CAP(

−→
uv). Every edge

−→
uv into S carries no flow,

f(
−→
uv) = 0.

In the next section we shall prove the max-flow-min-cut theorem. This states

that the value of a max-flow and the capacity of a min-cut are always equal, for any

network N .

10.2 The Ford-Fulkerson algorithm

If we assign f(
−→
uv) = 0, for all

−→
uv∈ E(N), this defines a valid flow in N , the

zero flow. The Ford-Fulkerson algorithm begins with the zero flow, and increments

it through a number of iterations until a max-flow is obtained. The method uses

augmenting paths. Consider the st-path P = sv1v5v2v6t in Figure 10.1. (We ignore

the direction of the edges when considering these paths.) Each edge of P carries a

certain amount of flow. The traversal of P from s to t associates a direction with P .

We can then distinguish two kinds of edges of P , forward edges, those like sv1
whose direction is the same as that of P , and backward edges, those like v5v2 whose

direction is opposite to that of P . Consider a forward edge
−→
uv in an st-path P . If

f(
−→
uv) < CAP(

−→
uv), then

−→
uv can carry more flow. Define the residual capacity of

uv ∈ E(P) to be

RESCAP(uv) =

{
CAP(

−→
uv)− f(−→uv), if uv is a forward edge,

f(
−→
vu), if uv is a backward edge.

The residual capacity of a forward edge uv ∈ E(P) is the maximum amount by

which the flow on
−→
uv can be increased. The residual capacity of a backward edge

uv ∈ E(P) is the maximum amount by which the flow on
−→
vu can be decreased. For

example, in the network of Figure 10.1, we increase the flow on all forward edges of

P by 2, and decrease the flow on all backward edges of P also by 2. The result is

shown in Figure 10.2. We have a new flow, with a larger value than in Figure 10.1.

In general, let P be an st-path in a network N with flow f . Define the residual

capacity of P to be

δ(P) = MIN{RESCAP(
−→
uv) : uv ∈ E(P)}

Define a new flow f∗ in N as follows:

f∗(
−→
uv) =





f(
−→
uv), if uv is not an edge of P ,

f(
−→
uv) + δ(P), if uv is a forward edge of P , and

f(
−→
uv)− δ(P), if uv is a backward edge of P .

Lemma 10.2. f∗ is a valid flow in N and VAL(f∗) = VAL(f) + δ(P).

198 Graphs, Algorithms, and Optimization

Proof. We must check that the capacity constraint and conservation conditions are

both satisfied by f∗. It is clear that the capacity constraint is satisfied, because of the

definition of the residual capacity of P as the minimum residual capacity of all edges

in P . To verify the conservation condition, consider any intermediate vertex v of P .

Let its adjacent vertices on P be u and w, so that uv and vw are consecutive edges

of P . There are four cases, shown in Figure 10.3.

Case 1. uv and vw are both forward edges of P .

Because f(
−→
uv) and f(

−→
vw) both increase by δ(P) in f∗, it follows that f+(v) and

f−(v) both increase δ(P). The net result on f+(v)− f−(v) is zero.

Case 2. uv is a forward edge and vw is a backward edge.

In this case f(
−→
uv) increases and f(

−→
wv) decreases by δ(P) in f∗. It follows that

f+(v) and f−(v) are both unchanged.

Case 3. uv is a backward edge and vw is a forward edge.

In this case f(
−→
vu) decreases and f(

−→
vw) increases by δ(P) in f∗. It follows that

f+(v) and f−(v) are both unchanged.

Case 4. uv and vw are both backward edges of P .

Because f(
−→
vu) and f(

−→
wv) both decrease by δ(P) in f∗, it follows that f+(v) and

f−(v) both decrease by δ(P). The net result on f+(v)− f−(v) is zero.

The value of f∗ is f∗+(s) − f∗−(s). If the first edge of P is su, a forward edge,

then it is clear that the value increases by δ(P), because f(
−→
su) increases. If su

is a backward edge, then f(
−→
su) decreases, so that f−(s) also decreases, thereby

increasing the value of the flow. Therefore VAL(f∗) = VAL(f) + δ(P).

u

v

w u

v

w

Case 1 Case 2

u

v

w u

v

w

Case 3 Case 4

FIGURE 10.3

The four cases for edges uv and vw on path P

Network Flows 199

DEFINITION 10.1: An st-path P for which δ(P) > 0 is called an augmenting

path.

This method of altering the flow on the edges of P is called augmenting the flow.

If δ(P) > 0 it always results in a flow of larger value. We give an outline of the

Ford-Fulkerson algorithm in Algorithm 10.2.1.

Algorithm 10.2.1: FF(N, s, t)

comment:




N is a network with source s and target t.
f is the flow.

P is a path.

f ← the zero flow

search for an augmenting path P
while a path P was found

do





augment the flow on P
VAL(f)← VAL(f) + δ(P)
search for an augmenting path P

comment: the flow is now maximum

The algorithm stops whenN does not contain an augmenting path. We show that

in this situation the flow must be maximum. The outline given in Algorithm 10.2.1

does not specify how the augmenting paths are to be found. Among the possibilities

are the breadth-first and depth-first searches. We shall see later that the breadth-first

search is the better choice. As the algorithm searches for an augmenting path, it

will construct paths from s to various intermediate vertices v. The paths must have

positive residual capacity. An sv-path with positive residual capacity is said to be

unsaturated. A vertex v is s-reachable if N contains an unsaturated sv-path. This

means that v can be reached from s on an unsaturated path.

Theorem 10.3. Let N be a network with a flow f . Then f is maximum if and only if

N contains no augmenting path.

Proof. Suppose that f is a max-flow. There can be no augmenting path in N , for this

would imply a flow of larger value. Conversely, suppose that f is a flow for which

there is no augmenting path. We show that f is maximum. Let S denote the set of

all s-reachable vertices of N . Clearly s ∈ S. Because there is no augmenting path,

the target is not s-reachable. Therefore t ∈ S. Consider the edge-cut K = [S, S].

If
−→
uv∈ K is an edge out of S, then RESCAP(

−→
uv) = 0; for otherwise v would be

s-reachable on the forward edge
−→
uv from u ∈ S. Therefore f(

−→
uv) = CAP(

−→
uv) for

all
−→
uv∈ K that are out edges of S. Thus f+(S) = CAP(K). If

−→
uv∈ [S, S] is any

edge into S, then f(
−→
uv) = 0; for otherwise u would be s-reachable on the backward

edge
−→
vu from v ∈ S. Consequently f−(S) = 0. It follows that VAL(f) = CAP(K),

so that f is a max-flow and K a min-cut, by Lemma 10.1.

200 Graphs, Algorithms, and Optimization

This is illustrated in Figure 10.2, in which all edges out of S are saturated. In this

example there are no edges into S. If there were, they would carry no flow. So the

flow in Figure 10.2 is maximum. Notice that a consequence of this theorem is that

when f is a max-flow, the set S of s-reachable vertices defines a min-cutK = [S, S].
This is summarized as follows:

Theorem 10.4. (Max-flow-min-cut theorem) In any network the value of a max-

flow equals the capacity of a min-cut.

We are now ready to present the Ford-Fulkerson algorithm as a breadth-first

search for an augmenting path. The vertices will be stored on a queue, the ScanQ , an

array of s-reachable vertices. QSize is the current number of vertices on the ScanQ .

The unsaturated sv-paths will be stored by an array PrevPt [·], where PrevPt [v] is the

point previous to v on an sv-path Pv . The residual capacity of the paths will be stored

by an array ResCap [·], where ResCap [v] is the residual capacity δ(Pv) of Pv from s
up to v. The algorithm is presented as a single procedure, but could be divided into

smaller procedures for modularity and readability.

The procedure which augments the flow starts at t and follows PrevPt [v] up to

s. Given an edge
−→
uv on the augmenting path, where u = PrevPt [v], a means is

needed of determining whether
−→
uv is a forward or backward edge. One way is to

store PrevPt [v] = u for forward edges and PrevPt [v] = −u for backward edges.

This is not indicated in Algorithm 10.2.2, but can easily be implemented.

In programming the max-flow algorithm, the network N should be stored in ad-

jacency lists. This allows the loop

for all v adjacent to u do

to be programmed efficiently. The out-edges and in-edges at u should all be stored

in the same list. We need to be able to distinguish whether u −→ v or v −→ u. This

can be flagged in the record representing edge
−→
uv . If

−→
uv appears as an out-edge in

the list for node u, it will appear as an in-edge in the list for vertex v. When the flow

on edge
−→
uv is augmented, it must be augmented from both endpoints. One way to

augment from both endpoints simultaneously is to store not the flow f(
−→
uv) itself, but

a pointer to it. Then it is not necessary to find the other endpoint of the edge. Thus a

node x in the adjacency list for vertex u contains following four fields:

• AdjPt〈x〉, a vertex v that is adjacent to or from u.

• OutEdge〈x〉, a boolean variable set to true if u −→ v,

and false if v −→ u.

• Flow〈x〉, a pointer to the flow on
−→
uv .

• Next〈x〉, the next node in the adjacency list for u.

Network Flows 201

Algorithm 10.2.2: MAXFLOW(N, s, t)

f ← the zero flow

for all vertices v do PrevPt [v]← 0
while true “search for an augmenting path”

do





ScanQ [1]← s
QSize ← 1
k ← 1
repeat

u← ScanQ [k] “the kth vertex on ScanQ”

for all v adjacent to u
do if v 6∈ ScanQ

then





if u −→ v

then





comment: a forward edge

if CAP(
−→
uv) > f(

−→
uv) then




QSize ← QSize+ 1
ScanQ [QSize]← v
PrevPt [v]← u

if ResCap [u] < CAP(
−→
uv)− f(−→uv)

then ResCap [v]← ResCap [u]

else ResCap[v]←CAP(
−→
uv)−f(−→uv)

if v = t then go to 1

else





comment: v −→ u, a backward edge

if f(
−→
vu) > 0 then




QSize ← QSize+ 1
ScanQ [QSize]← v
PrevPt [v]← u

if ResCap [u] < f(
−→
vu)

then ResCap[v]← ResCap[u]

else ResCap[v]← f(
−→
vu)

if v = t then go to 1
k ← k + 1 “advance ScanQ”

until k > QSize

comment:

{
Flow is now maximum.

ScanQ contains the s-reachable vertices.

output (ScanQ , and the flow on each edge)
exit

1 : comment: augmenting path found, re-initialize ScanQ

AUGMENTFLOW(t)
for k ← 1 to QSize do PrevPt [ScanQ [k]]← 0

202 Graphs, Algorithms, and Optimization

Algorithm 10.2.3: AUGMENTFLOW(t)

v ← t
u← PrevPt [v]
δ ← ResCap[t]
while u 6= 0

do





if u −→ v

then f(
−→
uv)← f(

−→
uv) + δ “a forward edge”

else f(
−→
uv)← f(

−→
uv)− δ “a backward edge”

v ← u
u← PrevPt [v]

VAL(f)← VAL(f) + δ

This breadth-first search version of the Ford-Fulkerson algorithm is sometimes

referred to as the “labeling” algorithm in some books. The values ResCap[v] and

PrevPt[v] are considered the labels of vertex v.

The algorithm works by constructing all shortest unsaturated paths from s. If an

augmenting path exists, it is sure to be found. This can easily be proved by induction

on the length of the shortest augmenting path. The flow is then augmented and the

algorithm exits from the inner repeat loop by branching to statement 1. If no aug-

menting path exists, then the inner repeat loop will terminate. The vertices on the

ScanQ will contain the set S of all s-reachable vertices, such that [S, S] is a min-cut.

It is difficult to form an accurate estimate of the complexity of the BF-FF al-

gorithm. We shall prove that it is polynomial. This depends on the fact that only

shortest augmenting paths are used. If non-shortest paths are used, the FF algorithm

is not always polynomial. Consider the network of Figure 10.4. We augment first

on path P = (s, a, b, t), which has residual capacity one. We then augment on path

Q = (s, b, a, t), also of residual capacity one, because ba is a backward edge, and

f(
−→

ab) = 1. Augmenting on Q makes δ(P) = 1, so we again augment on P , and

then augment again on Q, etc. After 2000 iterations a max-flow is achieved – the

number of iterations can depend on the value of the max-flow. This is not polynomial

in the parameters of the network. However, if shortest augmenting paths are used,

this problem does not occur.

Consider an augmenting path P in a network N . δ(P) is the minimum resid-

ual capacity of all edges of P . Any edge
−→
uv∈ P such that RESCAP(

−→
uv) = δ(P)

is called a bottleneck. Every augmenting path has at least one bottleneck and may

have several. Suppose that a max-flow in N is reached in m iterations, and let Pj
be the augmenting path on iteration j. Let dj(s, u) denote the length of a shortest

unsaturated su-path in iteration j, for all vertices u.

Lemma 10.5. dj+1(s, u) ≥ dj(s, u), for all u ∈ V (N).

Proof. Let Qj = Qj(s, u) be a shortest unsaturated su-path at the beginning of

iteration j, and let Qj+1 = Qj+1(s, u) be a shortest unsaturated su-path at the

beginning of iteration j + 1. Then ℓ(Qj) = dj(s, u) and ℓ(Qj+1) = dj+1(s, u). If

Network Flows 203

1000 1000

1

1000 1000

s

a

b

t

FIGURE 10.4

A max-flow in 2000 iterations

ℓ(Qj) ≤ ℓ(Qj+1), the lemma holds for vertex u, so suppose that ℓ(Qj) > ℓ(Qj+1),
for some u. Now Qj+1 is not unsaturated at the beginning of iteration j, so it must

become unsaturated during iteration j. Therefore Pj andQj+1 have at least one edge

in common that becomes unsaturated during iteration j. The proof is by induction on

the number of such edges. Suppose first that xy is the only such edge in common.

Because xy becomes unsaturated during iteration j, it has opposite direction on Pj
andQj+1. See Figure 10.5. Without loss of generality,Qj+1[s, x] andQj+1[y, u] are

unsaturated on iteration j. Because Pj is a shortest path, ℓ(Pj [s, x]) ≤ ℓ(Qj+1[s, x]).
But then Pj [s, y]Qj+1[y, u] is an unsaturated su-path on iteration j, and has length

less than Qj+1(s, u), which in turn has length less than Qj(s, u), a contradiction. If

Pj [s, y] intersectsQj+1[y, u] at a vertex z, then Pj [s, z]Qj+1[z, u] is an even shorter

unsaturated path.

s

x

t

y

z u

Qj+1

Pj

FIGURE 10.5

Paths Pj and Qj+1

204 Graphs, Algorithms, and Optimization

Suppose now that Pj and Qj+1 have more than one edge in common that be-

comes unsaturated during iteration j. Let xy be the first such edge on Qj+1 trav-

eling from s to u. Let z be the point on Qj+1 nearest to u that Pj [s, x] con-

tacts before reaching x (maybe z = y). Then Qj+1[s, x] and Pj [s, z] are unsat-

urated at the beginning of iteration j. Because Pj is a shortest unsaturated path,

ℓ(Pj [s, z]) < ℓ(Qj+1[s, x]) < ℓ(Qj+1[s, z]). Now either Qj+1[z, u] is unsaturated

on iteration j, or else it has another edge in common with Pj . If it is unsaturated,

then Pj [s, z]Qj+1[z, u] is an unsaturated su-path that contradicts the assumption

that dj(s, u) > dj+1(s, u). If there is another edge in common with Pj , then we can

repeat this argument. Let x′y′ be the first edge ofQj+1[z, u] in common with Pj . Let

z′ be the point on Qj+1[z, u] nearest to u that Pj [s, x
′] contacts before reaching x′,

etc. Proceeding in this way we eventually obtain an su-path that is shorter than Qj
and unsaturated on iteration j, a contradiction.

It follows that dj+1(s, t) ≥ dj(s, t), for every iteration j. By constructing unsat-

urated paths from t in a backward direction we can similarly prove that dj+1(u, t) ≥
dj(u, t), for all vertices u. If we can now prove that dj+1(s, t) > dj(s, t), then we

can bound the number of iterations, because the maximum possible distance from s
to t is n− 1, where n is the number of vertices of N .

Theorem 10.6. The breadth-first Ford-Fulkerson algorithm requires at most 1
2nε+1

iterations.

Proof. On each iteration some edge is a bottleneck. After ε+1 iterations, some edge

has been a bottleneck twice, because there are only ε edges. Consider an edge
−→
uv

which is a bottleneck on iteration i and then later a bottleneck on iteration j. Refer

to Figure 10.6.

Pi Pj

Pj Pi

s

u

v

t

FIGURE 10.6

Paths Pi and Pj

Then di(s, t) = di(s, u)+di(v, t)+1 and dj(s, t) = dj(s, v)+dj(u, t)+1. But

di(s, u) ≤ dj(s, u) = dj(s, v) + 1 and di(v, t) ≤ dj(v, t) = dj(u, t) + 1. Therefore

di(s, u) + di(v, t) ≤ dj(s, v) + dj(u, t) + 2. It follows that di(s, t) ≤ dj(s, t) + 2.

Each time an edge is repeated as a bottleneck, the distance from s to t increases by

at least two. Originally d1(s, t) ≥ 1. After ε + 1 iterations, some edge has been a

bottleneck twice. Therefore dε+1(s, t) ≥ 3. Similarly d2ε+1(s, t) ≥ 5, and so on. In

general dkε+1(s, t) ≥ 2k + 1. Because the maximum distance from s to t is n − 1,

Network Flows 205

we have 2k + 1 ≤ n − 1, so that k ≤ n/2. The maximum number of iterations is

then kε+ 1 ≤ 1
2nε+ 1.

Each iteration of the BF-FF algorithm is a breadth-first search for an augmenting

path. A breadth-first search takes at most O(ε) steps. Because the number of iter-

ations is at most 1
2nε + 1, this gives a complexity of O(nε2) for the breadth-first

Ford-Fulkerson algorithm. This was first proved by EDMONDS and KARP [48].

Exercises

10.2.1 Find a max-flow in the network shown in Figure 10.7. Prove your flow is

maximum by illustrating a min-cut K such that VAL(f) = CAP(K).

s

v1

v2

v3

v4

v5

v6

t

7

1

9

2

43

4

1

5

5

6

6

6

FIGURE 10.7

A network

10.2.2 Show that if there is no directed st-path in a network N , then the maxi-

mum flow in N has value zero. Can there be a flow whose value is nega-

tive? Explain.

10.2.3 Explain why
∑

v∈S f
+(v) and

∑
−→

vu∈[S,S]
f(

−→
vu) are in general, not

equal.

10.2.4 Consider the network N of Figure 10.7 with flow f defined as follows:

f(sv1) = 6, f(sv2) = 0, f(sv3) = 2, f(v1v4) = 2, f(v1v5) = 4,

f(v2v4) = 0, f(v2v6) = 0, f(v3v5) = 2, f(v3v6) = 0, f(v5v2) = 0,

f(v4t) = 2, f(v5t) = 6, f(v6t) = 0. A breadth-first search of N will

construct the subnetwork of all shortest, unsaturated paths in N . This

206 Graphs, Algorithms, and Optimization

subnetwork is called the auxiliary network, AUX(N, f). A forward edge
−→
uv of N is replaced by a forward edge

−→
uv with capacity CAP(

−→
uv) −

f(
−→
uv) in the auxiliary network. A backward edge

−→
vu of N is replaced

by a forward edge
−→
uv with capacity f(

−→
uv) in AUX(N, f). Initially the

flow in AUX(N, f) is the zero flow. Construct the auxiliary network for

the graph shown. Find a max-flow in AUX(N, f), and modify f in N
accordingly. Finally, construct the new auxiliary network for N .

10.2.5 Program the breadth-first Ford-Fulkerson algorithm. Test it on the net-

works of this chapter.

10.2.6 If [S, S] and [T, T] are min-cuts in a networkN , show that [S∪T, S ∪ T]
and [S ∩ T, S ∩ T] are also min-cuts. (Hint: Write S = S1 ∪ (S ∩ T)
and T = T1 ∪ (S ∩ T) and use the fact that [S, S] and [T, T] are both

min-cuts.)

10.2.7 Describe a maximum flow algorithm similar to the Ford-Fulkerson al-

gorithm which begins at t and constructs unsaturated paths P until s is

reached. Given that P is a ts-path, how should the residual capacity of an

edge be defined in this case?

10.2.8 Describe an algorithm for finding an edge
−→
uv in a network N such that

the value of a max-flow f inN can be increased if CAP(
−→
uv) is increased.

Prove that your algorithm is correct and find its complexity. Does there

always exist such an edge
−→
uv? Explain.

10.3 Matchings and flows

There is a marked similarity between matching theory and flow theory:

Matchings: A matching M in a graph G is maximum if and only if G contains no

augmenting path.

Flows: A flow f in a networkN is maximum if and only if N contains no augment-

ing path.

Hungarian algorithm: Construct alternating paths until an augmenting path is

found.

Ford-Fulkerson algorithm: Construct unsaturated paths until an augmenting path

is found.

The reason for this is that matching problems can be transformed into flow

problems. Consider a bipartite graph G, with bipartition (X,Y) for which a max-

matching is desired. Direct all the edges ofG fromX to Y , and assign them a capac-

ity of one. Add a source s and an edge sx for all x ∈ X , with CAP(
−→
sx) = 1. Add a

Network Flows 207

target t and an edge yt for all y ∈ Y , with CAP(
−→
yt) = 1. Call the resulting network

N . This is illustrated in Figure 10.8. Now find a max-flow in N . The flow-carrying

edges of [X,Y] will determine a max-matching in G. Because CAP(
−→
sx) = 1, there

will be at most one flow-carrying edge out of each x ∈ X . Because CAP(
−→
yt) = 1,

there will be at most one flow-carrying edge into y, for each y ∈ Y . The flow-

carrying edges of N are called the support of the flow. An alternating path in G and

an unsaturated path inN can be seen to be the same thing. IfG is not bipartite there is

no longer a direct correspondence between matchings and flows. However, it is pos-

sible to construct a special kind of balanced network such that a maximum balanced

flow corresponds to a max-matching (see KOCAY and STONE [110] or FREMUTH-

PAEGER and JUNGNICKEL [55]).

X Y

s t

FIGURE 10.8

Matchings and flows

The basic BF-FF algorithm can be improved substantially. As it is presented here,

it constructs a breadth-first network of all shortest unsaturated paths until t is reached.

At this point, f is augmented, and the process is repeated. There may be many aug-

menting paths available at the point when t is reached, but only one augmenting path

is used. The remaining unsaturated paths which have been built are discarded, and a

new BFS is executed. In order to improve the BF-FF algorithm, one possibility is to

construct the set of all shortest unsaturated paths. This is the auxiliary network of Ex-

ercise 10.2.4. We then augment on as many paths as possible in the auxiliary network

before executing a new BFS. This has the effect of making dj+1(s, t) > dj(s, t)
so that the number of iterations is at most n. Several algorithms are based on this

strategy. They improve the complexity of the algorithm markedly. See the book by

PAPADIMITRIOU and STEIGLITZ [134] for further information.

Exercises

10.3.1 Let G be a bipartite graph with bipartition (X,Y). We want to find a

subgraph H of G such that in H , DEG(x) = b(x) and DEG(y) = b(y),
where b(v) is a given non-negative integer, for all v ∈ V (G), if there

exists such an H . For example, if b(v) = 1 for all v, then H would be

a perfect matching. If b(v) = 2 for all v, then H would be a 2-factor.

208 Graphs, Algorithms, and Optimization

Show how to construct a network N such that a max-flow in N solves

this problem.

10.3.2 Let N be a network such that every vertex v ∈ N has a maximum

throughput t(v) defined. This is the maximum amount of flow that is al-

lowed to pass through v; that is, f−(v) ≤ t(v) must hold at all times.

Show how to solve this problem by constructing a network N ′ such that

a max-flow in N ′ defines a max-flow in N with maximum throughput as

given.

10.4 Menger’s theorems

Given any digraph, we can view it as a networkN by assigning unit capacities to all

edges. Given any two vertices s, t ∈ V (N), we can compute a max-flow f from s
to t. If VAL(f) = 0, then there are no directed paths from s to t, because a directed

st-path would be an augmenting path. If VAL(f) = 1, then N contains a directed

st-path P ; however, there are no directed st-paths which are edge-disjoint from P ,

for such a path would be an augmenting path. In general, the value of a max-flow f
in N is the maximum number of edge-disjoint directed st-paths in N . Suppose that

VAL(f) = k ≥ 1. The support of f defines a subgraph ofN that contains at least one

directed st-path P . Delete the edges of P to get N ′ and let f ′ be obtained from f by

ignoring the edges of P . Then VAL(f ′) = k− 1, and this must be a max-flow in N ′,

because f is a max-flow in N . By induction, the number of edge-disjoint directed

st-paths in N ′ is k − 1, from which it follows that the number in N is k.

A min-cut in N can also be interpreted as a special subgraph of N . Let K =
[S, S] be a min-cut in N , where s ∈ S and t ∈ S. If CAP(K) = 0, there are no edges

out of S, so there are no directed st-paths in N . If CAP(K) = 1, there is only one

edge out of S. The deletion of this edge will destroy all directed st-paths in N . We

say that s is disconnected from t. In general, CAP(K) equals the minimum number

of edges whose deletion destroys all directed st-paths inN . Suppose that CAP(K) =
k ≥ 1. Delete the edges of K to get a network N ′. Then in N ′, CAP([S, S]) = 0,

so that N ′ contains no directed st-paths. Thus the deletion of the edges of K from

N destroys all directed st-paths. Because N contains k edge-disjoint such paths, it

is not possible to delete fewer than k edges in order to disconnect s from t. The

max-flow-min-cut theorem now gives the first of Menger’s theorems.

Theorem 10.7. Let s and t be vertices of a directed graph N . Then the maxi-

mum number of edge-disjoint directed st-paths equals the minimum number of edges

whose deletion disconnects s from t.

Recall that an undirected graph G is k-edge-connected if the deletion of fewer

than k edges will not disconnect G. In Chapter 6 we showed that a graph is 2-

edge-connected if and only if every pair of vertices is connected by at least two

Network Flows 209

edge-disjoint paths. We will use Theorem 10.7 to prove a similar result for k-edge-

connected graphs. In order to convert Theorem 10.7 to undirected graphs, we can

replace each edge
−→
uv of G by a “gadget”, as shown in Figure 10.9, to get a directed

graph N .

u

v

−→ u v

G N

FIGURE 10.9

A gadget for edge-disjoint paths

The gadget contains a directed
−→
uv -path and a directed

−→
vu-path, but they both

use the central edge of the gadget. Let s, t ∈ V (G). Then edge-disjoint st-paths ofG
will define edge-disjoint directed st-paths in N . Conversely, edge-disjoint directed

st-paths in N will define edge-disjoint st-paths inG. This gives another of Menger’s

theorems.

Theorem 10.8. Let s and t be vertices of an undirected graph G. Then the maxi-

mum number of edge-disjoint st-paths equals the minimum number of edges whose

deletion disconnects s from t.

It follows that a graph G is k-edge-connected if and only if every pair s, t of

vertices are connected by at least k edge-disjoint paths. This immediately gives an

algorithm to compute κ′(G), the edge-connectivity of G. Number the vertices of G
from 1 to n. Let the corresponding vertices of N also be numbered from 1 to n. The

algorithm computes the minimum max-flow over all pairs s, t of vertices. This is the

minimum number of edges whose deletion will disconnectG. Exactly
(
n
2

)
max-flows

are computed, so the algorithm has polynomial complexity.

Algorithm 10.4.1: EDGE-CONNECTIVITY(G)

convertG to a directed graph N
κ′ ← n
for s← 1 to n− 1

do





for t← s+ 1 to n

do




M ← MAXFLOW(N, s, t)
if M < κ′

then κ′ ←M
return (κ′)

210 Graphs, Algorithms, and Optimization

Exercises

10.4.1 Let G be an undirected graph. Replace each edge uv of G with a pair of

directed edges
−→
uv and

−→
vu to get a directed graph N . Let s, t ∈ V (G).

Show that the maximum number of edge-disjoint st-paths inG equals the

maximum number of edge-disjoint directed st-paths in N .

10.4.2 Program the edge-connectivity algorithm, using the transformation of Ex-

ercise 10.4.1.

10.5 Disjoint paths and separating sets

Recall that paths in a graphG are internally disjoint if they can intersect only at their

endpoints. A graph is k-connected if the deletion of fewer than k vertices will not

disconnect it. We proved in Chapter 7 that G is 2-connected if and only if every pair

of vertices is connected by at least two internally disjoint paths. We prove a similar

result for k-connected graphs by utilizing a relation between internally disjoint paths

inG and directed paths in a networkN . We first make two copies u1, u2 of each ver-

tex u of G. V (N) = {u1, u2 | u ∈ V (G)}. Let
−→
uv be an edge of G. N will contain

the edges (u1, u2), (v1, v2), (u2, v1), and (v2, u1). This is illustrated in Figure 10.10.

u

v

−→

u1

v1

u2

v2

G N

FIGURE 10.10

A gadget for internally disjoint paths

Let u ∈ V (G). Notice the following observations:

1. The only out-edge at u1 is u1u2.

2. The only in-edge at u2 is u1u2.

3. The edge
−→
uv∈ E(G) corresponds to u2v1 and v2u1 in N .

Consequently any st-path suvw . . . t in G corresponds to an s2t1-path

s2u1u2v1v2w1w2 . . . t1 in N . Internally disjoint st-paths in G give rise to internally

disjoint s2t1-paths in N . On the other hand, edge-disjoint paths in N are in fact

internally disjoint because of items 1 and 2. Therefore the maximum number of in-

ternally disjoint st-paths in G equals the maximum number of edge-disjoint directed

Network Flows 211

s2t1-paths in N . This in turn equals the minimum number of edges whose deletion

will disconnect s2 from t1. If s2 6−→ t1, then every s2t1-path in G will contain an-

other vertex, say u1 or u2. By observations 1 and 2 , it must contain both u1 and u2.

Deleting u1u2 will destroy this path. If K = [S, S] is a min-cut in N , then the edges

out of S must be of the form u1u2, because u2 can only be s2-reachable if u1 is,

by observation 3 and Figure 10.10. Let U = {u | u1u2 ∈ K}. Then U is a set of

vertices of G which separate s from t. This gives another of Menger’s theorems.

Theorem 10.9. Let G be a graph and let s, t ∈ V (G), where s 6−→ t. Then the

maximum number of internally disjoint st-paths in G equals the minimum number of

vertices whose deletion separates s from t.

Theorem 10.10. A graph G is k-connected if and only if every pair of vertices is

connected by at least k internally disjoint paths.

Proof. Let s, t ∈ V (G). If s and t are connected by at least k internally disjoint paths,

then clearly G is k-connected; for at least k vertices must be deleted to disconnect

s from t. Conversely suppose that G is k-connected. Then deleting fewer than k
vertices will not disconnect G. If s 6−→ t, then by the Theorem 10.10, G must

contain at least k internally disjoint st-paths. If s −→ t, then consider G − st. It is

easy to see that G − st is (k − 1)-connected. Therefore in G − st, there are at least

k − 1 internally disjoint st-paths. The edge st is another st-path, giving k paths in

total.

We can also use this theorem to devise an algorithm which computes κ(G), the

connectivity of G. We suppose that the vertices ofG are numbered 1 to n, and that if

s ∈ V (G), then s1 and s2 are the corresponding vertices of N .

Algorithm 10.5.1: CONNECTIVITY(G)

convertG to a directed graph N
κ← n− 1 “maximum possible connectivity”

s← 0
while s < κ

do





s← s+ 1 “vertex s”
for t← s+ 1 to n

do if s 6−→ t

then





M ← MAXFLOW(N, s2, t1)
if M < κ

then κ←M
if s > κ

then return (κ)
return (κ)

Theorem 10.11. Algorithm 10.5.1 computes κ(G)

212 Graphs, Algorithms, and Optimization

Proof. Suppose first that G = Kn. Then κ(G) = n − 1. The algorithm will not

call MAXFLOW() at all, because every s is adjacent to every t. The algorithm will

terminate with κ = n − 1. Otherwise G is not complete, so there exists a subset

U ⊆ V (G) such that G − U has at least two components, where |U | = κ(G). The

first κ(G) choices of vertex s may all be in U . However, by the (κ(G) + 1)st choice

of s we know that some s 6∈ U has been selected. So s is in some component of

G − U . The inner loop runs over all choices of t. One of these choices will be in a

different component of U . For that particular t, the value of MAXFLOW(N, s2, t1)
will equal |U |. After this, the value of κ in the algorithm will not decrease any more.

Therefore we can conclude that some s 6∈ U will be selected; that the value of κ after

that point will equal κ(G); and that after this point the algorithm can stop. This is

exactly what the algorithm executes.

The algorithm makes at most

κ+1∑

s=1

(n− s)

calls to MAXFLOW(). Thus, it is a polynomial algorithm.

Exercises

10.5.1 Let G be k-connected. If st ∈ E(G), prove that G − st is (k − 1)-
connected.

10.5.2 Program Algorithm 10.5.1, the CONNECTIVITY() algorithm.

10.5.3 Consider a network N where instead of specifying a capacity for each

edge
−→
uv , we specify a lower bound b(

−→
uv) ≥ 0 for the flow on edge

−→
uv .

Instead of the capacity constraint f(
−→
uv) ≤ CAP(

−→
uv), we now have a

lower bound constraint f(
−→
uv) ≥ b(−→uv). The zero-flow is not a valid flow

anymore. Show that there exists a valid flow in such a network if and only

if for every edge
−→
uv such that b(

−→
uv) > 0,

−→
uv is either: (i) on a directed

st-path; or (ii) on a directed ts-path; or (iii) on a directed cycle. (Hint: If
−→
uv is not on such a path or cycle, follow directed paths forward from v
and backward from u to get a contradiction.)

10.5.4 Consider the problem of finding a minimum flow in a network with lower

bounds instead of capacities.

(a) How should an unsaturated path be defined?

(b) How should the capacity of an edge-cut be defined?

(c) Find a min-flow in the network of Figure 10.11, where the numbers

are the lower bounds. Prove that your flow is minimum by illustrating

an appropriate edge-cut.

(d) Is there a max-flow in the network given in Figure 10.11?

Network Flows 213

s

v1

v2

v3

v4

v5

v6

t

3

2

9

6

27

5

7

1

2

4

6

FIGURE 10.11

A network with lower bounds

10.5.5 Suppose that a network N has both lower bounds b(
−→
uv) and capaci-

ties CAP(
−→
uv) on its edges. We wish to find a max-flow f of N , where

b(
−→
uv) ≤ f(

−→
uv) ≤ CAP(

−→
uv). Notice that zero-flow may be no longer

a valid flow. Before applying an augmenting path algorithm like the FF

algorithm, we must first find a valid flow.

(a) Determine whether the networks N1 and N2 of Figure 10.12 have a

valid flow.

(b) How should residual capacity be defined?

(c) How should the capacity of an edge-cut be defined?

s

t

3, 5

4, 6

2, 6

1, 23, 4

2, 4

9, 12

3, 5

s

t

3, 5

4, 6

2, 6

1, 23, 4

2, 4

5, 10

3, 6

N1 N2

FIGURE 10.12

Networks with lower bounds and capacities

214 Graphs, Algorithms, and Optimization

10.5.6 Let N be a network with lower bounds b(
−→
uv) and capacities CAP(

−→
uv)

specified on its edges. Before finding a max-flow in N we need to find a

valid flow. Construct a network N ′ as follows: Add a new source s′ and

target t′. Join s′ to all vertices of N . Join every vertex of N to t′. Add

edges
−→
st and

−→
ts to N ′. The capacities in N ′ are defined as follows:

CAP
′(
−→

s′u) =
∑

v b(
−→
vu), (sum over in-edges at u ∈ V (N)).

CAP
′(
−→

ut′) =
∑

v b(
−→
uv), (sum over out-edges at u ∈ V (N)).

CAP
′(
−→
uv) = CAP(

−→
uv)− b(−→uv), (u, v ∈ V (N)).

CAP
′(
−→
st) = CAP

′(
−→
ts) =∞.

Prove that there exists a valid flow in N if and only if there is a flow in

N ′ that saturates all edges incident on s′.

10.5.7 Let N be a network such that there is a cost c(
−→
uv) of using edge

−→
uv , per

unit of flow. Thus the cost of flow f(
−→
uv) on edge

−→
uv is f(

−→
uv)c(

−→
uv).

Devise an algorithm to find a max-flow of min-cost in N .

10.5.8 The circulation of money in the economy closely resembles a flow in a

network. Each node in the economy represents a person or organization

that takes part in economic activity. The main differences are that there

may be no limit to the capacities of the edges, and that flow may accumu-

late at a node if assets are growing. Any transfer of funds is represented

by a flow on some edge. Various nodes of the economic network can be

organized into groups, such as banks, insurance companies, wage earners,

shareholders, government, employers, etc.

(a) Develop a simplified model of the economy along these lines.

(b) A bank charges interest on its loans. If there is a fixed amount of

money in the economy, what does this imply? What can you conclude

about the money supply in the economy?

(c) When a new business is created, a new node is added to the network.

Where does the flow through this node come from?

(d) Consider the node represented by government. Where does its in-flow

come from? Where is its out-flow directed? Consider how govern-

ment savings bonds operate in the model.

(e) Where does inflation fit into this model?

(f) How do shareholders and the stock market fit into the model?

Network Flows 215

10.6 Notes

The max-flow algorithm is one of the most important algorithms in graph theory, with

a great many applications to other graph theory problems (such as connectivity and

Menger’s theorems), and to problems in discrete optimization. The original algorithm

is from FORD and FULKERSON [53]. See also FULKERSON [58]. EDMONDS and

KARP [48] proved that the use of shortest augmenting paths results in a polynomial

time complexity of the Ford-Fulkerson algorithm.

Balanced flows were introduced by KOCAY and STONE [110], and then devel-

oped greatly in a series of papers by Fremuth-Paeger and Jungnickel. An excellent

summary with many references can be found in FREMUTH-PAEGER and JUNG-

NICKEL [55].

A great many techniques have been developed to improve the complexity of the

basic augmenting path algorithm. See PAPADIMITRIOU and STEIGLITZ [134] for

further information. The algorithms to find the connectivity and edge-connectivity of

a graph in Sections 8.4 and 8.5 are from EVEN [50].

http://taylorandfrancis.com

11

Hamilton Cycles

11.1 Introduction

A cycle that contains all vertices of a graphG is called a hamilton cycle (or hamilto-

nian cycle).G is hamiltonian if it contains a hamilton cycle. For example, Figure 11.1

shows a hamilton cycle in the graph called the truncated tetrahedron. It is easy to see

that the graph of the cube is also hamiltonian (see Chapter 1).

FIGURE 11.1

A hamiltonian graph

Figure 11.2 shows a non-hamiltonian graph H . It is easy to see that H is non-

hamiltonian, because it is bipartite with an odd number of vertices. Clearly any bi-

partite graph that is hamiltonian must have an even number of vertices, because a

hamilton cycle C must start and end on the same side of the bipartition. Although

H is non-hamiltonian, it does have a hamilton path, that is, a path containing all its

vertices.

The problem of deciding whether a given graph is hamiltonian is only partly

solved.

Problem 11.1: HamCycle

Instance: a graph G

Question: is G hamiltonian?

217

218 Graphs, Algorithms, and Optimization

FIGURE 11.2

A non-hamiltonian graph

This is an example of an NP-complete problem. We will say more about NP-

complete problems later. There is no known efficient algorithm for solving the

HamCycle problem. Exhaustive search algorithms can take a very long time in gen-

eral. Randomized algorithms can often find a cycle quickly if G is hamiltonian, but

do not give a definite answer if no cycle is found.

The HamCycle problem is qualitatively different from most other problems in

this book. For example, the questions “is G bipartite, Eulerian, 2-connected, pla-

nar?”, and, “is a given flow f maximum?” can all be solved by efficient algorithms.

In each case an algorithm and a theoretical solution are available. For the HamCycle

problem, there is no efficient algorithm known, and only a partial theoretical solution.

A great many graph theoretical problems are NP-complete.

A number of techniques do exist which can help to determine whether a given

graph is hamiltonian. A graph with a cut-vertex v cannot possibly be hamiltonian,

because a hamilton cycle C has no cut-vertex. This idea can be generalized into a

helpful lemma.

Lemma 11.1. If G is hamiltonian, and S ⊆ V (G), then ω(G− S) ≤ |S|.
This lemma says that if we delete k = |S| vertices from G, the number of con-

nected components remaining is at most k. Let C be a hamilton cycle in G. If we

delete k vertices from C, the cycle C will be decomposed into at most k paths. Be-

cause C is a subgraph of G, it follows that G− S will have at most k components.

For example, the graph of Figure 11.3 is non-hamiltonian, because the deletion

of the three back vertices gives four components.

The Petersen graph is also non-hamiltonian, but this cannot be proved using

Lemma 11.1. Instead we use an exhaustive search method called the multi-path

method, see RUBIN [152]. Suppose that C were a hamilton cycle in the Petersen

graph G, as shown in Figure 11.4. G is composed of an outer and inner pentagon,

joined by a perfect matching. Because C uses exactly two edges at each vertex of G,

it follows that C must use at least three edges of the outer pentagon, for otherwise

some vertex on it would be missed by C. Consequently, C uses two adjacent edges

of the outer pentagon. Without loss of generality, suppose that it uses the edges uv

Hamilton Cycles 219

FIGURE 11.3

A non-hamiltonian graph

and vw. This means that C does not use the edge vy, so we can delete it from G.

Deleting vy reduces the degree of y to two, so that now both remaining edges at y
must be part of C. So the two paths (u, v, w) and (x, y, z) must be part of C, where

a path is denoted by a sequence of vertices. This is illustrated in Figure 11.4.

u

v

w

x

y

z

−→

u

v

wr

x

y

z
t

s

FIGURE 11.4

The multi-path method

C must use two edges at w, so there are two cases. Either wt ∈ C or wr ∈
C. Suppose first that wt ∈ C. Then because wr 6∈ C, we can delete wr from G.

This reduces the degree of r to two, so that the remaining edges at r must be in

C. Therefore rz ∈ C. This uses up two edges at z, so we delete sz, which in turn

reduces the degree of s to two. Consequently the edge us ∈ C. But this now creates

a cycle (u, v, w, t, s) in C, which is not possible. It follows that the choice wt ∈ C

220 Graphs, Algorithms, and Optimization

was wrong. If we now try wr ∈ C instead, a contradiction is again reached, thereby

proving that the Petersen graph is non-hamiltonian.

This is called the multi-path method, because the cycleC is gradually built from a

number of paths which are forced by two operations: the deletion of edges which are

known not to be in C; and the requirement that both edges at a vertex of degree two

be in C. The multi-path method is very effective in testing whether 3-regular graphs

are hamiltonian, because each time an edge is deleted, the degree of two vertices

reduces to two, which then forces some of the structure of C. Graphs of degree four

or more are not so readily tested by it. We will say more about the multi-path method

later on.

Exercises

11.1.1 Decide whether or not the graphs in Figure 11.5 are hamiltonian.

FIGURE 11.5

Are these hamiltonian?

11.1.2 Prove that Qn, the n-cube, is hamiltonian for all n ≥ 2.

11.1.3 Let P be a hamilton path in a graphG, with endpoints u and v. Show that

ω(G− S) ≤ |S|+ 1, for all S ⊆ V (G), in two ways:

a) By counting the components of G− S.

b) By counting the components of (G+ uv)− S, and using Lemma 9.1.

11.2 The crossover algorithm

Suppose that we want to find a hamilton cycle in a connected graphG. Because every

vertex of G must be part of C, we select any vertex x. We then try to build a long

path P starting from x. Initially P = (x) is a path of length zero. Now execute the

following steps:

Hamilton Cycles 221

u← x; v ← x “P is a uv-path”

while ∃w −→ u such that w 6∈ P
do

{
P ← P + uw
u← w

while ∃w −→ v such that w 6∈ P
do

{
P ← P + vw
v ← w

The first loop extends P from u and the second loop extends P from v, until it

cannot be extended anymore. At this point we have a uv-path

P = (u, . . . , x, . . . , v)

such that the endpoints u and v are adjacent only to vertices of P . The length of P
is ℓ(P), the number of edges in P . The vertices of P are ordered from u to v. If

w ∈ P , then w+ indicates the vertex following w (if w 6= v). Similarly w− indicates

the vertex preceding w (if w 6= u).

If u −→ v, then we have a cycle C = P + uv. If C is a hamilton cycle, we are

done. Otherwise, becauseG is connected, there is a vertexw ∈ P such that w −→ y,

where y 6∈ P . Hence there exists a longer path

P ∗ = P − ww+ + wy.

This is illustrated in Figure 11.6.

. . .P
w w+

y

u v

FIGURE 11.6

Finding a long path

If u 6−→ v, it may still be possible to find a cycle. Suppose that P contains a

vertex w such that v −→ w and u −→ w+. This creates a pattern called a crossover,

which is shown in Figure 11.7. When a crossover exists, there is a cycle

C = P + vw − ww+ + uw+

containing all the vertices of P .

222 Graphs, Algorithms, and Optimization

Having converted the path P to a cycleC using the crossover, we are again in the

situation where eitherC is a hamilton cycle, or else it contains a vertexw −→ y 6∈ C,

which allows us to find a longer path P ∗. We now extend P ∗ from both endpoints

as far as possible, and then look for a crossover again, etc. The algorithm terminates

either with a hamilton cycle, or with a long path that has no crossover. The crossover

algorithm is summarized in Algorithm 11.2.1.

u

w w+ v
P

FIGURE 11.7

A crossover

Algorithm 11.2.1: LONGPATH(G, x)

comment:

{
Find a long path in G containing x, using crossovers.

P and C are linked lists.

u← x; v ← x; P ← (x) “a path of length 0”

repeat

comment: extend P from u

while ∃w −→ u such that w 6∈ P
do

{
add w to P
u← w

comment: extend P from v

while ∃w −→ v such that w 6∈ P
do

{
add w to P
v ← w

comment: search for a crossover

for all w −→ v do if u −→ w+

then





comment: a crossover has been found

C ← P + vw − ww+ + uw+

if C is a hamilton cycle

then go to 1
find z ∈ C such that z −→ y 6∈ C
convert C + zy into a path P from y to z+

u← y; v ← z+

until no crossover was found

1 : comment: P can be extended no more

Hamilton Cycles 223

11.2.1 Complexity

The main operations involved in the algorithm are extending P from u and v, con-

vertingP to a cycleC, and finding z ∈ C such that z −→ y 6∈ C. We assume that the

data structures are arranged so that the algorithm can check whether or not a vertex

w is on P in constant time. This is easy to do with a boolean array. We also assume

that the algorithm can test whether or not vertices v and w are adjacent in constant

time.

• Extending P from u requires at most DEG(u) steps, for each u. Because P
can extend at most once for each u, the total number of steps taken to extend

P is at most
∑

u DEG(u) = 2ε, taken over all iterations of the algorithm.

• Converting P to a cycle C = P + vw − ww+ + uw+ requires reversing a

portion of P . This can take up to ℓ(P) steps. As ℓ(P) increases from 0 up to

its maximum, this can require at most O(n2) steps, taken over all iterations.

• Checking whether z ∈ C is adjacent to some y 6∈ C requires DEG(z) steps

for each z. There are ℓ(C) = ℓ(P) + 1 vertices z to be considered. If at some

point in the algorithm it is discovered that some z is not adjacent to any such

y, we need never test that z again. We flag these vertices to avoid testing them

twice. Thus the total number of steps spent looking for z and y is at most

O(n2) +
∑

z DEG(z) = O(n2 + ε).

So the total complexity of the algorithm is O(n2+ ε). More sophisticated data struc-

tures can reduce the O(n2) term, but there is likely no reason to do so, because the

algorithm is already fast, and it is not guaranteed to find a hamilton cycle in any case.

The crossover algorithm works very well on graphs which have a large number

of edges compared to the number of vertices. In some cases we can prove that it will

always find a hamilton cycle. On sparse graphs (e.g., 3-regular graphs), it does not

perform very well when the number of vertices is more than 30 or so.

Lemma 11.2. Let G be a graph on n vertices such that DEG(u) + DEG(v) ≥ n, for

all non-adjacent vertices u and v. Then the crossover algorithm will always find a

hamilton cycle in G.

Proof. If the crossover algorithm does not find a hamilton cycle, let P be the last

path found. Because P cannot be extended from its endpoints u and v, it follows that

u and v are joined only to vertices of P . For eachw −→ v, it must be that u 6−→ w+,

or a crossover would exist. Now v is joined to DEG(v) vertices of P . There are thus

DEG(v) vertices that u is not joined to. Consequently u can be adjacent to at most

ℓ(P) − DEG(v) vertices, where ℓ(P) ≤ n − 1 is the number of edges of P . So we

have

DEG(u) + DEG(v) ≤ ℓ(P) ≤ n− 1,

a contradiction, because we assumed that DEG(u)+DEG(v) ≥ n for all non-adjacent

u and v.

224 Graphs, Algorithms, and Optimization

This lemma also shows that graphs which satisfy the condition DEG(u) +
DEG(v) ≥ n are always hamiltonian. Such graphs have many edges, as we shall

see. However, the crossover algorithm will often find hamilton cycles or hamilton

paths, even when a graph does not satisfy this condition.

The crossover algorithm can be improved enormously by searching for

crossovers of higher order. The crossover of Figure 11.7 can be defined to be the

trail Q = (u,w+, w, v) which starts at u, intersects P in exactly one edge, and fin-

ishes at v. The cycle C is then given byC = P ⊕Q, where⊕ indicates the operation

of exclusive-OR, applied to the edges of P andQ. In general, higher order crossovers

can be defined as follows.

DEFINITION 11.1: Let P be a uv-path. A crossover Q is a uv-trail such that

V (Q) ⊆ V (P) and C = P ⊕ Q is a cycle with V (C) = V (P). The order of a

crossover Q is the number |P ∩ Q| of edges common to P and Q. A cross-edge is

any edge xy ∈ E(Q)− E(P).

So a crossover of order 0 occurs when u −→ v. Then Q = (u, v) and

C = P + uv. There is only one kind of crossover of order one, which is shown

in Figure 11.7. A crossover of order two is illustrated in Figure 11.8. There are five

different kinds of crossovers of order two, as the reader can verify by constructing

them. An algorithm employing crossovers of order higher than one requires a recur-

sive search for crossovers up to a pre-selected maximum order M . It was found by

KOCAY and LI [108] that choosingM = 6 still gives a fast algorithm, and that it im-

proves the performance of the basic algorithm enormously. This algorithm requires

sophisticated data structures for an efficient implementation.

u

x x+ w w+

v
P

FIGURE 11.8

A crossover Q = (u,w,w+, x, x+, v) of order two

Suppose that a path P is the longest path found by the algorithm, and that it has

no crossover. If there is a vertex x 6∈ P such that x→ w,w+, for some w ∈ P , then

we can make a longer path by re-routing P through x: P ′ = (. . . , w, x, w+, . . .).
Similarly, a configuration like Figure 11.9 can also be used to give a longer path.

Once P has been re-routed to a longer path, we can again check for a crossover.

When used in combination, crossovers and re-routings will very often find a hamilton

cycle in G, if it is hamiltonian, even for sparse graphs G.

A re-routing is very much like a crossover. It is a closed trail Q whose endpoints

are on the uv-path P , such that P ⊕Q is a uv-path containing all vertices of P . It al-

Hamilton Cycles 225

u

x x+ w w+

v

FIGURE 11.9

Re-routing P

ways results in a longer path. The algorithm that searches for higher order crossovers

can be easily modified to search for re-routings as well.

Exercises

11.2.1 Show that if G is connected and n > 2δ, where δ is the minimum degree

of G, then G has a path of length at least 2δ. This is due to DIRAC [45].

(Hint: Consider a longest path.)

11.2.2 Program the crossover algorithm, and test it on the Petersen graph, on

the graphs of Figure 11.5, and on the graph in Figure 11.10. Try it from

several different starting vertices.

FIGURE 11.10

The Lederberg graph

11.2.3 Let G be a graph. Show how to create a graph G′ from G by adding one

vertex so thatG has a hamilton path if and only ifG′ has a hamilton cycle.

11.2.4 LetG be a graph such that DEG(u)+DEG(v) ≥ n−1, for all non-adjacent

vertices u and v. Show that G has a hamilton path.

11.2.5 Construct all five kinds of crossovers of order two.

11.2.6 Construct the crossovers of order three.

226 Graphs, Algorithms, and Optimization

11.3 The Hamilton closure

Suppose that DEG(u) + DEG(v) ≥ n in a graph G, where u and v are non-adjacent

vertices. Let G′ = G + uv. If G is hamiltonian, then so is G′. Conversely, if G′

is hamiltonian, let C be a hamilton cycle in G′. If uv ∈ C, then P = C − uv
is a hamilton path in G. Because DEG(u) + DEG(v) ≥ n, we know that P has a

crossover, so that G has a hamilton cycle, too. Thus we have proved:

Lemma 11.3. Let DEG(u) + DEG(v) ≥ n in a graph G, for non-adjacent vertices

u and v. Let G′ = G+ uv. Then G is hamiltonian if and only if G′ is.

This lemma says that we can add all edges uv to G, where DEG(u) + DEG(v) ≥
n, without changing the hamiltonicity of G. We do this successively, for all non-

adjacent vertices u and v.

DEFINITION 11.2: The hamilton closure of G is cH(G), the graph obtained by

successively adding all edges uv to G, whenever DEG(u) + DEG(v) ≥ n, for non-

adjacent vertices u and v.

For example, the hamilton closure of the graph of Figure 11.11 is the complete

graph K7. It must be verified that this definition is valid, namely, no matter in what

order the edges uv are added to G, the resulting closure is the same. We leave this to

the reader.

FIGURE 11.11

cH(G) = K7

Lemma 11.3 tells us that cH(G) is hamiltonian if and only if G is. In particular,

if cH(G) is a complete graph, then G is hamiltonian. The hamilton closure can be

used to obtain a condition on the degree sequence of G which will force G to be

hamiltonian.

Theorem 11.4. (Bondy-Chvátal theorem) Let G be a simple graph with degree

sequence (d1, d2, . . . , dn), where d1 ≤ d2 ≤ . . . ≤ dn. If there is no m < n/2 such

that dm ≤ m and dn−m < n−m, then cH(G) is complete.

Hamilton Cycles 227

Proof. Suppose that cH(G) is not complete. Let u and v be non-adjacent vertices

such that DEG(u) + DEG(v) is as large as possible, where the degree is computed

in the closure cH(G). Then DEG(u) + DEG(v) < n by definition of the closure. Let

m = DEG(u) ≤ DEG(v). So u is joined to m vertices. There are n − DEG(v) − 1
vertices that v is not adjacent to (not counting v, because v 6−→ v). Each of these has

degree≤ m. So the number of vertices with degree≤ m is at least n−DEG(v)− 1.

But DEG(u) + DEG(v) < n, so that m = DEG(u) ≤ n− DEG(v) − 1. That is, the

number of vertices of the closure with degree≤ m is at least m. Because the degree

sequence of cH(G) is at least as big as that of G, it follows that dm ≤ m.

dm ≤ m

u

dn−m

u

≤ m vertices

FIGURE 11.12

The degree sequence of G

How many vertices have degree > DEG(v)? We know that u is adjacent to all

of them. Therefore, the number of them is at most m, so that there are at most m
vertices after v in the degree sequence. It follows that DEG(v) ≥ dn−m. But because

DEG(v) < n −m, it follows that dn−m < n −m. Thus, we have found a value m
such that dm ≤ m and dn−m < n −m. Here m = DEG(u) ≤ DEG(v) < n −m,

so that m < n/2. This contradicts the assumptions of the theorem. Therefore cH(G)
must be complete under these conditions.

The degree sequence condition of the Bondy-Chvátal theorem is easy to apply.

For example, any graph with the degree sequence (2, 2, 3, 4, 5, 6, 6, 6)must be hamil-

tonian, because d1 = 2 > 1, d2 = 2 ≤ 2, but d8−2 = 6 6< 6, and d3 = 3 ≤ 3, but

d8−3 = 5 6< 5. Thus there is no m < 8/2 satisfying the condition that dm ≤ m and

dn−m < n−m.

This is the strongest degree sequence condition possible which forces an arbi-

trary graph G to be hamiltonian. Any stronger condition would have to place non-

degree sequence restrictions onG. To see that this is so, letG be any non-hamiltonian

graph. Let its degree sequence be (d1, d2, . . . , dn), where d1 ≤ d2 ≤ . . . ≤ dn. Be-

cause G is not hamiltonian, there is a value m such that dm ≤ m and dn−m <
n − m. Construct a new degree sequence by increasing each di until the sequence

(m, . . . ,m, n−m− 1, . . . , n−m− 1, n− 1, . . . , n− 1) is obtained, where the first

m degrees are m, the last m degrees are n − 1, and the middle n − 2m degrees are

n−m−1. We construct a non-hamiltonian graphC(m,n) with this degree sequence.

C(m,n) is composed of three parts, a complete graph Km, a complete graph

Kn−2m, and an empty graph Km. Every vertex of Km is joined to every vertex of

Km, and every vertex of Km is joined to every vertex of Kn−2m. This is illustrated

in Figure 11.13. The vertices of Km have degree m, those of Kn−2m have degree

n−m−1, while those ofKm have degree n−1.C(3, 9) is illustrated in Figure 11.3.

228 Graphs, Algorithms, and Optimization

Km Km Kn−2m

all edges all edges

FIGURE 11.13

C(m,n)

It is easy to see that C(m,n) is always non-hamiltonian, because the deletion of

the vertices of Km leaves m + 1 components. By Lemma 11.1, we conclude that

C(m,n) is non-hamiltonian. Yet for every non-hamiltonian graph G on n vertices,

there is some C(m,n) whose degree sequence is at least as large as that of G, in the

lexicographic order.

Exercises

11.3.1 Prove that cH(G) is well-defined; that is, the order in which edges uv are

added to G does not affect the result.

11.3.2 Prove that the crossover algorithm will find a hamilton cycle in G if

cH(G) is complete or find a counterexample.

11.3.3 Use the Bondy-Chvátal theorem to show that any graph with the

degree sequence (2, 3, 3, 4, 5, 6, 6, 6, 7) is hamiltonian. What about

(3, 3, 4, 4, 4, 4, 4, 4)?

11.3.4 Define the hamilton-path closure to be c′H(G), obtained by adding all

edges uv whenever DEG(u) + DEG(v) ≥ n − 1. Prove that G has a

hamilton path if and only if c′H(G) does.

11.3.5 Obtain a condition like the Bondy-Chvátal theorem which will force

c′H(G) to be complete.

11.3.6 Construct the graphs C(2, 8) and C(4, 12).

11.3.7 Work out ε(C(m,n)). Show that ε has its smallest value when

m =
n

3
− 1

6
,

for which

ε =
2

3

(
n

2

)
− 1

24
.

11.3.8 Show that if G is a graph on n ≥ 4 vertices with ε ≥
(
n−1
2

)
+ 1, then G

is hamiltonian.

Notice that according to Exercise 11.3.7, C(m,n) has approximately two-thirds

of the number of edges of the complete graph Kn, at the minimum. This means that

degree sequence conditions are not very strong. They apply only to graphs with very

many edges.

Hamilton Cycles 229

11.4 The extended multi-path algorithm

The multi-path algorithm tries to build a hamilton cycle C using a recursive exhaus-

tive search. At any stage of the algorithm, a number of disjoint paths S1, S2, . . . , Sk
in G are given, which are to become part of C. Call them segments of C. Initially,

we can take k = 1, and the single segment S1 can consist of the starting vertex, that

is, a path of length zero. On each iteration a vertex u is selected, an endpoint of some

segmentP = Si. Everyw −→ u is taken in turn, and P is extended to P ′ = P+uw.

Vertex u may now have degree two in Si. In this case, the remaining edges ux of G
are deleted. This reduces each DEG(x) by one. When DEG(x) = 2, both remaining

edges at x must become part of C. A new segment is created containing x. Thus, the

choice of uw can force certain edges to be a part of C. It can also happen that when

edges are forced in this way, that an edge connecting the endpoints of two segments

is forced, and the two segments must be merged into one. This in turn forces other

edges to be deleted, etc. The forcing of edges can be performed using a queue. There

are three possible outcomes of this operation:

1. An updated set of segments can be produced.

2. A hamilton cycle can be forced.

3. A small cycle can be forced.

By a small cycle, we mean any cycle smaller than a hamilton cycle. If a small cycle

is forced, we know that the extension of P to P + uw does not lead to a hamilton

cycle. If a hamilton cycle is forced, the algorithm can quit. If a new set of segments

is produced, the algorithm proceeds recursively. This can be summarized as follows.

We assume a global graph G, and a global boolean variable IsHamiltonian, which is

initially false, but is changed to true when a hamilton cycle is discovered.

Suppose that the multi-path algorithm were applied to a disconnected graph G.

Although we know that G is not hamiltonian, the algorithm could still take a very

long time to discover this, for example, the connected components of G could be

complete graphs. More generally, it is quite possible for the operation of forcing

edges to delete enough edges so as to disconnect G. Thus the algorithm really is

obliged to check that G is still connected before making a recursive call. This takes

O(ε) steps. Now we know that a graph with a cut-vertex also has no hamilton cycle,

and we can test for a cut-vertex at the same time as checking that G is connected. A

depth-first search (DFS) can do both in O(ε) steps. Thus we add a DFS to the multi-

path algorithm before the recursive call is made. But we can make a still greater

improvement.

230 Graphs, Algorithms, and Optimization

Algorithm 11.4.1: MULTIPATH(S)

comment: Search for a ham cycle containing all segments of S

choose a vertex u, an endpoint of some path P ∈ S
for all w −→ u

do





extend path P to P + uw
comment: extending P to P + uw may force some edges

FORCEEDGES(uw)
if a hamilton cycle was forced

then

{
IsHamiltonian ← true

return

if a small cycle was not forced

then





comment: the segments S have been updated

MULTIPATH(S)
if IsHamiltonian

then return

restore G and S to their state before uw was chosen

comment: otherwise no hamilton cycle was found

Suppose that the multi-path algorithm were applied to the graph of Figure 11.14.

This graph is non-hamiltonian because the deletion of the two shaded vertices leaves

three components. In certain cases the algorithm is able to detect this, using the DFS

that tests for cut-vertices. Suppose that the segments of G are the bold edges. Notice

that one of the segments contains the shaded vertex u. When the non-segment edges

incident on u are deleted, v becomes a cut-vertex in the resulting graph. The DFS

will detect that v is a cut-vertex, and the algorithm will report that adding the edge

uw to the segment does not extend to a hamilton cycle.

x

v

u

w

FIGURE 11.14

A non-hamiltonian graph

Normally the algorithm would then try the next edge incident on u, etc. But it

Hamilton Cycles 231

can do more. When the cut-vertex v is discovered, the DFS can count the number of

components of G − v. This will be one plus the number of descendants of v in the

DF-tree. It requires almost no extra work for the DFS to calculate this. For vertex v
in Figure 11.14, the count will be three components. But because this is the result

of deleting only two vertices, namely, u and v, the algorithm can determine that the

original G is non-hamiltonian, and stop the search at that point. More generally, a

non-hamiltonian graph like Figure 11.14 can arise at some stage during the algorithm

as a result of deleting edges, even though the originalG is hamiltonian. The algorithm

must be able to detect which graph in the search tree is found to be non-hamiltonian

by this method. We leave it to the reader to work out the details.

It is helpful to view vertices like u in Figure 11.14 which have degree two in

some segment as having been deleted from G. Each segment is then replaced by an

equivalent single edge connecting its endpoints. The set of segments then becomes a

matching in G, which is changing dynamically. For example, when the segments of

Figure 11.14 are replaced by matching edges, the resulting graph appears as in Fig-

ure 11.15. The procedure which forces edges can keep a count of how many vertices

internal to segments have been deleted in this way, at each level in the recursion.

When the DFS discovers a cut-vertex, this count is used to find the size of a separat-

ing set in G. In cases like this, large portions of the search tree can be avoided.

x

v

w

FIGURE 11.15

Segments viewed as a matching

A bipartite graph like the Herschel graph of Figure 11.2 is also non-hamiltonian,

but the algorithm is not likely to delete enough vertices to notice that it has a large

separating set. In general, suppose that at some stage in the algorithm G − E(S)
is found to be bipartite, with bipartition (X,Y), where S is viewed as a matching

in G. If there is a hamilton cycle C in G using the matching edges S, it must look

something like Figure 11.16, where the bipartition of G − E(S) is shown by the

shading of the nodes. There are now three kinds of segments: those contained within

X , those contained within Y , and those connecting X to Y . Suppose that there are

εX of the first type, and εY of the second type. The vertices of C must alternate

between X and Y , except for the εX and εY edges, which must have endpoints

232 Graphs, Algorithms, and Optimization

of the same color. If we contract each of these edges to a single node, we obtain

perfect alternation around the cycle. Therefore |X | − εX = |Y | − εY if G has a

hamilton cycle. If this condition is not satisfied, we know that G is non-hamiltonian,

and can break off the search. We again employ the DFS that tests for cut-vertices

to simultaneously check whether G − E(S) is bipartite, and to keep a count of the

numbers |X |−εX and |Y |−εY . This requires very little extra work, and is stillO(ε).
In this way, non-hamiltonian graphs derived from bipartite graphs or near-bipartite

graphs can often be quickly found to be non-hamiltonian.

FIGURE 11.16

G − E(S) is bipartite

In summary, the extended multi-path algorithm adds a DFS before the recursive

call. The DFS computes several things:

• Whether G is connected.

• ω(G− v), for each cut-vertex v.

• Whether G− E(S) is bipartite.

• |X | − εX and |Y | − εY , if G− E(S) is bipartite.

It may be possible to add other conditions to detect situations when G is non-

hamiltonian. For example, every hamiltonian graph G with an even number of ver-

tices n has two disjoint perfect matchings. If n is odd, every G − v has a perfect

matching.

11.4.1 Data structures for the segments

The extended multi-path algorithm still has exponential worst-case running time. Op-

erations on the segments must be made as fast as possible. The operations that must

Hamilton Cycles 233

be performed using segments are, given any vertex v, to determine which segment

contains v, and to find its endpoints; and to merge two segments when their end-

points are joined. One way to do this is with the merge-find data structure. An array

Segment[v] is stored, which is an integer, pointing to the representative of the seg-

ment containing v. Each segment has two endpoints, which we arbitrarily designate

as the right and left endpoints. The right endpoint x is the segment representative. It

is indicated by a negative value of Segment[x]. Its value is −y, where y is the left

endpoint. Thus we find the segment representative by following the pointers, using

path compression (see Chapter 2). Segments are merged by adjusting the pointers of

their endpoints.

Exercises

11.4.1 Program the multi-path algorithm. Use a DFS to test for the conditions

mentioned above.

11.5 Decision problems, NP-completeness

The theory of NP-completeness is phrased in terms of decision problems, that is,

problems with a yes or no answer, (e.g., “is G hamiltonian?”). This is so that an

algorithm can be modeled as a Turing machine, a theoretical model of computation.

Although Turing machines are very simple, they can be constructed to execute all

the operations that characterize modern random access computers. Turing machines

do not usually produce output, except for yes or no. Thus, a Turing machine can

be constructed to read in a graph, and perform an exhaustive search for a hamilton

cycle. If a cycle exists, it will be found, and the algorithm will report a yes answer.

However, the exhaustive search will tend to take an exponential amount of time in

general.

The class of all decision problems contains an important subclass called P, all

those which can be solved in polynomial time; that is, the complexity of a problem is

bounded by some polynomial in its parameters. For a graph, the parameters will be

n and ε, the number of vertices and edges.

There is another class of decision problems for which polynomial algorithms are

not always known, but which have an additional important property. Namely, if the

answer to a problem is yes, then it is possible to write down a solution which can

be verified in polynomial time. The HamCycle problem is one of these. If a graph

G has a hamilton cycle C, and the order of vertices on the cycle is written down,

it is easy to check in n steps that C is indeed a hamilton cycle. So if we are able

to guess a solution, we can verify it in polynomial time. We say that we can write

a certificate for the problem, if the answer is yes. A great many decision problems

have this property that a certificate can be written for them if the answer is yes, and

it can be checked in polynomial time. This forms the class NP of non-deterministic

234 Graphs, Algorithms, and Optimization

polynomial problems. The certificate can be checked in polynomial time, but we do

not necessarily have a deterministic way of finding a certificate.

Now it is easy to see that P ⊆ NP, because every problem which can be solved

in polynomial time has a certificate – we need only write down the steps which the

algorithm executed in solving it. It is generally believed that HamCycle is in NP

but not in P. There is further evidence to support this conjecture beyond the fact that

no one has been able to construct a polynomial-time algorithm to solve HamCycle;

namely, it can be shown that the HamCycle problem is one of the NP-complete

problems.

To understand what NP-completeness means we need the concept of polyno-

mial transformations. Suppose Π1 and Π2 are both decision problems. A polynomial

transformation from Π1 to Π2 is a polynomial-time algorithm which when given any

instance I1 of problem Π1 will generate an instance I2 of problem Π2, satisfying:

I1 is a yes instance of Π1 if and only if I2 is a yes instance of Π2

We use the notationΠ1 ∝ Π2 to indicate that there is a polynomial transformation

from Π1 to Π2. We say that Π1 reduces to Π2. This is because if we can find a

polynomial algorithm A to solve Π2, then we can transform Π1 into Π2, and then

use A to solve Π2, thereby giving a solution to Π1.

DEFINITION 11.3: A decision problem is Π is NP-complete, if

1. Π is in NP.

2. For any problem Π′ ∈ NP, Π′ ∝ Π.

It was Cook who first demonstrated the existence of NP-complete problems.

He showed that Problem 11.2, satisfiability of boolean expressions (Sat) is NP-

complete. Let U be a set of n boolean variables u1, u2, . . . , un with their comple-

ments u1, u2, . . . , un. These variables can only take on the values true and false,

such that ui is true if and only if ui is false, and vice versa. If x, y ∈ U , then we

denote by x + y the boolean or of x and y by xy the boolean and of x and y. A

clause over U is a sum of variables in U . For example, (u1 + u3 + u4 + u6) is a

clause. A boolean expression is a product of clauses. For example (u1 + u3 + u4 +
u6)(u2 + u5)(u7) is a boolean expression. A truth assignment t is an assignment of

values true and false to the variables in U . If B is a boolean expression, then t(B)
is the evaluation of B with truth assignment t. For example if

B = (u1 + u3 + u4 + u6)(u2 + u5)(u7)

and

t =

(
u1 u2 u3 u4 u5 u6 u7

true false false true true false false

)
,

then

t(B) = (true + true + false + false)(false + true)(true) = true.

Hamilton Cycles 235

Not every boolean expressionB has a truth assignment t such that t(B) = true. For

example there is no way to assign true and false to the variables in the expression

(u1+u2)(u1)(u2) so that it is true. If there is a truth assignment t such that t(B) =
true, we say that B is satisfiable. The satisfiability of boolean expressions problem

is

Problem 11.2: Sat

Instance: a set of boolean variables U and boolean expressionB over U .

Question: is B satisfiable?

and was shown by COOK [36] to be NP-complete. See also KARP [96]. The proof of

this is beyond the scope of this book; however, a very readable proof can be found

in the book by PAPADIMITRIOU and STEIGLITZ [134]. Many problems have sub-

sequently been proved NP-complete, by reducing them either to satisfiability, or to

other problems already proved NP-complete.

The importance of the NP-complete problems is that, if a polynomial algorithm

for any NP-complete problem Π were discovered, then every problem in NP would

have a polynomial algorithm; that is, P = NP would hold. Many people have come

to the conclusion that this is not very likely, on account of the large number of NP-

complete problems known, all of which are extremely difficult. We will now show

that

Sat ∝ 3-Sat ∝ Vertex Cover ∝ HamCycle

and thus the HamCycle problem (as well as 3-Sat and Vertex Cover) is an NP-

complete problem. Thus if P 6= NP, then a polynomial algorithm for the HamCycle

problem would not exist. This is why we say that the HamCycle problem is qualita-

tively different from most other problems in this book.

Among the most useful problems for establishing the NP-completeness of other

problems is 3-Sat.

Problem 11.3: 3-Sat

Instance: a set of boolean variables U and boolean expressionB over U ,

in which each clause contains exactly three variables.

Question: is B satisfiable?

Theorem 11.5. 3-Sat is NP-complete.

Proof. It is easy to see that 3-Sat is in NP. Any truth assignment satisfying the

boolean expression B can be checked in polynomial time by assigning the variables

and then evaluating the expression.

We reduce Sat to 3-Sat as follows. Let U be a set of boolean variables and

B = C1C2 · · ·Cm be an arbitrary boolean expression, so that U andB is an instance

of Sat. We will extend the variable set U to a set U ′ and replace each clause Ci in B
by a boolean expression Bi, such that

236 Graphs, Algorithms, and Optimization

(a) Bi is a product of clauses that use exactly three variables of U ′.

(b) Bi is satisfiable if and only if Ci is.

Then B′ = B1B2 · · ·Bm will be an instance of 3-Sat that is satisfiable over U ′ if

and only if B is satisfiable over U . Let Ci = (x1 + x2 + x3 + · · ·+ xk). There are

three cases.

Case 1: k = 1.

In this case we introduce new variables yi and zi and replace Ci with

Bi = (x1 + yi + zi)(x1 + yi + zi)(x1 + yi + zi)(x1 + yi + zi).

Case 2: k = 2.

In this case we introduce a new variable yi and replace Ci with

Bi = (x1 + x2 + yi)(x1 + x2 + yi).

Case 3: k = 3.

In this case we replace Ci with Bi = Ci. Thus we make no change.

Case 4: k > 3.

In this case we introduce new variables yi1 , yi2 , . . . , yik−3
and replace Ci with

Bi = (x1 + x2 + yi1)(yi1 + x3 + yi2)(yi2 + x4 + yi3) · · · (yik−3
+ xk−1 + xk).

It is routine to verify for each of Cases 1, 2, 3, and 4, that Bi satisfies (a) and (b),

see Exercise 11.5.2. We still must show that

B′ = B1B2B3 · · ·Bm

can be constructed with a polynomial time algorithm. If Ci = (x1 +x2 +x3 + · · ·+
xk), then Bi contains at most 4k clauses of three variables and at most k + 1 new

variables were introduced. Because k ≤ n, we conclude that to constructB′, at most

4mn new clauses of three variables are needed, and at most (n+ 1)m new variables

are introduced. Both are polynomial in the size of the instance of Sat. Consequently

we can construct B′ in polynomial time.

Given a graph G, a k-element subset K ⊆ V (G) of vertices is a called a vertex

cover of size k if each edge of G has at least one end in K . The Vertex Cover
decision problem is:

Problem 11.4: Vertex Cover

Instance: a graph G and positive integer k.

Question: does G have a vertex cover of size at most k?

Theorem 11.6. Vertex Cover is NP-complete.

Hamilton Cycles 237

Proof. It is easy to see that Vertex Cover is in NP, for if K is a purported vertex

cover of the graph G of size k, then we simply check each edge of G to see that at

least one endpoint is in K . There are ε edges to check so this takes time O(ε) and

we can check in time |K| ≤ n whether or not |K| ≤ k.

We now give a polynomial transformation from 3-Sat to Vertex Cover. LetB =
C1C2 · · ·Cm be a boolean expression over U = {u1, u2, . . . , un} in which each

clause is a sum of exactly three variables. Thus for i = 1, 2, . . . , n,Ci = (xi+yi+zi)
for some xi, yi, zi ∈ U ∪ U , where U = {u1, u2, . . . , un}. We construct a graph G
on the vertex set

V = U ∪ U ∪W,
where W = ∪mi=1{ai, bi, ci}. The edge set of G is the union of the edges of m
subgraphs Hi, i = 1, 2, . . . ,m, where Hi is the subgraph shown in Figure 11.17.

It consists of a triangle (ai, bi, ci), edges from ai, bi, ci to the variables contained

in the clause, and edges connecting the variables to their complements. G has 2n+
3m vertices and n + 6m edges and hence can be built in polynomial time. Choose

k = n + 2m to obtain an instance of the Vertex Cover problem for the graph G
constructed.

ai

bi

ci

xi xi yi yi zi zi

FIGURE 11.17

Subgraph Hi corresponding to clause (xi + yi + zi)

We show that B has a satisfying truth assignment if and only if G has a vertex

cover K of size k = n+ 2m. If t is a truth assignment, such that

t(B) = true,

then tmust assign at least one variablexi, yi, or zi to be true in clauseCi. Assume it

is xi. As xi is adjacent to exactly one vertex, ai, in the triangle {ai, bi, ci}, it follows

that {xi, bi, ci} is a vertex cover of Hi, and hence

K = ∪mi=1{xi, bi, ci}

is a vertex cover of size k for G. An example is given in Figure 11.18.

Conversely suppose that K is a vertex cover of size k = n + 2m of G. Then

K must include at least one end of each of the n edges {ui, ui}, i = 1, 2, . . . , n,

accounting for at least n vertices in K . Also K must cover the edges of each

238 Graphs, Algorithms, and Optimization

a1 a2

a3 a4

b1 b2

b3 b4

c1 c2

c3 c4

u1

u1

u2

u2

u3

u3

u4

u4

u5

u5

u6

u6

FIGURE 11.18

Graph G corresponding to the boolean expression B = (u2 + u1 + u4)(u2 +
u6 + u5)(u1 + u2 + u3)(u2 + u6 + u3). A vertex cover is K =
{u4, a1, b1, u6, a2, c2, u3, a3, b3, u2, b4, c4i, u1, u5} and u3 = u4 = u6 =
true, u2 = false , u1, u5, assigned arbitrarily is a truth assignment satisfying B.

triangle (aj , bj, cj), and thus must contain at least two of {aj, bj , cj}, for each

j = 1, 2, . . . ,m. This accounts for 2m more vertices, for a total of n + 2m = k
vertices. Hence K must contain exactly one of the endpoints of each edge {ui, ui},
for i = 1, 2, . . . , n, and exactly two of aj , bj , cj , for each j = 1, 2, . . . ,m, corre-

sponding to clause Cj . For each clause Cj , there is exactly one vertex aj , bj , or cj of

the triangle which is not in K . Call it dj . Choose the unique variable of U ∪ U adja-

cent to di, and assign it true. Then at least one variable in each clause Cj has been

assigned the value true, giving a truth assignment that satisfies B. Any remaining

unassigned variables in U can be assigned true or false arbitrarily.

Theorem 11.7. HamCycle is NP-complete.

Proof. Let G be a graph. Given an ordering v1, v2, . . . , vn of vertices of G we can

check whether (v1, v2, v3, . . . , vn) is a hamilton cycle in polynomial time. Thus

HamCycle is in NP. To show that HamCycle is NP-complete we transform from

Vertex Cover.

Let G and k be an instance of Vertex Cover, where k is a positive integer. We

will construct a graph G′ such that G′ has a hamilton cycle if and only if G has

a vertex cover K = {x1, x2, . . . , xk} of size k. The graph G′ will have k + 12m
vertices

V (G′) = K ∪ {(u, e, i) : u ∈ V (G) is incident to e ∈ E(G) and i = 1, 2, . . . , 6},

where m = |E(G)|. The edges of G′ are of three types.

Hamilton Cycles 239

Type 1 edges of G′

The type 1 edges are the 14m edges among the subgraphs He, e ∈ E(G). We

display He, where e = uv in Figure 11.19.

(u, e, 1)

(v, e, 1)

(u, e, 2)

(v, e, 2)

(u, e, 3)

(v, e, 3)

(u, e, 4)

(v, e, 4)

(u, e, 5)

(v, e, 5)

(u, e, 6)

(v, e, 6)

He

FIGURE 11.19

The subgraph He, where e = uv

Type 2 edges of G′

For each vertex v of G choose a fixed but arbitrary ordering ev1 , ev2 , . . . , ev3 of

the d = DEG(v) edges incident to v. The type 2 edges of G′ corresponding to v are:
{
{(v, evi , 6), (v, evi+1

, 1)} : i = 1, 2, . . . , d− 1
}

Type 3 edges of G′

The type 3 edges of G′ are:

{{xi, (v, ev1 , j)} : xi ∈ K, v ∈ V (G), j ∈ {1, 6}}

The subgraph of G′ corresponding to the edges incident to a vertex v in G is

illustrated in Figure 11.20. Before proving that G has a vertex cover of size k if and

only if G′ has a hamilton cycle C = v1, v2, . . . , vn, we make five observations.

1. C must enter and exit the subgraphHe, e = uv from the four corners

(u, e, 1), (u, e, 6), (v, e, 1), (v, e, 6).

2. If C enters He at (u, e, 1), it must exit at (u, e, 6) and either pass

through all the vertices of He or only those vertices with first coordinate

u. (In the first case as we shall see, u will be in the vertex cover of G, and

in the latter case both u and v will be in the vertex cover of G.)

3. If C enters He at (v, e, 1), it must exit at (v, e, 6) and either pass

through all the vertices of He or only those vertices with first coordinate

v. (In the first case as we shall see, v will be in the vertex cover of G, and

in the latter case both u and v will be in the vertex cover of G.)

240 Graphs, Algorithms, and Optimization

. . .

u1 u2 u3 uk

ev1
ev2

ev3
evk

v

G

Hev1
Hev2

Hevd

. . .

. . .

x1 x2 x3 xk

G′

FIGURE 11.20

Subgraph of G′ corresponding to the edges incident to v in G

4. The vertices {x1, x2, . . . , xk} divide C into paths. Thus we may

assume, relabeling the vertices x1, x2, . . . , xk if necessary, that C =
P1P2 · · ·Pk where Pi is an xi to xi+1 path, where xk+1 = xk.

5. Let vi be such that xi is adjacent to (vi, e, j) in Pi where j = 1 or 6.

Then Pi contains every vertex (vi, e
′, h) where e is incident to v.

We claim that the k vertices v1, v2, . . . , vk selected in observation 5 are a vertex

cover of G. This is because the hamilton cycle C must contain all vertices of each of

the subgraphs He for each e ∈ G; and when He is traversed by C, it is traversed by

some Pi in C and that Pi selects an endpoint vi of e.
Conversely, suppose K = {v1, v2, . . . , vk} ⊆ V (G) is a vertex cover of G, of

size k. To construct a hamilton cycle C of G′, choose for each edge e ∈ E(G) the

edges ofHe specified in Figure 11.21 (a), (b), or (c) depending on whether {u, v}∪K
equals {u}, {u, v}, or {v}, respectively. (One of these must occur, because K is a

vertex cover.) Also include the edges

{(vi, evi , 6), (vi, evi , 1)}, i = 1, 2, . . . , k,

the edges

{xi, (vi, evi , 1)}, i = 1, 2, . . . , k,

and the edges

{xi+1, (vi, evi , 1)}, i = 1, 2, . . . , k, where vk+1 = v1.

It is an easy exercise to verify that the included edges form a hamilton cycle in G′;

see Exercise 11.5.5.

Hamilton Cycles 241

(a)

(b)

(c)

FIGURE 11.21

The three possible ways that a Hamilton cycle can traverse the subgraph He, cor-

responding to the cases for e = {u, v} in which (a) e ∩ K = {u}, (b)

e ∩ K = {u, v}, and (c) e ∩K = {v}.

Exercises

11.5.1 Consider the boolean expression

B = (x1 + x2 + x3 + x6)(x2 + x4)(x5)(x2 + x4 + x5)

Find a boolean expression equivalent toB in which each clause uses only

three variables.

11.5.2 Show for each Case 1, 2, 3, and 4 in Theorem 11.5 that the pair Bi, Ci
satisfies

(a) Bi is a product of clauses that use at most three variables in U ′.

(b) Bi is satisfiable if and only if Ci is.

11.5.3 Consider the boolean expression

B = (x + y + z)(x+ y + z)(w + x+ z)(w + x+ z)(w + x+ z)
(w + x+ z)(w + y + z)(w + y + z)(w + y + z)(w + y + z)

(a) Show that there is no truth assignment that satisfies B.

(b) Construct the graph G in Theorem 11.6 that corresponds to B.

(c) Show that G does not have a vertex cover of size 25.

242 Graphs, Algorithms, and Optimization

11.5.4 Verify the five observations in Theorem 11.7.

11.5.5 Verify that the included edges in the converse part of Theorem 11.7, do

indeed form a hamilton cycle.

11.6 The traveling salesman problem

The traveling salesman problem (TSP) is very closely related to the HamCycle
problem. A salesman is to visit n cities v1, v2, . . . , vn. The cost of traveling from vi
to vj is W (vivj). Find the cheapest tour which brings him back to his starting point.

Figure 11.22 shows an instance of the TSP problem. It is a complete graphKn with

positive integral weights on the edges. The problem asks for a hamilton cycle of

minimum cost.

6

12

10

7

5

8

12

7

11

8

9

10

3

12

9

1

2

34

5

6

FIGURE 11.22

An instance of the TSP problem.

It is easy to show that the HamCycle problem can be reduced to the TSP prob-

lem. In order to do this, we first must phrase it as a decision problem.

Problem 11.5: TSP Decision

Instance: a weighted complete graph Kn, and an integer M ,

Question: does Kn have a hamilton cycle of cost ≤M?

We can then find the actual minimum by doing a binary search on the range of

Hamilton Cycles 243

values n ≤ M ≤ nWmax, where Wmax is the maximum edge-weight. Suppose that

we had an efficient algorithm for the TSP Decision problem. Let G be any graph

on n vertices which we want to test for hamiltonicity. Embed G in a compete graph

Kn, giving the edges of G weight 1, and the edges of G weight 2. Now ask whether

G has a TSP tour of cost ≤ n. If the answer is yes, then G is hamiltonian. Otherwise

G is non-hamiltonian.

Because HamCycle is NP-complete, we conclude that the TSP Decision prob-

lem is at least as hard as an NP-complete problem. In a certain sense, it is harder than

the NP-complete problems, because the edge weights W (vivj) are not bounded in

size. So it may take many steps just to add two of the weights. However, if we limit

the size of the weights to the range of numbers available on a computer with a fixed

word length, then the TSP Decision problem is also NP-complete. It is easy to see

that TSP Decision ∈ NP, because we can write down the sequence of vertices on a

cycle C of cost ≤M and verify it in n steps.

One way to approximate a solution is similar to the crossover technique. Choose

a hamilton cycle C in Kn arbitrarily. For each edge uv ∈ C, search for an edge

wx ∈ C such that W (uv)+W (wx) > W (uw)+W (vx). If such an edge exists, re-

routeC as shown in Figure 11.23. Repeat until no improvement can be made. Do this

for several randomly chosen starting cycles, and take the best as an approximation to

the optimum.

u v

x w

−→

u v

x w

FIGURE 11.23

Re-routing a TSP tour

The cycle Q = (u, v, x, w) is similar to a crossover. In general, if Q is any cycle

such that C ⊕Q is a hamilton cycle, and W (C ∩Q) > W (Q−C), then C ⊕Q will

be a TSP tour of smaller cost than C. We can search for crossoversQ containing up

toM edges, for some fixed valueM , and this will provide a tour which may be close

to the optimum. How close does it come to the optimum?

It is possible to obtain a rough estimate of how good a tour C is, by using a

minimum spanning tree algorithm. Let C∗ be an optimum TSP tour. For any vertex

v, C∗ − v is a spanning tree of Kn − v. Let Tv be a minimum spanning tree of

Kn− v. ThenW (C∗ − v) ≥W (Tv). Given the path C∗− v, we must add back two

edges incident on v to get C∗. If we add two edges incident on v to Tv, of minimum

possible weight, we will get a graph T ∗
v , such that W (C∗) ≥ W (T ∗

v). For example,

244 Graphs, Algorithms, and Optimization

Figure 11.24 shows a minimum spanning tree T3, of Kn − 3 for the instance of TSP

shown in Figure 11.22.

6

10

7

5

11

3

1

2

34

5

6

FIGURE 11.24

A minimum spanning tree T3, plus two edges

The two edges incident on vertex 3 that we add to T3 have weights 10 and 11 in

this case. We thus obtain a boundW (C∗) ≥W (T ∗
3) = 42. We do this for each vertex

v, and choose the maximum of the bounds obtained. This is called the spanning tree

bound for the TSP:

W (C∗) ≥ MAXvW (T ∗
v).

Exercises

11.6.1 Work out the spanning tree bound for the TSP instance of Figure 11.22.

11.6.2 Find a TSP tour C in the graph of Figure 11.22 by re-routing any starting

cycle, until no more improvement is possible. Compare the weight of C
with the result of Exercise 11.6.1.

11.6.3 Construct all possible re-routing patterns (crossovers) containing three or

four edges of C.

11.7 The ∆TSP

Distances measured on the earth satisfy the triangle inequality, namely, for any three

pointsX,Y , and Z , DIST(X,Y) + DIST(Y, Z) ≥ DIST(X,Z). The triangle travel-

ing salesman problem, denoted ∆TSP, refers to instances of the TSP satisfying this

Hamilton Cycles 245

inequality. When the triangle inequality is known to hold, additional methods are

possible.

Theorem 11.8. Let Kn be an instance of the ∆TSP, and let G be any Eulerian

spanning subgraph of Kn. If C∗ is an optimum TSP tour, then W (C∗) ≤W (G).

Proof. Consider an Euler tourH inG starting at any vertex. The sequence of vertices

traversed by H is vi0 , vi1 , vi2 , vi3 , If G is a cycle, then H is a hamilton cycle, so

that W (C∗) ≤W (G), and we are done. Otherwise, H repeats one or more vertices.

Construct a cycle C fromH by taking the vertices in the order that they appear inH ,

simply ignoring repeated vertices. Because G is a spanning subgraph of Kn, all ver-

tices will be included in C. For example, if G is the graph of Figure 11.25, and H is

1

2

34

5

6 1

2

34

5

6

G C

FIGURE 11.25

An Eulerian graph G and TSP tour C

the Euler tour (1, 2, 3, 4, 6, 1, 3, 6, 5, 4), then the cycle C obtained is (1, 2, 3, 4, 6, 5).
Because of the triangle inequality, it will turn out thatW (C) ≤W (G). Let the cycle

obtained be C = (u1, u2, . . . , un), and suppose that the Euler tour H contains one

or more vertices between uk and uk+1. Without loss of generality, suppose that there

are just three vertices x, y, z between uk and uk+1. See Figure 11.26. Then because

uk

x

y z

uk+1

FIGURE 11.26

Applying the triangle inequality

246 Graphs, Algorithms, and Optimization

of the triangle inequality, we can write

W (ukx) +W (xy) ≥W (uky),

W (uky) +W (yz) ≥W (ukz),

and

W (ukz) +W (zuk+1) ≥W (ukuk+1).

Thus

W (ukuk+1) ≤W (ukx) +W (xy) +W (yz) +W (zuk+1).

The left side of the inequality contributes to W (C). The right side contributes to

W (H). It follows that W (C) ≤W (G), for any Eulerian G.

Notice that the particular cycle C obtained from G depends on the Euler tour H
chosen, so that the graph G will give rise to a number of different hamilton cycles

C. In particular, we could construct G from a minimum spanning tree T , by simply

doubling each edge. This gives an Eulerian multigraph G. The method used in the

theorem will also work with multigraphs, so we conclude that W (C∗) ≤ 2W (T).
This is called the tree algorithm for the TSP.

Lemma 11.9. The tree algorithm produces a cycle of cost at most twice the optimum.

Proof. Let C be the cycle obtained by the tree algorithm, let C∗ be an optimum

cycle, and let T be a minimum spanning tree of the instance for ∆TSP. Because C∗

is a spanning subgraph ofKn, we conclude thatW (C∗) > W (T). But we know that

W (C) ≤ 2W (T) < 2W (C∗).

11.8 Christofides’ algorithm

Christofides found a way to construct an Eulerian subgraph of smaller weight than

2W (T). Let Kn be an instance of the ∆TSP, and let T be a minimum spanning tree.

Let X ⊆ V (Kn) be the vertices of T of odd degree. X contains an even number

of vertices. The subgraph of Kn induced by X is a complete subgraph. Let M be

a perfect matching in X of minimum weight. For example, Figure 11.27 shows a

minimum spanning tree for the graph of Figure 11.22, together with a minimum-

weight matchingM , shown as dashed lines. This gives a graphG = T +M which is

Eulerian. It is quite possible that G is a multigraph. We now find an Euler tour in G
and use it to construct a TSP tour C of cost at most W (T) +W (M). This is called

Christofides’ algorithm.

Theorem 11.10. Let C be the TSP tour produced by Christofides’ algorithm and let

C∗ be an optimum tour. Then

W (C) ≤ 3

2
W (C∗).

Hamilton Cycles 247

6

12

10

7

5

8

12

7

11

8

9

10

3

12

9

1

2

34

5

6

FIGURE 11.27

Christofides’ algorithm

Proof. Let u1, u2, . . . , u2k be the vertices of odd degree, and suppose that they ap-

pear on C∗ in that order. This defines two matchings,

M1 = {u1u2, u3u4, . . .}

and

M2 = {u2u3, u4u5, . . . , u2ku1}.
See Figure 11.28. If M is the minimum weight matching, we conclude that

W (M1),W (M2) ≥W (M). The portion of C∗ between ui and ui+1 satisfies

W (C∗[ui, ui+1]) ≥W (uiui+1),

by the triangle inequality. Therefore

W (C∗) ≥W (M1) +W (M2) ≥ 2W (M),

or

W (M) ≤ 1

2
W (C∗).

The cycle C found by Christofides’s algorithm satisfies

W (C) ≤W (T) +W (M) < W (C∗) +
1

2
W (C∗),

because W (T) < W (C∗). It follows that

W (C) ≤ 3

2
W (C∗).

Thus, Christofides’ algorithm always comes within 50% of the optimum.

248 Graphs, Algorithms, and Optimization

u1 u2

u3

u4

u5u6

u7

u8

FIGURE 11.28

Two matchings M1 and M2

6

12

14

7

5

10

12

8

11

10

9

10

8

15

9

1

2

34

5

6

FIGURE 11.29

An instance of ∆TSP

Exercises

11.8.1 Use the tree algorithm to find a TSP tour for the graph of Figure 11.22.

11.8.2 Solve the same TSP instance using Christofides’algorithm. Compare the

values found for W (C), W (T), and W (T +M).

11.8.3 Solve the ∆TSP instance of Figure 11.29, using Christofides’ algorithm.

Compute the spanning tree bound as well.

Hamilton Cycles 249

11.9 Notes

An excellent survey of hamiltonian graphs appears in BERMOND [16]. The hamil-

ton closure and the Bondy-Chvátal theorem are from BONDY and MURTY [23]. The

extended multi-path algorithm is from KOCAY [105]. A classic book on the the-

ory of NP-completeness is the text by GAREY and JOHNSON [64]. A very read-

able proof of Cook’s theorem, that Satisfiability is NP-complete, appears in PA-

PADIMITRIOU and STEIGLITZ [134], which also contains an excellent section on

Christofides’ algorithm. The book by CHRISTOFIDES [34] has an extended chapter

on the traveling salesman problem. The book LAWLER, LENSTRA, RINNOOY KAN,

and SHMOYS [114] is a collection of articles on the traveling salesman problem.

http://taylorandfrancis.com

12

Digraphs

12.1 Introduction

Directed graphs have already been introduced in the Chapter 1. If G is a digraph and

u, v ∈ V (G), we write u −→ v to indicate that the edge uv is directed from u to v.

The in-edges at v are the edges of the form (u, v). The in-degree of v is d−(v), the

number of in-edges. Similarly the out-edges at u are all edges of the form (u, v) and

the out-degree d+(u) is the number of out-edges at u. The degree of u is

DEG(u) = d+(u) + d−(u).

Given any undirected graph G, we can assign a direction to each of its edges, giving

a digraph called an oriented graph. A digraph is simple if it is an orientation of a

simple graph. A digraph is strict if it has no loops, and no two directed edges have

the same endpoints. A strict digraph can have edges (u, v) and (v, u), whereas an

oriented graph cannot.

Digraphs have extremely wide application, for the social sciences, economics,

business management, operations research, operating systems, compiler design,

scheduling problems, combinatorial problems, solving systems of linear equations,

and many other areas. We shall describe only a few fundamental concepts in this

chapter.

12.2 Activity graphs, critical paths

Suppose that a large project is broken down into smaller tasks. For example, building

a house can be subdivided into many smaller tasks: dig the basement, install the

sewer pipes, water pipes, electricity, pour the basement concrete, build the frame,

floor, roof, cover the roof and walls, install the wiring, plumbing, heating, finish the

walls, etc. Some of these tasks must be done in a certain order – the basement must

be dug before the concrete can be poured, the wiring must be installed before the

walls can be finished, etc. Other tasks can take place at the same time, (e.g., the

wiring and plumbing can be installed simultaneously). We can construct a directed

graph, called an activity graph, to represent such projects. It has a starting node s,

251

252 Graphs, Algorithms, and Optimization

where the project begins, and a completion node t, where it is finished. The subtasks

are represented by directed edges. The nodes represent the beginning and end of

tasks (the synchronization points between tasks). Figure 12.1 shows an example of

an activity graph. Each task takes a certain estimated time to complete, and this is

represented by assigning each edge uv a weight WT(uv), being the amount of time

required for that task.

What is the minimum amount of time required for the entire project? It will be

the length of the longest directed path from start to completion. Any longest directed

path from s to t is called a critical path. Figure 12.1 shows a critical path in an

activity graph.

4

6

10

3

20

15

12

6

6

9

10

3

3

8
12

4
10

14

2

3

45

6

7

8

9

1 10s t

FIGURE 12.1

An activity graph

Notice that an activity graph must have no directed cycles. For if a directed cycle

existed, it would be impossible to complete the project according to the constraints.

Thus, activity graphs are acyclic digraphs. Activity graphs are applicable to any large

project, such as building construction, business projects, or factory assembly lines.

The critical path method (CPM) is a technique for analyzing a project acccording

to the longest paths in its activity graph. In order to find a longest path from s to t, we

proceed very much as in Dijkstra’s algorithm (Chapter 2), which builds a spanning

tree, rooted at s, of shortest paths. To find longest paths instead, the algorithm builds

an out-directed spanning tree, rooted at s, of longest directed paths from s to each

vertex v. We store a value T [v] for each v, being the earliest time at which tasks

starting from v can begin. T [v] is the length of a longest sv-path. When the algorithm

completes, the critical path is the unique path in the spanning tree to vertex t. Notice

that in Figure 12.1, the edge from vertex 1 to 3 has length 6, but that the path (1, 7, 3)
has the longer length of 7. In order for the algorithm to correctly choose the longer

path, it must be sure to assign T (7) before T (3). Thus, the vertices must be taken in

a certain order. For every edge (u, v), T (u) must be computed before T (v).

Digraphs 253

12.3 Topological order

A topological ordering of an acyclic digraphG is a permutation o of

V (G) = {1, 2, . . . , n}

such that o(u) < o(v) whenever u −→ v. Thus all edges are directed from smaller to

higher vertex numbers. Notice that only acyclic digraphs have topological orderings,

since a directed cycle cannot be ordered in this way. Topological orderings are easy

to find. We present both a breadth-first and a depth-first algorithm.

Algorithm 12.3.1: BFTOPSORT(G,n)

comment:





Breadth-first topological sort of G
InDegree[v] is the in-degree of vertex v, an array

ScanQ [k] is the kth vertex on a queue, an array

Qsize is the number of points on ScanQ

Qsize ← 0
k← 1
for v ← 1 to n

do





compute InDegree[v]
if InDegree[v] = 0

then

{
Qsize ← Qsize + 1
ScanQ [Qsize]← v

while k ≤ Qsize

do





u← ScanQ [k]
for each v such that u −→ v

do





InDegree[v]← InDegree[v]− 1
if InDegree[v] = 0

then





Qsize ← Qsize + 1
ScanQ [Qsize]← v
if Qsize = n

then go to 1
k ← k + 1

1 : if Qsize < n then G contains a directed cycle

Algorithm 12.3.1 is the the breadth-first algorithm. The topological order is built

on the queue. Algorithm 12.3.1 begins by placing all vertices with in-degree 0 on

the queue. These are first in the topological order. InDegree[v] is then adjusted so

that it counts the in-degree of v only from vertices not yet on the queue. This is

done by decrementing InDegree[v] according to its in-edges from the queue. When

InDegree[v] = 0, v has no more in-edges, so it too, is added to the queue. When all

n vertices are on the queue, the vertices are in topological order. Notice that if G has

254 Graphs, Algorithms, and Optimization

a directed cycle, none of the vertices of the cycle will ever be placed on the queue. In

that case, the algorithm will terminate with fewer than n vertices on the queue. This

is easy to detect. Computing InDegree[v] takes
∑
v d

−(v) = ε steps. Each vertex is

placed on the queue exactly once, and its d+(u) out-edges are taken in turn, taking∑
u d

+(u) = ε steps. Thus the complexity of the algorithm is O(n+ ε).
Algorithm 12.3.2 is the depth-first topological sort algorithm and is easier to pro-

gram, but somewhat subtler. It calls the recursive Procedure DFS(), and we assume

that Procedure DFS() has access to the variables of Algorithm DFTOPSORT() as

globals.

When Procedure DFS(u) is called from DFTOPSORT(), it builds a rooted tree,

directed outward from the root u. DFNum[v] gives the order in which the vertices are

visited. The depth-first search does a traversal of this tree, using a recursive call to

visit all descendants of v before v itself is assigned a number NUM [v], its rank in the

topological order. Thus, if G is acyclic, all vertices that can be reached on directed

paths out of v will be ranked before v itself is ranked. Thus, for every edge (u, v), the

numbering will satisfy NUM [u] < NUM [v]. The first vertex numbered is assigned a

Rank of n. The variable Rank is then decremented. So the vertices are numbered 1 to

n, in topological order. It is obvious that the complexity of the algorithm is O(n+ε).

Algorithm 12.3.2: DFTOPSORT(G,n)

comment:





Depth-first topological sort of G
DFNum[v] is the DF-numbering assigned to the vertex v
NUM [v] is the topological numbering of the vertex v
DFCount ,Rank are counters

procedure DFS(v)
comment: extend the depth-first search to vertex v

DFCount ← DFCount + 1
DFNum[v]← DFCount
for each w such that v −→ w

do if DFNum[w] = 0
then DFS(w)

NUM [v]← Rank
Rank ← Rank − 1

main

for u← 1 to n

do

{
NUM [u]← 0
DFNum[u]← 0

DFCount ← 0
Rank ← n
for u← 1 to n

do if DFNum[u] = 0
then DFS(u)

Digraphs 255

The depth-first topological sort does not provide the vertices on a queue in sorted

order. Instead it assigns a number to each vertex giving its rank in the topological

order. If we need the vertices on a queue, as we likely will, we can construct one

from the array NUM by executing a single loop.

for v ← 1 to n do ScanQ [NUM [v]]← v

This works because NUM is a permutation of the numbers 1 to n, and the loop

computes the inverse of the permutation. Another method is to compute the inverse

array during the DFS simultaneously with the NUM array.

What happens if the depth-first topological sort is given a digraph that is not

acyclic? It will still produce a numbering, but it will not be a topological ordering. We

will have more to say about this in Section 12.4. Notice that DFS(u) may be called

several times from Algorithm 12.3.2. Each time it is called, a rooted tree directed

outward from the root is constructed. With undirected graphs, a DFS constructs a

single rooted spanning tree of G (see Chapter 7). For directed graphs, a single out-

directed tree may not be enough to span all of G. A spanning forest of rooted, out-

directed trees is constructed.

We return now to the critical path method. Let G be an activity graph with

V (G) = {1, 2, . . . , n}, and suppose that the vertices have been numbered in topo-

logical order; that is, u < v whenever u −→ v. The start vertex is s = 1. We set

T (1)← 0. We know that vertex 2 has an in-edge only from s, so T (2) is assigned the

cost of the edge (1, 2). In general, v can have in-edges only from vertices 1, . . . , v−1,

and we can take T (v) to be

T (v)← MAX{T (u) + WT(uv) : u −→ v}.

We also store an array PrevPt , where PrevPt [v] is the point previous to v on a directed

sv-path. If T (v) is computed to be T (u) + WT(uv) for some u, we simultaneously

assign PrevPt [v] ← u. When the algorithm completes, we can find the critical path

by executing w ← PrevPt [w] until w = 0, starting with w = t (= n). The number

of steps required to compute the longest paths once the topological sort has been

completed is proportional to n+
∑
v d

−(v) = O(n+ ε).
The minimum time required to complete the project is T (n). This can be achieved

only if all tasks along the critical path begin and end on time. These tasks are critical.

There may be some slack elsewhere in the system, though, which can be used to

advantage. The earliest time at which a node v in the activity graph can be reached

is T (v), the length of the longest sv-path. We could also compute the latest time at

which node v must be reached if the project is to finish on time. This is T (n) minus

the length of the longest directed path from v to t. Let T ′(v) be the length of the

longest directed path from v to t. We can compute this in the same way that T (v)
is computed, but beginning with t instead of s, and working backward. Thus for

each node v, we can find the two values T (v) and T (n) − T ′(v), being the earliest

and latest times at which node v can be reached. This slack time can create some

flexibility in project management.

256 Graphs, Algorithms, and Optimization

Exercises

12.3.1 Find a topological ordering of the activity graphs of Figures 12.1 and 12.2.

Apply the critical path method to find the longest sv-paths and vt-paths,

for each v. Work out the earliest and latest times for each node v.

12

4

10

7

20

15

5

8

3

6

10

3

12

8
12

9
10

10

2

3

45

6

7

8

9

1 10s t

FIGURE 12.2

An activity graph

12.3.2 Program the breadth-first and depth-first topological sort algorithms. Test

them on the graph of Figure 12.1.

12.3.3 Consider the recursive procedure DFS(v) defined in Algorithm 12.4.1,

applied to a directed graph G. Suppose that DFS(v) has just been called,

and that A(v) is the set of all vertices which are ancestors of v (the path

from v to the root contains the ancestors of v). Suppose that G − A(v)
contains a directed path from v to w. Prove that w will be visited before

DFS(v) returns. Use induction on the length of the path from v to w.

12.4 Strong components

A digraph G is connected if every pair of vertices u and v is connected by a path.

This need not be a directed path. The digraphG is strongly connected if every pair of

vertices is connected by a directed path. Thus, if G is strongly connected,G contains

both a uv-path and a vu-path, for every u and v. It follows that every vertex of G
is contained in a directed cycle. A digraph which is strongly connected is said to be

strong. Notice that a strong digraph does not have to be 2-connected. It may contain

one or more cut-vertices.

Digraphs 257

1 2

3

4

5

6

7

8

9

10

11

FIGURE 12.3

Strong components

By default, the complete digraph K1 is strong, since it does not have a pair of

vertices. IfG is acyclic, then the only strong subgraphs ofG are the individual nodes.

But if G contains any directed cycle, then G will contain one or more non-trivial

strongly connected subgraphs. A subgraph H is a strong component of G if it is

a maximal strongly connected subgraph; that is, H is strong, and G has no larger

subgraph containing H which is also strong. Figure 12.3 shows a digraph G with

four strong components. The edges of the strong components are indicated by thicker

lines. Two of the strong components are single vertices, which are shaded black.

Notice that every vertex of G is contained in exactly one strong component,

but that some edges of G need not be contained in any strong component. Exer-

cise 12.4.1. shows that this definition of strong components is well-defined.

If G1, G2, . . . , Gm are the strong components of G, we can construct a new di-

graph by contracting each strong component into a single vertex.

DEFINITION 12.1: Let G1, G2, . . . , Gm be the strong components of G. The

condensation of G is the digraph whose vertices are G1, G2, . . . , Gm, and whose

edges are all ordered pairs (Gi, Gj) such that G has at least one edge directed from

a vertex of Gi to a vertex of Gj .

It is proved in Exercise 12.4.3 that the condensation is an acyclic digraph.

Exercises

12.4.1 Suppose that H is a strong subgraph of G such that H is contained in

two larger strong subgraphs: H ≤ H1 and H ≤ H2, where H1 and H2

are both strong. Show that H1 ∪ H2 is strong. Conclude that the strong

components of G are well-defined.

258 Graphs, Algorithms, and Optimization

12.4.2 Show that an edge (u, v) is contained in a strong component if and only

if (u, v) is contained in a directed cycle.

12.4.3 Find the condensation of the digraph of Figure 12.3. Prove that the con-

densation of a digraph is always acyclic.

12.4.4 The converse of a digraph is obtained by reversing the direction of each

edge. A digraph is self-converse if it is isomorphic to its converse. Find

all self-converse simple digraphs on one, two, three, and four vertices.

12.4.5 Show that the condensation of the converse is the converse of the conden-

sation.

12.4.6 Let G be a self-converse simple digraph, and let G′ be the converse of

G. Let θ be an isomorphism of G with G′, so that θ is a permutation of

V (G) = V (G′). Prove that θ has at most one cycle of odd length. Find

the possible cycle structures of θ when G has at most five vertices. Use

this to find all the self-converse digraphs on five vertices.

In this section, we present an algorithm to find the strong components of a digraph

G. It is based on a depth-first search. It is very similar to the DFS used to find the

blocks of a graph in Chapter 7, and to the DFS used in Algorithm 12.4.1 to find

a topological ordering in an acyclic digraph. When finding a topological ordering,

we saw that in a digraph G, Algorithm 12.3.2 constructs a spanning forest of out-

directed, rooted trees. Each time DFS(u) is called, a DF-tree rooted at u is built. The

edges of G can be classified as either tree-edges or fronds. For example, a spanning

forest for the graph of Figure 12.3 is shown in Figure 12.4 below. The fronds are

shown as dashed edges. Not all the fronds are shown, as can be seen by comparing

Figures 12.3 and 12.4. The numbering of the nodes is the DF-numbering.

Let the components of the spanning forest constructed by a depth-first search in

a graph G be denoted T1, T2, . . . , Tk, where the Ti were constructed in that order.

Figure 12.4 has k = 3. Each Ti is an out-directed, rooted tree. Notice that each

strong component of G is contained within some Ti, and that each Ti may contain

more than one strong component. Fronds can be directed from a tree Ti to a previous

tree Tj , where j < i, but not to a later tree, by nature of the depth-first search.

Given any vertex v, v is contained in some Ti. The set of ancestors of v is A(v),
all vertices (except v) contained in the path in Ti from v to the root of Ti. When

DFS(v) is called, it will in turn call DFS(w) for several vertices w. The branch of

Ti at v containing w is the sub-tree built by the recursive call DFS(w). For example,

in Figure 12.4, there are two branches at vertex 4, constructed by the recursive calls

DFS(5) and DFS(7). If x is any vertex for which v ∈ A(x), we write Bv(x) for

the branch at v containing x. In Figure 12.4, we have B4(7) = B4(8) and B4(5) =
B4(6).

Lemma 12.1. Suppose that a depth-first search in G is visiting vertex v, and that

G−A(v) contains a directed path from v to w. Then vertex w will be visited before

the algorithm returns from visiting v.

Proof. Exercise 12.4.1.

Digraphs 259

1

2

4

5

6

7

8

9

10

11

3

FIGURE 12.4

A depth-first, rooted, spanning forest

This lemma allows us to classify the fronds of G with respect to a depth-first

forest.

Theorem 12.2. Let T1, T2, . . . , Tk be the components of a depth-first spanning forest

ofG, where the Ti were constructed in that order. Let (x, y) be a frond, where x ∈ Ti.
Then there are three possible cases:

1. y ∈ Tj , where j < i.

2. y ∈ Ti, and one of x and y is an ancestor of the other.

3. y ∈ Ti, and x and y are in different branches of a common ancestor

v, where Bv(y) was searched before Bv(x).

Proof. Let (x, y) be a frond, where x ∈ Ti. If y ∈ Tj , where j 6= i, then we must

have j < i, for otherwise Lemma 12.1 tells us that y would be visited before DFS(x)

returns, so that x would be an ancestor of y. Otherwise x, y ∈ Ti. If x is visited

before y, then Lemma 12.1 again tells us that x would be an ancestor of y. This gives

the second case. Otherwise y is visited before x. If G contains a directed yx-path,

then we have y an ancestor of x, again the second case. Otherwise there is no directed

yx-path. The paths in Ti from x and y to the root of Ti first meet in some vertex v.

Then Bv(y) was searched before Bv(x), giving Case 3.

260 Graphs, Algorithms, and Optimization

We call a frond (x, y) type 1, 2, or 3 according to whether it falls in Case 1, 2,

or 3 in Theorem 12.2. Fronds of type 1 cannot be part of any directed cycle since

there are no edges from Tj to Ti when j < i. Therefore these fronds are not in any

strong component. Consequently each strong component is contained within some

Ti. A frond of type 2 creates a directed cycle, so that all edges of Ti on the path

connecting x to y are in the same strong component. The low-point technique used

to find blocks in Chapter 7 will work to find these cycles. A frond (x, y) of type 3

may or may not be part of a directed cycle. Consider the frond (7, 5) in Figure 12.4.

Vertices 7 and 5 are in different branches at vertex 4. Since 4 is an ancestor of 7, we

have a directed path (4, 7, 5). If we were to compute low-points, we would know that

the low-point of 5 is vertex 3, an ancestor of 4. This would imply the existence of a

directed cycle containing 3, 4, 7, and 5, namely, (3, 4, 7, 5, 6). So we find that 7 is in

the same strong component as 5 and that the low-point of 7 is also 3.

We can build the strong components of G on a stack. Define the low-point of a

vertex v to be

LowPt [v] = the smallest DFNum[w],

where either w = v or w ∈ A(v) and G contains a directed path from v to w.

The main component of Algorithm 12.4.1 to compute the strong componets just

initiallizes the variables and calls Proceedure DFS() to build each rooted tree of the

spanning forest and to compute the low-points. We assume that Proceedure DFS()

has access to the variables of the calling program as globals. The algorithm stores the

vertices of each strong component on a stack, stored as an array. As before, we have

the DFNum[·] and LowPt [·] arrays. We also store the Stack [·] as an array of vertices.

OnStack [v] is true if v is on the stack. DFCount is a global counter. Top is a global

variable giving the index of the current top of the stack.

The Procedure DFS() computes the low-points and builds the stack. The algo-

rithm begins by stacking each vertex that it visits. The vertices on the stack will

form the current strong component being constructed. LowPt [v] is initiallized to

DFNum[v]. Each w such that w −→ v is taken in turn. The statements at point (1)

extend the DFS from vertex v to w. Upon returning from the recursive call, LowPt [v]
is updated. Since v −→ w and G contains a directed path from w to LowPt [w], we

update LowPt [v] if LowPt [w] is smaller.

The statements at point (2) are executed if vw is a frond. If DFNum[w] >
DFNum[v], it means that v is an ancestor of w. These fronds are ignored. Otherwise

w was visited before v. If w is the parent of v, vw is a tree edge rather than a frond,

and is ignored. If w is no longer on the stack, it means that w is in a strong compo-

nent previously constructed. The edge vw cannot be part of a strong component in

that case, so it is also ignored. If each of these tests is passed, G contains a directed

path from v to LowPt [w], which is in the same strong component as w. Therefore v
and w are in the same strong component. If this value is smaller than LowPt [v], then

LowPt [v] is updated. Statement (3) is reached after all w adjacent to v have been

considered. At this point the value of LowPt [v] is known. If LowPt [v] = DFNum[v],
it means that there is no directed path from v to any ancestor of v. Every vertex of

Digraphs 261

the strong component containing v has been visited, and so is on the stack. These

vertices are then popped off the stack before returning.

Algorithm 12.4.1: STRONGCOMPONENTS(G,n)

comment: Find the strong components using a depth-first search.

procedure DFS(v)
comment: extend the depth-first search to vertex v

DFCount ← DFCount+ 1
DFNum[v]← DFCount
LowPt [v]← DFCount “initial value”

Top ← Top + 1
Stack [Top]← v “push v on Stack”

OnStack [v]← true

for each w such that v −→ w

do





if DFNum[w] = 0 (1)

then





DFS(w)
if LowPt [w] < LowPt [v]

then LowPt [v]← LowPt [w]

else





if DFNum[w] < DFNum[v] (2)

then if w 6= parent of v
then if OnStack [w]
then if LowPt [w] < LowPt [v]
then LowPt [v]← LowPt [w]

if LowPt [v] = DFNum[v] (3)

then





comment:

{
the points on the stack up to v form a

strong component – pop them off

repeat

w← Stack [Top]
Top ← Top − 1
OnStack [w]← false

until w = v

main

for u← 1 to n

do

{
DFNum[u]← 0
OnStack [v]← false

DFCount ← 0
Top ← 0
for u← 1 to n

do if DFNum[u] = 0
then DFS(u)

262 Graphs, Algorithms, and Optimization

The complexity of Algorithm 12.4.1 is easily seen to beO(n+ε). For each vertex

v, all out-edges vw are considered, giving

∑

v

d+(v) = ε

steps. Some arrays of length n are maintained. Each node is stacked once, and re-

moved once from the stack.

We finish this section with the following theorem.

Theorem 12.3. (Robbins’ Theorem)

Every 2-connected graph has a strong orientation.

Proof. LetG be a 2-connected graph. ThenG contains a cycleC, which has a strong

orientation. Let H be a subgraph of G with the largest possible number of vertices,

such that H has a strong orientation. If u 6∈ H , then since G is 2-connected, we can

find two internally disjoint paths P andQ connecting u toH . Orient P from u to H ,

and Q from H to u. This gives a strong orientation of a larger subgraph than H , a

contradiction.

12.4.1 An application to fabrics

A fabric consists of two sets of strands at right angles to each other, called the warp

and weft, woven together. The pattern in which the strands are woven can be repre-

sented by a rectangular matrix. Let the horizontal strands be h1, h2, . . . , hm and let

the vertical strands be v1, v2, . . . , vn. The matrix shown below contains an X wher-

ever hi passes under vj , and a blank otherwise. The pattern can be repeated as often

as desired.

v1 v2 v3 v4 v5 v6
h1 X X X X
h2 X X X
h3 X X X

Suppose that the strand h1 were lifted. Since it passes under v1, v3, v4, and v6,

these vertical strands would also be lifted. But since v1 passes under h2, this would

in turn lift h2. Similarly lifting h2 would cause v2 to be lifted, which in turn causes

h3 to be lifted. So the fabric hangs together if any strand is lifted.

For some pattern matrices, it is quite possible that the fabric defined does not

hang together. For example, in the simplest case, a strand hi could lie under or over

every vj , allowing it to be lifted off the fabric, or the fabric could fall apart into two

or more pieces. In general, we can form a bipartite directed graph whose vertices are

the set of all strands. The edges are

{(u,w) : strand u lies under strand w}.

Call this the fabric graph. It is an oriented complete bipartite graph.

Digraphs 263

1

2

34

5

6

7 8

9

10

FIGURE 12.5

Find the strong components

1

2

3

4

5

6

7

8

9 10

11

12 13

14

15

FIGURE 12.6

Find the strong components

If the fabric graph is strongly connected, then it hangs together, since there is a

directed path from any strand to another. If the fabric graph is not strongly connected,

then it can be separated into its strong components. Some strong component will lie

completely over another strong component, and be capable of being lifted off.

Exercises

12.4.1 Prove Lemma 12.1.

12.4.2 Program the algorithm for strong components, and test it on the digraphs

of Figures 12.1, 12.2, 12.3, 12.5, and 12.6.

12.4.3 Find all digraphs which can be obtained by orienting a cycle of length 5

or 6.

12.4.4 Determine whether the fabric defined by the pattern matrix in Figure 12.7

hangs together.

264 Graphs, Algorithms, and Optimization

X X
X X
X X X X X X
X X X
X X X X X X X

X X
X X X X X
X X X X X X

FIGURE 12.7

A pattern matrix

12.5 Tournaments

In a round-robin tournament with n teams, each team plays every other team. As-

suming that ties are not allowed, we can represent a win for team u over team v by a

directed edge (u, v). When all games have been played we have a directed complete

graph. We say that a tournament is any oriented complete graph. It is easy to see that

there are exactly two possible tournaments on three vertices, as shown in Figure 12.8.

FIGURE 12.8

The tournaments on three vertices

The second of these tournaments has the property that if u −→ v and v −→
w, then u −→ w. Any tournament which has this property for all vertices u, v, w,

is called a transitive tournament. It is easy to see that there is a unique transitive

tournament Tn for each n ≥ 1. For if Tn is a transitive tournament, there must

be a unique node u that is undefeated. If we delete it, we are left with a transitive

tournament on n− 1 vertices. We use induction to claim that this is the unique Tn−1.

When u is restored, we have the uniqueness of Tn.

IfG is any tournament on n vertices, it will have a number of strong components.

LetG∗ denote its condensation. Then sinceG∗ is acyclic, it is a transitive tournament

onm ≤ n vertices. We can find a topological ordering of V (G∗), and this will define

an ordering of the strong components of G. We can then make a list of the possible

sizes of the strong components of G, ordered according to the topological ordering

of G∗. We illustrate this for n = 4. The possible sizes of the strong components

are (1, 1, 1, 1), (1, 3), (3, 1), and (4), since a simple digraph cannot have a strong

Digraphs 265

component with only two vertices. The first ordering corresponds to the transitive

tournament T4. The orderings (1, 3) and (3, 1) correspond to the first two tourna-

ments of Figure 12.9. It is easy to see that they are unique, since there is only one

strong tournament on three vertices, namely the directed cycle.

FIGURE 12.9

Non-transitive tournaments on 4 vertices

The third tournament is strongly connected. We leave it to the reader to verify

that it is the only strong tournament on four vertices. The following theorem will be

helpful. A digraph is said to be hamiltonian if it contains a directed hamilton cycle.

Theorem 12.4. Every strong tournament on n ≥ 3 vertices is hamiltonian.

Proof. Let G be a strong tournament, and let C = (u1, u2, . . . , uk) be the longest

directed cycle inG. IfG is non-hamiltonian then ℓ(C) < n. Pick any v 6∈ C. Because

G is a tournament, either v −→ u1 or else u1 −→ v. Without loss, suppose that

u1 −→ v. If v −→ u2, then we can produce a longer cycle by inserting v between

u1 and u2. Therefore u2 −→ v. If v −→ u3, then we can produce a longer cycle

by inserting v between u2 and u3. Therefore u3 −→ v, etc. Eventually we have

v −→ ui for all ui. This is impossible, since G is strong.

12.5.1 Modules

Modules for undirected graphs were described in section 7.5. They provide a helpful

decomposition of tournaments.

DEFINITION 12.2: Let T be a tournament and let U ⊆ V (T) be a set of vertices

of T . Then U is a module or interval of T if it has the property: if u ∈ V (G) − U
then either u −→ w, for all w ∈ U , or else w −→ u, for all w ∈ U .

Clearly all singleton sets {u} are modules, as are ∅ and V (T). These are called

trivial modules.

DEFINITION 12.3: A tournament is indecomposable if all its modules are trivial.

Otherwise it is decomposable. A modular partition of T is a partition of V (T) into

modules.

Given a modular partition {U1, U2, . . . , Um} of a decomposable tournament T , a

quotient tournament can be constructed, whose vertices are {U1, U2, . . . , Um}, and

the module Ui −→ Uj if and only if some u ∈ Ui and v ∈ Uj satisfy u −→ v. This

266 Graphs, Algorithms, and Optimization

provides a means of reducing T to a smaller tournament, useful in algorithms. An

algorithm to find the modules of a tournament appears in [26].

Gallai discovered a modular partition of tournaments with special properties. It

is described in [62]. Schmerl and Trotter [155] develop the theory of critically inde-

composable tournaments and other structures.

Exercises

12.5.1 Show that there is a unique strong tournament on four vertices.

12.5.2 Find all the tournaments on five vertices. Show that there are exactly 12

tournaments, of which 6 are strong.

12.5.3 Show that every tournament has a hamilton path.

12.5.4 Show that if an odd number of teams play in a round robin tournament, it

is possible for all teams to tie for first place. Show that if an even number

of teams play, it is not possible for all teams to tie for first place.

12.5.5 Prove the following theorem. Let G be a digraph on n vertices such that

d+(u) + d−(v) ≥ n whenever u 6−→ v. Then G is strong.

12.5.6 Describe aO(n+ε) algorithm to find a strong orientation of a 2-connected

graph.

12.5.7 Show that every connected graph has an acyclic orientation.

12.5.8 Show that a strongly connected tournament is indecomposable.

12.5.9 Show that a tournament that is not strongly connected has a modular par-

tition with just two vertex classes.

12.5.10 Prove the following properties of modules:

if X and Y are modules of T , then so is X ∩ Y .

if X and Y are modules of T , and X ∩ Y 6= ∅, then X ∪ Y is a module

of T .

12.6 2-Satisfiability

In Chapter 11 we saw that 3-Sat is NP-complete. The related problem 2-Sat ∈ P. It

has a number of practical applications.

Problem 12.1: 2-Sat

Instance: a set of boolean variables U and boolean expressionB over U ,

in which each clause contains exactly two variables.

Question: is B satisfiable?

Digraphs 267

Consider the following instance of 2-Sat:

(u1 + u2)(u1 + u2)(u2 + u3)(u1 + u3) (12.1)

We want a truth assignment satisfying this expression. If u1 = false, the first

clause tells us that u2 = true. We could write this implication as u1 → u2. The

second clause tells us that if u1 = false, then u2 = false. We could write this

implication as u1 → u2. As this gives a contradiction, we conclude that u1 = true

is necessary. Continuing in this line of reasoning quickly gives the solution.

This example shows that a clause (x + y) of an instance of 2-Sat, where x, y ∈
U ∪ U , corresponds to two implications x → y and y → x. We can construct a

digraph with edges based on these implications.

Given an instance of 2-Sat with variables U and boolean expression B, con-

struct a digraph G whose vertex set is U ∪ U . The edges of G consist of all ordered

pairs (x, y) and (y, x), where (x + y) is a clause of B. G is called the implication

digraph of B. The implication digraph corresponding to instance (12.1) is shown in

Figure 12.10. A sequence of implications x→ y → z corresponds to a directed path

in G. Thus, directed paths in G are important. If any variable in a directed path is

assigned the value true, then all subsequent variables in the path must also be true.

Similarly, if any variable in a directed path is assigned the value false, then all previ-

ous variables must also be false. If G contains a directed cycle C, then all variables

of C must be true, or all must be false. We are talking about the strong components

of G.

u1

u2

u3

u1

u2

u3

FIGURE 12.10

The implication digraph corresponding to an instance of 2-Sat

The graph G has an antisymmetry – if there is an edge (x, y), then there is also

an edge (y, x), as can be seen from the definition. Therefore the mapping of V (G)
that interchanges every ui and ui reverses the orientation of every edge.

Let G1, G2, . . . , Gm be the strong components of G. The variables in any strong

component are either all true, or all false. If any strong component contains both ui
and ui, for any i, then the expressionB is not satisfiable; for ui and ui cannot be both

true, or both false. So ifB is satisfiable, ui and ui are in different strong components.

The antisymmetry maps each strong componentGj to another strong component

G′
j , the complementary strong component, such that x is in Gj if and only if x is

268 Graphs, Algorithms, and Optimization

in G′
j . If all variables of Gj are true, then all variables of G′

j must be false, and

conversely. This gives the following algorithm for 2-Sat:

Algorithm 12.6.1: 2SAT(B,U)

comment:

{
Given an instance B of 2-Sat with variables U ,

construct a solution, if there is one.

construct the implication digraphG corresponding to B
construct the strong components of G
for each u ∈ U

do if u and u are in the same strong component

then return (NonSatisfiable)
construct the condensation of G, and find a topological ordering of it

let G1, G2, . . . , Gm be the topological ordering of the strong components

for i← m downto 1

do





if the variables of Gi have not been assigned

then

{
assign all variables of Gi to be true

assign all variables of G′
i to be false

In the graph of Figure 12.10 there are two strong components – the shaded ver-

tices and the unshaded vertices. The condensation is a digraph with one edge, di-

rected from left to right. The algorithm will assign true to all variables in the shaded

strong component, and false to all variables in the unshaded one. This is the unique

solution for this instance of 2-Sat.

Theorem 12.5. Given an instance B of 2-Sat with variables U . Algorithm

2SAT(B,U) finds a solution if and only if a solution exists.

Proof. Every clause (x+y) ofB corresponds to two implications x→ y and y → x.

The implication digraph G contains all these implications. Any assignment of truth

values to the variables that satisfies all implications satisfies B. If some strong com-

ponent of G contains both ui and ui, for some variable ui, then there is no solution.

The algorithm will detect this. Otherwise, ui and ui are always in complementary

strong components. The algorithm assigns values to the variables such that comple-

mentary strong components always have opposite truth values. Therefore, for ev-

ery ui and ui, exactly one will be true, and one will be false. Consider a variable

x ∈ U ∪ U . Suppose that x is in a strong component Gj . Its complement x is in

G′
j . Without loss, suppose that G′

j precedes Gj in the topological order. Then x will

be assigned true and x will be assigned false. All clauses (x+ y) containing x are

thereby satisfied. All clauses (x+ z) containing x correspond to implications x→ z
and z → x. It follows that z is either in the same strong component as x, or else in

a strong component following Gj , and z is in a strong component preceding G′
j . In

either case, the algorithm has already assigned z ← true, so that the clause (x+ z)
is also satisfied. We conclude that the truth assignment constructed by the algorithm

satisfies B.

Digraphs 269

This also gives the following theorem.

Theorem 12.6. Given an instance B of 2-Sat with variables U . B is satisfiable if

and only if, for every ui ∈ U , ui and ui are contained in different strong components

of the implication digraph.

If U has n variables, and B has k clauses, the implication graph G will have 2n
vertices and 2k edges. It takes O(n+ k) steps to construct G, and O(n+ k) steps to

find its strong components, and to construct a topological order of them. It then takes

O(n) steps to assign the truth values. Thus, we have a linear algorithm that solves

2-Sat.

Exercises

12.6.1 Construct the implication digraph for the following instance of 2-Sat.

(u1+u2)(u1+u3)(u3+u4)(u1+u4)(u2+u5)(u5+u6)(u2+u6)(u3+u4)

12.6.2 Solve the previous instance of 2-Sat.

12.6.3 Given an instance of 2-Sat with the additional requirement that u1 =
true. Show how to convert this into an instance of 2-Sat and solve it.

Show also how to solve it if u1 is required to be false.

12.6.4 Consider an instance of Sat in which each clause has exactly two vari-

ables, except that one clause has three or more variables. Describe an

algorithm to solve it in polynomial time.

12.7 Notes

An excellent reference for digraphs is BANG-JENSEN and GUTIN [9]. The algo-

rithms for strong components is from AHO, HOPCROFT, and ULLMAN [1]. Strong

components and 2-satisfiability are further examples of the importance and effi-

ciency of the depth-first search. The subject of tournaments is a vast area. A sur-

vey can be found in REID and BEINEKE [146]. A good monograph on tourna-

ments is MOON [127]. STOCKMEYER [164] discovered an infinite family of non-

reconstructible tournaments. THOMASSEN [170] discovered that the structure of a

tournament is largely determined by its directed 4-cycles. LOPEZ [118] showed that

if two digraphs G and G′ with V (G) = V (G′), have the property that the induced

digraphs G[U] and G′[U] are isomorphic for all subsets U ⊆ V (G), where |U | ≤ 6,

then G ∼= G′.

http://taylorandfrancis.com

13

Graph Colorings

13.1 Introduction

A coloring of the vertices of a graph G is an assignment of colors to the vertices. A

coloring is proper if adjacent vertices always have different colors. We shall usually

be interested only in proper colorings. It is clear that the complete graphKn requires

n distinct colors for a proper coloring. Any bipartite graph can be colored in just two

colors. More formally,

DEFINITION 13.1: An m-coloring of G is a mapping from V (G) onto the set

{1, 2, . . . ,m} of m “colors”. The chromatic number of G is χ(G), the minimum

value m such that G has a proper m-coloring. If χ(B) = m, G is then said to be

m-chromatic.

If G is bipartite, we know that χ(G) = 2. Moreover, there is an O(ε) algorithm

to determine whether an arbitrary G is bipartite, and to construct a 2-coloring of it.

When χ(G) ≥ 3, the problem becomes NP-complete. We show this in Section 13.8.

(See Problem 13.1.) A consequence of this is that there is no complete theoretical

characterization of colorability. As with the Hamilton cycle problem, there are many

interesting techniques, but most problems only have partial solutions. We begin with

a simple algorithm for coloring a graph, the sequential algorithm. We will indicate

various colorings of G by the notation χ1, χ2, . . ., etc. While χ(G) represents the

chromatic number ofG, there may be many colorings ofG that use this many colors.

If χ1 is a coloring, then χ1(v) represents the color assigned to vertex v under the

coloring χ1.

Algorithm 13.1.1: SEQUENTIALCOLORING(G,n)

comment: Construct a coloring χ1 of a graph G on n vertices

mark all vertices “uncolored”

order V (G) in some sequence v1, v2, . . . , vn
for i← n downto 1

do χ1(vi)← the first color available for vi

To calculate the first available color for vi, we consider each u → vi. If u is

already colored, we mark its color “in use”. We then take the first color not in use

271

272 Graphs, Algorithms, and Optimization

as χ1(vi), and then reset the color flags before the next iteration. Thus, iteration i
of the for-loop takes O(DEG(vi)) steps. Algorithm 13.1.1 is then easily seen to be

O(ε). The number of colors that it uses usually depends on the sequence in which

the vertices are taken.

If we knew a proper χ(G)-coloring before beginning the algorithm, we could

order the vertices by color: all vertices of color 1 last, then color 2, etc. Algo-

rithm 13.1.1 would then color G in exactly χ(G) colors. Because we do not know

χ(G) beforehand, we investigate various orderings of V (G).
Spanning trees often give useful orderings of the vertices. We choose a vertex

v1 as a root vertex, and build a spanning tree from it. Two immediate possibilities

are a breadth-first or depth-first tree. The ordering of the vertices would then be the

order in which they are numbered in the spanning tree. This immediately gives the

following lemma.

Lemma 13.1. If G is a connected, non-regular graph, then χ(G) ≤ ∆(G). If G is

regular, then χ(G) ≤ ∆(G) + 1.

Proof. Assume first that G is non-regular, and choose a vertex v1 of degree< ∆(G)
as the root of a spanning tree. Apply Algorithm 13.1.1 to construct a coloring χ1.

When each vertex vi 6= v1 comes to be colored, the parent of vi has not yet been

colored. Therefore at most DEG(vi)− 1 adjacent vertices have already been colored.

Hence χ1(vi) ≤ ∆(G). When v1 comes to be colored, all adjacent vertices have

already been colored. Since DEG(v1) < ∆(G), we conclude that χ1(v1) ≤ ∆(G).
Hence χ(G) ≤ ∆(G).

IfG is regular, then the proof proceeds as above, except that χ1(v1) ≤ ∆(G)+1.

The conclusion follows. Notice that ifG is regular, only one vertex needs to use color

∆(G) + 1.

If Algorithm 13.1.1, using a breadth-first or depth-first spanning tree ordering, is

applied to a complete graph Kn, it is easy to see that it will use exactly n colors. If

the algorithm is applied to a cycle Cn, it will always use two colors if n is even, and

three colors, if n is odd. Complete graphs and odd cycles are special cases of Brooks’

theorem.

Theorem 13.2. (Brooks’ theorem) Let G be a connected graph that is not a com-

plete graph, and not an odd cycle. Then χ(G) ≤ ∆(G).

Proof. Suppose first that G is 3-connected. If G is non-regular, we know the result

to be true. Hence we assume that G is a regular graph. Since G is not complete, we

can choose vertices u, v, w such that u → v, w, but v 6→ w. Construct a spanning

tree ordering of G − {v, w}, with u as root, so that v1 = u. Then set vn−1 = v,

vn = w, and apply Algorithm 13.1.1 to construct a coloring χ1 of G. Vertices v and

w will both be assigned color 1. Each vi 6= v1 will have χ1(vi) ≤ ∆(G). When

v1 comes to be colored, the two adjacent vertices v and w will have the same color.

Hence χ1(v1) ≤ ∆(G).

Graph Colorings 273

Otherwise G is not 3-connected. Suppose that G is 2-connected. Choose a pair

of vertices {u, v}, such that G− {u, v} is disconnected. If H is any connected com-

ponent ofG−{u, v}, let Huv be the subgraph ofG+uv induced by V (H)∪{u, v}.
Now G is regular, of degree at least three (or G would be a cycle). Therefore we can

choose u and v so that Huv is a non-regular graph. Therefore χ(Huv) ≤ ∆(Huv).
But ∆(Huv) ≤ ∆(G). Color Huv in at most ∆(G) colors. Notice that u and v have

different colors, because uv ∈ E(Huv). We can do the same for every subgraph

Kuv so constructed from each connected component ofG−{u, v}. Furthermore, we

can require that u and v are colored identically in each Kuv , by permuting colors if

necessary. These subgraph colorings determine a coloring of G with at most ∆(G)
colors.

If G is not 2-connected, but has a cut-vertex u, we use an identical argument,

deleting only u in place of {u, v}.

13.1.1 Intersecting lines in the plane

An interesting example of the use of Algorithm 13.1.1 is given by intersecting lines

in the plane. Suppose that we are given a collection of m straight lines in the plane,

with no three concurrent. Construct a graph G whose vertices are the points of inter-

section of the lines, and whose edges are the line segments connecting the vertices.

An example is shown in Figure 13.1. We can use Algorithm 13.1.1 to show that

χ(G) ≤ 3. Notice first that because at most two lines are concurrent at a point that

we have ∆(G) ≤ 4. Also note thatG can be enclosed by a disc in the plane. Choose a

disc in the plane containingG, and choose a line ℓ in the plane that is outside the disc,

such that ℓ is not parallel to any of the originalm lines. The dotted line in Figure 13.1

represents ℓ. Assign an orientation to the edges of G by directing each edge toward

ℓ. This converts G to an acyclic digraph. Notice that each vertex has at most two

incident edges oriented outward, and at most two oriented inward. Let v1, v2, . . . , vn
be a topological ordering of V (G). Apply Algorithm 13.1.1. The vertices of G have

degree two, three, or four. When each vi comes to be colored, at most two adjacent

vertices have already been colored – those incident on out-edges from vi. Therefore

χ1(vi) ≤ 3, for each vi. It follows that χ(G) ≤ 3.

ℓ

FIGURE 13.1

Intersecting lines in the plane

274 Graphs, Algorithms, and Optimization

Exercises

13.1.1 Write computer programs to apply the sequential algorithm using

breadth-first and depth-first searches, and compare the colorings obtained.

13.1.2 Show that if a breadth-first or depth-first sequential algorithm is applied

to a bipartite graph, that exactly two colors will be used.

13.1.3 Construct a complete bipartite graph Kn,n with bipartition X =
{x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}, and remove the matching

M = {x1y1, . . . , xnyn}, to get G = Kn,n − M . Order the vertices

x1, y1, x2, y2, . . . , xn, yn. Show that Algorithm 13.1.1 with this ordering

will use n colors.

13.1.4 Construct a complete tripartite graph Kn,n,n with tripartition X =
{x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}, Z = {z1, z2, . . . , zn}, and re-

move the triangles T = {x1y1z1, . . . , xnynzn}, to get G = Kn,n,n − T .

Order the vertices x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn. Show that Algo-

rithm 13.1.1 with this ordering will use n colors. How many colors will

be used by the breadth-first sequential algorithm?

13.1.5 Show that in the intersecting lines problem, if three or more lines are

allowed to be concurrent, that χ(G) can be greater than three.

13.1.6 Let G1 and G2 be graphs with m-colorings χ1 and χ2, respectively. We

say that G1 and G2 are color-isomorphic if there is an isomorphism θ
fromG1 toG2 that induces a permutation of the colors. More formally, if

u1, u2 ∈ V (G1) are mapped by θ to v1, v2 ∈ V (G2), respectively, then

χ1(u1) = χ1(u2) if and only if χ2(v1) = χ2(v2). Show how to construct

graphs G′
1 and G′

2 such that G1 and G2 are color-isomorphic if and only

if G′
1 and G′

2 are isomorphic.

13.1.7 Determine whether the graphs of Figure 13.2 are color-isomorphic, where

the colors are indicated by the numbers.

13.1.8 Let the vertices of G be listed in the sequence v1, v2, . . . , vn and apply

Algorithm 13.1.1. Show that χ1(vi) is at most min{n− i+1,DEG(vi)+
1}. Conclude that χ(G) ≤ maxni=1min{n− i+ 1,DEG(vi) + 1}.

13.2 Cliques

Let G be a graph with a proper coloring. The subset of vertices of color i is said to

be the color class with color i. These vertices induce a subgraph with no edges. InG
they induce a complete subgraph.

DEFINITION 13.2: A clique inG is an induced complete subgraph. Thus a clique

is a subset of the vertices that are pairwise adjacent. An independent set is a subset

Graph Colorings 275

3

21

3

1 2

12

4

21

3

1

23

2

1 2

31

4

12

3

FIGURE 13.2

Are these color-isomorphic?

of V (G) which induces a subgraph with no edges. A clique is a maximum clique if

G does not contain any larger clique. Similarly, an independent set is a maximum

independent set if G does not contain any larger independent set. An independent set

is also called a stable set.

The problem of finding a maximum clique or maximum independent set in G is

NP-complete, as shown in Section 13.8.

Write α(G) for the number of vertices in a maximum independent set in G, and

α(G) for the number of vertices in a maximum clique. It is clear that χ(G) ≥ α(G),
since a clique inG ofm vertices requires at least m colors. If we are given a coloring

χ1 ofG and χ2 ofG, let Vmax be a largest color class inG, and let V max be a largest

color class in G. Since V max induces a clique in G, we have α(G) ≥ |V max|. Since

each color class is an independent set, α(G) ≥ |Vmax|. This gives the bounds

|V max| ≤ α(G) ≤ χ(G)

and

|Vmax| ≤ α(G) ≤ χ(G).

Although we do not know χ(G) and χ(G), we can use the sequential Algo-

rithm 13.1.1 to construct colorings χ1 and χ2 of G and G, so as to obtain bounds

on the clique number and independent set number of G and G. We write χ1(G) to

denote the number of colors used by the coloring χ1.

Lemma 13.3. If χ1 and χ2 satisfy |Vmax| = χ2(G), then α(G) = χ(G) = χ2(G).
If χ1 and χ2 satisfy |V max| = χ1(G), then α(G) = χ(G) = χ1(G).

Proof. The inequalities above hold for any proper colorings χ1 and χ2. If |Vmax| =
χ2(G), then the second inequity determines α(G). Therefore χ(G) is at least as

big as this number. But since we have a coloring in χ2(G) colors, this determines

χ(G).

276 Graphs, Algorithms, and Optimization

Thus, by using Algorithm 13.1.1 to color bothG andG, we can obtain bounds on

α(G), α(G), χ(G), and χ(G). Sometimes this will give us exact values for some of

these parameters. When it does not give exact values, it gives colorings χ1 and χ2, as

well as a clique V max and independent set Vmax in G. In general, Algorithm 13.1.1

does not construct colorings that are optimal, or even nearly optimal. There are many

variations of Algorithm 13.1.1. Improvements to Algorithm 13.1.1 will give improve-

ments in the above bounds, by decreasing the number of colors used, and increasing

the size of the maximum color classes found. One modification that is found to work

well in practice is the degree saturation method of Brelaz [25], which orders the

vertices by the “saturation” degree.

Consider a graph G for which a coloring χ1 is being constructed. Initially all

vertices are marked uncolored. On each iteration of the algorithm, another vertex is

colored. For each vertex, let c(v) denote the number of distinct colors adjacent to v.

c(v) is called the saturation degree of v. Initially c(v) = 0. At any stage of the algo-

rithm the vertices are partially ordered. A vertex u such that the pair (c(u),DEG(u))
is largest is chosen as the next vertex to color; that is, vertices are compared first by

c(u), then by DEG(u).

Algorithm 13.2.1: DEGREESATURATION(G,n)

comment: Construct a coloring χ1 of a graph G on n vertices

mark all vertices “uncolored”

initialize c(v)← 0, for all v
for i← 1 to n

do





select u as a vertex with largest (c(u),DEG(u))
χ1(u)← the first color available for u
for each v−→u

do if v is uncolored, adjust c(v)

Algorithm 13.2.1 requires a priority queue in order to efficiently select the next

vertex to color. In practice, it is found that it uses significantly fewer colors than

Algorithm 13.1.1 with a fixed ordering of the vertices. However, algorithms based

on the sequential algorithm are limited in their efficacy. JOHNSON [95] discusses the

limitations of many coloring algorithms based on the sequential algorithm.

The first vertex, u1, that Algorithm 13.2.1 colors will be one of maximum degree.

The second vertex, u2, will be a vertex adjacent to u1 of maximum possible degree.

The third vertex, u3, will be adjacent to u1 and u2, if there is such a vertex, and so on.

Thus, Algorithm 13.2.1 begins by constructing a clique of vertices of large degree.

The algorithm could save this information, and use it as a lower bound on α(G).
A description and comparison of various coloring algorithms can be

found in the book by Lewis [115], in particular DSatur (Degree Saturation),

TabuCol, PartialCol, AntCol , Hill Climbing , the Hybrid Evolutionary algorithm,

and also a backtracking DSatur algorithm. This book also contains an extensive list

of graph coloring references.

Graph Colorings 277

A recursive search algorithm MAXCLIQUE() to find a maximum clique can be

based on a similar strategy. Algorithm 13.2.2 that follows constructs cliques C′. The

maximum clique found is stored in a variableC.C andC′ are stored as global arrays.

It also uses an array S of vertices eligible to be added to C′. The set of all neighbors

of v is denoted by N(v).

Algorithm 13.2.2: MAXCLIQUE(G,n)

comment: Construct a maximum clique C in G

procedure EXTENDCLIQUE(S, v)
comment: v has just been added to C′ – adjust S and extend the clique

S′ ← S ∩N(v)
if |S′| = 0

then

{
if |C′| > |C| then C ← C′

return

while |S′| > 0 and |C′|+ |S′| > |C|

do





select u ∈ S′

C′ ← C′ ∪ u
S′ ← S′ − u
EXTENDCLIQUE(S′, u)
C′ ← C′ − u

main

choose an ordering v1, v2, . . . , vn of the vertices

C ← ∅ “largest clique found so far”

C′ ← ∅ “clique currently being constructed”

S ← V (G) “vertices eligible for addition to C′”

i← 1
while |S| > |C|

do





C′ ← {vi}
S ← S − vi
EXTENDCLIQUE(S, vi)
i← i+ 1

comment: C is now a maximum clique of size α

α← |C|

This algorithm builds a clique C′ and tries to extend it from a set S′ of eligible

vertices. When |C′| + |S′| is smaller than the largest clique found so far, it back-

tracks. The performance will depend on the ordering of the vertices used. As with

Algorithm 13.2.1, the ordering need not be chosen in advance, but can be constructed

as the algorithm progresses. For example, vi might be selected as a vertex of largest

degree in the subgraph induced by the vertices not yet considered. If a maximum

clique is found early in the algorithm, the remaining calls to EXTENDCLIQUE() will

finish more quickly. We can estimate the complexity by noticing that the loop in

278 Graphs, Algorithms, and Optimization

MAXCLIQUE() runs at most n times. After each choice of vi, the set S will contain

at most ∆(G) vertices. There are 2∆(G) subsets of a set of size ∆(G). The algo-

rithm might construct each subset at most once. Therefore the complexity is at most

O(n · 2∆(G)), an exponential value.

13.3 Mycielski’s construction

A graph G which contains a 4-clique necessarily has χ(G) ≥ 4. However, it is

possible for a graph with no 4-clique to have χ(G) ≥ 4. Mycielski found a way to

construct triangle-free graphs with arbitrarily large chromatic number.

We start with a triangle-free graph G with χ(G) ≥ 3. Any odd cycle with five

or more vertices will do (e.g., G = C5). We now extend G to a graph G′ as follows.

For each v ∈ V (G), we add a vertex v′ to G′ adjacent to the same vertices of G that

v is adjacent to. We now add one more vertex v0 adjacent to each v′. Thus, if G has

n vertices, G′ will have 2n+ 1 vertices. Refer to Figure 13.3.

v1

v′1

v2

v′2

v3
v′3

v4

v′4
v5

v′5
v0

FIGURE 13.3

Mycielski’s construction

Lemma 13.4. χ(G′) = χ(G) + 1. Furthermore, G′ has no triangles if G has none.

Proof. Consider a coloring χ1 of G′. Since it induces a coloring of G, we con-

clude that χ(G′) ≥ χ(G). Let m = χ(G). Some vertex of G with color num-

ber m is adjacent to m − 1 other colors in G; for otherwise each vertex of

color m could be recolored with a smaller color number. It follows that the ver-

tices v′ must be colored with at least χ(G) colors. In fact, we could assign each

χ1(v
′) = χ1(v). The vertex v0 is adjacent to χ(G) colors, so that χ1(v0) =

m + 1. It follows that χ(G′) = χ(G) + 1. It is easy to see that G′ has no tri-

angles, because G has none.

Graph Colorings 279

By iterating Mycielski’s construction, we can construct triangle-free graphs with

large chromatic numbers. In fact, if we begin the construction with G = K2, the

result is C5. Or we could start Mycielski’s construction with a graph which contains

triangles, but is K4-free, and construct a sequence of K4-free graphs with increasing

chromatic numbers, and so forth.

13.4 Critical graphs

Let G be a graph with χ(G) = m. If we remove an edge uv from G, there are two

possibilities, either χ(G − uv) = m or χ(G − uv) = m − 1. In the latter case, we

say that edge uv is critical.

DEFINITION 13.3: A graphG is critical if χ(G− uv) = χ(G)− 1 for all edges

uv ∈ E(G). If χ(G) = m, we say that G is m-critical.

It is easy to see that every graph contains a critical subgraph. If χ(G − uv) =
χ(G) for some edge uv, we can remove uv. Continue deleting edges like this until

every edge is critical. The result is a critical subgaph. Critical graphs have some

special properties.

Lemma 13.5. If G is m-critical, then δ(G) ≥ m− 1.

Proof. If DEG(u) < m−1, choose an edge uv, and colorG−uv withm−1 colors.

Since DEG(u) < m − 1, there are at most m − 2 adjacent colors to u in G. So

there is always a color in {1, 2, . . . ,m− 1}with which u can be colored to obtain an

(m− 1)-coloring of G, a contradiction.

If G is anm-critical graph, thenG has at least m vertices, and each has degree at

least m− 1. Therefore every graph with χ(G) = m has at least m vertices of degree

≥ m− 1.

Lemma 13.6. Every critical graph with at least three vertices is 2-connected.

Proof. Suppose that G is an m-critical graph with a cut-vertex v. Let H be a con-

nected component of G − v, and let Hv be the subgraph induced by V (H) ∪ {v}.
ColorHv with≤ m−1 colors. Do the same for every such subgraphHv. Ensure that

v has the same color in each subgraph, by permuting colors if necessary. The result

is a coloring of G in ≤ m− 1 colors, a contradiction.

The ideas of the Lemma 13.6 can be extended to separating sets in general.

Lemma 13.7. Let S be a separating set in an m-critical graph G. Then S does not

induce a clique.

280 Graphs, Algorithms, and Optimization

Proof. If S is a separating set, let H be a component of G − S, and consider the

subgraphHS induced by V (H) ∪ S. It can be colored in m− 1 colors. The vertices

of S are colored with |S| distinct colors, which can be permuted in any desired way.

Do the same for every component of G − S. The result is a coloring of G in m − 1
colors.

It follows from this lemma that if {u, v} is a separating set in anm-critical graph,

that uv 6∈ E(G). Suppose that {u, v} is a separating set. Let H be a component of

G − {u, v}, and let K be the remaining components. Construct Huv induced by

V (H) ∪ {u, v}, and Kuv induced by V (K) ∪ {u, v}. Huv and Kuv can both be

colored in m − 1 colors. If Huv and Kuv both have (m − 1)-colorings in which u
and v have different colors, then we can use these colorings to construct an (m− 1)-
coloring ofG. Similarly, ifHuv andKuv both have (m−1)-colorings in which u and

v have the same color, we can again construct an (m−1)-coloring ofG. We conclude

that in one of them, say Huv , u and v have the same color in every (m− 1)-coloring;

and that in Kuv, u and v have different colors in every (m− 1)-coloring.

Now consider the graph H ′ = Huv + uv. It cannot be colored in m − 1 colors,

howeverH ′−uv can be. Let xy be any other edge ofH ′. ThenG−xy can be colored

in m− 1 colors. NowKuv is a subgraph of G−xy. Therefore u and v have different

colors in this coloring. It follows thatH ′−xy can be colored inm−1 colors. Hence,

H ′ = Huv + uv is an m-critical graph.

Now consider the graph K ′ = (Kuv + uv) · uv. It cannot be colored in m − 1
colors, as this would determine an (m−1)-coloring ofKuv in which u and v have the

same color. Let xy be any edge of K ′. It corresponds to an edge x′y′ of G. G− x′y′
can be colored in (m− 1) colors. Since Huv is a subgraph ofG, it follows that u and

v have the same color. This then determines a coloring ofK ′−xy in (m− 1) colors.

Hence K ′ = (Kuv + uv) · uv is also an m-critical graph.

Exercises

13.4.1 Program Algorithm 13.2.1, and compare its performance with a breadth-

first or depth-first sequential algorithm.

13.4.2 Program the MAXCLIQUE() algorithm.

13.4.3 Let G be an m-critical graph, and let v ∈ V (G). Show that G has an

m-coloring in which v is the only vertex of color number m.

13.4.4 Let G be an m-critical graph. Apply Mycielski’s construction to obtain a

graphG ′. Either prove thatG′ is (m+1)-critical, or find a counterexam-

ple.

Graph Colorings 281

13.5 Chromatic polynomials

Suppose that we wish to properly color the complete graph Kn in at most λ colors,

where λ ≥ n. Choose any ordering of V (Kn). The first vertex can be colored in λ
choices. The next vertex in λ − 1 choices, and so on. Thus, the number of ways to

color Kn is λ(λ− 1)(λ− 2) . . . (λ − n+ 1). This is a polynomial of degree n in λ.

DEFINITION 13.4: The chromatic polynomial of a graphG is π(G, λ), the num-

ber of ways to color G in ≤ λ colors.

In order to show that π(G, λ) is in fact a polynomial in λ, we use a method that is

familiar from counting spanning trees. We first find π(T, λ) for any tree T , and then

give a recurrence for any graph G.

Lemma 13.8. Let T be a tree on n vertices. Then π(T, λ) = λ(λ − 1)n−1.

Proof. By induction on n. It is certainly true if n = 1 or n = 2. Choose a leaf v of T ,

and let T ′ = T −v. T ′ is a tree on n−1 vertices. Therefore π(T ′, λ) = λ(λ−1)n−2.

In any coloring of T ′, the vertex adjacent to v in T has some color. There are λ − 1
colors available for v. Every coloring of T arises in this way. Therefore π(T, λ) =
λ(λ − 1)n−1.

Suppose now that G is any graph. Let uv ∈ E(G). In practice we will want to

choose uv so that it is an edge on a cycle.

Theorem 13.9. π(G, λ) = π(G− uv, λ)− π(G · uv, λ).

Proof. In each coloring ofG−uv in≤ λ colors, either u and v have different colors,

or they have the same color. The number of colorings of G− uv is the sum of these

two. If u and v have different colors, then we have a coloring of G in ≤ λ colors.

Conversely, every coloring of G in ≤ λ colors gives a coloring of G− uv in which u
and v have different colors. If u and v have the same color in G− uv, then this gives

a coloring of G · uv. Any coloring of G · uv in ≤ λ colors determines a coloring of

G − uv in which u and v have the same color. We conclude that π(G − uv, λ) =
π(G, λ) + π(G · uv, λ).

One consequence of this theorem is that π(G, λ) is in fact a polynomial of degree

n in λ. Now if n > 0, then λ | π(G, λ), since G cannot be colored in λ = 0 colors.

Similarly, if ε(G) 6= 0, we conclude that λ(λ − 1) | π(G, λ), since G cannot be

colored in λ = 1 color. If G is not bipartite, then it cannot be colored in λ = 2
colors. In this case λ(λ− 1)(λ− 2) | π(G, λ). In general:

Lemma 13.10. If χ(G) = m, then λ(λ − 1)(λ− 2) . . . (λ−m+ 1) | π(G, λ).

Proof. G cannot be colored in fewer than m colors. Therefore π(G, λ) = 0, for

λ = 1, 2, . . . ,m− 1.

282 Graphs, Algorithms, and Optimization

Notice that if G contains an m-clique S, then χ(G) ≥ m, so that λ(λ − 1)(λ −
2) . . . (λ−m+1) | π(G, λ). There are λ(λ−1)(λ−2) . . . (λ−m+1) ways to color

S in ≤ λ colors. The number of ways to complete a coloring of G, given a coloring

of S, is therefore π(G, λ)/λ(λ − 1)(λ− 2) . . . (λ−m+ 1).
Suppose thatG has a cut-vertex v. LetH be a connected component ofG−v, and

let Hv be the subgraph induced by V (H)∪{v}. Let Kv be the subgraphG−V (H).
Every coloring of G induces colorings of Hv and Kv, such that v has the same

color in both. Every coloring of Hv and Kv occurs in this way. Given any coloring

of Hv, there are π(Kv, λ)/λ ways to complete the coloring of Kv. It follows that

π(G, λ) = π(Hv, λ)π(Kv, λ)/λ.

More generally, suppose that S is a separating set of G which induces an m-

clique. Let H be a component of G − S, and let HS be the subgraph induced by

V (H) ∪ S. Let KS be the subgraphG− V (H). We have:

Lemma 13.11. Let S be a separating set which induces an m-clique in G. Let HS

and KS be defined as above. Then π(G, λ) = π(HS , λ)π(KS , λ)/λ(λ − 1)(λ −
2) . . . (λ−m+ 1).

Proof. Every coloring of G induces a coloring of HS and KS . There are π(HS , λ)
ways to color HS . There are π(KS , λ)/λ(λ − 1)(λ − 2) . . . (λ − m + 1) ways to

complete a coloring of S to a coloring of KS . This gives all colorings of G.

There are no efficient means known of computing chromatic polynomials. This

is due to the fact that most coloring problems are NP-complete. If π(G, λ) could be

efficiently computed, we would only need to evaluate it for λ = 3 to determine if G
can be 3-colored.

Exercises

13.5.1 Find π(C2n, λ) and π(C2n+1, λ).

13.5.2 Find π(G, λ), where G is the graph of the cube and the graph of the

octahedron.

13.5.3 Let G′ be constructed from G by adding a new vertex joined to every

vertex of G. Determine π(G′, λ) in terms of π(G, λ).

13.5.4 The wheel Wn is obtained from the cycle Cn by adding a new vertex

joined to every vertex of Cn. Find π(Wn, λ).

13.5.5 A unicyclic graph G is a graph formed from a tree T by adding a single

edge connecting two vertices of T . G has exactly one cycle. Let G be a

unicyclic graph on n vertices, such that the unique cycle of G has length

m. Find π(G, λ).

13.5.6 Let G′ be constructed fromG by adding two new adjacent vertices joined

to every vertex of G. Determine π(G′, λ) in terms of π(G, λ).

13.5.7 LetG′ be constructed fromG by adding k new mutually adjacent vertices

joined to every vertex of G. Determine π(G′, λ) in terms of π(G, λ).

Graph Colorings 283

13.5.8 Let G′ be constructed from G by adding two new non-adjacent vertices

joined to every vertex of G. Determine π(G′, λ) in terms of π(G, λ).

13.5.9 Find π(Km,m, λ).

13.5.10 Let G be a graph, and suppose that uv 6∈ E(G). Show that π(G, λ) =
π(G + uv, λ) + π((G + uv) · uv, λ). When G has many edges, this is a

faster way to compute π(G, λ) than the method of Theorem 13.9.

13.5.11 Calculate π(Kn−uv, λ), π(Kn−uv−vw, λ), and π(Kn−uv−wx, λ),
where u, v, w, x are distinct vertices of Kn.

13.5.12 IfG is a connected graph on n vertices, show that π(Kn, λ) ≤ π(G, λ) ≤
λ(λ − 1)n−1, for all λ ≥ 0.

13.5.13 Prove that the coefficient of λn in π(G, λ) is 1, and that the coefficients

alternate in sign.

13.6 Edge colorings

A coloring of the edges of a graph G is an assignment of colors to the edges.

More formally, an m-edge-coloring is a mapping from E(G) onto a set of m col-

ors {1, 2, . . . ,m}. The coloring is proper if adjacent edges always have different

colors. The edge-chromatic number or chromatic index of G is χ′(G), the minimum

value ofm such thatG has a properm-edge coloring. Notice that in any proper edge-

coloring of G, the edges of each color define a matching in G. Thus, χ′(G) can be

viewed as the minimum number of matchings into which E(G) can be partitioned.

When the edges of a multi-graph are colored, all edges with the same endpoints

must have different colors.

Consider a vertex v of maximum degree in G. There must be DEG(v) colors

incident on v. Therefore χ′(G) ≥ ∆(G). There is a remarkable theorem by Vizing

(Theorem 13.14) that states χ′(G) ≤ ∆(G) + 1 for simple graphs.

Before we come to the proof of Vizing’s theorem, first consider the case when G
is bipartite. A matchingMi saturating all vertices of degree ∆(G) can be found with

Algorithm 9.3.1 (the Hungarian algorithm). Alternating paths can be used to ensure

that each vertex of degree ∆(G) is saturated. Thus we know that the bipartite graph

G has a maximum matching saturating every vertex of degree ∆(G). This gives an

algorithm for edge-coloring a bipartite graph.

284 Graphs, Algorithms, and Optimization

Algorithm 13.6.1: BIPARTITECOLORING(G)

comment: Edge-color a graph G on n vertices

find the degrees of all vertices

i← 1
repeat



find a maximum matching Mi in G
saturating every vertex of degree ∆(G)

assign color i to the edges of Mi

G← G−Mi

i← i + 1
until ∆(G) = 0

It follows from this algorithm, that when G is bipartite, χ′(G) = ∆(G).
Suppose that G is a k-regular graph, edge-colored in k colors. Then every color

occurs at every vertex of G. If i and j are any two colors, then the (i, j)-subgraph is

the subgraph of G that contains only the edges of color i and j. Because the (i, j)-
subgraph is the union of two matchings, it is the disjoint union of alternating cycles.

Let U ⊆ V (G). Let ni and nj denote the number of edges of colors i and j, re-

spectively, in the edge-cut [U, V − U]. Each cycle of the (i, j)-subgraph intersects

[U, V − U] in an even number of edges. Thus we conclude that ni + nj is even.

Therefore ni ≡ nj (mod 2). This gives the following parity lemma:

Lemma 13.12. (Parity lemma) Let G be a k-regular graph, edge-colored in colors

{1, 2, . . . , k}. LetU ⊆ V (G). Let ni denote the number of edges of color i in [U, V −
U]. Then n1 ≡ n2 ≡ . . . ≡ nk (mod 2).

Vizing’s theorem (Theorem 13.14) is based on an algorithm to edge-color a graph

in ≤ ∆(G) + 1 colors. We present two proofs of Vizing’s theorem, the first is based

on that of FOURNIER [52]. The second proof follows from an algorithm to color the

edges. Fournier’s proof begins with an arbitrary coloring ofG in ∆(G)+1 colors, and

then gradually improves it until it becomes a proper coloring. Given a coloring, let

c(v) denote the number of colors occurring at vertex v ∈ V (G). If c(v) = DEG(v),
for all v, then the coloring is proper. Otherwise c(v) < DEG(v), for some v. The

sum Σvc(v) is an indication of how close an arbitrary coloring is to being a proper

coloring.

Suppose first that G is arbitrarily colored in two colors.

Lemma 13.13. IfG is a graph that is not an odd cycle, thenG has a 2-edge-coloring

in which c(v) ≥ 2, for all vertices v, with DEG(v) ≥ 2.

Proof. If G is Eulerian, choose an Euler tour, and color the edges alternately blue

and red along the tour. If G is not Eulerian, add a new vertex v0 adjacent to every

odd degree vertex ofG. The result is an Eulerian graph. Color it in the same way.

Graph Colorings 285

We can use Lemma 13.13 on subgraphs of G. Given a proper coloring of G, the

edges of colors i and j each define a matching in G. Consider the (i, j)-subgraph.

Each connected component is a path or an even cycle whose colors alternate. If, how-

ever, we begin with an arbitrary coloring of G, then we want to maximize Σvc(v). If

some component of the (i, j)-subgraph is not an odd cycle then by Lemma 13.13, it

can be 2-colored so that c(v) ≥ 2, for all vertices v, with DEG(v) ≥ 2.

Theorem 13.14. (Vizing’s theorem) If G is simple, then χ′(G) ≤ ∆(G) + 1.

Proof. We begin by arbitrarily coloring the edges in ∆(G) + 1 colors. We show that

when Σvc(v) is as large as possible, the coloring must be proper. Suppose that the

coloring is not proper, and choose a vertex u with c(u) < DEG(u). Some color i0
is missing at u, and some color i1 occurs at least twice. Let edges uv0 and uv1 have

color i1. If color i0 is missing at either v0 or v1, we can recolor one of these edges

with color i0, thereby increasing Σvc(v). Hence, we can assume that color i0 occurs

at both v0 and v1. Some color is missing at v1; call it i2. If i2 is also missing at u, we

can recolor uv1 with color i2, thereby increasing Σvc(v). Hence, let uv2 be an edge

of color i2. Some color is missing at v2; call it i3. If i3 is also missing at u, we can

recolor uv1 with color i2, and uv2 with color i3, thereby increasingΣvc(v). It follows

that i3 6= i0, so that i0 occurs at v2. We continue in this way, constructing a sequence

of edges uv1, uv2, . . . , uvk of distinct colors i1, i2, . . . , ik, such that color i0 occurs

at each of v1, . . . , vk, and color ij+1 does not occur at vj . Refer to Figure 13.4.

We continue in this fashion generating a sequence i0, i1, . . . , of distinct colors until

v0

v1
(no i2)

v2
(no i3)

v3
(no i4)v4

(no i5)

vk−2

(no ik−1)

vk−1

(no ik)

vk
(no iℓ)

u

(no i0) i1

i1
i2

i3
i4

ik−2

ik−1

ik

FIGURE 13.4

Vizing’s theorem

we find a color ik+1 that is not missing at v. Thus ik+1 has previously occurred

in the sequence. Suppose that ik+1 = iℓ, where 1 ≤ ℓ ≤ k. Recolor the edges

uv1, uv2, . . . , uvℓ−1 with the colors i2, i3, . . . , iℓ, respectively. This does not change

Σvc(v), because each c(vj) is unchanged. Notice that uvℓ−1 and uvℓ are now both

colored iℓ. Consider the (i0, iℓ)-subgraph containing u. It contains vℓ−1 and vℓ. If it

is not an odd cycle, it can be recolored so that colors i0 and iℓ both occur at each of

the vertices that have degree exceeding one. This would increase c(u) and therefore

286 Graphs, Algorithms, and Optimization

Σvc(v). Hence this subgraph can only be an odd cycle, so that G contains an (i0, iℓ)-
path from vℓ−1 to vℓ.

Now recolor the edges uvℓ, uvℓ+1, . . . , uvk with the colors iℓ+1, . . . , ik, ik+1 =
iℓ, respectively. Once again Σvc(v) is unchanged. The (i0, iℓ)-subgraph containing

u now contains vℓ−1 and vk, and must be an odd cycle. HenceG contains an (i0, iℓ)-
path from vℓ−1 to vk. This contradicts the previous path found. It follows that the

coloring can only be proper, and that χ′ ≤ ∆(G) + 1.

This proof of Vizing’s theorem makes use of a color rotation at vertex u, namely,

given a sequence of incident edges uv1, uv2, . . . , uvk of colors i1, i2, . . . , ik, respec-

tively, such that vj is missing color ij+1, for j = 1, 2, . . . , k − 1, and vk is missing

color iℓ where ℓ ∈ {1, 2, . . . , k−1}. We then recolor uv1, uv2, . . . , uvℓ−1 with colors

i2, i3, . . . , iℓ, respectively. This idea will be used in the coloring algorithm.

The second proof of Vizing’s theorem is based on an edge-coloring algorithm.

Given a graph G, let the vertices be numbered 1, 2, . . . , n. Initially all edges are

assigned color 0, indicating that they are uncolored. The algorithm takes the vertices

in the order u = 1, 2, . . . , n, and attempts to color the edges incident on vertex u.

When vertex 1 is selected, it is sufficient to take the first available color for each

edge, as no other edges have been colored yet. When vertex u > 1 is selected, it may

be adjacent to some vertices v < u (whose edges have already been colored), and to

some vertices w > u. For the edges uw where w > u, the algorithm will take the

first available color. This may create a situation where some w > u has two or more

incident edges of the same color. This situation will be resolved during the iteration

when u = w.

At the beginning of iteration u, the colors of the incident edges are counted. The

color of edge uv is denoted Clr[uv]. An array Color[k], which is initially 0, will store

the number of occurrences of color k at vertex u:

for each v −→ u do Color[Clr [uv]]← Color[Clr [uv]] + 1

If every color k has Color[k] ≤ 1, then every color occurs at most once at u.

The coloring at u is then completed by assigning the first available color to each

uncolored edge. An uncolored edge uv necessarily has v > u. The first available

color is found with a simple loop.

clr ← 1
while Color[k] > 0 do clr ← clr + 1

If there are no duplicate colors at u, the number of steps required to color the

edges incident on u with these loops is O(DEG(u)).
Otherwise there are two or more edges incident on u with the same color k. This

is detected by Color[k] > 1. There are ∆ + 1 colors available, but the number of

colors used is < DEG(u) < ∆. Therefore there are at least two colors missing at

vertex u. Let j and i be colors missing at u. They have Color[j] = 0 and Color[i] =
0. The color numbers j, i, and k are found, and the algorithm does a breadth-first

search, called ColorBFS , to resolve the repeated color.

Graph Colorings 287

Algorithm 13.6.2: EDGECOLOR(G,n)

comment:





Initially the edges all have color 0.

Construct an edge-coloring in

at most ∆(G) + 1 colors.

for u← 1 to n

do





count the color frequencies at vertex u
k ← first repeated color at u
while k > 0

do





j ← first color missing at u
if COLORBFS(u, k, j)

then go to L1 “success”

i← second color missing at u
if COLORBFS(u, k, i)

then go to L1 “success”

comment: otherwise a color rotation is needed

let uv be an edge of color k
ℓ← first color missing at v
clr[uv]← ℓ
L1 :
k ← first repeated color at u

comment: there are now no repeated colors at vertex u

for each v −→ u
do if clr[uv] = 0
then color uv with the first available color

The procedure ColorBFS(u, k, j) builds alternating paths from vertex u, of col-

ors k and j, in a breadth-first manner. It initially places u and all vertices incident

on an edge of color k on an array, called the ScanQ . There are at least two incident

edges of color k. The paths are then alternately extended by edges of color j and k.

If at any point, the ColorBFS encounters a vertex w > u, it recolors the path from

w to u, by interchanging colors j and k. As color j was initially not used at u, and

color k appeared twice, this improves the coloring at u. ColorBFS then returns the

value true. This will usually be the outcome near the beginning of the algorithm.

288 Graphs, Algorithms, and Optimization

Algorithm 13.6.3: COLORBFS(u, k, j)

comment: color k is repeated at vertex u, color j is missing at u

comment: initialize the ScanQ with u and all adjacent vertices of color k

QSize ← 1
ScanQ [1]← u
for each v −→ u do if clr[uv] = k

then





comment: add v to ScanQ

QSize ← QSize + 1
ScanQ [QSize]← v

m← 1
while m ≤ QSize

do





v ← ScanQ [m]
if v was added on color k

then





if (color j is missing at v) or (v > u)

then

{
re-color the path from v to u
return true

comment: otherwise add v to ScanQ

QSize ← QSize + 1
ScanQ [QSize]← v

else





comment: v was added on color j

if (color k is missing at v) or (v > u)

then

{
re-color the path from v to u
return true

comment: otherwise add v to ScanQ

QSize ← QSize + 1
ScanQ [QSize]← v

m← m+ 1

Otherwise ColorBFS encounters only vertices v < u. This will usually be the

case near the end of the algorithm. When vertex v < u is discovered by ColorBFS ,

it is either by following an edge of color j or of color k. Now v has at most one edge

of each color. If v has an edge of color j, but no edge of color k, then the path from v
to u is recolored, by interchanging colors. This improves the coloring at u, and does

not affect the coloring at the other vertices on the alternating path. Similarly if v has

an edge of color k, but no edge of color j, the path is recolored. The only time it does

not succeed in recoloring a path to vertex u, is if the edges of colors k and j induce

one or more odd cycles, in which each odd cycle has two edges of color k incident

on vertex u. ColorBFS then returns the value false.

Graph Colorings 289

If the call to ColorBFS(u, k, j) does not succeed in Algorithm EdgeColor, the al-

gorithm now finds the other missing color i, and tries again, using ColorBFS (u, k, i).
The reason for using both colors j and i is that they are easy to find, and if one does

not work, the other frequently will. If this does not succeed, it is time for a color

rotation. A vertex v is chosen, such that clr[uv] = k. A missing color ℓ at vertex

v is found, and the edge uv is recolored with color ℓ. Vertex u now has two inci-

dent edges of color ℓ, and no incident edges of colors j or i. The loop continues.

ColorBFS(u, ℓ, j) and ColorBFS(u, ℓ, i) are used to search for alternating paths. If

this does not succeed, a vertex w is chosen such that clr[uw] = ℓ, and the edge is

re-colored as before. The vertex w is chosen so that it is not the same as the vertex

v chosen on the previous iteration. In this way a sequence of edges at u is followed

which must eventually result in a successful re-coloring. For when a missing color

is repeated, eg., color k, then the odd cycle of colors k and j will be a different odd

cycle than previously found, which is impossible. It follows that the algorithm works,

so that it will always succeed in edge-coloring a graph using at most ∆ + 1 colors.

Vizing’s theorem follows.

It is difficult to estimate the complexity of this algorithm accurately. It is reason-

able to expect that iteration u will take approximately O(DEG(u)) steps. For even

when it is necessary to call ColorBFS , the search visits very few vertices. Thus, the

algorithm is likely to be of order O(ε) for most graphs.

Graphs G for which χ′(G) = ∆(G) are said to be Class I graphs. If χ′(G) =
∆(G)+1, thenG is a Class II graph. See Wallis [186] for a discussion of Class I and

Class II graphs. Although there is an efficient algorithm to color a graph in at most

∆(G) + 1 colors, it is an NP-complete problem to determine whether an arbitrary

graph is of Class I or II. A proof of this remarkable result is presented at the end of

the chapter.

If G is a multigraph with no loops, then the general form of Vizing’s theorem

states that χ′(G) ≤ ∆(G) + µ(G), where µ(G) is the maximum edge-multiplicity.

It can often happen that µ(G) is not known. Shannon’s theorem gives an alternative

bound χ′(G) ≤ ⌊3∆(G)/2⌋. The proof presented is due to ORE [133]. It requires

two lemmas. Given a proper edge-coloring of G, we write C(u) for the set of colors

present at u.

Lemma 13.15. (Uncolored edge lemma) Let G be a multigraph without loops. Let

uv be any edge ofG, and letG−uv be edge-colored with k colors, and suppose that

χ′(G) = k + 1. Then:

|C(u) ∪ C(v)| = k

|C(u) ∩ C(v)| = DEG(u) + DEG(v)− k + 2

|C(u)− C(v)| = k − DEG(v) + 1

|C(v)− C(u)| = k − DEG(u) + 1

Proof. Every color missing at u is present at v, or there would be a color available

290 Graphs, Algorithms, and Optimization

for uv, thereby making χ′(G) = k. Therefore all colors are present at one of u or v.

This gives the first equation. The colors present at u can be counted as

|C(u)− C(v)|+ |C(u) ∩ C(v)| = DEG(u)− 1.

Similarly, those present at v are given by

|C(v) − C(u)|+ |C(u) ∩ C(v)| = DEG(v)− 1.

Now

|C(u) ∪ C(v)| = |C(u)− C(v)| + |C(v)− C(u)|+ |C(u) ∩ C(v)|,

so that we can solve these equations for |C(u) ∩ C(v)|, giving the second equation.

The third and fourth equations then result from combining this with the previous two

equations.

Lemma 13.16. (Ore’s lemma) Let G be a multigraph without loops. Then:

χ′(G) ≤ MAX{∆(G),
1

2
MAX{u,v,w}{DEG(u) + DEG(v) + DEG(w)}},

where the second maximum is over all triples of vertices u, v, w such that v −→
u −→ w.

Proof. The proof is by induction on ε(G). It is clearly true if ε(G) ≤ 3. Suppose it

holds for all graphs with ε(G) ≤ m and considerGwith ε(G) = m+1. Let uv be any

edge. Delete uv to obtain G − uv, for which the result holds. Let χ′(G − uv) = k,

and consider a proper k-edge coloring of G − uv. If there is a color available for

uv, then χ′(G) = k, and the result holds. Otherwise the uncolored edge lemma

(Lemma 13.15) applies to G.

Pick a color i ∈ C(u) − C(v) and an edge uw of color i. We first show that

C(v) − C(u) ⊆ C(w). Let j ∈ C(v) − C(u). If color j is missing at w, then since

j is also missing at u, we can recolor edge uw with color j, and assign color i to uv.

This results in a k-edge-coloring of G, a contradiction. Therefore j ∈ C(w), so that

C(v)− C(u) ⊆ C(w).
We also show thatC(u)−C(v) ⊆ C(w). We know that i ∈ C(u)−C(v). If there

is no other color inC(u)−C(v), we are done. Otherwise, pick also ℓ ∈ C(u)−C(v).
If ℓ 6∈ C(w), consider the (ℓ, j)-subgraph H containing u. If H does not contain v,

we can interchange colors in H , and assign color ℓ to uv, a contradiction. Therefore

H consists of an alternating path from u to v. Interchange colors in H , recolor edge

uw with color ℓ, and assign color i to edge uv, again a contradiction. We conclude

that C(u)− C(v) ⊆ C(w).
We have |C(u) − C(v)| + |C(u) − C(v)| ≤ |C(w)|. By the uncolored edge

lemma, this means that DEG(w) ≥ 2k−DEG(u)−DEG(v)+2. Therefore DEG(u)+
DEG(v) + DEG(w) ≥ 2k + 2, so that k + 1 ≤ 1

2 (DEG(u) + DEG(v) + DEG(w)).
The result then holds for G, as required.

Graph Colorings 291

Theorem 13.17. (Shannon’s theorem) Let G be a multigraph without loops. Then

χ′(G) ≤ ⌊3∆(G)/2⌋.
Proof. By Ore’s lemma:

χ′(G) ≤ MAX{∆(G),
1

2
{∆(G) + ∆(G) + ∆(G)}} = 3∆(G)/2.

Exercises

13.6.1 Describe an algorithm using alternating paths in a bipartite graph which

finds a maximum matching saturating all vertices of degree ∆(G).

13.6.2 Work out the complexity of the bipartite coloring algorithm.

13.6.3 Program the bipartite edge-coloring algorithm.

13.6.4 Program the EdgeColor algorithm.

13.6.5 Determine whether the line graph of K5 is of Class I or II.

13.6.6 Show that an edge coloring of G gives a vertex coloring of L(G).

13.6.7 Determine χ′ for the Petersen graph.

13.6.8 Show that when the inverter shown in Figure 13.12 is edge-colored in

three colors, one of the two pairs of edges {a, b}, {c, d} has the same

color, and the other pair has different colors.

13.7 Graph homomorphisms

Colorings of the vertices of a graph are closely related to graph homomophisms.

Consider the 3-coloring of the graph G in Figure 13.5. The vertices of G can be

mapped to the vertices of a triangle, such that the vertices of each color are mapped to

separate vertices ofK3. This determines a coloring ofK3. Here vertices 1, 4, 7 are all

mapped to u in theK3; vertices 2, 5, 8 are mapped to w; and vertices 3, 6 are mapped

to v. The colors assigned to K3 are determined by the colors of G. Notice that every

edge of G is mapped to an edge of K3. This defines a graph homomorphism.

DEFINITION 13.5: A graph homomorphism from graph G to H is a mapping

φ : V (G) → V (H) such that if uv ∈ E(G), then φ(u)φ(v) ∈ E(H). We write

φ : G→ H .

If φ : G → H is a homomorphism, and u ∈ V (H), then φ−1(u) is a subset of

V (G) that is an independent set in G. We immediately see that a homomorphism of

G onto Km is equivalent to an m-coloring of G:

Lemma 13.18. G is m-colorable if and only if there is a homomorphism from G
onto Km.

292 Graphs, Algorithms, and Optimization

1

2

3

4

5

6

7

8

G

φ
−→

u

wv
K3

FIGURE 13.5

A graph homomorphism

Proof. Let the colors of V (G) be {1, 2, . . . ,m}. Map the vertices of color i to vertex

i of Km.

It follows that every bipartite graph has a homomorphism onto K2. We see that

graph coloring can be viewed as a special case of homomorphisms. If φ : G→ H is

a homomorphism, then edges of G must map only to edges of H , but non-edges of

G can map to non-edges or edges of H . An m-clique in G must map to an m-clique

in H , but an independent set in G can map to various subgraphs of H . In general, it

is a difficult problem to determine the homomorphisms of a graphG into H .

An even cycle is bipartite, and so has a homomorphism onto K2. Consider an

odd cycle Cm. In Figure 13.6 we see a homomorphism of Cm onto Cm−2. Notice

how a vertex of degree two can be “folded” over and removed. This gives:

Lemma 13.19. The cycle Cm, where m ≥ 4, has a homomorphism onto Cm−2.

When m is odd, Cm can be reduced as far as C3. An odd cycle Cm has homo-

morphisms only onto other odd cycles — for a homomorphism onto an even cycle

would mean that Cm can be colored in two colors.

Cm Cm−2

−→

FIGURE 13.6

A homomorphism of a cycle

Graph Colorings 293

If G = Kn, then there is a homomorphism from G into any graph H , because

G has no edges. A homomorphism φ is said to be faithful if φ(G) is an induced sub-

graph of H . That is, if uv ∈ E(H), then G has at least one edge between φ−1(u)
and φ−1(v). A faithful homomorphism φ : G → H that is one-to-one must be an

isomorphism of G with H . If G = H , then φ is an automorphism of G. Now the au-

tomorphisms of G form a group, however this is not the case with homomorphisms.

DEFINITION 13.6: A homomorphism φ : G→ G is called an endomorphism.

The automorphism group AUT(G) is a subset of the set of all endomorphisms

of G. Homomorphisms can be composed. If φ : G → G is an endomorphism, then

φ2, φ3, . . ., are also endomorphisms. If φ(G) is smaller than G, then a decreasing

sequence of subgraphs is produced. In general, when φ is an endomorphism, φ(G)
is called a retract of G. Consider the graph of the octahedron, shown in Figure 13.7,

together with two retracts, deriving from φ which maps {4, 5, 6} in a cycle (4, 5, 6),
and also maps 3 to 1 to 5, and 2 to 6. The first application of φ results in the first

retract shown. The second application produces a triangle as a retract. Any further

applications of φ just rotate the triangle. More generally, any graph isomorphic to a

retract φ(G) is also called a retract of G.

DEFINITION 13.7: A retract ofG is any graph isomorphic to some φ(G), where

φ is an endomorphism of G.

1

4
2

5

3

6 φ
−→

φ
−→

FIGURE 13.7

Retracts of the octahedron

DEFINITION 13.8: A core ofG is a retractK ofG such that no proper subgraph

of K is also a retract of G.

It is clear that if K is a retract of G, then a retract of K is also a retract of G.

Therefore we can also say that a core is any graph that has no proper retract. For

example, Kn is a core, for all n. K2 is the only bipartite graph that is a core. If K
is a core then any endomorphism of K is necessarily an automorphism. Figure 13.7

shows that K3 is a core of the octahedron.

Suppose that W = (u0, u1, . . . , um) is a walk of length m in a graph G. If there

is a ui such that ui+2 = ui, then W can be reduced by replacing the sub-sequence

294 Graphs, Algorithms, and Optimization

(ui, ui+1, ui+2) by the single vertex ui. This reduction can be iterated until no further

reductions are possible, resulting in a reduced walk. A path is always a reduced walk.

Some walks may reduce to a single vertex as a result.

Lemma 13.20. Let W = (u0, u1, . . . , um) be a reduced walk of length m in a

graph G, and let φ : G→ G be an endomorphism. Then φ(W) is a walk, which has

a corresponding reduced walk of length k ≤ m, such that k ≡ m (mod 2).

Proof. Each edge uiui+1 of W is mapped by φ to an edge. Therefore φ(W)
is a walk in G containing m edges. Each reduction in φ(W) that replaces

(φ(ui), φ(ui+1), φ(ui+2)) by φ(ui) when φ(ui) = φ(ui+2) removes two edges from

the walk.

Lemma 13.21. Every odd cycle is a core.

Proof. Let φ : Cm → Cm be an endomorphism of an odd cycle. Cm is a reduced

closed walk of length m. By Lemma 13.20, φ(Cm) contains a reduced closed walk

of odd length k ≤ m. But the shortest odd length reduced closed walk of Cm has

length m. It follows that every endomorphism of Cm is an automorphism, so that

Cm is a core.

Notice that if the proof of Lemma 13.21 is applied to an even cycle, we find that

φ(Cm) contains an even length reduced closed walk. It is easy to see that the length

can be zero for certain endomorphisms φ.

Theorem 13.22. Let G be a graph. All cores of G are isomorphic.

Proof. Suppose thatH1 andH2 are two cores ofG. Let φ1 and φ2 be endomorphisms

such that φ1(G) = H1, and φ2(G) = H2. Now φ1 maps V (H2) into V (H1), so that

φ(H2) is a subgraph of H1. Since φ2(G) = H2, we have φ1(φ2(G)) = φ1(H2) is a

retract of G. But a core of G has no proper subgraph that is a retract of G. Therefore

φ1(H2) = H1.

Theorem 13.23. Let G be a vertex-transitive graph. All cores of G are vertex-

transitive.

Proof. Let K be a core of G, and let φ be an endomorphism such that φ(G) = K .

Then φ(K) = K . Let v and w be any two vertices of K . Choose a vertex u of G
such that φ(u) = w. Now G is vertex transitive, so that there is θ ∈ AUT(G) such

that θ(v) = u. We have θ(G) = G, so that φ(θ(G)) = K . Hence φ(θ(K)) is a

subgraph of K . But K is a core, and θ(K) ∼= K , so that φ(θ(K)) = K . That is, the

mapping “first θ, then φ” maps K to K , and is therefore an autmorphism of K . But

φ(θ(v)) = φ(u) = w, so that this automorphism maps v to w. It follows that K is

vertex-transitive.

Consider the graph G of Figure 13.5 consisting of a cycle C8 with main diago-

nals. The shortest cycle of G has length five. If φ is any endomorphism of G, then

each C5 in G must map to a closed walk of length five, which must also be a cycle

of G. It follows that φ must be one-to-one, so that G is a core. In general, it can be

Graph Colorings 295

difficult to determine whether a given graph is a core. This example shows that a

shortest closed walk W of odd length is important — for any endomorphism φ must

mapW to a closed walk containing a reduced closed walk, also of odd length, which

must therefore also be a shortest closed walk of odd length.

Consider the problem of finding an endomorphism φ of G, such that φ 6∈
AUT(G). We sketch a brief outline of how to construct such an algorithm, although

a general algorithm is beyond the scope of this book. We first consider vertices of

degree n− 1, where n = |G|.

Lemma 13.24. Let U 6= ∅ be the vertices of G of degree n− 1. Then U is contained

in every core of G.

Proof. Let φ be an endomorphism of G, and let K be a core of G such that φ(G) =
K . Then φ(K) = K . We can iterate φ sufficient times, say k times, until every

vertex u 6∈ V (K) satisfies φk(u) ∈ V (K). We have φk(G) = K . So without

loss of generality, we can replace φ by φk, or equivalently, assume that k = 1.

Let u ∈ U . Suppose that u 6∈ V (K), but that v = φ(u) ∈ V (K). Let w ∈ V (K)
satisfy φ(w) = v, which must exist, because φ is one-to-one acting on V (K). Then

uw ∈ E(G), but φ(uw) = v, which is impossible. It follows that U ⊆ V (K).

Corollary 13.25. Let G be a core. Construct a graph G+ by attaching a new vertex

v, adjacent to all vertices of G. Then G+ is a core.

Proof. By Lemma 13.24 the new vertex v is contained in every core ofG+. Let φ be

an endomorphism of G+. Without loss of generality, we can assume that φ(v) = v.

LetK be a core ofG+. IfK = G+, the result is true, so suppose that V (K) contains

a non-empty subset of V (G). As in the proof of Lemma 13.24 we can assume that

every u 6∈ V (K) has φ(u) ∈ V (K). Now uv ∈ E(G), because v is adjacent to all

of G. Hence φ(u) 6= v. It follows that φ(G) is a retract of G, which is not possible,

because G is a core.

We have seen previously that the odd cyclesCm are cores. By adding one or more

new vertices to Cm, adjacent to all vertices, a sequence of cores can be constructed.

Vertices of degree zero are irrelevant to homomorphisms. Therefore the algorithm

to find an endomorphism can initially delete all vertices of degree zero. When a

graph is disconnected it is necessary to search for a homomorphism between any

two connected components. Therefore we assume a connected graph G to simplify

the problem, although the techniques used will also be applicable to disconnected

graphs as well.

If there is a vertex u with DEG(u) = 1, let u be adjacent to v. Then any vertex

w −→ v, where w 6= u, can be chosen as φ(u). Thus vertices of degree one can be

successively eliminated.

It follows from Lemma 13.24 that every vertex u of degree |G|−1 is in every core

K , and furthermore, we can assume that each such u is fixed by an endomorphism

φ mapping G to K . Therefore the algorithm can assign φ(v) = v, for all vertices of

degree |G| − 1.

If K is a core of G with φ(G) = K , then φ(K) = K . Similar to Lemma 13.24,

296 Graphs, Algorithms, and Optimization

we can iterate φ sufficient times until every vertex of K is fixed, so that there is no

loss in generality in assuming that φ fixes every vertex of a core K . And since φ 6∈
AUT(G), we can assume that there is some vertex v ∈ V (K) and some u ∈ V (G)
such that φ(u) = φ(v) = v. Clearly uv 6∈ E(G). Therefore once φ(v) = v has been

assigned, the algorithm partitions V (G) into vertices adjacent to v, and non-adjacent.

The algorithm will iteratively take all vertices v in turn, and then successively

take all suitable non-adjacent vertices u, and assign φ(u) = φ(v) = v, and then

recursively attempt to extend φ to all of V (G). Once φ(u) = v has been assigned,

the remaining vertices adjacent to u must be mapped to vertices adjacent to v. A key

element in the search is the length of a shortest closed odd walk through any vertex.

If W is a closed walk of odd length in G, then φ(W) is a closed walk of odd

length ≤ ℓ(W). Therefore vertices contained in a shortest closed odd walk can only

be mapped to vertices also contained in a shortest odd closed walk. Therefore the

algorithm finds the length of the shortest closed odd walk through each vertex, and

partitions the vertices according to the length. A vertex u with a shortest closed odd

walk of length ℓ can only be mapped to vertices with a shortest closed odd walk

of length ≤ ℓ. For many graphs, this is a sufficiently strong constraint to enable a

computer search to find an endomorphism φ fairly quickly, for graphs of moderate

size.

We have seen that the question of whether there exists a homomorphismφ : G→
H reduces to graph coloring, when H is a clique. Therefore such a homomorphism

is also known as an H-coloring.

DEFINITION 13.9: Given graphs G and H , the problem: “is there a homomor-
phism φ : G→ H” is known as the H-coloring problem.

In general,H-coloring problems tend to be NP-complete. In the next section it is

proved that C5-coloring is NP-complete.

Exercises

13.7.1 Show that the Petersen graph is a core.

13.7.2 The odd girth of G is γodd, the length of a shortest odd cycle in G, if one

exists. Construct an algorithm to find the odd girth of G, and to find a

cycle of length γodd.

13.7.3 Let H denote a path of length m. Describe an algorithm to determine

whether there is a homomorphism from a graph G onto H .

13.7.4 Describe an algorithm to determine whether there is a homomorphism

from G onto K3,1.

13.7.5 Show that the graph of Figure 13.8 is a core. What is its chromatic num-

ber?

13.7.6 Let W be a shortest closed walk of odd length containing vertex u, in a

graph G. Show that W consists of two shortest paths Puv and Puw from

u to v, and from u to w, of the same length, plus the edge vw.

Graph Colorings 297

13.7.7 Construct an algorithm to find the length of a shortest closed odd walk

through each vertex of G.

FIGURE 13.8

A possible core

13.8 NP-completeness

In this section we show that several coloring-related problems are NP-complete.

Problem 13.1: 3-Colorability

Instance: a graph G.

Question: is χ(G) ≤ 3?

We transform from 3-Sat. Consider an instance of 3-Sat containing variables

u1, u2, . . . , un, with complements u1, u2, . . . , un. Suppose that there are m clauses,

denoted c1, c2, . . . , cm. We construct a graph G which has a 3-coloring if and only

if the instance of 3-Sat has a solution. The construction is based on the graph T
shown in Figure 13.9. The key property of this graph is that in any 3-coloring, the

two vertices of degree two, denoted a and b, must have the same color.

a b

T

FIGURE 13.9

T consists of two triangles

Three copies of this graph are now combined to produce the graph G(ui, ui)
of Figure 13.10, which is used to represent the variable ui and its complement ui.

298 Graphs, Algorithms, and Optimization

The vertices colored black must always have the same color in any 3-coloring, be-

cause they are part of a chain of graphs isomorphic to T . Associated with ui are two

vertices, shaded gray in Figure 13.10. And associated with ui are two vertices, one

white, and one shaded gray in Figure 13.10. We call these the ui vertices, and ui
vertices, respectively. Two useful properties of this graph are:

Lemma 13.26. In every 3-coloring ofG(ui, ui), either the ui vertices have the same

color, and the ui vertices have different colors, or vice-versa. Both situations are

possible. Furthermore |AUT(G(ui, ui))| = 1.

Proof. The vertices shaded black must always have the same color, because they

are part of a chain of T subgraphs. It is easy to verify that every 3-coloring has the

required property, and that there is only the identity automorphism.

ui ui

x

FIGURE 13.10

The graph G(ui, ui)

The graph G(ui, ui) is used to relate a 3-coloring to the values of the Boolean

variables ui and ui. If the two vertices corresponding to ui have the same color,

then ui is taken to be true. If they have different colors, then ui is taken to be false.

Lemma 13.26 ensures that if ui is true, then ui is false, and vice-versa. Because

|AUT(G(ui, ui))| = 1, it is always possible to distinguish the ui vertices from the ui
vertices.

Each variable ui has a graph G(ui, ui) constructed for it. Given a clause like

c1 = (u1+u2+u3), a subgraphC1 is constructed to represent it, as in Figure 13.11.

In general, Cj consists of a triangle with three “pendant” vertices, i.e., vertices of

degree one. In any 3-coloring, the vertices of the triangle must use all three colors.

The pendant vertices each represent one of the variables contained in the clause Cj ,
in this case u1, u2, and u3. The vertex corresponding to a variable ui or ui will

eventually have edges connecting it to the two vertices ofG(ui, ui) corresponding to

that variable.

Lemma 13.27. Let Cj be colored with three colors white, gray, and black. Then

there are colorings with one, two, or three pendant vertices colored white or gray.

There are no colorings with all pendant vertices colored black.

Proof. In Figure 13.11 it is obvious that u1 cannot be colored black . It is easy to

verify that there are 3-colorings in which u2 and/or u3 are also not colored black .

We now construct a graph G combining these pieces as follows.

Graph Colorings 299

u1

u2u3

FIGURE 13.11

A subgraph Cj representing a clause cj = (u1 + u2 + u3)

• For each variable ui, a graphG(ui, ui) is constructed.

• For each clause cj , a graph Cj is constructed.

• The vertices corresponding to variable ui or ui in each Cj are connected to the

ui-vertices or ui-vertices, respectively, of G(ui, ui).

• Given graphs G(ui, ui) and G(ui+1, ui+1), where un+1 represents u1, a T
graph is used to connect the vertices labeled x ofG(ui, ui) andG(ui+1, ui+1)
(see Figure 13.10), by identifying a and b of T with the x-vertex of G(ui, ui)
and of G(ui+1, ui+1), respectively.

The purpose of the last step is to ensure that the vertices of G(ui, ui) colored

black in Figure 13.10 have the same color in every G(ui, ui).

Theorem 13.28. G has a 3-coloring if and only if the instance of 3-Sat has a solu-

tion.

Proof. Suppose that G has a 3-coloring using white, gray, and black . Without loss

of generality, suppose that the black vertices of everyG(ui, ui) as in Figure 13.10 are

all colored black . Then all ui and ui vertices are colored white or gray. Consider any

clause cj with corresponding graphCj . By Lemma 13.27, either one, two, or three of

the pendant vertices of Cj is colored white or gray. Say the vertex corresponding to

variable ui is colored white. Then the ui-vertices of G(ui, ui) must both be colored

gray. Assign the value true to this ui. Notice that ui and ui cannot both be assigned

true, by Lemma 13.26. Then each cj has at least one variable that is true, giving a

solution.

Conversely, suppose that a solution is given to the instance of 3-Sat. One of

each ui, ui is true, and the other is false. Choose a variable ui or ui that is true.

Without loss of generality, suppose that ui = u1 and color the vertices of G(u1, u1)
as follows. The black vertices of Figure 13.10 are colored black . The u1 vertices

are colored gray, and the u1 vertices are colored white and gray in the unique way.

300 Graphs, Algorithms, and Optimization

Now for each clause cj containing u1, proceed as follows. Without loss of generality,

take cj = u1 + u2 + u3 as an example, and consider Cj , as in Figure 13.11. The

vertex of Cj corresponding to u1 is colored white, and its adjacent triangle vertex is

colored black . The other two triangle vertices are colored white and gray, with the

adjacent pendant vertex to each colored black . If u2 is true, then color the u2-vertices

of G(u2, u2) both gray, and extend the coloring uniquely to the u2-vertices. If u2 is

false, then color the u2-vertices white and gray and extend the coloring. Do the same

for the G(u3, u3) graph.

Now every G(ui, ui) has been colored, where ui or ui appears in some clause

together with u1. Let U be this set of variables. Consider any clause cj , all of whose

variables are in U . At least one of the variables in cj is true, say ui, and its vertices

in G(ui, ui) have been colored. Color Cj by coloring its pedant vertex adjacent to ui
in the unique way, and color its adjacent triangle vertex black . The coloring extends

to all of Cj by coloring the other pendant vertices black . This produces a coloring of

all clauses whose variables are all in U .

If there are more clauses cj containing at least one variable of U , then for each

one, find a variable it contains with value true and color the associated Cj . Continue

like this until all of G is colored.

We conclude that a polynomial algorithm which solves 3-Colorability could also

be used to solve 3-Sat. Since 3-Sat is NP-complete, so is 3-Colorability.

Problem 13.2: Clique

Instance: a graph G and an integer k.

Question: does G have a clique with ≥ k vertices (i.e., is α(G) ≥ k)?

We transform from Problem 11.5.11.4 Vertex Cover. Recall that a vertex cover

in a graph G is a subset U ⊆ V (G) such that every edge has at least one endpoint in

U . Given an integer k the Vertex Cover problem asks: does G have a vertex cover

with ≤k vertices?

If U is a vertex cover, the set U = V (G) − U is an independent set in G. Hence

U induces a clique in G. If G has n vertices, and U has ≥ m vertices, then U is

a vertex cover with ≤ n − m vertices. Thus, given an instance of the Vertex Cover

problem, we constructG, and ask whether it has a clique with at least n−m vertices.

If the anwer is yes, then G has a vertex cover with at most m vertices. We conclude

that a polynomial algorithm which solves Clique could also be used to solve Vertex

Cover. It follows that Clique is NP-complete.

Problem 13.3: Chromatic Index

Instance: a graph G.

Question: is χ′(G) = ∆(G)?

There is an ingenious construction of Holyer proving that it is NP-complete to

Graph Colorings 301

determine whether a 3-regular graph is of Class I or II. Holyer’s construction is based

on the graph shown in Figure 13.12, which he calls an inverting component, or in-

verter. The inverter was originally discovered by Loupekine. It consists of two 5-

cycles sharing two common consecutive edges. Edges a, b, c, d, e are attached to five

of the vertices.

a

b

c

d

e

FIGURE 13.12

The inverter and its schematic representation

(Used with permission of the SIAM Journal of Computing)

A 5-cycle requires at least three colors. Consider any 3-edge-coloring of the in-

verter. Apply the parity condition (Lemma 11.13) to the set of seven vertices shown

in the diagram. We determine that in any 3-edge coloring, that three of the five edges

a, b, c, d, emust have the same color, and that the other two have distinct colors, since

5 can only be written as 3 + 1 + 1, as a sum of three odd numbers. We then find that

a, e, and c cannot all have the same color, so that in any 3-edge-coloring, either a and

b have the same color, and c, d, e have three distinct colors; or by symmetry, c and d
have the same color, and a, b, e have three distinct colors. The inverter is represented

schematically in Figure 13.12, as a circle with two pairs of inputs (or outputs) and a

fifth input (or output).

Holyer transforms from 3-Sat to Chromatic Index. Consider an instance of

3-Sat with clauses c1, c2, . . . , cm involving variables u1, u2, . . . , un and their com-

plements ui. Each variable is either true or false. A value of true is represented in

the edge coloring of an inverter, as an input pair of the same color. A value of false

is represented as an input pair of different colors. In every 3-edge-coloring of the

inverter, a value of true is inverted to a value of false, or vice versa.

A clause of three variables, for example, (ui + uj + uk), is represented by three

inverters tied together by a 7-cycle, as shown in Figure 13.13. Note the edges marked

a, b, x, y. It is easy to see that a and b have the same color if and only if x and y have

the same color. Because of the 7-cycle, at least one of the three inverters must have

two outside inputs the same color. This will be used to indicate that at least one of

the variables ui, uj , and uk in the above clause must have a value of true (i.e., every

clause will be satisfied).

Now a given variable ui, and/or its complementui, will appear in several clauses.

It must have the same value in all clauses. In order to ensure this, the 7-cycles cor-

302 Graphs, Algorithms, and Optimization

ui uj

uk

x y
a b

c1

FIGURE 13.13

The representation of a clause c1 = (ui + uj + uk) of 3-Sat

(Used with permission of the SIAM Journal of Computing)

responding to clauses containing ui or ui are also tied together. Holyer constructs a

cycle of inverters, with two inverters for each occurrence of ui or ui in the clauses.

For example, if ui and ui occur a total of four time in clauses c1, c2, c3, c4, the cycle

of Figure 13.14 is constructed. Each pair of inverters corresponds to a clause contain-

ing ui or ui. Notice that there are a total of six inputs connecting a pair of inverters to

the rest of the graph. By the parity lemma, if this graph is 3-edge-colored, the possi-

ble color combinations for the six inputs are 6+0+0, 4+2+0, or 2+2+2. If one

pair of external inputs represents true, then by the properties of an inverter, the oppo-

site pair also represents true. Then the parity lemma implies that the remaining two

inputs also represent true. It follows that all pairs of inverters in the diagram have all

external input pairs representing true. Consequently, if any one pair represents false,

they all represent false. This mechanism is used to guarantee that ui has the same

value in all clauses.

We now put these ideas together. We are given an instance of 3-Sat. For each

clause cj , three inverters are tied together using a 7-cycle, as in Figure 13.13. For

each variable ui, a cycle of pairs of inverters is constructed as in Figure 13.14. The

input corresponding to cj in this structure is connected to the input corresponding

to ui in the 7-cycle component corresponding to cj . If the clause contains ui rather

than ui, then another inverter is placed between the two before connecting. The result

is a graph containing a subgraph for each ui and for each cj , tied together through

their inputs. There are still a number of inputs not connected to anything. In order to

complete the construction and have a 3-regular graph, a second copy of this graph

is constructed. The corresponding unused inputs of the two copies are connected to-

gether. The result is a 3-regular graph G. In any 3-edge-coloring of G, every clause

is guaranteed to have at least one variable representing true. All occurrences of each

Graph Colorings 303

c1

c2

c3

c4

ui

FIGURE 13.14

A pair of inverters for each clause containing ui or ui

(Used with permission of the SIAM Journal of Computing)

variable are guaranteed to have the same value. The result is an assignment of values

to the variables solving the 3-Sat instance. We conclude that if we could determine

whether χ′(G) = 3, we could solve 3-Sat. Since 3-Sat is NP-complete, we con-

clude that Chromatic Index is also NP-complete.

Problem 13.4: C5-Coloring.

Instance: a graph G.

Question: is there a homomorphism φ : G→ C5 ?

We transform from 5-Colorability, which is known to be NP-complete. We show

that if C5-Coloring can be solved in polytime, then a C5 coloring ofG can be used to

construct a 5-coloring of G. Let the vertices of C5 be {v1, v2, v3, v4, v5}, with edges

vivi+1, where v6 is taken to mean v1. Let G be a graph to be 5-colored. Transform

G into a new graph G∗ by subdividing each edge of G with two new vertices, so

that each edge of G becomes a path of length three in G∗. An example is shown in

Figure 13.15, using G = K4, where the vertices of K4 are shaded. Suppose that a

homomorphism φ : G∗ → C5 has been found. Let Vi denote the vertices of G∗ such

that φ(Vi) = vi. Color the vertices of V (G) ∩ Vi with color i. We show that this is

a proper 5-coloring of G. Let uv be an edge of G. In G∗, the shortest uv-path has

304 Graphs, Algorithms, and Optimization

length three. It must be mapped by φ to a walk of odd length ≤ 3 in C5. But C5 has

girth five. Therefore φ(u) 6= φ(v). It follows that this is a proper 5-coloring of G.

Conversely, given any proper 5-coloring of G, we construct a homomorphism

φ : G∗ → C5 mapping the vertices of color i in G to vi. Let uv be an edge of G,

and suppose that u has color 1. The same argument will apply to all other colors. If

v has color 2, then the uv-path in G∗ can be mapped to the walk v1v2v1v2 in C5. If

v has color 3, then the uv-path in G∗ can be mapped to the walk v1v5v4v3 in C5.

A similar argument holds for the other cases, since C5 has a path of length three

connecting any two non-adjacent vertices. Every vertex of G∗ is mapped to a vertex

of C5. Therefore the homomorphism φ exists if and only if G can be 5-colored.

FIGURE 13.15

A transformation of K4

13.9 Notes

The DEGREESATURATION algorithm is from BRELAZ [25]. A very good paper on

the limitations of the sequential algorithm is JOHNSON [95]. A very readable survey

of chromatic polynomials appears in READ and TUTTE [145]. See also TUTTE [176],

where the word chromial is coined for chromatic polynomial. The proofs of the un-

colored edge lemma and Ore’s lemma (Lemmas 13.15 and 13.16) are based on those

of BERGE [14]. A very efficient edge-coloring algorithm based on Vizing’s theorem

was developed by ARJOMANDI [8]. The edge-coloring algorithm presented here is

based on Vizing’s original algorithm VIZING [184]. A study of Class I and Class

II graphs can be found in WALLIS [186]. A great source of information on graph

homomorphisms is the book by HELL and NEŠETŘIL [82]. The proof of the NP-

completeness of C5-Coloring is based on their proof. In a classic paper [96], KARP

presents 21 basic problems, and proves they are NP-complete. The proof of the NP-

completeness of Chromatic Index presented here is based on HOLYER [86]. Fig-

ures 13.12, 13.13, and 13.14 are modified diagrams based on those appearing in

Holyer’s paper. They are used with the permission of the SIAM Journal of Comput-

ing.

14

Planar Graphs

14.1 Introduction

A graph G is planar if it can be drawn in the plane such that no two edges intersect,

except at a common endpoint. The vertices of G are represented as points of the

plane, and each edge of G is drawn as a continuous curve connecting the endpoints

of the edge. For example, Figure 14.1 shows a planar graph (the cube), and a planar

drawing of the same graph. Although the cube is planar, the drawing on the left is not

a planar drawing. These drawings both have straight lines representing the edges, but

any continuous curve can be used to represent the edges. We shall often find it more

convenient to represent the vertices in planar drawings as circles rather than points,

but this is just a drawing convenience.

FIGURE 14.1

Two drawings of the cube

305

306 Graphs, Algorithms, and Optimization

14.2 Jordan curves

Any closed, continuous, non-self-intersecting curveC drawn in the plane divides the

plane into three regions: the points inside C, the points outside C, and the points of

C itself. This is illustrated in Figure 14.2. We are relying on an intuitive understand-

ing of the words “plane”, “curve”, “continuous”, “region”, etc. Exact mathematical

definitions of these ideas would require a lengthy excursion into topology. An intu-

itive understanding should suffice for this chapter. Notice that the interior of C, de-

noted INT(C), is bounded, because it is enclosed by C, and that the exterior, denoted

EXT(C), is unbounded, because the plane is unbounded. If u is any point in INT(C),
and v ∈ EXT(C), then any continuous curve with endpoints u and v must intersect

C in some point. This fact is known as the Jordan curve theorem. It is fundamental

to an understanding of planarity.

DEFINITION 14.1: A closed, continuous, non-self-intersecting curve C in a sur-

face is called a Jordan curve.

C

u

v

FIGURE 14.2

The Jordan curve theorem

Let G be any graph. We would like to construct a planar embedding of G, if

possible. That is, we want to map the vertices of G into distinct points in the plane,

and the edges of G into continuous curves that intersect only at their endpoints.

Let ψ denote such a mapping. We write Gψ to indicate the image of G under the

mapping ψ. Let C be any cycle in G. If ψ is a planar embedding of G, then ψ
maps C onto Cψ , a Jordan curve in the plane. For example, consider G = K5. Let

V (K5) = {v, w, x, y, z}. If K5 were planar, the cycle C = (x, y, z) must embed as

a Jordan curve Cψ in the plane. Vertex u is either in INT(Cψ) or EXT(Cψ). Without

loss of generality, we can place u in INT(Cψ), as in Figure 14.3. The paths ux, uy,

and uz then divide INT(Cψ) into three smaller regions, each bounded by a Jordan

curve. We cannot place v in EXT(Cψ), as we then cannot embed the path uv without

crossing Cψ . We cannot place v in any of the smaller regions in INT(Cψ), for in

Planar Graphs 307

each case there is a vertex outside the Jordan curve bounding the region that cannot

be reached. We conclude that K5 cannot be embedded in the plane. K5 is a non-

planar graph. We state this as a lemma.

x

yz

u

FIGURE 14.3

Embedding K5

Lemma 14.1. K5 and K3,3 are non-planar graphs.

Proof. The proof forK5 appears above. The proof forK3,3 is in Exercise 12.3.1.

14.3 Graph minors, subdivisions

The graphsK5 andK3,3 are special graphs for planarity. If we construct a graph from

K5 by replacing one or more edges with a path of length≥2, we obtain a subdivision

of K5. We say that the edges of K5 have been subdivided.

DEFINITION 14.2: Given a graph G, a subdivision of G is any graph obtained

from G by replacing one or more edges by paths of length two or more.

It is clear that any subdivision ofK5 or K3,3 is non-planar, becauseK5 andK3,3

are non-planar. It is apparent that vertices of degree two do not affect the planarity of

a graph. The inverse operation to subdividing an edge is to contract an edge with an

endpoint of degree two.

DEFINITION 14.3: Graphs G1 and G2 are topologically equivalent or homeo-

morphic, if G1 can be transformed into G2 by the operations of subdividing edges

and/or contracting edges with an endpoint of degree two.

308 Graphs, Algorithms, and Optimization

We will denote by TK5 any graph that is topologically equivalent to K5. Simi-

larly, TK3,3 denotes any graph that is topologically equivalent to K3,3. In general,

TK denotes a graph topologically equivalent to K , for any graph K . If G is a graph

containing a subgraph TK5 or TK3,3, then G must be non-planar. Kuratowski’s

theorem states that this is a necessary and sufficient condition for a graph to be non-

planar. We will come to it later.

If G is a planar graph, and we delete any vertex v from G, then G − v is still

planar. Similarly, if we delete any edge uv, then G − uv is still planar. Also, if we

contract any edge uv of G, then G · uv is still planar. Contracting an edge can create

parallel edges or loops. Because parallel edges and loops do not affect the planarity

of a graph, loops can be deleted, and parallel edges can be replaced by a single edge,

if desired.

DEFINITION 14.4: Let H be a graph obtained fromG by any sequence of delet-

ing vertices and/or edges, and/or contracting edges. H is said to be a minor of G.

Notice that if G contains a subgraph TK5, K5 is a minor of G, even though K5

need not be a subgraph of G. For we can delete all vertices and edges which do not

belong to the subgraph TK5, and then contract edges to obtain K5. Similarly, if G
has a subgraph TK3,3, then K3,3 is a minor of G, but need not be a subgraph. Any

graph having K5 or K3,3 as a minor is non-planar. A special case of minors is when

a graphK is subdivided to obtain G.

DEFINITION 14.5: Let G contain a subgraph that is a subdivision of a graphK ,

where δ(K) ≥ 3. Then K is said to be a topological minor of G.

Lemma 14.2. If H is a minor of K , and K is a minor of G, then H is a minor of G.

Proof. This follows from the definition.

A consequence of this lemma is that the relation of being a graph minor is a

partial order on the set of all graphs.

The inverse operation to contracting an edge whose endpoints have degree three

or more is splitting a vertex.

DEFINITION 14.6: Let G be any graph with a vertex v of degree at least three.

Let v be adjacent to vertices {u1, u2, . . . , uk}. Construct a graph G+
v by split-

ting vertex v: replace v with two new vertices v1 and v2. Join v1 to ℓ1 ≥ 2 of

{u1, u2, . . . , uk}, and join v2 to ℓ2 ≥ 2 of them, such that together, v1 and v2 are

adjacent to all of these vertices. Then join v1 to v2.

In any graph G+
v resulting from splitting vertex v, v1 and v2 both have degree

at least three, and G+
v · v1v2 = G, that is, splitting vertex v is an inverse operation

to contracting the edge v1v2. Notice that G is a minor of G+
v . Splitting a vertex is

illustrated forG = K5 in Figure 14.4. The following lemma shows thatK5 andK3,3

are very closely related graphs.

Planar Graphs 309

v1 v2

FIGURE 14.4

Splitting a vertex of K5

Lemma 14.3. Let G be any graph obtained by splitting a vertex of K5. Then G
contains a subgraph TK3,3.

Proof. Let v1 and v2 be the two vertices resulting from splitting a vertex ofK5. Each

has at least degree three. Consider v1. It is joined to v2. Together, v1 and v2 are joined

to the remaining four vertices ofG, and each is joined to at least two of these vertices.

Therefore we can choose a partition of these four vertices into x, y andw, z such that

v1 −→ x, y and v2 −→ w, z. Then G contains a K3,3 with bipartition v1, w, z and

v2, x, y, as illustrated in Figure 14.4.

In the previous example, it was convenient to form a minor K5 of G by first

deleting a subset of vertices and/or edges, and then contracting a sequence of edges

to obtainK5. All minors ofG can be obtained in this way, as shown by the following

lemma:

Lemma 14.4. Suppose that G has a minor H . Then H can be obtained by first

deleting a subset of vertices and/or edges of G, and then contracting a sequence of

edges.

Proof. LetG0, G1, . . . , Gk be a sequence of graphs obtained fromG, whereG0 = G
and Gk = H , such that each Gi, where i ≥ 1, is obtained from Gi−1 by deleting a

vertex, deleting an edge, or contracting an edge. If all deletions occur before contrac-

tions, there is nothing to prove. So letGi be the first graph obtained fromGi−1 by the

deletion of an edge or vertex. Without loss of generality we can assume that i ≥ 2,

and that G1, . . . , Gi−1 were obtained by contracting edges e1, . . . , ei−1, where ej is

an edge of Gj−1. Let ei−1 = v1v2.

Suppose first thatGi = Gi−1− v, for some vertex v. If v is the result of identify-

ing v1 and v2 when ei−1 is contracted, then we can replaceGi−1, Gi in the sequence

of graphs by G′
i−1, G

′
i, where G′

i−1 and G′
i are obtained by deleting v1, and then v2

from Gi−2. If v is not the result of identifying v1 and v2, we can interchange the or-

der of Gi andGi−1 by deleting v before contracting ei−1. In each case, we obtain an

310 Graphs, Algorithms, and Optimization

equivalent sequence of graphs with only i−1 edge contractions preceding a deletion.

The number of edges contracted does not increase, and the final result is still H .

Suppose now that Gi = Gi−1 − uv, for some edge uv. We know that Gi−1 =
Gi−2 · ei−1. We can reverse the order of the two operations, and delete uv before

contracting ei−1, thereby replacing Gi−1, Gi with graphs G′
i−1, G

′
i. Again we ob-

tain an equivalent sequence of graphs with only i − 1 edge contractions preceding

a deletion. We repeat this as many times as required until all deletions precede all

contractions.

It follows that when constructing a minor H of graph G, we can start with a

subgraph of G and apply a sequence of edge-contractions only to obtain H . Often

this is used as the definition of graph minor.

Consider the situation when a vertex v of degree three in G is split into v1v2. If

v is adjacent to vertices x, y, z in G, then in G+
v , v1 is adjacent to at least two of

x, y, z, and via v2 there is always a path from v1 to the third vertex. This is used in

the following theorem, and also in Exercise 12.3.5.

Theorem 14.5. If G has a minor K3,3, then G contains a subgraph TK3,3. If G has

a minor K5, then G contains a subgraph TK5 or TK3,3.

Proof. Suppose that G has a minor K5 or K3,3. If no edges were contracted to ob-

tain this minor, then it is also a subgraph of G. Otherwise let G0, G1, . . . , Gk be a

sequence of graphs obtained from G, where G0 is a subgraph of G, edge ei of Gi−1

is contracted to obtain Gi, and Gk is either K5 or K3,3.

If each ei has an endpoint of degree two, then we can reverse the contractions

by subdividing edges, resulting in a TK5 or TK3,3 in G, as required. Otherwise

let ei be the edge with largest i, with both endpoints of at least degree three. All

edges contracted subsequent to Gi have an endpoint of degree two, so that Gi has

a subgraph TK5 or TK3,3. Gi−1 can be obtained by splitting a vertex v of Gi. If v
is a vertex of TK5, then by Lemma 14.3, Gi−1 contains TK3,3. If v is a vertex of

TK3,3, then Gi−1 also contains TK3,3. If v is a vertex of neither TK5 nor TK3,3,

then Gi−1 still contains TK5 or TK3,3. In each case we find that G0 must have a

subgraph TK5 or TK3,3.

DEFINITION 14.7: Given a subgraph TK of G, equal to TK5 or TK3,3. The

vertices of TK which correspond to vertices of K5 or K3,3 are called the corners of

TK . The other vertices of TK are called inner vertices of TK .

Suppose thatG is a non-planar graph with a subgraph TK5. Let v1, v2, . . . , v5 be

the corners of TK5. Each vi has degree four in TK5; the inner vertices of TK5 have

degree two. Let Pij be the path in TK5 connecting vi to vj . Consider the situation

whereG contains a path P from x ∈ Pij to y ∈ Pkℓ, where x and y are inner vertices.

This is illustrated in Figure 14.5, where a vertex x ∈ P45 is connected by a path to

y ∈ P23. We see that in this case, G contains a TK3,3.

Theorem 14.6. Let G contain a subgraph TK5, with corners v1, v2, . . . , v5 con-

nected by paths Pij . If G has vertices x and y such that x is an inner vertex of Pij ,
and y ∈ Pkℓ but y 6∈ Pij , where Pij 6= Pkℓ, then G contains a TK3,3.

Planar Graphs 311

v1

v2

v3v4

v5

x y

FIGURE 14.5

TK5 and TK3,3

Proof. One case of the proof is illustrated in Figure 14.5. The remaining cases are

done in Exercise 12.3.2.

A consequence of Theorem 14.6 is that nearly any graph that has a subgraphTK5

also has a subgraph TK3,3. This theorem will be useful in embedding algorithms

for non-planar graphs in Chapter 15. It also permits a recursive characterization of

graphs which contain TK5 but not TK3,3.

Exercises

14.3.1 Show that K3,3 is non-planar, using the Jordan curve theorem.

14.3.2 Complete the proof of Theorem 14.6.

14.3.3 Characterize the class of 2-connected graphs which contain TK5 but not

TK3,3.

14.3.4 Construct a O(ε) algorithm which accepts as input a graph G and a sub-

graph TK5 with corners v1, v2, . . . , v5, and finds a TK3,3 containing

v1, v2, . . . , v5 if one exists.

14.3.5 Let K be a graph such that ∆(K) ≤ 3. Show that K is a minor of G if

and only if G has a subgraph TK .

14.4 Euler’s formula

Let G be a connected planar graph with n vertices and ε edges, embedded in the

plane by a mapping ψ. If we remove all the points of the image Gψ from the plane,

the plane falls apart into several connected regions. This is equivalent to cutting the

312 Graphs, Algorithms, and Optimization

plane along the edges of Gψ. For example, if we cut the plane along the edges of the

planar embedding of the cube in Figure 14.1, there are six regions, one of which is

unbounded.

DEFINITION 14.8: The faces of an embedding Gψ are the connected regions

that remain when the plane is cut along the edges of Gψ. The unbounded region is

called the outer face.

Notice that if uv is an edge of G contained in a cycle C, then (uv)ψ is a portion

of a Jordan curve Cψ . The face on one side of (uv)ψ is in INT(Cψ) and the face on

the other side is in EXT(Cψ). These faces are therefore distinct. But if uv is an edge

not contained in any cycle, then it is a cut-edge, and the same face appears on each

side of (uv)ψ. For example, in a tree, every edge is a cut-edge, and there is only one

face, the outer face.

We view the plane as an oriented surface, which can be viewed from “above” or

“below”. Given an embeddingGψ in the plane, we will view it consistently from one

side, which we can assume to be “above” the plane. If we then view an embedding

Gψ from “below” the surface, it will appear to have been reversed. Therefore we

choose one orientation (“above”) for all embeddings.

The boundary of a face F of an embedding Gψ is a closed curve in the plane. It

is the image under ψ of a closed walk C in G. We can walk along Cψ so that the

interior of Cψ is to our right-hand side. We will call this a clockwise direction and

thereby assign an orientation to C. We shall always choose a clockwise orientation

for traversing the boundaries of faces, so that the face F will be to our right-hand

side.

DEFINITION 14.9: An oriented closed walk C in G bounding a face of Gψ is

called a facial walk of Gψ (or facial cycle if C is a cycle).

Notice that if C contains a cut-edge uv, then uv will appear twice on C. The

two occurrences of uv on C will have opposite orientations. All other edges appear

at most once on C. As we will mostly be interested in 2-connected graphs G, facial

walks will almost always be cycles.

DEFINITION 14.10: The degree of a face F is DEG(F), the length of its facial

walk.

Notice that a cut-edge appearing on the facial walk of F will contribute two to

its degree.

Theorem 14.7. (Euler’s formula) Let G be a connected planar graph with n ver-

tices and ε edges. Let Gψ have f faces, where ψ is a planar embedding of G. Then

n+ f − ε = 2

Proof. The proof is by induction on ε − n. Every connected graph has a spanning

tree. If ε−n = −1, thenG is a tree. It is clear that every tree has a planar embedding.

Because a tree has no cycles, there is only one face, the outer face, so f = 1. Euler’s

formula is then seen to hold for all embeddings of G.

Planar Graphs 313

Now suppose that ε − n = k ≥ 0. Choose any cycle C in G, and any edge

uv ∈ C. Let the faces on the two sides of (uv)ψ be F1 and F2. Consider G′ =
G − uv, with n′, ε′ and f ′ vertices, edges, and faces, respectively. Clearly n′ = n
and ε′ = ε− 1. G′ is connected and ψ is a planar embedding of it. One of the faces

of G′ψ is F1 ∪ F2. The other faces of G′ψ are those of Gψ . Therefore f ′ = f − 1.

Euler’s formula follows by induction.

1

2 3

4

56

7

8

1

2
3

4

5

6

7

8

FIGURE 14.6

Two embeddings of a graph

It follows from Euler’s formula that all planar embeddings of a connected graph

G have the same number of faces. Hence we will refer to f(G) as the number of

faces of G, without specifying an embedding. In Figure 14.6 there is an example of

a graph with two distinct embeddings. The embeddings have the same number of

faces, but the actual faces and their boundaries are different.

14.5 Rotation systems

Once we have an embedding Gψ, we can choose any vertex v ∈ V (G), and walk

around vψ in a small, clockwise circle. We encounter the incident edges in a certain

cyclic order. For example, in the embedding on the left of Figure 14.6, the edges

incident on vertex 1 have the clockwise cyclic order (12, 17, 18, 16). Those inci-

dent on vertex 2 have the order (23, 27, 21). Those incident vertex 3 have the order

(34, 37, 32), etc.

In Figure 14.6, the edges are drawn as straight lines. It is conceivable that the

embedding ψ could assign wildly behaved functions, like sin(1/x) to the curves

representing the edges of G. Each edge may then be encountered many times when

walking around vψ in a small circle, no matter how small the circle is chosen. We

will assume that this does not occur, and that ψ assigns well behaved functions (like

straight lines or gradual curves) to the edges. In fact, for graphs embedded on the

314 Graphs, Algorithms, and Optimization

plane, we shall see that it is always possible to draw the edges as straight lines.

For a more complete treatment, the reader is referred to the books of GROSS and

TUCKER [74] or MOHAR and THOMASSEN [126].

DEFINITION 14.11: Let Gψbe an embedding in the plane of a loopless con-

nected graph G. A rotation system p for G is a mapping from V (G) to the set of

permutations of E(G), such that for each v ∈ V (G), p(v) is the cyclic permutation

of edges incident on v, obtained by walking around vψ in a clockwise direction.

Notice that if G has a loop vv, then as we walk around vψ, we will cross the

loop twice. Therefore p(v) will contain vv twice. In order to extend the definition

to be correct for graphs with loops, we must ensure that for each loop vv, that p(v)
contains two corresponding “loops” (vv)1 and (vv)2.

Suppose we are given the rotation system p determined by an embeddingGψ . We

can then easily find the facial cycles of Gψ . The following fundamental algorithm

shows how to do this. Let u ∈ V (G), and let e be any edge incident on u. We are

assuming that given an edge e′ = uv in p(u), we can find the corresponding edge

e′′ = vu in p(v). A data structure of linked lists can do this easily in constant time.

If G is a simple graph, then the rotation system is completely specified by the cyclic

adjacency lists. Given a planar embedding Gψ , we will assume that the adjacency

lists are always given in cyclic order, so that the rotation system p corresponding to

ψ is available.

Algorithm 14.5.1: FACIALCYCLE(Gψ, u, e)

comment:





Given an embeddingGψ with corresponding

rotation system p and vertex u with incident edge e,
find the facial cycle containing e.

e′ ← e
repeat



comment: e′ currently equals uv, for some v
v ← other end of e′

e′′ ← edge of p(v) corresponding to e′

comment: e′′ currently equals vu
e′ ← edge preceding e′′ in p(v)
u← v

until e′ = e

Lemma 14.8. The sequence of edges traversed by FACIALCYCLE(Gψ , u, e) forms

the facial cycle of the face to the right of eψ.

Proof. Let F be the face to the right of eψ. Let e = uv. As we walk along eψ from

uψ to vψ, the face F is to our right-hand side. When we reach vψ , we are on the

image of an edge vu in p(v). Because p(v) has a clockwise cyclic order, the next

edge in the facial cycle is the one preceding vu in p(v). This is the one chosen by the

Planar Graphs 315

algorithm. The algorithm repeats this process until it arrives back at the starting edge

e.

Algorithm FACIALCYCLE() is very simple, but it is tremendously important. It is

used in nearly all algorithms dealing with graph embeddings. Notice that its running

time is O(ε) and that it can be used to find all the facial cycles of Gψ in O(ε) time.

Corollary 14.9. The facial cycles of an embedding Gψ are completely determined

by its rotation system.

Proof. All facial cycles can be determined by executing Algorithm

FACIALCYCLE(Gψ , u, e), such that each edge e is visited at most twice, once for

the face on each side of e. The rotation system is the only information about ψ that

is needed.

Thus, it turns out that planar embeddings are essentially combinatorial, as the

facial cycles of an embedding are completely determined by the set of cyclic permu-

tations of incident edges of the vertices. Later we will see that for 3-connected planar

graphs, the rotation system is unique, up to orientation. If p is the rotation system

corresponding to an embedding ψ, we will often write Gp instead of Gψ . We call

Gψ a topological embedding, and Gp a combinatorial embedding. The combinato-

rial embedding determines the facial cycles of the embedding, but it does not give an

actual drawing of G in the plane.

DEFINITION 14.12: A plane map is a combinatorial embedding Gp, where p is

a rotation system for an embedding of G in the plane.

14.6 Dual graphs

Consider an embedding Gψ, illustrated by the cube in Figure 14.7. Let its faces be

listed as {F1, F2, . . . , Ff}. Two faces Fi and Fj are adjacent if they share a common

edge (uv)ψ on their boundaries. We can construct a planar graph Gψ∗ by placing a

new vertex fi in each region Fi, for i = 1, 2, . . . , f . Whenever two faces Fi and Fj
share an edge (uv)ψ on their boundaries, we draw a continuous curve from fi to fj ,
passing through (uv)ψ in exactly one interior point, and intersecting Gψ in only this

point. This is illustrated for an embedding of the cube in Figure 14.7. We call Gψ∗ a

planar dual of Gψ.

Lemma 14.10. Let Gψ be a planar embedding with a planar dual Gψ∗. Let Gψ∗∗

be any planar dual of Gψ∗. Then Gψ∗∗ ∼= Gψ.

Proof. Let the faces of Gψ be F1, F2, . . . , Ff , and let fi be the vertex of Gψ∗ cor-

responding to Fi. Consider any vertex u of G and its cyclic permutation p(u) =
(uv1, uv2, . . . , uvk) of incident edges. Each edge (uvℓ)

ψ separates two faces Fi and

316 Graphs, Algorithms, and Optimization

Fj , and so is crossed by a curve connecting fi to fj . As we successively take the

edges uvℓ of p(u), we traverse these curves, thereby constructing a facial bound-

ary of Gψ∗. Vertex uψ is contained in the region interior to this facial boundary.

We conclude that each face of Gψ∗ contains exactly one uψ, and that the edges

(uvℓ)
ψ are curves connecting the vertices uψ and vψℓ located inside the faces ofGψ∗.

That is, the planar dual construction applied to Gψ∗ gives back Gψ . Equivalently,

Gψ∗∗ ∼= Gψ .

f1f2

f3

f4

f5

f6

FIGURE 14.7

Constructing a dual graph

Now the adjacencies of the planar dual are determined completely by common

edges of the facial cycles of Gψ, and these are determined by the rotation system p
of Gψ. Therefore we define the combinatorial planar dual in terms of the rotation

system.

Planar Graphs 317

DEFINITION 14.13: Let p be the rotation system forG corresponding to a planar

embedding ψ. Let the facial cycles of Gp be F = {F1, F2, . . . , Ff}. The combina-

torial planar dual of Gp is denoted Gp∗. The vertex set of Gp∗ is {F1, F2, . . . , Ff}.
The edges of Gp∗ are defined by a rotation system, also denoted p, and given as

follows. Consider a facial cycle

Fi = (v1, v2, . . . , vk),

traversed in a clockwise direction. Each edge vℓvℓ+1 is contained in exactly two

facial cycles, which are adjacent in Gp∗ . As we walk along the facial cycle, the face

corresponding to Fi appears on the right-hand side of (vℓvℓ+1)
ψ. On the left-hand

side is the face corresponding to Fℓ′ , where Fℓ′ is the unique facial cycle containing

edge vℓ+1vℓ. We then take

p(Fi) = (F1′ , F2′ , . . . , Fk′).

It is easy to see that FiFj occurs in p(Fi) if and only if FjFi occurs in p(Fj).
Thus the definition is valid. If Fi contains a cut-edge uv, then the same face occurs

on both sides of (uv)ψ .Gp∗ will then contain a loop FiFi. Because uv appears twice

on the facial cycle, FiFi will occur twice in p(Fi).
The graph Gp∗ constructed by this definition is always isomorphic to the planar

dualGψ∗ constructed above, because of the correspondence between faces and facial

cycles. Therefore the rotation system constructed for Gp∗ always corresponds to a

planar embeddingGψ∗. It follows from the Lemma 14.10 that Gp∗∗ ∼= Gp.

Now let Gp denote a combinatorial planar embedding of G, and let

{F1, F2, . . . , Ff} be the facial cycles ofGp. The degree of Fi is DEG(Fi), the length

of the walk. Let Gp∗ be the dual of Gp, and write n∗, ε∗, and f∗ for the numbers of

vertices, edges, and faces, respectively, of Gp∗.

Lemma 14.11.

f∑

i=1

DEG(Fi) = 2ε(G).

Proof. Each edge uv of G is incident on two faces of Gp.

Lemma 14.12. n∗ = f , f∗ = n, and ε∗ = ε.

Proof. n∗ = f follows from the definition of Gp∗. Because Gp∗∗ ∼= Gp, we have

f∗ = n. Each edge of Gp∗ corresponds to exactly one edge of Gp, and every edge of

Gp corresponds to exactly one edge of Gp∗. Therefore ε∗ = ε.

318 Graphs, Algorithms, and Optimization

Algorithm 14.6.1: CONSTRUCTDUAL(Gp)

comment:

{
Given a graph G with a planar rotation system p,

construct the combinatorial dual Gp∗.

nFaces ← 0
for all edges uv

do FaceNumber〈uv〉 ← 0
for all vertices u

do





for each uv in p(u)

do





if FaceNumber〈uv〉 = 0

then





nFaces ← nFaces + 1
traverse the facial cycle F to the right of uv
using FACIALCYCLE(Gp, u, uv) and store

nFaces in the FaceNumber of each edge of F

comment:

{
we have numbered all the faces

now construct the edges of the dual

for all vertices u

do





for each uv in p(u)

do





i← FaceNumber〈uv〉
if face i has not been traversed yet

then





traverse the facial cycle F to the right of uv
using FACIALCYCLE(Gp, u, uv),
and for each edge xy of F
let j = FaceNumber〈yx〉 in p(y)
append ij to p(i) in Gp∗

Algorithm 14.6.1 is a simple algorithm to construct the dual in O(ε) time. We

assume that the faces of Gp are numbered 1, 2, . . . , f ; that the rotation system p is

represented as cyclic linked lists; and that the linked list node corresponding to uv
in p(u) contains a field called the FaceNumber, used to indicate which face of Gp

is on the right-hand side of uv as it is traversed from u to v. We will denote this by

FaceNumber〈uv〉, although it is not stored as an array. We will also use a variable

nFaces to count the faces of Gp.

Algorithm 14.6.1 uses FACIALCYCLE() (Algorithm 14.5.1) to walk around the

facial cycles of Gp and number them. Notice that FACIALCYCLE() only requires

the rotation system p rather than the topological embedding ψ. Each edge of G is

traversed exactly twice, taking a total ofO(ε) steps. It then traverses the facial cycles

again, constructing the rotation system of Gp∗, using the face numbers which were

previously stored. This again takes O(ε) steps. Thus, the dual graph is completely

determined by the combinatorial embeddingGp.

Planar Graphs 319

14.7 Platonic solids, polyhedra

The cube is a 3-regular planar graph whose faces all have degree four. So its dual is

4-regular. It can be seen from Figure 14.7 that the dual of the cube is the octahedron.

LetG be a connected k-regular planar graph whose dual is ℓ-regular, where k, ℓ ≥ 3.

These graphs are called graphs of the Platonic solids. Then kn = 2ε and ℓf = 2ε.
Substituting this into Euler’s formula and dividing by ε gives

1

k
+

1

ℓ
=

1

2
+

2

ε

If we consider graphs with ε ≥ 4 edges, we have

1

2
<

1

k
+

1

ℓ
≤ 1

As the number of integers satisfying this inequality is limited, this can be used to find

all such graphs. They are the graphs of the regular polyhedra – the tetrahedron, cube,

octahedron, dodecahedron, and icosahedron.

In general, a polyhedron is a geometric solid whose faces are polygons, that is,

regions of a plane bounded by a finite sequence of line segments. Each edge of a

polyhedron is common to exactly two polygonal faces. So if we consider an edge

uv1 incident on a vertex u, there are two polygons, P1 and P2 incident on uv1.

Now P2 has two edges incident on u. Let the other be uv2. But this edge is also

incident on two polygons, P2 and P3. Because P3 has two edges incident on u, we

obtain another edge uv3, etc. Continuing in this way, we get a sequence v1, v2, . . . of

vertices adjacent to u, until we return to P1.

DEFINITION 14.14: A polyhedron is a connected collection of polygons such

that

1. Each edge is contained in exactly two polygons.

2. Polygons do not intersect, except on a common edge.

3. Any two polygons intersect in at most one edge.

4. The polygons incident on a vertex form a single cycle.

The fourth condition is to prevent a polyhedron created by identifying two ver-

tices of otherwise disjoint polyhedra.

DEFINITION 14.15: The skeleton of a polyhedron is the graph whose vertices are

the vertices of the polyhedron, such that vertices u and v are adjacent in the graph if

and only if uv is an edge of the polyhedron.

DEFINITION 14.16: A regular polygon, denoted {p}, is a planar polygon with

p sides all of equal length. A regular polyhedron, denoted {p, q}, is a polyhedron

320 Graphs, Algorithms, and Optimization

whose faces are polygons {p}, such that exactly q polygons are incident on each

vertex.

The symbols {p} and {p, q} are called the Schläfli symbols for the polygon and

polyhedron, respectively. Notice that given a vertex u of a regular polyhedron {p, q},
the midpoints of the edges incident on u form a regular polygon {q}. This polygon

corresponding to vertex u is called the vertex figure of u.

A polyhedron is convex if its interior is a convex region; that is, given any two

points P and Q in the interior, the line segment connecting P to Q is completely

contained inside the polyhedron. There is a remarkable theorem of Steinitz charac-

terizing the skeletons of convex polyhedra.

Theorem 14.13. (Steinitz’s theorem) A graphG is the skeleton of a convex polyhe-

dron if and only if G is planar and 3-connected.

A proof of Steinitz’s theorem can be found in the book by GRÜNBAUM [76] or

ZIEGLER [196]. It is too lengthy to include here.

Exercises

14.7.1 Find the planar dual of the line graph of K4. Find the line graph of the

cube, and find its planar dual.

14.7.2 Find all k-regular planar graphs whose duals are ℓ-regular, for all possible

values of k and ℓ.

14.7.3 Find the dual of the multigraph constructed from K4 by doubling each

edge. Refer to Figure 14.8.

FIGURE 14.8

Find the dual graph

14.7.4 A planar graph G is self-dual if it is isomorphic to its planar dual. Find a

self-dual planar graph on n vertices, for all n ≥ 4.

Planar Graphs 321

14.7.5 Program the algorithm CONSTRUCTDUAL(), and test it on the graphs of

Exercises 14.7.1 and 14.7.2.

14.7.6 Show that a planar graph is bipartite if and only if its dual is Eulerian.

14.7.7 Find the Schläfli symbols of the tetrahedron, cube, octahedron, dodeca-

hedron, and icosahedron.

14.7.8 Given a Schläfli symbol {p, q} for a polyhedron, find a formula for the

number of vertices, edges, and faces of the polyhedron in terms of p and

q.

14.8 Triangulations

A planar embedding Gp whose faces all have degree three is called a triangulation.

If Gp is a triangulation, then 3f = 2ε. Substituting into Euler’s formula gives:

Lemma 14.14. A triangulationGp satisfies ε = 3n− 6 and f = 2n− 4.

If Gp is not a triangulation, and has no multiple edges or loops, then every face

has at least degree three. We can convertGp to a triangulation by adding some diag-

onal edges to faces of degree four or more. This gives the following:

Lemma 14.15. A simple planar graph G has ε ≤ 3n− 6.

For example, because K5 has ε = 10 > 3n − 6, we can conclude that K5 is

non-planar.

One consequence of Lemma 14.15 is that O(ε) algorithms on planar graphs are

alsoO(n) algorithms. For example, a DFS or BFS in a planar graph takesO(n) steps.

This will be useful in algorithms for testing planarity, or for drawing or coloring a

planar graph, or constructing dual graphs.

Given a graphG, we can subdivide any edges ofGwithout affecting the planarity

of G. Therefore, we will assume that G has no vertices of degree two. We will also

takeG to be 2-edge-connected, so that there are no vertices of degree one. LetG be a

simple planar graph, and let ni be the number of vertices of degree i, for i = 3, 4,

Counting the edges of G gives

3n3 + 4n4 + 5n5 + . . . = 2ε ≤ 6n− 12

Counting the vertices of G gives

n3 + n4 + n5 + . . . = n

Multiply the second equation by 6 and subtract the two equations to obtain:

Lemma 14.16. A simple planar graph with no vertices of degree one or two satisfies

3n3 + 2n4 + n5 ≥ 12 + n7 + 2n8 + 3n9 + . . .

322 Graphs, Algorithms, and Optimization

Corollary 14.17. A simple planar graph with no vertices of degree one or two has a

vertex of degree three, four, or five.

Proof. The values ni are non-negative integers.

The Corollary 14.17 results in a technique for reducing a planar triangulation on

n vertices to one on n−1 vertices that is fundamental for understanding the structure

of planar graphs, and for handling them algorithmically.

Algorithm 14.8.1: REDUCEGRAPH(Gp)

comment:





Given a simple planar triangulationG on n > 4 vertices

with rotation system p.

Construct a planar triangulation G′ on n− 1 vertices.

if there is a vertex u with DEG(u) = 3

then





let p(u) = (ux, uy, uz)
G′ ← G− u
return (G′)

if there is a vertex u with DEG(u) = 4

then





let p(u) = (uw, ux, uy, uz)
if w 6−→ y

then

{
G′ ← G− u+ wy
wy replaces wu in p(w) and yw replaces yu in p(y)

else

{
G′ ← G− u+ xz
xz replaces xu in p(x) and zx replaces zu in p(z)

return (G′)
comment: otherwise, DEG(u) = 5
let p(u) = (uv, uw, ux, uy, uz)
if v 6−→ x and v 6−→ y

then




G′ ← G− u+ vx+ vy
vx, vy replace vu in p(v)
xv replaces xu in p(x) and yv replaces yu in p(y)

else if v −→ x

then




G′ ← G− u+ wy + wz
wy,wz replace yu in p(w)
yw replaces yu in p(y) and zw replaces zu in p(z)

else if v −→ y

then




G′ ← G− u+ zw + zx
zw, zx replace zu in p(z)
wz replaces wu in p(w) and zw replaces zu in p(z)

return (G′)

Let Gn be a triangulation on n ≥ 4 vertices. If n = 4, then K4 is the only

possibility. So we assume that n > 4. We know that Gn always has a vertex of

degree three, four, or five.

Planar Graphs 323

Theorem 14.18. Given a simple planar triangulation Gn on n > 4 vertices, Algo-

rithm REDUCEGRAPH() constructs a simple planar triangulation Gn−1 on n − 1
vertices.

Proof. We know thatGn has a vertex of degree three, four, or five. If there is a vertex

u of degree three, let p(u) = (ux, uy, uz), as illustrated in Figure 14.9. Because Gn
is a triangulation, we know that xy, yz, and zx are edges ofGn. ConsequentlyGn−u
is also a triangulation.

x

yz

u −→

x

yz

Gn Gn−1

FIGURE 14.9

DEG(u) = 3

If there is a vertex u of degree four, let p(u) =(uw, ux, uy, uz), as illustrated in

Figure 14.10. Because Gn is a triangulation, we know that wx, xy, yz, and zw are

edges of Gn. When u is deleted, one face of Gn − u is a quadrilateral. If w 6−→ y,

we can add the edge wy to get a planar triangulationGn − u+wy. If w −→ y, then

edge wy is exterior to the quadrilateral face. Consequently x 6−→ z, so that we can

add the edge xz to get a planar triangulation Gn − u + xz. In either case we get a

planar triangulationGn−1.

If there is a vertex u of degree five, let p(u) = (uv, uw, ux, uy, uz), as illustrated

in Figure 14.11. Because Gn is a triangulation, we know that vw,wx, xy, yz, and zv
are edges of Gn. When u is deleted, one face of Gn − u is a pentagon. If v 6−→ x
and v 6−→ y, we can add the edges vx and vy to get a planar triangulation Gn −
u+ vx+ vy. Otherwise, if v −→ x, then edge vx is exterior to the pentagonal face.

Consequently, w 6−→ y and w 6−→ z, so that we can add the edges wy and wz to

get a planar triangulation Gn − u + wy + wz. Otherwise, if v −→ y, then edge vy
is exterior to the pentagonal face, and we can proceed as above to get a triangulation

Gn − u+ zw + zx. The proof is complete.

Note that Algorithm REDUCEGRAPH() requires the degrees of the vertices.

These can be computed in O(n) time and stored in an array. Once the degrees are

known, the reduction from Gn to Gn−1 takes constant time. Usually, this algorithm

will be applied recursively to reduce a planar triangulation Gn to G4, which must

324 Graphs, Algorithms, and Optimization

w x

yz

u −→

w x

yz

Gn Gn−1

FIGURE 14.10

DEG(u) = 4

equal K4. If the algorithm is being used to find a planar embedding of Gn, or to

color it, the graph will then be rebuilt in reverse order.

14.9 The sphere

The plane can be mapped onto the surface of the sphere by a simple transformation

called stereographic projection. Place a sphere on the surface of the plane, so that it

is tangent at the south pole. See Figure 14.12. Now from any point P on the plane,

construct a straight-line L to the north pole of the sphere. L will intersect the surface

of the sphere in some point. Call it P ′. This transformation maps any point P in the

plane to a point P ′ on the surface of the sphere. The mapping is clearly invertible and

continuous. The only point on the sphere to which no point of the plane is mapped is

the north pole.

If Gψ is an embedding of a graph on the plane, then stereographic projection

will map the points of Gψ onto an embedding of G on the surface of the sphere.

Conversely, if we are given an embedding of G on the surface of the sphere, we can

roll the sphere to ensure that the north pole is not a point of the embedding. Then

use stereographic projection to map the surface of the sphere onto the plane, thereby

obtaining an embedding of G on the plane. Consequently, embedding graphs on the

plane is equivalent to embedding them on the sphere.

When a graph is embedded on the surface of the sphere, the faces are the regions

that remain when the sphere is cut along the edges ofG. There is no outer face. Every

face is bounded. However, the face that contains the north pole will become the outer

face when the embedding is projected onto the plane. By rolling the sphere to place

any desired face at the top, we can make any face the outer face. We state this as a

lemma.

Planar Graphs 325

v

w

xy

z

u
−→

v

w

xy

z

Gn Gn−1

FIGURE 14.11

DEG(u) = 5

Lemma 14.19. A planar graph can be drawn so that any facial cycle, any edge, or

any vertex appears on the boundary of the outer face.

Exercises

14.9.1 Given a sphere of radius one tangent to the (x, y)-plane at the origin, with

north pole at (0, 0, 1). Show that a point (u, v) in the plane is projected

onto (u/D, v/D, (u2 + v2)/D) on the sphere, where D = u2 + v2 + 1.

14.9.2 Show that a point (x, y, z) on the sphere is projected onto (x
1−z ,

y
1−z) on

the plane.

14.9.3 Denote a point (u, v) in the plane by the complex number w = u + iv.

Express the formulas of question 1 in terms of w.

14.9.4 Sometimes stereographic projection is done with a sphere of radius one

with its center at the origin. How do the formulas of questions 1 and 2

change? Is there a qualitative change? What are the images of the southern

and northern hemispheres under the projection?

14.10 Whitney’s theorem

The plane and sphere are oriented surfaces. Consider a graph G embedded on the

plane as Gp, where p gives the clockwise orientation of the edges incident on each

vertex. We are assuming that the plane is viewed from above. If we now view the

plane from below, the clockwise orientation of each p(u) will appear counter clock-

326 Graphs, Algorithms, and Optimization

south pole

north pole

P ′

P

FIGURE 14.12

Mapping the plane to the sphere

wise. If an embedding Gp is projected onto the sphere, then each p(u) will appear

clockwise if viewed from inside the sphere, but counter clockwise if viewed from

outside the sphere. Given a rotation system p, we write p for the rotation system

obtained by reversing the cyclic order of each p(u). So p(u) = p(u)−1. The embed-

dings Gp and Gp are usually considered equivalent.

DEFINITION 14.17: Let Gp1 and Gp2 be two plane embeddings of a graph G,

with rotation systems p1 and p2, respectively. Gp1 and Gp2 are isomorphic embed-

dings if there is an automorphism ofGwhich transforms p1 into p2.Gp1 andGp2 are

equivalent embeddings if there is an automorphism of G which transforms p1 into

either p2 or p2.

An automorphism of G will permute the vertices of G, and consequently alter

the edges in the cyclic permutations of a rotation system. If θ is an automorphism of

G, then p1(u) = (e1, e2, . . . , ek) is transformed by θ into θ(p1(u)) = (θ(e1), θ(e2),
. . . , θ(ek)). If this equals p2(θ(u)), for all vertices u, then Gp1 and Gp2 are isomor-

phic. Isomorphic rotation systems are equivalent.

Two isomorphic rotation systems for K4 are illustrated in Figure 14.13. Here

p2 = p1. It is easy to see that if we take θ = (3, 4), then θ(p1(u)) = p2(θ(u)), for

all u = 1, 2, 3, 4.

A triangulationG on 7 points is shown in Figure 14.14. Two rotation systems for

it, p1 and p2, are also given below. Here we also have p2 = p1. However, there is

no automorphism of G that will transform p1 into p2. This can be verified using the

degrees of the vertices. Vertex 2 is the only vertex of degree six. Hence any automor-

phism θ must fix 2. So θ(p1(2)) must equal p2(2). The only vertices of degree four

are vertices 1 and 5. Therefore either θ(1) = 1 or θ(1) = 5. If θ(1) = 1, then from

p2(2) we see that θ(3) = 6. This is impossible as vertices 3 and 6 have different

Planar Graphs 327

2

34

1

2

3 4

1

p1(1) = (12, 13, 14) p2(1) = (12, 14, 13)
p1(2) = (21, 24, 23) p2(2) = (21, 23, 24)
p1(3) = (31, 32, 34) p2(3) = (31, 34, 32)
p1(4) = (41, 43, 42) p2(4) = (41, 42, 43)

FIGURE 14.13

Two isomorphic rotation systems for K4

degrees. If θ(1) = 5, then from p2(2) we have θ(3) = 4, which is also impossible,

as vertices 3 and 4 have different degrees.

So Gp1 and Gp2 are equivalent embeddings that are non-isomorphic. This can

only occur if there is an automorphism of G mapping p1 to p2, but no automorphism

mapping p1 to p2; that is, Gp2 is obtained by “flipping” Gp1 upside down. The ex-

ample of Figure 14.13 shows that this is not possible with K4, but is possible with

the triangulation of Figure 14.14.

DEFINITION 14.18: A planar map Gp is orientable if Gp 6∼= Gp. Otherwise Gp

is non-orientable.

So the embedding of K4 is non-orientable, but the embeddings of Figure 14.14

are orientable. An example of a 2-connected graph with two inequivalent planar em-

beddings is shown in Figure 14.6. Whitney’s theorem states that if G is 3-connected,

this cannot happen. Let C be a cycle in a connected graphG. C is a separating cycle

if G− V (C) is disconnected.

Theorem 14.20. (Whitney’s theorem) Let G be a 3-connected planar graph. Let p
be any planar rotation system for G. The facial cycles of Gp are the induced, non-

separating cycles of G.

Proof. Let C be an induced, non-separating cycle of G. In any planar embedding of

G, C corresponds to a Jordan curve in the plane. There can be vertices of G in the

interior or exterior of the Jordan curve, but not both, because C is non-separating.

Without loss of generality, assume that any vertices of G − C are in the exterior of

the Jordan curve. It follows that the interior of the Jordan curve is a face, so that C is

a facial cycle of G.

Conversely, let C be a facial cycle. Without loss of generality, we can assume

that C corresponds to a Jordan curve whose interior is a face. If G contains an edge

uv which is a chord of C, then u and v divide C into two paths C[u, v] and C[v, u].

328 Graphs, Algorithms, and Optimization

1

23
4

5

6

7

1

2 3
4

5

6

7

p1(1) = (12, 16, 14, 13) p2(1) = (12, 13, 14, 16)
p1(2) = (21, 23, 24, 25, 27, 26) p2(2) = (21, 26, 27, 25, 24, 23)
p1(3) = (31, 34, 32) p2(3) = (31, 32, 34)
p1(4) = (41, 46, 45, 42, 43) p2(4) = (41, 43, 42, 45, 46)
p1(5) = (52, 54, 56, 57) p2(5) = (52, 57, 56, 54)
p1(6) = (61, 62, 67, 65, 64) p2(6) = (61, 64, 65, 67, 62)
p1(7) = (72, 75, 76) p2(7) = (72, 76, 75)

FIGURE 14.14

Two equivalent, non-isomorphic rotation systems

Because uv must be embedded exterior to C, there can be no path from an interior

vertex of C[u, v] to an interior vertex of C[v, u]. Therefore G − {u, v} is discon-

nected, a contradiction, as G is 3-connected. Consequently, C is an induced cycle.

Let x be any vertex of G−C. If x is the only vertex of G−C, then G− C = x, so

that C is a non-separating cycle, and we are done. Otherwise let y be another vertex

of G − C. Because G is 3-connected, G contains at least three internally disjoint

xy-paths. At most two of these paths can intersect C. See Figure 14.15. Therefore

G−C contains an xy-path, for all x, y. It follows that C is a non-separating cycle of

G.

One consequence of Whitney’s theorem is that, if G is a 3-connected planar

graph, an embedding can be found purely from the cycles ofG. If we can identify an

induced, non-separating cycle C, we can then assign an orientation to C. Each edge

of C will be contained in another induced, non-separating cycle, so that the orien-

tation of adjacent cycles will thereby also be determined. Continuing in this way, a

complete rotation system for G can be constructed. This rotation system can then be

used to construct a dual graph.

DEFINITION 14.19: Let G be a 3-connected planar graph. The abstract dual is

G∗, a dual graph determined by the induced non-separating cycles of G.

The abstract dual is the same as Gp∗, where p is a rotation system determined by

Planar Graphs 329

Cx y

FIGURE 14.15

Whitney’s theorem

the induced, non-separating cycles, but it can be constructed without reference to a

rotation system.

Up to equivalence of embeddings, a 3-connected planar graph has just one ro-

tation system, so that the abstract dual is uniquely defined. Orientable 3-connected

planar graphs have just two rotation systems (which are inverses of each other). Non-

orientable 3-connected planar graphs have just one rotation system.

Whitney’s theorem does not provide an algorithm for determining whether a

graph is planar, as the characterization of planarity in terms of induced, non-

separating cycles does not lead to an efficient algorithm. There are too many cy-

cles in a graph to effectively find them all and determine whether they are induced,

non-separating cycles.

14.11 Medial digraphs

LetG be a loopless graph with a planar rotation system p. Note thatG is allowed to be

a multigraph. There are several possible ways of constructing a digraph representing

Gp. One of them is the following.

DEFINITION 14.20: The medial digraphM(Gp) of a planar map Gp is obtained

fromGp by subdividing every edge uv ofG with a vertex xuv . The edges of M(Gp)
consist of all arcs of the form (u, xuv), (xuv , u), and (xuv, xuw), where uv and uw
are consecutive edges in p(u), with uw following uv.

An example of a medial digraph is shown in Figure 14.16. Because G is planar,

M(Gp) will also be planar.

Lemma 14.21. Let Gp1 andGp2 be planar embeddings of a graphG. ThenGp1 and

Gp2 are isomorphic embeddings if and only if M(Gp1) andM(Gp2) are isomorphic

as digraphs.

330 Graphs, Algorithms, and Optimization

FIGURE 14.16

A medial digraph

Proof. Suppose that Gp1 andGp2 are isomorphic embeddings. Let θ be an automor-

phism of G that maps p1 to p2. Given a vertex u, let θ map u to v. Then θ maps

p1(u) to p2(v). Consequently θ can be extended to map the directed edges {xuw}
of M(Gp1) based on p1(u) to the directed edges {xvw} of M(Gp2) based on p2(v).
Thus M(Gp1) ∼=M(Gp2).

Conversely, if M(Gp1) and M(Gp2) are isomorphic, let θ be an isomorphism

from M(Gp1) to M(Gp2). Then θ must map V (G) to V (G), and the set of subdi-

viding vertices {xuw} to itself. Suppose that θ maps u ∈ V (G) to v. The directed

edges ensure that θ maps p1(u) to p2(v). Hence Gp1 and Gp2 are isomorphic.

Note that if p2 is taken to be p1, then Gp1 and Gp2 will be isomorphic when

M(Gp1) and M(Gp1) are isomorphic. Here M(Gp1) is the digraph converse of

M(Gp1), obtained by reversing all directed edges. There are two kinds of automor-

phisms of Gp — those that preserve the orientation, and those that reverse the orien-

tation.

DEFINITION 14.21: Let Gp be a planar embedding. An orientation-preserving

automorphism of Gp is an automorphism of G that maps Gp to Gp. An orientation-

reversing automorphism of Gp is an automorphism of G that maps maps Gp to Gp.

The automorphism group of Gp is denoted AUT(Gp):

DEFINITION 14.22: The orientation-preserving automorphism group of Gp is

AUT(Gp), those automorphisms of G induced by AUT(M(Gp)). The full automor-

phism group of Gp is AUT
+(Gp) consisting of AUT(Gp), plus those automorphisms

that map Gp to Gp.

Planar Graphs 331

If Gp is orientable, then AUT(Gp) = AUT
+(Gp), because every automorphism

preserves the orientation. But if Gp is non-orientable, then AUT(Gp) is a subgroup

of index two in AUT
+(Gp). If θ is any orientation-reversing automorphism, then the

coset AUT(Gp)θ contains all the orientation-reversing automorphisms.

Theorem 14.22. Let Gp be a planar embedding of a 3-connected graph G. Then

AUT
+(Gp) = AUT(G).

Proof. By Whitney’s theorem, the facial cycles ofGp are the induced non-separating

cycles. Because every automorphism θ ∈ AUT(G) must map an induced non-

separating cycle to another, we see that θ ∈ AUT
+(Gp).

A consequence of this theorem is that |AUT(G)| = 2|AUT(Gp)| when G is a

3-connected non-orientable planar graph. When G is not 3-connected, this does not

hold. An example is G = K2,6. A non-orientable planar embedding is shown in

Figure 14.17, where |AUT(Gp)| = 12, but |AUT(G)| = 1440.

1

82

3

4

5

6

7

FIGURE 14.17

A planar embedding of K2,6

Exercises

14.11.1 Find all triangulations on 4, 5, 6, and 7 vertices.

14.11.2 Determine the group of orientation-preserving mappings of an embedding

of K4 on the plane. Compare it with AUT(K4).

14.11.3 Let G be K5, with an edge removed. Determine the group of orientation-

preserving mappings of an embedding ofG on the plane. Compare it with

AUT(G).

14.11.4 Verify that the embedding Gp of Figure 14.17 is non-orientable, that

|AUT(Gp)| = 12, and that |AUT(G)| = 1440.

14.11.5 Determine whether the platonic solids are orientable.

14.11.6 Prove that a planar embedding Gp is orientable if and only if Gp∗ is ori-

entable.

332 Graphs, Algorithms, and Optimization

14.11.7 Determine which of the triangulations on 5, 6, and 7 vertices are ori-

entable.

14.11.8 Determine the graph G for which M(G) is shown in Figure 14.16.

14.12 The 4-color problem

Given a geographic map drawn in the plane, how many colors are needed such that

the map can be colored so that any two regions sharing a common border have dif-

ferent colors? In 1852, it was conjectured by Francis Guthrie that four colors suffice.

This simple problem turned out to be very difficult to solve. Several flawed “proofs”

were presented. Much of the development of graph theory originated in attempts to

solve this conjecture. See AIGNER [2] for a development of graph theory based on

the 4-color problem. In 1976, Appel and Haken announced a proof of the conjec-

ture. Their proof was based on the results of a computer program that had to be

guaranteed bug-free. A second computer proof by ALLAIRE [3] appeared in 1977.

Each of these approaches relied on showing that any planar graph contains one of

a number of configurations, and that for each configuration, a proper coloring of a

smaller (reduced) graph can be extended to a proper coloring of the initial graph. The

computer programs generated all irreducible configurations, and colored them. In the

Appel-Haken proof, there were approximately 1800 irreducible configurations. The

uncertainty was whether all irreducible configurations had indeed been correctly gen-

erated. In 1995, ROBERTSON, SANDERS, SEYMOUR, and THOMAS [149] presented

another proof, also based on a computer program, but considerably simpler than the

original, requiring only 633 irreducible configurations.

In this section, we present the main ideas of Kempe’s 1879 “proof” of the 4-color

theorem.

Given a geographic map drawn in the plane, one can construct a dual graph, by

placing a vertex in the interior of each region, and joining vertices by edges if they

correspond to adjacent regions. Coloring the regions of the map is then equivalent

to coloring the vertices of the dual, so that adjacent vertices are of different colors.

Consequently, we shall be concerned with coloring the vertices of a planar graph.

Theorem 14.23. (4-Color theorem) Every planar graph can be properly colored

with four colors.

IfG is any simple planar graph, then it is always possible to extendG to a simple

triangulation, by adding diagonal edges in non-triangular faces. Therefore, if we can

prove that all simple planar triangulations are 4-colorable, the result will be true for

all planar graphs. Hence we assume that we are given a planar triangulationGn on n
vertices. We attempt to prove the 4-color theorem (Theorem 14.23) by induction on

n.

The colors can be chosen as the numbers {1, 2, 3, 4}. Given a coloring ofG, then

the subgraph induced by any two colors i and j is bipartite. We denote it by Kij .

Planar Graphs 333

DEFINITION 14.23: Given any 4-coloring of a planar graph G, each connected

component ofKij is called a Kempe component. The component containing a vertex

x is denotedKij(x). A path inKij between vertices u and v is called a Kempe chain.

Notice that if we interchange the colors i and j in any Kempe component, we

obtain another coloring of G.

Now letGn be a simple triangulation on n vertices. If n = 4, thenGn = K4. It is

clear that Theorem 14.23 is true in this case. Assume that n > 4. By Corollary 14.17,

we know that Gn has a vertex of degree three, four, or five. Let u be such a vertex.

Using Algorithm 14.8.1, we reduce Gn to a simple planar triangulation Gn−1 by

deleting u and adding up to two diagonals in the resulting face. We assume as an

induction hypothesis, that Gn−1 has a 4-coloring. There are three cases.

Case 1. DEG(u) = 3.

Let the three adjacent vertices to u be (x, y, z). They all have different colors.

Therefore there is a fourth color available for v, giving a coloring of Gn.

Case 2. DEG(u) = 4.

Let the four vertices adjacent to u in Gn be (w, x, y, z), with a diagonal wy
in Gn−1. It is clear that w, x, and y have different colors. If x and z have

the same color, then a fourth color is available for u. Otherwise, let w, x, y, z
be colored 1, 2, 3, 4, respectively. There may be a Kempe chain from x to

z. If there is no Kempe chain, interchange colors in the Kempe component

K24(x), so that x and z now both have color 4. If there is a Kempe chain

from x to z, there can be no Kempe chain from w to y, for it would have to

intersect the xz-Kempe chain. Interchange colors inK13(w), so that w and z
now both have color 3. In each case there is a fourth color available for u.

FIGURE 14.18

Kempe chains

Case 3. DEG(u) = 5.

Let the five vertices adjacent to u in Gn be (v, w, x, y, z), with diagonals vx
and vy in Gn−1. It is clear that v, x, and y have different colors. Because we

have a 4-coloring of Gn−1, the pentagon (v, w, x, y, z) is colored in either

334 Graphs, Algorithms, and Optimization

3 or 4 colors. If it is colored in three colors, there is a fourth color available

for u. If it is colored in four colors, then without loss of generality, we can

take these colors to be (1, 2, 3, 4, 2), respectively. If K13(v) contains no vx-

Kempe chain, then we can interchange colors in K13(v), so that v and x are

now both colored 3. Color 1 is then available for u. If K14(v) contains no

vy-Kempe chain, then we can interchange colors in K14(v), so that v and y
are now both colored 4. Color 1 is again available for u. Otherwise there is a

Kempe chain Pvx connecting v to x and a Kempe chain Pvy connecting v to

y. It follows that K24(w) contains no wy-Kempe chain, as it would have to

intersectPvx inK13(v). Similarly,K23(z) contains no vz-Kempe chain, as it

would have to intersectPvy inK14(v). If Pvx and Pvy intersect only in vertex

v, then we can interchange colors in bothK24(w) andK23(z), thereby giving

w color 4 and z color 3. This makes color 2 available for u. The difficulty is

that Pvx and Pvy can intersect in several vertices. Interchanging colors in

K24(w) can affect the other Kempe chains, as shown in Figure 14.19, where

the pentagon (v, w, x, y, z) is drawn as the outer face.

v

w

xy

z

FIGURE 14.19

Intersecting Kempe chains

Although this attempted proof of Theorem 14.23 fails at this point, we can use

these same ideas to prove the following.

Theorem 14.24. (5-Color theorem) Any planar graph can be colored in five colors.

Proof. See Exercise 14.12.1.

Appel and Haken’s proof of the 4-color theorem is based on the important con-

cept of reducibility. Given a graph G, a reducible configuration H is a subgraph of

Planar Graphs 335

G with the property that H can be reduced to a smaller subgraph H ′, such that a

4-coloring of H ′ can be extended to all of H and G. If every planar graph contained

a reducible configuration, then every planar graph could be 4-colored. Appel and

Haken’s proof was essentially a computer program to construct all irreducible config-

urations, and to show that they could be 4-colored. The difficulty with this approach

is being certain that the computer program is correctly constructing all irreducible

configurations. The reader is referred to SAATY and KAINEN [153] or WOODALL

and WILSON [194] for more information on reducibility.

14.13 Nowhere-zero flows

Consider a plane map Gp with no cut-edge, whose faces have been colored using

colors {1, 2, 3, 4}. Each edge uv lies on the boundary of two distinct faces. We con-

sider the plane to be an oriented surface, viewed from “above”, so that in traversing

uv, there is a well-defined face to the right of uv, and a well-defined face to the left.

Assign an orientation and flow to the edges of G to create a digraph, also denotedG,

as follows. Consider an edge uv, traversed from u to v, with face F1 to the right of

uv, and face F2 to the left. Let c1 be the color of F1, and c2 the color of F2. We have

c1 6= c2, because the coloring is a proper coloring. If c1 > c2, then uv is oriented

from u to v, with flow ϕ(uv) = c1 − c2. Otherwise uv is oriented from v to u, and

the flow ϕ(uv) = c2 − c1. Then ϕ(uv) 6= 0, so that ϕ(uv) ∈ {1, 2, 3}. The function

ϕ is called a nowhere-zero flow on Gp.

Using this ϕ, let vertex u have rotation p(u) = (v1, v2, . . . , vm), and let the face

with edges uvi and uvi+1 on its boundary be Fi, with color ci, where vm+1 is the

same as v1. If edge uvi is directed out of u, then its flow is ϕ(uvi) = ci − ci−1. If

it is directed into u, its flow is ϕ(uvi) = ci−1 − ci. Taking the sum of flows on all

edges directed out of u, minus the sum of flows into u, we obtain

(cm − c1) + (c1 − c2) + . . .+ (cm−1 − cm) = 0

Thus, ϕ satisfies the conservation condition of a network flow.

We have used a coloring of the dual of the planar embedding to find this flow.

However, the idea of a k-flow can be applied to any 2-edge-connected graph. It does

not have to be planar.

DEFINITION 14.24: LetG be a 2-edge-connected graph. A nowhere-zero k-flow

on G is an orientation of E(G) and a function ϕ : E(G)→ {1, 2, . . . , k − 1} which

satisfies the flow conservation condition at each vertex.

An example of a nowhere-zero 4-flow is shown in Figure 14.20. Here the color

number is shown inside each face, and the arrows indicate the orientation of each

edge according to the face colors.

336 Graphs, Algorithms, and Optimization

1

2

3

1

2

3

1 3

2

1

1

2

1

2

1

2

1
1

2 4

3
24

3

1

1

FIGURE 14.20

A nowhere-zero 4-flow.

So a face-coloring of a planar map Gp determines a nowhere-zero 4-flow in G.

The converse is also true, as stated in the following theorem. A proof can be found

in Bondy and Murty [24].

Theorem 14.25. A 2-edge-connected planar graph G has a nowhere-zero 4-flow if

and only if it has a planar dual that can be colored in 4 colors.

So the existence of a nowhere-zero 4-flow in a planar graph is equivalent to the

4-color theorem.

Consider a nowhere-zero 2-flow in 2-edge-connected graph G. This corresponds

to an orientation of the edges of G such that each edge uv has ϕ(uv) = 1. The

conservation condition then says that the number of edges directed out of every vertex

u equals the number of edges directed into u. So G must be Eulerian. Conversely, an

Euler tour in G determines a nowhere-zero 2-flow.

Given a nowhere-zero k-flow in a graph G, the orientation of any edge uv can

be reversed, with the flow ϕ(uv) changed to −ϕ(uv). This can be done for any set

of edges. The resulting flow still satisfies the conservation condition at each vertex,

but some values are now negative. Thus, it is convenient to relax the definition of

nowhere-zero flow as follows.

DEFINITION 14.25: Let G be a 2-edge-connected graph. A nowhere-zero k-

flow or k-circulation on G is an orientation of E(G) and a function ϕ : E(G) →
{±1,±2, . . . ,±(k− 1)} which satisfies the flow conservation condition at each ver-

tex.

Tutte [179, 180, 181], has made three fundamental conjectures on k-flows.

Conjecture. Every 2-edge-connected graph has a 5-flow.

Seymour [159] has proved that every 2-edge-connected graph has a 6-flow. An

algorithm to find a nowhere-zero 6-flow appears in Younger [195].

Planar Graphs 337

Conjecture. Every 2-edge-connected graph that does not have the Petersen graph

as a minor has a 4-flow.

Conjecture. Every 4-edge-connected graph has a 3-flow.

Exercises

14.13.1 Prove Theorem 14.24, the 5-color theorem.

14.13.2 Let G be a planar triangulation with a separating 3-cycle (u, v, w). Let

H and K be the two connected subgraphs of G that intersect in exactly

(u, v, w), such that G = H ∪K . Show how to construct a 4-coloring of

G from 4-colorings of H and K .

14.13.3 Let G be a planar triangulation with a separating 4-cycle (u, v, w, x). Let

H and K be the two connected subgraphs of G that intersect in exactly

(u, v, w, x), such thatG = H∪K . Show how to construct a 4-coloring of

G from 4-colorings of the triangulationsH+uw andK+uw. Hint: u, v,

andw can be assumed to have the same colors inH andK . If x is colored

differently in H and K , look for an xv-Kempe chain, try interchanging

colors in Kij(x), or try coloringH + vx and K + vx.

14.13.4 All lakes are blue. Usually all bodies of water are colored blue on a map.

Construct a planar graph with two non-adjacent vertices that must be blue,

such that the graph cannot be colored in four colors subject to this require-

ment.

14.13.5 Construct a nowhere-zero 4-flow for the graph of the dodecahedron.

14.13.6 Construct a nowhere-zero 5-flow for the Petersen graph.

14.13.7 Let G have a k-flow for some k. Given a cycle C in G, show how to

change ϕ(uv) for all edges uv on C to get a new flow.

14.14 Straight-line drawings

Every simple planar graph can be drawn in the plane with no edges crossing, so that

each edge is a straight line. Read’s Algorithm is a linear-time algorithm for doing

this. It is based on the triangulation reduction.

Suppose that Gn is a triangulation on n vertices that has been reduced to a trian-

gulation Gn−1 on n− 1 vertices, by deleting a vertex u as in Algorithm 14.8.1, and

adding up to two edges e and e′. Suppose that a straight-line embedding of Gn−1

has already been computed. If DEG(u) = 3, let x, y, z be the adjacent vertices. We

can place u inside the triangle (x, y, z) to obtain a straight-line embedding of Gn. If

DEG(u) = 4, the edge e is a diagonal of a quadrilateral in Gn−1. We can place u on

the line representing e to obtain a straight-line embedding of Gn.

338 Graphs, Algorithms, and Optimization

Suppose now that DEG(u) = 5. The edges e = vx and e′ = vy are diagonals of a

pentagon inGn−1. This pentagon may have several possible polygonal shapes, which

are illustrated in Figure 14.21. The triangle (v, x, y) is completely contained inside

the pentagon. Inside (v, x, y), there is a “visible” region, shown shaded gray. The

visible region can be calculated, by extending the lines of the adjacent triangles with

sides vx and vy, and intersecting the half-planes with the triangle (v, x, y). Vertex

u can then be placed inside the visible region to obtain a straight-line embedding of

Gn. Thus in each case, a straight-line embedding of Gn−1 can be extended to Gn.

This gives:

Theorem 14.26. (Fáry’s theorem) Every planar graph has a straight-line embed-

ding.

v

xy

v

xy

v

xy

v

xy

FIGURE 14.21

The “visible” region

Read’s algorithm begins by triangulating G if ε < 3n − 6. It then deletes a

sequence of vertices u1, u2, . . . , un−4 to reduce G to K4. It next assigns a planar

coordinatization to the vertices ofK4, and then restores the deleted vertices in reverse

order. For each vertex ui deleted, it is necessary to store ui and its degree, so that

it can later be correctly restored to the graph. Finally, the triangulating edges are

removed. The result is a straight-line embedding of G.

Planar Graphs 339

Algorithm 14.14.1: READSALGORITHM(Gp)

comment:





Given a simple planar graph G on n ≥ 4 vertices

with rotation system p, construct a straight-line

drawing of G in the plane.

triangulateG without creating multiple edges or loops

mark all triangulating edges as “virtual” edges

i← 1
while n > 4

do





G← REDUCEGRAPH(G)
ui ← the vertex that was deleted

i← i + 1
n← n− 1

comment:G is now K4

assign pre-chosen coordinates to the vertices of K4

for i = n− 4 downto 1

do

{
calculate the visible region for ui
restore ui to G

remove all virtual edges from G

It is easy to see that Read’s algorithm isO(n). It takesO(n) steps to compute the

degrees of G, and to triangulate G. It takes O(n) steps to reduce G to K4, and then

O(n) steps to rebuild G. Read’s algorithm can be modified by initially choosing any

facial cycle F of G, and assigning coordinates to the vertices of F so that they form

a regular convex polygon. The reduction to K4 is then modified so that vertices of

the outer facial cycle F are never deleted. The result is a planar embedding with the

given facial cycle as the outer face.

The embeddings produced by Read’s algorithm are usually not convex embed-

dings. Tutte has shown how to produce a straight-line embedding of a graph such that

all faces are convex regions, by solving linear equations. Consider any face ofG, with

facial cycle (v1, v2, . . . , vk). We begin by assigning coordinates to v1, v2, . . . , vk
such that they form a convex polygon in the plane. This will be the outer face of

a planar embedding of G.

Tutte then looks for a coordinatization of the remaining vertices with the special

property: the coordinates of vi, where i > k, are the average of the coordinates of

all adjacent vertices. A coordinatization with this property is called a barycentric

coordinatization. We can express it in terms of matrices as follows.

Let A be the adjacency matrix of G such that the first k rows and columns corre-

spond to vertices v1, v2, . . . , vk. Let D be the n× n diagonal matrix such that entry

Dii equals 1, if i ≤ k. If i > k, entry Dii equals DEG(vi). Let X be the vector of

x-coordinates of the vertices, and let Y be the vector of y-coordinates. Construct a

matrix B fromA by replacing the first k rows with zeroes. Then the first k entries of

BX are zero. But if i > k, the ith entry is the sum of the x-coordinates of vertices

adjacent to vi. LetXk denote the vector whose first n entries are the x-coordinates of

340 Graphs, Algorithms, and Optimization

v1, . . . , vk, and whose remaining entries are zero. Yk is similarly defined. Then the

barycentric condition can be written as

DX = Xk +BX, DY = Yk +BY.

These equations can be written as (D − B)X = Xk and (D − B)Y = Yk.

Consider the matrix D −B.

Lemma 14.27. The matrix D −B is invertible.

Proof. Consider the determinant det(D−B). The first k rows ofD−B look like an

identity matrix. Expanding the determinant along the first k rows gives det(D −B)
= det(K) where K is the matrix formed by the last n − k rows and columns. K
looks very much like a Kirchhoff matrix, except that the degrees are not quite right.

In fact, if we construct a graph G′ from G by identifying v1, v2, . . . , vk into a single

vertex v0, and deleting the loops created, thenK is formed from the Kirchhoff matrix

K(G′) by deleting the row and column corresponding to v0. It follows that det(K) =
±τ(G′), by the matrix-tree theorem. Because G′ is a connected graph, det(K) 6= 0,

so that D −B is invertible.

It follows that the barycentric equations have a unique solution, for any assign-

ment of the coordinatesXk and Yk. Tutte has shown that ifG is a 3-connected planar

graph, this solution has remarkable properties: if we begin with a convex polygon for

the outer face, the solution is a planar coordinatization with straight lines, such that

no edges cross. All faces, except the outer face, are convex regions. No three vertices

of any facial cycle are collinear.

It is fairly easy to see that a planar barycentric coordinatization of a 3-connected

graph must have convex faces. For consider a non-convex face, as in Figure 14.22.

Vertex v is a corner at which a polygonal face is non-convex. Clearly vertex v is not

on the outer face. Let the two adjacent vertices of the polygon be u and w. Because

G is 3-connected, v has at least another adjacent vertex. All other vertices adjacent

to v must be in the angle between the lines vu and vw as indicated in the diagram,

because G is 3-connected, and there are no crossing edges. But then all vertices

adjacent to v are to the right of the dotted line, which is impossible in a barycentric

coordinatization.

14.15 Coordinate averaging

Suppose that a straight-line drawing of a planar graph G has been obtained, with

coordinates (xi, yi) for vertex i, where i = 1, . . . , n. The faces may be convex re-

gions, or not. There is a simple algorithm which frequently produces a significant

improvement in the drawing, called coordinate averaging.

Planar Graphs 341

v

u

w

FIGURE 14.22

A non-convex face

Algorithm 14.15.1: COORDINATEAVERAGING(Gp)

comment:





Given a straight-line drawing of a simple plane map Gp,

on n ≥ 4 vertices, with coordinates (xi, yi) for vertex i,
perform coordinate averaging.

let F1, F2, . . . , Ff denote the facial cycles of Gp

let Ff be the facial cycle of the outer face

for j ← 1 to f − 1

do

{
use algorithm FACIALCYCLE(Fj) to sum (xi, yi), for all i ∈ Fj
(uj , vj)← average of the coordinates of the vertices of Fj

comment: (uj , vj) are now coordinates of the dualGp∗, except for Ff

for i← 1 to n do if i 6∈ Ff
then

{
sum (uj, vj) for all faces Fj containing vertex i
(xi, yi)← average of the coordinates of the Fj containing i

The algorithm COORDINATEAVERAGING() uses FACIALCYCLE() to walk

around each facial cycle Fj , summing the coordinates of the vertices on Fj , so as

to compute their average. The result is coordinates (uj , vj) inside the polygon rep-

resenting the face Fj . This is done for every face except the outer face. When this

algorithm is used, it is usually convenient to first place the vertices of the outer face

on a regular convex polygon. The remaining vertices will have coordinates (xi, yi)
inside the outer polygon. Essentially, coordinates for the vertices of the dual are being

constructed, except for the outer face Ff . Then a second loop re-calculates (xi, yi),
by performing the same operation, but in the dual. This constitutes one application

of COORDINATEAVERAGING(). Clearly this takesO(n) steps. This algorithm can be

iterated several times, to produce an improved drawing.

An example appears in Figure 14.23. The graph on the left in the diagram could

be the result of using Read’s algorithm to find a drawing of the line graph of the cube,

placing the vertices of the outer face on a regular quadrilateral. The graph on the right

342 Graphs, Algorithms, and Optimization

is after six applications of coordinate averaging. A constant number of applications

of coordinate averaging still results in a O(n) algorithm.

FIGURE 14.23

Coordinate averaging

Coordinate averaging can be expressed in terms of barycentric coordinates of

a related graph. Given a plane map Gp, with dual Gp∗, let {v1, . . . vn} denote the

vertices of G, and let {F1, . . . , Ff} denote the vertices of Gp∗. Construct a bipartite

graph whose vertices are {v1, . . . vn} ∪ {F1, . . . , Ff} in which vertex vi is incident

with Fj if and only if vi is on the boundary of Fj in Gp. This graph is called the

vertex-face-incidence graph or equivalently, the primal-dual graph of Gp. Denote

it by GF . Apply Tutte’s drawing algorithm to find a barycentric drawing of GF .

Coordinates for vertices on the outer face Ff are chosen, and then coordinates for the

remaining vertices are found such that the coordinates of each vertex are the average

of the coordinates of the adjacent vertices. This is a form of coordinate averaging.

Solving the linear equations of Lemma 14.27 to find the coordinates takes up to

O((n + f)3) steps, using Gaussian elimination. But coordinate averaging can find

an approximate solution in O(n) steps. Coordinate averaging in G, which produces

barycentric coordinates of GF , tends to produce nicer drawings than barycentric co-

ordinates for G. In fact, it often hilights symmetries of G.

14.16 Kuratowski’s theorem

In this section we will prove Kuratowski’s theorem. The proof presented is based on

a proof by KLOTZ [101]. It uses induction on ε(G).
If G is a disconnected graph, then G is planar if and only if each connected com-

ponent of G is planar. Therefore we assume that G is connected. If G is a separable

graph that is planar, letH be a block ofG containing a cut-vertex v. H is also planar,

becauseG is. We can deleteH−v fromG, and find a planar embedding of the result.

We then choose a planar embedding ofH with v on the outer face, and embedH into

a face of G having v on its boundary. This gives:

Planar Graphs 343

Lemma 14.28. A separable graph is planar if and only if all its blocks are planar.

So there is no loss in generality in starting with a 2-connected graph G.

Theorem 14.29. (Kuratowski’s theorem) A graph G is planar if and only if it

contains no subgraph TK3,3 or TK5.

Proof. It is clear that if G is planar, then it contains no subgraph TK3,3 or TK5.

To prove the converse, we show that if G is non-planar, then it must contain TK3,3

or TK5. We assume that G is a simple, 2-connected graph with ε edges. To start

the induction, notice that if ε ≤ 6, the result is true, as all graphs with ε ≤ 6 are

planar. Suppose that the theorem is true for all graphs with at most ε− 1 edges. Let

G be non-planar, and let ab ∈ E(G) be any edge of G. Let G′ = G − ab. If G′ is

non-planar, then by the induction hypothesis, it contains a TK3,3 or TK5, which is

also a subgraph of G. Therefore we assume that G′ is planar. Let κ(a, b) denote the

number of internally disjoint ab-paths in G′. Because G is 2-connected, we know

that κ(a, b) ≥ 1.

Case 1. κ(a, b) = 1.

G′ has a cut-vertex u contained in every ab-path. Add the edges au and bu to

G′, if they are not already present, to get a graphH , with cut-vertex u. LetHa

andHb be the blocks ofH containing a and b, respectively. If one ofHa orHb

is non-planar, sayHa, then by the induction hypothesis, it contains a TK3,3 or

TK5. This subgraph must use the edge au, as G′ is planar. Replace the edge

au by a path consisting of the edge ab plus a bu-path in Hb. The result is a

TK3,3 or TK5 inG. IfHa andHb are both planar, choose planar embeddings

of them with edges au and bu on the outer face. Glue them together at vertex

u, remove the edges au and bu that were added, and restore ab to obtain a

planar embedding of G, a contradiction.

Case 2. κ(a, b) = 2.

Let P1, and P2 be two internally disjoint ab-paths inG′. Because κ(a, b) = 2,

there is a vertex u ∈ P1 and v ∈ P2 such that all ab-paths contain at least

one of {u, v}, and G′ − {u, v} is disconnected. If Ka denotes the connected

component ofG′−{u, v} containing a, letG′
a be the subgraph ofG′ induced

byKa ∪{u, v}. Let Kb denote the remaining connected components of G′−
{u, v}, and let G′

b be the subgraph of G′ induced by Kb ∪ {u, v}, except that

uv, if it is an edge of G′, is not included (because it is already in G′
a). Now

add a vertex x to G′
a, adjacent to u, v, and a to obtain a graph Ha. Similarly,

add y to G′
b adjacent to u, v, and b to obtain a graph Hb. Suppose first that

Ha and Hb are both planar. As vertex x has degree three in Ha, there are

three faces incident on x. Embed Ha in the plane so that the face with edges

ux and xv on the boundary is the outer face. Embed Hb so that edges uy
and yv are on the boundary of the outer face. Now glue Ha and Hb together

at vertices u and v, delete vertices x and y, and add the edge ab within the

face created, to obtain a planar embedding of G. Because G is non-planar,

344 Graphs, Algorithms, and Optimization

we conclude that at least one ofHa andHb must be non-planar. Suppose that

Ha is non-planar. It must contain a subgraph TK5 or TK3,3. If the TK5 or

TK3,3 does not contain x, then it is also contained in G, and we are done.

Otherwise the TK5 or TK3,3 contains x. NowHb is 2-connected (becauseG
is), so that it contains internally disjoint paths Pbu and Pbv connecting b to u
and v, respectively. These paths, plus the edge ab, can be used to replace the

edges ux, vx, and ax in Ha to obtain a TK5 or TK3,3 in G.

Case 3. κ(a, b) ≥ 3.

Let P1, P2, and P3 be three internally disjoint ab-paths in G′. Consider a

planar embedding of G′. Each pair of paths P1 ∪ P2, P1 ∪ P3, and P2 ∪ P3

creates a cycle, which embeds as a Jordan curve in the plane. Without loss

of generality, assume that the path P2 is contained in the interior of the cycle

P1∪P3, as in Figure 14.24. The edge ab could be placed either in the interior

of P1 ∪P2 or P2 ∪P3, or else in the exterior of P1 ∪P3. As G is non-planar,

each of these regions must contain a path from an interior vertex of Pi to an

interior vertex of Pj . Let P12 be a path from u1 on P1 to u2 on P2. Let P13

be a path from v1 on P1 to u3 on P3. Let P23 be a path from v2 on P2 to

v3 on P3. If u1 6= v1, contract the edges of P1 between them. Do the same

for u2, v2 on P2 and u3, v3 on P3. Adding the edge ab to the resultant graph

then results in a TK5 minor. By Theorem 14.5, G contains either a TK5 or

TK3,3.

We can also state Kuratowski’s theorem in terms of minors.

Theorem 14.30. (Wagner’s theorem) A graphG is planar if and only if it does not

have K3,3 or K5 as a minor.

Proof. It is clear that if G is planar, then it does not have K3,3 or K5 as a minor.

Conversely, ifG does not haveK3,3 orK5 as a minor, then it cannot have a subgraph

TK3,3 or TK5. By Kuratowski’s theorem, G is planar.

The graphs K5 and K3,3 are called Kuratowski graphs for the plane. They are

also said to be obstructions to planarity, because a graph containing a TK5 or TK3,3

is non-planar. In terms of minors, a graph havingK5 orK3,3 as a minor is non-planar.

Exercises

14.16.1 Find a TK3,3 or TK5 in the Petersen graph.

14.16.2 Find a TK3,3 or TK5 in the graph of Figure 14.25.

14.16.3 Show that if G is a non-planar 3-connected graph, then either G = K5,

or else G contains a TK3,3.

14.16.4 Let G be a graph with a separating set {u, v}. Let H ′ be a connected

component ofG−{u, v}, and letH denote the graph induced by V (H ′)∪

Planar Graphs 345

P1

P2

P3

a b

u1

v1

u2

v2

u3
v3

FIGURE 14.24

A K5 minor

{u, v}. Let K be the graph induced by V (G) − V (H ′), so that G =
H ∪K , and H and K intersect only in {u, v}. Let H+ = H + uv and

K+ = K + uv. Show that G is planar if and only if H+ and K+ are

planar.

14.16.5 Let G be a 3-connected graph with at least five vertices. Show that G
contains an edge xy such that G · xy is 3-connected. Hint: If G · xy
is not 3-connected, choose xy so that the subgraph K of the preceding

exercise is as large as possible, and find a contradiction. This was proved

by THOMASSEN [169].

14.16.6 Suppose that a coordinatization in the plane of an arbitrary 3-connected

graph G on n vertices is obtained by solving the barycentric equations

(D − B)X = Xk and (D − B)Y = Yk. Describe an O(n3) algorithm

which determines whether G is planar, and constructs a rotation system,

using the coordinates X and Y .

346 Graphs, Algorithms, and Optimization

FIGURE 14.25

Find a TK3,3

14.17 The Hopcroft-Tarjan algorithm

A number of different algorithms for planarity-testing have been developed. The

first linear-time algorithm was the Hopcroft-Tarjan planarity algorithm. Given a 2-

connected graph G on n vertices, it determines whether G is planar in O(n) time.

If G is found to be planar, it can be extended to construct a rotation system, too. If

G is found to be non-planar, it can also be modified to construct a TK5 or TK3,3

subgraph, although this is somewhat more difficult. We present a simplified version

of the Hopcroft-Tarjan algorithm here.

There is no loss in generality in starting with a 2-connected graph G. Suppose

first that G is hamiltonian, and that we are given a hamilton cycleC, and number the

vertices of C consecutively as 1, 2, . . . , n. The remaining edges of G are chords of

C. For each vertex u, order the adjacent vertices (v1, v2, . . . , vk) so that v1 < v2 <
. . . < vk. We then start at vertex u = n, and follow the cycle C back to vertex 1.

As we proceed, we will place each chord uv either inside C or outside C. When we

have returned to vertex 1, we will have constructed a planar embedding of G. We

draw the cycle C as in Figure 14.26, with the path from 1 to n starting near the top,

and moving down the page.

Consider the example of Figure 14.26. The algorithm stores two linked lists

of chords, one for the inside of C, and one for the outside of C. We denote

these as Li and Lo, respectively. Each linked list defines a sequence of chords

[u1v1, u2v2, u3v3, . . .] as they are added to the embedding. The inside of C appears

in the diagram to the left of the path from 1 to n. The outside ofC appears to the right

of the path. In the example, the algorithm begins at vertex n = 7 with adjacent ver-

tices (1, 3, 4, 6). It first places the “chord” (7, 1), which really completes the cycle,

on the inside linked list. It then places chords (7, 3) and (7, 4) also on Li. The inside

linked list is now [(7, 1), (7, 3), (7, 4)]. The chord (7, 4) is called the leading chord

Planar Graphs 347

C

7

6

5

4

3

2

1

FIGURE 14.26

The Hopcroft-Tarjan algorithm

in the linked list. The next chord to be inserted is to be placed after it. To determine

whether the next chord (u, v) fits on the inside, it need only compare its endpoint v
with the upper endpoint of the current leading chord of Li. After placing the chords

incident on vertex 7, the algorithm moves to vertex 6, where it sees the chord (6, 1).
This will not fit on the inside (because 1 < 4), but is easily placed on the outside

linked list. It then moves to vertex 5, and places (5, 2) also on Lo. The outside linked

list is then [(6, 1), (5, 2)], where (5, 2) is the leading chord. It then moves to vertex 4,

where it sees the chord (4, 1). When the algorithm moves up the cycle to vertex 4, the

leading chord of Li is moved past (7, 4) to (7, 3), because the chord (4, 1) is above

(7, 4). It then determines that (4, 1) will not fit on the inside (because 1 < 3, where

(7, 3) is the leading chord of Li); and that (4, 1) will not fit on the outside (because

1 < 2, where (5, 2) is the leading chord of Lo). Therefore G is non-planar. In fact

the cycle C, together with the three chords (7, 3), (5, 2), and (4, 1) form a subgraph

TK3,3, which we know to be non-planar.

348 Graphs, Algorithms, and Optimization

Algorithm 14.17.1: BASICHT(G,C)

comment:

{
Given a 2-connected graph G with a hamilton cycle

C = (1, 2, . . . , n). Determine whether G is planar.

for u← n downto 1

do





suppose that u is adjacent to (v1, v2, . . . , vk)
for j ← 1 to k

do





if vj ≥ u− 1 go to L1
comment: uvj is a chord with vj above u
if uvj fits inside C, place it in Li

else if uvj fits outside C, place it in Lo

else





m = SWITCHSIDES(u, vj)
if m = 0 return (NonPlanar)
if m = 1

then

{
comment: uvj now fits inside C
place uvj inside C

else if m = −1
then

{
comment: uvj now fits outside C
place uvj outside C

L1 :

We must still describe what SWITCHSIDES(u, v) does. Its purpose is to deter-

mine whether some chords of Li and Lo can be interchanged to allow (u, v) to be

embedded. Its description will follow.

This simplified version of the Hopcroft-Tarjan algorithm contains the main fea-

tures of the complete algorithm, but is much easier to understand. The algorithm

stores two linked lists, Li and Lo. Each list has a leading chord – the chord after

which the next chord is to be placed when inserted in the list as the sequence of

chords is extended. Initially the leading chord will be the last chord in the linked list,

but this will change as the algorithm progresses. It is convenient to initialize both

linked lists with dummy chords, so that each list has at least one chord. Each chord

stored in a linked list will be represented by a pair, denoted (LowerPt , UpperPt),
where UpperPt is the endpoint with the smaller value – it is above the LowerPt in

the diagram. As the chords are placed in the linked lists, a linear order is thereby

defined on the chords in each list. Given a chord (u, v), where u > v, the next chord

after (u, v) is the chord nested immediately inside (u, v), if there is such a chord. If

there is no such chord, then the next chord after (u, v) is the first chord below (u, v),
if there is one; that is, the first chord whose UpperPt ≥ u. To determine whether a

chord (u, v) fits either inside or outside C, we need only compare v with the leading

chord’s UpperPt . It fits if v ≥ UpperPt . As u moves up the cycle, we must adjust

the pointer to the leading chord on both sides to ensure that the leading chord always

satisfies UpperPt < u.

Planar Graphs 349

So we know how to store the chords, and how to determine whether a chord (u, v)
fits in either side. If it fits, we insert it in the appropriate linked list and continue with

the next chord. What if (u, v) will not fit in either side?

14.17.1 Bundles

Two chords (u1, v1) and (u2, v2) are said to be in conflict if either u1 > u2 > v1 >
v2 or u2 > u1 > v2 > v1. Conflicting chords cannot both be placed on the same

side of C. We define a conflict graph K whose vertices are the set of all chords

currently in the linked lists. Two chords are adjacent in K if they are in conflict. A

set of chords corresponding to a connected component of the conflict graph is called

a bundle (originally called a “block” in HT’s paper; however, the term “block” has

another graph theoretical meaning). The conflict graph must always be bipartite, as

two chords in the same linked list must never be in conflict. Therefore each bundleB
is also bipartite – the bipartition of a bundle consists of the chords inside the cycle,

denotedBi, and the chords outside the cycle, denotedBo. A typical bundle is shown

as the shaded area in Figure 14.27. The two shaded zones represent Bi and Bo for

one bundle. Any chord inside a shaded zone conflicts with all chords in the opposite

shaded zone. Notice that if the conflict graph is not bipartite, that it is impossible to

assign the chords to the inside and outside ofC. Consequently,Gmust be non-planar

in such a case.

Now the conflict graph K is changing dynamically as the algorithm progresses.

Therefore the bundles are also changing. However, they change in a simple way. Each

chord is initially a bundle by itself, until it is found to conflict with another chord.

In a 1-chord bundle, one of Bi and Bo will be empty. The algorithm will store the

bundles in a stack.

Bo

Bi

C

7

6

5

4

3

2

1

FIGURE 14.27

Bundles of chords

Consider the situation where no conflicts have yet been discovered, so that all

350 Graphs, Algorithms, and Optimization

chords so far have been placed on Li. The algorithm is visiting vertex u on C, at-

tempting to place a chord (u, v). The leading inside chord satisfies LowerPt ≥ u >
UpperPt . It belongs to a 1-chord bundle, the current bundle. The algorithm first at-

tempts to nest (u, v) inside the leading inside chord. If it fits, then (u, v) becomes the

new leading inside chord, and a new 1-chord bundle is created containing only uv,

which becomes the current bundle – the bundles are nested. The innermost bundle is

always the current bundle and is stored at the top of the bundle stack.

If (u, v) will not fit on the inside, it conflicts with the leading inside chord. (u, v)
may conflict with several chords of the inside linked list. They will be consecutive

chords of Li, preceding the leading chord. These chords initially belong to differ-

ent bundles, but will become merged into the current bundle B, thereby forming

Bi, when (u, v) is placed in the outside list. Bo will consist of (u, v). If B denotes

the current bundle, we will call Bi and Bo the current inside and outside bundles,

although they are part of the same bundle.

At this point we can say that the current inside and outside bundles consist of one

or more consecutive chords in the two linked lists. This will be true at each point of

the algorithm.

So in order to represent a bundle B, we require two pointers into each of Li and

Lo, being the first and last chords of Li that belong toBi, and the first and last chords

of Lo that belong to Bo. We could switch the chords of Bi to Lo and the chords of

Bo to Li by reassigning four pointers. Because the bundles are nested, we store them

as a stack.

When a chord (u, v) is placed in one of the linked lists, and it does not conflict

with the leading chord on either side, a new current bundle B containing (u, v) is

created, nested inside the previous current bundle. The current bundle is the one

at the top of the stack. As vertex u moves up the cycle, we eventually have u ≤
UpperPt for the uppermost chord in the current bundle. The current bundleB is then

no longer relevant, as no more chords can conflict with it. Therefore B is removed

from the stack and deleted. The next bundle B′ on the stack becomes the current

bundle. When this happens, the chords belonging to Bi or Bo often occur in Li or

Lo, respectively, as a consecutive subsequence of chords contained within B′
i or B′

o.

When B is deleted, the effect is to merge the chords of B into B′. Then B′ becomes

the new current bundle. Its chords are again consecutive chords of Li and Lo.

14.17.2 Switching bundles

We have a chord (u, v) that will not fit on the inside or outside of C. What do we do?

There are several possible ways in which this can arise. Two of them are illustrated

in Figure 14.28. The current bundle is shown shaded in gray.

In the left diagram of Figure 14.28, (u, v) conflicts with one or more chords in

Bi and in Bo. If we form a subgraph consisting of the cycle C, the edge (u, v), and

a conflicting chord from each of Bi and Bo, we have a subgraph TK3,3, which we

know is non-planar. In the right diagram of Figure 14.28, (u, v) conflicts with one or

more chords inBo. It does not conflict with any chords inBi, but it does conflict with

the leading chord (a, b) of Li, which is in a previous inside bundle. If we interchange

Planar Graphs 351

the chords ofBi andBo, there will be room to place (u, v) in Lo. This can be done in

constant time, because the chords in each bundle are consecutive chords in the linked

list. We only need to change a constant number of pointers to transfer a sequence of

chords from Li to Lo, and vice versa.

C

u

v
C

u

v

a

b

FIGURE 14.28

Switching bundles

A third situation also exists which is nearly the mirror image of the right diagram

of Figure 14.28, in which (u, v) conflicts with one or more chords in Bi, but does

not conflict with any chords in Bo, and does conflict with the leading chord (a, b) of

Lo, which is in a previous outside bundle. It can be handled in a similar way.

Suppose that a situation similar to the right diagram of Figure 14.28 exists. B is

the current bundle, and chord (u, v) conflicts with a chord of Bo, but not with Bi.
The leading chord of Lo is in Bo. The leading chord of Li is (a, b), which is not in

Bi. Because every chord is contained in some bundle, (a, b) is in a previous bundle

on the stack. The bundles are nested, so that B is nested within a bundle B′, which

may in turn be nested within a bundle B′′, etc. Without loss of generality, suppose

that there are at least three bundles on the stack, which begins B,B′, B′′, and that

(a, b) is in B′′.

Now B is nested within B′, which is nested within B′′. Because the leading

chord of Li is in B′′, it follows that (u, v) does not conflict with any chord of B′
i,

and that (u, v) does conflict with some chord of B′
o. So (u, v) conflicts with a chord

of both Bo and B′
o. If (u, v) can be embedded, Bo and B′

o must be merged into one

bundle, and they must both be on the same side ofC. They will be in the same part of

the bipartition of K . Therefore the algorithm merges B and B′. Call the result B. It

then discovers that interchanging the chords of Bi and Bo allows (u, v) to be placed

on Lo. Because (u, v) conflicts with (a, b) in Li, the bundlesB and B′′ are then also

merged.

The properties of bundles are summarized as follows:

1. The bundles correspond to connected components of the conflict graph.

352 Graphs, Algorithms, and Optimization

2. The bundles are nested inside each other, and consequently stored on a

stack.

3. The current bundle is the one on the top of the stack.

4. The chords of each Bi and Bo form a contiguous subsequence of Li and

Lo, respectively.

The description of SWITCHSIDES(u, v) Algorithm 14.17.2 can now be given.

It is called when chord (u, v) conflicts with both the leading chord of Li and the

leading chord of Lo. The algorithm needs to know whether the leading chord of Li
is within Bi, and whether the leading chord of Lo is within Bo. This can be done

by comparing the endpoints of the leading chords with the first and last chords of Bi
and Bo. One of the leading chords is always in the current bundle. The other must

be in a previous bundle, or the conflict graph will be non-bipartite, and G will be

non-planar.

When Bi and Bo are interchanged, the leading chords in Li and Lo also change.

Suppose that the leading chord of Lo is withinBo, but that the leading chord of Li is

in a previous bundle, as in Figure 14.28. The new leading chord of Lo can easily be

found by taking the first chord of Lo following Bo. The new leading chord of Li is

the former leading chord of Lo.
This procedure merges the bundles on the stack until either a non-bipartite con-

flict graph is found, in which case it returns zero, or until it becomes possible to

place (u, v) in one of Li or Lo. Notice that swapping the chords of Bi and Bo takes

a constant number of steps, and that merging the current bundle with the previous

bundle on the stack also takes a constant number of steps. The total number of bun-

dles is at most the number of edges of G, so that the total number of steps required

by SWITCHSIDES(u, v) is O(n), summed over all iterations.

If SWITCHSIDES(u, v) returns either 1 or −1, then it is possible to place (u, v)
inside or outside C. If SWITCHSIDES(u, v) returns 0, then the current bundle con-

tains chords of Li and Lo that conflict with (u, v), so that the conflict graph is not

bipartite. In this case G is non-planar. However, it is not particularly easy to find a

TK5 or TK3,3 in G in this situation. If the algorithm succeeds in placing all the

chords, then a rotation system can be found from the order in which the chords occur

in Li and Lo.
So the three main components of this simplified version of the Hopcroft-Tarjan

algorithm are:

1. Construct the linked lists Li and Lo in the right order.

2. Construct the connected components of the conflict graph as a stack of

bundles.

3. Keep the bundles up to date. Each time that a chord is added to one of Li
or Lo, the current bundle must be updated.

These steps can all be performed in linear time.

Planar Graphs 353

Algorithm 14.17.2: SWITCHSIDES(u, v)

comment: (u, v) conflicts with the leading chord of Li and Lo

while (true)

do





let B denote the current bundle

let B′ denote the previous bundle on the stack

if the leading chord of Lo is within Bo

then





if the leading chord of Li is within Bi
then return (0) “non-planar”

comment:

{
otherwise the leading chord of Li
is in a bundle previous to B

if the leading chord of Li is within B′
i

then





interchange the chords of Bi and Bo
merge B and B′

find the new leading chords of Li and Lo
if (u, v) does not conflict with Lo

then return (−1) “(u, v) now fits in Lo”
else merge B and B′

else





comment:





the leading chord of Li is within Bi
the leading chord of Lo is

in a bundle previous to B

if the leading chord of Lo is within B′
o

then





interchange the chords of Bi and Bo
mergeB and B′

find the new leading chords of Li and Lo
if (u, v) does not conflict with Li

then return (1) “(u, v) now fits in Li”
else merge B and B′

14.17.3 The general Hopcroft-Tarjan algorithm

Up to now, we have assumed that we are given a hamilton cycle C in a 2-connected

graph G which we are testing for planarity. If we are not given a starting hamilton

cycle, the algorithm is the recursive extension of the hamilton cycle case. We give a

brief sketch only. The first step is to perform a depth-first search in G starting from

vertex 1, to assign a DF-numbering to the vertices, and to calculate the low-points

of all vertices. The DFS will construct a DF-spanning tree T rooted at 1. Number

the vertices of G according to their DF-numbers. It can happen that the tree T is a

hamilton path, in which case we have the proceeding situation exactly – the vertices

are numbered consecutively along T , and as the DFS returns from recursion, it visits

the vertices in the order n, n− 1, . . . , 1. If we sort the chords incident on each vertex

in order of increasing DF-number of the other endpoint, the algorithm is identical.

354 Graphs, Algorithms, and Optimization

u

y

x

w

v
Tuv Tuw

FIGURE 14.29

Subtrees Tuv and Tuw

If the tree T is not a hamilton path, consider the situation where the DFS is

visiting vertex u, and a recursive call DFS(v) is made, due to an edge uv. The re-

cursive call DFS(v) constructs a subtree Tuv . Refer to Figure 14.29. When Tuv is

constructed, LowPt [v] is calculated. BecauseG is 2-connected, this is a vertex some-

where aboveu in T . The entire subtree Tuv behaves very much like a single chord (u,
LowPt [v]). Therefore the vertices adjacent to umust be sorted according to LowPt [·]
values, just as in the simplified algorithm (where v is used rather than LowPt [v]).

There are two kinds of possible subtree, and these are illustrated as Tuv and Tuw
in Figure 14.29. Both Tuv and Tuw have the same LowPt , equal to x. Notice that Tuv
has a frond with endpoint y between u and x, but that Tuw has no such frond. We

will call a subtree like Tuw a type I subtree, and a subtree like Tuv a type II subtree.

It is easy to distinguish type I and II subtrees. The DFS can compute the second low-

point as well as the low-point. If the second low-point is between u and LowPt [v],
then the subtree Tuv is of type II; otherwise, it is of type I. Now a type I subtree Tuw
behaves exactly like a chord (u,LowPt [w]). There can be any number of them, and

they can be nested inside each other in any order. However, they cannot be nested

inside a type II subtree.

Therefore we must embed all type I subtrees at u with LowPt = x before any

type II subtrees at u with LowPt = x. This can be accomplished by ordering the

adjacent vertices at u so that fronds ux and type I subtrees Tuw with LowPt [w] = x

Planar Graphs 355

precede type II subtrees Tuv with LowPt [v] = x. Hopcroft and Tarjan assign a weight

to all edges incident on u. A frond ux has weight 2x. A type I subtree Tuv has weight

2 ·LowPt[v]. A type II subtree Tuv has weight 2 ·LowPt[v]+1. The adjacent vertices

are then sorted by weight, which can be done by a bucket sort in linear time, because

the weights are all in the range 1, . . . , 2n+ 1.

The general algorithm takes place in two stages. The first stage is LOWPTDFS()

which constructs a DF-tree, calculates the low-points and second low-points,

and sorts the adjacency lists. The second stage is another DFS which we call

EMBEDDINGDFS(). It is a DFS using the re-ordered adjacency lists and is given

as Algorithm 14.17.3

Algorithm 14.17.3 constructs an embedding by placing the edges into two linked

lists Li and Lo, as in the simplified algorithm. The list Li which originally cor-

responded to the chords placed inside C, now corresponds to the edges placed to

the left of the DF-tree, because the drawings were made with the interior of C to

the left of the path. Similarly, the list Lo now corresponds to edges placed to the

right of the DF-tree, because the exterior of C was drawn to the right of the path.

EMBEDDINGDFS() first descends the DF-tree. The first leaf it encounters will have

a frond back to vertex 1. This is a consequence of the ordering of the adjacency lists.

This creates a cycle C, which we draw to the left of the path. The remaining fronds

and subtrees will be placed either in Li or Lo, exactly as in the simplified algorithm.

A subtree Tuv is similar to a chord (u,LowPt [v]). Tuv fits in Li if and only if a

chord (u,LowPt [v]) does. In this case, we place a dummy chord (u,LowPt [v]) in Li
and a dummy chord (u, u) in Lo. A dummy chord is a chord that has an associated

flag indicating that it is a placeholder for a subtree. If the dummy chord (u,LowPt [v])
is assigned to Li, the subtree Tuv is to be embedded to the left of the path of the DF-

tree containing u. The algorithm then calls EMBEDDINGDFS(v) recursively. The

fronds placed in Li by the recursion are placed to the left of the tree Tuv. The fronds

placed inLo are to the right of Tuv. The dummy chord (u, u) in Lo has the purpose of

ensuring that any fronds placed in Lo by the recursive call must have UpperPt ≥ u.

356 Graphs, Algorithms, and Optimization

Algorithm 14.17.3: EMBEDDINGDFS(u)

comment: extend the embedding DFS from u

for all v adjacent to u

do





if uv is a frond and v is above u

then





if (u, v) fits in Li
then place (u, v) in Li
else if (u, v) fits in Lo
then place (u, v) in Lo

else





m = SWITCHSIDES(u, v)
if m = 0 then return(NonPlanar)
if m = 1

then place (u, v) in Li
else place (u, v) in Lo

else





comment: uv is a tree edge

if u = Parent [v] then



w = LowPt [v]
if (u,w) fits in Li

then place (u,w) in Li and (u, u) in Lo
else if (u,w) fits in Lo
then place (u,w) in Lo and (u, u) in Li

else





m = SWITCHSIDES(u,w)
if m = 0 then return(NonPlanar)
if m = 1

then place (u,w) in Li and (u, u) in Lo
else place (u,w) in Lo and (u, u) in Li

EMBEDDINGDFS(v)
if NonPlanar then exit

14.18 Notes

The important area of graph minors was developed in a series of over 20 papers by

Robertson and Seymour. Some of their early work on graph minors is surveyed in

their paper ROBERTSON and SEYMOUR [148]. They have proved a theorem of far-

reaching significance, that in any infinite collection of graphs, there are always two

graphs such that one is a minor of the other; or in other words, any set of graphs

in which no graph is a minor of another, is finite. The books by DIESTEL [44] and

ZIEGLER [196] contain excellent chapters on graph minors.

Rotation systems were developed by HEFFTER [81] and EDMONDS [46].

Planar Graphs 357

The Jordan curve theorem is non-trivial – see ROSS and ROSS [150] for some

remarkable examples.

Read’s algorithm to draw a planar graph by reducing a triangulation is from

READ [144]. It was modified to use a regular polygon as the outer face by KOCAY

and PANTEL [109]. Tutte’s method of using barycentric coordinates to construct con-

vex drawings of graphs appeared in TUTTE [173].

Whitney’s theorem appeared in WHITNEY [191].

Good source books for polytopes are the books by GRÜNBAUM [76] and

ZIEGLER [196]. A classic text on polyhedra is by COXETER [38].

The original proof of the four-color theorem appeared in APPEL and HAKEN [5]

and [6]. An excellent survey article of the Appel-Haken proof is WOODALL and

WILSON [194]. There are a number of excellent books on the 4-color problem, in-

cluding SAATY and KAINEN [153], ORE [133], and FRITSCH and FRITSCH [56].

A very readable history of the 4-color problem can be found in WILSON [193].

A shorter proof was accomplished by ROBERTSON, SANDERS, SEYMOUR, and

THOMAS in [149]. Much of the development of graph theory arose out of attempts

to solve the 4-color problem. AIGNER [2] develops the theory of graphs from this

perspective. A survey of work on problems related to nowhere-zero flows appears

in JAEGER [94]. A detailed treatment of k-flows can be found in BONDY and

MURTY [24] and DIESTEL [44].

Kuratowski’s theorem is a famous theorem of graph theory. It originally ap-

peared in KURATOWSKI [112]. The proof presented here is based on a proof of

KLOTZ [101]. See also THOMASSEN [167].

The Hopcroft-Tarjan planarity algorithm is from HOPCROFT and TARJAN [88].

See also WILLIAMSON [192]. It is usually presented as a “path-addition” algorithm;

that is, an algorithm that embeds one path at a time across a cycle. It is presented

here as an equivalent algorithm that recursively embeds a branch of the DF-tree.

http://taylorandfrancis.com

15

Graphs and Surfaces

15.1 Introduction

The plane and the sphere are the simplest topological surfaces. The structure of planar

graphs, and algorithms for embedding graphs on the plane are well understood. Much

less is known about graph embeddings on other topological surfaces, and the struc-

ture of these graphs. We begin with the torus, the doughnut-shaped surface shown

in Figure 15.1. We imagine this surface made out of rubber, and using scissors, cut

it along the two circumferences shown in the diagram. The surface of the torus then

unfolds into a rectangle, which is indicated on the right. The opposite sides of the

rectangle labeled a must be glued together with the arrows aligned, as must the sides

labeled b, in order to reconstruct the torus. We could glue the edges in the order a,

then b; or else b, then a. Both represent the same torus.

a

b

a

b

FIGURE 15.1

The torus

When a graph is drawn on the rectangle representing the torus, we must remem-

ber that the two sides labeled a (and the two sides b) are really the same, so that graph

edges can “wrap around” the diagram. Notice that the four corners of the rectangle

all represent the same point. Figure 15.2 shows two embeddings ofK3,3 on the torus.

These embeddings ofK3,3 are very different from each other. Unlike the plane in

which a 3-connected graph has a unique embedding (up to orientation), some graphs

have very many distinct embeddings in the torus, or other surfaces.

DEFINITION 15.1: An embedding of a graph G in a surface Σ is a function ψ
that maps the vertices of G into points of Σ, and the edges of G into continuous

359

360 Graphs, Algorithms, and Optimization

a

b

a

b

1

2 3

4

56

a

b

a

b

1 2

3

4

5

6

(i) (ii)

FIGURE 15.2

Two embeddings of K3,3 on the torus

curves in Σ, such that the curves representing two edges intersect only at a common

endpoint. We write Gψ for the image of G under the embedding ψ.

In the embeddings of Figure 15.2, we can assign a “coordinate system” to the

rectangle representing the torus, and then construct ψ by assigning coordinates to

the vertices, and then draw the edges as straight lines. This is how the diagram was

constructed.

Definition 15.1 uses an intuitive notion of a surface, and an intuitive notion of

continuous. Currently we have the plane, sphere, or torus in mind. We will later make

the definition of a surface more precise. Because we have coordinate systems for the

above surfaces, by “continuous” we mean continuous mappings of the coordinates.

However, topological continuity does not require coordinates.

If we cut the torus along the edges of the embeddings of K3,3, the torus surface

falls apart into several connected regions. As in the case of the plane, we call these

regions the faces of the embedding. Once again we are relying on an intuitive notion

for the concepts of region and face. A facial cycle or facial walk is an oriented cycle

or walk of the graph which bounds a face. The embedding of K3,3 in Figure 15.2(i)

has three faces, each bounded by a hexagon. The embedding in Figure 15.2(ii) also

has three faces, two bounded by quadrilaterals, and one bounded by a facial walk

which has length 10, and in which several vertices and edges appear twice. A con-

venient way of finding the faces and facial walks of an embedding is to think of

walking along an edge of the graph, while holding a paint brush in one’s right hand,

and painting a stripe along the surface. When a vertex is reached, we take the first

edge on our right, so that the paint brush does not cross an edge, and continue tracing

out the facial boundary. Upon returning to the starting edge, tracing it in the same

direction as before, a facial walk has been completed.

An open disc in the plane is the region interior to a circle. We will use an intuitive

understanding of the notion of homeomorphic regions and surfaces. Two regionsR1

and R2 are said to be homeomorphic if one can be transformed into the other by a

one-to-one continuous deformation, whose inverse is also continuous. For example,

an open disc is homeomorphic to a face bounded by a hexagon, or by any other

Graphs and Surfaces 361

polygon. (However an open disc is not homeomorphic to a polygon with a hole in

its interior.) A homeomorphism of R1 and R2 is any continuous one-to-one mapping

from R1 onto R2, whose inverse is also continuous.

DEFINITION 15.2: A 2-cell is a region homeomorphic to an open disc. An em-

beddingGψ is a 2-cell embedding if all faces are 2-cells.

Corresponding to the idea of a 2-cell are 0-cells (a single point), 1-cells (an open

line segment), and 3-cells (the interior of a sphere in 3-dimensional space), etc.

Usually we will restrict embeddings of a graph G to 2-cell embeddings. For ex-

ample, we could draw a planar embedding of a planar graph G, such as the cube,

in the rectangle representing the torus. The result would not be a 2-cell embedding

of G, for the outer face of the embedding would be homeomorphic to a torus with a

hole in it, which is not a 2-cell. Embeddings which are not 2-cell embeddings really

belong in a different surface. For the cube, there are five distinct 2-cell embeddings

on the torus (see Figure 15.21).

DEFINITION 15.3: Two embeddings Gψ1 and Gψ2 in a surface Σ are homeo-

morphic if there is a homeomorphism of Σ which mapsGψ1 to Gψ2 . Otherwise Gψ1

and Gψ2 are distinct embeddings.

It is clear that a homeomorphism of Gψ1 and Gψ2 induces an automorphism of

G, and that the faces ofGψ1 map to the faces ofGψ2 . The embeddings of Figure 15.2

are then easily seen to be distinct, because their facial walks have different lengths.

In general, there is no easy method of determining all the embeddings of a graph on

a given surface, or even to determine whether a graph is embeddable.

15.2 Surfaces

We can use the method of representing the torus as a rectangle, as in Figure 15.1, to

represent a cylinder, and a Möbius band, shown in Figures 15.3 and 15.5.

The cylinder is glued along only one edge of the rectangle. We call it an open

surface because it has a boundary (the edges which are not glued). If we project a

cylinder onto a plane, one possible result is an annulus, that is, a disc with a hole in

it. This immediately gives the following theorem:

Theorem 15.1. A graph can be embedded on the cylinder if and only if it can be

embedded on the plane.

Proof. Given an embedding of a graph G on the plane, choose any face except the

outer face, and cut a hole in it. The result is an embedding on the cylinder, and vice

versa.

Notice that an embedding of G on the cylinder corresponds to an embedding

of G on the plane with two distinguished faces. They can be any two faces of a

362 Graphs, Algorithms, and Optimization

a a

FIGURE 15.3

Three representations of the cylinder

planar embedding of G. By Whitney’s theorem, we know that up to orientation, a

3-connected planar graph has just one embedding on the plane. This is not the case

for embeddings on the cylinder. Two embeddings of the graph of the cube on the

cylinder are shown in Figure 15.4.

a a a a

FIGURE 15.4

Two cylindrical embeddings of the cube

The Möbius band is constructed by giving one end of the rectangle a twist of 180

degrees before aligning and gluing the opposite edges. This is indicated by the op-

posite orientation of the arrows. Notice that if we follow the boundary of the Möbius

band, it is a single closed curve, unlike the boundary of the cylinder.

The sphere, torus, and cylinder can all be considered as two-sided surfaces – they

have an inside and an outside. One way to define this is to imagine a small clockwise-

oriented circle drawn in the surface. If we reflect this circle in the surface, we obtain a

circle of the opposite orientation. On the sphere, torus, and cylinder it is not possible

Graphs and Surfaces 363

a a

FIGURE 15.5

The Möbius band

to walk along the surface, taking the oriented circle with us, until it coincides with its

opposite orientation (we are not allowed to walk over the boundary of the cylinder or

Möbius band). On the Möbius band, it is possible to make these two circles coincide.

We therefore say that the Möbius band is a one-sided surface. A two-sided surface is

said to be orientable. We can assign an orientation to the surface, by partitioning the

set of oriented circles defined at every point of the surface. One orientation is called

the inside, and the other the outside. A one-sided surface is non-orientable, as the

set of oriented circles does not have this partition into two subsets. For surfaces like

the sphere and torus which can be constructed in euclidean 3-dimensional space, we

could alternatively use a normal vector to the surface, and its reflexion in the surface

in place of an oriented circle and its reflexion.

Aside from the cylinder and Möbius band, the surfaces we will be interested in

are closed surfaces.

A closed surface is a generalized notion of a polyhedron. A polyhedron is a three-

dimensional object consisting of a set of polygons, of three or more sides each. Each

polygon is bounded by a sequence of p straight-line segments connecting p vertices

in cyclic order, for some p ≥ 3. The line segments are the edges of the polyhedron.

Each edge is shared by exactly two polygons. Any two polygons may intersect only

on a single common edge. There are at least three polygons meeting at each vertex,

and the polygons meeting at any vertex form a single cycle.

This idea is generalized by allowing the polygons composing a polyhedron to be

infinitely stretchable and interpenetrable. They are then called curvilinear polygons.

DEFINITION 15.4: A closed surface is a set of points homeomorphic to a poly-

hedron made of curvilinear polygons.

Thus a closed surface is an object that is capable of being represented as a col-

lection of curvilinear polygons glued together along common edges. However, the

surface is not any single one of these representations, because many different polyg-

onal representations of the same closed surface are possible. For example, the surface

of the sphere may be partitioned into many different polygonal forms. Similarly, the

embeddings of K3,3 of Figure 15.2 partition the torus into two different polyhedra.

When we identify opposite edges of a rectangle, we are identifying two edges of

a single polygon. In order to conform to the definition of polyhedron, in which only

364 Graphs, Algorithms, and Optimization

distinct polygons share a common edge, we can subdivide the rectangle into two or

more polygons, as necessary. There are three more surfaces that can be made from

a rectangle by identifying its edges in pairs. They are the sphere, projective plane,

and Klein bottle, illustrated in Figures 15.6, 15.7, and 15.9. The sphere can also be

represented as a digon (a “polygon” of two sides), as shown, where c = ab.

b

a

a

b

a

b

c c

FIGURE 15.6

The sphere as a rectangle and as a digon

The projective plane is constructed from a rectangle by first using a twist to

create a Möbius band, and then by gluing the boundary of the Möbius band to itself,

to create a closed surface. This is illustrated in Figure 15.7, where the edges labeled b
have been glued. This cannot be done in euclidean space, for the polygon must cross

itself without intersecting itself. But mathematically, we can consider the surface to

be constructed in this way. The projective plane can also be viewed as a digon, as

illustrated in Figure 15.8, by combining the a and b sides of the rectangle into a

single side, labeled c. Because of the orientation of the arrows, the two “corners” of

the digon represent the same point. We can identify the corners, creating a “figure

eight”, and then identify the two lobes of the figure eight to complete the projective

plane. If we then remove a disc from the projective plane by cutting along the circle

containing the dotted line, the result is called a crosscap. It is a projective plane with

a hole in it. In Exercise 15.2.1, it is proved that a crosscap is homeomorphic to a

Möbius band.

b

a

b

a

aa

FIGURE 15.7

The projective plane as a rectangle, and as a Möbius band

Graphs and Surfaces 365

c c

c
c

FIGURE 15.8

The projective plane as a digon, and as a crosscap

The Klein bottle can be constructed by gluing two edges of a rectangle to create

a cylinder, and then by gluing the ends of the cylinder together, according to the

orientation of the arrows. This also cannot be done in euclidean space, as the cylinder

must cross through itself without intersecting itself.

b

a

b

a

FIGURE 15.9

The Klein bottle as a rectangle, and as a “bottle”

These surfaces have been constructed from a rectangle by gluing edges together.

By subdividing the rectangle into curvilinear polygons, closed surfaces represented

as curvilinear polyhedra are obtained. Polygons with more sides than a rectangle

could also be used. By the classification theorem of closed surfaces (Theorem 15.2),

every closed surface can be constructed by gluing together edges of a single curvi-

linear polygon.

The rectangle representing the torus in Figure 15.1 can be written symbolically as

a+b+a−b−. This means that we choose a clockwise orientation of the rectangle and

write a+ for the edge labeled a when the direction of the arrow is clockwise, and a−

when the direction of the arrow is counterclockwise. The boundary of the rectangle

is then determined by the above symbol. Similarly the rectangle representing the

366 Graphs, Algorithms, and Optimization

sphere (Figure 15.6) can be characterized as a+b+b−a−, that of the projective plane

(Figure 15.7) as a+b+a+b+, and that of the Klein bottle (Figure 15.9) as a+b+a+b−.

In general, we have a polygon with an even number of sides, with labels

a1, a2, . . . , ap, such that every label ai appears on exactly two sides. We place an

arrow on each edge of the polygon in some direction, and choose a clockwise orien-

tation of the polygon. This defines a symbolic representation in terms of the a+i and

a−i . Every closed surface can be represented symbolically by a normal form of this

type, as shown by the following theorem:

Theorem 15.2. (Dehn and Heegard – Normal forms for closed surfaces) Every

closed surface can be represented symbolically by one of the following normal forms.

Two closed surfaces are homeomorphic if and only if they have the same normal

form.

1. a+a−

2. a+1 b
+
1 a

−
1 b

−
1 a

+
2 b

+
2 a

−
2 b

−
2 . . . a

+
p b

+
p a

−
p b

−
p

3. a+1 a
+
1 a

+
2 a

+
2 . . . a

+
q a

+
q

The proof of this theorem can be found in FRÉCHET and FAN [54] or STILL-

WELL [161]. It is too lengthy to include here. It involves cutting and pasting a curvi-

linear polygon until the normal form is achieved. This is done in stages. The torus

is represented in Figure 15.1 by a+b+a−b−, which is already in normal form. The

sphere is represented by a+b+b−a−. It is clear from the diagram that the adjacent

b+b− corresponds to edges that can be glued, so that they cancel from the formula,

leaving a+a− as the normal form for the sphere. The projective plane is represented

in Figure 15.7 as a+b+a+b+, which is not in normal form. We could transform it into

normal form by letting c = ab, and obtain c+c+. Alternatively, we could illustrate

the techinques used in the proof of Theorem 15.2 and convert it to normal form by

the following sequence of operations, illustrated in Figure 15.10.

b

a

b

a
c

c

c

b

a

a

c

c

FIGURE 15.10

Transforming the projective plane to normal form

We make a diagonal cut across the rectangle, and label it c. We thereby obtain

two triangles which we glue together along the edge b, which then disappears. The

Graphs and Surfaces 367

symbolic form is now c+a+a−c+. The edges a+a− are then glued, and thereby

cancel, to produce the digon in Figure 15.10, giving the normal form c+c+ for the

projective plane.

15.2.1 Handles and crosscaps

Consider a surface with normal form a+b+a−b−c+d+c−d−, shown in Figure 15.11.

We have an octagon with edges that are to be identified in pairs. Both endpoints of

the upper edge marked b represent the same point, as they are the same endpoint

of the arrows marked a. Therefore gluing the edges labeled a will make this b-edge

the boundary of a hole in the surface. Consequently, the other edge labeled b also

represents the boundary of a hole in the surface, and these two boundaries must be

identified. One way to identify them is to attach the two ends of a cylindrical tube to

each of these holes. The result is a handle attached to the surface.

a

b

c

d

c

d

a

b

a
b b

FIGURE 15.11

A sphere with two handles

Now the same can be done for the edges marked c in the diagram – we attach

another handle. This same argument holds for any normal form of this type. This

gives:

Theorem 15.3. A surface with normal form

a+1 b
+
1 a

−
1 b

−
1 a

+
2 b

+
2 a

−
2 b

−
2 . . . a

+
p b

+
p a

−
p b

−
p

is homeomorphic to a sphere with p handles.

Because a sphere is an orientable surface, so is a sphere with p handles.

Consider now a surface with normal form a+a+b+b+c+c+, illustrated in Fig-

ure 15.11. We have a hexagon in which consecutive edges are to be identified in

pairs. The vertex common to the two sides marked a is both the head and tail of

the a-arrow. Therefore indentifying the endpoints of the edges marked a makes two

holes in the surface, bounded by the a-edges. We must identify the boundaries of

these two lobes.

368 Graphs, Algorithms, and Optimization

a

b

b

c

c

a

a

a

FIGURE 15.12

A sphere with three crosscaps

This is nearly identical to the construction of the projective plane from a digon,

illustrated in Figure 15.8. If we draw a circle around the two a-lobes in Figure 15.12,

and cut along the dotted line, we see that what we have is in fact a crosscap glued

into a hole cut in the surface. We can then do the same for the remaining pairs b+b+

and c+c+ to get a sphere with three crosscaps. In general, this gives:

Theorem 15.4. A surface with normal form

a+1 a
+
1 a

+
2 a

+
2 . . . a

+
q a

+
q

is homeomorphic to a sphere with q crosscaps.

Because a crosscap is an nonorientable surface, so is a sphere with q crosscaps.

Gluing a crosscap to a hole in a sphere is equivalent to gluing the boundary of a

Möbius band to a hole in the sphere.

15.2.2 The Euler characteristic and genus of a surface

We know from Chapter 14 that a connected planar graph with n vertices, ε edges,

and f faces satisfies Euler’s formula n − ε + f = 2. Furthermore, the skeleton of

a polyhedron is a planar graph, so that any polyhedral division of the sphere also

satisfies this formula. We say that the Euler characteristic of the sphere is 2.

DEFINITION 15.5: Let Σ be a closed surface represented by a curvilinear poly-

hedron with n vertices, f polygons, and ε edges. The Euler characteristic of the

surface is the value n− ε+ f . It is denoted χ(Σ).

Graphs and Surfaces 369

It has been proved by Kerékjártó that the value n−ε+f for a surface is invariant,

no matter what polygonal subdivision is used to represent it. This is difficult to prove

because of the vast numbers of polygonal subdivisions that are possible. However,

we can get an understanding of it as follows. If we add a diagonal across a face, n
does not change, but ε and f both increase by one. Thus n− ε+ f does not change.

Similarly, if we subdivide an edge with a new vertex, n and ε increase by one, but

f does not change. Modifying a polygonal subdivision by these operations does not

change the value n − ε + f . Suppose that we now add a handle or a crosscap to a

given polygonal division of a surface. Consider a polygonal division with n vertices,

f polygons, and ε edges. Choose two polygons on the surface, cut a disc from the

interior of each polygon, and attach a handle connecting them. Let the polygons be

P1 and P2. Refer to Figure 15.13. We draw two curves along the handle connecting

P1 to P2. The result is a polygonal division of the surface with an additional handle.

Let it have n′ vertices, f ′ polygons, and ε′ edges. The effect of drawing the curves

connecting P1 to P2 is to add two vertices and two edges to each of P1 and P2, plus

two additional edges represented by the curves. The number of polygons does not

change. We therefore have n′ = n+4, f ′ = f , and ε′ = ε+6, so that n′−ε′+f ′ =
(n− ε+ f)− 2. Thus, when a handle is added to a surface, the Euler characteristic

decreases by two. It does not matter to which faces the handle attaches. It follows

that a sphere with p handles has Euler characteristic 2− 2p.

P1 P2

FIGURE 15.13

Attaching a handle to a surface

Suppose that we now add a crosscap to a polygonal division of a surface (e.g.,

the sphere). We choose a polygon P1, cut a disc from its interior, and attach a cross-

cap. Let C be the boundary of the disc. Now a crosscap is a Möbius band, and the

boundary of the disc becomes the boundary of the Möbius band. We draw a curve

connecting P1 to C, continue across the Möbius band to the opposite side of C, and

continue to an opposite point of P1. The result is a polygonal division of the surface

with an additional crosscap. Let it have n′ vertices, f ′ polygons, and ε′ edges. The

effect of drawing the curve across P1 is to add two vertices and two edges to P1, plus

an additional edge represented by the curve. When the Möbius band is cut across, it

remains connected. Therefore the number of polygons does not change. We therefore

have n′ = n+2, f ′ = f , and ε′ = ε+3, so that n′−ε′+f ′ = (n−ε+f)−1. Thus,

370 Graphs, Algorithms, and Optimization

when a crosscap is added to a surface, the Euler characteristic decreases by one. It

does not matter to which face the crosscap attaches. It follows that a sphere with q
crosscaps has Euler characteristic 2− q.

Consequently surfaces can be classified according to whether they are orientable

or non-orientable, and their Euler characteristic. A related parameter of a surface is

its genus.

DEFINITION 15.6: A Jordan curve in a surface Σ is contractible or null-

homotopic if it can be continuously shrunk to a point within Σ.

Cutting a surface along a contractible Jordan curve always separates it into two

pieces.

DEFINITION 15.7: The genus of a surface is the maximum number of non-

intersecting Jordan curves that can be drawn on the surface such that cutting along

the curves does not separate it into two or more pieces.

A consequence of the Jordan curve theorem is that the sphere has genus zero. We

can then see that the torus has genus one.

If the Jordan curves of Definition 15.7 are allowed to intersect, then the maximum

number of Jordan curves that can be drawn such that cutting along the curves does

not separate it into two or more pieces is called the connection number (see [54]). It is

easy to see that for the torus, two intersecting Jordan curves can be drawn, such that

cutting along the curves leaves a rectangle. Thus the torus has connection number

two.

In general, a sphere with p handles has genus p, as exactly one Jordan curve can

be drawn around each handle without separating the surface. Because a sphere with

handles is an orientable surface, we say it has orientable genus p.

The projective plane has genus one, as shown in Exercise 15.2.2. It then follows

from Exercise 15.2.3 that a sphere with q crosscaps has genus q. We say it has un-

orientable genus q. Some texts use the term crosscap number in place of genus for a

non-orientable surface. The relation with Euler characteristic can now be stated.

Theorem 15.5. An orientable surface of genus p has Euler characteristic 2− 2p. A

non-orientable surface of genus q has Euler characteristic 2− q.

When a graph G is embedded in a surface Σ, cycles of G map to Jordan curves

in Σ. We will be interested in cycles which are embedded as non-contractible curves.

DEFINITION 15.8: Let Gψ be an embedding of a graph G in a surface Σ. A

cycle C in G is an essential cycle, or non-contractible cycle of the embedding on Σ
if Cψ is not contractible.

For example, in the embedding of K3,3 on the left in Figure 15.2, the cycles

(1, 2, 3, 4) and (2, 3, 4, 5) are essential cycles, while (1, 2, 3, 6, 5, 4) is not.

DEFINITION 15.9: The genus of a graph G is g(G), the smallest genus of an

orientable surfaceΣ such thatG has a 2-cell embedding in Σ. The unorientable genus

or crosscap number of G is g(G), the smallest genus of a non-orientable surface Σ
such that G has a 2-cell embedding in Σ.

Graphs and Surfaces 371

Suppose that Gψ is a 2-cell embedding of G in an orientable surface Σ of genus

p. Let Gψ have n vertices, ε edges, and f faces. Then because the faces of Gψ

determine a polygonal division of the surface, we have n− ε+ f = χ(Σ) = 2− 2p.

This is called the Euler-Poincaré formula. IfG is 2-cell embedded on an unorientable

surface of genus q, then n−ε+f = χ(Σ) = 2−q. This gives the following relations

for graphs embedded on the:

plane: n− ε+ f = 2
torus: n− ε+ f = 0
projective plane: n− ε+ f = 1.

Lemma 15.6. A triangulation of an orientable surface of genus p, with n vertices

satisfies ε = 3n + 6(p − 1). A triangulation of a non-orientable surface of genus q
satisfies ε = 3n+ 3(q − 2).

Proof. A triangulation satisfies 3f = 2ε. Combining this with n − ε + f = χ(Σ)
gives the result.

Exercises

15.2.1 Show that if a disc is removed from a projective plane, the result is a

Möbius band.

15.2.2 Show that if the projective plane is cut along a non-separating Jordan

curve, the result is a disc.

15.2.3 Show that exactly one Jordan curve can be drawn on the Möbius band

without separating it. What is the result of cutting the Möbius band along

a non-separating Jordan curve?

15.2.4 Use cutting and pasting to convert the representation a+b+a+b− of the

Klein bottle to normal form c+c+d+d+.

15.2.5 A sphere with one handle and one crosscap can be represented symboli-

cally by a+b+a−b−c+c+. Find the normal form for this surface.

15.2.6 Find the facial cycles of the embeddings of K3,3 on the torus shown in

Figure 15.2.

15.2.7 Use Lemma 15.6 to obtain a lower bound on g(G) and g(G) for an arbi-

trary graph G.

15.2.8 Show that g(Kn) ≥ (n−3)(n−4)/12 and that g(Kn) ≥ (n−3)(n−4)/6.

15.2.9 Let G be a graph with no triangles embedded on a surface of genus g.

Find an upper bound on the number of edges of G.

372 Graphs, Algorithms, and Optimization

15.3 Isometries of surfaces

Graph embeddings on a surface are related to the geometrical properties of that sur-

face. And the geometrical properties are closely related to the symmetries of the

surface. This point of view was established by Felix Klein [100] in his lecture at the

Erlanger University in 1872, which has become known as his Erlanger program. An

isometry of a surface is a continuous transformation that preserves distance. For ex-

ample, the isometries of the plane are the translations, reflexions, rotations, and com-

binations of these. The isometries of the sphere are composed of rotations, reflexions

in a plane through the center of the sphere, and a reflection which interchanges each

point with its antipodal point. It is easy to see that the isometries of a surface form a

group.

It turns out that every translation or rotation of the plane can be expressed in terms

of reflexions. For example, given a line ℓ, let Rℓ denote the reflexion in that line. If

ℓ1 and ℓ2 are two parallel lines in the plane, then the combinationRℓ1Rℓ2 (first Rℓ1 ,

then Rℓ2) denotes a sequence of two reflexions. It is easy to see from Figure 15.14,

that the result is a translation in the direction orthogonal to ℓ1, towards ℓ2, by an

amount equal to twice the distance between ℓ1 and ℓ2. In the diagram, the numbers

1, 2, and 3 indicate three successive positions of a point as it is reflected, first in ℓ1,

then in ℓ2.

ℓ1 ℓ2

1 2 3

FIGURE 15.14

A translation from two reflexions

Similarly, if ℓ1 and ℓ2 are intersecting lines, with an acute angle θ between them,

then the reflexionsRℓ1Rℓ2 produce a rotation about their point of intersection, by an

angle 2θ, in the direction of the acute angle from ℓ1 towards ℓ2. Again the diagram

in Figure 15.15 indicates three successive positions of a point by 1, 2, 3.

It follows that the group of isometries of the plane can be generated by the re-

flexions. The subgroup generated by an even number of reflexions is orientation-

preserving. The elements of the coset with an odd number of reflexions are all

orientation-reversing.

Graphs and Surfaces 373

ℓ1 ℓ2

1

2

3
θ

FIGURE 15.15

A rotation from two reflexions

It is convenient to represent the plane as the complex plane C. Let Γ denote the

group of isometries of the plane. Then a translation can be represented as Tα : z 7→
z+α, where z ∈ C, and α is a complex constant. If we choose α to be a real number,

then Tα represents a horizontal translation. Similarly, if β is an imaginary number,

then Tβ is a vertical translation. Tα and Tβ generate a subgroup Γ(α, β) of the full

isometry group Γ. This is the group of all integer combinations of Tα and Tβ . Every

point z ∈ C is translated an integral number of multiples of α horizontally, and

an integral number of multiples of β vertically. Now the values α and β determine

a rectangle in the complex plane, of width |α| and height |β|, with one corner at

the origin. The elements of Γ(α, β) map this rectangle to other rectangles such that

the entire plane C is tiled by the rectangles. The original rectangle can be viewed

as a rectangle representing the torus. It is called a fundamental region of the group

Γ(α, β). Consequently, the torus can be viewed as a “factorization” of the plane C by

the group Γ(α, β). This means the following: every point in the fundamental region

is mapped to an infinite number of other points in the plane by the group Γ(α, β).
All of these points are identified into a single point, so that they are considered to

be a single point of the factorization C/Γ(α, β). The torus is then defined to be the

collection of these “meta-points”. Another viewpoint would be to say that the plane

has been decomposed into equivalent copies of the fundamental region. Note that

α and β need not be chosen as real and imaginary. The fundamental rectangle then

becomes a fundamental parallelogram, which still represents a torus.

Similarly, if we “factorize” the plane by the group generated by a single transla-

tion Γ(α), the result is C/Γ(α), an infinite cylinder, i.e., a cylinder of infinite length,

but finite circumference. The fundamental region would then be an infinitely long

strip of finite width.

Observe that complex conjugation z 7→ z represents a reflexion in the x-axis. If

we factorize the plane by the group generated by Tα and complex conjugation, the

result is the “twisted” cylinder, i.e., a Möbius band of infinite width.

This point of view is developed by Stillwell [162], where all possible factoriza-

tions of the plane, and their corresponding surfaces, are determined.

374 Graphs, Algorithms, and Optimization

It is possible to extend the complex numbers to the surface of the sphere, using

stereographic projection (see Section 14.9). Consider a sphere of radius one, centered

at (0, 0, 0). Given a point (x, y, z) on the surface of the sphere, let w ∈ C represent

the corresponding point, projected onto the plane C by a line joining the north pole

(0, 0, 1) through (x, y, z), and vice versa. Only the north pole has no correspond-

ing complex number. We assign it the symbol ∞, and let C+ denote C ∪ ∞. See

Pedoe [135]. If w ∈ C, then the arithmetic is extended by the rules

1. w/∞ = 0,

2. w ±∞ =∞,

3. w/0 =∞, (where w 6= 0),

4. w · ∞ =∞, (where w 6= 0).

The expressions 0/0,∞−∞,∞/∞, 0 · ∞ are not used, and remain undefined.

Using the extended complex numbers C+, we can then do linear fractional transfor-

mations, also known as Möbius transformations, of the form

w 7→ αw + β

γw + δ

where w ∈ C+ and α, β, γ, δ ∈ C, with αδ − βγ 6= 0. For if w = ∞, we divide

the numerator and denominator of the fraction by w and then use one of the above

rules. The usefulness of this approach is the following theorem of Gauss [65] (see

Stillwell [162]).

Theorem 15.7. The rotations of the sphere are given by

w 7→ αw + β

−βw + α

where w ∈ C+, α, β ∈ C and |α|2 + |β|2 = 1.

Rotations of the sphere are orientation-preserving isometries. The orientation-

reversing isometries can be represented as an orientation-preserving isometry, fol-

lowed by a reflexion. These can also be expressed as linear fractional transformations

of C+.

Theorem 15.8. The orientation-reversing isometries of the sphere are given by

w 7→ αw + β

−βw + α

where w ∈ C+, α, β ∈ C and |α|2 + |β|2 = 1.

The transformation that maps each point (x, y, z) to its antipodal point

(−x,−y,−z) is also an isometry of the sphere. It generates a group of order two.

If the sphere is factorized by this group, thereby identifying each point with its an-

tipodal point, the result is the projective plane. Thus we can say that the projective

plane is the sphere factorized by this isometry.

Graphs and Surfaces 375

A surface is generally represented by a regular polygon. For example, the torus

can be represented by a rectangle in the plane. And a rectangle has corner angles of

π/2 radians, so that exactly four rectangles meet at each corner. The torus can also

be represented by a regular hexagon, which can be seen as follows. Make a diagonal

cut on the rectangle, as shown in Figure 15.16, and transfer the triangle obtained

to the opposite side of the rectangle. Then distort the result into a hexagon. This

gives the representation a+b+c+a−b−c− for the torus, although this is not a normal

form. Translations of the hexagon now give a tiling of the plane by hexagons. For

the hexagon can be translated vertically by the width of the hexagon, or along a line

of slope 1/2 or −1/2, giving a group of translations. Note that the corner angle of a

regular hexagon is 2π/3, and that three hexagons meet at each corner in the tiling.

b
c

x

b

x aa

c

=

b

c

a

b

c

a

FIGURE 15.16

The torus represented as a hexagon

The normal forms of surfaces with more than one handle or more than two cross-

caps require polygons with at least eight sides. A regular polygon in the plane with

2n sides has a corner angle of (n − 1)π/n radians. It follows that the plane cannot

be tiled by regular polygons when 2n ≥ 8, for then the corner angles of the polygons

meeting at each corner would sum to more than 2π radians. In Section 16.2 we will

see that the hyperbolic plane can be tiled by octagons, and also by regular polygons

with more sides. This will give a beautiful geometric representation of the double

torus, i.e., the “torus with two holes”, or equivalently, the sphere with two handles.

Exercises

15.3.1 Verify that the linear fractional transformations are well defined for all

w ∈ C+ and all α, β, γ, δ ∈ C.

15.3.2 Complex conjugation w 7→ w in C is a linear fractional transformation.

Determine the corresponding map of the sphere.

15.3.3 Find the linear fractional transformation which corresponds to a rotation

of the sphere about the z-axis by π/2 radians.

15.3.4 Find the linear fractional transformation which corresponds to a reflexion

of the sphere in a horizontal plane through its center.

376 Graphs, Algorithms, and Optimization

15.3.5 The isometry (x, y, z) 7→ (−x,−y,−z) can be constructed by three

successive reflexions, corresponding to reflexions in the xy, xz and yx-

planes. Find the linear fractional transformation that represents this isom-

etry.

15.4 Graph embeddings, obstructions

Three of the main algorithmic problems of graph embeddings are:

Problem 15.1: Graph embeddability

Instance: a graph G and a surface Σ.

Question: is G embeddable in Σ?

Problem 15.2: Graph embeddings

Instance: a graph G and a surface Σ.

Question: find all distinct embeddings of G in Σ.

Problem 15.3: Graph genus

Instance: a graph G and an integer k.

Question: is g(G) ≤ k? is ḡ(G) ≤ k?

It was proved by THOMASSEN [168] that Graph Genus is NP-complete.

The first two problems are solved for the plane, but only partially solved for

other surfaces. Several efficient algorithms are known for Graph embeddability on

the projective plane.

For the plane, Kuratowski’s theorem tells us thatG is embeddable if and only if it

has no subgraph isomorphic to TK5 or TK3,3. These graphs are called obstructions

to planarity. There are two kinds of obstructions — those that are subgraphs, and

those that are graph minors. A subgraph obstruction is called a topological obstruc-

tion or forbidden subgraph. An obstruction that is a graph minor is called a forbidden

minor.

DEFINITION 15.10: Given a surfaceΣ, a topological obstruction forΣ is a graph

K with δ(K) ≥ 3 such that any graph containing a subdivision TK cannot be em-

bedded in Σ, and no proper subgraph of K has this property.

Graphs and Surfaces 377

There are two topological obstructions for the plane, K5 and K3,3, as proved

by Kuratowski’s theorem 14.29. The definition requires that no proper subgraph of

K is a topological obstruction, that is, that K be minimal with respect to this prop-

erty (otherwise graphs such as K6,K7, etc., would all be considered as topological

obstructions).

DEFINITION 15.11: Given a surface Σ, a minor-order obstruction (or forbidden

minor or excluded minor) for Σ is a graph K , such that any graph having K as a

minor cannot be embedded in Σ, but no proper minor of K has this property.

The graph relation “H is a minor of G” forms a partial order on the set of all

graphs. If we restrict the set to all graphs which are not embeddable in the surface Σ,

then the minimal graphs of this partial order are the minor-order obstructions. IfK is

a minor-order obstruction, then it is also a topological obstruction. K5 and K3,3 are

both minor-order obstructions and topological obstructions for the plane, because

any graph which has K5 or K3,3 as a minor necessarily contains either a TK5 or

TK3,3; and TK5 and TK3,3 are not minors of each other. According to Wagner’s

theorem 14.30,K5 andK3,3 are the minor-order obstructions for the plane. For other

surfaces, there is a distinction between the two concepts of topological obstruction

and minor-order obstruction.

Robertson and Seymour have proved that there are a finite number of obstructions

for any given surface, as a consequence of the graph minor theorem, which we state

without proof.

Theorem 15.9. (Robertson-Seymour theorem) In any infinite collection of graphs,

there are always two graphs such that one is a minor of the other.

Consider the set of all obstructions (topological or minor-order) for a surface Σ.

The number of minimal graphs must be finite (or one minimal graph would be a

minor of another by the Robertson-Seymour theorem). Thus there is a finite set of

obstructions for any given surface.

It is known that there are 103 topological obstructions for the projective plane,

of which 35 are minor-order obstructions, as found by Glover, Hunk and Wang [67,

7]. These are often called Kuratowski subgraphs for the projective plane. A list of

them can be found in Mohar and Thomassen [126]. For the torus, the number of

obstructions is in the hundreds of thousands, as shown by Myrvold [128]. From an

algorithmic point of view, this is not an effective characterization, as there are too

many obstructions.

15.5 Graphs on the torus

Given a 2-cell embedding ψ of a 2-connected graph G on the torus, there must be

an essential cycle C in G. Cutting the torus along Cψ results in a cylinder. Because

the cylinder is not a 2-cell, but the embedding is a 2-cell embedding, there must be

378 Graphs, Algorithms, and Optimization

another essential cycle C′ in G, cutting the cylinder along an axis. Consequently C
and C′ must intersect, either in a path or a vertex.

DEFINITION 15.12: A theta-graph is a graph consisting of two vertices of degree

three, connected by three paths of one or more edges each.

A theta-graph is illustrated in Figure 15.17.

FIGURE 15.17

A theta-graph in schematic form

Thus, C ∪C′ must be either a theta-subraph of G, or two cycles with a vertex in

common, and ψ is a 2-cell embedding of it. The simplest form of theta-subgraph is

a multigraph consisting of two vertices connected by three parallel edges. A 2-cell

embedding of it on the torus is shown in Figure 15.18. It is often necessary to consider

embeddings of graphs with multiple edges and/or loops, as the duals of many graph

embeddings (e.g., K4, K5, K3,3) often have multiple edges, and sometimes loops.

We shall always insist that in any embedding of a multigraph:

1. The cycle induced by any loop is an essential cycle (no face is a loop).

2. The cycle induced by any digon is an essential cycle (no face is a digon).

b

a

b

a

d
c

e
1 2

d

e

c

d

e

c

1

1

1 2

2

2

FIGURE 15.18

A 2-cell embedding of a theta-graph

If we cut the torus along the edges of this theta-graph, we find there is one face,

a hexagon, shown in Figure 15.18 as c+d+e+c−d−e−. Thus we see that the embed-

ding of a theta-graph on the torus gives the hexagonal representation (Figure 15.12).

The rectangular form corresponds to an embedding of two cycles with a common

vertex.

Graphs and Surfaces 379

Given an embeddingGψ on the torus, we choose an orientation of the torus, and

walk around a vertex vψ in a small clockwise circle in the surface, and construct

the cyclic adjacency list, just as for embeddings in the plane (Section 14.5). This

determines a rotation system for G, exactly as in the planar case. We will denote a

rotation system for a graph embedded on the torus by t. The faces of the embedding

are completely determined by t, because Algorithm 12.5.1, FACIALCYCLE(), to find

the facial cycles of a planar graph from its rotation system also applies to toroidal

rotation systems, or to rotation systems for any orientable surface. Similarly, algo-

rithm CONSTRUCTDUAL() applies equally to toroidal rotation systems as well as

other orientable surfaces. Hence we denote a combinatorial toroidal embedding by

Gt and its dual by Gt∗. Now the rotation system determines the faces of the embed-

ding. Hence, we can determine from t whether or not Gt has any faces which are

digons or loops, but it cannot determine whether any digons or loops are embedded

as essential cycles.

It is convenient to refer to a graph embedded on the torus as a torus map.

DEFINITION 15.13: A torus map is a combinatorial 2-cell embeddingGt, where

t is a rotation system for an embedding of G on the torus, where G is a 2-connected

graph.

We begin by embedding planar graphs on the torus. Let G be a 2-connected

planar graph that is not a cycle, with a planar rotation system p. By Exercise 15.5.3,

G has a theta-subgraph H . Let u and v be the two vertices with degree three in H ,

and let P1, P2, P3 be the three uv-paths ofH . Let w1, w2, and w3 be the first vertices

of P1, P2, P3, respectively, adjacent to u. Refer to Figure 15.19.

Theorem 15.10. Let p be a planar rotation system for G, and let H be a theta-

subgraph of G, as described above. Let t be a rotation system constructed from p
by interchanging w2 and w3 in the cyclic adjacency list of u, and leaving all other

vertices the same. Then t is a toroidal rotation system for G.

Proof. In the embeddingGp in the plane, the three paths P1, P2, P3 divide the plane

into three regions. Without loss of generality, let the paths occur in the order illus-

trated in Figure 15.19. Denote the subgraphs of G contained within the three regions

as G12 (between paths P1 and P2), G23, and G31. Subgraph Gij may have edges

connecting it only to Pi and Pj , and to u and v. Construct the hexagonal represen-

tation of the torus with P1, P2, and P3 on the boundary of the hexagon, and embed

G12, G23, and G31 inside the hexagon as planar embeddings, as shown, resulting in

a toroidal embedding of G. It is easy to verify from the diagram that any vertex in

G12, G23, and G31 has the same cyclic adjacency list in the toroidal embedding as

in the planar embedding. Similarly any vertex other than u or v of any Pi has the

same cyclic adjacencies in both embeddings. The same is also true for v. The only

vertex whose cyclic adjacencies differ is u. The adjacency list of u has been arranged

so that w1 ∈ P1 is followed by the edges to G12, followed by w3 ∈ P3, followed

by the edges to G23, followed by w2 ∈ P2, followed by the edges to G31. The only

difference to the planar adjacencies is that w2 and w3 have been interchanged for

vertex u.

380 Graphs, Algorithms, and Optimization

It is evident from Figure 15.19 that there are several other ways to convert the

planar rotation system to a toroidal rotation system.

G12

G23

G31 u v
P2

P1

P3

P1

P2

P3

P3

P2

P1

G31

G12

G23

G31u

u

u

v

v

v

FIGURE 15.19

Constructing a toroidal rotation system

A planar graph also has non-2-cell embeddings on the torus. If a planar graph G
is embedded in a disc on the surface of the torus, we will call this a disc embedding

of G. If a planar graph is embedded such that one of the faces is homeomorphic to a

cylinder, we will call this a cylindrical embedding of G. A cylindrical embedding on

the torus of any graph G determines an embedding on the cylinder, so that G must

be planar.

Lemma 15.11. Every embedding of a non-planar graph on the torus is a 2-cell

embedding.

Proof. A non-2-cell embedding would necessarily be either a disc or cylindrical em-

bedding. But a non-planar graph has no disc or cylindrical embedding.

Currently, there is no satisfactory algorithm known to determine whether an arbi-

trary graph can be embedded on the torus, or to find all embeddings, or to characterize

all possible embeddings. Whitney’s theorem (14.20) on induced non-separating cy-

cles does not apply to embeddings on the torus. There are several simple techniques

that are useful in an exhaustive search to find the embeddings. Given two combina-

torial embeddings with toroidal rotation systems t1 and t2, we need to distinguish

whether Gt1 and Gt2 are equivalent embeddings. In general, two embeddings are

considered equivalent if they have the same facial cycles, as the faces can be glued

together along the facial boundaries in a unique way to construct the torus. Because

the facial cycles are completely determined by the rotation system, we define equiv-

alence in terms of rotation systems. Definitions 14.17 and 14.18 of equivalent em-

beddings and graph orientability apply equally well to toroidal graphs as to planar

graphs, using a toroidal rotation system t in place of a planar rotation system p. We

summarize the definitions as follows:

Graphs and Surfaces 381

DEFINITION 15.14:

1. Embeddings Gψ1 and Gψ2 are homeomorphic embeddings if there is a

homeomorphism of the torus mapping Gψ1 to Gψ2 . Otherwise they are

distinct.

2. Embeddings Gt1 and Gt2 are isomorphic if there is an automorphism of

G which induces a mapping of t1 to t2.

3. Embeddings Gt1 and Gt2 are equivalent embeddings if there is an auto-

morphism of G which induces a mapping of t1 to t2 or t2, where t2 is

obtained by reversing the cycles of t2.

4. EmbeddingGt is a non-orientable embedding if there is an automorphism

of G inducing a mapping of t to t. Otherwise it is an orientable embed-

ding.

Now an embeddingGψ1 determines a rotation system t1. Homeomorphic embed-

dings Gψ1 and Gψ2 determine equivalent combinatorial embeddings Gt1 and Gt2 ,

because a homeomorphism can be either orientation preserving or orientation re-

versing. Conversely, if Gt1 and Gt2 are equivalent combinatorial embeddings of G,

then they have the same facial cycles (up to orientation). The facial cycles can be

glued together to construct a curvilinear polyhedron representing the torus. There-

fore, topological embeddingsGψ1 andGψ2 can be constructed fromGt1 andGt2 , so

that Gψ1 and Gψ2 are homeomorphic. This gives:

Theorem 15.12. Topological embeddings Gψ1 and Gψ2 are homeomorphic if and

only if the corresponding combinatorial embeddingsGt1 and Gt2 are equivalent.

Now the homeomorphism between Gψ1 and Gψ2 was constructed by gluing

curvilinear polygons (the faces of the embeddings) together along common edges;

that is, it involves cutting and pasting the torus. For example, the two embeddingsGt1

and Gt2 shown in Figure 15.20 are equivalent, which can easily be verified from the

rotation systems. However, they are homeomorphic only by cutting the torus along

a non-contractible cycle to create a cylinder, then twisting one end of the cylinder

by 360 degrees, and then re-gluing the cylinder to create a torus. It is not possible to

transform one into the other without cutting and pasting.

It is also possible to define isomorphism of maps in terms of the facial cycles,

as will be done for the projective plane, as the facial walks of Gt are completely

determined by the rotation system t. Given the collection of facial walks, which are

oriented, there is only one way to glue them together. The result is the torus, con-

taining an embedding of G. If the vertices of G are permuted by some θ ∈ AUT(G),
the vertices of the facial walks will also be permuted, thereby producing an equiva-

lent embedding (possibly the very same embedding). For example, two embeddings

of K3,3 are shown in Figure 15.2. Now |AUT(K3,3)| = 72. If the vertices of K3,3

in these two embeddings are permuted by any of these 72 automorphisms, equiva-

lent embeddings will be produced, whose facial walks can be obtained by permuting

the facial walks in Figure 15.2. We state a definition of isomorphism of torus maps,

equivalent to 15.14.

382 Graphs, Algorithms, and Optimization

b

a

b

a

b

a

b

a

FIGURE 15.20

Two equivalent embeddings

DEFINITION 15.15: Torus maps Gt1 and Gt2 are isomorphic if there is a per-

mutation of V (G) that maps the collection of facial walks of Gt1 to that of Gt2 .

This definition uses the dual maps of Gt1 and Gt2 to determine isomorphism.

For if we number their facial walks, then rotation systems of the dual maps are com-

pletely determined by the facial walks.

For graphs on a small number of vertices, it is possible to distinguish inequivalent

embeddings by inspection. However, even forK5 andK6, it is reasonably difficult to

determine the inequivalent embeddings by hand. One technique that helps is the dual

graph – if Gt1 and Gt2 have non-isomorphic dual graphs, then the embeddings are

distinct. More generally, we can use the medial digraph (Definition 14.20) to distin-

guish embeddings and orientations. It can also be used to determine the symmetries

(automorphisms) of an embedding. The medial digraph was defined for planar ro-

tation systems, but the definition is also valid for toroidal rotation systems. We use

M(Gt) to denote the medial digraph of G with a toroidal rotation system t. The

medial digraph was defined for multigraphs. If we want to allow for loops as well,

then the definition must be modified slightly (Exercise 15.5.7). Usually graph iso-

morphism software is necessary to make effective use of the medial digraph.

Theorem 15.13. Torus embeddings Gt1 and Gt2 are isomorphic if and only if their

medial digraphsM(Gt1) and M(Gt2) are isomorphic.

Proof. If the torus embeddingsGt1 andGt2 are isomorphic, their rotation systems t1
and t2 can be put into one-to-one correspondence. This determines an isomorphism

of their medial digraphs. Conversely, if M(Gt1) and M(Gt2) are isomorphic, ob-

serve that every isomorphism from M(Gt1) to M(Gt2) must map V (G) to V (G).
The cyclic ordering of the vertices adjacent to each vertex v is determined by a di-

rected cycle in M(Gt1) and M(Gt2). This determines the rotation systems Gt1 and

Gt2 .

An embedding Gt is orientable if Gt and Gt are not isomorphic. It is non-

orientable if Gt and Gt are isomorphic. Any automorphism of M(Gt), where Gt

is a torus embedding, induces a permutation of V (G). These permutations constitute

the automorphism group of Gt, similar to the situation for planar maps 14.22.

Graphs and Surfaces 383

DEFINITION 15.16: LetGt be a torus map. The orientation preserving automor-

phism group of Gt is AUT(Gt), the group induced on V (G) by the automorphisms

ofM(Gt). The full automorphism group ofGt is AUT
+(Gt) consisting of AUT(Gt),

plus those automorphisms that map Gt to Gt.

With 3-connected planar maps Gp, Whitney’s theorem tells us that there is a

unique planar embedding, so that AUT
+(Gp) = AUT(G). A similar result for torus

maps is not known. For example, there are five torus embeddings of the graph of the

cube, shown in Figure 15.21. The automorphism group of the cube has order 48. The

embeddings shown have automorphism groups of orders varying from 2 to 24.

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

FIGURE 15.21

The five embeddings of the cube on the torus

Theorem 15.14. There are two inequivalent embeddings of K3,3 on the torus. They

are both non-orientable.

Proof. Take the rectangular representation a+b+a−b− of the torus. An embedding

of K3,3 on the torus must be a 2-cell embedding, so that there must be an essential

Jordan curve intersecting the a-curve and another intersecting the b-curve. Let Gt be

an embedding of K3,3 on the torus. Now K3,3 is bipartite, with six vertices, so that

the corresponding essential cycles in Gt must determine a theta subgraph. There are

three possible theta subgraphs, illustrated in Figure 15.22.

The embeddings of the theta graphs have just one face, with a facial walk of

length 12 or 14. These are illustrated in Figure 15.23. In the third diagram of Fig-

ure 15.23, the edges (1, 6), (3, 6), and (5, 6) must be added. It is easy to see that there

are two inequivalent ways to do this – one in which the edges to vertex 6 are equally

384 Graphs, Algorithms, and Optimization

b

a

b

a
1 32 4

5

6

b

a

b

a
1 3 52 4 6

b

a

b

a
1 32 4

5

6

FIGURE 15.22

Three possible theta subgraphs of K3,3 on the torus

spaced by 2π/3 radians, and one in which three edges are spaced by π/3 radians.

These give the two embeddings of Figure 15.2, the first with three faces which are

hexagons, and the second in which two faces are quadrilaterals.

In the first theta graph, the missing edges of the K3,3 are (1, 6) and (4, 5). The

possible places to embed them are shown as dotted lines in the diagram. In the second

theta graph the missing edges are (1, 4) and (3, 6). In each case, non-intersecting

edges must be chosen. The result is always the embedding with three hexagons,

or the embedding with two quadrilaterals. It is easy to see that the embeddings of

Figure 15.2 are non-orientable, as flipping the rectangle upside down, and possibly

rotating it, produces an identical diagram.

1 2

3

6

5

2

143

2

5

6

3

4 1 2

3

4

5

2

165

4

3

2

5

6 1
2

3

4

5

2
1

4

3

2

5

4

6

FIGURE 15.23

The face of a theta graph

Graphs and Surfaces 385

More generally, to find all embeddings of a graph on the torus, we can proceed as

follows. Suppose thatG is a 2-connected non-planar graph. Choose a theta-subgraph

H of G. We would like H to have as many edges as reasonably possible. We can

do this by hand for small graphs. With larger graphs, a depth-first search can be

used to find a theta-subgraph with a large number of edges. Every embedding of

G on the torus induces an embedding of H . It will be either a 2-cell embedding, a

cylindrical embedding, or a disc embedding. We start with a 2-cell embedding of

H , and proceed as in Theorem 15.10 to find all ways of extending the embedding

of H to G. This usually gives a number of embeddings. We then proceed to the

cylindrical and disc embeddings of H . In each case, all possible ways of extending

H to a 2-cell embedding must be exhaustively considered. For each embedding t, we

construct M(Gt), and compare the medial digraphs found for isomorphism, using

graph isomorphism software.

If G is a 3-connected non-planar graph, we proceed recursively. We choose

a vertex v and find all embeddings of G − v. Let the adjacent vertices to v be

u1, u2, . . . , uk. If G − v is non-planar, then every embedding of it is a 2-cell em-

bedding. If u1, u2, . . . , uk are all on the same facial cycle in some embedding of it,

we can add vertex v to get an embedding of G, possibly in several ways. If G− v is

planar, instead we first find a TK3,3 in G with as many edges as reasonably possible

(assuming a TK3,3 exists). For each embedding of TK3,3 in the torus, we exhaus-

tively consider all possible ways of extending it to an embedding of G, and then use

medial digraphs to compare the results.

For example, consider the graph K4. If uv is an edge of K4, then K4 − uv is a

theta-graph. We easily find that there are exactly two 2-cell embeddings ofK4 on the

torus. We then consider K5, one of the few non-planar graphs that does not contain

TK3,3. If v is a vertex of K5, then K5 − v ∼= K4. For each embedding of K4 on

the torus, including cylindrical and disc embeddings, we find all ways of adding v
to the embedding. The result is six embeddings of K5, of which three are orientable

and three non-orientable. This is most easily determined using the medial digraph to

distinguish embeddings. We proceed to K6 by looking for a face of K5 containing

all five vertices. We find there are four inequivalent embeddings of K6, of which

two are orientable and two non-orientable. Exactly one of these has all six vertices

on a common face. This gives one embedding of K7, shown in Figure 15.24. It is

an orientable embedding. Its dual is also shown. The dual is known as the Heawood

graph.

Exercises

15.5.1 Use cutting and pasting to convert the representation c+d+e+c−d−e− of

the torus to normal form.

15.5.2 Construct the duals of the embeddings ofK3,3 on the torus of Figure 15.2.

15.5.3 Show that every 2-connected graph that is not a cycle has a theta-

subgraph.

15.5.4 Describe O(ε) depth-first and breadth-first search algorithms to find a

theta-subgraph of a 2-connected graphG.

386 Graphs, Algorithms, and Optimization

b

a

b

a

b

a

b

a

b

a

b

a

K7 Heawood graph

FIGURE 15.24

K7 and its dual, the Heawood graph, on the torus

15.5.5 Construct the two distinct embeddings of K3,3 on the hexagonal form of

the torus.

15.5.6 Verify that the two embeddings shown in Figure 15.20 are equivalent, and

that the torus must be cut and pasted to construct a homeomorphism.

15.5.7 Show how to modify the definition of a medial digraph to allow for em-

beddings with loops (subdivide a loop with two vertices), and prove that

it works.

15.5.8 Construct all distinct embeddings of K4, K5, and K6 on the torus.

15.5.9 Construct all distinct embeddings of the 3-prism on the torus. Begin with

a theta-graph containing all six vertices.

15.5.10 Construct all distinct embeddings of the Petersen graph on the torus. Be-

gin with a theta graph containing all 10 vertices.

15.5.11 Determine which graphs are shown in the toroidal embeddings of Fig-

ure 15.25. Determine the dual graphs. (Note: None of the graph edges

follow the boundary of the rectangles.)

15.5.12 Determine whether the embeddings in Figure 15.21 are orientable, and

determine the orders of their automorphism groups.

15.5.13 Verify that the graphs in Figure 15.26 are distinct embeddings of the same

graph. Do you recognize this graph? Are these embeddings orientable?

Find the duals of both embeddings, and determine what graphs they are.

Graphs and Surfaces 387

b

a

b

a

b

a

b

a

FIGURE 15.25

Two torus maps

b

a

b

a

b

a

b

a

FIGURE 15.26

Two torus maps

15.5.1 Platonic maps on the torus

The embedding of K7 in Figure 15.24 shows a triangulation of the torus in which

each vertex has degree six. By translating it repeatedly horizontally and vertically, we

obtain a symmetric tiling of the plane by triangles. Its dual gives a symmetric hexag-

onal cover of the plane in which three hexagons meet at each vertex. The graphs of

Figure 15.25 give symmetric tilings by parallelograms. These embeddings all belong

to families of graphs with these properties. We will call them Platonic maps.

LetG be a k-regular torus map on n vertices whose dual map is ℓ-regular. For the

plane, such graphs are the graphs of the Platonic solids. Then nk = 2ε = ℓf . Using

Euler’s formula for the torus n+ f − ε = 0, we obtain

1

k
+

1

ℓ
=

1

2

The only integral solutions are (k, ℓ) = (4, 4), (3, 6), and (6, 3). Clearly the last two

are duals of each other. The graphs of Figure 15.25 are examples of the (4, 4)-pattern.

Consider a torus map Gt in which each vertex has even degree. Choose any edge

uv. The incident edges at v are cyclically ordered by t. Let DEG(v) = 2i. The diag-

onally opposite edge to uv is vw, the ith edge following uv in t(v). Given a vertex

v0, with adjacent vertex v1, we construct a diagonal path v0, v1, v2, . . . by always

388 Graphs, Algorithms, and Optimization

choosing vivi+1 as the diagonally opposite edge to vi−1vi. Eventually a vertex must

repeat, creating a cycle. Let the cycle be C = (v0, v1, v2, . . . , vm). C is a diagonal

cycle if every edge is the diagonally opposite edge to its previous edge.

In the torus maps ofK7 (Figure 15.24) and Figure 15.25 there are many diagonal

cycles. They are drawn as straight lines diagonally across the rectangle. As can be

seen in K7, a single diagonal cycle may wind around the torus several times.

Suppose now that Gt is a Platonic graph on the torus, with parameters (6, 3) or

(4, 4). Consider a cycle C = (v0, v1, v2, . . . , vm) constructed by following a diago-

nal path.

Lemma 15.15. If C = (v0, v1, v2, . . . , vm) is a diagonal cycle in Gt, then C is an

essential cycle.

Proof. Suppose first thatG has parameters (4, 4), and suppose that C is contractible,

with interior INT(C). For each vi ∈ C, there is one adjacent vertex in INT(C). This

is illustrated in Figure 15.27. Because each face of Gt has degree four, the interior

adjacent vertices to v0, v1, v2, . . . , vm form another diagonal cycleC′ in INT(C). In-

terior to C′ is another diagonal cycle, etc., leading to an infinite sequence of diagonal

cycles, a contradiction. Therefore C must be an essential cycle. If G has parameters

(6, 3), the argument is nearly identical, except that each vi ∈ C has two adjacent

vertices in INT(C). Because Gt is a triangulation, we again find C′ in INT(C), and

so forth.

vm

v0 v1

v2

FIGURE 15.27

A diagonal cycle with (k, ℓ) = (4, 4)

The proof of Lemma 15.15 also shows how to draw Gt. Given a diagonal cycle

C0, a sequence of “parallel” adjacent diagonal cycles is determined, C0, C1, C2,
For any v0 ∈ C0, an edge not on C0 can then be selected, and a diagonal cycle con-

taining it can be constructed. We find that the edges of G can be partitioned into “or-

thogonal” diagonal cycles C′
0, C

′
1, Each Ci winds around the torus one or more

Graphs and Surfaces 389

times, intersecting each C′
j in a regular pattern, as can be seen from Figures 15.24

and 15.25.

If C = (v0, v1, v2, . . . , vm) is any cycle constructed by following a diagonal path

in a Platonic map, then the argument of Lemma 15.15 can be used to show that C
must be a diagonal cycle. The only way in which C may fail to be a diagonal cycle is

if one pair of edges, say vmv0 and v0v1, are not diagonal edges. Suppose that G has

parameters (4, 4). We then find that v0 has either 0 or 2 adjacent vertices to the right

of C. Because every face has degree four, the parallel cycle C′ is either shorter than

C or longer than C, by two edges. If it is longer than C, then the parallel cycle C′′

is again longer than C′ by two edges, and so forth. As this leads to a contradiction,

suppose that C′ is two edges shorter thanC. ThenC′′ is again two edges shorter than

C′, etc. Eventually we find a cycle of length four or five for which no parallel cycle

can exist. If G has parameters (6, 3), the argument is similar.

15.5.2 Drawing torus maps, triangulations

Read’s algorithm for drawing a planar graph, given a rotation system, can be ex-

tended to torus maps. Let Gt be a 2-connected combinatorial embedding, with no

vertices of degree two. Suppose that G has no loops, and that if there are multiple

edges, no face is a digon. If Gt is not a triangulation, we can triangulate it by adding

diagonal edges across non-triangular faces, so that no loops or digon faces are cre-

ated. The smallest possible triangulation of the torus is shown in Figure 15.28. We

denote it by T3. It can be constructed from the theta-graph shown in Figure 15.18 by

adding one vertex w, adjacent to each vertex u and v three times. Notice that T3 is

a 6-regular graph, whose faces are all triangles. It is the unique triangulation of the

torus on three vertices (Exercise 15.5.4).

b

a

b

a

u

v

w

w w

w

d

e

c

d

e

c

w

u

u

u

v

v

v

FIGURE 15.28

The triangulation T3

390 Graphs, Algorithms, and Optimization

There is a triangulation on four points, denoted T4, which can be constructed

from the rectangular form of the torus. A 3-vertex graph consisting of two digon

cycles (u, v) and (u,w) with a common vertex u is 2-cell embedded on the torus.

There is a single face, of degree eight. A fourth vertex x is placed in this face, and

joined to each vertex on the boundary of the face. It is illustrated in Figure 15.29. In

this diagram, the sides a and b of the rectangle are also graph edges. Notice that T4
has two vertices (u and x) of degree eight, and two (v and w) of degree four.

b

a

b

a

u

u

u

uv

v

ww x

FIGURE 15.29

The triangulation T4

Suppose that G has n vertices, with n3 of degree three, n4 of degree four, etc.

Then because Gt is a triangulation, we have 3f = 2ε. Euler’s formula then gives

ε = 3n, and:

3n3 + 2n4 + n5 = n7 + 2n8 + 3n9 + . . .

Lemma 15.16. Either there is a vertex of degree three, four, or five, or else all ver-

tices have degree six.

Now any triangulation in which all vertices have degree six is a Platonic map of

type (6, 3), and we know how to draw it as a tiling of the plane. Otherwise, there

is a vertex of degree three, four, or five. We can use a modification of the algorithm

REDUCEGRAPH() of Section 15.5.2 to reduce the triangulation Gt on n vertices to

a triangulation on n− 1 vertices, until either T3 or T4 results, or a 6-regular triangu-

lation results. We must ensure that the reduction does not create any loops or digon

faces.

Suppose that vertex u ofG has degree three, four, or five, and suppose that n ≥ 4.

If DEG(u) = 3, then Gt − u is a triangulation of the torus on n − 1 vertices. If

DEG(u) = 4, suppose that u is adjacent to v, w, x, y, in cyclic order. If at least

three of these vertices are distinct, then at least one of the diagonals of the 4-cycle

(v, w, x, y) has distinct endpoints. Suppose it is vx. Then Gt − u + vx will be a

triangulation on n−1 vertices, without loops or digon faces. Otherwise there are only

two distinct vertices in the 4-cycle, which is then (v, w, v, w); that is, there are four

parallel edges connecting v and w. Three of these parallel edges form a theta-graph,

whose only embedding has a single face, a hexagon, shown in Figure 15.30. The

fourth parallel edge cuts the hexagon into two quadrilaterals, one of which contains

u.

Graphs and Surfaces 391

d

e

c

d

e

c

w

w

w

v

v

v

u

FIGURE 15.30

Reducing a triangulation, DEG(u) = 4

The remaining vertices of G are located in the other quadrilateral. If n = 4, then

the map can only be the triangulation T4, with v and w as the two vertices of degree

eight. If n ≥ 5, there are at least two other vertices in the other quadrilateral. This

quadrilateral and the vertices it contains determine a planar graph, which must have

several vertices of degree three, four, or five. We choose one of these, and delete it

instead of u.

If DEG(u) = 5, let u be adjacent to v, w, x, y, z, in cyclic order. If v, x, and y
are distinct, we proceed as in the planar case, deleting u and adding two diagonals

across the pentagon. Otherwise, we can assume that v = x, because G has no loops.

v

w

xy

z

u
−→

v

w

x(= v)y(= w)

z

FIGURE 15.31

Reducing a triangulation, DEG(u) = 5

392 Graphs, Algorithms, and Optimization

If w, y, and z are distinct, then we can add the diagonals wy and wz to get a

triangulation. Otherwise we can assume thatw = y. But then z, w, and x are distinct,

so that we can add the diagonals zw and zx to obtain a triangulation with no loops or

digon faces. There are always at least three distinct vertices on the boundary of the

pentagon. This gives the following theorem:

Theorem 15.17. Let Gt be a torus map on n ≥ 4 vertices which is not 6-regular,

with no loops or digon faces. Then Gt can be reduced to one of the following:

1. The triangulation T3

2. The triangulation T4

3. A 6-regular triangulation

Algorithm 15.5.1 is input a triangulation of the torus, G, on n ≥ 4 vertices with

rotation system t, with no loops or digon faces. It constructs a triangulation G′ on

n− 1 vertices, whenever possible. It can be used to successively reduceGt to one of

T3, T4, or a 6-regular triangulation. Drawings of T3 and T4 on the torus are shown in

Figures 15.28 and 15.29. We can use these coordinatizations in a rectangle as topo-

logical embeddings. If a 6-regular triangulation is obtained, we can use diagonal cy-

cles to obtain a coordinatization of it. These embeddings have no loops, and no digon

faces. Every digon is embedded as an essential cycle. We then replace the deleted ver-

tices in reverse order, exactly as in the planar case of READSALGORITHM(), using

the visible region to assign coordinates to the deleted vertex. The result is a straight-

line drawing of Gt on the torus; that is, a topological embeddingGψ.

We summarize this as follows:

Theorem 15.18. Every torus map has a straight-line embedding in the rectangle and

hexagon models of the torus.

Exercises

15.5.1 Find the duals of the embeddings of the triangulations T3 and T4 shown

in Figures 15.28 and 15.29. What graphs are they?

15.5.2 Find the two tilings of the plane determined by a Platonic map of K4,4.

15.5.3 Find the tiling of the plane determined by a Platonic map of C3 × C3.

15.5.4 Show that T3 is the unique triangulation of the torus on three vertices.

15.5.5 Show that there are two distinct triangulations of the torus on four ver-

tices.

Graphs and Surfaces 393

Algorithm 15.5.1: REDUCETORUSMAP(G, t)

if G = T3 or G = T4 or G is 6-regular return (null)
if there is a vertex u with DEG(u) = 3

then





let t(u) = (uv, uw, ux)
G′ ← G− u
return (G′)

if there is a vertex u with DEG(u) = 4

then





let t(u) = (uv, uw, ux, uy)
if v = x and w = y

then pick a new u from V (G) − {u, v, w} of degree 4 or 5

if DEG(u) = 4

then





let t(u) = (uv, uw, ux, uy)
if v 6= x

then

{
G′ ← G′ − u+ vx
vx replaces vu in t(v) and xv replaces xu in t(x)

else

{
G′ ← G− u+ wy
wy replaces wu in t(w) and yw replaces yu in t(y)

return (G′)
pick u of degree 5, let t(u) = (uv, uw, ux, uy, uz)
if v, x and y are distinct

then




G′ ← G− u+ vx+ vy
vx, vy replace vu in t(v)
xv replaces xu in t(x) and yv replaces yu in t(y)

else if w, y and z are distinct

then




G′ ← G− u+ wy + wz
wy,wz replace wu in t(w)
yz replaces yu in t(y) and zw replaces zu in t(z)

else if x, z and v are distinct

then




G′ ← G− u+ xz + xv
xz, xv replace xu in t(x)
zv replaces zu in t(z) and vx replaces vu in t(v)

else if y, v and w are distinct

then




G′ ← G− u+ yv + yw
yv, yw replace yu in t(y)
vw replaces vu in t(v) and wy replaces wu in t(w)

else if z, w and x are distinct

then




G′ ← G− u+ zw + zx
zw, zx replace zu in t(z)
wx replaces wu in t(w) and xz replaces xu in t(x)

return (G′)

394 Graphs, Algorithms, and Optimization

15.6 Coordinate averaging

Coordinate averaging for torus maps is very similar to coordinate averaging for pla-

nar maps. Use the rectangular model of the torus. Let the coordinates of vertex i
be (xi, yi), which are located inside the rectangle representing the torus. There is

no outer face on the torus, and some edges of the graph “wrap around” the torus,

that is, they may cross the boundary of the torus rectangle. Adapting the coordinate

averaging algorithm from the plane to the torus, we obtain the following.

Algorithm 15.6.1: COORDINATEAVERAGING(Gt)

comment:





Given a straight-line drawing of a torus map Gt,
on n ≥ 4 vertices, with coordinates (xi, yi) for vertex i,
perform coordinate averaging.

let F1, F2, . . . , Ff denote the facial walks of Gt

for j ← 1 to f

do

{
use algorithm FACIALCYCLE(Fj) to sum (xi, yi), for all i ∈ Fj
(uj , vj)← average of the coordinates of the vertices of Fj

comment: (uj , vj) are now coordinates of the dualGt∗

for i← 1 to n

do

{
sum (uj , vj) for all faces Fj containing vertex i
(xi, yi)← average of the coordinates of the Fj containing i

On the torus, even a 3-conneced graph can have facial walks in which vertices or

edges are repeated, so that the facial walks Fj may not be cycles. As in the planar

case, FACIALCYCLE() is used to walk around each Fj , summing the coordinates

of the vertices on Fj , so as to compute their average. Let R denote the rectangle

representing the torus. When an edge uv crosses a boundary of R, additional steps

are necessary. Let ρ be the height of R, and σ its width. If an edge uv crosses the

upper boundary of R as Fj is being traced, then ρ must be added to yi, for each

subsequent vertex i encountered on Fj . If uv crosses the lower boundary of R, then

ρ must be subtracted from yi, for each subsequent vertex encountered. A similar

action is needed for xi when the right or left boundary of R is crossed, adding or

subtracting σ. Let the resulting coordinates representing the face Fj be (uj , vj). This

point may not be inside R. In this case, ρ is added or subtracted from vj , and σ is

added or subtracted from uj so as to place (uj , vj) inside R.

Coordinates (uj , vj) are calculated for every face Fj . Then a second loop re-

calculates (xi, yi), by performing the same operation, but in the dual. This constitutes

one application of COORDINATEAVERAGING(). Clearly this takes O(n) steps. This

algorithm can be iterated several times, to produce an improved drawing.

An example appears in Figure 15.32. The graph on the left in the dia-

gram is a torus embedding that could have been produced by the algorithm

Graphs and Surfaces 395

REDUCETORUSMAP(Gt). The graph on the right is after six applications of coor-

dinate averaging. A constant number of applications of coordinate averaging still

results in a O(n) algorithm.

b

a

b

a

b

a

b

a

FIGURE 15.32

Coordinate averaging

Coordinate averaging can be expressed in terms of matrices, similar to barycen-

tric coordinates for the vertex-face-incidence graph GF . However, the edges which

cross a boundary of R complicate the equations. As with the planar case, coordinate

averaging in Gt often hilights symmetries of G.

15.7 Graphs on the projective plane

The projective plane is most conveniently represented as a disc with antipodal points

identified. This is equivalent to the digon form c+c+ of the projective plane shown in

Figures 15.8 and 15.10. An embedding ofK6 and its dual are shown in Figure 15.33.

It is easy to verify that the dual of K6 on the projective plane is the Petersen graph.

As before, we shall only be concerned with 2-cell embeddings of 2-connected graphs.

Now it can be a little tricky to visualize the faces of an embedding on the projec-

tive plane, because the projective plane is non-orientable. Each point on the circum-

ference of the disc is identified with its antipodally opposite point. When an edge

of the graph meets the disc boundary, it continues from the antipodal point. But the

region immediately to the right of the edge as it meets the boundary is identified with

the region immediately to the left of the antipodal point. A consequence is that rota-

tion systems must be defined somewhat differently for non-orientable surfaces, and

the algorithm FACIALCYCLE() which constructs the faces of an embedding must be

modified.

Let Gψ be an embedding of a 2-connected graph G in the projective plane, and

let u be a vertex ofG. If we walk around uψ in a small clockwise circle, we encounter

the incident edges in a certain cyclic order, say uv1, uv2, . . . , uvk. If we walk along

396 Graphs, Algorithms, and Optimization

K6 Petersen graph

FIGURE 15.33

K6 and its dual, the Petersen graph, on the projective plane

the edges of Gψ, always staying within the disc, then the embedding appears exactly

like a planar embedding. If we traverse an edge that crosses the boundary of the disc,

and continue on until we reach uψ again, we find that the cyclic order of the incident

edges at uψ has been reversed.

Consequently a rotation system must be defined differently for a non-orientable

surface. The projective plane is represented as a disc. We choose an orientation for

this disc. Then given any vertex u, we walk around uψ in a small clockwise circle,

and construct a cyclic list of incident edges. We assign a signature to each edge

uv, denoted SGN(uv). If an edge (uvi)
ψ crosses the boundary of the disc, then

SGN(uvi) = −1. Otherwise it is +1. The signature does not depend on the direc-

tion in which the edge is traversed. In this way, the embeddingψ determines a signed

rotation system. In order for this to be well defined, it is necessary that vertex u does

not lie on the boundary of the disc. Before constructing a rotation system, all vertices

that lie on the boundary must be moved slightly so that they are no longer on the

boundary. We will always assume that this has been done. However, once signatures

have been assigned to the edges, we can always move u again, so that it is infinitesi-

Graphs and Surfaces 397

TABLE 15.1

The two rotation systems for K3,3 on the projective plane, corresponding to the two

embeddings in Figure 15.34

(I) (II)

π(1) = (12, 16,−14)
π(2) = (21,−25, 23)
π(3) = (32,−36, 34)
π(4) = (43,−41, 45)
π(5) = (54,−52, 56)
π(6) = (61, 65,−63)

π(1) = (14, 16,−12
π(2) = (23,−21, 25)
π(3) = (34, 32, 36)
π(4) = (41,−45, 43)
π(5) = (52,−54, 56)
π(6) = (61, 63, 65)

mally close to the boundary. We also assume that each edge that crosses the boundary

of the disc crosses it exactly once. If necessary, edges can be subdivided to ensure

that this is the case.

We will use π to denote a rotation system for an embedding on the projective

plane. For each vertex u, π(u) denotes a cyclic list of signed incident edges. Two

embeddings of K3,3 are shown in Figure 15.34. The rotation systems corresponding

to them are shown in Table 15.1. Although the rotation systems are different, the

embeddings are equivalent.

1
2

3

4
5

6

4

1

3

6

2

5

(I) (II)

FIGURE 15.34

Two equivalent embeddings of K3,3 on the projective plane

398 Graphs, Algorithms, and Optimization

Given a topological embeddingGψ , this method of defining a rotation system for

G is not unique, as it depends on the disc chosen to represent the projective plane.

With an orientable surface, this situation does not arise. We must show that a signed

rotation system uniquely determines the faces of an embedding, and that all rotation

systems corresponding to ψ determine the same faces. In the embedding on the right

of Table 15.1, we can cut the projective plane along the non-contractible Jordan curve

indicated by the dotted line, call it C. We then flip one-half of the disc over, and glue

the two pieces along the common boundary. We obtain another disc representing the

projective plane, with antipodal points identified. This gives another rotation system

π′ for G. In Table 15.1, the edges crossed by C will now have a signature of −1;

edges which previously had a signature of −1 will now have +1. It is easy to see

that with respect to the new disc, the embedding will have a face which is a 6-cycle

(1, 2, 3, 4, 5, 6)with “spokes” to the boundary of the disc, exactly like the embedding

on the left. Thus the embeddings are equivalent.

If π is a signed rotation system determined by an embedding Gψ and a disc

representation of the projective plane, we call Gπ a combinatorial embedding. G is

said to be projective planar, or simply projective. As we shall see, the faces of Gψ

are completely determined by Gπ.

DEFINITION 15.17: A projective map is a combinatorial embedding Gπ of a

2-connected graph G on the projective plane, where π is a signed rotation system

corresponding to a disc representation of the projective plane.

In order to show that all signed rotation systems arising from Gψ have the

same facial cycles, we begin by rewriting the algorithm FACIALCYCLE() for a non-

orientable surface. Notice that when traversing the facial cycles of a graph embedded

on a disc representing the projective plane, the clockwise cyclic order of the incident

edges viewed from above the disc appears counterclockwise when viewed from be-

low, and vice versa. The algorithm uses a boolean variable onTop to indicate whether

it is currently viewing the disc from above. Initially onTop has the value true. Each

time an edge uv with SGN(uv) = −1 is encountered, it reverses the value of onTop.

Any vertices visited while onTop is false will see a counterclockwise orientation for

their incident edges. Those with onTop true will see a clockwise orientation.

When a graph is embedded on an orientable surface, the facial cycles are oriented

cycles. We can assign a clockwise orientation to one cycle and the orientation of all

adjacent cycles is determined, and so forth, so that an orientation can be assigned to

the entire embedding. Reversing the cycles gives an equivalent, but reversed, embed-

ding.

Graphs embedded on the projective plane do not have this property. If we try to

assign an orientation to the facial cycles of an embedding Gψ, we can then choose

different signed rotation systems corresponding to Gψ , and different orientations of

the cycles will be obtained. However, if we are given the (unoriented) facial cycles,

they can be glued together uniquely along their common edges to construct a polygo-

nal representation of the projective plane. Therefore if we are given the facial cycles,

they will determine a topological embeddingGψ.

Algorithm 15.7.1 when given a signed rotation system π of an embeddingGψ on

Graphs and Surfaces 399

a non-orientable surface and a vertex u with an incident edge e, will find the facial

cycle containing e.

Algorithm 15.7.1: FACIALCYCLESGN(Gπ, u, e)

onTop ← true “initially view the disc from above”

e′ ← e
repeat



comment: e′ currently equals uv, for some v
if SGN(e′) = −1 then onTop ← not onTop
v ← other end of e′

e′′ ← edge of π(v) corresponding to e′

comment: e′′ currently equals vu
if onTop

then e′ ← edge preceding e′′ in π(v)
else e′ ← edge following e′′ in π(v)

u← v
until e′ = e and onTop

If this algorithm is applied to the combinatorial embeddings of K3,3 given in

Table 15.1, identical faces will be constructed. Because the projective plane is con-

structed by gluing together the faces, it follows that the topological embeddings they

represent are equivalent.

In Definition 15.14 combinatorial embeddings Gt1 and Gt1 on the torus were

defined to be equivalent if there exists an automorphism ofG that induces a mapping

of t1 to t2 or t2. This is inappropriate for signed rotation systems, as it cannot take

the signatures into consideration. Therefore we define equivalence of signed rotation

systems in terms of facial walks, as in Definition 15.15. Later we will see how to use

a medial digraph and the double cover to determine equivalence of projective planar

embeddings.

DEFINITION 15.18: LetG be a 2-connnected graph with projective rotation sys-

tems π1 and π2. Then Gπ1 and Gπ2 are equivalent or isomorphic if there is a permu-

tation of V (G) that maps the collection of facial walks of Gπ1 to that of Gπ2 , or to

that of Gπ2 .

When a facial walk is traversed the vertices are encountered in a certain sequence.

When glueing the faces of an embedding Gπ to obtain a projective plane, there is

only one way to do this, as each edge appears exactly twice in the collection of facial

walks. The result is a projective plane with the graph G embedded on it. Equiva-

lent embeddings must be isomorphic. Definition 15.18 determines the equivalence of

two embeddings of a graph G on the projective plane in terms of their facial walks.

Equivalence of embeddings Gπ1 and Hπ2 , where G and H are different graphs, re-

quires in addition an isomorphism of G and H . Automorphisms of projective maps

can also be defined in terms of the facial walks.

400 Graphs, Algorithms, and Optimization

DEFINITION 15.19: LetGπ be a projective map. An automorphism ofGπ is any

permutation of V (G) that maps the collection of facial walks of Gπ to itself, or to

those of Gπ. The automorphism group is AUT(Gπ).

In general, let Gψ be a topological embedding, and consider two different repre-

sentations of the projective plane as digons, a+a+ and b+b+. Let πa be the signed

rotation system corresponding to a+a+ and let πb correspond to b+b+. The boundary

of the disc given by b+b+ is a non-contractible Jordan curve C in the a+a+ repre-

sentation. It will intersect the graphGψ in one or more points. Refer to Figure 15.35.

When the disc is cut along the curveC, it may cut some edges ofGψ more than once.

If so, we subdivide those edges which are cut more than once. Hence we can assume

that every edge of Gψ is cut at most once by C. If the curve cuts through a vertex,

we can move it slightly so that it misses the vertex. We can do this because the graph

has a finite number of vertices.

a

a

1

2
3

4

5
6

b

D1

D2

b

b

1

2

3

4

5

6

a

D2

D1

FIGURE 15.35

Representations a+a+ and b+b+ of the projective plane

Suppose first that C cuts the boundary of the a+a+ disc in exactly two points

(which are antipodal points), as in Figure 15.35. To transform the a+a+ representa-

tion into the b+b+ representation, we cut the disc along the dotted curve, then flip

one-half of the disc over, and glue the two equivalent parts of the a+a+ boundary

together. We can flip either half over. Denote the two parts of the disc obtained as

D1 and D2, where D2 is the part that is flipped over. The result is a disc whose

boundary is b+b+, shown as the disc on the right in Figure 15.35. We obtain πb
from πa by reversing the cyclic adjacencies for all vertices in D2, and by assigning

−1 to those edges that are cut by C. We now compare the facial cycles of Gπa

and Gπb constructed by the algorithm FACIALCYCLESGN(). Let (v1, v2, . . . , vk)
be a facial cycle constructed for Gπa . Without loss of generality, suppose that

FACIALCYCLESGN(Gπb) begins to trace out this face from v1 which is in D1. If

the entire face is within D1, the result will be the same as the face obtained using

πa. If the facial cycle crosses from D1 to D2 via the a+a+ boundary, then because

D2 was flipped upside down, and the cyclic adjacencies of πa were reversed to ob-

tain πb, the same facial boundary will be constructed using πb or πa. If the facial

cycle crosses from D1 to D2 via C, then because πb attaches a signature of −1 to

Graphs and Surfaces 401

these edges, the cyclic adjacencies will be reversed by FACIALCYCLESGN(). But the

cyclic adjacencies of πa inD2 were also reversed in πb. The net effect is that the same

facial boundary is constructed using πb or πa at each step of the algorithm. It follows

that the two embeddings Gπa and Gπb have the same 2-cells as faces. Now we may

have subdivided some edges of G before cutting and pasting the disc. Vertices of

degree two do not affect the faces, and a cyclic order of two edges is invariant when

reversed. Therefore, when traversing a facial cycle along a path created by subdivid-

ing an edge, the important factor is the number of −1’s encountered. Hence we can

contract any subdivided edges and assign a signature of−1 if the number of edges in

the subdivided path was odd. The result will be the same facial cycle. We conclude

that the faces of Gπa and Gπb are identical, so that the embeddings are equivalent.

Suppose now that C cuts the boundary of the a+a+ disc in more than one pair of

antipodal points, where C is the boundary of the b+b+ disc. There are an infinite (in

fact, uncountable) number of possible non-contractible Jordan curves C. But there

are only a finite number of possible signed rotation systems for Gψ, because G is

finite. Therefore we will only consider non-contractible Jordan curves which meet

the boundary a+a+ in a finite number of points.

If C cuts the boundary of the a+a+ disc in more than one pair of antipodal

points, we proceed by induction. We are given a graphG embedded on the disc, with

a rotation system πa. As before we assume that C does not cut any vertices of Gψ .

Choose two consecutive points P andQ on C at which the disc boundary is cut such

that one of the intervals [P,Q] and [Q,P] on the boundary is not cut by any other

points of C. This is illustrated in Figure 15.36, where C is the dotted curve. Let the

antipodal points of P andQ be P ′ andQ′. Let C[P,Q] denote the portion of C from

P to Q. Make a cut in the disc very close to C[P,Q], cutting off a portion D1 of the

disc, so that C[P,Q] is completely contained within D1, but so that the only part of

G that is affected by the cut are the edges of G that cross C[P,Q]. This is possible

because the graph is finite. Let the remainder of the disc be D2. We now flip D1

over, and glue the matching boundaries of D1 andD2 near P ′ andQ′. The result is a

disc representation of the projective plane such thatC cuts its boundary in four fewer

points. Let the boundary of the new disc be c+c+, and let the signed rotation system

corresponding to it be πc.

Consider the faces of Gπa and Gπc . The rotation systems πa and πc differ only

in edges which are within D1, or which cross from D1 to D2. Vertices within D1

have adjacency lists of opposite orientation in πa and πc. FACIALCYCLESGN()

will construct the same faces for both πa and πc. With respect to the πc disc,

C has fewer intersections with the boundary. We use induction to conclude that

FACIALCYCLESGN() will construct the same faces for both πc and πb. It follows

that Gπa and Gπb always have the same faces. Because the projective plane is con-

structed by gluing the faces together, this gives:

Theorem 15.19. Let Gψ be an embedding on the projective plane. Given any two

signed rotation systems πa and πb for Gψ, corresponding to different disc represen-

tations of the projective plane, Gπa and Gπb are equivalent embeddings.

Theorem 15.20. LetGψ1 andGψ2 be topological embeddings ofG on the projective

402 Graphs, Algorithms, and Optimization

a

a

D1

D2P P ′

Q

Q′

c

c

c

c

D2

D1

P P ′

Q

Q′

FIGURE 15.36

Transforming a disc representation of the projective plane

plane with corresponding combinatorial embeddings Gπa and Gπb , with respect to

two disc representations of the projective plane. Then Gψ1 and Gψ2 are homeomor-

phic if and only if Gπa and Gπb are equivalent.

Proof. If Gπa and Gπb are equivalent, there is a permutation of V (G) that maps

the facial cycles of Gπa to those of Gπb . The faces are homeomorphic to 2-cells

bounded by the facial cycles. It follows that the faces of Gπa and Gπb determine

a homeomorphism of the embeddings Gψ1 and Gψ2 . Therefore Gψ1 and Gψ2 are

homeomorphic if and only if Gπa and Gπb are equivalent.

IfGp is a planar embedding of a 2-connected graph, it is very easy to convert p to

a projective rotation system π. When G is drawn in the plane, one face is always the

outer face. We draw G in a disc representing the projective plane. We then choose

any edge e on the outer face, and reroute it so that it crosses the boundary of the

disc. The result is a projective map. The two faces on either side of e in the planar

map become one face in the projective map. The cyclic order of adjacent vertices is

unchanged, for all vertices ofG. Thus, p can be converted to a projective rotation sys-

tem, by assigning a signature of−1 to any one edge of G. However, the embeddings

constructed in this way are somewhat unsatisfactory, as there is a non-contractible

Jordan curve in the surface which cuts the embedding in only one point.

15.7.1 The facewidth

The projective plane has unorientable genus one. The torus has orientable genus one.

Although they both have genus one, these surfaces behave very differently. K7 can

be embedded on the torus. Yet it is easy to see that it cannot be embedded on the

projective plane, as the unique embedding of K6 shown in Figure 15.33 cannot be

extended to K7. Alternatively, Euler’s formula can be used to show that K7 has too

Graphs and Surfaces 403

many edges to embed on the projective plane. However, there are infinite families of

graphs that can be embedded on the projective plane, but not on the torus.

We begin with two families of graphs called the Möbius ladder and Möbius lat-

tice, which can be embedded on both the projective plane and torus.

DEFINITION 15.20: The Möbius ladder L2n is the graph with 2n vertices

{v1, v2, . . . , v2n} such that vi −→ vi+1, and vi −→ vi+n, where subscripts larger

than 2n are reduced modulo 2n.

The Möbius ladder L6 is just K3,3, shown in Figure 15.34. L8 is shown in Fig-

ure 15.37. Notice that L2n is always a 3-regular graph.

DEFINITION 15.21: The Möbius lattice L2n−1 is the graph with 2n− 1 vertices

{v1, v2, . . . , v2n−1} such that vi −→ vi+1, vi −→ vi+n−1, and vi −→ vi+n where

subscripts larger than 2n− 1 are reduced modulo 2n− 1.

The Möbius lattice L5 is justK5. L7 is shown in Figure 15.37. Notice thatL2n−1

is always a 4-regular graph.

L8

1
2

3

4
5

6

7

8
1

2

3

45

6

7

L7 D2

D1

FIGURE 15.37

The Möbius ladder L8 and Möbius lattice L7

There is a clever trick that can be used to convert these projective embeddings of

L2n and L2n−1 to toroidal embeddings. Draw an essential cycle C across the disc

as shown by the dotted line in Figure 15.37, dividing it into two parts, D1 and D2.

Notice that C intersects the graph embedding in only two points, representing the

vertices 1 and 5. Vertices 1 and 5 are both joined to several vertices located in D1

and D2. Now cut the disc along C, flip D2 over, and glue D1 and D2 along the

common boundary to get a new disc representation of the projective plane, as shown

in Figure 15.38. Vertices 1 and 5 are on the boundary of the new disc. As we do

not need to find a projective rotation system for this embedding, we can take these

vertices on the boundary of the disc. These antipodal points are the only points of

the embedding Gψ on the disc boundary. Therefore we can convert the disc into the

hexagonal form of the torus, obtaining an embedding on the torus.

DEFINITION 15.22: Let Gψ be a graph embedding in a surface Σ. Let C be

404 Graphs, Algorithms, and Optimization

1

2

3

4

5

6

7

1 5
L7

a

b

c

c

b

a

1

2

3

4

5

6

7

1
5

FIGURE 15.38

Converting a projective embedding to a toroidal embedding

a non-contractible Jordan curve in Σ. The facewidth of C is fw(C), the number of

points of Gψ common to C. The facewidth of Gψ is fw(Gψ), the minimum fw(C),
where C is any non-contractible Jordan curve in Σ.

The facewidth is sometimes known as the representativity of an embedding. Let

C be a non-contractible Jordan curve of minimum possible facewidth, for an em-

bedding Gψ. If C intersects a face F , then it also intersects the boundary of F . If

an intersection point is not at a vertex, then it is at an interior point of an edge e.
Then C also intersects the face on the other side of e. In such a case, we can alter C
slightly so that it passes through e at an endpoint of the edge. The result is another

non-contractible Jordan curve, also of minimum facewidth. This gives the following:

Lemma 15.21. Given any embedding Gψ , there is a non-contractible Jordan curve

C of facewidth fw(Gψ) such that C intersects Gψ only at images of vertices.

Now the faces of an embedding Gψ are determined completely by its rotation

system. If C intersectsGψ only at images of vertices, then C determines a cyclic se-

quence of vertices (v1, v2, . . . , vk), where k = fw(C), such that consecutive vertices

are on the same facial boundary. It follows that fw(Gψ) depends only on the rota-

tion system, so that we can also write fw(Gπ). We show that the method used above

to convert a projective embedding of L7 to a toroidal embedding works in general,

whenever fw(Gπ) is at most three.

Theorem 15.22. Let Gπ be a projective embedding with facewidth at most three.

Then G can be embedded on the torus.

Proof. The proof proceeds as in the previous example. Let C be a non-contractible

Jordan curve with fw(C) ≤ 3. Use the hexagonal form of the torus, a+b+c+a−b−c−,

as in Figure 15.39. We cut the disc of the projective plane along C obtaining D1

and D2, which we glue together to obtain a new disc. Without loss of generality,

assume that fw(C) = 3, so that there are three pairs of antipodal points of Gπ on the

boundary of the new disc, call them p, q, and r, and suppose that they occur in this

Graphs and Surfaces 405

order along the boundary of the disc. We convert the disc into the hexagonal form of

the torus, as in Figure 15.39. We place p on the side of the hexagon labeled a, q on the

side labeled b, and r on the side labeled c. In the hexagon, the identified pairs of sides

are not antipodally reversed as in the disc model of the projective plane. However,

there is only one point p, q, or r on each side, so that the sequence of points on the

boundary is the same. The result is a toroidal embedding of G.

p

q

r

D1

D2

−→

a

b

c

c

b

a

p

p

q

q

r

r

FIGURE 15.39

Converting a projective embedding to a toroidal embedding

This transformation will only work when fw(C) ≤ 3. It has been shown by

FIEDLER, HUNEKE, RICHTER, and ROBERTSON [51] that the converse of this theo-

rem is also true; so that if a toroidal graph can be embedded on the projective plane,

then the facewidth on the projective plane is at most three. We can use this theorem

to construct projective graphs which are not toroidal. The construction uses Möbius

ladders or lattices. Suppose that we start with a Möbius ladder L2n with vertices

{v1, v2, . . . , v2n}. Add 2n more vertices u1, u2, . . . , u2n forming a cycle in which

ui −→ ui+1, and add the edges ui −→ vi, for all i. The result is a graph as shown

in Figure 15.40. The facewidth of this graph is four, if n ≥ 4, so that it cannot be

embedded in the torus. The facewidth can be made arbitrarily high by increasing n
and adding more cycles in this fashion.

15.7.2 Double covers

The projective plane can be viewed as exactly one-half of a sphere, by considering

the disc representing the projective plane as the upper hemisphere of a sphere. We

make another copy of the projective plane as follows. Let O denote the center of the

disc representing the projective plane. Reflect each point Q of the disc in O, i.e.,

draw a diameter throughO andQ. MapQ to its diametrically opposite pointQ′. Use

this reflected copy of the disc as the bottom hemisphere of a sphere. The two discs

meet on the equator. Now the points on the boundary of the disc representing the

projective plane are identified with each other. Therefore the equatorial points of the

406 Graphs, Algorithms, and Optimization

FIGURE 15.40

An embedding with facewidth four

sphere all have a corresponding antipodal point on the equator, which is identified

in the projective plane models. Antipodal points of the sphere always correspond to

the same point of the projective plane. The result is a two-to-one mapping of the

sphere onto the projective plane. Thus, we say that the sphere is a double cover of

the projective plane.

If G is a graph embedded on the disc of the projective plane, then the reflected

disc will contain a reflected copy G′ of G. Thus we have a sphere with V (G) on the

upper hemisphere, and V (G′) on the bottom hemisphere. We assume that no vertices

of G are situated exactly on the boundary of the disc. Any edge uv of G that crosses

the boundary of the disc will now meet the equator at the point where v′u′ meets the

boundary of the reflected disc. So the edge uv is represented by two edges, uv′ and

u′v on the sphere. We obtain a double cover of the embedding ofG on the projective

plane. For example, Figure 15.41 shows that a double cover of K4 is the graph of

the cube. We also find that the dodecahedron is a double cover of the Petersen graph,

as can be seen from Figure 15.33. It is interesting to note that the double covers of

projective graphs obtained by this method must be planar graphs. If G has several

different embeddings on the projective plane, it will likely also have several different

double covers.

DEFINITION 15.23: Let G and H be simple graphs such that there is a two-

to-one mapping γ : V (H) → V (G) with the property that γ induces a two-to-one

mapping of edges, γ : E(H)→ E(G). Then H is said to be a double cover of G. γ
is called the double cover map.

We denote the double cover of a projective embeddingGπ by DC(Gπ)p, where

p is the corresponding planar rotation system. If (G′)π
′

is the reflected map of

Gπ, then π and π′ are inverses of each other. Let u ∈ V (G) have correspond-

ing vertex u′ ∈ V (G′). Then {u, u′} is called an antipodal pair of vertices. If u

Graphs and Surfaces 407

1

23

4 1

23

4

3′

4′1′

2′

FIGURE 15.41

The cube is a double cover of K4

has rotation π(u) = (u1, u2, . . . , um), then the antipodal u′ ∈ V (G′) has rota-

tion π′(u′) = (u′m, u
′
m−1, . . . , u

′
1). If the edges uui all have SGN(uui) = +1, then

p(u) = (u1, u2, . . . , um) and p(u′) = (u′m, u
′
m−1, . . . , u

′
1). But if some edge uui

has SGN(uui) = −1, then in π(u), u′i is substituted for ui to obtain p(u), and in

π′(u′), ui is substituted for u′i to obtain p(u′). This is illustrated in Figure 15.41.

Consider a facial walk W = (v1, v2, . . . , vk) in Gπ . Let W ′ =
(v′k, v

′
k−1, . . . , v

′
1) be the corresponding facial walk in (G′)π

′

. If all edges vivi+1

of W have signature +1, then W1 = W and W2 = W ′ are both facial walks

of DC(Gπ)p. Notice that W1 and W2 are vertex-disjoint, and that W2 consists

of the antipodal vertices of W1. Otherwise let vivi+1 be the first edge of W with

SGN(vivi+1) = −1. In DC(Gπ)p, (v1, v2, . . . , vi, . . .) is the beginning of a facial

walk. In Gπ, W continues on the opposite side of the disc, so that beginning with

vi+1, the rotations π(vj) are reversed in determiningW , until the next edge with sig-

nature−1 is encountered. But inDC(Gπ)p, the rotation p(v′i+1) is π(vi+1) reversed,

so that the facial walk in DC(Gπ)p continues with (. . . , v′i+1, v
′
i+2, . . .), until the

next edge with signature−1 is encountered. Thus, a facial walk W1 of DC(Gπ)p is

determined by W and its edges with signature−1. Similarly W2 is determined from

W ′. We find that W2 consists of the antipodal vertices of W1, they are said to be

antipodal walks. For example, in Figure 15.41, the facial walk W = (1, 3, 4, 2) of

K4 has corresponding facial walks W1 = (1, 3′, 4′, 2) and W2 = (4, 3, 1′, 2′) in the

double cover, where W ′ = (4′, 3′, 1′, 2′). This gives:

Lemma 15.23. Let DC(Gπ)p be the double cover of Gπ, with double cover map γ.

Then γ induces a two-to-one map of the facial walks of DC(Gπ)p to those of Gπ.

Pairs of facial walks W1 and W2 where (W1)
γ = (W2)

γ are antipodal walks.

Proof. The previous paragraph proves that the double cover contains two antipodal

facial walks W1 and W2 corresponding to each W of Gπ. By Euler’s formula for

planar maps (n+ f − ε = 2), this comprises all facial walks of the double cover.

Equivalence of projective maps is defined in terms of the facial walks (Defini-

408 Graphs, Algorithms, and Optimization

tion 15.18). So it follows from Lemma 15.23 that isomorphism of projective maps is

closely related to the isomorphism of their double covers.

Theorem 15.24. LetDC(Gπ)p be the double cover ofGπ , with double cover map γ.

Let θ ∈ AUT(DC(Gπ)p) have the property that θ maps every antipodal pair {v, v′}
to an antipodal pair. Then θ induces an automorphism φ ∈ AUT(Gπ).

Proof. Let (G′)π
′

be the reflected copy of Gπ contained in the double cover, with

V ′ = V (G′). Construct φ from θ as follows. Given any v ∈ V (G), let w = vθ. De-

fine vφ = wγ . Now because θ maps antipodal pairs to antipodal pairs, it must be the

case that (v′)θ is the antipodal vertex of w. Thus φ is completely determined by θ.

We show that φ ∈ AUT(Gπ). Consider the collection of facial walks of DC(Gπ)p.

Every facial walk is mapped by θ to a facial walk in the same collection. The facial

walks of the double cover occur in pairs W1,W2 which are mapped by γ to a com-

mon facial walkW of Gπ. W2 consists of the antipodal vertices of W1, but reversed.

W1 andW2 are mapped by θ to a pair of facial walksW θ
1 ,W

θ
2 , whereW θ

2 consists of

the antipodal vertices ofW θ
1 , but reversed, by the properties of θ. ThereforeW θ

1 ,W
θ
2

are both mapped by γ to Wφ or to the reversal ofWφ. It follows that φmaps the col-

lection of facial walks of Gπ to itself, or to that of Gπ, so that it is an automorphism

of Gπ.

Given θ ∈ AUT(DC(Gπ)p) we write φ = θγ for the induced automorphism, for

φ is obtained by replacing each vertex v in θ with vγ .

Theorem 15.25. Let DC(Gπ)p be the double cover of Gπ, with double cover map

γ. Let φ ∈ AUT(Gπ). Then there is an automorphism θ ∈ AUT(DC(Gπ)p) such

that φ = θγ .

Proof. Let (G′)π
′

be the reflected copy of Gπ contained in the double cover. The

construction of the double cover describes how to link the embeddingsGπ and (G′)π
′

on the surface of the sphere uniquely to create DC(Gπ)p. If we now permute V (G)
on the disc representing the projective plane according to the automorphism φ, an

identical-looking embedding (Gπ)φ is produced, with each vertex v replaced by vφ.

The collection of facial walks is either unchanged or reversed. The reflected em-

bedding (G′)π
′

has rotations that are reversed from Gπ , so that when v′ is replaced

by (vφ)′, the reflected embedding also looks identical to (G′)π
′

. So when the per-

muted embedding is uniquely extended to the sphere to obtain the double cover, an

identical-looking double cover is obtained, with vφ replacing vertex v, and (vφ)′ re-

placing vertex v′. Thus we have an automorphism θ of DC(Gπ)p. Consider a facial

walk W of Gπ . There is a corresponding walk W ′ of (G′)π
′

. They correspond to

antipodal walks W1 and W2 in the double cover. When φ maps W to Wφ, W ′ is

mapped to (Wφ)′. Therefore θ maps W1 and W2 to the pair of antipodal walks that

correspond to Wφ, so that φ = θγ .

Theorem 15.25 shows that corresponding to φ ∈ AUT(Gπ), there is an auto-

morphism θ ∈ AUT(DC(Gπ)p), such that φ = θγ . Consider a vertex u ∈ V (G).
It is mapped to uφ. Then uθ is either uφ or (uφ)′. Either choice can be made, be-

cause the permutation that exchanges all antipodal pairs {v, v′} is an automorphism

Graphs and Surfaces 409

of DC(Gπ)p. This also determines (u′)θ . Having chosen uθ , the edges uv incident

on u are taken. Consider an edge uv of G with SGN(uv) = +1. It may map to an

edge of signature −1. Then (uv)θ = uθvθ will either be (uφ)(vφ)′ or (uφ)′(vφ).
As uθ has already ben chosen, this determines vθ uniquely, and consequently (v′)θ

is also determined. Similarly there are two choices for (uv)θ when uv maps to an

edge of signature +1, namely (uφ)(vφ) or (uφ)′(vφ)′. Again vθ and (v′)θ are deter-

mined uniquely. We continue like this until all vertices of the double cover have been

mapped by θ.

As the sphere is an orientable surface, the double cover provides a convenient

means of determining isomorphisms and automorphisms of projective embeddings.

The medial digraph of an embedding as expressed in Definition 14.20 is inappro-

priate for non-orientable surfaces. Although it encapsulates the cyclic adjacencies

of each vertex, it does not take into account the signature of the edges. The signa-

tures are required to ensure that the facial walks are correctly determined. In order

to distinguish inequivalent projective embeddings of a graph, and to determine the

symmetries (automorphisms) of an embedding, we can use the double cover.

By Theorems 15.24 and 15.25, every automorphism of Gπ arises from an auto-

morphism of DC(Gπ)p that maps antipodal pairs to antipodal pairs. Let M be the

medial digraph of DC(Gπ)p. By Lemma 14.21, AUT(M) determines all automor-

phisms of DC(Gπ)p. In order to ensure that only those automorphisms that map

antipodal pairs to antipodal pairs are used, M can be modified slightly. If G has

no vertices of degree two, an undirected path of length two connecting v and v′ is

added to M , for each antipodal pair {v, v′}. Call the result M+, the antipodal me-

dial digraph. Then any automorphism of M+ must permute the vertices of degree

two, thereby ensuring that antipodal pairs are mapped to antipodal pairs. But if G
has vertices of degree two, the same technique will work, using a slightly longer path

connecting v to v′. Then AUT(M+) contains all automorphisms of DC(Gπ)p that

map antipodal pairs to antipodal pairs. Let γ be the double cover map. For each gen-

erator of AUT(M+), we first restrict it to V (DC(Gπ)p) to obtain θ, and we then find

θγ . The result is AUT(Gπ). We state this as a theorem.

Theorem 15.26. LetGπ be a projective map with double coverDC(Gπ)p, and dou-

ble cover map γ. Let M+ be the antipodal medial digraph of the double cover. Then

AUT(Gπ) is obtained from AUT(M+) by restricting each element of AUT(M+) to

V (DC(Gπ)p), and then transforming it by γ.

Theorem 15.26 provides a very convenient method of determining the automor-

phism groups of projective embeddings. It usually requires graph isomorphism soft-

ware, but is purely combinatorial. It can also be used to determine whether embed-

dings Gπ1 and Gπ2 are isomorphic. We just construct the antipodal medial digraphs

M+
1 and M+

2 of their double covers, and test them for isomorphism. In this way it is

possible to find all non-equivalent projective embeddings of a given graph G.

Theorem 15.27. There is only one embedding of K3,3 on the projective plane, up to

isomorphism.

Proof. Let Gπ be an embedding of K3,3 on the projective plane. Consider a longest

410 Graphs, Algorithms, and Optimization

essential cycle in Gπ. If the length of C is 6, let the vertices of C be (1, 2, 3, 4, 5, 6),
in that order. When C is embedded in the projective plane it has one face, with

boundary (1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6). The edges still to be embedded are 14, 25
and 36. Without loss of generality, 14 must be embedded in the face as shown in

Figure 15.42. There is then only one way to complete the embedding by adding

edges 25 and 36.

If the longest essential cycle in Gπ has length four, it can be taken as C =
(1, 2, 3, 4). When C is embedded in the projective plane it has one face, with bound-

ary (1, 2, 3, 4, 1, 2, 3, 4). Vertices 5 and 6 must be embedded within this face, as

shown in Figure 15.43. The edge 56 must be drawn within the face, and without

loss of generality, the edges 16 and 36 can be drawn as shown. There is then only

one way to embed the edge 25, but two equivalent ways to embed the edge 45. Now

one of the edges of C must be assigned a signature of−1. For each possibility, there

is an essential cycle of length 6, a contradiction.

1

1

3

3 5

5

2

2

44

6

6

FIGURE 15.42

Embedding K3,3 in the projective plane, C has length 6

Exercises

15.7.1 Find all embeddings of K4 and K5 on the projective plane.

15.7.2 Find a projective embedding of K3,4 and find its projective dual. What

graph is it?

15.7.3 Let Gψ be a projective embedding of G, and let π be an associated rota-

tion system. Let C be any cycle ofG. Show that C is an essential cycle of

Gψ if and only if the number of edges ofC with signature−1 is congruent

to 2 (mod 4).

15.7.4 Find the dual maps of the embeddings shown in Figure 15.37.

Graphs and Surfaces 411

1

1

33

2

2 4

4

6

5

FIGURE 15.43

Embedding K3,3 in the projective plane, C has length 4

15.7.5 Show that the Möbius ladder L2n contains a topological subgraph

TL2n−2, when n ≥ 3.

15.7.6 Show that the Möbius lattice L2n−1 is a minor of L2n+1, if n ≥ 3.

15.7.7 Show that the Möbius ladder L2n has an embedding on the torus in which

all faces are hexagons. Construct the embedding for n = 4, 5, and find

the dual map. (Hint: In the rectangular representation of the torus, draw

a cycle of length 2n which wraps around the torus twice. Show how to

complete this to a hexagonal embedding of L2n.)

15.7.8 Show that the Möbius lattice L2n−1 has an embedding on the torus in

which all faces are quadrilaterals. Construct the embedding for n = 4, 5,

and find the dual map. (Hint: In the rectangular representation of the torus,

draw a cycle of length 2n− 1 which wraps around the torus twice. Show

how to complete this to a quadrilateral embedding of L2n−1.)

15.7.9 Show that there is a unique triangulation of the projective plane with three

vertices and six edges.

15.7.10 Show that Read’s algorithm for drawing a planar graph can be adapted

to the projective plane. Show that there is a unique triangulation of the

projective plane on three vertices, and that any triangulation can be re-

duced to it by deleting vertices of degrees three, four, or five, and adding

diagonals to the faces obtained. Conclude that every projective graph has

a straight-line drawing in the disc model of the projective plane.

15.7.11 Show that the graph of the 2n-prism is a double cover of the Möbius

ladder L2n.

15.7.12 The cube is a double cover of K4. Find another double cover of K4.

15.7.13 Find a double cover of K6, as illustrated in Figure 15.33.

412 Graphs, Algorithms, and Optimization

15.7.14 Find a projective embedding of the graph of the cube, and find its double

cover.

15.7.15 The Desargues graph is shown in Figure 15.44. The Desargues graph

is non-planar, non-projective, and non-toroidal. Show that it is a double

cover of the Petersen graph.

FIGURE 15.44

The Desargues graph

15.8 Embedding algorithms

In this section, we outline an algorithm to determine whether a 2-connected graphG
can be embedded on the projective plane, and to find an embeddingGπ . It is modeled

on algorithms of Gagarin, Mohar, and Myrvold and Roth. If G is planar, we know

how to convert a planar embedding to a projective embedding. Hence we can assume

that G is non-planar, so that it contains a Kuratowski subgraph TK5 or TK3,3.

There is exactly one embedding of K3,3 on the projective plane, shown in Fig-

ure 15.34, and two embeddings of K5, shown in Figure 15.45. These embeddings

all have the property that there are no repeated vertices on any facial cycle. In Fig-

ure 15.34, the hamilton cycle (1, 2, 5, 6, 3, 4) is an essential cycle. Because K3,3 has

a unique embedding on the projective plane, this gives:

Lemma 15.28. In any embedding of K3,3 in the projective plane, some hamilton

cycle is an essential cycle.

If we now cut the projective plane along this cycle, the result is a disc in which

each vertex 1, 2, . . . , 6 appears twice on the boundary. The resulting diagram, shown

in Figure 15.46, is a very convenient representation of the projective plane.

Graphs and Surfaces 413

FIGURE 15.45

The embeddings of K5 on the projective plane

1

1

2

2

3

3

4

4

5

5

6

6

FIGURE 15.46

A representation of the projective plane

Consider a subgraph TK3,3 in G. We want to determine whether G can be em-

bedded in the projective plane. We will begin by embedding the subgraph TK3,3.

There are six hamilton cycles of K3,3. Each corresponds to a cycle of TK3,3. One

of them must be essential. Exercise 15.8.2 describes an easy way to enumerate the

hamilton cycles of K3,3. We take each of the six cycles in turn, and construct an

embedding of TK3,3, as in Figure 15.46, and try to extend it to an embedding of

G. If any one succeeds, then G is projective. Otherwise we conclude that G is non-

projective.

The embedding of K3,3 divides the projective plane into four faces – a hexagon,

and four quadragons. The remaining vertices and edges of G must be placed in one

of these faces. If we delete V (TK3,3) from G, the result is a subgraph consisting

of a number of connected components. If H is such a connected component, then

because G is 2-connected, there must be at least two edges with one endpoint in H
and the other in TK3,3.

414 Graphs, Algorithms, and Optimization

DEFINITION 15.24: A bridge of G with respect to TK3,3 is either:

1. An edge uv, where u, v ∈ V (TK3,3) but uv 6∈ E(TK3,3), or

2. A connected component H of G − V (TK3,3) together with all edges

connecting H to TK3,3

If B is a bridge, then a vertex of attachment of B is any vertex u of B such that

u ∈ V (TK3,3).

We can use a breadth-first (BFS) or depth-first search (DFS) to find the bridges

of G with respect to an embedding of TK3,3. Each bridge has at least two vertices

of attachment. Because each face is a 2-cell, and each bridge must be embedded in a

face of TK3,3, each bridge must be planar. Into which faces of TK3,3 can the bridges

be placed?

The embedding of K3,3 in Figure 15.46 determines a classification of the ver-

tices and edges of K3,3. Edges on the boundary of the hexagon are called hexagon

edges. Edges which are on the boundary of a quadragon, but not on the hexagon are

called quadragon edges. Hexagon edges like {1, 2} and {4, 5} are called opposite

edges. Vertices like 1 and 4 are called diagonally opposite vertices, because they

are diagonally opposite on the hexagon. By a path of TK3,3 we mean a path con-

necting two corner vertices. The paths of TK3,3 corresponding to hexagon edges of

K3,3 are called hexagon paths, those corresponding to opposite edges of the hexagon

are called opposite paths, and so forth. In general, a path of TK3,3 will be either a

hexagon or a quadragon path of TK3,3. The following lemmas on bridges can be

proved by considering all possibilities of placing a bridge in Figure 15.46.

Lemma 15.29. A bridge B can be placed in three faces of TK3,3 if and only if B
has exactly two vertices of attachment, which are diagonally opposite vertices.

Lemma 15.30. A bridgeB can be placed in exactly two faces of TK3,3 if and only if

all vertices of attachment of B are on the same path, or on opposite paths of TK3,3.

It follows from these lemmas that a bridgeB can be placed in at most three faces,

and that bridges for which these lemmas do not apply, either cannot be placed in any

face, or can be placed in at most one face. A bridge is compatible with a face if it can

be placed in the face. A bridge B is a k-face bridge if it can be placed in exactly k
faces of TK3,3. Thus, we have 3-face, 2-face, 1-face, and 0-face bridges with respect

to an embedding of TK3,3. We can determine which faces a bridge may embed in by

using its vertices of attachment and the previous lemmas.

Two bridges B1 and B2 conflict in face F if they can both be placed in face F ,

but cannot be simultaneously placed in face F . Suppose that B1 can be embedded

in face F and that it has k vertices of attachment v1, v2, . . . , vk, where k ≥ 2, and

where the vertices occur in that order on the facial cycle of F . The vertices divide

the facial cycle into k intervals [v1, v2], [v2, v3], . . . , [vk−1, vk], [vk, v1], where each

interval is a path from vi to vi+1. If B2 is another bridge that can also be embedded

in face F , then B1 and B2 do not conflict if and only if all vertices of attachment of

B2 lie in one interval of B1, and vice versa.

Graphs and Surfaces 415

Suppose thatB is a 3-face bridge, with vertices of attachment u and v. All 3-face

bridges with these vertices of attachment can be combined into one bridge, as they

can always all be embedded in the same face if any embedding is possible. Thus, we

can assume that there are at most three 3-face bridges, one for each pair of diago-

nally opposite vertices. Furthermore, any two distinct 3-face bridges conflict in the

hexagon, so that at most one 3-face bridge can be embedded in the hexagon. The al-

gorithm looks for embeddings with no 3-face bridges in the hexagon, or with exactly

one 3-face bridge in the hexagon. Thus there are four subproblems to consider.

If we choose a DFS to find the bridges, it can be organized as follows. The pro-

cedure uses a variable nBridges to count the number of bridges found so far. It is

initially zero. We take each vertex u ∈ V (TK3,3) in turn, and consider all incident

edges uv 6∈ E(TK3,3). Edge uv belongs to exactly one bridge. We store a value

B(uv) for each edge, indicating the bridge to which uv belongs. If B(uv) = 0, then

B(uv) has not yet been assigned. If v ∈ V (TK3,3), then edge uv is a bridge, and we

assignB(uv). Otherwise we call a procedure BRIDGEDFS(v) to build the bridgeB.

Because of the nature of a DFS, it will visit all vertices of B before returning, and

will explore only edges of B. For each edge xy ∈ B, B(xy) is assigned to be the

current value of nBridges. Each time it encounters a vertex of TK3,3, it has found

a vertex of attachment. For each bridge, a list of vertices of attachment is saved. If

two bridgesB andB′ are both found to have exactly two vertices of attachment, and

they are the same two vertices, then B and B′ are combined into a single bridge.

The vertices of attachment are later used to determine the compatible faces, using

the previous lemmas, and to sort the adjacency list of each u.

Algorithm 15.8.1: CONSTRUCTBRIDGES(G, TK3,3)

comment: Construct all bridges of G with respect to TK3,3

nBridges ← 0
for each u ∈ V (TK3,3)

do





for each edge uv such that uv 6∈ E(TK3,3)

do





if B(uv) = 0 then



comment: the bridge of uv has not been visited

nBridges ← nBridges + 1
if v ∈ V (TK3,3)

then B(uv)← nBridges
else BRIDGEDFS(v)

comment: all bridges incident on u have now been constructed

We can now present an algorithm for determining the conflicts of bridges in a face

F . Let (u1, u2, . . . , uk) denote the facial cycle of F . We assign a numbering to the

facial cycle, such that ui is numbered i. This defines an ordering u1 < u2 < . . . <
uk. For each bridge B that is compatible with F , we sort the vertices of attachment

according to this ordering. The purpose of this is to determine whether the vertices of

416 Graphs, Algorithms, and Optimization

attachment of each bridge lie completely within an interval of all other bridges. Let

bmin denote the smallest vertex of attachment of bridge B, and let bmax denote the

largest. The algorithm then walks along the facial cycle from uk to u1 and sorts the

adjacency list of each ui. The edges incident on ui can be divided into the following

three classes:

1. Edges uiv belonging to a bridge B such that ui = bmin

2. Edges uiv belonging to a bridge B such that bmin < ui < bmax

3. Edges uiv belonging to a bridge B such that ui = bmax

B

B′

uk

bmax

ui = bmin = b′max

b′max

u1

FIGURE 15.47

Determining whether bridges conflict

Refer to Figure 15.47. The adjacency list is ordered so that edges in the first

class precede those in the second class, which precede those in the third class, and

so that edges of each bridge are contiguous in each of the three classes. The edges in

the first class are further sorted so that if uiv and uiv
′ belong to bridges B and B′,

respectively, where bmax < b′max, then uiv precedes uiv
′. If bmax = b′max, then uiv

precedes uiv
′ if B has more vertices of attachment. The edges in the third class are

further sorted so that if uiv and uiv
′ belong to bridgesB andB′, respectively, where

bmin < b′min, then uiv precedes uiv
′. If bmin = b′min, then uiv precedes uiv

′ if B
has fewer vertices of attachment.

In Figure 15.47 the u1uk-path of the facial cycle is drawn approximately ver-

tically, and the bridges are placed to the left of the path. With this representation,

Graphs and Surfaces 417

the ordering of the adjacency lists appears as a clockwise circle drawn at each ui. If

ui = bmin for some bridge B, there can be several edges uiv belonging to bridge B.

The last such edge is saved as Bmin. Similarly, if ui = bmax for some bridge B, the

first edge uiv of B is saved as Bmax.

The algorithm then walks along the facial cycle from uk to u1. Every edge uiv
such thatB(uiv) is compatible with F is placed on a stack. WhenBmin, the last edge

of bridge B is encountered, all edges of B are removed from the stack, and conflicts

with B are determined. The algorithm stores a linked list of conflicting bridges for

each bridge B.

Algorithm 15.8.2: BRIDGECONFLICTS(F)

comment:





Determine the conflicts among bridges incident on face F
The facial cycle of F is (u1, u2, . . . , uk)
The adjacency list of each ui has been sorted

for ui ← uk downto u1

do





for each edge uiv such that uiv 6∈ E(TK3,3)

do





B ← B(uiv)
if B is not compatible with face F go to L1
place uiv on Stack
if uiv = Bmin

then





let uj be the vertex of attachment of Bmax

uℓw← top of Stack
while uℓw 6= Bmax do



if B(uℓw) = B
then remove uℓw from Stack

else

{
if uℓ 6= ui and uℓ 6= uj

then B and B(uℓw) conflict

uℓw← next edge on Stack
remove uℓw from Stack

L1 :

We prove that the algorithm works. Suppose that B is a bridge with bmax = ui
and bmin = uj , with extreme edges Bmax = uiv and Bmin = ujw. All vertices

of attachment of B lie between ui and uj . If no other bridge has an attachment uℓ
here, such that ui 6= uℓ 6= uj , then B does not conflict with other bridges. Consider

the point in the algorithm when Bmin is reached. The algorithm will have stacked

each edge ofB incident on the facial cycle, includingBmin. It then removes all these

edges. If there is no uℓ between ui and uj , no conflicts are discovered. But if B′ is

a bridge with a vertex of attachment uℓ in this range, then an edge uℓx of B′ will

have been stacked after Bmax and before Bmin. Because the edges of B′ are still on

the stack while edges of B are being removed, b′min ≤ bmin. If b′min < bmin, then

B and B′ are in conflict, and this is discovered. If b′min = bmin, then because Bmin

418 Graphs, Algorithms, and Optimization

precedes B′
min in the adjacency lists, we know that b′max ≥ bmax. If b′max > bmax,

then B and B′ are in conflict, and this is discovered. Otherwise b′max = bmax and

b′min = bmin, and uℓ is strictly between these limits. The ordering of the adjacency

list tells us thatB has at least as many vertices of attachment as B′. ThereforeB and

B′ both have a vertex of attachment strictly between ui and uj . We conclude that the

bridges conflict.

Once all bridges have been constructed and all conflicts have been determined,

we construct an instance of the 2-Sat problem to represent this embedding problem.

The 2-Sat problem will have boolean variables corresponding to the placement of

bridges, and boolean expressions to characterize the conflicts of bridges. Let the

bridges be B1, B2, . . . , Bm. If there are any 0-face bridges, the embedding of TK3,3

cannot be extended. If Bi is a 1-face bridge, embeddable in face F , create a boolean

variablexi for it. We require xi = true , and consider this to mean thatBi is assigned

to face F . If Bi is a 2-face bridge embeddable in faces F and F ′, create boolean

variables xi and yi for it. We consider xi = true to mean that Bi is assigned to F
and yi = true to mean that Bi is assigned to F ′. Because we do not want xi and yi
both to be true, or both to be false, we construct the clauses

(xi + yi)(xi + yi)

This ensures that exactly one of xi and yi will be true.

If Bi is a 3-face bridge, create boolean variables xi, yi, and zi for it as above,

where zi = true means that Bi is embedded in the hexagon. The 3-face bridges

require special treatment. We take zi = false and zi = true as separate cases. If

zi = false, Bi becomes a 2-face bridge, and we construct the clauses

(xi + yi)(xi + yi)

to represent this bridge. If zi = true , Bi becomes a 1-face bridge, and we require

xi = yi = false.

If Bi and Bj are bridges that conflict in a face F , suppose without loss of gen-

erality that xi represents the assignment of Bi to face F , and that wj represents the

assignment of Bj to face F , where wj is one of xj , yj , or zj . We then construct the

clause

(xi + wj)

to ensure that at most one of Bi and Bj can be placed in face F .

When a variable is required to have a certain value (e.g., xi = true), we con-

struct clauses

(xi + x0)(xi + x0)

where x0 is an additional boolean variable. Notice that this can only be satisfied if

xi = true. If xi = false is required, we construct the clauses

(xi + x0)(xi + x0)

which can only be satisfied if xi = false.

Thus, we can represent all conflicts and all placements of bridges by instances

Graphs and Surfaces 419

of 2-Sat. Suppose that an algorithm for 2-Sat finds a solution satisfying the con-

straints. If B1, B2, . . . , Bk are the bridges assigned to face F , they are all mutually

non-conflicting bridges. Consequently, all vertices of attachment of any Bi lie in

an interval determined by two vertices of attachment of every Bj . If each Bi has a

planar embedding in F , then they all have a common planar embedding in F , and

conversely. If there is no common planar embedding of the bridges in F , then some

bridgeBi has no planar embedding in F . It then follows thatBi cannot be embedded

in any other face F ′. Thus, we can complete the projective embedding ofG by deter-

mining whether there is a planar embedding of the bridges in F . We construct a graph

G(F) which is the union of the facial cycle of F , and all bridgesB1, B2, . . . , Bk as-

signed by 2-Sat to F . We add one additional vertex u0, joined to every vertex of the

facial cycle, in order to distinguish an “inside” and “outside” for F . We have:

Lemma 15.31. G(F) is planar if and only if bridgesB1, B2, . . . , Bk have a common

embedding in F .

We can now present the algorithm for projective planarity.

The bridges B1, B2, . . . , Bm are constructed using a BFS or DFS. This takes

O(n) steps, because ε ≤ 3n−3. There are six embeddings of TK3,3 that are consid-

ered. For each embedding, the bridges are classified according to the faces they can

be assigned to. The conflicts between bridges are then calculated. As the number of

bridgesm is bounded by n, the number of conflicts is at most O(n2). An instance of

2-Sat is then constructed with at most 3m+1 variables and at most 4m+m(m−1)
clauses. This can be solved in O(n2) time. If a solution is found, a planar embed-

ding algorithm must be used for each face to find the actual embedding. If a linear or

quadratic planarity algorithm is used, the result is at most O(n2) steps to complete

the projective embedding. The result is a O(n2) algorithm for finding a projective

embedding of G, if one exists, when we are given a TK3,3 in G.

Now it would be possible to consider the embeddings of TK5 in a similar way,

and construct the bridges with respect to each embedding of TK5, etc. There are

27 (labeled) embeddings of TK5 in the projective plane. However, there is an easier

way. In Section 14.3 we found that most graphs containing a subgraph TK5 also

contain TK3,3, and that a simple breadth-first search algorithm can find a TK3,3,

given a TK5. Thus, if we are given a TK5 in G, we first try to find a TK3,3 in its

place, and then use Algorithm PROJECTIVEPLANARITY() to extend it to G.

420 Graphs, Algorithms, and Optimization

Algorithm 15.8.3: PROJECTIVEPLANARITY(G, TK3,3)

comment:

{
Given a graph G with a subgraph TK3,3,

determine whether G is projective.

let n and ε denote the number of vertices and edges of G
if ε > 3n− 3

then return (NonProjective)
construct the bridges B1, B2, . . . , Bm with respect to TK3,3

for each embedding of TK3,3

do





classify the bridges as 0-face, 1-face, 2-face, or 3-face

if there is a 0-face bridge go to L1
determine all conflicts of bridges

construct the clauses representing all conflicts of bridges

wlog, assume that B1, B2 and B3 are 3-face bridges

z1, z2, z3 ← false

for i← 0 to 3

do





construct the clauses representingB1, B2 and B3

solve the resulting 2-Sat problem

if there is no solution go to L2
for each face F of TK3,3 do{

take all bridges assigned to F , construct graph G(F)
if G(F) is non-planar go to L2

comment: we now have a projective embedding

return (Projective)
L2 :
zi ← false

zi+1 ← true

L1 :
return (NonProjective)

—

If TK5 cannot be extended to TK3,3, then the structure of G is limited. Let

{v1, v2, v3, v4, v5} be the corners of TK5. Then G− {v1, v2, v3, v4, v5} is a discon-

nected graph. Each component is adjacent to exactly two of the corner vertices of

TK5. Let Gij denote the subgraph induced by all components adjacent to vi and vj ,
together with all edges connecting them to vi or vj . Gij is called a K5-component

of G. Notice that vi and vj are vertices of Gij , and that E(G) = ∪i,jE(Gij). An

augmented K5-component is the graph G+
ij with the additional edge vivj ; namely,

G+
ij = Gij + vivj . We have the following theorem:

Theorem 15.32. Suppose that G has a subgraph TK5 which cannot be extended to

TK3,3. Then G is projective if and only if all augmented K5-components G+
ij are

planar.

Graphs and Surfaces 421

The proof of this theorem is left as an exercise. A consequence of it is that al-

gorithms for projective planarity can focus on TK3,3 subgraphs, which have fewer

embeddings. A similar, but more complicated result holds for toroidal graphs con-

taining a TK5 which cannot be extended to TK3,3.

Exercises

15.8.1 Show that a graph can be embedded on the projective plane if and only if

it can be embedded on the Möbius band.

15.8.2 Show thatK3,3 has six hamilton cycles. IfC = (1, 2, 5, 6, 3, 4) is a hamil-

ton cycle, show that all hamilton cycles can be obtained by successively

applying the permutation (1)(3, 5)(2, 4, 6) to C.

15.8.3 Show how to find a projective rotation system for a graph G contain-

ing TK3,3, when the algorithm PROJECTIVEPLANARITY() determines

that G is projective. Hint: Use the projective embedding of K3,3 in Fig-

ure 15.48.

15.8.4 Prove Theorem 15.32.

1

1

2

2

3

3

4

5 6

FIGURE 15.48

A projective embedding of K3,3

15.9 Heawood’s map coloring theorem

We conclude this chapter with a discussion of Heawood’s map coloring theorem.

The 4-color theorem states that χ(G) ≤ 4, for graphs of genus zero. Heawood’s map

coloring theorem gives an analogous result for graphs of genus one or more.

422 Graphs, Algorithms, and Optimization

Lemma 15.33. Let n ≥ 3. Then g(Kn) ≥ ⌈(n− 3)(n− 4)/12⌉.

Proof. By Lemma 15.6, ε(Kn) = n(n− 1)/2 ≤ 3n+6(g− 1). Solving for g gives

the result.

Theorem 15.34. (Heawood’s theorem) Let G be a graph on n vertices with genus

g ≥ 1. Then χ(G) ≤ ⌊ 12 (7 +
√
1 + 48g)⌋.

Proof. Let χ(G) = k. IfG is not a critical graph, then it contains a critical subgraph.

Because a k-critical graph has minimum degree at least k − 1, we conclude that the

sum of degrees of G is at least (k − 1)n, so that ε ≥ (k − 1)n/2. Lemma 15.6 gives

ε ≤ 3n+ 6(g − 1). These two inequalities together give

k ≤ 7 +
12(g − 1)

n
,

with equality only if both inequalities above are equalities. Now g ≥ 1 so that for

fixed g, this is a non-increasing function of n, so that χ(G) will be bounded. This

arises because the number of edges in a k-critical graph increases as kn/2, whereas

the maximum number of edges in a graph embedded in a surface of genus g increases

as 3n. We also know that k ≤ n, an increasing function. Therefore the largest pos-

sible value of k is when k = n = 7 + 12(g − 1)/n. The equation then becomes

n2 − 7n− 12(g− 1) = 0, which gives the solution n = 1
2 (7 +

√
1 + 48g). Because

k ≤ n and k must be an integer, the result follows.

If 1
2 (7+

√
1 + 48g) is an integer, the inequalities used in the proof of Heawood’s

theorem must be equalities. This requires that ε = (n− 1)n/2, so that G = Kn. The

quantity 1
2 (7 +

√
1 + 48g) represents the largest number of vertices that a graph can

have, and still satisfy n(n− 1)/2 ≤ 3n+ 6(g − 1). If it is not an integer, this means

that n(n−1)/2 < 3n+6(g−1), so that a complete graph on n = ⌊ 12 (7+
√
1 + 48g)⌋

vertices will not be a triangulation. In general, we have:

Theorem 15.35. Let G be a graph on n vertices with genus g ≥ 1 and chromatic

number χ(G) = ⌊ 12 (7 +
√
1 + 48g)⌋. Then G contains a spanning complete graph.

Proof. Let h = ⌊ 12 (7 +
√
1 + 48g)⌋. Let G have n vertices. Because χ(G) = h,

we know that n ≥ h, and ε(G) ≥ n(h − 1)/2 ≥ h(h − 1)/2. But h is the largest

integer such that h(h − 1)/2 ≤ 3h + 6(g − 1). Therefore n = h and G contains a

spanning complete graph. Note that a complete graph may not triangulate the surface,

so that the number of edges in a triangulation, 3h + 6(g − 1), may be larger than

h(h− 1)/2.

We conclude that the extreme value of χ will be achieved only if a complete

graph with this many vertices can be embedded in the surface.

This theorem gives χ(G) ≤ 7 for the torus. An embedding of K7 in the torus is

shown in Figure 15.24, so that seven colors are necessary for the torus. We say that

the chromatic number of the torus is seven, because all toroidal graphs can be colored

in at most seven colors, and seven colors are necessary for some graphs. The dual of

Graphs and Surfaces 423

the embedding of K7 on the torus is the Heawood graph. Heawood was coloring the

faces of an embedding rather than the vertices of a graph, and discovered this graph.

The 4-color theorem tells us that the chromatic number of the plane is four. The for-

mula of Heawood’s theorem gives the bound χ(G) ≤ 4 for the plane. However, the

proof is invalid when g = 0, and there are many planar graphs other than K4 which

require four colors. Lemma 15.33 gives g(Kn) ≥ ⌈(n − 3)(n − 4)/12⌉. A proof

that g(Kn) equals this bound would mean thatKn can always be embedded in a sur-

face of this genus. Because χ(Kn) = n, the inequality of Heawood’s theorem could

then be replaced by an equality. Calculating the genus of Kn was accomplished by

a number of people (Heffter, Gustin, Ringel, Youngs, and Mayer) over many years.

We state the result, without proof, as the following theorem.

Theorem 15.36. (Ringel-Youngs) Let n ≥ 3. Then g(Kn) = ⌈(n− 3)(n− 4)/12⌉.
A complete proof of this result can be found in the survey paper of WHITE [190].

A consequence is the following:

Theorem 15.37. (Heawood map coloring theorem) The chromatic number of an

orientable surface of genus g ≥ 1 is ⌊ 12 (7 +
√
1 + 48g)⌋.

The corresponding results for non-orientable surfaces of genus g ≥ 1 are as

follows. Corresponding to Lemma 15.33 is the bound g(Kn) ≥ ⌈(n− 3)(n− 4)/6⌉.
Corresponding to Heawood’s theorem is the bound χ(G) ≤ ⌊ 12 (7 +

√
1 + 24g)⌋,

which is proved in an analogous way. Again, the graphs which meet the bound are

the complete graphs. The non-orientable version of the Ringel-Youngs theorem is the

following:

Theorem 15.38. Let n ≥ 5. Then g(Kn) = ⌈(n−3)(n−4)/6⌉, except that g(K7) =
3.

The formula (n − 3)(n − 4)/6 gives g(K7) ≥ 2. However, g(K7) = 3, as K7

does not embed on the Klein bottle. The map coloring theorem for non-orientable

surfaces is then:

Theorem 15.39. The chromatic number of a non-orientable surface of genus g ≥ 1
is ⌊ 12 (7 +

√
1 + 24g)⌋, except that the chromatic number of the Klein bottle is 6.

Exercises

15.9.1 Let t be a positive integer, and let tK3 denote the graph with three

vertices, and t parallel edges connecting each pair of vertices, so that

ε(tK3) = 3t. Consider embeddings of tK3 in which there are no digon

faces. Show that g(tK3) ≥ (t− 1)/2 and that g(tK3) ≥ t− 1.

15.9.2 Show that g(tK3) = (t − 1)/2 and g(tK3) = t − 1 by constructing

embeddings of tK3 on the appropriate surfaces.

15.9.3 Let G be a graph with n vertices and genus g, and let nk denote the

number of vertices of degree k. Suppose that n1 = n2 = 0. Construct an

inequality satisfied by n3, n4, . . . in terms of g, using the number of edges

in a triangulation. Do the same for g(G).

424 Graphs, Algorithms, and Optimization

15.9.4 The maximum genus of a graph G is the largest value g such that G has

a 2-cell embedding on a surface of genus g. If g′ is the maximum genus

of a graph G on n vertices, use the Euler-Poincaré formula to show that

g′ ≤ (ε− n+ 1)/2. Find the maximum orientable genus of K4.

15.9.5 Show that K7 does not embed on the Klein bottle.

15.10 Notes

An excellent source book related to topology and geometry is HILBERT and COHN-

VOSSEN [83]. It is perhaps one of the best and most readable mathematics books

ever written. Proofs of the Dehn-Heegard theorem can be found in FRÉCHET and

FAN [54] and in STILLWELL [161]. Both contain very readable accounts of combi-

natorial topology. Fréchet and Fan call the Euler-Poincaré formula Descartes’ for-

mula. An excellent source book for the relation between isometries of surfaces and

topological surfaces is STILLWELL [162]

Some beautiful computer models of the projective plane can be found in

APÉRY [4].

There are excellent chapters in DIESTEL [44] and ZIEGLER [196] on the graph

minor theorem. The minor order obstructions for the projective plane were found

by GLOVER, HUNEKE and WANG [67]. ARCHDEACON [7] proved that the list is

complete. MYRVOLD [128] has found over 200,000 topological obstructions for the

torus, and the list may not be complete.

An excellent source for graphs and surfaces is the book by MOHAR and

THOMASSEN [126], or the book on topological graph theory by GROSS and

TUCKER [74]. See THURSTON [171] for topological and geometric insights into the

torus and other surfaces.

THOMASSEN [168] has proved that Graph Genus is NP-complete.

The algorithm for drawing graphs on the torus, given a toroidal rotation system is

from KOCAY, NEILSON, and SZYPOWSKI [104]. It is adapted from Read’s algorithm

READ [144] for planar graphs.

Theorem 15.22 relating projective embeddings to toroidal embeddings is from

FIEDLER, HUNEKE, RICHTER, and ROBERTSON [51].

The algorithm for embedding a graph on the projective plane is based on algo-

rithms by GAGARIN [59], MOHAR [125], and MYRVOLD and ROTH [130]. Theo-

rem 15.32 is from GAGARIN and KOCAY [60].

The survey article by WHITE [190] contains a complete proof of the Ringel-

Youngs theorem and the Heawood map coloring theorem.

16

The Klein Bottle and the Double Torus

16.1 The Klein bottle

The Klein bottle is the non-orientable surface of genus two. The double torus is the

orientable surface of genus two. We begin with the Klein bottle. It has several pos-

sible polygonal representations. The most common one seems to be a rectangle with

one pair of opposite sides glued with a twist, as in Figure 16.1, (also Figure 15.9),

giving the form a+b+a+b−, which is not the standard form of Theorem 15.2. Nu-

merous interesting 3D models of the Klein bottle can be found on the internet. We

see that in this rectangular representation, if the two horizontal edges of the rectangle

are glued, the result is a cylinder, in which opposite ends have opposite orientation.

But if the vertical edges are glued, we obtain a Möbius band, whose boundary must

be glued to itself.

We now make a diagonal cut across the rectangle, indicated by the dotted line c,
and re-assemble the rectangle so as to obtain another rectangular form, in standard

form c+c+e+e+, where e+ = b− and e− = b+.

b

a

b

ac

b

ac

b

a c

FIGURE 16.1

The Klein bottle as rectangles, a+b+a+b− and c+c+b−b−

Alternatively, we can make a horizontal cut through the middle of the rectangle,

and re-assemble it to obtain a hexagonal form for the Klein bottle (see Figures 16.2,

16.3, and 16.4). The edge marked a in Figure 16.1 is cut into a1 and a2, and the two

a2’s are glued in Figure 16.4, to obtain a hexagon, denoted here by a+c+c+a−b−b−,

where we have renamed a1 to a. In this form it is evident that the Klein bottle contains

two projective planes c+c+ and b−b−, as well as a cylinder (by glueing the two a’s),

and can be thought of as a sphere with two crosscaps. The circular arcs numbered

1, 2, . . . , 8 in Figure 16.3 will be considered later.

425

426 Graphs, Algorithms, and Optimization

a

b

a

b

c

5

1

2

6 8

3

4

7

a1

a2

a2

a1

FIGURE 16.2

Constructing a hexagonal form of the Klein bottle, a horizontal cut c

a1

c

a2

b

a2

c

a1

b

FIGURE 16.3

Constructing a hexagonal form of the Klein bottle, continued

Because the Klein bottle contains two projective planes, it is clear that any graph

which can be embedded on the projective plane has a non-2-cell embedding on the

Klein bottle. In fact, two disjoint copies of K3,3 or K5 could easily be embedded

as a non-2-cell embedding on the Klein bottle. Existing algorithms for embedding

graphs on the projective plane or torus rely on the fact that the Kuratowski graphs

for the plane K5 and K3,3 have only 2-cell embeddings on the projective plane or

torus. Thus, they are good starting points for an embedding algorithm. They are not

as effective for the Klein bottle, because they are not obstructions for the projective

plane, and even allow non-2-cell embeddings of two disjoint copies.

16.1.1 Rotation systems

Consider the point of Figure 16.2 at the midpoint of the left edge of the rectangle. If

we walk around this point in a small clockwise circle, it begins with the arcs marked

1 and 2, then continues counterclockwise with the arcs marked 3 and 4, to produce a

The Klein Bottle and the Double Torus 427

c

c

a

b

b

a

3

8

5

2

7
6

1
4

FIGURE 16.4

A hexagonal form of the Klein bottle

cycle (1, 2, 3, 4). Similarly, if we start at the bottom of the left edge, and walk around

a small clockwise circle, we find the cycle (5, 6, 7, 8). If we then look for these cycles

in Figure 16.4 we find them in the locations indicated, with the given orientations.

This will be helpful in understanding the two traversals of the Jordan curves b and c
in the hexagonal model, when a graph is embedded on the surface.

As the Klein bottle is a non-orientable surface, an embedding of a graphG on it is

represented by a signed rotation system. We will denote a Klein bottle embedding by

Gκ, where κ is a signed rotation system. Now the Klein bottle can be represented in

several different ways as a polygonal disc, with pairs of sides identified. A graph edge

uv which crosses a side of the polygon from one surface of the polygonal disc to the

opposite surface will have a sign of −1. An edge which crosses from one surface of

the disc to the same surface, or which does not cross a boundary, will have a sign of

+1. If a vertex is placed along an edge of the polygon, the determination of the sign

of incident edges can be ambiguous. Therefore we will always move all such vertices

slightly (even an infinitesimal amount), so that they do not lie on the boundary, and

then determine the signatures of all incident edges. Similarly, we must be careful with

edges that cross through the corners of the polygon, as this can also be ambiguous.

We will always reroute them slightly so that they cross the polygonal edges meeting

at the corner separately, not both simultaneously. In the representation a+b+a+b−,

edges which cross the essential cycle a will have a sign of −1. In the representation

a+c+c+a−b−b−, edges which cross the cycles c or b will have a sign of −1, but

all others will have a sign of +1, etc. The signed rotation system representing the

embedding in Figure 16.5(i) is the following:

428 Graphs, Algorithms, and Optimization

1 2,-4, 6

2 1, 5,-3

3 2, 4, 6

4 3,-1, 5

5 2, 4, 6

6 1, 5, 3

Given a signed rotation system, the facial boundaries can be traced out using

Algorithm 15.7.1, FACIALCYCLESGN(). The faces are independent of the polygo-

nal representation used for the Klein bottle. When one representation is converted

to another, using the cuts shown in Figures 16.2, 16.3, and 16.4, the signatures of

some of the edges change. Therefore, a signed rotation system based on a 2-cell em-

bedding on a+b+a+b− may not be a 2-cell embedding, or even an embedding at

all, on a+c+c+a−b−b− or a+a+b+b+, and vice versa. Thus the edge signatures of

a rotation system depend on the polygonal representation being used. They are not

part of the embedding, but are necessary so that the facial walks can be determined

by the rotation system. Algorithm 15.7.1 will work for every polygonal representa-

tion, although a particular rotation system will have been constructed using a given

polygonal representation.

DEFINITION 16.1: A Klein map is a combinatorial embedding Gκ of a 2-

connected graph G on the Klein bottle, where κ is a signed rotation system cor-

responding to a given polygonal representation of the Klein bottle.

Equivalence of Klein maps is defined in terms of their faces. When a facial walk

is traversed, its edges are followed in the direction of traversal. Each edge of a facial

walk occurs in exactly one other facial walk (which may be the same facial walk).

Therefore there is only one way to glue the facial walks together. Once they have

been glued, the result is the Klein bottle, with a graph embedded on it. The facial

walks can also all be reversed, and the result is the same, because the surface is

non-orientable.

DEFINITION 16.2: Klein maps Gκ1 and Gκ2 are equivalent or isomorphic if

there is a permutation of V (G) that maps the collection of facial walks of Gκ1 to

those of Gκ2 , or to those of Gκ2 .

Two distinct 2-cell embeddings of K3,3 on the Klein bottle are shown in Fig-

ure 16.5. They appear to be almost identical to the embeddings of K3,3 on the torus

(see Figure 15.2), but the facial walks are different. This observation gives the fol-

lowing theorem.

Theorem 16.1. Let Gt be a 2-cell embedding on the rectangular form of the torus

of a graph G. Let C be an essential Jordan curve in the torus, intersecting Gt in at

most two points, which are not vertices. Then Gt can be transformed into a 2-cell

embeddingGκ on the Klein bottle.

Proof. Cutting the torus along C creates a cylinder, so that we can draw the torus

as a rectangle with C as the right and left sides of the torus rectangle. Choose a

The Klein Bottle and the Double Torus 429

a

b

a

b

1

2 3

4

56

a

b

a

b

1 2

3

4

5

6

(i) (ii)

FIGURE 16.5

Two embeddings of K3,3 on the Klein bottle

rectangular representation of the Klein bottle of the form a+b+a+b−, with a on the

right and left sides, as in Figure 16.1. Suppose first that only one edge uv crosses

C, draw Gt so that uv crosses C in the center of the right boundary of the torus

rectangle. This is also an embedding on the rectangular representation of the Klein

bottle. (An example is diagram (ii) of Figure 16.5.) Thus, a rotation system for Gκ

representing G embedded on the Klein bottle is identical to Gt, except that the edge

uv now has a sign of −1. Note that the faces (regions) of Gκ will be the same as

those of Gt, although the facial walk containing uv will be different in Gt and Gκ.

If C intersects two edges of Gt, let the two edges be uv and xy, crossing C from

left to right in the rectangular representation. Without loss of generality, we assume

that uv crosses C above the point where xy crosses C. Refer to Figure 16.6, where

u = 5, v = 6, x = 1, and y = 2. See also Figure 16.5 (i). Furthermore, we can

take v 6= y (otherwise u 6= x and we can perform a horizontal flip on the torus

rectangle, and relabel the points). Now Gt is a 2-cell embedding, so if we start at

u and follow the facial boundary W beginning with uv, the vertices u, v, y, x occur

on W , in that order. Let B be the Jordan curve representing the top and bottom

side of the torus rectangle. Now uv or xy may contain the intersection point of B
and C, as in Figure 16.6. If this is not the case, as in Figure 16.5(i), we adjust the

embedding slightly to make it so, as follows. If uv or xy cross both B and C, say

xy, but not at their intersection, we subdivide the edge which crosses B with a new

vertex z, so that xz crosses C but not B, and then take xz in place of xy. Then

uv and xy do not intersect B. The walk W bounds a disc face, so that the torus

can be distorted slightly, by moving vertex y downwards, below the bottom side of

the rectangle, until edge xy intersects the bottom-right corner of the torus rectangle,

where B and C meet. This has been done in the example of the left diagram of

Figure 16.6, where the edge xy = 12 intersects the bottom-right corner of the torus

rectangle. But the rectangle a+b+a−b− representing the torus can now be viewed as

a rectangle a+b+a+b− representing the Klein bottle. The edge xy then touches B,

but does not cross it, because the orientation of the right a-side of the rectangle has

been reversed.

430 Graphs, Algorithms, and Optimization

The curve representing edge xy can then be redrawn so that the point where it

previously intersected C and B is moved upwards slightly along C, so that edge

xy no longer intersects B. This is illustrated in the right diagram of Figure 16.6.

Any subdividing vertices that were added are then removed. The facial boundaries

of Gt that do not contain uv or xy are the same in Gκ. The union of the faces whose

boundaries contain uv or xy in Gt, plus the edges uv and xy, comprise the faces that

touch the right boundary of the torus rectangle. Because Gt is a 2-cell embedding,

their union forms a cylinder. InGκ their union also forms a cylinder, though different

because the orientation of the right a-side of the rectangle has been reversed. When

the cylinder is cut along uv and xy, 2-cell faces result. Thus the embedding Gκ is a

2-cell embedding.

a

b

a

b

1

2
3

4

56

7
8

−→ a

b

a

b

1

2
3

4

56

7
8

Gt Gκ

FIGURE 16.6

Converting Gt to Gκ

Note that the condition that the Jordan curveC intersectsGt in at most two points

is necessary for the proof to work, because the orientation of one of the a-sides of

the torus rectangle is reversed when transforming it to a Klein bottle.

A similar construction can be used to transform a Klein map to a torus map. There

are several kinds of essential Jordan curves on the Klein bottle (see the exercises at

the end of this section). Notice that a non-contractible Jordan curve that cuts b in

the rectangular form a+b+a+b− creates a cylinder when cut. Call this a cylindrical

Jordan curve.

Theorem 16.2. Let Gκ be a 2-cell embedding of a graph G in the Klein bottle. Let

C be an essential cylindrical Jordan curve in the Klein bottle, intersecting Gκ in at

most two points, which are not vertices. Then Gκ can be transformed into a 2-cell

embeddingGt on the torus.

Proof. The proof is the inverse transformation of Theorem 16.1.

A similar transformation works for graphs embedded on the projective plane.

The Klein Bottle and the Double Torus 431

Theorem 16.3. Let Gπ be a 2-cell embedding of a graph G in the projective plane.

Let C be an essential Jordan curve in the projective plane, intersecting Gπ in a non-

vertex point of edge xy, such that Gπ − xy is also a 2-cell embedding. And suppose

that C intersects at least one other edge of G. Then Gπ can be transformed into a

2-cell embeddingGκ on the Klein bottle.

Proof. Draw the projective plane so that C is the bounding circle, so that the edge

xy and the other edges intersecting C have signature −1. Represent the Klein bottle

as a rectangle a+b+a+b−, and let P be the point of intersection of C with edge xy.

We assume that Gπ is finite, so that a portion of C adjacent to P can be chosen as b,
and the remainder of C is chosen as a. The disc of the projective plane can then be

deformed into a rectangle such that xy crosses the side b (and therefore has signature

+1 in the Klein bottle), and the remaining edges of signature −1 cross the curve

a, and therefore have signature −1. The result is a Klein map Gκ. The facial walks

of Gκ that do not contain xy are the same as in Gπ, and therefore these faces are

2-cells in Gκ. The face of Gκ whose boundary contains xy is homeomorphic to the

union of the faces of Gπ whose boundary contains xy. Now Gπ − xy is also a 2-cell

embedding. It follows that in Gκ, the face whose boundary contains xy is the union

of two 2-cells and the single common edge xy on their boundaries. Therefore Gκ is

a 2-cell embedding.

An example of transforming a projective embedding into a Klein map is shown

in Figure 16.7, where an embedding of the Petersen graph on the projective plane is

converted to an embedding on the Klein bottle. Clearly the transformation of Theo-

rem 16.3 can also be done in reverse to transform certain Klein maps into projective

maps.

x

y

−→

x

y

(i) (ii)

FIGURE 16.7

Converting Gπ to Gκ, the Petersen graph

Just as a 2-cell planar map Gp can be transformed into a torus map using a theta

subgraph of G, we can use a barbell subgraph to transform Gp into a Klein map Gκ.

432 Graphs, Algorithms, and Optimization

DEFINITION 16.3: A barbell graph consists of a uv-path P , a cycleCu contain-

ing u, and a cycleCv containing v such thatCu andCv are vertex-disjoint;P andCu
have only u in common; and P andCv have only v in common. Refer to Figure 16.8.

Cu
P

Cv
u v

P

Cv

u v
Cu

FIGURE 16.8

Schematic of a barbell graph, two planar embeddings

Let Gp be a 2-connected planar map containing a barbell subgraph H . The fol-

lowing theorem shows how to convertGp to a Klein bottle embedding of G.

Theorem 16.4. Let Gp be a 2-connected planar map containing a barbell subgraph

H . ThenGp can be converted to a Klein bottle embeddingGκ, such that the subgraph

H forms the boundary of the hexagon representation of the Klein bottle.

Proof. Suppose first that in the embedding Gp in the plane, the barbell is embedded

as in the left diagram of Figure 16.9. Let A be the part of G embedded outside the

barbell, and let B and C be the parts embedded inside the Jordan curves Cu and

Cv , respectively. The orientations of A, B, and C in Gp are indicated by arrows

in Figure 16.9. The barbell itself can be embedded in the hexagonal form of the

Klein bottle, with the vertices and edges of the barbell forming the boundary of the

hexagon. Note that the cycles Cu and Cv and path P are each traversed twice in

the Klein bottle. The two traversals of Cu and Cv have the same orientation on the

boundary of the hexagon; those of P have opposite orientations. The two traversals

always indicate the region of the Klein bottle to the right and left sides of the path

as it is followed. If we walk along P from u to v in Gp, there may be edges to A on

both sides of P . The edges on the left side of P attach to A in the counterclockwise

direction in Gp. Those on the right side of P attach to A in the clockwise direction.

These same attachments to A occur in the Klein bottle in Figure 16.9, in the same

order. The right and left sides of P agree in Gp and Gκ.

Following v, we walk alongCv inGp clockwise from v, in the direction opposite

to the arrow. Edges on the outside of Cv to A in Gp continue in the counterclockwise

direction, and also appear counterclockwise in the Klein bottle diagram. Edges on

the inside of Cv in Gp are indicated on the second traversal of Cv in the Klein bottle.

The orientation of Cv requires that C be reversed in Gκ for these edges to attach in

the correct order. This is indicated in the diagram.

Then, we walk backwards along P in Gp, from v to u, looking at edges to the

The Klein Bottle and the Double Torus 433

right of P . There can be edges to Cv, A, or Cu, in that order. Possible edges from

P to Cu determine that the direction of traversal of Cu in Gp must be clockwise, as

indicated by the arrow. Then Cu is traversed. Edges to B on the other side of Cu in

Gp attach in a counterclockwise direction. This requires that the orientation of B be

reversed in the Klein bottle, as indicated in the diagram.

We can now read the rotation system for Gκ from the diagram. All vertices of B
and C have their rotations reversed. All other vertices have the same rotations in Gp

and Gκ. In order to determine the signatures of the edges of Gκ, it is necessary to

move the vertices of the barbell slightly, so that they are not on the boundary of the

hexagon, and it can then be determined which edges cross the Jordan curves Cu and

Cv .

In the event that in Gp the barbell is embedded as in the right diagram of Fig-

ure 16.8, the proof is almost identical (to be completed as an exercise).

It is evident from Figure 16.9 that there are several other ways to convert the

planar rotation system to a Klein bottle rotation system.

P

A

B CCu Cvu v A

B

C

v

vv

u

u u

Cv

Cv

P

Cu

Cu

P

FIGURE 16.9

Converting a planar rotation system to a Klein bottle rotation system

Theorem 16.5. There are two 2-cell embeddings of K3,3 on the Klein bottle.

Proof. By Theorem 15.27 there is a unique embedding of K3,3 on the projective

plane (see Figure 15.34). The embedding has two kinds of edges – those that separate

two quadrilateral faces, and those that separate a hexagon and a quadrilateral. When

Theorem 16.3 is used to convert the projective embedding of K3,3 to a Klein map,

the edge xy of the theorem can be either type of edge. The result is the two Klein

embeddings of K3,3 in Figure 16.5.

Let Gκ be an arbitrary embedding of K3,3 on the Klein bottle represented as

a+b+a+b−. If the Jordan curve b is intersected by only one edge xy, then the trans-

formation of Theorem 15.27 can be used in reverse to obtain a projective embedding

of K3,3, so that Gκ must be one of the embeddings obtained from the projective

plane. Otherwise there are at least two edges that intersect b.

434 Graphs, Algorithms, and Optimization

Similarly there are two distinct embeddings of K3,3 on the torus, by Theo-

rem 15.14, shown in Figure 15.2. To use Theorem 16.1 an essential Jordan curve

C must be chosen that intersects either one or two edges of the torus embedding.

Consideration of Figure 15.2 shows that C can cross at most one facial walk, meet-

ing it either in one edge, or two. As there are only three faces, all possibilities for C
are quickly determined, resulting once again in the two Klein maps of Figure 16.5. If

the Klein bottle contained a cylindrical Jordan curve intersecting Gκ in at most two

edges, then Theorem 16.2 can be used to convert the embedding to one of the torus

embeddings of K3,3. Otherwise, at least three edges of K3,3 must intersect every

cylindrical Jordan curve.

Given the rectangular representation a+b+a+b− of the Klein bottle, a 2-cell em-

bedding must contain a Jordan curve intersecting the b-side of the rectangle, and

another intersecting the a-side. Hence the Jordan cycles must induce a theta graph

in K3,3. Now K3,3 is bipartite, so that the shortest possible essential cycle induced

by the Jordan curves must have length either four or six. There are five possibilities

for this theta graph, three of which are shown in Figure 16.10. The other two are

obtained by rotating two of the rectangles through 90 degrees.

Is it possible that every cylindrical Jordan curve intersects Gκ in at least three

edges, and that the curve b is intersected in at least two edges of Gκ?

a

b

a

b

1 2

3 4
5

6

a

b

a

b

1 2 3

4 5 6
a

b

a

b

1 2

3 4
5

6

FIGURE 16.10

Three theta graphs on the Klein bottle.

In each theta graph embedding there is a single face, whose facial walk has length

12 or 14. The facial walks are shown in Figure 16.11. The edges missing from the first

theta graph are (1, 6) and (4, 5). Those missing from the second are (1, 4) and (3, 6).
Their possible locations are shown as dotted lines in the diagram. In the third theta

graph the edges (1, 6) and (3, 6) can be drawn as shown without loss of generality,

leaving two choices for (5, 6), which are dotted. In each case, non-intersecting lines

must be chosen for the missing edges. Each possibility leads to an embedding which

can be converted either to a projective embedding or a torus embedding. The missing

two theta graphs can be completed as an exercise.

The other Kuratowski graph for the plane, K5, has 14 2-cell embeddings on the

Klein bottle. This is more difficult to prove.

The Klein Bottle and the Double Torus 435

1 2

3

6

5

2

143

6

5

2

3

4 1 2

3

4

5

2

165

2

3

4

5

6 1
2

3

4

5

2
1

4

5

2

3

4

6

FIGURE 16.11

The face of a theta graph.

16.1.2 The double cover

Given a rectangular representation a+b+a+b− of the Klein bottle, we can make an

identical copy of it, a′+b′+a′+b′−, flip the copy over, align the two copies so that

corresponding a and a′ sides match, and then glue the sides a and a′ together, as

shown in Figure 16.12. The result is a torus a+c+a−c−, where a = a′ and c =
bb′. Thus, the torus is a double cover of the Klein bottle. If there is a graph Gκ

embedded on the Klein bottle, then there will be a graph Ht embedded on the torus,

where H is a double cover of G. Just as for the projective plane, this provides a

means to determine equivalence of Klein bottle embeddings, and to determine their

automorphism groups.

DEFINITION 16.4: Let Gκ be a graph embedding on the Klein bottle. The au-

tomorphism group of Gκ is AUT(Gκ), the set of all permutations of V (G) that map

the collection of facial walks of Gκ to itself, or to the facial walks of Gκ.

The double cover of a Klein map Gκ is very similar to the double cover of a

projective map. Let the representation of the Klein bottle be a+b+a+b−. We assume

that Gκ is a 2-cell embedding of a 2-connected graph. A copy (G′)κ
′

of the embed-

ding is made, and they are connected through the edges that cross the a boundary.

Each vertex v ∈ V (G) has a corresponding antipodal vertex v′. An edge uv with

SGN(uv) = −1 is doubled to obtain edges uv′ and u′v. Let DC(Gκ)t denote the

toroidal double cover constructed in this way. There is a two-to-one double cover

map γ from V (DC(Gκ)t) to V (G) that induces a two-to-one mapping of edges and

of facial walks. Given a facial walk W of Gκ, there are two facial walks W1 and

W2 that correspond to W . W2 consists of the antipodal vertices of W1, but reversed.

Every automorphism φ ∈ AUT(Gκ) induces an automorphism θ of DC(Gκ)t that

maps antipodal pairs to antipodal pairs. And every such automorphism θ induces

an automorphism φ of Gκ. See Lemma 15.23 and Theorems 15.24 and 15.25. The

proofs are nearly identical.

Thus, the antipodal medial digraph of DC(Gκ)t can be used to determine

AUT(Gκ). It is formed from the medial digraph of DC(Gκ)t by adding a suitable

436 Graphs, Algorithms, and Optimization

path of length two or more connecting every pair {v, v′} of antipodal vertices. Simi-

lar to Theorem 15.26, we have:

Theorem 16.6. Let Gκ be a Klein map with double cover DC(Gκ)t, and double

cover map γ. Let M+ be the antipodal medial digraph of the double cover. Then

AUT(Gκ) is obtained from AUT(M+) by restricting each element of AUT(M+) to

V (DC(Gκ)t), and then transforming it by γ.

a

b

a

b

1

2 3

4

56

a′

b′

a′

b′

1′

2′ 3′

4′

5′6′

FIGURE 16.12

The torus is a double cover of the Klein bottle

This provides a simple combinatorial means to determine equivalence of Klein

maps. The automorphism groups of the two inequivalent Klein maps of K3,3 shown

in Figure 16.5 have orders 4 and 2. The group of theKκ
3,3 in the left diagram contains

non-identity permutations (1, 4)(2, 3)(5, 6) and (1, 2)(3, 4)(5, 6) and (1, 3)(2, 4).
The group of the Kκ

3,3 on the right is generated by (1, 4)(2, 3)(5, 6).

FIGURE 16.13

An embedding of K5 on the Klein bottle

Exercises

16.1.1 Write down the signed rotation systems for the Klein maps of Figure 16.5.

Use Algorithm 15.7.1 to find the facial cycles.

16.1.2 Determine whether the rotation systems of the previous exercise are em-

The Klein Bottle and the Double Torus 437

beddings on the representations a+c+c+a−b−b− and a+a+b+b+ of the

Klein bottle.

16.1.3 Convert the Klein embedding of Figure 16.6 to an embedding on the

hexagonal form of the Klein bottle, using the cuts of Figure 16.3. Then

write down the rotation system for the hexagonal embedding.

16.1.4 Determine the possible results if the Klein bottle is cut along a single non-

contractible Jordan curve, for each of the forms a+b+a+b−, a+a+b+b+,

and a+b+b+a−c+c+. Is it possible to cut the Klein bottle into two pieces

with just one non-contractible Jordan curve? If so, what are pieces?

16.1.5 Convert the Klein maps of Figure 16.5 to embeddings on the represen-

tations a+c+c+a−b−b− and a+a+b+b+ of the Klein bottle, and write

down their rotation systems. Then use Algorithm 15.7.1 to find the facial

cycles.

16.1.6 Find the facial walks of the embedding of the Petersen graph on the Klein

bottle in Figure 16.7.

16.1.7 Find an embedding of K6 on the projective plane, and then use Theo-

rem 16.3 to convert it to an embedding on the Klein bottle.

16.1.8 A Klein map of K5 is shown in Figure 16.13. Find its automorphism

group.

16.1.9 Complete the proof of the second case of Theorem 16.4.

16.1.10 Find the double cover of the Petersen graph embedded on representation

a+b+a+b− of the Klein bottle, from Figure 16.7. Then use it to find the

automorphism group of this Klein map.

16.1.11 Given the standard-form representation a+a+b+b+ of the Klein bottle,

show that there is a double cover that is also a Klein bottle. Given the

Klein bottle map Gκ of K5 in Figure 16.13, find its double cover as an-

other Klein map.

16.2 The double torus

The double torus, also known as the 2-holed torus, is illustrated in Figure 16.14 as a

“doughnut with two holes”.

It is the unique orientable surface of genus two, and can be represented in stan-

dard form as an octagon, with sides labelled a+b+a−b−c+d+c−d−. The conversion

between the octagon and the doughnut is shown in Figure 16.15. (This diagram is

based on a diagram in Hilbert and Cohn-Vossen [83].) Inspection of the octagon

shows that the origin of the a-side is also the terminus of the b-side, which is also

the terminus of the a-side. Further inspection then shows that all eight vertices of the

octagon are the same point. In Figure 16.15, the octagon is first shaped so as to glue

438 Graphs, Algorithms, and Optimization

FIGURE 16.14

The double torus

the b and d edges. Then the a and c sides are formed into closed curves, and glued to

the corresponding a and c sides, thereby producing the double torus.

If we wanted to tile the plane with regular octagons, as the plane was tiled with

rectangles by the torus, we would need to have two edges labelled with each of

a, b, c, d at each vertex, i.e., there would be eight octagons meeting at each corner.

The interior angle at each vertex would then need to be 2π/8. However, in the Eu-

clidean plane, the interior angle of a regular octagon is 3π/4, so that this cannot be

done in the Euclidean plane. Fortunately, there is another plane that can be tiled by

regular octagons, the hyperbolic plane.

The hyperbolic plane is a non-Euclidean plane, in which there are many lines

parallel to a given line ℓ through a point P not on ℓ. It was discovered independently

by Lobachevsky [1829] and Bolyai [1832] (see [117] and [163]) as a consequence of

attempting to prove the parallel postulate of Euclidean geometry. In the hyperbolic

plane there are several kinds of parallel lines. There are lines which do not meet, but

which become arbitrarily close as they move towards infinity, and those that always

maintain a minimum distance. The first type of parallel lines can be called asymptotic

lines. The others can be called ultra-parallel. Much information on the hyperbolic

plane can be found in the books [162, 160, 93, 140, 135]. We outline some of the key

ideas of the geometry of the hyperbolic plane. Just as in section 15.3, we saw that

isometries of the Euclidean plane can be used to produce the torus as a factorizaton of

the Euclidean plane, it turns out that the isometries of the hyperbolic plane produce

the double torus as a factorization of the hyperbolic plane.

There are various models of the hyperbolic plane — the half-plane model, the

Poincaré disc model, and the Beltrami-Klein disc model. We will use the half-plane

model and the Poincaré disc model of the hyperbolic plane. Let H denote the half-

plane model. It consists of all complex numbers z = u + iv, such that v > 0.

Hyperbolic lines are modeled by vertical Euclidean lines (with equation z = u =
constant), and by Euclidean semi-circles whose centers are on the x-axis (with equa-

tion |z− c| = r, where c, r ∈ R are constants, and r > 0). Any two of these intersect

in at most one point, and they are determined by any two points they contain. Thus,

they have properties that lines in the Euclidean plane satisfy.

The Klein Bottle and the Double Torus 439

b+

a−

b−

c+

d+
c−

d−

a+

c

d
d

a

c

b

b
a

d
d

b
ba

a

c

c

FIGURE 16.15

Gluing an octagon into a double torus

The mapping

z 7→ iz + 1

z + i

is then used to map H to the interior of the unit disc in the complex plane. The interior

of this disc will be denoted D. It is the Poincaré disc model of the hyperbolic plane.

The x-axis gets mapped to the boundary of the disc, which becomes a limit circle

— as a line in the disc approaches the circle, distances become greater and greater,

so that the bounding circle is never reached. It represents an infinitely distant circle

bounding the hyperbolic plane. Vertical lines of H map to diameters of D, so that

diameters of the unit circle are lines in the D model of the hyperbolic plane. The

semi-circles representing lines in H map to portions of circles that intersect the limit

circle at right angles (however the centers of these circles are outside the limit circle).

So the lines of D are modelled in two ways:

a) as diameters of the limit circle;

b) as semi-circles that intersect the limit circle at right angles.

Parallel hyperbolic lines can meet on the limit circle (which is not part of the plane),

these represent asymptotic lines. Or they do not meet at all, these represent ultra-

parallel lines. There can be very many hyperbolic lines parallel to a given hyperbolic

440 Graphs, Algorithms, and Optimization

line. Figure 16.16 shows several lines in the Poincaré disc model. Some of them are

asymptotic, and some are ultra-parallel lines.

FIGURE 16.16

The Poincaré disc model of the hyperbolic plane

16.2.1 Isometries of the hyperbolic plane

In section 15.3, we saw that the isometries of the Euclidean plane are reflexions,

translations, rotations, and their combinations, and that all Euclidean isometries are

generated by reflexions. In the hyperbolic plane there are also reflexions, rotations,

translations, as well as other isometries, and their combinations. And again, they are

all generated by the reflexions. However, these are not Euclidean reflexions.

DEFINITION 16.5: Let a circle of radius r in the complex plane have center c ∈
C. Inversion in the circle is the map that sends a point z at distance ρ from c to the

unique point at distance r2/ρ from c along a ray through z from c. It has the equation

z 7→ c+
r2

z − c

Inversion in a circle maps the circle to itself, and exchanges the interior and ex-

terior of the circle. The center is mapped to infinity, and vice-versa. In H, inversion

in a semi-circle representing a hyperbolic line is considered a reflexion in the hyper-

bolic line. In the limiting case when the semi-circle becomes a vertical line, inversion

becomes a Euclidean reflexion in the line. When H is mapped to D, we find that re-

flexions in the lines of D are also inversions in the circles. Thus, hyperbolic reflexions

in D are modeled as inversions in the Euclidean circles that represent lines, and as

reflexions in Euclidean lines that are diameters of the unit circle.

Just as is the case of the Euclidean plane (section 15.3), it turns out that all hy-

perbolic isometries are products of hyperbolic reflexions. Hyperbolic isometries are

slightly different from Euclidean isometries, but there are great similarities. For ex-

ample, the product of two reflexions in ultra parallel hyperbolic lines produces a

hyperbolic translation. The following theorem is from Stillwell [162].

The Klein Bottle and the Double Torus 441

Theorem 16.7. Every hyperbolic isometry can be written as a product of at most

three hyperbolic reflexions.

Reflexions in D will give us transformations of graph embeddings on the dou-

ble torus. Similarly to Gauss’s Theorem 15.7 on spherical isometries, the isome-

tries of the hyperbolic plane can be written as Möbius transformations, as shown by

Poincaré [136] (see Stillwell [162]).

Theorem 16.8. The orientation-perserving isometries of D are given by

w 7→ αw + β

βw + α

where w ∈ C+, α, β ∈ C, and |α|2 − |β|2 = 1.

Theorem 16.9. The orientation-reversing isometries of D are given by

w 7→ αw + β

βw + α

where w ∈ C+, α, β ∈ C, and |α|2 − |β|2 = 1.

Similar formulas apply to the H model of the hyperbolic plane. (see Still-

well [162]).

Exercises

16.2.1 Show that a circle of radius r in the Euclidean plane intersects the unit

circle at right angles if its center is at distance
√
1 + r2 from the origin.

16.2.2 Show that a regular octagon in the hyperbolic plane can be constructed

with adjacent sides meeting at an angle of π/4 if the lines are represented

by Euclidean circles with radius r =
√
(
√
2− 1)/2.

16.2.3 Show that D can also be tiled by regular octagons with interior angle π/2
(so that four octagons meet at each vertex).

16.2.2 The double torus as an octagon

In section 15.3 we saw that the Euclidean plane can be factorized by a group of

translation isometries so as to produce a torus. This corresponds to a tiling of the Eu-

clidean plane by isometric rectangles. Thus we can say that the torus is a factorization

of the Euclidean plane by a group of isometries of the plane.

The double torus has standard form a+b+a−b−c+d+c−d−, represented by an

octagon. The Euclidean plane cannot be factorized so as to produce a tiling by reg-

ular octagons, but the hyperbolic plane can be factorized by a group of translation

isometries so as to produce a double torus, giving a tiling of the hyperbolic plane

by regular octagons. So we can say that the double torus is a factorization of the

hyperbolic plane by a group of isometries — the geometry of the double torus is

442 Graphs, Algorithms, and Optimization

hyperbolic. A portion of a tiling of the Poincaré disc model by octagons is shown

in Figure 16.17, where the central octagon is traversed in a clockwise orientation to

obtain a+b+a−b−c+d+c−d−. In this tiling there are eight octagons meeting at each

corner. Adjacent sides of each octagon meet at an angle of π/4. The octagons are all

isometric, even though some appear to be (much) smaller than others, because in the

model D, distances increase as one moves closer to the limit circle.

b+
a−

b−

c+

d+

c−
d−

a+

b d

a b c d c

FIGURE 16.17

A partial tiling of the hyperbolic plane by octagons

Consider the corners of the octagon in Figure 16.17. In the tiling they are all

equivalent. Two of the corners have an edge labeled a directed outwards. If we walk

around those corners in a small clockwise circle, we see that in one of them, the

out-edge labelled a is followed on the central octagon by an edge labelled d, directed

outwards as the octagon is traversed. There is a second corner with an out-edge la-

beled d. When we walk around it in a small circle, it is followed by an in-edge labeled

c. There is a second corner with an in-edge labeled c. When we walk around it, it is

followed by an in-edge labeled d, and so forth. Thus we can determine the cyclic

order of edges, it is the same at each corner of the octagon. The result is shown in

Figure 16.18, where the superscript indicates the direction of the edge as it is tra-

versed outwards from the corner.

We can now use hyperbolic reflexions to produce translations that map octagons

to octagons in this factorization. Let Ra+ denote a reflexion in the hyperbolic line

The Klein Bottle and the Double Torus 443

c−

d+
a+

b−

a−

b+

c+

d−

FIGURE 16.18

The edges of the octagon meeting at each corner of the octagon

labelled a+, and so forth. Let Rac− denote a reflexion in the diameter of the unit

circle that meets the midpoints of a− and c−. Consider the product Ra+Rac− (first

Ra+ , then Rac−). Note that the center of the circle representing the hyperbolic line

a+ is outside the unit disc. The reflexionRa+ maps the central octagon to the inside

of the a+ circle. Then the reflexion Rac− maps it to the inside of the c+ circle. We

see that the central octagon is translated into the c+ circle. Similarly, the interior of

the a+ circle is translated into the central octagon. The “smaller” octagons contained

within the a+ circle are translated into the various secondary octagons surrounding

the central octagon. And these in turn are translated into the “smaller” octagons con-

tained within the c+ circle. The net effect is a smooth translation moving the points

within D from the top-left towards the bottom-right. Similarly, other translations can

be formed using reflexions in other pairs of hyperbolic lines.

The translations of the hyperbolic plane that are isometries of the double torus

must respect the labeling of the sides of the octagons: a+ must map to a+, b+ to b+,

and so forth. Consider the product of reflexions Ra−Rbd+ . The side of the octagon

labeled a− is first mapped to itself by Ra− , then reflected by Rbd+ onto the side

labeled a+, such that the orientation of the edges match. The side labeled b− is first

reflected inside the a− circle onto the edge labeled d+ (refer to Figure 16.18) by

Ra− , then reflected byRbd+ inside the a+ circle onto the edge labeled b−. Similarly,

the edge labeled c+ is first reflected into the a− circle onto an edge labelled c− (refer

to Figure 16.18). Then it is reflected inside the a+ circle onto an edge labeled c+.

Similarly the other edges labelled c and d are mapped onto edges of the correct label.

Thus the translation Ra−Rbd+ is an isometry of the double torus. In the same way,

we find that the productsRa+Rbd+ , Rb+Rac− , Rc+Rbd+ , etc., are also isometries of

the double torus.

We now use these ideas to construct an embedding of K3,3 in this hyperbolic

model of the double torus, shown in Figure 16.19. The diagram was constructed as

follows. The Hamilton path (2, 1, 6, 5, 4, 3) in K3,3 was drawn through the central

octagon. Then translations that are isometries of the double torus were used to map

the six vertices into each of the secondary eight octagons surrounding the central oc-

444 Graphs, Algorithms, and Optimization

tagon, and the appropriate edges ofK3,3 were added to the diagram. Then the vertices

in the secondary octagons were translated further into the “smaller” octagons, and so

forth. Only the vertices in the central octagon and secondary octagons are shown

in the diagram. However, the paths continue through the “smaller” octagons, as in-

dicated. The paths can be determined by considering translations from the central

octagon into these “smaller” octagons. The embedding has one face. By tracing the

edges in the diagram, we can see that the facial walk of this embedding of K3,3 on

the double torus is (2, 3, 4, 5, 2, 1, 4, 3, 6, 5, 4, 1, 6, 3, 2, 5, 6, 1), containing all nine

edges twice each, and all six vertices three times each on the walk. As each vertex

has degree three, the walk enters each vertex three times. The facial walk is shown

separately in Figure 16.20.

2

1

6 5

4

3

2
1

6
5
4
3

2
1
6

5
4

3 2

1
6 5

4
3

2
1

6
5

43

2
1

6
5

4 3

2
1

6
54

3

2 1
6

5

4
3

216
5
4
3

FIGURE 16.19

An embedding of K3,3 on the double torus

As with the torus, an embedding on the double torus is represented by a rotation

system. We will write Gτ to indicate a combinatorial embedding of a graph G on

The Klein Bottle and the Double Torus 445

the double torus, given by the rotation system τ . The rotation system of K3,3 in

Figure 16.19 can be read off the diagram.

We can now find the automorphism group of this embedding using the facial

walk. Notice that vertices 1, 3, and 5 are each distributed evenly around the cir-

cle, with five vertices intervening between successive occurrences. But vertices 2, 4,

and 6 are each distributed in a “T-fashion”, with one occurrence centered between

the other two occurrences. We can see that the facial walk can be rotated clockwise

by six vertices, giving (2, 4, 6) as an orientation-preserving automorphism. Thus,

the orientation-preserving automorphism group has order three. There are also three

orientation reversing automorphisms which can be seen by flipping the facial walk

on a {2, 5}-diameter, a {4, 5}-diameter, or a {6, 5}-diameter, giving (1, 3)(4, 6),
(1, 3)(2, 6), and (1, 3)(2, 4) as automorphisms.

2

5

2

1

2

3

3

6

1

4

5

4

5

6

4

3

6

1

FIGURE 16.20

The facial walk of an embedding of K3,3 on the double torus

Equivalence of double torus mappings is defined as for the torus (see 15.15).

DEFINITION 16.6: Double torus maps Gτ1 and Gτ2 are isomorphic if there is a

permutation of V (G) that maps the collection of of facial walks of Gτ1 to those of

Gτ2 .

DEFINITION 16.7: Let Gτ be a double torus map. AUT(Gτ) consists of all per-

mutations of V (G) that map the collection of facial walks of Gτ to itself.

Similar to Theorem 15.13, we have:

Theorem 16.10. Double torus embeddingsGτ1 and Gτ2 are isomorphic if and only

if their medial digraphsM(Gτ1) and M(Gτ2) are isomorphic.

The double torus is an oriented surface, so that there are two automorphism

groups — the orientation preserving automorphism group of Gτ is AUT(Gτ), it

is the group induced on V (G) by the automorphisms of M(Gτ). The full auto-

morphism group of Gτ is AUT
+(Gτ) consisting of AUT(Gτ), plus those automor-

phisms that map Gτ to Gτ . In general, the orientation-preserving automorphism

446 Graphs, Algorithms, and Optimization

group AUT(Gτ) and the full automorphism group AUT
+(Gτ) can be found from

the medial digraph, as is the case for the other orientable surfaces, such as the plane

and the torus.

In Theorem 15.10, a theta subgraph of a plane map was used to construct a 2-

cell embedding of an arbitrary planar graph on the torus. A similar method can be

used to construct a 2-cell embedding of a graphG on the double torus, given a 2-cell

embeddingGt on the torus.

Theorem 16.11. Let Gt be a 2-cell embedding of a graphG on the torus, and let H
be a TK3,3 subgraph of G. Then Gt can be converted to a 2-cell embedding Gτ on

the double torus.

Proof. There are two distinct embeddings ofK3,3 on the torus, shown in Figure 15.2.

The subgraph H must must be embedded as one of these. We take each in turn.

The embedding on the left of Figure 15.2 has three hexagonal faces, shown in Fig-

ure 16.21. Each edge of a hexagon corresponds to a path of the TK3,3.

6

1 2

5 4

3 6

5

21

63

45

FIGURE 16.21

Three hexagonal faces of K3,3 on the torus

The portion of G embedded inside each face is planar, indicated schemat-

ically in Figure 16.21. The facial cycles are (1, 2, 3, 4, 5, 6), (1, 6, 3, 2, 5, 4),
and (1, 4, 3, 6, 5, 2). Consider now the embedding of K3,3 on the dou-

ble torus, shown in Figure 16.19. It has one face, whose facial walk

(1, 2, 3, 4, 5, 2, 1, 4, 3, 6, 5, 4, 1, 6, 3, 2, 5, 6) is an 18-gon, shown in Figure 16.20. The

planar subgraphs of Gt within the three hexagons can be embedded inside the single

face of TK3,3 on the double torus, as shown in Figure 16.22. The facial cycles of the

hexagons form successive portions of the 18-gon. The result is a 2-cell embedding

of G on the double torus.

Consider now the second embedding of K3,3 of Figure 15.2. Its facial walks

are a 10-gon, and two quadrilaterals, shown in Figure 16.23. As before, each face

contains a planar portion of Gt. These planar portions of Gt can also be embedded

in the face ofK3,3 on the double torus, as shown in Figure 16.24. Hence, every torus

The Klein Bottle and the Double Torus 447

2

5

2

1

2

3

3

6

1

4

5

4

5

6

4

3

6

1

FIGURE 16.22

Converting Gt to Gτ using hexagonal faces.

embeddingGt containing a TK3,3 subgraph can be converted to a 2-cell embedding

on the double torus.

3

4

5

2

1

4

3

6

1

2

6

3

4

5

FIGURE 16.23

A 10-gon and two quadrilateral faces of K3,3 on the torus.

Note that the proof of Theorem 16.11 depends on the numbering of the vertices

of the facial walks of K3,3 on the torus and double torus. If the vertices of the em-

beddings of TK3,3 in Gt and K3,3 on the double torus were numbered differently,

one of them would first have to be renumbered before constructingGτ .

Exercises

16.2.1 Verify that the cyclic ordering shown in Figure 16.18 is correct.

16.2.2 Verify that Ra−Rbd+ is an isometry of the double torus, i.e., show that it

maps the a, b, c, and d sides of the octagon correctly.

448 Graphs, Algorithms, and Optimization

2

5

2

1

2

3

3

6

1

4

5

4

5

6

4

3

6

1

FIGURE 16.24

Converting Gt to Gτ using a 10-gon face.

16.2.3 Given the translation Ra−Rbd+ , determine the mapping it induces on the

central octagon, the left octagon, the top-left octagon, and the top octagon

in Figure 16.17.

16.2.4 Find a translation isometry that maps the top octagon of Figure 16.17 onto

the bottom octagon.

16.2.5 Show that the group of translation isometries of the double torus is tran-

sitive on the octagons of the tiling of Figure 16.17.

16.2.6 Is there a 2-cell embedding of K4 on the double torus?

16.2.7 Is there a 2-cell embedding of K2,3 on the double torus?

16.2.8 Find all 2-cell embeddings of K3,3 on the double torus.

16.2.9 Use Theorem 16.11 to find a 2-cell embedding of the Petersen graph on

the double torus.

16.2.10 Find a 2-cell embedding of the graph of the cube on the double torus.

16.2.11 Determine whether the hyperbolic plane can be tiled by isometric rectan-

gles, using a group of translations.

16.3 Notes

Some computer drawings of the Klein bottle can be found in APÉRY [4]. Theo-

rems 16.4, 16.1, and 16.3 provide a means of transforming planar maps, torus maps,

and projective maps to the Klein bottle. However, an efficient general algorithm to

determine 2-cell embeddings of graphs on the Klein bottle is not yet known.

The Klein Bottle and the Double Torus 449

One could say that the double torus “lives” in the hyperbolic plane, as the oc-

tagon representing the double torus tiles the hyperbolic plane, by means of hyper-

bolic translations. The world of hyperbolic geometry is very inclusive. Hyperbolic

three-dimensional space contains isometric copies of both the hyperbolic plane, and

the Euclidean plane. Hyperbolic geometry is developed axiomatically in IVERSEN

[93]. Interesting presentations can be found in STAHL [160], STILLWELL [162],

THURSTON [171], and HILBERT and COHN-VOSSEN [83]. Much of the artwork

of ESCHER [49] is based on symmetries of the hyperbolic plane. Drawings of tesse-

lations of the hyperbolic plane can be found in MAGNUS [121].

http://taylorandfrancis.com

17

Linear Programming

17.1 Introduction

Problems which seek to find a “best” configuration to achieve a certain goal are

called optimization problems. Programming problems deal with determining optimal

allocations of limited resources to meet given objectives. They deal with situations in

which a number of resources such as manpower, materials, and land are available to

be combined to yield one or more products. There are, however, restrictions imposed,

such as the total number of resources available and the quantity of each product to be

made. Linear programming deals with the class of programming problems in which

these restrictions and any other relations among the variables are linear. In particular,

the constraints imposed when searching graphs and networks for say shortest paths,

matchings, and maximum flow can be expressed as linear equations.

17.1.1 A simple example

Let us consider a furniture shop that produces tables, chairs, cabinets, and stools.

There are three types of machines used: table saw, band saw, and drill press. We

assume that the production is continuous and each product first uses the table saw,

then the band saw, and finally the drill press. We also assume that setup time for each

machine is negligible. Table 17.1 shows

1. The hours required on each machine for each product, and

2. The profit realized on the sale of each product

We wish to determine the weekly output for each product in order to maximize profit.

Let x1, x2, x3, and x4 denote the number of tables, chairs, cabinets, and stools pro-

duced per week, respectively. We want to find the values of x1, x2, x3, x4 which

maximizes the profit. The available machine time is limited so we cannot arbitrarily

increase the output of any one product. Thus we must allocate machine hours among

the products without exceeding the maximum number of machine hours available.

Consider the restriction imposed by the table saw. According to Table 17.1 it will

be used a total of

1.5x1 + x2 + 2.4x3 + x4

hours per week, but can only be used for at most 2000 hours. This yields the linear

451

452 Graphs, Algorithms, and Optimization

TABLE 17.1

Data for the simple example

Machine type Table Chair Cabinet Stool Time available

table saw 1.5 1 2.4 1 2000

band saw 1 5 1 3.5 8000

drill press 1.5 3 3.5 1 5000

profit 5.24 7.30 8.34 4.18

inequality

1.5x1 + x2 + 2.4x3 + x4 ≤ 2000.

Similarly, the band saw and drill press yield the following restrictions:

x1 + 5x2 + x3 + 3.5x4 ≤ 8000

1.5x1 + 3x2 + 3.5x3 + x4 ≤ 5000

Furthermore, we cannot produce a negative amount of a product, so we also have

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, and x4 ≥ 0.

Now we have all the restrictions. The profit is

z = 5.24x1 + 7.30x2 + 8.34x3 + 3.4.18x4.

Thus our goal is to solve the following linear program.

Maximize: z = 5.24x1 + 7.30x2 + 8.34x3 + 3.4.18x4

Subject to: 1.5x1 + x2 + 2.4x3 + x4 ≤ 2000
x1 + 5x2 + x3 + 3.5x4 ≤ 8000

1.5x1 + 3x2 + 3.5x3 + x4 ≤ 5000

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0

17.1.2 Simple graphical example

We can graphically solve linear programs that involve only two variables. For exam-

ple, consider the linear program

Maximize: z = 5x1 + 3x2

Subject to: 3x1 + 5x2 ≤ 18
5x1 + 2x2 ≤ 11
x1 ≥ 0, x2 ≥ 0

Linear Programming 453

Each of the constraints determines a half plane consisting of the set of points

(x1, x2) that satisfy the inequality. For example, the inequality x1 ≥ 0 determines

the half plane of points lying to the right of the x2-axis. The intersection of these

four half planes is the set of feasible solutions to the problem. In this example the

feasible solutions form a bounded polygonal region. It is not difficult to show that

such a region must be convex. (It is possible to have an unbounded region.) The four

vertices of this region are easily determined by pairwise solving the four bounding

equations.

1. Solving x1 = 0 and 3x1 + 5x2 = 18 gives the vertex (0, 3.6).

2. Solving 3x1 + 5x2 = 18 and 5x1 + 2x2 = 11 gives the vertex (1, 3).

3. Solving 5x1 + 2x2 = 11 and x2 = 0 gives the vertex (2.2, 0).

4. Solving x1 = 0 and x2 = 0 gives the vertex (0, 0).

The set of feasible solutions is depicted in Figure 17.1. We have also drawn the

objective function z = 5x1 + 3x2, when z = 3.5, 11, and 38.5.

Consider any line segment joining points P = (p1, p2) and Q = (q1, q2). Let

z0 = 5p1 + 3p2

be the value of the objective function at P and let

z1 = 5q1 + 3q2

be the value of the objective function at Q. Assume without loss that z0 ≤ z1. The

coordinates of any point on the line segment between P and Q is given by

((1− t)p1 + tq1, (1 − t)p2 + tq2)

for 0 ≤ t ≤ 1. The value of the objective function at this point is

zt = 5((1− t)p1 + tq1) + 3((1− t)p2 + tq2)

= (1− t)(5p1 + 3p2) + t(5q1 + 3q2)

= (1− t)z0 + tz1.

Observe that

z0 = (1− t)z0 + tz0 ≤ (1− t)z1 + tz1 = zt

and

zt = (1− t)z0 + tz1 ≤ (1− t)z1 + tz1 = z1.

Thus z0 ≤ zt ≤ z1 for any 0 ≤ t ≤ 1. Therefore the maximum value of the

the objective function among the points on any line segment occurs at one of the

endpoints. It follows that the maximum value of any (linear) objective function among

the points of a compact region occurs at some point on the boundary. Also, if the

boundary is a polygon, then the maximum value of the objective will occur at one of

the vertices. Hence for our example the maximum value of the objective function

z = 5x1 + 3x2

454 Graphs, Algorithms, and Optimization

3x1 + 5x2 = 18

5x1 + 2x2 = 11

z = 3.0 z = 11 z = 17.0

Feasible

Solutions

FIGURE 17.1

Graphical example

Linear Programming 455

occurs at least one of (0, 3.6), (1, 3), (2.2, 0), or (0, 0). The value at these points is

10.8, 14, 11, and 0. Thus the maximum occurs at x1 = 1, x2 = 3.

If the region of feasible solutions is unbounded, then there may be no point in the

region for which the objective function achieves its absolute maximum. Of course

there is also no point for which the objective function achieves its maximum, if there

are no feasible solutions.

If the objective function achieves its maximum at two adjacent vertices P andQ,

and the region of feasible solutions is connected and polygonally bounded, then it

will achieve its maximum at infinitely many points: namely, those lying on the line

segment joining P and Q.

In a general linear program the region of feasible solutions is the intersection of

the half hyper-planes determined by the linear constrains. Thus the region of feasible

solutions to the general linear program is a compact convex region, bounded by facets

(hyper-plane segments). That is, it is a polyhedron.1 Consequently it follows that:

Theorem 17.1. In a general linear program the objective function achieves its max-

imum either at exactly one point, at infinitely many points, or at no point. Further-

more if it does achieve a maximum, it does so on one of the vertices of the polyhedral

boundary of the feasible solutions.

17.1.3 Slack and surplus variables

It is easier to work with equalities, than with inequalities because we can take advan-

tage of linear algebra. We can convert linear inequalities into equalities by introduc-

ing surplus and slack variables.

For example, consider an inequality of the form

a1x1 + a2x2 + · · ·+ atxt ≤ b. (17.1)

Given fixed assignments to the variables x1, x2, . . . , xt that satisfy this inequality,

there will be slack or “room for improvement” amounting to

xj = b− a1x1 + a2x2 + · · ·+ atxt ≥ 0.

Thus introducing a new variable xj and requiring xj ≥ 0 we obtain the equality

a1x1 + a2x2 + · · ·+ atxt + xj = b

which is equivalent to Inequality 17.1.

The variable xj is called a slack variable. Similarly an inequality of the form

a1x1 + a2x2 + · · ·+ atxt ≥ b (17.2)

represents a surplus of

x′j = a1x1 + a2x2 + · · ·+ atxt − b

1O.K. it is only a polyhedron if it is bounded. It could have some open sides, but the closed sides are
bounded by hyper-planes.

456 Graphs, Algorithms, and Optimization

for a fixed assignment to the variables x1, x2, . . . , xt. Thus introducing xj′ as a new

variable and requiring xj′ ≥ 0 we obtain the equality

a1x1 + a2x2 + · · ·+ atxt − xj′ = b

which is equivalent to Inequality 17.2. The variable xj′ is called a surplus variable.

Adding slack and surplus variables in this way will reduce the the system of inequal-

ities to a system of equalities and variables xi that are either unbounded or satisfy

xi ≥ 0. If xi is unbounded, we find an inequality that xi satisfies, solve for xi, and

substitute to eliminate xi from the set of equations. A linear program in which all the

variables are required to be non-negative and the remaining constraints are equality

constraints is said to be in standard form or a standard linear program.

For example, to convert the linear program

Maximize: z = 5x1 + 3x2 + 3x3 + x4

Subject to: 2x2 + x4 = 2
x1 + x2 + x4 ≤ 3

−x1 − 2x2 + x3 ≥ 1
x1 ≤ 0, x2, x3 ≥ 0

into standard form we introduce slack and surplus variables x5, x6, and x7 obtaining

Maximize: z = 5x1 + 3x2 + 3x3 + x4

Subject to: 2x2 + x4 = 2
x1 + x2 + x4 + x5 = 3

−x1 − 2x2 + x3 − x6 = 1
x1 + x7 = 0

x2, x3, x5, x6, x7 ≥ 0

Now variables x1 and x4 are unbounded, so we solve for them

x1 = −x7
x4 = 2− 2x2.

Substituting, we obtain

Maximize: z = x2 + 3x3 − 5x7 + 2

Subject to: −x2 + x5 − x7 = 1
−2x2 + x3 − x6 + x7 = 1

x2, x3, x5, x6, x7 ≥ 0

Finally, to convert to a problem of minimization, we set

Z = 2− z

Linear Programming 457

and we have
Minimize: Z = −x2 − 3x3 + 5x7

Subject to: −x2 + x5 − x7 = 1
−2x2 + x3 − x6 + x7 = 1

x2, x3, x5, x6, x7 ≥ 0

a linear program in standard form. In matrix form we set

X = [x2, x3, x5, x6, x7]
T

c = [−1,−3, 0, 0, 5]T

b = [1, 1]T

A =

[
−1 0 1 0 −1
−2 1 0 −1 1

]

and we see that the original linear program is equivalent to

Minimize: Z = cTX

Subject to: AX = b

X ≥ 0.

Exercises

17.1.1 Solve the following graphically and shade the region representing the fea-

sible solutions:

Maximize: z = x1 + 1.5x2

Subject to: 2x1 + 3x2 ≤ 6
x1 + 4x2 ≤ 4
x1, x2 ≥ 0

17.1.2 Solve the following graphically and shade the region representing the fea-

sible solutions:

Minimize: Z = 6x1 + 4x2

Subject to: 2x1 + x2 ≥ 1
3x1 + 4x2 ≥ 1.5

x1, x2 ≥ 0

17.1.3 Carefully examine Exercises 17.1.1 and 17.1.2. How are the solutions

related? They form what is called a pair of dual problems. Note that they

involve the same constants, but in a rearranged order.

458 Graphs, Algorithms, and Optimization

17.1.4 Put the following linear program into standard form:

Maximize: z = 2x1 + 3x2 + 5x3

Subject to: 3x1 + 10x2 + 5x3 ≤ 15
33x1 − 10x2 + 9x3 ≤ 33

x1 + 2x2 + x3 ≥ 4
x1, x2 ≥ 0

17.2 The simplex algorithm

17.2.1 Overview

The simplex algorithm can be used to solve linear programs of the form

Minimize: Z = cTX
Subject to: AX = b

X ≥ 0
(17.3)

There are three phases to the algorithm.

Phase 0: Find a basis solution or show that the linear program is infeasible.

Phase 1: Find a basis feasible solution or show that the linear program is infeasible.

Phase 2: Improve the basis feasible solution until

1. it’s optimal, or

2. the linear program can be shown to be unbounded.

17.2.2 Some notation

In order to study the linear program in Equation 17.3 we first introduce some nota-

tion. Denote the columns of the m by n matrix A by

A = [A1, A2, A3, . . . , An].

Without loss, assume that the rank of A is m. Suppose

B = {Aj1 , Aj2 , Aj3 , . . . Ajm}

is a set of m linearly independent columns of A. Then the m by m matrix

B = [Aj1 , Aj2 , Aj3 , . . . Ajm]

is nonsingular. Thus B−1 exists. Consequently, B−1A contains the identity matrix

on columns j1, j2, j3, . . . , jm of A. Let XB = B−1b. Then X given by

X [j] =

{
XB[i] if j = ji
0 if not

Linear Programming 459

satisfies

AX = b

and is called the basis solution given by B. If XB ≥ 0, then X also satisfies

X ≥ 0

with the remaining constraints of the linear program given in Equation 17.3. Thus in

this case we call X a basis feasible solution. Also corresponding to B we define cB
by

cB[i] = c[ji], for i = 1, 2, . . . ,m.

The value Z of the objective function at X is

Z = cTX = cTBXB

It is also convenient to set

zj = cTBYj ;

where Yj = B−1Aj . Using this notation we can safely identifyXB withX and refer

to XB as the basis solution.

17.2.3 Phase 0: finding a basis solution

A basis solution if one exists can be found by pivoting. Pivoting is also known as

Gaussian elimination or row reduction. To pivot on non-zero entry aij of the m by n
matrix A we replace row k by

aij [ak1, ak2, . . . , akn]− akj [ai1, ai2, . . . , ain]

for k 6= i, and we replace row i by

1

aij
[ai1, ai2, . . . , ain].

The result is that column j becomes

[0, 0, . . . , 0, 1︸︷︷︸
ith

, 0, 0, . . . , 0]T .

We record this procedure as Algorithm 17.2.1.

Algorithm 17.2.1: PIVOT(i, j)

for k ← 1 to m

do





if k 6= i

then

{
for h← 1 to n

do A[k, h]← A[i, j] · A[k, h]−A[k, j] ·A[i, h]
else

{
for h← 1 to n

do A[i, h]← A[i, h]/A[i, j]

460 Graphs, Algorithms, and Optimization

Thus to find a basis solution we iteratively select a non-zero entry aiji in row i and

pivot on aiji for i = 1, 2, . . . ,m. That is, we have selected the linearly independent

columns

{Aj1 , Aj2 , Aj3 , . . . , Ajm}
of A and have determined the basis solution XB; where

B = [Aj1 , Aj2 , Aj3 , . . . Ajm].

17.2.4 Obtaining a basis feasible solution

Suppose that A = [A1, A2, . . . , An] has rank m and that X is a feasible solution to

the linear program in Equation 17.3. Let p ≤ n be the number of positive variables

in X . Without loss we may assume that the first p variables are positive. Then

X = [x1, x2, . . . , xp, 0, 0, . . . , 0︸ ︷︷ ︸
n−p

]T

and so
p∑

j=1

xjAj = b. (17.4)

If the p columns A1, A2, . . . , Ap are linearly independent, then p ≤ m, and there

exists an additionalm− p columns of A whose inclusion with the first p are a linear

independent set. Thus we can form a basis solution with m− p zeros.

If the p columns are linearly dependent, then there exists αj not all zero such that

p∑

j=1

αjAj = 0.

Let Ar be any column for which αr 6= 0, j = 1, 2, . . . , p. Then

Ar = −
p∑

j = 1
j 6= r

αj
αr
Aj . (17.5)

Substituting Equation 17.5 into Equation 17.5, we obtain

p∑

j = 1
j 6= r

(xj − xr
αj
αr

)Aj = b. (17.6)

Thus we have a solution with at most p − 1 non-zero entries. However, we are not

certain that they are non-negative. We need

xj − xr
αj
αr
≥ 0

Linear Programming 461

for j = 1, . . . , p, j 6= r. If αj = 0, then this is automatically satisfied. If αj 6= 0,

then dividing by αj gives

xj
αj
− xr
αr
≥ 0 if αj > 0

and
xj
αj
− xr
αr
≤ 0 if αj < 0

Thus we may select Ar such that

xr
αr

= MINj{
xj
αj

: αj > 0}

or such that
xr
αr

= MAXj{
xj
αj

: αj < 0}.

Then each entry in Equation 17.6 will be non-negative and a feasible solution with

no more than p− 1 non-zero variables has been found. We can continue this process

of selecting columnsAj until p ≤ m in which case a basis feasible solution has been

found.

17.2.5 The tableau

The initial tableau for the linear program in Equation 17.3 is the array

[
A b

cT 0

]
. (17.7)

Note that other authors use a more elaborate tableau, but this is sufficient. Suppose

B is the submatrix of A corresponding to the basis B as in Section 17.2.2. For the

purpose of explanation assume B is the first m columns of A; then the tableau has

the form [
B · · · Aj · · · b

cTB · · · cj · · · 0

]
;

where Aj is the jth column of A. Multiplying the tableau with

[
B−1 0

−cTBB−1 1

]

we obtain the new tableau
[
I · · · Yj · · · XB

0 · · · cj − zj · · · −z

]
. (17.8)

This is because Yj = B−1Aj , XB = B−1b, and zj = cTBYj as defined in Sec-

tion 17.2.2. Thus selecting a new basis solution is equivalent to pivoting on entries

of the first m rows of the tableau 17.7 to obtain a tableau similar to the tableau 17.8.

462 Graphs, Algorithms, and Optimization

(The identity matrix need not be among the first columns.) Thus in the process of

selection of a basis the values of cj − zj , z, and XB are also easily determined.

An algorithm for the Phase 0 portion of the simplex algorithm that takes as input

a tableau for a linear program whose adjacency matrix has m rows and n columns is

provided in Algorithm 17.2.2.

Algorithm 17.2.2: PHASE0(Tableau,m, n)

Infeasible ← false

for r ← 1 to m

do





c← 1
while Tableau[r, c] = 0 do c← c+ 1
if c > n

then





if Tableau[r, n+ 1] 6= 0

then





comment: the linear program is infeasible

Infeasible ← true

exit

else





comment:

{
the linear program has

rank < M – shift up the rows

for i← r + 1 to m
do for j ← 1 to n+ 1
do Tableau[i− 1, j]← Tableau[i, j]

m← m− 1
r← r − 1

else

{
PIVOT(r, c)
pivots[r]← c

17.2.6 Phase 2: improving a basis feasible solution

Let XB = B−1b be a basis feasible solution of the linear program given in Equa-

tion 17.3. The value of the objective function at XB is

Z = cTBXB.

Some questions naturally arise:

• Can we find another basis feasible solution with better Z?

• Furthermore, can we do this by changing only one column of B?

• Can we remove one column Br of B and replace it with a column Aj of A and get

a smaller value Z of the objective function Z = cTX?

Linear Programming 463

Column Aj is a linear combination of the columns in B because B is a nonsingular

m by m submatrix of A. Thus

Aj =

m∑

i=1

yijBi. (17.9)

Then Aj can replace any Br for which

yrj 6= 0

because the new set of vectors

{B1, B2, . . . , Br−1, Aj , Br+1, Br+2, . . . , Bm}

will be linearly independent. Let

B⋆ = [B1, B2, . . . , Br−1, Aj , Br+1, Br+2, . . . , Bm].

ThenXB⋆ is a basis solution, but it may not be feasible. Observe from Equation 17.9

that

Br =
1

yrj
Aj −

m∑

i = 1
i 6= r

yij
yrj

Bi.

Also

b = BXB =
m∑

i=1

XB[i]Bi =
m∑

i = 1
i 6= r

XB[i]Bi +XB[r]Br.

So, substituting we have:

b =

m∑

i = 1
i 6= r

XB[i]Bi +XB[r]




1

yrj
Aj −

m∑

i = 1
i 6= r

yij
yrj

Bi




=

m∑

i = 1
i 6= r

(
XB[i]−XB[r]

yij
yrj

)
Bi +

XB[r]

yrj
Aj .

Thus

XB⋆ [i] =

{
XB[i]−XB[r]

yij
yrj

if i 6= r
XB [r]
yrj

if i = r
(17.10)

464 Graphs, Algorithms, and Optimization

is feasible if and only if

XB[i]−XB[r]
yij
yrj

≥ 0 (17.11)

and

XB[r]

yrj
≥ 0. (17.12)

Thus if XB[r] 6= 0, we see from Equation 17.12 that we must have

yrj > 0.

If yij ≤ 0, then Equation 17.11 automatically holds. So, we need to only be con-

cerned with coordinates i for which yij > 0. When yij > 0, the condition given by

Equation 17.11 can be rewritten as

XB[r]

yrj
≤ XB[i]

yij
.

Thus we need to choose that column r of B such that

XB[r]

yrj
= MINi

{
XB[i]

yij
: yij > 0

}
= θ. (17.13)

To summarize:

We began with a nonsingular submatrix B of A

B = [Ai1 , Ai2 , Ai3 , . . . Aim].

If XB = B−1b is a basis feasible solution to the linear program given in Equa-

tion 17.3, then we selected an arbitrary column Aj of A, not in B and wrote

Aj = BYj ,

a linear combination of the columns of B, where

Yj = [y1j , y2j , . . . , ymj].

If some yij > 0, there is a column Br of B, which we can replace with Aj to

get a basis feasible solutionXB⋆ . Equation 17.13 shows how to select Br so that

this is possible.

Now what about the value of the objective function – is it better? Let

B⋆ = [B⋆1 , B
⋆
2 , . . . , B

⋆
m]

be the new matrix obtained by replacing Br with Aj . That is B⋆i = Bi, for i 6= r

Linear Programming 465

and B∗
r = Aj . The new basis feasible solution is XB⋆ given in Equation 17.10. The

objective function corresponding to B⋆ is

Z⋆ = cTB⋆XB⋆

where

cB⋆ [i] =

{
cB[i] if i 6= r
cj if i = r.

Therefore

Z⋆ =

m∑

i = 1
i 6= r

(
XB[i]−XB[r]

yij
yrj

)
cB[i] +

XB[r]

yrj
cj

=
m∑

i=1

(
XB[i]−XB[r]

yij
yrj

)
cB[i] +

XB[r]

yrj
cj ,

because XB[i]−XB[r]
yij
yrj

= 0 when i = r

= Z − XB[r]

yrj

m∑

i=1

yijcB[i] +
XB[r]

yrj
cj

= Z +
XB[r]

yrj
(cj − cTBYj)

Setting zj = cTBYj = cTBB
−1Aj we have

Z⋆ = Z +
XB[r]

yrj
(cj − zj) = Z + θ(cj − zj).

Therefore if we can find Aj such that

cj − zj < 0

and at least one yij > 0, then it is possible to replace one of the columns of the

columns of B by Aj and obtain a new value Z⋆ of the objective function satisfying

Z⋆ ≤ Z.

If the given basis solution is not degenerate, then

Z⋆ < Z.

In terms of the tableau given in Equation 17.8, this means we can find a column

j with a negative entry in last row and a positive entry yij in row i. For each positive

entry yij compute the ratio

θi =
XB[i]

yij

466 Graphs, Algorithms, and Optimization

and chose i so that θi is smallest. Recall that

[XB[1], XB[2], . . . , XB[m],−Z]T

is the last column of the tableau. Then pivoting on yij produces a new tableau with

smaller Z . Note that −Z is the entry in the last row and column of the tableau.

17.2.7 Unbounded solutions

In Section 17.2.6, given a basis feasible solution XB = B−1b we found a column

Aj that had at least one yij > 0, i = 1, 2, . . . ,m where

Yj = B−1Aj .

For this column, we found a column Br in B which when replaced by Aj , resulted

in a basis feasible solution XB⋆ . The value of the objective function for XB⋆ was

Z⋆ = Z + θ(cj − zj).
Let us consider a column Aj for which yij ≤ 0 for each i = 1, 2, . . . ,m. We

have

b = BXB =

m∑

i=1

XB[i]Bi

with value of the objective function equal to Z = cTBXB.

Adding and subtracting θAj for any θ yields

b = BXB − θAj + θAj

=

m∑

i=1

XB[i]Bi − θAj + θAj

but

Aj = BYj =

m∑

i=1

yijBi.

So substituting we obtain:

b =
m∑

i=1

(XB [i]− θyij)Bi + θAj . (17.14)

When θ > 0, then (XB[i]Bi − θyij) ≥ 0 because we have assumed that yij ≤ 0, for

i = 1, 2, . . . ,m. Thus Equation 17.14 is feasible. The value of the objective function

is again

Z⋆ =
m∑

i=1

cB[i](XB[i]− θyij) + cjθ

= Z + θ(cj − zj).

Linear Programming 467

Thus choosing θ arbitrarily large we can make Z⋆ arbitrarily small if

cj − zj < 0.

To summarize:

Given any basis feasible solution to a linear program, if there is a column Aj not

in the basis for which

cj − zj < 0

and

Yj = B−1Aj ≤ 0,

then the linear program in Equation 17.3 has an unbounded solution.

In terms of the tableau given in Equation 17.8, this means that if we can find a

column j with every entry less than or equal to zero with a negative entry in last row,

then the linear program in Equation 17.3 has an unbounded solution.

17.2.8 Conditions for optimality

Assume that XB = B−1b is a basis feasible solution of the linear program given in

Equation 17.3 and that the value of the objective function at XB is

Z0 = cTBXB.

In addition, suppose that

cj − zj ≥ 0

for every column Aj of A not in B. Thus the value of the objective function cannot

be improved by replacing a column of B with a column of A. We will show that Z0

is the minimal value of the linear program and hence that XB is an optimal solution.

Set
−→
z = [z1, z2, . . . , zn]

T . So,
−→
z ≤ c.

Let X be any feasible solution of linear program given in Equation 17.3. Then

x1A1 + x2A2 + · · ·+ xnAn = b (17.15)

and X ≥ 0. Let Z⋆ = CTX be the value of the objective function at X .

Every column Aj of A can be written as a linear combination of the columns of

B:

Aj = BYj .

Setting Y = [Y1, Y2, . . . , Yn] we have A = BY , and
−→
z = cTBY . Then

BXB = b = AX = BY X.

468 Graphs, Algorithms, and Optimization

Therefore,

XB = Y X

because B is nonsingular. Hence

Z0 = cTBXB = cTBY X =
−→
z X ≤ cTX = Z⋆,

which proves that Z0 is the optimal value of the objective function and hence XB is

an optimal solution to the linear program in Equation 17.3.

In terms of the tableau given in Equation 17.8, this means if there is no negative

entry in the last row, then we have found an optimal solution. The optimal value is Z
the negative of the entry in the last row and column. To find the optimal solution, first

discover the columns {j1, j2, . . . , jm} that contain the identity matrix on the first m
rows of the tableau. That is, column ji is

[0, 0, . . . , 0, 1︸︷︷︸
ith

, 0, 0, . . . , 0]T .

Then the optimal solution is X where

X [j] =

{
XB[i] if j = ji
0 if not.

The Phase 2 portion of the simplex algorithm is given in Algorithm 17.2.3.

Algorithm 17.2.3: PHASE2(Tableau,m, n)

c← 1
while c < n

do





if Tableau[m+ 1, c] < 0

then





i← 0
while Tableau[i, c] ≤ 0 and i ≤ m do i← i+ 1

if i ≥ m then

{
Unbounded ← true

return

M ← Tableau[i,n+1]

Tableau[i,c]

r ← i
i← i+ 1
while i ≤ m do



if (Tableau[i, c] > 0) and
Tableau[i,n+1]

Tableau[i,c]
< M

then

{
M ← Tableau[i,n+1]

Tableau[i,c]

r ← i
i← i+ 1

PIVOT(r, c)
pivots[r]← c
c← 1

c← c+ 1

Linear Programming 469

17.2.9 Phase 1: initial basis feasible solution

Suppose that after Phase 0 we have obtained a basis solution XB to the linear pro-

gram
Minimize: Z = cTX
Subject to: AX = b

X ≥ 0
(17.16)

where A is a m by n matrix of rank m. Then

B = [B1, B2, . . . , Bm]

is a nonsingular submatrix of A and XB = B−1b. The result of pivoting on the

columns in B is the tableau
[
· · · Yj · · · XB

· · · cj − zj · · · −z

]
.

If XB[i] < 0 for some row i, then the basis solution is infeasible, and we cannot

proceed to Phase 2. Let E be the m-dimensional vector defined by

E[i] =

{
−1, if XB[i] < 0
0, if XB[i] ≥ 0.

Let x0 be a new artificial variable and define the Phase 1 linear program as follows:

Minimize: w = [1, 0, 0, . . . , 0]

[
x0
X

]
(17.17)

Subject to: [E, Y]

[
x0
X

]
= XB

x0, X ≥ 0.

The Phase 1 tableau is:


E · · · Yj · · · XB

0 · · · cj − zj · · · −Z
1 0, 0, · · · 0 · · · 0, 0 0


 .

It has columns 0, 1, . . . , n. The second to last row corresponds to the cost equation to

the linear program 17.16 and can almost be ignored for this discussion. Let w(x0, X)
denote the value of the objective function for the Phase 1 linear program at a given

x0 and X .

Lemma 17.2. The Phase 1 linear program is always feasible and has a non-negative

optimal objective value.

Proof. Let i be the row for which XB[i] is smallest (i.e., most negative), and pivot

on row i column 0. The result is a tableau with a feasible solution to the Phase 1

linear program. We can apply the techniques of Section 17.2.6 to obtain an optimal

470 Graphs, Algorithms, and Optimization

feasible solution or show that it is unbounded below. It cannot be unbounded below,

however, because

w = w(x0, X) = [1,
−→
0]

[
x0
X

]
= x0 ≥ 0.

Hence w is non-negative.

Theorem 17.3. A linear program is feasible if and only if the artificial objective

function has minimum value wmin = 0. Moreover, if wmin = 0 for x0 ≥ 0 and

X ≥ 0, then X is a feasible solution of the original linear program.

Proof. By Lemma 17.2, the Phase 1 linear program has an optimal solution for

which the minimum value wmin ≥ 0. First suppose wmin = 0. Then there exist

X and x0 such that w(x0, X) ≥ 0, x0 = 0, X ≥ 0, and

[E, Y]

[
x0
X

]
= x0E + Y X = XB.

Then B−1AX = 0 + Y X = x0E + Y X = XB = B−1b and hence AX = b. Thus

the linear program 17.16 is feasible.

Conversely, suppose there exists a feasible solution X̂ of AX = b. Then Y X̂ =
B−1AX̂ = B−1b = X̂B and thus

[E, Y]

[
x0
X

]
= XB

is solvable in non-negative variables, by choosing x0 = 0, and X = X̂ . For these

values of x0 and X , w(0, X̂) = 0. Because w ≥ 0 must hold for every feasible

solution of the Phase 1 linear program, we have wmin = 0.

Linear Programming 471

Algorithm 17.2.4: PHASE1(Tableau,m, n)

Unbounded ← false

Infeasible ← false

comment: Use column 0 and row m+ 2 to create the Phase 1 tableau

for i← 1 to m do





if Tableau[i, n+ 1] < 0
then Tableau[i, 0]← −1
else Tableau[i, 0]← 0

Tableau[m+ 2, 0]← 1
for j ← 1 to n do Tableau[m+ 2, j]← 0
Tableau[m+ 2, n+ 1]← 0
comment: find the Phase 1 first pivot

r = 0
M ← 0

for i← 1 to m do





if Tableau[i, n+ 1] < M

then

{
M ← Tableau[i, n+ 1]
r ← i

if r = 0

then

{
comment: no phase 1 is necessary

return

PIVOT(r, 0)
c← 1
while c ≤ n

do





if Tableau[m+ 2, c] < 0

then





i← 1
while Tableau[i, c] ≤ 0 do i← i+ 1

M ← Tableau[i,n+1]

Tableau[i,c]

r ← i
i← i+ 1
while i ≤ m do



if (Tableau[i, c] > 0) and
Tableau[i,n+1]

Tableau[i,c]
< M

then

{
M ← Tableau[i,n+1]

Tableau[i,c]

r ← i+ 1
i← i+ 1

PIVOT(r, c)
pivots[r]← c
c← 1

c← c+ 1
if Tableau[m+ 2, n+ 1] 6= 0

then Infeasible ← true

We can now give the complete simplex algorithm.

472 Graphs, Algorithms, and Optimization

Algorithm 17.2.5: SIMPLEX(Tableau,m, n)

Unbounded ← false

Infeasible ← false

PHASE0(Tableau,m, n)
if Infeasible

then

{
output (”The Linear Program is infeasible.”)
return

PHASE1(Tableau,m, n)
if Infeasible

then

{
output (”The Linear Program is infeasible.”)
return

PHASE2(Tableau,m, n)
if Unbounded

then

{
output (”The Linear Program is unbounded.”)
return

Z ← −Tableau[m+ 1, n+ 1]
for j ← 1 to n do X [j]← 0
for i← 1 to m do X [pivots[r]] = Tableau[i, n+ 1]
return (X,Z)

17.2.10 An example

Minimize: Z = 7x1 + 2x2
Subject to: −x1 +2x2 +x3 = 4

4x1 +3x2 +x3 + x4 = 24
−2x1 −2x2 +x5 = −7

x1, x2, x3, x4 ≥ 0.

The initial tableau is 


−1 2 1 0 0 4
4 3 1 1 0 24
−2 −2 0 0 1 −7
7 2 0 0 0 0




and we start Phase 0. Pivoting on the [1, 3] entry obtains




−1 2 1 0 0 4
5 1 0 1 0 20
−2 −2 0 0 1 −7
7 2 0 0 0 0


 .

Thus we have the basis solution

X = [0, 0, 4, 20,−7]T

Linear Programming 473

corresponding to basis consisting of columns 3, 4, and 5. This ends Phase 0. The

basis solution found was not feasible so we start Phase 1. In this phase we have

columns 0, 1, 2, 3, 4, and 5.



0 −1 2 1 0 0 4
0 5 1 0 1 0 20
−1 −2 −2 0 0 1 −7
0 7 2 0 0 0 0

1 0 0 0 0 0 0




First we price out column 0.




0 −1 2 1 0 0 4
0 5 1 0 1 0 20
1 2 2 0 0 −1 7

0 7 2 0 0 0 0
0 −2 −2 0 0 1 −7




We now have a feasible solution, but the Phase 1 objective value is 7. We proceed

to reduce this value to 0. In the last row we find a negative entry in column 1. The

smallest ratio of the last column entries with positive entries in column 1 is θ = 7/2,

so we pivot on the [3, 1] entry to obtain the tableau below.




1
2 0 3 1 0 − 1

2 7 1
2

− 2 1
2 0 −4 0 1 2 1

2 2 1
2

1
2 1 1 0 0 − 1

2 3 1
2

− 3 1
2 0 −5 0 0 3 1

2 −24 1
2

1 0 0 0 0 0 0




The Phase 1 objective value is now zero and we have a feasible solution. We proceed

to Phase 2 by dropping column 0 and the last row.




0 3 1 0 − 1
2 7 1

2

0 −4 0 1 2 1
2 2 1

2

1 1 0 0 − 1
2 3 1

2

0 −5 0 0 3 1
2 −24 1

2




There is a negative entry in the last row in column 2, so the objective value can be

reduced. The smallest ratio is θ = (7 1
2)/3, so we pivot on the [1, 2]–entry.




0 1 1
3 0 − 1

6 2 1
2

0 0 1 1
3 1 1 5

6 12 1
2

1 0 − 1
3 0 − 1

3 1

0 0 1 2
3 0 2 2

3 −12




474 Graphs, Algorithms, and Optimization

There are no negative entries left in the last row so an optimal solution has been

found. This solution is

X = [1, 2
1

2
, 0, 12

1

2
, 0]T

and has objective value Z = 12.

17.3 Cycling

It is prudent to ask whether it is possible for the simplex algorithm to go through

an endless sequence of iterations without terminating. Consider the following linear

program:

Minimize: Z = −10x1 + 57x2 + 9x3 + 24x4
Subject to: 0.5x1 −5.5x2 −2.5x3 +9x4 +x5 = 0

0.5x1 −1.5x2 −0.5x3 +x4 +x6 = 0
x1 +x7 = 1

x1, x2, x3, x4, x5, x6, x7 ≥ 0.

The initial tableau is



0.5 −5.5 −2.5 9 1 0 0 0
0.5 −1.5 −0.5 1 0 1 0 0
1 0 0 0 0 0 1 1

−10 57 9 24 0 0 0 0


 .

If we adopt the following rule:

Always pivot on the column with the smallest (most negative) entry in the bottom

row, choosing the first row that achieves the smallest ratio. If there are two such

columns always choose the first one, (i.e., the one with smallest index).

Then the sequence of iterations is:

1. Pivot on (1, 1).




1 −11 −5 18 2 0 0 0
0 4 2 −8 −1 1 0 0
0 11 5 −18 −2 0 1 1

0 −53 −41 204 20 0 0 0




2. Pivot on (2, 2).




1 0 0.5 −4 −0.75 2.75 0 0
0 1 0.5 −2 −0.25 0.25 0 0
0 0 −0.5 4 0.75 −2.75 1 1

0 0 −14.5 98 6.75 13.25 0 0




Linear Programming 475

3. Pivot on (1, 3).




2 0 1 −8 −1.5 5.5 0 0
−1 1 0 2 0.5 −2.5 0 0
1 0 0 0 0 0 1 1

29 0 0 −18 −15 93 0 0




4. Pivot on (2, 4).




−2 4 1 0 0.5 −4.5 0 0
−0.5 0.5 0 1 0.25 −1.25 0 0

1 0 0 0 0 0 1 1

20 9 0 0 −10.5 70.5 0 0




5. Pivot on (1, 5).




−4 8 2 0 1 −9 0 0
0.5 −1.5 −0.5 1 0 1 0 0
1 0 0 0 0 0 1 1

−22 93 21 0 0 −24 0 0




6. Pivot on (2, 6).




0.5 −5.5 −2.5 9 1 0 0 0
0.5 −1.5 −0.5 1 0 1 0 0
1 0 0 0 0 0 1 1

−10 57 9 24 0 0 0 0




The tableau obtained after iteration 6 is identical to the initial tableau and so this

cycle of iterations would repeat and the simplex algorithm would never terminate. It

is easy to see that this is the only way that the simplex algorithm can fail to terminate.

That is

Theorem 17.4. If the simplex algorithm fails to terminate, then it must cycle.

Several methods have been proposed to avoid this cycling phenomenon. The eas-

iest is to adopt the smallest index rule.

Always pivot on the column with the first negative entry in the bottom row (i.e.,

the one with the smallest index), and choose the first row in that column that

achieves the smallest ratio.

We leave it as an exercise to prove the following result:

Theorem 17.5. (R.G. Bland, 1977) The simplex method always terminates if the

smallest index rule is adopted.

Proof. Exercise 17.3.2.

476 Graphs, Algorithms, and Optimization

Exercises

17.3.1 Solve the following linear programs using the simplex algorithm.

(a)
Maximize: z = 3x1 + 2x2 + x3 + 4x4
Subject to: 4x1+ 5x2+ x3− 3x4 = 5,

2x1− 3x2− 4x3+ 5x4 = 7,
x1+ 4x2+ 2.5x3− 4x4 = 6,

x1, x2, x3, x4 ≥ 0.

(b)
Maximize: z = 3x1 + 4x2 + x3 + 7x4
Subject to: 8x1+ 3x2+ 4x3+ x4 ≤ 5,

2x1+ 6x2+ x3+ 5x4 ≤ 7,
x1+ 4x2+ 5x3+ 2x4 ≤ 6,

x1, x2, x3, x4 ≥ 0.

(c)
Maximize: z = 2x1 − 3x2 + 4x3 + x4
Subject to: x1+ 5x2+ 9x3− 6x4 ≥ −2,

3x1− 1x2+ x3+ 3x4 ≤ 10,
−2x1− 3x2+ 7x3− 8x4 ≥ 0,

x1, x2, x3, x4 ≥ 0.

17.3.2 Prove Theorem 17.5.

17.4 Notes

The topic of linear programming appears in a variety of different subjects, for ex-

ample operations research, mathematical programming, and combinatorial optimiza-

tion. There are thus numerous books in which it is discussed and among them are

CHVÁTAL [35], HADLEY [78], NEMHAUSER and WOLSEY [132], PAPADIMITRIOU

and STEIGLITZ [134], TAHA [165], and WALKER [185].

In this chapter we have only discussed the simplex algorithm which was invented

in the late 1940s by DANZIG [40] (see also DANTZIG [41]). A thorough discussion of

the history of linear programming can be found in DANTZIG’s celebrated work [42].

The example of cycling in the simplex method found in Section 17.3, is from the

book by CHVÁTAL [35]. Theorem 17.5 appears in BLAND [18].

It can be shown that in the worst case the running time of simplex algorithm is not

polynomial bounded (see KLEE and MINTY [99]) and hence the simplex algorithm

Linear Programming 477

is theoretically not satisfactory. In practice it is eminently useful and except for very

contrived problems exceedingly fast. In 1979, KHACHIAN [97] provided a method

called the ellipsoid method that solves linear programs in polynomial time. This is a

marvelous, elegant, and simple jewel of pure mathematics. However, we believe that

it is unlikely that the ellipsoid method will ever be a serious challenger to the simplex

method.

http://taylorandfrancis.com

18

The Primal-Dual Algorithm

18.1 Introduction

In Chapter 17 we found it convenient to convert every linear program consisting of

constraints that are a mix of inequalities and equalities:

∑
aijxi{≤=≥}bi, i = 1, 2, . . . ,m

to a system of equations Ax = b, b ≥ 0. A slightly different formulation of con-

straints will prove useful here. We convert every equality to the equivalent pair of

inequalities, so that

∑
aijxi = bi

becomes the two inequalities

∑
aijxi ≥ bi

∑
aijxi ≤ bi.

We then multiply all inequalities with the relation ≥ through by a −1 so that each

has the form ∑
aijxi ≤ bi.

Now we have a linear program of the form

Maximize: z = cTX
Subject to: DX ≤ d

X ≥ 0
(Primal)

which we call the primal linear program. Corresponding to the primal linear program

is another linear program which we call the dual linear program.

Minimize: Z = dTW
Subject to: DTW ≥ c

W ≥ 0
(Dual)

Lemma 18.1. The dual of the dual is the primal:

479

480 Graphs, Algorithms, and Optimization

Proof. The dual linear program:

Minimize: Z = dTW
Subject to: DTW ≥ c

W ≥ 0

is equivalent to :
Maximize: z⋆ = (−d)TW
Subject to: (−D)TW ≤ −c

W ≥ 0
.

This is in the form of a primal linear program. The dual linear program corresponding

to it is:
Minimize: Z⋆ = (−c)TX
Subject to: −DX ≥ −d

X ≥ 0
.

This linear program is equivalent to

Maximize: z = cTX
Subject to: DX ≤ d

X ≥ 0
.

Lemma 18.2. If X is a feasible solution to the primal and W is a feasible solution

to the dual, then cTX ≤ dTW (implying z ≤ Z).

Proof. Suppose X is a feasible solution to the primal. Then DX ≤ d. If W is a

feasible solution to the dual, then W ≥ 0, so we see

WTDX ≤WTd = dTW.

Similarly, because X ≥ 0 and W is a feasible solution,

DTW ≥ c

XTDTW ≥ XT c

WTDX ≥ cTX.

Therefore

cTX ≤WTDX ≤ dTW. (18.1)

Lemma 18.3. If X̂ is a feasible solution to the primal and Ŵ is a feasible solution to

the dual such that cT X̂ = dT Ŵ , then X̂ and Ŵ are optimal solutions to the primal

and dual, respectively.

The Primal-Dual Algorithm 481

Proof. By assumption, cT X̂ = dT Ŵ , but for any feasible solution X to the primal,

cTX ≤ dT Ŵ = cT X̂

(with the inequality from Lemma 18.2). Therefore, X̂ is an optimal solution to the

primal.

By the same logic, for any feasible solution W of the dual,

dTW ≥ cT X̂ = dT Ŵ .

Thus, Ŵ is an optimal solution to the dual.

Lemma 18.4. If the dual or the primal has an optimal solution, then the other also

must have an optimal solution and their optimal values are the same.

Proof. Because of Lemma 18.1, we need only show that if the primal linear program

has an optimal solution, then so does the dual linear program. Recall that the primal

linear program is:
Maximize: z = cTX
Subject to: DX ≤ d

X ≥ 0.

Add slack variables Xs and convert it to a minimization problem to get the standard

form linear program:

Minimize: (−z) = (−c)TX
Subject to: DX + IXs = d

X,Xs ≥ 0
, (18.2)

where I = [E1, E2, . . . , Em] is the m by m identity matrix. Let D = [D1, . . . , Dn].
The tableau for the simplex algorithm is

[
D1 · · · Dj · · · Dn E1 · · · Ej′ · · · Em d

−c1 · · · −cj · · · −cn 0 · · · 0 · · · 0 0

]
.

If the linear program 18.2 has an optimal solution XB , with optimal value

(−z) = (−cB)TXB , then there is a rank m submatrix B of the columns

D1, D2, . . . , Dn, E1, E2, . . . , Em such that XB = B−1d and after multiplying the

tableau by [
B−1 0

cTBB
−1 1

]

we obtain the tableau
[· · · · · · Yj · · · · · · · · · Yj′ · · · · · · XB

· · · · · · zj − cj · · · · · · · · · zj′ · · · · · · z

]

where,

z = cTBB
−1d,

Yj = B−1Dj ,

Yj′ = B−1Ej′ ,

482 Graphs, Algorithms, and Optimization

and because of optimality,

0 ≤ zj − cj = cTBB
−1Dj − cj

0 ≤ zj′ = cTBEj′ .

So these equations show that

cTBB
−1D − cT ≥ 0

cTBB
−1I ≥ 0, and

z = cTBB
−1d.

If we let WT = cTBB
−1, then these equations show that W satisfies

DTW ≥ c

W ≥ 0, and

z = dTW.

ThusW is an optimal feasible solution to the dual linear program. Optimality follows

from the last equation and Lemma 18.3.

Observe the similarity between Lemma 18.4 and the max-flow-min-cut Theorem

(Theorem 10.4). Indeed the Ford-Fulkerson algorithm for solving the maximum net-

work flow problem that was presented in Section 10.2 is a primal-dual algorithm. We

re-examine this algorithm in Section 18.6.3.

In the proof of Lemma 18.4 we discovered how to construct an optimal solution

of the dual linear program given an optimal solution to the primal. We record this

useful fact as the following corollary:

Corollary 18.5. If X is an optimal solution to

Maximize: z = cTX
Subject to: DX ≤ d

X ≥ 0

with basis B, then W = B−T cB is an optimal solution to the dual linear program

Minimize: Z = dTW
Subject to: DTW ≥ c

W ≥ 0.

Theorem 18.6. Given a primal-dual pair, exactly one of the following can occur:

a. Both the primal and the dual have a finite optimum.

b. The primal is unbounded and the dual is infeasible.

c. The primal is infeasible but the dual is unbounded.

d. Both the primal and the dual are infeasible.

The Primal-Dual Algorithm 483

Proof. We saw in Chapter 17 that every linear program either (i) has a finite opti-

mum, (ii) is unbounded, or (iii) is unfeasible. Thus for a primal-dual pair there are

nine possibilities. Namely:

1. Both the primal and the dual have a finite optimum.

2. The primal has a finite optimum but the dual is unbounded.

3. The primal has a finite optimum but the dual is infeasible.

4. The primal is unbounded but the dual has a finite optimum.

5. Both the primal and the dual are unbounded.

6. The primal is unbounded and the dual is infeasible.

7. The primal is infeasible but the dual has a finite optimum.

8. The primal is infeasible but the dual is unbounded.

9. Both the primal and the dual are infeasible.

Lemma 18.4 shows that possibilities 2, 3, 4, and 7 cannot occur. Equation 18.1 tells

us that if either the primal or the dual is unbounded, then the other cannot have a

feasible solution and thus possibility 5 is eliminated. It is easy to construct examples

of the remaining four possibilities, 1, 6, 8, and 9.

1. A primal-dual pair in which both the primal and the dual have a finite optimum:

Maximize: z = x1
Subject to: x1 ≤ 1

x1 ≥ 0

Minimize: Z = w1

Subject to: w1 ≥ 1
w1 ≥ 0

(Primal) (Dual)

6. A primal-dual pair in which the primal is unbounded and the dual is infeasible:

Maximize: Z = −x1 + 2x2
Subject to: −x1 + x2 ≤ 1

x1, x2 ≥ 0

Minimize: z = w1

Subject to: −w1 ≥ −1
w1 ≥ 2
w1 ≥ 0

(Primal) (Dual)

8. A primal-dual pair in which the primal is infeasible and the dual is unbounded:

Maximize: z = x1
Subject to: x1 ≤ 1

−x1 ≤ −2
x1 ≥ 0

Minimize: Z = w1 − 2w2

Subject to: w1 − w2 ≥ 1
w1, w2 ≥ 0

(Primal) (Dual)

484 Graphs, Algorithms, and Optimization

9. A primal-dual pair in which both the primal and the dual are infeasible:

Maximize: z = −x1 + 2x2
Subject to: x1 − x2 ≤ 1

−x1 + x2 ≤ −2
x1, x2 ≥ 0

Minimize: Z = w1 − 2w2

Subject to: w1 − w2 ≥ −1
−w1 + w2 ≥ 2
w1, w2 ≥ 0

(Primal) (Dual)

18.2 Alternate form of the primal and its dual

It is often more convent to write the primal linear program as:

Maximize: z = cTX
Subject to: AX = b

X ≥ 0.
(Primal: equality form)

This is equivalent to
Maximize: z = cTX
Subject to: AX ≤ b

−AX ≤ −b
X ≥ 0,

and this has the dual linear program

Minimize: Z = [bT ,−bT]
[
W1

W2

]

Subject to: [AT ,−AT]
[
W1

W2

]
≥ c

W1,W2 ≥ 0.

This dual is equivalent to:

Minimize: Z = bT (W1 −W2)
Subject to: AT (W1 −W2) ≥ c

W1,W2 ≥ 0.

If we let W = W1 −W2, then the entries of W are unrestricted in sign and the dual

linear program is equivalent to

Minimize: Z = bTW
Subject to: ATW ≥ c

W unrestricted.

Similarly, if we take the dual linear program to be

The Primal-Dual Algorithm 485

Minimize: Z = bTW
Subject to: ATW = c

W ≥ 0.
(Dual: equality form)

Then its corresponding primal linear program is

Maximize: z = cTX
Subject to: AX ≤ b

X unrestricted.

A similar proof of Corollary 18.5 found in Lemma 18.4 establishes Corol-

lary 18.7.

Corollary 18.7. If W is an optimal solution to

Minimize: Z = bTW
Subject to: ATW = c

W ≥ 0
(Dual: equality form)

with basis B, then X = B−T bB is an optimal solution to the dual linear program

Maximize: z = cTX
Subject to: AX ≤ b

X unrestricted.

18.3 Geometric interpretation

A geometric interpretation can be given to the dual linear program.

Let A = [A1, A2, . . . , An] and write the primal linear program as:

Maximize: z = cTX
Subject to: x1A1 + x2A2 + · · ·+ xnAn = b

X ≥ 0.
(18.3)

Then the dual is
Minimize: Z = bTW
Subject to: AT1W ≥ c1

AT2W ≥ c2
...

ATnW ≥ cn
W unrestricted.

(18.4)

The vectors Aj in the primal linear program 18.3 are the normals to the half-spaces

that represent the constraints in the dual linear program 18.4. Furthermore the re-

quirement vector of the primal is normal to the hyperplane Z = bTW in the dual.

This is easy to illustrate in two dimensions by means of an example.

486 Graphs, Algorithms, and Optimization

18.3.1 Example

Given the linear program:

Maximize: z = −3x1 − 23x2 − 4x3
Subject to: x1A1 + x2A2 + · · ·+ x5A5 = b

x1, x2, . . . , x5 ≥ 0,

where

A1=

[
2
−1

]
, A2=

[
−3
−4

]
, A3=

[
−2
3

]
, A4=

[
1
0

]
, A5=

[
0
1

]
, and b=

[
−2
1

]
,

the dual linear program is:

Minimize: Z = −2w1 + w2

Subject to: 2w1−1w2 ≥ −3
−3w1−4w2 ≥ −23
−2w1+3w2 ≥ −4
w1 ≥ 0

w2 ≥ 0.

(Note that the appearance of slack variables in the primal linear program have caused

the variables in the dual to be non-negative.) In Figure 18.1, we have drawn the

requirement-space configuration of the primal and in Figure 18.2, the convex set of

feasible solutions is shown as a shaded region.

Whenever two of the constraints hold as strict equalities, the vectors normal to

these constraints are a basis for the primal (if the normals are linearly independent).

In w1w2-space the point w where two dual constraints hold as strict equalities is the

intersection of the two lines representing these two constraints. A basis solution to

the primal can then be associated with the intersection of each pair of bounding lines

for the half-spaces representing the dual constraints.

There are
(
5
2

)
= 10 basis solutions to the primal. They are represented by the

points Pij , 1 ≤ i < j ≤ 5, in Figure 18.2. The point Pij corresponds to having

Ai, Aj in the primal basis. In Table 18.1 we display the simplex tableaux correspond-

ing to the various choice of basis {Ai, Aj}. Two of them yield feasible solutions to

the primal, but only one corresponds to a point that is also feasible in the dual. This

is basis {A2, A3}, corresponding to the point P23 = (5, 2). Furthermore this basis

yields the value z = −8, obtained by setting x1 = x4 = x5 = 0, x2 = 0.24 and

x3 = 0.65. This yields the value Z = [−2, 1]T [5, 2] = −8. Thus by Lemma 18.3,

this an optimal point. Therefore using the dual simplex method we move from one

extreme point of the convex polyhedron to an adjacent one until an optimal extreme

point is reached. At this point, the corresponding solution to the primal becomes

feasible.

The Primal-Dual Algorithm 487

2

1

A1

A2

A3

A4

A5

b

FIGURE 18.1

Requirement-space configuration for the primal

488 Graphs, Algorithms, and Optimization

w2

b

A1
A2

A3

A4

A5

P12

P13

P14

P15

P23

P24

P25

P34

P35P45

FIGURE 18.2

The convex set of feasible solutions to the dual

The Primal-Dual Algorithm 489

TABLE 18.1

Table of simplex tableaux




1 0 −1.55 0.36 −0.27 −1
0 1 −0.36 −0.09 −0.18 0
0 0 −17 −1 −5 −3


 Basis {A1, A2} is infeasible.




1 −4.25 0 0.75 0.50 −1
0 −2.75 1 0.25 0.50 0

0 −46.75 0 3.25 3.50 −3


 Basis {A1, A3} is infeasible.




1 4 −3 0 −1 −1
0 −11 4 1 2 0

0 −11 −13 0 −3 −3


 Basis {A1, A4} is infeasible.




1 −1.50 −1 0.50 0 −1
0 −5.50 2 0.50 1 0
0 −27.50 −7 1.50 0 −3


 Basis {A1, A5} is infeasible.




−0.24 1 0 −0.18 −0.12 0.24
−0.65 0 1 −0.24 0.18 0.65

−11 0 0 −5 −2 8


 Basis {A2, A3} yields z = 8.




0.25 1 −0.75 0 −0.25 −0.25
2.75 0 −4.25 1 −0.75 −2.75

2.75 0 −21.25 0 −5.75 −5.75


 Basis {A2, A4} is infeasible.




−0.67 1 0.67 −0.33 0 0.67
−3.67 0 5.67 −1.33 1 3.67

−18.33 0 11.33 −7.67 0 15.33


Basis {A2, A5} yields z = 15.33.




−0.33 −1.33 1 0 0.33 0.33
1.33 −5.67 0 1 0.67 −1.33

−4.33 −28.33 0 0 1.33 1.33


 Basis {A3, A4} is infeasible.




−1 1.50 1 −0.50 0 1
2 −8.50 0 1.50 1 −2

−7 −17 0 −2 0 4


 Basis {A3, A5} is infeasible.




2 −3 −2 1 0 −2
−1 −4 3 0 1 1
−3 −23 −4 0 0 0


 Basis {A4, A5} is infeasible.

490 Graphs, Algorithms, and Optimization

18.4 Complementary slackness

There is a battle of balance between the primal and dual linear programs.

As the constraints tighten in one, they loosen in the other.

In this section we denote by [Rowi(D)] and [Col j(D)] the ith row and jth column

of the matrix D, respectively. We also use X ·Y = XTY , the so called dot product.

Theorem 18.8. (Complementary slackness conditions) A primal-dual feasible

solution pair X,W is optimal if and only if

xj([Colj(D)]·W − cj) = 0 for all j (18.5)

wi(di − [Rowi(D)]·X) = 0 for all i. (18.6)

Proof. Let

uj = xj([Col j(D)]·W − cj), and

vi = wi(di − [Rowi(D)]·X).

Then, because of the feasibility and the duality relations we have uj ≥ 0 for all j
and vi ≥ 0 for all i. Let

u =
∑

j

uj

v =
∑

i

vi.

Then u, v ≥ 0, u = 0 if and only if Equation 18.5 holds for all j and v = 0 if and

only if Equation 18.6 holds for all j. Observe that

u+ v =
∑

j

uj +
∑

i

vi

=
∑

j

xj([Col j(D)]·W − cj) +
∑

i

wi(di − [Rowi(D)]·X)

= −
∑

j

xjcj+
∑

i

widi +
∑

j

xj([Col j(D)]·W−
∑

i

wi[Rowi(D)]·X

= −c·X + d·W +
∑

j

xj
∑

i

D[i, j]wi −
∑

i

wi
∑

j

D[i, j]xj

= −c·X + d·W +
∑

i

∑

j

wiD[i, j]xj −
∑

i

∑

j

wiD[i, j]xj

= −c·X + d·W.

Therefore Equations 18.5 and 18.6 hold for all j and i, respectively, if and only if

u+ v = 0 if and only if c·X = d·W if and only if X and W are both optimal.

The Primal-Dual Algorithm 491

Note that Theorem 18.8 says at optimality if a constraint is not met with equality,

i.e., has slack, in the primal linear program, then the corresponding variable in the

dual is zero and vice versa.

18.5 The dual of the shortest-path problem

In this section we study the shortest-path problem for directed graphs.

Problem 18.1: Shortest Path (directed graph)

Instance: a directed graph G = (V,E), nodes s, t ∈ V and

non-negative weights cj , for each edge ej ∈ E.

Find: a directed path P from s to t with minimum total weight

C(P) =
∑

ej∈E(P)

cj

Let V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em} define the m by n node-edge

incidence matrix A by

A[i, j] =





+1, if ej = (vi, u) for some vertex u,
−1, if ej = (u, vi) for some vertex u,
0, otherwise.

In Figure 18.3 an example is given.

We model the shortest-path problem as a network flow problem by assigning a

capacity of 1 on each edge. Let wj denote the flow on edge j.
The conservation of flow constraints are

[Rowi(A)] ·W =





0, i /∈ {s, t}
+1, i = s
−1, i = t.

Then W satisfies

AW =




+1
−1
0
...

0




← row s
← row t

and the capacity constrains are

0 ≤ wj ≤ 1.

A solution to the shortest-path problem is given by a flow W that minimizes

492 Graphs, Algorithms, and Optimization

8

4

3

2
6

6

2

1

3

4

s

a

b

c

d

t

A =

(s, a) (s, b) (s, c) (a, t) (b, a) (b, d) (b, t) (c, b) (c, d) (d, t)

s +1 +1 +1 0 0 0 0 0 0 0
a −1 0 0 +1 −1 0 0 0 0 0
b 0 −1 0 0 +1 +1 +1 −1 0 0
c 0 0 −1 0 0 0 0 +1 +1 0
d 0 0 0 0 0 −1 0 0 −1 +1
t 0 0 0 −1 0 0 −1 0 0 −1

cT =
[8, 4, 3, 2, 3, 2, 6, 3, 3, 4]

FIGURE 18.3

An instance of the shortest-path problem

The Primal-Dual Algorithm 493

Z = cTW . As far as we know it is possible that the wj in general take on non-

integer values, but in Section 19.4 we will show that there is an optimal solution W
to linear program 18.7 with only integer entries.

Minimize: Z = cTW

Subject to: AW =




+1
−1
0
...

0




← row s
← row t

W ≥ 0.

(18.7)

Indeed it is not to hard to see that there is an optimal solution to linear program 18.7

in which each wi is either zero or one. A one represents a unit flow along a shortest

path from s to t.
The dual linear program for the shortest-path problem is

Maximize: z = xs − xt
Subject to: xi − xj ≤ cij for each (i, j) ∈ E

X unrestricted.

(18.8)

The complementary slackness conditions (Theorem 18.8) are easy to interpret in

the shortest-path problem. A path W and an assignment of variables X are jointly

optimal if and only if

1. Each edge in the shortest path (i.e., a positive wi in the primal linear

program 18.7) corresponds to equality in the corresponding constraint in

the dual linear program 18.8, and

2. Each strict inequality in the dual linear program 18.8 corresponds to an

edge not in the shortest path.

For the graph in Figure 18.3 an optimal solution to the primal is

w(s,a) = 0, w(s,b) = 1, w(s,c) = 0, w(a,t) = 1, w(b,a) = 1,

w(b,d) = 0, w(b,t) = 0, w(c,b) = 0, w(c,d) = 0, w(d,t) = 0,

which has cost = 9. In the dual we see by complementary slackness that this means

xs − xb = 4

xb − xa = 3

xa − xt = 2.

Summing these equations we obtain z = xs − xt = 9.

494 Graphs, Algorithms, and Optimization

Exercises

18.5.1 An engineer takes measurements of a variable y(x); the results are in the

form of pairs (xi, yi). The engineer wishes to find the straight line that

fits this data best in the sense that the maximum vertical distance between

any point (xi, yi) and the line is as small as possible. Formulate this as a

linear program. Why might you decide to solve the dual?

18.5.2 Consider the node-edge incidence matrix A of the directed graph G =
(V,E) as described in Section 18.5. Show that a set of |V | − 1 columns

is linearly independent if and only if the corresponding edges, when con-

sidered as undirected edges, form a tree. (Thus a basis corresponds to a

tree.) If a network problem is formulated with this graph, what does this

result say about the pivot step?

18.5.3 It was shown in Section 18.2 that the dual of

Maximize: z = cTX
Subject to: AX = b

X ≥ 0

has unrestricted variables. However, if some slack and/or surplus vari-

ables appear in A, show that the dual variable for a constraint having a

slack variable is non-negative and the dual variable for a constraint hav-

ing a surplus variable is non-positive. Hence, show that the only dual

variables which are really unrestricted are those that correspond to con-

straints that were originally equations and not inequalities. Thus show that

the dual of any linear program is essentially unique and is independent of

the particular manner in which we write the primal.

18.6 The primal-dual algorithm

Consider a linear program in standard form

Minimize: Z = cTX
Subject to: AX = b

X ≥ 0
(P)

and its dual

Maximize: z = bTW
Subject to: AT1W ≤ c1

AT2W ≤ c2
...

ATnW ≤ cn
W unrestricted.

(D)

The Primal-Dual Algorithm 495

We may assume that b > 0, because the equalities in (P) can be multiplied by −1
where necessary. The complementary slackness conditions (Theorem 18.8) are: if X
is a feasible solution to (P) and W is a feasible solution to (D), then X and W are

both optimal if and only if

wi([Rowi(A)]
TX − bi) = 0 for all i (18.9)

and

(cj −ATj W)xj = 0 for all j. (18.10)

Condition 18.9 is automatically satisfied because of the equality in (P), so we will

focus on condition 18.10. The main idea of the primal dual algorithm is:

Given a feasible solution W to (D), find a feasible solution X to (P)

such that

Xj = 0, whenever ATj W < cj .

In order to construct such a pair W , X we will iteratively improve W , while main-

taining its feasibility in (D). Suppose W is a feasible solution to (D). Then with

respect to W some of the inequalities ATj W ≤ cj in (D) still have slack and some

do not. Let

J = {j : ATj W = cj} = {j1, j2, . . . , jn′},
be the set of admissible columns. SoX , a feasible solution to (P), is optimal if xj = 0
for all j /∈ J . Let

AJ = [Aj1 , Aj2 , . . . , Ajn′
]

and

XJ = [xj1 , xj2 , . . . , xjn′
].

If we can find XJ such that
AJXJ = b

XJ ≥ 0,
(18.11)

then by complementary slackness, the X defined by

X [j] =

{
0 if j /∈ J
Xjℓ if j = jℓ ∈ J

is optimal in (P). To find XJ we construct a new linear program called the restricted

primal (RP).

Minimize: ζ = γ

[
XJ

Y

]
= y1 + y2 + · · ·+ ym

Subject to: AJXJ + Y = [AJ , I]

[
XJ

Y

]
= b

XJ ≥ 0
Y ≥ 0

(RP)

496 Graphs, Algorithms, and Optimization

where Y = [y1, y2, . . . , ym]T are new variables one for each equation in (P) and

γ = [0, 0, . . . , 0︸ ︷︷ ︸
|J|

, 1, 1, . . . , 1︸ ︷︷ ︸
m

].

Let ζOPT be the optimal value of (RP) and suppose it occurs at Y = YOPT, with basis

B. If ζOPT = 0, then YOPT = 0 and the correspondingXJ solves the constraints 18.11.

Thus we have an optimal solution to (P). What happens when ζOPT > 0?

The dual of (RP) is

Maximize: z = bTW
Subject to: ATJW ≤ 0

W ≤ −→
1

W unrestricted

(DRP)

where
−→
1 = [1, 1, 1, . . . , 1]T . LetWOPT be the solution to (DRP) corresponding to YOPT,

that isWOPT = B−TγB (see Theorem 18.7). We call (DRP) the dual-restricted primal.

The situation is that we tried to find a feasible X in (P) using only the columns in J ,

but failed. However, we do have the optimal feasible solution pair YOPT , WOPT to (RP)

and (DRP), respectively. We also know ζOPT > 0, the value of (RP) at YOPT is positive.

Let’s try correctingW by a linear combination of the old W and WOPT . Let

W⋆ =W + θWOPT.

The value of the objective function at W⋆ is

bTW⋆ = bTW + θbTWOPT.

Now we know bTWOPT = ζOPT > 0, because YOPT,WOPT is a primal-dual feasible solu-

tion pair. Thus to maximize the value of the objective function we can take θ > 0
and large. We also need to maintain feasibility so we need

ATW⋆ = ATW + θATWOPT ≤ c.

Consider the j-th equation

ATj W⋆ = ATj W + θATj WOPT ≤ cj .

If ATj WOPT ≤ 0, then this equation is satisfied because W is a feasible solution to

(D). Thus, in particular, W⋆ is feasible, if ATj WOPT ≤ 0 for all j, but in this case we

may take θ > 0 arbitrarily large and the value of the objective function at W⋆ will be

unbounded. Therefore the primal (P) is infeasible, by Theorem 18.6. Hence:

Theorem 18.9. If ζOPT > 0 in (RP) and WOPT the optimal solution to (DRP) satisfies

ATj WOPT ≤ 0, for all j /∈ J

then (P) is infeasible.

The Primal-Dual Algorithm 497

Therefore we need only worry when

ATj WOPT > 0 for some j /∈ J.

Consequently, the feasibility conditions are

ATj W⋆ = ATj W + θATj WOPT ≤ cj , whenever j /∈ J and ATj WOPT > 0.

Thus for all j /∈ J and ATj WOPT > 0 we need to chose θ such that

θ ≤
cj −ATj W
ATj WOPT

.

This yields the following theorem.

Theorem 18.10. When ζOPT > 0 in (RP) and there is a j /∈ J with ATj WOPT > 0, the

largest θ that maintains feasibility of W⋆ =W + θWOPT is

θ⋆ = min

{
cj −ATj W
ATj WOPT

: j /∈ J and ATj WOPT > 0

}
. (18.12)

Given a feasible solution W to (D) Algorithm 18.6.1 constructs in W an optimal

solution to (D) or determines if (P) is infeasible.

Algorithm 18.6.1: PRIMAL-DUAL(W)

FEASIBLE ← true

OPTIMAL ← false

while FEASIBLE and not OPTIMAL

do





J ← {j : ATj W = cj}
if |J | = n

then OPTIMAL ← true

else





Solve (RP) by Simplex Algorithm

obtain solution with basis B and objective value ζOPT

if ζOPT = 0
then OPTIMAL ← true

else





WOPT ← B−TγB
if ATJWOPT ≤ 0 for all j ∈ J

then FEASIBLE ← false

else

{
compute θ⋆ using equation 18.12

W ←W + θ⋆WOPT

498 Graphs, Algorithms, and Optimization

18.6.1 Initial feasible solution

In order to start Algorithm 18.6.1 we must first have a feasible solution W to (D). If

ci ≥ 0 for all i, we can take W =
−→
0 as an initial feasible solution. When ci < 0

for some i, we can use the following method to obtain a feasible solution W to

(D). Introduce a new variable x0 to the primal problem (P), set c0 = 0 and add the

constraint :

x0 + x1 + · · ·+ xn = b0,

where b0 is taken to be larger than
∑n
i xi, for every basis solution X = [x1, . . . , xn]

to (P). For example, take b0 = nM where M is given in Lemma 18.11. This new

primal is

Minimize: Z = cTX = [0, cT]

[
x0
X

]

Subject to: x0 + x1 + · · ·+ xn = b0
AX = b

x0 ≥ 0, X ≥ 0

(P’)

and its dual is

Maximize: z = w0b0 + bTW
Subject to: w0 ≤ 0

w0 +AT1W ≤ c1
w0 +AT2W ≤ c2

...

w0 +ATnW ≤ cn
W unrestricted

(D’)

where w0 is the new variable corresponding to the new equation in the new primal.

A feasible solution to this new dual is

Wi =

{
MIN{c1, c2, . . . , cn}, if i = 0

0, if i = 1, 2, . . . ,m.

Also [x0, X] is an optimal solution to the new primal (P’) if and only if X is an

optimal solution to (P). A suitable value for b0 is provided by the following lemma.

Lemma 18.11. Let X = [x1, x2, . . . , xn] be a basis solution to (P). Then

|xj | ≤M = m!αm−1β

where

α = MAXi,j{|ai,j |}
and

β = MAX{b1, b2, . . . , bm}.

The Primal-Dual Algorithm 499

Proof. Without loss of generality we assume that the entries of A, b, and c are inte-

gers. If X is a basis solution, then there is a set J of m columns such that X [j] = 0
whenever j /∈ J , and B = [Aj : j ∈ J] is nonsingular. Thus BXJ = b, where

XJ = [X [j] : j ∈ J] and so by Cramer’s rule

xj =
det(B′)

det(B)
,

where B′ is the matrix B with column j replaced with b. By integrality we have

| det(B)| ≥ 1, and so

|xj | ≤ | det(B′)|

column in the optimal basis of (RP) remains admissible at the start of the next itera-

tion.

Theorem 18.12.

Proof. Suppose that the optimal basis B of (RP) includes the column Aj Then by

Corollary 18.7 the optimal solution to (DRP) corresponding toX isWOPT = B−T γB ,

where γB are the entries of

γ = [0, 0, . . . , 0︸ ︷︷ ︸
|J|

, 1, 1, . . . , 1︸ ︷︷ ︸
m

]

corresponding to the columns of [AJ , I] that are in B. Consequently, for some ℓ,
1 ≤ ℓ ≤ |J |,

ATj WOPT = ATj (B
−TγB)

= (ATj B
−T)γB

= (B−1AJ)
T γB

= ETℓ γB

= γB[ℓ] = 0,

where Eℓ = [0, 0, . . . , 0, 1, 0, 0, . . . , 0]T with 1 in position ℓ. This implies that

ATj W⋆ = ATj (W + θWOPT)

= ATj W + θWT
OPT
Aj

= γj + 0

= γj .

Thus if j ∈ J at the start of an iteration of the while loop in Algorithm 18.6.1, then

j remains in J in the next iteration.

500 Graphs, Algorithms, and Optimization

How do we know that the primal-dual algorithm will terminate? If the minimum

calculation of θ⋆ by Equation 18.12 occurs at j = j⋆, then

θ⋆ =
cj⋆ −ATj⋆W
ATj⋆WOPT

and so

cj⋆ = ATj⋆W + θ⋆A
T
j⋆WOPT = ATj⋆W⋆.

Consequently, j⋆ becomes a new column of J , and we see that |J |monotonically in-

creases. If J = {1, 2, . . . , n}, then W satisfies the complementary slackness condi-

tion in Equation 18.10 and is therefore optimal. Consequently we have the following

theorem.

Theorem 18.13. Algorithm 18.6.1 correctly solves (P) in at most n iterations.

18.6.2 The shortest-path problem

We illustrate the primal-dual method with the shortest-path problem introduced in

Section 18.5. Observe that the row sum of the coefficient matrix in linear pro-

gram 18.8 is zero. Hence any row may be omitted because it is redundant. If we

choose to omit row t, the resulting linear program 18.13 is our primal.

Minimize: Z = cTX

Subject to: AX =




+1
0
...

0




← row s

X ≥ 0 .

(18.13)

The vector of flow is X and each entry of X is 0 or 1. The dual linear program for

the shortest-path problem is

Maximize z = ws
Subject to: wi − wj ≤ cij for each edge(i, j) ∈ E

W unrestricted, except wt = 0.
(18.14)

We fix wt = 0, because its row was omitted from the primal. The set of admissible

columns (i.e., edges) is

J = {(i, j) : xi − xj = cij}

The Primal-Dual Algorithm 501

and the restricted primal is

Minimize: ζ = y1 + y2 + · · ·+ ym−1

Subject to: AX + Y =




+1
0
...

0




← row s

xj ≥ 0 for all j ∈ J
xj = 0 for all j /∈ J
Y ≥ 0.

(18.15)

Consequently, the dual-restricted primal is

Maximize: z = ws
Subject to: wi − wj ≤ cij for each edge(i, j) ∈ J

W ≤−→
1

W unrestricted.

(18.16)

It is easy to solve the dual-restricted primal. Note that ws ≤ 1, and that we are

maximizing ws, so we can try ws = 1. If wi = 1 and (i, j) ∈ J , then we can satisfy

the constraint

wi − wj ≤ 0,

by also setting wj = 1. Hence if P = i1i2 · · · ih is a path with (ia, ia+1) ∈ J for

all a = 1, 2, . . . , h − 1 and wi1 = 1. Then we can set wia = 1 for each a without

violating the constraints. Hence if there is no st-path using edges only in J , then an

optimal solution to the dual-restricted primal is given by

WOPT[i] =





1, if there is an si-path using only edges in J
0, if there is an it-path using only edges in J
1, for all other vertices i.

We then calculate

θ⋆ = MIN{cij − (wi − wj) : (i, j) /∈ J and WOPT[i]−WOPT[j] > 0}

and update W and J , and obtain and solve the new dual-restricted primal. If we get

to a point where there is an st-path using edges in J , then ws = 0 and we are at an

optimal solution, because minimum ζ is equal to the maximum z which is ws = 0.

Notice that any st-path that uses only edges in J is optimal.

The primal-dual algorithm reduces the shortest-path problem to the easy calcula-

tion which vertices are reachable from the source s.
We illustrate the primal-dual algorithm when applied to the shortest-path problem

with the directed graph given in Figure 18.4.

502 Graphs, Algorithms, and Optimization

5 1 2

5 1 2

1 1 2 1

s

t

2 3 4

5 6 7

FIGURE 18.4

Shortest-path example

. .

Iteration 1
5 1 2

5 1 2

1 1 2 1

0 0 0 0

0 0 0 0

s

t

2 3 4

5 6 7

(D): W = [0, 0, 0, 0, 0, 0, 0, 0]
J = {}

1 1 1 1

1 1 1 0

s

t

2 3 4

5 6 7

(DRP): WOPT = [1, 1, 1, 1, 1, 1, 1, 0]
θ⋆ = 1 for edge (4, 7)

. .

Iteration 2
5 1 2

5 1 2

1 1 2 1

1 1 1 1

1 1 1 0

s

t

2 3 4

5 6 7

(D): W = [1, 1, 1, 1, 1, 1, 1, 0]
J = {(4, 7)}

1 1 1 0

1 1 1 0

s

t

2 3 4

5 6 7

(DRP): WOPT = [1, 1, 1, 0, 1, 1, 1, 0]
θ⋆ = 2 for edges (3, 4) and (7, t)

. .

Iteration 3
5 1 2

5 1 2

1 1 2 1

3 3 3 1

3 3 3 0

s

t

2 3 4

5 6 7

(D): W = [3, 3, 3, 1, 3, 3, 3, 0]
J = {(4, t), (3, 4), (7, t)}

1 1 0 0

1 1 0 0

s

t

2 3 4

5 6 7

(DRP): WOPT = [1, 1, 0, 0, 1, 1, 0, 0]
θ⋆ = 1 for edge (2, 3)

The Primal-Dual Algorithm 503

. .

Iteration 4
5 1 2

5 1 2

1 1 2 1

4 4 1 1

4 4 1 0

s

t

2 3 4

5 6 7

(D): W = [4, 4, 1, 1, 4, 4, 1, 0]
J =

{
(4, t), (3, 4), (7, t), (2, 3)

}

1 0 0 0

1 1 0 0

s

t

2 3 4

5 6 7

(DRP): WOPT = [1, 0, 0, 0, 1, 1, 0, 0]
θ⋆ = 1 for edge (6, 2)

. .

Iteration 5
5 1 2

5 1 2

1 1 2 1

5 4 1 1

5 5 1 0

s

t

2 3 4

5 6 7

(D): W = [5, 4, 1, 1, 5, 5, 1, 0]

J =

{
(4, t), (3, 4), (7, t), (2, 3),
(6, 2)

}

1 0 0 0

1 0 0 0

s

t

2 3 4

5 6 7

(DRP): WOPT = [1, 0, 0, 1, 0, 0, 0, 0]
θ⋆ = 2 for edge (5, 6)

. .

Iteration 6
5 1 2

5 1 2

1 1 2 1

5 4 1 1

5 5 1 0

s

t

2 3 4

5 6 7

(D): W = [7, 4, 1, 3, 7, 7, 1, 0]

J =

{
(4, t), (3, 4), (7, t), (2, 3),
(6, 2), (5, 6)

}

1 0 0 0

0 0 0 0

s

t

2 3 4

5 6 7

(DRP): WOPT = [1, 0, 0, 0, 0, 0, 0, 0]
θ⋆ = 1 for edge (s, 5)

. .

Iteration 7
5 1 2

5 1 2

1 1 2 1

5 4 1 1

5 5 1 0

s

t

2 3 4

5 6 7

(D): W = [8, 4, 1, 3, 7, 7, 1, 0]

J =

{
(4, t), (3, 4), (7, t), (2, 3),
(6, 2), (5, 6), (s, 5)

}

0 0 0 0

0 0 0 0

s

t

2 3 4

5 6 7

(DRP): WOPT = [0, 0, 0, 0, 0, 0, 0, 0]

. .

18.6.3 Maximum flow

A network N with source s and target t can be described as a linear program as

follows:

504 Graphs, Algorithms, and Optimization

Maximize: v

Subject to: Af =




+v
−v
0
...

0




← row s
← row t

f ≤ c
f ≥ 0,

(18.17)

where v = VAL(f) is the value of the flow f and c = [CAP(e) : e ∈ E(N)]T are the

capacities of the edges e in N . This is of course equivalent to

Maximize v

Subject to: Af + vT≤0
f≤c
−f≤0,

(18.18)

where

T [x] =




−1, if x = s
+1, if x = t
0, otherwise.

(Note that Af + vT ≤ 0 implies Af + vT = 0 because we maximize v.) The set of

admissible columns (i.e., edges) is

J = {−→uv : f(−→uv) = c or − f(−→uv) = 0}.
Thus J is the set of saturated edges together with the zero-flow edges and the dual-

restricted primal is:

Maximize: v

Subject to: Af + vT≤0
f(

−→
uv)≤0, for all saturated edges

−→
uv in 18.18

−f(−→uv)≤0, for all zero flow edges
−→
uv in 18.18

f≤
−→
1

v≤−→
1

(18.19)

It is easy to solve the dual-restricted primal in 18.19. We wish to maximize v and so

we can try v = 1. Thus we must choose a flow f such that

[Rows(A)]·f = 1

Concerning the edges incident to s, the inequalities in 18.19 tell us that we can set

f(
−→
su) = 1 if the edge

−→
su has zero flow or is unsaturated and we can set f(

−→
us) = −1

if the edge
−→
us is saturated and/or does not have zero flow. Let S1 be the set of vertices

u incident to s satisfying

The Primal-Dual Algorithm 505

if u −→ s, then
−→
su has zero flow or is unsaturated;

if u −→ s, then
−→
us is saturated or does not have zero flow.

Hence we choose v1 ∈ S1 and set the flow on the associated edge to 1 if it leaves s
and to −1 if it enters s. Now we must consider [Rowv1](A) and consider the edges

incident to u1. Let S2 be the set of vertices u incident to some v in S1 satisfying

if u −→ s, then
−→
su has zero flow or is unsaturated;

if u −→ s, then
−→
us is saturated or does not have zero flow.

}
(18.20)

In general let Sk+1 be the set of vertices u incident to some v in Sk satisfying condi-

tions in 18.20 and continue until some Sk contains the target t. When and if it does,

we can choose vertices vi ∈ Si, i = 1, 2, . . . , k − 1 such that sv1v2v3 · · · vk−1t is a

st-path P . We obtain an optimal solution fOPT to the dual-restricted primal in 18.19

as follows:

fOPT(
−→
uv) =





+1, if
−→
uv is a forward edge of P

−1, if
−→
uv is a backward edge of P

0, if
−→
uv is not an edge of P .

We then calculate

θ⋆ = MINuv∈E(P)

{
(c(

−→
uv)− f(−→uv)), if fOPT(

−→
uv) = 1

(0− (−f(−→uv)), if fOPT(
−→
uv) = −1

= MINuv∈E(P)

{
(CAP(

−→
uv)− f(−→uv)), if fOPT(

−→
uv) = 1

f(
−→
uv), if fOPT(

−→
uv) = −1

= MIN{RESCAP(uv) : uv ∈ E(P)},

where

RESCAP(uv) =

{
CAP(

−→
uv)− f(−→uv), if uv is a forward edge,

f(
−→
vu), if uv is a backward edge.

We update the flow by

f ← f + θ⋆fOPT,

recompute the set of admissible edges J to get the new dual-restricted primal, and

repeat until J is empty at which point the flow f will be maximum.

It is now easy to see the similarity of this method to that in Section 10.2 and

realize that the primal-dual algorithm for network flow is exactly the Ford-Fulkerson

algorithm.

Exercises

18.6.1 Consider Problem 18.2 the Weighted Matching problem.

506 Graphs, Algorithms, and Optimization

Problem 18.2: Weighted Matching
Instance: undirected graph G and weight we ≥ 0 for each edge e of G.

Find: a matchingM of G with maximal possible weight

WT(M) =
∑

e∈E(M)

we.

Formulate a primal-dual algorithm for solving Problem 18.2 and give an

interpretation for the restricted primal.

18.6.2 Use the primal-dual algorithm as discussed in Section 18.6.2 to find a

shortest path between each pair of nodes in the graph given in Figure 18.5.

2222222221

32

1 2

1

1

2

2

1

1

5

2

2 4

6 1

2 1

a b c

d e f

g h i

FIGURE 18.5

An instance of the shortest-path problem

18.7 Notes

The primal-dual algorithm was first described in 1956 by DANTZIG; see [42]. Our

treatment is similar to that of PAPADIMITRIOU and STIEGLITZ; see [134].

19

Discrete Linear Programming

19.1 Introduction

An integer linear program (ILP) is a linear program in which the variables have been

constrained to be integers.

Minimize: Z = cTX
Subject to: AX ≤ b

X ≥ 0
X integral.

(19.1)

If all of the variables are each constrained to a finite set of values, we say that

the integer linear program is discrete. Notice that frequently the equality constraints

force the variables to be discrete, for if bi/ai,j > 0 for all j in the constraint

n∑

i=1

ai,jxj = bi,

then xj cannot exceed mj = ⌊bi/ai, j⌋. Hence xj ∈ {0, 1, 2, . . . ,mj} for all j.

DEFINITION 19.1: A discrete linear program (DLP) is an integer linear program

in which the variables are a bounded

Minimize: Z = cTX
Subject to: AX = b

0 ≤ xj ≤ mj , j = 1, 2, . . . , n
X integral.

(19.2)

Consider Problem 19.1, the Knapsack problem. This problem is motivated by

what to carry on a proposed hiking trip. The weight limit on how much can be carried

is the capacity M . Each of the n objects under consideration have a certain weight

wi and each has a certain value or profit pi, i = 1, 2, . . . , n − 1. Furthermore each

object can be either carried or left behind. We cannot choose to carry a fraction of an

object.

507

508 Graphs, Algorithms, and Optimization

Problem 19.1: Knapsack

Instance: profits p1, p1, p2, . . . , pn;

weights w1, w1, w2, . . . , wn; and

capacity M ;

Find: the maximum value of

P =

n∑

i=1

pixi

subject to
n∑

i=1

wixi ≤M

and [x1, . . . , xn] ∈ {0, 1}n.

This problem can be formulated as the discrete linear program:

Minimize: Z = −(p1x1 + p1x1 + · · ·+ pnxn)
Subject to: w1x1 + w1x1 + · · ·+ wnxn ≤M

0 ≤ xj ≤ 1, j = 1, 2, . . . , n
X integral.

19.2 Backtracking

A discrete integer linear program can be solved with a backtracking search. For ex-

ample, the Knapsack problem can be solved with Algorithm 19.2.1.

Algorithm 19.2.1: KNAPSACK1(ℓ)

if ℓ > n

then





if

n∑

i=1

wixi ≤M

then





CurrentProfit ←
n∑

i=1

pixi

if CurrentProfit > OptimalProfit

then

{
OptimalProfit ← CurrentProfit
OptimalX ← [x1, . . . , xn]

else





xℓ ← 1
KNAPSACK1(ℓ+ 1)
xℓ ← 0
KNAPSACK1(ℓ+ 1)

Discrete Linear Programming 509

Initially Algorithm 19.2.1 is started with ℓ = 1.

In general the backtracking method to solve a discrete integer linear program is

performed by computing for a partial solution, in which values for x1, x2, . . . , xℓ−1

have been assigned, the set of possible values Cℓ for xℓ. Each possible value is ex-

amined to see whether the partial solution can be extended with it. The general back-

tracking algorithm is provided in Algorithm 19.2.2

Algorithm 19.2.2: BACKTRACK(ℓ)

if [x1, x1, . . . , xℓ] is a feasible solution

then process it

Compute Cℓ
for each x ∈ Cℓ

do

{
xℓ ← x
BACKTRACK(ℓ+ 1)

Algorithm 19.2.1, is an application of Algorithm 19.2.2 with Cℓ = {1, 0}. We

can improve the running time of a backtracking algorithm if we can find efficient

ways of reducing the size of the choice sets Cℓ. This process is called pruning.

For the Knapsack problem, one simple method is to observe that we must have

ℓ∑

i=1

wixi ≤M

for any partial solution [x1, x2, . . . , xℓ−1]. In other words, we can check partial so-

lutions to see if the feasibility condition is satisfied. Consequently, if ℓ ≤ n and we

set

CurrentWt =

ℓ−1∑

i=1

wixi,

then we have

Cℓ =
{
{1, 0}, if CurrentWt + wℓ ≤M ;
{0}, otherwise.

Using Algorithm 19.2.2 as a template, we obtain Algorithm 19.2.3, which is invoked

with ℓ = 1 and CurrentWt = 0.

510 Graphs, Algorithms, and Optimization

Algorithm 19.2.3: KNAPSACK2(ℓ)

if ℓ > n

then





if

n∑

i=1

pixi > OptimalProfit then





OptimalProfit ←
n∑

i=1

pixi

OptimalX ← [x1, . . . , xn]
if ℓ = n

then Cℓ ← ∅

else





if CurrentWt + wℓ ≤M
then Cℓ ← {1, 0}
else Cℓ ← {0}

for each x ∈ Cℓ

do





xℓ ← x
CurrentWt = CurrentWt + wℓxℓ
KNAPSACK2(ℓ + 1)
CurrentWt = CurrentWt − wℓxℓ

A backtracking algorithm with simple pruning for solving the discrete integer

linear program 19.2 in which the coefficient matrix A = [Ai, A2, . . . , An] and b
consists of only non-negative entries is given as Algorithm 19.2.4.

Algorithm 19.2.4: BACKTRACK2(ℓ)

if ℓ > n

then





if

n∑

i=1

cixi < OptimalZ then





OptimalZ ←
n∑

i=1

cixi

OptimalX ← [x1, . . . , xn]
comment: Compute Cℓ

if ℓ = n
then Cℓ ← ∅

else





Cℓ ← {}
for x = 0 to mj

do

{
if CurrentWt[i] +Aix ≤ b

then Cℓ ← Cℓ ∪ {x}
for each x ∈ Cℓ

do





xℓ ← x
CurrentWt = CurrentWt +Aixℓ
BACKTRACK2(ℓ+ 1)
CurrentWt = CurrentWt −Aixℓ

Discrete Linear Programming 511

19.3 Branch and bound

Another strategy for solving an integer linear program is to first ignore the integer

constraints and solve the corresponding linear program. This linear program is called

the relaxation of the integer linear program. If a solution is found to the relaxed

integer linear program, it can be rounded to the nearest integer solution. Although

this may seem plausible, it generally leads to solutions that are either infeasible or

far from the optimal solution. We illustrate this difficulty with the following integer

linear program:

Minimize: Z = −x1 − x2
Subject to: −2x1 + 7x2 ≤ 14

2x1 − 2x2 ≤ 1
x1, x2 ≥ 0

x1, x2 integral.

(19.3)

This problem is solved graphically in Figure 19.1, and we see that there are

six feasible solutions to this integer linear program: (0, 0), (0, 1), (1, 1), (0, 2),
(1, 2), and (2, 2). The value of the object function, respectively, at these points is:

0,−1,−2,−2,−3, and −4. Hence (2, 2) is the optimal solution to this integer lin-

ear program. On the other hand, the optimal solution to the relaxed integer linear

program is (3.5, 3) and the value of the objective function at this point is −6.5. The

nearest integer points are (3, 3) and (4, 3) having values−6 and−7. Neither of these

points are feasible and the value of the objective function at them is far from the

value at the true optimal solution.

Thus in practice the relaxation strategy can result in misleading information.

However, not all is lost. It is not to difficult to see that a bound on the value of

the objective function is obtained.

Theorem 19.1. Let X̂ be an optimal solution to relaxation of the integer linear

program

Minimize: Z = cTX
Subject to: AX = b

X ≥ 0
X integral

(19.4)

Then any solution X to the integer linear program 19.4 satisfies

cTX ≤ cT X̂.

Proof. If X is a feasible solution to the integer linear program, it is also a feasible

solution to the linear program, in which the integer constraints have been removed.

If values have been assigned to each of x1, x2, . . . , xℓ−1, then the remaining

512 Graphs, Algorithms, and Optimization

x2

x1

Feasible

region

Optimum of ILP

Optimum of LP

−2x1 + 7x2 = 14

2x1 − 2x2 = 1

FIGURE 19.1

The integer points closest to the optimal solution to the standard linear program are

infeasible in the integer linear program.

Discrete Linear Programming 513

variables xℓ, xℓ+1, . . . , xn must satisfy

Minimize: Ẑ = ĉT X̂

Subject to: ÂX̂ ≤ b̂

X̂ ≥ 0

X̂ integral,

where
Â = [Aℓ, Aℓ+1, . . . , An]

X̂ = [xℓ, xℓ+1, . . . , xn]
ĉ = [cℓ, cℓ+1, . . . , cn]

b̂ = b− CurrentWt

and

CurrentWt =

ℓ−1∑

j=1

xjAj .

(Here Aj is the jth column of the coefficient matrix A.) Thus according to Theo-

rem 19.1, any feasible solution X that extends x1, x2, . . . , xℓ−1 has value Z = cTX
no larger than

B = CurrentZ + ⌊ẐOPT⌋,
where ẐOPT is value of the objective function Ẑ = ĉT X̂ for the linear program

Minimize: Ẑ = ĉT X̂

Subject to: ÂX̂ ≤ b̂

X̂ ≥ 0.

Consequently, if a feasible solution X0 has already been obtained that has value

Z = cTX0 ≤ B, then no extension of the given assignment to the variables

x1, x2, . . . , xℓ−1 will lead to an improved Z value. Hence the search for such ex-

tensions can be aborted. This method is known as branch and bound and is recorded

as Algorithm 19.3.1, which we start with ℓ = 1, CurrentWt = 0, CurrentZ = 0, and

OptimalZ =∞.

514 Graphs, Algorithms, and Optimization

Algorithm 19.3.1: BACKTRACK3(ℓ)

if ℓ > n

then





if CurrentWt = b

then





if CurrentZ < OptimalZ

then

{
for j = 1 to n do OptimalX [j]← X [j]
OptimalZ ← CurrentZ

return

Compute Cℓ
Use the simplex algorithm to solve the linear program:

Minimize: Ẑ = ĉT X̂

Subject to: ÂX̂ = b̂

X̂ ≥ 0

, where





Â =[Aℓ, Aℓ+1, . . . , An]

X̂ =[xℓ, xℓ+1, . . . , xn]
ĉ =[cℓ, cℓ+1, . . . , cn]

b̂ =b− CurrentWt

if the linear program has optimal value ẐOPT at X̂OPT

then





B ← CurrentZ + ⌊ẐOPT⌋
if X̂OPT is integer valued

then





if B < OptimalZ

then





for i←1 to (ℓ−1) do OptimalX [i]←X [i]

for i←ℓ to n do OptimalX [i]←X̂OPT[i]
OptimalZ ← B

else





for each x ∈ Cℓ

do





if B ≥ OptimalZ then return

xℓ ← x
CurrentWt = CurrentWt +Aℓxℓ
CurrentZ = CurrentZ + cℓxℓ
BACKTRACK3(ℓ+ 1)
CurrentWt = CurrentWt −Aℓxℓ
CurrentZ = CurrentZ − cℓxℓ

if the linear program is unbounded

then





for each x ∈ Cℓ

do





xℓ ← x
CurrentWt = CurrentWt +Aℓxℓ
CurrentZ = CurrentZ + cℓxℓ
BACKTRACK3(ℓ + 1)
CurrentWt = CurrentWt −Aℓxℓ
CurrentZ = CurrentZ − cℓxℓ

if the linear program is infeasible then return

By way of example we provide the backtracking state space search tree in Fig-

ure 19.2 that results when Algorithm 19.3.1 is applied to the integer linear pro-

gram 19.3. Observe that adding the two constraints of linear program 19.3 we see

Discrete Linear Programming 515

[]

[0] [1]

[10] [11] [12] [13]

[2]

[20] [21] [22] [23]

[3]

[30] [31] [32] [33]

B = −6

B = −4 B = −5 B = −6

Z = −2
XOPT = [0, 2]

B=−2

Z = −3
XOPT = [1, 2]

Z = −4
XOPT = [2, 2]

I I I I I I I I IP

FIGURE 19.2

The backtracking state space search tree that results when Algorithm 19.3.1 is ap-

plied to the integer linear program 19.3.

that x2 ≤ 3 = m2 and thus x1 ≤ 3 = m1 as well. These bounds means that the lin-

ear program is a discrete linear program and indeed we can apply Algorithm 19.3.1.

Each leaf-node in Figure 19.2 is decorated with I , P , or an arrow. The I indicates

that the corresponding reduced integer linear program is infeasible, the P indicates

pruning by a previously obtained feasible solution and an arrow indicates that a new

optimal solution XOPT has been found. Its value Z = cTXOPT is also given. For this

example the final optimal solution is XOPT = [2, 2] with value Z = −4. This agrees

with our previous analysis.

As a second example consider the linear program

Minimize: Z = −2x1 − 3x2 − x3 − 2x4
Subject to: x1 + 2x2 + 3x3 + 2x4 ≤ 8

−3x1 + 4x2 + x3 + 3x4 ≤ 8
3x1 − 4x2 − 6x3 − 10x4 ≤ −20

x1, x2, x3, x4 ≥ 0
x1, x2, x3, x4 integral.

(19.5)

The constraint x1 +2x2 +3x3+2x4 ≤ 8 provides the upper boundsm1 = 8,m2 =
4,m3 = 2, and m4 = 4, on the variables x1, x2, x3, and x4, respectively. Thus we

can take C1 = {0, 1, . . . , 8}, C2 = C4 = {0, 1, . . . , 4}, and C3 = {0, 1, 2}. The

backtracking state space search tree is given in Figures 19.3 and 19.4.

Notice in this second example, that if we were to process the subtree with root

[2] prior to the subtree [0] and [1], pruning would be dramatic and the search would

be quite short. This is because the bound obtained when the relaxed linear program

with x1 = 2 leads to a bound of −10, and there is an integer solution that achieves

this bound, namely, X = [2, 0, 0, 3] in the subtree with root [2]. The bound obtained

when the root is [0] and [1] is −7 and −10, respectively, so these subtrees will be

516 Graphs, Algorithms, and Optimization

[]

[0] [1] [2] [3] [4] [5] [6] [7] [8]B=−7 B=−10 B=−11
I I I I I I

[0]

[00]

[000]

[0000] [0001] [0002] [0003] [0004]

[001]

[0010] [0011] [0012] [0013] [0014]

[002]

[01] [02] [03] [04]

B=−7

B=−6 B=−7

B=−6 B=−6 B=−4

I I I

P

I I I I I I I I

Z = −4
XOPT = [0, 0, 0, 2]

Z = −5
XOPT = [0, 0, 1, 2]

[01]

[010] [011] [012]
I I

Z = −6
XOPT = [0, 1, 1, 1]

FIGURE 19.3

The first part of the backtracking state space search tree that results when Al-

gorithm 19.3.1 is applied to the integer linear program 19.5. So far we see that

XOPT = [0, 1, 1, 1] gives z = −6.

Discrete Linear Programming 517

[1]

[10]

[100]

[1000] [1001] [1002] [1003] [0004]

[101] [102]

[11] [12] [13] [14]

[11]

[110]

[1100] [1101] [1102] [1103] [1104]

[111] [112]

[2]

[20] [21] [22] [23] [24]

B=−10

B=−9 B=−10

B=−10

B=−9 B=−7

B=−10

I I I

I

I I I I

I I

I I I I

I I I I

P

Z = −8
XOPT = [1, 0, 0, 3]

Z = −10
XOPT = [2, 0, 0, 3]

Z = −9
XOPT = [1, 1, 0, 2]

FIGURE 19.4

Continuation of Figure 19.3. Notice the subtree with root [101] is pruned because

[1003] gave z = −8. The final solution appears at [20] and is XOPT = [2, 0, 0, 3]
with objective value z = −10.

518 Graphs, Algorithms, and Optimization

[]

[2] [1] [0]

B=−11

B=−11 B=−10 B=−7

Z = −10
XOPT = [2, 0, 0, 3]

FIGURE 19.5

Dramatic pruning when the subtrees are processed in order of the bounds

pruned if [2] is examined first. The search tree with this type of pruning is given in

Figure 19.5.

One way to implement this type of pruning is as follows. After values for

x1, x2, . . . , xℓ−1 have been assigned, precompute the bounds obtained for each pos-

sible assignment for xℓ and then process the assignment in order of increasing bound.

Algorithm 19.3.2 describes this method. The danger in using this method is that at

each node we are required to do sorting. If there are mℓ choices for xℓ, this will re-

quire O(mℓ log(mℓ)) additional steps at each node that occurs at level ℓ − 1 in the

search tree. This computation may be prohibitive. (There no additional calls to the

simplex algorithm.)

The relaxed linear program for the Knapsack problem is easy to solve. A

straightforward method which uses a greedy strategy, to solve the relaxed Knapsack

problem is given in Algorithm 19.3.3. (See Exercises 19.3.4, 19.3.5, and 19.3.6.) It

returns the optimal profit for the Knapsack problem, in which the integer constraint

has been relaxed to allow non-integer (i.e., rational) solutions.

Discrete Linear Programming 519

Algorithm 19.3.2: BACKTRACK4(ℓ)

if ℓ > n

then





if CurrentWt = b

then





if CurrentZ < OptimalZ

then

{
for j = 1 to n do OptimalX [j]← X [j]
OptimalZ ← CurrentZ

return

Nℓ ← 0
if ℓ ≤ n then



for x← 0 to mℓ

do





Use the simplex algorithm to solve the linear program:

Minimize: Ẑ = ĉT X̂

Subject to: ÂX̂ =b̂

X̂ ≥0
, where





Â =[Aℓ+1, . . . , An]

X̂ =[xℓ+1, . . . , xn]
ĉ =[cℓ+1, . . . , cn]

b̂ =b−CurrentWt−x∗Aℓ
if the linear program has optimal value ẐOPT at X̂OPT

then





B ← CurrentZ + ⌊ẐOPT⌋
if X̂OPT is integer valued

then





if B < OptimalZ then



for i←1 to ℓ−1 do OptimalX [i]←X [i]
OptimalX [ℓ]←x
for i←ℓ+1 to n do OptimalX [i]←X̂OPT[i]
OptimalZ ← B

else if B < OptimalZ then{
Nℓ ← Nℓ + 1
Cℓ[Nℓ]← (x,B)

if the linear program is unbounded

then

{
Nℓ ← Nℓ + 1
Cℓ[Nℓ]← (x,−∞)

if the linear program is infeasible then return

Sort the ordered pairs in Cℓ in order of increasing second coordinate

for h← 1 to Nℓ

do





if Boundℓ[h] ≥ OptimalZ then return

xℓ ← first coordinate of the ordered pair Cℓ[h]
CurrentWt ← CurrentWt +Aℓxℓ
CurrentZ ← CurrentZ + cℓxℓ
BACKTRACK3(ℓ+ 1)
CurrentWt ← CurrentWt −Aℓxℓ
CurrentZ ← CurrentZ − cℓxℓ

520 Graphs, Algorithms, and Optimization

Algorithm 19.3.3: RELAXEDKNAPSACK(p1, p2, . . . , pn, w1, . . . , wn,M)

permute the indices so that p1/w1 ≥ p2/w2 ≥ pn/wn
i← 1; P ← 0; W ← 0
for j ← 1 to n do xj ← 0
while W < M and i ≤ n

do





if W + wi ≤M
then

{
xi ← 1; W ←W + wi; P ← P + pi
i← i+ 1

else

{
xi ← (M −W)/wi; W ←M ; P ← P + xi pi
i← i+ 1

return (P)

To solve an instance of the Knapsack problem, it will be useful to presort the

objects in non-decreasing order of the profit/weight ratio, before we begin the back-

tracking algorithm. Then, when we apply Algorithm 19.3.3, the first step will be

unnecessary, and consequently RELAXEDKNAPSACK will run faster. Thus, we will

assume that
p1
w1
≥ p2
w2
≥ · · · ≥ pn

wn
.

The improved Knapsack algorithm is given as Algorithm 19.3.4.

Algorithm 19.3.4: KNAPSACK3(ℓ)

if ℓ = n

then





if CurrentProfit > OptimalProfit

then

{
OptimalProfit ← CurrentProfit
OptimalX ← [x1, . . . , xn]

if ℓ = n
then Cℓ ← ∅

else





if CurrentWt + wℓ ≤M
then Cℓ ← {1, 0}
else Cℓ ← {0}

B ← CurrentProfit
+RELAXEDKNAPSACK(pℓ, . . . , pn, wℓ, . . . , wn,M − CurrentWt)

for each x ∈ Cℓ

do





if B ≤ OptimalProfit then return

xℓ ← x
CurrentWt = CurrentWt + wℓxℓ
CurrentProfit = CurrentProfit + pℓxℓ
KNAPSACK3(ℓ + 1)
CurrentWt = CurrentWt − wℓxℓ
CurrentProfit = CurrentProfit − pℓxℓ

Discrete Linear Programming 521

Exercises

19.3.1 Solve graphically the following integer linear programs:

(a)





Minimize: Z = 5x1 − 3x2
Subject to: x1 + x2 ≤ 6

2x1 + 4x2 ≤ 15
x1, x2 ≥ 0
x1, x2 integral.

(b)





Minimize: Z = x1 − x2
Subject to: x1 + x2 ≤ 6

−8x1 − 5x2 ≤ −40
−5x1 + 6x2 ≤ 30
6x1 + 7x2 ≤ 88
9x1 − 5x2 ≤ 18

x1, x2 ≥ 0
x1, x2 integral.

Use Algorithm 19.3.4 to solve the following instances of the Knapsack
problem.

(a) Profits 122 2 144 133 52 172 169 50 11 87 127 31 10 132 59

Weights 63 1 71 73 24 79 82 23 6 43 66 17 5 65 29

Capacity 323

(b) Profits 143 440 120 146 266 574 386 512 106 418 376 124 48 535 55

Weights 72 202 56 73 144 277 182 240 54 192 183 67 23 244 29

Capacity 1019

(c) Profits 818 460 267 75 621 280 555 214 721 427 78 754 704 44 371

Weights 380 213 138 35 321 138 280 118 361 223 37 389 387 23 191

Capacity 1617

19.3.2 Algorithm 19.3.4 does not take advantage of the fact that given a partial

solution X ′, if the optimal solution to the corresponding relaxed knap-

sack problem is integer-valued it gives that best solution X that extends

X ′. Hence there is no need to pursue further extensions, and the search

can be pruned. This type of pruning was done for the general problem in

Algorithm 19.3.1. Construct a new algorithm that takes advantage of this

pruning for the Knapsack problem. Test your algorithm on the data in

Exercise 1. How does it compare with Algorithm 19.3.4?

19.3.3 Program Algorithm 19.3.1 and use it to solve the following integer linear

522 Graphs, Algorithms, and Optimization

program.

Minimize: Z = x1 − 3x2 + x5
Subject to: x1 + 2x2 + 3x4 ≤ 6

5x1 + 4x2 + 9x5 ≤ 20
X ≥ 0
X integral.

19.3.4 Prove that Algorithm 19.3.3 does indeed solve

Problem 19.2: Relaxed Knapsack

Instance: profits p1, p1, p2, . . ., pn;

weights w1, w1, w2, . . ., wn; and

capacity M ;

Find: the maximum value of

P =

n∑

i=1

pixi

subject to
n∑

i=1

wixi ≤M

and x1, x2 . . . , xn are rational

as was claimed.

19.3.5 Verify that the simplex algorithm when applied to Problem 19.2 gives

exactly the same result as Algorithm 19.3.3.

19.3.6 Determine the running time complexity of Algorithm 19.3.3.

19.3.7 In Section 11.6 we studied the traveling salesman problem. Let W (vivj)
be the non-negative weight on the edge vivj of the complete graph with

vertices V = {v1, v2, . . . , vn}. The traveling salesman problem is to find

a hamilton cycle C that has minimum weight
∑

uv∈E(C)

W (uv).

Let xuv ∈ {0, 1} be a variable that denotes an edge uv in the hamilton

cycle if xuv = 1 and an edge not in the cycle if xuv = 0. Show that the

optimal solution to the discrete linear program

Minimize: Z =
∑

uv

xuvW (uv)

Subject to:
∑

u∈V \{v}

xuvW (uv) = 2, v ∈ V
∑

uv∈[S,Ŝ]

xuvW (uv) ≥ 1, ∅ 6= S ⊂ V

xuv ∈ {0, 1}, for each edge uv

solves the traveling salesman problem.

Discrete Linear Programming 523

19.3.8 Prove that the problem

Problem 19.3: ILP decision

Instance: an integer linear program.

Question: does the given integer linear program

have a feasible solution?

is NP-complete. (Hint: Transform from 3-Sat.)

19.3.9 Use Algorithm 19.3.1 to determine the maximum number of edge disjoint

triangles in the complete graphKn, for n = 7, 8, 9, . . . , 13. Hint: Use the(
n
2

)
by
(
n
3

)
matrixAwhose rows are labeled by the edges, whose columns

are labeled by the triangles and whose [e, t]-entry is 1 if e is an edge on

triangle t and is 0 otherwise. When n ≡ 1, 3(mod 6), then the maximum

number edge disjoint triangles is n(n− 1)/6. The corresponding collec-

tion of edge disjoint triangles is called a Steiner triple system.

19.4 Totally unimodular matrices

In Sections 18.6.2 and 18.6.3 we studied primal-dual algorithms for the

Shortest Path and Max-Flow problems, respectively. Surprisingly we found that

their optimal solutions were always integral although we never required that the vari-

ables be constrained to be integers. The reason for this is that the node-edge incidence

matrix of any digraph is totally unimodular (TUM).

DEFINITION 19.2: An m by n integer valued matrix is totally unimodular if the

determinant of each square submatrix is equal to 0, 1, or −1.

Theorem 19.2. Every basis feasible solution to the linear program

Minimize: Z = cTX
Subject to: AX = b

X ≥ 0,

where A is a totally unimodular m by n matrix, and b is integer-valued, is integer-

valued.

Proof. IfX is the basis feasible solution corresponding to the submatrixB composed

of m linearly independent columns Aj1 , Aj2 , . . . , Ajm , then

XB = B−1b =
ADJ(B)

det(B)
b,

where ADJ(B) is the adjoint of B. Hence XB has integer values, because the total

unimodularity of A implies that the det(B) = ±1. Finally

X [j] =

{
XB[jℓ], if jℓ = j
0, otherwise,

524 Graphs, Algorithms, and Optimization

and so the entries of X are integers.

Theorem 19.3. Every basis feasible solution to the linear program

Minimize: Z = cTX
Subject to: AX ≤ b

X ≥ 0,

where A is a totally unimodular m by n matrix, and b is integer-valued, is integer-

valued.

Proof. Adding slack variables Y we obtain the following equivalent linear program:

Minimize: Z = cTX

Subject to: [A, Im]

[
X
Y

]
= b

X, Y ≥ 0.

Thus we need only show that if A is a totally unimodular, then [A, Im] is totally

unimodular, where Im is the m by m identity matrix. Then the result follows from

Theorem 19.2. Let M be a square nonsingular submatrix of [A, Im]; then after a

suitable permutation of the rows and columns we see that M has the form

[
B 0
N Im−k

]

where B is a square k by k submatrix of A, and Iℓ is the ℓ by ℓ identity matrix,

for some k and ℓ. The determinant of B is ±1, because A is totally unimodular and

permutations of the rows and columns of M only change the determinant of M by a

factor of ±1. Thus

det(M) = ± det(B) det(Im−k) = ±1.

Theorem 19.4. The node-edge incidence matrix of a directed graph is totally uni-

modular.

Proof. Let G = (V,E) be a directed graph and let A be its node-edge incidence

matrix. Then

A[v, e] =





+1, if e leaves v,
−1, if e enters v,
0, otherwise.

In particular,A has exactly two non-zero entries in each column, one is a−1 and the

other is +1. LetM be any k by k submatrix ofA. If k = 1, then clearly det(M) = 0,

+1, or −1. So suppose k > 1 and proceed by induction. If M contains a column of

Discrete Linear Programming 525

zeros, then det(M) = 0. If M contains a column j with a single non-zero entry a =
±1 say in row i, then det(M) = ±a det(N) whereN is the k−1 by k−1 submatrix

obtained by removing column j and row i. By induction we have det(N) = 0, +1
or −1, and so det(M) = 0, +1 or −1. Finally we have the case when each column

has two non-zero entries in each column. One is a −1 and the other is a +1; hence,

each column sums to zero and therefore M is singular and hence has determinant

zero.

Exercises

19.4.1 Show that the following statements are all equivalent:

(a) A is totally unimodular.

(b) The transpose of A is totally unimodular.

(c) [A, Im] is totally unimodular.

(d) A matrix obtained by deleting a row or column of A is totally uni-

modular.

(e) A matrix obtained by multiplying a row or column of A by −1 is

totally unimodular.

(f) A matrix obtained by duplicating a row or column of A is totally

unimodular.

(g) A matrix obtained by pivoting on an entry of A is totally unimodular.

19.4.2 Show that the matrix



1 −1 0 0 −1
−1 1 −1 0 0
0 −1 1 −1 0
0 0 −1 1 −1
−1 0 0 −1 1




is totally unimodular.

19.4.3 Let G be an undirected bipartite graph with bipartition (X,Y). Show that

the vertex-edge incidence matrix M of G is totally unimodular.

M [v, e] =

{
1, if v is incident to e
0, otherwise.

19.5 Notes

An excellent treatment of backtracking algorithms is given in the book by KREHER

and STINSON [111]. The treatment of the Knapsack problem and exercise 19.3.1

is taken from this book. Two other good books that discuss general integer lin-

ear programming are PAPIDIMITRIOU and STEIGLITZ [134] and NEMHAUSER and

WOLSEY [132].

http://taylorandfrancis.com

Bibliography

1. A.V. AHO, J.E. HOPCROFT, AND J.D. ULLMAN, The Design and Anal-

ysis of Computer Algorithms, Addison-Wesley Publishing Co., Reading,

Massachusetts, 1974.

2. M. AIGNER, Graph Theory, a Development from the 4-Color Problem,

BCS Associates, Moscow, Idaho, 1987.

3. F. ALLAIRE, Another proof of the four colour theorem, Proceedings of

the Seventh Manitoba Conference on Numerical Mathematics and Com-

puting (Univ. Manitoba, Winnipeg, Man., 1977), pp. 3–72, Congressus

Numerantium, XX, Utilitas Mathematica, Winnipeg, Man.,1978.

4. F. APÉRY, Models of the Real Projective Plane, Friedr. Vieweg und Sohn

Verlagsgesellschaft, Braunschweig, 1987.

5. K. APPEL AND W. HAKEN, Every planar map is four colorable. part I:

discharging, Illinois Journal of Mathematics 21 (1977), pp. 429-490.

6. K. APPEL AND W. HAKEN, Every planar map is four colorable. part II:

reducibility, Illinois Journal of Mathematics 21 (1977), pp. 491-456.

7. D. ARCHDEACON, A Kuratowski theorem for the projective plane, Jour-

nal of Graph Theory 5 (1981), pp. 243-246.

8. E. ARJOMANDI, An efficient algorithm for colouring the edges of a graph

with ∆+ 1 colours, Discrete Mathematical Analysis and Combinatorial

Computation, University of New Brunswick, 1980, pp. 108-132.

9. J. BANG-JENSEN AND G. GUTIN, Digraphs, Springer-Verlag, New

York, 2002.

10. M. BEHZAD AND G. CHARTRAND, Introduction to the Theory of

Graphs, Allyn & Bacon, Boston, 1971.

11. L.W. BEINEKE AND R.J. WILSON, Selected Topics in Graph Theory,

Academic Press, London, 1978.

12. L.W. BEINEKE AND R.J. WILSON, Selected Topics in Graph Theory 2,

Academic Press, London, 1983.

13. L.W. BEINEKE AND R.J. WILSON, Selected Topics in Graph Theory 3,

Academic Press, London, 1988.

14. CLAUDE BERGE, Graphs and Hypergraphs, North-Holland Publishing

Co., Amsterdam, 1979.

527

528 Graphs, Algorithms, and Optimization

15. CLAUDE BERGE, Principles of Combinatorics, Academic Press, New

York, 1971.

16. J.-C. BERMOND, Hamiltonian graphs, in [11], pp. 127-168.

17. N. BIGGS, Algebraic Graph Theory, second edition, Cambridge Univer-

sity Press, Cambridge, 1993.

18. R.G. BLAND, New finite pivoting rules for the simplex method. Mathe-

matics of Operations Research 2 (1977), 103-107.

19. B. BOLLOBÁS, Graph Theory, An Introductory Course, Springer-Verlag,

New York, 1979.

20. B. BOLLOBÁS, Modern Graph Theory, Springer-Verlag, New York,

2002.

21. J.A. BONDY AND R.L. HEMMINGER, Graph reconstruction – a survey,

J. of Graph Theory 1 (1977), 227-268.

22. J.A. BONDY, A Graph Reconstructor’s Manual Surveys in Combina-

torics, Ed. A.D. Keedwell, London Mathematical Society Lecture Notes

166, Cambridge University Press, 1991.

23. J.A. BONDY AND U.S.R. MURTY, Graph Theory with Applications,

American Elsevier Publishing Co., New York, 1976.

24. J.A. BONDY AND U.S.R. MURTY, Graph Theory, Springer Verlag,

2008.

25. D. BRELAZ, New methods to color the vertices of a graph, Communica-

tions ACM 22 (1970), pp. 251-256.

26. HERMANN BUER AND ROLF H. MÖHRING, A fast algorithm for the de-

composition of graphs and posets, Mathematics of Operations Research

8 (1983), pp. 170-184.

27. G. BUTLER, Fundamental Algorithms for Permutation Groups, Lecture

Notes in Computer Science 559, Springer-Verlag, Berlin, 1991.

28. M. CAPOBIANCO AND J.C. MOLLUZZO, Examples and Counterexam-

ples in Graph Theory, Elsevier North-Holland, New York, 1978.

29. D. CHERITON AND R.E. TARJAN, Finding minimum spanning trees,

SIAM Journal of Computing 5 (1976), pp. 724-742.

30. G. CHARTRAND AND F. HARARY, Graphs with prescribed connectivi-

ties, in, Theory of Graphs, Proceedings Tihany, 1966, Ed. P. Erdös and G.

Katona, Academic Press, 1968, pp. 61-63.

31. G. CHARTRAND AND L. LESNIAK, Graphs and Digraphs, Wadsworth

& Brooks/Cole, Monterey, California, 1986.

32. G. CHARTRAND AND O. OELLERMANN, Applied and Algorithmic

Graph Theory, McGraw-Hill, Inc., New York, 1993.

33. S.A. CHOUDUM, A simple proof of the Erdös-Gallai theorem on graph

sequences, Bulletin of the Australian Math. Soc. 33 (1986), pp. 67-70.

Bibliography 529

34. N. CHRISTOFIDES, Graphs Theory, An Algorithmic Approach, Academic

Press, London, 1975.

35. V. CHVÁTAL, Linear Programming, W.H. Freeman and Co., 1983.

36. S.A. COOK, The complexity of theorem proving procedures, Proc. Third

ACM Symposium on the Theory of Computing, ACM (1971), pp. 151-158.

37. D.G. CORNEIL, H. LERCHS, AND L. STEWART BURLINGHAM, Com-

plement reducible graphs, Discrete Applied Mathematics 3 (1981), pp.

163-174.

38. H.S.M. COXETER, Regular Polytopes, Dover Publications, New York,

1973.

39. D. CVETKOVIC, M.D. DOOB, AND H. SACHS, Spectra of Graphs: The-

ory and Applications, John Wiley & Sons, 1998.

40. G.B. DANTZIG, Programming of independent activities, II, mathematical

model. Econometrics 17 (1949), pp. 200-211.

41. G.B. DANTZIG, Programming of independent activities, II, mathematical

model, in Activative of Production and Allocations, ed. T.C. Koopermans,

John Wiley & Sons, New York, 1951, pp. 19-32.

42. G.B. DANTZIG, Linear Programming and Extensions, Princeton Univer-

sity Press, 1963.

43. N. DEO, Graph Theory with Applications to Engineering and Computer

Science, Prentice-Hall, Englewood Cliffs, New Jersey, 1974.

44. R. DIESTEL, Graph Theory, Graduate Texts in Mathematics 173,

Springer-Verlag, New York, Berlin, Heidelberg, 1997.

45. G.A. DIRAC, Some theorems on abstract graphs, Proceedings London

Mathematical Society 2 (1952), pp. 69-81.

46. J.R. EDMONDS, A combinatorial representation for polyhedral surfaces,

Notices American Mathematical Society 7 (1960), pp. 646.

47. J.R. EDMONDS, Paths, trees, and flowers, Canadian Journal of Mathe-

matics 17 (1965), pp. 449-467.

48. J.R. EDMONDS AND R.M. KARP, Theoretical improvements in algorith-

mic efficiency for network flow problems, Journal of the Association of

Computing Machinery 19 (1972), pp. 248-264.

49. M.C. ESCHER, The Graphic Work of M.C. Escher, Gramercy Publishing

Co., New York, 1984.

50. S. EVEN, Graph Algorithms, Computer Science Press, Potomac, Mary-

land, 1979.

51. J.R. FIEDLER, J.P. HUNEKE, R.B. RICHTER, AND N. ROBERTSON,

Computing the orientable genus of projective graphs, Journal of Graph

Theory 20 (1995), pp. 297-308.

530 Graphs, Algorithms, and Optimization

52. J-C. FOURNIER, Colorations des aretes d’un graphe, Cahiers du CERO

15 (1973), pp. 311-314.

53. L.R. FORD, JR. AND D.R. FULKERSON, Maximal flow through a net-

work, Canadian Journal of Mathematics 8 (1956), pp. 399-404.

54. M. FRÉCHET AND KY FAN, Initiation to Combinatorial Topology,

Prindle, Weber, & Schmidt, Inc., Boston, 1967.

55. C. FREMUTH-PAEGER AND D. JUNGNICKEL, An introduction to bal-

anced network flows, in Codes and Designs, Ohio State University, Math.

Res. Inst. Publ. 10 (2000), pp. 125-144.

56. RUDOLF FRITSCH AND GERDA FRITSCH, The Four Color Theorem,

Springer Verlag, New York, 1998.

57. D.R. FULKERSON, ED., Studies in Graph Theory, Parts I and II, Mathe-

matical Association of America, Washington, D.C., 1975.

58. D.R. FULKERSON, Flow networks and combinatorial operations re-

search, in [57], pp. 139-171.

59. A. GAGARIN, Graph Embedding Algorithms, Ph.D. thesis, University of

Manitoba, 2003.

60. A. GAGARIN AND W. KOCAY, Embedding graphs contianingK5 subdi-

visions, Ars Combinatoria 64 (2002), pp. 33-49.

61. A. GAGARIN, W. MYRVOLD, AND J. CHAMBERS, The obstructions for

toroidal graphs with no K3,3’s, Discrete Math. 309 (2009), no. 11, pp.

3625-3631.

62. T. GALLAI, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hung.

18 (1967), pp. 25-66.

63. CYRIL F. GARDINER, A First Course in Group Theory, Springer-Verlag,

New York, 1980.

64. M.R. GAREY AND D.S. JOHNSON, Computers and Intractability, A

Guide to the Theory of NP-Completeness, W.H. Freeman, San Francisco,

California, 1979.

65. C.F. GAUSS, Die Kugel, in Werke 8 (c. 1819), pp. 351-356.

66. A. GIBBONS, Algorithmic Graph Theory, Cambridge University Press,

Cambridge, 1985.

67. H.H. GLOVER, J.P. HUNEKE, AND C.S. WANG, 103 graphs that are

irreducible for the projective plane, J. Combin. Theory Ser. B 27 (1979),

pp. 332-370.

68. C.D. GODSIL, On the full automorphism group of a graph, Combinator-

ica 1 (1981), pp. 243-256.

69. C.D. GODSIL AND W.L. KOCAY, Constructing graphs with pairs of

pseudo-similar vertices, J. Combinatorial Th. B 32 (1981), pp. 146-155.

Bibliography 531

70. C. GODSIL AND G. ROYLE, Algebraic Graph Theory, Springer-Verlag,

New York, 2001.

71. MARK GOLDBERG, A non-factorial algorithm for testing isomorphism

of two graphs, Discrete Applied Mathematics 6 (1983), pp. 229-236.

72. A.W. GOODMAN, On the number of acquaintances and strangers at a

party, Amer. Math. Monthly 66 (1959), pp. 778-783.

73. R. GOULD, Graph Theory, Benjamin/Cummings Publishing, Menlo

Park, California, 1988.

74. J.L. GROSS AND T.W. TUCKER, Topological Graph Theory, John Wiley

& Sons, New York, 1987.

75. J. GROSS AND J. YELLEN, Graph Theory and Its Applications, CRC

Press, Boca Raton, Florida, 1999.

76. B. GRÜNBAUM, Convex Polytopes, Springer-Verlag, New York, 2003.

77. CARSTEN GUTWENGER AND PETRA MUTZEL, A linear time implemen-

tation of SPQR trees, Proceedings of the Eight International Symposium

on Graph Drawing, Lecture Notes in Computer Science, (2001), pp. 77-

90.

78. G. HADLEY, Linear Programming, Addison-Wesley Publishing Co.,

1962.

79. P. HALL, On representatives of subsets, Journal london Mathematical

Society 10 (1935), pp. 26-30.

80. F. HARARY, Graph Theory, Addison-Wesley Publishing Co., Reading,

Massachusetts, 1972.

81. L. HEFFTER, Über das Problem der Nachbargebiete, Mathematisce An-

nalen 38 (1891), pp. 477-508.

82. P.HELL AND J. NEŠETŘIL, Graphs and Homomorphisms, Oxford Uni-

versity Press, New York, 2004.

83. D. HILBERT AND S. COHN-VOSSEN, Geometry and the Imagination,

Chelsea Publishing Co., New York, 1983.

84. A.J. HOFFMAN, Eigenvalues of graphs, in [57], pp. 225-245.

85. A.J. HOFFMAN AND R.R. SINGLETON, On Moore graphs with diam-

eters 2 and 3, IBM Journal of Research and Development 4 (1960), pp.

497-504.

86. I. HOLYER, The NP-completeness of edge-coloring, SIAM Journal of

Computing 10 (1981), pp. 718-720.

87. J.E. HOPCROFT AND R.M. KARP, An n5/2 algorithm for maximum

matching in bipartite graphs, SIAM Journal of Computing 2 (1973), pp.

225-231.

88. J. HOPCROFT AND R.E. TARJAN, Efficient planarity testing, Journal of

the Association of Computing Machinery 21 (1974), pp. 449-568.

532 Graphs, Algorithms, and Optimization

89. J. HOPCROFT AND R.E. TARJAN, Algorithm 447: efficient algorithms

for graph manipulation, CACM 16 (1973), pp. 372-378.

90. J. HOPCROFT AND R.E. TARJAN, Dividing a graph into triconnected

components, SIAM Journal of Computing 2 (1973), pp. 135-158.

91. PIERRE ILLE, Indecomposable graphs, Discrete Mathematics 173 (1997),

pp. 71-78.

92. W. IMRICH, Graphical regular representations of groups of odd order,

Combinatorics (Proc. Hungarian Colloq., Keszthely, 1976) Vol II, pp.

611-621.

93. B. IVERSEN, Hyperbolic Geometry, London Mathematical Society, Cam-

bridge University Press, 1992.

94. FRANCOIS JAEGER, Nowhere Zero Flow Problems, Selected Topics in

Graph Theory 3, pp. 71-96. Ed. Lowell Beineke and Robin Wilson. Aca-

demic Press, San Diego, CA, 1988.

95. D.S. JOHNSON, Worst case behavior of graph coloring algorithms, Pro-

ceedings of the Fifth Southeastern Conference on Combinatorics, Graph

Theory, and Computing, Congressus Numerantium 10 (1974), pp. 513-

527.

96. R.M. KARP, Reducibility among combinatorial problems, in Complexity

of Computer Computations, eds. R.E. Miller and J.W. Thatcher, Plenum

Press, New York, 1972, pp. 85-103.

97. L.G. KHACHIAN, A polynomial algorithm in linear programing, Doklady

Adademiia Nauk SSR 224 (1979), 1093-1096. (English translation: Soviet

Mathematics Doklady 20 (1979), 191-194.)

98. KIMBLE, SCHWENK, AND STOCKMEYER, Pseudosimilar vertices in a

graph, J. Graph Th. 5 (1981), 171-181.

99. V. KLEE AND G.J. MINTY, How good is the simplex algorithm?, in

Inequalities-III, ed. O. Shisha, Acdemic Press, New York, pp. 159-175,

1972.

100. F. KLEIN, Vergleichende Betrachtungen über neuere geometrische

Forschungen (Erlanger Programm), Ges. Math. Abhandl. 1 (1872), 460–

497.

101. W. KLOTZ, A constructive proof of Kuratowski’s theorem, Ars Combina-

toria, 28 (1989), pp. 51-54.

102. D.E. KNUTH, The Art of Computer Programming, Addison-Wesley Pub-

lishing Co., Reading, Massachusetts, 1973.

103. D.E. KNUTH, Searching and Sorting, Addison Wesley Publishing Co.,

Reading, Massachusetts, 1973.

104. W. KOCAY, D. NEILSON, AND R. SZYPOWSKI, Drawing graphs on the

torus, Ars Combinatoria 59 (2001), 259-277.

Bibliography 533

105. W. KOCAY, An extension of the multi-path algorithm for finding hamil-

ton cycles, Discrete Mathematics 101, (1992), pp. 171-188.

106. W. KOCAY, Some new methods in reconstruction theory, Combinatorics

IX, Lecture Notes in Mathematics 952, pp. 89-114, Springer, 1982.

107. W. KOCAY, On writing isomorphism programs, in Computational and

Constructive Design Theory, pp. 135-175 Editor: W.D. Wallis, Kluwer

Academic Publishers, 1996.

108. W. KOCAY AND PAK-CHING LI, An algorithm for finding a long path in

a graph, Utilitas Mathematica 45 (1994) pp. 169-185.

109. W. KOCAY AND C. PANTEL, An algorithm for constructing a planar lay-

out of a graph with a regular polygon as outer face, Utilitas Mathematica

48 (1995), pp. 161-178.

110. W. KOCAY AND D. STONE, Balanced network flows, Bulletin of the In-

stitute of Combinatorics and Its Applications 7 (1993), pp. 17-32.

111. D.L. KREHER AND D.R. STINSON, Combinatorial Algorithms: Gener-

ation, Enumeration, and Search, CRC Press, Boca Raton, Florida, 2000.

112. C. KURATOWSKI, Sur le problème des curbes gauche en topologie, Fund.

Math. 15 (1930), pp. 271-283.

113. J. LAURI AND R. SCAPELLATO, Topics in Graph Automorphisms and

Reconstruction, London Mathematical Society Student Texts 54, Cam-

bridge University Press, 2003.

114. E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN, AND D.B.

SHMOYS, EDS., The Traveling Salesman Problem, John Wiley & Sons,

Essex, U.K., 1990.

115. R.M.R. LEWIS, A Guide to Graph Coloring, Algorithms, and Applica-

tions, Springer Verlag, 2016.

116. C.C. LINDNER AND C.A. RODGER, Design Theory, CRC Press, Boca

Raton, Florida, 1997.

117. LOBACHEVSKY, Geometric Researches on the Theory of Parallels,

George B. Halstead, translator, Open Court Publishing, Chicago, 1914.

118. G. LOPEZ, Deux resultats concernant la determination dune relation par

les types d’isomorphie de ses restrictions, C.R.A.S. Srie A 274 (1972) pp.

1525-1528.

119. L. LOVÁSZ, Three short proofs in graph theory, Journal of Combinatorial

Theory (B) 19 (1975), pp. 111-113.

120. L. LOVÁSZ AND M.D. PLUMMER, Matching Theory, Elsevier Science,

1986.

121. WILHELM MAGNUS, Non-Euclidean Tesselations and Their Groups,

Academic Press, New York, 1974.

534 Graphs, Algorithms, and Optimization

122. D. MCCARTHY AND R.G. STANTON, EDS., Selected Papers of W.T.

Tutte, Charles Babbage Research Centre, St. Pierre, Manitoba, 1979.

123. B.D. MCKAY, Isomorph-free exhaustive generation, Journal of Algo-

rithms 26 (1998), pp. 306-324.

124. B.D. MCKAY AND A. PIPERNO, Practical graph isomorphism II, J.

Symbolic Computing 60 (2014), pp. 94-112.

125. B. MOHAR, Projective planarity in linear time, Journal of Algorithms 15

(1993), pp. 482-502.

126. B. MOHAR AND C. THOMASSEN, Graphs on Surfaces, Johns Hopkins

University Press, Baltimore, 2001.

127. J.W. MOON, Topics on Tournaments, Holt, Rinehart, and Winston, New

York, 1968.

128. W. MYRVOLD, personal communication, 2004.

129. W. MYRVOLD AND W. KOCAY, Errors in graph embedding algorithms,

Journal of Computer and System Sciences 77(2), (2011) pp. 430-438.

130. W. MYRVOLD AND J. ROTH, Simpler projective planar embedding, Ars

Combinatoria 75, 2005.

131. C.ST.J.A. NASH-WILLIAMS, The reconstruction problem, Selected Top-

ics in Graph Theory, Ed. L.W. Beineke and R.J. Wilson, Academic Press,

London, 1978.

132. G.L. NEMHAUSER AND L.A. WOLSEY, Integer and Combinatorial Op-

timization, John Wiley & Sons, 1988.

133. O. ORE, The Four-Colour Problem, Academic Press, New York, 1967.

134. C.H. PAPADIMITRIOU AND K.STEIGLITZ, Combinatorial Optimization,

Dover Publications Inc., Mineola, New York, 1998.

135. DAN PEDOE, Geometry, a Comprehensive Course, Dover Publications

Inc., Mineola, New York, 1988.

136. H. POINCARÉ, Théorie des groupes Fuchsien, Acta Math. 1 (1882), pp.

1-62.

137. H. PRÜFER, Neuer Beweis eines Satzes über Permutationen, Arch. Math.

Phys. 27 (1918), pp. 742-744.

138. P.W. PURDOM, JR. AND C.A. BROWN, The Analysis of Algorithms,

Holt, Rinehart, Winston, New York, 1985.

139. S. RAMACHANDRAN, Graph reconstruction – some new developments,

AKCE J. Graphs. Combin. 1 (2004), pp. 51-61.

140. A. RAMSAY AND R. RICHTMYER, Introduction to Hyperbolic Geome-

try, Springer, New York, 1995.

141. R.C. READ, ED., Graph Theory and Computing, Academic Press, New

York, 1972.

Bibliography 535

142. R.C. READ, The coding of various kinds of unlabeled trees, in [141].

143. R.C. READ, Graph theory algorithms, in Graph Theory and its Applica-

tions, ed. Bernard Harris, Academic Press, New York, 1970, pp. 51-78.

144. R.C. READ, A new method for drawing a planar graph given the cyclic

order of the edges at each vertex, Congressus Numerantium 56 (1987),

pp. 31-44.

145. R.C. READ AND W.T. TUTTE, Chromatic polynomials, in [13], pp. 15-

42.

146. K.B. REID AND L.W. BEINEKE, Tournaments, in [11], pp. 83-102.

147. GERHARD RINGEL, Sellbstkomplementäre Graphen, Arch. Math (Basel)

14 (1963) pp. 354-358.

148. N. ROBERTSON AND P.D. SEYMOUR, Graph minors – a survey, in Sur-

veys in Combinatorics 1985, Proceedings of the Tenth British Combinato-

rial Conference, (I. Anderson, ed.), London Math. Society Lecture Notes

103, Cambridge, 1985, pp. 153-171.

149. N. ROBERTSON, D.P. SANDERS, P. SEYMOUR, AND R. THOMAS, The

four-colour theorem, Journal of Combinatorial Theory (B) 70 (1997), pp.

2-44.

150. FIONA ROSS AND WILLIAM T. ROSS, The Jordan curve theorem is non-

trivial, J. Mathematics and the Arts 5:4 (2011), pp. 213-219.

151. JOSEPH J. ROTMAN, The Theory of Groups, an Introduction, Allyn and

Bacon, Inc., Boston, 1973.

152. F. RUBIN, A search procedure for hamilton paths and circuits, JACM 21

(1974), pp. 576-580.

153. T.L. SAATY AND P.C. KAINEN, The Four-Color Problem, Assaults and

Conquest, Dover Publications, New York, 1977.

154. P.D. SACHS, Über sellbstkomplementäre Graphen, Publ. Math. Debrecen

9 (1962) pp. 270-288.

155. JAMES H. SCHMERL AND WILLIAM T. TROTTER, Critically indecom-

posable partially ordered sets, graphs, tournaments, and other binary re-

lational structures, Discrctc Mathematics 113 (1993), pp. 191-205.

156. A.J. SCHWENK AND R.J. WILSON, Eigenvalues of graphs, in [11], pp.

307-336.

157. R. SEDGEWICK, Algorithms in C++, Addison-Wesley Publishing Co.,

Boston, 1998.

158. ÁKOS SERESS, Permutation Group Algorithms, Cambridge University

Press, New York, 2003.

159. P.D. SEYMOUR, Nowhere-zero 6-flows, J. Comb. Theory B 30 (1981) pp.

130-135.

536 Graphs, Algorithms, and Optimization

160. S. STAHL, The Poincaré Half Plane, Jones and Bartlett Publishers,

Boston, MA, 1993.

161. J. STILLWELL, Classical Topology and Combinatorial Group Theory,

Springer-Verlag, New York, 1980.

162. J. STILLWELL, Geometry of Surfaces, Springer-Verlag, New York, 1992.

163. J. STILLWELL, Mathematics and its History, Third Edition, Springer-

Verlag, New York, 2010.

164. J. STOCKMEYER, The falsity of the reconstruction conjecture for tourna-

ments, J. Graph Th. 1 (1977), pp. 19-25.

165. H.A. TAHA, Operations Research: An Introduction, Prentice Hall, En-

glewood Cliffs, New Jersey, 2003.

166. R.E. TARJAN, Depth-first search and linear graph algorithms, SIAM Jour-

nal of Computing 1 (1972) pp. 146-160.

167. C. THOMASSEN, Kuratowski’s Theorem, Journal of Graph Theory 5

(1981), pp. 225-241.

168. C. THOMASSEN, The graph genus problem is NP-complete, Journal of

Algorithms 10 (1989), pp. 568-576.

169. C. THOMASSEN, Planarity and duality of finite and infinite graphs, Jour-

nal of Combinatorial Theory (B) 29 (1980), pp. 244-271.

170. C. THOMASSEN, Whitney’s 2-switching problem, cycle spaces, and arc

mappings of directed graphs, J. Combin. Th. B 46 (1989), pp. 257-291.

171. WILLIAM P. THURSTON, Three Dimensional Geometry and Topology,

Princeton University Press, New Jersey, 1997.

172. R. TRUDEAU, Introduction to Graph Theory, Dover Publications, Mine-

ola, 1994.

173. W.T.TUTTE, How to draw a graph, in [122], pp. 360-388.

174. W.T.TUTTE, A short proof of the factor theorem for finite graphs, in

[122], pp. 169-175.

175. W.T.TUTTE, The factorization of linear graphs, in [122], pp. 89-97.

176. W.T.TUTTE, Chromials, in [57], pp. 361-377.

177. W.T.TUTTE, Connectivity in Graphs, University of Toronto Press, 1966.

178. W.T.TUTTE, Graph Theory, Encyclopedia of Mathematics and its Appli-

cations, vol. 21, Addison Wesley, 1984.

179. W.T.TUTTE, A contribution to the theory of chromatic polynomials,

Canadian J. Math. 6 (1954), pp. 80-91.

180. W.T.TUTTE, On the algebraic theory of graph colorings, J. Comb. Theory

1 (1966), pp. 15-50.

181. W.T.TUTTE, Unsolved problem 48, in [23].

Bibliography 537

182. S.M. ULAM, A Collection of Mathematical Problems, Wiley, New York,

1960.

183. J.H. VAN LINT AND R.M. WILSON, A Course in Combinatorics, Cam-

bridge University Press, Cambridge, 1992.

184. V.G. VIZING, Critical graphs with given chromatic index, Metody

Diskret. Analiz. 5 (1965), pp. 9-17.

185. R.C. WALKER, Introduction to Mathematical Programming, Prentice

Hall, Englewood Cliffs, New Jersey, 1999.

186. WALTER WALLIS, A Beginner’s Guide to Graph Theory, Birkhaüser

Boston, Boston, MA, 2007.

187. MARK E. WATKINS, On the action of non-Abelian groups on graphs, J.

Combinatorial Th. (B) 11 (1971), pp. 95-104.

188. M.A. WEISS, Data Structures and Algorithm Analysis, Benjamin Cum-

mings Publishing Co., Redwood City, California, 1992.

189. D.B. WEST, Graph Theory, Prentice Hall, Upper Saddle River, New Jer-

sey, 1996.

190. A.T. WHITE, The Proof of the Heawood Conjecture, in [11].

191. H. WHITNEY, 2-Isomorphic Graphs, American Journal of Mathematics

55 (1933), pp. 245-254.

192. S.G. WILLIAMSON, Embedding graphs in the plane algorithmic aspects,

Annals of Discrete Mathematics 6 (1980), pp. 349-384.

193. R.J. WILSON, Four Colours Suffice, Penguin Books, London, 2002.

194. D.R. WOODALL AND R.J. WILSON, The Appel-Haken proof of the four-

colour theorem, in [11], pp. 83-102.

195. D.H. YOUNGER, Integer Flows, J. Graph Theory 7 (1983), pp. 349-357.

196. G.M. ZIEGLER, Lectures on Polytopes, Springer-Verlag, New York,

1998.

http://taylorandfrancis.com

Index

C5-Coloring., 303

H-coloring problem, 296

K5-component, 420

f -factor, 185

k-circulation, 336

k-connected, 128

k-cube, 58

k-face, 414

k-factor, 182

k-factorable, 183

k-factorization, 183

k-regular, 8

m-chromatic, 271

m-coloring, 271

m-critical, 279

m-edge-coloring, 283

(i, j)-subgraph, 284

2-Sat, 266–269, 418–420

2-cell, 361

2-cell embedding, 361

3-Colorability, 297, 300

3-Sat, 235–237, 266, 297, 299–303,

523

abstract dual, 328

activity graph, 251

acyclic, 252

adjacency list, 10

adjacent, 2

admissible columns, 495

All Paths, 29

alternating path, 170

antipodal medial digraph, 409, 435

antipodal walks, 407

antisymmetry, 267

asymptotic lines, 438

augmentedK5-component, 420

augmenting path, 170, 199

augmenting the flow, 199

automorphism group, 400

autonomous set, 143

autonomous sets, 145

auxiliary network, 206

backward edges, 197

balanced network, 207

barbell graph, 432

barycentric coordinatization, 339

basis feasible solution, 459

basis solution, 459

Beltrami-Klein disc model, 438

Berge’s theorem, 170

BFS, 30

bicentral trees, 99

binary heap, 43

binary plane, 105

binary tree, 100

bipartite, 57

block graph, 160

block system, 160

blocks, 128

blossom, 178

blossom base, 178

bond, 77

bond space, 77

Bondy-Chvátal theorem, 226

bottleneck, 202

boundary, 312

branch and bound, 513

branches, 97, 98

breadth-first numbering, 80

breadth-first search, 29

539

540 Graphs, Algorithms, and Optimization

bridge, 414

Brooks’ theorem, 272

bundle, 349

C, 304

capacity, 193, 196

Catalan numbers, 105

Cayley digraph, 150

Cayley’s theorem, 116

center, 98, 159

central trees, 99

centralizer, 156

certificate, 233

Christofides’ algorithm, 246

Chromatic Index, 300, 301, 303,

304

chromatic index, 283

chromatic number, 271, 422

chromatic polynomial, 281

chromial, 304

Class I graphs, 289

Class II graph, 289

clause, 234

Clique, 300

clique, 274

clockwise, 312

closed surface, 363

co-cycles, 77

co-tree, 76

cofactor, 118

color class, 274

color rotation, 286

color-isomorphic, 274

coloring, 271

combinatorial embedding, 315

combinatorial planar dual, 317

complement, 3

complementary slackness, 490

complementary strong component,

267

complementing, 7

complementing permutation, 161

complete bipartite, 57

complete graph, 3

complexity, 19

component representative, 24

condensation, 257, 268

conflict graph, 349

conjugacy class, 156

conjugate, 156

connected component, 23

connected graph, 23

connects, 23

continuous, 360

contract, 116, 307

contractible, 370

converse, 258

convex, 320

convex set of feasible solutions, 486

coordinate averaging, 340

core, 159, 293

corners, 310

coset, 148

coset diagram, 152

coset representatives, 148

covering, 187

critical, 279

critical path, 252

critical path method, 252

crosscap, 364, 368

crosscap number, 370

crossover, 221, 224

cube, 217

current bundle, 350

curvilinear polygons, 363

cycle, 23

cycle space, 77

cylinder, 361

cylindrical embedding, 380

decomposable, 144, 265

degree, 5, 312

degree matrix, 118

degree saturation method, 276

degree sequence, 8

Dehn and Heegard theorem, 366

depth-first search, 134

Desargues, 412

Descartes’ formula, 424

DFS, 134, 256

Index 541

diagonal cycle, 388

diagonal path, 387

diagonally opposite, 387

diameter, 66

differences, 123

digon, 364

digraph, 3, 193

directed graph, 3, 193

disc embedding, 380

discrete linear program, 507

distance, 29

distinct embeddings, 361

double coset graphs, 154

double cover, 406

double cover map, 406, 435

dual linear program, 479

dual-restricted primal, 496

edge set, 2

edge subgraph, 5

edge subgraph cover, 51

edge subgraphs, 45

edge transitive, 150

edge-chromatic number, 283

edge-connectivity, 125

edge-cut, 76

edges, 23, 130

elementary branches, 105

ellipsoid method, 477

embedding, 359

empty graph, 3

end-block, 140

endomorphism, 293

endpoints, 2

equivalent embeddings, 326, 381

Erdös-Gallai conditions, 17

Erdös-Gallai theorem, 15

Erlanger program, 372

essential, 370

Euler characteristic, 368

Euler tour, 67

Euler trail, 67

Euler’s formula, 312

Euler-Poincaré formula, 371

Eulerian, 67

excluded minor, 377

Fáry’s theorem, 338

fabric graph, 262

faces, 312, 360

facewidth, 404

facial cycle, 312, 360

facial walk, 312, 360

factor group, 157

feasible solutions, 453

first chord below, 348

five-color theorem, 334

flow, 193

forbidden minor, 376, 377

forest, 85

forward edges, 197

four-color theorem, 332

fronds, 136

full automorphism group, 330, 383,

445

fundamental cycle, 74

fundamental edge-cut, 77

fundamental region, 373

generating function, 105

genus, 370

girth, 62

Graph embeddability, 376

Graph embeddings, 376

Graph Genus, 376, 424

Graph genus, 376

graph homomorphism, 291

graph minor theorem, 377

graph reconstruction, 53

Graphic, 9

graphic, 9

greedy strategy, 518

growth rate, 19

half-plane model, 438

Hall’s theorem, 171

HamCycle, 217, 218, 233–235, 238,

242, 243

hamilton closure, 226

hamilton cycle, 217

hamilton path, 217

542 Graphs, Algorithms, and Optimization

hamiltonian, 217

hamiltonian cycle, 217

handle, 367

Havel-Hakimi theorem, 14

heap, 36

heap property, 36

Heawood graph, 385

Heawood map coloring theorem, 423

Heawood’s theorem, 422

height of a branch, 105

hexagon, 378

hexagon edges, 414

homeomorphic, 307, 360, 361

homeomorphic embeddings, 381

homeomorphism, 361

homomorphism, 159

Hungarian algorithm, 173

ILP decision, 523

implication digraph, 267

imprimitive, 159

in-degree, 251

in-edges, 251

in-flow, 193

inclusion-exclusion, 49

indecomposable, 144, 265

independent set, 274

induced subgraph, 4

induced subgraph cover, 50

induced subgraphs, 45

initial tableau, 461

inner vertices, 175, 310

integer linear program, 507

internally disjoint, 129

interval, 265

intervals, 145

inverter, 301

inverting component, 301

isometry, 372

isomorphic, 4, 381

isomorphic embeddings, 326

isomorphism, 4

Jordan curve, 306

Jordan curve theorem, 306

König’s theorem, 187

Kelly’s lemma, 53

Kempe, 333

Kempe chain, 333

kernel, 159

Kirchhoff matrix, 118

Klein map, 428

Knapsack, 507–509, 518, 520, 521,

525

Kuratowski graphs, 344

Kuratowski subgraphs, 377

Kuratowski’s theorem, 343

labeled trees, 114

Lagrange’s theorem, 148

Laplacian matrix, 118

leading chord, 348

leaf, 98

leftist binary tree, 88

line-graph, 59

linear, 451

linear fractional transformations, 374

Linear programming, 451

logarithmic growth, 20

longest path, 27

loops, 2

low-point, 136

lower bound, 212

Möbius band, 361, 362

Möbius inversion, 49

Möbius ladder, 403

Möbius lattice, 403

Möbius transformations, 374

matching, 169

Matrix-tree theorem, 118

Max-Flow, 194, 523

max-flow, 194

max-flow-min-cut theorem, 200

maximal matching, 169

maximum, 244

maximum clique, 275

maximum degree, 8

maximum genus, 424

maximum independent set, 275

Index 543

maximum matching, 169

medial digraph, 329, 382, 409

merge-find, 24

min-cut, 196

minimal, 377

minimal edge-cut, 76

minimum, 198

minimum amount of time, 252

minimum covering, 187

minimum degree, 8

minimum spanning tree problem, 81

minor, 308

minor-order obstruction, 377

mixed subgraphs, 45

modular partition, 265

module, 143, 265

Moore graphs, 62

multi-path method, 218

multigraph, 2, 378

Nash-Williams’ lemma, 54

near 1-factorization, 190

near perfect matching, 190

neighbor set, 171

network, 193

node, 3

node-edge incidence matrix, 491

non-contractible, 370

non-deterministic polynomial, 234

non-orientable, 327, 363

non-orientable embedding, 381

non-planar, 307

normal form, 366

normal subgroup, 157

normalizer, 156

nowhere-zero flow, 335

NP, 233

NP-complete, 218, 234

NP-completeness, 233

null-homotopic, 370

number, 117

obstructions, 344, 376

odd girth, 296

one-sided, 363

only, 115

open disc, 360

open surface, 361

optimization problems, 451

orbit, 149

order, 3

Ore’s lemma, 290

orientable, 327, 363

orientable embedding, 381

orientable genus, 370

orientation, 312

orientation preserving automorphism

group, 383, 445

orientation-preserving

automorphism, 330

orientation-preserving automorphism

group, 330

orientation-reversing automorphism,

330

oriented graph, 251

out-degree, 251

out-edges, 251

out-flow, 193

outer face, 312

outer vertices, 175

P, 266

parity lemma, 284

partial subgraph, 5

partial subgraphs, 45

path, 23

path compression, 25

perfect matching, 169

Petersen graph, 395

Phase 1 linear program, 469

Phase 1 tableau, 469

pivoting, 459

planar, 305

planar dual, 315

plane map, 315

Platonic maps, 387

Platonic solids, 319

Poincaré disc model, 438

point, 3

polygons, 319

544 Graphs, Algorithms, and Optimization

polyhedron, 319, 363

polynomial, 233

polynomial transformation, 234

positive integral weight, 33

Prüfer sequence, 114

PrevPt, 174

primal linear program, 479

primal-dual graph, 342

primitive, 159

priority queue, 87

Programming problems, 451

projective map, 398

projective planar, 398

proper coloring, 271

proper edge coloring, 283

pseudo-similar edges, 165

pseudo-similar vertices, 163

quadragon edges, 414

queue, 30

quotient group, 157

reachable, 199

reducibility, 334

reducible configuration, 334

regular, 8

regular polygon, 319

regular polyhedron, 319

relaxation, 511

Relaxed Knapsack, 522

representativity, 404

requirement-space, 486

residual capacity, 197

restricted primal, 495

retract, 293

right regular representation, 151

Ringel-Youngs theorem, 423

Robbins’ theorem, 262

root, 81

root vertex, 97

rooted trees, 97

rotation system, 314, 379

Sat, 234–236, 269

Satisfiability, 249

satisfiability of boolean expressions,

234, 235

satisfiable, 235

saturated, 169

saturation degree, 276

Schläfli symbols, 320

Sections, 142

segments, 229

self-complementary, 5, 161

self-converse, 258

self-dual, 320

separable, 128

separating cycle, 327

separating set, 125

sequential algorithm, 271

shadow set, 171

Shannon’s theorem, 289

shortest, 202

Shortest Path, 29, 523

Shortest Path (directed graph),
491

shortest-path problem, 491

signature, 396

similar vertices, 163

simple, 2, 251

simple graph, 2

skeleton, 319

slack, 455

slack variable, 455

smallest index rule, 475

source, 193

spanning tree bound, 244

spanning trees, 74

splitting, 308

stabilizer, 148

stable set, 275

standard form, 456

standard linear program, 456

star, 107

Steiner triple system, 523

Steinitz’s theorem, 320

stereographic projection, 324

strict, 251

strong, 256

strong component, 257

Index 545

strongly connected, 256

subdivided, 307

subdivision, 307

subdivision graph, 60

subgraph, 4

Subgraph Problem, 186

support of the flow, 207

surface, 360

surplus, 455

surplus variable, 456

Sylow p-subgroup, 157

symmetric difference, 170

symmetric group, 148

system of distinct representatives,

172

target, 193

ternary heap, 43

theta-graph, 378

throughput, 208

topological embedding, 315

topological minor, 308

topological obstruction, 376

topological ordering, 253

topologically equivalent, 307

torus map, 379

totally unimodular, 523

tournament, 264

transitive, 150

transitive tournament, 264

tree, 73

tree algorithm, 246

tree graph, 78

triangle inequality, 244

triangle traveling salesman problem,

244

triangulation, 321

truncated tetrahedron, 217

TSP, 242

TSP Decision, 242, 243

TUM, 523

Tutte’s theorem, 188

two-sided, 362

Ulam’s problem, 53

ultra-parallel, 438

uncolored edge lemma, 289

unicyclic, 282

uniform selection, 93

unorientable genus, 370

unsaturated, 169, 199

value, 194

Vertex Cover, 235–238, 300

vertex cover, 187, 236

vertex cut, 125

vertex figure, 320

vertex of attachment, 414

vertex set, 2

vertex transitive, 150

vertex-connectivity, 125

vertex-face-incidence graph, 342,

395

Vizing’s theorem, 284

Wagner’s theorem, 344

walk, 28

walk generating matrix, 29

warp and weft, 262

weighted graph, 33

Weighted Matching, 505, 506

wheel, 282

Whitney’s theorem, 327

zero flow, 197

	Cover
	Half Title�����������������
	Title Page�����������������
	Copyright Page���������������������
	Table of Contents������������������������
	Preface��������������
	1: Graphs and Their Complements
	1.1 Introduction�����������������������
	Exercises����������������
	1.2 Degree sequences���������������������������
	1.2.1 Havel-Hakimi theorem���������������������������������
	1.2.2 Erdös-Gallai theorem

	Exercises����������������
	1.3 Analysis�������������������
	Exercises����������������
	1.4 Notes����������������

	2: Paths and Walks
	2.1 Introduction�����������������������
	2.2 Complexity���������������������
	Exercises����������������
	2.3 Walks����������������
	Exercises����������������
	2.4 The shortest-path problem������������������������������������
	2.5 Weighted graphs and Dijkstra’s algorithm���
	Exercises����������������
	2.6 Data structures��������������������������
	2.7 Floyd’s algorithm����������������������������
	Exercises����������������
	2.8 Notes����������������

	3: Subgraphs
	3.1 Counting subgraphs�����������������������������
	3.1.1 Möbius inversion
	3.1.2 Counting triangles�������������������������������

	3.2 Multiplying subgraph counts��������������������������������������
	3.3 Mixed subgraphs��������������������������
	3.4 Graph reconstruction�������������������������������
	3.4.1 Nash-Williams’ lemma���������������������������������

	Exercises����������������
	3.5 Notes����������������

	4: Some Special Classes of Graphs
	4.1 Bipartite graphs���������������������������
	Exercises����������������
	4.2 Line graphs����������������������
	Exercises����������������
	4.3 Moore graphs�����������������������
	Exercises����������������
	4.4 Euler tours����������������������
	4.4.1 An Euler tour algorithm������������������������������������

	Exercises����������������
	4.5 Notes����������������

	5: Trees and Cycles
	5.1 Introduction�����������������������
	Exercises����������������
	5.2 Fundamental cycles�����������������������������
	Exercises����������������
	5.3 Co-trees and bonds�����������������������������
	Exercises����������������
	5.4 Spanning tree algorithms�����������������������������������
	5.4.1 Prim’s algorithm�����������������������������
	5.4.1.1 Data structures������������������������������

	Exercises����������������
	5.4.2 Kruskal’s algorithm��������������������������������
	5.4.2.1 Data structures and complexity���

	5.4.3 The Cheriton-Tarjan algorithm��
	Exercises����������������
	5.4.4 Leftist binary trees���������������������������������

	Exercises����������������
	5.5 Notes����������������

	6: The Structure of Trees
	6.1 Introduction�����������������������
	6.2 Non-rooted trees���������������������������
	Exercises����������������
	6.3 Read’s tree encoding algorithm���
	6.3.1 The decoding algorithm�����������������������������������

	Exercises����������������
	6.4 Generating rooted trees����������������������������������
	Exercises����������������
	6.5 Generating non-rooted trees��������������������������������������
	Exercises����������������
	6.6 Prüfer sequences
	6.7 Spanning trees�������������������������
	6.8 The matrix-tree theorem����������������������������������
	Exercises����������������
	6.9 Notes����������������

	7: Connectivity
	7.1 Introduction�����������������������
	Exercises����������������
	7.2 Blocks�����������������
	7.3 Finding the blocks of a graph��
	Exercises����������������
	7.4 The depth-first search���������������������������������
	7.4.1 Complexity�����������������������

	Exercises����������������
	7.5 Sections and modules�������������������������������
	Exercises����������������
	7.6 Notes����������������

	8: Graphs and Symmetry
	8.1 Groups�����������������
	8.2 Cayley graphs������������������������
	8.3 Coset diagrams�������������������������
	8.3.1 Double cosets��������������������������

	8.4 Conjugation, Sylow subgroups���������������������������������������
	8.5 Homomorphisms������������������������
	8.6 Primitivity and block systems��
	Exercises����������������
	8.7 Self-complementary graphs������������������������������������
	8.8 Pseudo-similar vertices����������������������������������
	Exercises����������������
	8.9 Notes����������������

	9: Alternating Paths and Matchings
	9.1 Introduction�����������������������
	Exercises����������������
	9.2 The Hungarian algorithm����������������������������������
	9.2.1 Complexity�����������������������

	Exercises����������������
	9.3 Edmonds’ algorithm, blossoms���������������������������������������
	9.3.1 Complexity�����������������������

	9.4 Perfect matchings and 1-factorizations���
	Exercises����������������
	9.5 The subgraph problem�������������������������������
	9.6 Coverings in bipartite graphs��
	9.7 Tutte’s theorem��������������������������
	Exercises����������������
	9.8 Notes����������������

	10: Network Flows
	10.1 Introduction������������������������
	10.2 The Ford-Fulkerson algorithm��
	Exercises����������������
	10.3 Matchings and flows�������������������������������
	Exercises����������������
	10.4 Menger’s theorems�����������������������������
	Exercises����������������
	10.5 Disjoint paths and separating sets��
	Exercises����������������
	10.6 Notes�����������������

	11: Hamilton Cycles
	11.1 Introduction������������������������
	Exercises����������������
	11.2 The crossover algorithm�����������������������������������
	11.2.1 Complexity������������������������

	Exercises����������������
	11.3 The Hamilton closure��������������������������������
	Exercises����������������
	11.4 The extended multi-path algorithm���
	11.4.1 Data structures for the segments��

	Exercises����������������
	11.5 Decision problems, NP-completeness��
	Exercises����������������
	11.6 The traveling salesman problem��
	Exercises����������������
	11.7 The TSP�������������������
	11.8 Christofides’ algorithm�����������������������������������
	Exercises����������������
	11.9 Notes�����������������

	12: Digraphs
	12.1 Introduction������������������������
	12.2 Activity graphs, critical paths���
	12.3 Topological order�����������������������������
	Exercises����������������
	12.4 Strong components�����������������������������
	Exercises����������������
	12.4.1 An application to fabrics���������������������������������������

	Exercises����������������
	12.5 Tournaments�����������������������
	12.5.1 Modules���������������������

	Exercises����������������
	12.6 2-Satisfiability����������������������������
	Exercises����������������
	12.7 Notes�����������������

	13: Graph Colorings
	13.1 Introduction������������������������
	13.1.1 Intersecting lines in the plane���

	Exercises����������������
	13.2 Cliques�������������������
	13.3 Mycielski’s construction������������������������������������
	13.4 Critical graphs���������������������������
	Exercises����������������
	13.5 Chromatic polynomials���������������������������������
	Exercises����������������
	13.6 Edge colorings��������������������������
	Exercises����������������
	13.7 Graph homomorphisms�������������������������������
	Exercises����������������
	13.8 NP-completeness���������������������������
	13.9 Notes�����������������

	14: Planar Graphs
	14.1 Introduction������������������������
	14.2 Jordan curves�������������������������
	14.3 Graph minors, subdivisions��������������������������������������
	Exercises����������������
	14.4 Euler’s formula���������������������������
	14.5 Rotation systems����������������������������
	14.6 Dual graphs�����������������������
	14.7 Platonic solids, polyhedra��������������������������������������
	Exercises����������������
	14.8 Triangulations��������������������������
	14.9 The sphere����������������������
	Exercises����������������
	14.10 Whitney’s theorem������������������������������
	14.11 Medial digraphs����������������������������
	Exercises����������������
	14.12 The 4-color problem��������������������������������
	14.13 Nowhere-zero flows�������������������������������
	Exercises����������������
	14.14 Straight-line drawings�����������������������������������
	14.15 Coordinate averaging���������������������������������
	14.16 Kuratowski’s theorem���������������������������������
	Exercises����������������
	14.17 The Hopcroft-Tarjan algorithm��
	14.17.1 Bundles����������������������
	14.17.2 Switching bundles��������������������������������
	14.17.3 The general Hopcroft-Tarjan algorithm��

	14.18 Notes������������������

	15: Graphs and Surfaces
	15.1 Introduction������������������������
	15.2 Surfaces��������������������
	15.2.1 Handles and crosscaps�����������������������������������
	15.2.2 The Euler characteristic and genus of a surface���

	Exercises����������������
	15.3 Isometries of surfaces����������������������������������
	Exercises����������������
	15.4 Graph embeddings, obstructions��
	15.5 Graphs on the torus�������������������������������
	Exercises����������������
	15.5.1 Platonic maps on the torus��
	15.5.2 Drawing torus maps, triangulations��

	Exercises����������������
	15.6 Coordinate averaging��������������������������������
	15.7 Graphs on the projective plane��
	15.7.1 The facewidth���������������������������
	15.7.2 Double covers���������������������������

	Exercises����������������
	15.8 Embedding algorithms��������������������������������
	Exercises����������������
	15.9 Heawood’s map coloring theorem��
	Exercises����������������
	15.10 Notes������������������

	16: The Klein Bottle and the Double Torus
	16.1 The Klein bottle����������������������������
	16.1.1 Rotation systems������������������������������
	16.1.2 The double cover������������������������������

	Exercises����������������
	16.2 The double torus����������������������������
	16.2.1 Isometries of the hyperbolic plane��
	Exercises����������������
	16.2.2 The double torus as an octagon��

	Exercises����������������
	16.3 Notes�����������������

	17: Linear Programming
	17.1 Introduction������������������������
	17.1.1 A simple example������������������������������
	17.1.2 Simple graphical example��������������������������������������
	17.1.3 Slack and surplus variables���

	Exercises����������������
	17.2 The simplex algorithm���������������������������������
	17.2.1 Overview����������������������
	17.2.2 Some notation���������������������������
	17.2.3 Phase 0: finding a basis solution���
	17.2.4 Obtaining a basis feasible solution���
	17.2.5 The tableau�������������������������
	17.2.6 Phase 2: improving a basis feasible solution��
	17.2.7 Unbounded solutions���������������������������������
	17.2.8 Conditions for optimality���������������������������������������
	17.2.9 Phase 1: initial basis feasible solution��
	17.2.10 An example�������������������������

	17.3 Cycling�������������������
	Exercises����������������
	17.4 Notes�����������������

	18: The Primal-Dual Algorithm
	18.1 Introduction������������������������
	18.2 Alternate form of the primal and its dual���
	18.3 Geometric interpretation������������������������������������
	18.3.1 Example���������������������

	18.4 Complementary slackness�����������������������������������
	18.5 The dual of the shortest-path problem���
	Exercises����������������
	18.6 The primal-dual algorithm�������������������������������������
	18.6.1 Initial feasible solution���������������������������������������
	18.6.2 The shortest-path problem���������������������������������������
	18.6.3 Maximum flow��������������������������

	Exercises����������������
	18.7 Notes�����������������

	19: Discrete Linear Programming
	19.1 Introduction������������������������
	19.2 Backtracking������������������������
	19.3 Branch and bound����������������������������
	Exercises����������������
	19.4 Totally unimodular matrices���������������������������������������
	Exercises����������������
	19.5 Notes�����������������

	Bibliography�������������������
	Index������������

