DISCRETE MATHEMATICS AND ITS APPLICATIONS

GRAPHS,
ALGORITHMS,
AND OPTIMIZATION

SeconD EDITION

D WiLuam L. Kocay
DoNALD L. KREHER

¢ aC) CRC Press
!‘g__ﬂ-(_:/'l Tavlker & Frarcis Croup

GRAPHS,
ALGORITHMS,
AND OPTIMIZATION

SeconDp EpITION

DISCRETE
MATHEMATICS

[T APPLICATIONS

R. B. J. T. Allenby and Alan Slomson, How to Count: An Introduction to Combinatorics,
Third Edition

Craig P Bauer, Secret History: The Story of Cryptology

Jirgen Bierbrauer, Introduction to Coding Theory, Second Edition
Katalin Bimbé, Combinatory Logic: Pure, Applied and Typed

Katalin Bimbé, Proof Theory: Sequent Calculi and Related Formalisms

Donald Bindner and Martin Erickson, A Student’s Guide to the Study, Practice, and Tools of
Modern Mathematics

Francine Blanchet-Sadri, Algorithmic Combinatorics on Partial Words

Miklés Béna, Combinatorics of Permutations, Second Edition

Miklés Béna, Handbook of Enumerative Combinatorics

Miklos Bona, Introduction to Enumerative and Analytic Combinatorics, Second Edition
Jason I. Brown, Discrete Structures and Their Interactions

Richard A. Brualdi and Dragos Cvetkovi¢, A Combinatorial Approach to Matrix Theory and Its
Applications

Kun-Mao Chao and Bang Ye Wu, Spanning Trees and Optimization Problems

Charalambos A. Charalambides, Enumerative Combinatorics

Gary Chartrand and Ping Zhang, Chromatic Graph Theory

Henri Cohen, Gerhard Frey, et al., Handbook of Elliptic and Hyperelliptic Curve Cryptography
Charles J. Colbourn and Jeffrey H. Dinitz, Handbook of Combinatorial Designs, Second Edition
Abhijit Das, Computational Number Theory

Matthias Dehmer and Frank Emmert-Streib, Quantitative Graph Theory:
Mathematical Foundations and Applications

Martin Erickson, Pearls of Discrete Mathematics

Martin Erickson and Anthony Vazzana, Introduction to Number Theory

Titles (continued)
Steven Furino, Ying Miao, and Jianxing Yin, Frames and Resolvable Designs: Uses,
Constructions, and Existence
Mark S. Gockenbach, Finite-Dimensional Linear Algebra
Randy Goldberg and Lance Riek, A Practical Handbook of Speech Coders

Jacob E. Goodman and Joseph O’Rourke, Handbook of Discrete and Computational Geometry,
Second Edition

Jonathan L. Gross, Combinatorial Methods with Computer Applications

Jonathan L. Gross and Jay Yellen, Graph Theory and Its Applications, Second Edition
Jonathan L. Gross, Jay Yellen, and Ping Zhang Handbook of Graph Theory, Second Edition
David S. Gunderson, Handbook of Mathematical Induction: Theory and Applications

Richard Hammack, Wilfried Imrich, and Sandi Klavzar, Handbook of Product Graphs,
Second Edition

Darrel R. Hankerson, Greg A. Harris, and Peter D. Johnson, Introduction to Information Theory
and Data Compression, Second Edition

Darel W. Hardy, Fred Richman, and Carol L. Walker, Applied Algebra: Codes, Ciphers, and
Discrete Algorithms, Second Edition

Daryl D. Harms, Miroslav Kraetzl, Charles J. Colbourn, and John S. Devitt, Network Reliability:
Experiments with a Symbolic Algebra Environment

Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words
Leslie Hogben, Handbook of Linear Algebra, Second Edition
Derek F. Holt with Bettina Eick and Eamonn A. O'Brien, Handbook of Computational Group Theory

David M. Jackson and Terry I. Visentin, An Atlas of Smaller Maps in Orientable and
Nonorientable Surfaces

Richard E. Klima, Neil R Sigmon, and Ernest L. Stitzinger, Applications of Abstract Algebra
with Maple™ and MATLAB®, Second Edition

Richard E. Klima and Neil R Sigmon, Cryptology: Classical and Modern with Maplets

Patrick Knupp and Kambiz Salari, Verification of Computer Codes in Computational Science
and Engineering

William L. Kocay and Donald L. Kreher, Graphs, Algorithms, and Optimization, Second Edition

Donald L. Kreher and Douglas R. Stinson, Combinatorial Algorithms: Generation Enumeration
and Search

Hang T. Lau, A Java Library of Graph Algorithms and Optimization

C. C. Lindner and C. A. Rodger, Design Theory, Second Edition

San Ling, Huaxiong Wang, and Chaoping Xing, Algebraic Curves in Cryptography
Nicholas A. Loehr, Bijective Combinatorics

Toufik Mansour, Combinatorics of Set Partitions

Titles (continued)

Toufik Mansour and Matthias Schork, Commutation Relations, Normal Ordering, and Stirling
Numbers

Alasdair McAndrew, Introduction to Cryptography with Open-Source Software
Elliott Mendelson, Introduction to Mathematical Logic, Fifth Edition

Alfred J. Menezes, Paul C. van Qorschot, and Scott A. Vanstone, Handbook of Applied
Cryptography

Stig F. Mjglsnes, A Multidisciplinary Introduction to Information Security

Jason J. Molitierno, Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs
Richard A. Mollin, Advanced Number Theory with Applications

Richard A. Mollin, Algebraic Number Theory, Second Edition

Richard A. Mollin, Codes: The Guide to Secrecy from Ancient to Modern Times
Richard A. Mollin, Fundamental Number Theory with Applications, Second Edition
Richard A. Mollin, An Introduction to Cryptography, Second Edition

Richard A. Mollin, Quadratics

Richard A. Mollin, RSA and Public-Key Cryptography

Carlos J. Moreno and Samuel S. Wagstaff, Jr., Sums of Squares of Integers

Gary L. Mullen and Daniel Panario, Handbook of Finite Fields

Goutam Paul and Subhamoy Maitra, RC4 Stream Cipher and Its Variants

Dingyi Pei, Authentication Codes and Combinatorial Designs

Kenneth H. Rosen, Handbook of Discrete and Combinatorial Mathematics
Yongtang Shi, Matthias Dehmer, Xueliang Li, and Ivan Gutman, Graph Polynomials

Douglas R. Shier and K.T. Wallenius, Applied Mathematical Modeling: A Multidisciplinary
Approach

Alexander Stanoyevitch, Introduction to Cryptography with Mathematical Foundations and
Computer Implementations

Jorn Steuding, Diophantine Analysis
Douglas R. Stinson, Cryptography: Theory and Practice, Third Edition
Roberto Tamassia, Handbook of Graph Drawing and Visualization

Roberto Togneri and Christopher J. deSilva, Fundamentals of Information Theory and Coding
Design

W. D. Wallis, Introduction to Combinatorial Designs, Second Edition

W. D. Wallis and J. C. George, Introduction to Combinatorics

Jiacun Wang, Handbook of Finite State Based Models and Applications

Lawrence C. Washington, Elliptic Curves: Number Theory and Cryptography, Second Edition

DISCRETE MATHEMATICS AND ITS APPLICATIONS

GRAPHS,
ALGORITHMS,
AND OPTIMIZATION

SeconDp EbpiTioN

WiLuiam L. Kocay

University of Manitoba
Winnipeg, Canada

DoNALD L. KREHER

Michigan Technological University
Houghton, USA

CRC Press
Taylor & Francis Group

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20160727

International Standard Book Number-13: 978-1-4822-5116-6 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a photo-
copy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com

The authors would like to take this opportunity to express their appreciation and
gratitude to the following people who have had a very significant effect on their
mathematical development:

Adrian Bondy, Earl Kramer, Spyros Magliveras, Ron Read, and Ralph Stanton.

This book is dedicated to the memory of
William T. Tutte, (1917-2002)
“ the greatest of the graphmen ”

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Contents

Preface xvii
1 Graphs and Their Complements 1
1.1 Imtroduction, 1
Exercises e 6

1.2 Degreesequencesouciu e e 8
1.2.1 Havel-Hakimi theorem 14

1.2.2 FErdos-Gallai theorem 15

Exercises 17

1.3 Analysis e 18
Exercises 20

1.4 Notes e 21

2 Paths and Walks 23
2.1 Introduction 23

22 Complexity 26
Exercises 27

23 Walks e 28
Exercises e 28

2.4 The shortest-pathproblem 29

2.5 Weighted graphs and Dijkstra’s algorithm 33
Exercises 35

2.6 Datastructures it e 36

2.7 Floyd’salgorithm 41
Exercises 43

2.8 Notes e 43

3 Subgraphs 45
3.1 Counting subgraphs, 45
3.1.1 Mobbiusinversion 46

3.1.2 Counting triangles 49

3.2 Multiplying subgraphcounts 50

3.3 Mixedsubgraphs 52

3.4 Graphreconstruction 53
3.4.1 Nash-Williams’ lemma 54

Exercises 56

iX

Contents

35 Notes o e 56
Some Special Classes of Graphs 57
4.1 Bipartite graphso o 57
Exercises 58
42 Linegraphs o 59
Exercises 60
43 Mooregraphs 62
Exercises 66
44 Eulertours 67
4.4.1 An Euler tour algorithm 68
Exercises 71
45 NOteS . . . v e e e e e e 72
Trees and Cycles 73
5.1 Introduction 73
Exercises 74
5.2 Fundamentalcycles 74
Exercises e 74
53 Co-treesandbonds 76
Exercises 78
5.4 Spanning tree algorithms 80
5.4.1 Prim’salgorithm 81
5.4.1.1 Datastructures 83

Exercises 84
5.4.2 Kruskal’salgorithm 85
5.4.2.1 Data structures and complexity 85

5.4.3 The Cheriton-Tarjan algorithm 86
Exercises e 87
54.4 Leftistbinarytrees 88
Exercises e 94
5.5 Notes . . . o 94
The Structure of Trees 97
6.1 Introduction 97
6.2 Non-rootedtrees 98
Exercises 100
6.3 Read’s tree encoding algorithm 100
6.3.1 Thedecoding algorithm 103
Exercises e 104
6.4 Generatingrootedtrees 105
Exercises 112
6.5 Generating non-rootedtrees 113
Exercises e 114
6.6 Priffersequences 114

6.7 Spannin@trees i e e e e e 116

Contents

9

6.8 The matrix-treetheorem
Exercises
6.9 Notes
Connectivity
7.1 Introduction
Exercises
7.2 Blocks
7.3 Finding the blocksofagraph
Exercises
7.4 Thedepth-firstsearch
7.4.1 Complexity i
Exercises
7.5 Sectionsandmodules L
Exercises
7.6 NOES v e e e
Graphs and Symmetry
8.1 Groups
8.2 Cayleygraphs
8.3 Cosetdiagrams
8.3.1 Doublecosets
8.4 Conjugation, Sylow subgroups
8.5 Homomorphisms
8.6 Primitivity and block systems
Exercises
8.7 Self-complementary graphs
8.8 Pseudo-similar vertices
Exercises
8.9 Notes e
Alternating Paths and Matchings
9.1 Introduction
Exercises
9.2 The Hungarian algorithm,
9.2.1 Complexity i
Exercises
9.3 Edmonds’ algorithm, blossoms
93.1 Complexity
9.4 Perfect matchings and 1-factorizations
Exercises
9.5 Thesubgraphproblem
9.6 Coveringsin bipartite graphs
9.7 Tutte’stheorem
Exercises
9.8 Notes e

X1

118
123
124

125
125
127
128
131
132
134
140
140
141
144
144

147
147
150
152
154
156
158
159
160
161
163
166
166

169
169
172
173
176
177
177
182
182
185
185
187
188
190
191

Xii Contents

10 Network Flows 193
10.1 Introduction 193
10.2 The Ford-Fulkerson algorithm 197
Exercises 205
10.3 Matchingsand flows 206
EXercises e 207
10.4 Menger’stheorems, 208
Exercises 210
10.5 Disjoint paths and separatingsets 210
Exercises 212
10,6 Notes e e e 215

11 Hamilton Cycles 217
11.1 Imtroduction 217
EXercises e e 220
11.2 The crossover algorithm 220

11.2.1 Complexity 223
Exercises 225
11.3 The Hamiltonclosure 226
EXercises e 228
11.4 The extended multi-path algorithm 229

11.4.1 Data structures for the segments 232
Exercises 233
11.5 Decision problems, NP-completeness 233
EXercises e e 241
11.6 The traveling salesman problem 242
EXercises e e 244
11.7 The ATSP e 244
11.8 Christofides’ algorithm 246
Exercises 248
11.9 Notes e 249

12 Digraphs 251
12.1 Imtroduction, 251
12.2 Activity graphs, critical paths 251
12.3 Topologicalorder 253
Exercises 256
12.4 Strongcomponents 256
Exercises 257

12.4.1 An application to fabrics 262
EXercises e e 263
12.5 Tournaments 264

1251 Modules Lo 265
Exercises 266
12.6 2-Satisfiability 266

Exercises e 269

Contents
12.7 Notes

13 Graph Colorings

13.1 Introduction

13.1.1 Intersecting lines in the plane
Exercises
13.2 Cliques
13.3 Mycielski’s construction
13.4 Critical graphs
Exercises
13.5 Chromatic polynomials
Exercises
13.6 Edgecolorings
Exercises
13.7 Graph homomorphisms
Exercises
13.8 NP-completeness
139 Notes

14 Planar Graphs

14.1 Introduction
142 Jordancurves
14.3 Graph minors, subdivisions
Exercises
144 Eulersformula
14.5 Rotationsystems
14.6 Dualgraphs
14.7 Platonic solids, polyhedra
Exercises
14.8 Triangulations
149 Thesphere
Exercises
14.10 Whitney’s theorem
14.11 Medial digraphs
Exercises
14.12 The 4-color problem
14.13 Nowhere-zeroflows
Exercises
14.14 Straight-line drawings
14.15 Coordinate averaging
14.16 Kuratowski’stheorem
Exercises
14.17 The Hopcroft-Tarjan algorithm

14.17.1 Bundles

14.17.2 Switching bundles

14.17.3 The general Hopcroft-Tarjan algorithm

Xiii

269

271
271
273
274
274
278
279
280
281
282
283
291
291
296
297
304

305
305
306
307
311
311
313
315
319
320
321
324
325
325
329
331
332
335
337
337
340
342
344
346
349
350
353

X1v Contents

14.18 Notes e 356
15 Graphs and Surfaces 359
15.1 Introduction, 359
152 Surfaces 361
15.2.1 Handles and crosscaps 367

15.2.2 The Euler characteristic and genus of a surface 368
Exercises 371
15.3 Isometriesof surfaces 372
Exercises 375
15.4 Graph embeddings, obstructions 376
15.5 Graphsonthetorus 377
Exercises 385
15.5.1 Platonic mapsonthetorus 387

15.5.2 Drawing torus maps, triangulations 389
Exercises 392
15.6 Coordinate averaging 394
15.7 Graphs on the projective plane 395
15.7.1 Thefacewidth 402

15.72 Doublecovers 405
Exercises e 410
15.8 Embedding algorithms L. 412
Exercises 421
15.9 Heawood’s map coloring theorem 421
Exercises 423
15.10 Notes e 424
16 The Klein Bottle and the Double Torus 425
16.1 TheKleinbottle 425
16.1.1 Rotation systems 426

16.1.2 Thedoublecover 435
Exercises 436
16.2 Thedoubletorus 437
16.2.1 Isometries of the hyperbolicplane 440
Exercises 441
16.2.2 The doubletorusasanoctagon 441
Exercises 447
163 Notes i 448
17 Linear Programming 451
17.1 Introduction 451
17.1.1 Asimpleexample 451

17.1.2 Simple graphical example 452

17.1.3 Slack and surplus variables 455
Exercises e 457

17.2 The simplex algorithm 458

Contents

17.2.1 Overview i ii ..
17.2.2 Somenotation
17.2.3 Phase 0: finding a basis solution
17.2.4 Obtaining a basis feasible solution
1725 Thetableau
17.2.6 Phase 2: improving a basis feasible solution
17.2.7 Unbounded solutions
17.2.8 Conditions for optimality
17.2.9 Phase 1: initial basis feasible solution
17.2.10 Anexample
173 Cycling
Exercises
174 Notes e

18 The Primal-Dual Algorithm

18.1 Introduction
18.2 Alternate form of the primal and itsdual
18.3 Geometric interpretation L.

183.1 Example.
18.4 Complementary slackness
18.5 The dual of the shortest-path problem
Exercises
18.6 The primal-dual algorithm

18.6.1 Initial feasible solution

18.6.2 The shortest-path problem

18.6.3 Maximumflow
Exercises
187 Notes i

19 Discrete Linear Programming
19.1 Introduction,
19.2 Backtracking
19.3 Branchandbound
Exercises
19.4 Totally unimodular matrices
Exercises e
195 Notes

Bibliography

Index

XV

458
458
459
460
461
462
466
467
469
472
474
476
476

479
479
484
485
486
490
491
494
494
498
500
503
505
506

507
507
508
511
521
523
525
525

527

539

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Preface

Our objective in writing this book is to present the theory of graphs from an al-
gorithmic viewpoint. We present the graph theory in a rigorous, but informal style
and cover most of the main areas of graph theory. The ideas of surface topology are
presented from an intuitive point of view. We have also included a discussion on lin-
ear programming that emphasizes problems in graph theory. The text is suitable for
students in computer science or mathematics programs.

Graph theory is a rich source of problems and techniques for programming and
data structure development, as well as for the theory of computing, including NP-
completeness and polynomial reduction.

This book could be used a textbook for a third or fourth year course on graph
algorithms which contains a programming content, or for a more advanced course
at the fourth year or graduate level. It could be used in a course in which the pro-
gramming language is any major programming language (e.g., C, C++, Java). The
algorithms are presented in a generic style and are not dependent on any particular
programming language.

The text could also be used for a sequence of courses like “Graph Algorithms I”’
and “Graph Algorithms II”. The courses offered would depend on the selection of
chapters included. A typical course will begin with Chapters 1, 2, 4, and 5. At this
point, a number of options are available.

A possible first course would consist of Chapters 1, 2, 4, 5, 7, 10, 11, 12, 13,
and 14, and a first course stressing optimization would consist of Chapters 1, 2, 3,
5, 10, 11, 12, 17, 18, and 19. Experience indicates that the students consider these
substantial courses. One or two chapters could be omitted for a lighter course.

We would like to thank the many people who provided encouragement while
we wrote this book, pointed out typos and errors, and gave useful suggestions. In
particular, we would like to convey our thanks to Ben Li and John van Rees of the
University of Manitoba for proofreading some chapters.

William Kocay
Donald L. Kreher

August, 2004

Xvii

XVviii Graphs, Algorithms, and Optimization

Preface to the second edition

The second edition of Graphs, Algorithms, and Optimization contains three com-
pletely new chapters. New material has also been added to previously existing chap-
ters. There is a new chapter on subgraph counting containing identities connecting
various kinds of subgraphs in a graph. The graph reconstruction problem is intro-
duced in this chapter. There is a chapter on graphs and symmetries, where the relation
of permutation groups to graphs is considered. This chapter contains the basic theory
of permutation groups. In particular, groups are used to construct symmetric graphs,
and to understand self-complementary graphs and graphs with pseudo-similar ver-
tices. A chapter on graph embeddings on the Klein bottle and double torus has also
been added.
Some of the new material added to previously existing chapters is :

e A proof of the Erdos-Gallai theorem has been included;

e Sections on isometries of surfaces have been added, according to their applica-
tion to graph embeddings in the plane and torus;

e The treatment of the double cover of graphs on the projective plane has been
expanded;

e Automorphism groups of graph embeddings have been included;
e The proof of the NP-completeness of 3-coloring a graph has been corrected;

e The algorithm using Vizing’s technique for edge-coloring a graph has been im-
proved;

e A section on modules in graphs and digraphs has been added;
e Edmonds’ matching algorithm using blossoms now has a section;
e Nowhere-zero flows are introduced;

e The use of coordinate averaging to produce nice drawings of graphs on surfaces
is introduced;

e The basics of graph homomorphisms are now presented.

Also all the diagrams in the text have been redrawn and enhanced. We convey our
thanks and gratitude to Andrei Gagarin for his help in the proof-reading of this second
edition.

William Kocay
Donald L. Kreher

August, 2016

Preface Xix

William Kocay obtained his Ph.D. in Combinatorics and Optimization from the
University of Waterloo in 1979. He is currently a member of the Computer Sci-
ence Department, and an adjunct member of the Mathematics Department, at the
University of Manitoba, and a member of St. Paul’s College, a college affiliated
with the University of Manitoba. He has published numerous research papers,
mostly in graph theory and algorithms for graphs. He was managing editor of the
mathematics journal Ars Combinatoria from 1988 to 1997. He is currently on
the editorial board of that journal. He has had extensive experience developing
software for graph theory and related mathematical structures.

Donald L. Kreher obtained his Ph.D. from the University of Nebraska in 1984.
He has held academic positions at Rochester Institute of Technology and the
University of Wyoming. He is currently a University Professor of Mathematical
Sciences at Michigan Technological University, where he teaches and conducts
research in combinatorics and combinatorial algorithms. He has published nu-
merous research papers and is a co-author of the internationally acclaimed text
“Combinatorial Algorithms: Generation Enumeration and Search”, CRC Press,
1999. He serves on the editorial boards of two journals.

Professor Kreher is the sole recipient of the 1995 Marshall Hall Medal, awarded
by the Institute of Combinatorics and its Applications.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

1

Graphs and Their Complements

1.1 Introduction

The diagram in Figure 1.1 illustrates a graph. It is called the graph of the cube. The
edges of the geometric cube correspond to the line segments connecting the nodes in
the graph, and the nodes correspond to the corners of the cube where the edges meet.
They are the vertices of the cube.

FIGURE 1.1
The graph of a cube

This diagram is drawn so as to resemble a cube, but if we were to rearrange it,
as in Figure 1.2, it would still be the graph of the cube, although it would no longer
look like a cube. Thus, a graph is a graphical representation of a relation in which
edges connect pairs of vertices.

FIGURE 1.2
The graph of the cube

2 Graphs, Algorithms, and Optimization

DEFINITION 1.1: A simple graph G consists of a vertex set V(G) and an edge
set E(Q@), where each edge is a pair {u, v} of vertices u, v € V(G).

We denote the set of all pairs of a set V by (¥). Then E(G) C (V?). In the
example of the cube, V(G) = {0, 1,2,3,4,5,6,7},and E(G) = {01, 13,23, 02, 45,
57,67,46,15,37,26,04}, where we have used the shorthand notation uv to stand
for the pair {u,v}. If u,v € V(G), then v —> v means that u is joined to v by
an edge. We say that v and v are adjacent. We use this notation to remind us of the
linked list data structure that we will use to store a graph in the computer. Similarly,
u #— v means that u is not joined to v. We can also express these relations by
writing uv € E(G) or wv ¢ E(G), respectively. Note that in a simple graph if
u —> v, then v —> w. If w is adjacent to each of uj, us, ..., uy, then we write
u — {ug,ug, ..., U}t

These graphs are called simple graphs because each pair u, v of vertices is joined
by at most one edge. Sometimes we need to allow several edges to join the same pair
of vertices. Such a graph is also called a multigraph. An edge can then no longer be
defined as a pair of vertices, (or the multiple edges would not be distinct), but to each
edge there still corresponds a pair {u, v}. We can express this formally by saying that
a graph G consists of a vertex set V(G), an edge set F(G), and a correspondence
¥ B(G) — (VIY)). Given an edge ¢ € E(G), ¢(e) is a pair {u,v} which are
the endpoints of e. Different edges can then have the same endpoints. We shall use
simple graphs most of the time, which is why we prefer the simpler definition, but
many of the theorems and techniques will apply to multigraphs as well.

This definition can be further extended to graphs with loops as well. A loop is an
edge in which both endpoints are equal. We can include this in the general definition
of a graph by making the mapping ¢ : E(G) — (V(QG)) UV(G). Anedgee € E(G)
for which ¢(e) = u € V(G) defines a loop. Figure 1.3(a) shows a graph with
multiple edges and loops. However, we shall use simple graphs most of the time, so
that an edge will be considered to be a pair of vertices.

(a) (b)

FIGURE 1.3
A multigraph (a) and a digraph (b)

Graphs and Their Complements 3

A directed graph or digraph has edges which are ordered pairs (u, v) rather than
unordered pairs {u, v}. In this case an edge is also called an arc. The direction of an
edge is indicated by an arrow in diagrams, as in Figure 1.3(b).

The number of vertices of a graph G is denoted |G|. It is called the order of G.
The number of edges is £(G). If G is simple, then obviously e(G) < (lgl

E(G) C (V(QG)). We shall often use node or point as synonyms for vertex.

Many graphs have special names. The complete graph K, is a simple graph with
|Kn| = nande = (}). The empty graph K, is a graph with |K,,| = nand e = 0.
K, is the complement of K.

), because

FIGURE 14
The complete graph K5

DEFINITION 1.2: Let G be a simple graph. The complement of G is G, where
V(G) =V(G)and EG) = (V) \ E(G).

E(G) consists of all those pairs uv which are not edges of G. Thus, uv € E(G)
if and only if uv & E(G). Figure 1.5 shows a graph and its complement.

1 2 1 2

FIGURE 1.5
A graph and its complement

Figure 1.6 shows another graph and its complement. Notice that in this case,
when G is redrawn, it looks identical to G.

In a certain sense, this G and G are the same graph. They are not equal, because
E(G) # E(G), but it is clear that they have the same structure. If two graphs have
the same structure, then they can only differ in the names of the vertices. Therefore,
we can rename the vertices of one to make it exactly equal to the other graph. In the

4 Graphs, Algorithms, and Optimization

1 1 1

Q
Ql
Ql

FIGURE 1.6
Another graph and its complement

Figure 1.6 example, we can rename the vertices of G by the mapping 6 given by

1 4
1 2

2 3 5
0(k) : 3 5 4’
then §(G) would equal G. This kind of equivalence of graphs is known as isomor-
phism. Observe that a one-to-one mapping 6 of the vertices of a graph G can be

extended to a mapping of the edges of G by defining 0({u, v}) = {6(u), 0(v)}.

DEFINITION 1.3: Let G and H be simple graphs. G and H are isomorphic if
there is a one-to-one correspondence 6 : V(G) — V(H) such that 8(E(G)) =
E(H), where 0(E(G)) = {0(uv) : uwv € E(G)}.

We write G = H to denote isomorphism. If G = H, then wv € E(G) if and
only if O(uv) € E(H). One way to determine whether G = H is to try and redraw
G so as to make it look identical to H. We can then read off the mapping 6 from the
diagram. However, this is limited to small graphs. For example, the two graphs G and
H shown in Figure 1.7 are isomorphic, because the drawing of G can be transformed
into H by first moving vertex 2 to the bottom of the diagram, and then moving vertex
5 to the top. Comparing the two diagrams then gives the mapping

1 2 3 4 5 6
Ok): 6 4 2 5 1 3
as an isomorphism.

It is usually more difficult to determine when two graphs G and H are not iso-
morphic than to find an isomorphism when they are isomorphic. One way is to find
a portion of G that cannot be part of H. For example, the graph H of Figure 1.7 is
not isomorphic to the graph of the prism, which is illustrated in Figure 1.8, because
the prism contains a triangle, whereas H has no triangle. A subgraph of a graph G is
a graph K such that V(K) C V(G) and E(K) C E(G).If 6 : G — H is a possible
isomorphism, then §(K') will be a subgraph of H which is isomorphic to K.

A subgraph K is an induced subgraph if for every u,v € V(K) C V(G), uv €
E(K) if and only if uv € E(G). That is, we choose a subset U C V(G) and all

Graphs and Their Complements 5

FIGURE 1.7
Two isomorphic graphs

edges uv with both endpoints in U. We can also form an edge subgraph or partial
subgraph by choosing a subset of E(G) as the edges of a subgraph K. Then V(K)
will be all vertices which are an endpoint of some edge of K.

FIGURE 1.8
The graph of the prism

The degree of a vertex u € V(G) is DEG(u), the number of edges which con-
tain u. If ¥ = DEG(u) and u —> {uq,us,...,ux}, then O(u) — {O(uq1),0(uz),

,0(ug)}, so that DEG(u) = DEG(6(u)). Therefore a necessary condition for G
and H to be isomorphic is that they have the same set of degrees. The examples of
Figures 1.7 and 1.8 show that this is not a sufficient condition.

In Figure 1.6, we saw an example of a graph G that is isomorphic to its comple-
ment. There are many such graphs.

DEFINITION 1.4: A simple graph G is self-complementary if G = G.

Lemma 1.1. If G is a self-complementary graph, then |G| = 0 or 1 (mod 4).

Proof. 1f G = G, then £(G) = ¢(G). But B(G) = (V%)) \ E(G), so that ¢(G) =
(15)) = e(@) = £(@), 50 £(G) = 5('F)) = |GI(|G| — 1)/4. Now |G| and |G| — 1

6 Graphs, Algorithms, and Optimization

TABLE 1.1
Graphs up to 10 vertices

No. graphs
1
2
4
11
34
156
1,044
12,346
247,688
12,005,188

O 01NN kAW =3

—
)

are consecutive integers, so that one of them is odd. Therefore |G| = 0 (mod 4) or
|G] =1 (mod4). O

So possible orders for self-complementary graphs are 4, 5, 8, 9, 12, 13, .. ., 4k,
4k + 1, etc.

Exercises

1.1.1 The four graphs on three vertices in Figure 1.9 have 0, 1, 2, and 3 edges,
respectively. Every graph on three vertices is isomorphic to one of these
four. Thus, there are exactly four different isomorphism types of graphs
on three vertices.

[] [] o——o
G 2 G3 G4

Gy

FIGURE 1.9
Four graphs on three vertices

Find all the different isomorphism types of graph on 4 vertices (there are
11 of them). Hint: Adding an edge to a graph with ¢ = m, gives a graph
with ¢ = m + 1. Every graph with ¢ = m + 1 can be obtained in this
way. Table 1.1 shows the number of isomorphism types of graphs up to
10 vertices.

1.1.2 Determine whether the two graphs shown in Figure 1.10 are isomorphic
to each other or not. If they are isomorphic, find an explicit isomorphism.

Graphs and Their Complements

ehed

FIGURE 1.10
Two graphs on eight vertices

1.1.3

Determine whether the three graphs shown in Figure 1.11 are isomorphic
to each other or not. If they are isomorphic, find explicit isomorphisms.

o0 T B4

FIGURE 1.11
Three graphs on 10 vertices

1.1.4
1.1.5

1.1.6

Find a self-complementary graph on four vertices.

Figure 1.6 illustrates a self-complementary graph, the pentagon, with five
vertices. Find another self-complementary graph on five vertices.

We have seen that the pentagon is a self-complementary graph. Let G
be the pentagon shown in Figure 1.6, with V(G) = {uy, ua, us, u4, us}.
Notice that 0 = (uq)(us2, us, us, us) is a permutation which maps G to
G thatis, 0(G) = G, and 0(G) = G. 0 is called a complementing permu-
tation. Because upuz € E(Q), it follows that f(usus) = ugus € E(G).
Consequently, O(usus) = usus € E(G) again. Applying 6 twice more
gives 0(usug) = uqus € FE(G) and O(uguz) = ugus, which is where
we started. Thus, if we choose any edge u;u; and successively apply 6
to it, we alternately get edges of G and G. It follows that the number
of edges in the sequence so-obtained must be even. Use the permutation
(1,2,3,4)(5,6,7,8) to construct a self-complementary graph on eight ver-
tices.

Can the permutation (1,2,3,4,5)(6,7,8) be used as a complementing per-
mutation? Can (1,2,3,4,5,6)(7,8) be? Prove that the only requirement is
that every sequence of edges obtained by successively applying 6 be of
even length.

8 Graphs, Algorithms, and Optimization

1.1.8 If 0 is any permutation of {1,2,...,n}, then it depends only on the cycle
structure of § whether it can be used as a complementing permutation.
Discover what condition this cycle structure must satisfy, and prove it
both necessary and sufficient for 6 to be a complementing permutation.

1.2 Degree sequences
Theorem 1.2. For any simple graph G we have
> DEG(u) = 2¢(G).
ueV(G)

Proof. An edge uv has two endpoints. Therefore each edge will be counted twice in
the summation, once for v and once for v. O

We use 0(G) to denote the minimum degree of G that is, §(G) = MIN{DEG(u) |
u € V(G)}. A(G) denotes the maximum degree of G. By Theorem 1.2, the average
degree equals 2¢ /|G|, so that § < 2¢/|G| < A.

Corollary 1.3. The number of vertices of odd degree is even.

Proof. Divide V(G) into V,qq = {u | DEG(u) is odd }, and Ve, = {u |
deg(u)iseven }. Then2e =} i, DEG(u)+)_,cy. DEG(u). Clearly 2¢ and
> uev.,., DEG(u) are both even. Therefore, so is » 1. DEG(u), which means
that | V44| is even. O

DEFINITION 1.5: A graph G is a regular graph if all vertices have the same
degree. G is k-regular if it is regular, of degree k.

For example, the graph of the cube (Figure 1.1) is 3-regular.

Lemma 1.4. If G is simple and |G| > 2, then there are always two vertices of the
same degree.

Proof. In a simple graph, the maximum degree A < |G| — 1. If all degrees were
different, then they would be 0, 1,2, ...,|G| — 1. But degree 0 and degree |G| — 1
are mutually exclusive. Therefore there must be two vertices of the same degree. [

Let V(G) = {u1,us, ..., u,}. The degree sequence of G is
DEG(G) = (DEG(u1), DEG(u2), ..., DEG(uy,))
where the vertices are ordered so that

DEG(u1) > DEG(ug) > - -+ > DEG(uy,).

Graphs and Their Complements 9

Sometimes it is useful to construct a graph with a given degree sequence. For ex-
ample, can there be a simple graph with five vertices whose degrees are (4, 3, 3,2,1)?
Because there are three vertices of odd degree, Corollary 1.3 tells us that there is no
such graph. We say that a sequence

D = (dy,ds,...,dy),

is graphic if

dl Zd2 Z"'Zdna
and there is a simple graph G with DEG(G) = D. So (2,2,2,1) and (4, 3,3,2,1)
are not graphic, whereas (2,2,1,1), (4,3,2,2,1),and (2,2, 2,2, 2,2, 2) clearly are.

Problem 1.1: Graphic

Instance: asequence D = (dy,da,...,dy).
Question: is D graphic?
Find: a graph G with DEG(G) = D, if D is graphic.

For example, (7,6,5,4, 3,3, 2) is not graphic; for any graph G with this degree
sequence has A(G) = |G| = 7, which is not possible in a simple graph. Similarly,
(6,6,5,4,3,3,1) is not graphic; here we have A(G) = 6, |G| = 7 and §(G) = 1.
But because two vertices have degree |G| — 1 = 6, it is not possible to have a vertex
of degree one in a simple graph with this degree sequence.

When is a sequence graphic? We want a construction which will find a graph G
with DEG(G) = D, if the sequence D is graphic.

One way is to join up vertices arbitrarily. This does not always work, because
we can get stuck, even if the sequence is graphic. The following algorithm always
produces a graph G with DEG(G) = D, if D is graphic.

procedure GRAPHGEN(D)
Create vertices U1, us, . . . , Uy
comment: upon completion, u; will have degree D[]

graphic < false “assume not graphic”

741

while D[i] > 0

k«Dli]

if there are at least k vertices with DEG > 0
join u; to the k vertices of largest degree
decrease each of these degrees by 1

do then DI[i] + 0
comment: vertex u; is now completely joined

else exit “u; cannot be joined”
11+ 1
graphic < true

10 Graphs, Algorithms, and Optimization
This uses a reduction. For example, given the sequence
D = (3,3,3,3,3,3),

the first vertex will be joined to the three vertices of largest degree, which will then
reduce the sequence to (x, 3, 3,2, 2, 2), because the vertex marked by an asterisk is
now completely joined, and three others have had their degree reduced by 1. At the
next stage, the first remaining vertex will be joined to the three vertices of largest
degree, giving a new sequence (x,*,2,2,1,1). Two vertices are now completely
joined. At the next step, the first remaining vertex will be joined to two vertices,
leaving (x,*,x,1,1,0). The next step joins the two remaining vertices with degree
one, leaving a sequence (x, , *, %, 0, 0) of zeroes, which we know to be graphic.
In general, given the sequence

D = (dy,da,...,d,),

where
dl Zd2 Z"'Zdna

the vertex of degree d; is joined to the d; vertices of largest degree. This leaves the
numbers
do—1,d3—1,...,dg, 41— 1,dag,+2,...,dn,

in some order. If we rearrange them into descending order, we get the reduced se-
quence D’. Write
D' = (dy,dy....d,),

r N

where the first vertex u; has been deleted. We now do the same calculation, using D’
in place of D. Eventually, after joining all the vertices according to their degree, we
either get a graph G with Deg(G) = D or else at some stage, it is impossible to join
some vertex u;.

An excellent data structure for representing the graph G for this problem is to
have an adjacency list for each vertex v € V(G). The adjacency list for a vertex
v € V(G) is a linked list of the vertices adjacent to v. Thus it is a data structure in
which the vertices adjacent to v are arranged in a linear order. A node z in a linked
list has two fields: data(z), and next(x).

x: [u]<
R Y.,

data{x) ﬁext(x)

Given anode z in the list, data(x) is the data associated with 2 and next(x) points to
the successor of x in the list or next(x) = NIL if 2 has no successor. We can insert
data u into the list pointed to by L with procedure LISTINSERT(), and the first node
on list L can be removed with procedure LISTREMOVEFIRST().

Graphs and Their Complements 11

procedure LISTINSERT(pseudocode)
L,ux + NEWNODE()
data(z) < u
next(x) < L
Lz

procedure LISTREMOVEFIRST(L)
r <+ L
L <+ next(x)
FREENODE(x)

We use an array AdjList[-] of linked lists to store the graph. For each vertex v €
V(G), AdjList[v] points to the head of the adjacency lists for v. This data structure
is illustrated in Figure 1.12.

; . AdList[1}—[2[eF—{aTeF—{¥]
AdjList2)—[1] F—3]F—{1Te+—{x]
AdjList[3}—{2[F—aTF—{x]

2 1 AdjList[4]—{1] o}—{2[F—[3]F—1{x]

FIGURE 1.12
Adjacency lists of a graph

We can use another array of linked lists, Pts[k], being a linked list of the vertices
u; whose degree-to-be d; = k. With this data structure, Algorithm 1.2.1 can be
written as follows:

12 Graphs, Algorithms, and Optimization

Algorithm 1.2.1: GRAPHGEN(D)

Assume D is not graphic.
Create and initialize the linked lists Pts[k].
graphic < false
for k < 0 ton — 1 do Pts[k] + NIL
for & < 1 to n do LISTINSERT(Pts[D[k]], k)
comment: Begin with vertex of largest degree.
for k < n — 1 downto 0
do while Pts[k] # NIL
comment: These points are to have degree k.
x < Pts[k]
u <+ data(x)
LISTREMOVEFIRST(Pts[k])
Join u to the next k vertices v of largest degree.
If this is not possible, then D is not graphic so exit.

comment: {

comment: {

1k
forj < 1tok
] L it i—1
while Pts[i] = NIL do {ifi = (exit
x = Pts]i]
v = data(z)

do do

LISTREMOVEFIRST(Pts|i])
LISTINSERT(AdjList[u], v)
LISTINSERT(AdjList[v], u)
Li1STINSERT(TempList|[i], v)
For each such v joined to u if v is on list Pts[j],
then transfer v to Pts[j — 1]
for j < k downto 1
while TempList[j] # NIL
a = TempList[j]
do do V= data(z)
LISTREMOVEFIRST(TempList|j])
LISTINSERT(Pts[j — 1],v)
comment: v is now completely joined. Choose the next point.
comment: Now every vertex has been successfully joined.

comment: {

graphic <+ true

This program is illustrated in Figure 1.13 for the sequence D = (4,4, 2,2,2,2),
where n = 6. The diagram shows the linked lists before vertex 1 is joined to vertices
2,3, 4, and 5, and the new configuration after joining. Care must be used in transfer-
ring the vertices v from Pts[j] to Pts[j — 1], because we do not want to join u to v
more than once. The purpose of the list Pts[0] is to collect vertices which have been
transferred from Pts[1] after having been joined to w. The degrees di,ds,...,d,

Graphs and Their Complements 13

D= (4,4,2,2,2,2)

Pts[6 i
Pts[5 ve °
Psf——{1[}—{2] £ 0%
Pts[3
ps2——[3[oF—{a[F—{s[F—{c [+—1{x]
Pts[1— x|

Pts[O

(a)

D= (%3,1,1,1,2)

Pis[6}—] x |
Pis[5—{ x|
Pes[d—] x| 4 3
ol —{]

Pz—{e [—{x]
Pis[1——{3[ef——{4[F—{5[sF—{x]
Pis[0—{ x|

(b)

FIGURE 1.13
The linked lists Pts[k]. (a) Before 1 is joined to 2, 3, 4, and 5. (b) After 1 is joined to
2,3,4,and 5.

14 Graphs, Algorithms, and Optimization

need not necessarily be in descending order for the program to work, because the
points are placed in the lists Pts[k] according to their degree, thereby sorting them
into buckets. Upon completion of the algorithm vertex k& will have degree d;. How-
ever, when this algorithm is done by hand, it is much more convenient to begin with
a sorted list of degrees; for example, D = (4,3,3,3,2,2,2,2,1), where n = 9. We
begin with vertex u;, which is to have degree four. It will be joined to the vertices
ug, us, and uy, all of degree three, and to one of us, ug, w7, and ug, which have de-
gree two. In order to keep the list of degrees sorted, we choose ug. We then have
u; — {ug, us, ug, us}, and D is reduced to (x,2,2,2,2,2,2,1,1). We then choose
uz and join it to ug and uy, thereby further reducing D to (x,%,2,2,2,2,1,1,1,1).
Continuing in this way, we obtain a graph G.

In general, when constructing G by hand, when wy, is to be joined to one of u;
and uj, where d; = d; and ¢ < j, then join uy, to u; before u;, in order to keep D
sorted in descending order.

We still need to prove that Algorithm 1.2.1 works. It accepts a possible degree
sequence

D = (dy,da,...dy,),

and joins u; to the d; vertices of largest remaining degree. It then reduces D to new
sequence
D' = (dy,d,...d)).

1.2.1 Havel-Hakimi theorem
Theorem 1.5. (Havel-Hakimi theorem) D is graphic if and only if D' is graphic.

Proof. Suppose D’ is graphic. Then there is a graph G’ with degree sequence D',
where V(G') = {uz, us, ..., u,} with DEG(u;) = dj. Furthermore

D' = (dy,d,...,d,)
consists of the degrees
{do —1,d3s—1,...;dg,+1 — L,dg,+2,...,dn}
arranged in descending order. Create a new vertex u; and join it to vertices of degree
do —1,ds—1,...,dg,+1 — 1.
Then DEG(u;) = d;. Call the new graph G. Clearly the degree sequence of G is
D = (dy,da,...,dy).

Therefore D is graphic.
Now suppose D is graphic. Then there is a graph G with degree sequence

D= (d17d27---adn)a

where V(G) = {uy,usa,...,u,}, with DEG(u;) = d;. If uy is adjacent to vertices

Graphs and Their Complements 15

U1

FIGURE 1.14
Vertices adjacent to uy

of degree da,ds, ...,d4, +1, then G’ = G — wu; has degree sequence D’, in which
case D’ is graphic.
Otherwise, u; is not adjacent to vertices of degree da,ds,...,dqg,+1. Let ug

(where k£ > 2) be the first vertex such that u; is not joined to wuy, but is joined to
U2, U3y« ooy U—1- (Maybe k= 2)

Now DEG(u1) = di > k, so uq is joined to some vertex © # ug, us, . . . Uk—1- Uk
is the vertex of next largest degree, so DEG(uy) > DEG(x). Now z is joined to u1,
while uy, is not. Therefore, there is some vertex y such that uy, — y but x /— y.
Set G + G+ xy + vqug — U1 T — URy.

The degree sequence of G has not changed, and now u; — {us, us, ..., ur}.
Repeat until w1 — {uz2,us, ..., uq,+1} Then G’ = G — u; has degree sequence
D', so that D’ is graphic. (See Figure 1.14.)

O

Therefore we know the algorithm will terminate with the correct answer, because
it reduces D to D’. So we have an algorithmic test to check whether D is graphic
and to generate a graph whenever one exists.

1.2.2 Erdos-Gallai theorem

There is another way of determining whether D is graphic, without constructing a
graph.

Theorem 1.6. (Erdos-Gallai theorem) Let D = (dy,ds,...,dy), where di >
dy > -+ > dy. Then D is graphic if and only if

1. X7 d; is even; and
2.0 di <k(k—1)+ X0, MIN(k, dy), fork =1,2,...,n.

Proof. Suppose D is graphic. Then Y ", d; = 2¢, which is even. Let V; contain the
k vertices of largest degree, and let Vo = V(G) — Vi be the remaining vertices. See
Figure 1.15.

16 Graphs, Algorithms, and Optimization

€2

Vi Va

FIGURE 1.15
The vertices V3 of largest degree and the remaining vertices vz

Suppose that there are €1 edges within V7 and €5 edges from V; to Va. Then
Zle d; = 2e1 + €9, because each edge within V; is counted twice in the sum, once
for each endpoint, but edges between V; and V5 are counted once only. Now g1 <
(g) because V; can induce a complete subgraph at most. Each vertex v € V5 can be
joined to at most & vertices in V7, because |V7| = k, but v can be joined to at most
DEG(v) vertices in Vi, if DEG(v) < k. Therefore 2, the number of edges between
Vi and Vy, is at most y_ . MIN(k, DEG(v)), which equals Z?:kﬂ MIN(k, d;).
This now gives Zle di =21 +ey < k(k—1)+ 3", MIN(k, d;).

Various proofs of the converse are available. Interesting proofs can be found
in the books by HARARY [80] or BERGE [14]. Here we outline a proof by
CHOUDUM [33]. The proof is by inductionon S = Y7, d;. If S = 2, it is clear that
the result is true. Without loss of generality, we can assume that d,, > 1. Let ¢ be the
smallest integer such that d;, > d; 1, if there is one. Otherwise, if all d; are equal,
wetaket =n — 1.

Construct D" = (dY, . ..,d,,) from D as follows: if i # ¢t and i # n, thend = d;;
ifi = tori=mn,then d, = d; — 1. That is, we are looking for a graph with degree
sequence D in which vertex ¢ is adjacent to vertex n. Then S’ = S — 2. If we can
verify that D’ satisfies the conditions of the theorem, with corresponding graph G’,
we can then construct a graph G with degree sequence D.

Consider S, = YF d; and S|, = % d). Let T, = k(k — 1) +
> i1 MIN(d;, k), and s1m11ar1y for T’ Ifk >t,then S, =S, —1<T,—1<Tj.
Thus the conditions of the theorem are satisfied when k& > t. If £ < ¢ there are
several cases to consider. Note that when k& < ¢, dy = dy = ... = dg, so that
Sy, = Sk = kdy.

If k < tand di, <k, then S;, = kdy, < k(k—1) <Tj.

If k < tand dy = k, then S, = kd, = k* = k(k — 1) + k. Nowdk+1is
either k£ or k — 1. Therefore when i > k, MIN(d}, k) = d;. If d;,, = k, then
Sy, = k(k—1)+d;, <Tj.Otherwised; ,, = k—1,and S}, = k(k— 1)+d gL
Ifal}H_2 > 1, we obtain S;, < T}. Otherwise n = k+2andt =n—1,so thatd, = 1,
giving S = (n — 2)? 4+ (n — 2) + 1, which must be even, so that n is odd. But then
all degrees are odd, which is impossible.

If k < tand d > k and d,, > k, then MIN(d;, k) = MIN(d}, k) = k when i > k.
Sl =kdy =S, <T} =TJ.

If K < tand dy > k and d,, < k, let r be the first integer such that d, < k.

Graphs and Their Complements 17

Then r > t and MIN(d;, k) = d; wheni > r, so that S}, = Sy, = kdp < T} =
k(k—1)+k(r—k—1)+d-+...+d, =k(r—2)+ (d, + ... +d,). We have
T, =T — 1.

Now Si41 = (k+1)dp < Tp1 = (k+DEk+(k+1)(r—k—2)+d,+...+d,.
Hence d < (r—2)+ (dy + ...+ dy)/(k + 1). Substituting this into the previous
expression gives kdy, < k(r—2)+ %(d,« +...+dy) < Tj. Therefore S, = kdj, <
Ty. But T}, = T}, — 1, so that S}, < 1.

Thus, S;, < T} for all k. By induction we know that D’ is graphic. Let G’ be a
simple graph with degree sequence D’. If vertices ¢ and n are not adjacent in G', we
add the edge {t, n} to obtain a graph G with degree sequence D. If they are adjacent,
then choose a vertex m such that {¢, m} ¢ E(G’). Because d,, > d,,, there is a
vertex r adjacent to m in G’ such that {r,n} & E(G"). Remove the edge {m, r} and
add the edges {t,m}, {r,n} to obtain a graph G with degree sequence D.

|

Conditions 1 and 2 of Theorem 1.6 are known as the Erdds-Gallai conditions.

Exercises
1.2.1 Prove Theorem 1.2 for arbitrary graphs. That is, prove
Theorem 1.7. For any graph G we have

Z Deg(u) + ¢ = 2¢(Q).
ueV(QG)

where ¢ is the number of loops in G and DEG(u) is the number of
edges incident on u. What formula is obtained if loops count two toward
DEG(u)?

1.2.2 We know that a simple graph with n vertices has at least one pair of
vertices of equal degree, if n > 2. Find all simple graphs with exactly
one pair of vertices with equal degrees. What are their degree sequences?
Hint: Begin with n = 2, 3, 4. Use a recursive construction. Can degree 0
or n — 1 occur twice?

1.2.3 Program the GRAPHGEN() algorithm. Input the sequence D =
(di1,da,...,dy) and then construct a graph with that degree sequence, or
else determine that the sequence is not graphic. Use the following input
data:

(a) 44444
(b) 333333

(c) 33333333
(d) 333333333
() 2222222222
) 76665521

18 Graphs, Algorithms, and Optimization

124 If G has degree sequence D = (dy,ds, . ..,dy) , what is the degree se-
quence of G?
1.2.5 Let D = (dy,da,...,d,), where dy > ds > ... > d,,. Prove that there is

a multigraph with degree sequence D if and only if) ", d; is even, and
di <> 5 d;.

1.3 Analysis

Let us estimate the number of steps that Algorithm 1.2.1 performs. Consider the loop
structure

for k <+ n downto 1
do while Pts[k] # NIL
do { ..

The for-loop performs n iterations. For many of these iterations, the contents of
the while-loop will not be executed, because Pts[k| will be NIL. When the contents
of the loop are executed, vertex u of degree-to-be k will be joined to k vertices. This
means that k£ edges will be added to the adjacency lists of the graph G being con-
structed. This takes 2k steps, because an edge uv must be added to both GraphAdj|u|
and GraphAdj[v]. It also makes DEG(u) = k. When edge wv is added, v will be
transferred from Pts[j] to Pts[j — 1], requiring additional & steps. Once u has been
joined, it is removed from the list. Write ¢ = % >_; di, the number of edges of G
when D is graphic. Then, in all, the combination for-while-loop will perform exactly
2¢e steps adding edges to the graph and a further ¢ steps transferring vertices to other
lists, plus n steps for the n iterations of the for-loop. This gives a total of 3¢ + n steps
for the for-while-loop. The other work that the algorithm performs is to create and
initialize the lists Pts[-], which takes 2n steps altogether. So we can say that in total,
the algorithm performs 3¢ + 3n steps.

Now it is obvious that each of these “steps” is composed of many other smaller
steps, for there are various comparisons and assignments in the algorithm which we
have not explicitly taken account of (they are subsumed into the steps we have ex-
plicitly counted). Furthermore, when compiled into assembly language, each step
will be replaced by many smaller steps. Assembly language is in turn executed by
the microprogramming of a computer, and eventually we come down to logic gates,
flip-flops, and registers. Because of this fact, and because each computer has its own
architecture and machine characteristics, it is customary to ignore the constant coef-
ficients of the graph parameters € and n, and to say that the algorithm has order ¢ +n,
which is denoted by O(e + n), pronounced “big Oh of € + n”. A formal definition
is provided by Definition 1.6. Even though the actual running time of a given algo-
rithm depends on the architecture of the machine it is run on, the programmer can
often make a reasonable estimate of the number of steps of some constant size (e.g.,
counting one assignment, comparison, addition, multiplication, etc. as one step), and

Graphs and Their Complements 19

thereby obtain a formula like 3¢ 4 3n. Such an algorithm will obviously be superior
to one which takes 15¢ + 12n steps of similar size. Because of this fact, we shall try
to obtain formulas of this form whenever possible, as well as expressing the result in
a form like O(g + n).

The complexity of an algorithm is the number of steps it must perform, in the
worst possible case. That is, it is an upper bound on the number of steps. Because
the size of each step is an unknown constant, formulas like 5n? /6 and 25n2 are both
expressed as O(n?). We now give a formal definition of this notation.

DEFINITION 1.6: Suppose f : Z* — Rand g : ZT — R. We say that f(n) is
O(g(n)) provided that there exist constants ¢ > 0 and ng > 0 such that 0 < f(n) <
¢+ g(n) forall n > ny.

In other words, f(n) is O(g(n)) provided that f(n) is bounded above by a con-
stant factor times g(n) for large enough n. For example, the function 5n3 + 2n + 1
is O(n?), because for all n > 1, we have

5% 4+ 2n+ 1 < 5n + 2n + 0% = 8nd.

Hence, we can take ¢ = 8 and ng = 1, and Definition 1.6 is satisfied.
The notation f(n) is 2(g(n)) (“big omega”) is used to indicate that f(n) is
bounded below by a constant factor times g(n) for large enough n.

DEFINITION 1.7: Suppose f : ZT — Rand g : Z+ — R. We say that f(n)
is Q(g(n)) provided that there exist constants ¢ > 0 and ng > 0 such that f(n) >
c-g(n) > 0forall n > ng.

We say that f(n) is ©(g(n)) (“big theta”) when f(n) is bounded above and
below by constant factors times g(n). The constant factors may be different. More
precisely:

DEFINITION 1.8: Suppose f : ZT — Rand g : ZT — R. We say that f(n)
is ©(g(n)) provided that there exist constants ¢,¢’ > 0 and ng > 0 such that 0 <
c-g(n) < f(n) < -g(n)foralln > ng.

If f(n)is ©(g(n)), then we say that f and g have the same growth rate.

The big O-notation is a method of indicating the qualitative nature of the formula,
whether quadratic, linear, logarithmic, exponential, etc. Notice that “equations” in-
volving O(-) are not really equations, because O(-) can only be used in this sense on
the right hand side of the equals sign. For example, we could also have shown that
10n? + 4n — 41is O(n?) or that 10n? 4 4n — 4 is O(2"), but these expressions are
not equal to each other. Given a complexity formula like 10n? 4 4n — 4, we want the
smallest function f(n) such that 10n? + 4n — 4 is O(f(n)). Among the useful rules
for working with the O-notation are the following sum and product rules.

Theorem 1.8. Suppose that the two functions fi(n) and fa(n) are both O(g(n)).
Then the function f1(n) + fa(n) is O(g(n)).

Theorem 1.9. Suppose that f1(n) is O(gi(n)) and fa(n) is O(g2(n)). Then the
function fi(n) fa(n) is O(g1(n) g2(n)).

20 Graphs, Algorithms, and Optimization

As examples of the use of these notations, we have that n? is O(n?), n? is Q(n?),
and 2n? + 3n — sinn + 1/nis O(n?).

Several properties of growth rates of functions that arise frequently in algorithm
analysis follow. The first of these says that a polynomial of degree d, in which the
high-order coefficient is positive, has growth rate n?.

Theorem 1.10. Suppose that ag > 0. Then the function ag + a1n + - - - + agn® is

O(n?).

The next result says that logarithmic growth does not depend on the base to which
logarithms are computed. It can be proved easily using the formula log, n = log, b -
log, n.

Theorem 1.11. The function log, n is ©(log, n) for any a,b > 1.

The next result can be proved using Stirling’s formula. It gives the growth rate of
the factorial function in terms of exponential functions.

Theorem 1.12. The function n! is ©(n"+1/2¢=")

Exercises

1.3.1 Show that if G is a simple graph with n vertices and € edges, then loge =
O(logn).

1.3.2 Consider the following statements which count the number of edges in a
graph, whose adjacency matrix is Adj.

Edges < 0
foru<+1ton—1
doforv<u+1ton
do if Adj[u,v] =1
then Edges < Edges + 1

Calculate the number of steps the algorithm performs. Then calculate the
number of steps required by the following statements in which the graph
is stored in adjacency lists:

Edges < 0

foru <+ 1ton—1
do for each v — u
doifu<ov
then Edges < Edges + 1

What purpose does the condition v < v fulfill, and how can it be avoided?

1.3.3 Use induction to prove that the following formulas hold:

@ 1+2+3+--+n= ("}

Graphs and Their Complements 21

®)+ +G)++ ()= (n;—l).

© ()+)+ () -+ () =G

1.3.4 Show that 3n? 4+ 12n = O(n?); that is, find constants A and N such that
3n2 + 12n < An2 whenevern > N.
1.3.5 Show thatlog(n + 1) = O(log n), where the logarithm is to base 2.
1.3.6 Use the answer to the previous question to prove that
(n+1)log(n + 1) = O(nlogn).
1.3.7 Prove that if f1(n) and fa(n) are both O(g(n)), then fi(n) + fa(n) is
O(g(n)).
1.3.8 Prove thatif f1(n)is O(g1(n)) and fa(n) is O(g2(n)), then f1(n) f2(n)
is O(g1(n) g2(n)).
1
1.4 Notes

Some good general books on graph theory are BERGE [14], BOLLOBAS [20],
BONDY and MURTY [23], CHARTRAND and LESNIAK [31], CHARTRAND and
OELLERMANN [32], DIESTEL [44], GOULD [73], and WEST [189]. A very read-
able introductory book is TRUDEAU [172]. GIBBONS [66] is an excellent treatment
of graph algorithms. A good book discussing the analysis of algorithms is PURDOM
and BROWN [138]. AHO, HOPCROFT, and ULLMAN [1], SEDGEWICK [157] and
WEISS [188] are all excellent treatments of data structures and algorithm analysis.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

2
Paths and Walks

2.1 Introduction

Let u and v be vertices of a simple graph G. A path P from u to v is a sequence of
vertices ug, U1, ..., U, such that u = ug, v = ug, u; — u;+1, and all the u; are
distinct vertices. The length of a path P is ¢(P), the number of edges it uses. In this
example, ¢(P) = k, and P is called a uv-path of length k. A wv-path of length 4 is
illustrated in Figure 2.1, with dashed edges.

A cycle C'is a sequence of vertices ug, U1, . . . , u, forming a ugug-path, such that
ur — ug. The length of C is £(C), the number of edges that it uses. In this case,
L{(C)=k+1.

A wv-path P connects u to v. The set of all vertices connected to any vertex
u forms a subgraph C,, the connected component of G containing u. It will often
be the case that C,, contains all of G, in which case G is a connected graph. w(G)
denotes the number of distinct connected components of G. The graph of Figure 2.1
is disconnected, with w = 3.

FIGURE 2.1
A graph with three components

There are several ways of finding the connected components of a graph . One
way to find the sets C, for a graph G is as follows:

23

24 Graphs, Algorithms, and Optimization

procedure COMPONENTS(G)
for each u € V(G)
do initialize C,, to contain only «
for each u € V(G)
d {for eachv — u
do if C,, # C,, then MERGE(C,,, C,,)

The inner for-loop ensures that, upon completion, if w — v, then C,, = C,,, for
any vertices u and v. Therefore, if P = (ug, u1, . ..,u)) is any path, we can be sure
that Cy, = Cy, = --- = C,,, so that when the algorithm terminates, each C, will
contain all the vertices connected to u by any path; that is, C;, will be the connected
component containing u.

The complexity of the algorithm naturally depends upon the data structures used
to program it. This algorithm is a perfect example of the use of the merge-find data
structure. Initially, each C,, = {u} and C,, = {v}. When the edge uv is examined,
C, and C,, are merged, so that now C,, = C, = {u, v}. The two operations which
need to be performed are to determine whether C,, = C, and to merge C, and
C, into one. This can be done very efficiently by choosing a vertex in each C, as
component representative.

uRep <~ COMPREP(C,,)
vRep < COMPREP(C,)
if uRep # vRep

then MERGE(C,,, C,,)

Initially, C\, = {u}, so that u begins as the representative of C,. Associated with
each vertex v is a pointer toward the representative of the component containing v.
To find the representative of C,,, we start at u and follow these pointers, until we
come to the component representative. The component representative is marked by a
pointer that is negative. The initial value is —1. The pointers are easily stored as an
array, CompPtr.

COMPREP() is a recursive procedure that follows the component pointers until a
negative value is reached.

procedure COMPREP(u)
if CompPtru] < 0
then return (u)
theRep +— COMPREP(CompPtr|u)])
else ¢ CompPtr[u] < theRep
return (theRep)

The assignment
CompPtr|u] < theRep

Paths and Walks 25

is called path compression. It ensures that the next time CompPtr(u) is computed,
the representative will be found more quickly. The algorithm COMPONENTS() can
now be written as follows:

Algorithm 2.1.1: COMPONENTS(G)

n + |G|
foru<+1ton
do CompPtr[u) < —1
foru <+ 1ton
for eachv — u
uRep <+ COMPREP(u)
do vRep + COMPREP(v)
if uRep # vRep
then MERGE(uRep, vRep)

The essential step in merging C,, and C), is to assign either

CompPtr[vRep| < uRep

or
CompPtr[uRep] < vRep

The best one to choose is that which merges the smaller component onto the larger.
We can determine the size of each component by making use of the negative values
of CompPtr[uRep| and CompPtr[vRep)]. Initially, CompPtr[u] = —1, indicating a
component of size one.

procedure MERGE(uRep, vRep)
uSize < —CompPtr[uRep]
vSize < —CompPtr[vRep)|
if uSize < vSize
then {Comthr[uRep] + VRep
CompPtr[vRep] < —(uSize + vSize)
ol {Comthr[vRep] — uRep
CompPtr[uRep| + —(uSize + vSize)

When C,, and C, are merged, the new component representative (either uRep
or vRep) has its CompPtr|-] assigned equal to —(uSize + vSize). The component
pointers can be illustrated graphically. They are shown in Figure 2.2 as arrows. The
merge operation is indicated by the dashed line.

26 Graphs, Algorithms, and Optimization

/ \ \ O O O
O O O T
! 0
v
O - _
U v
— —~ _ CompPtr[vRep] = —5
CompPtr[uRep|] = —8
FIGURE 2.2

Component representatives

2.2 Complexity

The components algorithm is very efficient. The for-loop which initializes the
CompPtr array requires n steps. If adjacency lists are used to store G, then the total
number of times that the body of the main loop is executed is

> DEG(u) = 2.

Thus COMPREP() is called 4¢ times. How many times is MERGE() called? At each
merge, two existing components are replaced by one, so that at most n— 1 merges can
take place. Each merge can be performed using four assignments and a comparison.
It takes n steps to initialize the CompPtr array. Thus the total number of steps is
about 6n + 4¢-(number of steps per call to COMPREP()). The number of steps each
call to COMPREP() requires depends on the depth of the trees which represent the
components. The depth is changed by path compression, and by merging. It is proved
in AHO, HOPCROFT, and ULLMAN [1], that if there are a total of n points involved,
the number of steps required is O(«(n)), where a(n) is the inverse of the function
A(n), defined recursively as follows.

A1) = 1
A(k) = 240D

Paths and Walks 27

Thus, A(2) = 2! = 2, A(3) = 22 = 4, A(4) = 2¢ = 16, A(5) = 216 = 65536, etc.
It follows that a(n) < 5, for all n < 65536. So the complexity of Algorithm 2.1.1 is
almost linear, namely, O(n + ea(n)), where a(n) < 5, for all practical values of n.

Exercises

2.2.1 Assuming the data structures described in Section 2.1, program the
COMPONENTS() algorithm, merging the smaller component onto the
larger. Include an integer variable NComps which contains the current
number of components. Upon completion, its value will equal w(G).

222 Algorithm 2.1.1 computes the connected components C', using the array
CompPtr. If we now want to print the vertices of each distinct ', it
cannot be done very efficiently. Show how to use linked lists so that for
each component, a list of the vertices it contains is available. Rewrite the
MERGE() procedure to include this. Is the complexity thereby affected?

223 In the Algorithm 2.1.1 procedure, the for-loop
foru < 1ton do

executes the statement uRep <~ COMPREP(u) once for every v — u.
Show how to make this more efficient by taking the statement uRep <—
COMPREP(u) out of the v-loop, and modifying the MERGE() procedure
slightly. Calculate the new complexity.

224 Letn = |G|. Show thatif e > (”51), then G is connected. Hint: If G is
disconnected, there is a component of size x < n. What is the maximum

number of edges G can then have?
225 Show thatif & > [(n —1)/2], then G is connected.

2.2.6 Show that if G is disconnected, then G is connected.

227 Show that if G is simple and connected but not complete, then G has three
vertices u, v, and w such that u — v, w, but v 4= w.

2.2.8 A longest path in a graph G is any path P such that G contains no path
longer than P. Thus a graph can have several different longest paths (all
of the same length, though). Show that /(P) > §(G), for any longest
path. Hint: Consider an endpoint of P.

2.2.9 Show that every graph G has a cycle of length at least §(G) + 1, if 6(G) >
2. Hint: Consider a longest path.

2.2.10 Prove that in a connected graph, any two longest paths have at least one
vertex in common.

28 Graphs, Algorithms, and Optimization

|
2.3 Walks

Paths do not contain repeated vertices or edges. A walk in G is any sequence of ver-
tices ug, U1, . . . , uj such that u; — u;41. Thus, in a walk, edges and vertices may
be repeated. Walks are important because of their connection with the adjacency ma-
trix of a graph. Let A be the adjacency matrix of G, where V(G) = {uy, ua, ..., un},
such that row and column i of A correspond to vertex u,;.

Theorem 2.1. Entry [i, j] of A" is the number of walks of length k from vertex u; to
Uj.

Proof. By induction on k. When k = 1, there is a walk of length 1 from u; to u; if
and only if u; — w;, in which case entry A[7, j] = 1. Assume it’s true whenever
k < t and consider A**1. Let W be a w;uj-walk of length ¢ + 1, where ¢ > 2. If w
is the vertex before u; on W, then W can be written as (W', u;, u;), where W' is
a u;ug-walk of length ¢. Furthermore, every u;u;-walk of length ¢ gives a u;u;-walk
of length ¢ + 1 whenever u; — u;. Therefore the number of u;u;-walks of length
t+1is
Z(the number of u;u; — walks of length ¢)(A[l, 7]).
1

But the number of u;u;-walks of length ¢ is A*[4,], so that the number of u;u ;-walks
of length t 4 1 is

n

> A 1AL),

=1

which equals A**1[i, j]. Therefore the result is true when k = ¢ + 1. By induction,
it’s true for all values of k. O

Notice that this result is also true for multigraphs, where now Al[i, j] is the num-
ber of edges joining u; to u;. For multigraphs, a walk W must be specified by giving
the sequence of edges traversed, as well as the sequence of vertices, because there
can be more than one edge joining the same pair of vertices.

Exercises

2.3.1 Show that A?[i, j] equals the number of u;u;-paths of length 2, if i # j,
and that A?[i,i] = DEG(u;).

2.3.2 Show that A3[i, i] equals the number of triangles containing vertex ;.
Find a similar interpretation of A3[i, j], when i # j. (A triangle is a cycle
of length 3.)

233 AF contains the number of walks of length & connecting any two vertices.
Multiply A* by 2*, the k" power of a variable x, and sum over k, to get
the matrix power series I + Ax 4+ A%2% + A323 + ---, where I is the

identity matrix. The sum of this power series is a matrix whose ij*" entry

Paths and Walks 29

is a function of & containing the number of u;u;-walks of each length, as
the coefficient of . Because the power series expansion of (1 — a)~! is
1+ a+a®+a®+ -, we can write the above matrix as (I — Ax)~1.
That is, the inverse of the matrix (I — Ax) is the walk generating matrix.
Find the walk generating matrix for the graph of Figure 2.3.

FIGURE 2.3
Compute the number of walks in this graph

2.4 The shortest-path problem

The distance from vertex u to v is DIST(u, v), the length of the shortest uv-path. If
G contains no uv-path, then DIST(u, v) = oo. In this section we study the following
two problems.

Problem 2.1: Shortest Path
Instance: a graph G and a vertex u.
Find: DiST(u,v), forall v € V(G).

Problem 2.2: All Paths
Instance: a graph G.
Find: Di1ST(u, v), forall u,v € V(G).

Given a vertex u, one way of computing DIST(u, v), for all v, is to use a breadth-
first search (BES), as is done in procedure BFS().

30 Graphs, Algorithms, and Optimization

procedure BFS(G, u)
ScanQ is a queue of vertices

comment: {dist[v] will equal DIST(u,v), upon completion

for eachv € V(G)
do dist[v] + oo
dist[u] < 0
place v on ScanQ
repeat
select v for the head of ScanQ
for each w — v
do if w not on ScanQ
add w to the end of ScanQ
then {dist[w] o dist[o] + 1
advance ScanQ
until all of ScanQ has been processed

Procedure BFS() uses a type of data structure called a queue. A queue is an ordered
list in which we usually access only the first or the head of the list and new items
are only placed at the end or fail of the list. This is similar to one’s experience of
waiting in line at the checkout counter of a store. The person at the head of the line is
processed first by the checker and the new customers enter at the end of the line. One
of the most convenient ways to store a queue is as an array. For when an algorithm
builds a queue on an array, all the vertices visited are on the array when the algorithm
completes, ready for input to the next procedure. BFS() works in this way.

The breadth-first search (BFS) algorithm is a fundamental algorithm in graph
theory. It appears in various guises wherever shortest paths are useful (e.g., network
flows, matching theory, coset enumeration, etc.). Figure 2.4 shows the result of ap-
plying a BES to the Petersen graph, where the vertices are numbered according to
the order in which they were visited by the algorithm, and shaded according to their
distance from vertex 1. The thicker edges show the shortest paths found by the algo-
rithm.

Notice that the first vertex on the ScanQ is u, whose dist[u] = DIST(u,u) = 0.
The next vertices to be placed on the queue will be those adjacent to u, that is, those
at distance 1. When they are placed on the queue, their distance will be computed as

dist[-] < dist[u] + 1.

So we can say that initially, that is, up to vertices of distance one, vertices are placed
on the queue in order of their distance from u; and that when each vertex w is placed
on ScanQ, dist[w] is made equal to DIST(u,w). Assume that this is true for all
vertices of distance k or less, where k > 1. Consider when v is chosen as the first
vertex of distance k on ScanQ. The for-loop examines all vertices w — v. If w on
ScanQ already, then there is a uw-path of length < £, and w is ignored. If w is not

Paths and Walks 31

FIGURE 2.4
A breadth-first search

on ScanQ, then DIST(u, w) > k. The uw-path via v has length k + 1, so w is added
to the queue, and dist[w] is set equal to dist[v] + 1 = k + 1. Because every vertex
at distance k + 1 is adjacent to a vertex at distance k, we can be sure that when all
vertices v on ScanQ at distance k have been scanned, all vertices at distance k + 1
will be on the queue. Thus the assertion that vertices are placed on the queue in order
of their distance from u, and that when each vertex w is placed on ScanQ, dist[w] is
made equal to DIST(u, w), is true up to distance k + 1. By induction, it is true for all
distances.

This proof that the BFS() algorithm works illustrates how difficult and cumber-
some it can be to prove that even a simple, intuitively “obvious” algorithm works cor-
rectly. Nevertheless, it is important to be able to prove that algorithms work correctly,
especially the more difficult algorithms. Writing down a proof for an “obvious” algo-
rithm will often reveal hidden bugs that it contains. This proof also illustrates another
feature, namely, proofs that algorithms work tend to use induction, often on the num-
ber of iterations of a main loop.

The complexity of the BFS() is very easy to calculate. The main operations which
are performed are

1. Scanallw — v.
2. Select the next v € ScanQ.

3. Determine whether w € ScanQ.

32 Graphs, Algorithms, and Optimization

The first operation is most efficiently done if GG is stored in adjacency lists. We want
the second and third operations to take a constant number of steps. We store ScanQ
as an integer array, and also store a boolean array onScanQ to tell whether w €
ScanQ. The revised algorithm is Algorithm 2.4.1.

Algorithm 2.4.1: BFS(G, u)

global n
forv<1ton
dist[v] + oo
{onScanQ[v] + false

dist[u] < 0
ScanQ[1] + u
onScanQ[u] < true

QSize + 1

k<1
repeat

v < ScanQ[k|

for eachw — v

do if not onScanQ[w)

QSize + QSize + 1
ScanQ|[QSize| + w
onScanQ|w] <« true
dist[w] + dist[v] + 1

k+—k+1
until £ > QSize

then

The initialization takes 2n steps. The repeat-loop runs at most n times. At most
n vertices are placed on the queue. The for-loop over all w — v requires

> DEG(v) = 2¢

steps, all told. This assumes that the adjacent vertices are stored in a linked list — the
for-loop traverses the adjacency list. Therefore the total number of steps executed is
at most

3n+2e=0(Mn+c¢e)=0().

Notice that in this program we could have dispensed with the array onScanQ, by
using instead dist[w] = oo to determine w is on ScanQ. Because a breath-first search
always uses a queue but not always a dist[-] array, we have kept the boolean array,
too.

Paths and Walks 33

2.5 Weighted graphs and Dijkstra’s algorithm

A breath-first search calculates DIST(u, v) correctly because in a simple graph, each
edge has “length” one; that is, the length of a path is the number of edges it contains.
In a more general application where graphs are used to model a road network, or
distribution network, etc., we may want to assign a length > 1 to each edge. This is
illustrated in Figure 2.5.

uy

FIGURE 2.5
A weighted graph

This is an example of a weighted graph. Each edge uv € E(G) is assigned a pos-
itive integral weight WT(uv). WT(uv) may represent length, weight, cost, capac-
ity, etc., depending on the application. In a weighted graph, the length of a path
P = (U(),Ul, . ,uk) is

k—1
f(P) = Z WT<U7;U7;+1).
i=0
The distance between two vertices is now defined as
DIST(u, v) = MIN{{(P) : P is a uv-path}.

A breath-first search will not compute DIST(u, v) correctly in a weighted graph, be-
cause a path with more edges may have the shorter length. There are many algorithms
for computing shortest paths in a weighted graph. Dijkstra’s algorithm is one.

34 Graphs, Algorithms, and Optimization

procedure DIJKSTRA (u)

Compute DIST(u, v), forallv € V(G)

dist[v] will equal DIST(u, v) upon completion.
Vertices are chosen as w1, Uz, . . ., Un,

in order of their distance from .

comment:

u1 < u “the nearest vertex to u ”
fork <+ 1ton—1
U1, U2, - . ., U are currently known

comment: < . S . .
in this iteration, uj; is selected

select v, the nearest vertex to uy, such that v & {uq,ua,...,ux}
Ug4+1 < U

assign dist[ug41]

comment: 1y, us, . .., Ukt are now known

do

comment: all dist[u;] are now known

Dijkstra’s algorithm is an example of a so-called “ greedy” or “myopic” algo-
rithm, that is, an algorithm which always selects the next nearest, or next best, etc.,
on each iteration. Many problems can be solved by greedy algorithms.

We need to know how to choose v, the next nearest vertex to wi, in each itera-
tion. On the first iteration, it will be the vertex v adjacent to u; such that WT(uqv)
is minimum. This will give {u1,us} such that DIST(u1,uq) and DIST(uq, ug) are
known. On the next iteration, the vertex v chosen will be adjacent to one of u; or us.
The distance to u; will then be either

DiST(u1, u1) + WT(uqv)

or
DiST(u1, uz) + WT(ugv),

and v will be the vertex for which this sum is minimum.
In general, at the beginning of iteration k, vertices w1, us, . . . , ux will have been
chosen, and for these vertices,

Di1ST[u;] = DIST(u1, u;).

The next nearest vertex v must be adjacent to some wu;, so that the shortest uiv-
path will have length dist[u;] + WT(u;v), for some 7. v is chosen as the vertex for
which this value is a minimum. This is illustrated in Figure 2.6. The refined code for
Dijkstra’s algorithm is Algorithm 2.5.1.

Paths and Walks

U1

WT(uk,v)

DiST(u1, uk)

FIGURE 2.6
A shortest w1 v-path, via vertex ug

do

Algorithm 2.5.1: DIJKSTRA (u)

Compute DIST(u, v), forallv € V(G)
dist[v] will equal DIST(u, v) upon completion.

comment: .
Vertices are chosen as uy, Uz, . . ., Un,
in order of their distance from u
for each v
do dist[v] + oo
UL — U “ the nearest vertex to u
dist[u] < 0

fork < 1ton—1

U1, Us, . . ., Uy are currently known

comment: < . S . .
in this iteration, uy41 is selected

for each v — wy, such that v & {uy,uz, ..., ux}

do dist[v] <+ MIN(dist[v], dist[ug] + WT(ugv))
pick v & {uy,us,...,u} such that dist[v] is minimum
Uk+1 <V
dist[ug1] now equals DIST(u1, uk11), and
UL, U2, . .., Ukt1 are NOW known

comment: {

Exercises

2.5.1

Prove that Dijkstra’s algorithm works. Use induction on the num-
ber k of iterations to prove that at the beginning of iteration k,
each dist[u;]=DI1ST(u1,u;), and that for all v # w,;, for any i,
dist[v] equals the length of a shortest u;v-path using only the vertices
{uy,uz,...,ur—1,v}. Conclude that after n — 1 iterations, all distances

)

dist[v] = DIST(u1,v).

35

36 Graphs, Algorithms, and Optimization

252 Assuming that GG is stored in adjacency lists, and that the minimum dist[v]
is computed by scanning all n vertices, show that the complexity of Dijk-
stra’s algorithm is O(e + n?).

2.6 Data structures

When computing the distances DIST(u1, v), it would also be a good idea to store a
shortest u; v-path. All the u;v-paths can easily be stored using a single array

PrevPt[v]: the previous point to v on a shortest u; v-path.

Initially, PrevPt[u] <— 0. When dist[v] and dist[uy] + WT(uyv) are compared, if the
second choice is smaller, then assign PrevPt[v] < wuj. The shortest ujv-path can
then be printed by the following loop:

repeat

output (v)

v < PrevPt[v]
until v =0

The complexity of Dijkstra’s algorithm was calculated in Exercise 2.5.2 as
O(n? + €). The term O(n?) arises from scanning up to n vertices in order to se-
lect the minimum vertex v. This scanning can be eliminated if we store the vertices
in a partially ordered structure in which the minimum vertex is always readily avail-
able. A heap is such a structure. In a heap H, nodes are stored so that the smallest
element is always at the top.

A heap is stored as an array, but is viewed as the partially ordered structure shown
in Figure 2.7. Its elements are not sorted, but satisfy the heap property, namely that
H[i] < H[2i] and H[:] < HJ[2i + 1]; that is, the value stored in each node is less
than or equal to that of either of its children. Therefore, H[1] is the smallest entry in
the array.

The heap in Figure 2.7 has depth four; that is, there are four levels of nodes. A
heap of depth k can contain up to 2¥ — 1 nodes, so that the depth needed to store N
values is the smallest value of k such that 28 — 1 > N, namely, k = [log(N + 1)],
where the log is to base 2.

If the value stored in a node is changed so that the heap property is no longer
satisfied, it is very easy to update the array so that it again forms a heap. For example,
if H[10] were changed to 4, then the following loop will return H to heap form. The
movement of data is shown in Figure 2.8.

Paths and Walks 37

FIGURE 2.7
A heap

procedure FLOATUP(k)
comment: Element H [k] floats up to its proper place in the heap

temp < H k]
Jj—k/2
while temp < H[j] and j > 0
HIK] « HIj|
do ¢ k<«
Jjk/2
H[k] + temp

Notice the circular movement of data when an altered element floats up to its
proper place in the heap. If some entry in the heap were made larger, say H[1] became
equal to 10, then a similar loop (Procedure FLOATDOWN) would cause the new value
to float down to its proper place. Because the depth of a heap containing N items is
[log(N + 1)], the number of items moved is at most 1 + [log(N + 1)].

38 Graphs, Algorithms, and Optimization

12

Oﬂ' “\
e 3 HD
o, O

')
temp rI\ 2"'

- L4

s

H[10]

FIGURE 2.8
Updating a heap with FLOATUP

procedure FLOATDOWN(k)
the entry at H [k] has been increased — it now floats down the
heap to its correct location. There are currently n entries
comment: ¢ in the heap, H[1] to H[n]. The array H -] has been
dimensioned so that H[0] is also available as a sentinel.
H 0] contains a large value bigger than any valid heap entry.

temp < H k]
while £ + k£ <n
i< k+k “the left child of H[k]”
j+i+1 “therightchild of H[k]”
itj>n

then j <— 0 “the sentinel at H[0]”
if H[i] > H|[j]
do theni < j
comment: F[i] is now the smaller child
if temp < HJi]

then break “break out of loop”
k<1
H[k] + temp

In order to extract the smallest item from a heap of NV elements, we take its value
from H 1], and then perform the following steps:

Paths and Walks

H([1] < H|N]
N+ N-1
FLOATDOWN(1)

The new H 1] floats down at most 1 + [log N steps.

There are two ways of building a heap.

procedure BUILDHEAPTOPDOWN(H, N)
The array H contains NV entries

comment: .
{transform it into a heap

k+1
while £ < N

comment: the first k£ values in H already form a heap

do ¢k k41
FLoATUP(k)

Using this method, the elements in entries 1,2, ..

39

., k already form a subheap

with £ entries. On each iteration, a new entry is allowed to float up to its proper
position so that the first £ + 1 values now form a heap. There are two nodes on
level two of the heap. The FLOATUP() operation for each of these may require up to
1 4+ 2 = 3 data items to be moved. On level three there are four nodes. FLOATUP()
may require up to 1 + 3 = 4 data items to be moved for each one. In general, level k&
contains 2~ nodes, and FLOATUP() may need up to 1 + k data items to be moved

for each. The total number of steps to create a heap with d = [log(/N 4 1)] levels in

this way is therefore at most

S=3-2"44-2245-2 4. 4 (1+d)27 ' =) (1 +k)2" "

d—1

k=2
Therefore
28 =322 +4.22 4528 4.+ (1 +d)2%,
so that
28 -8 = (1+d2¢-3-2' — (22428 +... 4297

)
= (1+d)2%—5—-(1+2+224+2%+... 42471
)

= (14+d)2-5-(29-1)
= d2¢ -4

Thus, it takes O(N log N) steps to build a heap in this way.

The second way of building a heap is to use FLOATDOWN().

40 Graphs, Algorithms, and Optimization

procedure BUILDHEAPBOTTOMUP(H, N)

The array H contains NV entries

comment: ..
transform it into a heap

k<« N/2
while & > 1
the substructures at nodes H[2k] and H[2k + 1]

comment: {already form subheaps

do
FLOATDOWN(k)

k+—k—1

This way is much more efficient, requiring only O(N) steps, as is proved in
Exercise 2.7.1.

We can use a heap H to store the values dist[v] in Dijkstra’s algorithm. The main
loop now looks like this.

up < u ‘“‘the nearest vertex to u”

fork < 1ton—1
comment: w1, us, . .., uy are currently known

for each v — wuy, such that v € uq,ua, ..., ug
if dist[v] > dist[ug] + WT(ugv)
do ¢ {dist[v] <« dist[ug] + WT(ugv)
FLOATUP(v) “which entry corresponds to v?”

choose w41 using H[1]
H[l] < H[n — k]
remove last entry from H
FLOATDOWN(1)
comment: ug, us, . .., U+ are Now known

do

Notice that the FLOATUP(v) operation requires that we also know which node
H k] in the heap corresponds to the vertex v, and vice versa. This can be done with
an array mapping vertices into the heap. Let us work out the complexity of Dijkstra’s
algorithm using this data structure. It is not possible to get an accurate estimate of the
number of steps performed in this case, but only an upper bound. The initialization
of the heap and dist[] array take O(n) steps. The inner for-loop executes a total of at
most 2¢ if-statements, so that at most 2¢ FLOATUP()’s are performed, each requiring
at most 1 + [log(n + 1)] steps. There are also n — 1 FLOATDOWN()’s performed.
Thus the complexity is now

O((2e +n)(1 + [log(n +1)])) = O(elog n).

This may be better or worse that the previous estimate of O(n?) obtained when the
minimum vertex is found by scanning up to n vertices on each iteration. If the graph
has few edges, say € < An/2, where the maximum degree A is some fixed constant,

Paths and Walks 41

or a slowly growing function of n, then Dijkstra’s algorithm will certainly be much
more efficient when a heap is used. Furthermore, it must be remembered that the
complexity estimate using the heap is very much an upper bound, whereas the other
method will always take at least O(n?) steps. If the number of edges is large, say
e = O(n?), then the heap-version of Dijkstra’s algorithm can spend so much time
keeping the heap up-to-date, that no increase in efficiency is obtained.

2.7 Floyd’s algorithm

Floyd’s algorithm solves the All Paths Problem, computing a matrix of values
Dist[u, v] = DIST(u, v), for all u,v € V(G). Initially, Dist[-, -] equals the weighted
adjacency matrix A, where

Wt (u,v), ifu— v,
Alu, v] = < o0, ifu /= v,
0, if u=o.

Floyd’s algorithm is extremely simple to program.

procedure FLOYD(Dist)
comment: Dist[u, v] will equal DIST(u, v), upon completion

for k< 1ton
forv <+ 1ton—1
do 4 {forw<—v+1t0n
do Dist[v, w] + MIN(Dist[v, w], Dist[v, u] + Dist[uy, w])

The for-loops for v and w together examine (;) pairs vw for each value of u, so
the complexity of the algorithm is

ny 1.3 1, 3
n<2>2n 5" = O(n”).

The graph is stored as a weighted adjacency matrix, in which non-adjacent ver-
tices v, w can be considered to be joined by an edge of weight co. Figure 2.9 shows
a weighted graph on which the reader may like to work Floyd’s algorithm by hand.

Let the vertices of G be named uy,us, ..., u,. In order to prove that Floyd’s
algorithm works, we prove by induction, that at the end of 1:th iteration of the for-
loop for u, Dist[v, w] is the length of the shortest vw-path which uses only vertices
v, w, and uy, ug, . .., ur. When k = 0, that is, before the first iteration, Dist[v, w] is
the length of the edge vw, that is, the length of the shortest path using only vertices
v and w. At the end of the first iteration, Dist[v, w] = MIN(WT(v, w), WT (v, u1) +
WT(uy,w)). This is the length of the shortest vw-path using only vertices v, w, and

42 Graphs, Algorithms, and Optimization

Uy U2 U3 Ug Us
(751 0 5 o0 3 2
u9 5 0 4 o0 2
uz loo| 4 (0| 1] 4
ug | 3 oo | 1 0 6
us | 2 12416710

FIGURE 2.9
A complete weighted graph and its weighted adjacency matrix

u1, because that path either uses w1, or else consists only of the edge vw. Thus, the
statement is true when k = 1.

Ut41

FIGURE 2.10
A path via w41

Assume that it is true whenever k < ¢, and consider iteration ¢ + 1. At the end of
the iteration, each

Dist[v, w] = MIN(Dist[v, w], Dist[v, uty1] + Dist[usr1, w]). 2.1

If the shortest vw-path using only vertices v, w, u1, U2, . . . , Us+1 does not use w1,
then its length is the previous value of Dist[v, w] from iteration ¢. If the path does
use u;41, then the length is given by the second term of Equation 2.1. Therefore,
at the end of the iteration, the value of Dist[v, w] is as required. By induction, it
follows that at the end of the n'! iteration, Dist[v,w] = DIST(v, w), for all v and
w. Floyd’s algorithm finds all distances in the graph. It always takes n (%) = O(n®)
steps, irrespective of the number of edges of G. When there are few edges, it is faster
to use Dijkstra’s algorithm n times, once for every starting vertex w. This gives a
complexity of O(en logn), using a heap, which can be less than O(n?).

Paths and Walks 43

Exercises

271

272

273

274
2175

2.7.6

Calculate the number of steps needed to construct a heap using the
BUILDHEAPBOTTOMUP() procedure.

The repeat-loop of the FLOATUP() procedure described in Section 2.7
requires k + 2 data items to be moved when an entry floats up £ nodes in
the heap. If FLOATUP() is programmed by swapping adjacent elements
instead of moving them in a cycle, calculate the number of items moved
when an entry floats up £ nodes. Which is more efficient?

The type of heap discussed in Section 2.6 is called a binary heap, because
each node H|[k| has two children, H[2k] and H[2k + 1]. The depth of a
binary heap with N elements is [log(N + 1)]. In a ternary heap, node
H k] has three children, H[3k], H[3k + 1], and H[3k + 2]. What is the
depth of a ternary heap with N nodes? Calculate the number of steps
needed to construct it using the BUILDHEAPBOTTOMUP() procedure.

Program Dijkstra’s algorithm using a binary heap.

Show how to store a complete set of shortest paths in Floyd’s algorithm,
using a matrix PrevPt[v,w], being the previous point to v on a shortest
vw-path. What should the initial value of PrevPt[v, w] be, and how and
when should it be modified?

Ford’s algorithm. Consider the following algorithm to find DIST(u, v),
for a given vertex u € V(G) and all vertices v € V(G).

procedure FORD (u)
for each v € V(G)
do dist[v] + oo
dist[u] < 0
while there is an edge vw such that dist[w] > dist[v] + WT[vw)]
do dist[w] + dist[v] + WT[vw]

Prove that Ford’s algorithm correctly computes DIST(u, v). What data
structures are necessary for an efficient implementation of Ford’s algo-
rithm? Analyze the complexity of Ford’s algorithm. Give a numerical es-
timate of the number of steps, as well as a formula of the form O(-).

2.8 Notes

WEISs [188] contains an excellent treatment of the merge-find data structure and
heaps. Dijkstra’s shortest-path algorithm and Floyd’s algorithm are described in most
books on algorithms and data structures.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

3
Subgraphs

3.1 Counting subgraphs

Given a graph G, we have seen two kinds of subgraphs — induced subgraphs, and
edge subgraphs, also known as partial subgraphs. An induced subgraph is de-
termined by a subset of V(G). An edge-subgraph is determined by a subset of
E(G). We will also look at mixed subgraphs later. There are interesting relationships
amongst these kinds of subgraphs.

If H is a graph with |H| < |G

, then following [113], we will write

G

H
for the number of induced subgraphs of G that are isomorphic to H. For example,
(I?;) counts the number of edges of G; (Ii.) counts the number of triangles of G. If

P, represents a path of length two, then (IS’;) counts the number of induced paths of
length two in G, etc.
4]
H

Similarly, we use
to denote the number of edge subgraphs of G that are isomorphic to H. We then have

{EJ is also the number of edges of G, but {g} is the number of paths of length

two in GG. Now an edge-subgraph isomorphic to P can induce either a triangle, or a

P5. Therefore
[G} (G L3 G
Pl \Pp K3

where the coefficient 3 arises because K3 contains three edge-subgraphs P,. We see
that the numbers of induced subgraphs and edge subgraphs are related. Let H be an
edge subgraph of G, and let m = |H|.

Lemma 3.1.

|U|=m

Proof. Every subset U C V(&) with m vertices induces a subgraph G[U] of G.

45

46 Graphs, Algorithms, and Optimization

G|U] contains [GIEU]} edge-subgraphs isomorphic to H. Each edge subgraph of G

that is isomorphic to H occurs in exactly one subset U. Therefore the sum counts all
edge subgraphs of GG isomorphic to H. O

For example, if |H| = 3, there are four possible induced subgraphs of G with
three vertices : K3, Po, Ko + K;,3K;. If we choose H = P, the lemma gives the
formula previously found.

We now make a list of all graphs on m vertices, say g1, g2, . . . gar, for some M.
If G is any graph with at least m vertices, then Lemma 3.1 gives M linear equations

relating the M quantities [gG} to the M quantities (gcj)

i

Lemma 3.2.
M

-2 21(5)

Construct a matrix [ZJ_' } , with rows indexed by g; and columns indexed by g;. We

order the graphs g; in order of increasing number of edges. For example, if m = 3,
we take g1 = 3K, go = Ko + K1, g3 = P>, and g4 = K3. The matrix is then given
by

o O =

1 1
1 2
0 1

—_ W W

o

0 0

Notice that it is upper triangular, with a diagonal of ones, and therefore invertible.
Moreover, the entries of the inverse are integers. When m > 3, there will be several
of the graphs g; with the same number of edges, maybe g;, g;+1, gi+2, - - .. The por-
tion of the subgraph matrix they determine will be an identity sub-matrix appearing
along the diagonal.

The quantities (gcj) and |:§:| form two bases of the vector space of all possible
linear combinations of subgraph counts of G. Lemma 3.2 can be viewed as a change
of basis transformation.

3.1.1 Mobius inversion

The graphs g1, g2, . . . gar on m vertices form a partially ordered set, where g; < g;
if and only if g; is an edge subgraph of g;. For example, when m = 3, the partial
order is illustrated in Figure 3.1. Each g; is represented by a node in the partial order,
with a graph drawn beside it. There is an edge connecting the node representing g; to
the node for g; below it if g; is a subgraph of g;, and there are no subgraphs between
them. The ordered set for m = 4 is shown in Figure 3.2.

Given any graph G, we have two subgraph counting functions (g) and [©]

i
defined on each g; in the ordered set. Lemma 3.2 says that if the values (gG) are
J

Subgraphs 47

FIGURE 3.1
The graphs on three vertices

known, then the values [gG} are determined by those g; such that g; > g; in the
partial order. For example, when m = 4, we have the equation

[f_ﬂ - (ﬁ) +4(g) +2(§) +6(§) +12(§) 1)

The equations of Lemma 3.2 can be inverted, using the partial order. It is clear
that (I?) = [KGm] , so that the equation for K, can be inverted. K, is the “top”
graph in the partial order. We then move to the graphs below it. Consider a graph g;
for which we want to determine (gcf) in terms of [o |. Given an occurrence of g; as
an edge subgraph of G, let U denote the subset of V(&) that this occurrence of g;
spans. There may be a g; such that G[U] contains more edges than those of g;, so
that () < [g } If wv is any such edge, then g; + uv = g;, for some j, such that
gi < g; in the partial order. The subset U contains both g; and g;, so that the count

[;;] contains (gi), but also other induced subgraphs as well. In order to count only
the induced copies of g;, we must subtract the edge-subgraphs g; contained in [gc‘;},
Each copy of g; contains [% | copies of g;. Therefore we subtract [% | [g |, for each
such g;, giving

1= [5)

where the sum is over all graphs g; with one more edge than g;. If every subset U
containing a subgraph g; induces either g; or a graph with one more edge than g;,
then we now have (g) thereby inverting the equation for g;. This will always be the
case when g; = K,,,.

Otherwise, let zy # wwv be another edge of G[U] not contained in g;, and let
g¢ = g; +ay and g, = g¢ + uv = g; + xy. The occurrences of g; and of g,

48 Graphs, Algorithms, and Optimization

FIGURE 3.2
The graphs on four vertices

contained in G[U] have already been subtracted in Equation (3.2). And because G[U]
also contains gj, we find that g;, has been subtracted twice — once for g; and once for
ge. Therefore it must be added back once to Equation (3.2). Each copy of g contains
[Z’“] copies of g;, and each of these copies of g; can be extended to a copy of g; and
ge contained in gj. This gives

S-S)

where the k sum is over all graphs g5 with two more edges than g;. We then consider
graphs g, contained in G[U] with three more edges than g;. Each has been subtracted
three times in Equation (3.2), but then added three times in Equation (3.3), and so
must be subtracted again. This pattern continues for all subgraphs of G[U] with more
edges than g;. The result is given in the following lemma.

Lemma 3.3. .
(j) N [S} +;(—1)e<gn—s<gi>[!ﬂ {;’}

For example inverting Equation (3.1)

(1)~ o1] 2l ol 2l

is obtained.

Subgraphs 49

This method of overcounting, then alternately subtracting and adding counts is
known as inclusion-exclusion. It is a special case of inversion in a partially ordered
set, known as Mobius inversion. See [15, 183] for further information.

Combining Lemmas 3.2 and 3.3, we have

Corollary 3.4.
M)
Z(—l)*f(gi)—f(gk)[gﬂ [g’“} —0 ifi#j orlifi=j
P gk Lyg;

3.1.2 Counting triangles

Let G be a graph with n vertices and € edges, and complement G. Suppose that we
want to count the number of triangles in G and G combined. Clearly the number is

() (2
()= ()

If we combine this with the identity

() () () (2)-0)
() (=61

Now we can convert the induced subgraph counts to edge subgraph counts, ob-
taining
G G G
©-[- -
Fan . A
G G G G
(2) - el ol
*—0. 0. A
() (G-
° + - ° -
o N P I
Now the first of these is easy to evaluate, it consists of an edge and n — 2 more

vertices, so that
G
[. } =(n—2)e

—0.

However

we obtain

Adding these gives

50 Graphs, Algorithms, and Optimization

The second term is the total number of ways of choosing two incident edges at every
vertex of G. If vertex w has degree d,,, then

G dy 1 5 1
HENGED
The second sum is just 2¢. The first sum can be bounded using the Cauchy-Schwartz
inequality
1 4e?
d2 > Z du 2 _ =
Substituting into the equation for counting triangles gives
G € 2e2
+ > (") —en—1)+ =
Pay Pay 3 n
as a bound on the number of triangles. This is Goodman’s formula [72] for the com-
bined number of triangles in G and G. If n is fixed, this is a quadratic in &, which has

its minimum value when ¢ = n(n — 1)/4,if n = 0 or n = 1 (mod 4). Substituting
this into the triangle count gives the minimum value n(n — 1)(n — 5)/24.

|
3.2 Multiplying subgraph counts

Either of the subgraph counts (gG) and [f} can be used as the basis of a vector
J 7

space or module. In fact, products of the subgraph counts can be expressed as linear
combinations, so that the subgraph counts form an algebra. If we choose two edges
of a graph G, this can be indicated by (Ii) (I?;) There are three possible outcomes
— the same edge is chosen twice, two adjacent edges are chosen, or two independent
edges are chosen. This can be expressed as

() (1) = () +2(0) +2)

The coefficient of 2 arises because P, and 2K each have two edges, either of which
can be chosen first.

This is a special case of a general theorem. Suppose that H; and H» are induced
subgraphs of G. An induced subgraph cover of G by Hy and H is a pair of subsets
Ui, Uz C V(G) such that G[U;] & Hy and G[Uz] & Ho, and U; UU; = V(G). That
is, Uy and U, together cover all of V(G), and they induce H; and Ho, respectively.
Notice that it is not required that U; and Us be disjoint. The number of induced
subgraph covers of G by Hy and Hy is denoted (Hng)‘

Subgraphs 51

Theorem 3.5. Let G be a graph, and let H, Hs be induced subgraphs of G. Let
m = |V (H1)| + |V (Hz)|, and let U be a subset of V(G). Then

() 32) = 2 (i) o)

Proof. The left-hand side of the equation asks for the number of induced subgraphs
of GG isomorphic to H;, and the number of induced subgraphs isomorphic to Hs. If
U, induces H,, and Us; induces Hs, then U = U; U U,y will induce (12@2) copies
of H; and H,. Conversely, any induced subgraph G[U] of G, where |U| < m, which
has an induced subgraph cover by H; and Hs will contain (Ig [_’[IJJQ) copies of H; and
H,. An induced cover by H; and Hy can contain at most m = |V (H;)| + |V (H3)|

vertices. O

As an example of the use of this theorem, let H; = P5 and let Hy = Ko. Write
(Hy) and (H>) in place of (I?l) and (Ii) Theorem 3.5 gives the linear combination
shown in Figure 3.3.

(1) =3 (1p) 2 (Cp) +2 (L) + (&)

FIGURE 3.3
An example of Theorem 3.5

This theorem has the obvious extension to products of more than two subgraph
counts, e.g.,

()= 5 (i)

A product of subgraph counts can always be written as a linear combination of sub-
graph counts.

An identical result holds for edge subgraphs. An edge subgraph cover of G by
Hy and H, is a pair of edge subgraphs H| = H; and H) = H, of G such that

E(H{)UE(Hj) = E(G). Thatis, H] and Hj together cover all the edges of G. The
number of edge covers of G by H; and H is denoted by [HIGHQ } .

Theorem 3.6. Let G be a graph, and let Hy, Hy be edge subgraphs of G. Let m =
|E(Hy)| + |E(Hs)|. Then

e(K)<m

where the sum is over all edge subgraphs K of G with at most m edges.

52 Graphs, Algorithms, and Optimization

Proof. The left-hand side of the equation asks for the number of edge subgraphs of
G isomorphic to H1, and the number of edge subgraphs isomorphic to Hs. Together
H, and H produce an edge cover of a subgraph K of G. Each edge subgraph K

contains [HIGHJ copies of H; and Hy. Clearly e(K) < m. O

As an example of the use of this theorem, let H; = Ps and let Hy, = Ko,

G

the same graphs as in Figure 3.3. Write [H;] and [H>] in place of [1?1 } and [Hy

Theorem 3.6 gives the linear combination

) =[]+] 2 [2 (] 2]+ [

It holds for any graph G.
This theorem also has the obvious extension to products of more than two sub-
graph counts, eg.,

AR o M | 4

All products of subgraph counts can always be written as a linear combination of
subgraph counts.

3.3 Mixed subgraphs

Given a graph H with vertex set U = V(H), we consider edge subgraphs of G
isomorphic to H, with certain edges forbidden. An edge-subgraph K of H is chosen
such that G[U] must not contain any edges of K. The pair (H, K) is called a mixed
graph. The edges of H are required edges, and those of K are forbidden edges. So we
are looking for edge subgraphs H of G such that K is an edge subgraph of G[V (H)].
The number of mixed subgraphs of GG isomorphic to (H, K) is denoted

(k)

For example, suppose that I = Ps, a path of length three. Let the endpoints
of the path be u and v, and let K be the edge uv. Then the mixed graph (H, K)
contains a 3-path as required edges and a single forbidden edge, which together form
a4-cycle C4. The diagonals of the cycle are neither required nor forbidden. H and K
are both edge subgraphs, so that we can also denote { HC,'VK } diagrammatically using
solid edges for H and dotted edges for K, and use the notation for edge subgraphs:

G G G G

S I D Rl D ANE R QP

Subgraphs 53

The coefficients 2 arise because the graphs involved each contain two mixed
subgraphs (H, K), that is, a P; whose endpoints are not adjacent.

Mixed subgraphs are a common generalization of induced subgraphs and edge
subgraphs. For example, given H, we can take K = (). Then (H,() is a mixed
subgraph of G if and only if H is an edge subgraph of G. But if we take K = H,
then (H, H) is a mixed subgraph of G if and only if H is an induced subgraph of G.

Similar to Lemma 3.1, we have

Lemma 3.7. Let G be a graph, and (H, K) a mixed graph. Let m = |V (H)|. Then
{ G }_ Z {G[U]} G
H K _|U\7 H, K J\G[U]
Proof. Every mixed subgraph of G isomorphic to (H, K) is contained in a subset U
of V(G), which induces a subgraph G[U]. G[U] accounts for {g[[;(]} mixed sub-
graphs isomorphic to (H, K). O
Lemma 3.7 shows that the counts of mixed subgraphs can be written in terms
of the basis of induced subgraphs. Equivalently, they can also be written in terms of

the basis of edge-subgraphs. Identities similar to Theorems 3.5 and 3.6 can also be
written.

3.4 Graph reconstruction

Ulam [182] asked whether the isomorphism type of a graph is determined by its
subgraphs. This problem has become known as Ulam’s problem, or the graph re-
construction problem. Given a graph G, we can form the vertex-deleted subgraphs
G — v, where v € V(G). Ulam asked whether the isomorphism types of the G — v
determine the isomorphism type of G:

If G and H are graphs with V(G) = V(H),and G—v = H—v, forallv € V(G),
isG = H?

The answer to this question is still unknown. Graphs G and H which satisfy the
hypothesis are said to be reconstructions of each other. If all reconstructions of GG
are isomorphic to G, then G is said to be reconstructible. 1t is easy to see that Ko
and 2K are reconstructions of each other. However, no other counterexamples are
yet known. A few basic methods related to subgraph counting are presented here,
beginning with Kelly’s lemma.

Lemma 3.8. (Kelly’s lemma) Let g and G be graphs, with |g| < |G|. Then

()= 2 ()

54 Graphs, Algorithms, and Optimization

[=emm 2, [

veV(G)

Proof. A given subgraph g of GG is an induced or edge subgraph of G — v whenever
v e V(G) —V(g). O

Lemma 3.8 shows how to count all proper subgraphs of GG. For example, the
number of edges, the number of triangles, 4-cycles, etc., can all be easily counted.
Some spanning subgraphs can then be counted using Theorems 3.5 and 3.6. For
example, let n = |G/. A spanning tree of G is an acyclic graph with n— 1 edges. Any
subgraph with n — 1 edges is either a spanning tree, or else a graph with fewer than
n vertices. We use Theorem 3.6 to construct a linear combination of edge subgraph

counts for the expression
G
(=)
n—1

which counts the subgraphs of G containing n — 1 distinct edges. The result is a
linear combination of subgraph counts for various edge subgraphs with fewer than
n vertices, plus the number of spanning trees. We solve the equation to obtain the
number of spanning trees. For example, when n = 5, we choose four distinct edges
of G. Refer to Figure 3.2 to see that there are four graphs on four vertices with four
edges. Any graph on five vertices with four edges is a spanning tree. Therefore the
number of spanning trees can be written in terms of subgraphs on at most four edges.
Hamilton cycles can be counted in a similar way. See [22] or [113] for further details.
The edge analogue of the graph reconstruction problem is:

Let G and H be graphs with |G| = |H| and ¢(G) = ¢(H), such that there
is a one-to-one correspondence between E(G) = {ey,ea,...,e,} and E(H) =
{e},eh, ... el .}, where e; corresponds with e}, and m = &(G). Suppose that
G—e, =2 H-—e¢l,forallilsG= H?

Graphs satisfying this hypothesis are said to be edge-reconstructions of each
other. If all reconstructions of G are isomorphic to G, then G is said to be edge-
reconstructible. It is easy to see that K3 + K; and K 3 are edge-reconstructions
of each other. However, no other counterexamples are yet known. Many families of
graphs have been proved to be edge-reconstructible.

There is a vast literature on graph reconstruction. See [22, 21, 131, 113, 139] for
further information. One of the strongest results known is Nash-Williams’ lemma,
described in the next section.

3.4.1 Nash-Williams’ lemma

Let G and H be edge-reconstructions of each other, with V/(G) = V(H), such that
G % H.Letn = |V(G)|. We count various mappings from G to H. Any permutation
of V(G) will usually map some edges of G to edges of H, and some edges of G to

Subgraphs 55

non-edges of H. Given a graph K with V(K) C V(G), weuse |G — H|x to denote
the number of permutations of V(G) such that only the edges of K map to edges of
H. Similarly |K — H| indicates the number of one-to-one mappings of V (K) into
V/(H) that map all edges of K to edges of H. Clearly |[K — H| = |AUT(K)|- [1}].
This is because every edge subgraph of H isomorphic to K can be permuted by
AUT(K) without changing it, and because K can be mapped to any edge subgraph
of H that is isomorphic to K.

We now consider all graphs X that contain K as a spanning edge subgraph, and
sum |G — H|x. This counts all those permutations of V' (G) such that at least the
edges of K map to edges of H. Therefore

H
zx:|G—>H|X = |K — H| = |AUT(K)| - {K} (3.4)

where the sum is over all graphs X that contain K as a spanning edge-subgraph.

But the graphs on n vertices form a partially ordered set, as in Figures 3.1 and 3.2,
and we can use inclusion-exclusion, as in Theorem 3.3, to invert this formula. The
result is

3.5)

€ —E€ H
6= Hlxc = 3 (-1 000 Au ()] -

where the sum is again over all graphs X containing K as a spanning edge subgraph
Now because G' and H are edge-reconstructions of each other, we have [(] = [4]
for all edge subgraphs X with fewer than £(G) edges. And it is clear that both are

zero if X has more than £(G) edges.

Lemma 3.9. (Nash-Williams’ lemma) Let G and H be edge-reconstructions of each
other. Let K be a graph with |G| vertices. Then

G = Gl — |G — H|x = (1)~ AuT(K)|{ [ﬁ} - [ﬁﬂ}

Proof. We subtract |G — G|k and |G — H|k using Equation (3.5). All terms
cancel except possibly the terms with X = K (when K = G or K = H), thereby
giving the result. U

We can choose K = G in Lemma 3.9. Notice that if G =2 H, then [g] = [g] =
1, so that the equation of Lemma 3.9 is zero. But if G 22 H, the equation determines
|G = G|lg — |G — H|g = |AUT(G)| # 0.

Consider now graphs G for which e(G) > (%). We choose K to be the empty
graph on n vertices. Then |G — G|k counts the number of permutations of V(G)
such that no edge of GG is mapped to an edge of G, which must be zero. Therefore
|G = G|k = |G — H|k = 0, which implies that [&] = [2], so that G = H. This
gives:

Corollary 3.10. A graph G on n vertices with e(G) > (Z) is edge-reconstructible.

This result can be improved slightly. See [22] for further details.

56 Graphs, Algorithms, and Optimization

Exercises

34.1 Construct the matrix [ZJ_' } for the 11 graphs on four vertices. Find its
inverse.

3.4.2 Calculate the minimum triangle count for Goodman’s formula when n =
2 and n = 3 (mod 4). Find graphs that achieve the minimum.

343 Construct the subgraph identities for (1(,;2) (Ig';) and [192] [Ig'; } , where P,

is a path of length two.

344 Construct the subgraph identities for the number of spanning trees in a
graph with six vertices.

3.4.5 Suppose that G = L(H), the line-graph of H. If e € E(H), show that
the vertex-deleted subgraph G — e = L(H — e).

34.6 Show that the vertex-deleted subgraphs G — v can be determined from the
edge-deleted subgraphs G — e. Conclude that any graph which is vertex-
reconstructible is also edge-reconstructible.

3.5 Notes

There are many surveys of the graph reconstruction problem. Some of them are
BONDY [22], BONDY and HEMMINGER [21], NASH-WILLIAMS [131], LAURI and
SCAPELLATO [113], and RAMACHANDRAN [139]. Theorems 3.5 and 3.6 are from
KocAy [106], and are also treated in BONDY [22] and LAURI and SCAPELLATO
[113]. The description of Nash-Williams’ lemma is based on BONDY [22]. It origi-
nally appeared in NASH-WILLIAMS [131].

4
Some Special Classes of Graphs

4.1 Bipartite graphs

A graph G is said to be bipartite if V(G) can be divided into two sets X and YV
such that each edge has one end in X and one end in Y. For example, the cube is
a bipartite graph, where the bipartition (X,Y") is illustrated by the coloring of the
nodes in Figure 4.1.

(a) (b)

FIGURE 4.1
Two bipartite graphs

The maximum number of edges in a simple bipartite graph in which X and Y
are the two sides of the bipartition is clearly | X | - |Y'|. The complete bipartite graph
Ky, has | X| = m, |Y| = n, and ¢ = mn. For example, K3 3 is illustrated in
Figure 4.1.

Lemma 4.1. A simple, bipartite graph G has at most |G|? /4 edges.

Proof. Let G have bipartition (X,Y’), where |X| = z and |Y| = n — x, where
n=|G|. Thene < z(n — x) = nx — 2% = n?/4 — (n/2 — x)* < n?/4. O

If C = (x1,y1,%2,y2,...) is a cycle in a bipartite graph G, then consecutive
vertices of C' must be alternately in X and Y, the two sides of the bipartition. It
follows that ¢(C') is even. In fact, any graph in which all cycles have even length
must be bipartite.

Theorem 4.2. G is bipartite if and only if all cycles of G have even length.

Proof. Let GG be a connected graph in which all cycles have even length. Pick any

57

58 Graphs, Algorithms, and Optimization

x € V(G) and set X = {v : DIsST(z,v) iseven}, and Y = V(G) — X. Clearly
X and Y partition V(G) into two parts. We must show that there are no edges with
both endpoints in X or Y. Suppose that uv is an edge with u,v € X. Let P, be a
shortest zu-path, that is, a path of length DI1ST(z, u), and let P, be a shortest zv-path.
Then ¢(P,) and £(P,) are both even. Say ¢(P,) < ¢(P,). P, and P, both begin at
point z. They do not both contain u, or P,uv would be a shortest xv-path of length
¢(P,) + 1, an odd number. So let z be the last point in common to P, and P,. This
defines the cycle C' = P, [z, u]uvP,[v, z]. Here P, [z, u] denotes the portion of P,
from z to u and P,[v, z] denotes the portion of P, from v to z. The length of C'is
then ¢(P,[z,u]) + ((Pylv, 2]) + 1 = £L(P,) + ¢(P,) — 2DIST(x, z) + 1, which is
odd, a contradiction. Therefore no edge uv has both endpoints in X. Similarly, no
edge uv has both endpoints in Y. Because a graph is bipartite if and only if every
component is bipartite, this completes the proof. O

FIGURE 4.2
Two paths in a bipartite graph

Lemma 4.3. If G is a k-regular bipartite graph, where k > 0, with bipartition
(X,Y), then | X| =Y.

Proof. Because each edge has one end in X, we can write ¢ = X, xDEG(z) =
k- |X|. Similarly, ¢ = ¥,cyDEG(y) = k - [Y]. Therefore k - | X | = k - |Y|. Because
k > 0, it follows that | X| = |Y]. O

Exercises

4.1.1 The k-cube @y, is a graph whose vertex set consists of all binary vectors
of length k:

V(Qk) = {(a1,a2,...,a;) : a; € {0,1}}
Thus there are 2" vertices. The edges of (), are formed by joining two

vertices a = (a1,az,...,a;) and 7: (b1,ba, ..., by) if @ and 7

Some Special Classes of Graphs 59

differ in exactly one coordinate, that is, a; = b; for all ¢ but one. Q3 is
displayed in Figure 4.3. Prove that @), is bipartite. Describe a bipartition

of Qk.
001 011
Q 0O
C O
000 010
FIGURE 4.3

The 3-cube, Q3

4.12 Provethate(Qy) = k2F~1.

4.1.3 Describe in pseudo-code an algorithm to find a bipartition of G, or to
determine that (7 is not bipartite. Describe the data-structures needed, and
calculate the complexity (should be O(g)).

4.1.4 Let G be a bipartite simple graph with bipartition (X,Y") and n vertices.
Let 0 x be the minimum degree among the vertices of X, and dy be the
minimum degree among the vertices of Y. Show that if §x + dy > n/2,
then G is connected, where dx, 6y > 0.

4.2 Line graphs

Two edges of a graph GG are adjacent if they share a common endpoint. The line-
graph of G is a graph L(G) which describes the adjacencies of the edges of G. Thus,
every vertex of L(G) corresponds to an edge uv of G, so that |L(G)| = £(G). This
is illustrated in Figure 4.4.

A line-graph can always be decomposed into complete subgraphs. For a ver-
tex v € V(G) lies on DEG(v) distinct edges all of which share the endpoint v.
The DEG(v) corresponding vertices of L(G) form a complete subgraph containing
(DES’(“)) edges. Every edge of L(G) is contained in exactly one such complete sub-
graph.

60 Graphs, Algorithms, and Optimization
24
1 4
12 14
2 3 23 34
G L(G)
FIGURE 4.4
Constructing a line-graph
G L(G)
DEG(v) edges (DEQG(“)) edges

FIGURE 4.5
Complete subgraph in a line-graph

This gives the following theorem:

Theorem4.4. c(L(G)) = (DES’(“))

ueV(G)
Exercises

421 Find the line-graph of the cube.

42.2 Construct L(K5) and show that it is isomorphic to the Petersen graph.

423 Let GG be any graph. If we insert a vertex of degree two into each edge, we
obtain a new graph S(G), called the subdivision graph of G. For example,
S(K4) isillustrated in Figure 4.6. Prove that S(G) is always bipartite, and
find a formula for £(S(G)).

424 The graph P in Figure 4.7 is called the 3-prism. Find the line-graphs of the
subdivision graphs of K4 and P. Draw them as neatly as possible. What
can you say in general about constructing the line-graph of the subdivision
graph of a 3-regular graph?

4.2.5 We know that

Z DEG(u) = 2¢(Q),

Some Special Classes of Graphs 61

Ky S(Ky)

FIGURE 4.6
Subdivision graph of K4

FIGURE 4.7
The 3-prism

and that

5 (DE(QE(“)) = £(L(G)).

u

Can you find a similar way of interpreting

Z (DE;}(u)) ?

u

Assume first that there are no triangles in G.

4.2.6 Suppose that a graph G is represented by its adjacency matrix. Write a
program to print out the adjacency lists of L(G), but do not store either
adjacency lists or an adjacency matrix for L(G); just print it out. Also
print out a list of the edges of G, in order to give a numbering to the
vertices of L(G).

427 Notice that L(K3) = L(K; 3) = K3 (see Figure 4.8). Prove that if G and
H are any other graphs, then G = H if L(G) = L(H).

(A)HA)-A

Two graphs with isomorphic line-graphs

62 Graphs, Algorithms, and Optimization

4.3 Moore graphs

The length of the shortest cycle in a graph G is called its girth, denoted v(G). For
example, the cube has girth four. Graphs with fixed degree £ and fixed girth often
have interesting properties. For example, let G be a k-regular graph of girth four, and
pick any vertex w in G. There are k vertices at distance one from u. Because G has
no triangles, there are at least £ — 1 vertices at distance two from u, as shown in
Figure 4.9. Therefore, |G| > 1+ k + (k — 1) = 2k. There is only one such graph
with |G| = 2k, and that is the complete bipartite graph K, 1.

> k — 1 points
k points

1 point

FIGURE 4.9
Kk

Now let G be a k-regular graph of girth five, and let v be any vertex. There are
k vertices at distance one from u. Because G has no 4-cycles, each point at distance
one is adjacent to k— 1 more vertices at distance two, so that |G| > 1+k+k(k—1) =
k? +1.

Problem. Are there any k-regular graphs G of girth five with |G| = k? + 1?

These graphs are called Moore graphs. Let n = |G|. A 1-regular graph cannot
have v = 5,50 k > 2. If k = 2, then n = 22 + 1 = 5. G is a cycle of length five.
This is the unique Moore graph of degree two.

If k£ = 3, then n = 3% + 1 = 10. There are three vertices at distance one from w,
and six at distance two, as illustrated in Figure 4.10. Consider vertex ug. ug 72 us,
because this would create a triangle, whereas v = 5. Without loss of generality,
we can take ug — ug. Were we now to join ug — u7, this would create a 4-cycle
(ug, ur,us, ug), which is not allowed. Therefore, without loss of generality, we can
take ug — wug. This is shown in Figure 4.10.

There is now only one way of completing the graph so as to maintain v = 5.
Vertex ug cannot be joined to us, us, or u1g. Therefore ug — w7. Similarly ug —
u10, etc. The completed graph is shown in Figure 4.10, and has been redrawn in
Figure 4.11 (check that this is the same graph).

Thus, we have proved the following.

Theorem 4.5. The Petersen graph is the unique Moore graph of degree three.

Some Special Classes of Graphs 63

Us U U7 U U9 UL Us U U7 U U9 U0
U9 Uyg U2 Ug
U1 31
FIGURE 4.10

A Moore graph of degree three

FIGURE 4.11
The Petersen graph

There is a very elegant theorem proving that Moore graphs can exist only for
special values of k.

Theorem 4.6. A Moore graph of degree k can exist only if k = 2,3,7, or 57.

Proof. Let G be a Moore graph with adjacency matrix A and consider A2. Entry
[i, 4] of A? is the number of u;u-paths of length two. If u; — u;, then there is no
2-path from u; to u;, because v = 5. Therefore, [4?];; = 0if [A];; = 1.

If w; #— wu; then DIST(u;,u;) > 1. It is shown in Exercise 3.3.3 that
Di1ST(u;, u;) is always at most 2. Therefore, if u; /— u; there must be a 2-path
connecting u; to u;. There cannot be two such 2-paths, for that would create a 4-
cycle containing u; and u;. Therefore, [A?];; = 1 if [A];; = 0.

It follows that the matrix A2+ A consists of all 1’s off the diagonal. The diagonal
elements all equal &, the degree of G. The number of vertices is n = k? + 1.

64 Graphs, Algorithms, and Optimization

k

1

A+ A=
k

nxn

We can find the eigenvalues of this matrix. Write B = A? + A. If x is an eigen-
vector of A with eigenvalue «, then

Bx = (A% + A)x = AAx + Ax = aAx + ax = (a® + a)x

so that 3 = o + « is an eigenvalue of B. To find the eigenvalues of B, we solve
det(AI — B) = 0 for \.

A—k
A—k 1
det(A\ — B) = 1
A\ —
nxn
Adding rows 2 to n onto row 1 gives
A—k—n+1 A—-k—-n+1
-1 A=k
A—k
nxn
1 1
-1 A—k
=A—k—n+1)
A\ —
nxn
Now add the first row to each row to get
1 1
0 A—k+1
A—k—n+1)
A—k+1| .

=A—k—-n+1)A—k+1)"t=0.

Therefore the eigenvalues of B are

5= bi=k+n—1 (once),
| Be=k—1 (n-1times).

Some Special Classes of Graphs 65

Because 3 = a? + a, we can solve for a« = 1(—1+ /T + 4p). Should we take
the plus or minus sign? Because n = k2 + 1, the value 8; = k? + k + 1 gives

1 1
a=g(-1E VAR +4k+1) = S{-1£ 2k + D)} =kor — k-1

Now (31 occurs only once as an eigenvalue, so we must choose only one of these. G
is k-regular, so that the rows of A all sum to k. Thus, if x is the vector of all 1’s, then
Ax = kx, so that k is in fact an eigenvalue of A.

Consider now 5. The corresponding eigenvalues of A are

o d = 1(-14+V4k —3) (m; times),
1(-1—V4k =3) (m; times).

The total multiplicity ismj; +mg =n—1 = k2. Because the trace of A, that is,
the sum of its diagonal elements, also equals the sum of its eigenvalues, we can write

Qo =

mi+ms = k2 (sum of multiplicities)
agmi +asmog+k = 0 (sum of eigenvalues)

Solving these equations for m; and mo gives

. _—_1{—k2+2k_k2}
YT VAR -3

T2\ Vak-3

The multiplicities m; and my are integers. Consider the fraction

and

—k? 42k
Vik =3

If £ = 2, the numerator is 0. If k£ # 2, then v/4k — 3 must be an integer, so that
4k — 3 is a perfect square, say 4k — 3 = s2. Then

1
k= 1(52 +3)7

and 1

—k? 42k = 1—6(754 +2s5% +15).
This expression must be divisible by v/4k — 3 = s. If s does not divide 15, it cannot
be an integer, because the other 2 terms have no s in the denominator. Therefore
s = 1,3,5, or 15. The corresponding values of k, mj, ms, a1, and a are shown in
the following table:

66 Graphs, Algorithms, and Optimization

s k n mq me Q@ Qg
1 1 2 1 0o 0 -1
3 3 10 4 5 1 -2
5 17 50 21 28 2 -3
15 57 3250 1520 1729 7 -8

The value k£ = 1 does not correspond to a graph. k = 3 gives the Petersen graph.
There is a unique Moore graph with k£ = 7 and n = 50, called the Hoffman-Singleton
graph. It is not known whether a Moore graph with £ = 57 and n = 3250 exists. The
5-cycle is a Moore graph with k£ = 2. Its eigenvalues are

o1 = %(*1 + \/5)
and 1
az = 5(=1~ V5),
with multiplicities m; = mo = 2. O
The diameter of a graph is the maximum distance between any two vertices,
diam(G) = max{DIST(u,v) : u,v € V(G)}.

Thus, Moore graphs have diameter two.

Exercises

43.1 Let G be a Moore graph of degree k, with n = k? + 1 vertices. Let v be
any vertex of GG. Prove that there are exactly
k(k—1)?
2
pentagons containing v. Conclude that GG contains
k(k* +1)(k — 1)2
10

pentagons, so that k£ Z 4 (mod 5).

43.2 Let G be as in exercise 4.3.1. Prove that every v € V(G) is contained in
exactly
k(k—1)%(k —2)
2
hexagons and in
k(k —1)*(k —2)(k — 3)
2

heptagons.

433 Show that in a k-regular graph of girth five, with n = k? + 1 vertices, the
distance DIST(u, v) between any two vertices is at most two. Hint: Show
that DIST(u, v) = 3 implies the existence of a 4-cycle.

Some Special Classes of Graphs 67

4.4 Euler tours

Figure 4.12 shows a drawing of K5 illustrating a walk in which each edge is covered
exactly once.

FIGURE 4.12
A traversal of K5

A walk which covers each edge of a graph G exactly once is called an Euler trail
in G. A closed Euler trail is called an Euler tour. Thus Figure 4.12 shows that K
has an Euler tour and we say that K5 is Eulerian. It is easy to prove that a graph is
Eulerian when all its degrees are even.

Theorem 4.7. A connected graph G has an Euler tour if and only if all degrees of G
are even.

Proof. Let W be a closed Euler trail in GG, beginning at vertex v. Each time that W/
enters a vertex wu, it also must exit it. Therefore W uses an even number of edges
at each vertex u # v. Because the trail is closed, the same is true of v. Because W
covers every edge of GG exactly once, all degrees must be even.

Conversly suppose that all degrees of GG are even. The proof is by induction on
the number of edges of GG. The smallest connected graphs with even degrees are K
and K3, and both of these are Eulerian (for K1, W = @ is an Euler trail). If the
theorem is not true, let G be the smallest graph (i.e., smallest €) with even degrees
with no closed Euler trail. Clearly §(G) > 2, so that G contains a cycle, which
is an Eulerian subgraph. Let C' be the largest Eulerian subgraph which G contains.
Then £(C) < &(@G). The complementary subgraph G — C' also has even degrees, and
because it is smaller than G, each component of it must be Eulerian. Furthermore,
C intersects each component of G — C. We can now make an Euler trail in G from
C, by inserting into C' Euler trails of each component K of G — C, as the walk in C
reaches each K in turn. Therefore G is Eulerian. By induction, all connected graphs
with even degrees are Eulerian. |

68 Graphs, Algorithms, and Optimization

Notice that this theorem is true for multigraphs as well as simple graphs. If a
connected graph G has exactly two vertices, v and v, of odd degree, then we can
add an extra edge uv to G to get G', which will then have all even degrees. G’ may
now have multiple edges. If we now choose an Euler tour W in G’ beginning at v,
we can number the edges so that the new edge vu is the last edge traversed. Then
W — wv will be an Euler trail in G beginning at v and ending at v. This is illustrated
in Figure 4.13.

FIGURE 4.13
An Euler trail

If there are more than two vertices of odd degree, then it is clear that G' cannot
have an Euler trail.

4.4.1 An Euler tour algorithm

The proof of Theorem 4.7 is essentially an algorithm to find an Euler tour in a con-
nected graph G. The algorithm works by building a walk from a starting vertex u. It
takes the first edge ey = wv incident on u and follows it. Then it takes the first edge
e1 incident on v and follows it, and so forth. Because the degrees are all even, it must
eventually return to u. At this point, it will have found a closed walk in G that is a
sub-tour of an Euler tour. All the vertices visited in the sub-tour are stored on an ar-
ray called the ScanQ. It then repeats this process at u, finding another sub-tour. The
sub-tours are then linked together to create one sub-tour. It continues like this until
all the edges at u have been used up. It then moves to the next vertex on the ScanQ
and builds a sub-tour there, always linking the sub-tours found into the existing tour.
When the algorithm completes, all the vertices of G are in the ScanQ array, because
G is connected. Therefore we have an Euler tour.

The Euler tour is stored as a linked list of edges. This makes it easy to insert
a sub-tour into the list at any location. If e = wwv is an edge of G, then we write
nextEdge(e) and prevEdge(e) for the next and previous edges in a tour, respectively.
The adjacency list for vertex u is denoted by Graph[u]. This is a linked list of incident
edges.

When the algorithm begins building a sub-tour at vertex u, it needs to know an
edge at u currently in the Euler tour, if there is one. This is stored as EulerEdge[u]. It

Some Special Classes of Graphs 69

allows the algorithm to insert a sub-tour into the existing tour at that location in the
linked list.

70 Graphs, Algorithms, and Optimization

Algorithm 4.4.1: EULERTOUR(()

comment: Construct an Euler tour in G

ScanQ[1] + 1
QSize + 1
k+1
while k£ < QSize
u < ScanQ[k]
while Graph[u] # null
eo + Graph|u) “First edge at u.”
v < other endpoint of e
Remove edge e(from the graph.
e1 < €
while v # u
if v & ScanQ
QSize < QSize + 1

then {ScanQ[QSize] — v
eo < Graph|[v] “First edge at v.”
nextEdge(e1) < es
do < prevEdge(es) + ey
if EulerEdge[v] = null

then EulerEdge[v] <+ ey
do €1 < €2)
do v + other endpoint of e;
Remove edge e; from the graph.
comment: a sub-tour at u has just been completed

prevEdge(eq) < e1
nextEdge(e1) < eq
if EulerEdge[u] = NULL
then EulerEdge|u] < eq
insert the sub-tour at « into the

comment: .
existing tour at u

e1 < EulerEdge|u]
else ¢ ¢, prevEdge(e;)
es < prevEdge(ep)
nextEdge(es) « eq
nextEdge(es) + e;

Some Special Classes of Graphs 71

Algorithm 4.4.1 is very efficient. For each vertex u, all incident edges are con-
sidered. Each edge is linked into the Euler tour. This takes DEG(u) steps. Several
sub-tours at may be linked into the Euler tour being constructed. There are at most
DEG(u)/2 sub-tours at u. If follows that the complexity is determined by

> DEG(u) = 26(G) = O(e).

Exercises

4.4.1 Program Algorithm EULERTOUR(G).

4.4.2 Let G be a connected graph in which 2k of the vertices are of odd degree.
Show that there are k trails Wy, W, ..., W) such that, taken together,
Wr, Wa, ..., Wy cover each edge of G exactly once.

443 Let W be an Euler tour in G. To what subgraph of the line-graph L(G),
does W correspond?

444 Show that any Euler tour of a graph GG can be written as a union of cycles.

4.4.5 What does the following algorithm do when input a connected graph G?
What is its complexity?

procedure TESTGRAPH(G)
ScanQ[1] + 1
QSize <1
Tag[l] + 1
k<1
while £ < QSize
forallv — u
if v & ScanQ
QSize < QSize + 1
then ¢ ScanQ[QSize] < v
Tag[v] < —Tag[u]
else if Tag[v] = Tag[u]
then return (false)
k< k+1
return (true)

do do

72 Graphs, Algorithms, and Optimization

4.5 Notes

The theorem on Moore graphs is due to HOFFMANN and SINGLETON [85]. The
application of algebraic methods to graph theory is treated in BIGGS [17] and GOD-
SIL and ROYLE [70]. The eigenvalues of graph adjacency matrices is a vast topic.
See the surveys by HOFFMAN [84], SCHWENK and WILSON [156], or the book by
CVETKOVIC, DOOB, and SACHS [39]. An excellent description of Euler tour algo-
rithms can be found in GOULD [73].

S
Trees and Cycles

5.1 Introduction

A tree is a connected graph that has no cycles. Figure 5.1 shows a number of trees.

TV KA

FIGURE 5.1
Various trees

Trees are the smallest connected graphs; remove any edge from a tree and it
becomes disconnected. As well as being an important class of graphs, trees are im-
portant in computer science as data structures, and as objects constructed by search
algorithms. A fundamental property of trees is that all trees on n vertices have the
same number of edges.

Theorem 5.1. [f G is a tree, then ¢(G) = |G| — 1.

Proof. The proof is by induction on |G|. If |G| = 1, then G = K, which is a
connected graph with no cycle, so that ¢ = 0. Similarly, if |G| = 2, then G = Ko,
which has e = 1. Assume that the result is true whenever |G| < ¢, and consider a tree
G with |G| =t + 1. Now G must have a vertex of degree one, or it would contain a
cycle, so let v € V(G) have degree one. Then G’ = G — v is still connected, and has
no cycle, so it is a tree on ¢ vertices. Therefore ¢(G’) = |G'| — 1 = |G| — 2. It follows
that ¢(G) = |G| — 1, so that the result is true when |G| = ¢ + 1. By induction, it
holds for all values of |G]|. O

We saw in this proof that a tree G with € > 0 must have a vertex of degree one.
Consider a longest path P in GG. The two endpoints of P can only be joined to vertices
of P. Because GG does not contain any cycles, we can conclude that the endpoints of
a longest path have degree one. Therefore a tree has at least two vertices of degree
one.

73

74 Graphs, Algorithms, and Optimization

In a connected graph, any two vertices are connected by some path. A fundamen-
tal property of trees is that any two vertices are connected by a unique path. For if
there were two uv-paths P and @, where P # @, then traveling from u to v on P we
could find the first point of P which is not on). Continuing on P until we come to
the first point which is again on both P and (), we could now follow) back toward
u and so find a cycle, which, however, is not possible in a tree.

Every graph GG has subgraphs that are trees. The most important of these are the
spanning trees, that is, trees which span all the vertices of G.

Lemma 5.2. Every connected graph has a spanning tree.

Proof. Let G be a connected graph. If G has no cycles, then G is a spanning tree.
Otherwise choose a cycle C, and remove any edge xy € C from G. G is still con-
nected, because any uwv-path which uses xy can now be replaced by a path using
C — xy, so that every u and v are still connected by some path after xy has been
removed. We repeat this as many times as necessary until the resulting graph has no
cycles. It is a spanning tree of the original G. O

Exercises
5.1.1 Describe in pseudo-code an algorithm to find an edge on a cycle, if one
exists.
5.1.2 Make a list of all isomorphism types of trees on 1, 2, 3, 4, 5, and 6 vertices.

5.1.3 Show that there is a tree on n vertices with degree sequence
(d1,da,...,d,) if and only if

i:di - 2(77, - 1).
i=1

5.2 Fundamental cycles

Figure 5.2 shows a spanning tree of the Petersen graph. If 7" is a spanning tree of G,
let G — T stand for the graph whose edges are E(G) — E(T). Notice that if any edge
zy € E(G —T) is added to T', then T + xy contains a unique cycle C,,,. This is
because x and y are connected by a unique path P, in T'. P, + xy creates a cycle,
Cyy, called the fundamental cycle of xy with respect to 7.

Exercises

5.2.1 Show that G has € — |G| + 1 fundamental cycles with respect to any
spanning tree 7'.

522 Let 7" be a spanning tree of G, and let C' be a cycle of GG containing exactly
two edges xy and uv of G — T'. Prove that C' = Cpy © C\yy, Where @
denotes the operation of exclusive OR.

Trees and Cycles 75

FIGURE 5.2
A spanning tree

Every cycle of G can be formed from the fundamental cycles of G with respect
to any spanning tree 7'

Theorem 5.3. Let T be a spanning tree of G. Let C be any cycle containing k edges
ULV, UQV2, . . ., UV, Of G—=T, where k > 1. Then C' = Ciy, 4, BClpu, B - B Chpuy.-

Proof. The proof is by induction on k. The result is certainly true when k£ = 1.
Suppose that the edges u;v; occur on C' in the order ¢ = 1,2,..., k. These edges
divide the remaining edges of C' into a number of paths Py, P, ..., P, where P;

connects v; to u;41. This is shown in Figure 5.3.

Let C; = CYy,, denote the it fundamental cycle. Consider C . It consists of the
edge ujv; and the unique path P of T connecting v; to u;. P and P, both begin at
vertex v1. As we travel on P from vy toward u1, we eventually come to the first vertex
of P which is not on P;. This is also the last vertex in common with P;, because P
and P; are both contained in 7', which has no cycles. P may intersect several of the
paths P;. In each case the intersection must consist of a single segment, that is, a
consecutive sequence of vertices of P;, because 71" contains no cycles. The last path
which P intersects is Py, because both P and P, end with . This is illustrated in
Figures 5.3 and 5.4.

Consider now H = (7 @ C. It is a subgraph of G. It consists of that part
of C' which is not contained in C, plus that part of P which is not contained in
C. Thus, the portions common to P and each P; are discarded, but the new seg-
ments of P which are now added create one or more new cycles. Thus, H consists
of one or more edge-disjoint cycles constructed from edges of 7', plus the edges
U9V, U3V, . . . , ULVL. Because each of these cycles contains fewer than k edges
of G — T, we can say that H = Clypy D Cugvs ® -+ ® Cypn,- We then have
CioH=(C10C)BC =C = Cyy ®Cuyuy, @+ ® Cypyp,. Therefore the
result is true when C' contains k edges of G — T'. By induction the result is true for
all values of k. |

76 Graphs, Algorithms, and Optimization

us U3

Us Us

FIGURE 5.3
Decomposition into fundamental cycles

Thus the fundamental cycles of G' with respect to any spanning tree 7" generate
all the cycles of G.

5.3 Co-trees and bonds

Let G be a graph. If S C V(G), then S denotes V(G) — S. The edge-cut [S, S|
consists of all edges of G' with one endpoint in S and one endpoint in .S. Notice that
G — [S, 5] is a disconnected graph. See Figure 5.5.

If T' is a spanning tree of G, then the complementary graph T =G —Tiscalled
the co-tree corresponding to 7". Now a co-tree ' cannot contain any edge-cut of
G. This is because G — T = T, which is connected. If wv is any edge of T', then
T — wv consists of two components, .5,,, those vertices connected to u, a/pd Sy, those
vertices connected to v. [S,, S| is an edge-cut of G. It is contained in 7" + uv. This
is illustrated in Figure 5.6.

[Su, Sy is @ minimal edge-cut of G, that is, it does not contain any smaller edge-
cuts. For if zy is any edge, where © € S, and y € S,, then G — [S,, S,] + xy is
connected. Therefore:

1. A co-tree T contains no edge-cut.

Trees and Cycles 77

u
3 V3

Ul

FIGURE 5.4
Decomposition into fundamental cycles

2. If wv is any edge of G — T, then T + uv contains a unique minimal
edge-cut B, = [Su, Su].

Compare this with trees:

1. A tree T contains no cycle.

2. If wv is any edge of G — T, then T' + uv contains a unique fundamental
cycle Cy,.

The unique edge-cut By, contained in T + uv is called the Sfundamental edge-
cut of uv with respect to T'. Any minimal edge-cut of G is called a bond. There is a
duality between trees and co-trees, and cycles and bonds (bonds are sometimes called
co-cycles). There is a linear algebra associated with every graph, in which cycles and
bonds generate orthogonal vector spaces, called the cycle space and bond space of
G. Theorem 5.3 shows that the fundamental cycles with respect to any spanning tree
form a basis for the cycle space. Similarly, the fundamental edge-cuts form a basis
for the bond space. See BONDY and MURTY [23] for more information.

78 Graphs, Algorithms, and Optimization

FIGURE 5.5
An edge-cut

Exercises

5.3.1 How may fundamental edge-cuts does G have with respect to a co-tree
T'? What are the dimensions of the cycle space and bond space of G?

532 Let 7" be a spanning tree of GG, and let edge uv ¢ T'. Let xy be any edge
of the fundamental cycle C,,, such that xy # wv. Then T' + uv — xy
is also a spanning tree of GG. Thus, spanning trees of GG are adjacent via
fundamental cycles. The tree graph of G is Tree(G). Its vertices are the
spanning trees of (G, and they are adjacent via fundamental cycles. Show
that Tree(G) is a connected graph.

5.33 Show that trees (co-trees) are also adjacent via fundamental edge-cuts.

534 Let 7" be a spanning tree of GG, and let W be a closed walk in G such that

W uses edges of T" and edges uj vy, ugve, . .., urvy of G — T'. Describe
the subgraph H = Cy,4, @ Cuyvy, ® - -+ ® Cypn,,- What is its relation to
w?

53.5 Let[S, 5] be an edge-cut of G. Prove that [S, S] is a bond if and only if

G[S] and G[S] are connected graphs.

5.3.6 Let By = [54, gl]_be an edge-cut of G, and let By = [S5, S5 be a bond
contained in [Sy, S1]; that is, By C Bs. (Note: Sy will generally not be a
subset of S7.) Prove that [S1, S1] — [S2, S2] is also an edge-cut.

Trees and Cycles 79

FIGURE 5.6
Co-trees and edge-cuts

5.3.7 Use the previous question to prove that every edge-cut can be decomposed
into a disjoint union of bonds.

5.3.8 Find a decomposition of the edge-cut [S, S] in the graph shown in Fig-
ure 5.7 into bonds. The set S is marked by the shading. Is the decompo-
sition unique? (Hint: Redraw the graph so that edges do not cross each
other.)

FIGURE 5.7
Find a decomposition into bonds

539 Let 7" be a spanning tree of GG. Let wv and xy be edges of 7', with corre-
sponding bonds B,,, = [Sy, Sy] and By, =[Sy, Sy], where By, N By, #
@. Prove that B,,,, ® By, is a bond.

80 Graphs, Algorithms, and Optimization

5.3.10 Prove that any cycle and any bond must intersect in an even number of
edges.

5.4 Spanning tree algorithms

One of the easiest ways to construct a spanning tree of a graph G is to use a breadth-
first search. The following code is adapted from Algorithm 2.4.1. The statements
marked with (%) have been added.

Algorithm 5.4.1: BFSEARCH(G, u)

comment: build a breadth-first spanning tree of G

for v < 1 to |G| do OnScanQ|v] + false
ScanQ[1] + u
OnScanQ[u] + true

QSize <1

k+1

Parent[u] < 0 (%)
BFNum{u] + 1 (%)
Count + 1 (%)
Tree < empty list (%)
repeat

v < ScanQ[k|
for each w — v

do if not OnScanQ|w]
QSize < QSize + 1
ScanQ[QSize] + w
OnScanQ[w] <+ true

then { Parent[w] + v (%)

Count < Count + 1 (%)

BFNum|w] < Count (%)

add edge vw to Tree (%)
k+—k+1

until £ > QSize

A number of arrays ScanQ, OnScanQ, Parent, and BFNum are used in this al-
gorithm, as well as the counters QSize and Count, and the list of edges Tree of the
spanning tree constructed.

BFSEARCH(G, u) visits each vertex of the connected graph GG, beginning with .
The order in which the vertices are visited defines a numbering of the vertices, called
the breadth-first numbering. It is saved in BENum[-]. This is illustrated in Figure 5.8.

Trees and Cycles 81
u=1 4 1

FIGURE 5.8
A breadth-first tree

The search begins at node u, called the root of the spanning tree. In the example
provided in Figure 5.8, © = 1. As each node w is placed on the ScanQ, its parent in
the search tree is saved in Parent[w]. This is represented by the arrows on the tree in
the diagram. Thus, beginning at any node in the graph, we can follow the Parent[-]
values up to the root of the tree. The breadth-first numbering defines a traversal of the
tree, which goes level by level, and from left to right in the drawing. A great many
graph algorithms are built around the breadth-first search. The important property of
breadth-first spanning trees is that the paths it constructs connecting any vertex w to
the root of the tree are shortest paths.

In a weighted graph, different spanning trees will have different weights, where

WT(T) = Z WT(uv).

uveT

We now want to find a spanning tree 7" of minimum weight. This is called the mini-
mum spanning tree problem. There are many algorithms which solve it. We present
some of them here.

5.4.1 Prim’s algorithm

The idea here is to pick any u € V(G) and “grow” a tree on it; that is, at each
iteration, we add one more edge to the current tree, until it spans all of V(G). We
must do this in such a way that the resulting tree is minimum.

82 Graphs, Algorithms, and Optimization

Algorithm 5.4.2: PrRIM(G)

Tree is a list of edges in a minimum spanning tree.

comment: .o .
{VT are the vertices in the current tree being grown.

initialize Tree to contain no edges

t < 0 “the number of edges in Tree”

choose any u € V(Q)

initialize VT to contain u

comment: the Tree now has 1 node and 0 edges

while t < |G| — 1

choose an edge zy of minimum weight, withx € VI andy ¢ VT
add xy to Tree

addyto VT

t+—t+1

do

VT VT

FIGURE 5.9
Growing a tree with Prim’s algorithm

We first prove that Prim’s algorithm does in fact produce a minimum spanning
tree. Initially, V'T" contains one vertex, and Tree contains no edges. On each iteration
an edge zy with z € VT and y ¢ VT is added to Tree, and y is added to VT
Therefore, the edges of Tree always form a tree which spans V'T'. After n — 1 iter-
ations, it is a spanning tree of G. Call the tree produced by Prim’s algorithm 7", and
suppose that it consists of edges e, es, ..., e,_1, chosen in that order. If it is not a
minimum spanning tree, then choose a minimum tree 7 which agrees with 7" on
the first k iterations, but not on iteration k + 1, where k is as large as possible. Then
€1,e2,...,e, € T* butexyy ¢ T™. Consider iteration k + 1, and let ex41 = zy,
where z € VT and y € V7. Then T* + zy contains a fundamental cycle Cry.

C, must contain another edge uv with w € V1 and v € VT. Because Prim’s
algorithm chooses edges by weight, we know that WT(zy) < WT(uv). Now 7" =
T* 4+ xy — wv is also a spanning tree, and WT(7”) > WT(T*), because T* is a
minimum tree. But WT(7") = WT(T*)+WT(zy)—WT(uv) < WT(T*). Therefore,
WT(T") = WT(T*) and WT(2y) = WT(uv). It follows that 7" is also a minimum

Trees and Cycles 83

x Ck+1

VT VT

FIGURE 5.10
A fundamental cycle in Prim’s algorithm

tree, and that 7" contains eq, ea, . . . , e+ 1; that is, it agrees with T" on k41 iterations,
a contradiction. Consequently, Prim’s tree 7" is also a minimum spanning tree.

5.4.1.1 Data structures

The main operation performed in Prim’s algorithm is to select the edge xy, of min-
imum weight, with x € VT and y € VT'. One way to do this is to store two values
for each vertex y € V1.

MinWt[y]: the minimum weight WT(xy), over all x — y, where 2 € V'T'
MinPt[y]: that vertex x € VT with WT(zy) = MinWt|y].

Then to select the minimum edge xy, we need only perform the following steps:

select y € VT with smallest MinWt[y] value
x < MinPt[y]
for each w — y do {ifw €vr

then update MinWt[w]

Let n = |G|. If we scan the set V7T in order to select the minimum vertex y on
each iteration, then the first iteration requires scanning n — 1 vertices, the second iter-
ation requires n— 2 steps, etc., requiring 1+2+- - -4 (n—1) = (}) in total. The total
number of steps needed to update the MinWt[] values is at most 3 DEG(y) = 2¢
steps, over all iterations. Thus, the complexity when Prim’s algorithm is programmed

like this is 5

O(2e + %) =0(e +n?).

In order to remove the O(n?) term, we could store the vertices V7T in a heap H.
Selecting the minimum now requires approximately log n steps. For each w — y
we may also have to update H, requiring at most an additional DEG(y) log n steps
per iteration. The total number of steps performed over all iterations is now at most

84 Graphs, Algorithms, and Optimization

n—1
Z logn + Z DEG(y) logn < nlogn + 2¢logn.
k=1 Y

The complexity of Prim’s algorithm using a heap is therefore O(nlogn +
elogn). If € is small, this will be better than the previous method. But if ¢ is large,
this can be worse, depending on how much time is actually spent updating the heap.
Thus we can say that Prim’s algorithm has complexity:

e O(e + n?), if the minimum is found by scanning.
e O(nlogn + elogn), if a heap is used.

Exercises

5.4.1 Work Prim’s algorithm by hand on the graph in Figure 5.11, starting at
the shaded vertex.

FIGURE 5.11
Find a spanning tree

5.4.2 Consider Dijkstra’s shortest-path algorithm, which finds a shortest ww-
path for all v € V(G). For each v, let P, be the shortest path found.
Show that the collection of paths, | J,, P,, defines a spanning tree of G. Is
it a minimum spanning tree? (Hint: Use induction.)

5.4.3 Program Prim’s algorithm, storing the vertices VT in a heap.

544 Modify the breadth-first search algorithm to find the fundamental cycles
of G with respect to a BF-tree. Print out the edges on each fundamental
cycle. What is the complexity of the algorithm?

545 Let G be a weighted graph in which all edge-weights are distinct. Prove
that G has a unique minimum spanning tree.

Trees and Cycles 85

5.4.2 Kruskal’s algorithm

A forest is a graph which need not be connected, but whose every component is a
tree. Prim’s algorithm constructs a spanning tree by growing a tree from some initial
vertex. Kruskal’s algorithm is quite similar, but it begins with a spanning forest and
adds edges until it becomes connected. Initially the forest has n = |G| components
and no edges. Each component is a single vertex. On each iteration, an edge which
connects two distinct components is added, and the two components are merged.
When the algorithm terminates the forest has become a tree.

Algorithm 5.4.3: KRUSKAL(G)

Tree is a list of edges in a minimum spanning tree.

comment: . . .
{Tu is the component of the forest which contains wu.

initialize Tree to contain no edges

for each v € V(G) do initialize T, to contain only u

t < 0 “the number of edges in Tree”

comment: the forest currently has |G| nodes and 0 edges

while t < |G| — 1
Select the next edge xy of minimum weight, and determine
which components x and y are in, say « € T}, and y € T},
if T, #1T,
merge T, and T,
then ¢ add zy to Tree
t—t+1

do

Initially the forest has n components, and each one is a tree with no edges. Each
edge that is added connects two distinct components, so that a cycle is never created.
Whenever an edge is added the two components are merged, so that the number of
components decreases by one. After n—1 iterations, there is only one component left,
which must be a tree 7'. If 7" is not a minimum tree, then we can proceed as we did in
Prim’s algorithm. Let T" consist of edges eq, es, . . ., €, 1, chosen in that order. Select
aminimum tree 7" which contains ey, ea, . . . , e, but not ex 1, where k is as large as
possible. Consider the iteration in which ey 1 = xy was selected. T + xy contains a
fundamental cycle Cy,,, which must contain another edge ab incident on 77.. Because
Kruskal’s algorithm chooses edges in order of their weight, WT(zy) < WT(ab).
Then 77 = T* 4+ xy — ab is a spanning tree for which WT(7”) < Wt(T*). But
T* is a minimum tree, so that WT(T”) = WT(T™), and 7" is also a minimum tree.
T’ contains edges e, €2, . .., ext1, a contradiction. Therefore, Kruskal’s tree T is a
minimum spanning tree.

5.4.2.1 Data structures and complexity

The main operations in Kruskal’s algorithm are:

86 Graphs, Algorithms, and Optimization

FIGURE 5.12
Growing a forest with Kruskal’s algorithm

1. Choose the next edge xy of minimum weight.
2. Determine that x € T, and y € T,,.
3. Merge T, and T,.

The edges could either be completely sorted by weight, which can be done in
O(eloge) steps, or they could be kept in a heap, which makes it easy to find the
minimum edge. Because we may have a spanning tree 7" before all the edges have
been considered, it is usually better to use a heap. The components 7}, can easily be
stored using the merge-find data structure described in Chapter 2.

Each time an edge vy is selected from the heap, it requires approximately log e
steps to update the heap. In the worse case we may need to consider every edge of
G, giving a bound of ¢ log ¢ steps. Similarly, O(ca(n)) steps are needed to build the
components, where n = |G/|. Thus, Kruskal’s algorithm can be programmed with a
complexity of O(elogn + a(n)), where we have used loge < 2log n. Notice that
this can be slightly better than Prim’s algorithm. This is because the term «(n) is
essentially a constant, and because the heap does not need to be constantly updated
as the MinWt[-] value changes.

5.4.3 The Cheriton-Tarjan algorithm

The Cheriton-Tarjan algorithm is a modification of Kruskal’s algorithm designed to
reduce the O(e loge) term. It also grows a spanning forest, beginning with a forest
of n = |G| components each consisting of a single node. Now the term O(eloge)
comes from selecting the minimum edge from a heap of € edges. Because every

Trees and Cycles 87

component 7}, must eventually be connected to another component, this algorithm
keeps a separate heap P(@),, for each component 7, so that initially n smaller heaps
are used. Initially, PQ,, will contain only DEG(u) edges, because T, consists only
of vertex u. When T, and T,, are merged, PQ, and PQ, must also be merged.
This requires a modification of the data structures, because heaps cannot be merged
efficiently. This is essentially because merging heaps reduces to building a new heap.
Any data structure in which a minimum element can be found efficiently is called a
priority queue. A heap is one form of priority queue, in which elements are stored as
an array, but viewed as a binary tree. There are many other forms of priority queue.
In this algorithm, PQ, will stand for a priority queue which can be merged. The
Cheriton-Tarjan algorithm can be described as follows.

It stores a list Tree of the edges of a minimum spanning tree. The components of
the spanning forest are represented as 7, and the priority queue of edges incident on
vertices of T}, is stored as PQ),,.

Algorithm 5.4.4: CHERITONTARJAN(G)

initialize Tree to contain no edges
for each u € V(G)
initialize 7, to contain only u
create PQ,
do ! foreachv — u
do add uv to PQ,,
comment: each edge will appear in two priority queue

comment: the forest currently has |G| nodes and 0 edges

t<0
while t < |G| — 1
select a component 7T},
repeat
select the minimum edge zy € PQ, and determine
which components z and y are in, say x € T, and y € T,
until 73, # T,

do ¢ comment: zy connects two different components

merge T,, and T},
merge PQ, and PQ,
add zy to Tree
t—t+1

Exercises

54.1 Prove that the Cheriton-Tarjan algorithm constructs a minimum spanning
tree.

88 Graphs, Algorithms, and Optimization

542 Show that a heap is best stored as an array. What goes wrong when the
attempt is made to store a heap with pointers?

543 Show that heaps cannot be merged efficiently. Describe an algorithm to
merge two heaps, both with n nodes, and work out its complexity.

5.4.4 Program Kruskal’s algorithm, using a heap to store the edges, and the
merge-find data structure to store the components.

5.4.4 Leftist binary trees

A leftist binary tree (LB-tree) is a modification of a heap which allows efficient
merging. A node x in an LB-tree has the following four fields:

1. Value(x): the value stored.

2. Left(z): a pointer to the left subtree.

3. Right(z): a pointer to the right subtree.
4. rPath(x): the right-path distance.

An LB-tree satisfies the heap property; namely the entry stored in any node has value
less than or equal to that of its two children:

Value(x) < Value(Left{x))
and
Value(x) < Value(Right(x))

Therefore the smallest entry in the tree occurs in the top node. Thus, a heap is a
special case of an LB-tree. The distinctive feature of LB-trees is contained in field
rPath[z]. If we begin at any node in an LB-tree and follow Left and Right pointers
in any sequence, we eventually reach a nil pointer. In an LB-tree, the shortest such
path is always the rightmost path. This is true for every node in the tree. The length
of the path for a node x is the rPath(x) value. In the tree shown in Figure 5.13, the
rPath values are shown beside each node.

In summary, an LB-tree is a binary tree which satisfies the heap property, and
whose shortest path to a nil pointer from any node is always the rightmost path. This
means that LB-trees will tend to have more nodes on the left than the right; hence,
the name leftist binary trees.

The rightmost path property makes it possible to merge LB-trees efficiently. Con-
sider the two trees A and B in Figure 5.14 which are to be merged into a tree 7.
The top node of T is evidently taken from A, because it has the smaller minimum.
This breaks A into two subtrees, L and R. The three trees B, L, and R are now to be
made into two subtrees of 7. The easiest way to do this is first to merge R and B into
a single tree P, and then take P and L as the new right and left subtrees of T, placing
the one with the smaller rPath value on the right. The recursive merge procedure is
described in Algorithm 5.4.5, and the result of merging A and B of Figure 5.14 is
shown in Figure 5.15.

Trees and Cycles

89

FIGURE 5.13
A leftist binary tree

Algorithm 5.4.5: LBMERGE(A, B)

comment: Merge non-null LB-trees A and B

if Value(A) > Value(B) then swap A and B
if Right(A) = null then P < B
else P « LBMERGE(Right(A), B)
comment: choose the tree with the smaller rPath as right subtree

if Left(A) = null
Right(A) < null
then < Left(A) < P
rPath(A) < 0
if rPath(P) < rPath(Left(A))
then Right (A) «+ P

else else Right(A) < Left(A)
Left(A) < P
rPath(A) < rPath(Right(A)) + 1
return (A)

Notice that when the top node of A is removed, thereby splitting A into two
subtrees L and R, the left subtree L subsequently becomes one of the subtrees of 7.
That is, L is not decomposed in any way, it is simply transferred to 7. Furthermore,
L is usually the larger of the two subtrees of A. Let us estimate the number of steps
necessary to merge A and B, with rPath values r1 and rs, respectively. One step is
needed to choose the smaller node A, say, as the new top node. The right subtree R
will have rightmost path length of 11 — 1. When R and B are merged, one of them

90 Graphs, Algorithms, and Optimization

FIGURE 5.14
Merging two leftist binary trees

will be similarly decomposed into a left and right subtree. The left subtree is never
broken down. At each step in the recursion, the smaller value is chosen as the new top
node, and its Right becomes the next subtree to be considered; that is, LBMERGE()
follows the rightmost paths of A and B, always choosing the smaller entry of the
two paths. Thus, the rightmost paths of A and B are merged into a single path (see
Figure 5.15). Therefore, the depth of the recursion is at most 1 + ro. At the bottom
of the recursion the rPath values may both equal zero. It then takes about five steps to
merge the two trees. Returning up through the recursion, LBMERGE() compares the
rPath values of L and P, and makes the smaller one into the new right subtree. Also,
the new rPath value is assigned. All this takes about four steps per level of recursion,
so that the total number of steps is at most 5(ry + r2 + 1).

What is the relation between the rightmost path length of an LB-tree and the
number of nodes it contains? If the rPath value of an LB-tree 7" is r, then beginning
at the top node, every path to a nil pointer has length at least . Therefore, 7" contains
at least a full binary tree of r levels; that is, 7" has at least 2(r+1) _ 1 nodes. The

Trees and Cycles 91

4
4
AY

AY
AY

() ® © O
(19

FIGURE 5.15
The merged LB-tree

largest rightmost path length possible if T is to store n nodes is the smallest value of
7 such that 20"+Y — 1 > n, or r < [log 2.

If A and B both contain at most n nodes, then 1,72 < [log %W , and
LBMERGE(A, B) takes at most 5(r1 + 72 + 1) < 10 - [log 1] + 5 = O(logn)
steps. Thus LB-trees can be merged quite efficiently.

We can use this same method to extract the minimum entry from an LB-tree A,
using at most O(log n) steps:

select minimum as Value (A)
A < LBMERGE(Left(A), Right(A))

Consider now how to construct an LB-tree. In Chapter 2 we found that there are
two ways of building a heap, one much more efficient than the other. A similar situa-
tion holds for LB-trees. The most obvious way to build one is to merge successively
each new node into an existing tree:

initialize A, a new LB-tree with one node
repeat

get next value

create and initialize a new LB-tree, B

A < LBMERGE(A, B)
until all values have been inserted

92 Graphs, Algorithms, and Optimization

However, this can easily create LB-trees that are really linear linked lists, as
shown in Figure 5.16. This algorithm then becomes an insertion sort, taking O(n?)
steps, where n is the number of nodes inserted.

FIGURE 5.16
An LB-tree

A better method is to create n LB-trees, each containing only one node, and then
merge them two at a time, until only one tree remains. The trees are kept on a queue,
called the MergeQ.

Algorithm 5.4.6: BUILDLBTREE(MergeQ)

repeat
select A and B, the first two trees of MergeQ
A <+ LBMERGE(A, B)
put A at end of MergeQ

until MergeQ contains only one tree

return (A)

How many steps are needed to build an LB-tree in this way, if we begin with n
trees of one node each? There will be |n/2] merges of pairs 1-node trees, each of
which takes at most 5 steps. This will leave [n/2] trees on the Merge@, each with
at most two nodes. These will be taken two at a time, giving |n/4| merges of up to
2-node trees. Similarly there will be |n/8] merges of up to 4-node trees, etc. This is

Trees and Cycles 93

summarized in the following table:

tree size # pairs max rPath maxr; +ry+ 1
1 [n/2] 0 1
2 [n/4] 0 1
4 [n/8] 1 3
8 |n/16| 2 4
2k Ln/Qk“j k—1 2k —1

The last step will merge two trees with roughly /2 nodes each. The maximum
rPath value for these trees will be < [log WTH] , or approximately [logn| — 1. The

total number of steps taken to build the LB-tree is then at most

llogn]—1 n 5n llogn|—1

n 2k — 1
53]+ > 5(2k = 1)| gy) < 5 +5n > S
k=1 k=1

We can sum this using the same technique as in the heap analysis of Chapter 2, giving
asum of 10n — 2, where r = [logn| — 1. Thus, an LB-tree can be built in O(n)
steps.

We can now fill in the details of the Cheriton-Tarjan spanning tree algorithm.
There are three different kinds of trees involved in the algorithm:

1. A minimum spanning tree is being constructed.
2. The components T, are merge-find trees.

3. The priority queues PQ),, are LB-trees.

At the beginning of each iteration, a component T, is selected, and the minimum
edge xy € PQ, is chosen. How is T, selected? There are several possible strategies.
If we choose the same T, on each iteration, then the algorithm grows a tree from u;
that is, it reduces to Prim’s algorithm. If we choose the component 7, incident on
the minimum remaining edge, then the algorithm reduces to Kruskal’s algorithm. We
could choose the smallest component 77, but this would add an extra level of com-
plication, because we would now have to keep a heap of components in order to find
the smallest component quickly. The method which Cheriton and Tarjan recommend
is uniform selection; that is, we keep a queue, TreeQ, of components. Each entry on
the TreeQ contains T, and PQ,,. On each iteration, the component T, at the head of
the queue is selected and the minimum zy € PQ, is chosen,say x € T), and y € T},
where T, # T,. Once T, and T;,, PQ,, and PQ,, have been merged, they are moved
to the end of the TreeQ. Thus, the smaller components will tend to be at the head of
the queue. So the algorithm uses two queues, the MergeQ for constructing LB-trees
and merging them, and the TreeQ for selecting components.

The complexity analysis of the Cheriton-Tarjan algorithm is beyond the scope
of this book. If analyzed very carefully, it can be shown to be O(e loglog ¢), if pro-
grammed in a very special way.

94 Graphs, Algorithms, and Optimization

Minimum spanning tree algorithms are a good illustration of the process of al-
gorithm development. We begin with a simple algorithm, like growing a spanning
tree from an initial vertex, and find a complexity of O(n?). We then look for a data
structure or programming technique that will allow the n? term to be reduced, and
obtain a new algorithm, with complexity O(e log n), say. We then ask how the ¢ or
logn term can be reduced, and with much more effort and more sophisticated data
structures, obtain something like O(v/¢ log n) or O(¢ log log n). Invariably, the more
sophisticated algorithms have a higher constant of proportionality, so that improve-
ments in running time are only possible when n and € become very large. However,
the sophisticated algorithms also indicate that there are theoretical limits of efficiency
for the problem at hand.

Exercises

54.1 Prove that the result of LBMERGE(A,B) is always an LB-tree, where A
and B are non-nil LB-trees.

542 Let A be an LB-tree with n nodes and let B be an arbitrary node in the
tree. Show how to update A if:

(a) Value(B) is increased.
(b) Value(B) is decreased.
(¢) Node B is removed.

543 Delayed Merge. When (T, PQ,) is selected from the TreeQ, and
merged with (T, PQ,), the result is moved to the end of the queue. It
may never come to the head of the TreeQ again. In that case, it would
not really be necessary to perform the LBMERGE(PQ.,, PQ,). Cheri-
ton and Tarjan delay the merging of the two by creating a new dummy
node D and making PQ@, and PQ, into its right and left subtrees. D
can be marked as a dummy by setting rPath (D) to —1. Several dummy
nodes may accumulate at the top of the trees PQ,,. Should a tree with a
dummy node come to the head of the queue, its dummy nodes must be
removed before the minimum edge zy € PQ, can be selected. Write
a recursive tree traversal which removes the dummy nodes from an LB-
tree, and places its non-dummy subtrees on the MergeQ. We can then use
BUILDLBTREE() to combine all the subtrees on the MergeQ into one.

544 Program the Cheriton-Tarjan algorithm, using leftist binary trees with de-
layed merge, to store the priority queues.

5.5 Notes

An excellent description of the cycle space and bond space can be found in BONDY
and MURTY [23]. Kruskal’s and Prim’s algorithms are standard algorithms for mini-

Trees and Cycles 95
mum spanning trees. They are described in most books on algorithms and data struc-
tures. The Cheriton-Tarjan algorithm is from CHERITON and TARJAN [29]. Leftist
binary trees are from KNUTH [103], and are also described in WEISS [188].

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

6

The Structure of Trees

6.1 Introduction

The structure of trees is naturally recursive. When trees are used as data structures,
they are typically processed by recursive procedures. Similarly, exhaustive search
programs working by recursion also construct trees as they follow their search paths.
These trees are always rooted trees; that is, they begin at a distinguished node, called
the root vertex, and are usually built outwards from the root. Figure 6.1 shows several
rooted trees, where the root vertex is shaded black.

YL

Several rooted trees

If T is a tree, then any vertex v can be chosen as the root, thereby making 7" into
a rooted tree. A rooted tree can always be decomposed into branches. The tree T'
shown in Figure 6.2 has three branches B;, B, and Bs.

LYY,

FIGURE 6.2
Decomposition into branches

97

98 Graphs, Algorithms, and Optimization

DEFINITION 6.1: Let T have root vertex v. The branches of T" are the maximal
subtrees in which v has degree one.

Thus, the root is in every branch, but the branches have no other vertices in com-
mon. The number of branches equals the degree of the root vertex. If we know the
branches of some tree 7', then we can easily recombine them to get 7". Therefore,
two rooted trees have the same structure; that is, they are isomorphic, if and only if
they have the same number of branches, and their branches have the same structure.

Any vertex of a tree which has degree one is called a leaf. If the root is a leaf,
then 7' is itself a branch. In this case, let u be the unique vertex adjacent to v, the root
of T. Then T’ = T — v is a rooted tree, with root u. This is illustrated in Figure 6.3.
T’ can then be further broken down into branches, which can in turn be reduced to
rooted trees, etc. This gives a recursive decomposition of rooted trees into branches,
and branches into rooted trees.

TO T
%
u — u

N

)

FIGURE 6.3
Reducing a branch to a rooted tree

This technique can be developed into a method for determining when two rooted
trees have the same structure.

6.2 Non-rooted trees

All non-rooted trees on five and fewer vertices are displayed in Figure 6.4. Table 6.1
gives the number of trees up to 10 vertices.

If a leaf is removed from a tree on n vertices, a tree on n — 1 vertices is obtained.
Thus, one way to list all the trees on n vertices is to begin with a list of those on
n — 1 vertices, and add a leaf in all possible ways, discarding duplicates. How can
we recognize when two trees have the same structure? We shall see that non-rooted
trees can always be considered as rooted trees, by choosing a special vertex as root,
in the center of T', denoted CTR(T"). The center is defined recursively.

The Structure of Trees 99

n=1|n=2|n=3

\/i []
F -

The trees on five and fewer vertices

DEFINITION 6.2: LetT be atree on n vertices.

1. Ifn=1,say V(T) = {u}, then CTR(T") = u.
2. Ifn=2,say V(T) = {u, v}, then CTR(T) = uv.

If n > 2, then T has at least two leaves. Delete all the leaves of 7" to get
atree T'. Then CTR(T) = CTR(T").

Thus the center of a tree is either a vertex or an edge, because eventually case
(1) or (2) of the definition is used in determining the center of 7. Trees whose center
consists of a single vertex are called central trees. Trees with two vertices in the
center (i.e., CTR(T) is an edge) are called bicentral trees. Figure 6.5 shows two
trees, one central and one bicentral.

FIGURE 6.5
A central tree and a bicentral tree

A central tree can always be considered a rooted tree, by taking the center as the
root. A bicentral tree can also be considered a rooted tree, but we must have a means
of deciding which of two vertices to take as the root. Thus we can say that every tree
is a rooted tree.

100 Graphs, Algorithms, and Optimization

TABLE 6.1
The number of trees up to 10 vertices
n # trees
2 1
3 1
4 2
5 3
6 6
7 11
8 23
9 47
10 106

Exercises

6.2.1 Find the center of the trees shown in Figures 6.1 and 6.3.
6.2.2 Prove that any longest path in a tree 7" contains the center.

6.2.3 Prove that T is central if DIAM(T) is even, and bicentral if DIAM(T') is
odd.

6.2.4 A binary tree is arooted tree such that the root vertex has degree two, and
all other vertices which are not leaves have degree three. Show that if 7" is
a binary tree on n vertices, that n is odd, and that 7" has (n + 1) /2 leaves.

6.3 Read’s tree encoding algorithm

There are a number of interesting algorithms for encoding trees. Here we present one
of Read’s algorithms. It is basically an algorithm to find CTR(T’), keeping certain
information for each vertex as it progresses. When the center is reached, a root node
is uniquely chosen. Read’s algorithm encodes a tree as an integer. Its description
reveals a number of interesting properties satisfied by trees.

Let T be a tree whose center is to be found. Instead of actually deleting the leaves
of 7', let us simply draw a circle around each one. Draw the circle in such a way that
it encloses all the circles of any adjacent nodes which have been previously circled.
The last vertices to be circled form the center.

This system of nested circles can be redrawn in various ways.

Each circle corresponds to a vertex of 7'. The largest circle which encloses the
entire system corresponds to the center of 7'. Two circles correspond to adjacent
vertices if and only if one circle is nested inside the other. The circles not containing
a nested circle are the leaves of T'. If we cut off the top and bottom of each circle in

The Structure of Trees 101

FIGURE 6.6
A circled tree

FIGURE 6.7
Nested circles

Figure 6.7, we are left with a set of matched parentheses: ()(()())(O()())). By writing
0 for each left parenthesis and 1 for each right parenthesis, this can be considered a
binary number, 001001011001010111, which represents an integer.

The internal circles in Figure 6.6 have been sorted and arranged in order of in-
creasing complexity. For example, the first inner circle can be denoted 01. This is
less than the second circle, which can be denoted 001011, which in turn is less than
the third circle 00101011, considered as binary numbers. Thus, there is a natural
ordering associated with these systems of nested circles.

The binary number associated with each vertex v is called its tag, denoted ¢(v).
Initially each leaf has a tag of 01. The algorithm to find CTR(7T") constructs the vertex
tags as it proceeds.

102 Graphs, Algorithms, and Optimization

Algorithm 6.3.1: TREEENCODE(T)

comment: construct an integer tree code to represent the tree 7’

repeat
construct L(T), the set of leaves of 7', stored on an array
for each leaf v € L(T)
comment: suppose that v — {uq, ua,...,ur} C L(T)

do sort the tagged vertices adjacent to v by tag,
say t(u1) <t(ug) < -+ < t(ug)
t(v) < O0t(u1)t(ug) - - t(ug)l “concatenate them”
T+ T-L(T) “just mark the vertices deleted”
until all of 7" has been tagged
if L(T) contains one vertex u
then return (¢(u))
' {comment: L(T) contains two vertices u and v, say t(u) < t(v)
els

return (0¢(u)t' (v))

On the last iteration, when the center was found, either one or two vertices will
have been tagged. They form the center of T'. If 7' is a central tree, with CTR(T") = w,
we choose u as the root of 7'. Then ¢(u), the tag of the center, represents the entire
system of nested circles. It is chosen as the encoding of 7.

If T is a bicentral tree, with center uv, we must decide which vertex to choose
as the root of 7. We arbitrarily choose the one with the larger tag. Suppose that
t(u) < t(v), so that v is chosen as the root. The code for the entire tree is formed by
altering the enclosing circle of v so as to enclose the entire tree. This is illustrated in
Figure 6.8.

FIGURE 6.8
Choosing the root vertex

Thus, the tree code for T in the bicentral case is the concatenation 0t(u)t' (v),
where t(v) is formed from ¢(v) by dropping one initial 0-bit.

The Structure of Trees 103

If t(u) = t(v) for some bicentral tree T', then we can obviously select either u or
v as the root vertex.

The easiest way to store the tags ¢(v) is as an integer array ¢[v]. We also need to
store the length ¢[v], of each tag, that is, its length in bits. Initially each leaf v has
t[v] = 1 and ¢[v] = 2. To concatenate the tags Ot(uy)t(usz) - - - t(uy)1 we use a loop.

t[v] - 0

fori < 1tok

shift ¢[v] left £[v] bits
do < t[v] + t[v] + t[u]
Llv] + Llv] + L]

tlv] < 2t[v] +1

Lv] + Lv] +2

If a primitive left shift operation is not available, one can always store a table of
powers of 2, and use multiplication by 2¢[*:] in order to shift ¢[v] left by ¢[u;] bits.

6.3.1 The decoding algorithm

If the circles of Figure 6.6 are unnested, they can be redrawn so as to emphasize their
relation to the structure of 7.

/.\
T RwA

Unnested circles

The decoding algorithm scans across the system of nested circles. Each time a
new circle is entered, a vertex is assigned to it. The first circle entered is that corre-
sponding to the root vertex. The decoding algorithm uses a global vertex counter &,
which is initially zero, and constructs a global tree 7'. It can be programmed to scan
the tree code from right to left as follows:

104 Graphs, Algorithms, and Optimization

Algorithm 6.3.2: TREEDECODE(Tcode, v;)

comment: a new circle has just been entered, from circle v;.

k+—k+1 “create a new vertex”
join v, — v;

Tcode < Tcode /2 “shift right 1 bit”
while Tcode is odd

comment: the rightmost bit = 1, a new circle is entered

do { TREEDECODE(Tcode, vy,)
Tcode < Tcode /2 “shift right 1 bit”

The easiest way to use Algorithm 6.3.2 is to create a dummy vertex vy which will
only be joined to the root vertex, v, and then delete vy once the tree has been con-
structed.

k<0
TREEDECODE(Tcode, vp)
delete vg

Exercises

6.3.1 Encode the trees of Figure 6.5 into nested circles by hand. Write down
their tree codes.

6.3.2 Work through Algorithm 6.3.2 by hand, for the tree codes 001011 and
0001011011.

6.3.3 Write Algorithm 6.3.2 so as to scan the tree code from left to right, using
multiplication by 2 to shift Tcode to the right, and using the sign bit of
the code to test each bit. Assume a word length of 32 bits.

6.3.4 Program the encoding and decoding algorithms.

6.3.5 If T has n vertices, what is the total length of its tree code, in bits? How
many 1’s and 0’s does the code contain? How many leading 0’s does the
code begin with? What is the maximum value that n can be if 7" is to be
encoded in 32 bits?

6.3.6 Let 7" be a tree. Prove that the tree obtained by decoding
TREEENCODE(T'), using the decoding algorithm, is isomorphic to 7'.

6.3.7 Let 77 and T, be two trees. Prove that 73 = 75 if and only if
TREEENCODE(T7) = TREEENCODE(T%).

6.3.8 Consider the expression 122 - - - Tp41, Where x1, 22, . .., Ty41 are vari-
ables. If parentheses are inserted so as to take exactly two terms at a time,
we obtain a valid bracketing of the expression, with n pairs of matched
parentheses (e.g., ((z1(z2x3))x4), where n = 3). Each pair of matched
parentheses contains exactly two terms. Describe the type of rooted tree
on n vertices that corresponds to such a valid bracketing. They are called

The Structure of Trees 105

binary plane trees. Each leaf of the tree corresponds to a variable x; and
each internal node corresponds to a pair of matched parentheses, giving
2n + 1 vertices in total.

6.3.9 Let p,, denote the number of binary plane trees with n leaves (e.g., po =
0,p1 = 1,p2 = 1,p3 = 2, etc.). We take p; = 1 corresponding to the
tree consisting of a single node. Let p(z) = po + p17 + p22% + - - - be the
generating function for the numbers p,,, where x is a variable. If 77 and
T are two binary plane trees with n; and ngy leaves, respectively, then
they can be combined by adding a new root vertex, adjacent to the roots
of T and T5. This gives a binary plane tree with ny + no leaves. There
are pp, Pn, Ways of constructing a tree in this way. This term arises from
pQ(x) as part of the coefficient of ™1+"2, This holds for all values of 7
and ns. Therefore, we can write p(x) = z + p?(x). Solve this identity
for p(x) in terms of z, and then use the binomial theorem to write it as a
power series in x. Finally, obtain a binomial expression for p,, in terms of
n. The numbers p,, are called the Catalan numbers. (The answer should

be pn = 55 (1))

6.4 Generating rooted trees

One way to generate a list of all the trees on n vertices would be to add a new leaf to
the trees on n — 1 vertices in all possible ways, and to discard duplicates, using the
tree codes to identify isomorphic trees. However, they can also be generated directly,
one after the other, with no duplicates.

Let T be a central tree, rooted at its center v. Decompose 7' into its branches
By, Ba, ..., Bi. Each branch B; is also rooted at v. Write T' = (B, Ba, ..., By)
to indicate the decomposition into branches. Because v is the center of 7', it is the
middle vertex of every longest path in 7. Therefore, the two “tallest” branches of
T will have equal height, where we define the height of a branch B rooted at v as
h(B) = MAX{DIST(v,w) | w € B}. If the branches of the central tree 7" have
been ordered by height, so that h(By) > h(Bz2) > --- > h(Bjy), then we know
that h(B1) = h(B2). Any rooted tree for which the two highest branches have equal
height is necessarily rooted at its center. Therefore, when generating central trees,
the branches must be ordered by height.

Generating the rooted trees on n vertices in a sequence implies a linear ordering
on the set of of all rooted trees on n vertices. In order to construct a data structure
representing a rooted tree 7" as a list of branches, we also require a linear order on
the set of all branches. Then we can order the branches of 1" so that By > By >
-+ > Byg. This will uniquely identify 7°, as two trees with the same set branches will
have the same ordered set of branches. The smallest possible branch will evidently
be of height one, and have two vertices — it is K rooted at a vertex. The tree shown
in Figure 6.10 has five branches of height one; call them elementary branches. The

106 Graphs, Algorithms, and Optimization

next smallest branch is of height two, and has three vertices — it is the path P rooted
at a leaf.

Associated with each branch B is a rooted tree, as shown in Figure 6.3, con-
structed by advancing the root to its unique adjacent vertex, and deleting the original
root. We will use the ordering of rooted trees to define recursively an ordering of
all branches, and the ordering of all branches to define recursively an ordering of all
rooted trees. We know that all branches on at most three vertices have already been
linearly ordered.

FIGURE 6.10
A tree with all branches of height one

DEFINITION 6.3: Suppose that all branches on at most m > 2 vertices have
been linearly ordered. Let T = (B4, Bo, ..., By)and T" = (B{, By, . .., B)), where
k+¢ > 3, be any two distinct rooted trees with given branches, such that each branch
has at most m vertices, ordered so that By > By > -+ > Byand By > B4 > --- >
Bjy. Suppose that |T'| < |T”|. Then T and T are compared as follows:

1. If|T| <|T'|,then T < T".

2. Otherwise, compare (Bi,Ba,...,B;) and (B{,Bj,...,B}) lexico-
graphically. That is, find 4, the first subscript such that B; # B};
then T < 7" if B; < B.

The first condition is to ensure that all rooted trees on n vertices precede all trees
on n+ 1 vertices in the linear order. The second condition defines an ordering of trees
based on the lexicographic ordering of branches. Notice that if k£ # ¢, there must be
an 7 such that B, # BY; for if every B, = Bj, but k # ¢, then T and T" would
have different numbers of vertices, so that condition (1) would apply. This defines a
linear ordering on all rooted trees whose branches all have at most m vertices. This
includes all trees on m + 1 vertices with at least two branches. In fact, it includes all
rooted trees on m + 1 vertices, except for the path P,,, rooted at a leaf. As this is a
branch on m + 1 vertices, it is handled by Definition 6.4.

We now have an ordering of rooted trees with at least two branches, based on
the ordering of branches. We can use it in turn to extend the ordering of branches.
Let B and B’ be two distinct branches. In order to compare B and B’, we advance
their roots, as in Figure 6.3, to the unique adjacent vertex in each, and delete the
original root. Let the rooted trees obtained in this way be T' and T, respectively.
Then B < B’ if T < T". In summary, branches are compared as follows:

The Structure of Trees 107

DEFINITION 6.4: Suppose that all rooted trees on < m — 1 vertices have been
linearly ordered, and that all rooted trees on m vertices with at least two branches
have also been linearly ordered. Let B and B’ be branches on m vertices, with cor-
responding rooted trees T and T”. Suppose that |B| < |B’| and that if |B| = |B’|,
then B is the branch of smaller height. Then B and B’ are compared as follows:

1. If |B| < |B’|,then B < B'.
2. Otherwise, if h(B) < h(B'), then B < B'.
3. Otherwise, B < B'if T < T".

We have a recursive ordering which compares trees by the ordering of their
branches, and branches by the ordering of their trees. We must prove that the def-
inition is valid.

Theorem 6.1. Definitions 6.3 and 6.4 determine a linear order on the set of all
rooted trees.

Proof. Notice that rooted trees have a sub-ordering based on the number of vertices —
all rooted trees on n vertices precede all rooted trees on n+ 1 vertices. Branches have
an additional sub-ordering based on height — all branches of height /& on n vertices
precede all branches of height 2 + 1 on n vertices. A branch is a special case of a
rooted tree, in which the root vertex has degree one. If a branch B and tree 7" on n
vertices are compared, where 1" has at least two branches, then that first branch of
T has fewer than n vertices, so that 7' < B, by Definition 6.3. Therefore all trees
whose root vertex has degree two or more precede all branches on n vertices.

The definitions are clearly valid for all rooted trees on <3 vertices. Suppose that
the set of all rooted trees on <n vertices is linearly ordered by these definitions, and
consider two distinct rooted trees

T:(BlaB27"'?Bk)

and
T'= (B, By, ..., B))

onn + 1 vertices. If k = ¢ = 1, then T and 7" are both branches. The trees formed
by advancing their root vertices have only n vertices, and so can be compared by
Definition 6.3. Otherwise at least one of T and T” has two or more branches. There-
fore at least one of each pair B; and B; of branches has <n vertices. Therefore the
branches B; and Bj can be compared by Definition 6.4. The conclusion follows by
induction. |

In this ordering of branches and trees, the first rooted tree on n vertices is a star
consisting of the tree K ,,_1 rooted at its center. The last rooted tree on n vertices is
a path P, rooted at a leaf. The first branch on n vertices is K ,,—1, rooted at a leaf,
and the last branch on n vertices is also the path P,,, rooted at a leaf. The first few
rooted trees are shown in Figure 6.11.

108 Graphs, Algorithms, and Optimization

@)

@)
i (
[
FIGURE 6.11

The beginning of the linear order of rooted trees

N

Let T = (B1,Ba,...,By) be the list of branches of a rooted tree 7', with
root vertex v. The recursive data structure we use to represent 7' is a linked list
of branches. Each branch B; also has root v. It is in turn represented in terms of the
rooted tree T, whose root vertex is the unique vertex adjacent to v. Thus, a record
representing a tree 7" has four fields:

e NodeNum(T'), the node number of the root, which is used for printing.
e nNodes(T), the number of vertices in the tree.

e FirstBranch(T'), a pointer to the first branch.

e LastBranch(T'), a pointer to the last branch.

Each branch B of T has a corresponding rooted tree 7”. B is represented as a
record having four fields:

o Height(B), the height of the branch.

e NextRoot(B), a pointer to the rooted tree 7".

e NextBranch(B), a pointer to the next branch of 7.

e PrevBranch(B), a pointer to the previous branch of 7.

It is not necessary to store the number of vertices of a branch B, as it is given by
nNodes(NextRoot(B)) + 1. The functions which compare two trees and branches
are given as follows. They return an integer, whose value is one of three constants,
LessThan, EqualTo, or GreaterThan.

The Structure of Trees 109

Algorithm 6.4.1: COMAPARETREES(TY,T5)

comment: 73 and 75 both have at least one branch

if |T1| < |T»| then return (LessThan)
if |T1| > |T»| then return (GreaterThan)
comment: otherwise |17 | = |T5|

Bj « FirstBranch(T})

By « FirstBranch (T5)

Result + COMPAREBRANCHES (B, Bs)

while Result = EqualTo

if B; = LastBranch(T7) then return (EqualTo)
B + NextBranch(B1)

By + NextBranch(Bs)

Result + COMPAREBRANCHES (B, Bs)
return (Result)

do

Algorithm 6.4.2: COMPAREBRANCHES(B1, B>)

comment: B; and B both have a unique vertex adjacent to the root

if | B1| < | B2| then return (LessThan)
if | B1| > | B2| then return (GreaterThan)
comment: otherwise | B1| = | Ba|

if Height(B1) < Height(Bs) then return (LessThan)
if Height(B,) > Height(Bs) then return (GreaterThan)
comment: otherwise Height (B,) = Height(Bs)

if Height(B1) = 1 then return (EqualTo)
T, + NextRoot(B)
Ty + NextRoot(Bsz)
return (COMPARETREES(T1,T5))

Using these functions we can generate all rooted trees on n vertices, one after
the other, beginning with the first tree, which consists of a root vertex and n — 1
elementary branches of height one, until the last tree is reached, which has only
one branch, of height n — 1. Written in pseudo-code, the technique is as follows,
where NEXTTREE(T) is a procedure which replaces T' with the next tree, and returns
true unless 7" was the last tree (see Algorithm 6.4.3). FIRSTTREE(n) is a procedure
that constructs the first tree on n vertices.

T < FIRSTTREE(n)
repeat

PRINTTREE(T)
until not NEXTTREE(T)

110 Graphs, Algorithms, and Optimization

Suppose that 7" has branch decomposition (B1, Ba, ..., By), where By > By >
-+« > By. The procedure NEXTTREE(T') works by finding the last branch B; such
that B; # B;_1. Then B;, B;11, ..., By is a sequence of isomorphic branches. So
long as B; is not simply a path of length h(B;), there is a larger branch with the same
number of vertices. B; is then replaced with the next larger branch and the subsequent
branches B;1, B2, ..., By are replaced with a number of elementary branches.
This gives the lexicographically next largest tree. This is illustrated in Figure 6.12.
Here, B was replaced with a branch of height three, and B3 was replaced with three
elementary branches.

FYT fdaa

FIGURE 6.12
Constructing the next tree

But if B; is simply a path, then it is the last branch with | B;| vertices. In order
to get the next branch we must add another vertex. B; is then replaced with the first
branch with one more vertex. This is the unique branch with |B;| + 1 vertices and
height two. 7' is then filled in with as many elementary branches as needed. This is

illustrated in Figure 6.13.
By By B3

B, By Bs

FIGURE 6.13
Constructing the next tree

The procedure DELETEBRANCHES(T', By) destroys all branches of 7' follow-
ing Bi, and returns the number of nodes deleted. Similarly DESTROYTREE(T) is
a procedure that destroys all branches of 7', and returns the total number of nodes
deleted.

The Structure of Trees 111

Algorithm 6.4.3: NEXTTREE(T)

By <« LastBranch(T)
if By = FirstBranch(T)
comment: only one branch — advance the root

then < if nNodes(T) = Height(B;) + 1 then return (false)
return (NEXTTREE(NextRoot(B)))
comment: otherwise at least two branches
By < PrevBranch(By)
while COMPAREBRANCHES (B, By) = EqualTo
Bl — Bg
do | if By = FirstBranch(T") then go to 1
By <+ PrevBranch(B5)
1 : comment: delete the branches of 7" following B;
N < DELETEBRANCHES(T, By) “N nodes are deleted”
comment: replace By with next branch, if possible
if nNodes(NextRoot(B1)) > Height(B)
NEXTTREE(NextRoot(B1))
then < fill in 7" with IV elementary branches
return (true)
comment: otherwise construct the first branch with one more node
if N >0 then
M <+ DESTROYTREE(NextRoot(B1)) “M nodes are deleted”
NextRoot(B) < FIRSTTREE(M + 1)
fill in 7" with N — 1 elementary branches
return (true)
comment: otherwise there’s no branch following B; to take a node from
repeat
Bl — BQ
if By = FirstBranch(T') then go to 2
By < PrevBranch(By)
until COMPAREBRANCHES (B1, B2) # EqualTo
2 : comment: delete the branches of T following By
N < DELETEBRANCHES(T, By) “N nodes are deleted”
comment: replace B, with next branch
if nNodes(NextRoot(B1)) > Height(B)
then NEXTTREE(NextRoot(B1))
else NextRoot(B1) < FIRSTTREE(nNodes(NextRoot(B1)) + 1)
fill in 7" with elementary branches
return (true)

112 Graphs, Algorithms, and Optimization

Theorem 6.2. Let T' be a tree on n vertices. Algorithm NEXTTREE(T) constructs
the next tree on n vertices after T in the linear order of trees, if there is one.

Proof. The proof is by induction on n. It is easy to check that it works for trees on
n = 2 and n = 3 vertices. Suppose that it holds up to n — 1 vertices, and let T’
have n vertices. Let T = (By, Ba, . .., Bi) be the branches of T', where By > By >
.-+ > By. The algorithm first checks whether there is only one branch. If so, and
T is a branch of height n — 1, it returns false . Otherwise let 7’ be the rooted tree
corresponding to By by advancing the root. The algorithm calls NEXTTREE(T").
Because T” has n — 1 vertices, this gives the next branch following B; in the linear
order, as required.

Otherwise, 1" has at least two branches. It finds the branch B; such that B; =
Bit1 = ... = By, but B;_1 # B;, if there is one (possibly ¢ = 1). The first tree
following 7" must differ from 7" in B;, unless ¢ = k and B; is a path. In the first
case, the algorithm replaces B; with the next branch in the linear order, and fills in
the remaining branches of 7" with elementary branches. This is the smallest tree on
n vertices following 7'. Otherwise ¢ = k and B; is a path, so that there is no tree
following B;. Because there are at least two branches, the algorithm finds the branch

Bjsuchthat B; = Bjy1 = ... = Br_1 > By, (possibly j = 1). It then replaces
B; with the first branch following it, and fills in 7" with elementary branches. In each
case the result is the next tree after 7'. O
Exercises

6.4.1 Work through the NEXTTREE(T') algorithm by hand to construct all the
rooted trees on 4, 5, 6, and 7 vertices.

6.42 Write the recursive procedure PRINTTREE(T) to print out a tree as shown
in Figure 6.14, according to the distance of each vertex from the root.

FIGURE 6.14
Printing a rooted tree

The Structure of Trees 113

6.43 Write the recursive functions DESTROYTREE(T') and
DELETEBRANCHES(T', B1), both of which return the number of vertices
deleted.

6.44 Program the NEXTTREE(T') algorithm, and use it to find the number of
rooted trees up to 10 vertices.

6.5 Generating non-rooted trees

The NEXTTREE(T') algorithm generates the rooted trees on n vertices in sequence,
beginning with the first tree of height 1 and ending with the tree of height n — 1. In
order to generate non-rooted trees, we must root them in the center. Because every
non-rooted tree can be viewed as a rooted tree, all non-rooted trees also occur in the
linear order of trees. Central trees can be generated by modifying NEXTTREE(T')
so that the two highest branches are always required to have equal height. This
can be done with another procedure, NEXTCENTRALTREE(T'), which in turn calls
NEXTTREE(T') when forming the next branch. Bicentral trees are slightly more dif-
ficult, because the highest branches By and Bs satisfy h(B1) = h(Bs) + 1. If we
generate trees in which the heights of the two highest branches differ by one, then
most bicentral trees will be constructed twice, once for each vertex in the center.
For example, Figure 6.15 shows two different branch decompositions of the same
bicentral tree. It would therefore be generated twice, because it has different branch
decompositions with respect to the two possible roots.

T1 T2

FIGURE 6.15
Two decompositions of a bicentral tree

The easiest solution to this is to subdivide the central edge with a new vertex,
taking it as the root. Then each bicentral tree on n vertices corresponds to a unique
central tree on n + 1 vertices, with exactly two branches. We can construct these by
generating rooted trees with only two branches, which have equal height, and then
ignoring the extra root vertex.

114 Graphs, Algorithms, and Optimization

Exercises

6.5.1 Write and program the procedures NEXTCENTRALTREE(T') and
NEXTBICENTRALTREE(T'), and use them to construct all the non-rooted
trees on n vertices, up to n = 15.

6.6 Priifer sequences

Read’s algorithm encodes a tree according to its isomorphism type, so that isomor-
phic trees have the same code. This can be used to list all the isomorphism types of
trees on n vertices. A related question is to make a list all the trees on the n vertices
V. = {1,2,...,n}. These are sometimes referred to as labeled trees. For example,
Figure 6.16 illustrates the three distinct, or labeled trees on three vertices, which are
all isomorphic to each other.

2 3 1 3 1 2

FIGURE 6.16
Three distinct trees on three vertices

Let T be a tree with V(T') = {1,2,...,n}. A Priifer sequence for T is a special
encoding of 7" as an integer sequence. For example, the tree of Figure 6.17 with
n = 9 has Priifer sequence ¢t = (6,9, 1,4,4,1,6).

FIGURE 6.17
Finding the Priifer sequence of a tree

This is constructed as follows. The leaves of T are L(T') = {2,3,5,7,8}. The
numerically smallest leaf is 2. Because 2 — 6, we take ¢; = 6 as the first member of

The Structure of Trees 115

t.WenowsetT := T'—2, and find L(T") = {3, 5,7, 8}. We again choose the smallest
leaf, 3, and because 3 — 9, we take t5 = 9 as the second member of the sequence,
and set 7" := T — 3. Notice that when 3 is deleted, 9 becomes a leaf. Therefore,
on the next iteration we will have L(T') = {5,7,8,9}. The general technique is the
following:

fork < 1ton —2

find L(T)

select v € L(T), the smallest leaf

tr < the unique vertex adjacent to v
T+T—-v

comment: 7' now has 2 vertices left

do

This always gives a sequence of n — 2 integers t = (¢1, to, ..., t,,—2), where each
t; € V,. Notice that at each step, a leaf of T is deleted, so that T is always a tree
throughout all the steps. Because 7' is a tree, we can always choose a leaf to delete.
When T reduces to a single edge, the algorithm stops. Therefore no leaf of T' is ever
chosen as any tj. In fact, if DEG(v) > 2, then v will appear in ¢ each time a leaf
adjacent to v is deleted. When the degree drops to one, v itself becomes a leaf, and
will appear no more in ¢. Therefore, each vertex v appears in ¢ exactly DEG(v) — 1
times.

Theorem 6.3. Let t = (t1,to,...,t,—2) be any sequence where each t; € V, =
{1,2,...,n}. Then t is the Priifer sequence of a tree T on n vertices.

Proof. The sequence t consists of n — 2 integers of V,,. Therefore at least two mem-
bers of V,, are not used in ¢. Let L be those numbers not used in ¢. If ¢ were formed
by encoding a graph using the above technique, then the smallest element v € L
must have been a leaf adjacent to ¢;. So we can join v — ¢, and discard ¢; from ¢.
Again we find L, the numbers not used in ¢, and pick the smallest one, etc. This is
summarized in the following pseudo-code:

N+ {1,2,...,n}

fork < 1ton—2
construct L, those numbers of /N not used in ¢
select the smallest v € L

do ¢ joinv — t,

discard ¢;, from ¢
N+ N—v

comment: 7" now has 2 vertices left, u and v

joinu — v

This creates a graph 7" with n — 1 edges. It is the only graph which could have
produced the Priifer sequence ¢, using the above encoding technique. Must 7" be a
tree? If T were not a tree, then it could not be connected, because 7" has only n — 1
edges. In that case, some component of 7" would have a cycle C. Now the encoding
technique only deletes leaves. No vertex on a cycle could ever be deleted by this

116 Graphs, Algorithms, and Optimization

method, for the degree of every u € C'is always at least two. This means that a graph
containing a cycle would not produce a Priifer sequence of length n — 2. Therefore
T can have no cycle, which means that it must be a tree. O

Thus we see that every tree with vertex set {1,2,...,n} corresponds to a unique
Priifer sequence, and that every sequence ¢ can only be obtained from one tree. The
corollary is that the number of trees equals the number of sequences. Now it is clear
that there are n”~2 such sequences, because each of the n — 2 elements t;, can be
any of the numbers from 1 to n. This result is called Cayley’s theorem.

Theorem 6.4. (Cayley’s theorem) The number of distinct trees on n vertices is
nn—2.

6.7 Spanning trees

Consider the problem of making a list of all the spanning trees of a graph G. If
G = K, then there are n™ 2 spanning trees, and each one corresponds to a Priifer
sequence. If G % K, then we can find all the spanning trees of G as follows.
Choose any edge uv of G. First find all the spanning trees that use uv and then find
all the trees that do not use uv. This gives all spanning trees of G. Write 7(G) for
the number of spanning trees of GG. The spanning trees 7" that do not use edge uv are
also spanning trees of G — wv, and their number is 7(G — wv). If T is a spanning
tree that does use uw, then we can contract the edge uv, identifying v and v so that
they become a single vertex. Let 7" - uv denote the reduced tree. It is a spanning tree
of G - uv. Every spanning tree of GG - uv is a contraction 7" - uv of some spanning tree
T of G, for just expand the contracted edge back into wv to get 7. This gives:

Lemma 6.5. Let G be any graph. Then 7(G) = 7(G — uv) + 7(G - wv).

This applies equally well to simple graphs and multigraphs. It is illustrated in Fig-
ures 6.18 and 6.19.

FIGURE 6.18
Deletion and contraction of edge uv

Notice that even when G is a simple graph, GG - uv will often be a multigraph, or
have loops. Now loops can be discarded, because they cannot be part of any spanning

The Structure of Trees 117

e % +
FIGURE 6.19

Finding the number of spanning trees

tree. However multiple edges must be kept, because they correspond to different
spanning trees of G.

In the example of Figure 6.18, the 5-cycle obviously has five spanning trees.
The other graph is then decomposed, giving “trees” which contain some multiple
edges (i.e., replacing the multiple edges with single edges gives a tree). The two such
“trees” shown clearly have two and four spanning trees each, respectively. Therefore
the original graph has 5 4+ 2 + 4 = 11 spanning trees.

In general, if G has an edge of multiplicity k joining vertices u and v, then delet-
ing any one of the equivalent k£ edges will give the same number of spanning trees.
Contracting any one of them forces the rest to collapse into loops, which are then
discarded. This gives the following lemma:

Lemma 6.6. Let edge uv have multiplicity k in G. Replace the multiple edges having
endpoints u and v by a single edge uv to get a graph G.,,. Then

7(G) = 7(Gup — wv) + k7(Gyyp - uv).

This gives a recursive technique for finding the number of spanning trees of a
connected graph G. G is stored as a weighted simple graph, for which the weight of
an edge represents its multiplicity.

Algorithm 6.7.1: SPTREES(G)

find an edge uv on a cycle

if there is no such edge
comment: G is a tree

then

return (product of edge weights)
else return (SPTREES(G — uv) + WT(uv) * SPTREES(G - uv))

This can be expanded to make a list of all spanning trees of G. However, if only
the number of spanning trees is needed, there is a much more efficient method.

118 Graphs, Algorithms, and Optimization

6.8 The matrix-tree theorem

The number of spanning trees of GG can be computed as the determinant of a matrix.
Let A(G) denote the adjacency matrix of G. The degree matrix of G is D(G), all of
whose entries are 0, except for the diagonal, which satisfies [D],,, = DEG(u), for
vertex u. The Kirchhoff matrix of G is K(G) = D — A. This matrix is sometimes
also called the Laplacian matrix of G. The number of spanning trees is found from
the Kirchhoff matrix.

First, notice that the row and column sums of K are all 0, because the row and
column sums of A are the degrees of G. Therefore, det(K) = 0. Consider the ex-
pansion of det(K) into cofactors along row u. Write

det(K) = zn:(q)uﬂkw det(Kuy).

v=1

Here k., denotes the entry in row u and column v of K, and K,, denotes the
submatrix formed by crossing out row u and column v. The cofactor of ky, is
(—1)uT? det(Ky,). There are n vertices.

Theorem 6.7. (Matrix-Tree Theorem) Let K be the Kirchhoff matrix of G. Then
7(G) = (=1)“*? det(Kyy), for any row index u and any column index v.

Proof. Notice that the theorem says that all cofactors of K have the same value,
namely, the number of spanning trees of GG. The proof is by induction on the number
of vertices and edges of G. Suppose first that G is a disconnected graph; let one of
the components be H. Order the vertices so that vertices of H come before the rest
of G. Then K (G) is a block matrix, as shown in Figure 6.20.

K(H) 0

FIGURE 6.20
Kirchhoff matrix of a disconnected graph

If row u and column v, where u,v € V(H), are crossed off, then the row and
column sums of G— H will be all 0, so that the cofactor corresponding to K,,,, will be

The Structure of Trees 119

zero. Similarly, if any other row and column are crossed off, the remaining cofactor
will be zero. Therefore, if G is disconnected, the theorem is true, because 7(G) = 0.
Suppose now that G is a tree. Choose a leaf v and let v — w. Without loss
of generality, we can order the vertices so that v is the last vertex. Write K - uv =
K (G - uwv). The two Kirchhoff matrices are shown in Figure 6.21, where a = k.

u v u (v)
U a —1 U a — 1
R
v -1 b (v)
K K -uv
FIGURE 6.21

Kirchhoff matrices for a tree

If n = 2, there is only one tree, with Kirchhoff matrix {ffﬂ . All the cofactors

have value £1, as desired. If n > 2, we assume that the matrix-tree theorem holds for
all trees with at most n—1 vertices, and form K -uv. Now det(K -uv) = 0, because it
is a Kirchhoff matrix. The submatrix K, differs from K - uv only in the single term
a instead of @ — 1 in entry uu. When we expand det (X,) along row u, all the terms
are identical to expanding det(K - uv) along row u, except for this one. Therefore
det(K,,)—det(K -uv) equals the uu-cofactor in K -uwv. By the induction hypothesis,
this is 7(G - uv) = 1. Therefore det(K,,) = 1. Striking off row and column w from
K, and expanding along row v, shows that det (K.,) again equals the uu-cofactor in
K - uv, which is 1. Therefore, the uu-cofactor in K equals 7(G). Consider next the
cofactor det (K,), where neither « nor y equals u or v. Strike off row x and column
y of K. In order to evaluate (—1)*"¥ det(K,,), first add row v to row u, and then
expand the determinant along column v. The value clearly equals the xy-cofactor of
K - uv, whichis 7(G) = 1. If = u but y # w or v, a similar argument shows that
the cofactor equals 1. If x = v but y # v, then expand along column v to evaluate
(—1)**¥ det(K). The resultis (—1)*T¥(—1)(—1)“"*~! times the determinant of
(K - uv)yy. This reduces to (—1)“*¥ det((K - uv)yy) = 7(G). Thus, in all cases, the
cofactors equal 7(G) = 1. By induction, the matrix-tree theorem is true for all trees.

If G is a multigraph with n = 2 vertices, then it consists of m parallel edges, for
some m > 1, so that 7(G) = m. It is easy to see that the theorem is true in this case,

m —m
—m m

as the Kirchhoff matrix is [} . Suppose now that it holds for all multigraphs

120 Graphs, Algorithms, and Optimization

u v U v
U a —1 U a — 1 0
R
v -1 b v 0 b—1
K K —uv
FIGURE 6.22

Kirchhoff matrices K and K — uv

with fewer than n vertices, where n > 2, and for all multigraphs on n vertices with
less than € edges, where € > n—1, because we know that it holds for trees. Choose an
edge uv of G, and write 7(G) = 7(G —uv)+7(G-uwv). The corresponding Kirchhoff
matrices are illustrated in Figure 6.22, where we write K — uv for K (G — uv).

The diagram is drawn as though the edge uv had multiplicity 1, but the proof is
general, and holds for any multiplicity m > 1. Let a denote the entry k,,,, and b the
entry Kyy.

Consider the vv-cofactor of K. It is nearly identical to the vw-cofactor of
K — ww, differing only in the wu-entry, which is a in K but a — 1 in K — ww.
Expanding det(K,,) along row u shows that det(K,,) — det((K — uv),,) equals
the uu-cofactor of K — wwv, with row and column v removed. Comparison with
Figure 6.23 shows that this is identical to the uu-cofactor of K - uwv. Therefore
det(Kyy) — det((K — uv)yy) = det((K - uv)y,,). By the induction hypothesis,
this gives det (K) = 7(G - wv) + 7(G — wv) = 7(G), as desired.

Consider now K, formed by striking off row v and column u of K. This matrix
is almost identical to that formed by striking off row v and column u from K — uwv.
The only difference is in the uv-entry. Expanding along row u shows that the differ-
ence of the determinants, det (K,) —det((K —uv)yy,), is (—1)* 071 (=1) det((K -
U0y). Therefore (—1)"T4det(Kyy) = (=1)"T4det((K — uv)yy) + det((K -
U0)) = T(K —uv)+7(K -uv) = 7(G). Thus, the vu-cofactor and the vu-cofactor
both equal 7(G).

Finally, we show that the remaining entries in row v also have cofactors equal to
7(G). Consider any entry k,,,, where w # u,v. Strike off row v and column w of
K and of K — wv. In order to evaluate det(K,,,) and det((K — uv),y,), first add
the remaining part of column v to column u in both matrices. This is illustrated in
Figure 6.24.

The Structure of Trees 121

u (v)
U ‘;j rows u + v
cols
utv
(v)
K -uv

FIGURE 6.23
Kirchhoff matrix K - uv

Ky and (K — uv),, are now identical, except for the uwv-entry. Expand
det(K) along row w. All terms are equal to the corresponding terms in the
expansion of det((K — uwv),,) along row u, except for the last term. The dif-
ference is (—1)"T""!(=1)det((K - uv)uw). Therefore (—1)""* det(Ky,) =
(=T det((K — uv)pw) + (—1)"T det((K - uv)yw). As before, we get
(—1)*T* det(Kyyw) = 7(G). Thus, all the cofactors of K from row v have equal
value, namely, 7(G). Because v could be any vertex, all the cofactors of K have this
value. This completes the proof of the matrix-tree theorem. |

A nice illustration of the use of the matrix-tree theorem is to compute 7(K,,).
The Kirchhoff matrix is

n—1 -1 -1 -1
-1 n-1 -1 -1
K(K,) = -1 -1 n-1
: : . -1
-1 -1 -1 n-1

Strike off the last row and column. In order to evaluate the determinant, add all the
rows to the first row, to get

1 1
-1 n-—1

=11 1))

122 Graphs, Algorithms, and Optimization

u w v u w v
U o — 1 =1l u @ —1 0
- >
cols cols
u+v utv
v =i b v 0 b—1
K K —uv
FIGURE 6.24
Evaluating det (K)

Now add the first row to each row in turn, in order to get n’s on the diagonal and
0’s off the diagonal. Thus, the determinant is n""2, as expected.

The Kirchhoff matrix was first used to solve electrical circuits. Consider a simple
electrical network consisting of resistors and a battery producing voltage V. Let the
nodes in the network be w1, us, ..., u,, and suppose that the resistance connecting
u; to u; is r;;. The battery causes current to flow in the network, and so sets up
a voltage V; at each node u;. The current from wu; to u; is (V; — Vj)/r;;. This is
illustrated in Figure 6.25.

Uy

U2 Us

u3 Uq

FIGURE 6.25
A simple network of resistors

The law of conservation of charge says that the total current flowing out of node
u; must equal the total current flowing in, that is, not counting the current flowing

The Structure of Trees 123

through the battery,

3 (VzT—VJ) _0,

.
Uj—>Uj J

for all nodes ;. The battery maintains a constant voltage difference of V' across
nodes w1 and u,, say. Let I denote the current through the battery. Then the wu-
equation must be modified by setting the right-hand side to I instead of 0; and the
un-equation requires the right-hand side to be —I. This gives a system of linear
equations in the variables V; and I. If we consider the network as a multigraph in
which u; is joined to u; by 1/7;; parallel edges, then the diagonal entries of the
matrix corresponding to the equations are the degrees of the nodes. The off-diagonal
entries form the negated adjacency matrix of the network. Thus, this is the Kirchhoff
matrix of the network. Because the Kirchhoff matrix has determinant zero, there is no
unique solution to the system. However, it is voltage differences that are important,
and we know that the battery maintains a constant voltage difference of V. Therefore,
we can arbitrarily set V,, = 0 and V;, = V, so that we can cross off the nt" column
from the matrix. The rows are linearly dependent, so that we can also discard any row.
The system then has a unique solution, because striking off a row and column from
the Kirchhoff matrix leaves the spanning tree matrix. Notice that once the current in
each edge is known, each spanning tree of the network will determine the voltage
distribution uniquely, because a spanning tree has a unique path connecting any two
vertices.

Exercises

6.8.1 Find 7(K3 3) using the recursive method.

6.8.2 Find 7(K,, — uv), where uv is any edge of K, using the matrix-tree
theorem.

6.8.3 Find 7(C},), where C,, is the cycle of length n, using the matrix-tree the-
orem.

6.8.4 What is the complexity of finding the determinant of an n X n matrix,
using Gaussian elimination? Accurately estimate an upper bound on the
number of steps needed.

6.8.5 Let G be a graph with n vertices. Replace each edge of G with m multiple
edges to get a graph G, Prove that 7(G,,) = m"~17(G).

6.8.6 Program the recursive algorithm to find the number of spanning trees. Use
a breadth-first search to find an edge on a cycle.

6.8.7 Solve the electrical circuit of Figure 6.25, taking all resistances equal to

one. Solve for the voltage V; at each node, the current in each edge, and
the total current /, in terms of the battery voltage V.

124 Graphs, Algorithms, and Optimization

6.9 Notes

Read’s tree encoding algorithm is from READ [142]. Priifer sequences date back to
1918 — PRUFER [137]. They are described in several books, including BONDY and
MURTY [23]. The matrix-tree theorem is one of the most fundamental theorems in
graph theory.

7

Connectivity

7.1 Introduction

Trees are the smallest connected graphs. For deleting any edge will disconnect a tree.
The following figure shows three graphs in order of increasing connectivity.

>y

K =1 kK =3

)
Il
NG

=
I

FIGURE 7.1
Three graphs with increasing connectivity

The second graph can be disconnected by deleting the two shaded vertices, but
three edges must be deleted in order to disconnect it. The third graph is complete and
cannot be disconnected by deleting any number of vertices. However, the deletion of
four edges will do so. Thus, connectivity is measured by what must be deleted from
a graph G in order to disconnect it. Because one can delete vertices or edges, there
will be two measures of connectivity.

The vertex-connectivity of G is k(G), the minimum number of vertices whose
deletion disconnects GG. If GG cannot be disconnected by deleting vertices, then
k(@) = |G| — 1. A disconnected graph requires the deletion of 0 vertices, so it
has k = 0. The complete graph has x(K,,) = n— 1. Hence, x(K7) = 0, but all other
connected graphs have x > 1. Any set of vertices whose deletion disconnects G is
called a separating set or vertex cut of G.

The edge-connectivity of G is £/ (G), the minimum number of edges whose dele-
tion disconnects G. If G has no edges, then x'(G) = 0. A disconnected graph does
not need any edges to be deleted, and so it has k' = 0. K also has " = 0 because it
has no edges, but all other connected graphs have ' > 1.

125

126 Graphs, Algorithms, and Optimization

The edge-connectivity is always at most §(G), because deleting the § edges in-
cident on a vertex of minimum degree will disconnect GG. The following inequality
always holds.

Theorem 7.1. «k < k' < 6.

Proof. We know that k' < §. We prove that x < &’ by induction on «’. If k¥’ = 0,
then either G has no edges, or else it is disconnected. In either case, x = 0. Suppose
that it is true whenever £’ < m, and consider s’ = m + 1. If ¥’ = |G| — 1, then
§ = " and thus K < &/; so suppose that k' < |G| — 1. Let [S, S] be an edge-cut
containing m + 1 edges. Pick any edge uv € [S,S] and form H = G — uv. Then
[S, S]—wuv is an edge-cut of H containing m edges, so x'(H) < m. By the induction
hypothesis, x(H) < m. Let U C V(H) be a minimum separating set of H. Then
|U| < 'm, and H — U consists of two or more components. We now want to put the
edge uv back. Where does it go?

Lk [e
U v
/ \
m points
FIGURE 7.2

A minimum separating set of H

If H — U had three or more components, then U would also be a separating set
of G, in which case x(G) < |U| = m. If H — U has exactly two components,
C, and C,, containing v and v, respectively, then U will not be a separating set
of G, for the edge uv will keep it connected. However, ' (G) < |G| — 1, so that
m = k' — 1 < |G| — 2. Therefore, one of C,, and C,, contains two or more vertices,
say Cy, does. Then U’ = U U {u} is a separating set of G with m + 1 vertices, so
that k(G) < £/(G). By induction, the theorem is true for all values of . O

Except for this inequality, the parameters «, k', and § are free to vary consid-
erably, as shown by CHARTRAND and HARARY [30]. For example, the graph of
Figure 7.3 has k = 2, k' = 3,and 0 = 4.

Given any three non-negative integers a, b, and c satisfying a < b < ¢, we can
easily make a graph with K = a, k" = b, and § = ¢, as illustrated in Figure 7.3.
Take two complete graphs G’ and G, isomorphic to K., . They have minimum
degree 6 = c. Choose any a vertices U’ C V(G’), and a corresponding vertices
U” C V(G"). Join them up in pairs, using a edges. Then U’ is a separating set of
the graph, containing a vertices. Now add b — a edges connecting G’ to G, such that

Connectivity 127

FIGURE 7.3
A graphwithk = 2, k" = 3,and § = 4

every edge added has one endpoint in U’. Clearly the graph constructed has x = a,
k' =b,and d = c.

Exercises

7.1.1 Let G be connected and let uv € E(G). Prove that uv is in every spanning
tree of G if and only if wv is a cut-edge of G.

7.1.2 Show that a connected graph with exactly two vertices that are not cut-
vertices is a tree. Hint: Consider a spanning tree of G.

7.1.3 Prove that if G is a k-regular bipartite graph with & > 1 then G has no
cut-edge.

7.1.4 Prove that if G is connected, with all even degrees, then w(G — v) <
1DEG(v), for any v € V(G), where w(G) is the number of connected
components of G.

7.1.5 Let G be a 3-regular graph.

(a) If K = 1, show that " = 1.
(b) If k = 2, show that &’ = 2.
Conclude that x = ' for 3-regular graphs.
7.1.6 Let GG be a 4-regular graph with x = 1. Prove that K’ = 2.

7.1.7 Let (dy,ds,...,dy,), where dy < dy < ... < d,, be the degree sequence
of a graph G. Prove thatif d; > j,forj =1,2,...,n—1—d,, then G
is connected.

7.1.8 Give another proof that < &/, as follows. Let [S, S] be a minimum
edge-cut of G, containing x’ edges. Construct a set U C S consisting of
all vertices u € S, such that there is an edge uv € [S, S]. Then |U| < &/.
If U # S, then U is a separating set of G with < ' vertices. Therefore
k < k. Show how to complete the proof when U = S.

128 Graphs, Algorithms, and Optimization

7.2 Blocks

Any graph G with £ > 1 is connected. Consequently G is said to be 1-connected.
Similarly, if x > 2, then at least two vertices must be deleted in order to disconnect
G, so G is said to be 2-connected. It is usually easier to determine a lower bound,
such as Kk > 2 or k > 3, than to compute the exact value of . In general, G is said
to be k-connected if k > k, for some integer k.

If GG is a disconnected graph, then its structure is determined by its components,
that is, its maximal connected subgraphs. A component which is an isolated vertex
will have k = 0, but all other components will be 1-connected.

If a connected graph G has a cut-vertex v, then it is said to be separable, because
deleting v separates (G into two or more components. A separable graph has k =
1, but it may have subgraphs which are 2-connected, just as a disconnected graph
has connected subgraphs. We can then find the maximal non-separable subgraphs of
G, just as we found the components of a disconnected graph. This is illustrated in

Figure 7.4.
VAN
(a) (b)
FIGURE 7.4

A graph (a) and its blocks (b)

The maximal non-separable subgraphs of GG are called the blocks of G. The graph
illustrated in Figure 7.4 has eight blocks, held together by cut-vertices. Every sepa-
rable graph will have two or more blocks. Any 2-connected graph is non-separable.
However, K5, a graph which consists of a single edge, is also non-separable, be-
cause it has no cut-vertex. Therefore every edge of GG is a non-separable subgraph,
and so will be contained in some maximal non-separable subgraph. Can an edge be
contained in two distinct blocks? We first describe some properties of 2-connected
graphs.

Connectivity 129

Notice that cycles are the smallest 2-connected graphs, because a connected
graph with no cycle is a tree, which is not 2-connected. Any two vertices v and v
on a cycle C divide C into two distinct paths with only the endpoints u and v in
common. Paths which have only their endpoints in common are said to be internally
disjoint; see Figure 7.5.

FIGURE 7.5
Three internally disjoint paths

Theorem 7.2. A graph G with three or more vertices is 2-connected if and only if
every pair of vertices is connected by at least two internally disjoint paths.

Proof. Suppose that every pair of vertices of G is connected by at least two internally
disjoint paths. If a vertex w is deleted, then every remaining pair of vertices is still
connected by at least one path, so that w is not a cut-vertex. Therefore x > 2.

Conversly suppose that G be 2-connected, and let u,v € V(G). We prove by
induction on DIST(u, v) that v and v are connected by two internally disjoint paths.
If D1ST(u,v) = 1, then G — wv is still connected, because £’ > « > 2. Therefore
G — uv contains a uv-path P, so that G has two uv-paths, P and uv. Suppose that
the result holds when DIST(u,v) < m and consider DIST(u,v) = m + 1. Let P
be a uv-path of length m + 1 and let w be the last vertex before v on this path.
Then DIST(u, w) = m, because P is a shortest path. By the induction hypothesis, G
contains internally disjoint uw-paths P, and Q.

FIGURE 7.6
Internally disjoint paths P, and Q.,

130 Graphs, Algorithms, and Optimization

Because G is 2-connected, G — w is still connected, and so has a uv-path R.
R has the endpoint u in common with both P,, and @,,. Let = be the last vertex
common to R and either of P, or Q,,, say & € P,,. Then P, [u, z] R[z,v] and Q,wv
are two internally disjoint uv-paths. By induction, the result holds for all pairs wu, v
of vertices. u

So in a 2-connected graph, every pair u, v, of vertices are connected by at least
two internally disjoint paths P and @). Because P and () together form a cycle, we
know that every pair of vertices lies on a cycle. Another consequence of this theorem
is that every pair of edges also lies on a cycle.

Corollary 7.3. A graph G with three or more vertices is 2-connected if and only if
every pair of edges lies on a cycle.

Proof. Let G be 2-connected and pick edges uv, zy € E(G). Subdivide uv with a
new vertex w, and xy with a new vertex z to get a graph G’. Now G has no cut-
vertex, so neither does G’. By the previous theorem, w and z lie on a cycle in G/, so
that wv and xy lie on a cycle in G.

FIGURE 7.7
Two edges on a cycle

Conversly suppose now that every pair of edges lies on a cycle. Then every vertex
has degree at least two, because no cycle could pass through an edge incident on a
vertex of degree one. Choose any two vertices v and z. Choose any vertex v adjacent
to u and a vertex y adjacent to z, such that y # v. Then the edges uv and zy must
lie on a cycle C. Clearly C contains u and z, so that every pair u, z, of vertices lies
on a cycle. It follows that G is 2-connected. |

Lemma 7.4. Each edge uv of G is contained in a unique block.

Proof. Letuv be an edge in a graph G, and let B be a maximal 2-connected subgraph
of G containing uwv. If B’ is another maximal 2-connected subgraph containing uv,
where B # B’, then choose any edge xy € B’\ B. B’ contains a cycle C' containing
both uv and xy, because B’ is 2-connected. The subgraph B U C' is 2-connected, and

Connectivity 131

is larger than B, a contradiction. Therefore, each edge uv is contained in exactly one
block of G. O

7.3 Finding the blocks of a graph

The first algorithm to find the blocks of a graph was discovered by READ [143]. It
uses the fundamental cycles with respect to a spanning tree 7. Because each edge
of G is contained in a unique block B,,,, the algorithm begins by initializing B,,, to
contain only uv and uses the merge-find data structure to construct the full blocks
By, For each edge uv ¢ T, the fundamental cycle C,, is found. Because C,, is
2-connected, all its edges are in one block. So upon finding C',,,, we merge all the
blocks By, where zy € C\,, into one. Any spanning tree 7" can be used. If we
choose a breadth-first tree, we have Algorithm 7.3.1.

Algorithm 7.3.1: BLOCKS(G)

comment: G is a connected graph

for each uv € E(G)

do initialize B,,, to contain uv
pick any vertex = € V(G)
place z on ScanQ
repeat

select v from head of ScanQ

for eachv — u

do if v & ScanQ
comment: uv forms part of the spanning tree 7’

then < add edge uv to T’
add v to ScanQ
comment: uv creates a fundamental cycle

construct Cy,
for each edge zy € Cy,
do By < Byy U Bgy
advance ScanQ
until all vertices on ScanQ are processed
comment: each B,,,, now consists of the unique block containing uv

else

Lemma 7.5. At the beginning of each iteration of the repeat loop, each B, is either
a single edge, or else is 2-connected.

132 Graphs, Algorithms, and Optimization

Proof. The proof is by induction on the number of iterations of the repeat loop. At
the beginning of the first iteration it is certainly true. Suppose that it is true at the
beginning of the k" iteration. If the edge uv chosen forms part of the spanning
tree 7', it will also be true for the (k + 1)%¢ iteration, so suppose that uv creates
a fundamental cycle C,,,,. Each B, for which zy € (), is either a single edge,
or else 2-connected. The new B,, is formed by merging all the B, into one, say
Buyy = Bgy, U Bgyy, U---U By . Pick any two edges ab,cd € By, say
ab € By,y, and cd € B, . We show that B, contains a cycle containing both
ab and cd. If ab,cd € Cy,, it is certainly true. Otherwise, notice that each By, ,,
contains some edge of C,,,,. Without loss of generality, we can suppose that the edges
21y € Cyo, forl =1,2,...,m. Because B;,,, is 2-connected, it contains a cycle C;
containing both z;y; and ab, and B, ,,; contains a cycle C; containing both 1, and
cd. This is illustrated in Figure 7.8. Then Cy,, ® C; @ C} is a cycle contained in B,
and containing ab and cd. By Corollary 7.3, the new B,,,, is 2-connected. Therefore
the result is true at the beginning of the (k + 1)*! iteration. By induction it is true for
all iterations. O

Corollary 7.6. Upon completion of Algorithm 7.3.1, each B, contains the unique
block containing uv.

Proof. By the previous lemma, each B,, will either be a single edge, or else 2-
connected. If B, is not the unique block B containing uv, then pick some edge
xy € B — By,. B contains a cycle C' containing both v and xy. By Theorem 5.3,
C can be written in terms of fundamental cycles with respect to the spanning tree 7'
constructed by Algorithm 7.3.1, C' = Cy, 4, ® Cupu, ® -+ @ Cy,, v, - But each of
the fundamental cycles C',,,, will have been processed by the algorithm, so that all
edges of C are contained in one B,,,, a contradiction. Therefore, each B,,,, consists
of the unique block containing uv. O

Exercises

7.3.1 Given an edge uv which creates a fundamental cycle C,,,,, describe how
to find C,,,, using the Parent[-] array created by the BFS.

732 Let (dy,da,...,dy,), where dy < ds < ... < d,, be the degree sequence
of a graph G. Prove thatif d; > j+1,forj =1,2,....,n—1—d,_1,
then G is 2-connected.

7.3.3 Program the BLOCKS() algorithm. One way to store the merge-find sets
B,y is as an n by n matrix BlockRep][-,-]. Then the two values = +
BlockRep|[u, v] and y < BlockRep|v, u] together define the edge xy rep-
resenting uv. Another way is to assign a numbering to the edges, and use
a linear array.

734 Try to estimate the complexity of the algorithm BLOCKS(). It is difficult
to obtain a close estimate because it depends on the sum of the lengths of
all ¢ — n + 1 fundamental cycles of G, where n = |G]|.

Connectivity 133

FIGURE 7.8
Merging the By,

7.3.5 The Block-Cut-Vertex Tree. (See HARARY [80].) Let G be a connected
separable graph. Let B denote the set of blocks of G and C denote the
set of cut-vertices. Each cut-vertex is contained in two or more blocks,
and each block contains one or more cut-vertices. We can form a bipartite
graph BC(G) with vertex-set B U C by joining each B € B to the cut-
vertices v € C that it contains.

(a) Show that BC(G) has no cycles, and consequently is a tree.

(b) In the block-cut-vertex tree BC(G), the degree of each v € C is the
number of blocks of G containing v. Denote this value by b(v), for
any vertex v € V(G). Show that

D b)) —1=) bv)-1=|B]-1,

veV(G) vel

so that the number of blocks of G is given by

Bl=1+ > b)-1

veV(G)

(c) Prove that every separable graph has at least two blocks which contain
only one cut-vertex each.

134 Graphs, Algorithms, and Optimization

7.4 The depth-first search

There is an easier, more efficient way of finding the blocks of a graph than using
fundamental cycles. It was discovered by Hopcroft and Tarjan. It uses a depth-first
search (DFS) to construct a spanning tree. With a depth-first search the fundamental
cycles take a very simple form — essentially we find them for free, as they require
no extra work. The basic form of the depth-first search follows. It is a recursive
procedure, usually organized with several global variables initialized by the calling
procedure. The example following uses a global counter DFCount, and two arrays
DFNum[v] and Parent[v]. Each vertex v is assigned a number DFNum|v], being the
order in which the DFS visits the vertices of GG, and a value Parent[v], being the
vertex u from which DFS(v) was called. It is the parent of v in the rooted spanning
tree constructed. Initially all DFNum|-] values are set to 0.

Algorithm 7.4.1: DFS(u)

comment: extend a depth-first search from vertex u

DFCount <— DFCount + 1
DFNum{u| <— DFCount
for eachv — u
do if DFNum[v] =0
comment: v is not visited yet

then ¢ @dd edge uv to the spanning tree
Parent[v] + u
DFS(v)

else {comment: uv creates a fundamental cycle

The calling procedure can be written as follows:

DFCount < 0

for u « 1 ton do DFNum{u] + 0
select a staring vertex u

DFS(u)

Figure 7.9 shows a depth-first search in a graph. The numbering of the vertices
shown is that of DFNum|-], the order in which the vertices are visited.

Notice that while visiting vertex u, DFS(v) is called immediately, for each v —
u discovered. This means that before returning to node u, all vertices that can be
reached from v on paths that do not contain u will be visited; that is, all nodes of
G — u that are reachable from v will be visited. We state this important property as a
lemma. For any vertex u, let A(u) denote u, plus all ancestors of u in the depth-first
tree, where an ancestor of w is either its parent, or any vertex on the unique spanning
tree path from wu to the root vertex.

Connectivity 135

FIGURE 7.9
A depth-first search

Lemma 7.7. Suppose that DFS(v) is called while visiting node u. Then DFS(v)
visits every vertex in V(G) — A(u) reachable from v before returning to node .

Proof. The statement
if DFNum(u] =0 then ---

ensures that no vertex of A(u) will be visited before returning to node . To show that
every vertex of G — A(u) connected to v is visited, let w be a vertex of V/(G) — A(u),
with DIST(v, w) = k. The proof is by induction on k. It is clear that all w — v
will be visited before returning to u, so that the statement is true when £ = 1. If
k > 1, let P be a vw-path of length &, and let © — v be the first vertex of P. Now
x will certainly be visited before returning to node u. When x is visited, either w
will already have been visited, or else some DFS(y) called from node = will visit w
before returning to v, because DIST(z, w) = k — 1. Therefore all vertices of G — u
connected to v will be visited before returning to w. |

This makes it possible to detect when w is a cut-vertex. It also means that a span-
ning tree constructed by a depth-first search will tend to have few, but long, branches.
The following diagram shows the DF-tree constructed by the DFS in Figure 7.9.

Suppose that while visiting node u, a vertex v — w with DFNum[v] # 0 is
encountered. This means that v has already been visited, either previously to u, or
as a descendant of w. While visiting v, the edge uv will have been encountered.
Therefore, if v was visited previously, either DFS (u) was called from node v, so that
Parent[u] = v, or else DFS(u) was called from some descendant w of v. So we can
state the following fundamental property of depth-first searches:

Lemma 7.8. Suppose that while visiting vertex u in a depth-first search, edge uv
creating a fundamental cycle is encountered. Then either v is an ancestor of u, or
else u is an ancestor of v.

136 Graphs, Algorithms, and Optimization

1

FIGURE 7.10
A depth-first tree with fronds

Edges which create fundamental cycles with respect to a depth-first spanning tree
T are called fronds of T'. Some of the fronds of the graph of Figure 7.9 are shown in
Figure 7.10.

Now suppose that G is a separable graph with a cut-vertex v. v will occur some-
where in 7', say that DFS(v) was called from node u, and that node v in turn calls
DFS(w), where u and w are in different blocks. Thus, edges uv and vw do not lie
on any cycle of G. This is illustrated in Figure 7.11. Consider any descendant x of w
and a frond zy discovered while visiting node x, where y is an ancestor of x. Now y
cannot be an ancestor of v, for then the fundamental cycle C,, would contain both
edges uv and vw, which is impossible. Therefore either y = v, or else y is a descen-
dant of v. So, for every frond xy, where x is a descendant of w, either y = v, or
else y is a descendant of v. We can recognize cut-vertices during a DFS in this way.
Ancestors of v will have smaller DFNum -] values than v, and descendants will have
larger values. For each vertex v, we need to consider the endpoints y of all fronds xy
such that z is a descendant of v.

DEFINITION 7.1: Given a depth-first search in a graph G. The low-point of a
vertex v is LowPt[v], the minimum value of DFNum(y], for all edges vy and all
fronds xy, where x is a descendant of v.

We can now easily modify DFS (1) to compute low-points and find cut-vertices.
In addition to the global variables DFCount, DFNum|-], and Parent[-], the algorithm
keeps a stack of edges. Every edge encountered by the algorithm is placed on the

Connectivity 137

FIGURE 7.11
A cut-vertex v in a DF-tree

stack. When a cut-vertex is discovered, edges on the top of the stack will be the
edges of a block of G.

The procedure DFSEARCH(u) considers all v — wu. If v has been previously
visited, there are two possibilities, either v = Parent[u], or else uv is a frond. When
uv is a frond, there are also two possibilities, either « is an ancestor of v, or v is an
ancestor of u. These two cases are shown in Figure 7.12. The algorithm only needs
those fronds uwv for which v is an ancestor of u in order to compute LowPt[u).

138 Graphs, Algorithms, and Optimization

Algorithm 7.4.2: DFBLOCKS(G)

DFS to find the blocks of a connected graph G,

comment: .
on n vertices.

procedure DFSEARCH (u)
comment: extend a depth-first search from u

DFCount <+ DFCount + 1

DFNum{u] <— DFCount

for each v — u do

if DFNum[v] =0

v is not visited yet,

comment: .
{ add uv to the spanning tree

Parent[v] + u

stack uv

LowPt[v] + DFNum{u] “initial value”
DFSEARCH (v)

then { comment: LowPt[v] is now known

if LowPt[v] = DFNum|ul)
the comment: v is a cut-vertex
unstack all edges up to, and including, uv

comment: otherwise LowPt[v] < DFNum|u]
else < if LowPt[v] < LowPt[u]
then LowPt[u] < LowPt[v]

comment: v has already been visited

if v # Parent[u] then
comment: uv is a frond, it creates a fund. cycle
if DFNum|[v] < DFNum|u]

else .
comment: v is an ancestor of u
then stack uv
if DFNum[v] < LowPt[u]
then LowPt[u] < DFNum{v]
main
DFCount < 0

for u < 1 ton do DFNum|u] < 0
select a vertex u

LowPt[u] + 1
DFSEARCH (u)

The next thing to notice is that the LowPt[u] is correctly computed. For if u is a
leaf-node of the search tree, then all edges uv are fronds, and v is an ancestor of u.
The algorithm computes LowPt[u] as the minimum DFNum v}, for all such v. There-

Connectivity 139

FIGURE 7.12
Two kinds of fronds

fore, if u is a leaf-node, the low-point is correctly computed. We can now use induc-
tion on the depth of the recursion. If u is not a leaf-node, then some DFSEARCH (v)
will be called from node u. The depth of the recursion from v will be less than that
from w, so that we can assume that DFSEARCH (v) will correctly compute LowPt[v].
Upon returning from this recursive call, LowPt[v] is compared with the current value
of LowPt[u], and the minimum is taken, for every unsearched v — w. Therefore,
after visiting node u, LowPt[u] will always have the correct value.

So far the algorithm computes low-points and uses them to find the cut-vertices
of G. We still need to find the edges in each block. While visiting node u, all new
edges uv are stacked. If it is discovered that LowPt[v] = DFNum[u]; so that u is a
cut-vertex, then the edges in the block containing uv are all those edges on the stack
up to, and including, uv.

Theorem 7.9. Each time that
LowPt[v] = DFENum[u]

occurs in DFSEARCH(u), the block containing uv consists of those edges on the
stack up to and including uv.

Proof. Let B, denote the block containing uwv. The proof is by induction on the
number of times that LowPt[v] = DFNum[u] occurs. Consider the first time it oc-
curs. DFSEARCH(v) has just been called, while visiting node u. Edge uv has been
placed on the stack. DFSEARCH (v) constructs the branch of the search tree at u con-
taining v. By Lemma 7.7, this contains all vertices of G — u connected to v. Call this

140 Graphs, Algorithms, and Optimization

set of vertices B. By the definition of the low-point, there are no fronds joining v or
any descendant of v to any ancestor of u. So u separates B from the rest of the graph.
Therefore B, C G[B U {u}].

Suppose now that B contained a cut-vertex w. No leaf-node of the DF-tree can
be a cut-vertex, so some DFSEARCH(z) is called while visiting node w. It will visit
all nodes of G — w connected to z. Upon returning to node w, it would find that
LowPt[x] = DFNum|w], which is impossible, because this occurs for the first time at
node u. Therefore B,,,, consists of exactly those edges encountered while performing
DFSEARCH(v); that is, those on the stack.

Upon returning from DFS(v) and detecting that LowPt[v] = DFNumlu], all
edges on the stack will be unstacked up to, and including, wv. This is equivalent to
removing all edges of B,,, from the graph. The remainder of the DFS now continues
to work on G — B. Now B, is an end-block of G (i.e., it has at most one cut-
vertex) for w is the first vertex for which a block is detected. If G is 2-connected,
then G = By, and the algorithm is finished. Otherwise, G — B is connected, and
consists of the remaining blocks of G. It has one less block than G, so that each time
LowPt[v] = DFNum{u] occurs in G — B, the edges on the stack will contain another
block. By induction, the algorithm finds all blocks of G. O

Each time the condition LowPt[v] = DFNum{u| occurs, the algorithm has found
the edges of a block of G. In this case, v will usually be a cut-vertex of G. The
exception is when u is the root of the DF-tree, because « has no ancestors in the tree.
Exercise 7.4.3 shows how to deal with this situation.

7.4.1 Complexity

The complexity of DFBLOCKS() is very easy to work out. For every u € V(G), all
v — u are considered. This takes

> DEG(u) = 2

steps. Each edge is stacked and later unstacked, and a number of comparisons are
performed in order to compute the low-points. So the complexity is O(e).

Exercises

7.4.1 Can the spanning tree shown in the graph illustrated in Figure 7.13 be a
DF-tree, with the given root-node? If so, assign a DF-numbering to the
vertices.

7.4.2 Program the DFBLOCKS() algorithm to find all the blocks of a connected
graph G. Print a list of the edges in each block. Choose the starting vertex
to be sometimes a cut-vertex, sometimes not.

7.4.3 Modify your program to print also a list of the cut-vertices of G, by stor-
ing them on an array. A vertex u is a cut-vertex if LowPt[v] = DFNum|u]
occurs while visiting edge uv at node u. However, if u is the root-node

Connectivity 141

FIGURE 7.13
Is this a DF spanning tree?

of the DF-tree, then it will also satisfy this condition, even when G is
2-connected. Find a way to modify the algorithm so that it correctly de-
termines when the root-node is a cut-vertex.

7.4.4 A separable graph has x = 1, but can be decomposed into blocks, its max-
imal non-separable subgraphs. A tree is the only separable graph which
does not have a 2-connected subgraph, so that every block of a tree is an
edge. Suppose that G has k = 2. In general, G may have 3-connected sub-
graphs. Characterize the class of 2-connected graphs which do not have
any 3-connected subgraphs.

7.4.5 Let G be 3-connected. Prove that every pair of vertices is connected by at
least three internally disjoint paths.

7.4.6 Let G have k = 2, and consider the problem of finding all separating pairs
{u, v} of G using a DFS. Prove that for every separating pair {u, v}, one
of w and v is an ancestor of the other in any DF-tree. Refer to Figure 7.14.

7.4.7 Suppose that deleting {u, v} separates G into two or more components.
Let GG denote one component and G5 the rest of G. Show that there are
two possible ways in which a DFS may visit v and v, as illustrated in
Figure 7.14. Devise a DFS which will find all pairs {u, v} which are of
the first type. (Hint: You will need LowPt2[v], the second low-point of v.
Define it and prove that it works.)

7.5 Sections and modules

Suppose that G is a disconnected graph, with connected components G1, Go, . . .,
G Algorithms applied to G can usually be applied successively to each G;. The
complement G is connected, but each subgraph G; is connected to all other G;’s

142 Graphs, Algorithms, and Optimization

FIGURE 7.14
DFS with separating set {u, v}

by all possible edges. Therefore algorithms applied to G can also be applied succes-
sively to each G;. We say that each subset V(G;) C V/(G) is a section of G and of

G. Sections are defined recursively.

DEFINITION 7.2: Given a graph G, with complement G, and vertex set V.

1. V is a section of G and of G.

2.If U C V induces a connected component of G or of G, then U is a section of
G and G.

3. Let U be a section of G and G Then any section of G[U] is also a section of
G and G.

If G = K, then G has n connected components, so that each vertex is a section.
Consider G = C. Then G consists of 2K 5. The vertices of each K form a section.
And each K itself consists of two sections. Thus, C, can be completely reduced by
its sections. In general, the set of sections of G and G form a decomposition tree.
The tree of sections of Cy is shown in Figure 7.15.

oge

FIGURE 7.15
The sections of Cy

Connectivity 143

Let G denote the complement of K4 U K3 3. This is a connected graph, whose
complement has two connected components, K4 and K3 3, each of which is a section
of G. K4 has four sections consisting of single vertices. And the complement of K3 3
is disconnected, consisting of two triangles K. Each K5 in turn has three sections
consisting of single vertices. The complete tree is shown in Figure 7.16. We see that
the decomposition tree of G is required in order to combine the sections and retrieve

G.

K, U K373

FIGURE 7.16
The sections of the complement of K4 U K3 3

An algorithm for finding the sections of a graph GG derives from Definition 7.2.
We start by finding the connected components G1, G, ..., G of G. If k > 1, then
each component is a section. The algorithm then proceeds recursively, taking in turn
the complement of each G;. But if GG is connected, the algorithm finds the connected
components of G and then proceeds recursively. The decomposition tree can be si-
multaneously constructed.

A proper section of G is a section U, where U # V(G). Clearly a connected
graph G whose complement is also connected has no proper sections. Let v be a
vertex in such a G. We now take an arbitrary graph H, and alter G by replacing v
with H. Any edge uv of G is replaced by all possible edges uw, where w € V(H).
The set V (H) now has the property that if uz € E(G) is any edge where v ¢ V (H)
and x € V(H), then uw € E(G), forall w € V(H). Such a set is called a module
or autonomous set of G.

DEFINITION 7.3: Let G be a graph and let U C V(G) be a set of vertices of
G. Then U is a module of G if it has the property: if ux € E(G) where u ¢ U and
x € U, thenuw € E(G), forallw € U.

It is clear from the definition that V(G) is a module of G. Similarly every {v},
where v € V(G) is a module, and) is a module of G. Aﬂd every section of G is also
a module of G. Every module of G is also a module of G.

Lemma 7.10. Let Uy and Us be modules of G. Then
1. Uy N Us is a module of G.

144 Graphs, Algorithms, and Optimization

2.1fUr N Uy # () then U1 U Uz is a module of G.
3. IfULNUy # 0, then Uy N Us is a module of G.

Modules provide a further reduction for graphs with no proper sections. If U is
a module of G, then because every {v} is also a module of G, we see that V(G)
can always be written as a disjoint union of modules, one of which is U. If the set
U is “shrunk” to a single vertex, a smaller graph is obtained. GG is then said to be
decomposable. A graph is indecomposable if every module is either the empty set, a
singleton, or all of V(G).

Exercises
7.5.1 Let U be a section of . Show that U is also a section of G.
7.5.2 Let U be a module of G. Show that U need not be a module of G.
7.5.3 Prove Lemma 7.10.
754 Let G be a graph with n vertices and no proper sections. Can there be a

module of n — 2 vertices ? Can there be a module of n — 3 vertices ?

7.5.5 Program the algorithm to find the sections and decomposition tree of a

graph G.
7.5.6 Develop an algorithm to find the modules of a graph with no proper sec-
tions.
1
7.6 Notes

The example of Figure 6.3 is based on HARARY [80]. Read’s algorithm to find the
blocks of a graph is from READ [143]. The depth-first search algorithm is from
HOPCROFT and TARJAN [89]. See also TARJAN [166]. Hopcroft and Tarjan’s appli-
cation of the depth-first search to find the blocks of a graph was a great breakthrough
in algorithmic graph theory. The depth-first search has because been applied to solve
a number of difficult problems, such as determining whether a graph is planar in
linear time, and finding the 3-connected components of a graph.

Algorithms for finding the connectivity and edge-connectivity of a graph are de-
scribed in Chapter 8. An excellent reference for connectivity is TUTTE [177], which
includes a detailed description of the 3-connected components of a graph. A depth-
first seach algorithm to find the 3-connected components of a graph can be found
in HOPCROFT and TARJAN [90]. This algorithm has been carefully analyzed and
improved by GUTWENGER and MUTZEL [77].

Sections were introduced by CORNEIL, LERCHS, BURLINGHAM [37], and also
by GOLDBERG [71], who used them as a reduction in a graph isomorphism algo-
rithm. Modules are presented in a very general setting by SCHMERL and TROTTER

Connectivity 145

in [155]. See also ILLE [91]. Modules are also known as autonomous sets or inter-
vals. A fast algorithm to find the modules of a graph appears in BUER and MOHRING
[26].

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

8
Graphs and Symmetry

8.1 Groups

Groups are necessary for understanding of the symmetry of a graph, and for con-
structing graphs with prescribed symmetry. We outline here the main concepts of
group theory which are used in this book. They are used for constructing vari-
ous graphs. Consider the graph of the cube, illustrated in Figure 8.1. Given a 3-
dimensional cube, it could be rotated in several ways, and the cube would still look
the same. A rotation of the cube can be represented as a permutation of the vertices.
For example, if we imagine an axis of rotation through the front and rear faces of
the cube in Figure 8.1, then a clockwise rotation through 7/2 could be represented
by the permutation (1, 3,5, 7)(2, 4, 6, 8), where the parentheses indicate that the ver-
tices move in two cycles of four vertices each: 1 maps to 3, which maps to 5, which
maps to 7, which maps to 1, etc.

FIGURE 8.1
The graph of a cube

An automorphism of a graph G is a permutation of V(G), (i.e., a one-to-one
mapping of V(G) onto V(G)), that maps E(G) onto itself. Given a permutation 6,
we write u? for the image of w under 6. (The functional notation would be 6(u),
however, the exponential notation turns out to be more convenient for permutations
and groups.) If uv € FE(G) then § maps edge uv onto (uv)? = w0’ € E(G).
Because an automorphism 6 is bijective, given an edge xy € E(G), there can be
only one edge uwv such that (uv)? = zy. It follows that § also maps non-edges to
non-edges.

Given two automorphsims, 6 and ¢, they can be composed to obtain 6¢: vertex u
maps to u’ under 6, then to ©?¢ under ¢. So the mapping 6¢ means “first 6, then ¢”.

147

148 Graphs, Algorithms, and Optimization

The composition of permutations is also called the product of the permutations, and
is evaluated from left to right.

The set of all automorphisms of a graph G is denoted AUT(G). Observe that
AUT(G) has the following properties:

1. (identity) There is an identity permutation, denoted I € AUT(G), with
the property that 16 = 61, for all § € AUT(G).

2. (inverses) Given any 6 € AUT(G), the inverse 6! is also in AUT(G).
(closure) If 6, ¢ € AUT(G), then the product ¢ € AUT(G).
4. (associativity) If 6, ¢, p € AUT(G), then (6¢)p = 6(pp).

These properties are abstracted and become the axioms of a group: a group is a
set of elements which have a product defined, satisfying the above properties. Two
common types of groups are permutation groups, and groups of invertible matrices
with the operation of matrix multiplication. There are numerous possibilities for a
group’s “product” operation — it could be composition of permutations, multiplica-
tion of matrices, addition or multiplication of numbers, etc. The symmetric group S,
consists of all n! permutations of n objects. It is easy to see that if a graph G has n
vertices, and AUT(G) = S,,, then either G = K,, or G = K ,,. The order of a group
I is [T, its number of elements. We will always use I for the identity element in a
group — all groups will have an element named I.

Many graphs with interesting properties can be constructed from groups. We
outline some of the key ideas required.

Let I" be a group, say I' = AUT(G), for some graph G. A subset K C T that is
also a group is called a subgroup. Clearly every subgroup of I" contains the identity
element I. One way to form a subgroup of I" is to choose an element § € T', and
construct its powers 6, 62,03, ..., where 62 means 09, etc. Eventually we find that
g% = 1, for some non-negative integer k, called the period of 6. We write <9> for
the subgroup generated by 6, i.e., all powers of §. Another common way to form a
subgroup of T" is to choose a vertex v € V' (G), and consider all elements that map v
to itself. It is easy to verify that this defines a subgroup, called the stabilizer subgroup
of v, denoted T',,. Similarly, given a subset U C V(G), the set of elements of T that
map U to U is a subgroup, the set-wise stabilizer of U.

Given a subgroup K C T, and an element 6 € T, the right coset K6 consists
of the set of elements of K, followed by 6, namely K0 = {¢0 | ¢ € K}. Itis
easy to see that two cosets K6, and K6, are either identical (if 6165 L e K), or
disjoint (if 0,65 * ¢ K). It follows that " can be written as a disjoint union of distinct
cosets, ' = K6, + K05 + ... + K0,,, where it is customary to write the disjoint
union of cosets as a sum. The elements 61, ..., 0, are called coset representatives.
Therefore |I'| = m|K], i.e., the order of a subgroup divides the order of the group.
This is called Lagrange’s theorem. Left cosets § K are defined similarly, giving I' =
1K+ oK + ... 4+ ¢, KK, although we will mostly use right cosets.

We now choose a subgroup K to be I',, the stabilizer of a vertex v, and write
I' = K6 + Kb + ... + K6,,. Every element in the coset K8, maps v to v,

Graphs and Symmetry 149

Hence, the vertices {v91 o2 ve’"} consists of all vertices that I' maps v to. This
is called the orbit of v. It is denoted by v", or by orb(v). We have

Lemma 8.1. |orb(v)| - |T,| = [T

We now have sufficient techniques to find AUT(G) when G is the graph of the
cube in Figure 8.1. Choose v = 1. We see that 6 = (1,3,5,7)(2,4,6,8) € AUT(G)
and that ¢ = (1,2)(3,4)(5,6)(7,8) € AUT(G). Therefore |orb(v)| = 8, from which
|AUT(G)| = 8 - |T'1]. Referring to the diagram, we see that I'y must map {2,3,7}
to {2,3, 7}, it must map {4, 5,8} to {4,5, 8}, and it must map 6 to 6. Clearly o =
(2,3,7)(4,5,8) € I'y. This is a rotation of the cube along the axis through vertices
1 and 6. We could also fix the edges 12 and 56, and perform an interchange v =
(3,7)(4,8). This is an automorphism of the graph of the cube, although a physical
cube cannot be transformed like this. We conclude that |T'1| = 6, so that |['| = 48.
Furthermore, we have found generators for T, that is, every element of I' can be
written as a product of 6, ¢, o, and +y, in some order. We write <6‘, o, a, fy> for the
group generated by these permutations.

Suppose now that a permutation group I" acting on a set V- = {1,2,...,n} has
been given. Usually generators for I' will be known. For example, I" could be given
by the generators§ = (1, 3,5,7)(2,4,6,8)and ¢ = (1,3,4,6,8,7)(2,5). One of the
easiest ways to construct a graph G for which I' acts as a group of automorphisms is
to use algorithm SYMMETRICGRAPH.

procedure SYMMETRICGRAPH(T', n, uv)
comment: A group I’ actingon V' = {1,2,...,n} is given by a set of generators

comment: Construct a graph G containing edge uv such that ' C AUT(G)
comment: ScanQ[1,2,..] is a queue of edges

k+1
M1
ScanQ[1] + wv
E(G)«+ 0
add uv to E(Q)
while £ < M
uv + ScanQ|[k]
for each generator 0 of I’
zy + (uv)?
ifuv € E(G)
do add wv to E(G)
then < M «+ M +1
ScanQ[M] + xy

do

k+—k+1

150 Graphs, Algorithms, and Optimization

An edge wv is given, and the generators of I' are applied successively
to uwv to determine all edges to which elements of I' can map wwv. If algo-
rithm SYMMETRICGRAPH is applied using the group I' generated by 6 =
(1,3,5,7)(2,4,6,8) and ¢ = (1,3,4,6,8,7)(2,5) on the starting edge uv = 13,
then the graph of the cube of Figure 8.1 is constructed. Clearly every generator of I'
is an automorphism of the graph G constructed, so that I' C AUT(G).

DEFINITION 8.1: A permutation group I' with just one orbit is said to be tran-
sitive. A graph G such that AUT(G) is transitive is said to be verrex transitive. If the
action of AUT(G) on E(G) is transitive, then G is said to be edge transitive.

The algorithm SYMMETRICGRAPH builds G from an edge uv, hence, it is clear
that GG is edge-transitive. The algorithm could easily be extended to start with several
different edges.

Various algorithms are available for finding generators for AUT(G), given a graph
G. Several references for constructing and programming these algorithms are [107,
111, 124]. Graph isomorphism software can also be downloaded from the internet.

8.2 Cayley graphs

Let I" be an arbitrary finite group. We construct an edge-colored digraph G from
I' as follows. The vertices of GG are the elements of I'. Choose a set of elements
S = {61,02,...,0,} that generate T'. The edge colors will be 1,2,..., k. Vertex
~v € V(G) =T is joined by a directed edge of color i to v6;. The result is called a
Cayley digraph of I, denoted (TB;’(F, S), For example, let I be the group generated
by the permutations 6; = (1,2,3,4) and 62 = (2,4). By finding all products of
01,6, we find that |T'| = 8. The elements of I are:

I, 6, = (1,2,3,4), 02 = (1,3)(2,4), 03 = (1,4,3,2)
Oy = (2,4), 0201 = (1,2)(3,4), 6207 = (1,3), 6203 = (1,4)(2,3)

The resulting Cayley digraph is shown in Figure 8.2. The solid edges represent
0, . The dotted edges represent 65, they are actually pairs of edges directed in opposite
directions, because 5 has period two.

Consider the structure of a Cayley color-digraph. It is a graphical representation
of the group structure of I'. Choose any vertex ~y. There is an arc from ~y to 61, and
then to v6%, then to 03, etc., finally returning to . That is, each vertex of G is part
of a directed cycle of color ¢, whose length is the period of 6;.

An automorphism of an edge-colored digraph is a digraph-automorphism that
maps each arc to an arc of the same color.

'Ikiorem 8.2. Let T be a group with generators S = {01,...,0,}. Let G =
Cay (T, S). Every element of AUT(G) corresponds to an element of T.

Graphs and Symmetry 151

0207 0,62
< -0
07 .
01
A
Y
‘ X
A
fod > 5
02 020,

FIGURE 8.2
A Cayley color digraph for I' = <01, 02>

Proof. Lety €T, and let @ be a vertex of GG. Left multiplication by ~y gives a vertex
~va of G. Now G contains an arc (o, af;) for each color i. It also contains an arc
(ya, yab;) for each color i. Therefore left multiplication by any element v € T is an
automorphism of G.

Now the permutations 61, ..., 0,, generate I', so that o can be mapped to any
B € V(G) by some . Thus AUT(G) is transitive on V' (G). We now look at the
stabilizer AUT((),. Vertex « has exactly one out-arc of color 4, for each ¢, and
exactly one in-arc of color ¢, for each ¢. Therefore, the stabilizer has order one, so

—
that all automorphisms of G = Cay(T', S) derive from I" by left multiplication. [

Another property of the Cayley color-digraph is that for each 6;, the vertices of G
are distributed uniformly into cycles whose length is the period of 6;. In Figure 8.2,
01 produces cycles of length 4, and 6> produces cycles of length 2. Let 67 denote
the permutation of V' (G) that derives from right multiplication by 6;. Let 65 denote
the corresponding permutation for #,. For every product of §; and 65 in T, there is
a corresponding product of 67 and 05. We see that #] and 65 generate a group I'*,
it is called the right regular representation of I". Here “right” refers to right multi-
plication, and “regular” refers to the fact that each permutation consists of cycles of
uniform length.

Given any edge-colored digraph, there corresponds a graph obtained by ignoring
the edge-colors and direction of the arcs.

DEFINITION 8.2: Let T be a group with generators S = {61,...,0,,}. The
Cayley graph Cay(T', S) is formed from the Cayley color-digraph by ignoring the
edge-colors and arc-directions.

The Cayley graph for Figure 8.2 is the graph of the cube. We have already dis-
covered that its automorphism group has order 48, whereas |I'| = 8. Thus, a Cayley

152 Graphs, Algorithms, and Optimization
graph can have more automorphisms than those arising from the group used to con-
struct it.

DEFINITION 8.3: A Cayley graph G = Cay(T",.S) for a group I is a graphical
regular representation (GRR), if |AUT(G)| = |T|.

Much work on graphical regular representations has been done by Godsil,
Watkins, and Imrich.

8.3 Coset diagrams

A Cayley graph is constructed by allowing the elements of a group I to act on I
by right multiplication. Each element of I" can be viewed as a coset of the subgroup
{I}.If K is any subgroup of T', it is easy to see that the elements of I" also permute
the right cosets of K by right multiplication. Let I' = K~ + ... + K~,, be a
decomposition of I" into right cosets. Let 61, ... 6 be generators for I'. The coset
diagram I" mod K is an edge-colored directed graph whose vertices are the cosets
of K, with an edge of color ¢ from vertex Ky; to vertex K~;0; = K+, for some /.

As an example, consider the group I' of Figure 8.2 with generators 6; =
(1,2,3,4) and 62 = (2,4). Let K = (fs), the group generated by 6. Clearly
|K| = 2, so that there are four cosets. The cosets can be listed as K, K61, KH%,
and K 603. The coset diagram I" mod K is shown in Figure 8.3. Notice that a coset
digraph usually contains loops. For if a generator 6; € K, then K6; = K, producing
a loop of color i.

Walks in the coset diagram correspond to products of generators of I'. For exam-
ple, if we start at the coset labeled K in Figure 8.3 and successively follow the edges
corresponding to 61, then 5, then 61, we obtain the product 6,620, . Starting at coset
K, this gives the result K60,020; = K, so that #1020, € K. Because 61, ..., 0; were
chosen as generators for T, it follows that the coset digraph is connected. There is
directed path from any vertex (coset) to any other. Coset diagrams are the basis of
many algorithms for permutation groups. See [27, 158].

Each 0; now gives rise to a permutation 0; of the cosets, namely 67 maps coset
K~ to Kv;0; = K-y, for some ¢. Once again we have a representation of I' by
permutations, I'* = < I, 0;). In the example of Figure 8.3, the original permutations
are reproduced.

As a larger example, let I' be the permutation group generated by the permuta-
tions 0 = (1,2,3,4,5,6), and ¢ = (1,2). ' is the symmetric group Sg consisting
of all permutations of six objects. |[I'| = 6! = 720. Let K be the subgroup generated
by (1,4,2,5,3,6) and (1,6, 2,5, 3,4), which has order 36. There are 720/36 = 20
cosets. The coset diagram I' mod K is shown in Figure 8.4. The solid lines repre-
sent 0%, and the dotted lines represent ¢*. We see that 8* has two cycles of length
6, two cycles of length 3, and two fixed points. And ¢* consists of ten cycles of
length two. If we number the cosets 1, 2,. .., 20, we have a permutation representa-

Graphs and Symmetry 153

FIGURE 8.3
A coset diagram I' mod K

tion S§ <9*, ¢*> of Sg acting on 20 cosets. It can be checked that this representa-
tion of Sg also has order 720, although it is not always the case that a representation
of a group I' by cosets of a subgroup has the same order as I'.

FIGURE 8.4
A coset diagram I' mod K

The Cayley graph construction, and the algorithm SYMMETRICGRAPH() both
construct a graph with a given group acting as a group of automorphisms. Sometimes
it is convenient to combine them as follows.

Beginning with a group I" and generators {61, ..., 0}, and a subgroup K, we
construct a Cayley graph G for I'. A decomposition of I" into cosets of K is then
found, { K1, ..., Kvm}. New vertices uq, ..., u,, are then added to G, such that
u; is adjacent to those vertices of G that belong to coset K ;. The result is a graph for
which I' permutes the vertices of the Cayley graph, and simultaneously permutes the
vertices representing the cosets of K. An algorithm for finding a coset decomposition
of a permutation group can be found in [27].

154 Graphs, Algorithms, and Optimization

8.3.1 Double cosets

We are now ready to make double coset graphs. Let I be a group with a subgroup K,
and let K~1, ..., Kv,, be a coset decomposition of I'. Let ¢1, ..., @5 be generators
for K. Consider the elements of K, acting on these cosets by right multiplication.
Coset Ky; will be mapped to Ky;¢; by generator ¢;. As ¢; is varied, all cosets of
K contained in K~; K will form one orbit. K~; K is called a double coset of K. It
is constructed by allowing K to act on its own cosets in I'. Notice that if v = I, then
K~yK = K, so that K is also a double coset, it forms an orbit of one coset. Most
double cosets K~y; K will contain several cosets of K. Notice that the graph of all
cosets acted on by the generators of K is not connected, because ¢, ..., ¢ do not
generate all of I". Each connected component is a double coset of K. We state this as
a lemma, from which it is obvious that double cosets K, K and K+, K are either
identical or disjoint.

Lemma 8.3. The double cosets K~y K consist of the connected components of the
graph of right cosets of K in I, with K acting by right multiplication on its own
cosets.

The double cosets produce interesting graphs. Let a group I with a subgroup K
be given. We construct a graph G whose vertices V(G) are the cosets of K in I'.
Choose a coset K+, for some v € I', where v # 1. Suppose that { K, K~} is chosen
as an edge of G. We want I to act as a group of symmetries on G. So for each
0 € T, vertex K6 of G will be adjacent to vertex K~v6. Now I acts transitively on
the cosets of K, so that GG is a vertex-transitive graph. We now look at the stabilizer
subgroup I'x. It consists of those elements ¢ € I" such that K¢ = K,ie.,['x = K.
Now when I' i acts on coset K, it produces the double coset Ky K. Therefore K is
adjacentin G to Koy, Ko, ..., Ko, the right cosets of K contained in KvK. G
is called the double coset graph, denoted T'(K, 7).

There can also be other edges incident on K. Given # € T, there is an edge
{K0,K~0} in G. It is possible that K6 = K. This implies that v0 € K, so that
0 € v~1K, from which we find that K6 is a right coset contained in the double coset
K~7'K.Now it can be that Kv~*K = K~K. In this case, the graph G is regular
of degree m. But if Ky 'K # KK, then G will be regular of degree 2m. We
summarize these facts.

DEFINITION 8.4: Let T be a group with a subgroup K. Choose a coset K+,
where v # 1. The double coset graph T'(K, ~y) has vertex set equal to the right cosets
of K in T, and edges { K0, K0}, where 6 is any element of I".

Theorem 8.4. The double coset graph T'(K,~) is vertex transitive. Let m be the
number of cosets of K in KyK. Then T'(K,~) is regular of degree m or 2m.

We can say more about the number m of right cosets of K contained in Ky K. It
is easy to see that if K is a subgroup of T, then sois v "' K~.Let H = K Ny ' K7.
Then H is a subgroup of K. Consider a coset Ky, in KvK, where a; € K, and
suppose that ¢ is some element of Hc;. Then ¢ € v~ 'K~ya;, so that v¢ € Kvyoy.

Graphs and Symmetry 155

It follows that Kvy¢ = K~«;. Butif ¢ ¢ Ha;, then K¢ and K~a; are different
cosets. It follows that m is the number of cosets of H = KN~y 'K+~ in K. A special
case occurs when v~ Ky = K. In this case there is just one coset K~ in KvK, so
that the double coset graph will have degree one or two.

When Ky 'K = K~vK, the graph I'(K,~) has degree m. Furthermore, the
stabilizer I' ¢ is transitive on the vertices adjacent to K. But when Ky 'K # KvK,
the degree is 2m, and the stabilizer is not transitive on the adjacent cosets, instead
they divide into two orbits.

As an example of this technique, let I' be the group of permutations act-
ing on 20 points, with generators § = (2,5,6)(3,10,11)(4,15,7)(8,14,16)
(9,20,12)(13,19,17) and ¢ = (1,5,4,3,2)(6,10,9,8,7)(11,15,14,13,12)
(16,20,19,18,17). T is the group of automorphisms of the dodecahedron. It
has order 60. The subgroup K generated by (1,13)(2,9)(3,4)(5,8)(6,18)(7,14)
(10,12)(11,19)(15,17)(16,20) and (1,18)(2,17)(3,16(4,20)(5,19)(6,13)(7,12)
(8,11)(9,15)(10, 14) is chosen. It has order 4, so that there are 15 cosets. The double
coset KK is chosen, where v = (2,5,6)(3,10,11)(4,15,7)(8, 14,16)(9, 20, 12)
(13,19,17). It contains four cosets of K. The resulting double coset graph I'(K,)
is shown in Figure 8.5. The same group I' acts on this graph of 15 vertices, how-
ever it is now permuting cosets. If we find the automorphism group of the graph, we
find it has order 120. We can say that this graph is a graphical representation of the
group I'. In general, a group I' can have many different representations by various
graphs. For a group I' has many subgroups K, of various orders, each with a number
of possible double cosets. The result is many different graphs acted on by the same
I". The graphs constructed can be very different, yet they are related through their
automorphism groups.

FIGURE 8.5
A double coset graph related to the dodecahedron.

The double cosets KK are a special case of a more general double coset. If K
and H are two subgroups of I, then K~ H is the set of right cosets of K of the form

156 Graphs, Algorithms, and Optimization

Ka, where € H. Similarly, it is also the set of left cosets of H of the form SH,
where 5 € K.

8.4 Conjugation, Sylow subgroups

In the previous section, we started with a group I" and a subgroup K, and allowed
the generators of either I' or K to act on the cosets of K. This produced a number of
permutation representations of I', together with families of vertex-transitive graphs.
There is another way to use the generators of either I" or K to construct permutation
representations. Given elements v, @ € T, the conjugate of v by 6 is §~1~6. It is con-
venient to denote this also by 7. We see that 6 induces a permutation of I" whereby
every v € I' is mapped to 77, its conjugate under . Similarly, if K is a subgroup
of I', then 071 K6 = K% = {¢? | ¢ € K} is the conjugate of K by 6. The familiar
notions of orbits and stabilizers produce interesting concepts using conjugation.

Let K be a subgroup of the permutation group I, acting on the points V' =
{1,2,...,n},and letv,0 € T.

Lemma 8.5. K7 is a subgroup of T. Let A C V be an orbit of K. Then A is an
orbit of K°.

Proof. K° maps A? to (071A0)7 K0 = g=1AKg = AP, O
Lemma 8.6. Let (u1,us, - .., Uy) be a cycle of v. Then (uf,uf, ..., ul)) is a cycle
of v°.

Proof. Point u! is mapped by 77 to uf(a*w =ul,,. O

We see that conjugate permutations have an identical cycle structure. The stabi-
lizer of v under conjugationis {6 | ¥/ = ~}. This is a subgroup of I". We have 7/ = v
if and only if 76 = 6. So the stabilizer consists of all elements of I' that commute
with +. This is called the centralizer of -y, and denoted C'(y). By Lemma 8.1 we have

lorb(y)[- [C(7)] = |T|

The orbit of « under conjugation consists of those permutations of I" with the same
cycle structure as -y to which y can be conjugated. In the case when I' = 5,,, this will
be all permutations with the same cycle structure as v, called a conjugacy class of
Sh.

The stabilizer of a subgroup K under conjugationis {6 | K = K}. This s called
the normalizer of K, and denoted N (K). By Lemma 8.1 we have

lorb(K)| - [N (K)| = [T

So the number of subgroups conjugate to K is determined by the normalizer. It is a
subgroup of T', and we can write the decomposition of T" into right cosets of N (K)

Graphs and Symmetry 157

asT' = N(K)y, + ...+ N(K)v,,. Then it is easy to see that KV(F)v = K7,
so that K7 K72 ... K7 are all the conjugates of K in I'. Conjugation of K by
elements of I" induces a permutation of the subgroups K, K72 ... K7™ such that
K7 = K if and only if 7 and 6 are in the same coset of N (K).

When N(K) =T, only K is conjugate to itself, i.e., K = K, forall € T. K
is then said to be a normal subgroup, denoted K < I'. In this case the right and left
cosets of K are identical, 61K = K, so that 0K = K6. A reduced group I'/ K
can then be constructed whose elements are the cosets of K:

F/K: {KO&l,KOZQ,...,KOék}

with the product rule Ko, Koy = Kajoy. Because Ko, Koy = a;KKoy =
a;Kaj; = Koo , the product is well defined, and independent of the coset rep-
resentatives chosen. We see that [I'/ K| = |T'|/| K. The identity in /K is I = K.
The group I'/ K is called a quotient group or factor group of T'.

It is clear that K is a normal subgroup of its normalizer N (K), as K7 = K, for
ally € N(K). N(K) is the largest subgroup of I in which K is a normal subgroup.

Suppose now that p is a prime dividing |T|. Let p* be the highest power of pin |T'|,
and consider the case when there is a subgroup K of order p*. Such a subgroup K is
called a Sylow p-subgroup. We will soon see that there always is such a subgroup. I'
acts by conjugation on K, so let K K72 ... K7 be all the subgroups of I" that
are conjugate to K. Then m = |T'|/|N(K)|. Now K is a subgroup of N (K), so that
|N(K)| = p*¢, where £ > 1 and |T'| = p*¢m.

Theorem 8.7. Let K be a Sylow p-subgroup of I'. The number of conjugates of K
by elements of I is congruent to one, mod p.

Proof. We allow K to act on the subgroups K7, K72 ..., K7™ by conjugation, and
find its orbits. Without loss of generality, let K7* = K. Clearly K¢ = K, for any
¢ € K, so that the subgroup K7 is an orbit containing just one subgroup under
conjugation. If N(K) = T, then K < T, so that there is only one conjugate, and we
are done.

Otherwise there are m > 1 conjugates of K in I', corresponding to the m cosets
of N(K). Coset N(K)~; conjugates K to K. Now K <N (K), so that N(K)/K is
a group of order | N (K)|/|K| = ¢, where gcd(¢, p) = 1. Therefore N(K)/K has no
elements whose period is divisible by p. It follows that the period of any element of
0 € N(K), where § ¢ K is not divisible by p. Consequently K is the only one of the
conjugates K7 that is contained in N (K). It is easy to see that N (K) = N(K)".
Now if K # K7, then K contains an element § ¢ K7, so that § ¢ N(K"). It
follows that 6 conjugates K¢ to some K7 where i # j. That is, when K acts by
conjugation on K K72 ... K7 there is only one orbit of length one, namely
K. All other orbits have length dividing | K|, so that all other orbits have length, a
non-zero power of p. Therefore m = 1 (mod p).

O

We would now like to show that a Sylow p-subgroup always exists. First note that
if |T'| is divisible by p, then T must contain an element v whose period is divisible

158 Graphs, Algorithms, and Optimization

by p. Let the period of v be p'/, where gcd(p,¢) = 1 and i > 1. Then the period of
% is p’. It follows that " always contains an element of order p’. If i > 1, then it
contains elements of order p, p?,. .., p’, and therefore it also contains subgroups of
these orders.

Theorem 8.8. Ler p* be the highest power of the prime p dividing |U'| = p*m,
where k = 1, and let K be a subgroup of I of order p*, where 1 < i <'k. Then K is
contained in a subgroup of order p*t1.

Proof. We have already seen that I" contains a subgroup of order p. The proof
is by induction on k. Consider N(K). Let |[N(K)| = p’f where j > i and
ged(p,f) = 1.1f j > i, then N(K)/K is a group of order p’~*/, and therefore
contains an element of order p. Let Ky € N(K)/K be an element of order p. Then
{K,K~,..., Ky*~1} is a subgroup of N(K)/K of order p. If we add y as a gener-
ator to K, we obtain a subgroup of order p'*1.

Otherwise j = i. There are p*~*m/{ conjugates of K in I. When K acts by
conjugation on them, K is an orbit of size one. The number of conjugates in any
non-singleton orbit is divisible by p. But p divides the number of conjugates, so that
there is another singleton orbit, say K7 # K. Therefore K C N(K7). It follows
that N (K) contains an element not in &, but whose period is a power of p, so that
j > 1, a contradiction.

O

It follows from Theorem 8.8 that I' contains a chain of subgroups
Ko, K1, ..., Kj where |K;| = p® and each K; is a subgroup of K, 1, up to K.
Notice that if || = p’ and K is a subgroup of a group H of order p'*?, then there
are p cosets of K in H. Let H act by right multiplication on these cosets. The re-
sulting group is a transitive permutation group acting on p objects, whose order is
a power of p. The stabilizer of any object must fix all p objects, for if the stabilizer
has a non-singleton orbit, the order of H will not be a power of p. It follows that the
order is p, giving K < H. So I' contains a chain of subgroups, Ko < K7 <...< K.

Sylow subgroups are a source of many interesting vertex-transitive graphs. Given
a group I, it is convenient to choose a subgroup K as a Sylow p-subgroup for some
prime p. Then a double coset graph for K can be an interesting graph. For example,
the subgroup K of order 4 used in Figure 8.5 is a Sylow 2-subgroup of the auto-
morphism group of the dodecahedron. Algorithms for finding Sylow subgroups of a
permutation group I" can be found in [27, 158].

8.5 Homomorphisms

We have already seen some examples of homomorphisms. Given a group I" and a
subgroup K, the action of I' on the cosets of K gives a representation I'* of I, such
that to each v € T, there corresponds an h(y) = v* € I'* which permutes the right

Graphs and Symmetry 159

cosets of K by right multiplication. This mapping h : I' — I'* has the property that
h(v0) = h(y)h(0), for all v,0 € T'. A mapping h from a group I" to a group ¥
with this property is called a homomorphism. It is easy to see that A(I) = I and that
h(y~1) = h(y)~! for any homomorphism h.

When K is a normal subgroup of I, there is a natural homomorphism A from I"
toI'/K = {Ka1, Kas, ..., Kag}, such that every v € K, is mapped to h(y) =
Ka;. Thenevery v € K ismapped to I = K.

DEFINITION 8.5: Leth : I' — ¥ be a homomorphism. The kernel of h is
Ker(h) ={y €T |h(y)=1€ T}.

Thus, when K is a normal subgroup, the kernel of this natural homomorphism is
K. Tt is easy to prove that Ker(h) is always a normal subgroup of I".

Another example of a homomorphism is when I' permutes its elements or sub-
groups by conjugation. Let # € T" and consider the permutation group induced by
conjugation, whereby every v € I'is mapped to 7. Let the permutation of I in-
duced by conjugation be denoted 6’, so that h(#) = €’ is a homomorphism. The
kernel of his Z = {0 € T' | 6y = v0,V0 € T'}. Z is called the center of T

Another example of a homomorphism is when I' permutes the right cosets of a
subgroup K by right multiplication. Every 6 € T" is mapped to a permutation of the
cosets. The kernel of this homomorphismis {§ € I' | K0 = K~,V~ € T'}. This is
the largest subgroup of K that is normal in I'. It is called the core of K. Algorithms
for finding the center and core can be found in [27, 158].

8.6 Primitivity and block systems

Let T' be a transitive permutation group acting on a set V- = {1,2,... ,n}. It will
often be the case that I" will be an automorphism group of a graph with vertex set
V. T induces an action on the set of all pairs {u, v}, where u,v € V. Let I'? denote
this induced action on (‘2/) It can have several orbits, even though I' is transitive.
For example, let I' be the automorphism group of the graph of the cube, generated
by 0 = (1,3,5,7)(2,4,6,8) and ¢ = (1,3,4,6,8,7)(2,5). Each orbit of I'? is the
edge-set of a graph. For example, one of the orbits of I'? is the graph of the cube,
shown in Figure 8.1. There are two other orbits, shown in Figure 8.6.

DEFINITION 8.6: Let I be a transitive permutation group. If every orbit of I'? is
a connected graph, then I' is said to be primitive. Otherwise I is imprimitive.

We see that the automorphism group of the graph of the cube is an imprimitive
group. When an orbit of I'? is a disconnected graph G, each automorphism of G must
map a connected component of GG to a connected component. Because I' C AUT(G),
this property also applies to I'. Therefore I' must permute the connected components.
Given a disconnected orbit GG, the collection of vertex-sets of the connected compo-
nents of G is called a block system for I.

160 Graphs, Algorithms, and Optimization

3 o o 8 4 o o 7 5 8 6 7
1 6 2 5 1 4 2 3
FIGURE 8.6

Two orbits of I'2, finding a block system

DEFINITION 8.7: Let I' be an imprimitive transitive permutation group act-
ing on a set V. A block system for I' consists of a collection of disjoint subsets
Vi, Vo, ..., Vi €V, whose union is V, such that I' induces a permutation of the V;.

Two block systems for the above I' are evident from Figure 8.6. One is
{1,6},{2,5},{3,8},{4,7}. The other is {1,4,5,8},{2,3,6,7}. It is easy to see
how to find a block system for a group I' — we simply find the orbits of I'2, and test
if they are connected graphs.

Let V1, Va, ..., V,, be a block system for I'. Let H be the subgroup that maps
each V; to Vj,ie, H = {y € I'| V;) = V;,Vi}. Take any 6 € T and consider H*.
Choose any 7 and suppose that Vj0 = V;. Then HY maps Vj to VfﬁlH" = VjH(’ =
Vj0 = V;. It follows that H? = H, for all @ € T, so that H is a normal subgroup.
Therefore when there is a block system, I" can be factored into a smaller group acting
only on the blocks. If G is any graph for which T' = AUT(G), then G can also be
factored into a block graph. The vertices of each block V; are identified into a single
vertex. Two blocks V; and V; are adjacent in the block graph if some u; € V; is
adjacent to some u; € V; in G. The two block systems for the group of the cube of
Figure 8.6 give two block graphs. The one with four blocks consists of a 4-cycle, the
other consists of a single edge.

When the automorphism group of a vertex-transitive graph has a block system,
the resulting block graph is also vertex-transitive. This is one way of reducing a
vertex-transitive graph to another smaller graph, while preserving much of the sym-
metry.

Exercises
8.6.1 Use the stabilizer subgroup to find generators for AUT(G) when G is the
Petersen graph. Also find |AUT(G)].

8.6.2 For the group I' of Figure 8.2, find all elements of the right regular repre-
sentation.

8.6.3 The permutations 6; = (1,2,3,4) and 6 = (1,2) generate Sy, which
has order 24. Construct the Cayley color-digraph for generators 61, 6.

8.6.4 The permutations ¢; = (1,7,5,2)(3,6,8,4) and

Graphs and Symmetry 161

02 = (1,6)(2,3)(4,8)(5,7) generate a group I' of order 24 acting on 8
points. Construct the Cayley color-digraph for generators 61, 65.

8.6.5 Construct a coset diagram and permutation representation for the group I'
of the previous question, with subgroup K generated by 65.

8.6.6 Using the generators 6 and ¢, assign cosets to the vertices of the coset
digraph of Figure 8.4.

8.6.7 Generators for the automorphism group of the dodecahedron are given
near Figure 8.4. Determine whether it is a primitive group. Find a block
system if there is one, and find its block graph.

8.6.8 Let 0 be a permutation of V' = {1,2,...,n}, stored as an array: 6[7] is
the vertex that 7 is mapped to. Write a loop to find §~*.

8.6.9 Let 6 and -y be permutations of V' = {1,2,...,n}, stored as arrays. Write
a loop to find 77,

8.7 Self-complementary graphs

A graph G is said to be self-complementary if G = G. In Chapter 1 we saw that a
self-complementary graph on n vertices must satisfy n = 0 or 1, (mod 4). Suppose
that G is a self-complementary graph, and let 6 : V(G) — V(G) be an isomorphism
mapping G to G. Choose any edge uv € E(G). Then (uv)? € E(G), so that (uv)? &
E(G). Consequently (uv)?* ¢ E(G), so that (uv)?”" € E(G), and so forth. This
gives:

Lemma 8.9. Let G be a self-complementary graph, and let 6 be an isomorphism
mapping G to G. Then 6% € AUT(G).

Such a 6 is called a complementing permutation for G. It follows that
w, (uww)?, (uv)04, ... is a sequence of edges of @, and that (uv)?, (uv)?’, ... is
a sequence of edges of G. Now 6 is a permutation of V' (G), so that the vertices of
G are decomposed into cycles of 6. Let (u1,uz, ..., um,) be a cycle of 6, so that
(ui)e = w41, 1f i < m, and (um)e = u1. Suppose that m > 2. The pair ujus is
either an edge of G or of G, so that successive pairs ujusg, ugus, . .. are alternately
edges of GG and of G. It follows that if m > 1, then m is even. We then consider the
pair w1ty /241. It is mapped by 6™/ to Uy /241U1, Which is in G. This requires that
m/2 be even, so that m = 0, (mod 4).

Theorem 8.10. Let G be a self-complementary graph, and let § be an isomorphism
mapping G to G. Then the length of every cycle of 0 is either 1, or a multiple of 4.
There is at most one cycle of length 1.

Proof. We have already seen that if a cycle has length more than 1, then the length
is a multiple of 4. If there were two cycles of length 1, say (u) and (v), then we find

162 Graphs, Algorithms, and Optimization

that wv € E(G) if and only if (uv)? = uv € E(G), which is not possible. Therefore
there is at most one cycle of length one. O

An example of Theorem 8.10 is shown in Figure 8.7. Here the complementing
permutation is 6 = (1,2, 3,4, 5,6,7,8). It is easy to map each edge uv of G by ¢
and see that it is a non-edge of G.

FIGURE 8.7
A self-complementary graph with @ = (1,2, 3,4,5,6,7, 8)

Theorem 8.10 gives a simple algorithm to construct self-complementary graphs.

procedure SCGRAPH(n)
comment: n is an integer congruent to O or 1 (mod 4)

Create vertices U1, Us, . . . , Uy,
Choose a complementing permutation 6 satisfying Theorem 8.10
Mark all pairs u;u; as “unused”
while there is an unused pair
uv 4— an unused pair
assign uv to G

zy < (uv)?

assign zy to G

zy (zy)°

while zy # uv

assign xy to G
zy (zy)°
assign zy to G
y « (zy)°

do

do

Graphs and Symmetry 163

The graphs of Figure 8.7 were constructed using this algorithm. The pair 12 was
chosen as an edge of G, then # was used to alternately assign edges to G and G Then
13 was chosen as an edge of GG, and so forth, until every pair uv had been assigned
to be an edge of either G or G.

Every self-complementary graph can be constructed using this algorithm. How-
ever, isomorphic copies of each one will be produced very many times. It is possible
to make an algorithm that constructs each self-complementary graph exactly once,
by using a general technique of B.D. McKay [123]. The reader is referred to this
reference for further information.

Some additional techniques for constructing self-complementary graphs can also
be useful. Let # be a complementing permutation mapping the graph G to G. Sup-
pose that € has one or more cycles whose length is a multiple of four. For example,
suppose that (u1, ..., us)(ug, - .., u1s)(u17, . .., uz) comprise two cycles of length
eight and a cycle of length four of . Let Uy = {uq,...,us},Us = {ug,...,uis},
and Uz = {uyr,...,u20}. Then § maps G[U;] to G[U;], so that each G[U;] is a
self-complementary graph. If H is any self-complementary graph with V(H) = U;
then a new self-complementary graph can be constructed from G and G by replacing
G[U;] with H, and also replacing G[U;] with H.

Similarly the edges G[U;, U] between U; and U; form part of a bipartite self-
complementary graph. They can also be substituted with the edges of another bi-
partite self-complementary graph with the same bipartition. We state these facts as
lemmas.

Lemma 8.11. Let G be a self-complementary graph with complementing permuta-
tion 0, and let U be the vertices contained in one or more cycles of 6. Let H be
a self-complementary graph with |U| vertices. Then if G[U] is replaced by H, the
result is a self-complementary graph.

Lemma 8.12. Let G be a self-complementary graph with complementing permuta-
tion 0, and let Uy, Us be the vertices contained in two distinct cycles of 6. Let H be
a bipartite self-complementary graph with bipartition (U1, Us). Then if G[Uy, Us] is
replaced by H|Uy, Us), the result is a self-complementary graph.

8.8 Pseudo-similar vertices

Let G be a graph with a non-identity automorphism 6. Choose a vertex u such that
u? = v # u. Thenitis easy to see that G—u = G—v, as (G—u)? = G —u? = G—v.
Vertices u and v are said to be similar vertices. There are graphs G with vertices u, v
such that G — u = G — v, but there is no automorphism relating u to v. Such vertices
are called pseudo-similar vertices. It turns out that a graph G with pseudo-similar
vertices u and v is always an induced subgraph of a graph in which v and v are
similar. An example of a graph with pseudo-similar vertices u and v is shown in
Figure 8.8.

164 Graphs, Algorithms, and Optimization

FIGURE 8.8
A graph with pseudo-similar vertices w = 1 and v = 4.

Suppose that v and v are pseudo-similar in G. Let 6 be an isomorphism mapping
G — uto G — v. Then u? is not defined, and there is no vertex w such that w? = v.
Construct the sequence of vertices U = {v,ve., vez., ...}. Now 6 is a one-to-one
mapping, and there is no vertex w such that w? = v. Therefore the sequence must
terminate. It can only terminate at u, as this is the only vertex with no image under
0. Therefore u = v?", for some m > 1. Letv; = u’, fori = 0,1,...m. We can
express the sequence of vertices U as <wvg, v1, ..., vy, >, where the angle brackets
indicate that the sequence does not form a cycle. In the example of Figure 8.8 there
is only one possible 6, and this sequence is <4, 3,2, 1>.

Let W = V(G) — U be the remaining vertices of G, if any. They fall into cycles
of 0, so that # acts as a permutation on . In the example of Figure 8.8, W =
{5,6,7,8,9,10}, on which 6 has a single cycle, namely (5, 7,10, 6,9, 8). We write
0 =<4,3,2,1> (5,7,10,6,9,8). Let p be the period of 6 acting on W. (If W = 0,
we take p = 1.) We now choose an integer N which is a multiple of p, such that
N > 2(m + 1). We then define new vertices vy, +1, Um+t2, - - - , UN—1, and extend 6
to 6 such that vf' = vy, forte =m,m+1,...,N — 2, and v%_l = vp. For all
other vertices, 6 and 0’ are defined identically.

Theorem 8.13. Ler 0 be extended to 0’ as above. Then 6’ is an automorphism of a
graph H such that G is an induced subgraph of H, and v and v are similar in H.

Proof. The vertices of H are V(H) = V(G) U {vm+1,Um+2,---,UN—1}, S0 that 6/
is a permutation of V/(H). In G, vertex v is adjacent to a subset X C T, and to a
subset Y C U. The edges of H include E(G), plus a number of other edges. As 6
maps G — u to G — v, it follows that v; is adjacent to the subset X% C W in G when
t <m.In H, eachv;, where: = 0,1,..., N — 1, is adjacent to X% Because N was

chosen as a multiple of p, it follows that X0 = X, sothat vg = vg/N is adjacent to
X in both G and H.

Graphs and Symmetry 165

And each v; is also adjacent to Y?" in H. Suppose that v; is adjacent to v; in G,
where ¢ < j. Then j — i < m. Now N was chosen so that N > 2(m + 1). Therefore
N +i— j > m. It follows that any edge of H[U] is also an edge of G[U]. Therefore
G is an induced subgraph of H. We see that 8/ € AUT(H), and v?"™" =, so that u
and v are similar in H. O

This technique of extending a graph using a mapping 6 is often useful in con-
structing graphs with certain properties. If we use the graph of Figure 8.8 as an ex-
ample, we have § =<4, 3,2, 1> (5,7,10,6,9,8). It has period 6 on U, so that 8 new
vertices are added to obtain V' (H). It is not always necessary to choose N > 2m.
This is done in the proof to ensure that G[U| = H[U]. But often N = m + 1 is
sufficient, so long as it is a multiple of p. In general, there may be several possible
choices for § : G — u — G — v. Different choices of § will give different graphs H.

Kimble, Schwenk and Stockmeyer [98] showed that it is possible for all vertices
of a graph to be pseudo-similar. Their construction starts with a group I" of odd order,
and a GRR (graphical regular representation) of I', i.e., a Cayley graph H such that
AUT(H) 2 T'. Choose a vertex w € V(H), and let G = H — w.

Lemma 8.14. Let H be a GRR of a group T' of odd order. Let w € V(H) and let
G = H — w. Then every vertex of G is pseudo-similar to another vertex of G.

Proof. A Cayley graph is vertex-transitive, so that for every u € V(G), there is
an automorphism 6,, mapping u to w. The period of 8,, is odd, because |I'| is odd.
Therefore v = w? # u, but (G —u)% = (H —{u,w})% = H% —{w,v} = G—v.
The vertices adjacent to w in H have different degree in G from the other vertices.
Therefore every v € AUT(G) belongs to the stabilizer of w in H. But the stabilizer
has order one. Therefore vertices v and v are not similar in G, but pseudo-similar. [

It is known that most non-abelian groups of odd order have GRR’s. In particular
non-abelian groups of order p3, where p is an odd prime always have GRR’s with
one exception [92]. Taking p = 3, there is a group of order 27 with a GRR, giving a
graph on 26 vertices in which all vertices are pseudo-similar.

It is also possible to have pseudo-similar edges in a graph G. Edges uv and zy
are pseudo-similar if they are not similar, and there is an isomorphism # mapping
G — uv to G — zy. Note that 6 is a permutation of V' (G). We follow the mapping 6
to discover the structure of G. Edge zy is an edge of G’ — uw, so that (xy)? is an edge
of G — zy. If 2y # wwv, then (zy)? is an edge of G — uwv, so that (zy)?" is an edge
of G — zy. This argument is repeated until (zy)?" = uw, for some m > 1. Without
loss of generality, we can take 27" = wand 3" = v.

Now uwv is not an edge of G' — uv, so that (uv)? is not an edge of G — xy. If

0

(uv)? # xy, then (uv)? is also not an edge of G — uv. Therefore (uv)?" is not an

edge of G — zy. If (uv)?* # xy, then (uv)?” is also not an edge of G — wv. This

argument is repeated until (uv)ek = zy, for some k > 1.
62 67}’1,—1

We have a sequence of edges of G: wy, (zy)?, (zy) , and

by (zy)
a sequence of non-edges of G: v, (uwv)?, (wv)?”, ..., (wv)? ', If the pairs

166 Graphs, Algorithms, and Optimization

w, (w)?, (uw)?”, ..., (uv)?" " are added to E(G), a graph H is obtained such that

(zy)?" = uv and (uv)ak = xy, so that uv and xy are similar in H. This gives:

Theorem 8.15. Let edges uv and xy be pseudo-similar in G. Then G is a subgraph
of a graph H, where V(H) = V (Q), such that uwv and xy are similar in H.

Note that it is also possible to have similar or pseudo-similar non-edges
in a graph. In Theorem 8.15, it would also be possible to remove the edges
xy, (zy)?, (:cy)02, ce (acy)f)m*l from G to obtain a graph with similar non-edges
uv and xy.

Exercises

8.8.1 Use 0 = (1,2,3,4)(5,6,7,8) as a complementing permutation to con-
struct a number of self-complementary graphs.

8.8.2 In the graph of Figure 8.9, vertices v and v are pseudo-similar. Determine
all possible isomorphisms 6 : G — v — G — v. For each possible 6, find
a graph H using Theorem 8.13 such that GG is an induced subgraph of H,
and v and v are similar in H.

2 (
C
< C
(@)
()

FIGURE 8.9
A graph with pseudo-similar vertices

8.8.3 When applying Theorem 8.13 to the graph of Figure 8.8, an additional
8 vertices were added to GG. Determine whether a smaller number will
suffice.

8.8.4 Use Theorem 8.15 to construct a graph with a pair of pseudo-similar

edges.
|
8.9 Notes

Some sources for permutation groups and groups acting on graphs are GARDINER
[63], GODSIL and ROYLE [70], HALL [79], and ROTMAN [151]. A representative
selection of papers on GRR’s is GODSIL [68], IMRICH [92], and WATKINS [187].
Two excellent sources for algorithms for permutation groups are BUTLER [27] and

Graphs and Symmetry 167

SERESS [158], for readers who are interested in programming. The theory of self-
complementary graphs was first developed by SACHS [154] and RINGEL [147]. The-
orems 8.13 and 8.15 are from GODSIL and KOCAY [69].

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

9
Alternating Paths and Matchings

9.1 Introduction

Matchings arise in a variety of situations as assignment problems, in which pairs of
items are to be matched together, for example, if people are to be assigned jobs, if
sports teams are to matched in a tournament, if tasks are to be assigned to processors
in a computer, whenever objects or people are to be matched on a one-to-one basis.
In a graph G, a matching M is a set of edges such that no two edges of M have
a vertex in common. Figure 9.1 illustrates two matchings M; and M> in a graph G.

ug U2

Uy U4
ug us
Uy ur
us Ug us Ug
M1 M2
FIGURE 9.1
Matchings

Let M have m edges. Then 2m vertices of GG are matched by M. We also say that
a vertex u is saturated by M if it is matched, and unsaturated if it is not matched. In
general, we want M to have as many edges as possible.

DEFINITION 9.1: M is a maximum matching in G if no matching of G has more
edges.

For example, in Figure 9.1, |M;| = 3 and |M3| = 4. Because |G| = 8, Ms is
a maximum matching. A matching which saturates every vertex is called a perfect
matching. Obviously a perfect matching is always a maximum matching. M is not
a maximum matching, but it is a maximal matching; namely, M cannot be extended

169

170 Graphs, Algorithms, and Optimization

by the addition of any edge uv of G. However, there is a way to build a bigger
matching out of M. Let P denote the path (uy,use, ..., us) in Figure 9.1.

DEFINITION 9.2: Let GG have a matching M. An alternating path P with respect
to M is any path whose edges are alternately in M and not in M. If the endpoints of
P are unsaturated, then P is an augmenting path.

So P = (uy,ua,...,us) is an augmenting path with respect to M. Consider the
subgraph formed by the exclusive or operation M = M; @ E(P) (also called the
symmetric difference, (M, — E(P)) U (E(P) — My)). M contains those edges of P
which are not in M, namely, ujus, usuy, and usug. M is a bigger matching than
M. Notice that M = Ms.

Lemma 9.1. Let G have a matching M. Let P be an augmenting path with respect
to M. Then M' = M @ E(P) is a matching with one more edge than M.

Proof. Let the endpoints of P be u and v. M’ has one more edge than M, because u
and v are unsaturated in M, but saturated in M. All other vertices that were saturated
in M are still saturated in M’. So M’ is a matching with one more edge. |

The key result in the theory of matchings is the following:

Theorem 9.2. (Berge’s theorem) A matching M in G is maximum if and only if G
contains no augmenting path with respect to M.

Proof. If M were a maximum matching and P an augmenting path, then M @ E(P)
would be a larger matching. So there can be no augmenting path if M is maximum.

Conversly suppose that G has no augmenting path with respect to M. If M is
not maximum, then pick a maximum matching M’. Clearly |M'| > |M]|. Let H =
M @ M'. Consider the subgraph of G that H defines. Each vertex v is incident on
at most one M-edge and one M'-edge, so that in H, DEG(v) < 2. Every path in H
alternates between M-edges and M’-edges. So H consists of alternating paths and
cycles, as illustrated in Figure 9.2.

H \\ \\
\ v "
R /! 7 7 l'. M ==----
&—¢ (]

FIGURE 9.2
Alternating paths and cycles

Each cycle must clearly have even length, with an equal number of edges of M
and M’. Because |M’'| > |M]|, some path P must have more M’-edges than M-
edges. It can only begin and end with an M’-edge, so that P is augmenting with
respect to M. But we began by assuming that G' has no augmenting path for M.
Consequently, M was initially a maximum matching. |

Alternating Paths and Matchings 171

This theorem tells us how to find a maximum matching in a graph. We begin with
some matching M. If M is not maximum, there will be an unsaturated vertex u. We
then follow alternating paths from . If some unsaturated vertex v is reached on an
alternating path P, then P is an augmenting uv-path. Set M « M & FE(P), and
repeat. If the method that we have chosen to follow alternating paths is sure to find
all such paths, then this technique is guaranteed to find a maximum matching in G.

In bipartite graphs it is slightly easier to follow alternating paths and therefore to
find maximum matchings, because of their special properties. Let GG have bipartition
(X,Y).If S C X, then the neighbor set of S is N(.S), the set of Y -vertices adjacent
to S. Sometimes N (S) is called the shadow set of S. If G has a perfect matching M,
then every « € S will be matched to some y € Y so that |N(S)| > |S], for every
S C X. HALL [79] proved that this necessary condition is also sufficient.

S

(o o(p g 9o

/ Z/ 1\ /

/
V(o @8 Y o)

FIGURE 9.3
The neighbor set

Theorem 9.3. (Hall’s theorem) Let G have bipartition (X,Y). G has a matching
saturating every © € X if and only if [N (S)| > |S|, forall S C X.

Proof. We have already discussed the necessity of the conditions. For the converse
suppose that |[N(S)| > |S|, for all S C X. If M does not saturate all of X, pick
an unsaturated v € X, and follow all the alternating paths beginning at u. (See
Figure 9.4.)

Let S C X be the set of X -vertices reachable from v on alternating paths, and let
T be the set of Y-vertices reachable. With the exception of u, each vertex x € S is
matched to some y € T, for S was constructed by extending alternating paths from
y € T'to x € S whenever zy is a matching edge. Therefore |S| = |T| + 1.

Now there may be other vertices X — .S and Y — T'. However, there can be no
edges [S,Y — T, for such an edge would extend an alternating path to a vertex of
Y — T, which is not reachable from w on an alternating path. So every x € S can
only be joined to vertices of T; that is, T" = N (5). It follows that |S| > |N(5)|, a
contradiction. Therefore every vertex of X must be saturated by M.

172 Graphs, Algorithms, and Optimization

S X-5
A A
o N o N
— _/ — _/
~ ~
T Y -T

FIGURE 9.4
Follow alternating paths

Corollary 9.4. Every k-regular bipartite graph has a perfect matching, if k > 0.

Proof. Let G have bipartition (X,Y"). Because G is k-regular,e = k- | X| = k- |Y|,
so that | X | = |Y]. Pick any S C X. How many edges have one end in S? Exactly
k-|S|. They all have their other end in N (.S). The number of edges with one endpoint
in N(S)is k- |[N(S)|. So k- |S| < k-|N(S)|, or |S] < |N(S)|, forall S C X.
Therefore G has a perfect matching. O

Exercises

9.1.1 Find a formula for the number of perfect matchings of K»,, and K,, ,,.

9.1.2 (Hall’s theorem.) Let Ay, Ao, ..., A, be subsets of a set S. A system
of distinct representatives for the family {A;, Ao, ..., Ay} is a subset

{a1,a2,...,a,} of S such that a; € Ay, as € Ag, ..., ay € Ay, and
a; # aj, for i # j. Example:

A, = students taking computer science 421
Ag = students taking physics 374

As
A, = students taking philosophy 221

students taking botany 464

The sets A, As, A3, A4 may have many students in common. Find four
distinct students a1, as, as, aq, such that a; € Ay, as € As, a3 € Az, and
ay € Ay to represent each of the four classes.

Show that {A;, Ay, ..., A, } has a system of distinct representatives if
and only if the union of every combination of k of the subsets A; contains
at least k elements, for all £ = 1,2, ..., n. (Hint: Make a bipartite graph
A1, Ay, ..., Ay versus all a; € S, and use Hall’s theorem.)

)

Alternating Paths and Matchings 173

9.2 The Hungarian algorithm

We are now in a position to construct an algorithm which finds a maximum match-
ing in bipartite graphs, by following alternating paths from each unsaturated u € X.
How can we best follow alternating paths? Let n = |G/|. Suppose that we store the
matching as an integer array Match|[x], x = 1,2,...,n, where Match|x] is the ver-
tex matched to x (so Match[Match[z]] = x, if z is saturated). We use Match[z] = 0
to indicate that x is unsaturated. We could use either a DFS or BFS to construct the
alternating paths. A DFS is slightly easier to program, but a BF-tree tends to be shal-
lower than a DF-tree, so that a BFS will likely find augmenting paths more quickly,
and find shorter augmenting paths, too. Therefore the BFS is used for matching al-
gorithms.

The array used to represent parents in the BF-tree can be used in combination
with the Match|-] array to store the alternating paths. We write PrevPt[v] for the
parent of v in a BF-tree. It is the previous point to v on an alternating path to the root.
This is illustrated in Figure 9.5.

XE.\Q .\0 .I.j

(v e oY)

FIGURE 9.5
Storing the alternating paths

We also need to build the sets S and N(S) as queues, which we store as the
arrays ScanQ and N .S, respectively. The algorithm for finding a maximum matching
in bipartite graphs is Algorithm 9.3.1. It is also called the Hungarian algorithm for
maximum matchings in bipartite graphs.

174 Graphs, Algorithms, and Optimization

Algorithm 9.2.1: MAXMATCHING(()

comment: Hungarian algorithm. G has bipartition (X, Y), and n vertices.

for i + 1 to n do Matchli] < 0
foreachu € X
comment: v is currently unsaturated

ScanQ[1] + u
QSize 1
comment: construct alternating paths from « using a BFS

for i < 1 to n do PrevPt[i] < 0
k<1
repeat
x + ScanQ|k]
for each y — x do
ifyg NS
addyto NS
PrevPtly] + x
if y is unsaturated
then comment: augmenting path found

do

then ¢ AUGMENT(y)
goto 1l “u is now saturated”

add Match[y] to ScanQ

k< k+1 “advance ScanQ”
until £ > QSize

ScanQ now contains a set S, and N S contains

comment: { the neighbor-set N (.5) such that | S| = |N(S)| + 1,
no matching can saturate all of S

delete S and N (S) from the graph
1:
comment: Match|[-] now contains a maximum matching

Notice that the algorithm needs to be able to determine whether y € NS. This
can be done by storing a boolean array. Another possibility is to use PrevPt[v] = 0
to indicate that v ¢ N(S). We can test if y is unsaturated by checking whether
Match[y] = 0. AUGMENT(y) is a procedure that computes M <+ M @& E(P),
where P is the augmenting path found. Beginning at vertex y, it alternately follows
PrevPt[-] and Match[-] back to the initial unsaturated vertex, which is the root-node
of the BF-tree being constructed. This is illustrated in Figure 9.6.

Alternating Paths and Matchings 175

Algorithm 9.2.2: AUGMENT(y)

comment: follow the augmenting path, setting M <« M @& E(P)

repeat
w < PrevPt[y]
Match[y] + w
v — Match|w]
Match[w] <y

Yy
untily =0

FIGURE 9.6
Augmenting the matching

The BFS constructs an alternating search tree. It contains all vertices reachable
from the root-node u on alternating paths. Vertices at even distance from u in the tree
form the set S, and those at odd distance form NN (.S). The vertices of S are sometimes
called outer vertices, and those of N(S) inner vertices. All the actual searching is
done from the outer vertices.

Theorem 9.5. The Hungarian algorithm constructs a maximum matching in a bi-
partite graph.

Proof. Let G have bipartition (X, Y"). If the algorithm saturates every vertex of X,
then it is certainly a maximum matching. Otherwise some vertex « is not matched. If
there is an augmenting path P from w, it must alternate between X and Y, because G
is bipartite. The algorithm constructs the sets .S and N (.S), consisting of all vertices
of X and Y, respectively, that can be reached on alternating paths. So P will be found
if it exists. If u cannot be saturated, then we know that |S| = |N(S)|+1. Every vertex
of S but w is matched. S and N (.S) are then deleted from the graph. Does the deletion
of these vertices affect the rest of the algorithm? As in Hall’s theorem, there are no
edges [S, Y — N(.9)]. Suppose that alternating paths from a vertex v € X were being
constructed. If such a path were to reach a vertex y in the deleted N (S), it could only
extend to other vertices of S and N (S). It could not extend to an augmenting path.

176 Graphs, Algorithms, and Optimization

FIGURE 9.7
The alternating search tree

Therefore these vertices can be deleted. Upon completion, the algorithm will have
produced a matching M for which there are no augmenting paths in the graph. By
Theorem 9.2, M is a maximum matching. O

9.2.1 Complexity

Suppose that at the beginning of the for-loop, M has m edges. The largest possi-
ble size of S and N(.9) is then m + 1, and m, respectively. The number of edges
[S, N(5)] is at most m(m + 1). In the worst possible case, S and N (.S) will be built
up to this size, and m(m + 1) edges between them will be encountered. If an aug-
menting path is now found, then m will increase by one to give a worst case again for
the next iteration. The length of the augmenting path will be at most 2m + 1, in case
all m matching edges are in the path. The number of steps performed in this iteration
of the for-loop will then be at most m(m + 1) + (2m + 1). Because | X | + |Y| = n,
the number of vertices, one of | X| and |Y| is < n/2. We can take X as the smaller
side. Summing over all iterations then gives

21

Zm(m+1)+(2m+1)22(m;1> +(2m+1)

i _ 2<n/23+ 1) +2(né2) .

ST

Alternating Paths and Matchings 177

The leading term in the expansion is n3/24, so that the algorithm is of order
O(n?), with a small constant coefficient. It can be improved with a more careful
choice of augmenting paths. HOPCROFT and KARP [87] maintain several augment-
ing paths, and augment simultaneously on all of them to give O(n?®). This can also
be accomplished with network flow techniques.

Exercises

9.2.1 Program the Hungarian matching algorithm. The output should consist
of a list of the edges in a maximum matching. If there is no matching
saturating the set X, this should be indicated by printing out the sets S C
X found whose neighbor set N (S) is smaller than S. Use the four sample
graphs listed below for input. The set X is marked by shaded dots, and Y’
by open dots.

(a)

M

9.3 Edmonds’ algorithm, blossoms

When G is not bipartite, the Hungarian algorithm cannot be used to find a maxi-
mum matching in G. Edmonds [47] discovered how to find maximum matchings
efficiently in non-bipartite graphs. Consider the graph G shown in Figure 9.8. Here
the Hungarian algorithm is being used to construct an alternating tree from vertex 1,
so that vertex 1 can be matched.

The alternating tree has been built to its full extent, but no augmenting path was
found. By Berge’s theorem 9.2, the matching can be augmented on the alternating
path [1,3,5,7,9,8,6, 10]. However the algorithm does not find this path. Notice
the odd cycle (5,6,8,9,7) containing two matching edges. The key to finding all

178 Graphs, Algorithms, and Optimization

G G

FIGURE 9.8
A matching in a non-bipartite graph

augmenting paths in a non-bipartite graph is to find certain odd cycles in which all
vertices but one are matched within the cycle. Such a cycle is called a blossom.

DEFINITION 9.3: Let graph G have a matching M. Let C' be the edges of an
odd cycle of GG such M N C'is a matching in C containing all vertices of C, but one.
Then C'is called a blossom of G with respect to M. The vertex of C' which is not
matched by M N C'is called the blossom base.

The Hungarian algorithm can be modified to detect blossoms as the alternating
tree is built, and “shrink” them. If C' is a blossom in G, then to shrink C' means to
change G into a new graph in which all vertices of C are identified into one vertex.
The result of shrinking the blossom (5, 6, 8,9, 7) of Figure 9.8 is shown in the same
diagram, where the “meta”-vertex representing the shrunken blossom is shaded. The
reduced graph G’ now has an alternating path [1, 3,5, 10] to vertex 10. When the
matching in G’ is augmented by following the alternating path from vertex 10 to 1,
there is a corresponding alternating path in G that “travels through the blossom” to
its base. In this case it is [10,6,8,9,7, 5].

While the alternating tree is being constructed, a blossom may be detected, in
which case it is immediately shrunk, and the algorithm continues. Another blossom
containing the meta-vertex of the previous blossom may be later detected, and im-
mediately shrunk — blossoms are actually recursive structures, they may contain
previously shrunken blossoms, which may in turn contain previously shrunken blos-
soms, etc. We see that in Definition 9.3, some vertices of the graph GG may actually
represent blossoms that have already been shrunk.

In order to program Edmonds’ algorithm effectively, we need a data structure
that can store blossoms, which can contain recursively shrunken blossoms. We use a
variation of the Merge-Find data structure, which was described in Chapter 2. Each
blossom is represented by the vertex which is its base. There is an array BasePtr[u]

Alternating Paths and Matchings 179

which points towards the base of the blossom containing vertex u. Initially the ver-
tices are not in any blossom, so we set BasePtr[u] = 0. When a vertex u becomes
part of a blossom, BasePtr[u] will be set to the blossom base. There is a procedure
BLOSSOMBASE(u) which returns the vertex which is the base of the blossom con-
taining u. Similar to the procedure COMPREP() of Chapter 2, we have :

procedure BLOSSOMBASE ()
if BasePtr[u] =0

then return (0) “not in any blossom”
if BasePtr[u] = u
then return (u) “u is the blossom base”

theRep <— BLOSSOMBASE (BasePtr|u])
BasePtr[u] « theRep
return (theRep)

Edmonds’ algorithm can now be presented as a breadth-first search to build an al-
ternating tree, while shrinking blossoms as they are discovered. As before, Match [v]
indicates the vertex that v is matched to, it is initially set to 0. PrevPt[v] indicates
the previous vertex in a path from v to the root of the search tree. PrevPt[v] = 0 is
used to indicate that v has not yet been visited. Blossoms are only meaningful with
respect to the alternating search tree as it is being constructed. Therefore all blossoms
are re-initiallized before each iteration of the algorithm.

The vertices of an alternating search tree, as in Figure 9.7, can be classified as in-
ner vertices or outer vertices. All searching is done from outer vertices. The base of a
blossom is always an outer vertex. The inner vertices are not in any blossom. There-
fore when the search tree is built, and a vertex u becomes an outer vertex, a blossom
is created for it, by assigning BasePtr[u] = . This ensures that BLOSSOMBASE(u)
will return u as the base of its blossom. All outer vertices are at an even distance
from the root of the search tree.

An odd cycle is detected when an edge vw, where v and w are both outer vertices,
is discovered. The alternating paths from v and w through the search tree towards the
root are followed to find the base b of the new blossom, and BasePtr[z] = b is
assigned for each = on these paths. All vertices in the new blossom now become
outer vertices. This is how blossoms are shrunk. The base of a blossom is either the
root of the search tree, or it is matched to vertex Match[v], which is an inner vertex
that is not in any blossom. All outer vertices are placed on a queue called ScanQ. It is
an array containing vertices from which the search tree is extended. When a blossom
is detected and shrunk, all vertices in the blossom are placed on the ScanQ, so that
their incident edges will be visited.

180 Graphs, Algorithms, and Optimization

Algorithm 9.3.1: MAXMATCHING(()

comment: Edmonds’ matching algorithm. G has n vertices.

for u < 1 ton do Match[u] + 0

for u < 1 to n do BasePtr[u] + 0

for each u € X do if Match[u] =0
comment: v is currently unsaturated

ScanQ[1] + u

BasePtru] <~ u “create a blossom containing u”
QSize <1

for v <— 1 to n do PrevPt[v] < 0

comment: construct alternating paths from « using a BFS

k+1
repeat

x < ScanQ[k]

xBase +— BLOSSOMBASE(x)

foreachy —
yBase <— BLOSSOMBASE(y)
if yBase = xBase then go to 1 “ignore edge zy”
if yBase # 0

comment: x and y are in different blossoms

then then ¢ SHRINKBLOSSOM(z, , xBase, yBase)
gotol
comment: otherwise ¥ is not in a blossom

1)

if PrevPt[y] # 0 then go to 1 “y is already in the tree’
PrevPt|y| + x “add y to the tree”
if Match[y] =0

comment: augmenting path found

do

then § AUGMENT(y)
break

comment: otherwise y is already matched

v <— Match|y]
add v to ScanQ
BasePtr[v] < v “create a blossom containing v”
1:
k+—k+1 “advance ScanQ”
until £ > QSize
comment: Match[-] now contains a maximum matching

When a blossom has been shrunk, all vertices v in the blossom become outer
vertices, to allow the search tree to be extended from each v. If an unmatched vertex

Alternating Paths and Matchings 181

w is adjacent to one of these blossom vertices, then the algorithm must be able to
follow the alternating path from w to the root of the search tree, in order to augment
the matching. Consider the example shown in Figure 9.9.

w

FIGURE 9.9
An augmenting path through a blossom

In this example, there is an alternating path from each of v, w, x through the
blossom to the root of the search tree. In order to augment the matching, the algorithm
must be able to follow any of these paths. In general, an alternating path from an inner
vertex y in a search tree is followed by successively iterating

u < PrevPt[y]
y < Matchu)

until the root of the tree is reached, as in Algorithm 9.2.2. This will also work with
blossoms, so long as PrevPt is assigned correctly. In the trees of Figures 9.7 and 9.8,
arrows are used to indicate PrevPt, so that alternating paths can be followed down
the tree towards the root by using the above statements. In Figure 9.9, the alternating
path from w simply descends the tree to the root, as in Figure 9.7. But the alternating
path from v or z in Figure 9.9 must first ascend the tree through the blossom, then
travel around the blossom, and down the other side towards the root. This can easily
be effected by extending the definition of PrevPt. When an edge yz in a blossom
has PrevPt[y] = z, being indicated as an arrow pointing down the tree, we can also
assign PrevPt[z] = y when the blossom is shrunk. This will ensure that alternating
paths will be correctly followed through a blossom to its base, from any vertex in the
blossom. This method will clearly work for blossoms which are odd cycles. When an
odd cycle blossom becomes part of a larger blossom, it will still work, because the
alternating path through a blossom always goes to the base, which is matched to an
inner vertex outside the blossom. Therefore this will also work for larger blossoms.
Consequently, Algorithm 9.3.1 will always find an augmenting path from each vertex
u, if one exists, and will therefore always find a maximum matching.

182 Graphs, Algorithms, and Optimization

9.3.1 Complexity

The maximum number of steps will occur if the algorithm builds the alternating tree
as large as possible on each iteration, and then finds an augmenting path. In this case
there will be n/2 iterations of the main loop, and the i*h iteration will build a search
tree with 7 — 1 matching edges. The length of the alternating path found will be at
most 2¢ + 1, in case all current matching edges are part of the path. The number of
steps required to build the search tree and augment, over all iterations, will then be
at most O(n?), not counting the steps to shrink blossoms.

The Merge-Find data structure has a near linear time performance — for all
values of n within practical bounds, the performance is effectively O(m), where m
is the number of calls to BLOSSOMBASE(). The number of calls will be at most ¢ + 1
on iteration i, so that over all iterations, approximately O(n?) calls will be made.
When a blossom is shrunk upon finding an edge vw that creates an odd cycle, the
alternating paths from v and w to the root must be followed to find the base of the
new blossom. This can be done in ¢ steps on iteration ¢, because there are ¢ — 1 edges
currently in the matching. This also results in O(n?) steps, taken over all iterations.
Thus, Edmonds’ algorithm can be programmed to take O(n?) steps, for all practical
values of n. The algorithm is not difficult to program, and is an excellent exercise in
programming graph algorithms.

9.4 Perfect matchings and 1-factorizations

Given any graph G and positive integer k, a k-factor of G is a spanning subgraph
that is k-regular. Thus a perfect matching is a 1-factor. A 2-factor is a union of cycles
that covers V(G), as illustrated in Figure 9.10.

FIGURE 9.10
2-factors of the cube

The reason for this terminology is as follows. Associate indeterminates x1, T2,

.., T, with the n vertices of a graph. An edge connecting vertex ¢ to j can be
represented by the expression x; — x;. Then the entire graph can be represented (up
to sign) by the product P(G) = HUGE(G) (x; — x;). For example, if G is the 4-

Alternating Paths and Matchings 183

cycle, this product becomes (21 — x2)(x2 — x3)(x3 — x4)(x4 — 21). Because the
number of terms in the product is e((G), when it is multiplied out, there will be € x’s
in each term. A 1-factor of P(G), for example, (21 — x2)(x3 — x4), is a factor that
contains each x; exactly once and corresponds to a perfect matching in G. A k-factor
of P(G), is a factor that contains each z; exactly k-times.

With some graphs it is possible to decompose the edge set into perfect matchings.
For example, if G is the cube, we can write F(G) = M; U My U M3, where

M, = {12,34,67,85},
M, = {23,14,56,78},
M; = {15,26,37,48},

as shown in Figure 9.11. Each edge of G is in exactly one of My, Ms, or Ms. Also
P(G) = iFngFg where

F = (r1—z2)(z3 — 24)(x6 — x7) (28 — 5),
Fy = (zo—z3)(r1 —z4)(x5 — 26) (27 — 238),
F3 = (IL’l 71‘5)(1‘2 71'6)(2];3 71‘7)(1’4 71‘8).

In general, a k-factorization of a graph G is a decomposition of E(G) into Hy U
Hy U ... U H,,, where each H; is a k-factor, and each H; and H; have no edges
in common. If a graph G has a k-factorization, we say that G is k-factorable. The
graph G is k-factorable if and only if P(G) can be written as a product of k-factors.
The decomposition in Figure 9.11 is a 1-factorization of the cube and thus the cube
is 1-factorable.

FIGURE 9.11
A 1-factorization of the cube

Lemma 9.6. K, ,, is I-factorable.

Proof. Let (X,Y) be the bipartition of K, ,,, where X = {x¢,21,...,2y_1} and
Y ={y0,91,---,Yn—1}. Define My = {x;y; | i = 0,1,...,n—1}, My = {2;y;11 |
i=0,1,...,n—1},etc., where the addition is modulo n. In general M}, = {x;y;+1 |

184 Graphs, Algorithms, and Optimization

i=0,1,...,n—1}. Clearly M; and M}, have no edges in common, for any j and k,
and together My, M, . . ., M,,_1 contain all of E(G). Thus we have a 1-factorization
of Ky p. O

Lemma 9.7. K, is I-factorable.

Proof. Let V(Ks,) = {0,1,2,...,2n — 2} U {oco}. Draw Ky, with the vertices
0,1,...,2n—2in acircle, placing oo in the center of the circle. This is illustrated for
n = 4 in Figure 9.12. Take My = {(0,00), (1,2n—2),(2,2n—3),...,(n—1,n)} =
{(0,00)}U{(4,—1) | i =1,2,...,n— 1}, where the addition is modulo 2n — 1. M
is illustrated by the thicker lines in Figure 9.12.

We can then “rotate” M by adding one to each vertex, My = My + 1 = {(i +
1,7+1) | (i,5) € Mo}, where co + 1 = oo, and addition is modulo 2n — 1. It is
easy to see from the diagram that M, and M have no edges in common. Continuing
like this, we have

Mo, My, Ma, ..., My, 2,

where M}, = My + k. They form a 1-factorization of Ko,,. |
0
@]
: 00 5
5 @ 9
4 3
FIGURE 9.12

1-factorizing K2, where n = 4

We can use a similar technique to find a 2-factorization of Ko, 1.
Lemma 9.8. Ko, is 2-factorable.

Proof. Let V(Kany1) = {0,1,2,...,2n — 1} U {oo}. As in the previous lemma,
draw the graph with the vertices in a circle, placing oo in the center. The first 2-factor
is the cycle Hy = (0,1,—1,2,—2,...,n — 1,n + 1,n,00), where the arithmetic is
modulo 2n. This is illustrated in Figure 9.13, with n = 3. We then rotate the cycle to
get Hy, Ho, ..., H,_1, giving a 2-factorization of Ky, 1. O

Alternating Paths and Matchings

FIGURE 9.13
2-factorizing Koy 41, where n = 3

Exercises

9.4.1

Find all perfect matchings of the cube. Find all of its 1-factorizations.

942 Find all perfect matchings and 1-factorizations of K4 and Kg.

943 Prove that the Petersen graph has no 1-factorization.

9.4.4 Prove that for k£ > 0 every k-regular bipartite graph is 1-factorable.

9.4.5 Describe another 1-factorization of K5,,, when n is even, using the fact
that K, ,, is a subgraph of Ky,,.

9.4.6 Let My, Ms,..., My and My, My, ..., M, be two 1-factorizations of a
k-regular graph G. The two factorizations are isomorphic if there is an
automorphism @ of G such that for each ¢, 0(M;) = M J’ , for some j; that
is, 6 induces a mapping of My, M, ..., M} onto M{, Mj, ..., M;. How
many non-isomorphic 1-factorizations are there of K4 and Kg4?

9.4.7 How many non-isomorphic 1-factorizations are there of the cube?

I

185

9.5 The subgraph problem

Let G be a graph and let f: V(G) — {0,1,2,...} be a function assigning a non-
negative integer to each vertex of G. An f-factor of G is a subgraph H of GG such
that deg(u, H) = f(u), for each u € V(G). So a 1-factor is an f-factor in which

each f(u) = 1.

186 Graphs, Algorithms, and Optimization

Problem 9.1: Subgraph Problem
Instance: a graph G and a function f: V(G) — {0,1,2,...}.

Find: an f-factor in G, if one exists.

There is an ingenious construction by TUTTE [174], that transforms the sub-
graph problem into the problem of finding a perfect matching in a larger graph G'.
Construct G’ as follows. For each edge e = uv of GG, G’ has two vertices e,, and
ey, such that e, e, € F(G"). For each vertex u of G, let m(u) = deg(u) — f(u).
Corresponding to u € V(G), G’ has m(u) vertices uy, us, . . . , Up,(y,). For each edge
e=uv € E(G), u1,us, ..., Uy are all adjacent to e, € V/(G'). This is illustrated
in Figure 9.14, where deg(u) = 5 and f(u) = 3.

FIGURE 9.14
Tutte’s transformation

Theorem 9.9. G has an f-factor if and only if G’ has a perfect matching.

Proof. Suppose that G has an f-factor H. Form a perfect matching M in G’ as
follows. For each edge uv € H, e,e, € M. There are m(u) = deg(u) — f(u)
remaining edges at vertex u € V(G). In G/, these can be matched to the vertices
UL, U2, « -+ Upy(y) 1N any order.

Conversely, given a perfect matching M C G, the vertices u1, Uz, . . ., Upy(u)
will be matched to m(u) vertices, leaving f(u) adjacent vertices of the form e,, not
matched to any u;. They can therefore only be matched to vertices of the form e,
for some v. Thus f(u) edges e, e, are selected corresponding to each vertex . This
gives an f-factor of G. O

So finding an f-factor in G is equivalent to finding a perfect matching in G’. If
G has n vertices and ¢ edges, then G’ has

4E—Zf(u)

e+ (deg’(u) - deg(u) f(u))

vertices and

Alternating Paths and Matchings 187

edges. Finding perfect matchings in non-bipartite graphs is considerably more com-
plicated than in bipartite graphs, but is still very efficient. Edmonds’ algorithm [47]
will find a maximum matching in time O(n?). Thus, the subgraph problem can be
solved using perfect matchings. However, it can be solved more efficiently by a direct
algorithm than by constructing G’ and then finding a maximum matching.

9.6 Coverings in bipartite graphs

A covering or vertex cover of a graph G is a subset U C V(@) that covers every
edge of G that is, every edge has at least one endpoint in U.

FIGURE 9.15
Coverings in a graph

In general, we want the smallest covering possible. This is called a minimum cov-
ering. Figure 9.15 shows two coverings, indicated by shaded vertices. The covering
with six vertices is minimal; namely, it has no subset that is a smaller covering. The
other is a minimum covering; namely, G has no smaller covering. This is because
any covering must use at least three vertices of the outer 5-cycle, and at least two
vertices of the inner triangle, giving a minimum of five vertices.

In bipartite graphs, there is a very close relation between minimum coverings and
maximum matchings. In general, let M be a matching in a graph G, and let U be a
covering. Then because U covers every edge of M, |[U| > |M]|. This is true even if U
is minimum or if M is maximum. Therefore, we conclude that if |U| = | M| for some
M and U, then U is minimum and M is maximum. In bipartite graphs, equality can
always be achieved.

Theorem 9.10. (Konig’s theorem) If G is bipartite, then the number of edges in a
maximum matching equals the number of vertices in a minimum covering.

Proof. Let M be a maximum matching, and let (X, Y") be a bipartition of G, where
|X| < Y|. Let W C X be the set of all X-vertices not saturated by M. If W = 0,
then U = X is a covering with |U| = |M|. Otherwise construct the set of all vertices
reachable from W on alternating paths. Let S be the X -vertices reachable, and 7" the

188 Graphs, Algorithms, and Optimization

Y -vertices reachable. Take U = T'U (X —S). Then U is a covering with |U| = |M
as illustrated in Figure 9.16.

’

S
A

FIGURE 9.16
Minimum covering and maximum matching in a bipartite graph

9.7 Tutte’s theorem

Tutte’s theorem gives a necessary and sufficient condition for any graph to have a
perfect matching.

Let S C V(G). In general, G — S may have several connected components.
Write odd(G — S) for the number of components with an odd number of vertices.
The following proof of Tutte’s theorem is due to LOVASZ [119].

Theorem 9.11. (Tutte’s theorem) A graph G has a perfect matching if and only if
odd(G — S) < |S|, for every subset S C V(G).

Proof. Suppose that G has a perfect matching M and pick any S C V(G). Let
G1,Go, ..., Gy, be the odd components of G — S. Each G; contains at least one
vertex matched by M to a vertex of S. Therefore odd(G — S) = m < |S|. See
Figure 9.17.

Conversly suppose that odd(G — S) = m < |S|, for every S C V(G). Taking
S = () gives odd(G) = 0, so n = |G| is even. The proof is by reverse induction
on £(G), for any given n. If G is the complete graph, it is clear that G has a perfect
matching, so the result holds when e = (g) Let GG be a graph with the largest € such
that G has no perfect matching. If uv € E(G), then because G + uv has more edges
than G, it must be that G + wv has a perfect matching. Let .S be the set of all vertices
of G of degree n — 1, and let G’ be any connected component of G — S. If G’ is not
a complete graph, then it contains three vertices z, y, 2z such that t — y — z, but

Alternating Paths and Matchings 189

Odd components Even components
A A

RIS

FIGURE 9.17
Odd and even components of G — S

FIGURE 9.18
H = M; & M-, case 1

x #/— z.Because y ¢ S, deg(y) < n — 1, so there is a vertex w /— y. Let M7 be a
perfect matching of G + zz and let M5 be a perfect matching of G + yw, as shown
in Figures 9.18 and 9.19. Then xz € M; and yw € Ms. Let H = My & Ms. H
consists of one or more alternating cycles in G. Let C,, be the cycle of H containing
xz, and let Cy,, be the cycle containing yw.

Casel. (. # Cyy.

Form a new matching M by taking Ms-edges of C,., M;-edges of CY,,, and
M, edges elsewhere. Then M is a perfect matching of GG, a contradiction.

Case2. C,, =Cy, =C.

C can be traversed in two possible directions. Beginning with the vertices y, w,
we either come to z first or z first. Suppose it is z. Form a new matching M by

190 Graphs, Algorithms, and Optimization

taking M;-edges between w and z, My-edges between x and y, and the edge
yz. Then take M; edges elsewhere. Again M is a perfect matching of G, a
contradiction.

FIGURE 9.19
H = M, & M-, case 2

We conclude that every component G’ of G — S must be a complete graph.
But then we can easily construct a perfect matching of GG as follows. Each even
component of G — S is a complete graph, so it has a perfect matching. Every odd
component is also a complete graph, so is has a near perfect matching, namely, one
vertex is not matched. This vertex can be matched to a vertex of .S, because odd(G —
S) <|S|. The remaining vertices of S form a complete subgraph, because they have
degree n — 1, so they also have a perfect matching. It follows that every G satisfying
the condition of the theorem has a perfect matching. O

Tutte’s theorem is a powerful criterion for the existence of a perfect matching.
For example, the following graph has no perfect matching, because G — v has three
odd components.

We can use Tutte’s theorem to prove that every 3-regular graph G without
cut-edges has a perfect matching. Let S C V(G) be any subset of the vertices.
Let G1,Go,...,Gy be the odd components of G — S. Let m; be the number of
edges connecting G; to S. Then m; > 1, because G has no cut-edge. Because
> veaq, DEG(v) = 2¢(Gi) + m; = 3|G;i| = an odd number, we conclude that
m; is odd. Therefore m; > 3, for each i. But) ¢ DEG(v) = 3[S| > >, my,
because all of the m, edges have one endpoint in S. It follows that 3|.S| > 3k, or
|S] > odd(G — S), for all S C V(G). Therefore G has a perfect matching M. G
also has a 2-factor, because G — M has degree two.

Exercises

9.7.1 For each integer k > 1, find a k-regular graph with no perfect matching.

9.7.2 A near perfect matching in a graph G is a matching which saturates all
vertices of G but one. A near 1-factorization is a decomposition of E(G)
into near perfect matchings. Prove that K5, has a near 1-factorization.

Alternating Paths and Matchings 191

FIGURE 9.20
A 3-regular graph with no perfect matching

9.7.3 Find a condition similar to Tutte’s theorem for a graph to have a near
perfect matching.

9.8 Notes

An alternative description of Edmonds’ algorithm appears in PAPADIMITRIOU and
STEIGLITZ [134]. A good source book for the theory of matchings in graphs is
LovASsz and PLUMMER [120]. Exercise 7.1.2 is from BONDY and MURTY [23].
The proof of Tutte’s theorem presented here is based on a proof by LOVAsz [119].
Tutte’s transformation to reduce the subgraph problem to a perfect matching prob-
lem is from TUTTE [174]. His Factor theorem, TUTTE [175], is a solution to the
subgraph problem. It is one of the great theorems of graph theory. The theory of 1-
factorizations has important applications to the theory of combinatorial designs. A
good reference is LINDNER and RODGER [116].

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

10

Network Flows

10.1 Introduction

A network is a directed graph used to model the distribution of goods, data, or com-
modities, etc., from their centers of production to their destinations. For example,
Figure 10.1 shows a network in which goods are produced at node s, and shipped
to node t. Each directed edge has a limited capacity, being the maximum number
of goods that can be shipped through that channel per time period (e.g., 3 kilobytes
per second or 3 truckloads per day). The diagram indicates the capacity as a positive
integer associated with each edge. The actual number of goods shipped on each edge
is shown in square brackets beside the capacity. This is called the flow on that edge. It
is a non-negative integer less than or equal to the capacity. Goods cannot accumulate
at any node; therefore, the total in-flow at each node must equal the out-flow at that
node. The problem is to find the distribution of goods that maximizes the net flow
from s to ¢.

This can be modeled mathematically as follows. When the edges of a graph have
a direction, the graph is called a directed graph or digraph. A network N is a directed
graph with two special nodes s and ¢; s is called the source, and ¢ is called the target.
All other vertices are called intermediate vertices. The edges of a directed graph are
ordered pairs (u, v) of vertices, which we denote by uv. We shall find it convenient
to say that « is adjacent to v even when we do not know the direction of the edge. So
the phrase « is adjacent to v means either wv or vu isan edge. Each edge we E (N)
has a capacity CAP(ud), being a positive integer, and a flow f (), a non-negative
integer, such that f(uv) < CAP(ud). If v is any vertex of N, the out-flow at v is

ffy= > f(va)

U,v—>u

where the sum is over all vertices u to which v is joined. The in-flow is the sum over
all incoming edges at v

= Y f(ud)

U,U—>v

A valid flow f must satisfy two conditions.

1. Capacity constraint: 0 < f(uv) < CAP(wv), forall uve E(N).

193

194 Graphs, Algorithms, and Optimization

" 2[2] -

FIGURE 10.1
A network

2. Conservation condition: f(v) = f~(v), forall v # s, t.

Notice that in Figure 10.1 both these conditions are satisfied. The value of the flow
is the net out-flow at s; in this case, VAL(f) = 20.

In general, there may be in-edges as well as out-edges at s. The net flow from s
to ¢ will then be the out-flow at the source minus the in-flow. This is called the value
of the flow, VAL(f) = f*(s) — f~(s). The max-flow problem is:

Problem 10.1: Max-Flow
Instance: a network V.

Find: a flow f for NV of maximum value.

Any flow f that has maximum value for the network N is called a max-flow of N.
This problem was first formulated and solved by Ford and Fulkerson. In this chapter
we shall present the Ford-Fulkerson algorithm, and study several applications of the
max-flow-min-cut theorem.

It is possible that a network encountered in practice will have more than one
source or target. If sq, so, ..., sy are all sources in a network N, and ¢, to, ..., ¢,
are all targets, we can replace N with a network N’ with only one source and one
target as follows. Add a vertex s to IV, and join it to s1, s9, . . . , 5. Add a vertex ¢ and
join t1,ta, ...,y to t. Assign a capacity CAP(?&) being the sum of the capacities

Network Flows 195

of the out-edges at s;, and a capacity CAP(ﬁ), being the sum of the capacities of
all incoming edges to ¢;. Call the resulting network N’. For every flow in NV there
is a corresponding flow in N’ with equal value, and vice-versa. Henceforth we shall
always assume that all networks have just one source and target. The model we are
using assumes that edges are one-way channels and that goods can only be shipped
in the direction of the arrow. If a two-way channel from u to v is desired, this can
easily be accommodated by two directed edges wv and vu.

Let S C V(N) be a subset of the vertices such that s € S, ¢t ¢ S. Write S =
V(N) — S. Then [S, S] denotes the set of all edges of N directed from S to S. See
Figure 10.2. Consider the sum

> () = (). (10.1)
veS
Because [+ (v) = f~(v), if v # s, this sum equals VAL(f). On the other hand,
fT(v) is the total out-flow at v € S. Consider an out-edge vu at v. Its flow f(vu)
contributes to T (v). It also contributes to £~ (u). If u € S, then f(vu) will appear
twice in the sum 10.1, once for f*(v) and once for f~ (), and will therefore cancel.
See Figure 10.2, where S is the set of shaded vertices. If u ¢ S, then f (171[) will
appear in the summation as part of f*(v), but will not be canceled by f~(u). A
similar argument holds if v € S and u € S. Therefore

VAL(f) = Y (fT(v) = f~(v))
veS
= > flua) - f(vi)
vu €[S, 5] vu €[S, 8]

This says that the value of the flow can be measured across any edge-cut [5, S|, such
that s € Sand ¢t € S. If we write

FrS)y =3 f (v

ves
and
F7S)=> (v
ves
then
VAL(f) = f7(S) = £~ (9).
If we write B
FUSS) = D0 f(wu)
vu€[s,5s)
and

F(5.8) = > flwu)

vu€[S,S]

196 Graphs, Algorithms, and Optimization

then we can also express this as

VaL(f) = f([S.8]) = £([S. S]).

FIGURE 10.2 B
Aset Swheres € S,t € S

Let K =[S, S] be any edge-cut with s € S and ¢t € S. The capacity of K is

Car(K) = Z CAP(w).
w €K

This is the sum of the capacities of all edges out of .S. The value of any flow in N is
limited by the capacity of any edge-cut K. An edge-cut K is a min-cut if it has the
minimum possible capacity of all edge-cuts in V.

Lemma 10.1. Let K =[S, g] be an edge-cut in a network N with s € S, t € S, and
flow f. Then VAL(f) < CAP(K). If VAL(f) = CAP(K), then f is a max-flow and
K is a min-cut.

Proof. Clearly the maximum possible flow out of .S is bounded by CAP(K); that is,
f1(S) < CAP(K). This holds even if K is a min-cut or f a max-flow. The flow
into S is non-negative; that is, f~(S) > 0. Therefore VAL(f) = f(S) — f(S) <
Capr(K). If VAL(f) = CAP(K), then it must be that f is maximum, for the value
of no flow can exceed the capacity of any cut. Similarly K must be a min-cut. Note

Network Flows 197

that in this situation f+(S) = CAP(K) and f~(S) = 0. That is, every edge uv
directed out of S satisfies f(uv) = CAP(uv). Every edge uv into S carries no flow,
f(uww) = 0. O

In the next section we shall prove the max-flow-min-cut theorem. This states
that the value of a max-flow and the capacity of a min-cut are always equal, for any
network V.

10.2 The Ford-Fulkerson algorithm

If we assign f(uv) = 0, for all uoe E(N), this defines a valid flow in N, the
zero flow. The Ford-Fulkerson algorithm begins with the zero flow, and increments
it through a number of iterations until a max-flow is obtained. The method uses
augmenting paths. Consider the st-path P = svjv5vovgt in Figure 10.1. (We ignore
the direction of the edges when considering these paths.) Each edge of P carries a
certain amount of flow. The traversal of P from s to ¢ associates a direction with P.
We can then distinguish two kinds of edges of P, forward edges, those like svy
whose direction is the same as that of P, and backward edges, those like vsvo whose
direction is opposite to that of P. Consider a forward edge wv in an st-path P. If

f(uv) < CAP(u0), then uv can carry more flow. Define the residual capacity of
uv € E(P) to be

CaP(uv) — f(ut), if uv is a forward edge,

RESCAP =
(uv) { f(vu), if uv is a backward edge.

The residual capacity of a forward edge uv € E(P) is the maximum amount by
which the flow on w0 can be increased. The residual capacity of a backward edge
uv € E(P) is the maximum amount by which the flow on v can be decreased. For
example, in the network of Figure 10.1, we increase the flow on all forward edges of
P by 2, and decrease the flow on all backward edges of P also by 2. The result is
shown in Figure 10.2. We have a new flow, with a larger value than in Figure 10.1.

In general, let P be an st-path in a network N with flow f. Define the residual
capacity of P to be

§(P) = MIN{RESCAP(uv) : wv € E(P)}

Define a new flow f* in IV as follows:

f(ﬁ), if uv is not an edge of P,
A (uw) = f(uv) +6(P), if uv is a forward edge of P, and

—

f(uv) = 6(P), ifuvisabackward edge of P.

Lemma 10.2. f* is a valid flow in N and VAL(f*) = VAL(f) + 6(P).

198 Graphs, Algorithms, and Optimization

Proof. We must check that the capacity constraint and conservation conditions are
both satisfied by f*. It is clear that the capacity constraint is satisfied, because of the
definition of the residual capacity of P as the minimum residual capacity of all edges
in P. To verify the conservation condition, consider any intermediate vertex v of P.
Let its adjacent vertices on P be u and w, so that uv and vw are consecutive edges
of P. There are four cases, shown in Figure 10.3.

Case 1. uv and vw are both forward edges of P.
Because f(uv) and f(vw) both increase by 8(P) in f*, it follows that f*+(v) and
/™ (v) both increase §(P). The net result on fT(v) — f~(v) is zero.

Case 2. uv is a forward edge and vw is a backward edge.
In this case f(u0) increases and f(wv) decreases by §(P) in f*. It follows that
f*(v) and f~(v) are both unchanged.

Case 3. uv is a backward edge and vw is a forward edge.
In this case f(m) decreases and f(z?u) increases by d(P) in f*. It follows that
f*(v) and f~(v) are both unchanged.

Case 4. uv and vw are both backward edges of P.
Because f(vu) and f(w) both decrease by §(P) in f*, it follows that f*(v) and
/7~ (v) both decrease by §(P). The net result on f+(v) — f~(v) is zero.

The value of f*is f**(s) — f*(s). If the first edge of P is su, a forward edge,
then it is clear that the value increases by d(P), because f(su) increases. If su
is a backward edge, then f(su) decreases, so that f~(s) also decreases, thereby

increasing the value of the flow. Therefore VAL(f*) = VAL(f) + 6(P). O
u w u w
v v
Case 1 Case 2
u w u w
v v
Case 3 Case 4
FIGURE 10.3

The four cases for edges uv and vw on path P

Network Flows 199

DEFINITION 10.1: An st-path P for which §(P) > 0 is called an augmenting
path.

This method of altering the flow on the edges of P is called augmenting the flow.
If §(P) > 0 it always results in a flow of larger value. We give an outline of the
Ford-Fulkerson algorithm in Algorithm 10.2.1.

Algorithm 10.2.1: FF(V, s, 1)

N is a network with source s and target t.
comment: ¢ f is the flow.
P is a path.

f < the zero flow
search for an augmenting path P
while a path P was found
augment the flow on P
do { VAL(f) + VAL(f) +6(P)
search for an augmenting path P
comment: the flow is now maximum

The algorithm stops when N does not contain an augmenting path. We show that
in this situation the flow must be maximum. The outline given in Algorithm 10.2.1
does not specify how the augmenting paths are to be found. Among the possibilities
are the breadth-first and depth-first searches. We shall see later that the breadth-first
search is the better choice. As the algorithm searches for an augmenting path, it
will construct paths from s to various intermediate vertices v. The paths must have
positive residual capacity. An sv-path with positive residual capacity is said to be
unsaturated. A vertex v is s-reachable if N contains an unsaturated sv-path. This
means that v can be reached from s on an unsaturated path.

Theorem 10.3. Let N be a network with a flow f. Then f is maximum if and only if
N contains no augmenting path.

Proof. Suppose that f is a max-flow. There can be no augmenting path in N, for this
would imply a flow of larger value. Conversely, suppose that f is a flow for which
there is no augmenting path. We show that f is maximum. Let S denote the set of
all s-reachable vertices of N. Clearly s € S. Because there is no augmenting path,
the target is not s-reachable. Therefore ¢ € S. Consider the edge-cut K = [S, S].
If wwe K is an edge out of S, then RESCAP(W) = 0; for otherwise v would be
s-reachable on the forward edge uv from u € S. Therefore f(uv) = CAP(uv) for
all uve K that are out edges of S. Thus f+(S) = CAP(K). If wve [S, 5] is any
edge into S, then f (ﬁ)) = 0; for otherwise u would be s-reachable on the backward
edge vu from v € S. Consequently f7(S) = 0. It follows that VAL(f) = CAP(K),
so that f is a max-flow and K a min-cut, by Lemma 10.1. O

200 Graphs, Algorithms, and Optimization

This is illustrated in Figure 10.2, in which all edges out of S are saturated. In this
example there are no edges into S. If there were, they would carry no flow. So the
flow in Figure 10.2 is maximum. Notice that a consequence of this theorem is that

when f is a max-flow, the set S of s-reachable vertices defines a min-cut K’ = [S, S].
This is summarized as follows:

Theorem 10.4. (Max-flow-min-cut theorem) /n any network the value of a max-
Sflow equals the capacity of a min-cut.

We are now ready to present the Ford-Fulkerson algorithm as a breadth-first
search for an augmenting path. The vertices will be stored on a queue, the ScanQ, an
array of s-reachable vertices. QSize is the current number of vertices on the ScanQ.
The unsaturated sv-paths will be stored by an array PrevPt[-], where PrevPt[v] is the
point previous to v on an sv-path P,. The residual capacity of the paths will be stored
by an array ResCap|[-], where ResCap|v] is the residual capacity §(P,) of P, from s
up to v. The algorithm is presented as a single procedure, but could be divided into
smaller procedures for modularity and readability.

The procedure which augments the flow starts at ¢ and follows PrevPt[v] up to
s. Given an edge uv on the augmenting path, where uv = PrevPt[v], a means is
needed of determining whether wv is a forward or backward edge. One way is to
store PrevPt[v] = u for forward edges and PrevPt[v] = —u for backward edges.
This is not indicated in Algorithm 10.2.2, but can easily be implemented.

In programming the max-flow algorithm, the network /N should be stored in ad-
jacency lists. This allows the loop

for all v adjacent to v do

to be programmed efficiently. The out-edges and in-edges at w should all be stored
in the same list. We need to be able to distinguish whether u — v or v — w. This
can be flagged in the record representing edge wo. If wo appears as an out-edge in
the list for node w, it will appear as an in-edge in the list for vertex v. When the flow
on edge uv is augmented, it must be augmented from both endpoints. One way to
augment from both endpoints simultaneously is to store not the flow f(uv) itself, but
a pointer to it. Then it is not necessary to find the other endpoint of the edge. Thus a
node x in the adjacency list for vertex u contains following four fields:

o AdjPt(z), a vertex v that is adjacent to or from .

e OutEdge(z), a boolean variable set to true if u — v,
and false if v — w.

e Flow(x), a pointer to the flow on uo.

e Next(x), the next node in the adjacency list for w.

Network Flows

201

do

Algorithm 10.2.2: MAXFLOW(N, s, 1)

f < the zero flow
for all vertices v do PrevPt[v] < 0
while true “search for an augmenting path”

ScanQ[1] + s
QSize 1
k+1
repeat
u + ScanQ|k] “the k' vertex on ScanQ”
for all v adjacent to u
do if v & ScanQ
ifu—o
comment: a forward edge

if CAP(wv) > f(uv) then

QSize + QSize+1

ScanQ[QSize] <+ v

then PrevPt[v] + u

if ResCap[u] < CAP(uv) — f(uv)
then ResCap|v] < ResCap|ul]

else ResCap[v]«CAP(uv)—f(uv)

then ifv=1¢ thengotol
comment: v — u, a backward edge

if f(vi) >0 then
QSize + QSize+1
ScanQ|[QSize] + v
else PrevPt[v] < u
if ResCap|u| < f(v_u>)
then ResCap|v] + ResCap|u]
else ResCap[v] + f (ﬁ)
ifv=1t thengotol
k< k+1 “advance ScanQ”
until £ > QSize
Flow is now maximum.
Scan(Q contains the s-reachable vertices.

comment: {

output (ScanQ, and the flow on each edge)
exit

1 : comment: augmenting path found, re-initialize ScanQ
AUGMENTFLOW(?)

for i < 1 to QSize do PrevPt[ScanQ[k]] < 0

202 Graphs, Algorithms, and Optimization

Algorithm 10.2.3: AUGMENTFLOW(?)
V41
u < PrevPt[v]
0 + ResCaplt]
while u # 0
ifu—v
then f(uv) « f(uv)+6 “aforward edge”
do ¢ else f(uv) « f(uww)—8 “abackward edge”
VU
u < PrevPt[v]
VAL(f) <= VAL(f)+¢

This breadth-first search version of the Ford-Fulkerson algorithm is sometimes
referred to as the “labeling” algorithm in some books. The values ResCap|[v] and
PrevPt[v] are considered the labels of vertex v.

The algorithm works by constructing all shortest unsaturated paths from s. If an
augmenting path exists, it is sure to be found. This can easily be proved by induction
on the length of the shortest augmenting path. The flow is then augmented and the
algorithm exits from the inner repeat loop by branching to statement 1. If no aug-
menting path exists, then the inner repeat loop will terminate. The vertices on the
ScanQ will contain the set S of all s-reachable vertices, such that [, S] is a min-cut.

It is difficult to form an accurate estimate of the complexity of the BF-FF al-
gorithm. We shall prove that it is polynomial. This depends on the fact that only
shortest augmenting paths are used. If non-shortest paths are used, the FF algorithm
is not always polynomial. Consider the network of Figure 10.4. We augment first
on path P = (s, a,b,t), which has residual capacity one. We then augment on path
Q = (s,b,a,t), also of residual capacity one, because ba is a backward edge, and

N
f(ab) = 1. Augmenting on @ makes 6(P) = 1, so we again augment on P, and
then augment again on @, etc. After 2000 iterations a max-flow is achieved — the
number of iterations can depend on the value of the max-flow. This is not polynomial
in the parameters of the network. However, if shortest augmenting paths are used,
this problem does not occur.

Consider an augmenting path P in a network N. §(P) is the minimum resid-
ual capacity of all edges of P. Any edge uve P such that RESCAP(MJ)) = §(P)
is called a bottleneck. Every augmenting path has at least one bottleneck and may
have several. Suppose that a max-flow in NV is reached in m iterations, and let P;
be the augmenting path on iteration j. Let d;(s,u) denote the length of a shortest
unsaturated su-path in iteration j, for all vertices .

Lemma 10.5. d; 1 (s,u) > d;(s,u), forallu € V(N).

Proof. Let Q; = Q;(s,u) be a shortest unsaturated su-path at the beginning of
iteration j, and let Q11 = @;+1(s,u) be a shortest unsaturated su-path at the
beginning of iteration j + 1. Then ¢(Q;) = d;(s,u) and £(Q;+1) = dj+1(s,u). If

Network Flows 203

FIGURE 104
A max-flow in 2000 iterations

2(Q;) < £(Qj+1), the lemma holds for vertex u, so suppose that £(Q;) > £(Qj+1).
for some u. Now ;41 is not unsaturated at the beginning of iteration j, so it must
become unsaturated during iteration j. Therefore P; and ()11 have at least one edge
in common that becomes unsaturated during iteration j. The proof is by induction on
the number of such edges. Suppose first that xy is the only such edge in common.
Because xy becomes unsaturated during iteration j, it has opposite direction on P;
and Q1. See Figure 10.5. Without loss of generality, (;1[s,] and Q11 [y, u] are
unsaturated on iteration j. Because P; is a shortest path, ¢(P;[s, z]) < £(Qj+1]s, x]).
But then P;[s, y]Q;+1[y, u] is an unsaturated su-path on iteration j, and has length
less than @41 (s, w), which in turn has length less than @, (s, u), a contradiction. If
Pj[s,y] intersects Q11 [y, u] at a vertex z, then P;[s, z]@Q;+1 [z, u] is an even shorter
unsaturated path.

S

FIGURE 10.5
Paths P; and Qj41

204 Graphs, Algorithms, and Optimization

Suppose now that P; and Q)41 have more than one edge in common that be-
comes unsaturated during iteration j. Let xy be the first such edge on Q1 trav-
eling from s to u. Let z be the point on Qj+1 nearest to u that P;[s,z] con-
tacts before reaching x (maybe z = y). Then Q,y1[s,] and P;[s, z] are unsat-
urated at the beginning of iteration j. Because P; is a shortest unsaturated path,
L(Pjls, z]) < U(Qj+1[s,x]) < £(Qj+1[s,2]). Now either @;11[z, u| is unsaturated
on iteration j, or else it has another edge in common with P;. If it is unsaturated,
then P;[s, z]Q;+1(z, u] is an unsaturated su-path that contradicts the assumption
that d; (s, u) > dj+1(s, u). If there is another edge in common with P;, then we can
repeat this argument. Let 2’y be the first edge of @ j+1[z, u] in common with P;. Let
2z be the point on Q;1[z, u] nearest to u that P;[s, 2'] contacts before reaching a,
etc. Proceeding in this way we eventually obtain an su-path that is shorter than Q);
and unsaturated on iteration j, a contradiction. O

It follows that d; 11 (s, t) > d;(s,t), for every iteration j. By constructing unsat-
urated paths from ¢ in a backward direction we can similarly prove that d;41 (u,t) >
d;(u,t), for all vertices . If we can now prove that d;1(s,t) > d;(s,t), then we
can bound the number of iterations, because the maximum possible distance from s
to ¢t ism — 1, where n is the number of vertices of V.

Theorem 10.6. The breadth-first Ford-Fulkerson algorithm requires at most %ns +1
iterations.

Proof. On each iteration some edge is a bottleneck. After € + 1 iterations, some edge

. . —
has been a bottleneck twice, because there are only € edges. Consider an edge uv
which is a bottleneck on iteration ¢ and then later a bottleneck on iteration j. Refer
to Figure 10.6.

FIGURE 10.6
Paths P; and P;

Then d;(s,t) = d;(s,u) +d;(v,t)+1and d;(s,t) = d;(s,v)+d;(u,t)+ 1. But
di(s,u) <dj(s,u) =dj(s,v)+1land d;(v,t) < d;(v,t) = dj(u,t) + 1. Therefore
di(s,u) +d;(v,t) < d;(s,v) + d;(u,t) + 2. It follows that d;(s,t) < d;(s,t) + 2.
Each time an edge is repeated as a bottleneck, the distance from s to ¢ increases by
at least two. Originally d; (s,t) > 1. After ¢ + 1 iterations, some edge has been a
bottleneck twice. Therefore d.1(s,t) > 3. Similarly do.11(s,t) > 5, and so on. In
general dyc41(s,t) > 2k + 1. Because the maximum distance from s to ¢t is n — 1,

Network Flows 205

we have 2k + 1 < n — 1, so that k& < n/2. The maximum number of iterations is
then ke +1 < Ine + 1. O

Each iteration of the BF-FF algorithm is a breadth-first search for an augmenting
path. A breadth-first search takes at most O(e) steps. Because the number of iter-
ations is at most %ns + 1, this gives a complexity of O(ne?) for the breadth-first
Ford-Fulkerson algorithm. This was first proved by EDMONDS and KARP [48].

Exercises

10.2.1 Find a max-flow in the network shown in Figure 10.7. Prove your flow is
maximum by illustrating a min-cut K such that VAL(f) = CAP(K).

2
V1 V4

FIGURE 10.7
A network

10.2.2 Show that if there is no directed st-path in a network IV, then the maxi-
mum flow in NV has value zero. Can there be a flow whose value is nega-
tive? Explain.

10.2.3 Explain why Y o f*(v) and Zﬂﬂe[sﬁ} f(vu) are in general, not
equal.

10.2.4 Consider the network N of Figure 10.7 with flow f defined as follows:
f(sv1) = 6, f(sv2) = 0, f(sv3) = 2, f(viva) = 2, f(vrvs) = 4,
f(vavg) = 0, f(vave) = 0, f(vsvs) = 2, f(vsve) = 0, f(vsv2) = 0,
float) = 2, f(ust) = 6, f(vet) = 0. A breadth-first search of N will
construct the subnetwork of all shortest, unsaturated paths in N. This

206 Graphs, Algorithms, and Optimization

subnetwork is called the auxiliary network, AUX(N, f). A forward edge
wv of N is replaced by a forward edge uv with capacity CAP(E) —
f (ﬁ) in the auxiliary network. A backward edge vu of N is replaced
by a forward edge uv with capacity f (ﬁ) in AUX(NV, f). Initially the
flow in AUX(N, f) is the zero flow. Construct the auxiliary network for
the graph shown. Find a max-flow in AUX(N, f), and modify f in N
accordingly. Finally, construct the new auxiliary network for N.

10.2.5 Program the breadth-first Ford-Fulkerson algorithm. Test it on the net-
works of this chapter.

10.2.6 If[S, S| and [T, T] are min-cuts in a network NN, show that [SUT, S U T
and [S N T,SNT] are also min-cuts. (Hint: Write S = S; U (SN T)

and T = Ty U (SN T) and use the fact that [S, S] and [T, T] are both
min-cuts.)

10.2.7 Describe a maximum flow algorithm similar to the Ford-Fulkerson al-
gorithm which begins at ¢ and constructs unsaturated paths P until s is
reached. Given that P is a ts-path, how should the residual capacity of an
edge be defined in this case?

10.2.8 Describe an algorithm for finding an edge wv in a network N such that
the value of a max-flow f in NV can be increased if CAP(ﬁ) is increased.
Prove that your algorithm is correct and find its complexity. Does there
always exist such an edge w? Explain.

10.3 Matchings and flows

There is a marked similarity between matching theory and flow theory:

Matchings: A matching M in a graph GG is maximum if and only if G contains no
augmenting path.

Flows: A flow f in a network IV is maximum if and only if NV contains no augment-
ing path.

Hungarian algorithm: Construct alternating paths until an augmenting path is
found.

Ford-Fulkerson algorithm: Construct unsaturated paths until an augmenting path
is found.

The reason for this is that matching problems can be transformed into flow
problems. Consider a bipartite graph G, with bipartition (X,Y") for which a max-
matching is desired. Direct all the edges of G from X to Y, and assign them a capac-
ity of one. Add a source s and an edge sx for all z € X, with CAP(Q) =1.Adda

Network Flows 207

.
target t and an edge yt forall y € Y, with CAP(yt) = 1. Call the resulting network
N. This is illustrated in Figure 10.8. Now find a max-flow in /N. The flow-carrying
edges of [X, Y] will determine a max-matching in G. Because CAP(sz) = 1, there

will be at most one flow-carrying edge out of each x € X. Because CAP(ﬁ) =1,
there will be at most one flow-carrying edge into y, for each y € Y. The flow-
carrying edges of IV are called the support of the flow. An alternating path in G and
an unsaturated path in NV can be seen to be the same thing. If GG is not bipartite there is
no longer a direct correspondence between matchings and flows. However, it is pos-
sible to construct a special kind of balanced network such that a maximum balanced
flow corresponds to a max-matching (see KOCAY and STONE [110] or FREMUTH-
PAEGER and JUNGNICKEL [55]).

FIGURE 10.8
Matchings and flows

The basic BF-FF algorithm can be improved substantially. As it is presented here,
it constructs a breadth-first network of all shortest unsaturated paths until ¢ is reached.
At this point, f is augmented, and the process is repeated. There may be many aug-
menting paths available at the point when ¢ is reached, but only one augmenting path
is used. The remaining unsaturated paths which have been built are discarded, and a
new BFS is executed. In order to improve the BF-FF algorithm, one possibility is to
construct the set of all shortest unsaturated paths. This is the auxiliary network of Ex-
ercise 10.2.4. We then augment on as many paths as possible in the auxiliary network
before executing a new BFS. This has the effect of making d;;1(s,t) > d;(s,t)
so that the number of iterations is at most n. Several algorithms are based on this
strategy. They improve the complexity of the algorithm markedly. See the book by
PAPADIMITRIOU and STEIGLITZ [134] for further information.

Exercises

10.3.1 Let G be a bipartite graph with bipartition (X,Y"). We want to find a
subgraph H of G such that in H, DEG(x) = b(x) and DEG(y) = b(y),
where b(v) is a given non-negative integer, for all v € V(G), if there
exists such an H. For example, if b(v) = 1 for all v, then H would be
a perfect matching. If b(v) = 2 for all v, then H would be a 2-factor.

208 Graphs, Algorithms, and Optimization

Show how to construct a network /N such that a max-flow in /N solves
this problem.

10.3.2 Let N be a network such that every vertex v € N has a maximum
throughput t(v) defined. This is the maximum amount of flow that is al-
lowed to pass through v; that is, f~(v) < ¢(v) must hold at all times.
Show how to solve this problem by constructing a network N’ such that
a max-flow in N/ defines a max-flow in N with maximum throughput as
given.

10.4 Menger’s theorems

Given any digraph, we can view it as a network N by assigning unit capacities to all
edges. Given any two vertices s,t € V(IV), we can compute a max-flow f from s
to ¢. If VAL(f) = 0, then there are no directed paths from s to ¢, because a directed
st-path would be an augmenting path. If VAL(f) = 1, then IV contains a directed
st-path P; however, there are no directed st-paths which are edge-disjoint from P,
for such a path would be an augmenting path. In general, the value of a max-flow f
in N is the maximum number of edge-disjoint directed st-paths in N. Suppose that
VAL(f) = k > 1. The support of f defines a subgraph of NV that contains at least one
directed st-path P. Delete the edges of P to get N’ and let f/ be obtained from f by
ignoring the edges of P. Then VAL(f’) = k — 1, and this must be a max-flow in N’,
because f is a max-flow in IN. By induction, the number of edge-disjoint directed
st-paths in N' is k — 1, from which it follows that the number in N is k.

A min-cut in N can also be interpreted as a special subgraph of N. Let K =
[S, S] be a min-cutin N, where s € S and ¢t € S. If CAP(K) = 0, there are no edges
out of S, so there are no directed st-paths in N. If CAP(K') = 1, there is only one
edge out of S. The deletion of this edge will destroy all directed st-paths in N. We
say that s is disconnected from ¢. In general, CAP(K) equals the minimum number
of edges whose deletion destroys all directed st-paths in V. Suppose that CAP(K) =
k > 1. Delete the edges of K to get a network N’. Then in N’, CAP(][S, §]) =0,
so that N’ contains no directed st-paths. Thus the deletion of the edges of K from
N destroys all directed st-paths. Because IV contains k edge-disjoint such paths, it
is not possible to delete fewer than k£ edges in order to disconnect s from ¢. The
max-flow-min-cut theorem now gives the first of Menger’s theorems.

Theorem 10.7. Let s and t be vertices of a directed graph N. Then the maxi-
mum number of edge-disjoint directed st-paths equals the minimum number of edges
whose deletion disconnects s from t.

Recall that an undirected graph G is k-edge-connected if the deletion of fewer
than & edges will not disconnect GG. In Chapter 6 we showed that a graph is 2-
edge-connected if and only if every pair of vertices is connected by at least two

Network Flows 209

edge-disjoint paths. We will use Theorem 10.7 to prove a similar result for k-edge-
connected graphs. In order to convert Theorem 10.7 to undirected graphs, we can
replace each edge w of G by a “gadget”, as shown in Figure 10.9, to get a directed

graph N.
v
/ — u @ } —® v
U
G N

FIGURE 10.9
A gadget for edge-disjoint paths

The gadget contains a directed ﬁ—path and a directed w—path, but they both
use the central edge of the gadget. Let s, ¢t € V(G). Then edge-disjoint st-paths of G
will define edge-disjoint directed st-paths in N. Conversely, edge-disjoint directed
st-paths in N will define edge-disjoint st-paths in G. This gives another of Menger’s
theorems.

Theorem 10.8. Let s and t be vertices of an undirected graph G. Then the maxi-
mum number of edge-disjoint st-paths equals the minimum number of edges whose
deletion disconnects s from t.

It follows that a graph G is k-edge-connected if and only if every pair s, ¢ of
vertices are connected by at least k edge-disjoint paths. This immediately gives an
algorithm to compute «'(G), the edge-connectivity of G. Number the vertices of G
from 1 to n. Let the corresponding vertices of IV also be numbered from 1 to n. The
algorithm computes the minimum max-flow over all pairs s, ¢ of vertices. This is the
minimum number of edges whose deletion will disconnect G. Exactly (%) max-flows
are computed, so the algorithm has polynomial complexity.

Algorithm 10.4.1: EDGE-CONNECTIVITY(G)

convert G to a directed graph N
K n
fors«+ 1ton—1
fort <~ s+ 1ton
M + MAXFLOW(N, s,t)
do < if M < &'
then ' + M

do

return (x')

210 Graphs, Algorithms, and Optimization

Exercises

10.4.1 Let G be an undirected graph. Replace each edge uv of G with a pair of
directed edges uv and vu to get a directed graph N. Let s,t € V(G).
Show that the maximum number of edge-disjoint st-paths in G equals the
maximum number of edge-disjoint directed st-paths in V.

10.4.2 Program the edge-connectivity algorithm, using the transformation of Ex-
ercise 10.4.1.

10.5 Disjoint paths and separating sets

Recall that paths in a graph G are internally disjoint if they can intersect only at their
endpoints. A graph is k-connected if the deletion of fewer than k vertices will not
disconnect it. We proved in Chapter 7 that GG is 2-connected if and only if every pair
of vertices is connected by at least two internally disjoint paths. We prove a similar
result for k-connected graphs by utilizing a relation between internally disjoint paths
in G and directed paths in a network N. We first make two copies w1, us of each ver-
tex u of G. V(N) = {u1,us | u € V(G)}. Let uv be an edge of G. N will contain
the edges (u1,uz), (v1,v2), (u2, v1), and (ve, uy). This is illustrated in Figure 10.10.

V1 (%)
—
Ul us
u
G N
FIGURE 10.10

A gadget for internally disjoint paths

Let u € V(G). Notice the following observations:

1. The only out-edge at u; is ujus.
2. The only in-edge at ug is ujus.
3. The edge M}e E(G) corresponds to ugv; and vauy in N.

Consequently any st-path suvw...t in G corresponds to an sotq-path
SouugUI V2w we . . . t1 in IN. Internally disjoint st-paths in GG give rise to internally
disjoint ssti-paths in N. On the other hand, edge-disjoint paths in N are in fact
internally disjoint because of items 1 and 2. Therefore the maximum number of in-
ternally disjoint st-paths in G equals the maximum number of edge-disjoint directed

Network Flows 211

soti-paths in N. This in turn equals the minimum number of edges whose deletion
will disconnect sy from ¢1. If so /— t1, then every sotq-path in G will contain an-
other vertex, say u; or us. By observations 1 and 2 , it must contain both v and us.
Deleting u;uz will destroy this path. If K =[S, S] is a min-cut in N, then the edges
out of S must be of the form ujus, because us can only be ss-reachable if w is,
by observation 3 and Figure 10.10. Let U = {u | uyus € K}. Then U is a set of
vertices of GG which separate s from ¢. This gives another of Menger’s theorems.

Theorem 10.9. Let G be a graph and let s,t € V(G), where s +— t. Then the
maximum number of internally disjoint st-paths in G equals the minimum number of
vertices whose deletion separates s from t.

Theorem 10.10. A graph G is k-connected if and only if every pair of vertices is
connected by at least k internally disjoint paths.

Proof. Lets,t € V(G).If s and t are connected by at least k internally disjoint paths,
then clearly G is k-connected; for at least k vertices must be deleted to disconnect
s from t. Conversely suppose that GG is k-connected. Then deleting fewer than &
vertices will not disconnect G. If s /— t, then by the Theorem 10.10, G must
contain at least k internally disjoint st-paths. If s — ¢, then consider G — st. It is
easy to see that G — st is (k — 1)-connected. Therefore in G — st, there are at least
k — 1 internally disjoint st-paths. The edge st is another st-path, giving £ paths in
total. O

We can also use this theorem to devise an algorithm which computes x(G), the
connectivity of G. We suppose that the vertices of GG are numbered 1 to n, and that if
s € V(G), then s1 and s5 are the corresponding vertices of N.

Algorithm 10.5.1: CONNECTIVITY(()

convert G to a directed graph N

K< n—1 “maximum possible connectivity”
s+0
while s < k
s s+1 “vertex s”
fort< s+ 1ton
doif s /A~ t
do M + MAXFLOW(N, s2,t1)
if M <k
then then x < M
if s >k
then return ()

return (k)

Theorem 10.11. Algorithm 10.5.1 computes r(G)

212 Graphs, Algorithms, and Optimization

Proof. Suppose first that G = K,,. Then k(G) = n — 1. The algorithm will not
call MAXFLOW() at all, because every s is adjacent to every ¢. The algorithm will
terminate with k = n — 1. Otherwise G is not complete, so there exists a subset
U C V(G) such that G — U has at least two components, where |U| = k(G). The
first (G choices of vertex s may all be in U. However, by the (x(G) + 1) choice
of s we know that some s ¢ U has been selected. So s is in some component of
G — U. The inner loop runs over all choices of ¢. One of these choices will be in a
different component of U. For that particular ¢, the value of MAXFLOW (N, s2,t1)
will equal |U|. After this, the value of « in the algorithm will not decrease any more.
Therefore we can conclude that some s ¢ U will be selected; that the value of x after
that point will equal x(G); and that after this point the algorithm can stop. This is
exactly what the algorithm executes. O

The algorithm makes at most

rk+1

Z(n —5)

s=1

calls to MAXFLOW(). Thus, it is a polynomial algorithm.

Exercises
10.5.1 Let G be k-connected. If st € E(G), prove that G — st is (k — 1)-
connected.

10.5.2 Program Algorithm 10.5.1, the CONNECTIVITY() algorithm.

10.5.3 Consider a network N where instead of specifying a capacity for each
edge w, we specify a lower bound b(ﬁ) > 0 for the flow on edge .
Instead of the capacity constraint f(uv) < CAP(uv), we now have a
lower bound constraint f(uv) > b(uv). The zero-flow is not a valid flow
anymore. Show that there exists a valid flow in such a network if and only
if for every edge ut such that b(ﬁ) > 0, wv is either: (i) on a directed
st-path; or (ii) on a directed ts-path; or (iii) on a directed cycle. (Hint: If
wv is not on such a path or cycle, follow directed paths forward from v
and backward from w to get a contradiction.)

10.5.4 Consider the problem of finding a minimum flow in a network with lower
bounds instead of capacities.

(a) How should an unsaturated path be defined?
(b) How should the capacity of an edge-cut be defined?

(c) Find a min-flow in the network of Figure 10.11, where the numbers
are the lower bounds. Prove that your flow is minimum by illustrating
an appropriate edge-cut.

(d) Is there a max-flow in the network given in Figure 10.11?

Network Flows 213

FIGURE 10.11
A network with lower bounds

10.5.5 Suppose that a network N has both lower bounds b(ﬁ) and capaci-
ties CAP(u0) on its edges. We wish to find a max-flow f of N, where
b(uwv) < f(uv) < CAP(ud). Notice that zero-flow may be no longer
a valid flow. Before applying an augmenting path algorithm like the FF
algorithm, we must first find a valid flow.

(a) Determine whether the networks N7 and N of Figure 10.12 have a
valid flow.

(b) How should residual capacity be defined?

(c) How should the capacity of an edge-cut be defined?

2,6 2,6

Ny Ny

FIGURE 10.12
Networks with lower bounds and capacities

214

10.5.6

10.5.7

10.5.8

Graphs, Algorithms, and Optimization

Let N be a network with lower bounds b(uv) and capacities CAP(ud)
specified on its edges. Before finding a max-flow in IV we need to find a
valid flow. Construct a network N’ as follows: Add a new source s’ and
target . Join s’ to all vertices of N. Join every vertex of N to ¢'. Add

— —
edges st and ts to N’. The capacities in N’ are defined as follows:

/

CAP/(s'u) = 3, b(vt). (sum over in-edges at u € V/(N).
CAP/(ut') = 2, b(wd), (sum over out-edges at u € V (N).
CAP'(ut) = CAP(uwv) — b(uv), (u,v € V(N)).

CAP’(?) = CAP (H) =00

Prove that there exists a valid flow in N if and only if there is a flow in
N’ that saturates all edges incident on s’.

Let N be a network such that there is a cost C(E) of using edge uv, per

unit of flow. Thus the cost of flow f(uv) on edge uv is f(ud)e(uv).
Devise an algorithm to find a max-flow of min-cost in V.

The circulation of money in the economy closely resembles a flow in a
network. Each node in the economy represents a person or organization
that takes part in economic activity. The main differences are that there
may be no limit to the capacities of the edges, and that flow may accumu-
late at a node if assets are growing. Any transfer of funds is represented
by a flow on some edge. Various nodes of the economic network can be
organized into groups, such as banks, insurance companies, wage earners,
shareholders, government, employers, etc.

(a) Develop a simplified model of the economy along these lines.

(b) A bank charges interest on its loans. If there is a fixed amount of
money in the economy, what does this imply? What can you conclude
about the money supply in the economy?

(c) When a new business is created, a new node is added to the network.
Where does the flow through this node come from?

(d) Consider the node represented by government. Where does its in-flow
come from? Where is its out-flow directed? Consider how govern-
ment savings bonds operate in the model.

(e) Where does inflation fit into this model?

(f) How do shareholders and the stock market fit into the model?

Network Flows 215

10.6 Notes

The max-flow algorithm is one of the most important algorithms in graph theory, with
a great many applications to other graph theory problems (such as connectivity and
Menger’s theorems), and to problems in discrete optimization. The original algorithm
is from FORD and FULKERSON [53]. See also FULKERSON [58]. EDMONDS and
KARP [48] proved that the use of shortest augmenting paths results in a polynomial
time complexity of the Ford-Fulkerson algorithm.

Balanced flows were introduced by KOCAY and STONE [110], and then devel-
oped greatly in a series of papers by Fremuth-Paeger and Jungnickel. An excellent
summary with many references can be found in FREMUTH-PAEGER and JUNG-
NICKEL [55].

A great many techniques have been developed to improve the complexity of the
basic augmenting path algorithm. See PAPADIMITRIOU and STEIGLITZ [134] for
further information. The algorithms to find the connectivity and edge-connectivity of
a graph in Sections 8.4 and 8.5 are from EVEN [50].

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

11

Hamilton Cycles

11.1 Introduction

A cycle that contains all vertices of a graph G is called a hamilton cycle (or hamilto-
nian cycle). G is hamiltonian if it contains a hamilton cycle. For example, Figure 11.1
shows a hamilton cycle in the graph called the truncated tetrahedron. It is easy to see
that the graph of the cube is also hamiltonian (see Chapter 1).

FIGURE 11.1
A hamiltonian graph

Figure 11.2 shows a non-hamiltonian graph H. It is easy to see that H is non-
hamiltonian, because it is bipartite with an odd number of vertices. Clearly any bi-
partite graph that is hamiltonian must have an even number of vertices, because a
hamilton cycle C' must start and end on the same side of the bipartition. Although
H is non-hamiltonian, it does have a hamilton path, that is, a path containing all its
vertices.

The problem of deciding whether a given graph is hamiltonian is only partly
solved.

Problem 11.1: HamCycle
Instance: a graph G
Question: is G hamiltonian?

217

218 Graphs, Algorithms, and Optimization

FIGURE 11.2
A non-hamiltonian graph

This is an example of an NP-complete problem. We will say more about NP-
complete problems later. There is no known efficient algorithm for solving the
HamCycle problem. Exhaustive search algorithms can take a very long time in gen-
eral. Randomized algorithms can often find a cycle quickly if G is hamiltonian, but
do not give a definite answer if no cycle is found.

The HamCycle problem is qualitatively different from most other problems in
this book. For example, the questions “is G bipartite, Eulerian, 2-connected, pla-
nar?”, and, “is a given flow f maximum?” can all be solved by efficient algorithms.
In each case an algorithm and a theoretical solution are available. For the HamCycle
problem, there is no efficient algorithm known, and only a partial theoretical solution.
A great many graph theoretical problems are NP-complete.

A number of techniques do exist which can help to determine whether a given
graph is hamiltonian. A graph with a cut-vertex v cannot possibly be hamiltonian,
because a hamilton cycle C' has no cut-vertex. This idea can be generalized into a
helpful lemma.

Lemma 11.1. If G is hamiltonian, and S C V(G), then w(G — S) < |9].

This lemma says that if we delete k& = |S| vertices from G, the number of con-
nected components remaining is at most k. Let C' be a hamilton cycle in G. If we
delete k vertices from C, the cycle C will be decomposed into at most &k paths. Be-
cause C' is a subgraph of G, it follows that G — S will have at most & components.

For example, the graph of Figure 11.3 is non-hamiltonian, because the deletion
of the three back vertices gives four components.

The Petersen graph is also non-hamiltonian, but this cannot be proved using
Lemma 11.1. Instead we use an exhaustive search method called the multi-path
method, see RUBIN [152]. Suppose that C' were a hamilton cycle in the Petersen
graph G, as shown in Figure 11.4. G is composed of an outer and inner pentagon,
joined by a perfect matching. Because C uses exactly two edges at each vertex of G,
it follows that C' must use at least three edges of the outer pentagon, for otherwise
some vertex on it would be missed by C'. Consequently, C' uses two adjacent edges
of the outer pentagon. Without loss of generality, suppose that it uses the edges uv

Hamilton Cycles 219

FIGURE 11.3
A non-hamiltonian graph

and vw. This means that C' does not use the edge vy, so we can delete it from G.
Deleting vy reduces the degree of y to two, so that now both remaining edges at y
must be part of C. So the two paths (u, v, w) and (x, y, z) must be part of C, where
a path is denoted by a sequence of vertices. This is illustrated in Figure 11.4.

(7 (7

]
<

FIGURE 114
The multi-path method

C must use two edges at w, so there are two cases. Either wt € C or wr €
C'. Suppose first that wt € C. Then because wr ¢ C, we can delete wr from G.
This reduces the degree of r to two, so that the remaining edges at » must be in
C. Therefore rz € C. This uses up two edges at z, so we delete sz, which in turn
reduces the degree of s to two. Consequently the edge us € C. But this now creates
a cycle (u,v,w,t, s) in C, which is not possible. It follows that the choice wt € C

220 Graphs, Algorithms, and Optimization

was wrong. If we now try wr € C' instead, a contradiction is again reached, thereby
proving that the Petersen graph is non-hamiltonian.

This is called the multi-path method, because the cycle C'is gradually built from a
number of paths which are forced by two operations: the deletion of edges which are
known not to be in C'; and the requirement that both edges at a vertex of degree two
be in C. The multi-path method is very effective in testing whether 3-regular graphs
are hamiltonian, because each time an edge is deleted, the degree of two vertices
reduces to two, which then forces some of the structure of C'. Graphs of degree four
or more are not so readily tested by it. We will say more about the multi-path method
later on.

Exercises

11.1.1 Decide whether or not the graphs in Figure 11.5 are hamiltonian.

FIGURE 11.5
Are these hamiltonian?

11.1.2 Prove that ,,, the n-cube, is hamiltonian for all n > 2.

11.1.3 Let P be a hamilton path in a graph G, with endpoints v and v. Show that
w(G—=5) <|S|+1,forall S C V(G), in two ways:

a) By counting the components of G — S.
b) By counting the components of (G + uv) — S, and using Lemma 9.1.

11.2 The crossover algorithm

Suppose that we want to find a hamilton cycle in a connected graph GG. Because every
vertex of G must be part of C, we select any vertex x. We then try to build a long
path P starting from x. Initially P = (z) is a path of length zero. Now execute the
following steps:

Hamilton Cycles 221

u<4—x; vz “Pisauv-path”
while 3w — w such that w & P
{P +— P+ uw
do
U4~ w

while 3w — v such that w & P
{P +— P+ow
do
V4w

The first loop extends P from u and the second loop extends P from v, until it
cannot be extended anymore. At this point we have a uv-path

P=(u,...,z,...,0)

such that the endpoints « and v are adjacent only to vertices of P. The length of P
is ¢(P), the number of edges in P. The vertices of P are ordered from w to v. If
w € P, then w™ indicates the vertex following w (if w # v). Similarly w™ indicates
the vertex preceding w (if w #).

If u — v, then we have a cycle C' = P + wv. If C' is a hamilton cycle, we are
done. Otherwise, because G is connected, there is a vertex w € P such that w — v,
where y ¢ P. Hence there exists a longer path

P* =P —ww' + wy.

This is illustrated in Figure 11.6.

FIGURE 11.6
Finding a long path

If u /= v, it may still be possible to find a cycle. Suppose that P contains a
vertex w such that v — w and u — w™ . This creates a pattern called a crossover,
which is shown in Figure 11.7. When a crossover exists, there is a cycle

C=P+ovw—wwt+uwt

containing all the vertices of P.

222 Graphs, Algorithms, and Optimization

Having converted the path P to a cycle C using the crossover, we are again in the
situation where either C' is a hamilton cycle, or else it contains a vertex w — y & C,
which allows us to find a longer path P*. We now extend P* from both endpoints
as far as possible, and then look for a crossover again, etc. The algorithm terminates
either with a hamilton cycle, or with a long path that has no crossover. The crossover
algorithm is summarized in Algorithm 11.2.1.

FIGURE 11.7
A crossover

Algorithm 11.2.1: LONGPATH(G, x)

Find a long path in GG containing x, using crossovers.
P and C are linked lists.

u<+x; v<x; P+ (x) “apathoflength0”
repeat
comment: extend P from u

comment: {

while 3w — u such that w ¢ P
addwto P
do
U <—w
comment: extend P from v

while 3w — v such that w ¢ P
{add w to P
do
V4w
comment: search for a crossover

forallw — vdoifu — w™
comment: a crossover has been found

C <+ P+vw—wwt +uwt

if C' is a hamilton cycle

then ¢ then go to 1

find z € C'suchthat z — y & C

convert C + zy into a path P from g to 2T
Uy, vzt

until no crossover was found

1 : comment: P can be extended no more

Hamilton Cycles 223

11.2.1 Complexity

The main operations involved in the algorithm are extending P from u and v, con-
verting P to a cycle C, and finding z € C' such that z — y ¢ C. We assume that the
data structures are arranged so that the algorithm can check whether or not a vertex
w is on P in constant time. This is easy to do with a boolean array. We also assume
that the algorithm can test whether or not vertices v and w are adjacent in constant
time.

e Extending P from u requires at most DEG(u) steps, for each u. Because P
can extend at most once for each u, the total number of steps taken to extend
Pisatmost), DEG(u) = 2¢, taken over all iterations of the algorithm.

e Converting P to a cycle C = P + vw — ww' + uw™ requires reversing a
portion of P. This can take up to £(P) steps. As ¢(P) increases from 0 up to
its maximum, this can require at most O(n?) steps, taken over all iterations.

e Checking whether z € C' is adjacent to some y ¢ C requires DEG(z) steps
for each z. There are £(C') = ¢(P) + 1 vertices z to be considered. If at some
point in the algorithm it is discovered that some z is not adjacent to any such
y, we need never test that z again. We flag these vertices to avoid testing them
twice. Thus the total number of steps spent looking for z and y is at most
O(n?)+>°_DEG(z) = O(n? +¢).

So the total complexity of the algorithm is O(n? +). More sophisticated data struc-
tures can reduce the O(n2) term, but there is likely no reason to do so, because the
algorithm is already fast, and it is not guaranteed to find a hamilton cycle in any case.

The crossover algorithm works very well on graphs which have a large number
of edges compared to the number of vertices. In some cases we can prove that it will
always find a hamilton cycle. On sparse graphs (e.g., 3-regular graphs), it does not
perform very well when the number of vertices is more than 30 or so.

Lemma 11.2. Let G be a graph on n vertices such that DEG(u) + DEG(v) > n, for
all non-adjacent vertices u and v. Then the crossover algorithm will always find a
hamilton cycle in G.

Proof. 1f the crossover algorithm does not find a hamilton cycle, let P be the last
path found. Because P cannot be extended from its endpoints u and v, it follows that
w and v are joined only to vertices of P. For each w — v, it must be that u /— w™,
or a crossover would exist. Now v is joined to DEG(v) vertices of P. There are thus
DEG(v) vertices that u is not joined to. Consequently u can be adjacent to at most
{(P) — DEG(v) vertices, where {(P) < n — 1 is the number of edges of P. So we
have
DEG(u) + DEG(v) < 4(P) <n—1,

a contradiction, because we assumed that DEG(u)+DEG(v) > n for all non-adjacent
wand v. O

224 Graphs, Algorithms, and Optimization

This lemma also shows that graphs which satisfy the condition DEG(u) +
DEG(v) > n are always hamiltonian. Such graphs have many edges, as we shall
see. However, the crossover algorithm will often find hamilton cycles or hamilton
paths, even when a graph does not satisfy this condition.

The crossover algorithm can be improved enormously by searching for
crossovers of higher order. The crossover of Figure 11.7 can be defined to be the
trail Q = (u, w™, w,v) which starts at u, intersects P in exactly one edge, and fin-
ishes at v. The cycle C'is then given by C' = P & @, where & indicates the operation
of exclusive-OR, applied to the edges of P and (). In general, higher order crossovers
can be defined as follows.

DEFINITION 11.1: Let P be a uv-path. A crossover @) is a uv-trail such that
V(Q) C V(P)and C = P @ Q is a cycle with V(C) = V(P). The order of a
crossover @ is the number | P N Q| of edges common to P and Q. A cross-edge is
any edge 2y € E(Q) — E(P).

So a crossover of order 0 occurs when v — wv. Then @ = (u,v) and
C = P + ww. There is only one kind of crossover of order one, which is shown
in Figure 11.7. A crossover of order two is illustrated in Figure 11.8. There are five
different kinds of crossovers of order two, as the reader can verify by constructing
them. An algorithm employing crossovers of order higher than one requires a recur-
sive search for crossovers up to a pre-selected maximum order M. It was found by
KocCAY and L1 [108] that choosing M = 6 still gives a fast algorithm, and that it im-
proves the performance of the basic algorithm enormously. This algorithm requires
sophisticated data structures for an efficient implementation.

FIGURE 11.8
A crossover Q = (u, w,wt, z, 2T, v) of order two

Suppose that a path P is the longest path found by the algorithm, and that it has
no crossover. If there is a vertex ¢ P such that z — w, w™, for some w € P, then
we can make a longer path by re-routing P through x: P’ = (..., w,z,w™,...).
Similarly, a configuration like Figure 11.9 can also be used to give a longer path.
Once P has been re-routed to a longer path, we can again check for a crossover.
When used in combination, crossovers and re-routings will very often find a hamilton
cycle in G, if it is hamiltonian, even for sparse graphs G.

A re-routing is very much like a crossover. It is a closed trail () whose endpoints
are on the uv-path P, such that P & @) is a uv-path containing all vertices of P. It al-

Hamilton Cycles 225

FIGURE 11.9
Re-routing P

ways results in a longer path. The algorithm that searches for higher order crossovers
can be easily modified to search for re-routings as well.

Exercises

11.2.1

Show that if G is connected and n > 2§, where ¢ is the minimum degree
of G, then G has a path of length at least 26. This is due to DIRAC [45].
(Hint: Consider a longest path.)

11.2.2 Program the crossover algorithm, and test it on the Petersen graph, on
the graphs of Figure 11.5, and on the graph in Figure 11.10. Try it from
several different starting vertices.

FIGURE 11.10
The Lederberg graph

11.2.3 Let G be a graph. Show how to create a graph G’ from G by adding one
vertex so that G has a hamilton path if and only if G’ has a hamilton cycle.

11.2.4 Let G be a graph such that DEG(u)+DEG(v) > n—1, for all non-adjacent
vertices u and v. Show that GG has a hamilton path.

11.2.5 Construct all five kinds of crossovers of order two.

11.2.6

Construct the crossovers of order three.

226 Graphs, Algorithms, and Optimization

11.3 The Hamilton closure

Suppose that DEG(u) + DEG(v) > n in a graph G, where u and v are non-adjacent
vertices. Let G’ = G + wv. If G is hamiltonian, then so is G’. Conversely, if G’
is hamiltonian, let C' be a hamilton cycle in G'. If uwv € C, then P = C — uv
is a hamilton path in G. Because DEG(u) + DEG(v) > n, we know that P has a
crossover, so that G has a hamilton cycle, too. Thus we have proved:

Lemma 11.3. Let DEG(u) + DEG(v) > n in a graph G, for non-adjacent vertices
wandv. Let G = G + uv. Then G is hamiltonian if and only if G’ is.

This lemma says that we can add all edges uv to G, where DEG(u) + DEG(v) >
n, without changing the hamiltonicity of G. We do this successively, for all non-
adjacent vertices v and v.

DEFINITION 11.2: The hamilton closure of G is ¢ (G), the graph obtained by
successively adding all edges uv to G, whenever DEG(u) + DEG(v) > n, for non-
adjacent vertices v and v.

For example, the hamilton closure of the graph of Figure 11.11 is the complete
graph K7. It must be verified that this definition is valid, namely, no matter in what
order the edges uv are added to G, the resulting closure is the same. We leave this to
the reader.

FIGURE 11.11
CH(G) = K7

Lemma 11.3 tells us that ¢ (G) is hamiltonian if and only if G is. In particular,
if ¢y (G) is a complete graph, then G is hamiltonian. The hamilton closure can be
used to obtain a condition on the degree sequence of G which will force G to be
hamiltonian.

Theorem 11.4. (Bondy-Chvatal theorem) Let G be a simple graph with degree
sequence (dy,da, ..., dy), where dy < do < ... < d,. If there is no m < n/2 such
that d,, < m and dy,—p, < n—m, then cgy(G) is complete.

Hamilton Cycles 227

Proof. Suppose that ¢y (G) is not complete. Let v and v be non-adjacent vertices
such that DEG(u) + DEG(v) is as large as possible, where the degree is computed
in the closure ¢y (G). Then DEG(u) + DEG(v) < n by definition of the closure. Let
m = DEG(u) < DEG(v). So u is joined to m vertices. There are n — DEG(v) — 1
vertices that v is not adjacent to (not counting v, because v 4 v). Each of these has
degree < m. So the number of vertices with degree < m is at least n — DEG(v) — 1.
But DEG(u) + DEG(v) < n, so that m = DEG(u) < n — DEG(v) — 1. That is, the
number of vertices of the closure with degree < m is at least m. Because the degree
sequence of ¢y (G) is at least as big as that of G, it follows that d,,, < m.

dm S m dn—m
[] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []
u u = _
~~
< m vertices
FIGURE 11.12
The degree sequence of G

How many vertices have degree > DEG(v)? We know that u is adjacent to all
of them. Therefore, the number of them is at most m, so that there are at most m
vertices after v in the degree sequence. It follows that DEG(v) > dj,—,. But because
DEG(v) < n — m, it follows that d,,_,,, < n — m. Thus, we have found a value m
such that d,,, < m and d,,—,,, < n —m. Here m = DEG(u) < DEG(v) < n —m,
so that m < n/2. This contradicts the assumptions of the theorem. Therefore 7 (G)
must be complete under these conditions. O

The degree sequence condition of the Bondy-Chvatal theorem is easy to apply.
For example, any graph with the degree sequence (2, 2, 3,4, 5, 6, 6, 6) must be hamil-
tonian, because d; =2 > 1,ds =2 < 2,butdg_o =6 £ 6,and d3 = 3 < 3, but
ds_5 =5 &£ 5. Thus there is no m < 8/2 satisfying the condition that d,,, < m and
dp_m < n—m.

This is the strongest degree sequence condition possible which forces an arbi-
trary graph G to be hamiltonian. Any stronger condition would have to place non-
degree sequence restrictions on G. To see that this is so, let G be any non-hamiltonian
graph. Let its degree sequence be (dy,ds, ... ,d,), where d; < dy < ... < d,. Be-
cause (7 is not hamiltonian, there is a value m such that d,,, < m and d,,_,, <
n — m. Construct a new degree sequence by increasing each d; until the sequence
(m,....myn—m-—1,...,.n—m—1,n—1,...,n—1) is obtained, where the first
m degrees are m, the last m degrees are n — 1, and the middle n — 2m degrees are
n—m— 1. We construct a non-hamiltonian graph C(m, n) with this degree sequence.

C(m,n) is composed of three parts, a complete graph K,,,, a complete graph
K, _9m, and an empty graph K,,. Every vertex of K, is joined to every vertex of
K., and every vertex of K, is joined to every vertex of K,,_,,. This is illustrated
in Figure 11.13. The vertices of K, have degree m, those of K,, s, have degree
n—m— 1, while those of K,, have degree n— 1. C'(3,9) is illustrated in Figure 11.3.

228 Graphs, Algorithms, and Optimization

all edges all edges

FIGURE 11.13
C(m,n)

It is easy to see that C'(m,n) is always non-hamiltonian, because the deletion of
the vertices of K, leaves m + 1 components. By Lemma 11.1, we conclude that
C(m,n) is non-hamiltonian. Yet for every non-hamiltonian graph G on n vertices,
there is some C'(m, n) whose degree sequence is at least as large as that of G, in the
lexicographic order.

Exercises

11.3.1 Prove that ¢y (G) is well-defined; that is, the order in which edges uv are
added to GG does not affect the result.

11.3.2 Prove that the crossover algorithm will find a hamilton cycle in G if
¢ (G) is complete or find a counterexample.

11.3.3 Use the Bondy-Chvital theorem to show that any graph with the
degree sequence (2,3,3,4,5,6,6,6,7) is hamiltonian. What about
(3,3,4,4,4,4,4,4)?

11.3.4 Define the hamilton-path closure to be ¢, (G), obtained by adding all
edges uv whenever DEG(u) + DEG(v) > n — 1. Prove that G has a
hamilton path if and only if ¢ (G) does.

11.3.5 Obtain a condition like the Bondy-Chvétal theorem which will force
¢y (G) to be complete.

11.3.6 Construct the graphs C(2, 8) and C'(4,12).
11.3.7 Work out £(C(m, n)). Show that € has its smallest value when

n
3 6

for which

11.3.8 Show that if G is a graph on n > 4 vertices with e > (", ") + 1, then G
is hamiltonian.

Notice that according to Exercise 11.3.7, C'(m, n) has approximately two-thirds
of the number of edges of the complete graph K,,, at the minimum. This means that
degree sequence conditions are not very strong. They apply only to graphs with very
many edges.

Hamilton Cycles 229

11.4 The extended multi-path algorithm

The multi-path algorithm tries to build a hamilton cycle C' using a recursive exhaus-
tive search. At any stage of the algorithm, a number of disjoint paths S1, So, ..., Sk
in G are given, which are to become part of C. Call them segments of C' Initially,
we can take k = 1, and the single segment S can consist of the starting vertex, that
is, a path of length zero. On each iteration a vertex u is selected, an endpoint of some
segment P = S;. Every w — w is taken in turn, and P is extended to P’ = P+uw.
Vertex v may now have degree two in .S;. In this case, the remaining edges uz of G
are deleted. This reduces each DEG(z) by one. When DEG(z) = 2, both remaining
edges at must become part of C'. A new segment is created containing x. Thus, the
choice of uw can force certain edges to be a part of C'. It can also happen that when
edges are forced in this way, that an edge connecting the endpoints of two segments
is forced, and the two segments must be merged into one. This in turn forces other
edges to be deleted, etc. The forcing of edges can be performed using a queue. There
are three possible outcomes of this operation:

1. An updated set of segments can be produced.
2. A hamilton cycle can be forced.

3. A small cycle can be forced.

By a small cycle, we mean any cycle smaller than a hamilton cycle. If a small cycle
is forced, we know that the extension of P to P + uw does not lead to a hamilton
cycle. If a hamilton cycle is forced, the algorithm can quit. If a new set of segments
is produced, the algorithm proceeds recursively. This can be summarized as follows.
We assume a global graph G, and a global boolean variable IsHamiltonian, which is
initially false, but is changed to true when a hamilton cycle is discovered.

Suppose that the multi-path algorithm were applied to a disconnected graph G.
Although we know that GG is not hamiltonian, the algorithm could still take a very
long time to discover this, for example, the connected components of G could be
complete graphs. More generally, it is quite possible for the operation of forcing
edges to delete enough edges so as to disconnect G. Thus the algorithm really is
obliged to check that G is still connected before making a recursive call. This takes
O(e) steps. Now we know that a graph with a cut-vertex also has no hamilton cycle,
and we can test for a cut-vertex at the same time as checking that GG is connected. A
depth-first search (DFS) can do both in O(e) steps. Thus we add a DFS to the multi-
path algorithm before the recursive call is made. But we can make a still greater
improvement.

230 Graphs, Algorithms, and Optimization

Algorithm 11.4.1: MULTIPATH(S)

comment: Search for a ham cycle containing all segments of .S

choose a vertex u, an endpoint of some path P € S

forallw — u

extend path P to P + uw

comment: extending P to P + uw may force some edges

FORCEEDGES (uw)
if a hamilton cycle was forced
IsHamiltonian < true
then
return
if a small cycle was not forced
comment: the segments S have been updated

do

then J MULTIPATH(S)
if IsHamiltonian

then return
restore G and S to their state before ww was chosen
comment: otherwise no hamilton cycle was found

Suppose that the multi-path algorithm were applied to the graph of Figure 11.14.
This graph is non-hamiltonian because the deletion of the two shaded vertices leaves
three components. In certain cases the algorithm is able to detect this, using the DFS
that tests for cut-vertices. Suppose that the segments of G are the bold edges. Notice
that one of the segments contains the shaded vertex u. When the non-segment edges
incident on u are deleted, v becomes a cut-vertex in the resulting graph. The DFS
will detect that v is a cut-vertex, and the algorithm will report that adding the edge
uw to the segment does not extend to a hamilton cycle.

T

FIGURE 11.14
A non-hamiltonian graph

Normally the algorithm would then try the next edge incident on u, etc. But it

Hamilton Cycles 231

can do more. When the cut-vertex v is discovered, the DFS can count the number of
components of G — v. This will be one plus the number of descendants of v in the
DF-tree. It requires almost no extra work for the DFS to calculate this. For vertex v
in Figure 11.14, the count will be three components. But because this is the result
of deleting only two vertices, namely, u and v, the algorithm can determine that the
original G is non-hamiltonian, and stop the search at that point. More generally, a
non-hamiltonian graph like Figure 11.14 can arise at some stage during the algorithm
as aresult of deleting edges, even though the original G is hamiltonian. The algorithm
must be able to detect which graph in the search tree is found to be non-hamiltonian
by this method. We leave it to the reader to work out the details.

It is helpful to view vertices like u in Figure 11.14 which have degree two in
some segment as having been deleted from G. Each segment is then replaced by an
equivalent single edge connecting its endpoints. The set of segments then becomes a
matching in GG, which is changing dynamically. For example, when the segments of
Figure 11.14 are replaced by matching edges, the resulting graph appears as in Fig-
ure 11.15. The procedure which forces edges can keep a count of how many vertices
internal to segments have been deleted in this way, at each level in the recursion.
When the DFS discovers a cut-vertex, this count is used to find the size of a separat-
ing set in GG. In cases like this, large portions of the search tree can be avoided.

FIGURE 11.15
Segments viewed as a matching

A bipartite graph like the Herschel graph of Figure 11.2 is also non-hamiltonian,
but the algorithm is not likely to delete enough vertices to notice that it has a large
separating set. In general, suppose that at some stage in the algorithm G — E(S)
is found to be bipartite, with bipartition (X,Y"), where S is viewed as a matching
in G. If there is a hamilton cycle C' in GG using the matching edges S, it must look
something like Figure 11.16, where the bipartition of G — F(.S) is shown by the
shading of the nodes. There are now three kinds of segments: those contained within
X, those contained within Y, and those connecting X to Y. Suppose that there are
ex of the first type, and £y of the second type. The vertices of C' must alternate
between X and Y, except for the ex and €y edges, which must have endpoints

232 Graphs, Algorithms, and Optimization

of the same color. If we contract each of these edges to a single node, we obtain
perfect alternation around the cycle. Therefore | X| —ex = |Y| — ey if G has a
hamilton cycle. If this condition is not satisfied, we know that G is non-hamiltonian,
and can break off the search. We again employ the DFS that tests for cut-vertices
to simultaneously check whether G — E/(.S) is bipartite, and to keep a count of the
numbers | X | —ex and |Y| —ey. This requires very little extra work, and is still O(e).
In this way, non-hamiltonian graphs derived from bipartite graphs or near-bipartite
graphs can often be quickly found to be non-hamiltonian.

FIGURE 11.16
G — E(S) is bipartite

In summary, the extended multi-path algorithm adds a DFS before the recursive
call. The DFS computes several things:

e Whether G is connected.

e w(G — v), for each cut-vertex v.

e Whether G — E(S) is bipartite.

o | X|—ex and |Y| — ey, if G — E(S) is bipartite.

It may be possible to add other conditions to detect situations when G is non-
hamiltonian. For example, every hamiltonian graph G with an even number of ver-
tices n has two disjoint perfect matchings. If n is odd, every G — v has a perfect
matching.

11.4.1 Data structures for the segments

The extended multi-path algorithm still has exponential worst-case running time. Op-
erations on the segments must be made as fast as possible. The operations that must

Hamilton Cycles 233

be performed using segments are, given any vertex v, to determine which segment
contains v, and to find its endpoints; and to merge two segments when their end-
points are joined. One way to do this is with the merge-find data structure. An array
Segment|v] is stored, which is an integer, pointing to the representative of the seg-
ment containing v. Each segment has two endpoints, which we arbitrarily designate
as the right and left endpoints. The right endpoint z is the segment representative. It
is indicated by a negative value of Segment[x]. Its value is —y, where y is the left
endpoint. Thus we find the segment representative by following the pointers, using
path compression (see Chapter 2). Segments are merged by adjusting the pointers of
their endpoints.

Exercises

11.4.1 Program the multi-path algorithm. Use a DFS to test for the conditions
mentioned above.

11.5 Decision problems, NP-completeness

The theory of NP-completeness is phrased in terms of decision problems, that is,
problems with a yes or no answer, (e.g., “is G hamiltonian?”). This is so that an
algorithm can be modeled as a Turing machine, a theoretical model of computation.
Although Turing machines are very simple, they can be constructed to execute all
the operations that characterize modern random access computers. Turing machines
do not usually produce output, except for yes or no. Thus, a Turing machine can
be constructed to read in a graph, and perform an exhaustive search for a hamilton
cycle. If a cycle exists, it will be found, and the algorithm will report a yes answer.
However, the exhaustive search will tend to take an exponential amount of time in
general.

The class of all decision problems contains an important subclass called P, all
those which can be solved in polynomial time; that is, the complexity of a problem is
bounded by some polynomial in its parameters. For a graph, the parameters will be
n and €, the number of vertices and edges.

There is another class of decision problems for which polynomial algorithms are
not always known, but which have an additional important property. Namely, if the
answer to a problem is yes, then it is possible to write down a solution which can
be verified in polynomial time. The HamCycle problem is one of these. If a graph
G has a hamilton cycle C, and the order of vertices on the cycle is written down,
it is easy to check in n steps that C' is indeed a hamilton cycle. So if we are able
to guess a solution, we can verify it in polynomial time. We say that we can write
a certificate for the problem, if the answer is yes. A great many decision problems
have this property that a certificate can be written for them if the answer is yes, and
it can be checked in polynomial time. This forms the class NP of non-deterministic

234 Graphs, Algorithms, and Optimization

polynomial problems. The certificate can be checked in polynomial time, but we do
not necessarily have a deterministic way of finding a certificate.

Now it is easy to see that P C NP, because every problem which can be solved
in polynomial time has a certificate — we need only write down the steps which the
algorithm executed in solving it. It is generally believed that HamCycle is in NP
but not in P. There is further evidence to support this conjecture beyond the fact that
no one has been able to construct a polynomial-time algorithm to solve HamCycle;
namely, it can be shown that the HamCycle problem is one of the NP-complete
problems.

To understand what NP-completeness means we need the concept of polyno-
mial transformations. Suppose II; and IIs are both decision problems. A polynomial
transformation from I1; to I, is a polynomial-time algorithm which when given any
instance I; of problem IT; will generate an instance 5 of problem II5, satisfying:

1 is a yes instance of 111 if and only if I5 is a yes instance of 1o

We use the notation Iy o Il to indicate that there is a polynomial transformation
from II; to II,. We say that II; reduces to Il5. This is because if we can find a
polynomial algorithm A to solve Ils, then we can transform II; into Il5, and then
use A to solve 1o, thereby giving a solution to I1;.

DEFINITION 11.3: A decision problem is II is NP-complete, if

1. Ilisin NP.
2. For any problem II" € NP, IT" II.

It was Cook who first demonstrated the existence of NP-complete problems.
He showed that Problem 11.2, satisfiability of boolean expressions (Sat) is NP-
complete. Let U be a set of n boolean variables w1, us, . .., u, with their comple-
ments uy, U, . . ., Uy,. These variables can only take on the values true and false,
such that u; is true if and only if w; is false, and vice versa. If z,y € U, then we
denote by = + y the boolean or of x and y by xy the boolean and of = and y. A
clause over U is a sum of variables in U. For example, (u1 + T3 + Uy + ug) is a
clause. A boolean expression is a product of clauses. For example (u; + us + Uy +
ug)(u2 + us)(Ur) is a boolean expression. A truth assignment ¢ is an assignment of
values true and false to the variables in U. If B is a boolean expression, then ¢(B)
is the evaluation of B with truth assignment ¢. For example if

B = (uy + T3 + Ty + ug) (ug + us) (Ur)

and

‘- U1 U9 U3 Uq us Ug w7
o true false false true true false false ’

then

t(B) = (true + true + false + false)(false + true)(true) = true.

Hamilton Cycles 235

Not every boolean expression B has a truth assignment ¢ such that ¢(B) = true. For
example there is no way to assign true and false to the variables in the expression
(w1 +u2)(u1)(uz2) so thatit is true. If there is a truth assignment ¢ such that t(B) =
true, we say that B is satisfiable. The satisfiability of boolean expressions problem
is

Problem 11.2: Sat
Instance: a set of boolean variables U and boolean expression B over U.
Question: is B satisfiable?

and was shown by COOK [36] to be NP-complete. See also KARP [96]. The proof of
this is beyond the scope of this book; however, a very readable proof can be found
in the book by PAPADIMITRIOU and STEIGLITZ [134]. Many problems have sub-
sequently been proved NP-complete, by reducing them either to satisfiability, or to
other problems already proved NP-complete.

The importance of the NP-complete problems is that, if a polynomial algorithm
for any NP-complete problem II were discovered, then every problem in NP would
have a polynomial algorithm; that is, P = NP would hold. Many people have come
to the conclusion that this is not very likely, on account of the large number of NP-
complete problems known, all of which are extremely difficult. We will now show
that

Sat « 3-Sat « Vertex Cover «x HamCycle

and thus the HamCycle problem (as well as 3-Sat and Vertex Cover) is an NP-
complete problem. Thus if P # NP, then a polynomial algorithm for the HamCycle
problem would not exist. This is why we say that the HamCycle problem is qualita-
tively different from most other problems in this book.

Among the most useful problems for establishing the NP-completeness of other
problems is 3-Sat.

Problem 11.3: 3-Sat
Instance: a set of boolean variables U and boolean expression B over U,
in which each clause contains exactly three variables.

Question: is B satisfiable?

Theorem 11.5. 3-Sat is NP-complete.

Proof. Tt is easy to see that 3-Sat is in NP. Any truth assignment satisfying the
boolean expression B can be checked in polynomial time by assigning the variables
and then evaluating the expression.

We reduce Sat to 3-Sat as follows. Let U be a set of boolean variables and
B = C1Cs - - - C), be an arbitrary boolean expression, so that U and B is an instance
of Sat. We will extend the variable set U to a set U’ and replace each clause C; in B
by a boolean expression B;, such that

236 Graphs, Algorithms, and Optimization

(a) B, is a product of clauses that use exactly three variables of U’.
(b) B; is satisfiable if and only if Cj is.

Then B’ = B1Bs--- B, will be an instance of 3-Sat that is satisfiable over U’ if
and only if B is satisfiable over U. Let C; = (z1 + @2 + x3 + - - - + x). There are
three cases.
Casel: k=1.

In this case we introduce new variables y; and z; and replace C; with

Bi=(r1+yi+z) (o1 +yi +Z)(v1 +7; + zi) (@1 + 7, + Zi)-

Case2: k = 2.
In this case we introduce a new variable y; and replace C; with

Bi = (1 + 22 +yi) (21 + 22 +7;).

Case 3: £k = 3.
In this case we replace C; with B; = C;. Thus we make no change.
Cased: k > 3.
In this case we introduce new variables y;, , ¥i,, - - . , Yi,_, and replace C; with

B; = (z1 + 22 +vi,)T, + 23+ Yin) Ui, + 24+ i) Uy, + Tho1 + Tk).

It is routine to verify for each of Cases 1, 2, 3, and 4, that B; satisfies (a) and (b),
see Exercise 11.5.2. We still must show that

B/ = BlBQBS e B’m

can be constructed with a polynomial time algorithm. If C; = (z1 + 22+ 23+ -+
xy), then B; contains at most 4k clauses of three variables and at most k + 1 new
variables were introduced. Because k& < n, we conclude that to construct B’, at most
4mn new clauses of three variables are needed, and at most (n + 1)m new variables
are introduced. Both are polynomial in the size of the instance of Sat. Consequently
we can construct B’ in polynomial time. O

Given a graph G, a k-element subset KX C V(G) of vertices is a called a vertex
cover of size k if each edge of G has at least one end in K. The Vertex Cover
decision problem is:

Problem 11.4: Vertex Cover
Instance: a graph G and positive integer k.

Question: does G have a vertex cover of size at most k?

Theorem 11.6. Vertex Cover is NP-complete.

Hamilton Cycles 237

Proof. 1t is easy to see that Vertex Cover is in NP, for if K is a purported vertex
cover of the graph G of size k, then we simply check each edge of G to see that at
least one endpoint is in K. There are ¢ edges to check so this takes time O(e) and
we can check in time | K| < n whether or not | K| < k.

We now give a polynomial transformation from 3-Sat to Vertex Cover. Let B =

C1C5 -+ Cyy, be a boolean expression over U = {uy,us,...,u,} in which each
clause is a sum of exactly three variables. Thus fori = 1,2,...,n,C; = (zit+yitz:)
for some x;,y;, 2z, € UU U, where U = {1, U2, ..., Ty, }. We construct a graph G

on the vertex set o
V=UUUUW,

where W = U™ ,{a;, b;, c;}. The edge set of G is the union of the edges of m
subgraphs H;, © = 1,2,..., m, where H; is the subgraph shown in Figure 11.17.
It consists of a triangle (a, b;, ¢;), edges from a;, b;, ¢; to the variables contained
in the clause, and edges connecting the variables to their complements. G has 2n +
3m vertices and n + 6m edges and hence can be built in polynomial time. Choose
k = n 4 2m to obtain an instance of the Vertex Cover problem for the graph G
constructed.

Zi Zi Yi Yi Zi Zi

Q; Ci

FIGURE 11.17
Subgraph H; corresponding to clause (x; + y; + 2;)

We show that B has a satisfying truth assignment if and only if G has a vertex
cover K of size k = n + 2m. If t is a truth assignment, such that

t(B) = true,

then ¢ must assign at least one variable x;, y;, or z; to be true in clause C;. Assume it
is ;. As x; is adjacent to exactly one vertex, a;, in the triangle {a;, b;, ¢; }, it follows
that {z;, b;, ¢; } is a vertex cover of H;, and hence

K = U;ll{xi,»bi»ci}

is a vertex cover of size k for G. An example is given in Figure 11.18.

Conversely suppose that K is a vertex cover of size k = n + 2m of G. Then
K must include at least one end of each of the n edges {u;,u;}, i = 1,2,...,n,
accounting for at least n vertices in K. Also K must cover the edges of each

238 Graphs, Algorithms, and Optimization

a1 C1 ag C2

FIGURE 11.18

Graph G corresponding to the boolean expression B = (u2 + w1 + ug)(u2 +
ug + us)(ur + uz + ug)(uz + us + us). A vertex cover is K =
{ua4, a1, b1, us, az, cz,us, as, bs, Uz, by, cai,ur,us} and uz = ug = ug =
true, up, = false, uq, us, assigned arbitrarily is a truth assignment satisfying B.

triangle (a;,b;,¢;), and thus must contain at least two of {a;,b;,c;}, for each

j = 1,2,...,m. This accounts for 2m more vertices, for a total of n + 2m = k
vertices. Hence K must contain exactly one of the endpoints of each edge {u;,@;},
fori = 1,2,...,n, and exactly two of a;,b;,c;, foreach j = 1,2,...,m, corre-

sponding to clause C';. For each clause C}, there is exactly one vertex a;, b;, or c; of
the triangle which is not in K. Call it d;. Choose the unique variable of U U U adja-
cent to d;, and assign it true. Then at least one variable in each clause C; has been
assigned the value true, giving a truth assignment that satisfies B. Any remaining
unassigned variables in U can be assigned true or false arbitrarily. |

Theorem 11.7. HamCycle is NP-complete.

Proof. Let G be a graph. Given an ordering vy, vo, . . ., v, of vertices of G we can
check whether (v1,va,v3,...,v,) is a hamilton cycle in polynomial time. Thus
HamCycle is in NP. To show that HamCycle is NP-complete we transform from
Vertex Cover.

Let GG and k be an instance of Vertex Cover, where k is a positive integer. We
will construct a graph G’ such that G’ has a hamilton cycle if and only if G has
a vertex cover K = {x1,xa,..., 2} of size k. The graph G’ will have k + 12m
vertices

V(G") = KU{(u,e,i):u € V(G)isincidentto e € F(G) andi = 1,2,...,6},

)

where m = |E(G)|. The edges of G’ are of three types.

Hamilton Cycles 239

Type 1 edges of G’
The type 1 edges are the 14m edges among the subgraphs H., ¢ € E(G). We
display H., where e = wv in Figure 11.19.

.""i;,e,l) (u,6,2) (u,e,3) (u,e,4) (u,e,b) (u,e,G.)"n

O 0O O O
A 7

R O O i,
A . ~7 ~7 7 7

(Ua €, 1) (1), €, 2) (”U, €, 3) ('Ua €, 4) (Ua €, 5) (U".e‘a 6)

FIGURE 11.19
The subgraph H,, where e = uv

Type 2 edges of G’
For each vertex v of GG choose a fixed but arbitrary ordering e,, , €y,, . . . ; €y, Of
the d = DEG(v) edges incident to v. The type 2 edges of G’ corresponding to v are:

{{(v’evi’6)7(v7eﬂi+l7]‘)} i=1,2,...,d— 1}

Type 3 edges of G’
The type 3 edges of G’ are:

{H{zi, (v,€4,,7)} i € K,v € V(G), 5 € {1,6}}

The subgraph of G’ corresponding to the edges incident to a vertex v in G is
illustrated in Figure 11.20. Before proving that G has a vertex cover of size k if and
only if G’ has a hamilton cycle C' = vy, v9, . .., v,, we make five observations.

1. C must enter and exit the subgraph H., e = uv from the four corners
(u,e,1), (u,e,6), (v, e, 1), (v,e,6).

2. If C enters H, at (u,e, 1), it must exit at (u,e,6) and either pass
through all the vertices of H. or only those vertices with first coordinate
u. (In the first case as we shall see, u will be in the vertex cover of GG, and
in the latter case both « and v will be in the vertex cover of GG.)

3. If C enters H. at (v,e, 1), it must exit at (v, e, 6) and either pass
through all the vertices of H. or only those vertices with first coordinate
v. (In the first case as we shall see, v will be in the vertex cover of (7, and
in the latter case both u and v will be in the vertex cover of GG.)

240 Graphs, Algorithms, and Optimization

FIGURE 11.20
Subgraph of G’ corresponding to the edges incident to v in G

4. The vertices {x1,x2,...,x} divide C into paths. Thus we may
assume, relabeling the vertices x1, s, ...,z if necessary, that C' =
PP, --- P, where P; is an x; to x;41 path, where xy1 = .

5. Let v; be such that x; is adjacent to (v;, e, j) in P; where j = 1 or 6.
Then P; contains every vertex (v;, €', h) where e is incident to v.

We claim that the k vertices vy, vs, . . ., v selected in observation 5 are a vertex
cover of G. This is because the hamilton cycle C' must contain all vertices of each of
the subgraphs H, for each e € G; and when H. is traversed by C, it is traversed by
some P; in C and that P; selects an endpoint v; of e.

Conversely, suppose K = {v1,v9,...,05} C V(G) is a vertex cover of G, of
size k. To construct a hamilton cycle C' of G’, choose for each edge e € E(G) the
edges of H, specified in Figure 11.21 (a), (b), or (c) depending on whether {u, v} UK
equals {u}, {u, v}, or {v}, respectively. (One of these must occur, because K is a
vertex cover.) Also include the edges

{(vi,€0;,6), (Viyep;, 1)}, i=1,2,... K,
the edges
{i, (viy ey, D)}, i=1,2,... K,
and the edges
{Ziv1, (vi, ey, 1)}, i =1,2,... k, where vg11 = v1.

It is an easy exercise to verify that the included edges form a hamilton cycle in G’;
see Exercise 11.5.5. O

Hamilton Cycles 241

(a)
b)
(b)
—C —
(©
—_— e
FIGURE 11.21

The three possible ways that a Hamilton cycle can traverse the subgraph H., cor-
responding to the cases for e = {u,v} in which (a) e N K = {u}, (b)
eN K = {u,v},and (c)e N K = {v}.

Exercises
11.5.1 Consider the boolean expression
B = (21 + T2 + x5 + Tg) (z2 + Tu) (25) (22 + T4 + 5)
Find a boolean expression equivalent to B in which each clause uses only

three variables.

11.5.2 Show for each Case 1, 2, 3, and 4 in Theorem 11.5 that the pair B;, C;
satisfies

(a) B is a product of clauses that use at most three variables in U’.
(b) B; is satisfiable if and only if C; is.
11.5.3 Consider the boolean expression
B = @@4+y+2)(z+y+2)(w+T+2)(w+T+2)(W+T+ 2)
W+T+2)(w+7+2)(w+y+2)(W+y+2)(W+ TG+ 2)

(a) Show that there is no truth assignment that satisfies B.
(b) Construct the graph G in Theorem 11.6 that corresponds to B.
(c) Show that GG does not have a vertex cover of size 25.

242 Graphs, Algorithms, and Optimization

11.5.4 Verity the five observations in Theorem 11.7.

11.5.5 Verify that the included edges in the converse part of Theorem 11.7, do
indeed form a hamilton cycle.

11.6 The traveling salesman problem

The traveling salesman problem (TSP) is very closely related to the HamCycle
problem. A salesman is to visit n cities v, vs, . . ., U,. The cost of traveling from v;
to v; is W (v;v;). Find the cheapest tour which brings him back to his starting point.
Figure 11.22 shows an instance of the TSP problem. It is a complete graph K, with
positive integral weights on the edges. The problem asks for a hamilton cycle of
minimum cost.

FIGURE 11.22
An instance of the TSP problem.

It is easy to show that the HamCycle problem can be reduced to the TSP prob-
lem. In order to do this, we first must phrase it as a decision problem.

Problem 11.5: TSP Decision
Instance: a weighted complete graph K, and an integer M,
Question: does K, have a hamilton cycle of cost < M?

We can then find the actual minimum by doing a binary search on the range of

Hamilton Cycles 243

values n < M < nWiyax, Wwhere Wiy, is the maximum edge-weight. Suppose that
we had an efficient algorithm for the TSP Decision problem. Let G be any graph
on n vertices which we want to test for hamiltonicity. Embed G in a compete graph
K, giving the edges of G weight 1, and the edges of G weight 2. Now ask whether
G has a TSP tour of cost < n. If the answer is yes, then G is hamiltonian. Otherwise
G is non-hamiltonian.

Because HamCycle is NP-complete, we conclude that the TSP Decision prob-
lem is at least as hard as an NP-complete problem. In a certain sense, it is harder than
the NP-complete problems, because the edge weights W (v;v,) are not bounded in
size. So it may take many steps just to add two of the weights. However, if we limit
the size of the weights to the range of numbers available on a computer with a fixed
word length, then the TSP Decision problem is also NP-complete. It is easy to see
that TSP Decision € NP, because we can write down the sequence of vertices on a
cycle C' of cost < M and verify it in n steps.

One way to approximate a solution is similar to the crossover technique. Choose
a hamilton cycle C' in K, arbitrarily. For each edge uv € C, search for an edge
wz € C such that W (uv) + W (wzx) > W(uw) + W (va). If such an edge exists, re-
route C' as shown in Figure 11.23. Repeat until no improvement can be made. Do this
for several randomly chosen starting cycles, and take the best as an approximation to
the optimum.

FIGURE 11.23
Re-routing a TSP tour

The cycle @ = (u, v, z,w) is similar to a crossover. In general, if) is any cycle
such that C'® @ is a hamilton cycle, and W(C' N Q) > W(Q — C), then C @ @ will
be a TSP tour of smaller cost than C'. We can search for crossovers () containing up
to M edges, for some fixed value M, and this will provide a tour which may be close
to the optimum. How close does it come to the optimum?

It is possible to obtain a rough estimate of how good a tour C is, by using a
minimum spanning tree algorithm. Let C* be an optimum TSP tour. For any vertex
v, C* — v is a spanning tree of K,, — v. Let T, be a minimum spanning tree of
K, —v. Then W(C* —v) > W (T,). Given the path C* — v, we must add back two
edges incident on v to get C*. If we add two edges incident on v to T, of minimum
possible weight, we will get a graph T, such that W (C*) > W (TF). For example,

244 Graphs, Algorithms, and Optimization

Figure 11.24 shows a minimum spanning tree 73, of K,, — 3 for the instance of TSP
shown in Figure 11.22.

FIGURE 11.24
A minimum spanning tree T3, plus two edges

The two edges incident on vertex 3 that we add to 75 have weights 10 and 11 in
this case. We thus obtain a bound W (C*) > W (T5) = 42. We do this for each vertex
v, and choose the maximum of the bounds obtained. This is called the spanning tree
bound for the TSP:

W(C*) > Max,W(T})).

Exercises

11.6.1 Work out the spanning tree bound for the TSP instance of Figure 11.22.

11.6.2 Find a TSP tour C' in the graph of Figure 11.22 by re-routing any starting
cycle, until no more improvement is possible. Compare the weight of C'
with the result of Exercise 11.6.1.

11.6.3 Construct all possible re-routing patterns (crossovers) containing three or
four edges of C'.

11.7 The ATSP

Distances measured on the earth satisfy the triangle inequality, namely, for any three
points X, Y, and Z, DIST(X,Y) + D1sT(Y, Z) > DIST(X, Z). The triangle travel-
ing salesman problem, denoted ATSP, refers to instances of the TSP satisfying this

Hamilton Cycles 245

inequality. When the triangle inequality is known to hold, additional methods are
possible.

Theorem 11.8. Let K,, be an instance of the ATSP, and let G be any Eulerian
spanning subgraph of K. If C* is an optimum TSP tour, then W (C*) < W(G).

Proof. Consider an Euler tour H in G starting at any vertex. The sequence of vertices
traversed by H is vj,, vj, , Vi, , Vi, - - .. If G is a cycle, then H is a hamilton cycle, so
that W (C*) < W(G), and we are done. Otherwise, H repeats one or more vertices.
Construct a cycle C' from H by taking the vertices in the order that they appear in H,
simply ignoring repeated vertices. Because G is a spanning subgraph of K, all ver-
tices will be included in C'. For example, if G is the graph of Figure 11.25, and H is

6

G C
FIGURE 11.25
An Eulerian graph G and TSP tour C

the Euler tour (1,2,3,4,6,1,3,6,5,4), then the cycle C obtained is (1,2, 3,4,6,5).
Because of the triangle inequality, it will turn out that W (C') < W(G). Let the cycle
obtained be C' = (uq,u2,...,u,), and suppose that the Euler tour H contains one
or more vertices between uj and uy41. Without loss of generality, suppose that there
are just three vertices z, y, z between uy, and uy1. See Figure 11.26. Then because

Yy z

Uk+1

ug,

FIGURE 11.26
Applying the triangle inequality

246 Graphs, Algorithms, and Optimization
of the triangle inequality, we can write

W (urz) + W(zy) = W(ury),

W (ury) + W(yz) =2 W(upz),

and
W(urz) + Wizugs1) > W(ugtgs1).

Thus
W (ugurs1) < Wugx) + Wixy) + W(yz) + W (zug41)-

The left side of the inequality contributes to W (C'). The right side contributes to
W (H). It follows that W (C') < W(G), for any Eulerian G. O

Notice that the particular cycle C' obtained from GG depends on the Euler tour H
chosen, so that the graph GG will give rise to a number of different hamilton cycles
C. In particular, we could construct G from a minimum spanning tree 7', by simply
doubling each edge. This gives an Eulerian multigraph G. The method used in the
theorem will also work with multigraphs, so we conclude that W (C*) < 2W(T).
This is called the tree algorithm for the TSP.

Lemma 11.9. The tree algorithm produces a cycle of cost at most twice the optimum.

Proof. Let C be the cycle obtained by the tree algorithm, let C'* be an optimum
cycle, and let 7" be a minimum spanning tree of the instance for ATSP. Because C*
is a spanning subgraph of K, we conclude that W (C*) > W (T'). But we know that
W(C) <2W(T) < 2W(C*). O

11.8 Christofides’ algorithm

Christofides found a way to construct an Eulerian subgraph of smaller weight than
2W (T). Let K,, be an instance of the ATSP, and let 7" be a minimum spanning tree.
Let X C V(K,) be the vertices of T' of odd degree. X contains an even number
of vertices. The subgraph of K, induced by X is a complete subgraph. Let M be
a perfect matching in X of minimum weight. For example, Figure 11.27 shows a
minimum spanning tree for the graph of Figure 11.22, together with a minimum-
weight matching M, shown as dashed lines. This gives a graph G = T+ M which is
Eulerian. It is quite possible that G is a multigraph. We now find an Euler tour in G
and use it to construct a TSP tour C' of cost at most W (T') + W (M). This is called
Christofides’ algorithm.

Theorem 11.10. Let C' be the TSP tour produced by Christofides’ algorithm and let
C* be an optimum tour. Then

Hamilton Cycles 247

FIGURE 11.27
Christofides’ algorithm

Proof. Let uy,us, ..., us, be the vertices of odd degree, and suppose that they ap-
pear on C* in that order. This defines two matchings,

]\/[1 = {U1UQ,U3U4, . }

and
]\/[2 = {UQU3, UqUs,y - - -y ugkul}.

See Figure 11.28. If M is the minimum weight matching, we conclude that
W (M), W(Msz) > W (M). The portion of C* between u; and u,+; satisfies

WA(C™ [ui, wiga]) 2 W (uittiga),
by the triangle inequality. Therefore
W(C*) > W (M) + W (M) > 2W (M),

or
W(M) < %W(C*).

The cycle C' found by Christofides’s algorithm satisfies
1
W(C) <W(T)+W (M) < W(C") + §W(C*),
because W (T') < W(C*). It follows that

wW(C) <

N W

W (C™).

Thus, Christofides’ algorithm always comes within 50% of the optimum.

248 Graphs, Algorithms, and Optimization

FIGURE 11.28
Two matchings M7 and Mo

FIGURE 11.29
An instance of ATSP

Exercises

11.8.1 Use the tree algorithm to find a TSP tour for the graph of Figure 11.22.

11.8.2 Solve the same TSP instance using Christofides’ algorithm. Compare the
values found for W(C), W(T), and W (T + M).

11.8.3 Solve the ATSP instance of Figure 11.29, using Christofides’ algorithm.
Compute the spanning tree bound as well.

Hamilton Cycles 249

11.9 Notes

An excellent survey of hamiltonian graphs appears in BERMOND [16]. The hamil-
ton closure and the Bondy-Chvétal theorem are from BONDY and MURTY [23]. The
extended multi-path algorithm is from KOCAY [105]. A classic book on the the-
ory of NP-completeness is the text by GAREY and JOHNSON [64]. A very read-
able proof of Cook’s theorem, that Satisfiability is NP-complete, appears in PA-
PADIMITRIOU and STEIGLITZ [134], which also contains an excellent section on
Christofides’ algorithm. The book by CHRISTOFIDES [34] has an extended chapter
on the traveling salesman problem. The book LAWLER, LENSTRA, RINNOOY KAN,
and SHMOYS [114] is a collection of articles on the traveling salesman problem.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

12
Digraphs

12.1 Introduction

Directed graphs have already been introduced in the Chapter 1. If G is a digraph and
u,v € V(G), we write u — v to indicate that the edge uv is directed from u to v.
The in-edges at v are the edges of the form (u, v). The in-degree of v is d~ (v), the
number of in-edges. Similarly the ouz-edges at u are all edges of the form (u, v) and
the out-degree d* (u) is the number of out-edges at u. The degree of u is

DEG(u) = d" (u) +d~ (u).

Given any undirected graph (G, we can assign a direction to each of its edges, giving
a digraph called an oriented graph. A digraph is simple if it is an orientation of a
simple graph. A digraph is strict if it has no loops, and no two directed edges have
the same endpoints. A strict digraph can have edges (u,v) and (v,u), whereas an
oriented graph cannot.

Digraphs have extremely wide application, for the social sciences, economics,
business management, operations research, operating systems, compiler design,
scheduling problems, combinatorial problems, solving systems of linear equations,
and many other areas. We shall describe only a few fundamental concepts in this
chapter.

12.2 Activity graphs, critical paths

Suppose that a large project is broken down into smaller tasks. For example, building
a house can be subdivided into many smaller tasks: dig the basement, install the
sewer pipes, water pipes, electricity, pour the basement concrete, build the frame,
floor, roof, cover the roof and walls, install the wiring, plumbing, heating, finish the
walls, etc. Some of these tasks must be done in a certain order — the basement must
be dug before the concrete can be poured, the wiring must be installed before the
walls can be finished, etc. Other tasks can take place at the same time, (e.g., the
wiring and plumbing can be installed simultaneously). We can construct a directed
graph, called an activity graph, to represent such projects. It has a starting node s,

251

252 Graphs, Algorithms, and Optimization

where the project begins, and a completion node ¢, where it is finished. The subtasks
are represented by directed edges. The nodes represent the beginning and end of
tasks (the synchronization points between tasks). Figure 12.1 shows an example of
an activity graph. Each task takes a certain estimated time to complete, and this is
represented by assigning each edge uv a weight WT(uwv), being the amount of time
required for that task.

What is the minimum amount of time required for the entire project? It will be
the length of the longest directed path from start to completion. Any longest directed
path from s to ¢ is called a critical path. Figure 12.1 shows a critical path in an
activity graph.

FIGURE 12.1
An activity graph

Notice that an activity graph must have no directed cycles. For if a directed cycle
existed, it would be impossible to complete the project according to the constraints.
Thus, activity graphs are acyclic digraphs. Activity graphs are applicable to any large
project, such as building construction, business projects, or factory assembly lines.

The critical path method (CPM) is a technique for analyzing a project acccording
to the longest paths in its activity graph. In order to find a longest path from s to ¢, we
proceed very much as in Dijkstra’s algorithm (Chapter 2), which builds a spanning
tree, rooted at s, of shortest paths. To find longest paths instead, the algorithm builds
an out-directed spanning tree, rooted at s, of longest directed paths from s to each
vertex v. We store a value T'[v] for each v, being the earliest time at which tasks
starting from v can begin. T'[v] is the length of a longest sv-path. When the algorithm
completes, the critical path is the unique path in the spanning tree to vertex ¢. Notice
that in Figure 12.1, the edge from vertex 1 to 3 has length 6, but that the path (1,7, 3)
has the longer length of 7. In order for the algorithm to correctly choose the longer
path, it must be sure to assign 7'(7) before T'(3). Thus, the vertices must be taken in
a certain order. For every edge (u, v), T'(u) must be computed before T'(v).

Digraphs 253

12.3 Topological order

A topological ordering of an acyclic digraph G is a permutation o of
V(G)={1,2,...,n}

such that o(u) < o(v) whenever u — v. Thus all edges are directed from smaller to
higher vertex numbers. Notice that only acyclic digraphs have topological orderings,
since a directed cycle cannot be ordered in this way. Topological orderings are easy
to find. We present both a breadth-first and a depth-first algorithm.

Algorithm 12.3.1: BFTOPSORT(G, n)

Breadth-first topological sort of G
InDegree[v] is the in-degree of vertex v, an array

comment: .
ScanQ[k] is the k'™ vertex on a queue, an array
Qsize is the number of points on ScanQ

Qsize < 0

k+1

forv<1ton
compute InDegree|v]
if InDegree[v] = 0
th {Qsize — Qsize + 1
ScanQ|[Qsize] + v

do

while & < Qsize
u < ScanQ[k]
for each v such that w — v
InDegree[v] < InDegree[v] — 1
if InDegree[v] =0
do do Qsize <+ Qsize + 1
ScanQ|[Qsize] + v
if Qsize =n
then go to 1

then

k< k+1
if Qsize < n then G contains a directed cycle

Algorithm 12.3.1 is the the breadth-first algorithm. The topological order is built
on the queue. Algorithm 12.3.1 begins by placing all vertices with in-degree 0 on
the queue. These are first in the topological order. InDegree|[v] is then adjusted so
that it counts the in-degree of v only from vertices not yet on the queue. This is
done by decrementing InDegree[v] according to its in-edges from the queue. When
InDegree[v] = 0, v has no more in-edges, so it too, is added to the queue. When all
n vertices are on the queue, the vertices are in topological order. Notice that if G has

254 Graphs, Algorithms, and Optimization

a directed cycle, none of the vertices of the cycle will ever be placed on the queue. In
that case, the algorithm will terminate with fewer than n vertices on the queue. This
is easy to detect. Computing InDegree(v] takes >, d~ (v) = ¢ steps. Each vertex is
placed on the queue exactly once, and its d* (u) out-edges are taken in turn, taking
> d1(u) = € steps. Thus the complexity of the algorithm is O(n + ¢).

Algorithm 12.3.2 is the depth-first topological sort algorithm and is easier to pro-
gram, but somewhat subtler. It calls the recursive Procedure DFS(), and we assume
that Procedure DFS() has access to the variables of Algorithm DFTOPSORT() as
globals.

When Procedure DFS(u) is called from DFTOPSORT(), it builds a rooted tree,
directed outward from the root u. DFNum{[v] gives the order in which the vertices are
visited. The depth-first search does a traversal of this tree, using a recursive call to
visit all descendants of v before v itself is assigned a number NUM [v], its rank in the
topological order. Thus, if G is acyclic, all vertices that can be reached on directed
paths out of v will be ranked before v itself is ranked. Thus, for every edge (u, v), the
numbering will satisfy NUM [u] < NUM [v]. The first vertex numbered is assigned a
Rank of n. The variable Rank is then decremented. So the vertices are numbered 1 to
n, in topological order. It is obvious that the complexity of the algorithm is O(n+¢).

Algorithm 12.3.2: DFTOPSORT(G, n)

Depth-first topological sort of G
DFNum{v] is the DF-numbering assigned to the vertex v

comment: NUM{v] is the topological numbering of the vertex v
DFCount, Rank are counters
procedure DFS(v)

comment: extend the depth-first search to vertex v

DFCount < DFCount + 1
DFNum{[v] - DFCount
for each w such that v — w
do if DFNum[w] =0
then DFS(w)
NUM v] + Rank
Rank < Rank — 1

main
foru <+ 1ton
d {NUM[u] +~0
DFNum(u] < 0
DFCount <+ 0
Rank <+ n
foru <+ 1ton
do if DFNum[u] = 0
then DFS(u)

Digraphs 255

The depth-first topological sort does not provide the vertices on a queue in sorted
order. Instead it assigns a number to each vertex giving its rank in the topological
order. If we need the vertices on a queue, as we likely will, we can construct one
from the array NUM by executing a single loop.

for v + 1to n do ScanQ[NUM|[v]] + v

This works because NUM is a permutation of the numbers 1 to n, and the loop
computes the inverse of the permutation. Another method is to compute the inverse
array during the DFS simultaneously with the NUM array.

What happens if the depth-first topological sort is given a digraph that is not
acyclic? It will still produce a numbering, but it will not be a topological ordering. We
will have more to say about this in Section 12.4. Notice that DFS(u) may be called
several times from Algorithm 12.3.2. Each time it is called, a rooted tree directed
outward from the root is constructed. With undirected graphs, a DFS constructs a
single rooted spanning tree of GG (see Chapter 7). For directed graphs, a single out-
directed tree may not be enough to span all of G. A spanning forest of rooted, out-
directed trees is constructed.

We return now to the critical path method. Let G be an activity graph with
V(G) = {1,2,...,n}, and suppose that the vertices have been numbered in topo-
logical order; that is, u < v whenever u — v. The start vertex is s = 1. We set
T(1) + 0. We know that vertex 2 has an in-edge only from s, so 7'(2) is assigned the
cost of the edge (1, 2). In general, v can have in-edges only from vertices 1, ...,v—1,
and we can take 7' (v) to be

T(v) < MAX{T'(u) + WT(uv) : u — v}.

We also store an array PrevPt, where PrevPt[v] is the point previous to v on a directed
sv-path. If T'(v) is computed to be T'(u) + WT(uwv) for some u, we simultaneously
assign PrevPt[v] < u. When the algorithm completes, we can find the critical path
by executing w <— PrevPt[w] until w = 0, starting with w = ¢ (= n). The number
of steps required to compute the longest paths once the topological sort has been
completed is proportionalton + Y d~ (v) = O(n +¢).

The minimum time required to complete the projectis 7'(n). This can be achieved
only if all tasks along the critical path begin and end on time. These tasks are critical.
There may be some slack elsewhere in the system, though, which can be used to
advantage. The earliest time at which a node v in the activity graph can be reached
is T'(v), the length of the longest sv-path. We could also compute the latest time at
which node v must be reached if the project is to finish on time. This is 7'(n) minus
the length of the longest directed path from v to t. Let 7(v) be the length of the
longest directed path from v to . We can compute this in the same way that 7'(v)
is computed, but beginning with ¢ instead of s, and working backward. Thus for
each node v, we can find the two values T'(v) and T'(n) — T"(v), being the earliest
and latest times at which node v can be reached. This slack time can create some
flexibility in project management.

256 Graphs, Algorithms, and Optimization

Exercises

12.3.1 Find atopological ordering of the activity graphs of Figures 12.1 and 12.2.
Apply the critical path method to find the longest sv-paths and vt-paths,
for each v. Work out the earliest and latest times for each node v.

20

FIGURE 12.2
An activity graph

12.3.2 Program the breadth-first and depth-first topological sort algorithms. Test
them on the graph of Figure 12.1.

12.3.3 Consider the recursive procedure DFS(v) defined in Algorithm 12.4.1,
applied to a directed graph G. Suppose that DFS(v) has just been called,
and that A(v) is the set of all vertices which are ancestors of v (the path
from v to the root contains the ancestors of v). Suppose that G — A(v)
contains a directed path from v to w. Prove that w will be visited before
DFS(v) returns. Use induction on the length of the path from v to w.

12.4 Strong components

A digraph G is connected if every pair of vertices u and v is connected by a path.
This need not be a directed path. The digraph G is strongly connected if every pair of
vertices is connected by a directed path. Thus, if G is strongly connected, G contains
both a wv-path and a vu-path, for every u and v. It follows that every vertex of G
is contained in a directed cycle. A digraph which is strongly connected is said to be
strong. Notice that a strong digraph does not have to be 2-connected. It may contain
one or more cut-vertices.

Digraphs 257

FIGURE 12.3
Strong components

By default, the complete digraph K is strong, since it does not have a pair of
vertices. If G is acyclic, then the only strong subgraphs of GG are the individual nodes.
But if G contains any directed cycle, then G will contain one or more non-trivial
strongly connected subgraphs. A subgraph H is a strong component of G if it is
a maximal strongly connected subgraph; that is, H is strong, and G has no larger
subgraph containing H which is also strong. Figure 12.3 shows a digraph G with
four strong components. The edges of the strong components are indicated by thicker
lines. Two of the strong components are single vertices, which are shaded black.

Notice that every vertex of GG is contained in exactly one strong component,
but that some edges of G need not be contained in any strong component. Exer-
cise 12.4.1. shows that this definition of strong components is well-defined.

If G1,Gs, ..., Gy, are the strong components of (G, we can construct a new di-
graph by contracting each strong component into a single vertex.

DEFINITION 12.1: Let G1,Gs,...,G,, be the strong components of G. The
condensation of GG is the digraph whose vertices are G1,Ga, ..., G,,, and whose
edges are all ordered pairs (G, G;) such that G has at least one edge directed from
a vertex of G; to a vertex of G ;.

It is proved in Exercise 12.4.3 that the condensation is an acyclic digraph.

Exercises

12.4.1 Suppose that H is a strong subgraph of G such that H is contained in
two larger strong subgraphs: H < H; and H < H,, where H; and H»
are both strong. Show that H; U H> is strong. Conclude that the strong
components of G are well-defined.

258 Graphs, Algorithms, and Optimization

12.4.2 Show that an edge (u,v) is contained in a strong component if and only
if (u,v) is contained in a directed cycle.

12.4.3 Find the condensation of the digraph of Figure 12.3. Prove that the con-
densation of a digraph is always acyclic.

12.4.4 The converse of a digraph is obtained by reversing the direction of each
edge. A digraph is self-converse if it is isomorphic to its converse. Find
all self-converse simple digraphs on one, two, three, and four vertices.

12.4.5 Show that the condensation of the converse is the converse of the conden-
sation.

12.4.6 Let G be a self-converse simple digraph, and let G’ be the converse of
G. Let 6 be an isomorphism of G with G, so that 6 is a permutation of
V(G) = V(G"). Prove that 6 has at most one cycle of odd length. Find
the possible cycle structures of § when G has at most five vertices. Use
this to find all the self-converse digraphs on five vertices.

In this section, we present an algorithm to find the strong components of a digraph
G. Tt is based on a depth-first search. It is very similar to the DFS used to find the
blocks of a graph in Chapter 7, and to the DFS used in Algorithm 12.4.1 to find
a topological ordering in an acyclic digraph. When finding a topological ordering,
we saw that in a digraph G, Algorithm 12.3.2 constructs a spanning forest of out-
directed, rooted trees. Each time DFS(u) is called, a DF-tree rooted at w is built. The
edges of G can be classified as either tree-edges or fronds. For example, a spanning
forest for the graph of Figure 12.3 is shown in Figure 12.4 below. The fronds are
shown as dashed edges. Not all the fronds are shown, as can be seen by comparing
Figures 12.3 and 12.4. The numbering of the nodes is the DF-numbering.

Let the components of the spanning forest constructed by a depth-first search in
a graph G be denoted T3, 75, ..., Tk, where the T; were constructed in that order.
Figure 12.4 has k = 3. Each T; is an out-directed, rooted tree. Notice that each
strong component of G is contained within some 7}, and that each 7; may contain
more than one strong component. Fronds can be directed from a tree 7; to a previous
tree T3, where j < 4, but not to a later tree, by nature of the depth-first search.

Given any vertex v, v is contained in some 7T;. The set of ancestors of v is A(v),
all vertices (except v) contained in the path in 7; from v to the root of 7;. When
DFS(v) is called, it will in turn call DFS(w) for several vertices w. The branch of
T; at v containing w is the sub-tree built by the recursive call DFS(w). For example,
in Figure 12.4, there are two branches at vertex 4, constructed by the recursive calls
DFS(5) and DFS(7). If « is any vertex for which v € A(z), we write B, (x) for
the branch at v containing 2. In Figure 12.4, we have B4(7) = B4(8) and B4(5) =
By4(6).

Lemma 12.1. Suppose that a depth-first search in G is visiting vertex v, and that
G — A(v) contains a directed path from v to w. Then vertex w will be visited before
the algorithm returns from visiting v.

Proof. Exercise 12.4.1. O

Digraphs 259

FIGURE 124
A depth-first, rooted, spanning forest

This lemma allows us to classify the fronds of G' with respect to a depth-first
forest.

Theorem 12.2. Let T4, T5, ..., T} be the components of a depth-first spanning forest
of G, where the T; were constructed in that order. Let (x, y) be a frond, where x € T;.
Then there are three possible cases:

1. y € T}, where j < i.
2. y € T;, and one of x and y is an ancestor of the other.

3. y € T}, and x and y are in different branches of a common ancestor
v, where B, (y) was searched before B, (x).

Proof. Let (x,y) be a frond, where = € T;. If y € T}, where j # i, then we must
have j < i, for otherwise Lemma 12.1 tells us that y would be visited before DFS(x)
returns, so that x would be an ancestor of y. Otherwise x,y € T;. If x is visited
before y, then Lemma 12.1 again tells us that = would be an ancestor of y. This gives
the second case. Otherwise y is visited before z. If G contains a directed yz-path,
then we have y an ancestor of x, again the second case. Otherwise there is no directed
yx-path. The paths in T; from x and y to the root of T; first meet in some vertex v.
Then B, (y) was searched before B, (x), giving Case 3. O

260 Graphs, Algorithms, and Optimization

We call a frond (x,y) type 1, 2, or 3 according to whether it falls in Case 1, 2,
or 3 in Theorem 12.2. Fronds of type 1 cannot be part of any directed cycle since
there are no edges from 7T to T; when j < ¢. Therefore these fronds are not in any
strong component. Consequently each strong component is contained within some
T;. A frond of type 2 creates a directed cycle, so that all edges of T; on the path
connecting x to y are in the same strong component. The low-point technique used
to find blocks in Chapter 7 will work to find these cycles. A frond (z,y) of type 3
may or may not be part of a directed cycle. Consider the frond (7,5) in Figure 12.4.
Vertices 7 and 5 are in different branches at vertex 4. Since 4 is an ancestor of 7, we
have a directed path (4, 7, 5). If we were to compute low-points, we would know that
the low-point of 5 is vertex 3, an ancestor of 4. This would imply the existence of a
directed cycle containing 3, 4, 7, and 5, namely, (3,4,7,5,6). So we find that 7 is in
the same strong component as 5 and that the low-point of 7 is also 3.

We can build the strong components of G on a stack. Define the low-point of a
vertex v to be

LowPt[v] = the smallest DFNum[w],

where either w = v or w € A(v) and G contains a directed path from v to w.

The main component of Algorithm 12.4.1 to compute the strong componets just
initiallizes the variables and calls Proceedure DFS() to build each rooted tree of the
spanning forest and to compute the low-points. We assume that Proceedure DFS()
has access to the variables of the calling program as globals. The algorithm stores the
vertices of each strong component on a stack, stored as an array. As before, we have
the DFNum|-] and LowPt|[-] arrays. We also store the Stack|-] as an array of vertices.
OnStack[v] is true if v is on the stack. DFCount is a global counter. Top is a global
variable giving the index of the current top of the stack.

The Procedure DFS() computes the low-points and builds the stack. The algo-
rithm begins by stacking each vertex that it visits. The vertices on the stack will
form the current strong component being constructed. LowPt[v] is initiallized to
DFNum{[v]. Each w such that w — v is taken in turn. The statements at point (1)
extend the DFS from vertex v to w. Upon returning from the recursive call, LowPt[v]
is updated. Since v — w and G contains a directed path from w to LowPt[w], we
update LowPt[v] if LowPt[w] is smaller.

The statements at point (2) are executed if vw is a frond. If DFNumfw] >
DFNum{[v], it means that v is an ancestor of w. These fronds are ignored. Otherwise
w was visited before v. If w is the parent of v, vw is a tree edge rather than a frond,
and is ignored. If w is no longer on the stack, it means that w is in a strong compo-
nent previously constructed. The edge vw cannot be part of a strong component in
that case, so it is also ignored. If each of these tests is passed, G contains a directed
path from v to LowPt[w], which is in the same strong component as w. Therefore v
and w are in the same strong component. If this value is smaller than LowPt[v], then
LowPt[v] is updated. Statement (3) is reached after all w adjacent to v have been
considered. At this point the value of LowPt[v] is known. If LowPt[v] = DFNum{[v],
it means that there is no directed path from v to any ancestor of v. Every vertex of

Digraphs 261

the strong component containing v has been visited, and so is on the stack. These
vertices are then popped off the stack before returning.

Algorithm 12.4.1: STRONGCOMPONENTS(G, n)

comment: Find the strong components using a depth-first search.

procedure DFS(v)
comment: extend the depth-first search to vertex v

DFCount <— DFCount + 1
DFNum{[v] - DFCount
LowPt[v] - DFCount “initial value”
Top < Top + 1
Stack|[Top] < v “push v on Stack”
OnStack[v] <+ true
for each w such thatv — w
if DFNum[w] = 0 (1)
DFS(w)
then < if LowPt[w] < LowPt[v]
then LowPt[v] < LowPt[w)]
do if DFNum[w] < DFNum|v])
then if w # parent of v
else then if OnStack [w]
then if LowPt[w] < LowPt[v]
then LowPt[v] < LowPt[w]
if LowPt[v] = DFNum|v] 3)
the points on the stack up to v form a
strong component — pop them off

comment: {

repeat
then <) « Stack[Top]
Top < Top — 1
OnStack|[w] + false
until w = v

main
foru < 1ton
d {DHWmWM—O
OnStack[v] < false
DFCount < 0
Top < 0
foru < 1ton
do if DFNum[u] = 0
then DF'S(u)

262 Graphs, Algorithms, and Optimization

The complexity of Algorithm 12.4.1 is easily seen to be O(n+¢). For each vertex
v, all out-edges vw are considered, giving

> dt(v)=¢

steps. Some arrays of length n are maintained. Each node is stacked once, and re-
moved once from the stack.
We finish this section with the following theorem.

Theorem 12.3. (Robbins’ Theorem)
Every 2-connected graph has a strong orientation.

Proof. Let GG be a 2-connected graph. Then G contains a cycle C', which has a strong
orientation. Let H be a subgraph of G with the largest possible number of vertices,
such that H has a strong orientation. If u ¢ H, then since G is 2-connected, we can
find two internally disjoint paths P and () connecting w to H. Orient P from u to H,
and) from H to u. This gives a strong orientation of a larger subgraph than H, a
contradiction. O

12.4.1 An application to fabrics

A fabric consists of two sets of strands at right angles to each other, called the warp
and weft, woven together. The pattern in which the strands are woven can be repre-
sented by a rectangular matrix. Let the horizontal strands be hq, ho, ..., h,, and let
the vertical strands be v, v, ..., v,. The matrix shown below contains an X wher-
ever h; passes under v;, and a blank otherwise. The pattern can be repeated as often
as desired.

h | X X X X
ha X X X
hy | X X X

Suppose that the strand h; were lifted. Since it passes under v1, v3, v4, and vg,
these vertical strands would also be lifted. But since v; passes under ho, this would
in turn lift ho. Similarly lifting ho would cause vs to be lifted, which in turn causes
hs to be lifted. So the fabric hangs together if any strand is lifted.

For some pattern matrices, it is quite possible that the fabric defined does not
hang together. For example, in the simplest case, a strand /; could lie under or over
every v;, allowing it to be lifted off the fabric, or the fabric could fall apart into two
or more pieces. In general, we can form a bipartite directed graph whose vertices are
the set of all strands. The edges are

{(u,w) : strand u lies under strand w}.

Call this the fabric graph. It is an oriented complete bipartite graph.

Digraphs 263

FIGURE 12.5
Find the strong components

FIGURE 12.6
Find the strong components

If the fabric graph is strongly connected, then it hangs together, since there is a
directed path from any strand to another. If the fabric graph is not strongly connected,
then it can be separated into its strong components. Some strong component will lie
completely over another strong component, and be capable of being lifted off.

Exercises

12.4.1 Prove Lemma 12.1.

12.4.2 Program the algorithm for strong components, and test it on the digraphs
of Figures 12.1, 12.2, 12.3, 12.5, and 12.6.

12.4.3 Find all digraphs which can be obtained by orienting a cycle of length 5
or 6.

12.4.4 Determine whether the fabric defined by the pattern matrix in Figure 12.7
hangs together.

264 Graphs, Algorithms, and Optimization

X

ST Wl

>~
PR K A
o
M X

SRl B
>

FIGURE 12.7
A pattern matrix

12.5 Tournaments

In a round-robin tournament with n teams, each team plays every other team. As-
suming that ties are not allowed, we can represent a win for team u over team v by a
directed edge (u, v). When all games have been played we have a directed complete
graph. We say that a fournament is any oriented complete graph. It is easy to see that
there are exactly two possible tournaments on three vertices, as shown in Figure 12.8.

FIGURE 12.8
The tournaments on three vertices

The second of these tournaments has the property that if v — v and v —
w, then © — w. Any tournament which has this property for all vertices u, v, w,
is called a transitive tournament. It is easy to see that there is a unique transitive
tournament 7,, for each n > 1. For if 7}, is a transitive tournament, there must
be a unique node u that is undefeated. If we delete it, we are left with a transitive
tournament on 1 — 1 vertices. We use induction to claim that this is the unique 7}, .
When w is restored, we have the uniqueness of 7;,.

If G is any tournament on n vertices, it will have a number of strong components.
Let G* denote its condensation. Then since G* is acyclic, it is a transitive tournament
onm < n vertices. We can find a topological ordering of V (G*), and this will define
an ordering of the strong components of G. We can then make a list of the possible
sizes of the strong components of (7, ordered according to the topological ordering
of G*. We illustrate this for n = 4. The possible sizes of the strong components
are (1,1,1,1), (1,3), (3,1), and (4), since a simple digraph cannot have a strong

Digraphs 265

component with only two vertices. The first ordering corresponds to the transitive
tournament 7y. The orderings (1, 3) and (3, 1) correspond to the first two tourna-
ments of Figure 12.9. It is easy to see that they are unique, since there is only one
strong tournament on three vertices, namely the directed cycle.

FIGURE 12.9
Non-transitive tournaments on 4 vertices

The third tournament is strongly connected. We leave it to the reader to verify
that it is the only strong tournament on four vertices. The following theorem will be
helpful. A digraph is said to be hamiltonian if it contains a directed hamilton cycle.

Theorem 12.4. Every strong tournament onn > 3 vertices is hamiltonian.

Proof. Let G be a strong tournament, and let C' = (u1, us, ..., ux) be the longest
directed cycle in G. If G is non-hamiltonian then ¢(C') < n. Pick any v ¢ C. Because
G is a tournament, either v — w7 or else u; — wv. Without loss, suppose that
u; — v. If v — wuo, then we can produce a longer cycle by inserting v between
uy and wuy. Therefore us — v. If v — w3, then we can produce a longer cycle
by inserting v between ug and ws. Therefore us — v, etc. Eventually we have
v — w; for all u;. This is impossible, since G is strong. |

12.5.1 Modules

Modules for undirected graphs were described in section 7.5. They provide a helpful
decomposition of tournaments.

DEFINITION 12.2: LetT be atournament and let U C V(T') be a set of vertices
of T. Then U is a module or interval of T if it has the property: if u € V(G) — U
then either v — w, for all w € U, or else w — u, forall w € U.

Clearly all singleton sets {u} are modules, as are () and V' (7'). These are called
trivial modules.

DEFINITION 12.3: A tournament is indecomposable if all its modules are trivial.
Otherwise it is decomposable. A modular partition of T is a partition of V(T') into
modules.

Given a modular partition {Uy, Us, . . ., U,, } of a decomposable tournament 7', a
quotient tournament can be constructed, whose vertices are {Uy, Us, ..., Uy, }, and
the module U; — Uj if and only if some v € U; and v € Uj satisfy v — v. This

266 Graphs, Algorithms, and Optimization

provides a means of reducing 7" to a smaller tournament, useful in algorithms. An
algorithm to find the modules of a tournament appears in [26].

Gallai discovered a modular partition of tournaments with special properties. It
is described in [62]. Schmerl and Trotter [155] develop the theory of critically inde-
composable tournaments and other structures.

Exercises

12.5.1 Show that there is a unique strong tournament on four vertices.

12.5.2 Find all the tournaments on five vertices. Show that there are exactly 12
tournaments, of which 6 are strong.

12.5.3 Show that every tournament has a hamilton path.

12.5.4 Show that if an odd number of teams play in a round robin tournament, it
is possible for all teams to tie for first place. Show that if an even number
of teams play, it is not possible for all teams to tie for first place.

12.5.5 Prove the following theorem. Let GG be a digraph on n vertices such that
d* (u) + d~ (v) > n whenever u /— v. Then G is strong.

12.5.6 Describe a O(n+¢) algorithm to find a strong orientation of a 2-connected
graph.

12.5.7 Show that every connected graph has an acyclic orientation.
12.5.8 Show that a strongly connected tournament is indecomposable.

12.5.9 Show that a tournament that is not strongly connected has a modular par-
tition with just two vertex classes.

12.5.10 Prove the following properties of modules:
if X and Y are modules of 7', thensois X NY.

if X and Y are modules of T, and X NY ## (), then X UY is a module
of T'.

12.6 2-Satisfiability

In Chapter 11 we saw that 3-Sat is NP-complete. The related problem 2-Sat € P. It
has a number of practical applications.

Problem 12.1: 2-Sat
Instance: a set of boolean variables U and boolean expression B over U,
in which each clause contains exactly two variables.

Question: is B satisfiable?

Digraphs 267

Consider the following instance of 2-Sat:

(u1 + ’U,g)(ul +ﬂ2)(U2 + U3)(ﬂ1 +ﬂ3) (12.1)

We want a truth assignment satisfying this expression. If u; = false, the first
clause tells us that us = true. We could write this implication as ©w; — us. The
second clause tells us that if u; = false, then uy = false. We could write this
implication as w; — us. As this gives a contradiction, we conclude that u; = true
is necessary. Continuing in this line of reasoning quickly gives the solution.

This example shows that a clause (x + y) of an instance of 2-Sat, where z,y €
U U U, corresponds to two implications Z — y and § — 2. We can construct a
digraph with edges based on these implications.

Given an instance of 2-Sat with variables U and boolean expression B, con-
struct a digraph G whose vertex set is U U U. The edges of G consist of all ordered
pairs (Z,y) and (7, x), where (x + y) is a clause of B. G is called the implication
digraph of B. The implication digraph corresponding to instance (12.1) is shown in
Figure 12.10. A sequence of implications T — y — z corresponds to a directed path
in G. Thus, directed paths in G are important. If any variable in a directed path is
assigned the value true, then all subsequent variables in the path must also be true.
Similarly, if any variable in a directed path is assigned the value false, then all previ-
ous variables must also be false. If G contains a directed cycle C, then all variables
of C'must be true, or all must be false. We are talking about the strong components
of G.

us us

FIGURE 12.10
The implication digraph corresponding to an instance of 2-Sat

The graph G has an antisymmetry — if there is an edge (x,y), then there is also
an edge (7, T), as can be seen from the definition. Therefore the mapping of V(G)
that interchanges every u; and u; reverses the orientation of every edge.

Let G1, G, . .., G, be the strong components of G. The variables in any strong
component are either all true, or all false. If any strong component contains both u;
and w;, for any 7, then the expression B is not satisfiable; for u; and u; cannot be both
true, or both false. So if B is satisfiable, u; and u; are in different strong components.

The antisymmetry maps each strong component G; to another strong component
G;, the complementary strong component, such that z is in G if and only if 7 is

268 Graphs, Algorithms, and Optimization

in G;-. If all variables of G; are true, then all variables of G;- must be false, and
conversely. This gives the following algorithm for 2-Sat:

Algorithm 12.6.1: 2SAT(B,U)

Given an instance B of 2-Sat with variables U,

comment: . R .
{construct a solution, if there is one.

construct the implication digraph G corresponding to B
construct the strong components of G
foreachu € U

do if » and w are in the same strong component

then return (NonSatisfiable)
construct the condensation of G, and find a topological ordering of it
let G1,Ga, ..., Gy, be the topological ordering of the strong components
for i +— m downto 1

if the variables of GG; have not been assigned
do the { assign all variables of GG; to be true
assign all variables of G/, to be false

In the graph of Figure 12.10 there are two strong components — the shaded ver-
tices and the unshaded vertices. The condensation is a digraph with one edge, di-
rected from left to right. The algorithm will assign true to all variables in the shaded
strong component, and false to all variables in the unshaded one. This is the unique
solution for this instance of 2-Sat.

Theorem 12.5. Given an instance B of 2-Sat with variables U. Algorithm
2SAT(B,U) finds a solution if and only if a solution exists.

Proof. Every clause (z+y) of B corresponds to two implications T — y and § — «.
The implication digraph G contains all these implications. Any assignment of truth
values to the variables that satisfies all implications satisfies B. If some strong com-
ponent of GG contains both u; and w;, for some variable u;, then there is no solution.
The algorithm will detect this. Otherwise, u; and w; are always in complementary
strong components. The algorithm assigns values to the variables such that comple-
mentary strong components always have opposite truth values. Therefore, for ev-
ery u; and u;, exactly one will be true, and one will be false. Consider a variable
x € U UU. Suppose that is in a strong component G ;. Its complement T is in
G';. Without loss, suppose that G; precedes G; in the topological order. Then = will
be assigned true and T will be assigned false. All clauses (x + y) containing x are
thereby satisfied. All clauses (T + z) containing T correspond to implications x — z
and 7 — . It follows that z is either in the same strong component as x, or else in
a strong component following G;, and 7 is in a strong component preceding G;-. In
either case, the algorithm has already assigned z < true, so that the clause (T + z)
is also satisfied. We conclude that the truth assignment constructed by the algorithm
satisfies B. O

Digraphs 269

This also gives the following theorem.

Theorem 12.6. Given an instance B of 2-Sat with variables U. B is satisfiable if
and only if, for every u; € U, u; andw; are contained in different strong components
of the implication digraph.

If U has n variables, and B has k clauses, the implication graph G will have 2n
vertices and 2k edges. It takes O(n + k) steps to construct G, and O(n + k) steps to
find its strong components, and to construct a topological order of them. It then takes

O(n) steps to assign the truth values. Thus, we have a linear algorithm that solves
2-Sat.

Exercises

12.6.1 Construct the implication digraph for the following instance of 2-Sat.
(u1+ug) (W1 +us) (U471) (u1 +ug) (T2 415) (us+6) (w2 +ue) (T3 +ua)

12.6.2 Solve the previous instance of 2-Sat.

12.6.3 Given an instance of 2-Sat with the additional requirement that u; =
true. Show how to convert this into an instance of 2-Sat and solve it.
Show also how to solve it if u; is required to be false.

12.6.4 Consider an instance of Sat in which each clause has exactly two vari-
ables, except that one clause has three or more variables. Describe an
algorithm to solve it in polynomial time.

12.7 Notes

An excellent reference for digraphs is BANG-JENSEN and GUTIN [9]. The algo-
rithms for strong components is from AHO, HOPCROFT, and ULLMAN [1]. Strong
components and 2-satisfiability are further examples of the importance and effi-
ciency of the depth-first search. The subject of tournaments is a vast area. A sur-
vey can be found in REID and BEINEKE [146]. A good monograph on tourna-
ments is MOON [127]. STOCKMEYER [164] discovered an infinite family of non-
reconstructible tournaments. THOMASSEN [170] discovered that the structure of a
tournament is largely determined by its directed 4-cycles. LOPEZ [118] showed that
if two digraphs G and G’ with V(G) = V(G’), have the property that the induced
digraphs G[U] and G’[U] are isomorphic for all subsets U C V (G), where |U| < 6,
then G = G'.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

13
Graph Colorings

13.1 Introduction

A coloring of the vertices of a graph G is an assignment of colors to the vertices. A
coloring is proper if adjacent vertices always have different colors. We shall usually
be interested only in proper colorings. It is clear that the complete graph K, requires
n distinct colors for a proper coloring. Any bipartite graph can be colored in just two
colors. More formally,

DEFINITION 13.1: An m-coloring of G is a mapping from V' (G) onto the set
{1,2,...,m} of m “colors”. The chromatic number of G is x(G), the minimum
value m such that G has a proper m-coloring. If x(B) = m, G is then said to be
m-chromatic.

If G is bipartite, we know that x(G) = 2. Moreover, there is an O(¢) algorithm
to determine whether an arbitrary G is bipartite, and to construct a 2-coloring of it.
When x(G) > 3, the problem becomes NP-complete. We show this in Section 13.8.
(See Problem 13.1.) A consequence of this is that there is no complete theoretical
characterization of colorability. As with the Hamilton cycle problem, there are many
interesting techniques, but most problems only have partial solutions. We begin with
a simple algorithm for coloring a graph, the sequential algorithm. We will indicate
various colorings of G by the notation x1, X2, ..., etc. While x(G) represents the
chromatic number of (7, there may be many colorings of GG that use this many colors.
If x1 is a coloring, then x1(v) represents the color assigned to vertex v under the
coloring 1.

Algorithm 13.1.1: SEQUENTIALCOLORING(G, n)

comment: Construct a coloring x; of a graph G on n vertices

mark all vertices “uncolored”
order V(G) in some sequence vy, va, ..., Uy
for i + n downto 1

do x1(v;) < the first color available for v;

To calculate the first available color for v;, we consider each © — wv;. If u is
already colored, we mark its color “in use”. We then take the first color not in use

271

272 Graphs, Algorithms, and Optimization

as x1(v;), and then reset the color flags before the next iteration. Thus, iteration ¢
of the for-loop takes O(DEG(v;)) steps. Algorithm 13.1.1 is then easily seen to be
O(e). The number of colors that it uses usually depends on the sequence in which
the vertices are taken.

If we knew a proper x(G)-coloring before beginning the algorithm, we could
order the vertices by color: all vertices of color 1 last, then color 2, etc. Algo-
rithm 13.1.1 would then color G in exactly x(G) colors. Because we do not know
X(G) beforehand, we investigate various orderings of V(G).

Spanning trees often give useful orderings of the vertices. We choose a vertex
v1 as a root vertex, and build a spanning tree from it. Two immediate possibilities
are a breadth-first or depth-first tree. The ordering of the vertices would then be the
order in which they are numbered in the spanning tree. This immediately gives the
following lemma.

Lemma 13.1. If G is a connected, non-regular graph, then x(G) < A(G). If G is
regular, then x(G) < A(G) + 1.

Proof. Assume first that G is non-regular, and choose a vertex v; of degree < A(G)
as the root of a spanning tree. Apply Algorithm 13.1.1 to construct a coloring ;.
When each vertex v; # vy comes to be colored, the parent of v; has not yet been
colored. Therefore at most DEG(v;) — 1 adjacent vertices have already been colored.
Hence x1(v;) < A(G). When v, comes to be colored, all adjacent vertices have
already been colored. Since DEG(v1) < A(G), we conclude that x1(v1) < A(G).
Hence x(G) < A(G).

If G is regular, then the proof proceeds as above, except that x1(v1) < A(G)+1.
The conclusion follows. Notice that if G is regular, only one vertex needs to use color
A(G) + 1. O

If Algorithm 13.1.1, using a breadth-first or depth-first spanning tree ordering, is
applied to a complete graph K, it is easy to see that it will use exactly n colors. If
the algorithm is applied to a cycle C),, it will always use two colors if n is even, and
three colors, if n is odd. Complete graphs and odd cycles are special cases of Brooks’
theorem.

Theorem 13.2. (Brooks’ theorem) Let G be a connected graph that is not a com-
plete graph, and not an odd cycle. Then x(G) < A(G).

Proof. Suppose first that G is 3-connected. If GG is non-regular, we know the result
to be true. Hence we assume that GG is a regular graph. Since G is not complete, we
can choose vertices u, v, w such that u — v, w, but v 4 w. Construct a spanning
tree ordering of G — {v,w}, with u as root, so that vy = w. Then set v,—; = v,
v, = w, and apply Algorithm 13.1.1 to construct a coloring x; of GG. Vertices v and
w will both be assigned color 1. Each v; # w1 will have x1(v;) < A(G). When
v1 comes to be colored, the two adjacent vertices v and w will have the same color.
Hence x1(v1) < A(G).

Graph Colorings 273

Otherwise G is not 3-connected. Suppose that G is 2-connected. Choose a pair
of vertices {u, v}, such that G — {u, v} is disconnected. If H is any connected com-
ponent of G — {u, v}, let H,,, be the subgraph of G + uv induced by V (H) U{u,v}.
Now G is regular, of degree at least three (or G would be a cycle). Therefore we can
choose u and v so that H,, is a non-regular graph. Therefore x(H,,) < A(Hyy).
But A(Hyy) < A(G). Color Hy, in at most A(G) colors. Notice that v and v have
different colors, because uwv € FE(H,,). We can do the same for every subgraph
K., so constructed from each connected component of G — {u, v}. Furthermore, we
can require that v and v are colored identically in each K, by permuting colors if
necessary. These subgraph colorings determine a coloring of G with at most A(G)
colors.

If G is not 2-connected, but has a cut-vertex u, we use an identical argument,
deleting only w in place of {u, v}. O

13.1.1 Intersecting lines in the plane

An interesting example of the use of Algorithm 13.1.1 is given by intersecting lines
in the plane. Suppose that we are given a collection of m straight lines in the plane,
with no three concurrent. Construct a graph G whose vertices are the points of inter-
section of the lines, and whose edges are the line segments connecting the vertices.
An example is shown in Figure 13.1. We can use Algorithm 13.1.1 to show that
X(G) < 3. Notice first that because at most two lines are concurrent at a point that
we have A(G) < 4. Also note that G can be enclosed by a disc in the plane. Choose a
disc in the plane containing G, and choose a line ¢ in the plane that is outside the disc,
such that ¢ is not parallel to any of the original m lines. The dotted line in Figure 13.1
represents £. Assign an orientation to the edges of GG by directing each edge toward
£. This converts G to an acyclic digraph. Notice that each vertex has at most two
incident edges oriented outward, and at most two oriented inward. Let v1,va, . .., vn
be a topological ordering of V' (G). Apply Algorithm 13.1.1. The vertices of G have
degree two, three, or four. When each v; comes to be colored, at most two adjacent
vertices have already been colored — those incident on out-edges from v;. Therefore
x1(vi) < 3, for each v;. It follows that x(G) < 3.

FIGURE 13.1
Intersecting lines in the plane

274 Graphs, Algorithms, and Optimization

Exercises

13.1.1 Write computer programs to apply the sequential algorithm using
breadth-first and depth-first searches, and compare the colorings obtained.

13.1.2 Show that if a breadth-first or depth-first sequential algorithm is applied
to a bipartite graph, that exactly two colors will be used.

13.1.3 Construct a complete bipartite graph K, , with bipartition X =
{z1,29,..., 20}, Y = {y1,Y2,...,Yn}, and remove the matching
M = {z1y1,...,Znyn}, to get G = K,, ,, — M. Order the vertices
T1, Y1, X2, Y2y -+« s Ty Yn- Show that Algorithm 13.1.1 with this ordering
will use n colors.

13.1.4 Construct a complete tripartite graph K, , , with tripartition X =
{x1,22, .. ;2 Y = {y1,92, .- Un}, Z = {21,22,...,2n}, and re-
move the triangles T = {z1y121, ..., TpYnsn}, t0 get G = Ky — T
Order the vertices x1, Y1, 21, T2, Y2, 22, - - - , Tns Yn, Zn. Show that Algo-
rithm 13.1.1 with this ordering will use n colors. How many colors will
be used by the breadth-first sequential algorithm?

13.1.5 Show that in the intersecting lines problem, if three or more lines are
allowed to be concurrent, that x(G) can be greater than three.

13.1.6 Let G; and G5 be graphs with m-colorings x1 and 2, respectively. We
say that GG and G4 are color-isomorphic if there is an isomorphism 6
from (G; to G5 that induces a permutation of the colors. More formally, if
uy,ug € V(G1) are mapped by 60 to vy, ve € V(G2), respectively, then
x1(u1) = x1(uz) if and only if y2(v1) = x2(v2). Show how to construct
graphs G| and GY, such that G and G5 are color-isomorphic if and only
if G} and G, are isomorphic.

13.1.7 Determine whether the graphs of Figure 13.2 are color-isomorphic, where
the colors are indicated by the numbers.

13.1.8 Let the vertices of G be listed in the sequence vy, va, ..., v, and apply
Algorithm 13.1.1. Show that x1(v;) is at most min{n — ¢ + 1, DEG(v;) +
1}. Conclude that x(G) < max];min{n — i + 1, DEG(v;) + 1}.

13.2 Cliques

Let G be a graph with a proper coloring. The subset of vertices of color i is said to
be the color class with color 7. These vertices induce a subgraph with no edges. In G
they induce a complete subgraph.

DEFINITION 13.2: A clique in GG is an induced complete subgraph. Thus a clique
is a subset of the vertices that are pairwise adjacent. An independent set is a subset

Graph Colorings 275

FIGURE 13.2
Are these color-isomorphic?

of V(@) which induces a subgraph with no edges. A clique is a maximum clique if
G does not contain any larger clique. Similarly, an independent set is a maximum
independent set if G' does not contain any larger independent set. An independent set
is also called a stable set.

The problem of finding a maximum clique or maximum independent set in G is
NP-complete, as shown in Section 13.8.

Write a(G) for the number of vertices in a maximum independent set in G, and
@ (@) for the number of vertices in a maximum clique. It is clear that x(G) > @(G),
since a clique in G of m vertices requires at least /m colors. If we are given a coloring
x1 of G and y2 of G, let Viyax be a largest color class in G, and let V max be @ largest
color class in G. Since V ., induces a clique in G, we have @(G) > |V pax|. Since
each color class is an independent set, &(G) > |Viyax|- This gives the bounds

|VrnaX| < E(G) < X(G)

and -
[Vinax| < a(G) < x(G).

Although we do not know x(G) and x(G), we can use the sequential Algo-
rithm 13.1.1 to construct colorings x; and y2 of G and G, so as to obtain bounds
on the clique number and independent set number of G’ and G. We write x1(G) to
denote the number of colors used by the coloring .

Lemma 13.3. If x; and x> satisfy [Vimax| = Xx2(G), then a(G) = x(G) = x2(G).
If x1 and 2 satisfy |V max| = x1(G), then @(G) = x(G) = x1(G).

Proof. The inequalities above hold for any proper colorings x1 and x2. If [Vinax| =
x2(G), then the second inequity determines a(G). Therefore x(G) is at least as
big as this number. But since we have a coloring in x2(G) colors, this determines

X(G). O

276 Graphs, Algorithms, and Optimization

Thus, by using Algorithm 13.1.1 to color both G and G, we can obtain bounds on
a(@),a(@), x(G), and x(G). Sometimes this will give us exact values for some of
these parameters. When it does not give exact values, it gives colorings x1 and o, as
well as a clique V max and independent set Vi,.x in G. In general, Algorithm 13.1.1
does not construct colorings that are optimal, or even nearly optimal. There are many
variations of Algorithm 13.1.1. Improvements to Algorithm 13.1.1 will give improve-
ments in the above bounds, by decreasing the number of colors used, and increasing
the size of the maximum color classes found. One modification that is found to work
well in practice is the degree saturation method of Brelaz [25], which orders the
vertices by the “saturation” degree.

Consider a graph G for which a coloring ; is being constructed. Initially all
vertices are marked uncolored. On each iteration of the algorithm, another vertex is
colored. For each vertex, let ¢(v) denote the number of distinct colors adjacent to v.
c(v) is called the saturation degree of v. Initially c(v) = 0. At any stage of the algo-
rithm the vertices are partially ordered. A vertex u such that the pair (¢(u), DEG(u))
is largest is chosen as the next vertex to color; that is, vertices are compared first by
¢(u), then by DEG(u).

Algorithm 13.2.1: DEGREESATURATION(G, n)

comment: Construct a coloring x; of a graph G on n vertices

mark all vertices “uncolored”
initialize c¢(v) < 0, for all v
fori< 1ton
select u as a vertex with largest (c(u), DEG(u))
X1(u) « the first color available for u
for each v—u
do if v is uncolored, adjust c¢(v)

do

Algorithm 13.2.1 requires a priority queue in order to efficiently select the next
vertex to color. In practice, it is found that it uses significantly fewer colors than
Algorithm 13.1.1 with a fixed ordering of the vertices. However, algorithms based
on the sequential algorithm are limited in their efficacy. JOHNSON [95] discusses the
limitations of many coloring algorithms based on the sequential algorithm.

The first vertex, w1, that Algorithm 13.2.1 colors will be one of maximum degree.
The second vertex, us, will be a vertex adjacent to u; of maximum possible degree.
The third vertex, u3, will be adjacent to 1 and us, if there is such a vertex, and so on.
Thus, Algorithm 13.2.1 begins by constructing a clique of vertices of large degree.
The algorithm could save this information, and use it as a lower bound on @(G).

A description and comparison of various coloring algorithms can be
found in the book by Lewis [115], in particular DSatur (Degree Saturation),
TabuCol, PartialCol, AntCol, Hill Climbing, the Hybrid Evolutionary algorithm,
and also a backtracking DSatur algorithm. This book also contains an extensive list
of graph coloring references.

Graph Colorings 277

A recursive search algorithm MAXCLIQUE() to find a maximum clique can be
based on a similar strategy. Algorithm 13.2.2 that follows constructs cliques C”. The
maximum clique found is stored in a variable C'. C' and C" are stored as global arrays.
It also uses an array S of vertices eligible to be added to C’. The set of all neighbors
of v is denoted by N (v).

Algorithm 13.2.2: MAXCLIQUE(G, n)

comment: Construct a maximum clique C'in G

procedure EXTENDCLIQUE(S, v)
comment: v has just been added to C” — adjust S and extend the clique

S" « SN N(v)
if|S’| =0
if |C'| > |C| then C' + C’
then
return

while |S’| > 0 and |C’| + |S’| > |C]
select u € S’
C'+ C'Uu
do ¢ 5"+ S —u
EXTENDCLIQUE(S’, u)

C'+C —u
main
choose an ordering vy, vs, . . . , v, Of the vertices
C+0 “largest clique found so far”
C' 0 “clique currently being constructed”
S« V(G) “vertices eligible for addition to C"”
141
while |S| > |C]
C' + {v;}
do S+ S — V;
EXTENDCLIQUE(S, v;)
141+ 1

comment: C' is now a maximum clique of size &

a <+ |C]

This algorithm builds a clique C” and tries to extend it from a set .S” of eligible
vertices. When |C’| + |S’| is smaller than the largest clique found so far, it back-
tracks. The performance will depend on the ordering of the vertices used. As with
Algorithm 13.2.1, the ordering need not be chosen in advance, but can be constructed
as the algorithm progresses. For example, v; might be selected as a vertex of largest
degree in the subgraph induced by the vertices not yet considered. If a maximum
clique is found early in the algorithm, the remaining calls to EXTENDCLIQUE() will
finish more quickly. We can estimate the complexity by noticing that the loop in

278 Graphs, Algorithms, and Optimization

MAXCLIQUE() runs at most n times. After each choice of v;, the set S will contain
at most A(G) vertices. There are 2°(%) subsets of a set of size A(G). The algo-
rithm might construct each subset at most once. Therefore the complexity is at most
O(n - 22(4)), an exponential value.

13.3 Mycielski’s construction

A graph G which contains a 4-clique necessarily has y(G) > 4. However, it is
possible for a graph with no 4-clique to have x(G) > 4. Mycielski found a way to
construct triangle-free graphs with arbitrarily large chromatic number.

We start with a triangle-free graph G with x(G) > 3. Any odd cycle with five
or more vertices will do (e.g., G = C5). We now extend G to a graph G as follows.
For each v € V(G), we add a vertex v’ to G’ adjacent to the same vertices of G that
v is adjacent to. We now add one more vertex vy adjacent to each v’. Thus, if G has
n vertices, G’ will have 2n + 1 vertices. Refer to Figure 13.3.

FIGURE 13.3
Mycielski’s construction

Lemma 134. x(G') = x(G) + 1. Furthermore, G’ has no triangles if G has none.

Proof. Consider a coloring x; of G’. Since it induces a coloring of G, we con-
clude that x(G') > x(G). Let m = x(G). Some vertex of G with color num-
ber m is adjacent to m — 1 other colors in G; for otherwise each vertex of
color m could be recolored with a smaller color number. It follows that the ver-
tices v’ must be colored with at least x(G) colors. In fact, we could assign each
x1(v") = xi1(v). The vertex vy is adjacent to x(G) colors, so that x1(vy) =
m + 1. It follows that x(G') = x(G) + 1. It is easy to see that G’ has no tri-
angles, because G has none. |

Graph Colorings 279

By iterating Mycielski’s construction, we can construct triangle-free graphs with
large chromatic numbers. In fact, if we begin the construction with G = K, the
result is C5. Or we could start Mycielski’s construction with a graph which contains
triangles, but is /{4-free, and construct a sequence of K 4-free graphs with increasing
chromatic numbers, and so forth.

13.4 Ciritical graphs

Let G be a graph with x(G) = m. If we remove an edge uv from G, there are two
possibilities, either x (G — uv) = m or x(G — uv) = m — 1. In the latter case, we
say that edge v is critical.

DEFINITION 13.3: A graph G is critical if x(G —uv) = x(G) — 1 for all edges
wv € E(G). If x(G) = m, we say that G is m-critical.

It is easy to see that every graph contains a critical subgraph. If x(G — uv) =
X (@) for some edge uv, we can remove uv. Continue deleting edges like this until
every edge is critical. The result is a critical subgaph. Critical graphs have some
special properties.

Lemma 13.5. If G is m-critical, then §(G) > m — 1.

Proof. If DEG(u) < m — 1, choose an edge uv, and color G — uv with m — 1 colors.
Since DEG(u) < m — 1, there are at most m — 2 adjacent colors to u in G. So
there is always a colorin {1,2, ..., m — 1} with which « can be colored to obtain an
(m — 1)-coloring of G, a contradiction. O

If G is an m-critical graph, then G has at least m vertices, and each has degree at
least m — 1. Therefore every graph with x(G) = m has at least m vertices of degree
>m— 1.

Lemma 13.6. Every critical graph with at least three vertices is 2-connected.

Proof. Suppose that G is an m-critical graph with a cut-vertex v. Let H be a con-
nected component of G — v, and let H,, be the subgraph induced by V (H) U {v}.
Color H, with < m — 1 colors. Do the same for every such subgraph H,,. Ensure that
v has the same color in each subgraph, by permuting colors if necessary. The result
is a coloring of G in < m — 1 colors, a contradiction. O

The ideas of the Lemma 13.6 can be extended to separating sets in general.

Lemma 13.7. Let S be a separating set in an m-critical graph G. Then S does not
induce a clique.

280 Graphs, Algorithms, and Optimization

Proof. If S is a separating set, let H be a component of G — S, and consider the
subgraph Hg induced by V(H) U S. It can be colored in m — 1 colors. The vertices
of S are colored with | S| distinct colors, which can be permuted in any desired way.
Do the same for every component of G — S. The result is a coloring of G inm — 1
colors. |

It follows from this lemma that if {u, v} is a separating set in an m-critical graph,
that uv ¢ E(G). Suppose that {u, v} is a separating set. Let H be a component of
G — {u,v}, and let K be the remaining components. Construct H,, induced by
V(H) U {u,v}, and K, induced by V(K) U {u,v}. Hy, and K,, can both be
colored in m — 1 colors. If H,,, and K, both have (m — 1)-colorings in which u
and v have different colors, then we can use these colorings to construct an (m — 1)-
coloring of G. Similarly, if H,,, and K, both have (m —1)-colorings in which u and
v have the same color, we can again construct an (m— 1)-coloring of G. We conclude
that in one of them, say H,,, u and v have the same color in every (m — 1)-coloring;
and that in K, u and v have different colors in every (m — 1)-coloring.

Now consider the graph H' = H,, + wv. It cannot be colored in m — 1 colors,
however H' —uw can be. Let xy be any other edge of H'. Then G — zy can be colored
in m — 1 colors. Now K, is a subgraph of G — zy. Therefore » and v have different
colors in this coloring. It follows that H' — 2y can be colored in m — 1 colors. Hence,
H' = H,, + uv is an m-critical graph.

Now consider the graph K’ = (K, + uv) - uv. It cannot be colored in m — 1
colors, as this would determine an (m — 1)-coloring of K, in which v and v have the
same color. Let zy be any edge of K. It corresponds to an edge z'y’ of G. G — 2'y’
can be colored in (m — 1) colors. Since H,,, is a subgraph of G, it follows that v and
v have the same color. This then determines a coloring of K’ — xy in (m — 1) colors.
Hence K’ = (Ky, + uv) - uv is also an m-critical graph.

Exercises
13.4.1 Program Algorithm 13.2.1, and compare its performance with a breadth-
first or depth-first sequential algorithm.
13.42 Program the MAXCLIQUE() algorithm.

13.43 Let G be an m-critical graph, and let v € V(G). Show that G has an
m-coloring in which v is the only vertex of color number m.

13.4.4 Let G be an m-critical graph. Apply Mycielski’s construction to obtain a
graph G’. Either prove that G’ is (m + 1)-critical, or find a counterexam-
ple.

Graph Colorings 281

13.5 Chromatic polynomials

Suppose that we wish to properly color the complete graph K, in at most A colors,
where A > n. Choose any ordering of V'(kK,,). The first vertex can be colored in A
choices. The next vertex in A — 1 choices, and so on. Thus, the number of ways to
color K, is A(A — 1)(A —2) ... (A — n + 1). This is a polynomial of degree n in \.

DEFINITION 13.4: The chromatic polynomial of a graph G is 7(G, \), the num-
ber of ways to color GG in < A colors.

In order to show that 7(G, \) is in fact a polynomial in \, we use a method that is
familiar from counting spanning trees. We first find 7w(7", \) for any tree 7', and then
give a recurrence for any graph G.

Lemma 13.8. Let T be a tree on n vertices. Then (T, \) = A\(A — 1)" L.

Proof. By induction on n. It is certainly true if n = 1 or n = 2. Choose a leaf v of T',
andlet 7" = T —v. T" is a tree on n — 1 vertices. Therefore (7", \) = A(A—1)""2,
In any coloring of 7", the vertex adjacent to v in 7" has some color. There are A — 1
colors available for v. Every coloring of 7" arises in this way. Therefore w(T', \) =
A\ = 1)L O

Suppose now that G is any graph. Let uv € E(G). In practice we will want to
choose uwv so that it is an edge on a cycle.

Theorem 13.9. (G, \) = 7(G — uv,\) — 7(G - uv, \).

Proof. In each coloring of G —uwv in < X colors, either u and v have different colors,
or they have the same color. The number of colorings of G — uwv is the sum of these
two. If u and v have different colors, then we have a coloring of G in < A colors.
Conversely, every coloring of GG in < A colors gives a coloring of G — wv in which u
and v have different colors. If u and v have the same color in G — uw, then this gives
a coloring of G - wv. Any coloring of GG - uv in < A colors determines a coloring of
G — wv in which u and v have the same color. We conclude that 7(G — uv, \) =
(G,) + 7(G - uv,). O

One consequence of this theorem is that (G,) is in fact a polynomial of degree
nin A. Now if n. > 0, then A | w(G, \), since G cannot be colored in A = 0 colors.
Similarly, if ¢(G) # 0, we conclude that A(A — 1) | (G, \), since G cannot be
colored in A = 1 color. If G is not bipartite, then it cannot be colored in A = 2
colors. In this case A(A — 1)(A — 2) | 7(G, A). In general:

Lemma 13.10. If (G) = m, then \(A — 1)(A —2)... (A —m + 1) | 7(G, \).

Proof. G cannot be colored in fewer than m colors. Therefore 7(G,\) = 0, for
A=1,2,...,m—1. U

282 Graphs, Algorithms, and Optimization

Notice that if G contains an m-clique S, then x(G) > m, so that A(A — 1)(\ —
2)...(A=m+1) | 7(G,\). There are \(A—1)(A—2) ... (A—m+1) ways to color
S in < A colors. The number of ways to complete a coloring of G, given a coloring
of S, is therefore m(G, A\) /AN = 1)(A—=2)...(A—=m +1).

Suppose that GG has a cut-vertex v. Let H be a connected component of G—wv, and
let H,, be the subgraph induced by V' (H) U {v}. Let K, be the subgraph G — V (H).
Every coloring of GG induces colorings of H, and K, such that v has the same
color in both. Every coloring of H, and K, occurs in this way. Given any coloring
of H,, there are m(K,,\)/\ ways to complete the coloring of K. It follows that
(G, \) = w(Hy, \)m(Ky, \) /.

More generally, suppose that S is a separating set of G which induces an m-
clique. Let H be a component of G — S, and let Hs be the subgraph induced by
V(H)US. Let Kg be the subgraph G — V(H). We have:

Lemma 13.11. Let S be a separating set which induces an m-clique in G. Let Hg
and Kg be defined as above. Then (G, \) = w(Hg, \)7(Kg,\)/A(A = 1)(A —
2)...(A—m+1).

Proof. Every coloring of G induces a coloring of Hg and Kg. There are w(Hg, \)
ways to color Hs. There are (Kg, \)/A(A — 1)(A —2)...(A —m + 1) ways to
complete a coloring of .S to a coloring of Kg. This gives all colorings of G. |

There are no efficient means known of computing chromatic polynomials. This
is due to the fact that most coloring problems are NP-complete. If 7(G, A) could be
efficiently computed, we would only need to evaluate it for A = 3 to determine if G
can be 3-colored.

Exercises

13.5.1 Find 1(Cap, A) and (Capy1, A).

13.5.2 Find 7(G, \), where G is the graph of the cube and the graph of the
octahedron.

13.5.3 Let G’ be constructed from G by adding a new vertex joined to every
vertex of G. Determine 7(G’, \) in terms of 7(G, \).

13.5.4 The wheel W, is obtained from the cycle C,, by adding a new vertex
joined to every vertex of C,. Find w(W,,, \).

13.5.5 A unicyclic graph G is a graph formed from a tree 7' by adding a single
edge connecting two vertices of 7. G has exactly one cycle. Let G be a
unicyclic graph on n vertices, such that the unique cycle of G has length
m. Find (G, \).

13.5.6 Let G’ be constructed from G by adding two new adjacent vertices joined
to every vertex of G. Determine 7(G’,) in terms of (G, \).

13.5.7 Let G’ be constructed from G by adding k£ new mutually adjacent vertices
joined to every vertex of G. Determine 7(G’, \) in terms of m(G, \).

Graph Colorings 283

13.5.8 Let G’ be constructed from GG by adding two new non-adjacent vertices
joined to every vertex of G. Determine 7(G’, \) in terms of m(G, \).

135.9 Find 7(Kpm, \).

13.5.10 Let G be a graph, and suppose that uv ¢ FE(G). Show that (G, \) =
(G 4 uv, \) + 7((G + wv) - uv,). When G has many edges, this is a
faster way to compute 7(G, A) than the method of Theorem 13.9.

13.5.11 Calculate (K, —uv, A), 7(K,, — uv —vw, \), and 7 (K,, — uv — wz, \),
where u, v, w, x are distinct vertices of K.

13.5.12 If G is a connected graph on n vertices, show that w(K,,,) < (G, \) <
AN = 1)1 forall A > 0.

13.5.13 Prove that the coefficient of A\ in w(G, A) is 1, and that the coefficients
alternate in sign.

13.6 Edge colorings

A coloring of the edges of a graph G is an assignment of colors to the edges.
More formally, an m-edge-coloring is a mapping from F(G) onto a set of m col-
ors {1,2,...,m}. The coloring is proper if adjacent edges always have different
colors. The edge-chromatic number or chromatic index of G is x’(G), the minimum
value of m such that GG has a proper m-edge coloring. Notice that in any proper edge-
coloring of G, the edges of each color define a matching in G. Thus, x'(G) can be
viewed as the minimum number of matchings into which F(G) can be partitioned.

When the edges of a multi-graph are colored, all edges with the same endpoints
must have different colors.

Consider a vertex v of maximum degree in G. There must be DEG(v) colors
incident on v. Therefore x'(G) > A(G). There is a remarkable theorem by Vizing
(Theorem 13.14) that states x'(G) < A(G) + 1 for simple graphs.

Before we come to the proof of Vizing’s theorem, first consider the case when G
is bipartite. A matching M; saturating all vertices of degree A(G) can be found with
Algorithm 9.3.1 (the Hungarian algorithm). Alternating paths can be used to ensure
that each vertex of degree A(G) is saturated. Thus we know that the bipartite graph
G has a maximum matching saturating every vertex of degree A(G). This gives an
algorithm for edge-coloring a bipartite graph.

284 Graphs, Algorithms, and Optimization

Algorithm 13.6.1: BIPARTITECOLORING(()

comment: Edge-color a graph GG on n vertices

find the degrees of all vertices
141

repeat
find a maximum matching M; in G
saturating every vertex of degree A(G)
assign color ¢ to the edges of M;
G+ G- M,
1 1+1
until A(G) =0

It follows from this algorithm, that when G is bipartite, x'(G) = A(G).

Suppose that G is a k-regular graph, edge-colored in k colors. Then every color
occurs at every vertex of G. If ¢ and j are any two colors, then the (i, j)-subgraph is
the subgraph of G that contains only the edges of color ¢ and j. Because the (3, j)-
subgraph is the union of two matchings, it is the disjoint union of alternating cycles.
Let U C V(G). Let n; and n; denote the number of edges of colors ¢ and j, re-
spectively, in the edge-cut [U, V — U]. Each cycle of the (i, j)-subgraph intersects
[U,V — U] in an even number of edges. Thus we conclude that n; + n; is even.
Therefore n; = n; (mod 2). This gives the following parity lemma:

Lemma 13.12. (Parity lemma) Let G be a k-regular graph, edge-colored in colors
{1,2,...,k}. Let U C V(G). Let n; denote the number of edges of color i in [U,V —
Ul. Thenni = ng = ... = ny, (mod 2).

Vizing’s theorem (Theorem 13.14) is based on an algorithm to edge-color a graph
in < A(G) + 1 colors. We present two proofs of Vizing’s theorem, the first is based
on that of FOURNIER [52]. The second proof follows from an algorithm to color the
edges. Fournier’s proof begins with an arbitrary coloring of G in A(G)+1 colors, and
then gradually improves it until it becomes a proper coloring. Given a coloring, let
¢(v) denote the number of colors occurring at vertex v € V(G). If ¢(v) = DEG(v),
for all v, then the coloring is proper. Otherwise c¢(v) < DEG(v), for some v. The
sum Y ,¢(v) is an indication of how close an arbitrary coloring is to being a proper
coloring.

Suppose first that G is arbitrarily colored in two colors.

Lemma 13.13. If G is a graph that is not an odd cycle, then G has a 2-edge-coloring
in which c(v) > 2, for all vertices v, with DEG(v) > 2.

Proof. If G is Eulerian, choose an Euler tour, and color the edges alternately blue
and red along the tour. If G is not Eulerian, add a new vertex vy adjacent to every
odd degree vertex of GG. The result is an Eulerian graph. Color it in the same way. [J

Graph Colorings 285

We can use Lemma 13.13 on subgraphs of GG. Given a proper coloring of G, the
edges of colors ¢ and j each define a matching in G. Consider the (i, j)-subgraph.
Each connected component is a path or an even cycle whose colors alternate. If, how-
ever, we begin with an arbitrary coloring of G, then we want to maximize ¥, c¢(v). If
some component of the (4, j)-subgraph is not an odd cycle then by Lemma 13.13, it
can be 2-colored so that ¢(v) > 2, for all vertices v, with DEG(v) > 2.

Theorem 13.14. (Vizing’s theorem) If G is simple, then x'(G) < A(G) + 1.

Proof. We begin by arbitrarily coloring the edges in A(G) + 1 colors. We show that
when X, ¢(v) is as large as possible, the coloring must be proper. Suppose that the
coloring is not proper, and choose a vertex u with ¢(u) < DEG(u). Some color i
is missing at u, and some color 41 occurs at least twice. Let edges uvg and uv; have
color 7. If color 7 is missing at either vy or v, we can recolor one of these edges
with color i, thereby increasing ¥, ¢(v). Hence, we can assume that color iy occurs
at both vy and v;. Some color is missing at vy; call it i5. If 75 is also missing at u, we
can recolor uvy with color i, thereby increasing ¥, ¢(v). Hence, let uv, be an edge
of color i2. Some color is missing at vy; call it 73. If 73 is also missing at u, we can
recolor uvy with color is, and uve with color i3, thereby increasing 3, ¢(v). It follows
that 73 # g, so that iy occurs at vo. We continue in this way, constructing a sequence
of edges uvy, uvs, . .., uvy of distinct colors i1, i2, . . ., g, such that color ¢y occurs
at each of vy,..., v, and color 7;4; does not occur at v;. Refer to Figure 13.4.
We continue in this fashion generating a sequence i, i1, . . . , of distinct colors until

Vg

Vo

(no 7p)
Vk—1
(no iy) v
(no 72)
Vg—2 o
Nno %j_ .
(no ix_1) (o is)

FIGURE 13.4
Vizing’s theorem

we find a color 75 that is not missing at v. Thus 441 has previously occurred
in the sequence. Suppose that i; 11 = iy, where 1 < ¢ < k. Recolor the edges
UV, U2, . . ., uve_1 with the colors 79,3, . . ., iy, respectively. This does not change
Y,c(v), because each c(v;) is unchanged. Notice that uv,_1 and uv, are now both
colored 7¢. Consider the (ig, i¢)-subgraph containing w. It contains v and v,. If it
is not an odd cycle, it can be recolored so that colors ¢(and 7, both occur at each of
the vertices that have degree exceeding one. This would increase ¢(u) and therefore

286 Graphs, Algorithms, and Optimization

Y,c(v). Hence this subgraph can only be an odd cycle, so that G contains an (g, i¢)-
path from vy_ to vy.

Now recolor the edges uvy, uvey1, .. ., uvy with the colors ¢pyq, ..., 0%, tgyr1 =
i¢, respectively. Once again X,¢(v) is unchanged. The (i, i¢)-subgraph containing
u now contains v, and v, and must be an odd cycle. Hence G contains an (i, i¢)-
path from vy_; to vg. This contradicts the previous path found. It follows that the
coloring can only be proper, and that x’ < A(G) + 1. O

This proof of Vizing’s theorem makes use of a color rotation at vertex u, namely,
given a sequence of incident edges uvy, uvs, . .., uvy of colors iy, is, . . ., iy, respec-
tively, such that v; is missing color ¢;41, for j = 1,2, ...,k — 1, and v}, is missing
colorig where ¢ € {1,2,...,k—1}. We thenrecolor uvy, uva, . .., uvy—1 with colors
12,13, . .., 1y, respectively. This idea will be used in the coloring algorithm.

The second proof of Vizing’s theorem is based on an edge-coloring algorithm.
Given a graph G, let the vertices be numbered 1,2, ..., n. Initially all edges are
assigned color 0, indicating that they are uncolored. The algorithm takes the vertices
in the order v = 1,2,...,n, and attempts to color the edges incident on vertex wu.
When vertex 1 is selected, it is sufficient to take the first available color for each
edge, as no other edges have been colored yet. When vertex u > 1 is selected, it may
be adjacent to some vertices v < u (whose edges have already been colored), and to
some vertices w > u. For the edges uw where w > u, the algorithm will take the
first available color. This may create a situation where some w > u has two or more
incident edges of the same color. This situation will be resolved during the iteration
when u = w.

At the beginning of iteration u, the colors of the incident edges are counted. The
color of edge uwv is denoted Clr[uv]. An array Color[k], which is initially 0, will store
the number of occurrences of color k at vertex u:

for each v — v do Color|[Clr[uv]] < Color[Clr[uv]] + 1

If every color k has Color[k] < 1, then every color occurs at most once at u.
The coloring at u is then completed by assigning the first available color to each
uncolored edge. An uncolored edge uv necessarily has v > wu. The first available
color is found with a simple loop.

cr+1
while Color[k] > 0 do clr < cIr + 1

If there are no duplicate colors at u, the number of steps required to color the
edges incident on u with these loops is O(DEG(u)).

Otherwise there are two or more edges incident on u with the same color k. This
is detected by Color[k] > 1. There are A + 1 colors available, but the number of
colors used is < DEG(u) < A. Therefore there are at least two colors missing at
vertex u. Let j and ¢ be colors missing at u. They have Color[j] = 0 and Color[i] =
0. The color numbers j, i, and k are found, and the algorithm does a breadth-first
search, called ColorBFS, to resolve the repeated color.

Graph Colorings 287

Algorithm 13.6.2: EDGECOLOR(G, n)

Initially the edges all have color 0.
comment: ¢ Construct an edge-coloring in
at most A(G) + 1 colors.

foru < 1ton
count the color frequencies at vertex u
k < first repeated color at u
while £ > 0
J < first color missing at u
if COLORBFS (u, k, j)

then go to L1 “success”
1 <— second color missing at u
if COLORBFS (u, k, 1)

then go to L1 “success”

do do ¢ comment: otherwise a color rotation is needed

let uv be an edge of color k

{ <+ first color missing at v

clrfuv] « ¢

L1:

k < first repeated color at u

comment: there are now no repeated colors at vertex u

foreachv — u
do if clrfuv] =0
then color wv with the first available color

The procedure ColorBFS (u, k, j) builds alternating paths from vertex u, of col-
ors k and j, in a breadth-first manner. It initially places u and all vertices incident
on an edge of color k on an array, called the ScanQ. There are at least two incident
edges of color k. The paths are then alternately extended by edges of color j and k.
If at any point, the ColorBFS encounters a vertex w > u, it recolors the path from
w to u, by interchanging colors j and k. As color 5 was initially not used at u, and
color k appeared twice, this improves the coloring at u. ColorBFS then returns the
value true. This will usually be the outcome near the beginning of the algorithm.

288 Graphs, Algorithms, and Optimization

Algorithm 13.6.3: COLORBFS(u, k, 7)

comment: color £ is repeated at vertex u, color j is missing at u
comment: initialize the ScanQ with u and all adjacent vertices of color &k

QSize + 1

ScanQ[1] + u

for each v — w do if clrfuv] = k
comment: add v to ScanQ

then ¢ QSize «+ QSize + 1

ScanQ[QSize] + v

m <1

while m < QSize

v + ScanQ[m]
if v was added on color &
if (color j is missing at v) or (v > u)
re-color the path from v to w
then
return true
then ¢ comment: otherwise add v to ScanQ
QSize < QSize + 1
ScanQ[QSize] + v
do
comment: v was added on color j
if (color & is missing at v) or (v > u)
re-color the path from v to u
then
else return true
comment: otherwise add v to ScanQ
QSize < QSize + 1
ScanQ[QSize] «+ v
m+—m+1

Otherwise ColorBFS encounters only vertices v < w. This will usually be the
case near the end of the algorithm. When vertex v < w is discovered by ColorBFS,
it is either by following an edge of color j or of color k. Now v has at most one edge
of each color. If v has an edge of color j, but no edge of color k£, then the path from v
to u is recolored, by interchanging colors. This improves the coloring at u, and does
not affect the coloring at the other vertices on the alternating path. Similarly if v has
an edge of color k, but no edge of color j, the path is recolored. The only time it does
not succeed in recoloring a path to vertex w, is if the edges of colors k and j induce
one or more odd cycles, in which each odd cycle has two edges of color k incident
on vertex u. ColorBFS then returns the value false.

Graph Colorings 289

If the call to ColorBFS (u, k, j) does not succeed in Algorithm EdgeColor, the al-
gorithm now finds the other missing color ¢, and tries again, using ColorBFS (u, k, 7).
The reason for using both colors j and ¢ is that they are easy to find, and if one does
not work, the other frequently will. If this does not succeed, it is time for a color
rotation. A vertex v is chosen, such that cIrjuv] = k. A missing color ¢ at vertex
v is found, and the edge uv is recolored with color ¢. Vertex « now has two inci-
dent edges of color ¢, and no incident edges of colors j or i. The loop continues.
ColorBFS (u, ¢, j) and ColorBFS (u, ¢, i) are used to search for alternating paths. If
this does not succeed, a vertex w is chosen such that clrfuw] = ¢, and the edge is
re-colored as before. The vertex w is chosen so that it is not the same as the vertex
v chosen on the previous iteration. In this way a sequence of edges at u is followed
which must eventually result in a successful re-coloring. For when a missing color
is repeated, eg., color k, then the odd cycle of colors k£ and j will be a different odd
cycle than previously found, which is impossible. It follows that the algorithm works,
so that it will always succeed in edge-coloring a graph using at most A + 1 colors.
Vizing’s theorem follows.

It is difficult to estimate the complexity of this algorithm accurately. It is reason-
able to expect that iteration u will take approximately O(DEG(u)) steps. For even
when it is necessary to call ColorBFS, the search visits very few vertices. Thus, the
algorithm is likely to be of order O(e) for most graphs.

Graphs G for which x'(G) = A(G) are said to be Class I graphs. If X' (G) =
A(G)+1, then G is a Class I graph. See Wallis [186] for a discussion of Class I and
Class II graphs. Although there is an efficient algorithm to color a graph in at most
A(G) + 1 colors, it is an NP-complete problem to determine whether an arbitrary
graph is of Class I or II. A proof of this remarkable result is presented at the end of
the chapter.

If G is a multigraph with no loops, then the general form of Vizing’s theorem
states that x'(G) < A(G) + u(G), where u(G) is the maximum edge-multiplicity.
It can often happen that x(G) is not known. Shannon’s theorem gives an alternative
bound \'(G) < |3A(G)/2]. The proof presented is due to ORE [133]. It requires
two lemmas. Given a proper edge-coloring of GG, we write C'(u) for the set of colors
present at u.

Lemma 13.15. (Uncolored edge lemma) Let G be a multigraph without loops. Let

uv be any edge of G, and let G — uv be edge-colored with k colors, and suppose that
X'(G) = k+ 1. Then:
[Cu)uCw)| =k

|C(u) N C(v)| = DEG(u) + DEG(v) — k + 2
|C(u) — C(v)| = k — DEG(v) + 1
|C(v) — C(u)| = k — DEG(u) + 1

Proof. Every color missing at u is present at v, or there would be a color available

290 Graphs, Algorithms, and Optimization

for uv, thereby making x’(G) = k. Therefore all colors are present at one of u or v.
This gives the first equation. The colors present at « can be counted as

|C(u) — C(v)| + |C(u) N C(v)| = DEG(u) — 1.
Similarly, those present at v are given by

|C(v) — C(u)| + |C(u) N C(v)] = DEG(v) — 1.
Now

|C(u) U C(v)] = |C(u) = C(v)| +|C(v) = Cu)] + [C(u) N C(v)],

so that we can solve these equations for |C'(u) N C(v)|, giving the second equation.
The third and fourth equations then result from combining this with the previous two
equations. O

Lemma 13.16. (Ore’s lemma) Let G be a multigraph without loops. Then:
1
X' (G) < MAX{A(G), 5MAX{MM}{DEG(u) + DEG(v) + DEG(w)}},

where the second maximum is over all triples of vertices w,v,w such that v —
U — w.

Proof. The proof is by induction on £(G). It is clearly true if £(G)) < 3. Suppose it
holds for all graphs with £(G) < m and consider G with e(G) = m+1. Let uv be any
edge. Delete uv to obtain G — ww, for which the result holds. Let x' (G — uv) = k,
and consider a proper k-edge coloring of G — ww. If there is a color available for
uv, then X' (G) = k, and the result holds. Otherwise the uncolored edge lemma
(Lemma 13.15) applies to G.

Pick a color i € C(u) — C(v) and an edge uw of color 7. We first show that
C(v) — C(u) € C(w). Let j € C(v) — C(u). If color j is missing at w, then since
7 is also missing at u, we can recolor edge uw with color j, and assign color ¢ to uv.
This results in a k-edge-coloring of G, a contradiction. Therefore j € C'(w), so that
C(v) — C(u) C C(w).

We also show that C'(u) —C(v) C C(w). We know thati € C(u)—C(v). If there
is no other color in C'(u) — C(v), we are done. Otherwise, pick also ¢ € C'(u)—C'(v).
If ¢ ¢ C'(w), consider the (¢, j)-subgraph H containing w. If H does not contain v,
we can interchange colors in H, and assign color ¢ to uv, a contradiction. Therefore
H consists of an alternating path from u to v. Interchange colors in H, recolor edge
uw with color ¢, and assign color 7 to edge uv, again a contradiction. We conclude
that C(u) — C'(v) C C(w).

We have |C(u) — C(v)] + |C(u) — C(v)| < |C(w)|. By the uncolored edge
lemma, this means that DEG(w) > 2k —DEG(u) — DEG(v)+ 2. Therefore DEG(u)+
DEG(v) + DEG(w) > 2k + 2, so that k + 1 < 2(DEG(u) + DEG(v) + DEG(w)).
The result then holds for G, as required. O

Graph Colorings 291

Theorem 13.17. (Shannon’s theorem) Let G' be a multigraph without loops. Then
X'(G) < [3A(G)/2].

Proof. By Ore’s lemma:

V(G) < MAX{A(G), %{A(G) 1 AG) + AG))} = 3A(G)/2.

Exercises
13.6.1 Describe an algorithm using alternating paths in a bipartite graph which
finds a maximum matching saturating all vertices of degree A(G).
13.6.2 Work out the complexity of the bipartite coloring algorithm.
13.6.3 Program the bipartite edge-coloring algorithm.
13.6.4 Program the EdgeColor algorithm.
13.6.5 Determine whether the line graph of K3 is of Class I or II.
13.6.6 Show that an edge coloring of G gives a vertex coloring of L(G).
13.6.7 Determine ' for the Petersen graph.

13.6.8 Show that when the inverter shown in Figure 13.12 is edge-colored in
three colors, one of the two pairs of edges {a,b}, {c,d} has the same
color, and the other pair has different colors.

13.7 Graph homomorphisms

Colorings of the vertices of a graph are closely related to graph homomophisms.
Consider the 3-coloring of the graph G in Figure 13.5. The vertices of GG can be
mapped to the vertices of a triangle, such that the vertices of each color are mapped to
separate vertices of K3. This determines a coloring of K3. Here vertices 1,4, 7 are all
mapped to u in the K3; vertices 2, 5, 8 are mapped to w; and vertices 3, 6 are mapped
to v. The colors assigned to K3 are determined by the colors of GG. Notice that every
edge of GG is mapped to an edge of K. This defines a graph homomorphism.

DEFINITION 13.5: A graph homomorphism from graph G to H is a mapping
¢ : V(G) — V(H) such that if uv € E(G), then ¢(u)p(v) € E(H). We write
¢o:G— H.

If ¢ : G — H is a homomorphism, and u € V(H), then ¢! (u) is a subset of
V(G) that is an independent set in G. We immediately see that a homomorphism of
G onto K, is equivalent to an m-coloring of G:

Lemma 13.18. G is m-colorable if and only if there is a homomorphism from G
onto K,,.

292 Graphs, Algorithms, and Optimization

FIGURE 13.5
A graph homomorphism

Proof. Let the colors of V(G) be {1,2, ..., m}. Map the vertices of color 7 to vertex
iof K,,. O

It follows that every bipartite graph has a homomorphism onto K5. We see that
graph coloring can be viewed as a special case of homomorphisms. If ¢ : G — H is
a homomorphism, then edges of G must map only to edges of H, but non-edges of
G can map to non-edges or edges of H. An m-clique in G must map to an m-clique
in H, but an independent set in G can map to various subgraphs of H. In general, it
is a difficult problem to determine the homomorphisms of a graph G into H.

An even cycle is bipartite, and so has a homomorphism onto K. Consider an
odd cycle C,,. In Figure 13.6 we see a homomorphism of C,, onto C,,_o. Notice
how a vertex of degree two can be “folded” over and removed. This gives:

Lemma 13.19. The cycle C,,, where m > 4, has a homomorphism onto C, .

When m is odd, C,,, can be reduced as far as Cs. An odd cycle (), has homo-
morphisms only onto other odd cycles — for a homomorphism onto an even cycle
would mean that C,,, can be colored in two colors.

Cm Cmf 2

FIGURE 13.6
A homomorphism of a cycle

Graph Colorings 293

If G = K, then there is a homomorphism from G into any graph H, because
G has no edges. A homomorphism ¢ is said to be faithful if ¢(G) is an induced sub-
graph of H. That is, if uv € E(H), then G has at least one edge between ¢! (u)
and ¢~ (v). A faithful homomorphism ¢ : G — H that is one-to-one must be an
isomorphism of G with H. If G = H, then ¢ is an automorphism of G. Now the au-
tomorphisms of G form a group, however this is not the case with homomorphisms.

DEFINITION 13.6: A homomorphism ¢ : G — G is called an endomorphism.

The automorphism group AUT(G) is a subset of the set of all endomorphisms
of G. Homomorphisms can be composed. If ¢ : G — G is an endomorphism, then
®?,¢3, ..., are also endomorphisms. If ¢(G) is smaller than G, then a decreasing
sequence of subgraphs is produced. In general, when ¢ is an endomorphism, ¢(G)
is called a retract of GG. Consider the graph of the octahedron, shown in Figure 13.7,
together with two retracts, deriving from ¢ which maps {4, 5,6} in a cycle (4, 5, 6),
and also maps 3 to 1 to 5, and 2 to 6. The first application of ¢ results in the first
retract shown. The second application produces a triangle as a retract. Any further
applications of ¢ just rotate the triangle. More generally, any graph isomorphic to a
retract ¢(G) is also called a retract of G.

DEFINITION 13.7: A retract of G is any graph isomorphic to some ¢(G), where
¢ is an endomorphism of G.

FIGURE 13.7
Retracts of the octahedron

DEFINITION 13.8: A core of G is aretract K of G such that no proper subgraph
of K is also aretract of G.

It is clear that if K is a retract of (G, then a retract of K is also a retract of G.
Therefore we can also say that a core is any graph that has no proper retract. For
example, K, is a core, for all n. K5 is the only bipartite graph that is a core. If K
is a core then any endomorphism of K is necessarily an automorphism. Figure 13.7
shows that K5 is a core of the octahedron.

Suppose that W = (ug, u1, . . ., Uy,) is a walk of length m in a graph G. If there
is a u; such that u; 4o = w;, then W can be reduced by replacing the sub-sequence

294 Graphs, Algorithms, and Optimization

(i, wit1, u;t2) by the single vertex u;. This reduction can be iterated until no further
reductions are possible, resulting in a reduced walk. A path is always a reduced walk.
Some walks may reduce to a single vertex as a result.

Lemma 13.20. Let W = (ug,u1,...,Un) be a reduced walk of length m in a
graph G, and let ¢ : G — G be an endomorphism. Then (W) is a walk, which has
a corresponding reduced walk of length k < m, such that k = m (mod 2).

Proof. Each edge w;u;+1 of W is mapped by ¢ to an edge. Therefore ¢(W)
is a walk in G containing m edges. Each reduction in ¢(WW) that replaces

(P(ui); (uit1), d(uit2)) by d(u;) when ¢(u;) = P(ui+2) removes two edges from
the walk. O

Lemma 13.21. Every odd cycle is a core.

Proof. Let ¢ : Cy,, — C,, be an endomorphism of an odd cycle. C,, is a reduced
closed walk of length m. By Lemma 13.20, ¢(C,,,) contains a reduced closed walk
of odd length &£ < m. But the shortest odd length reduced closed walk of C,, has
length m. It follows that every endomorphism of C), is an automorphism, so that
C,, is a core. O

Notice that if the proof of Lemma 13.21 is applied to an even cycle, we find that
¢(C,y,) contains an even length reduced closed walk. It is easy to see that the length
can be zero for certain endomorphisms ¢.

Theorem 13.22. Let G be a graph. All cores of G are isomorphic.

Proof. Suppose that H; and Hs are two cores of G. Let ¢; and ¢ be endomorphisms
such that ¢1 (G) = Hy, and ¢2(G) = Hs. Now ¢1 maps V (Hz) into V' (Hy), so that
¢(Hz) is a subgraph of H;. Since ¢2(G) = Ha, we have ¢1(p2(G)) = ¢1(Hs) is a
retract of G. But a core of GG has no proper subgraph that is a retract of G. Therefore
¢1(H2) = Hy. O

Theorem 13.23. Let G be a vertex-transitive graph. All cores of G are vertex-
transitive.

Proof. Let K be a core of G, and let ¢ be an endomorphism such that ¢(G) = K.
Then ¢(K) = K. Let v and w be any two vertices of K. Choose a vertex u of G
such that ¢(u) = w. Now G is vertex transitive, so that there is § € AUT(G) such
that (v) = w. We have §(G) = G, so that ¢(0(G)) = K. Hence ¢(0(K)) is a
subgraph of K. But K is a core, and §(K) = K, so that ¢(0(K)) = K. That is, the
mapping “first , then ¢”” maps K to K, and is therefore an autmorphism of K. But
#(0(v)) = ¢(u) = w, so that this automorphism maps v to w. It follows that K is
vertex-transitive. O

Consider the graph G of Figure 13.5 consisting of a cycle Cg with main diago-
nals. The shortest cycle of GG has length five. If ¢ is any endomorphism of G, then
each C5 in G must map to a closed walk of length five, which must also be a cycle
of G. It follows that ¢ must be one-to-one, so that G is a core. In general, it can be

Graph Colorings 295

difficult to determine whether a given graph is a core. This example shows that a
shortest closed walk W of odd length is important — for any endomorphism ¢ must
map W to a closed walk containing a reduced closed walk, also of odd length, which
must therefore also be a shortest closed walk of odd length.

Consider the problem of finding an endomorphism ¢ of G, such that ¢ &
AUT(G). We sketch a brief outline of how to construct such an algorithm, although
a general algorithm is beyond the scope of this book. We first consider vertices of
degree n — 1, where n = |G/.

Lemma 13.24. Let U # () be the vertices of G of degree n — 1. Then U is contained
in every core of G.

Proof. Let ¢ be an endomorphism of G, and let K be a core of G such that ¢(G) =
K. Then ¢(K) = K. We can iterate ¢ sufficient times, say & times, until every
vertex u ¢ V(K) satisfies ¢*(u) € V(K). We have ¢*(G) = K. So without
loss of generality, we can replace ¢ by ¢*, or equivalently, assume that k = 1.
Let u € U. Suppose that u ¢ V(K), but that v = ¢(u) € V(K). Letw € V(K)
satisfy ¢(w) = v, which must exist, because ¢ is one-to-one acting on V' (K'). Then
uw € E(G), but ¢(uw) = v, which is impossible. It follows that U C V(K). O

Corollary 13.25. Let G be a core. Construct a graph GT by attaching a new vertex
v, adjacent to all vertices of G. Then G™ is a core.

Proof. By Lemma 13.24 the new vertex v is contained in every core of G™. Let ¢ be
an endomorphism of G*. Without loss of generality, we can assume that ¢(v) = v.
Let K be a core of GT. If K = G, the result is true, so suppose that V(K) contains
a non-empty subset of V(). As in the proof of Lemma 13.24 we can assume that
every u € V(K) has ¢p(u) € V(K). Now uv € E(G), because v is adjacent to all
of G. Hence ¢(u) # v. It follows that ¢(G) is a retract of GG, which is not possible,
because G is a core. O

We have seen previously that the odd cycles C,,, are cores. By adding one or more
new vertices to C',,, adjacent to all vertices, a sequence of cores can be constructed.

Vertices of degree zero are irrelevant to homomorphisms. Therefore the algorithm
to find an endomorphism can initially delete all vertices of degree zero. When a
graph is disconnected it is necessary to search for a homomorphism between any
two connected components. Therefore we assume a connected graph G to simplify
the problem, although the techniques used will also be applicable to disconnected
graphs as well.

If there is a vertex u with DEG(u) = 1, let u be adjacent to v. Then any vertex
w — v, where w # u, can be chosen as ¢(u). Thus vertices of degree one can be
successively eliminated.

It follows from Lemma 13.24 that every vertex u of degree |G| — 1 is in every core
K, and furthermore, we can assume that each such u is fixed by an endomorphism
¢ mapping G to K. Therefore the algorithm can assign ¢(v) = v, for all vertices of
degree |G| — 1.

If K is a core of G with ¢(G) = K, then ¢(K) = K. Similar to Lemma 13.24,

296 Graphs, Algorithms, and Optimization

we can iterate ¢ sufficient times until every vertex of K is fixed, so that there is no
loss in generality in assuming that ¢ fixes every vertex of a core K. And since ¢ ¢
AUT(G), we can assume that there is some vertex v € V(K) and some v € V(G)
such that ¢(u) = ¢(v) = v. Clearly uv ¢ E(G). Therefore once ¢(v) = v has been
assigned, the algorithm partitions V' (G) into vertices adjacent to v, and non-adjacent.

The algorithm will iteratively take all vertices v in turn, and then successively
take all suitable non-adjacent vertices u, and assign ¢(u) = ¢(v) = v, and then
recursively attempt to extend ¢ to all of V(G). Once ¢(u) = v has been assigned,
the remaining vertices adjacent to u must be mapped to vertices adjacent to v. A key
element in the search is the length of a shortest closed odd walk through any vertex.

If W is a closed walk of odd length in G, then ¢(W) is a closed walk of odd
length < ¢(TV). Therefore vertices contained in a shortest closed odd walk can only
be mapped to vertices also contained in a shortest odd closed walk. Therefore the
algorithm finds the length of the shortest closed odd walk through each vertex, and
partitions the vertices according to the length. A vertex u with a shortest closed odd
walk of length ¢ can only be mapped to vertices with a shortest closed odd walk
of length < /. For many graphs, this is a sufficiently strong constraint to enable a
computer search to find an endomorphism ¢ fairly quickly, for graphs of moderate
size.

We have seen that the question of whether there exists a homomorphism ¢ : G —
H reduces to graph coloring, when H is a clique. Therefore such a homomorphism
is also known as an H-coloring.

DEFINITION 13.9: Given graphs G and H, the problem: “is there a homomor-
phism ¢ : G — H” is known as the H-coloring problem.

In general, H-coloring problems tend to be NP-complete. In the next section it is
proved that C's-coloring is NP-complete.

Exercises

13.7.1 Show that the Petersen graph is a core.

13.7.2 The odd girth of G is 7,44, the length of a shortest odd cycle in G, if one
exists. Construct an algorithm to find the odd girth of G, and to find a
cycle of length vodq.-

13.7.3 Let H denote a path of length m. Describe an algorithm to determine
whether there is a homomorphism from a graph GG onto H.

13.7.4 Describe an algorithm to determine whether there is a homomorphism
from G onto K3 ;.

13.7.5 Show that the graph of Figure 13.8 is a core. What is its chromatic num-
ber?

13.7.6 Let W be a shortest closed walk of odd length containing vertex u, in a
graph GG. Show that W consists of two shortest paths P,, and P,,, from
u to v, and from u to w, of the same length, plus the edge vw.

Graph Colorings 297

13.7.7 Construct an algorithm to find the length of a shortest closed odd walk
through each vertex of G.

FIGURE 13.8
A possible core

13.8 NP-completeness

In this section we show that several coloring-related problems are NP-complete.

Problem 13.1: 3-Colorability
Instance: a graph G.
Question: is x(G) < 3?

We transform from 3-Sat. Consider an instance of 3-Sat containing variables
Uy, U, - . . , Un, With complements uy, us, . . ., u,. Suppose that there are m clauses,
denoted ¢y, co, . .., cn. We construct a graph G which has a 3-coloring if and only
if the instance of 3-Sat has a solution. The construction is based on the graph T'
shown in Figure 13.9. The key property of this graph is that in any 3-coloring, the
two vertices of degree two, denoted a and b, must have the same color.

FIGURE 13.9
T consists of two triangles

Three copies of this graph are now combined to produce the graph G(u;,u;)
of Figure 13.10, which is used to represent the variable u; and its complement ;.

298 Graphs, Algorithms, and Optimization

The vertices colored black must always have the same color in any 3-coloring, be-
cause they are part of a chain of graphs isomorphic to 7'. Associated with u; are two
vertices, shaded gray in Figure 13.10. And associated with u; are two vertices, one
white, and one shaded gray in Figure 13.10. We call these the u; vertices, and u;
vertices, respectively. Two useful properties of this graph are:

Lemma 13.26. In every 3-coloring of G(u;,w;), either the u; vertices have the same
color, and the u; vertices have different colors, or vice-versa. Both situations are
possible. Furthermore |AUT(G (u;,u;))| = 1.

Proof. The vertices shaded black must always have the same color, because they
are part of a chain of 7" subgraphs. It is easy to verify that every 3-coloring has the
required property, and that there is only the identity automorphism. O

FIGURE 13.10
The graph G (u;, w;)

The graph G(u;,u;) is used to relate a 3-coloring to the values of the Boolean
variables u; and w;. If the two vertices corresponding to u; have the same color,
then u; is taken to be true. If they have different colors, then u; is taken to be false.
Lemma 13.26 ensures that if u; is true, then w; is false, and vice-versa. Because
|AUT(G(u;,@;))| = 1, itis always possible to distinguish the u; vertices from the u;
vertices.

Each variable u; has a graph G(u;,w;) constructed for it. Given a clause like
¢1 = (u1 +7a +T3), a subgraph C} is constructed to represent it, as in Figure 13.11.
In general, C; consists of a triangle with three “pendant” vertices, i.e., vertices of
degree one. In any 3-coloring, the vertices of the triangle must use all three colors.
The pendant vertices each represent one of the variables contained in the clause C';,
in this case uj,u2, and us. The vertex corresponding to a variable u; or u; will
eventually have edges connecting it to the two vertices of G(u;, @;) corresponding to
that variable.

Lemma 13.27. Let C; be colored with three colors white, gray, and black. Then
there are colorings with one, two, or three pendant vertices colored white or gray.
There are no colorings with all pendant vertices colored black.

Proof. In Figure 13.11 it is obvious that u; cannot be colored black. It is easy to
verify that there are 3-colorings in which u» and/or us are also not colored black. U

We now construct a graph GG combining these pieces as follows.

Graph Colorings 299

U1

FIGURE 13.11
A subgraph C) representing a clause ¢; = (u1 + w2 + us)

e For each variable u;, a graph G(u;, u;) is constructed.
e For each clause c;, a graph C; is constructed.

o The vertices corresponding to variable u; or u; in each C; are connected to the
u;-vertices or u;-vertices, respectively, of G (u;, ;).

e Given graphs G(u;,w;) and G(u;y1,TU;y1), where u,41 represents ui, a T'
graph is used to connect the vertices labeled x of G (u;,@;) and G (wi41, Wit1)
(see Figure 13.10), by identifying a and b of T" with the z-vertex of G (u;, U;)
and of G(u;11,W;41), respectively.

The purpose of the last step is to ensure that the vertices of G(u;,u;) colored
black in Figure 13.10 have the same color in every G (u;, U;).

Theorem 13.28. G has a 3-coloring if and only if the instance of 3-Sat has a solu-
tion.

Proof. Suppose that G has a 3-coloring using white, gray, and black. Without loss
of generality, suppose that the black vertices of every G(u;, u;) as in Figure 13.10 are
all colored black. Then all u; and w; vertices are colored white or gray. Consider any
clause c; with corresponding graph C';. By Lemma 13.27, either one, two, or three of
the pendant vertices of Cj is colored white or gray. Say the vertex corresponding to
variable u; is colored white. Then the u;-vertices of G(u;, ;) must both be colored
gray. Assign the value true to this u;. Notice that u; and %, cannot both be assigned
true, by Lemma 13.26. Then each c; has at least one variable that is true, giving a
solution.

Conversely, suppose that a solution is given to the instance of 3-Sat. One of
each wu;,u; is true, and the other is false. Choose a variable u; or w; that is true.
Without loss of generality, suppose that u; = u1 and color the vertices of G(u1, 1)
as follows. The black vertices of Figure 13.10 are colored black. The u; vertices
are colored gray, and the u; vertices are colored white and gray in the unique way.

300 Graphs, Algorithms, and Optimization

Now for each clause c; containing 1, proceed as follows. Without loss of generality,
take ¢; = w1 + Uz + U3 as an example, and consider C}, as in Figure 13.11. The
vertex of C; corresponding to u; is colored white, and its adjacent triangle vertex is
colored black. The other two triangle vertices are colored white and gray, with the
adjacent pendant vertex to each colored black. If ws is true, then color the us-vertices
of G(us,us) both gray, and extend the coloring uniquely to the ua-vertices. If Uy is
false, then color the us-vertices white and gray and extend the coloring. Do the same
for the G (us, us3) graph.

Now every G(u;,w;) has been colored, where u; or @; appears in some clause
together with uy. Let U be this set of variables. Consider any clause c;, all of whose
variables are in U. At least one of the variables in c; is true, say u;, and its vertices
in G(u,, ;) have been colored. Color C; by coloring its pedant vertex adjacent to u;
in the unique way, and color its adjacent triangle vertex black. The coloring extends
to all of C; by coloring the other pendant vertices black. This produces a coloring of
all clauses whose variables are all in U.

If there are more clauses c¢; containing at least one variable of U, then for each
one, find a variable it contains with value true and color the associated C;. Continue
like this until all of G is colored. O

We conclude that a polynomial algorithm which solves 3-Colorability could also
be used to solve 3-Sat. Since 3-Sat is NP-complete, so is 3-Colorability.

Problem 13.2: Clique
Instance: a graph G and an integer k.

Question: does G have a clique with > k vertices (i.e., is @(G) > k)?

We transform from Problem 11.5.11.4 Vertex Cover. Recall that a vertex cover
in a graph GG is a subset U C V() such that every edge has at least one endpoint in
U. Given an integer k the Vertex Cover problem asks: does GG have a vertex cover
with <k vertices?

If U is a vertex cover, the set U = V(G) — U is an independent set in G. Hence
U induces a clique in G. If G has n vertices, and U has > m vertices, then U is
a vertex cover with < n — m vertices. Thus, given an instance of the Vertex Cover
problem, we construct @G, and ask whether it has a clique with at least n —m vertices.
If the anwer is yes, then GG has a vertex cover with at most m vertices. We conclude
that a polynomial algorithm which solves Clique could also be used to solve Vertex
Cover. It follows that Clique is NP-complete.

Problem 13.3: Chromatic Index
Instance: a graph G.
Question: is X' (G) = A(G)?

There is an ingenious construction of Holyer proving that it is NP-complete to

Graph Colorings 301

determine whether a 3-regular graph is of Class I or II. Holyer’s construction is based
on the graph shown in Figure 13.12, which he calls an inverting component, or in-
verter. The inverter was originally discovered by Loupekine. It consists of two 5-
cycles sharing two common consecutive edges. Edges a, b, ¢, d, e are attached to five
of the vertices.

FIGURE 13.12
The inverter and its schematic representation
(Used with permission of the STAM Journal of Computing)

A 5-cycle requires at least three colors. Consider any 3-edge-coloring of the in-
verter. Apply the parity condition (Lemma 11.13) to the set of seven vertices shown
in the diagram. We determine that in any 3-edge coloring, that three of the five edges
a, b, ¢, d, e must have the same color, and that the other two have distinct colors, since
5 can only be written as 3 4+ 1 + 1, as a sum of three odd numbers. We then find that
a, e, and c cannot all have the same color, so that in any 3-edge-coloring, either a and
b have the same color, and ¢, d, e have three distinct colors; or by symmetry, ¢ and d
have the same color, and a, b, e have three distinct colors. The inverter is represented
schematically in Figure 13.12, as a circle with two pairs of inputs (or outputs) and a
fifth input (or output).

Holyer transforms from 3-Sat to Chromatic Index. Consider an instance of
3-Sat with clauses ¢y, ¢a, . . ., ¢y, involving variables uy, us, . . . , u, and their com-
plements u;. Each variable is either true or false. A value of true is represented in
the edge coloring of an inverter, as an input pair of the same color. A value of false
is represented as an input pair of different colors. In every 3-edge-coloring of the
inverter, a value of true is inverted to a value of false, or vice versa.

A clause of three variables, for example, (u; + u; + Uy), is represented by three
inverters tied together by a 7-cycle, as shown in Figure 13.13. Note the edges marked
a,b, x,y. Itis easy to see that a and b have the same color if and only if x and y have
the same color. Because of the 7-cycle, at least one of the three inverters must have
two outside inputs the same color. This will be used to indicate that at least one of
the variables u;, u;, and 2y, in the above clause must have a value of true (i.e., every
clause will be satisfied).

Now a given variable u;, and/or its complement u;, will appear in several clauses.
It must have the same value in all clauses. In order to ensure this, the 7-cycles cor-

302 Graphs, Algorithms, and Optimization

FIGURE 13.13
The representation of a clause ¢1 = (u; + u; + Uy) of 3-Sat
(Used with permission of the STAM Journal of Computing)

responding to clauses containing u; or u; are also tied together. Holyer constructs a
cycle of inverters, with two inverters for each occurrence of u; or u; in the clauses.
For example, if u; and w; occur a total of four time in clauses ¢y, c2, c3, ¢4, the cycle
of Figure 13.14 is constructed. Each pair of inverters corresponds to a clause contain-
ing u; or ;. Notice that there are a total of six inputs connecting a pair of inverters to
the rest of the graph. By the parity lemma, if this graph is 3-edge-colored, the possi-
ble color combinations for the six inputs are 6 +0+ 0,4+ 2+ 0, or 2+ 2 + 2. If one
pair of external inputs represents true, then by the properties of an inverter, the oppo-
site pair also represents true. Then the parity lemma implies that the remaining two
inputs also represent true. It follows that all pairs of inverters in the diagram have all
external input pairs representing true. Consequently, if any one pair represents false,
they all represent false. This mechanism is used to guarantee that u; has the same
value in all clauses.

We now put these ideas together. We are given an instance of 3-Sat. For each
clause c;, three inverters are tied together using a 7-cycle, as in Figure 13.13. For
each variable u;, a cycle of pairs of inverters is constructed as in Figure 13.14. The
input corresponding to ¢; in this structure is connected to the input corresponding
to u; in the 7-cycle component corresponding to ¢;. If the clause contains %; rather
than u;, then another inverter is placed between the two before connecting. The result
is a graph containing a subgraph for each u; and for each c;, tied together through
their inputs. There are still a number of inputs not connected to anything. In order to
complete the construction and have a 3-regular graph, a second copy of this graph
is constructed. The corresponding unused inputs of the two copies are connected to-
gether. The result is a 3-regular graph G. In any 3-edge-coloring of GG, every clause
is guaranteed to have at least one variable representing true. All occurrences of each

Graph Colorings 303

FIGURE 13.14
A pair of inverters for each clause containing u; or w;
(Used with permission of the STAM Journal of Computing)

variable are guaranteed to have the same value. The result is an assignment of values
to the variables solving the 3-Sat instance. We conclude that if we could determine
whether x'(G) = 3, we could solve 3-Sat. Since 3-Sat is NP-complete, we con-
clude that Chromatic Index is also NP-complete.

Problem 13.4: (C5-Coloring.
Instance: a graph G.

Question: is there a homomorphism ¢ : G — Cy ?

We transform from 5-Colorability, which is known to be NP-complete. We show
that if C5-Coloring can be solved in polytime, then a C coloring of GG can be used to
construct a 5-coloring of G. Let the vertices of C; be {v1, va, v3, v4, v5}, with edges
v;V;4+1, Where vg is taken to mean v;. Let G be a graph to be 5-colored. Transform
G into a new graph G™* by subdividing each edge of G with two new vertices, so
that each edge of G becomes a path of length three in G*. An example is shown in
Figure 13.15, using G = K, where the vertices of K, are shaded. Suppose that a
homomorphism ¢ : G* — C'5 has been found. Let V; denote the vertices of G* such
that ¢(V;) = v;. Color the vertices of V(G) N V; with color . We show that this is
a proper 5-coloring of GG. Let uv be an edge of GG. In G*, the shortest uv-path has

304 Graphs, Algorithms, and Optimization

length three. It must be mapped by ¢ to a walk of odd length < 3 in C5. But C5 has
girth five. Therefore ¢(u) # ¢(v). It follows that this is a proper 5-coloring of G.

Conversely, given any proper 5-coloring of GG, we construct a homomorphism
¢ : G* — (5 mapping the vertices of color 7 in G to v;. Let uv be an edge of G,
and suppose that u has color 1. The same argument will apply to all other colors. If
v has color 2, then the uv-path in G* can be mapped to the walk v;vov v2 in Cs. If
v has color 3, then the uv-path in G* can be mapped to the walk vjvsv4v3 in Cs.
A similar argument holds for the other cases, since C5 has a path of length three
connecting any two non-adjacent vertices. Every vertex of G* is mapped to a vertex
of C5. Therefore the homomorphism ¢ exists if and only if G can be 5-colored.

FIGURE 13.15
A transformation of K4

13.9 Notes

The DEGREESATURATION algorithm is from BRELAZ [25]. A very good paper on
the limitations of the sequential algorithm is JOHNSON [95]. A very readable survey
of chromatic polynomials appears in READ and TUTTE [145]. See also TUTTE [176],
where the word chromial is coined for chromatic polynomial. The proofs of the un-
colored edge lemma and Ore’s lemma (Lemmas 13.15 and 13.16) are based on those
of BERGE [14]. A very efficient edge-coloring algorithm based on Vizing’s theorem
was developed by ARJOMANDI [8]. The edge-coloring algorithm presented here is
based on Vizing’s original algorithm VIZING [184]. A study of Class I and Class
II graphs can be found in WALLIS [186]. A great source of information on graph
homomorphisms is the book by HELL and NESETRIL [82]. The proof of the NP-
completeness of C5-Coloring is based on their proof. In a classic paper [96], KARP
presents 21 basic problems, and proves they are NP-complete. The proof of the NP-
completeness of Chromatic Index presented here is based on HOLYER [86]. Fig-
ures 13.12, 13.13, and 13.14 are modified diagrams based on those appearing in
Holyer’s paper. They are used with the permission of the STAM Journal of Comput-

ing.

14
Planar Graphs

14.1 Introduction

A graph G is planar if it can be drawn in the plane such that no two edges intersect,
except at a common endpoint. The vertices of G are represented as points of the
plane, and each edge of GG is drawn as a continuous curve connecting the endpoints
of the edge. For example, Figure 14.1 shows a planar graph (the cube), and a planar
drawing of the same graph. Although the cube is planar, the drawing on the left is not
a planar drawing. These drawings both have straight lines representing the edges, but
any continuous curve can be used to represent the edges. We shall often find it more
convenient to represent the vertices in planar drawings as circles rather than points,
but this is just a drawing convenience.

FIGURE 14.1
Two drawings of the cube

305

306 Graphs, Algorithms, and Optimization

14.2 Jordan curves

Any closed, continuous, non-self-intersecting curve C' drawn in the plane divides the
plane into three regions: the points inside C', the points outside C', and the points of
C itself. This is illustrated in Figure 14.2. We are relying on an intuitive understand-
ing of the words “plane”, “curve”, “continuous”, “region”, etc. Exact mathematical
definitions of these ideas would require a lengthy excursion into topology. An intu-
itive understanding should suffice for this chapter. Notice that the interior of C, de-
noted INT(C'), is bounded, because it is enclosed by C, and that the exterior, denoted
EXT(C'), is unbounded, because the plane is unbounded. If « is any point in INT(C'),
and v € EXT(C), then any continuous curve with endpoints u and v must intersect
C' in some point. This fact is known as the Jordan curve theorem. It is fundamental
to an understanding of planarity.

DEFINITION 14.1: A closed, continuous, non-self-intersecting curve C' in a sur-
face is called a Jordan curve.

FIGURE 14.2
The Jordan curve theorem

Let G be any graph. We would like to construct a planar embedding of G, if
possible. That is, we want to map the vertices of G into distinct points in the plane,
and the edges of GG into continuous curves that intersect only at their endpoints.
Let v denote such a mapping. We write G to indicate the image of G' under the
mapping . Let C' be any cycle in G. If ¢ is a planar embedding of G, then v
maps C onto C'¥, a Jordan curve in the plane. For example, consider G = K. Let
V(K5) = {v,w,z,y, z}. If K5 were planar, the cycle C' = (x,y, z) must embed as
a Jordan curve C¥ in the plane. Vertex u is either in INT(C'¥) or EXT(C¥). Without
loss of generality, we can place v in INT(C?), as in Figure 14.3. The paths ux, uy,
and uz then divide INT(C?) into three smaller regions, each bounded by a Jordan
curve. We cannot place v in EXT(C'¥), as we then cannot embed the path uv without
crossing C¥. We cannot place v in any of the smaller regions in INT(C?), for in

Planar Graphs 307

each case there is a vertex outside the Jordan curve bounding the region that cannot
be reached. We conclude that K5 cannot be embedded in the plane. K5 is a non-
planar graph. We state this as a lemma.

FIGURE 14.3
Embedding K5

Lemma 14.1. K5 and K3 3 are non-planar graphs.

Proof. The proof for K5 appears above. The proof for K5 3 is in Exercise 12.3.1. [

14.3 Graph minors, subdivisions

The graphs K5 and K3 3 are special graphs for planarity. If we construct a graph from
K5 by replacing one or more edges with a path of length > 2, we obtain a subdivision
of K5. We say that the edges of K5 have been subdivided.

DEFINITION 14.2: Given a graph G, a subdivision of G is any graph obtained
from G by replacing one or more edges by paths of length two or more.

Itis clear that any subdivision of K5 or K3 3 is non-planar, because K5 and K3 3
are non-planar. It is apparent that vertices of degree two do not affect the planarity of
a graph. The inverse operation to subdividing an edge is to contract an edge with an
endpoint of degree two.

DEFINITION 14.3: Graphs G1 and G5 are topologically equivalent or homeo-
morphic, if Gy can be transformed into G5 by the operations of subdividing edges
and/or contracting edges with an endpoint of degree two.

308 Graphs, Algorithms, and Optimization

We will denote by T'K5 any graph that is topologically equivalent to K. Simi-
larly, T'K3 3 denotes any graph that is topologically equivalent to K3 5. In general,
T K denotes a graph topologically equivalent to , for any graph K. If G is a graph
containing a subgraph T'K5 or T'K3 3, then G must be non-planar. Kuratowski’s
theorem states that this is a necessary and sufficient condition for a graph to be non-
planar. We will come to it later.

If G is a planar graph, and we delete any vertex v from G, then G — v is still
planar. Similarly, if we delete any edge uv, then G — ww is still planar. Also, if we
contract any edge uv of GG, then G - uv is still planar. Contracting an edge can create
parallel edges or loops. Because parallel edges and loops do not affect the planarity
of a graph, loops can be deleted, and parallel edges can be replaced by a single edge,
if desired.

DEFINITION 14.4: Let H be a graph obtained from GG by any sequence of delet-
ing vertices and/or edges, and/or contracting edges. H is said to be a minor of G.

Notice that if G contains a subgraph T'K5, K5 is a minor of (G, even though K5
need not be a subgraph of GG. For we can delete all vertices and edges which do not
belong to the subgraph T K5, and then contract edges to obtain K. Similarly, if G
has a subgraph T'K3 3, then K3 3 is a minor of G, but need not be a subgraph. Any
graph having K5 or K3 3 as a minor is non-planar. A special case of minors is when
a graph K is subdivided to obtain G.

DEFINITION 14.5: Let G contain a subgraph that is a subdivision of a graph K,
where §(K') > 3. Then K is said to be a topological minor of G.

Lemma 14.2. If H is a minor of K, and K is a minor of G, then H is a minor of G.
Proof. This follows from the definition. |

A consequence of this lemma is that the relation of being a graph minor is a
partial order on the set of all graphs.

The inverse operation to contracting an edge whose endpoints have degree three
or more is splitting a vertex.

DEFINITION 14.6: Let GG be any graph with a vertex v of degree at least three.
Let v be adjacent to vertices {uy,us,...,ug}. Construct a graph G} by split-
ting vertex v: replace v with two new vertices v; and wvo. Join vy to 7 > 2 of
{u1,u9,...,ur}, and join vy to f2 > 2 of them, such that together, v; and vo are
adjacent to all of these vertices. Then join v; to vs.

In any graph G, resulting from splitting vertex v, v; and v, both have degree
at least three, and Gj -vive = G, that is, splitting vertex v is an inverse operation
to contracting the edge vyvs. Notice that G is a minor of Gj . Splitting a vertex is
illustrated for G = K in Figure 14.4. The following lemma shows that K5 and K3 3
are very closely related graphs.

Planar Graphs 309

U1 V2

FIGURE 14.4
Splitting a vertex of K5

Lemma 14.3. Let G be any graph obtained by splitting a vertex of Ks. Then G
contains a subgraph T K3 s.

Proof. Let vy and v, be the two vertices resulting from splitting a vertex of K. Each
has at least degree three. Consider v . It is joined to vs. Together, v; and vy are joined
to the remaining four vertices of G, and each is joined to at least two of these vertices.
Therefore we can choose a partition of these four vertices into z, y and w, z such that
vy — «,y and vo — w, z. Then G contains a K3 3 with bipartition v;, w, z and
ve, T, ¥y, as illustrated in Figure 14.4. O

In the previous example, it was convenient to form a minor K5 of G by first
deleting a subset of vertices and/or edges, and then contracting a sequence of edges
to obtain K5. All minors of GG can be obtained in this way, as shown by the following
lemma:

Lemma 14.4. Suppose that G has a minor H. Then H can be obtained by first
deleting a subset of vertices and/or edges of G, and then contracting a sequence of
edges.

Proof. LetGy, G, ..., G} be asequence of graphs obtained from G, where Gg = G
and G = H, such that each G;, where ¢ > 1, is obtained from G;_; by deleting a
vertex, deleting an edge, or contracting an edge. If all deletions occur before contrac-
tions, there is nothing to prove. So let G; be the first graph obtained from G;_; by the
deletion of an edge or vertex. Without loss of generality we can assume that ¢ > 2,
and that G1, ..., G;_, were obtained by contracting edges ey, ..., e;_1, where e; is
anedge of G;_1. Let e;—1 = vivs.

Suppose first that G; = G;_1 — v, for some vertex v. If v is the result of identify-
ing vy and v when e;_; is contracted, then we can replace GG;_1, (G; in the sequence
of graphs by G;_,, G}, where G;_; and G/, are obtained by deleting vy, and then v
from G;_o. If v is not the result of identifying v and v, we can interchange the or-
der of G; and GG;_; by deleting v before contracting e;_1. In each case, we obtain an

310 Graphs, Algorithms, and Optimization

equivalent sequence of graphs with only < — 1 edge contractions preceding a deletion.
The number of edges contracted does not increase, and the final result is still H.
Suppose now that G; = G;_1 — uv, for some edge uv. We know that G;_; =
Gi_o - e;—1. We can reverse the order of the two operations, and delete uv before
contracting e;_1, thereby replacing G;_1, G; with graphs G’,_,, G;. Again we ob-
tain an equivalent sequence of graphs with only ¢ — 1 edge contractions preceding
a deletion. We repeat this as many times as required until all deletions precede all
contractions. O

It follows that when constructing a minor H of graph G, we can start with a
subgraph of GG and apply a sequence of edge-contractions only to obtain H. Often
this is used as the definition of graph minor.

Consider the situation when a vertex v of degree three in G is split into vy ve. If
v is adjacent to vertices x,y, z in G, then in Gj, vy is adjacent to at least two of
x,Y, 2, and via vy there is always a path from v to the third vertex. This is used in
the following theorem, and also in Exercise 12.3.5.

Theorem 14.5. If G has a minor K3 3, then G contains a subgraph T K5 3. If G has
a minor Ks, then G contains a subgraph T K5 or T K3 3.

Proof. Suppose that G has a minor K5 or K3 3. If no edges were contracted to ob-
tain this minor, then it is also a subgraph of G. Otherwise let Gy, G1,...,Gy be a
sequence of graphs obtained from (G, where G is a subgraph of GG, edge e; of G;_1
is contracted to obtain G;, and G}, is either K5 or K3 3.

If each e; has an endpoint of degree two, then we can reverse the contractions
by subdividing edges, resulting in a T'K5 or T K3 3 in G, as required. Otherwise
let e; be the edge with largest ¢, with both endpoints of at least degree three. All
edges contracted subsequent to G; have an endpoint of degree two, so that G; has
a subgraph T'K5 or T K3 3. G;—1 can be obtained by splitting a vertex v of G;. If v
is a vertex of T'K’5, then by Lemma 14.3, G, contains T'K3 3. If v is a vertex of
T K3 3, then G also contains T'K5 3. If v is a vertex of neither T' K5 nor T' K3 3,
then G;_1 still contains T'K5 or T K3 3. In each case we find that Gy must have a
subgraph T'K5 or T K3 3. O

DEFINITION 14.7: Given a subgraph T K of G, equal to T' K5 or T K3 3. The
vertices of T'K which correspond to vertices of K5 or K3 3 are called the corners of
T K. The other vertices of T'K are called inner vertices of T K.

Suppose that G is a non-planar graph with a subgraph T'Ks. Let vy, v, ..., vs be
the corners of T'K5. Each v; has degree four in 7' K5; the inner vertices of 7' K5 have
degree two. Let P;; be the path in T'K’5 connecting v; to v;. Consider the situation
where G contains a path P fromz € P;j toy € Py, where x and y are inner vertices.
This is illustrated in Figure 14.5, where a vertex © € P,5 is connected by a path to
y € P»3. We see that in this case, G contains a T K3 3.

Theorem 14.6. Let G contain a subgraph T K5, with corners vy, v, . .., vs con-
nected by paths P;;. If G has vertices x and y such that is an inner vertex of P;j,
andy € Py buty & P;;, where P;j # Py, then G contains a T K3 3.

Planar Graphs 311

U1

Vs (%)

V4 U3

FIGURE 14.5
TK5 and TK3’3

Proof. One case of the proof is illustrated in Figure 14.5. The remaining cases are
done in Exercise 12.3.2. O

A consequence of Theorem 14.6 is that nearly any graph that has a subgraph 7' K5
also has a subgraph T'K’3 3. This theorem will be useful in embedding algorithms
for non-planar graphs in Chapter 15. It also permits a recursive characterization of
graphs which contain 7" K5 but not T'K3 3.

Exercises

14.3.1 Show that K3 3 is non-planar, using the Jordan curve theorem.
14.3.2 Complete the proof of Theorem 14.6.

14.3.3 Characterize the class of 2-connected graphs which contain 7' K5 but not

TKs3.

14.3.4 Construct a O(e) algorithm which accepts as input a graph G and a sub-
graph T'K5 with corners vy, v, ...,vs, and finds a T'K3 3 containing
V1, Vg, ..., Us if one exists.

14.3.5 Let K be a graph such that A(K) < 3. Show that K is a minor of G if
and only if G has a subgraph T K.

14.4 Euler’s formula

Let GG be a connected planar graph with n vertices and ¢ edges, embedded in the
plane by a mapping 1. If we remove all the points of the image G from the plane,
the plane falls apart into several connected regions. This is equivalent to cutting the

312 Graphs, Algorithms, and Optimization

plane along the edges of G¥. For example, if we cut the plane along the edges of the
planar embedding of the cube in Figure 14.1, there are six regions, one of which is
unbounded.

DEFINITION 14.8: The faces of an embedding GV are the connected regions
that remain when the plane is cut along the edges of G¥. The unbounded region is
called the outer face.

Notice that if uv is an edge of G contained in a cycle C, then (uv)¥ is a portion
of a Jordan curve C'¥. The face on one side of (uv)¥ is in INT(C'*) and the face on
the other side is in EXT(C'¥). These faces are therefore distinct. But if uv is an edge
not contained in any cycle, then it is a cut-edge, and the same face appears on each
side of (uv)¥. For example, in a tree, every edge is a cut-edge, and there is only one
face, the outer face.

We view the plane as an oriented surface, which can be viewed from “above” or
“below”. Given an embedding G in the plane, we will view it consistently from one
side, which we can assume to be “above” the plane. If we then view an embedding
GY from “below” the surface, it will appear to have been reversed. Therefore we
choose one orientation (“above”) for all embeddings.

The boundary of a face F' of an embedding GV is a closed curve in the plane. It
is the image under 1/ of a closed walk C in G. We can walk along C? so that the
interior of C'¥ is to our right-hand side. We will call this a clockwise direction and
thereby assign an orientation to C. We shall always choose a clockwise orientation
for traversing the boundaries of faces, so that the face F' will be to our right-hand
side.

DEFINITION 14.9: An oriented closed walk C' in G bounding a face of G¥ is
called a facial walk of G¥ (or facial cycle if C'is a cycle).

Notice that if C' contains a cut-edge wwv, then wv will appear twice on C. The
two occurrences of uv on C' will have opposite orientations. All other edges appear
at most once on C'. As we will mostly be interested in 2-connected graphs G, facial
walks will almost always be cycles.

DEFINITION 14.10: The degree of a face F' is DEG(F), the length of its facial
walk.

Notice that a cut-edge appearing on the facial walk of F' will contribute two to
its degree.

Theorem 14.7. (Euler’s formula) Let G be a connected planar graph with n ver-
tices and € edges. Let G¥ have f faces, where 1 is a planar embedding of G. Then

n+f—e=2

Proof. The proof is by induction on € — n. Every connected graph has a spanning
tree. If e —n = —1, then G is a tree. It is clear that every tree has a planar embedding.
Because a tree has no cycles, there is only one face, the outer face, so f = 1. Euler’s
formula is then seen to hold for all embeddings of G.

Planar Graphs 313

Now suppose that e — n = k > 0. Choose any cycle C' in G, and any edge
uv € C. Let the faces on the two sides of (uv)¥ be F; and Fy. Consider G’ =
G — wv, with n’, &’ and f’ vertices, edges, and faces, respectively. Clearly n’ = n
and &’ = ¢ — 1. G’ is connected and 1) is a planar embedding of it. One of the faces
of G'¥ is Fy U Fy. The other faces of G’% are those of G¥. Therefore f' = f — 1.
Euler’s formula follows by induction. O

FIGURE 14.6
Two embeddings of a graph

It follows from Euler’s formula that all planar embeddings of a connected graph
G have the same number of faces. Hence we will refer to f(G) as the number of
faces of (G, without specifying an embedding. In Figure 14.6 there is an example of
a graph with two distinct embeddings. The embeddings have the same number of
faces, but the actual faces and their boundaries are different.

14.5 Rotation systems

Once we have an embedding G, we can choose any vertex v € V(G), and walk
around v? in a small, clockwise circle. We encounter the incident edges in a certain
cyclic order. For example, in the embedding on the left of Figure 14.6, the edges
incident on vertex 1 have the clockwise cyclic order (12,17,18,16). Those inci-
dent on vertex 2 have the order (23,27, 21). Those incident vertex 3 have the order
(34, 37,32), etc.

In Figure 14.6, the edges are drawn as straight lines. It is conceivable that the
embedding) could assign wildly behaved functions, like sin(1/x) to the curves
representing the edges of G. Each edge may then be encountered many times when
walking around ¥ in a small circle, no matter how small the circle is chosen. We
will assume that this does not occur, and that) assigns well behaved functions (like
straight lines or gradual curves) to the edges. In fact, for graphs embedded on the

314 Graphs, Algorithms, and Optimization

plane, we shall see that it is always possible to draw the edges as straight lines.
For a more complete treatment, the reader is referred to the books of GROSS and
TUCKER [74] or MOHAR and THOMASSEN [126].

DEFINITION 14.11: Let G¥be an embedding in the plane of a loopless con-
nected graph G. A rotation system p for G is a mapping from V(G) to the set of
permutations of E(G), such that for each v € V(G), p(v) is the cyclic permutation
of edges incident on v, obtained by walking around v¥ in a clockwise direction.

Notice that if G has a loop vv, then as we walk around ¥, we will cross the
loop twice. Therefore p(v) will contain vv twice. In order to extend the definition
to be correct for graphs with loops, we must ensure that for each loop vv, that p(v)
contains two corresponding “loops” (vv); and (vv)s.

Suppose we are given the rotation system p determined by an embedding G¥. We
can then easily find the facial cycles of G¥. The following fundamental algorithm
shows how to do this. Let uw € V(G), and let e be any edge incident on u. We are
assuming that given an edge ¢/ = uw in p(u), we can find the corresponding edge
e” = vuin p(v). A data structure of linked lists can do this easily in constant time.
If G is a simple graph, then the rotation system is completely specified by the cyclic
adjacency lists. Given a planar embedding GV, we will assume that the adjacency
lists are always given in cyclic order, so that the rotation system p corresponding to
1) is available.

Algorithm 14.5.1: FACIALCYCLE(GY, u, e)

Given an embedding G¥ with corresponding
comment: ¢ rotation system p and vertex v with incident edge e,
find the facial cycle containing e.
e e
repeat
comment: ¢’ currently equals uwv, for some v
v < other end of ¢’
e’ + edge of p(v) corresponding to e’
comment: ¢’ currently equals vu
e’ + edge preceding ¢’ in p(v)
U<—v

untile’ = ¢

Lemma 14.8. The sequence of edges traversed by FACIALCYCLE(GY , u, €) forms
the facial cycle of the face to the right of e¥.

Proof. Let I be the face to the right of ¢¥. Let e = uv. As we walk along e¥ from
u? to v¥, the face F is to our right-hand side. When we reach ¥, we are on the
image of an edge vu in p(v). Because p(v) has a clockwise cyclic order, the next
edge in the facial cycle is the one preceding vu in p(v). This is the one chosen by the

Planar Graphs 315

algorithm. The algorithm repeats this process until it arrives back at the starting edge
e. O

Algorithm FACIALCYCLE() is very simple, but it is tremendously important. It is
used in nearly all algorithms dealing with graph embeddings. Notice that its running
time is O(¢) and that it can be used to find all the facial cycles of G¥ in O(¢) time.

Corollary 14.9. The facial cycles of an embedding G¥ are completely determined
by its rotation system.

Proof. All facial cycles can be determined by executing Algorithm
FACIALCYCLE(G‘”, u, e), such that each edge e is visited at most twice, once for
the face on each side of e. The rotation system is the only information about v that
is needed. O

Thus, it turns out that planar embeddings are essentially combinatorial, as the
facial cycles of an embedding are completely determined by the set of cyclic permu-
tations of incident edges of the vertices. Later we will see that for 3-connected planar
graphs, the rotation system is unique, up to orientation. If p is the rotation system
corresponding to an embedding 1, we will often write G? instead of G¥. We call
GY a topological embedding, and GP a combinatorial embedding. The combinato-
rial embedding determines the facial cycles of the embedding, but it does not give an
actual drawing of G in the plane.

DEFINITION 14.12: A plane map is a combinatorial embedding G?, where p is
a rotation system for an embedding of G in the plane.

14.6 Dual graphs

Consider an embedding G, illustrated by the cube in Figure 14.7. Let its faces be
listed as { F}, Fy, ..., Fy}. Two faces F; and Fj are adjacent if they share a common
edge (uv)¥ on their boundaries. We can construct a planar graph G¥* by placing a
new vertex f; in each region Fj, fori = 1,2,..., f. Whenever two faces F; and F)
share an edge (uv)"/’ on their boundaries, we draw a continuous curve from f; to f;,
passing through (uv)? in exactly one interior point, and intersecting G¥ in only this
point. This is illustrated for an embedding of the cube in Figure 14.7. We call G¥* a
planar dual of G¥.

Lemma 14.10. Let GV be a planar embedding with a planar dual GV*. Let GV**
be any planar dual of G¥*. Then G¥** = G¥.

Proof. Let the faces of G¥ be I}, Fy, ..., F¢, and let f; be the vertex of GY¥* cor-
responding to F;. Consider any vertex u of G and its cyclic permutation p(u) =
(uvy, uva, . . ., uvg) of incident edges. Each edge (uv,)¥ separates two faces F; and

316 Graphs, Algorithms, and Optimization

F}, and so is crossed by a curve connecting f; to f;. As we successively take the
edges uvy of p(u), we traverse these curves, thereby constructing a facial bound-
ary of G¥*. Vertex u¥ is contained in the region interior to this facial boundary.
We conclude that each face of G¥* contains exactly one «Y, and that the edges
(uvg)? are curves connecting the vertices u¥ and v} located inside the faces of G¥*.
That is, the planar dual construction applied to G¥* gives back G¥. Equivalently,
GY** =2 GY. O

FIGURE 14.7
Constructing a dual graph

Now the adjacencies of the planar dual are determined completely by common
edges of the facial cycles of G¥, and these are determined by the rotation system p
of GY. Therefore we define the combinatorial planar dual in terms of the rotation
system.

Planar Graphs 317

DEFINITION 14.13: Let p be the rotation system for GG corresponding to a planar
embedding 1. Let the facial cycles of GP be F' = {F, F5,..., Fy}. The combina-
torial planar dual of GP is denoted GP*. The vertex set of GP* is {Fy, Fy, ..., Ff}.
The edges of GP* are defined by a rotation system, also denoted p, and given as
follows. Consider a facial cycle

Fi — (’U17/027"'7/Uk1)7

traversed in a clockwise direction. Each edge vyv,4+1 is contained in exactly two
facial cycles, which are adjacent in GP* . As we walk along the facial cycle, the face
corresponding to F; appears on the right-hand side of (vyv,41)¥. On the left-hand
side is the face corresponding to Fy/, where Fy is the unique facial cycle containing
edge ve4+1v¢. We then take

p(F;) = (Fv, Fory oo Fyr).

It is easy to see that F;F; occurs in p(F;) if and only if F;F; occurs in p(F}).
Thus the definition is valid. If F; contains a cut-edge uv, then the same face occurs
on both sides of (uv)¥. GP* will then contain a loop F; F;. Because uv appears twice
on the facial cycle, F; F; will occur twice in p(F}).

The graph GP* constructed by this definition is always isomorphic to the planar
dual G¥* constructed above, because of the correspondence between faces and facial
cycles. Therefore the rotation system constructed for GP* always corresponds to a
planar embedding G'¥*. It follows from the Lemma 14.10 that GP** = GP.

Now let GP denote a combinatorial planar embedding of G, and let
{F1, F», ..., Fy} be the facial cycles of G. The degree of F; is DEG(F;), the length
of the walk. Let GP* be the dual of GP, and write n*,c*, and f* for the numbers of
vertices, edges, and faces, respectively, of GP*.

f
Lemma 14.11. Y DEG(F;) = 2¢(G).
i=1
Proof. Each edge uv of G is incident on two faces of GP. O

Lemma 14.12. n* = f, f* =n, ande* = ¢.

Proof. n* = f follows from the definition of GP*. Because GP** = GP, we have
f* = n. Each edge of GP* corresponds to exactly one edge of G”, and every edge of
GP corresponds to exactly one edge of GP*. Therefore ¢* = . |

318 Graphs, Algorithms, and Optimization

Algorithm 14.6.1: CONSTRUCTDUAL(GP)

Given a graph G with a planar rotation system p,

comment: . .
{construct the combinatorial dual GP*.

nFaces < 0
for all edges uv
do FaceNumber(uv) < 0
for all vertices u
for each wv in p(u)
if FaceNumber(uv) = 0
nFaces < nFaces + 1
do then traverse the facial cycle I to the right of uv
using FACIALCYCLE(G?, u, uv) and store
nFaces in the FaceNumber of each edge of F'
we have numbered all the faces

comment:
{now construct the edges of the dual

for all vertices u
for each wv in p(u)
i < FaceNumber{uv)
if face ¢ has not been traversed yet
traverse the facial cycle F' to the right of uv

do using FACIALCYCLE(G?, u, uv),
then < and for each edge zy of F

let j = FaceNumber(yz) in p(y)
append ij to p(i) in GP*

do

Algorithm 14.6.1 is a simple algorithm to construct the dual in O(g) time. We
assume that the faces of G? are numbered 1,2, ..., f; that the rotation system p is
represented as cyclic linked lists; and that the linked list node corresponding to uv
in p(u) contains a field called the FaceNumber, used to indicate which face of G?
is on the right-hand side of uv as it is traversed from u to v. We will denote this by
FaceNumber(uv), although it is not stored as an array. We will also use a variable
nFaces to count the faces of GP.

Algorithm 14.6.1 uses FACIALCYCLE() (Algorithm 14.5.1) to walk around the
facial cycles of GP and number them. Notice that FACIALCYCLE() only requires
the rotation system p rather than the topological embedding . Each edge of G is
traversed exactly twice, taking a total of O(e) steps. It then traverses the facial cycles
again, constructing the rotation system of G?*, using the face numbers which were
previously stored. This again takes O(e) steps. Thus, the dual graph is completely
determined by the combinatorial embedding G?.

Planar Graphs 319

14.7 Platonic solids, polyhedra

The cube is a 3-regular planar graph whose faces all have degree four. So its dual is
4-regular. It can be seen from Figure 14.7 that the dual of the cube is the octahedron.
Let GG be a connected k-regular planar graph whose dual is ¢-regular, where &, £ > 3.
These graphs are called graphs of the Platonic solids. Then kn = 2¢ and {f = 2¢.
Substituting this into Euler’s formula and dividing by ¢ gives

1 2

+

1 1 n
E ¢ 2 ¢
If we consider graphs with € > 4 edges, we have
1 1

Iy
PREV

1

5 <
As the number of integers satisfying this inequality is limited, this can be used to find
all such graphs. They are the graphs of the regular polyhedra — the tetrahedron, cube,
octahedron, dodecahedron, and icosahedron.

In general, a polyhedron is a geometric solid whose faces are polygons, that is,
regions of a plane bounded by a finite sequence of line segments. Each edge of a
polyhedron is common to exactly two polygonal faces. So if we consider an edge
uvy incident on a vertex u, there are two polygons, P; and P» incident on uv;.
Now P, has two edges incident on u. Let the other be uwv,. But this edge is also
incident on two polygons, P, and P5. Because P5 has two edges incident on u, we
obtain another edge uwvs, etc. Continuing in this way, we get a sequence v1, va, . . . of
vertices adjacent to u, until we return to P;.

DEFINITION 14.14: A polyhedron is a connected collection of polygons such
that

1. Each edge is contained in exactly two polygons.

2. Polygons do not intersect, except on a common edge.
3. Any two polygons intersect in at most one edge.
4

The polygons incident on a vertex form a single cycle.

The fourth condition is to prevent a polyhedron created by identifying two ver-
tices of otherwise disjoint polyhedra.

DEFINITION 14.15: The skeleton of a polyhedron is the graph whose vertices are
the vertices of the polyhedron, such that vertices v and v are adjacent in the graph if
and only if wv is an edge of the polyhedron.

DEFINITION 14.16: A regular polygon, denoted {p}, is a planar polygon with
p sides all of equal length. A regular polyhedron, denoted {p, ¢}, is a polyhedron

320 Graphs, Algorithms, and Optimization

whose faces are polygons {p}, such that exactly ¢ polygons are incident on each
vertex.

The symbols {p} and {p, ¢} are called the Schldfli symbols for the polygon and
polyhedron, respectively. Notice that given a vertex u of a regular polyhedron {p, ¢},
the midpoints of the edges incident on « form a regular polygon {¢}. This polygon
corresponding to vertex w is called the vertex figure of w.

A polyhedron is convex if its interior is a convex region; that is, given any two
points P and @ in the interior, the line segment connecting P to () is completely
contained inside the polyhedron. There is a remarkable theorem of Steinitz charac-
terizing the skeletons of convex polyhedra.

Theorem 14.13. (Steinitz’s theorem) A graph G is the skeleton of a convex polyhe-
dron if and only if G is planar and 3-connected.

A proof of Steinitz’s theorem can be found in the book by GRUNBAUM [76] or
ZIEGLER [196]. It is too lengthy to include here.

Exercises

14.7.1 Find the planar dual of the line graph of K. Find the line graph of the
cube, and find its planar dual.

14.7.2 Find all k-regular planar graphs whose duals are ¢-regular, for all possible
values of k and /.

14.7.3 Find the dual of the multigraph constructed from K4 by doubling each
edge. Refer to Figure 14.8.

FIGURE 14.8
Find the dual graph

14.7.4 A planar graph G is self-dual if it is isomorphic to its planar dual. Find a
self-dual planar graph on n vertices, for all n > 4.

Planar Graphs 321

14.7.5 Program the algorithm CONSTRUCTDUAL(), and test it on the graphs of
Exercises 14.7.1 and 14.7.2.

14.7.6 Show that a planar graph is bipartite if and only if its dual is Eulerian.

14.7.7 Find the Schléfli symbols of the tetrahedron, cube, octahedron, dodeca-
hedron, and icosahedron.

14.7.8 Given a Schlifli symbol {p, ¢} for a polyhedron, find a formula for the
number of vertices, edges, and faces of the polyhedron in terms of p and
q.

14.8 Triangulations

A planar embedding G? whose faces all have degree three is called a triangulation.
If GP is a triangulation, then 3 f = 2¢. Substituting into Euler’s formula gives:

Lemma 14.14. A triangulation G? satisfiese = 3n — 6 and [= 2n — 4.

If G? is not a triangulation, and has no multiple edges or loops, then every face
has at least degree three. We can convert G? to a triangulation by adding some diag-
onal edges to faces of degree four or more. This gives the following:

Lemma 14.15. A simple planar graph G has € < 3n — 6.

For example, because K5 has ¢ = 10 > 3n — 6, we can conclude that K3 is
non-planar.

One consequence of Lemma 14.15 is that O(e) algorithms on planar graphs are
also O(n) algorithms. For example, a DFS or BES in a planar graph takes O(n) steps.
This will be useful in algorithms for testing planarity, or for drawing or coloring a
planar graph, or constructing dual graphs.

Given a graph GG, we can subdivide any edges of G without affecting the planarity
of GG. Therefore, we will assume that GG has no vertices of degree two. We will also
take G to be 2-edge-connected, so that there are no vertices of degree one. Let GG be a
simple planar graph, and let n; be the number of vertices of degree i, for: = 3,4,
Counting the edges of G gives

3ng +4ng +5n5+ ... =2 <6mn—12
Counting the vertices of G gives
ny+ng+ns+...=n
Multiply the second equation by 6 and subtract the two equations to obtain:

Lemma 14.16. A simple planar graph with no vertices of degree one or two satisfies

3ng+2ng+n5 > 124+ n7+2ng+3ng + ...

322 Graphs, Algorithms, and Optimization

Corollary 14.17. A simple planar graph with no vertices of degree one or two has a
vertex of degree three, four, or five.

Proof. The values n; are non-negative integers. O

The Corollary 14.17 results in a technique for reducing a planar triangulation on
n vertices to one on n — 1 vertices that is fundamental for understanding the structure
of planar graphs, and for handling them algorithmically.

Algorithm 14.8.1: REDUCEGRAPH(G?)

Given a simple planar triangulation G on n > 4 vertices
comment: ¢ with rotation system p.
Construct a planar triangulation G’ on n — 1 vertices.
if there is a vertex u with DEG(u) = 3
let p(u) = (uz, uy, uz)
then { G' + G —u
return (G’)
if there is a vertex u with DEG(u) = 4
let p(u) = (vw, vz, uy, uz)
ifw />y
G+ G—u+wy
then . .
{wy replaces wu in p(w) and yw replaces yu in p(y)
G+ G—u+az
else . .
{ch replaces zu in p(x) and zx replaces zu in p(z)
return (G')
comment: otherwise, DEG(u) = 5
let p(u) = (uv, vw, ux, uy, uz)
ifv /> xandv />y
G+ G—u+vzr+uvy
then { vz, vy replace vu in p(v)
av replaces zu in p(z) and yv replaces yu in p(y)
elseifv — z
G+ G—u+wy+wz
then { wy, wz replace yu in p(w)
yw replaces yu in p(y) and zw replaces zu in p(z)
elseifv — y
G+~ G—u+zw+zx
then { zw, zx replace zu in p(z)
wz replaces wu in p(w) and zw replaces zu in p(z)
return (G’)

then

Let GG,, be a triangulation on n > 4 vertices. If n = 4, then K, is the only
possibility. So we assume that n > 4. We know that GG,, always has a vertex of
degree three, four, or five.

Planar Graphs 323

Theorem 14.18. Given a simple planar triangulation G,, on n > 4 vertices, Algo-
rithm REDUCEGRAPH() constructs a simple planar triangulation G,,—1 on n — 1
vertices.

Proof. We know that G, has a vertex of degree three, four, or five. If there is a vertex
u of degree three, let p(u) = (ux, uy, uz), as illustrated in Figure 14.9. Because G,
is a triangulation, we know that xy, vz, and zx are edges of G,,. Consequently G,, —u
is also a triangulation.

x x
—
z Y z Y
Gn Gn—l
FIGURE 14.9
DEG(u) = 3

If there is a vertex u of degree four, let p(u) = (uw, uz, uy, uz), as illustrated in
Figure 14.10. Because G, is a triangulation, we know that wz, ry, yz, and zw are
edges of GG,,. When u is deleted, one face of GG, — u is a quadrilateral. If w #— y,
we can add the edge wy to get a planar triangulation G,, — u 4+ wy. If w — vy, then
edge wy is exterior to the quadrilateral face. Consequently x /— z, so that we can
add the edge xz to get a planar triangulation GG,, — u + xz. In either case we get a
planar triangulation G,, 1.

If there is a vertex u of degree five, let p(u) = (uv, uw, ux, uy, uz), as illustrated
in Figure 14.11. Because GG, is a triangulation, we know that vw, wz, xy, yz, and zv
are edges of GG,,. When u is deleted, one face of G, — u is a pentagon. If v /— =z
and v #— y, we can add the edges vx and vy to get a planar triangulation G,, —
u + va + vy. Otherwise, if v — x, then edge v is exterior to the pentagonal face.
Consequently, w 4 y and w #— z, so that we can add the edges wy and wz to
get a planar triangulation G, — v + wy + wz. Otherwise, if v — ¥, then edge vy
is exterior to the pentagonal face, and we can proceed as above to get a triangulation
G, — u+ zw + zx. The proof is complete. O

Note that Algorithm REDUCEGRAPH() requires the degrees of the vertices.
These can be computed in O(n) time and stored in an array. Once the degrees are
known, the reduction from G,, to G,,_1 takes constant time. Usually, this algorithm
will be applied recursively to reduce a planar triangulation GG, to G4, which must

324 Graphs, Algorithms, and Optimization

w xT w x
Q O O O
u H
) r
Ke O, Ke O,
Gn anl

FIGURE 14.10
DEG(u) = 4

equal K. If the algorithm is being used to find a planar embedding of G,,, or to
color it, the graph will then be rebuilt in reverse order.

14.9 The sphere

The plane can be mapped onto the surface of the sphere by a simple transformation
called stereographic projection. Place a sphere on the surface of the plane, so that it
is tangent at the south pole. See Figure 14.12. Now from any point P on the plane,
construct a straight-line L to the north pole of the sphere. L will intersect the surface
of the sphere in some point. Call it P’. This transformation maps any point P in the
plane to a point P’ on the surface of the sphere. The mapping is clearly invertible and
continuous. The only point on the sphere to which no point of the plane is mapped is
the north pole.

If G¥ is an embedding of a graph on the plane, then stereographic projection
will map the points of G¥ onto an embedding of G on the surface of the sphere.
Conversely, if we are given an embedding of GG on the surface of the sphere, we can
roll the sphere to ensure that the north pole is not a point of the embedding. Then
use stereographic projection to map the surface of the sphere onto the plane, thereby
obtaining an embedding of G on the plane. Consequently, embedding graphs on the
plane is equivalent to embedding them on the sphere.

When a graph is embedded on the surface of the sphere, the faces are the regions
that remain when the sphere is cut along the edges of GG. There is no outer face. Every
face is bounded. However, the face that contains the north pole will become the outer
face when the embedding is projected onto the plane. By rolling the sphere to place
any desired face at the top, we can make any face the outer face. We state this as a
lemma.

Planar Graphs 325

v
z w
—
) T
Gn
FIGURE 14.11
DEG(u) =5

Lemma 14.19. A planar graph can be drawn so that any facial cycle, any edge, or
any vertex appears on the boundary of the outer face.

Exercises

14.9.1 Given a sphere of radius one tangent to the (x, y)-plane at the origin, with
north pole at (0,0, 1). Show that a point (u,v) in the plane is projected
onto (u/D,v/D, (u? + v?)/D) on the sphere, where D = u? + v? + 1.

14.9.2 Show that a point (x, , z) on the sphere is projected onto (2, t%5) on
the plane.

14.9.3 Denote a point (u,v) in the plane by the complex number w = u + 4.
Express the formulas of question 1 in terms of w.

14.9.4 Sometimes stereographic projection is done with a sphere of radius one
with its center at the origin. How do the formulas of questions 1 and 2
change? Is there a qualitative change? What are the images of the southern
and northern hemispheres under the projection?

14.10 Whitney’s theorem

The plane and sphere are oriented surfaces. Consider a graph G embedded on the
plane as GP, where p gives the clockwise orientation of the edges incident on each
vertex. We are assuming that the plane is viewed from above. If we now view the
plane from below, the clockwise orientation of each p(u) will appear counter clock-

326 Graphs, Algorithms, and Optimization

north pole

south pole

FIGURE 14.12
Mapping the plane to the sphere

wise. If an embedding GP is projected onto the sphere, then each p(u) will appear
clockwise if viewed from inside the sphere, but counter clockwise if viewed from
outside the sphere. Given a rotation system p, we write p for the rotation system
obtained by reversing the cyclic order of each p(u). So p(u) = p(u)~!. The embed-
dings GP and GP are usually considered equivalent.

DEFINITION 14.17: Let GP* and GP2 be two plane embeddings of a graph G,
with rotation systems p; and po, respectively. GP* and GP2 are isomorphic embed-
dings if there is an automorphism of GG which transforms p; into po. GP* and G?2 are
equivalent embeddings if there is an automorphism of G which transforms p; into
either pa or Ps.

An automorphism of G will permute the vertices of G, and consequently alter
the edges in the cyclic permutations of a rotation system. If 6 is an automorphism of
G, then p1(u) = (e1, ez, ..., e) is transformed by 6 into O(p1 (u)) = (0(ey), O(ez),

., 0(ex)). If this equals p2 (0(u)), for all vertices u, then GP* and GP? are isomor-
phic. Isomorphic rotation systems are equivalent.

Two isomorphic rotation systems for K, are illustrated in Figure 14.13. Here
p2 = P1. It is easy to see that if we take 6 = (3,4), then 8(p;1(u)) = p2(6(u)), for
allu=1,2,3,4.

A triangulation G on 7 points is shown in Figure 14.14. Two rotation systems for
it, p1 and po, are also given below. Here we also have p, = pr. However, there is
no automorphism of G that will transform p; into p2. This can be verified using the
degrees of the vertices. Vertex 2 is the only vertex of degree six. Hence any automor-
phism @ must fix 2. So (p1(2)) must equal p2(2). The only vertices of degree four
are vertices 1 and 5. Therefore either (1) = 1 or (1) = 5. If §(1) = 1, then from
p2(2) we see that #(3) = 6. This is impossible as vertices 3 and 6 have different

Planar Graphs 327

2 2
4 3 3 4
pi(l) = (12,13,14) p2(l) = (12,14,13)
pi(2) = (21,24,23) p2(2) = (21,23,24)
pi(3) = (31,32,34) p2(3) = (31,34,32)
pi(d) = (41,43,42) p2(4) = (41,42,43)
FIGURE 14.13

Two isomorphic rotation systems for Ky

degrees. If §(1) = 5, then from p,(2) we have 6(3) = 4, which is also impossible,
as vertices 3 and 4 have different degrees.

So GP* and GP? are equivalent embeddings that are non-isomorphic. This can
only occur if there is an automorphism of G mapping p1 to ps, but no automorphism
mapping p; to po; that is, GP2 is obtained by “flipping” GP* upside down. The ex-
ample of Figure 14.13 shows that this is not possible with K4, but is possible with
the triangulation of Figure 14.14.

DEFINITION 14.18: A planar map GP is orientable if GP 2 GP. Otherwise G
is non-orientable.

So the embedding of K4 is non-orientable, but the embeddings of Figure 14.14
are orientable. An example of a 2-connected graph with two inequivalent planar em-
beddings is shown in Figure 14.6. Whitney’s theorem states that if GG is 3-connected,
this cannot happen. Let C be a cycle in a connected graph G. C'is a separating cycle
if G — V(C) is disconnected.

Theorem 14.20. (Whitney’s theorem) Let G be a 3-connected planar graph. Let p
be any planar rotation system for G. The facial cycles of GP are the induced, non-
separating cycles of G.

Proof. Let C be an induced, non-separating cycle of G. In any planar embedding of
G, C corresponds to a Jordan curve in the plane. There can be vertices of G in the
interior or exterior of the Jordan curve, but not both, because C' is non-separating.
Without loss of generality, assume that any vertices of G — C' are in the exterior of
the Jordan curve. It follows that the interior of the Jordan curve is a face, so that C'is
a facial cycle of G.

Conversely, let C' be a facial cycle. Without loss of generality, we can assume
that C' corresponds to a Jordan curve whose interior is a face. If G contains an edge
wv which is a chord of C, then » and v divide C' into two paths Cu, v] and C[v, u).

328 Graphs, Algorithms, and Optimization

m(1) = (12,16,14,13) po(1) = (12,13,14,16)
n(2) = (21,23,24,25,27,26) p2(2) = (21,26,27,25,24,23)
p(3) = (31,34,32) p2(3) = (31,32,34)

pi(4) = (41,46,45,42,43) pa(4) = (41,43,42,45,46)
n(5) = (52,54,56,57) p2(5) = (52,57,56,54)
p(6) = (61,62,67,65,64) p2(6) = (61,64,65,67,62)
p(7) = (72,75,76) pa(7) = (72,76,75)
FIGURE 14.14

Two equivalent, non-isomorphic rotation systems

Because wv must be embedded exterior to C, there can be no path from an interior
vertex of C'[u,v] to an interior vertex of Clv, u]. Therefore G — {u, v} is discon-
nected, a contradiction, as GG is 3-connected. Consequently, C' is an induced cycle.
Let x be any vertex of G — C'. If x is the only vertex of G — C, then G — C = z, so
that C' is a non-separating cycle, and we are done. Otherwise let y be another vertex
of G — C. Because G is 3-connected, G contains at least three internally disjoint
xy-paths. At most two of these paths can intersect C. See Figure 14.15. Therefore
G — C contains an xy-path, for all z, y. It follows that C'is a non-separating cycle of
G. O

One consequence of Whitney’s theorem is that, if G is a 3-connected planar
graph, an embedding can be found purely from the cycles of G. If we can identify an
induced, non-separating cycle C', we can then assign an orientation to C'. Each edge
of C' will be contained in another induced, non-separating cycle, so that the orien-
tation of adjacent cycles will thereby also be determined. Continuing in this way, a
complete rotation system for GG can be constructed. This rotation system can then be
used to construct a dual graph.

DEFINITION 14.19: Let G be a 3-connected planar graph. The abstract dual is
G*, a dual graph determined by the induced non-separating cycles of G.

The abstract dual is the same as GP*, where p is a rotation system determined by

Planar Graphs 329

FIGURE 14.15
Whitney’s theorem

the induced, non-separating cycles, but it can be constructed without reference to a
rotation system.

Up to equivalence of embeddings, a 3-connected planar graph has just one ro-
tation system, so that the abstract dual is uniquely defined. Orientable 3-connected
planar graphs have just two rotation systems (which are inverses of each other). Non-
orientable 3-connected planar graphs have just one rotation system.

Whitney’s theorem does not provide an algorithm for determining whether a
graph is planar, as the characterization of planarity in terms of induced, non-
separating cycles does not lead to an efficient algorithm. There are too many cy-
cles in a graph to effectively find them all and determine whether they are induced,
non-separating cycles.

14.11 Medial digraphs

Let G be aloopless graph with a planar rotation system p. Note that GG is allowed to be
a multigraph. There are several possible ways of constructing a digraph representing
GP. One of them is the following.

DEFINITION 14.20: The medial digraph M (GP) of a planar map GP is obtained
from GP by subdividing every edge uv of G with a vertex x.,,,. The edges of M (GP)
consist of all arcs of the form (u, Tyy), (Tuw, 1), and (Zyy, Tuw), Where uv and vw
are consecutive edges in p(u), with uw following uv.

An example of a medial digraph is shown in Figure 14.16. Because G is planar,
M (GP) will also be planar.

Lemma 14.21. Let GP' and GP? be planar embeddings of a graph G. Then GP* and
GP2 are isomorphic embeddings if and only if M (GP*) and M (GP?) are isomorphic
as digraphs.

330 Graphs, Algorithms, and Optimization

Q > 0
Y
A
O < O
FIGURE 14.16
A medial digraph

Proof. Suppose that GP' and GP? are isomorphic embeddings. Let 6 be an automor-
phism of G that maps p; to ps. Given a vertex u, let # map v to v. Then 6 maps
p1(u) to pa(v). Consequently 6 can be extended to map the directed edges {2y }
of M (GP") based on p; (u) to the directed edges {x., } of M (GP?) based on pa(v).
Thus M (GP') 22 M(GP2).

Conversely, if M (GP') and M (GP?) are isomorphic, let 6 be an isomorphism
from M (GP*) to M (GP?). Then 6 must map V(G) to V(G), and the set of subdi-
viding vertices {2, } to itself. Suppose that @ maps u € V(G) to v. The directed
edges ensure that § maps p1 (u) to p2(v). Hence GP* and GP2 are isomorphic. [

Note that if py is taken to be p;, then GP* and GP? will be isomorphic when
M (GPr) and M(GP1) are isomorphic. Here M (GP1) is the digraph converse of
M (GP*), obtained by reversing all directed edges. There are two kinds of automor-
phisms of G” — those that preserve the orientation, and those that reverse the orien-
tation.

DEFINITION 14.21: Let GP be a planar embedding. An orientation-preserving
automorphism of GP is an automorphism of G that maps GP to GP. An orientation-
reversing automorphism of GP is an automorphism of G that maps maps G? to GP.

The automorphism group of G? is denoted AUT(GP):

DEFINITION 14.22: The orientation-preserving automorphism group of GP is
AUT(GP), those automorphisms of G induced by AUT(M (GP)). The full automor-
phism group of GP is AUTT (GP) consisting of AUT(GP), plus those automorphisms
that map G? to GP.

Planar Graphs 331

If GP is orientable, then AUT(G?) = AUTT (GP), because every automorphism
preserves the orientation. But if G? is non-orientable, then AUT(GP) is a subgroup
of index two in AUTT (GP). If is any orientation-reversing automorphism, then the
coset AUT(GP)6 contains all the orientation-reversing automorphisms.

Theorem 14.22. Let G? be a planar embedding of a 3-connected graph G. Then
AuTt(GP) = AUT(G).

Proof. By Whitney’s theorem, the facial cycles of G? are the induced non-separating
cycles. Because every automorphism § € AUT(G) must map an induced non-
separating cycle to another, we see that § € AUT™ (GP). O

A consequence of this theorem is that |AUT(G)| = 2|AUT(GP)| when G is a
3-connected non-orientable planar graph. When G is not 3-connected, this does not
hold. An example is G = K. A non-orientable planar embedding is shown in
Figure 14.17, where |AUT(G?)| = 12, but |AUT(G)| = 1440.

FIGURE 14.17
A planar embedding of K> g

Exercises

14.11.1 Find all triangulations on 4, 5, 6, and 7 vertices.

14.11.2 Determine the group of orientation-preserving mappings of an embedding
of K4 on the plane. Compare it with AUT(K4).

14.11.3 Let G be K5, with an edge removed. Determine the group of orientation-
preserving mappings of an embedding of GG on the plane. Compare it with
AUT(G).

14.11.4 Verify that the embedding G? of Figure 14.17 is non-orientable, that
|AUT(GP)| = 12, and that |AUT(G)| = 1440.

14.11.5 Determine whether the platonic solids are orientable.

14.11.6 Prove that a planar embedding GP is orientable if and only if GP* is ori-
entable.

332 Graphs, Algorithms, and Optimization

14.11.7 Determine which of the triangulations on 5,6, and 7 vertices are ori-
entable.

14.11.8 Determine the graph G for which M (G) is shown in Figure 14.16.

14.12 The 4-color problem

Given a geographic map drawn in the plane, how many colors are needed such that
the map can be colored so that any two regions sharing a common border have dif-
ferent colors? In 1852, it was conjectured by Francis Guthrie that four colors suffice.
This simple problem turned out to be very difficult to solve. Several flawed “proofs”
were presented. Much of the development of graph theory originated in attempts to
solve this conjecture. See AIGNER [2] for a development of graph theory based on
the 4-color problem. In 1976, Appel and Haken announced a proof of the conjec-
ture. Their proof was based on the results of a computer program that had to be
guaranteed bug-free. A second computer proof by ALLAIRE [3] appeared in 1977.
Each of these approaches relied on showing that any planar graph contains one of
a number of configurations, and that for each configuration, a proper coloring of a
smaller (reduced) graph can be extended to a proper coloring of the initial graph. The
computer programs generated all irreducible configurations, and colored them. In the
Appel-Haken proof, there were approximately 1800 irreducible configurations. The
uncertainty was whether all irreducible configurations had indeed been correctly gen-
erated. In 1995, ROBERTSON, SANDERS, SEYMOUR, and THOMAS [149] presented
another proof, also based on a computer program, but considerably simpler than the
original, requiring only 633 irreducible configurations.

In this section, we present the main ideas of Kempe’s 1879 “proof” of the 4-color
theorem.

Given a geographic map drawn in the plane, one can construct a dual graph, by
placing a vertex in the interior of each region, and joining vertices by edges if they
correspond to adjacent regions. Coloring the regions of the map is then equivalent
to coloring the vertices of the dual, so that adjacent vertices are of different colors.
Consequently, we shall be concerned with coloring the vertices of a planar graph.

Theorem 14.23. (4-Color theorem) Every planar graph can be properly colored
with four colors.

If G is any simple planar graph, then it is always possible to extend G to a simple
triangulation, by adding diagonal edges in non-triangular faces. Therefore, if we can
prove that all simple planar triangulations are 4-colorable, the result will be true for
all planar graphs. Hence we assume that we are given a planar triangulation GG,, on n.
vertices. We attempt to prove the 4-color theorem (Theorem 14.23) by induction on
n.

The colors can be chosen as the numbers {1, 2,3, 4}. Given a coloring of G, then
the subgraph induced by any two colors i and j is bipartite. We denote it by K.

Planar Graphs 333

DEFINITION 14.23: Given any 4-coloring of a planar graph G, each connected
component of K% is called a Kempe component. The component containing a vertex
x is denoted K% (). A path in K% between vertices u and v is called a Kempe chain.

Notice that if we interchange the colors ¢ and j in any Kempe component, we
obtain another coloring of G.

Now let GG, be a simple triangulation on n vertices. If n = 4, then GG,, = K. Itis
clear that Theorem 14.23 is true in this case. Assume thatn > 4. By Corollary 14.17,
we know that GG, has a vertex of degree three, four, or five. Let u be such a vertex.
Using Algorithm 14.8.1, we reduce G,, to a simple planar triangulation G,,_; by
deleting v and adding up to two diagonals in the resulting face. We assume as an
induction hypothesis, that G;,_1 has a 4-coloring. There are three cases.

Case 1. DEG(u) = 3.

Let the three adjacent vertices to u be (z, y, z). They all have different colors.
Therefore there is a fourth color available for v, giving a coloring of G,,.

Case 2. DEG(u) = 4.

Let the four vertices adjacent to u in G,, be (w, x,y, z), with a diagonal wy
in G,,_1. It is clear that w, z, and y have different colors. If = and z have
the same color, then a fourth color is available for u. Otherwise, let w, x, vy, z
be colored 1,2, 3, 4, respectively. There may be a Kempe chain from z to
z. If there is no Kempe chain, interchange colors in the Kempe component
K?*(x), so that 2 and z now both have color 4. If there is a Kempe chain
from z to z, there can be no Kempe chain from w to y, for it would have to
intersect the z-2-Kempe chain. Interchange colors in K *3(w), so that w and 2
now both have color 3. In each case there is a fourth color available for w.

FIGURE 14.18
Kempe chains

Case 3. DEG(u) = 5.

Let the five vertices adjacent to u in G, be (v, w, z,y, z), with diagonals vz
and vy in G, 1. It is clear that v, , and y have different colors. Because we
have a 4-coloring of G,,_1, the pentagon (v, w, x,y, z) is colored in either

334

Graphs, Algorithms, and Optimization

3 or 4 colors. If it is colored in three colors, there is a fourth color available
for w. If it is colored in four colors, then without loss of generality, we can
take these colors to be (1,2, 3,4, 2), respectively. If K13(v) contains no vz-
Kempe chain, then we can interchange colors in K'3(v), so that v and z are
now both colored 3. Color 1 is then available for u. If K**(v) contains no
vy-Kempe chain, then we can interchange colors in K 14(1}), so that v and y
are now both colored 4. Color 1 is again available for u. Otherwise there is a
Kempe chain P,, connecting v to « and a Kempe chain P,, connecting v to
y. It follows that K*(w) contains no wy-Kempe chain, as it would have to
intersect P, in K'3(v). Similarly, K?3(z) contains no vz-Kempe chain, as it
would have to intersect P, in K 14 (v).If P, and P, intersect only in vertex
v, then we can interchange colors in both K ?4(w) and K ?3(z), thereby giving
w color 4 and z color 3. This makes color 2 available for u. The difficulty is
that P,, and P,, can intersect in several vertices. Interchanging colors in
K?*(w) can affect the other Kempe chains, as shown in Figure 14.19, where
the pentagon (v, w, z,y, z) is drawn as the outer face.

v

FIGURE 14.19
Intersecting Kempe chains

Although this attempted proof of Theorem 14.23 fails at this point, we can use

these same ideas to prove the following.

Theorem 14.24. (5-Color theorem) Any planar graph can be colored in five colors.

Proof. See Exercise 14.12.1. O

Appel and Haken’s proof of the 4-color theorem is based on the important con-

cept of reducibility. Given a graph G, a reducible configuration H is a subgraph of

Planar Graphs 335

G with the property that H can be reduced to a smaller subgraph H’, such that a
4-coloring of H' can be extended to all of H and G. If every planar graph contained
a reducible configuration, then every planar graph could be 4-colored. Appel and
Haken’s proof was essentially a computer program to construct all irreducible config-
urations, and to show that they could be 4-colored. The difficulty with this approach
is being certain that the computer program is correctly constructing all irreducible
configurations. The reader is referred to SAATY and KAINEN [153] or WOODALL
and WILSON [194] for more information on reducibility.

14.13 Nowhere-zero flows

Consider a plane map G? with no cut-edge, whose faces have been colored using
colors {1, 2,3, 4}. Each edge uv lies on the boundary of two distinct faces. We con-
sider the plane to be an oriented surface, viewed from “above”, so that in traversing
uv, there is a well-defined face to the right of uv, and a well-defined face to the left.
Assign an orientation and flow to the edges of G to create a digraph, also denoted G,
as follows. Consider an edge uv, traversed from u to v, with face Fj to the right of
uv, and face F5 to the left. Let ¢; be the color of F;, and cs the color of F5. We have
c1 # ¢, because the coloring is a proper coloring. If ¢; > c¢q, then uv is oriented
from w to v, with flow p(uv) = ¢1 — co. Otherwise uv is oriented from v to u, and
the flow p(uv) = c2 — ¢;1. Then p(uv) # 0, so that p(uv) € {1, 2, 3}. The function
@ is called a nowhere-zero flow on GP.

Using this ¢, let vertex u have rotation p(u) = (v1,va, ..., vn), and let the face
with edges uv; and uv;4+1 on its boundary be Fj, with color ¢;, where v;,41 is the
same as v;. If edge wv; is directed out of w, then its flow is p(uv;) = ¢; — ¢;—1. If
it is directed into wu, its flow is p(uv;) = ¢;—1 — ¢;. Taking the sum of flows on all
edges directed out of u, minus the sum of flows into u, we obtain

(cm—cl)Jr(cl—02)+...+(cm,1—cm):0

Thus, ¢ satisfies the conservation condition of a network flow.

We have used a coloring of the dual of the planar embedding to find this flow.
However, the idea of a k-flow can be applied to any 2-edge-connected graph. It does
not have to be planar.

DEFINITION 14.24: Let G be a 2-edge-connected graph. A nowhere-zero k-flow
on G is an orientation of E(G) and a function ¢ : E(G) — {1,2,...,k — 1} which
satisfies the flow conservation condition at each vertex.

An example of a nowhere-zero 4-flow is shown in Figure 14.20. Here the color
number is shown inside each face, and the arrows indicate the orientation of each
edge according to the face colors.

336 Graphs, Algorithms, and Optimization

FIGURE 14.20
A nowhere-zero 4-flow.

So a face-coloring of a planar map G? determines a nowhere-zero 4-flow in G.
The converse is also true, as stated in the following theorem. A proof can be found
in Bondy and Murty [24].

Theorem 14.25. A 2-edge-connected planar graph G has a nowhere-zero 4-flow if
and only if it has a planar dual that can be colored in 4 colors.

So the existence of a nowhere-zero 4-flow in a planar graph is equivalent to the
4-color theorem.

Consider a nowhere-zero 2-flow in 2-edge-connected graph G. This corresponds
to an orientation of the edges of G such that each edge uv has p(uv) = 1. The
conservation condition then says that the number of edges directed out of every vertex
u equals the number of edges directed into u. So G must be Eulerian. Conversely, an
Euler tour in GG determines a nowhere-zero 2-flow.

Given a nowhere-zero k-flow in a graph G, the orientation of any edge uv can
be reversed, with the flow ¢(uv) changed to —p(uv). This can be done for any set
of edges. The resulting flow still satisfies the conservation condition at each vertex,
but some values are now negative. Thus, it is convenient to relax the definition of
nowhere-zero flow as follows.

DEFINITION 14.25: Let GG be a 2-edge-connected graph. A nowhere-zero k-
flow or k-circulation on G is an orientation of E(G) and a function ¢ : E(G) —
{£1,£2,...,£(k — 1)} which satisfies the flow conservation condition at each ver-
tex.

Tutte [179, 180, 181], has made three fundamental conjectures on k-flows.
Conjecture. Every 2-edge-connected graph has a 5-flow.

Seymour [159] has proved that every 2-edge-connected graph has a 6-flow. An
algorithm to find a nowhere-zero 6-flow appears in Younger [195].

Planar Graphs 337

Conjecture. Every 2-edge-connected graph that does not have the Petersen graph
as a minor has a 4-flow.

Conjecture. Every 4-edge-connected graph has a 3-flow.

Exercises

14.13.1 Prove Theorem 14.24, the 5-color theorem.

14.13.2 Let G be a planar triangulation with a separating 3-cycle (u, v, w). Let
H and K be the two connected subgraphs of GG that intersect in exactly
(u, v, w), such that G = H U K. Show how to construct a 4-coloring of
G from 4-colorings of H and K.

14.13.3 Let G be a planar triangulation with a separating 4-cycle (u, v, w,). Let
H and K be the two connected subgraphs of GG that intersect in exactly
(u, v, w, x), such that G = HU K. Show how to construct a 4-coloring of
G from 4-colorings of the triangulations H +uw and K +uw. Hint: u, v,
and w can be assumed to have the same colors in / and K. If x is colored
differently in H and K, look for an xv-Kempe chain, try interchanging
colors in K% (), or try coloring H + vx and K + vz.

14.13.4 All lakes are blue. Usually all bodies of water are colored blue on a map.
Construct a planar graph with two non-adjacent vertices that must be blue,
such that the graph cannot be colored in four colors subject to this require-
ment.

14.13.5 Construct a nowhere-zero 4-flow for the graph of the dodecahedron.
14.13.6 Construct a nowhere-zero 5-flow for the Petersen graph.

14.13.7 Let G have a k-flow for some k. Given a cycle C' in GG, show how to
change ¢(uv) for all edges uv on C' to get a new flow.

14.14 Straight-line drawings

Every simple planar graph can be drawn in the plane with no edges crossing, so that
each edge is a straight line. Read’s Algorithm is a linear-time algorithm for doing
this. It is based on the triangulation reduction.

Suppose that GG, is a triangulation on n vertices that has been reduced to a trian-
gulation G,,_; on n — 1 vertices, by deleting a vertex u as in Algorithm 14.8.1, and
adding up to two edges e and €’. Suppose that a straight-line embedding of G,,_1
has already been computed. If DEG(u) = 3, let «, y, z be the adjacent vertices. We
can place w inside the triangle (z,y, z) to obtain a straight-line embedding of G,,. If
DEG(u) = 4, the edge e is a diagonal of a quadrilateral in GG,,_1. We can place u on
the line representing e to obtain a straight-line embedding of G,,.

338 Graphs, Algorithms, and Optimization

Suppose now that DEG(u) = 5. The edges ¢ = va and e’ = vy are diagonals of a
pentagon in GG,,_1. This pentagon may have several possible polygonal shapes, which
are illustrated in Figure 14.21. The triangle (v, z,y) is completely contained inside
the pentagon. Inside (v, x,y), there is a “visible” region, shown shaded gray. The
visible region can be calculated, by extending the lines of the adjacent triangles with
sides vz and vy, and intersecting the half-planes with the triangle (v, x,y). Vertex
u can then be placed inside the visible region to obtain a straight-line embedding of
G,. Thus in each case, a straight-line embedding of GG,,_1 can be extended to GG,,.

This gives:

Theorem 14.26. (Fary’s theorem) Every planar graph has a straight-line embed-
ding.

FIGURE 14.21
The “visible” region

Read’s algorithm begins by triangulating G if ¢ < 3n — 6. It then deletes a
sequence of vertices uj, ug, ..., u,—4 to reduce G to K. It next assigns a planar
coordinatization to the vertices of /4, and then restores the deleted vertices in reverse
order. For each vertex u; deleted, it is necessary to store u; and its degree, so that
it can later be correctly restored to the graph. Finally, the triangulating edges are
removed. The result is a straight-line embedding of G.

Planar Graphs 339

Algorithm 14.14.1: READSALGORITHM(GP)

Given a simple planar graph G on n > 4 vertices
comment: ¢ with rotation system p, construct a straight-line
drawing of G in the plane.

triangulate G without creating multiple edges or loops
mark all triangulating edges as “virtual” edges

1+ 1

while n > 4

G < REDUCEGRAPH(G)

u; < the vertex that was deleted

1+ 1+1

n<—n-—1

comment: G is now K,

do

assign pre-chosen coordinates to the vertices of Ky
for i = n — 4 downto 1
calculate the visible region for u;
{restore u; to G
remove all virtual edges from G

It is easy to see that Read’s algorithm is O(n). It takes O(n) steps to compute the
degrees of G, and to triangulate G. It takes O(n) steps to reduce G to K4, and then
O(n) steps to rebuild G. Read’s algorithm can be modified by initially choosing any
facial cycle F' of (G, and assigning coordinates to the vertices of F' so that they form
a regular convex polygon. The reduction to K is then modified so that vertices of
the outer facial cycle F' are never deleted. The result is a planar embedding with the
given facial cycle as the outer face.

The embeddings produced by Read’s algorithm are usually not convex embed-
dings. Tutte has shown how to produce a straight-line embedding of a graph such that
all faces are convex regions, by solving linear equations. Consider any face of GG, with

facial cycle (v1,vs,...,vr). We begin by assigning coordinates to vy, ve, ..., Uk
such that they form a convex polygon in the plane. This will be the outer face of
a planar embedding of G.

Tutte then looks for a coordinatization of the remaining vertices with the special
property: the coordinates of v;, where ¢ > k, are the average of the coordinates of
all adjacent vertices. A coordinatization with this property is called a barycentric
coordinatization. We can express it in terms of matrices as follows.

Let A be the adjacency matrix of G such that the first k£ rows and columns corre-
spond to vertices vy, vo, ..., v;. Let D be the n x n diagonal matrix such that entry
Dj; equals 1, if i < k. If i > k, entry D,; equals DEG(v;). Let X be the vector of
x-coordinates of the vertices, and let Y be the vector of y-coordinates. Construct a
matrix B from A by replacing the first k£ rows with zeroes. Then the first & entries of
BX are zero. But if i > k, the i*" entry is the sum of the z-coordinates of vertices
adjacent to v;. Let X}, denote the vector whose first n entries are the x-coordinates of

340 Graphs, Algorithms, and Optimization

v1,. .., U, and whose remaining entries are zero. Y} is similarly defined. Then the
barycentric condition can be written as

DX = X, + BX, DY =Y + BY.

These equations can be written as (D — B)X = X}, and (D — B)Y = Y.
Consider the matrix D — B.

Lemma 14.27. The matrix D — B is invertible.

Proof. Consider the determinant det(D — B). The first k rows of D — B look like an
identity matrix. Expanding the determinant along the first & rows gives det(D — B)
= det(K) where K is the matrix formed by the last n — k rows and columns. K
looks very much like a Kirchhoff matrix, except that the degrees are not quite right.
In fact, if we construct a graph G’ from G by identifying vy, vs, . . ., v into a single
vertex vg, and deleting the loops created, then K is formed from the Kirchhoff matrix
K (G') by deleting the row and column corresponding to vy. It follows that det (K) =
+7(G’), by the matrix-tree theorem. Because G’ is a connected graph, det(K) # 0,
so that D — B is invertible. O

It follows that the barycentric equations have a unique solution, for any assign-
ment of the coordinates X, and Yj. Tutte has shown that if G is a 3-connected planar
graph, this solution has remarkable properties: if we begin with a convex polygon for
the outer face, the solution is a planar coordinatization with straight lines, such that
no edges cross. All faces, except the outer face, are convex regions. No three vertices
of any facial cycle are collinear.

It is fairly easy to see that a planar barycentric coordinatization of a 3-connected
graph must have convex faces. For consider a non-convex face, as in Figure 14.22.
Vertex v is a corner at which a polygonal face is non-convex. Clearly vertex v is not
on the outer face. Let the two adjacent vertices of the polygon be v and w. Because
G is 3-connected, v has at least another adjacent vertex. All other vertices adjacent
to v must be in the angle between the lines vu and vw as indicated in the diagram,
because G is 3-connected, and there are no crossing edges. But then all vertices
adjacent to v are to the right of the dotted line, which is impossible in a barycentric
coordinatization.

14.15 Coordinate averaging

Suppose that a straight-line drawing of a planar graph G has been obtained, with
coordinates (x;,y;) for vertex i, where ¢ = 1,...,n. The faces may be convex re-
gions, or not. There is a simple algorithm which frequently produces a significant
improvement in the drawing, called coordinate averaging.

Planar Graphs 341

FIGURE 14.22
A non-convex face

Algorithm 14.15.1: COORDINATEAVERAGING(GP)

Given a straight-line drawing of a simple plane map G?,
comment: < onn > 4 vertices, with coordinates (z;, y;) for vertex i,
perform coordinate averaging.

let F', Fy, ..., Fy denote the facial cycles of G?
let Iy be the facial cycle of the outer face
forj<1tof—1
d {use algorithm FACIALCYCLE(F}) to sum (z;,y;), for all i € F);
(uj,v;) < average of the coordinates of the vertices of F
comment: (u,;, v;) are now coordinates of the dual GP*, except for Fy

fori < 1tondoifi & Fy
sum (u;, v;) for all faces F); containing vertex ¢

then . S
(xi,y:) « average of the coordinates of the F; containing ¢

The algorithm COORDINATEAVERAGING() uses FACIALCYCLE() to walk
around each facial cycle F);, summing the coordinates of the vertices on F};, so as
to compute their average. The result is coordinates (u;, v;) inside the polygon rep-
resenting the face F;. This is done for every face except the outer face. When this
algorithm is used, it is usually convenient to first place the vertices of the outer face
on a regular convex polygon. The remaining vertices will have coordinates (x;, y;)
inside the outer polygon. Essentially, coordinates for the vertices of the dual are being
constructed, except for the outer face F';. Then a second loop re-calculates (x;, y;),
by performing the same operation, but in the dual. This constitutes one application
of COORDINATEAVERAGING(). Clearly this takes O(n) steps. This algorithm can be
iterated several times, to produce an improved drawing.

An example appears in Figure 14.23. The graph on the left in the diagram could
be the result of using Read’s algorithm to find a drawing of the line graph of the cube,
placing the vertices of the outer face on a regular quadrilateral. The graph on the right

342 Graphs, Algorithms, and Optimization

is after six applications of coordinate averaging. A constant number of applications
of coordinate averaging still results in a O(n) algorithm.

O Q o)
O O O
FIGURE 14.23

Coordinate averaging

Coordinate averaging can be expressed in terms of barycentric coordinates of
a related graph. Given a plane map GP, with dual GP*, let {v1,...v,} denote the
vertices of G, and let {F', ..., Fy} denote the vertices of GP*. Construct a bipartite
graph whose vertices are {vy,...v,} U{F1,..., Fy} in which vertex v; is incident
with F} if and only if v; is on the boundary of F} in GP. This graph is called the
vertex-face-incidence graph or equivalently, the primal-dual graph of GP. Denote
it by G¥'. Apply Tutte’s drawing algorithm to find a barycentric drawing of G*'.
Coordinates for vertices on the outer face Fy are chosen, and then coordinates for the
remaining vertices are found such that the coordinates of each vertex are the average
of the coordinates of the adjacent vertices. This is a form of coordinate averaging.

Solving the linear equations of Lemma 14.27 to find the coordinates takes up to
O((n + f)?) steps, using Gaussian elimination. But coordinate averaging can find
an approximate solution in O(n) steps. Coordinate averaging in GG, which produces
barycentric coordinates of G¥*, tends to produce nicer drawings than barycentric co-
ordinates for G. In fact, it often hilights symmetries of G.

14.16 Kuratowski’s theorem

In this section we will prove Kuratowski’s theorem. The proof presented is based on
a proof by KLOTZ [101]. It uses induction on £(G).

If G is a disconnected graph, then G is planar if and only if each connected com-
ponent of G is planar. Therefore we assume that G is connected. If GG is a separable
graph that is planar, let H be a block of GG containing a cut-vertex v. H is also planar,
because G is. We can delete H — v from (, and find a planar embedding of the result.
We then choose a planar embedding of H with v on the outer face, and embed H into
a face of G having v on its boundary. This gives:

Planar Graphs 343

Lemma 14.28. A separable graph is planar if and only if all its blocks are planar.
So there is no loss in generality in starting with a 2-connected graph G.

Theorem 14.29. (Kuratowski’s theorem) A graph G is planar if and only if it
contains no subgraph T K3 3 or T K.

Proof. 1t is clear that if G is planar, then it contains no subgraph T'K3 3 or T' K.
To prove the converse, we show that if G is non-planar, then it must contain 7'K3 3
or TK5. We assume that G is a simple, 2-connected graph with £ edges. To start
the induction, notice that if ¢ < 6, the result is true, as all graphs with ¢ < 6 are
planar. Suppose that the theorem is true for all graphs with at most € — 1 edges. Let
G be non-planar, and let ab € E(G) be any edge of G. Let G' = G — ab. If G’ is
non-planar, then by the induction hypothesis, it contains a T'K’3 3 or T'K’5, which is
also a subgraph of G. Therefore we assume that G’ is planar. Let x(a, b) denote the
number of internally disjoint ab-paths in G’. Because G is 2-connected, we know
that k(a, b) > 1.

Case 1. x(a,b) = 1.

G’ has a cut-vertex u contained in every ab-path. Add the edges au and bu to
G, if they are not already present, to get a graph H, with cut-vertex u. Let H,
and H}, be the blocks of H containing a and b, respectively. If one of H, or Hj,
is non-planar, say H,, then by the induction hypothesis, it contains a T'K 3 3 or
T K. This subgraph must use the edge au, as G’ is planar. Replace the edge
au by a path consisting of the edge ab plus a bu-path in Hy,. The result is a
TKssorTKsin G.1f H, and H;, are both planar, choose planar embeddings
of them with edges au and bu on the outer face. Glue them together at vertex
u, remove the edges au and bu that were added, and restore ab to obtain a
planar embedding of (7, a contradiction.

Case 2. x(a,b) = 2.

Let P;, and P> be two internally disjoint ab-paths in G’. Because x(a, b) = 2,
there is a vertex u € P, and v € P, such that all ab-paths contain at least
one of {u, v}, and G’ — {u, v} is disconnected. If K, denotes the connected
component of G’ — {u, v} containing a, let G/, be the subgraph of G’ induced
by K, U{u,v}.Let K}, denote the remaining connected components of G’ —
{u, v}, and let G} be the subgraph of G’ induced by K U {u, v}, except that
uv, if it is an edge of G’, is not included (because it is already in G,). Now
add a vertex x to G/, adjacent to u, v, and a to obtain a graph H,. Similarly,
add y to G}, adjacent to u, v, and b to obtain a graph Hj,. Suppose first that
H, and H; are both planar. As vertex x has degree three in H,, there are
three faces incident on x. Embed H,, in the plane so that the face with edges
ux and xv on the boundary is the outer face. Embed Hj so that edges uy
and yv are on the boundary of the outer face. Now glue H, and H}, together
at vertices u and v, delete vertices x and y, and add the edge ab within the
face created, to obtain a planar embedding of GG. Because G is non-planar,

344

Graphs, Algorithms, and Optimization

we conclude that at least one of H, and H; must be non-planar. Suppose that
H,, is non-planar. It must contain a subgraph T'K or T'K3 3. If the T'K5 or
T K3 3 does not contain z, then it is also contained in G, and we are done.
Otherwise the T'K’5 or T'K3 3 contains z. Now H), is 2-connected (because G
is), so that it contains internally disjoint paths P, and P, connecting b to u
and v, respectively. These paths, plus the edge ab, can be used to replace the
edges uz, vz, and ax in H, to obtain a T' K5 or T'K3 3 in G.

Case 3. «(a,b) > 3.

Let P;, P, and P; be three internally disjoint ab-paths in G’. Consider a
planar embedding of G’. Each pair of paths P, U P, Py U P3, and P> U Ps
creates a cycle, which embeds as a Jordan curve in the plane. Without loss
of generality, assume that the path P; is contained in the interior of the cycle
P U Ps, as in Figure 14.24. The edge ab could be placed either in the interior
of P U P, or P, U Ps, or else in the exterior of P; U P3. As G is non-planar,
each of these regions must contain a path from an interior vertex of P; to an
interior vertex of P;. Let Pio be a path from u; on P to u on P. Let Pi3
be a path from vy on P; to usz on Ps. Let P»3 be a path from vs on P to
vz on Ps. If uy # vy, contract the edges of P; between them. Do the same
for us, v9 on Py and ug, vs on P3. Adding the edge ab to the resultant graph
then results in a 7' K5 minor. By Theorem 14.5, GG contains either a T K5 or
TK35

O

We can also state Kuratowski’s theorem in terms of minors.

Theorem 14.30. (Wagner’s theorem) A graph G is planar if and only if it does not
have K3 3 or K5 as a minor.

Proof.

It is clear that if G is planar, then it does not have K33 or K5 as a minor.

Conversely, if G does not have K3 3 or K5 as a minor, then it cannot have a subgraph
T K3 3 or T'K5. By Kuratowski’s theorem, G is planar. O

The graphs K5 and K3 3 are called Kuratowski graphs for the plane. They are
also said to be obstructions to planarity, because a graph containing a 7' K5 or T'K3 3
is non-planar. In terms of minors, a graph having K5 or K3 3 as a minor is non-planar.

Exercises

14.16.1
14.16.2
14.16.3

14.16.4

Find a T K3 5 or T'K5 in the Petersen graph.
Find a T K3 3 or T'K5 in the graph of Figure 14.25.

Show that if GG is a non-planar 3-connected graph, then either G = K5,
or else G contains a T'K3 3.

Let G be a graph with a separating set {u,v}. Let H' be a connected
component of G—{u, v}, and let H denote the graph induced by V (H')U

Planar Graphs 345

FIGURE 14.24
A Ky minor

{u,v}. Let K be the graph induced by V(G) — V(H'), so that G =
H UK, and H and K intersect only in {u,v}. Let H" = H + uv and
KT = K + uv. Show that G is planar if and only if H* and KT are
planar.

14.16.5 Let G be a 3-connected graph with at least five vertices. Show that G
contains an edge xy such that G - xy is 3-connected. Hint: If G - zy
is not 3-connected, choose zy so that the subgraph K of the preceding
exercise is as large as possible, and find a contradiction. This was proved
by THOMASSEN [169].

14.16.6 Suppose that a coordinatization in the plane of an arbitrary 3-connected
graph GG on n vertices is obtained by solving the barycentric equations
(D — B)X = X and (D — B)Y = Y}. Describe an O(n?) algorithm
which determines whether G is planar, and constructs a rotation system,
using the coordinates X and Y.

346 Graphs, Algorithms, and Optimization

FIGURE 14.25
Find a TK3,3

14.17 The Hopcroft-Tarjan algorithm

A number of different algorithms for planarity-testing have been developed. The
first linear-time algorithm was the Hopcroft-Tarjan planarity algorithm. Given a 2-
connected graph G on n vertices, it determines whether G is planar in O(n) time.
If GG is found to be planar, it can be extended to construct a rotation system, too. If
G is found to be non-planar, it can also be modified to construct a T K5 or T K3 3
subgraph, although this is somewhat more difficult. We present a simplified version
of the Hopcroft-Tarjan algorithm here.

There is no loss in generality in starting with a 2-connected graph G. Suppose
first that GG is hamiltonian, and that we are given a hamilton cycle C, and number the
vertices of C' consecutively as 1,2, ..., n. The remaining edges of GG are chords of
C'. For each vertex u, order the adjacent vertices (v1, v, ..., vx) so that v; < vg <
... < vi. We then start at vertex u = n, and follow the cycle C' back to vertex 1.
As we proceed, we will place each chord uw either inside C' or outside C'. When we
have returned to vertex 1, we will have constructed a planar embedding of G. We
draw the cycle C as in Figure 14.26, with the path from 1 to n starting near the top,
and moving down the page.

Consider the example of Figure 14.26. The algorithm stores two linked lists
of chords, one for the inside of C, and one for the outside of C. We denote
these as L; and L,, respectively. Each linked list defines a sequence of chords
[ugv1, ugve, usvs, . . .| as they are added to the embedding. The inside of C' appears
in the diagram to the left of the path from 1 to n. The outside of C' appears to the right
of the path. In the example, the algorithm begins at vertex n = 7 with adjacent ver-
tices (1, 3,4, 6). It first places the “chord” (7, 1), which really completes the cycle,
on the inside linked list. It then places chords (7, 3) and (7, 4) also on L;. The inside
linked list is now [(7, 1), (7,3), (7,4)]. The chord (7, 4) is called the leading chord

Planar Graphs 347

FIGURE 14.26
The Hopcroft-Tarjan algorithm

in the linked list. The next chord to be inserted is to be placed after it. To determine
whether the next chord (u, v) fits on the inside, it need only compare its endpoint v
with the upper endpoint of the current leading chord of L;. After placing the chords
incident on vertex 7, the algorithm moves to vertex 6, where it sees the chord (6, 1).
This will not fit on the inside (because 1 < 4), but is easily placed on the outside
linked list. It then moves to vertex 5, and places (5, 2) also on L,. The outside linked
list is then [(6, 1), (5, 2)], where (5, 2) is the leading chord. It then moves to vertex 4,
where it sees the chord (4, 1). When the algorithm moves up the cycle to vertex 4, the
leading chord of L; is moved past (7,4) to (7, 3), because the chord (4, 1) is above
(7,4). It then determines that (4, 1) will not fit on the inside (because 1 < 3, where
(7,3) is the leading chord of L;); and that (4, 1) will not fit on the outside (because
1 < 2, where (5, 2) is the leading chord of L,). Therefore G is non-planar. In fact
the cycle C, together with the three chords (7, 3), (5,2), and (4, 1) form a subgraph
T K3 3, which we know to be non-planar.

348 Graphs, Algorithms, and Optimization

Algorithm 14.17.1: BASICHT(G, C)

Given a 2-connected graph G with a hamilton cycle

comment: {C = (1,2,...,n). Determine whether G is planar.

for u <— n downto 1
suppose that u is adjacent to (v1, va, ..., vk)
forj < 1tok
ifv; >u—1goto L1
comment: wv; is a chord with v; above u
if wv; fits inside C, place itin L;

else if uv; fits outside C, place itin L,
m = SWITCHSIDES (u, v;)

do if m = 0 return (NonPlanar)
do ifm=1
comment: wv; now fits inside C
else then .
place uv; inside C'

elseif m = —1

comment: vv; now fits outside C
th .

place uv; outside C'

We must still describe what SWITCHSIDES (u, v) does. Its purpose is to deter-
mine whether some chords of L; and L, can be interchanged to allow (u,v) to be
embedded. Its description will follow.

This simplified version of the Hopcroft-Tarjan algorithm contains the main fea-
tures of the complete algorithm, but is much easier to understand. The algorithm
stores two linked lists, I; and L,. Each list has a leading chord — the chord after
which the next chord is to be placed when inserted in the list as the sequence of
chords is extended. Initially the leading chord will be the last chord in the linked list,
but this will change as the algorithm progresses. It is convenient to initialize both
linked lists with dummy chords, so that each list has at least one chord. Each chord
stored in a linked list will be represented by a pair, denoted (LowerPt, UpperPt),
where UpperPt is the endpoint with the smaller value — it is above the LowerPt in
the diagram. As the chords are placed in the linked lists, a linear order is thereby
defined on the chords in each list. Given a chord (u, v), where u > v, the next chord
after (u,v) is the chord nested immediately inside (u,v), if there is such a chord. If
there is no such chord, then the next chord after (u, v) is the first chord below (u, v),
if there is one; that is, the first chord whose UpperPt > w. To determine whether a
chord (u, v) fits either inside or outside C, we need only compare v with the leading
chord’s UpperPt. 1t fits if v > UpperPt. As u moves up the cycle, we must adjust
the pointer to the leading chord on both sides to ensure that the leading chord always
satisfies UpperPt < u.

Planar Graphs 349

So we know how to store the chords, and how to determine whether a chord (u, v)
fits in either side. If it fits, we insert it in the appropriate linked list and continue with
the next chord. What if (u, v) will not fit in either side?

14.17.1 Bundles

Two chords (u1,v1) and (ug, v2) are said to be in conflict if either u; > ug > vy >
vg Or ug > u; > vy > vp. Conflicting chords cannot both be placed on the same
side of C'. We define a conflict graph K whose vertices are the set of all chords
currently in the linked lists. Two chords are adjacent in K if they are in conflict. A
set of chords corresponding to a connected component of the conflict graph is called
a bundle (originally called a “block™ in HT’s paper; however, the term “block” has
another graph theoretical meaning). The conflict graph must always be bipartite, as
two chords in the same linked list must never be in conflict. Therefore each bundle B
is also bipartite — the bipartition of a bundle consists of the chords inside the cycle,
denoted B;, and the chords outside the cycle, denoted B,. A typical bundle is shown
as the shaded area in Figure 14.27. The two shaded zones represent B; and B, for
one bundle. Any chord inside a shaded zone conflicts with all chords in the opposite
shaded zone. Notice that if the conflict graph is not bipartite, that it is impossible to
assign the chords to the inside and outside of C'. Consequently, G must be non-planar
in such a case.

Now the conflict graph K is changing dynamically as the algorithm progresses.
Therefore the bundles are also changing. However, they change in a simple way. Each
chord is initially a bundle by itself, until it is found to conflict with another chord.
In a 1-chord bundle, one of B; and B, will be empty. The algorithm will store the
bundles in a stack.

FIGURE 14.27
Bundles of chords

Consider the situation where no conflicts have yet been discovered, so that all

350 Graphs, Algorithms, and Optimization

chords so far have been placed on L;. The algorithm is visiting vertex v on C, at-
tempting to place a chord (u, v). The leading inside chord satisfies LowerPt > u >
UpperPt. It belongs to a 1-chord bundle, the current bundle. The algorithm first at-
tempts to nest (u, v) inside the leading inside chord. If it fits, then (u, v) becomes the
new leading inside chord, and a new 1-chord bundle is created containing only uv,
which becomes the current bundle — the bundles are nested. The innermost bundle is
always the current bundle and is stored at the top of the bundle stack.

If (u, v) will not fit on the inside, it conflicts with the leading inside chord. (u, v)
may conflict with several chords of the inside linked list. They will be consecutive
chords of L;, preceding the leading chord. These chords initially belong to differ-
ent bundles, but will become merged into the current bundle B, thereby forming
B;, when (u,v) is placed in the outside list. B, will consist of (u, v). If B denotes
the current bundle, we will call B; and B, the current inside and outside bundles,
although they are part of the same bundle.

At this point we can say that the current inside and outside bundles consist of one
or more consecutive chords in the two linked lists. This will be true at each point of
the algorithm.

So in order to represent a bundle B, we require two pointers into each of L; and
L,, being the first and last chords of L; that belong to B;, and the first and last chords
of L, that belong to B,. We could switch the chords of B; to L, and the chords of
B, to L; by reassigning four pointers. Because the bundles are nested, we store them
as a stack.

When a chord (u, v) is placed in one of the linked lists, and it does not conflict
with the leading chord on either side, a new current bundle B containing (u,v) is
created, nested inside the previous current bundle. The current bundle is the one
at the top of the stack. As vertex v moves up the cycle, we eventually have v <
UpperPt for the uppermost chord in the current bundle. The current bundle B is then
no longer relevant, as no more chords can conflict with it. Therefore B is removed
from the stack and deleted. The next bundle B’ on the stack becomes the current
bundle. When this happens, the chords belonging to B; or B, often occur in L; or
L,, respectively, as a consecutive subsequence of chords contained within B} or B..
When B is deleted, the effect is to merge the chords of B into B’. Then B’ becomes
the new current bundle. Its chords are again consecutive chords of L; and L,.

14.17.2 Switching bundles

We have a chord (u, v) that will not fit on the inside or outside of C'. What do we do?
There are several possible ways in which this can arise. Two of them are illustrated
in Figure 14.28. The current bundle is shown shaded in gray.

In the left diagram of Figure 14.28, (u, v) conflicts with one or more chords in
B; and in B,. If we form a subgraph consisting of the cycle C, the edge (u, v), and
a conflicting chord from each of B; and B,, we have a subgraph T'K3 3, which we
know is non-planar. In the right diagram of Figure 14.28, (u, v) conflicts with one or
more chords in B,. It does not conflict with any chords in B;, but it does conflict with
the leading chord (a, b) of L;, which is in a previous inside bundle. If we interchange

Planar Graphs 351

the chords of B; and B,,, there will be room to place (u, v) in L,. This can be done in
constant time, because the chords in each bundle are consecutive chords in the linked
list. We only need to change a constant number of pointers to transfer a sequence of
chords from L; to L,, and vice versa.

C C b

FIGURE 14.28
Switching bundles

A third situation also exists which is nearly the mirror image of the right diagram
of Figure 14.28, in which (u,v) conflicts with one or more chords in B;, but does
not conflict with any chords in B,, and does conflict with the leading chord (a, b) of
L,, which is in a previous outside bundle. It can be handled in a similar way.

Suppose that a situation similar to the right diagram of Figure 14.28 exists. B is
the current bundle, and chord (u, v) conflicts with a chord of B,, but not with B;.
The leading chord of L, is in B,,. The leading chord of L; is (a, b), which is not in
B;. Because every chord is contained in some bundle, (a, b) is in a previous bundle
on the stack. The bundles are nested, so that B is nested within a bundle B’, which
may in turn be nested within a bundle B”, etc. Without loss of generality, suppose
that there are at least three bundles on the stack, which begins B, B’, B”, and that
(a,b)isin B”.

Now B is nested within B’, which is nested within B”. Because the leading
chord of L; is in B”, it follows that (u,v) does not conflict with any chord of B,
and that (u, v) does conflict with some chord of B/. So (u, v) conflicts with a chord
of both B, and B.. If (u,v) can be embedded, B, and B/, must be merged into one
bundle, and they must both be on the same side of C'. They will be in the same part of
the bipartition of K. Therefore the algorithm merges B and B’. Call the result B. It
then discovers that interchanging the chords of B; and B, allows (u, v) to be placed
on L,. Because (u, v) conflicts with (a, b) in L;, the bundles B and B” are then also
merged.

The properties of bundles are summarized as follows:

1. The bundles correspond to connected components of the conflict graph.

352 Graphs, Algorithms, and Optimization

2. The bundles are nested inside each other, and consequently stored on a
stack.

3. The current bundle is the one on the top of the stack.

4. The chords of each B; and B, form a contiguous subsequence of L; and
L,, respectively.

The description of SWITCHSIDES(u,v) Algorithm 14.17.2 can now be given.
It is called when chord (u,v) conflicts with both the leading chord of L; and the
leading chord of L,. The algorithm needs to know whether the leading chord of L;
is within B;, and whether the leading chord of L, is within B,. This can be done
by comparing the endpoints of the leading chords with the first and last chords of B;
and B,. One of the leading chords is always in the current bundle. The other must
be in a previous bundle, or the conflict graph will be non-bipartite, and G will be
non-planar.

When B; and B, are interchanged, the leading chords in L; and L, also change.
Suppose that the leading chord of L, is within B,, but that the leading chord of L; is
in a previous bundle, as in Figure 14.28. The new leading chord of L, can easily be
found by taking the first chord of L, following B,. The new leading chord of L; is
the former leading chord of L,,.

This procedure merges the bundles on the stack until either a non-bipartite con-
flict graph is found, in which case it returns zero, or until it becomes possible to
place (u,v) in one of L; or L,. Notice that swapping the chords of B; and B, takes
a constant number of steps, and that merging the current bundle with the previous
bundle on the stack also takes a constant number of steps. The total number of bun-
dles is at most the number of edges of G, so that the total number of steps required
by SWITCHSIDES (u, v) is O(n), summed over all iterations.

If SWITCHSIDES (u, v) returns either 1 or —1, then it is possible to place (u, v)
inside or outside C'. If SWITCHSIDES (u, v) returns 0, then the current bundle con-
tains chords of L; and L, that conflict with (u,v), so that the conflict graph is not
bipartite. In this case G is non-planar. However, it is not particularly easy to find a
TKs or TKs 3 in G in this situation. If the algorithm succeeds in placing all the
chords, then a rotation system can be found from the order in which the chords occur
in L; and L,.

So the three main components of this simplified version of the Hopcroft-Tarjan
algorithm are:

1. Construct the linked lists L; and L, in the right order.

2. Construct the connected components of the conflict graph as a stack of
bundles.

3. Keep the bundles up to date. Each time that a chord is added to one of L;
or L,, the current bundle must be updated.

These steps can all be performed in linear time.

Planar Graphs

353

do

while (true)

Algorithm 14.17.2: SWITCHSIDES(u, v)

comment: (u, v) conflicts with the leading chord of L; and L,

let B denote the current bundle
let B’ denote the previous bundle on the stack
if the leading chord of L, is within B,

then

else

if the leading chord of L; is within B;
then return (0) “non-planar”
otherwise the leading chord of L;

comment: ¢ . . .
{15 in a bundle previous to B

if the leading chord of L; is within B;
interchange the chords of B; and B,
merge B and B’
then < find the new leading chords of L; and L,
if (u,v) does not conflict with L,
then return (—1) “(u,v) now fits in L,”
else merge B and B’
the leading chord of L; is within B;
comment: ¢ the leading chord of L, is
in a bundle previous to B

if the leading chord of L, is within B/,
interchange the chords of B; and B,
merge B and B’
then < find the new leading chords of L; and L,
if (u,v) does not conflict with L;
then return (1) “(u,v) now fits in L;”
else merge B and B’

14.17.3 The general Hopcroft-Tarjan algorithm

Up to now, we have assumed that we are given a hamilton cycle C' in a 2-connected
graph G which we are testing for planarity. If we are not given a starting hamilton
cycle, the algorithm is the recursive extension of the hamilton cycle case. We give a
brief sketch only. The first step is to perform a depth-first search in G starting from
vertex 1, to assign a DF-numbering to the vertices, and to calculate the low-points
of all vertices. The DFS will construct a DF-spanning tree 7" rooted at 1. Number
the vertices of G according to their DF-numbers. It can happen that the tree T is a
hamilton path, in which case we have the proceeding situation exactly — the vertices
are numbered consecutively along 7', and as the DFS returns from recursion, it visits
the vertices in the order n,n — 1,. .., 1. If we sort the chords incident on each vertex
in order of increasing DF-number of the other endpoint, the algorithm is identical.

354 Graphs, Algorithms, and Optimization

A

If the tree 7" is not a hamilton path, consider the situation where the DFS is
visiting vertex u, and a recursive call DFS(v) is made, due to an edge uv. The re-
cursive call DFS(v) constructs a subtree T,,. Refer to Figure 14.29. When Ty, is
constructed, LowPt[v] is calculated. Because G is 2-connected, this is a vertex some-
where above u in 7. The entire subtree T,,, behaves very much like a single chord (u,
LowPt[v]). Therefore the vertices adjacent to w must be sorted according to LowPt|-]
values, just as in the simplified algorithm (where v is used rather than LowPt[v]).

There are two kinds of possible subtree, and these are illustrated as 7’,,, and T,
in Figure 14.29. Both T,,, and T ,,, have the same LowPt, equal to x. Notice that T,
has a frond with endpoint y between v and x, but that 7%, has no such frond. We
will call a subtree like 77,,, a type I subtree, and a subtree like 7},,, a type II subtree.
It is easy to distinguish type I and II subtrees. The DFS can compute the second low-
point as well as the low-point. If the second low-point is between « and LowPt[v],
then the subtree 7T}, is of type II; otherwise, it is of type I. Now a type I subtree 17,
behaves exactly like a chord (u, LowPt[w]). There can be any number of them, and
they can be nested inside each other in any order. However, they cannot be nested
inside a type II subtree.

Therefore we must embed all type I subtrees at u with LowPt = z before any
type II subtrees at u with LowPt = z. This can be accomplished by ordering the
adjacent vertices at u so that fronds uax and type I subtrees Ty, with LowPt[w] = x

FIGURE 14.29
Subtrees T, and T, 4,

Planar Graphs 355

precede type Il subtrees T, with LowPt[v] = 2. Hopcroft and Tarjan assign a weight
to all edges incident on u. A frond ua has weight 2z. A type I subtree 77, has weight
2-LowPt[v]. A type II subtree T}, has weight 2- LowPt[v] + 1. The adjacent vertices
are then sorted by weight, which can be done by a bucket sort in linear time, because
the weights are all in the range 1,...,2n + 1.

The general algorithm takes place in two stages. The first stage is LOWPTDFS()
which constructs a DF-tree, calculates the low-points and second low-points,
and sorts the adjacency lists. The second stage is another DFS which we call
EMBEDDINGDFS(). It is a DFS using the re-ordered adjacency lists and is given
as Algorithm 14.17.3

Algorithm 14.17.3 constructs an embedding by placing the edges into two linked
lists L; and L,, as in the simplified algorithm. The list L; which originally cor-
responded to the chords placed inside C', now corresponds to the edges placed to
the left of the DF-tree, because the drawings were made with the interior of C' to
the left of the path. Similarly, the list L, now corresponds to edges placed to the
right of the DF-tree, because the exterior of C' was drawn to the right of the path.
EMBEDDINGDEFES() first descends the DF-tree. The first leaf it encounters will have
a frond back to vertex 1. This is a consequence of the ordering of the adjacency lists.
This creates a cycle C, which we draw to the left of the path. The remaining fronds
and subtrees will be placed either in L; or L,, exactly as in the simplified algorithm.

A subtree T, is similar to a chord (u, LowPt[v]). Ty, fits in L; if and only if a
chord (u, LowPt[v]) does. In this case, we place a dummy chord (u, LowPt[v]) in L;
and a dummy chord (u, u) in L,. A dummy chord is a chord that has an associated
flag indicating that it is a placeholder for a subtree. If the dummy chord (u, LowPt[v])
is assigned to L;, the subtree T, is to be embedded to the left of the path of the DF-
tree containing w. The algorithm then calls EMBEDDINGDFS (v) recursively. The
fronds placed in L; by the recursion are placed to the left of the tree T,,,. The fronds
placed in L, are to the right of T,,,,. The dummy chord (u, u) in L, has the purpose of
ensuring that any fronds placed in L, by the recursive call must have UpperPt > u.

356 Graphs, Algorithms, and Optimization

Algorithm 14.17.3: EMBEDDINGDFS(u)

comment: extend the embedding DFS from u

for all v adjacent to u
if wvis afrond and v is above u
if (u,v) fitsin L;
then place (u,v) in L;
elseif (u,v) fitsin L,
then place (u,v)in L,
then m = SWITCHSIDES (u, v)
if m = 0 then return(NonPlanar)
else < ifm =1
then place (u,v) in L;
else place (u,v)in L,
comment: uv is a tree edge

do if u = Parent[v] then
w = LowPt[v]
if (u,w) fitsin L;
then place (v, w) in L; and (u,) in L,
else if (u,w) fitsin L,
then place (u,w) in L, and (u,w) in L;
m = SWITCHSIDES (u, w)
if m = 0 then return(NonPlanar)
else (ifm =1
then place (u, w) in L; and (u,u) in L,
else place (u,w) in L, and (u,w) in L;
EMBEDDINGDFS (v)
if NonPlanar then exit

else

14.18 Notes

The important area of graph minors was developed in a series of over 20 papers by
Robertson and Seymour. Some of their early work on graph minors is surveyed in
their paper ROBERTSON and SEYMOUR [148]. They have proved a theorem of far-
reaching significance, that in any infinite collection of graphs, there are always two
graphs such that one is a minor of the other; or in other words, any set of graphs
in which no graph is a minor of another, is finite. The books by DIESTEL [44] and
ZIEGLER [196] contain excellent chapters on graph minors.
Rotation systems were developed by HEFFTER [81] and EDMONDS [46].

Planar Graphs 357

The Jordan curve theorem is non-trivial — see ROSS and Ross [150] for some
remarkable examples.

Read’s algorithm to draw a planar graph by reducing a triangulation is from
READ [144]. It was modified to use a regular polygon as the outer face by KOCAY
and PANTEL [109]. Tutte’s method of using barycentric coordinates to construct con-
vex drawings of graphs appeared in TUTTE [173].

Whitney’s theorem appeared in WHITNEY [191].

Good source books for polytopes are the books by GRUNBAUM [76] and
ZIEGLER [196]. A classic text on polyhedra is by COXETER [38].

The original proof of the four-color theorem appeared in APPEL and HAKEN [5]
and [6]. An excellent survey article of the Appel-Haken proof is WOODALL and
WILSON [194]. There are a number of excellent books on the 4-color problem, in-
cluding SAATY and KAINEN [153], ORE [133], and FRITSCH and FRITSCH [56].
A very readable history of the 4-color problem can be found in WILSON [193].
A shorter proof was accomplished by ROBERTSON, SANDERS, SEYMOUR, and
THOMAS in [149]. Much of the development of graph theory arose out of attempts
to solve the 4-color problem. AIGNER [2] develops the theory of graphs from this
perspective. A survey of work on problems related to nowhere-zero flows appears
in JAEGER [94]. A detailed treatment of k-flows can be found in BONDY and
MURTY [24] and DIESTEL [44].

Kuratowski’s theorem is a famous theorem of graph theory. It originally ap-
peared in KURATOWSKI [112]. The proof presented here is based on a proof of
Krorz [101]. See also THOMASSEN [167].

The Hopcroft-Tarjan planarity algorithm is from HOPCROFT and TARJAN [88].
See also WILLIAMSON [192]. It is usually presented as a “path-addition” algorithm;
that is, an algorithm that embeds one path at a time across a cycle. It is presented
here as an equivalent algorithm that recursively embeds a branch of the DF-tree.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

15
Graphs and Surfaces

15.1 Introduction

The plane and the sphere are the simplest topological surfaces. The structure of planar
graphs, and algorithms for embedding graphs on the plane are well understood. Much
less is known about graph embeddings on other topological surfaces, and the struc-
ture of these graphs. We begin with the torus, the doughnut-shaped surface shown
in Figure 15.1. We imagine this surface made out of rubber, and using scissors, cut
it along the two circumferences shown in the diagram. The surface of the torus then
unfolds into a rectangle, which is indicated on the right. The opposite sides of the
rectangle labeled a must be glued together with the arrows aligned, as must the sides
labeled b, in order to reconstruct the torus. We could glue the edges in the order a,
then b; or else b, then a. Both represent the same torus.

\b
ap \ @
b
FIGURE 15.1
The torus

When a graph is drawn on the rectangle representing the torus, we must remem-
ber that the two sides labeled a (and the two sides b) are really the same, so that graph
edges can “wrap around” the diagram. Notice that the four corners of the rectangle
all represent the same point. Figure 15.2 shows two embeddings of K3 3 on the torus.

These embeddings of K3 3 are very different from each other. Unlike the plane in
which a 3-connected graph has a unique embedding (up to orientation), some graphs
have very many distinct embeddings in the torus, or other surfaces.

DEFINITION 15.1: An embedding of a graph G in a surface X is a function %
that maps the vertices of GG into points of ¥, and the edges of GG into continuous

359

360 Graphs, Algorithms, and Optimization

FIGURE 15.2
Two embeddings of K3 3 on the torus

curves in X, such that the curves representing two edges intersect only at a common
endpoint. We write G¥ for the image of G’ under the embedding).

In the embeddings of Figure 15.2, we can assign a “coordinate system” to the
rectangle representing the torus, and then construct) by assigning coordinates to
the vertices, and then draw the edges as straight lines. This is how the diagram was
constructed.

Definition 15.1 uses an intuitive notion of a surface, and an intuitive notion of
continuous. Currently we have the plane, sphere, or torus in mind. We will later make
the definition of a surface more precise. Because we have coordinate systems for the
above surfaces, by “continuous” we mean continuous mappings of the coordinates.
However, topological continuity does not require coordinates.

If we cut the torus along the edges of the embeddings of K3 3, the torus surface
falls apart into several connected regions. As in the case of the plane, we call these
regions the faces of the embedding. Once again we are relying on an intuitive notion
for the concepts of region and face. A facial cycle or facial walk is an oriented cycle
or walk of the graph which bounds a face. The embedding of K3 5 in Figure 15.2(i)
has three faces, each bounded by a hexagon. The embedding in Figure 15.2(ii) also
has three faces, two bounded by quadrilaterals, and one bounded by a facial walk
which has length 10, and in which several vertices and edges appear twice. A con-
venient way of finding the faces and facial walks of an embedding is to think of
walking along an edge of the graph, while holding a paint brush in one’s right hand,
and painting a stripe along the surface. When a vertex is reached, we take the first
edge on our right, so that the paint brush does not cross an edge, and continue tracing
out the facial boundary. Upon returning to the starting edge, tracing it in the same
direction as before, a facial walk has been completed.

An open disc in the plane is the region interior to a circle. We will use an intuitive
understanding of the notion of homeomorphic regions and surfaces. Two regions Ry
and R are said to be homeomorphic if one can be transformed into the other by a
one-to-one continuous deformation, whose inverse is also continuous. For example,
an open disc is homeomorphic to a face bounded by a hexagon, or by any other

Graphs and Surfaces 361

polygon. (However an open disc is not homeomorphic to a polygon with a hole in
its interior.) A homeomorphism of R; and Ry is any continuous one-to-one mapping
from R; onto R», whose inverse is also continuous.

DEFINITION 15.2: A 2-cell is a region homeomorphic to an open disc. An em-
bedding G is a 2-cell embedding if all faces are 2-cells.

Corresponding to the idea of a 2-cell are 0-cells (a single point), 1-cells (an open
line segment), and 3-cells (the interior of a sphere in 3-dimensional space), etc.

Usually we will restrict embeddings of a graph G to 2-cell embeddings. For ex-
ample, we could draw a planar embedding of a planar graph G, such as the cube,
in the rectangle representing the torus. The result would not be a 2-cell embedding
of G, for the outer face of the embedding would be homeomorphic to a torus with a
hole in it, which is not a 2-cell. Embeddings which are not 2-cell embeddings really
belong in a different surface. For the cube, there are five distinct 2-cell embeddings
on the torus (see Figure 15.21).

DEFINITION 15.3: Two embeddings G¥* and G¥2 in a surface Y. are homeo-
morphic if there is a homeomorphism of ¥ which maps G¥* to G¥2. Otherwise G¥1
and G2 are distinct embeddings.

It is clear that a homeomorphism of G¥* and G*2 induces an automorphism of
G, and that the faces of G¥* map to the faces of G*2. The embeddings of Figure 15.2
are then easily seen to be distinct, because their facial walks have different lengths.
In general, there is no easy method of determining all the embeddings of a graph on
a given surface, or even to determine whether a graph is embeddable.

15.2 Surfaces

We can use the method of representing the torus as a rectangle, as in Figure 15.1, to
represent a cylinder, and a Mobius band, shown in Figures 15.3 and 15.5.

The cylinder is glued along only one edge of the rectangle. We call it an open
surface because it has a boundary (the edges which are not glued). If we project a
cylinder onto a plane, one possible result is an annulus, that is, a disc with a hole in
it. This immediately gives the following theorem:

Theorem 15.1. A graph can be embedded on the cylinder if and only if it can be
embedded on the plane.

Proof. Given an embedding of a graph G on the plane, choose any face except the
outer face, and cut a hole in it. The result is an embedding on the cylinder, and vice
versa. |

Notice that an embedding of G on the cylinder corresponds to an embedding
of GG on the plane with two distinguished faces. They can be any two faces of a

362 Graphs, Algorithms, and Optimization

FIGURE 15.3
Three representations of the cylinder

planar embedding of G. By Whitney’s theorem, we know that up to orientation, a
3-connected planar graph has just one embedding on the plane. This is not the case
for embeddings on the cylinder. Two embeddings of the graph of the cube on the
cylinder are shown in Figure 15.4.

FIGURE 154
Two cylindrical embeddings of the cube

The Mobius band is constructed by giving one end of the rectangle a twist of 180
degrees before aligning and gluing the opposite edges. This is indicated by the op-
posite orientation of the arrows. Notice that if we follow the boundary of the Mobius
band, it is a single closed curve, unlike the boundary of the cylinder.

The sphere, torus, and cylinder can all be considered as two-sided surfaces — they
have an inside and an outside. One way to define this is to imagine a small clockwise-
oriented circle drawn in the surface. If we reflect this circle in the surface, we obtain a
circle of the opposite orientation. On the sphere, torus, and cylinder it is not possible

Graphs and Surfaces 363

FIGURE 15.5
The Mo6bius band

to walk along the surface, taking the oriented circle with us, until it coincides with its
opposite orientation (we are not allowed to walk over the boundary of the cylinder or
Mobius band). On the Mobius band, it is possible to make these two circles coincide.
We therefore say that the Mobius band is a one-sided surface. A two-sided surface is
said to be orientable. We can assign an orientation to the surface, by partitioning the
set of oriented circles defined at every point of the surface. One orientation is called
the inside, and the other the outside. A one-sided surface is non-orientable, as the
set of oriented circles does not have this partition into two subsets. For surfaces like
the sphere and torus which can be constructed in euclidean 3-dimensional space, we
could alternatively use a normal vector to the surface, and its reflexion in the surface
in place of an oriented circle and its reflexion.

Aside from the cylinder and M6bius band, the surfaces we will be interested in
are closed surfaces.

A closed surface is a generalized notion of a polyhedron. A polyhedron is a three-
dimensional object consisting of a set of polygons, of three or more sides each. Each
polygon is bounded by a sequence of p straight-line segments connecting p vertices
in cyclic order, for some p > 3. The line segments are the edges of the polyhedron.
Each edge is shared by exactly two polygons. Any two polygons may intersect only
on a single common edge. There are at least three polygons meeting at each vertex,
and the polygons meeting at any vertex form a single cycle.

This idea is generalized by allowing the polygons composing a polyhedron to be
infinitely stretchable and interpenetrable. They are then called curvilinear polygons.

DEFINITION 15.4: A closed surface is a set of points homeomorphic to a poly-
hedron made of curvilinear polygons.

Thus a closed surface is an object that is capable of being represented as a col-
lection of curvilinear polygons glued together along common edges. However, the
surface is not any single one of these representations, because many different polyg-
onal representations of the same closed surface are possible. For example, the surface
of the sphere may be partitioned into many different polygonal forms. Similarly, the
embeddings of K3 3 of Figure 15.2 partition the torus into two different polyhedra.

When we identify opposite edges of a rectangle, we are identifying two edges of
a single polygon. In order to conform to the definition of polyhedron, in which only

364 Graphs, Algorithms, and Optimization

distinct polygons share a common edge, we can subdivide the rectangle into two or
more polygons, as necessary. There are three more surfaces that can be made from
a rectangle by identifying its edges in pairs. They are the sphere, projective plane,
and Klein bottle, illustrated in Figures 15.6, 15.7, and 15.9. The sphere can also be
represented as a digon (a “polygon” of two sides), as shown, where ¢ = ab.

b

>
a

FIGURE 15.6
The sphere as a rectangle and as a digon

The projective plane is constructed from a rectangle by first using a twist to
create a Mobius band, and then by gluing the boundary of the M&bius band to itself,
to create a closed surface. This is illustrated in Figure 15.7, where the edges labeled b
have been glued. This cannot be done in euclidean space, for the polygon must cross
itself without intersecting itself. But mathematically, we can consider the surface to
be constructed in this way. The projective plane can also be viewed as a digon, as
illustrated in Figure 15.8, by combining the a and b sides of the rectangle into a
single side, labeled c. Because of the orientation of the arrows, the two “corners” of
the digon represent the same point. We can identify the corners, creating a “figure
eight”, and then identify the two lobes of the figure eight to complete the projective
plane. If we then remove a disc from the projective plane by cutting along the circle
containing the dotted line, the result is called a crosscap. It is a projective plane with
a hole in it. In Exercise 15.2.1, it is proved that a crosscap is homeomorphic to a
Mobius band.

b
ap \&
b
FIGURE 15.7

The projective plane as a rectangle, and as a Mobius band

Graphs and Surfaces 365

4

FIGURE 15.8
The projective plane as a digon, and as a crosscap

The Klein bottle can be constructed by gluing two edges of a rectangle to create
a cylinder, and then by gluing the ends of the cylinder together, according to the
orientation of the arrows. This also cannot be done in euclidean space, as the cylinder
must cross through itself without intersecting itself.

Y-

“b

FIGURE 15.9
The Klein bottle as a rectangle, and as a “bottle”

These surfaces have been constructed from a rectangle by gluing edges together.
By subdividing the rectangle into curvilinear polygons, closed surfaces represented
as curvilinear polyhedra are obtained. Polygons with more sides than a rectangle
could also be used. By the classification theorem of closed surfaces (Theorem 15.2),
every closed surface can be constructed by gluing together edges of a single curvi-
linear polygon.

The rectangle representing the torus in Figure 15.1 can be written symbolically as
a*bTa~b~. This means that we choose a clockwise orientation of the rectangle and
write at for the edge labeled a when the direction of the arrow is clockwise, and a™
when the direction of the arrow is counterclockwise. The boundary of the rectangle
is then determined by the above symbol. Similarly the rectangle representing the

366 Graphs, Algorithms, and Optimization

sphere (Figure 15.6) can be characterized as a™b™b~a ™, that of the projective plane
(Figure 15.7) as a™bTa*b™, and that of the Klein bottle (Figure 15.9) asa™bTa™b ™.

In general, we have a polygon with an even number of sides, with labels
ai,az,...,ap, such that every label a; appears on exactly two sides. We place an
arrow on each edge of the polygon in some direction, and choose a clockwise orien-
tation of the polygon. This defines a symbolic representation in terms of the a;" and
a; . Every closed surface can be represented symbolically by a normal form of this
type, as shown by the following theorem:

Theorem 15.2. (Dehn and Heegard — Normal forms for closed surfaces) Every
closed surface can be represented symbolically by one of the following normal forms.
Two closed surfaces are homeomorphic if and only if they have the same normal
form.

1. ata™
it o= b—athta— b= +hta—b—
2. aybiarbyazbyagby .. aybya, b,
+ 4+t ++
3. aj aj ay ay coLGgay

The proof of this theorem can be found in FRECHET and FAN [54] or STILL-
WELL [161]. It is too lengthy to include here. It involves cutting and pasting a curvi-
linear polygon until the normal form is achieved. This is done in stages. The torus
is represented in Figure 15.1 by a*b*a~b~, which is already in normal form. The
sphere is represented by a*bTb~a~. It is clear from the diagram that the adjacent
b+b~ corresponds to edges that can be glued, so that they cancel from the formula,
leaving a™a~ as the normal form for the sphere. The projective plane is represented
in Figure 15.7 asa™ bTatbt, which is not in normal form. We could transform it into
normal form by letting ¢ = ab, and obtain ¢Tct. Alternatively, we could illustrate
the techinques used in the proof of Theorem 15.2 and convert it to normal form by
the following sequence of operations, illustrated in Figure 15.10.

Yo

AN

FIGURE 15.10
Transforming the projective plane to normal form

We make a diagonal cut across the rectangle, and label it c. We thereby obtain
two triangles which we glue together along the edge b, which then disappears. The

Graphs and Surfaces 367

symbolic form is now cta*a"cT. The edges a*a™ are then glued, and thereby
cancel, to produce the digon in Figure 15.10, giving the normal form c¢*c™ for the
projective plane.

15.2.1 Handles and crosscaps

Consider a surface with normal form a™b"a~b~cTd"c~d~, shown in Figure 15.11.
We have an octagon with edges that are to be identified in pairs. Both endpoints of
the upper edge marked b represent the same point, as they are the same endpoint
of the arrows marked a. Therefore gluing the edges labeled a will make this b-edge
the boundary of a hole in the surface. Consequently, the other edge labeled b also
represents the boundary of a hole in the surface, and these two boundaries must be
identified. One way to identify them is to attach the two ends of a cylindrical tube to
each of these holes. The result is a handle attached to the surface.

FIGURE 15.11
A sphere with two handles

Now the same can be done for the edges marked c in the diagram — we attach
another handle. This same argument holds for any normal form of this type. This
gives:

Theorem 15.3. A surface with normal form

R +pt o —p—
ay by ay by ay by ay b ...apbpapbp

is homeomorphic to a sphere with p handles.

Because a sphere is an orientable surface, so is a sphere with p handles.

Consider now a surface with normal form atatbTb+ctc™, illustrated in Fig-
ure 15.11. We have a hexagon in which consecutive edges are to be identified in
pairs. The vertex common to the two sides marked a is both the head and tail of
the a-arrow. Therefore indentifying the endpoints of the edges marked a makes two
holes in the surface, bounded by the a-edges. We must identify the boundaries of
these two lobes.

368 Graphs, Algorithms, and Optimization

FIGURE 15.12
A sphere with three crosscaps

This is nearly identical to the construction of the projective plane from a digon,
illustrated in Figure 15.8. If we draw a circle around the two a-lobes in Figure 15.12,
and cut along the dotted line, we see that what we have is in fact a crosscap glued
into a hole cut in the surface. We can then do the same for the remaining pairs bb*
and ¢ ¢t to get a sphere with three crosscaps. In general, this gives:

Theorem 15.4. A surface with normal form

ottt +,t
ajyajazas ...a a,

is homeomorphic to a sphere with q crosscaps.

Because a crosscap is an nonorientable surface, so is a sphere with ¢ crosscaps.
Gluing a crosscap to a hole in a sphere is equivalent to gluing the boundary of a
Mobius band to a hole in the sphere.

15.2.2 The Euler characteristic and genus of a surface

We know from Chapter 14 that a connected planar graph with n vertices, £ edges,
and f faces satisfies Euler’s formula n — ¢ + f = 2. Furthermore, the skeleton of
a polyhedron is a planar graph, so that any polyhedral division of the sphere also
satisfies this formula. We say that the Euler characteristic of the sphere is 2.

DEFINITION 15.5: Let X be a closed surface represented by a curvilinear poly-
hedron with n vertices, f polygons, and ¢ edges. The Euler characteristic of the
surface is the value n — € + f. It is denoted x ().

Graphs and Surfaces 369

It has been proved by Kerékjarté that the value n —e+ f for a surface is invariant,
no matter what polygonal subdivision is used to represent it. This is difficult to prove
because of the vast numbers of polygonal subdivisions that are possible. However,
we can get an understanding of it as follows. If we add a diagonal across a face, n
does not change, but € and f both increase by one. Thus n — ¢ + f does not change.
Similarly, if we subdivide an edge with a new vertex, n and ¢ increase by one, but
f does not change. Modifying a polygonal subdivision by these operations does not
change the value n — ¢ + f. Suppose that we now add a handle or a crosscap to a
given polygonal division of a surface. Consider a polygonal division with n vertices,
f polygons, and € edges. Choose two polygons on the surface, cut a disc from the
interior of each polygon, and attach a handle connecting them. Let the polygons be
Py and P. Refer to Figure 15.13. We draw two curves along the handle connecting
P to P». The result is a polygonal division of the surface with an additional handle.
Let it have n’ vertices, f’ polygons, and &’ edges. The effect of drawing the curves
connecting P; to P is to add two vertices and two edges to each of P, and P», plus
two additional edges represented by the curves. The number of polygons does not
change. We therefore have n’ = n+4, f' = f,ande’ = e+6,sothatn’ —&' + ' =
(n — e+ f) — 2. Thus, when a handle is added to a surface, the Euler characteristic
decreases by two. It does not matter to which faces the handle attaches. It follows
that a sphere with p handles has Euler characteristic 2 — 2p.

FIGURE 15.13
Attaching a handle to a surface

Suppose that we now add a crosscap to a polygonal division of a surface (e.g.,
the sphere). We choose a polygon Pj, cut a disc from its interior, and attach a cross-
cap. Let C be the boundary of the disc. Now a crosscap is a Mobius band, and the
boundary of the disc becomes the boundary of the Mobius band. We draw a curve
connecting P; to C, continue across the Mobius band to the opposite side of C', and
continue to an opposite point of P;. The result is a polygonal division of the surface
with an additional crosscap. Let it have n’ vertices, f’ polygons, and &’ edges. The
effect of drawing the curve across P is to add two vertices and two edges to P, plus
an additional edge represented by the curve. When the Mobius band is cut across, it
remains connected. Therefore the number of polygons does not change. We therefore
haven’ =n+2, f/ = f,ande’ = e+3,sothatn’ —&’'+ f' = (n—e+ f) — 1. Thus,

370 Graphs, Algorithms, and Optimization

when a crosscap is added to a surface, the Euler characteristic decreases by one. It
does not matter to which face the crosscap attaches. It follows that a sphere with ¢
crosscaps has Euler characteristic 2 — q.

Consequently surfaces can be classified according to whether they are orientable
or non-orientable, and their Euler characteristic. A related parameter of a surface is
1ts genus.

DEFINITION 15.6: A Jordan curve in a surface X is contractible or null-
homotopic if it can be continuously shrunk to a point within .

Cutting a surface along a contractible Jordan curve always separates it into two
pieces.

DEFINITION 15.7: The genus of a surface is the maximum number of non-
intersecting Jordan curves that can be drawn on the surface such that cutting along
the curves does not separate it into two or more pieces.

A consequence of the Jordan curve theorem is that the sphere has genus zero. We
can then see that the torus has genus one.

If the Jordan curves of Definition 15.7 are allowed to intersect, then the maximum
number of Jordan curves that can be drawn such that cutting along the curves does
not separate it into two or more pieces is called the connection number (see [54]). Itis
easy to see that for the torus, two intersecting Jordan curves can be drawn, such that
cutting along the curves leaves a rectangle. Thus the torus has connection number
two.

In general, a sphere with p handles has genus p, as exactly one Jordan curve can
be drawn around each handle without separating the surface. Because a sphere with
handles is an orientable surface, we say it has orientable genus p.

The projective plane has genus one, as shown in Exercise 15.2.2. It then follows
from Exercise 15.2.3 that a sphere with ¢ crosscaps has genus q. We say it has un-
orientable genus q. Some texts use the term crosscap number in place of genus for a
non-orientable surface. The relation with Euler characteristic can now be stated.

Theorem 15.5. An orientable surface of genus p has Euler characteristic 2 — 2p. A
non-orientable surface of genus q has Euler characteristic 2 — q.

When a graph G is embedded in a surface X, cycles of G map to Jordan curves
in . We will be interested in cycles which are embedded as non-contractible curves.

DEFINITION 15.8: Let G¥ be an embedding of a graph G in a surface ¥. A
cycle C'in G is an essential cycle, or non-contractible cycle of the embedding on X
if C is not contractible.

For example, in the embedding of K33 on the left in Figure 15.2, the cycles
(1,2,3,4) and (2, 3,4, 5) are essential cycles, while (1,2, 3,6,5,4) is not.

DEFINITION 15.9: The genus of a graph G is g(G), the smallest genus of an
orientable surface X such that G has a 2-cell embedding in . The unorientable genus
or crosscap number of G is G(G), the smallest genus of a non-orientable surface 3
such that G has a 2-cell embedding in 3.

Graphs and Surfaces 371

Suppose that G¥ is a 2-cell embedding of (i in an orientable surface ¥ of genus
p. Let GY have n vertices, & edges, and f faces. Then because the faces of GY
determine a polygonal division of the surface, we haven — e + f = x(X) = 2 — 2p.
This is called the Euler-Poincaré formula. If G is 2-cell embedded on an unorientable
surface of genus ¢, thenn—e+ f = x(X) = 2 —q. This gives the following relations
for graphs embedded on the:

plane: n—¢ec+ f =2
torus: n—e+ f=0
projective plane: n —e+ f = 1.

Lemma 15.6. A triangulation of an orientable surface of genus p, with n vertices
satisfies ¢ = 3n + 6(p — 1). A triangulation of a non-orientable surface of genus q
satisfies € = 3n + 3(q — 2).

Proof. A triangulation satisfies 3f = 2¢. Combining this with n — e + f = x(X)
gives the result. O

Exercises
15.2.1 Show that if a disc is removed from a projective plane, the result is a
Mobius band.

15.2.2 Show that if the projective plane is cut along a non-separating Jordan
curve, the result is a disc.

15.2.3 Show that exactly one Jordan curve can be drawn on the Mobius band
without separating it. What is the result of cutting the Mobius band along
a non-separating Jordan curve?

15.2.4 Use cutting and pasting to convert the representation a*b*a™b~ of the
Klein bottle to normal form ¢t ctdd*.

15.2.5 A sphere with one handle and one crosscap can be represented symboli-
cally by aT™bTa~b~c"cT. Find the normal form for this surface.

15.2.6 Find the facial cycles of the embeddings of K5 3 on the torus shown in
Figure 15.2.

15.2.7 Use Lemma 15.6 to obtain a lower bound on ¢(G) and g(G) for an arbi-
trary graph G.

15.2.8 Showthatg(K,) > (n—3)(n—4)/12and thatg(K,,) > (n—3)(n—4)/6.

1529 Let G be a graph with no triangles embedded on a surface of genus g.
Find an upper bound on the number of edges of G.

372 Graphs, Algorithms, and Optimization

15.3 Isometries of surfaces

Graph embeddings on a surface are related to the geometrical properties of that sur-
face. And the geometrical properties are closely related to the symmetries of the
surface. This point of view was established by Felix Klein [100] in his lecture at the
Erlanger University in 1872, which has become known as his Erlanger program. An
isometry of a surface is a continuous transformation that preserves distance. For ex-
ample, the isometries of the plane are the translations, reflexions, rotations, and com-
binations of these. The isometries of the sphere are composed of rotations, reflexions
in a plane through the center of the sphere, and a reflection which interchanges each
point with its antipodal point. It is easy to see that the isometries of a surface form a
group.

It turns out that every translation or rotation of the plane can be expressed in terms
of reflexions. For example, given a line /, let R, denote the reflexion in that line. If
{1 and /5 are two parallel lines in the plane, then the combination R, Ry, (first Ry,,
then R,,) denotes a sequence of two reflexions. It is easy to see from Figure 15.14,
that the result is a translation in the direction orthogonal to /1, towards /-, by an
amount equal to twice the distance between ¢; and /5. In the diagram, the numbers
1, 2, and 3 indicate three successive positions of a point as it is reflected, first in ¢4,
then in /5.

4 ly

FIGURE 15.14
A translation from two reflexions

Similarly, if ¢ and ¢, are intersecting lines, with an acute angle 6 between them,
then the reflexions Ry, Ry, produce a rotation about their point of intersection, by an
angle 26, in the direction of the acute angle from ¢; towards />. Again the diagram
in Figure 15.15 indicates three successive positions of a point by 1, 2, 3.

It follows that the group of isometries of the plane can be generated by the re-
flexions. The subgroup generated by an even number of reflexions is orientation-
preserving. The elements of the coset with an odd number of reflexions are all
orientation-reversing.

Graphs and Surfaces 373

FIGURE 15.15
A rotation from two reflexions

It is convenient to represent the plane as the complex plane C. Let I' denote the
group of isometries of the plane. Then a translation can be represented as Ty, : z >
z+ «a, where z € C, and « is a complex constant. If we choose « to be a real number,
then T, represents a horizontal translation. Similarly, if 8 is an imaginary number,
then T} is a vertical translation. T, and Tz generate a subgroup I'(«v, 3) of the full
isometry group I'. This is the group of all integer combinations of T;, and Tz. Every
point z € C is translated an integral number of multiples of « horizontally, and
an integral number of multiples of 5 vertically. Now the values o and 3 determine
a rectangle in the complex plane, of width |a| and height |/3|, with one corner at
the origin. The elements of I'(«, 5) map this rectangle to other rectangles such that
the entire plane C is tiled by the rectangles. The original rectangle can be viewed
as a rectangle representing the torus. It is called a fundamental region of the group
I'(av, B). Consequently, the torus can be viewed as a “factorization” of the plane C by
the group I'(«v, 8). This means the following: every point in the fundamental region
is mapped to an infinite number of other points in the plane by the group I'(«, /).
All of these points are identified into a single point, so that they are considered to
be a single point of the factorization C/T'(«v, 3). The torus is then defined to be the
collection of these “meta-points”. Another viewpoint would be to say that the plane
has been decomposed into equivalent copies of the fundamental region. Note that
« and [need not be chosen as real and imaginary. The fundamental rectangle then
becomes a fundamental parallelogram, which still represents a torus.

Similarly, if we “factorize” the plane by the group generated by a single transla-
tion I'(«), the result is C/T"(«), an infinite cylinder, i.e., a cylinder of infinite length,
but finite circumference. The fundamental region would then be an infinitely long
strip of finite width.

Observe that complex conjugation z > Z represents a reflexion in the z-axis. If
we factorize the plane by the group generated by T, and complex conjugation, the
result is the “twisted” cylinder, i.e., a M6bius band of infinite width.

This point of view is developed by Stillwell [162], where all possible factoriza-
tions of the plane, and their corresponding surfaces, are determined.

374 Graphs, Algorithms, and Optimization

It is possible to extend the complex numbers to the surface of the sphere, using
stereographic projection (see Section 14.9). Consider a sphere of radius one, centered
at (0,0,0). Given a point (z,y, z) on the surface of the sphere, let w € C represent
the corresponding point, projected onto the plane C by a line joining the north pole
(0,0,1) through (z,y, z), and vice versa. Only the north pole has no correspond-
ing complex number. We assign it the symbol oo, and let C* denote C U co. See
Pedoe [135]. If w € C, then the arithmetic is extended by the rules

1. w/oco =0,

2.w £ 00 = 00,

3. w/0 = oo, (where w # 0),

4. w00 =00, (where w # 0).

The expressions 0/0, co — 00, 00/00, 0 - 00 are not used, and remain undefined.
Using the extended complex numbers C*, we can then do linear fractional transfor-
mations, also known as Mdbius transformations, of the form

aw +
’_)
~yw + &

where w € C* and «, 3,7,6 € C, with ad — By # 0. For if w = oo, we divide
the numerator and denominator of the fraction by w and then use one of the above
rules. The usefulness of this approach is the following theorem of Gauss [65] (see
Stillwell [162]).

Theorem 15.7. The rotations of the sphere are given by
oy QB
—pw+a
where w € CT, o, f € C and |a]* + |8 = 1.

Rotations of the sphere are orientation-preserving isometries. The orientation-
reversing isometries can be represented as an orientation-preserving isometry, fol-
lowed by a reflexion. These can also be expressed as linear fractional transformations
of CT.

Theorem 15.8. The orientation-reversing isometries of the sphere are given by
ow + B
—fw+a

where w € CT, o, € C and |a]? + |8 = 1.

The transformation that maps each point (z,y,z) to its antipodal point
(—x,—y,—z) is also an isometry of the sphere. It generates a group of order two.
If the sphere is factorized by this group, thereby identifying each point with its an-
tipodal point, the result is the projective plane. Thus we can say that the projective
plane is the sphere factorized by this isometry.

Graphs and Surfaces 375

A surface is generally represented by a regular polygon. For example, the torus
can be represented by a rectangle in the plane. And a rectangle has corner angles of
/2 radians, so that exactly four rectangles meet at each corner. The torus can also
be represented by a regular hexagon, which can be seen as follows. Make a diagonal
cut on the rectangle, as shown in Figure 15.16, and transfer the triangle obtained
to the opposite side of the rectangle. Then distort the result into a hexagon. This
gives the representation a™b"cTa~ b~ ¢~ for the torus, although this is not a normal
form. Translations of the hexagon now give a tiling of the plane by hexagons. For
the hexagon can be translated vertically by the width of the hexagon, or along a line
of slope 1/2 or —1/2, giving a group of translations. Note that the corner angle of a
regular hexagon is 277/3, and that three hexagons meet at each corner in the tiling.

\b LEEEEE Y
c - c
z A a 4o =
>
b

FIGURE 15.16
The torus represented as a hexagon

The normal forms of surfaces with more than one handle or more than two cross-
caps require polygons with at least eight sides. A regular polygon in the plane with
2n sides has a corner angle of (n — 1)7/n radians. It follows that the plane cannot
be tiled by regular polygons when 2n > 8, for then the corner angles of the polygons
meeting at each corner would sum to more than 27 radians. In Section 16.2 we will
see that the hyperbolic plane can be tiled by octagons, and also by regular polygons
with more sides. This will give a beautiful geometric representation of the double
torus, i.e., the “torus with two holes”, or equivalently, the sphere with two handles.

Exercises

15.3.1 Verify that the linear fractional transformations are well defined for all
w e Ctandall o, 8,7,8 € C.

15.3.2 Complex conjugation w — w in C is a linear fractional transformation.
Determine the corresponding map of the sphere.

15.3.3 Find the linear fractional transformation which corresponds to a rotation
of the sphere about the z-axis by 7/2 radians.

15.3.4 Find the linear fractional transformation which corresponds to a reflexion
of the sphere in a horizontal plane through its center.

376 Graphs, Algorithms, and Optimization

15.3.5 The isometry (z,y,z) — (—z,—y, —z) can be constructed by three
successive reflexions, corresponding to reflexions in the xy, zz and y-
planes. Find the linear fractional transformation that represents this isom-
etry.

15.4 Graph embeddings, obstructions

Three of the main algorithmic problems of graph embeddings are:

Problem 15.1: Graph embeddability
Instance: a graph G and a surface 3.
Question: is G embeddable in X?

Problem 15.2: Graph embeddings
Instance: a graph G and a surface 3.
Question: find all distinct embeddings of GG in 3.

Problem 15.3: Graph genus
Instance: a graph G and an integer k.
Question: is g(G) < k?is g(G) < k?

It was proved by THOMASSEN [168] that Graph Genus is NP-complete.

The first two problems are solved for the plane, but only partially solved for
other surfaces. Several efficient algorithms are known for Graph embeddability on
the projective plane.

For the plane, Kuratowski’s theorem tells us that G is embeddable if and only if it
has no subgraph isomorphic to T'K5 or T'K3 3. These graphs are called obstructions
to planarity. There are two kinds of obstructions — those that are subgraphs, and
those that are graph minors. A subgraph obstruction is called a topological obstruc-
tion or forbidden subgraph. An obstruction that is a graph minor is called a forbidden
minor.

DEFINITION 15.10: Given a surface X2, a topological obstruction for 3 is a graph
K with 6(K) > 3 such that any graph containing a subdivision T'K cannot be em-
bedded in ¥, and no proper subgraph of K has this property.

Graphs and Surfaces 377

There are two topological obstructions for the plane, K5 and K3 3, as proved
by Kuratowski’s theorem 14.29. The definition requires that no proper subgraph of
K is a topological obstruction, that is, that K be minimal with respect to this prop-
erty (otherwise graphs such as Kg, K7, etc., would all be considered as topological
obstructions).

DEFINITION 15.11: Given a surface X, a minor-order obstruction (or forbidden
minor or excluded minor) for X is a graph K, such that any graph having K as a
minor cannot be embedded in X2, but no proper minor of K has this property.

The graph relation “H is a minor of G” forms a partial order on the set of all
graphs. If we restrict the set to all graphs which are not embeddable in the surface 3,
then the minimal graphs of this partial order are the minor-order obstructions. If K is
a minor-order obstruction, then it is also a topological obstruction. K5 and K3 3 are
both minor-order obstructions and topological obstructions for the plane, because
any graph which has K5 or K33 as a minor necessarily contains either a T'K5 or
T K3 3; and T K5 and T'K3 3 are not minors of each other. According to Wagner’s
theorem 14.30, K5 and K3 3 are the minor-order obstructions for the plane. For other
surfaces, there is a distinction between the two concepts of topological obstruction
and minor-order obstruction.

Robertson and Seymour have proved that there are a finite number of obstructions
for any given surface, as a consequence of the graph minor theorem, which we state
without proof.

Theorem 15.9. (Robertson-Seymour theorem) /n any infinite collection of graphs,
there are always two graphs such that one is a minor of the other.

Consider the set of all obstructions (topological or minor-order) for a surface X.
The number of minimal graphs must be finite (or one minimal graph would be a
minor of another by the Robertson-Seymour theorem). Thus there is a finite set of
obstructions for any given surface.

It is known that there are 103 topological obstructions for the projective plane,
of which 35 are minor-order obstructions, as found by Glover, Hunk and Wang [67,
7]. These are often called Kuratowski subgraphs for the projective plane. A list of
them can be found in Mohar and Thomassen [126]. For the torus, the number of
obstructions is in the hundreds of thousands, as shown by Myrvold [128]. From an
algorithmic point of view, this is not an effective characterization, as there are too
many obstructions.

15.5 Graphs on the torus

Given a 2-cell embedding v of a 2-connected graph G on the torus, there must be
an essential cycle C in G. Cutting the torus along C¥ results in a cylinder. Because
the cylinder is not a 2-cell, but the embedding is a 2-cell embedding, there must be

378 Graphs, Algorithms, and Optimization

another essential cycle C’ in G, cutting the cylinder along an axis. Consequently C'
and C’ must intersect, either in a path or a vertex.

DEFINITION 15.12: A theta-graphis a graph consisting of two vertices of degree
three, connected by three paths of one or more edges each.

A theta-graph is illustrated in Figure 15.17.

FIGURE 15.17
A theta-graph in schematic form

Thus, C' U C” must be either a theta-subraph of G, or two cycles with a vertex in
common, and) is a 2-cell embedding of it. The simplest form of theta-subgraph is
a multigraph consisting of two vertices connected by three parallel edges. A 2-cell
embedding of it on the torus is shown in Figure 15.18. It is often necessary to consider
embeddings of graphs with multiple edges and/or loops, as the duals of many graph
embeddings (e.g., K4, K5, K3 3) often have multiple edges, and sometimes loops.
We shall always insist that in any embedding of a multigraph:

1. The cycle induced by any loop is an essential cycle (no face is a loop).

2. The cycle induced by any digon is an essential cycle (no face is a digon).

. b
Y
d,
¢ o)
e A
>
b

FIGURE 15.18
A 2-cell embedding of a theta-graph

If we cut the torus along the edges of this theta-graph, we find there is one face,
a hexagon, shown in Figure 15.18 as ct*d*etc~d~e~. Thus we see that the embed-
ding of a theta-graph on the torus gives the hexagonal representation (Figure 15.12).
The rectangular form corresponds to an embedding of two cycles with a common
vertex.

Graphs and Surfaces 379

Given an embedding G on the torus, we choose an orientation of the torus, and
walk around a vertex v¥ in a small clockwise circle in the surface, and construct
the cyclic adjacency list, just as for embeddings in the plane (Section 14.5). This
determines a rotation system for GG, exactly as in the planar case. We will denote a
rotation system for a graph embedded on the torus by ¢. The faces of the embedding
are completely determined by ¢, because Algorithm 12.5.1, FACIALCYCLE(), to find
the facial cycles of a planar graph from its rotation system also applies to toroidal
rotation systems, or to rotation systems for any orientable surface. Similarly, algo-
rithm CONSTRUCTDUAL() applies equally to toroidal rotation systems as well as
other orientable surfaces. Hence we denote a combinatorial toroidal embedding by
G! and its dual by G**. Now the rotation system determines the faces of the embed-
ding. Hence, we can determine from ¢ whether or not G has any faces which are
digons or loops, but it cannot determine whether any digons or loops are embedded
as essential cycles.

It is convenient to refer to a graph embedded on the torus as a torus map.

DEFINITION 15.13: A torus map is a combinatorial 2-cell embedding G*, where
t is a rotation system for an embedding of GG on the torus, where G is a 2-connected
graph.

We begin by embedding planar graphs on the torus. Let G be a 2-connected
planar graph that is not a cycle, with a planar rotation system p. By Exercise 15.5.3,
G has a theta-subgraph H. Let u and v be the two vertices with degree three in H,
and let Py, P», Ps5 be the three uv-paths of H. Let wy, w2, and w3 be the first vertices
of Py, P», Ps, respectively, adjacent to u. Refer to Figure 15.19.

Theorem 15.10. Let p be a planar rotation system for G, and let H be a theta-
subgraph of G, as described above. Let t be a rotation system constructed from p
by interchanging ws and ws in the cyclic adjacency list of u, and leaving all other
vertices the same. Then t is a toroidal rotation system for G.

Proof. In the embedding G? in the plane, the three paths P, P», P; divide the plane
into three regions. Without loss of generality, let the paths occur in the order illus-
trated in Figure 15.19. Denote the subgraphs of G contained within the three regions
as G2 (between paths P, and P»), Ga3, and G31. Subgraph G;; may have edges
connecting it only to F; and P}, and to u and v. Construct the hexagonal represen-
tation of the torus with P;, P>, and Ps on the boundary of the hexagon, and embed
(12, Ga3, and (3 inside the hexagon as planar embeddings, as shown, resulting in
a toroidal embedding of G. It is easy to verify from the diagram that any vertex in
G12,Ga3, and G31 has the same cyclic adjacency list in the toroidal embedding as
in the planar embedding. Similarly any vertex other than u or v of any P; has the
same cyclic adjacencies in both embeddings. The same is also true for v. The only
vertex whose cyclic adjacencies differ is . The adjacency list of w has been arranged
so that wy € P, is followed by the edges to G12, followed by w3 € Ps, followed
by the edges to Ga3, followed by wy € P», followed by the edges to GG31. The only
difference to the planar adjacencies is that wo and w3 have been interchanged for
vertex u. O

380 Graphs, Algorithms, and Optimization

It is evident from Figure 15.19 that there are several other ways to convert the
planar rotation system to a toroidal rotation system.

FIGURE 15.19
Constructing a toroidal rotation system

A planar graph also has non-2-cell embeddings on the torus. If a planar graph G
is embedded in a disc on the surface of the torus, we will call this a disc embedding
of G. If a planar graph is embedded such that one of the faces is homeomorphic to a
cylinder, we will call this a cylindrical embedding of G. A cylindrical embedding on
the torus of any graph GG determines an embedding on the cylinder, so that G must
be planar.

Lemma 15.11. Every embedding of a non-planar graph on the torus is a 2-cell
embedding.

Proof. A non-2-cell embedding would necessarily be either a disc or cylindrical em-
bedding. But a non-planar graph has no disc or cylindrical embedding. |

Currently, there is no satisfactory algorithm known to determine whether an arbi-
trary graph can be embedded on the torus, or to find all embeddings, or to characterize
all possible embeddings. Whitney’s theorem (14.20) on induced non-separating cy-
cles does not apply to embeddings on the torus. There are several simple techniques
that are useful in an exhaustive search to find the embeddings. Given two combina-
torial embeddings with toroidal rotation systems ¢; and to, we need to distinguish
whether G*' and G2 are equivalent embeddings. In general, two embeddings are
considered equivalent if they have the same facial cycles, as the faces can be glued
together along the facial boundaries in a unique way to construct the torus. Because
the facial cycles are completely determined by the rotation system, we define equiv-
alence in terms of rotation systems. Definitions 14.17 and 14.18 of equivalent em-
beddings and graph orientability apply equally well to toroidal graphs as to planar
graphs, using a toroidal rotation system ¢ in place of a planar rotation system p. We
summarize the definitions as follows:

Graphs and Surfaces 381

DEFINITION 15.14:

1. Embeddings G¥* and G¥2 are homeomorphic embeddings if there is a
homeomorphism of the torus mapping G¥* to G¥2. Otherwise they are
distinct.

2. Embeddings G** and G*2 are isomorphic if there is an automorphism of
G which induces a mapping of ¢ to to.

3. Embeddings G** and G*2 are equivalent embeddings if there is an auto-
morphism of G which induces a mapping of t; to o or 3, where %5 is
obtained by reversing the cycles of t,.

4. Embedding G! is a non-orientable embedding if there is an automorphism
of G inducing a mapping of ¢ to . Otherwise it is an orientable embed-
ding.

Now an embedding G¥* determines a rotation system ;. Homeomorphic embed-
dings G¥* and G¥2 determine equivalent combinatorial embeddings G** and G*2,
because a homeomorphism can be either orientation preserving or orientation re-
versing. Conversely, if G** and G'2 are equivalent combinatorial embeddings of G,
then they have the same facial cycles (up to orientation). The facial cycles can be
glued together to construct a curvilinear polyhedron representing the torus. There-
fore, topological embeddings G¥* and G*2 can be constructed from G** and G*2, so
that G¥* and G¥2 are homeomorphic. This gives:

Theorem 15.12. Topological embeddings G¥* and GV2 are homeomorphic if and
only if the corresponding combinatorial embeddings Gt and G*2 are equivalent.

Now the homeomorphism between G¥* and G¥? was constructed by gluing
curvilinear polygons (the faces of the embeddings) together along common edges;
that is, it involves cutting and pasting the torus. For example, the two embeddings G'1
and G*2 shown in Figure 15.20 are equivalent, which can easily be verified from the
rotation systems. However, they are homeomorphic only by cutting the torus along
a non-contractible cycle to create a cylinder, then twisting one end of the cylinder
by 360 degrees, and then re-gluing the cylinder to create a torus. It is not possible to
transform one into the other without cutting and pasting.

It is also possible to define isomorphism of maps in terms of the facial cycles,
as will be done for the projective plane, as the facial walks of G* are completely
determined by the rotation system t. Given the collection of facial walks, which are
oriented, there is only one way to glue them together. The result is the torus, con-
taining an embedding of G. If the vertices of G are permuted by some 6 € AUT(G),
the vertices of the facial walks will also be permuted, thereby producing an equiva-
lent embedding (possibly the very same embedding). For example, two embeddings
of K3 3 are shown in Figure 15.2. Now |AUT(K3 3)| = 72. If the vertices of K3 3
in these two embeddings are permuted by any of these 72 automorphisms, equiva-
lent embeddings will be produced, whose facial walks can be obtained by permuting
the facial walks in Figure 15.2. We state a definition of isomorphism of torus maps,
equivalent to 15.14.

382 Graphs, Algorithms, and Optimization
b b

A
7

Y

Y
Y

FIGURE 15.20
Two equivalent embeddings

DEFINITION 15.15: Torus maps G'* and G'2 are isomorphic if there is a per-
mutation of V(@) that maps the collection of facial walks of G'* to that of G'2.

This definition uses the dual maps of G'* and G*2 to determine isomorphism.
For if we number their facial walks, then rotation systems of the dual maps are com-
pletely determined by the facial walks.

For graphs on a small number of vertices, it is possible to distinguish inequivalent
embeddings by inspection. However, even for K5 and K, it is reasonably difficult to
determine the inequivalent embeddings by hand. One technique that helps is the dual
graph — if G** and G2 have non-isomorphic dual graphs, then the embeddings are
distinct. More generally, we can use the medial digraph (Definition 14.20) to distin-
guish embeddings and orientations. It can also be used to determine the symmetries
(automorphisms) of an embedding. The medial digraph was defined for planar ro-
tation systems, but the definition is also valid for toroidal rotation systems. We use
M (G?) to denote the medial digraph of G' with a toroidal rotation system ¢. The
medial digraph was defined for multigraphs. If we want to allow for loops as well,
then the definition must be modified slightly (Exercise 15.5.7). Usually graph iso-
morphism software is necessary to make effective use of the medial digraph.

Theorem 15.13. Torus embeddings G and G** are isomorphic if and only if their
medial digraphs M (G') and M (G"?) are isomorphic.

Proof. 1f the torus embeddings G'* and G*? are isomorphic, their rotation systems ¢
and ¢, can be put into one-to-one correspondence. This determines an isomorphism
of their medial digraphs. Conversely, if M (G*') and M (G?*?) are isomorphic, ob-
serve that every isomorphism from M (G'*) to M (G*2) must map V(G) to V(G).
The cyclic ordering of the vertices adjacent to each vertex v is determined by a di-
rected cycle in M (G") and M (G*?). This determines the rotation systems G** and
G2, O

An embedding G? is orientable if G* and G are not isomorphic. It is non-
orientable if G and G are isomorphic. Any automorphism of M (G*), where G*
is a torus embedding, induces a permutation of V(). These permutations constitute
the automorphism group of G, similar to the situation for planar maps 14.22.

Graphs and Surfaces 383

DEFINITION 15.16: Let G be a torus map. The orientation preserving automor-
phism group of G* is AUT(G"), the group induced on V (G) by the automorphisms
of M (G"). The full automorphism group of G* is AUTT (G*) consisting of AUT(G"),
plus those automorphisms that map G* to G

With 3-connected planar maps GP, Whitney’s theorem tells us that there is a
unique planar embedding, so that AUTT (GP) = AUT(G). A similar result for torus
maps is not known. For example, there are five torus embeddings of the graph of the
cube, shown in Figure 15.21. The automorphism group of the cube has order 48. The
embeddings shown have automorphism groups of orders varying from 2 to 24.

Wb Wb Wb
an AL QA AL QA AY
b b b
an AL QA AY
b b
FIGURE 15.21

The five embeddings of the cube on the torus

Theorem 15.14. There are two inequivalent embeddings of K3 3 on the torus. They
are both non-orientable.

Proof. Take the rectangular representation a*b"a~b~ of the torus. An embedding
of K3 3 on the torus must be a 2-cell embedding, so that there must be an essential
Jordan curve intersecting the a-curve and another intersecting the b-curve. Let G* be
an embedding of K5 3 on the torus. Now K3 3 is bipartite, with six vertices, so that
the corresponding essential cycles in G* must determine a theta subgraph. There are
three possible theta subgraphs, illustrated in Figure 15.22.

The embeddings of the theta graphs have just one face, with a facial walk of
length 12 or 14. These are illustrated in Figure 15.23. In the third diagram of Fig-
ure 15.23, the edges (1, 6), (3,6), and (5, 6) must be added. It is easy to see that there
are two inequivalent ways to do this — one in which the edges to vertex 6 are equally

384 Graphs, Algorithms, and Optimization

Yo

“b b “b
FIGURE 15.22

Three possible theta subgraphs of K3 3 on the torus

spaced by 27 /3 radians, and one in which three edges are spaced by 7 /3 radians.
These give the two embeddings of Figure 15.2, the first with three faces which are
hexagons, and the second in which two faces are quadrilaterals.

In the first theta graph, the missing edges of the K3 3 are (1,6) and (4,5). The
possible places to embed them are shown as dotted lines in the diagram. In the second
theta graph the missing edges are (1,4) and (3,6). In each case, non-intersecting
edges must be chosen. The result is always the embedding with three hexagons,
or the embedding with two quadrilaterals. It is easy to see that the embeddings of
Figure 15.2 are non-orientable, as flipping the rectangle upside down, and possibly
rotating it, produces an identical diagram. |

FIGURE 15.23
The face of a theta graph

Graphs and Surfaces 385

More generally, to find all embeddings of a graph on the torus, we can proceed as
follows. Suppose that (& is a 2-connected non-planar graph. Choose a theta-subgraph
H of G. We would like H to have as many edges as reasonably possible. We can
do this by hand for small graphs. With larger graphs, a depth-first search can be
used to find a theta-subgraph with a large number of edges. Every embedding of
G on the torus induces an embedding of H. It will be either a 2-cell embedding, a
cylindrical embedding, or a disc embedding. We start with a 2-cell embedding of
H, and proceed as in Theorem 15.10 to find all ways of extending the embedding
of H to . This usually gives a number of embeddings. We then proceed to the
cylindrical and disc embeddings of H. In each case, all possible ways of extending
H to a 2-cell embedding must be exhaustively considered. For each embedding ¢, we
construct M (G?), and compare the medial digraphs found for isomorphism, using
graph isomorphism software.

If G is a 3-connected non-planar graph, we proceed recursively. We choose
a vertex v and find all embeddings of G — v. Let the adjacent vertices to v be
U1, Uz, . . ., uk. If G — v is non-planar, then every embedding of it is a 2-cell em-
bedding. If uj,us, ..., uy are all on the same facial cycle in some embedding of it,
we can add vertex v to get an embedding of G, possibly in several ways. If G — v is
planar, instead we first find a 7' K3 3 in G with as many edges as reasonably possible
(assuming a T'K3 3 exists). For each embedding of T'K3 3 in the torus, we exhaus-
tively consider all possible ways of extending it to an embedding of G, and then use
medial digraphs to compare the results.

For example, consider the graph K. If wv is an edge of K4, then Ky — uv is a
theta-graph. We easily find that there are exactly two 2-cell embeddings of K4 on the
torus. We then consider K5, one of the few non-planar graphs that does not contain
TKsz 3. If vis a vertex of K5, then K5 — v = Kjy. For each embedding of K4 on
the torus, including cylindrical and disc embeddings, we find all ways of adding v
to the embedding. The result is six embeddings of K5, of which three are orientable
and three non-orientable. This is most easily determined using the medial digraph to
distinguish embeddings. We proceed to K¢ by looking for a face of K5 containing
all five vertices. We find there are four inequivalent embeddings of K, of which
two are orientable and two non-orientable. Exactly one of these has all six vertices
on a common face. This gives one embedding of K7, shown in Figure 15.24. It is
an orientable embedding. Its dual is also shown. The dual is known as the Heawood
graph.

Exercises
15.5.1 Use cutting and pasting to convert the representation ctd*etc=d~e™ of
the torus to normal form.
15.5.2 Construct the duals of the embeddings of K3 5 on the torus of Figure 15.2.

15.5.3 Show that every 2-connected graph that is not a cycle has a theta-
subgraph.

15.5.4 Describe O(e) depth-first and breadth-first search algorithms to find a
theta-subgraph of a 2-connected graph G.

386

Graphs, Algorithms, and Optimization

S5

b
S0 S0
a a ap a
A
b~ b~
Ky Heawood graph
FIGURE 15.24

K7 and its dual, the Heawood graph, on the torus

15.5.5

15.5.6

15.5.7

15.5.8

15.5.9

15.5.10

15.5.11

15.5.12

15.5.13

Construct the two distinct embeddings of K3 5 on the hexagonal form of
the torus.

Verify that the two embeddings shown in Figure 15.20 are equivalent, and
that the torus must be cut and pasted to construct a homeomorphism.

Show how to modify the definition of a medial digraph to allow for em-
beddings with loops (subdivide a loop with two vertices), and prove that
it works.

Construct all distinct embeddings of K4, K5, and K¢ on the torus.

Construct all distinct embeddings of the 3-prism on the torus. Begin with
a theta-graph containing all six vertices.

Construct all distinct embeddings of the Petersen graph on the torus. Be-
gin with a theta graph containing all 10 vertices.

Determine which graphs are shown in the toroidal embeddings of Fig-
ure 15.25. Determine the dual graphs. (Note: None of the graph edges
follow the boundary of the rectangles.)

Determine whether the embeddings in Figure 15.21 are orientable, and
determine the orders of their automorphism groups.

Verify that the graphs in Figure 15.26 are distinct embeddings of the same
graph. Do you recognize this graph? Are these embeddings orientable?
Find the duals of both embeddings, and determine what graphs they are.

Graphs and Surfaces 387

b 5 0
a a a a
FIGURE 15.25
Two torus maps
b 5 0
a
A
\¢ 3
A
FIGURE 15.26

Two torus maps

15.5.1 Platonic maps on the torus

The embedding of K in Figure 15.24 shows a triangulation of the torus in which
each vertex has degree six. By translating it repeatedly horizontally and vertically, we
obtain a symmetric tiling of the plane by triangles. Its dual gives a symmetric hexag-
onal cover of the plane in which three hexagons meet at each vertex. The graphs of
Figure 15.25 give symmetric tilings by parallelograms. These embeddings all belong
to families of graphs with these properties. We will call them Platonic maps.

Let G be a k-regular torus map on n vertices whose dual map is /-regular. For the
plane, such graphs are the graphs of the Platonic solids. Then nk = 2e = £f. Using
Euler’s formula for the torus n + f — e = 0, we obtain

111
koot 2
The only integral solutions are (k, ¢) = (4,4), (3,6), and (6, 3). Clearly the last two

are duals of each other. The graphs of Figure 15.25 are examples of the (4, 4)-pattern.

Consider a torus map G* in which each vertex has even degree. Choose any edge
uv. The incident edges at v are cyclically ordered by ¢. Let DEG(v) = 2i. The diag-
onally opposite edge to uv is vw, the i*" edge following uv in t(v). Given a vertex

v, With adjacent vertex v1, we construct a diagonal path vy, v1,vs, ... by always

388 Graphs, Algorithms, and Optimization

choosing v;v; 41 as the diagonally opposite edge to v;_;v;. Eventually a vertex must
repeat, creating a cycle. Let the cycle be C' = (vg, v1,v2,...,Un). C is a diagonal
cycle if every edge is the diagonally opposite edge to its previous edge.

In the torus maps of K7 (Figure 15.24) and Figure 15.25 there are many diagonal
cycles. They are drawn as straight lines diagonally across the rectangle. As can be
seen in K7, a single diagonal cycle may wind around the torus several times.

Suppose now that G is a Platonic graph on the torus, with parameters (6, 3) or

(4,4). Consider a cycle C' = (vg, v1, V2, . . ., V) constructed by following a diago-
nal path.
Lemma 15.15. If C = (vo, v1, 02, . ..,vy) is a diagonal cycle in G, then C'is an

essential cycle.

Proof. Suppose first that G has parameters (4, 4), and suppose that C' is contractible,
with interior INT(C'). For each v; € C, there is one adjacent vertex in INT(C'). This
is illustrated in Figure 15.27. Because each face of G* has degree four, the interior
adjacent vertices to vy, v1, V2, . . . , Uy, form another diagonal cycle C’ in INT(C). In-
terior to C” is another diagonal cycle, etc., leading to an infinite sequence of diagonal
cycles, a contradiction. Therefore C' must be an essential cycle. If G has parameters
(6, 3), the argument is nearly identical, except that each v; € C has two adjacent
vertices in INT(C). Because G" is a triangulation, we again find C’ in INT(C'), and
so forth. O

Vo U1

FIGURE 15.27
A diagonal cycle with (k, £) = (4,4)

The proof of Lemma 15.15 also shows how to draw G*. Given a diagonal cycle
Cy, a sequence of “parallel” adjacent diagonal cycles is determined, Cy, Cy, Co,
For any vy € C, an edge not on Cy can then be selected, and a diagonal cycle con-
taining it can be constructed. We find that the edges of GG can be partitioned into “or-
thogonal” diagonal cycles C{), C1, Each C; winds around the torus one or more

Graphs and Surfaces 389

times, intersecting each C’J’- in a regular pattern, as can be seen from Figures 15.24
and 15.25.

If C = (vg,v1,v2,...,0n) is any cycle constructed by following a diagonal path
in a Platonic map, then the argument of Lemma 15.15 can be used to show that C'
must be a diagonal cycle. The only way in which C may fail to be a diagonal cycle is
if one pair of edges, say v, vg and vov1, are not diagonal edges. Suppose that G has
parameters (4, 4). We then find that vy has either O or 2 adjacent vertices to the right
of C'. Because every face has degree four, the parallel cycle C” is either shorter than
C or longer than C, by two edges. If it is longer than C, then the parallel cycle C”
is again longer than C’ by two edges, and so forth. As this leads to a contradiction,
suppose that C” is two edges shorter than C'. Then C” is again two edges shorter than
(', etc. Eventually we find a cycle of length four or five for which no parallel cycle
can exist. If G has parameters (6, 3), the argument is similar.

15.5.2 Drawing torus maps, triangulations

Read’s algorithm for drawing a planar graph, given a rotation system, can be ex-
tended to torus maps. Let G* be a 2-connected combinatorial embedding, with no
vertices of degree two. Suppose that G has no loops, and that if there are multiple
edges, no face is a digon. If G* is not a triangulation, we can triangulate it by adding
diagonal edges across non-triangular faces, so that no loops or digon faces are cre-
ated. The smallest possible triangulation of the torus is shown in Figure 15.28. We
denote it by 75. It can be constructed from the theta-graph shown in Figure 15.18 by
adding one vertex w, adjacent to each vertex u and v three times. Notice that 75 is
a 6-regular graph, whose faces are all triangles. It is the unique triangulation of the
torus on three vertices (Exercise 15.5.4).

FIGURE 15.28
The triangulation T3

390 Graphs, Algorithms, and Optimization

There is a triangulation on four points, denoted 7, which can be constructed
from the rectangular form of the torus. A 3-vertex graph consisting of two digon
cycles (u,v) and (u,w) with a common vertex u is 2-cell embedded on the torus.
There is a single face, of degree eight. A fourth vertex x is placed in this face, and
joined to each vertex on the boundary of the face. It is illustrated in Figure 15.29. In
this diagram, the sides a and b of the rectangle are also graph edges. Notice that T}
has two vertices (u and x) of degree eight, and two (v and w) of degree four.

()

FIGURE 15.29
The triangulation T

Suppose that G has n vertices, with n3 of degree three, ny4 of degree four, etc.
Then because G! is a triangulation, we have 3f = 2¢. Euler’s formula then gives
€ = 3n, and:

3ng + 2ng +ns =ng + 2ng + 3ng + . ..

Lemma 15.16. Either there is a vertex of degree three, four, or five, or else all ver-
tices have degree six.

Now any triangulation in which all vertices have degree six is a Platonic map of
type (6,3), and we know how to draw it as a tiling of the plane. Otherwise, there
is a vertex of degree three, four, or five. We can use a modification of the algorithm
REDUCEGRAPH() of Section 15.5.2 to reduce the triangulation G on n vertices to
a triangulation on n — 1 vertices, until either 73 or 7 results, or a 6-regular triangu-
lation results. We must ensure that the reduction does not create any loops or digon
faces.

Suppose that vertex u of G has degree three, four, or five, and suppose that n > 4.
If DEG(u) = 3, then G' — w is a triangulation of the torus on n — 1 vertices. If
DEG(u) = 4, suppose that u is adjacent to v, w, x,y, in cyclic order. If at least
three of these vertices are distinct, then at least one of the diagonals of the 4-cycle
(v, w,x,y) has distinct endpoints. Suppose it is vz. Then G* — u + vx will be a
triangulation on n— 1 vertices, without loops or digon faces. Otherwise there are only
two distinct vertices in the 4-cycle, which is then (v, w, v, w); that is, there are four
parallel edges connecting v and w. Three of these parallel edges form a theta-graph,
whose only embedding has a single face, a hexagon, shown in Figure 15.30. The
fourth parallel edge cuts the hexagon into two quadrilaterals, one of which contains
u.

Graphs and Surfaces 391

FIGURE 15.30
Reducing a triangulation, DEG(u) = 4

The remaining vertices of GG are located in the other quadrilateral. If n = 4, then
the map can only be the triangulation T}, with v and w as the two vertices of degree
eight. If n > 5, there are at least two other vertices in the other quadrilateral. This
quadrilateral and the vertices it contains determine a planar graph, which must have
several vertices of degree three, four, or five. We choose one of these, and delete it
instead of u.

If DEG(u) = 5, let u be adjacent to v, w, z,y, z, in cyclic order. If v, z, and y
are distinct, we proceed as in the planar case, deleting u and adding two diagonals
across the pentagon. Otherwise, we can assume that v = x, because G has no loops.

v v

Yy T

FIGURE 15.31
Reducing a triangulation, DEG(u) = 5

392 Graphs, Algorithms, and Optimization

If w,y, and z are distinct, then we can add the diagonals wy and wz to get a
triangulation. Otherwise we can assume that w = y. But then 2, w, and x are distinct,
so that we can add the diagonals zw and zx to obtain a triangulation with no loops or
digon faces. There are always at least three distinct vertices on the boundary of the
pentagon. This gives the following theorem:

Theorem 15.17. Let Gt be a torus map on n > 4 vertices which is not 6-regular,
with no loops or digon faces. Then G can be reduced to one of the following:

1. The triangulation Ts
2. The triangulation Ty

3. A 6-regular triangulation

Algorithm 15.5.1 is input a triangulation of the torus, G, on n > 4 vertices with
rotation system ¢, with no loops or digon faces. It constructs a triangulation G’ on
n — 1 vertices, whenever possible. It can be used to successively reduce G* to one of
T3, Ty, or a 6-regular triangulation. Drawings of T3 and T on the torus are shown in
Figures 15.28 and 15.29. We can use these coordinatizations in a rectangle as topo-
logical embeddings. If a 6-regular triangulation is obtained, we can use diagonal cy-
cles to obtain a coordinatization of it. These embeddings have no loops, and no digon
faces. Every digon is embedded as an essential cycle. We then replace the deleted ver-
tices in reverse order, exactly as in the planar case of READSALGORITHM(), using
the visible region to assign coordinates to the deleted vertex. The result is a straight-
line drawing of G on the torus; that is, a topological embedding G¥.

We summarize this as follows:

Theorem 15.18. Every torus map has a straight-line embedding in the rectangle and
hexagon models of the torus.

Exercises

15.5.1 Find the duals of the embeddings of the triangulations 73 and 7T; shown
in Figures 15.28 and 15.29. What graphs are they?

15.5.2 Find the two tilings of the plane determined by a Platonic map of K 4.
15.5.3 Find the tiling of the plane determined by a Platonic map of C'5 x Cj.
15.5.4 Show that T3 is the unique triangulation of the torus on three vertices.

15.5.5 Show that there are two distinct triangulations of the torus on four ver-
tices.

Graphs and Surfaces

393

Algorithm 15.5.1: REDUCETORUSMAP(G, t)

if G = T3 or G = Ty or G is 6-regular return (null)
if there is a vertex u with DEG(u) = 3
let t(u) = (uv, uw, ux)
then G' +— G —u
return (G')
if there is a vertex u with DEG(u) = 4
let t(u) = (wv, uw, ux, uy)
then (ifv =xand w =y
then pick a new u from V(G) — {u, v, w} of degree 4 or 5
if DEG(u) = 4
let t(u) = (wv, uw, ux, uy)
ifv£a
then {G’ — G —u+vx
vz replaces vu in t(v) and 2v replaces zu in t(x)
else {G’ — G —u+wy
wy replaces wu in t(w) and yw replaces yu in t(y)
return (G')
pick v of degree 5, lett(u) = (uv, uw, ux, uy, uz)
if v,z and y are distinct
G+ G—u+vzr+uvy
then < vz, vy replace vu in t(v)
2v replaces zu in t(x) and yv replaces yu in t(y)
else if w,y and z are distinct
" G—u+wy + wz
then {

then

wy, wz replace wu in t(w)
yz replaces yu in t(y) and zw replaces zu in t(z)
else if z, 2z and v are distinct
"~ G—-u+tzz+av
then { xz,zv replace zu in ¢(x)
zv replaces zu in t(z) and vz replaces vu in t(v)
else if y,v and w are distinct
" G—u+yv+yw
then < yv, yw replace yu in t(y)
vw replaces vu in t(v) and wy replaces wu in ¢(w)
else if z,w and x are distinct
"~ G—u+zw+ zx
then { zw, zx replace zu in t(z)
wz replaces wu in t(w) and xz replaces zu in t(x)
return (G’)

394 Graphs, Algorithms, and Optimization

15.6 Coordinate averaging

Coordinate averaging for torus maps is very similar to coordinate averaging for pla-
nar maps. Use the rectangular model of the torus. Let the coordinates of vertex ¢
be (z;,y;), which are located inside the rectangle representing the torus. There is
no outer face on the torus, and some edges of the graph “wrap around” the torus,
that is, they may cross the boundary of the torus rectangle. Adapting the coordinate
averaging algorithm from the plane to the torus, we obtain the following.

Algorithm 15.6.1: COORDINATEAVERAGING(G?)

Given a straight-line drawing of a torus map G*,
comment: < onn > 4 vertices, with coordinates (x;, y;) for vertex 1,
perform coordinate averaging.

let F'y, Fy, ..., Fy denote the facial walks of G*
for j < 1to f
d {use algorithm FACIALCYCLE(F}) to sum (z;,y;), for all i € F);
(uj,v;) < average of the coordinates of the vertices of F
comment: (u;, v;) are now coordinates of the dual G**

fori < lton
do 4 SUm (uj,v;) for all faces F; containing vertex ¢
(wi,yi) < average of the coordinates of the F; containing ¢

On the torus, even a 3-conneced graph can have facial walks in which vertices or
edges are repeated, so that the facial walks F; may not be cycles. As in the planar
case, FACIALCYCLE() is used to walk around each F;, summing the coordinates
of the vertices on I}, so as to compute their average. Let % denote the rectangle
representing the torus. When an edge uv crosses a boundary of R, additional steps
are necessary. Let p be the height of R, and o its width. If an edge uv crosses the
upper boundary of R as Fj is being traced, then p must be added to y;, for each
subsequent vertex ¢ encountered on . If uv crosses the lower boundary of 2, then
p must be subtracted from y;, for each subsequent vertex encountered. A similar
action is needed for x; when the right or left boundary of R is crossed, adding or
subtracting o. Let the resulting coordinates representing the face F); be (u;, v;). This
point may not be inside R. In this case, p is added or subtracted from v;, and o is
added or subtracted from u; so as to place (u;, v;) inside R.

Coordinates (u;,v;) are calculated for every face F;. Then a second loop re-
calculates (x;, y;), by performing the same operation, but in the dual. This constitutes
one application of COORDINATEAVERAGING(). Clearly this takes O(n) steps. This
algorithm can be iterated several times, to produce an improved drawing.

An example appears in Figure 15.32. The graph on the left in the dia-
gram is a torus embedding that could have been produced by the algorithm

Graphs and Surfaces 395

REDUCETORUSMAP(G"). The graph on the right is after six applications of coor-
dinate averaging. A constant number of applications of coordinate averaging still
results in a O(n) algorithm.

Vd Vd
aA AL AR AL
> >
b b

FIGURE 15.32
Coordinate averaging

Coordinate averaging can be expressed in terms of matrices, similar to barycen-
tric coordinates for the vertex-face-incidence graph G¥'. However, the edges which
cross a boundary of R complicate the equations. As with the planar case, coordinate
averaging in G* often hilights symmetries of G.

15.7 Graphs on the projective plane

The projective plane is most conveniently represented as a disc with antipodal points
identified. This is equivalent to the digon form ¢ ¢* of the projective plane shown in
Figures 15.8 and 15.10. An embedding of K¢ and its dual are shown in Figure 15.33.
It is easy to verify that the dual of K on the projective plane is the Petersen graph.
As before, we shall only be concerned with 2-cell embeddings of 2-connected graphs.

Now it can be a little tricky to visualize the faces of an embedding on the projec-
tive plane, because the projective plane is non-orientable. Each point on the circum-
ference of the disc is identified with its antipodally opposite point. When an edge
of the graph meets the disc boundary, it continues from the antipodal point. But the
region immediately to the right of the edge as it meets the boundary is identified with
the region immediately to the left of the antipodal point. A consequence is that rota-
tion systems must be defined somewhat differently for non-orientable surfaces, and
the algorithm FACIALCYCLE() which constructs the faces of an embedding must be
modified.

Let G¥ be an embedding of a 2-connected graph G in the projective plane, and
let u be a vertex of G. If we walk around u? in a small clockwise circle, we encounter
the incident edges in a certain cyclic order, say uvy, uva, . . ., uvg. If we walk along

396 Graphs, Algorithms, and Optimization

K Petersen graph

FIGURE 15.33
K and its dual, the Petersen graph, on the projective plane

the edges of G, always staying within the disc, then the embedding appears exactly
like a planar embedding. If we traverse an edge that crosses the boundary of the disc,
and continue on until we reach u¥ again, we find that the cyclic order of the incident
edges at u¥ has been reversed.

Consequently a rotation system must be defined differently for a non-orientable
surface. The projective plane is represented as a disc. We choose an orientation for
this disc. Then given any vertex u, we walk around u¥ in a small clockwise circle,
and construct a cyclic list of incident edges. We assign a signature to each edge
uv, denoted SGN(uv). If an edge (uv;)¥ crosses the boundary of the disc, then
SGN(uv;) = —1. Otherwise it is 1. The signature does not depend on the direc-
tion in which the edge is traversed. In this way, the embedding) determines a signed
rotation system. In order for this to be well defined, it is necessary that vertex u does
not lie on the boundary of the disc. Before constructing a rotation system, all vertices
that lie on the boundary must be moved slightly so that they are no longer on the
boundary. We will always assume that this has been done. However, once signatures
have been assigned to the edges, we can always move u again, so that it is infinitesi-

Graphs and Surfaces 397

TABLE 15.1
The two rotation systems for K3 3 on the projective plane, corresponding to the two
embeddings in Figure 15.34

D (1)
(1) = (12,16, —14) (1) = (14,16, —12
m(2) = (21,-25,23) m(2) = (23,-21,25)
m(3) = (32,-36,34) m(3) = (34,32,36)
m(4) = (43,—41,45) m(4) = (41,—45,43)
7(5) = (54,—52,56) 7(5) = (52, —54,56)
7(6) = (61,65, —63) 7(6) = (61,63,65)

mally close to the boundary. We also assume that each edge that crosses the boundary
of the disc crosses it exactly once. If necessary, edges can be subdivided to ensure
that this is the case.

We will use 7 to denote a rotation system for an embedding on the projective
plane. For each vertex u, w(u) denotes a cyclic list of signed incident edges. Two
embeddings of K3 3 are shown in Figure 15.34. The rotation systems corresponding
to them are shown in Table 15.1. Although the rotation systems are different, the
embeddings are equivalent.

@

FIGURE 15.34
Two equivalent embeddings of K3 3 on the projective plane

398 Graphs, Algorithms, and Optimization

Given a topological embedding G, this method of defining a rotation system for
G is not unique, as it depends on the disc chosen to represent the projective plane.
With an orientable surface, this situation does not arise. We must show that a signed
rotation system uniquely determines the faces of an embedding, and that all rotation
systems corresponding to ¢ determine the same faces. In the embedding on the right
of Table 15.1, we can cut the projective plane along the non-contractible Jordan curve
indicated by the dotted line, call it C'. We then flip one-half of the disc over, and glue
the two pieces along the common boundary. We obtain another disc representing the
projective plane, with antipodal points identified. This gives another rotation system
7’ for G. In Table 15.1, the edges crossed by C will now have a signature of —1;
edges which previously had a signature of —1 will now have +1. It is easy to see
that with respect to the new disc, the embedding will have a face which is a 6-cycle
(1,2,3,4,5,6) with “spokes” to the boundary of the disc, exactly like the embedding
on the left. Thus the embeddings are equivalent.

If 7 is a signed rotation system determined by an embedding G¥ and a disc
representation of the projective plane, we call G™ a combinatorial embedding. G is
said to be projective planar, or simply projective. As we shall see, the faces of GV
are completely determined by G™.

DEFINITION 15.17: A projective map is a combinatorial embedding G™ of a
2-connected graph G on the projective plane, where 7 is a signed rotation system
corresponding to a disc representation of the projective plane.

In order to show that all signed rotation systems arising from G¥ have the
same facial cycles, we begin by rewriting the algorithm FACIALCYCLE() for a non-
orientable surface. Notice that when traversing the facial cycles of a graph embedded
on a disc representing the projective plane, the clockwise cyclic order of the incident
edges viewed from above the disc appears counterclockwise when viewed from be-
low, and vice versa. The algorithm uses a boolean variable onTop to indicate whether
it is currently viewing the disc from above. Initially onTop has the value true. Each
time an edge uv with SGN(uv) = —1 is encountered, it reverses the value of onTop.
Any vertices visited while onTop is false will see a counterclockwise orientation for
their incident edges. Those with onTop true will see a clockwise orientation.

When a graph is embedded on an orientable surface, the facial cycles are oriented
cycles. We can assign a clockwise orientation to one cycle and the orientation of all
adjacent cycles is determined, and so forth, so that an orientation can be assigned to
the entire embedding. Reversing the cycles gives an equivalent, but reversed, embed-
ding.

Graphs embedded on the projective plane do not have this property. If we try to
assign an orientation to the facial cycles of an embedding G, we can then choose
different signed rotation systems corresponding to G, and different orientations of
the cycles will be obtained. However, if we are given the (unoriented) facial cycles,
they can be glued together uniquely along their common edges to construct a polygo-
nal representation of the projective plane. Therefore if we are given the facial cycles,
they will determine a topological embedding G¥.

Algorithm 15.7.1 when given a signed rotation system 7 of an embedding G¥ on

Graphs and Surfaces 399

a non-orientable surface and a vertex v with an incident edge e, will find the facial
cycle containing e.

Algorithm 15.7.1: FACIALCYCLESGN(G™, u, e)

onTop < true “initially view the disc from above”
e e
repeat

comment: ¢’ currently equals uv, for some v

if SGN(¢/) = —1 then onTop < not onTop

v < other end of €’
e + edge of m(v) corresponding to ¢’
comment: ¢’ currently equals vu
if onTop
then e’ + edge preceding ¢” in 7(v)
else ¢’ + edge following ¢” in m(v)

U<—v
until ¢’ = ¢ and onTop

If this algorithm is applied to the combinatorial embeddings of K3 3 given in
Table 15.1, identical faces will be constructed. Because the projective plane is con-
structed by gluing together the faces, it follows that the topological embeddings they
represent are equivalent.

In Definition 15.14 combinatorial embeddings G** and G** on the torus were
defined to be equivalent if there exists an automorphism of G that induces a mapping
of t; to t or t5. This is inappropriate for signed rotation systems, as it cannot take
the signatures into consideration. Therefore we define equivalence of signed rotation
systems in terms of facial walks, as in Definition 15.15. Later we will see how to use
a medial digraph and the double cover to determine equivalence of projective planar
embeddings.

DEFINITION 15.18: Let G be a 2-connnected graph with projective rotation sys-
tems 71 and wo. Then G™ and G™2 are equivalent or isomorphic if there is a permu-
tation of V(@) that maps the collection of facial walks of G™ to that of G™, or to
that of G™2.

When a facial walk is traversed the vertices are encountered in a certain sequence.
When glueing the faces of an embedding G™ to obtain a projective plane, there is
only one way to do this, as each edge appears exactly twice in the collection of facial
walks. The result is a projective plane with the graph G embedded on it. Equiva-
lent embeddings must be isomorphic. Definition 15.18 determines the equivalence of
two embeddings of a graph G on the projective plane in terms of their facial walks.
Equivalence of embeddings G™ and H™?2, where G and H are different graphs, re-
quires in addition an isomorphism of G’ and H. Automorphisms of projective maps
can also be defined in terms of the facial walks.

400 Graphs, Algorithms, and Optimization

DEFINITION 15.19: Let G™ be a projective map. An automorphism of G™ is any
permutation of V' (G) that maps the collection of facial walks of G™ to itself, or to
those of G™. The automorphism group is AUT(G™).

In general, let G¥ be a topological embedding, and consider two different repre-
sentations of the projective plane as digons, a™a® and b*bT. Let 7, be the signed
rotation system corresponding to a™a™ and let 7}, correspond to bb*. The boundary
of the disc given by b is a non-contractible Jordan curve C' in the a*a™ repre-
sentation. It will intersect the graph G¥ in one or more points. Refer to Figure 15.35.
When the disc is cut along the curve C, it may cut some edges of G¥ more than once.
If so, we subdivide those edges which are cut more than once. Hence we can assume
that every edge of GV is cut at most once by C. If the curve cuts through a vertex,
we can move it slightly so that it misses the vertex. We can do this because the graph
has a finite number of vertices.

FIGURE 15.35
Representations aTa™ and bT bt of the projective plane

Suppose first that C' cuts the boundary of the aTa™ disc in exactly two points
(which are antipodal points), as in Figure 15.35. To transform the a™a™ representa-
tion into the b*b™ representation, we cut the disc along the dotted curve, then flip
one-half of the disc over, and glue the two equivalent parts of the a™a™ boundary
together. We can flip either half over. Denote the two parts of the disc obtained as
D1 and Do, where D5 is the part that is flipped over. The result is a disc whose
boundary is b+b*, shown as the disc on the right in Figure 15.35. We obtain 7
from 7, by reversing the cyclic adjacencies for all vertices in Ds, and by assigning
—1 to those edges that are cut by C'. We now compare the facial cycles of G™
and G™ constructed by the algorithm FACIALCYCLESGN(). Let (v1,va,. .., k)
be a facial cycle constructed for G™. Without loss of generality, suppose that
FACIALCYCLESGN(G™) begins to trace out this face from v; which is in D;. If
the entire face is within D1, the result will be the same as the face obtained using
ma. If the facial cycle crosses from D; to D via the a™a™ boundary, then because
D, was flipped upside down, and the cyclic adjacencies of 7, were reversed to ob-
tain 7, the same facial boundary will be constructed using 7, or 7,. If the facial
cycle crosses from Dq to Do via C, then because 7, attaches a signature of —1 to

Graphs and Surfaces 401

these edges, the cyclic adjacencies will be reversed by FACTALCYCLESGN(). But the
cyclic adjacencies of 7, in Dy were also reversed in 7. The net effect is that the same
facial boundary is constructed using 7, or 7, at each step of the algorithm. It follows
that the two embeddings G and G™ have the same 2-cells as faces. Now we may
have subdivided some edges of G before cutting and pasting the disc. Vertices of
degree two do not affect the faces, and a cyclic order of two edges is invariant when
reversed. Therefore, when traversing a facial cycle along a path created by subdivid-
ing an edge, the important factor is the number of —1’s encountered. Hence we can
contract any subdivided edges and assign a signature of —1 if the number of edges in
the subdivided path was odd. The result will be the same facial cycle. We conclude
that the faces of G™= and G™ are identical, so that the embeddings are equivalent.

Suppose now that C' cuts the boundary of the a*a™ disc in more than one pair of
antipodal points, where C'is the boundary of the b*b™ disc. There are an infinite (in
fact, uncountable) number of possible non-contractible Jordan curves C'. But there
are only a finite number of possible signed rotation systems for G, because G is
finite. Therefore we will only consider non-contractible Jordan curves which meet
the boundary a™a™ in a finite number of points.

If C cuts the boundary of the a™a™ disc in more than one pair of antipodal
points, we proceed by induction. We are given a graph G embedded on the disc, with
a rotation system 7,. As before we assume that C' does not cut any vertices of GV
Choose two consecutive points P and () on C' at which the disc boundary is cut such
that one of the intervals [P,)] and [@, P] on the boundary is not cut by any other
points of C. This is illustrated in Figure 15.36, where C' is the dotted curve. Let the
antipodal points of P and @ be P" and Q’. Let C[P,)] denote the portion of C from
P to Q. Make a cut in the disc very close to C[P, Q], cutting off a portion D; of the
disc, so that C[P,)] is completely contained within Dy, but so that the only part of
G that is affected by the cut are the edges of G that cross C[P, @]. This is possible
because the graph is finite. Let the remainder of the disc be Dy. We now flip D,
over, and glue the matching boundaries of D1 and D5 near P’ and Q’. The result is a
disc representation of the projective plane such that C' cuts its boundary in four fewer
points. Let the boundary of the new disc be ¢*ct, and let the signed rotation system
corresponding to it be 7.

Consider the faces of G™ and G™. The rotation systems 7, and 7. differ only
in edges which are within D1, or which cross from D; to Ds. Vertices within Dy
have adjacency lists of opposite orientation in 7, and m.. FACIALCYCLESGN()
will construct the same faces for both m, and m.. With respect to the =, disc,
C has fewer intersections with the boundary. We use induction to conclude that
FACIALCYCLESGN() will construct the same faces for both 7. and 7. It follows
that G™ and G™ always have the same faces. Because the projective plane is con-
structed by gluing the faces together, this gives:

Theorem 15.19. Let GY be an embedding on the projective plane. Given any two
signed rotation systems T, and T, for GV, corresponding to different disc represen-
tations of the projective plane, G™ and G™ are equivalent embeddings.

Theorem 15.20. Let GV* and G2 be topological embeddings of G on the projective

402 Graphs, Algorithms, and Optimization

FIGURE 15.36
Transforming a disc representation of the projective plane

plane with corresponding combinatorial embeddings G™ and G™, with respect to
two disc representations of the projective plane. Then G¥* and G¥? are homeomor-
phic if and only if G™* and G™ are equivalent.

Proof. If G™ and G™ are equivalent, there is a permutation of V(&) that maps
the facial cycles of G™ to those of G™. The faces are homeomorphic to 2-cells
bounded by the facial cycles. It follows that the faces of G™ and G™ determine
a homeomorphism of the embeddings G¥* and G¥2. Therefore G¥* and G¥? are
homeomorphic if and only if G™ and G™ are equivalent. O

If G? is a planar embedding of a 2-connected graph, it is very easy to convert p to
a projective rotation system 7. When G is drawn in the plane, one face is always the
outer face. We draw G in a disc representing the projective plane. We then choose
any edge e on the outer face, and reroute it so that it crosses the boundary of the
disc. The result is a projective map. The two faces on either side of e in the planar
map become one face in the projective map. The cyclic order of adjacent vertices is
unchanged, for all vertices of GG. Thus, p can be converted to a projective rotation sys-
tem, by assigning a signature of —1 to any one edge of G. However, the embeddings
constructed in this way are somewhat unsatisfactory, as there is a non-contractible
Jordan curve in the surface which cuts the embedding in only one point.

15.7.1 The facewidth

The projective plane has unorientable genus one. The torus has orientable genus one.
Although they both have genus one, these surfaces behave very differently. K7 can
be embedded on the torus. Yet it is easy to see that it cannot be embedded on the
projective plane, as the unique embedding of K¢ shown in Figure 15.33 cannot be
extended to K. Alternatively, Euler’s formula can be used to show that K7 has too

Graphs and Surfaces 403

many edges to embed on the projective plane. However, there are infinite families of
graphs that can be embedded on the projective plane, but not on the torus.

We begin with two families of graphs called the Mdbius ladder and Mobius lat-
tice, which can be embedded on both the projective plane and torus.

DEFINITION 15.20: The Mobius ladder Lo, is the graph with 2n vertices
{v1,v9,...,v9,} such that v; — v;41, and v; —> v;1,,, where subscripts larger
than 2n are reduced modulo 2n.

The Mobius ladder Lg is just K3 3, shown in Figure 15.34. Lg is shown in Fig-
ure 15.37. Notice that Lo, is always a 3-regular graph.

DEFINITION 15.21: The Mobius lattice Lo, 1 is the graph with 2n — 1 vertices
{1)1, V2, .. ,Ugnfl} such that Vi — Vi1, Vi — Vitn—1, and Vi — Vitn where
subscripts larger than 2n — 1 are reduced modulo 2n — 1.

The Mobius lattice Ls is just K. L7 is shown in Figure 15.37. Notice that Lo, 1
is always a 4-regular graph.

FIGURE 15.37
The Mobius ladder Lg and Mdbius lattice Ly

There is a clever trick that can be used to convert these projective embeddings of
Lo, and Lo, to toroidal embeddings. Draw an essential cycle C across the disc
as shown by the dotted line in Figure 15.37, dividing it into two parts, Dy and Ds.
Notice that C' intersects the graph embedding in only two points, representing the
vertices 1 and 5. Vertices 1 and 5 are both joined to several vertices located in D,
and Ds. Now cut the disc along C, flip D5 over, and glue Dy and D along the
common boundary to get a new disc representation of the projective plane, as shown
in Figure 15.38. Vertices 1 and 5 are on the boundary of the new disc. As we do
not need to find a projective rotation system for this embedding, we can take these
vertices on the boundary of the disc. These antipodal points are the only points of
the embedding G on the disc boundary. Therefore we can convert the disc into the
hexagonal form of the torus, obtaining an embedding on the torus.

DEFINITION 15.22: Let G¥ be a graph embedding in a surface 3. Let C be

404 Graphs, Algorithms, and Optimization

FIGURE 15.38
Converting a projective embedding to a toroidal embedding

a non-contractible Jordan curve in .. The facewidth of C'is fw(C), the number of
points of G¥ common to C. The facewidth of GV is fw(GY), the minimum fw(C'),
where C' is any non-contractible Jordan curve in 3.

The facewidth is sometimes known as the representativity of an embedding. Let
C be a non-contractible Jordan curve of minimum possible facewidth, for an em-
bedding GY. If C intersects a face F, then it also intersects the boundary of F'. If
an intersection point is not at a vertex, then it is at an interior point of an edge e.
Then C also intersects the face on the other side of e. In such a case, we can alter C'
slightly so that it passes through e at an endpoint of the edge. The result is another
non-contractible Jordan curve, also of minimum facewidth. This gives the following:

Lemma 15.21. Given any embedding GV, there is a non-contractible Jordan curve
C of facewidth tw(GY) such that C intersects G¥ only at images of vertices.

Now the faces of an embedding G¥ are determined completely by its rotation
system. If C intersects G¥ only at images of vertices, then C determines a cyclic se-
quence of vertices (v1,va, ..., v;), where k = fw(C'), such that consecutive vertices
are on the same facial boundary. It follows that fw(G") depends only on the rota-
tion system, so that we can also write fw(G™). We show that the method used above
to convert a projective embedding of L7 to a toroidal embedding works in general,
whenever fw(G7) is at most three.

Theorem 15.22. Let G™ be a projective embedding with facewidth at most three.
Then G can be embedded on the torus.

Proof. The proof proceeds as in the previous example. Let C' be a non-contractible
Jordan curve with fw(C') < 3. Use the hexagonal form of the torus, a™ b cta~b ¢,
as in Figure 15.39. We cut the disc of the projective plane along C' obtaining D,
and Ds, which we glue together to obtain a new disc. Without loss of generality,
assume that fw(C') = 3, so that there are three pairs of antipodal points of G™ on the
boundary of the new disc, call them p, ¢, and r, and suppose that they occur in this

Graphs and Surfaces 405

order along the boundary of the disc. We convert the disc into the hexagonal form of
the torus, as in Figure 15.39. We place p on the side of the hexagon labeled a, g on the
side labeled b, and r on the side labeled c. In the hexagon, the identified pairs of sides
are not antipodally reversed as in the disc model of the projective plane. However,
there is only one point p, g, or on each side, so that the sequence of points on the
boundary is the same. The result is a toroidal embedding of G. O

FIGURE 15.39
Converting a projective embedding to a toroidal embedding

This transformation will only work when fw(C) < 3. It has been shown by
FIEDLER, HUNEKE, RICHTER, and ROBERTSON [51] that the converse of this theo-
rem is also true; so that if a toroidal graph can be embedded on the projective plane,
then the facewidth on the projective plane is at most three. We can use this theorem
to construct projective graphs which are not toroidal. The construction uses Mobius
ladders or lattices. Suppose that we start with a Mobius ladder Lo, with vertices
{v1,v9,...,v2,}. Add 2n more vertices u1, us, . .., ua, forming a cycle in which
u; — ui+1, and add the edges u; — v;, for all <. The result is a graph as shown
in Figure 15.40. The facewidth of this graph is four, if n > 4, so that it cannot be
embedded in the torus. The facewidth can be made arbitrarily high by increasing n
and adding more cycles in this fashion.

15.7.2 Double covers

The projective plane can be viewed as exactly one-half of a sphere, by considering
the disc representing the projective plane as the upper hemisphere of a sphere. We
make another copy of the projective plane as follows. Let O denote the center of the
disc representing the projective plane. Reflect each point) of the disc in O, i.e.,
draw a diameter through O and). Map Q to its diametrically opposite point (Q’. Use
this reflected copy of the disc as the bottom hemisphere of a sphere. The two discs
meet on the equator. Now the points on the boundary of the disc representing the
projective plane are identified with each other. Therefore the equatorial points of the

406 Graphs, Algorithms, and Optimization

FIGURE 15.40
An embedding with facewidth four

sphere all have a corresponding antipodal point on the equator, which is identified
in the projective plane models. Antipodal points of the sphere always correspond to
the same point of the projective plane. The result is a two-to-one mapping of the
sphere onto the projective plane. Thus, we say that the sphere is a double cover of
the projective plane.

If G is a graph embedded on the disc of the projective plane, then the reflected
disc will contain a reflected copy G’ of G. Thus we have a sphere with V' (G) on the
upper hemisphere, and V' (G’) on the bottom hemisphere. We assume that no vertices
of G are situated exactly on the boundary of the disc. Any edge uv of G that crosses
the boundary of the disc will now meet the equator at the point where v’u’ meets the
boundary of the reflected disc. So the edge uwv is represented by two edges, uv’ and
u’v on the sphere. We obtain a double cover of the embedding of G on the projective
plane. For example, Figure 15.41 shows that a double cover of K, is the graph of
the cube. We also find that the dodecahedron is a double cover of the Petersen graph,
as can be seen from Figure 15.33. It is interesting to note that the double covers of
projective graphs obtained by this method must be planar graphs. If G has several
different embeddings on the projective plane, it will likely also have several different
double covers.

DEFINITION 15.23: Let G and H be simple graphs such that there is a two-
to-one mapping vy : V(H) — V(G) with the property that v induces a two-to-one
mapping of edges, v : E(H) — E(G). Then H is said to be a double cover of G. ~
is called the double cover map.

We denote the double cover of a projective embedding G™ by DC(G™)P, where
p is the corresponding planar rotation system. If (G’)’Tl is the reflected map of
G™, then 7 and 7’ are inverses of each other. Let u € V/(G) have correspond-
ing vertex v’ € V(G’). Then {u,u’} is called an antipodal pair of vertices. If u

Graphs and Surfaces 407

FIGURE 15.41
The cube is a double cover of K4

has rotation m(u) = (uy,u2,...,un,), then the antipodal v’ € V(G’) has rota-
tion 7' (u’) = (ul,,ur,_4,...,u}). If the edges uu; all have SGN(uu;) = +1, then
p(u) = (ur,us,...,uy) and p(u') = (u,,,ul,_q,...,u}). But if some edge uu;
has SGN(uu;) = —1, then in 7w(u), u} is substituted for u; to obtain p(u), and in
7’ (u'), u; is substituted for u) to obtain p(u’). This is illustrated in Figure 15.41.

Consider a facial walk W = (vy,v9,...,05) in G™. Let W' =
(v}, v} _4,...,0}) be the corresponding facial walk in (G')™". If all edges v;v; 1
of W have signature +1, then W7, = W and Wy = W’ are both facial walks
of DC(G™)P. Notice that W7 and Wy are vertex-disjoint, and that W5 consists
of the antipodal vertices of 1. Otherwise let v;v;11 be the first edge of W with
SGN(v;v;41) = —1. In DC(G™)P, (v1,va,...,0;,...) is the beginning of a facial
walk. In G™, W continues on the opposite side of the disc, so that beginning with
v;+1, the rotations 7 (v;) are reversed in determining W, until the next edge with sig-
nature —1 is encountered. But in DC(G™)P, the rotation p(v; , ;) is 7(v; 1) reversed,
so that the facial walk in DC(G™)P continues with (..., vj ,vj ,,...), until the
next edge with signature —1 is encountered. Thus, a facial walk W3 of DC(G™)? is
determined by W and its edges with signature —1. Similarly W5 is determined from
W’. We find that W5 consists of the antipodal vertices of W7, they are said to be
antipodal walks. For example, in Figure 15.41, the facial walk W = (1, 3,4, 2) of
K4 has corresponding facial walks W1 = (1,3’,4’,2) and W5 = (4, 3,1’,2’) in the
double cover, where W’ = (4/,3',1’,2"). This gives:

Lemma 15.23. Let DC(G™)P be the double cover of G™, with double cover map .
Then ~ induces a two-to-one map of the facial walks of DC(G™)? to those of G™.
Pairs of facial walks Wy and Wy where (W1)Y = (W2)" are antipodal walks.

Proof. The previous paragraph proves that the double cover contains two antipodal
facial walks W7 and W5 corresponding to each W of G™. By Euler’s formula for
planar maps (n+ f — e = 2), this comprises all facial walks of the double cover. [

Equivalence of projective maps is defined in terms of the facial walks (Defini-

408 Graphs, Algorithms, and Optimization

tion 15.18). So it follows from Lemma 15.23 that isomorphism of projective maps is
closely related to the isomorphism of their double covers.

Theorem 15.24. Let DC'(G™)? be the double cover of G™, with double cover map .
Let 8 € AUT(DC(G™)P) have the property that 0 maps every antipodal pair {v, v’}
to an antipodal pair. Then 6 induces an automorphism ¢ € AUT(G™).

Proof. Let (G')™ be the reflected copy of G™ contained in the double cover, with
V' = V(G"). Construct ¢ from 6 as follows. Given any v € V(G), let w = v?. De-
fine v¥ = w?. Now because # maps antipodal pairs to antipodal pairs, it must be the
case that (v/)? is the antipodal vertex of w. Thus ¢ is completely determined by 6.
We show that ¢ € AUT(G™). Consider the collection of facial walks of DC(G™)?.
Every facial walk is mapped by 6 to a facial walk in the same collection. The facial
walks of the double cover occur in pairs Wy, Ws which are mapped by ~ to a com-
mon facial walk W of G™. W5 consists of the antipodal vertices of W7, but reversed.
W, and W5 are mapped by 6 to a pair of facial walks W7, W, where W.J consists of
the antipodal vertices of W7, but reversed, by the properties of 6. Therefore W¢, W.J
are both mapped by v to W ¢ or to the reversal of W . It follows that ¢ maps the col-
lection of facial walks of G™ to itself, or to that of G™, so that it is an automorphism
of GT. O

Given § € AuT(DC(G™)P) we write ¢ = 07 for the induced automorphism, for
¢ is obtained by replacing each vertex v in 6 with v7.

Theorem 15.25. Let DC(G™)P be the double cover of G™, with double cover map
v. Let ¢ € AUT(G™). Then there is an automorphism § € AUT(DC(G™)P) such
that ¢ = 07.

Proof. Let (G’)7’/ be the reflected copy of G™ contained in the double cover. The
construction of the double cover describes how to link the embeddings G™ and (G’)“'
on the surface of the sphere uniquely to create DC'(G™)P. If we now permute V' (G)
on the disc representing the projective plane according to the automorphism ¢, an
identical-looking embedding (G™)® is produced, with each vertex v replaced by v®.
The collection of facial walks is either unchanged or reversed. The reflected em-
bedding (G’)™ has rotations that are reversed from G™, so that when v’ is replaced
by (v?)', the reflected embedding also looks identical to (G’)™ . So when the per-
muted embedding is uniquely extended to the sphere to obtain the double cover, an
identical-looking double cover is obtained, with v? replacing vertex v, and (v?)’ re-
placing vertex v’. Thus we have an automorphism 6 of DC(G™)?. Consider a facial
walk W of G™. There is a corresponding walk W’ of (G')™ . They correspond to
antipodal walks W and W in the double cover. When ¢ maps W to W, W’ is
mapped to (W?)’. Therefore § maps W; and W5 to the pair of antipodal walks that
correspond to W ?, so that ¢ = 7. |

Theorem 15.25 shows that corresponding to ¢ € AUT(GT), there is an auto-
morphism 6 € AUT(DC(G™)P), such that ¢ = 07. Consider a vertex u € V(G).
It is mapped to u®. Then u? is either u® or (u?)’. Either choice can be made, be-
cause the permutation that exchanges all antipodal pairs {v, v’} is an automorphism

Graphs and Surfaces 409

of DC(G™)P. This also determines (u')’. Having chosen u?, the edges uv incident
on u are taken. Consider an edge uv of G with SGN(uv) = +1. It may map to an
edge of signature —1. Then (uv)? = ufv? will either be (u®)(v®) or (u®) (v?).
As u? has already ben chosen, this determines v? uniquely, and consequently (v’)?
is also determined. Similarly there are two choices for (uv)? when uv maps to an
edge of signature +1, namely (u?)(v?) or (u®)’(v?)". Again v% and (v")? are deter-
mined uniquely. We continue like this until all vertices of the double cover have been
mapped by 6.

As the sphere is an orientable surface, the double cover provides a convenient
means of determining isomorphisms and automorphisms of projective embeddings.
The medial digraph of an embedding as expressed in Definition 14.20 is inappro-
priate for non-orientable surfaces. Although it encapsulates the cyclic adjacencies
of each vertex, it does not take into account the signature of the edges. The signa-
tures are required to ensure that the facial walks are correctly determined. In order
to distinguish inequivalent projective embeddings of a graph, and to determine the
symmetries (automorphisms) of an embedding, we can use the double cover.

By Theorems 15.24 and 15.25, every automorphism of G™ arises from an auto-
morphism of DC(G™)P that maps antipodal pairs to antipodal pairs. Let M be the
medial digraph of DC(G™)P. By Lemma 14.21, AUT(M) determines all automor-
phisms of DC(G™)?. In order to ensure that only those automorphisms that map
antipodal pairs to antipodal pairs are used, M can be modified slightly. If G has
no vertices of degree two, an undirected path of length two connecting v and v’ is
added to M, for each antipodal pair {v,v’}. Call the result M ™, the antipodal me-
dial digraph. Then any automorphism of M ™ must permute the vertices of degree
two, thereby ensuring that antipodal pairs are mapped to antipodal pairs. But if G
has vertices of degree two, the same technique will work, using a slightly longer path
connecting v to v". Then AUT(M ™) contains all automorphisms of DC(G™)? that
map antipodal pairs to antipodal pairs. Let v be the double cover map. For each gen-
erator of AUT(M ™), we first restrict it to V (DC/(G™)?) to obtain ¢, and we then find
07. The result is AUT(G™). We state this as a theorem.

Theorem 15.26. Let G™ be a projective map with double cover DC(G™)?, and dou-
ble cover map ~y. Let MV be the antipodal medial digraph of the double cover. Then
AUT(GT) is obtained from AUT(M ™) by restricting each element of AUT(M™) to
V(DC(G™)?), and then transforming it by .

Theorem 15.26 provides a very convenient method of determining the automor-
phism groups of projective embeddings. It usually requires graph isomorphism soft-
ware, but is purely combinatorial. It can also be used to determine whether embed-
dings G™ and G™ are isomorphic. We just construct the antipodal medial digraphs
Mt and M of their double covers, and test them for isomorphism. In this way it is
possible to find all non-equivalent projective embeddings of a given graph G.

Theorem 15.27. There is only one embedding of K3 3 on the projective plane, up to
isomorphism.

Proof. Let G™ be an embedding of K3 3 on the projective plane. Consider a longest

410 Graphs, Algorithms, and Optimization

essential cycle in G™. If the length of C'is 6, let the vertices of C' be (1,2, 3,4, 5, 6),
in that order. When C' is embedded in the projective plane it has one face, with
boundary (1,2,3,4,5,6,1,2,3,4,5,6). The edges still to be embedded are 14, 25
and 36. Without loss of generality, 14 must be embedded in the face as shown in
Figure 15.42. There is then only one way to complete the embedding by adding
edges 25 and 36.

If the longest essential cycle in G™ has length four, it can be taken as C' =
(1,2,3,4). When C is embedded in the projective plane it has one face, with bound-
ary (1,2,3,4,1,2,3,4). Vertices 5 and 6 must be embedded within this face, as
shown in Figure 15.43. The edge 56 must be drawn within the face, and without
loss of generality, the edges 16 and 36 can be drawn as shown. There is then only
one way to embed the edge 25, but two equivalent ways to embed the edge 45. Now
one of the edges of C' must be assigned a signature of —1. For each possibility, there
is an essential cycle of length 6, a contradiction. |

FIGURE 1542
Embedding K3 3 in the projective plane, C' has length 6

Exercises

15.7.1 Find all embeddings of K4 and K5 on the projective plane.
15.7.2 Find a projective embedding of K3 4 and find its projective dual. What
graph is it?

15.7.3 Let G¥ be a projective embedding of G, and let 7 be an associated rota-
tion system. Let C' be any cycle of GG. Show that C'is an essential cycle of
GY if and only if the number of edges of C with signature —1 is congruent
to 2 (mod 4).

15.7.4 Find the dual maps of the embeddings shown in Figure 15.37.

Graphs and Surfaces

FIGURE 1543
Embedding K3 3 in the projective plane, C' has length 4

15.7.5

15.7.6
15.7.7

15.7.8

15.7.9

15.7.10

15.7.11

15.7.12
15.7.13

Show that the Mobius ladder Lo, contains a topological subgraph
TLo,_ 5, whenn > 3.

Show that the Mobius lattice Lo, is a minor of Lo, 41, if n > 3.

Show that the Mobius ladder Lo, has an embedding on the torus in which
all faces are hexagons. Construct the embedding for n = 4,5, and find
the dual map. (Hint: In the rectangular representation of the torus, draw
a cycle of length 2n which wraps around the torus twice. Show how to
complete this to a hexagonal embedding of Ls,,.)

Show that the Mobius lattice Lo, 1 has an embedding on the torus in
which all faces are quadrilaterals. Construct the embedding for n = 4, 5,
and find the dual map. (Hint: In the rectangular representation of the torus,
draw a cycle of length 2n — 1 which wraps around the torus twice. Show
how to complete this to a quadrilateral embedding of Lo, —1.)

Show that there is a unique triangulation of the projective plane with three
vertices and six edges.

Show that Read’s algorithm for drawing a planar graph can be adapted
to the projective plane. Show that there is a unique triangulation of the
projective plane on three vertices, and that any triangulation can be re-
duced to it by deleting vertices of degrees three, four, or five, and adding
diagonals to the faces obtained. Conclude that every projective graph has
a straight-line drawing in the disc model of the projective plane.

Show that the graph of the 2n-prism is a double cover of the Mobius
ladder Lo,,.

The cube is a double cover of K. Find another double cover of K 4.

Find a double cover of Kg, as illustrated in Figure 15.33.

411

412 Graphs, Algorithms, and Optimization

15.7.14 Find a projective embedding of the graph of the cube, and find its double
cover.

15.7.15 The Desargues graph is shown in Figure 15.44. The Desargues graph
is non-planar, non-projective, and non-toroidal. Show that it is a double
cover of the Petersen graph.

FIGURE 15.44
The Desargues graph

15.8 Embedding algorithms

In this section, we outline an algorithm to determine whether a 2-connected graph G
can be embedded on the projective plane, and to find an embedding G™. It is modeled
on algorithms of Gagarin, Mohar, and Myrvold and Roth. If G is planar, we know
how to convert a planar embedding to a projective embedding. Hence we can assume
that GG is non-planar, so that it contains a Kuratowski subgraph T'Ks or T' K33 3.

There is exactly one embedding of K3 3 on the projective plane, shown in Fig-
ure 15.34, and two embeddings of K5, shown in Figure 15.45. These embeddings
all have the property that there are no repeated vertices on any facial cycle. In Fig-
ure 15.34, the hamilton cycle (1,2, 5,6, 3, 4) is an essential cycle. Because K3 3 has
a unique embedding on the projective plane, this gives:

Lemma 15.28. In any embedding of K3 3 in the projective plane, some hamilton
cycle is an essential cycle.

If we now cut the projective plane along this cycle, the result is a disc in which
each vertex 1, 2, ..., 6 appears twice on the boundary. The resulting diagram, shown
in Figure 15.46, is a very convenient representation of the projective plane.

Graphs and Surfaces

()

FIGURE 15.45
The embeddings of K5 on the projective plane

FIGURE 15.46
A representation of the projective plane

Consider a subgraph T'K3 5 in G. We want to determine whether G' can be em-
bedded in the projective plane. We will begin by embedding the subgraph T'/K5 3.
There are six hamilton cycles of K3 3. Each corresponds to a cycle of T'K’3 3. One
of them must be essential. Exercise 15.8.2 describes an easy way to enumerate the
hamilton cycles of K3 3. We take each of the six cycles in turn, and construct an
embedding of T'K3 3, as in Figure 15.46, and try to extend it to an embedding of
G. If any one succeeds, then G is projective. Otherwise we conclude that G is non-
projective.

The embedding of K3 3 divides the projective plane into four faces — a hexagon,
and four quadragons. The remaining vertices and edges of G must be placed in one
of these faces. If we delete V(T K3 3) from G, the result is a subgraph consisting
of a number of connected components. If H is such a connected component, then
because G is 2-connected, there must be at least two edges with one endpoint in H
and the other in T'K3 3.

414 Graphs, Algorithms, and Optimization

DEFINITION 15.24: A bridge of G with respect to T'K3 3 is either:

1. Anedge uv, where u,v € V(T K3 3) but uv ¢ E(TKs3), or

2. A connected component H of G — V(T K3 3) together with all edges
connecting I to T K3 3

If B is a bridge, then a vertex of attachment of B is any vertex u of B such that
u e V(TK&V'L),)

We can use a breadth-first (BFS) or depth-first search (DFS) to find the bridges
of G with respect to an embedding of 7T'K3 3. Each bridge has at least two vertices
of attachment. Because each face is a 2-cell, and each bridge must be embedded in a
face of T' K3 3, each bridge must be planar. Into which faces of T'K’5 3 can the bridges
be placed?

The embedding of K3 3 in Figure 15.46 determines a classification of the ver-
tices and edges of K3 3. Edges on the boundary of the hexagon are called hexagon
edges. Edges which are on the boundary of a quadragon, but not on the hexagon are
called quadragon edges. Hexagon edges like {1,2} and {4, 5} are called opposite
edges. Vertices like 1 and 4 are called diagonally opposite vertices, because they
are diagonally opposite on the hexagon. By a path of T'K3 3 we mean a path con-
necting two corner vertices. The paths of T'K3 3 corresponding to hexagon edges of
K3 3 are called hexagon paths, those corresponding to opposite edges of the hexagon
are called opposite paths, and so forth. In general, a path of T'K3 5 will be either a
hexagon or a quadragon path of T3 3. The following lemmas on bridges can be
proved by considering all possibilities of placing a bridge in Figure 15.46.

Lemma 15.29. A bridge B can be placed in three faces of T K3 5 if and only if B
has exactly two vertices of attachment, which are diagonally opposite vertices.

Lemma 15.30. A bridge B can be placed in exactly two faces of T K3 3 if and only if
all vertices of attachment of B are on the same path, or on opposite paths of T K3 3.

It follows from these lemmas that a bridge B can be placed in at most three faces,
and that bridges for which these lemmas do not apply, either cannot be placed in any
face, or can be placed in at most one face. A bridge is compatible with a face if it can
be placed in the face. A bridge B is a k-face bridge if it can be placed in exactly k
faces of T'K3 3. Thus, we have 3-face, 2-face, 1-face, and O-face bridges with respect
to an embedding of T'K3 3. We can determine which faces a bridge may embed in by
using its vertices of attachment and the previous lemmas.

Two bridges B; and By conflict in face F' if they can both be placed in face F,
but cannot be simultaneously placed in face F'. Suppose that By can be embedded

in face F' and that it has k& vertices of attachment vy, vo, ..., vr, where k£ > 2, and
where the vertices occur in that order on the facial cycle of F'. The vertices divide
the facial cycle into & intervals [vq, va], [v2, v3], . . ., [Vk—1, VK], [Vk, v1], Where each

interval is a path from v; to v; 1. If By is another bridge that can also be embedded
in face F', then By and Bs do not conflict if and only if all vertices of attachment of
Bs lie in one interval of B, and vice versa.

Graphs and Surfaces 415

Suppose that B is a 3-face bridge, with vertices of attachment u and v. All 3-face
bridges with these vertices of attachment can be combined into one bridge, as they
can always all be embedded in the same face if any embedding is possible. Thus, we
can assume that there are at most three 3-face bridges, one for each pair of diago-
nally opposite vertices. Furthermore, any two distinct 3-face bridges conflict in the
hexagon, so that at most one 3-face bridge can be embedded in the hexagon. The al-
gorithm looks for embeddings with no 3-face bridges in the hexagon, or with exactly
one 3-face bridge in the hexagon. Thus there are four subproblems to consider.

If we choose a DFES to find the bridges, it can be organized as follows. The pro-
cedure uses a variable nBridges to count the number of bridges found so far. It is
initially zero. We take each vertex u € V(T'K3 3) in turn, and consider all incident
edges uv ¢ E(TKs 3). Edge uv belongs to exactly one bridge. We store a value
B(uw) for each edge, indicating the bridge to which uwv belongs. If B(uv) = 0, then
B(uw) has not yet been assigned. If v € V(T K3 3), then edge uv is a bridge, and we
assign B(uv). Otherwise we call a procedure BRIDGEDFS (v) to build the bridge B.
Because of the nature of a DFS, it will visit all vertices of B before returning, and
will explore only edges of B. For each edge xy € B, B(xy) is assigned to be the
current value of nBridges. Each time it encounters a vertex of T K3 3, it has found
a vertex of attachment. For each bridge, a list of vertices of attachment is saved. If
two bridges B and B’ are both found to have exactly two vertices of attachment, and
they are the same two vertices, then B and B’ are combined into a single bridge.
The vertices of attachment are later used to determine the compatible faces, using
the previous lemmas, and to sort the adjacency list of each w.

Algorithm 15.8.1: CONSTRUCTBRIDGES(G, T'K3 3)

comment: Construct all bridges of G with respect to T'K3 3

nBridges < 0
for each u € V(T K3 3)
for each edge wwv such that uv ¢ E(T K3 3)
if B(uv) =0 then
comment: the bridge of uv has not been visited

nBridges < nBridges + 1
if v S V(TK'L),S)
then B(uv) < nBridges
else BRIDGEDFS (v)
comment: all bridges incident on v have now been constructed

do

We can now present an algorithm for determining the conflicts of bridges in a face
F. Let (ug,us,...,uy) denote the facial cycle of F'. We assign a numbering to the
facial cycle, such that u; is numbered :. This defines an ordering u; < ug < ... <
uy. For each bridge B that is compatible with F', we sort the vertices of attachment
according to this ordering. The purpose of this is to determine whether the vertices of

416 Graphs, Algorithms, and Optimization

attachment of each bridge lie completely within an interval of all other bridges. Let
bmin denote the smallest vertex of attachment of bridge B, and let b,,,x denote the
largest. The algorithm then walks along the facial cycle from w to u; and sorts the
adjacency list of each u;. The edges incident on w; can be divided into the following
three classes:

1. Edges u;v belonging to a bridge B such that u; = byin
2. Edges u;v belonging to a bridge B such that bynin < u; < bmax
3. Edges u;v belonging to a bridge B such that u; = byax

FIGURE 15.47
Determining whether bridges conflict

Refer to Figure 15.47. The adjacency list is ordered so that edges in the first
class precede those in the second class, which precede those in the third class, and
so that edges of each bridge are contiguous in each of the three classes. The edges in
the first class are further sorted so that if u;v and u;v” belong to bridges B and B/,
respectively, where by,ax < 0], then w;v precedes u;v'. If byax = bl .y then w;v
precedes u;v’" if B has more vertices of attachment. The edges in the third class are
further sorted so that if u;v and u;v’ belong to bridges B and B’, respectively, where
bmin < bl i, then u;v precedes w;v’. If by = b/, then u;v precedes w0’ if B
has fewer vertices of attachment.

In Figure 15.47 the ujug-path of the facial cycle is drawn approximately ver-

tically, and the bridges are placed to the left of the path. With this representation,

Graphs and Surfaces 417

the ordering of the adjacency lists appears as a clockwise circle drawn at each wu;. If
u; = byin for some bridge B, there can be several edges u;v belonging to bridge B.
The last such edge is saved as By,in. Similarly, if u; = byax for some bridge B, the
first edge u,;v of B is saved as Byax.

The algorithm then walks along the facial cycle from uy to u. Every edge w,;v
such that B(u;v) is compatible with F' is placed on a stack. When By, the last edge
of bridge B is encountered, all edges of B are removed from the stack, and conflicts
with B are determined. The algorithm stores a linked list of conflicting bridges for
each bridge B.

Algorithm 15.8.2: BRIDGECONFLICTS(F’)

Determine the conflicts among bridges incident on face F'
comment: < The facial cycle of Fis (u1,ua, ..., ux)
The adjacency list of each u; has been sorted

for u; + u; downto wuq
for each edge ;v such that u;v ¢ E(T K3 3)
B « B(u;v)
if B is not compatible with face F" go to L1
place u;v on Stack
if u;v = Buin
let u; be the vertex of attachment of By ax
upw <— top of Stack
do do while uyw # Bpax do
if B(uyw) = B
then then remove u,w from Stack
else {if up 7# u; and uy # u;
then B and B(u,w) conflict

upw <— next edge on Stack

remove upw from Stack

We prove that the algorithm works. Suppose that B is a bridge with byax = u;
and byin = u;, with extreme edges Byax = u;v and Byin = ujw. All vertices
of attachment of B lie between u; and u;. If no other bridge has an attachment u,
here, such that u; # uy # u;, then B does not conflict with other bridges. Consider
the point in the algorithm when By;, is reached. The algorithm will have stacked
each edge of B incident on the facial cycle, including By,;,. It then removes all these
edges. If there is no uy between u; and u;, no conflicts are discovered. But if B’ is
a bridge with a vertex of attachment w, in this range, then an edge usz of B’ will
have been stacked after By,ax and before Bpin. Because the edges of B’ are still on
the stack while edges of B are being removed, b/ .. < byin. If 0., < buin, then
B and B’ are in conflict, and this is discovered. If b/ . = byin, then because Bpin

418 Graphs, Algorithms, and Optimization

precedes B/ ;. in the adjacency lists, we know that b, . > bmax. If b ... > bmax.

then B and B’ are in conflict, and this is discovered. Otherwise], = bmax and

]’min = bmin, and uy is strictly between these limits. The ordering of the adjacency
list tells us that B has at least as many vertices of attachment as B’. Therefore B and
B’ both have a vertex of attachment strictly between u; and u ;. We conclude that the
bridges conflict.

Once all bridges have been constructed and all conflicts have been determined,
we construct an instance of the 2-Sat problem to represent this embedding problem.
The 2-Sat problem will have boolean variables corresponding to the placement of
bridges, and boolean expressions to characterize the conflicts of bridges. Let the
bridges be By, Ba, ..., By,. If there are any O-face bridges, the embedding of T'K3 3
cannot be extended. If B; is a 1-face bridge, embeddable in face F, create a boolean
variable x; for it. We require z; = true, and consider this to mean that B; is assigned
to face F. If B; is a 2-face bridge embeddable in faces F' and F”, create boolean
variables x; and y; for it. We consider z; = true to mean that B; is assigned to F'
and y; = true to mean that B; is assigned to . Because we do not want z; and y;
both to be true, or both to be false, we construct the clauses

(zi +y:)(Ti +7;)

This ensures that exactly one of z; and y; will be true.

If B; is a 3-face bridge, create boolean variables z;, y;, and z; for it as above,
where z; = true means that B; is embedded in the hexagon. The 3-face bridges
require special treatment. We take z; = false and z; = true as separate cases. If
z; = false, B; becomes a 2-face bridge, and we construct the clauses

(zi +y:) (@i +7;)

to represent this bridge. If z; = true, B; becomes a 1-face bridge, and we require
xr; = y; = false.

If B; and B; are bridges that conflict in a face F, suppose without loss of gen-
erality that x; represents the assignment of B; to face I, and that w; represents the
assignment of B; to face I, where w; is one of x;, y;, or z;. We then construct the
clause

(T + w;)
to ensure that at most one of B; and B; can be placed in face F.

When a variable is required to have a certain value (e.g., x; = true), we con-

struct clauses
(@i + x0) (s + To)

where x(is an additional boolean variable. Notice that this can only be satisfied if
x; = true. If x; = false is required, we construct the clauses

(@i + 20)(Ti + Zo)

which can only be satisfied if z; = false.
Thus, we can represent all conflicts and all placements of bridges by instances

Graphs and Surfaces 419

of 2-Sat. Suppose that an algorithm for 2-Sat finds a solution satisfying the con-
straints. If By, Bo, ..., By are the bridges assigned to face F', they are all mutually
non-conflicting bridges. Consequently, all vertices of attachment of any B; lie in
an interval determined by two vertices of attachment of every B;. If each B; has a
planar embedding in F’, then they all have a common planar embedding in F', and
conversely. If there is no common planar embedding of the bridges in F’, then some
bridge B; has no planar embedding in F'. It then follows that B; cannot be embedded
in any other face F”. Thus, we can complete the projective embedding of G by deter-
mining whether there is a planar embedding of the bridges in F'. We construct a graph
G(F) which is the union of the facial cycle of F, and all bridges By, Ba, ..., By, as-
signed by 2-Sat to F. We add one additional vertex ug, joined to every vertex of the
facial cycle, in order to distinguish an “inside” and “outside” for F'. We have:

Lemma 15.31. G(F) is planar if and only if bridges By, Ba, . . . , By, have a common
embedding in F.

We can now present the algorithm for projective planarity.

The bridges Bi, Ba, ..., B, are constructed using a BFS or DFS. This takes
O(n) steps, because £ < 3n — 3. There are six embeddings of T K 3,3 that are consid-
ered. For each embedding, the bridges are classified according to the faces they can
be assigned to. The conflicts between bridges are then calculated. As the number of
bridges m is bounded by n, the number of conflicts is at most O(n?). An instance of
2-Sat is then constructed with at most 3m + 1 variables and at most 4m +m(m — 1)
clauses. This can be solved in O(n?) time. If a solution is found, a planar embed-
ding algorithm must be used for each face to find the actual embedding. If a linear or
quadratic planarity algorithm is used, the result is at most O(n?) steps to complete
the projective embedding. The result is a O(n?) algorithm for finding a projective
embedding of G, if one exists, when we are givena T'K3 5 in G.

Now it would be possible to consider the embeddings of 7' K5 in a similar way,
and construct the bridges with respect to each embedding of T'K, etc. There are
27 (labeled) embeddings of T K5 in the projective plane. However, there is an easier
way. In Section 14.3 we found that most graphs containing a subgraph 7 K5 also
contain 7'K3 3, and that a simple breadth-first search algorithm can find a T K3 3,
given a T'K5. Thus, if we are given a 'K in G, we first try to find a T'K3 3 in its
place, and then use Algorithm PROJECTIVEPLANARITY () to extend it to G.

420 Graphs, Algorithms, and Optimization

Algorithm 15.8.3: PROJECTIVEPLANARITY(G, T K33 3)

Given a graph G with a subgraph T'K3 3,

comment: . . -
{determme whether G is projective.

let n and € denote the number of vertices and edges of G
ife >3n—-3
then return (NonProjective)
construct the bridges By, Bs, . . ., B,, with respect to T' K5 3
for each embedding of T'K3 3
classify the bridges as O-face, 1-face, 2-face, or 3-face
if there is a O-face bridge go to L1
determine all conflicts of bridges
construct the clauses representing all conflicts of bridges
wlog, assume that By, By and B3 are 3-face bridges
21,522,223 < false
fori < 0to3
construct the clauses representing By, By and Bs
solve the resulting 2-Sat problem
do if there is no solution go to L2
for each face F'of T K3 5 do
take all bridges assigned to F', construct graph G(F)
{if G(F') is non-planar go to L2
comment: we now have a projective embedding

do

return (Projective)
L2:

z; < false

Ziy1 < true

L1:
return (NonProjective)

If T K5 cannot be extended to T'K3 3, then the structure of G is limited. Let
{v1, va, V3,04, 5} be the corners of T K5. Then G — {vy, va, v3, v4,v5} is a discon-
nected graph. Each component is adjacent to exactly two of the corner vertices of
T K. Let G;; denote the subgraph induced by all components adjacent to v; and v;,
together with all edges connecting them to v; or v;. Gy; is called a K5-component
of G. Notice that v; and v; are vertices of Gy, and that E(G) = U, ;E(G;). An
augmented Ks-component is the graph ij with the additional edge v;v;; namely,
G;; = G;j + v;vj. We have the following theorem:

Theorem 15.32. Suppose that G has a subgraph T K5 which cannot be extended to
T K3 3. Then G is projective if and only if all augmented Ks-components G;; are
planar.

Graphs and Surfaces 421

The proof of this theorem is left as an exercise. A consequence of it is that al-
gorithms for projective planarity can focus on 7'K3 3 subgraphs, which have fewer
embeddings. A similar, but more complicated result holds for toroidal graphs con-
taining a 7'K'5 which cannot be extended to T'K3 3.

Exercises

15.8.1 Show that a graph can be embedded on the projective plane if and only if
it can be embedded on the M6bius band.

15.8.2 Show that K3 3 has six hamilton cycles. If C = (1, 2,5, 6, 3, 4) is a hamil-
ton cycle, show that all hamilton cycles can be obtained by successively
applying the permutation (1)(3,5)(2,4,6) to C.

15.8.3 Show how to find a projective rotation system for a graph G contain-
ing T'K3 3, when the algorithm PROJECTIVEPLANARITY() determines

that GG is projective. Hint: Use the projective embedding of K3 3 in Fig-
ure 15.48.

15.8.4 Prove Theorem 15.32.

FIGURE 15.48
A projective embedding of K3 3

15.9 Heawood’s map coloring theorem

We conclude this chapter with a discussion of Heawood’s map coloring theorem.
The 4-color theorem states that x (G) < 4, for graphs of genus zero. Heawood’s map
coloring theorem gives an analogous result for graphs of genus one or more.

422 Graphs, Algorithms, and Optimization

Lemma 15.33. Let n > 3. Then g(K,,) > [(n —3)(n —4)/12].

Proof. By Lemma 15.6,¢(K,,) = n(n —1)/2 < 3n+ 6(g — 1). Solving for g gives
the result. O

Theorem 15.34. (Heawood’s theorem) Let G be a graph on n vertices with genus
g > 1. Then x(G) < [3(7+ T+ 48g)].

Proof. Let x(G) = k.If G is not a critical graph, then it contains a critical subgraph.
Because a k-critical graph has minimum degree at least £ — 1, we conclude that the
sum of degrees of G is at least (k — 1)n, so thate > (k — 1)n/2. Lemma 15.6 gives
€ <3n+6(g — 1). These two inequalities together give
Rty 292D
n

with equality only if both inequalities above are equalities. Now g > 1 so that for
fixed g, this is a non-increasing function of n, so that x(G) will be bounded. This
arises because the number of edges in a k-critical graph increases as kn /2, whereas
the maximum number of edges in a graph embedded in a surface of genus g increases
as 3n. We also know that £ < n, an increasing function. Therefore the largest pos-
sible value of k is when k = n = 7 4+ 12(g — 1)/n. The equation then becomes
n? — Tn —12(g — 1) = 0, which gives the solution n = (7 + /T + 48g). Because
k < mn and k must be an integer, the result follows. O

If 2(7+ /T + 48g) is an integer, the inequalities used in the proof of Heawood’s
theorem must be equalities. This requires that e = (n — 1)n/2, so that G = K,,. The
quantity 1(7 + /T + 48g) represents the largest number of vertices that a graph can
have, and still satisfy n(n —1)/2 < 3n+ 6(g — 1). If it is not an integer, this means
thatn(n—1)/2 < 3n+6(g—1), so thata complete graphonn = | 3(7++/T + 489)]
vertices will not be a triangulation. In general, we have:

Theorem 15.35. Let G be a graph on n vertices with genus g > 1 and chromatic
number x(G) = | (7 + /T+48g)|. Then G contains a spanning complete graph.

Proof. Let h = (7 + /T+48g)]. Let G have n vertices. Because x(G) = h,
we know that n > h, and €(G) > n(h — 1)/2 > h(h — 1)/2. But h is the largest
integer such that h(h — 1)/2 < 3h + 6(g — 1). Therefore n = h and G contains a
spanning complete graph. Note that a complete graph may not triangulate the surface,
so that the number of edges in a triangulation, 3k + 6(¢g — 1), may be larger than
h(h —1)/2. O

We conclude that the extreme value of y will be achieved only if a complete
graph with this many vertices can be embedded in the surface.

This theorem gives x(G) < 7 for the torus. An embedding of K7 in the torus is
shown in Figure 15.24, so that seven colors are necessary for the torus. We say that
the chromatic number of the torus is seven, because all toroidal graphs can be colored
in at most seven colors, and seven colors are necessary for some graphs. The dual of

Graphs and Surfaces 423

the embedding of K7 on the torus is the Heawood graph. Heawood was coloring the
faces of an embedding rather than the vertices of a graph, and discovered this graph.
The 4-color theorem tells us that the chromatic number of the plane is four. The for-
mula of Heawood’s theorem gives the bound x(G) < 4 for the plane. However, the
proof is invalid when g = 0, and there are many planar graphs other than K4 which
require four colors. Lemma 15.33 gives g(K,,) > [(n — 3)(n — 4)/12]. A proof
that g(K,,) equals this bound would mean that &,, can always be embedded in a sur-
face of this genus. Because x(K,,) = n, the inequality of Heawood’s theorem could
then be replaced by an equality. Calculating the genus of K,, was accomplished by
a number of people (Heffter, Gustin, Ringel, Youngs, and Mayer) over many years.
We state the result, without proof, as the following theorem.

Theorem 15.36. (Ringel-Youngs) Let n > 3. Then g(K,,) = [(n —3)(n —4)/12].

A complete proof of this result can be found in the survey paper of WHITE [190].
A consequence is the following:

Theorem 15.37. (Heawood map coloring theorem) The chromatic number of an
orientable surface of genus g > 1is | 1(7+ /T + 48g)].

The corresponding results for non-orientable surfaces of genus g > 1 are as
follows. Corresponding to Lemma 15.33 is the bound g(K,,) > [(n —3)(n —4)/6].
Corresponding to Heawood’s theorem is the bound x(G) < [3(7 + /T + 247)].
which is proved in an analogous way. Again, the graphs which meet the bound are
the complete graphs. The non-orientable version of the Ringel-Youngs theorem is the
following:

Theorem 15.38. Letn > 5. Then §(K,,) = [(n—3)(n—4)/6], except that G(K+) =
3.

The formula (n — 3)(n — 4)/6 gives g(K7) > 2. However, g(K7) = 3, as Ky
does not embed on the Klein bottle. The map coloring theorem for non-orientable
surfaces is then:

Theorem 15.39. The chromatic number of a non-orientable surface of genus g > 1
is | 1(7+ /I +249)|, except that the chromatic number of the Klein bottle is 6.

Exercises

159.1 Let t be a positive integer, and let tK3 denote the graph with three
vertices, and ¢ parallel edges connecting each pair of vertices, so that
e(tK3) = 3t. Consider embeddings of tK3 in which there are no digon
faces. Show that g(tK3) > (¢t — 1)/2 and that g(tK3) >t — 1.

15.9.2 Show that g(tK3) = (t — 1)/2 and g(tK3) = ¢ — 1 by constructing
embeddings of ¢ K5 on the appropriate surfaces.

1593 Let G be a graph with n vertices and genus g, and let n; denote the
number of vertices of degree k. Suppose that n; = ng = 0. Construct an
inequality satisfied by ng, n4, . . . in terms of g, using the number of edges
in a triangulation. Do the same for g(G).

424 Graphs, Algorithms, and Optimization

15.9.4 The maximum genus of a graph G is the largest value g such that G has
a 2-cell embedding on a surface of genus g. If ¢ is the maximum genus
of a graph GG on n vertices, use the Euler-Poincaré formula to show that
g < (¢ — n+ 1)/2. Find the maximum orientable genus of Kj.

15.9.5 Show that K7 does not embed on the Klein bottle.

15.10 Notes

An excellent source book related to topology and geometry is HILBERT and COHN-
VOSSEN [83]. It is perhaps one of the best and most readable mathematics books
ever written. Proofs of the Dehn-Heegard theorem can be found in FRECHET and
FAN [54] and in STILLWELL [161]. Both contain very readable accounts of combi-
natorial topology. Fréchet and Fan call the Euler-Poincaré formula Descartes’ for-
mula. An excellent source book for the relation between isometries of surfaces and
topological surfaces is STILLWELL [162]

Some beautiful computer models of the projective plane can be found in
APERY [4].

There are excellent chapters in DIESTEL [44] and ZIEGLER [196] on the graph
minor theorem. The minor order obstructions for the projective plane were found
by GLOVER, HUNEKE and WANG [67]. ARCHDEACON [7] proved that the list is
complete. MYRVOLD [128] has found over 200,000 topological obstructions for the
torus, and the list may not be complete.

An excellent source for graphs and surfaces is the book by MOHAR and
THOMASSEN [126], or the book on topological graph theory by GROSS and
TUCKER [74]. See THURSTON [171] for topological and geometric insights into the
torus and other surfaces.

THOMASSEN [168] has proved that Graph Genusis NP-complete.

The algorithm for drawing graphs on the torus, given a toroidal rotation system is
from KOCAY, NEILSON, and SZYPOWSKI [104]. It is adapted from Read’s algorithm
READ [144] for planar graphs.

Theorem 15.22 relating projective embeddings to toroidal embeddings is from
FIEDLER, HUNEKE, RICHTER, and ROBERTSON [51].

The algorithm for embedding a graph on the projective plane is based on algo-
rithms by GAGARIN [59], MOHAR [125], and MYRVOLD and ROTH [130]. Theo-
rem 15.32 is from GAGARIN and KOCAY [60].

The survey article by WHITE [190] contains a complete proof of the Ringel-
Youngs theorem and the Heawood map coloring theorem.

16
The Klein Bottle and the Double Torus

16.1 The Klein bottle

The Klein bottle is the non-orientable surface of genus two. The double torus is the
orientable surface of genus two. We begin with the Klein bottle. It has several pos-
sible polygonal representations. The most common one seems to be a rectangle with
one pair of opposite sides glued with a twist, as in Figure 16.1, (also Figure 15.9),
giving the form a™b*Ta*bh™, which is not the standard form of Theorem 15.2. Nu-
merous interesting 3D models of the Klein bottle can be found on the internet. We
see that in this rectangular representation, if the two horizontal edges of the rectangle
are glued, the result is a cylinder, in which opposite ends have opposite orientation.
But if the vertical edges are glued, we obtain a Mobius band, whose boundary must
be glued to itself.

We now make a diagonal cut across the rectangle, indicated by the dotted line c,
and re-assemble the rectangle so as to obtain another rectangular form, in standard

form ctctetet, wheree™ = b~ ande™ = b™.
b
a Al a ¢ alla ¢
b b b
FIGURE 16.1

The Klein bottle as rectangles, a™bTatb™ and ctetb— b~

Alternatively, we can make a horizontal cut through the middle of the rectangle,
and re-assemble it to obtain a hexagonal form for the Klein bottle (see Figures 16.2,
16.3, and 16.4). The edge marked a in Figure 16.1 is cut into a; and as, and the two
ao’s are glued in Figure 16.4, to obtain a hexagon, denoted here by a*ctcta=b7b™,
where we have renamed a; to a. In this form it is evident that the Klein bottle contains
two projective planes ctct and b~b~, as well as a cylinder (by glueing the two a’s),
and can be thought of as a sphere with two crosscaps. The circular arcs numbered
1,2,...,8 in Figure 16.3 will be considered later.

425

426 Graphs, Algorithms, and Optimization

\ S

b

FIGURE 16.2
Constructing a hexagonal form of the Klein bottle, a horizontal cut ¢

c c
A A
V. Vd
A a1 az y Y az ar A
A A
Ve V.
b b

FIGURE 16.3
Constructing a hexagonal form of the Klein bottle, continued

Because the Klein bottle contains two projective planes, it is clear that any graph
which can be embedded on the projective plane has a non-2-cell embedding on the
Klein bottle. In fact, two disjoint copies of K3 3 or K5 could easily be embedded
as a non-2-cell embedding on the Klein bottle. Existing algorithms for embedding
graphs on the projective plane or torus rely on the fact that the Kuratowski graphs
for the plane K5 and K3 3 have only 2-cell embeddings on the projective plane or
torus. Thus, they are good starting points for an embedding algorithm. They are not
as effective for the Klein bottle, because they are not obstructions for the projective
plane, and even allow non-2-cell embeddings of two disjoint copies.

16.1.1 Rotation systems

Consider the point of Figure 16.2 at the midpoint of the left edge of the rectangle. If
we walk around this point in a small clockwise circle, it begins with the arcs marked
1 and 2, then continues counterclockwise with the arcs marked 3 and 4, to produce a

The Klein Bottle and the Double Torus 427

FIGURE 16.4
A hexagonal form of the Klein bottle

cycle (1,2, 3,4). Similarly, if we start at the bottom of the left edge, and walk around
a small clockwise circle, we find the cycle (5, 6, 7, 8). If we then look for these cycles
in Figure 16.4 we find them in the locations indicated, with the given orientations.
This will be helpful in understanding the two traversals of the Jordan curves b and ¢
in the hexagonal model, when a graph is embedded on the surface.

As the Klein bottle is a non-orientable surface, an embedding of a graph G on it is
represented by a signed rotation system. We will denote a Klein bottle embedding by
G", where k is a signed rotation system. Now the Klein bottle can be represented in
several different ways as a polygonal disc, with pairs of sides identified. A graph edge
uv which crosses a side of the polygon from one surface of the polygonal disc to the
opposite surface will have a sign of —1. An edge which crosses from one surface of
the disc to the same surface, or which does not cross a boundary, will have a sign of
+1. If a vertex is placed along an edge of the polygon, the determination of the sign
of incident edges can be ambiguous. Therefore we will always move all such vertices
slightly (even an infinitesimal amount), so that they do not lie on the boundary, and
then determine the signatures of all incident edges. Similarly, we must be careful with
edges that cross through the corners of the polygon, as this can also be ambiguous.
We will always reroute them slightly so that they cross the polygonal edges meeting
at the corner separately, not both simultaneously. In the representation atb*a™b™,
edges which cross the essential cycle a will have a sign of —1. In the representation
atcteta~b™b™, edges which cross the cycles ¢ or b will have a sign of —1, but
all others will have a sign of +1, etc. The signed rotation system representing the
embedding in Figure 16.5(i) is the following:

428 Graphs, Algorithms, and Optimization

AN AW =

Given a signed rotation system, the facial boundaries can be traced out using
Algorithm 15.7.1, FACIALCYCLESGN(). The faces are independent of the polygo-
nal representation used for the Klein bottle. When one representation is converted
to another, using the cuts shown in Figures 16.2, 16.3, and 16.4, the signatures of
some of the edges change. Therefore, a signed rotation system based on a 2-cell em-
bedding on aTbTath~ may not be a 2-cell embedding, or even an embedding at
all, on atcteta=b=b~ or aTaTbTbT, and vice versa. Thus the edge signatures of
a rotation system depend on the polygonal representation being used. They are not
part of the embedding, but are necessary so that the facial walks can be determined
by the rotation system. Algorithm 15.7.1 will work for every polygonal representa-
tion, although a particular rotation system will have been constructed using a given
polygonal representation.

DEFINITION 16.1: A Klein map is a combinatorial embedding G* of a 2-
connected graph G on the Klein bottle, where « is a signed rotation system cor-
responding to a given polygonal representation of the Klein bottle.

Equivalence of Klein maps is defined in terms of their faces. When a facial walk
is traversed, its edges are followed in the direction of traversal. Each edge of a facial
walk occurs in exactly one other facial walk (which may be the same facial walk).
Therefore there is only one way to glue the facial walks together. Once they have
been glued, the result is the Klein bottle, with a graph embedded on it. The facial
walks can also all be reversed, and the result is the same, because the surface is
non-orientable.

DEFINITION 16.2: Klein maps G"' and G"? are equivalent or isomorphic if
there is a permutation of V(G) that maps the collection of facial walks of G** to
those of G*2, or to those of GF2.

Two distinct 2-cell embeddings of K3 3 on the Klein bottle are shown in Fig-
ure 16.5. They appear to be almost identical to the embeddings of K5 3 on the torus
(see Figure 15.2), but the facial walks are different. This observation gives the fol-
lowing theorem.

Theorem 16.1. Let Gt be a 2-cell embedding on the rectangular form of the torus
of a graph G. Let C be an essential Jordan curve in the torus, intersecting Gt in at
most two points, which are not vertices. Then G can be transformed into a 2-cell
embedding G* on the Klein bottle.

Proof. Cutting the torus along C' creates a cylinder, so that we can draw the torus
as a rectangle with C' as the right and left sides of the torus rectangle. Choose a

The Klein Bottle and the Double Torus 429

FIGURE 16.5
Two embeddings of K3 3 on the Klein bottle

rectangular representation of the Klein bottle of the form a™b+a™b~, with a on the
right and left sides, as in Figure 16.1. Suppose first that only one edge uv crosses
C, draw G® so that uv crosses C in the center of the right boundary of the torus
rectangle. This is also an embedding on the rectangular representation of the Klein
bottle. (An example is diagram (ii) of Figure 16.5.) Thus, a rotation system for G*
representing G embedded on the Klein bottle is identical to G, except that the edge
uv now has a sign of —1. Note that the faces (regions) of G will be the same as
those of G, although the facial walk containing uv will be differentin G* and G*.

If C intersects two edges of G, let the two edges be uv and xy, crossing C' from
left to right in the rectangular representation. Without loss of generality, we assume
that wv crosses C' above the point where xy crosses C'. Refer to Figure 16.6, where
u =5 v =6, =1, and y = 2. See also Figure 16.5 (i). Furthermore, we can
take v # y (otherwise u # x and we can perform a horizontal flip on the torus
rectangle, and relabel the points). Now G* is a 2-cell embedding, so if we start at
u and follow the facial boundary W beginning with uv, the vertices u, v, y, x occur
on W, in that order. Let B be the Jordan curve representing the top and bottom
side of the torus rectangle. Now wwv or xy may contain the intersection point of B
and C, as in Figure 16.6. If this is not the case, as in Figure 16.5(i), we adjust the
embedding slightly to make it so, as follows. If uv or zy cross both B and C, say
xy, but not at their intersection, we subdivide the edge which crosses B with a new
vertex z, so that xz crosses C' but not B, and then take xz in place of xy. Then
uv and zy do not intersect B. The walk W bounds a disc face, so that the torus
can be distorted slightly, by moving vertex y downwards, below the bottom side of
the rectangle, until edge zy intersects the bottom-right corner of the torus rectangle,
where B and C' meet. This has been done in the example of the left diagram of
Figure 16.6, where the edge zy = 12 intersects the bottom-right corner of the torus
rectangle. But the rectangle a*bTa~b~ representing the torus can now be viewed as
a rectangle a*baTb™ representing the Klein bottle. The edge zy then touches B,
but does not cross it, because the orientation of the right a-side of the rectangle has
been reversed.

430 Graphs, Algorithms, and Optimization

The curve representing edge xy can then be redrawn so that the point where it
previously intersected C' and B is moved upwards slightly along C, so that edge
2y no longer intersects B. This is illustrated in the right diagram of Figure 16.6.
Any subdividing vertices that were added are then removed. The facial boundaries
of G* that do not contain uv or zy are the same in G*. The union of the faces whose
boundaries contain uv or zy in G*, plus the edges uv and zy, comprise the faces that
touch the right boundary of the torus rectangle. Because G* is a 2-cell embedding,
their union forms a cylinder. In G* their union also forms a cylinder, though different
because the orientation of the right a-side of the rectangle has been reversed. When
the cylinder is cut along uv and zy, 2-cell faces result. Thus the embedding G” is a

2-cell embedding. O
>b
2 J :
ag—¢ D—RC T ag
7 . +
>b
G! G~

FIGURE 16.6
Converting G* to G*

Note that the condition that the Jordan curve C intersects G* in at most two points
is necessary for the proof to work, because the orientation of one of the a-sides of
the torus rectangle is reversed when transforming it to a Klein bottle.

A similar construction can be used to transform a Klein map to a torus map. There
are several kinds of essential Jordan curves on the Klein bottle (see the exercises at
the end of this section). Notice that a non-contractible Jordan curve that cuts b in
the rectangular form atbtat b~ creates a cylinder when cut. Call this a cylindrical
Jordan curve.

Theorem 16.2. Let G" be a 2-cell embedding of a graph G in the Klein bottle. Let
C be an essential cylindrical Jordan curve in the Klein bottle, intersecting G* in at
most two points, which are not vertices. Then G" can be transformed into a 2-cell
embedding G* on the torus.

Proof. The proof is the inverse transformation of Theorem 16.1. O

A similar transformation works for graphs embedded on the projective plane.

The Klein Bottle and the Double Torus 431

Theorem 16.3. Let G™ be a 2-cell embedding of a graph G in the projective plane.
Let C be an essential Jordan curve in the projective plane, intersecting G™ in a non-
vertex point of edge xy, such that G™ — xy is also a 2-cell embedding. And suppose
that C' intersects at least one other edge of G. Then G™ can be transformed into a
2-cell embedding G* on the Klein bottle.

Proof. Draw the projective plane so that C' is the bounding circle, so that the edge
xy and the other edges intersecting C' have signature —1. Represent the Klein bottle
as a rectangle a*bTaTh™, and let P be the point of intersection of C' with edge zy.
We assume that G™ is finite, so that a portion of C' adjacent to P can be chosen as b,
and the remainder of C' is chosen as a. The disc of the projective plane can then be
deformed into a rectangle such that zy crosses the side b (and therefore has signature
+1 in the Klein bottle), and the remaining edges of signature —1 cross the curve
a, and therefore have signature —1. The result is a Klein map G*. The facial walks
of G that do not contain zy are the same as in G, and therefore these faces are
2-cells in G”. The face of G whose boundary contains zy is homeomorphic to the
union of the faces of G™ whose boundary contains zy. Now G™ — xy is also a 2-cell
embedding. It follows that in G*, the face whose boundary contains xy is the union
of two 2-cells and the single common edge xy on their boundaries. Therefore G* is
a 2-cell embedding. O

An example of transforming a projective embedding into a Klein map is shown
in Figure 16.7, where an embedding of the Petersen graph on the projective plane is
converted to an embedding on the Klein bottle. Clearly the transformation of Theo-
rem 16.3 can also be done in reverse to transform certain Klein maps into projective
maps.

Y

() (ii)

FIGURE 16.7
Converting G™ to G*, the Petersen graph

Just as a 2-cell planar map GP can be transformed into a torus map using a theta
subgraph of (G, we can use a barbell subgraph to transform G? into a Klein map G*.

432 Graphs, Algorithms, and Optimization

DEFINITION 16.3: A barbell graph consists of a uv-path P, a cycle C, contain-
ing u, and a cycle C), containing v such that C,, and C,, are vertex-disjoint; P and C,,
have only » in common; and P and C,, have only v in common. Refer to Figure 16.8.

FIGURE 16.8
Schematic of a barbell graph, two planar embeddings

Let G? be a 2-connected planar map containing a barbell subgraph H. The fol-
lowing theorem shows how to convert G? to a Klein bottle embedding of G.

Theorem 16.4. Let GP be a 2-connected planar map containing a barbell subgraph
H. Then GP can be converted to a Klein bottle embedding G", such that the subgraph
H forms the boundary of the hexagon representation of the Klein bottle.

Proof. Suppose first that in the embedding G? in the plane, the barbell is embedded
as in the left diagram of Figure 16.9. Let A be the part of G embedded outside the
barbell, and let B and C' be the parts embedded inside the Jordan curves C,, and
C,, respectively. The orientations of A, B, and C' in GP are indicated by arrows
in Figure 16.9. The barbell itself can be embedded in the hexagonal form of the
Klein bottle, with the vertices and edges of the barbell forming the boundary of the
hexagon. Note that the cycles C, and C,, and path P are each traversed twice in
the Klein bottle. The two traversals of ', and C, have the same orientation on the
boundary of the hexagon; those of P have opposite orientations. The two traversals
always indicate the region of the Klein bottle to the right and left sides of the path
as it is followed. If we walk along P from « to v in GP, there may be edges to A on
both sides of P. The edges on the left side of P attach to A in the counterclockwise
direction in GP. Those on the right side of P attach to A in the clockwise direction.
These same attachments to A occur in the Klein bottle in Figure 16.9, in the same
order. The right and left sides of P agree in G” and G*.

Following v, we walk along C,, in G? clockwise from v, in the direction opposite
to the arrow. Edges on the outside of C', to A in GP continue in the counterclockwise
direction, and also appear counterclockwise in the Klein bottle diagram. Edges on
the inside of ', in GP are indicated on the second traversal of C,, in the Klein bottle.
The orientation of C), requires that C' be reversed in G" for these edges to attach in
the correct order. This is indicated in the diagram.

Then, we walk backwards along P in GP, from v to u, looking at edges to the

The Klein Bottle and the Double Torus 433

right of P. There can be edges to C,, A, or C,, in that order. Possible edges from
P to C,, determine that the direction of traversal of C,, in GP must be clockwise, as
indicated by the arrow. Then C,, is traversed. Edges to B on the other side of C), in
GP attach in a counterclockwise direction. This requires that the orientation of B be
reversed in the Klein bottle, as indicated in the diagram.

We can now read the rotation system for G” from the diagram. All vertices of B
and C' have their rotations reversed. All other vertices have the same rotations in G?
and G”. In order to determine the signatures of the edges of G", it is necessary to
move the vertices of the barbell slightly, so that they are not on the boundary of the
hexagon, and it can then be determined which edges cross the Jordan curves C,, and
Cy.

In the event that in GP the barbell is embedded as in the right diagram of Fig-
ure 16.8, the proof is almost identical (to be completed as an exercise).

O

It is evident from Figure 16.9 that there are several other ways to convert the
planar rotation system to a Klein bottle rotation system.

FIGURE 16.9
Converting a planar rotation system to a Klein bottle rotation system

Theorem 16.5. There are two 2-cell embeddings of K3 3 on the Klein bottle.

Proof. By Theorem 15.27 there is a unique embedding of K3 3 on the projective
plane (see Figure 15.34). The embedding has two kinds of edges — those that separate
two quadrilateral faces, and those that separate a hexagon and a quadrilateral. When
Theorem 16.3 is used to convert the projective embedding of K5 3 to a Klein map,
the edge xy of the theorem can be either type of edge. The result is the two Klein
embeddings of K3 3 in Figure 16.5.

Let G* be an arbitrary embedding of K3 3 on the Klein bottle represented as
a*bTaTb™. If the Jordan curve b is intersected by only one edge xy, then the trans-
formation of Theorem 15.27 can be used in reverse to obtain a projective embedding
of K3 3, so that G" must be one of the embeddings obtained from the projective
plane. Otherwise there are at least two edges that intersect b.

434 Graphs, Algorithms, and Optimization

Similarly there are two distinct embeddings of K33 on the torus, by Theo-
rem 15.14, shown in Figure 15.2. To use Theorem 16.1 an essential Jordan curve
C must be chosen that intersects either one or two edges of the torus embedding.
Consideration of Figure 15.2 shows that C' can cross at most one facial walk, meet-
ing it either in one edge, or two. As there are only three faces, all possibilities for C'
are quickly determined, resulting once again in the two Klein maps of Figure 16.5. If
the Klein bottle contained a cylindrical Jordan curve intersecting G* in at most two
edges, then Theorem 16.2 can be used to convert the embedding to one of the torus
embeddings of K3 3. Otherwise, at least three edges of K3 3 must intersect every
cylindrical Jordan curve.

Given the rectangular representation a b+ a™b™ of the Klein bottle, a 2-cell em-
bedding must contain a Jordan curve intersecting the b-side of the rectangle, and
another intersecting the a-side. Hence the Jordan cycles must induce a theta graph
in K3 3. Now K3 3 is bipartite, so that the shortest possible essential cycle induced
by the Jordan curves must have length either four or six. There are five possibilities
for this theta graph, three of which are shown in Figure 16.10. The other two are
obtained by rotating two of the rectangles through 90 degrees.

Is it possible that every cylindrical Jordan curve intersects G* in at least three
edges, and that the curve b is intersected in at least two edges of G"?

0 b
5
3 4 v 456 vy
a aa a
AT 2 AT 23
6
“b “b
FIGURE 16.10

Three theta graphs on the Klein bottle.

In each theta graph embedding there is a single face, whose facial walk has length
12 or 14. The facial walks are shown in Figure 16.11. The edges missing from the first
theta graph are (1, 6) and (4, 5). Those missing from the second are (1,4) and (3, 6).
Their possible locations are shown as dotted lines in the diagram. In the third theta
graph the edges (1,6) and (3,6) can be drawn as shown without loss of generality,
leaving two choices for (5, 6), which are dotted. In each case, non-intersecting lines
must be chosen for the missing edges. Each possibility leads to an embedding which
can be converted either to a projective embedding or a torus embedding. The missing
two theta graphs can be completed as an exercise. |

The other Kuratowski graph for the plane, K5, has 14 2-cell embeddings on the
Klein bottle. This is more difficult to prove.

The Klein Bottle and the Double Torus 435

FIGURE 16.11
The face of a theta graph.

16.1.2 The double cover

Given a rectangular representation a™bTatb™~ of the Klein bottle, we can make an
identical copy of it, a’Tb'*a/Tb'~, flip the copy over, align the two copies so that
corresponding a and a’ sides match, and then glue the sides a and a’ together, as
shown in Figure 16.12. The result is a torus atcta ¢, where a = &’ and ¢ =
bb'. Thus, the torus is a double cover of the Klein bottle. If there is a graph G*
embedded on the Klein bottle, then there will be a graph H? embedded on the torus,
where H is a double cover of G. Just as for the projective plane, this provides a
means to determine equivalence of Klein bottle embeddings, and to determine their
automorphism groups.

DEFINITION 16.4: Let G be a graph embedding on the Klein bottle. The au-
tomorphism group of G* is AUT(G"), the set of all permutations of V' (G) that map
the collection of facial walks of G* to itself, or to the facial walks of G*.

The double cover of a Klein map G” is very similar to the double cover of a
projective map. Let the representation of the Klein bottle be a*b*a™b~. We assume
that G* is a 2-cell embedding of a 2-connected graph. A copy (G/)" of the embed-
ding is made, and they are connected through the edges that cross the a boundary.
Each vertex v € V(@) has a corresponding antipodal vertex v'. An edge uv with
SGN(uv) = —1 is doubled to obtain edges uv’ and vw'v. Let DC(G*)" denote the
toroidal double cover constructed in this way. There is a two-to-one double cover
map ~ from V(DC(G*)*) to V(QG) that induces a two-to-one mapping of edges and
of facial walks. Given a facial walk W of G*, there are two facial walks W; and
Wy that correspond to W. Ws consists of the antipodal vertices of W7, but reversed.
Every automorphism ¢ € AUT(G*) induces an automorphism 6 of DC(G*)? that
maps antipodal pairs to antipodal pairs. And every such automorphism € induces
an automorphism ¢ of G”. See Lemma 15.23 and Theorems 15.24 and 15.25. The
proofs are nearly identical.

Thus, the antipodal medial digraph of DC(G")! can be used to determine
AUT(G"). It is formed from the medial digraph of DC(G*)* by adding a suitable

436 Graphs, Algorithms, and Optimization

path of length two or more connecting every pair {v, v’} of antipodal vertices. Simi-
lar to Theorem 15.26, we have:

Theorem 16.6. Let G* be a Klein map with double cover DC(G*)', and double
cover map ~y. Let M~ be the antipodal medial digraph of the double cover. Then
AUT(G*) is obtained from AUT(M™) by restricting each element of AUT(M™) 1o
V(DC(G")"), and then transforming it by .

Y

FIGURE 16.12
The torus is a double cover of the Klein bottle

This provides a simple combinatorial means to determine equivalence of Klein
maps. The automorphism groups of the two inequivalent Klein maps of K3 3 shown
in Figure 16.5 have orders 4 and 2. The group of the K 5 in the left diagram contains
non-identity permutations (1,4)(2,3)(5,6) and (1,2)(3,4)(5,6) and (1,3)(2,4).
The group of the K7 5 on the right is generated by (1,4)(2, 3)(5, 6).

N
L]
A4

An embedding of K5 on the Klein bottle

Exercises

16.1.1 Write down the signed rotation systems for the Klein maps of Figure 16.5.
Use Algorithm 15.7.1 to find the facial cycles.

16.1.2 Determine whether the rotation systems of the previous exercise are em-

The Klein Bottle and the Double Torus 437

beddings on the representations a*ccTa~b~ b~ and ataTbhTbT of the
Klein bottle.

16.1.3 Convert the Klein embedding of Figure 16.6 to an embedding on the
hexagonal form of the Klein bottle, using the cuts of Figure 16.3. Then
write down the rotation system for the hexagonal embedding.

16.1.4 Determine the possible results if the Klein bottle is cut along a single non-
contractible Jordan curve, for each of the forms aTbTaTb™, ataTbTbT,
and aTbTbTa"cTcT. Is it possible to cut the Klein bottle into two pieces
with just one non-contractible Jordan curve? If so, what are pieces?

16.1.5 Convert the Klein maps of Figure 16.5 to embeddings on the represen-
tations aTcTcTa=b~b™ and atatbtb™ of the Klein bottle, and write
down their rotation systems. Then use Algorithm 15.7.1 to find the facial
cycles.

16.1.6 Find the facial walks of the embedding of the Petersen graph on the Klein
bottle in Figure 16.7.

16.1.7 Find an embedding of K§ on the projective plane, and then use Theo-
rem 16.3 to convert it to an embedding on the Klein bottle.

16.1.8 A Klein map of K5 is shown in Figure 16.13. Find its automorphism
group.

16.1.9 Complete the proof of the second case of Theorem 16.4.

16.1.10 Find the double cover of the Petersen graph embedded on representation
aTbTaTb~ of the Klein bottle, from Figure 16.7. Then use it to find the
automorphism group of this Klein map.

16.1.11 Given the standard-form representation a*a*b*b™ of the Klein bottle,
show that there is a double cover that is also a Klein bottle. Given the
Klein bottle map G of K5 in Figure 16.13, find its double cover as an-
other Klein map.

16.2 The double torus

The double torus, also known as the 2-holed torus, is illustrated in Figure 16.14 as a
“doughnut with two holes”.

It is the unique orientable surface of genus two, and can be represented in stan-
dard form as an octagon, with sides labelled a™bTa~b~cTdtc~d~. The conversion
between the octagon and the doughnut is shown in Figure 16.15. (This diagram is
based on a diagram in Hilbert and Cohn-Vossen [83].) Inspection of the octagon
shows that the origin of the a-side is also the terminus of the b-side, which is also
the terminus of the a-side. Further inspection then shows that all eight vertices of the
octagon are the same point. In Figure 16.15, the octagon is first shaped so as to glue

438 Graphs, Algorithms, and Optimization

FIGURE 16.14
The double torus

the b and d edges. Then the a and c sides are formed into closed curves, and glued to
the corresponding a and c sides, thereby producing the double torus.

If we wanted to tile the plane with regular octagons, as the plane was tiled with
rectangles by the torus, we would need to have two edges labelled with each of
a, b, ¢, d at each vertex, i.e., there would be eight octagons meeting at each corner.
The interior angle at each vertex would then need to be 27 /8. However, in the Eu-
clidean plane, the interior angle of a regular octagon is 37 /4, so that this cannot be
done in the Euclidean plane. Fortunately, there is another plane that can be tiled by
regular octagons, the hyperbolic plane.

The hyperbolic plane is a non-Euclidean plane, in which there are many lines
parallel to a given line £ through a point P not on £. It was discovered independently
by Lobachevsky [1829] and Bolyai [1832] (see [117] and [163]) as a consequence of
attempting to prove the parallel postulate of Euclidean geometry. In the hyperbolic
plane there are several kinds of parallel lines. There are lines which do not meet, but
which become arbitrarily close as they move towards infinity, and those that always
maintain a minimum distance. The first type of parallel lines can be called asymptotic
lines. The others can be called ultra-parallel. Much information on the hyperbolic
plane can be found in the books [162, 160, 93, 140, 135]. We outline some of the key
ideas of the geometry of the hyperbolic plane. Just as in section 15.3, we saw that
isometries of the Euclidean plane can be used to produce the torus as a factorizaton of
the Euclidean plane, it turns out that the isometries of the hyperbolic plane produce
the double torus as a factorization of the hyperbolic plane.

There are various models of the hyperbolic plane — the half-plane model, the
Poincaré disc model, and the Beltrami-Klein disc model. We will use the half-plane
model and the Poincaré disc model of the hyperbolic plane. Let H denote the half-
plane model. It consists of all complex numbers z = wu + fv, such that v > 0.
Hyperbolic lines are modeled by vertical Euclidean lines (with equation z = u =
constant), and by Euclidean semi-circles whose centers are on the x-axis (with equa-
tion |z — ¢| = r, where ¢, € R are constants, and r > 0). Any two of these intersect
in at most one point, and they are determined by any two points they contain. Thus,
they have properties that lines in the Euclidean plane satisfy.

The Klein Bottle and the Double Torus 439

b+

FIGURE 16.15
Gluing an octagon into a double torus

The mapping

1z+1

z4+1
is then used to map H to the interior of the unit disc in the complex plane. The interior
of this disc will be denoted ID. It is the Poincaré disc model of the hyperbolic plane.
The x-axis gets mapped to the boundary of the disc, which becomes a /imit circle
— as a line in the disc approaches the circle, distances become greater and greater,
so that the bounding circle is never reached. It represents an infinitely distant circle
bounding the hyperbolic plane. Vertical lines of H map to diameters of I, so that
diameters of the unit circle are lines in the D model of the hyperbolic plane. The
semi-circles representing lines in H map to portions of circles that intersect the limit
circle at right angles (however the centers of these circles are outside the limit circle).
So the lines of I are modelled in two ways:

a) as diameters of the limit circle;
b) as semi-circles that intersect the limit circle at right angles.

Parallel hyperbolic lines can meet on the limit circle (which is not part of the plane),
these represent asymptotic lines. Or they do not meet at all, these represent ultra-
parallel lines. There can be very many hyperbolic lines parallel to a given hyperbolic

440 Graphs, Algorithms, and Optimization

line. Figure 16.16 shows several lines in the Poincaré disc model. Some of them are
asymptotic, and some are ultra-parallel lines.

FIGURE 16.16
The Poincaré disc model of the hyperbolic plane

16.2.1 Isometries of the hyperbolic plane

In section 15.3, we saw that the isometries of the Euclidean plane are reflexions,
translations, rotations, and their combinations, and that all Euclidean isometries are
generated by reflexions. In the hyperbolic plane there are also reflexions, rotations,
translations, as well as other isometries, and their combinations. And again, they are
all generated by the reflexions. However, these are not Euclidean reflexions.

DEFINITION 16.5: Let a circle of radius r in the complex plane have center ¢ €
C. Inversion in the circle is the map that sends a point z at distance p from c to the
unique point at distance 72 / p from ¢ along a ray through 2 from c. It has the equation
2
r

z—=c+

zZ—C

Inversion in a circle maps the circle to itself, and exchanges the interior and ex-
terior of the circle. The center is mapped to infinity, and vice-versa. In H, inversion
in a semi-circle representing a hyperbolic line is considered a reflexion in the hyper-
bolic line. In the limiting case when the semi-circle becomes a vertical line, inversion
becomes a Euclidean reflexion in the line. When H is mapped to D, we find that re-
flexions in the lines of D are also inversions in the circles. Thus, hyperbolic reflexions
in D are modeled as inversions in the Euclidean circles that represent lines, and as
reflexions in Euclidean lines that are diameters of the unit circle.

Just as is the case of the Euclidean plane (section 15.3), it turns out that all hy-
perbolic isometries are products of hyperbolic reflexions. Hyperbolic isometries are
slightly different from Euclidean isometries, but there are great similarities. For ex-
ample, the product of two reflexions in ultra parallel hyperbolic lines produces a
hyperbolic translation. The following theorem is from Stillwell [162].

The Klein Bottle and the Double Torus 441

Theorem 16.7. Every hyperbolic isometry can be written as a product of at most
three hyperbolic reflexions.

Reflexions in D will give us transformations of graph embeddings on the dou-
ble torus. Similarly to Gauss’s Theorem 15.7 on spherical isometries, the isome-
tries of the hyperbolic plane can be written as Mobius transformations, as shown by
Poincaré [136] (see Stillwell [162]).

Theorem 16.8. The orientation-perserving isometries of D are given by
Qw
LR
fw+ @
where w € CT, o, B € C, and |a|* — |B]* = 1.

Theorem 16.9. The orientation-reversing isometries of D are given by

it
Bw+a
where w € CT, o, B € C, and |a|? — |B]? = 1.

Similar formulas apply to the H model of the hyperbolic plane. (see Still-
well [162]).

Exercises

16.2.1 Show that a circle of radius r in the Euclidean plane intersects the unit
circle at right angles if its center is at distance v/1 + 2 from the origin.

16.2.2 Show that a regular octagon in the hyperbolic plane can be constructed
with adjacent sides meeting at an angle of 7/4 if the lines are represented

by Euclidean circles with radius r = 1/ (v/2 — 1)/2.

16.2.3 Show that D can also be tiled by regular octagons with interior angle 7 /2
(so that four octagons meet at each vertex).

16.2.2 The double torus as an octagon

In section 15.3 we saw that the Euclidean plane can be factorized by a group of
translation isometries so as to produce a torus. This corresponds to a tiling of the Eu-
clidean plane by isometric rectangles. Thus we can say that the torus is a factorization
of the Euclidean plane by a group of isometries of the plane.

The double torus has standard form atbTa=b~cTdtc~d~, represented by an
octagon. The Euclidean plane cannot be factorized so as to produce a tiling by reg-
ular octagons, but the hyperbolic plane can be factorized by a group of translation
isometries so as to produce a double torus, giving a tiling of the hyperbolic plane
by regular octagons. So we can say that the double torus is a factorization of the
hyperbolic plane by a group of isometries — the geometry of the double torus is

442 Graphs, Algorithms, and Optimization

hyperbolic. A portion of a tiling of the Poincaré disc model by octagons is shown
in Figure 16.17, where the central octagon is traversed in a clockwise orientation to
obtain aTbTa~b~cTdtc~d~. In this tiling there are eight octagons meeting at each
corner. Adjacent sides of each octagon meet at an angle of 7 /4. The octagons are all
isometric, even though some appear to be (much) smaller than others, because in the
model D, distances increase as one moves closer to the limit circle.

FIGURE 16.17
A partial tiling of the hyperbolic plane by octagons

Consider the corners of the octagon in Figure 16.17. In the tiling they are all
equivalent. Two of the corners have an edge labeled a directed outwards. If we walk
around those corners in a small clockwise circle, we see that in one of them, the
out-edge labelled a is followed on the central octagon by an edge labelled d, directed
outwards as the octagon is traversed. There is a second corner with an out-edge la-
beled d. When we walk around it in a small circle, it is followed by an in-edge labeled
c. There is a second corner with an in-edge labeled c. When we walk around it, it is
followed by an in-edge labeled d, and so forth. Thus we can determine the cyclic
order of edges, it is the same at each corner of the octagon. The result is shown in
Figure 16.18, where the superscript indicates the direction of the edge as it is tra-
versed outwards from the corner.

We can now use hyperbolic reflexions to produce translations that map octagons
to octagons in this factorization. Let R,+ denote a reflexion in the hyperbolic line

The Klein Bottle and the Double Torus 443

FIGURE 16.18
The edges of the octagon meeting at each corner of the octagon

labelled a™, and so forth. Let R,.— denote a reflexion in the diameter of the unit
circle that meets the midpoints of a~ and ¢~. Consider the product R,+ R,.— (first
R+, then R,.-). Note that the center of the circle representing the hyperbolic line
a is outside the unit disc. The reflexion R+ maps the central octagon to the inside
of the a™ circle. Then the reflexion R, maps it to the inside of the ¢* circle. We
see that the central octagon is translated into the ¢* circle. Similarly, the interior of
the a™ circle is translated into the central octagon. The “smaller” octagons contained
within the a™ circle are translated into the various secondary octagons surrounding
the central octagon. And these in turn are translated into the “smaller” octagons con-
tained within the ¢ circle. The net effect is a smooth translation moving the points
within D from the top-left towards the bottom-right. Similarly, other translations can
be formed using reflexions in other pairs of hyperbolic lines.

The translations of the hyperbolic plane that are isometries of the double torus
must respect the labeling of the sides of the octagons: a™ must map to a™, b™ to b™,
and so forth. Consider the product of reflexions R,- R;4+. The side of the octagon
labeled a~ is first mapped to itself by R,-, then reflected by R,;+ onto the side
labeled @, such that the orientation of the edges match. The side labeled b~ is first
reflected inside the @™ circle onto the edge labeled d* (refer to Figure 16.18) by
R, -, then reflected by R4+ inside the a™ circle onto the edge labeled b~ Similarly,
the edge labeled c+- is first reflected into the a ™ circle onto an edge labelled ¢~ (refer
to Figure 16.18). Then it is reflected inside the a™ circle onto an edge labeled c*.
Similarly the other edges labelled c and d are mapped onto edges of the correct label.
Thus the translation R,- Ry,+ is an isometry of the double torus. In the same way,
we find that the products R+ Ryg+, Ry+ Ryc—» Ro+ Rpq+, etc., are also isometries of
the double torus.

We now use these ideas to construct an embedding of K3 3 in this hyperbolic
model of the double torus, shown in Figure 16.19. The diagram was constructed as
follows. The Hamilton path (2, 1,6,5,4,3) in K33 was drawn through the central
octagon. Then translations that are isometries of the double torus were used to map
the six vertices into each of the secondary eight octagons surrounding the central oc-

444 Graphs, Algorithms, and Optimization

tagon, and the appropriate edges of K3 3 were added to the diagram. Then the vertices
in the secondary octagons were translated further into the “smaller” octagons, and so
forth. Only the vertices in the central octagon and secondary octagons are shown
in the diagram. However, the paths continue through the “smaller” octagons, as in-
dicated. The paths can be determined by considering translations from the central
octagon into these “smaller” octagons. The embedding has one face. By tracing the
edges in the diagram, we can see that the facial walk of this embedding of K3 5 on
the double torus is (2,3,4,5,2,1,4,3,6,5,4,1,6,3,2,5,6,1), containing all nine
edges twice each, and all six vertices three times each on the walk. As each vertex
has degree three, the walk enters each vertex three times. The facial walk is shown
separately in Figure 16.20.

FIGURE 16.19
An embedding of K3 3 on the double torus

As with the torus, an embedding on the double torus is represented by a rotation
system. We will write G7 to indicate a combinatorial embedding of a graph G on

The Klein Bottle and the Double Torus 445

the double torus, given by the rotation system 7. The rotation system of K3 3 in
Figure 16.19 can be read off the diagram.

We can now find the automorphism group of this embedding using the facial
walk. Notice that vertices 1, 3, and 5 are each distributed evenly around the cir-
cle, with five vertices intervening between successive occurrences. But vertices 2, 4,
and 6 are each distributed in a ‘“T-fashion”, with one occurrence centered between
the other two occurrences. We can see that the facial walk can be rotated clockwise
by six vertices, giving (2,4,6) as an orientation-preserving automorphism. Thus,
the orientation-preserving automorphism group has order three. There are also three
orientation reversing automorphisms which can be seen by flipping the facial walk
on a {2,5}-diameter, a {4, 5}-diameter, or a {6, 5}-diameter, giving (1, 3)(4,6),
(1,3)(2,6), and (1, 3)(2,4) as automorphisms.

FIGURE 16.20
The facial walk of an embedding of K3 3 on the double torus

Equivalence of double torus mappings is defined as for the torus (see 15.15).

DEFINITION 16.6: Double torus maps G™ and GG™ are isomorphic if there is a
permutation of V'(G) that maps the collection of of facial walks of G™ to those of
G™.

DEFINITION 16.7: Let G™ be a double torus map. AUT(G™) consists of all per-
mutations of V(G) that map the collection of facial walks of G to itself.

Similar to Theorem 15.13, we have:

Theorem 16.10. Double torus embeddings G™ and G™ are isomorphic if and only
if their medial digraphs M (G™) and M (G™) are isomorphic.

The double torus is an oriented surface, so that there are two automorphism
groups — the orientation preserving automorphism group of G7 is AUT(GT), it
is the group induced on V(G) by the automorphisms of M (G7). The full auto-
morphism group of G™ is AUTT(G™) consisting of AUT(GT), plus those automor-
phisms that map G7 to G7. In general, the orientation-preserving automorphism

446 Graphs, Algorithms, and Optimization

group AUT(GT) and the full automorphism group AUT' (G7) can be found from
the medial digraph, as is the case for the other orientable surfaces, such as the plane
and the torus.

In Theorem 15.10, a theta subgraph of a plane map was used to construct a 2-
cell embedding of an arbitrary planar graph on the torus. A similar method can be
used to construct a 2-cell embedding of a graph G on the double torus, given a 2-cell
embedding G? on the torus.

Theorem 16.11. Let Gt be a 2-cell embedding of a graph G on the torus, and let H
be a T K3 3 subgraph of G. Then G* can be converted to a 2-cell embedding G™ on
the double torus.

Proof. There are two distinct embeddings of K3 3 on the torus, shown in Figure 15.2.
The subgraph H must must be embedded as one of these. We take each in turn.
The embedding on the left of Figure 15.2 has three hexagonal faces, shown in Fig-
ure 16.21. Each edge of a hexagon corresponds to a path of the T'K3 3.

FIGURE 16.21
Three hexagonal faces of K3 3 on the torus

The portion of G embedded inside each face is planar, indicated schemat-
ically in Figure 16.21. The facial cycles are (1,2,3,4,5,6), (1,6,3,2,5,4),
and (1,4,3,6,5,2). Consider now the embedding of K33 on the dou-
ble torus, shown in Figure 16.19. It has one face, whose facial walk
(1,2,3,4,5,2,1,4,3,6,5,4,1,6,3,2,5,6)is an 18-gon, shown in Figure 16.20. The
planar subgraphs of G* within the three hexagons can be embedded inside the single
face of T K3 3 on the double torus, as shown in Figure 16.22. The facial cycles of the
hexagons form successive portions of the 18-gon. The result is a 2-cell embedding
of GG on the double torus.

Consider now the second embedding of K3 3 of Figure 15.2. Its facial walks
are a 10-gon, and two quadrilaterals, shown in Figure 16.23. As before, each face
contains a planar portion of G. These planar portions of G* can also be embedded
in the face of K3 3 on the double torus, as shown in Figure 16.24. Hence, every torus

The Klein Bottle and the Double Torus 447

FIGURE 16.22
Converting G* to G™ using hexagonal faces.

embedding G* containing a T'K3 3 subgraph can be converted to a 2-cell embedding
on the double torus.

FIGURE 16.23
A 10-gon and two quadrilateral faces of K3 3 on the torus.

O

Note that the proof of Theorem 16.11 depends on the numbering of the vertices
of the facial walks of K3 3 on the torus and double torus. If the vertices of the em-
beddings of T'K3 3 in G! and K 3,3 on the double torus were numbered differently,
one of them would first have to be renumbered before constructing G7.

Exercises

16.2.1 Verify that the cyclic ordering shown in Figure 16.18 is correct.

16.2.2 Verify that R,- R4+ is an isometry of the double torus, i.e., show that it
maps the a, b, ¢, and d sides of the octagon correctly.

448

Graphs, Algorithms, and Optimization

FIGURE 16.24
Converting G* to G™ using a 10-gon face.

16.2.3 Given the translation R,- R4+, determine the mapping it induces on the
central octagon, the left octagon, the top-left octagon, and the top octagon
in Figure 16.17.
16.2.4 Find a translation isometry that maps the top octagon of Figure 16.17 onto
the bottom octagon.
16.2.5 Show that the group of translation isometries of the double torus is tran-
sitive on the octagons of the tiling of Figure 16.17.
16.2.6 Is there a 2-cell embedding of K4 on the double torus?
16.2.7 Is there a 2-cell embedding of K> 3 on the double torus?
16.2.8 Find all 2-cell embeddings of K3 3 on the double torus.
16.2.9 Use Theorem 16.11 to find a 2-cell embedding of the Petersen graph on
the double torus.
16.2.10 Find a 2-cell embedding of the graph of the cube on the double torus.
16.2.11 Determine whether the hyperbolic plane can be tiled by isometric rectan-
gles, using a group of translations.
I
16.3 Notes

Some computer drawings of the Klein bottle can be found in APERY [4]. Theo-
rems 16.4, 16.1, and 16.3 provide a means of transforming planar maps, torus maps,
and projective maps to the Klein bottle. However, an efficient general algorithm to

determine 2-cell embeddings of graphs on the Klein bottle is not yet known.

The Klein Bottle and the Double Torus 449

One could say that the double torus “lives” in the hyperbolic plane, as the oc-
tagon representing the double torus tiles the hyperbolic plane, by means of hyper-
bolic translations. The world of hyperbolic geometry is very inclusive. Hyperbolic
three-dimensional space contains isometric copies of both the hyperbolic plane, and
the Euclidean plane. Hyperbolic geometry is developed axiomatically in IVERSEN
[93]. Interesting presentations can be found in STAHL [160], STILLWELL [162],
THURSTON [171], and HILBERT and COHN-VOSSEN [83]. Much of the artwork
of ESCHER [49] is based on symmetries of the hyperbolic plane. Drawings of tesse-
lations of the hyperbolic plane can be found in MAGNUS [121].

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

17

Linear Programming

17.1 Introduction

Problems which seek to find a “best” configuration to achieve a certain goal are
called optimization problems. Programming problems deal with determining optimal
allocations of limited resources to meet given objectives. They deal with situations in
which a number of resources such as manpower, materials, and land are available to
be combined to yield one or more products. There are, however, restrictions imposed,
such as the total number of resources available and the quantity of each product to be
made. Linear programming deals with the class of programming problems in which
these restrictions and any other relations among the variables are linear. In particular,
the constraints imposed when searching graphs and networks for say shortest paths,
matchings, and maximum flow can be expressed as linear equations.

17.1.1 A simple example

Let us consider a furniture shop that produces tables, chairs, cabinets, and stools.
There are three types of machines used: table saw, band saw, and drill press. We
assume that the production is continuous and each product first uses the table saw,
then the band saw, and finally the drill press. We also assume that setup time for each
machine is negligible. Table 17.1 shows

1. The hours required on each machine for each product, and

2. The profit realized on the sale of each product

We wish to determine the weekly output for each product in order to maximize profit.
Let x1, x2, x3, and x4 denote the number of tables, chairs, cabinets, and stools pro-
duced per week, respectively. We want to find the values of z1,xs, x3, x4 Which
maximizes the profit. The available machine time is limited so we cannot arbitrarily
increase the output of any one product. Thus we must allocate machine hours among
the products without exceeding the maximum number of machine hours available.

Consider the restriction imposed by the table saw. According to Table 17.1 it will
be used a total of

1.521 + xo9 + 2.423 + x4

hours per week, but can only be used for at most 2000 hours. This yields the linear

451

452 Graphs, Algorithms, and Optimization

TABLE 17.1
Data for the simple example

Machine type | Table Chair Cabinet Stool | Time available
table saw 1.5 1 2.4 1 2000
band saw 1 5 1 35 8000
drill press 1.5 3 3.5 1 5000
profit 524 1730 834 4.18
inequality

1.521 + o + 2423 + 24 < 2000.
Similarly, the band saw and drill press yield the following restrictions:

8000
5000

21+ Dxo + 23 +3.514 <
1.521 + 320 + 3523 +2x4 <
Furthermore, we cannot produce a negative amount of a product, so we also have
x1 >0, 29>0, x3>0,andxy > 0.
Now we have all the restrictions. The profit is
z = 5.24x1 + 7.30x5 + 8.34x3 + 3.4.18x4.

Thus our goal is to solve the following linear program.

Maximize: z = 5.24x; + 7.30xy 4 8.3423 + 3.4.1824

Subject to: 1.521 + 2o + 2423 + 24 < 2000
xr1 + 51‘2 + 23 + 3514 S 8000
1.521 + 320 +3.525+ x4 < 5000

1 20,22 > 0,23 > 0,24 >0

17.1.2 Simple graphical example

We can graphically solve linear programs that involve only two variables. For exam-
ple, consider the linear program

Maximize: 2z = bx1 + 3x9

Subjectto: 3z + 522 < 18
bxry +2x9 < 11
71 20,22 >0

Linear Programming 453

Each of the constraints determines a half plane consisting of the set of points
(21, x2) that satisfy the inequality. For example, the inequality x; > 0 determines
the half plane of points lying to the right of the xs-axis. The intersection of these
four half planes is the set of feasible solutions to the problem. In this example the
feasible solutions form a bounded polygonal region. It is not difficult to show that
such a region must be convex. (It is possible to have an unbounded region.) The four
vertices of this region are easily determined by pairwise solving the four bounding
equations.

1. Solving 1 = 0 and 327 + 55 = 18 gives the vertex (0, 3.6).

2. Solving 3z + 5zo = 18 and 51 + 225 = 11 gives the vertex (1, 3).

3. Solving 51 + 222 = 11 and x5 = 0 gives the vertex (2.2, 0).

4. Solving z; = 0 and x5 = 0 gives the vertex (0, 0).

The set of feasible solutions is depicted in Figure 17.1. We have also drawn the

objective function z = 5z + 3x2, when z = 3.5, 11, and 38.5.
Consider any line segment joining points P = (p1,p2) and Q = (q1, ¢2). Let

20 = 9p1 + 3p2
be the value of the objective function at P and let
21 = 5q1 + 3¢2

be the value of the objective function at (). Assume without loss that zy < z;. The
coordinates of any point on the line segment between P and () is given by

(L —=t)p1 +tqu, (1 —t)p2 + tg2)

for 0 < ¢ < 1. The value of the objective function at this point is

ze = 5((1=t)p1+tq1) +3((1 —t)p2 + tq2)
= (1 —=1t)(5p1 + 3p2) + t(5¢1 + 3q2)
= (1—=t)z0+t.
Observe that
20=(1—t)z0 +tz0 < (1 —t)z1 +tz1 = 2
and

Zt = (1 — t)Z() + tZl S (1 — t)Zl —+ tZl = Z1.

Thus zp < 2z, < z; for any 0 < ¢ < 1. Therefore the maximum value of the
the objective function among the points on any line segment occurs at one of the
endpoints. It follows that the maximum value of any (linear) objective function among
the points of a compact region occurs at some point on the boundary. Also, if the
boundary is a polygon, then the maximum value of the objective will occur at one of
the vertices. Hence for our example the maximum value of the objective function

2z =bx1 + 3x9

454 Graphs, Algorithms, and Optimization

5x1 + 222 =11

3r1 + 5xrg = 18

Y

z=3.0 z=11 z=17.0

FIGURE 17.1
Graphical example

Linear Programming 455

occurs at least one of (0, 3.6), (1,3), (2.2,0), or (0,0). The value at these points is
10.8, 14, 11, and 0. Thus the maximum occurs at x; = 1, x5 = 3.

If the region of feasible solutions is unbounded, then there may be no point in the
region for which the objective function achieves its absolute maximum. Of course
there is also no point for which the objective function achieves its maximum, if there
are no feasible solutions.

If the objective function achieves its maximum at two adjacent vertices P and @),
and the region of feasible solutions is connected and polygonally bounded, then it
will achieve its maximum at infinitely many points: namely, those lying on the line
segment joining P and Q).

In a general linear program the region of feasible solutions is the intersection of
the half hyper-planes determined by the linear constrains. Thus the region of feasible
solutions to the general linear program is a compact convex region, bounded by facets
(hyper-plane segments). That is, it is a polyhedron.! Consequently it follows that:

Theorem 17.1. In a general linear program the objective function achieves its max-
imum either at exactly one point, at infinitely many points, or at no point. Further-
more if it does achieve a maximum, it does so on one of the vertices of the polyhedral
boundary of the feasible solutions.

17.1.3 Slack and surplus variables

It is easier to work with equalities, than with inequalities because we can take advan-
tage of linear algebra. We can convert linear inequalities into equalities by introduc-
ing surplus and slack variables.

For example, consider an inequality of the form

a1ry + asxo + -+ azxy < b (17.1)

Given fixed assignments to the variables z1, xs, ..., x; that satisfy this inequality,
there will be slack or “room for improvement” amounting to

€ :bfa1z1+a2:c2+~'+at:ct ZO
Thus introducing a new variable x; and requiring z; > 0 we obtain the equality
a1x1+a2x2+~~+at:rt+:cj = b

which is equivalent to Inequality 17.1.
The variable x; is called a slack variable. Similarly an inequality of the form

a1xy +asxs +---+azxy > b (17.2)
represents a surplus of

/
zj:a1x1+a2z2+~~+at:rtfb

10.K. it is only a polyhedron if it is bounded. It could have some open sides, but the closed sides are
bounded by hyper-planes.

456 Graphs, Algorithms, and Optimization

for a fixed assignment to the variables x1, 2, . .., z;. Thus introducing x;; as a new
variable and requiring z;» > 0 we obtain the equality

a1T1 + @22 + -+ - + Ay — Xy = b

which is equivalent to Inequality 17.2. The variable x ;. is called a surplus variable.
Adding slack and surplus variables in this way will reduce the the system of inequal-
ities to a system of equalities and variables x; that are either unbounded or satisfy
x; > 0. If ; is unbounded, we find an inequality that x; satisfies, solve for z;, and
substitute to eliminate z; from the set of equations. A linear program in which all the
variables are required to be non-negative and the remaining constraints are equality
constraints is said to be in standard form or a standard linear program.
For example, to convert the linear program

Maximize: z = bxy + 32 + 3x3 + x4

Subject to: 200+ x4 = 2
r1+z2t+x4 <3
—r1—2x0+x3 > 1

X1 S O,$2,$3 Z 0

into standard form we introduce slack and surplus variables x5, g, and z7 obtaining

Maximize: 2z =5x1 4+ 329 + 313+ 24
Subject to: 200+ x4 = 2
T+ T2+ Ta+a5 = 3
—r1 —2x0+ a3 —26 = 1
r1+ax7 = 0

X2, T3, L5, L6, L7 Z 0

Now variables x; and x4 are unbounded, so we solve for them

xry = —X7
X4 = 2 — 21}2.
Substituting, we obtain
Maximize: 2z =x9+ 3x3 — dr7 + 2
Subject to: —xot+ x5 —x7 = 1
—2ryt+x3—a6tar = 1

T2, %3, X5, X6, T7 > 0
Finally, to convert to a problem of minimization, we set

J = 2-—z

Linear Programming 457

and we have

Minimize: Z = —x9 — 33 + dxy
Subject to: —To+ x5 —27 = 1
—2zyt+x3 —wetar = 1

T2, T3,Ts5,Te, x7 > 0

a linear program in standard form. In matrix form we set

X = [:L‘2,IL'3,IE5,IE6,IL'7]T
c = [-1,-3,0,0,5]"
b o= (1,17

-1 0 1 0 -1
-2 1 0 -1 1

and we see that the original linear program is equivalent to

Minimize: 7 = ¢'X
Subjectto: AX =
X > 0.

Exercises

17.1.1 Solve the following graphically and shade the region representing the fea-
sible solutions:

Maximize: z=ux1 + 1.5xy

Subjectto: 2z1 +3x2 < 6
1 +4ry < 4
1,22 >0

17.1.2 Solve the following graphically and shade the region representing the fea-
sible solutions:

Minimize: 7 = 6x1 + 4xo

Subject to: 200 +x0 > 1
3z1 +4x9 > 1.5
1,72 >0

17.1.3 Carefully examine Exercises 17.1.1 and 17.1.2. How are the solutions
related? They form what is called a pair of dual problems. Note that they
involve the same constants, but in a rearranged order.

458 Graphs, Algorithms, and Optimization

17.1.4 Put the following linear program into standard form:

Maximize: z =2x1 4+ 312 + 513
Subject to: 3x1 4+ 1022 + 523 < 15
33x1 — 10292 + 923 < 33
1+ 2z +2a3 > 4
1,22 >0

1
17.2 The simplex algorithm
17.2.1 Overview

The simplex algorithm can be used to solve linear programs of the form

Minimize: Z=cTX
Subjectto: AX = b (17.3)
X >0

There are three phases to the algorithm.

Phase 0: Find a basis solution or show that the linear program is infeasible.
Phase 1: Find a basis feasible solution or show that the linear program is infeasible.
Phase 2: Improve the basis feasible solution until

1. it’s optimal, or

2. the linear program can be shown to be unbounded.

17.2.2 Some notation

In order to study the linear program in Equation 17.3 we first introduce some nota-
tion. Denote the columns of the m by n matrix A by

A=1[A1,As, As,..., Ay
Without loss, assume that the rank of A is m. Suppose
B={4;,4,,A,,. .. A}
is a set of m linearly independent columns of A. Then the m by m matrix
B=1[4;,4A,,, A, . .. Aj]

is nonsingular. Thus B~! exists. Consequently, B~ A contains the identity matrix
on columns j1, jo, j3, . . ., jm of A. Let X5 = B~'b. Then X given by

g XB[’L] if 7 =7;
XU]{ 0 if not

Linear Programming 459
satisfies
AX =b
and is called the basis solution given by B. If X > 0, then X also satisfies
X>0

with the remaining constraints of the linear program given in Equation 17.3. Thus in
this case we call X a basis feasible solution. Also corresponding to B we define cp
by

epli] = clji], fori=1,2,...,m.

The value Z of the objective function at X is
Z=c"X=cEXp
It is also convenient to set
T~/ .
z; = cpYj;

where Y; = B~ A;. Using this notation we can safely identify X 5 with X and refer
to X g as the basis solution.

17.2.3 Phase 0: finding a basis solution

A basis solution if one exists can be found by pivoting. Pivoting is also known as
Gaussian elimination or row reduction. To pivot on non-zero entry a;; of the m by n
matrix A we replace row k by

Q5 [aklv A2y .-y akn] — Oy [aila Aj2y - vy am]
for k # i, and we replace row i by
1
_[ailvaﬂ» <oy Qin -
aij

The result is that column j becomes

[0,0,...,0, 1 ,0,0,...,0].
~—~
th

(2

We record this procedure as Algorithm 17.2.1.

Algorithm 17.2.1: P1voT(z, j)

for k< 1tom
if kA
then {for h+1lton
do A[k, h] < Ali,j] - Alk, h] — Alk, j] - Ali, h]
ols {forh —1ton
do Afi, h] « Afi, h]/Ali, j

do

460 Graphs, Algorithms, and Optimization

Thus to find a basis solution we iteratively select a non-zero entry a;;, in row 4 and
pivot on a;j, fori = 1,2,...,m. Thatis, we have selected the linearly independent
columns

{Aijjszjs’ R Ajm}

of A and have determined the basis solution X g; where

B=IA;,,A;, A, A

g1y 4xjas Lz - - jm]'

17.2.4 Obtaining a basis feasible solution

Suppose that A = [A;, As, ..., A,] has rank m and that X is a feasible solution to
the linear program in Equation 17.3. Let p < n be the number of positive variables
in X. Without loss we may assume that the first p variables are positive. Then

X = [wl,xg,...,xp,O,O,...,O]T
——
n—p
and so
p

> wjA; =0 (17.4)

j=1
If the p columns Ay, A,, ..., A, are linearly independent, then p < m, and there

exists an additional m — p columns of A whose inclusion with the first p are a linear
independent set. Thus we can form a basis solution with m — p zeros.
If the p columns are linearly dependent, then there exists «; not all zero such that

i OéjAj =0.
j=1

Let A, be any column for which «,. #£ 0, 7 = 1,2, ..., p. Then

P

o
A =— —LA;. 17.5
2. a75)
j=1
JFT
Substituting Equation 17.5 into Equation 17.5, we obtain
P
@y
Z (z; — 2, —L)Aj =b. (17.6)
o
Jj=1
JFT

Thus we have a solution with at most p — 1 non-zero entries. However, we are not
certain that they are non-negative. We need

s
x; —z,—2 >0
Qp

Linear Programming 461

forj =1,...,p, j # r. If a; = 0, then this is automatically satisfied. If a;; # 0,
then dividing by «; gives

€T T .
L _T>0 ifa; >0
Oéj (679

and . .
—jf—TSO ifOéj<O
Oéj (679

Thus we may select A, such that

T T
== =mIN;{L :a; > 0}
(679 Oéj

or such that " .
= MAXJ'{—] e’ < 0}
(679 j

Then each entry in Equation 17.6 will be non-negative and a feasible solution with
no more than p — 1 non-zero variables has been found. We can continue this process
of selecting columns A; until p < m in which case a basis feasible solution has been
found.

17.2.5 The tableau

The initial tableau for the linear program in Equation 17.3 is the array

Alb
{C 0]' (17.7)

Note that other authors use a more elaborate tableau, but this is sufficient. Suppose
B is the submatrix of A corresponding to the basis B as in Section 17.2.2. For the
purpose of explanation assume B is the first m columns of A; then the tableau has

the form
{B| Aj |b]
cg|--~ cj |())

th

where A; is the 7 column of A. Multiplying the tableau with

B! 0
—cpB~ Tt
we obtain the new tableau

]| Y; "'|XB
()| cj — 2 | —> |-

(17.8)

This is because Y; = B~'A4;, Xp = B~'b, and z; = cLY; as defined in Sec-
tion 17.2.2. Thus selecting a new basis solution is equivalent to pivoting on entries
of the first m rows of the tableau 17.7 to obtain a tableau similar to the tableau 17.8.

462 Graphs, Algorithms, and Optimization

(The identity matrix need not be among the first columns.) Thus in the process of
selection of a basis the values of ¢; — z;, z, and X p are also easily determined.

An algorithm for the Phase O portion of the simplex algorithm that takes as input
a tableau for a linear program whose adjacency matrix has m rows and n columns is
provided in Algorithm 17.2.2.

Algorithm 17.2.2: PHASEOQ(Tableau, m,n)

Infeasible < false
forr < 1tom

c+1
while Tableau[r,c] =0doc <+ c+1
ifc>n
if Tableau[r,n + 1] # 0
comment: the linear program is infeasible
then ¢ Infeasible < true
exit
the linear program has
d : .
° then comment {rank < M - shift up the rows

fori < r+1tom
else doforj<«+ 1ton+1
do Tableau[i — 1, j| + Tableauli, j|
m+—m—1
r—r—1

else {PIVOT(r., c)

pivots[r] < ¢

17.2.6 Phase 2: improving a basis feasible solution

Let Xp = B~ !b be a basis feasible solution of the linear program given in Equa-
tion 17.3. The value of the objective function at X is

Z =cEXp.
Some questions naturally arise:
e Can we find another basis feasible solution with better 7 ?

e Furthermore, can we do this by changing only one column of B?

o Can we remove one column B, of B and replace it with a column A; of A and get
a smaller value Z of the objective function Z = c*' X ?

Linear Programming 463

Column A; is a linear combination of the columns in B because B is a nonsingular
m by m submatrix of A. Thus

A; =Y yi;Bi. (17.9)

Then A; can replace any B, for which

Yrj # 0
because the new set of vectors
{B1,B2,...,Br_1,Aj,Br41,Br42,...,Bn}
will be linearly independent. Let
B* =[B1,Bs,...,Br_1,A;,Br11,By12,...,Bp].

Then X - is a basis solution, but it may not be feasible. Observe from Equation 17.9
that

m

Yij
B, = —A - ~—B;.
Yrj Z Yrj
=1
i1#£Tr
Also
b=BXp=> XplilBi= > Xpli|Bi+ Xp[r]B,.
=t i=1
i#Er
So, substituting we have:
b= Y XpliBi+Xpl] | —4,- Y B
X Yrj i Yrj
1=1 1=1
i1 #£T i1
m L X
= > (XB[i] - XB[r]y—]) B, + 22l]AJ.
. Yrj Yrj
=1
i#Er

Thus

(17.10)

M:{ Xpli] - Xplr]y2 ifi#r

ifi=r

464 Graphs, Algorithms, and Optimization

is feasible if and only if

Xl - Xp[ZL > o (17.11)
yrj
and
X
sl S, (17.12)
y'r‘j

Thus if Xg[r] # 0, we see from Equation 17.12 that we must have
Yrj > 0.

If y;; < 0, then Equation 17.11 automatically holds. So, we need to only be con-

cerned with coordinates ¢ for which y;; > 0. When y;; > 0, the condition given by

Equation 17.11 can be rewritten as

Xslr] _ Xsll]
Yrj Yij

Thus we need to choose that column 7 of B such that

X XpBli
slr] _ MINi{ sl 0} _ (17.13)
Yrj Y

To summarize:
We began with a nonsingular submatrix B of A
B=1[4;,A,,A,, ... 4]

If Xp = B~ 'bis a basis feasible solution to the linear program given in Equa-
tion 17.3, then we selected an arbitrary column A; of A, notin B and wrote

A; = BYj,
a linear combination of the columns of B, where
Y} = [yljay2ja cee 7y'mj]-

If some y;; > 0, there is a column B, of B, which we can replace with A; to
get a basis feasible solution X p+. Equation 17.13 shows how to select B, so that
this is possible.

Now what about the value of the objective function — is it better? Let

B*=[B},B},...,B;

’)’L]

be the new matrix obtained by replacing B, with A;. Thatis B} = B;, fori # r

Linear Programming 465

and B! = A;. The new basis feasible solution is X g~ given in Equation 17.10. The
objective function corresponding to B* is

T
7 = CB*XB*

where il
4 egli] ifi#Er
CB*M_{ ¢; ifi=r.
Therefore
m L X
2= % (Xl - xpl 2) e+ 22
. Yrj Yrj
=1
i#Er
m . » . X r
= > (XBM - XB[r]y—J> enlil + 221,
i=1 Yrj Yrj
because Xpg[i] — XB[T]& =0wheni=r
y'rj
X m X
_ g Kol > el + i ¢j
Yrj P Yrj
Xglr
= Z+ yB—U(Cj - gY))
Tj

Setting z; = cLY; = ¢cEB~1 A; we have

Xg|r]
yrj

7" = Z+

(cj = 2j) = Z+0(c; — 2)-

Therefore if we can find A; such that
c; —z5; < 0

and at least one y;; > 0, then it is possible to replace one of the columns of the
columns of B by A; and obtain a new value Z* of the objective function satisfying

z* < Z.
If the given basis solution is not degenerate, then
Z* < Z.

In terms of the tableau given in Equation 17.8, this means we can find a column
J with a negative entry in last row and a positive entry y;; in row 7. For each positive
entry y,;; compute the ratio

. _ Xali
Yij

466 Graphs, Algorithms, and Optimization

and chose 7 so that 6; is smallest. Recall that
[XB[1]7X3[2]7 cee 7XB[m]7 7Z]T

is the last column of the tableau. Then pivoting on y;; produces a new tableau with
smaller Z. Note that — 7 is the entry in the last row and column of the tableau.

17.2.7 Unbounded solutions

In Section 17.2.6, given a basis feasible solution Xp = B ~1p we found a column
A; that had at least one y;; > 0,% = 1,2,...,m where

Y; = B A,

For this column, we found a column B, in B which when replaced by A;, resulted
in a basis feasible solution X p«. The value of the objective function for X g« was

7% =7 + 9(0j — Zj).

Let us consider a column A; for which y;; < 0 foreachi = 1,2,...,m. We
have

b = BXp=)» XgliB
=1

with value of the objective function equal to Z = ¢ X .
Adding and subtracting 0 A; for any 6 yields

b = BXp—0A;+04;

i XBli|B; —0A; +0A;
but
A; = BY; = iyijB
So substituting we obtain:
zm: —0y;j)B; + 0A,. (17.14)

When 6 > 0, then (X g[i]B; — 0y;;) > 0 because we have assumed that y;; < 0, for
1 =1,2,...,m. Thus Equation 17.14 is feasible. The value of the objective function
is again

z7r = Z cplil(XBli] — 0yij) + c;0

= 7+ Q(Cj — Zj).

Linear Programming 467
Thus choosing 6 arbitrarily large we can make Z* arbitrarily small if
cj —z; <0.
To summarize:

Given any basis feasible solution to a linear program, if there is a column A; not
in the basis for which
c; —z; < 0

and
Y; = B’lAj <0,

then the linear program in Equation 17.3 has an unbounded solution.

In terms of the tableau given in Equation 17.8, this means that if we can find a
column j with every entry less than or equal to zero with a negative entry in last row,
then the linear program in Equation 17.3 has an unbounded solution.

17.2.8 Conditions for optimality

Assume that X5 = B~ b is a basis feasible solution of the linear program given in
Equation 17.3 and that the value of the objective function at X g is

Zy = cEXp.
In addition, suppose that
Cj — Zj Z 0

for every column A; of A notin B. Thus the value of the objective function cannot
be improved by replacing a column of B with a column of A. We will show that 7,
is the minimal value of the linear program and hence that X g is an optimal solution.
Set z = [21,22,..., 20| So,

N
z <ec.
Let X be any feasible solution of linear program given in Equation 17.3. Then
r1 Al +x0As + -+, A, = b (17.15)

and X > 0. Let Z* = CT X be the value of the objective function at X.
Every column A; of A can be written as a linear combination of the columns of
B:

A, = BY,.

Setting Y = [Y7,Y5,...,Y,] we have A = BY, and = cLY . Then

BXp=b=AX = BY X.

468 Graphs, Algorithms, and Optimization

Therefore,
Xp=YX

because B is nonsingular. Hence
—
Zo=chXp=chyX =2 X <X =77,

which proves that Z is the optimal value of the objective function and hence X g is
an optimal solution to the linear program in Equation 17.3.

In terms of the tableau given in Equation 17.8, this means if there is no negative
entry in the last row, then we have found an optimal solution. The optimal value is Z
the negative of the entry in the last row and column. To find the optimal solution, first
discover the columns {j1, ja, . . ., jm } that contain the identity matrix on the first m
rows of the tableau. That is, column j; is

[0,0,...,0, 1 ,0,0,...,0].
~~
ith
Then the optimal solution is X where
. Xgli] ifj=y
XUl = { 0 if not.

The Phase 2 portion of the simplex algorithm is given in Algorithm 17.2.3.

Algorithm 17.2.3: PHASE2(Tableau, m,n)

c+1

while c < n

if Tableau[m + 1,¢] < 0

40

while Tableau[i,c] < O0andi <mdoi < i+ 1
Unbounded + true

return
Tableauli,n+1]
M Tableau]i,c]

if i > m then

ré—1
i1+ 1
do then while : < m do

if (Tableauli, ¢] > 0) and %ﬂ <M
Tableau[i,n11] '

then « Tableauii,c|
1

141+ 1
P1vot(r, c)
pivots[r] « ¢
c+1

c+—c+1

Linear Programming 469

17.2.9 Phase 1: initial basis feasible solution

Suppose that after Phase 0 we have obtained a basis solution X g to the linear pro-
gram

Minimize: Z=c'X
Subjectto: AX = b (17.16)
X >0

where A is a m by n matrix of rank m. Then
B = [Bla B27 e »B'm]

is a nonsingular submatrix of A and Xp = B~'b. The result of pivoting on the
columns in B is the tableau

e]

Cj — Z4 |—Z

If Xp[i] < 0 for some row 4, then the basis solution is infeasible, and we cannot
proceed to Phase 2. Let E be the m-dimensional vector defined by

Bl - {—1, if Xpli] <0

0, if Xpli] > 0.

Let x(be a new artificial variable and define the Phase 1 linear program as follows:

Minimize: w = [1,0,0,...,0] { ﬁg] (17.17)
Subject to: [E, Y] [ig] = XB
Zo, X > 0.
The Phase 1 tableau is:
E e Y; e Xp
O DY CJ — ZJ DY _Z
110,0,--- 0 ---0,0 0
It has columns 0, 1, . .., n. The second to last row corresponds to the cost equation to

the linear program 17.16 and can almost be ignored for this discussion. Let w(xg, X)
denote the value of the objective function for the Phase 1 linear program at a given
To and X.

Lemma 17.2. The Phase 1 linear program is always feasible and has a non-negative
optimal objective value.

Proof. Let ¢ be the row for which X g[é] is smallest (i.e., most negative), and pivot
on row ¢ column 0. The result is a tableau with a feasible solution to the Phase 1
linear program. We can apply the techniques of Section 17.2.6 to obtain an optimal

470 Graphs, Algorithms, and Optimization

feasible solution or show that it is unbounded below. It cannot be unbounded below,
however, because

Hence w is non-negative. O

Theorem 17.3. A linear program is feasible if and only if the artificial objective
function has minimum value W, = 0. Moreover, if Wy = 0 for xog > 0 and
X >0, then X is a feasible solution of the original linear program.

Proof. By Lemma 17.2, the Phase 1 linear program has an optimal solution for
which the minimum value w,,;, > 0. First suppose w;,;, = 0. Then there exist

X and z such that w(zg, X) > 0,290 =0, X > 0, and

xo

Byl %

] —20E+YX = Xp.

Then B~'AX =0+ YX =29F+YX = Xp = B 'band hence AX = b. Thus
the linear program 17.16 is feasible.

Conversely, suppose there exists a feasible solution X of AX =b. ThenY X =
B'AX = B~1b = Xp and thus

[E,Y] { 1},?] =Xp

is solvable in non-negative yariables, by choosing zop = 0, and X = X. For these
values of z¢ and X, w(0, X) = 0. Because w > 0 must hold for every feasible
solution of the Phase 1 linear program, we have w,,;, = 0. O

Linear Programming 471

Algorithm 17.2.4: PHASEI1 (T ableau, m,n)

Unbounded + false
Infeasible < false
comment: Use column 0 and row m + 2 to create the Phase 1 tableau
if Tableau[i,n + 1] <0
fori <~ 1tomdo < then Tableau[i,0] < —1
else Tableaul[i, 0] <— 0
Tableau[m + 2,0] + 1
for j « 1 ton do Tableaulm + 2,j] < 0
Tableau[m + 2,n + 1] < 0
comment: find the Phase 1 first pivot
r=0
M <+0
if Tableau[i,n + 1] < M
for i < 1tom do {]W < Tableauli,n + 1]
then)
<1
ifr=20
then {comment: no phase 1 is necessary
return
PIvor(r,0)
c+1
while ¢ < n
if Tableau[m + 2,¢] < 0
141
while Tableau(i,c] < 0doi < i+ 1
Tableau[i,n+1
<1
141+ 1

while : < m do
do { then { [if (Tableauli,c] > 0) and %W <M

Tableau[i,n+1
then {M < Tablea[u[qz,c] :
ri+1
1 1+1
PIvOT(r, ¢)
pivots[r] « ¢
c+1

c+—c+1
if Tableau[m +2,n+ 1] # 0
then Infeasible < true

We can now give the complete simplex algorithm.

472 Graphs, Algorithms, and Optimization

Algorithm 17.2.5: SIMPLEX(Tableau, m,n)

Unbounded < false
Infeasible <— false
PHASEOQ(Tableau, m,n)
if Infeasible

output ("The Linear Program is infeasible.”)

then

return
PHASE1(Tableau, m,n)
if Infeasible

{output ("The Linear Program is infeasible.”)
then

return
PHASE2(Tableau, m,n)
if Unbounded
output ("The Linear Program is unbounded.”)
return
Z <+ —Tableaum + 1,n + 1]
for j « 1tondo X[j] < 0
for i «+ 1 to m do X [pivots|r]] = Tableau[i,n + 1]
return (X, 7)

then

17.2.10 An example
Minimize: Z = Tx1 + 222

Subjectto: —x1 429 +T3 = 4
41’1 +3£L'2 +x3 + 24 = 24
—2x1 —2xo +rs = -7

A%
o

T1,T2,T3,T4

The initial tableau is

-1 21 00 4
4 31 1 0| 24
-2 -2 0 0 1|7
7 200 0] 0
and we start Phase 0. Pivoting on the [1, 3] entry obtains
-1 21 0 0 4
) 101 0] 20
-2 -2 0 0 1|-7
7 200 0] 0

Thus we have the basis solution

X =1[0,0,4,20, 7"

Linear Programming 473

corresponding to basis consisting of columns 3, 4, and 5. This ends Phase 0. The
basis solution found was not feasible so we start Phase 1. In this phase we have
columns 0, 1, 2, 3, 4, and 5.

0] -1 2 1 00 4
0 5 1 0 1 0] 20
-1]1-2 -2 0 0 1|-7
0 7 2 0 00 0
1 0 0 0 0 0 0
First we price out column 0.
0] -1 2 1 0 0 4
0 5 1 0 1 0] 20
1 2 2 0 0 -1 7
0 7T 2 0 0 O 0
0] -2 =2 0 O 1-7

We now have a feasible solution, but the Phase 1 objective value is 7. We proceed
to reduce this value to 0. In the last row we find a negative entry in column 1. The
smallest ratio of the last column entries with positive entries in column 1 is § = 7/2,
so we pivot on the [3, 1] entry to obtain the tableau below.

r 1 1 17
310 310 —3 75
-2410 -4 0 1 23 23
1 1 1
11 100 -1 33
-33|0 =5 0 0 33|—243
1{o0 000 0 0

The Phase 1 objective value is now zero and we have a feasible solution. We proceed
to Phase 2 by dropping column 0 and the last row.

0 310 -1 71
0 -4 0 1 2% 21
1 100 —3 33
0 =5 0 0 35|-243

There is a negative entry in the last row in column 2, so the objective value can be
reduced. The smallest ratio is § = (73)/3, so we pivot on the [1, 2]-entry.

01 3 0 —¢| 23
0 0 1z 1 12| 125
10 -4 0 —% 1
00 13 0 23|-12

474 Graphs, Algorithms, and Optimization

There are no negative entries left in the last row so an optimal solution has been
found. This solution is

1 1
X =[1,2=.0,12=,0]"
[7 277 27]

and has objective value Z = 12.

17.3 Cycling

It is prudent to ask whether it is possible for the simplex algorithm to go through
an endless sequence of iterations without terminating. Consider the following linear
program:

Minimize: 7 = —10x1 + 5722 + 923 + 2414

Subjectto: 0.5x1 —5.5z2 —2.5z3 +9x4 x5 = 0
0.521 —1.520 —0.5x3 +x4 +xg =
€1 +r; = 1

v
o

L1,22,L3,T4,T5,L6,L7

The initial tableau is

05 =55 —25 9 1 0 0]0
05 =15 —05 1 0 1 00
1 0 0 000 1|1
-10 57 9 24 0 0 00

If we adopt the following rule:

Always pivot on the column with the smallest (most negative) entry in the bottom
row, choosing the first row that achieves the smallest ratio. If there are two such
columns always choose the first one, (i.e., the one with smallest index).

Then the sequence of iterations is:

1. Pivoton (1, 1).

1 —-11 -5 18 2 0 0]0
0 4 2 -8 -11 0|0
0 11 5 -18 -2 0 1|1
0 —53 —41 204 20 0 0|0
2. Pivoton (2, 2).
10 05 —4 —075 275 0]0
01 05 -2 —025 025 0|0
0 0 05 4 075 —-275 1]1
0 0 —145 98 675 1325 0]0

Linear Programming 475

3. Pivoton (1, 3).

2 01 -8 —-15 55 0]0
-1 1.0 2 05 —25 0|0
100 0 0 0 1]1
20 0 0 —-18 —-15 93 00
4. Pivoton (2,4).
-2 4 1 0 05 —45 0]0
—05 05 0 1 025 —125 0|0
1 000 0 0 1|1
[20 9 0 0 —105 70.5 o|oJ
5. Pivoton (1,5).
—4 8 2 01 -9 0]0
05 -1.5 —-05 1 0 1 0|0
1 0 000 0 1]1
-22 93 21 0 0 -24 00
6. Pivoton (2, 6).
05 =55 —25 9 1 0 00
05 —-15 —05 1 0 1 00
1 0 0 000 1]1
-10 57 9 24 0 0 0]0

The tableau obtained after iteration 6 is identical to the initial tableau and so this
cycle of iterations would repeat and the simplex algorithm would never terminate. It

is easy to see that this is the only way that the simplex algorithm can fail to terminate.
That is

Theorem 17.4. If the simplex algorithm fails to terminate, then it must cycle.

Several methods have been proposed to avoid this cycling phenomenon. The eas-
iest is to adopt the smallest index rule.

Always pivot on the column with the first negative entry in the bottom row (i.e.,
the one with the smallest index), and choose the first row in that column that
achieves the smallest ratio.

We leave it as an exercise to prove the following result:

Theorem 17.5. (R.G. Bland, 1977) The simplex method always terminates if the
smallest index rule is adopted.

Proof. Exercise 17.3.2. |

476 Graphs, Algorithms, and Optimization

Exercises

17.3.1 Solve the following linear programs using the simplex algorithm.

(2)
Maximize: 2z = 3z + 2x9 + w3 + 424
Subjectto: 4x1+ Sxo+ r3— 3x4 = Db,
2%17 3%27 4%54’ 5%4 = 7,
1+ 4dxo+ 2.5x3— 4dxy = 6,
X1,22,T3,T4 Z 0.
(b)
Maximize: z = 3z + 4xo + x3 + 724
Subjectto: 8x1+ 3wo+ 4daxs+ wg < B,
21+ 6xo+ w3+ Sy < T,
1+ 4dxo+ Ddrs+ 2x4 < 6,
X1,22,T3,T4 Z 0.
(©)
Maximize: 2z = 2x1 — 3xs + 4x3 + x4
Subject to: 1+ Sxo+ 9x3— 6y > -2,
3r1— lzo+ x3+ 324 <10,
721‘17 3IEQ+ 7%3* 8%4 2 O,

T1,X2,T3,T4 Z 0.

17.3.2 Prove Theorem 17.5.

17.4 Notes

The topic of linear programming appears in a variety of different subjects, for ex-
ample operations research, mathematical programming, and combinatorial optimiza-
tion. There are thus numerous books in which it is discussed and among them are
CHVATAL [35], HADLEY [78], NEMHAUSER and WOLSEY [132], PAPADIMITRIOU
and STEIGLITZ [134], TAHA [165], and WALKER [185].

In this chapter we have only discussed the simplex algorithm which was invented
in the late 1940s by DANZIG [40] (see also DANTZIG [41]). A thorough discussion of
the history of linear programming can be found in DANTZIG’s celebrated work [42].

The example of cycling in the simplex method found in Section 17.3, is from the
book by CHVATAL [35]. Theorem 17.5 appears in BLAND [18].

It can be shown that in the worst case the running time of simplex algorithm is not
polynomial bounded (see KLEE and MINTY [99]) and hence the simplex algorithm

Linear Programming 477

is theoretically not satisfactory. In practice it is eminently useful and except for very
contrived problems exceedingly fast. In 1979, KHACHIAN [97] provided a method
called the ellipsoid method that solves linear programs in polynomial time. This is a
marvelous, elegant, and simple jewel of pure mathematics. However, we believe that
it is unlikely that the ellipsoid method will ever be a serious challenger to the simplex
method.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

18
The Primal-Dual Algorithm

18.1 Introduction

In Chapter 17 we found it convenient to convert every linear program consisting of
constraints that are a mix of inequalities and equalities:

Z ajjri{<=>}b;, 1=1,2,....m

to a system of equations Az = b, b > 0. A slightly different formulation of con-
straints will prove useful here. We convert every equality to the equivalent pair of
inequalities, so that

Z aij €Ty = bz
becomes the two inequalities
Z ai;jz; = b
Z Qi S bl
We then multiply all inequalities with the relation > through by a —1 so that each
has the form
Z Qi T4 S bt

Now we have a linear program of the form

Maximize: z=c'X
Subjectto: DX < d (Primal)
X >0

which we call the primal linear program. Corresponding to the primal linear program
is another linear program which we call the dual linear program.

Minimize: Z=d"w
Subjectto: DTW > (Dual)
Lemma 18.1. The dual of the dual is the primal:

479

480 Graphs, Algorithms, and Optimization
Proof. The dual linear program:
Minimize: Z=d"w

Subjectto: DTW > ¢
wo >

o

is equivalent to :
Maximize: =(—d
Subject to: (—) w
w

This is in the form of a primal linear program. The dual linear program corresponding
to it is:
Minimize: Z7*=(—o)tX

Subjectto: —DX > —d .
X >0
This linear program is equivalent to
Maximize: z=cT'X
Subjectto: DX < d .
X >0

O

Lemma 18.2. If X is a feasible solution to the primal and W is a feasible solution
to the dual, then ¢ X < d"W (implying z < Z).

Proof. Suppose X is a feasible solution to the primal. Then DX < d. If W is a
feasible solution to the dual, then W > 0, so we see

WT'DxX <w'd = d'w.

Similarly, because X > 0 and W is a feasible solution,

DWW > ¢
X'p™w > XxTe¢
wWTDx > I'X.
Therefore
X <wTDXx <d'w. (18.1)

O

Lemma 18.3. If Xisa feastble solution to the prlmal andWisa feasible solution to
the dual such that T X = dTW then X and W are optimal solutions to the primal
and dual, respectively.

The Primal-Dual Algorithm 481

Proof. By assumption, TX = dTW, but for any feasible solution X to the primal,

X < dTW =X
(with the inequality from Lemma 18.2). Therefore, X is an optimal solution to the

primal.
By the same logic, for any feasible solution W of the dual,

dTW > TX = dTW.
Thus, W is an optimal solution to the dual. O

Lemma 18.4. If the dual or the primal has an optimal solution, then the other also
must have an optimal solution and their optimal values are the same.

Proof. Because of Lemma 18.1, we need only show that if the primal linear program
has an optimal solution, then so does the dual linear program. Recall that the primal
linear program is:

Maximize: z=cTX
Subjectto: DX < d
X > 0

Add slack variables X and convert it to a minimization problem to get the standard
form linear program:
Minimize: (—2)=(—o)TX
Subjectto: DX +I1X?

= d, (18.2)
X, X, > 0

where I = [Ey, Es, ..., E,,] is the m by m identity matrix. Let D = [Dy, ..., D,].
The tableau for the simplex algorithm is

Dy - D;j - D, Ey - Ey - Em|d

—cp 0 o—¢j o —cp 0 . 0 e 0 |0

If the linear program 18.2 has an optimal solution Xp, with optimal value
(—=z) = (—cp)TXp, then there is a rank m submatrix B of the columns
Dy,Dy,...,D,,E1,Es,...,E,, such that Xp = B~'d and after multiplying the

tableau by
B! 0
{ kB~ |1]

we obtain the tableau

Yj yj, "'|XB
5 —C e e 2y e | 2
where,
z = 5B,
Y, B~'D

R

Y., = B 'E,

Vi)

482 Graphs, Algorithms, and Optimization
and because of optimality,

0
0

Tp-1p _

< zj—c;=cEBID; — ¢
T

< zyp=cply.

So these equations show that

cEB7'D—-c" > 0
cEB7'I > 0, and
z = cEB7ld.

Ifwelet WT = ch —1 then these equations show that W satisfies

DTw

> c
W > 0, and
z = d'W

Thus W is an optimal feasible solution to the dual linear program. Optimality follows
from the last equation and Lemma 18.3. O

Observe the similarity between Lemma 18.4 and the max-flow-min-cut Theorem
(Theorem 10.4). Indeed the Ford-Fulkerson algorithm for solving the maximum net-
work flow problem that was presented in Section 10.2 is a primal-dual algorithm. We
re-examine this algorithm in Section 18.6.3.

In the proof of Lemma 18.4 we discovered how to construct an optimal solution
of the dual linear program given an optimal solution to the primal. We record this
useful fact as the following corollary:

Corollary 18.5. If X is an optimal solution to

Maximize: z=cT'X
Subjectto: DX < d
X >0

with basis B, then W = B~ cp is an optimal solution to the dual linear program

Minimize: Z=d"w
Subjectto: DTW

¢
w 0.

IV IV

Theorem 18.6. Given a primal-dual pair, exactly one of the following can occur:

. Both the primal and the dual have a finite optimum.

a
b. The primal is unbounded and the dual is infeasible.

o

. The primal is infeasible but the dual is unbounded.

QU

. Both the primal and the dual are infeasible.

The Primal-Dual Algorithm 483

Proof. We saw in Chapter 17 that every linear program either (i) has a finite opti-
mum, (ii) is unbounded, or (iii) is unfeasible. Thus for a primal-dual pair there are
nine possibilities. Namely:

1.

0 N N B W

Both the primal and the dual have a finite optimum.

. The primal has a finite optimum but the dual is unbounded.
. The primal has a finite optimum but the dual is infeasible.

. The primal is unbounded but the dual has a finite optimum.
. Both the primal and the dual are unbounded.

. The primal is unbounded and the dual is infeasible.

. The primal is infeasible but the dual has a finite optimum.

. The primal is infeasible but the dual is unbounded.

9.

Both the primal and the dual are infeasible.

Lemma 18.4 shows that possibilities 2, 3, 4, and 7 cannot occur. Equation 18.1 tells
us that if either the primal or the dual is unbounded, then the other cannot have a
feasible solution and thus possibility 5 is eliminated. It is easy to construct examples
of the remaining four possibilities, 1, 6, 8, and 9.

1. A primal-dual pair in which both the primal and the dual have a finite optimum:

Maximize: z=m Minimize: 7 = w;
Subjectto: x; < 1 Subjectto: w; >1
1 >0 wy >0

(Primal) (Dual)

6. A primal-dual pair in which the primal is unbounded and the dual is infeasible:

.. Minimize: z=w
Maximize: 2 = —x1 + 2129 .
. _ > _
Subjectto: —x1 + 22 <1 Subject to: Zl > 9 1
1 2
x1,22 > 0 wi >0
(Primal) (Dual)

8. A primal-dual pair in which the primal is infeasible and the dual is unbounded:

Maximize: =z L.
. ~ ! Minimize: Z = w; — 2ws
Subject to: r < 1 .
< 9 Subjectto: wy —wy > 1
—r < -
wi, ws > 0
1 2 0 1, W2 =

(Primal) (Dual)

484 Graphs, Algorithms, and Optimization

9. A primal-dual pair in which both the primal and the dual are infeasible:

Maximize: z=—x1 + 229 Minimize: Z = wi — 2ws
Subject to: T —x9 < 1 Subject to: w; —wy > —1
—r1+x2 < 2 —wy + wg > 2
x1,22 >0 wy,we >0
(Primal) (Dual)
O
I
18.2 Alternate form of the primal and its dual
It is often more convent to write the primal linear program as:
Maximize: z=c"X
Subjectto: AX = b (Primal: equality form)
X >0.
This is equivalent to
Maximize: z=c'X
Subject to: AX < b
—AX < -—b
X >0,

and this has the dual linear program

NS _pr | W
Minimize: Z =", -b"] [Wo }
: : T 41| W
Subject to: [A',—A][Wa] > ¢
Wi, Wy > 0.

This dual is equivalent to:

Minimize: Z = b (W1 — Wa)
Subjectto: AT (W, —Wy) > ¢
Wi, Wy > 0.

If we let W = W — W, then the entries of W are unrestricted in sign and the dual
linear program is equivalent to
Minimize: Z=b"W
Subjectto: ATW > ¢
W unrestricted.

Similarly, if we take the dual linear program to be

The Primal-Dual Algorithm 485

Minimize: Z =b"W
Subjectto: ATW = ¢ (Dual: equality form)
W > 0.
Then its corresponding primal linear program is

Maximize: z=c'X
Subjectto: AX < b
X unrestricted.

A similar proof of Corollary 18.5 found in Lemma 18.4 establishes Corol-
lary 18.7.

Corollary 18.7. If W is an optimal solution to

Minimize: Z=bv'w
Subjectto: ATW = ¢ (Dual: equality form)
W >0

with basis B, then X = B~Tbg is an optimal solution to the dual linear program
Maximize: z=c'X

Subjectto: AX < b
X unrestricted.

18.3 Geometric interpretation

A geometric interpretation can be given to the dual linear program.

Let A = [A;, As, ..., A,] and write the primal linear program as:
Maximize: z=c'X
Subjectto: z1 A1 + x40+ -+ x4, = b (18.3)
X >0.
Then the dual is
Minimize: Z=b"W
Subjectto: ATW > ¢
AgW Z Co
. (18.4)
ATW > ¢,

W unrestricted.

The vectors A; in the primal linear program 18.3 are the normals to the half-spaces
that represent the constraints in the dual linear program 18.4. Furthermore the re-
quirement vector of the primal is normal to the hyperplane Z = bW in the dual.
This is easy to illustrate in two dimensions by means of an example.

486 Graphs, Algorithms, and Optimization
18.3.1 Example

Given the linear program:

Maximize: z = —3x1 — 23x9 — 413
Subjectto: w1 A; +ax0As+ -+ 2545 = b
T1,L2y...,T5 Z O,

where

B R [T

the dual linear program is:

Minimize: Z = —2w1 + we
Subject to: 2 —1lwy > =3
73101 7411.)2 Z —-23
—2w 43wy > —4
w1 Z 0
wa Z 0.

(Note that the appearance of slack variables in the primal linear program have caused
the variables in the dual to be non-negative.) In Figure 18.1, we have drawn the
requirement-space configuration of the primal and in Figure 18.2, the convex set of
feasible solutions is shown as a shaded region.

Whenever two of the constraints hold as strict equalities, the vectors normal to

these constraints are a basis for the primal (if the normals are linearly independent).
In w;ws-space the point w where two dual constraints hold as strict equalities is the
intersection of the two lines representing these two constraints. A basis solution to
the primal can then be associated with the intersection of each pair of bounding lines
for the half-spaces representing the dual constraints.
There are (g) = 10 basis solutions to the primal. They are represented by the
points P;;, 1 < i < j < 5, in Figure 18.2. The point P;; corresponds to having
A;, Aj in the primal basis. In Table 18.1 we display the simplex tableaux correspond-
ing to the various choice of basis {A;, A, }. Two of them yield feasible solutions to
the primal, but only one corresponds to a point that is also feasible in the dual. This
is basis { A2, A3}, corresponding to the point Pa3 = (5,2). Furthermore this basis
yields the value z = —8, obtained by setting 1 = x4 = x5 = 0, x2 = 0.24 and
x3 = 0.65. This yields the value Z = [-2,1]T[5,2] = —8. Thus by Lemma 18.3,
this an optimal point. Therefore using the dual simplex method we move from one
extreme point of the convex polyhedron to an adjacent one until an optimal extreme
point is reached. At this point, the corresponding solution to the primal becomes
feasible.

The Primal-Dual Algorithm 487

Y
—_

FIGURE 18.1
Requirement-space configuration for the primal

488 Graphs, Algorithms, and Optimization

FIGURE 18.2
The convex set of feasible solutions to the dual

The Primal-Dual Algorithm 489

TABLE 18.1
Table of simplex tableaux

1 0 —-1.55 0.36 —0.27 | —1
0 1 —0.36 —0.09 —0.18 0 Basis { A1, A2} is infeasible.

0 0 -—17 -1 —5| -3

1 —425 0 0.75 0.50| —1
—2.75 1 0.25 0.50| O Basis { A1, As} is infeasible.

o

0 —46.75 0 3.25 3.50 | —3

1 4 -3 0 —-1|-1
0o —11 4 1 2 0 Basis { A1, A4} is infeasible.

0 —11 —-13 0 —3|-3

1 —-150 —-1 050 0| —1
0 —-550 2 050 1 0 Basis { A1, A} is infeasible.

0 —27.50 —7 1.50 0| -3

—-0.24 1 0 -—-0.18 -0.12)0.24
—0.65 0 1 -—-0.24 0.18 | 0.65 Basis { A2, Az} yields z = 8.

—-11 0 0 —5 -2| 8

0.25 1 —-0.75 0 —-0.25| —0.25
275 0 —4.25 1 —0.75| —2.75 | Basis { A2, A4} is infeasible.

275 0 —21.25 0 —5.75| —5.75

—0.67 1 0.67 —0.33 0| 0.67
—3.67 0 5.67 —1.33 1| 3.67 |Basis {A2, A5} yields z = 15.33.

—18.33 0 11.33 -—-7.67 O|15.33

—-033 -—-133 1 0 0.33 0.33
1.33 —5.67 0 1 0.67| —1.33 | Basis {As, A4} is infeasible.

—4.33 —-28.33 0 O 1.33| 1.33

-1 1.50 1 —-0.50 O 1
2 —850 O 1.50 1 ‘ —2 Basis { Ag, A} is infeasible.
| -7 —-17 0 -2 0| 4
[2 -3 -2 1 0] -2
-1 -4 3 01 ‘ 1 Basis { A4, Ag} is infeasible.
-3 —23 —4 0 0] O

490 Graphs, Algorithms, and Optimization

1

18.4 Complementary slackness

There is a battle of balance between the primal and dual linear programs.
As the constraints tighten in one, they loosen in the other.

In this section we denote by [Row;(D)] and [Col,;(D)] the ith row and 5t column
of the matrix D, respectively. We also use XY = XY, the so called dot product.

Theorem 18.8. (Complementary slackness conditions) A primal-dual feasible
solution pair X, W is optimal if and only if

zj([Coly(D)|W —¢;) = 0 forallj (18.5)
w;(d; — [Row;(D)]-X) = 0 foralli. (18.6)
Proof. Let
u; = l’j<[COIJ<D)]W — Cj), and

Then, because of the feasibility and the duality relations we have u; > 0 for all j
and v; > 0 for all 7. Let
u = Z Uj
J

v = E Uy .
i

Then u,v > 0, u = 0 if and only if Equation 18.5 holds for all 7 and v = 0 if and
only if Equation 18.6 holds for all 5. Observe that

utv = ZujJeri
- ij ([Col;(D)]-W — ¢;) +Zwi d; — [Row;(D)]- X)
_ _Z$JCJ+de —|—ij ([Col(D)]-W =" " w;[Row;(D)]-X
= —cX-i—dW—l—ZxJZDZJ Zwtimg
- —cX+dW+ZZw7 li, jlz ZZ“}D”

= —cX+dW.

Therefore Equations 18.5 and 18.6 hold for all 5 and 1, respectively, if and only if
u+ v = 01if and only if ¢-:X = d-W if and only if X and W are both optimal. I

The Primal-Dual Algorithm 491

Note that Theorem 18.8 says at optimality if a constraint is not met with equality,
i.e., has slack, in the primal linear program, then the corresponding variable in the
dual is zero and vice versa.

18.5 The dual of the shortest-path problem

In this section we study the shortest-path problem for directed graphs.

Problem 18.1: Shortest Path (directed graph)

Instance: a directed graph G = (V, E), nodes s,t € V and
non-negative weights c;, for each edge e; € E.
Find: a directed path P from s to ¢ with minimum total weight
CP)= > ¢
e;€E(P)

Let V = {v1,v2,...,v,} and E = {eq,ea,...,e,} define the m by n node-edge
incidence matrix A by

+1, ife; = (v;,u) for some vertex u,
Ali,jl=4¢ -1, ife; = (u,v;) for some vertex u,
0, otherwise.

In Figure 18.3 an example is given.

We model the shortest-path problem as a network flow problem by assigning a
capacity of 1 on each edge. Let w; denote the flow on edge j.

The conservation of flow constraints are

0, i¢{st}

[Row;(A)] - W = +1, i=s
-1, i=t.
Then W satisfies
11— rows
-1 —T1OW i
Aw=| 0
0
and the capacity constrains are
0<w; <1

A solution to the shortest-path problem is given by a flow W that minimizes

Graphs, Algorithms, and Optimization

492

(=l N
- + |
=
SN~—
oo oo —~H —~H O
= + |
Q
SN~—
Se e~ oo
- I+
Q
SN~—
e e oo H
= + _
SN~—
e o —H O —H O
= +
o
=
\W/Ollooo
- I+
=)
SN~—
e O O O
-+~

- + _
3
SN~—
\0/100100
-+ ,
w
~
= O —H O OO
o

-+ ,
)
S—
\W/_l_lOOOO
Ak
w
~

n Y0 VTS R

FIGURE 18.3

An instance of the shortest-path problem

The Primal-Dual Algorithm 493

Z = ¢I'W. As far as we know it is possible that the w; in general take on non-
integer values, but in Section 19.4 we will show that there is an optimal solution W
to linear program 18.7 with only integer entries.

Minimize: Z =cTW

+1] « rows
- —rowt
Subjectto: AW = 0 (18.7)

L o]

Indeed it is not to hard to see that there is an optimal solution to linear program 18.7
in which each w; is either zero or one. A one represents a unit flow along a shortest
path from s to ¢.

The dual linear program for the shortest-path problem is

W >0.

Maximize: Z=1Ts— Tt
Subjectto: z; —x; < ¢; foreach(i,j) € E (18.8)
X unrestricted.
The complementary slackness conditions (Theorem 18.8) are easy to interpret in

the shortest-path problem. A path W and an assignment of variables X are jointly
optimal if and only if

1. Each edge in the shortest path (i.e., a positive w; in the primal linear
program 18.7) corresponds to equality in the corresponding constraint in
the dual linear program 18.8, and

2. Each strict inequality in the dual linear program 18.8 corresponds to an
edge not in the shortest path.

For the graph in Figure 18.3 an optimal solution to the primal is
W(s,a) = 07w(s,b) = 17w(s,c) = 07w(a,t) = 17w(b,a) =1,

Wp,a) = 0, W) = 0, Wy = 0,we,q) =0, W =0,

which has cost = 9. In the dual we see by complementary slackness that this means

Ts — Tp
Ty —XTgq =
Tg — Xt =

Summing these equations we obtain z = x5 — xy = 9.

494 Graphs, Algorithms, and Optimization

Exercises

18.5.1 An engineer takes measurements of a variable y(z); the results are in the
form of pairs (x;,y;). The engineer wishes to find the straight line that
fits this data best in the sense that the maximum vertical distance between
any point (x;, y;) and the line is as small as possible. Formulate this as a
linear program. Why might you decide to solve the dual?

18.5.2 Consider the node-edge incidence matrix A of the directed graph G =
(V, E) as described in Section 18.5. Show that a set of |V| — 1 columns
is linearly independent if and only if the corresponding edges, when con-
sidered as undirected edges, form a tree. (Thus a basis corresponds to a
tree.) If a network problem is formulated with this graph, what does this
result say about the pivot step?

18.5.3 It was shown in Section 18.2 that the dual of

Maximize: z=cTX
Subjectto: AX = b
X>0

has unrestricted variables. However, if some slack and/or surplus vari-
ables appear in A, show that the dual variable for a constraint having a
slack variable is non-negative and the dual variable for a constraint hav-
ing a surplus variable is non-positive. Hence, show that the only dual
variables which are really unrestricted are those that correspond to con-
straints that were originally equations and not inequalities. Thus show that
the dual of any linear program is essentially unique and is independent of
the particular manner in which we write the primal.

18.6 The primal-dual algorithm

Consider a linear program in standard form

Minimize: Z=c'X
Subjectto: AX = b (P)
X>0
and its dual
Maximize: z=bTW
Subjectto: ATW < ¢
AgW S Co
: (D)
ATW < ¢,

W unrestricted.

The Primal-Dual Algorithm 495

We may assume that b > 0, because the equalities in (P) can be multiplied by —1
where necessary. The complementary slackness conditions (Theorem 18.8) are: if X
is a feasible solution to (P) and W is a feasible solution to (D), then X and W are
both optimal if and only if

w;([Row;(A)"X —b;) = Oforalli (18.9)
and
(¢;j — AJW)z; = Oforallj. (18.10)
Condition 18.9 is automatically satisfied because of the equality in (P), so we will
focus on condition 18.10. The main idea of the primal dual algorithm is:

Given a feasible solution W to (D), find a feasible solution X to (P)
such that

X; =0, whenever AJTW < ¢j.

In order to construct such a pair W, X we will iteratively improve W, while main-
taining its feasibility in (D). Suppose W is a feasible solution to (D). Then with
respect to W some of the inequalities AJTW < ¢; in (D) still have slack and some
do not. Let

J={j: ATW =¢;} = {j1. 2, -, ju }
be the set of admissible columns. So X, a feasible solution to (P), is optimal if z; = 0
forall j ¢ J. Let

Ay = (A5, A5, ... A]

and
X.] = [le,sz,...,xjn,].

If we can find X ; such that
A;X; = b
XJ Z 07

then by complementary slackness, the X defined by

Lo [0 ifjeJ
X[J]_{Xj ifj=jreJ

(18.11)

is optimal in (P). To find X ; we construct a new linear program called the restricted
primal (RP).

Y
. X;
Subjectto: A ;X;+Y =[A;, 1] v = b (RP)
X;>0
Y >0

S X
Minimize: CZV[J]=y1+y2+---—|—ym

496 Graphs, Algorithms, and Optimization

where Y = [y1,¥2,...,Ym|’ are new variables one for each equation in (P) and
~=1[0,0,...,0,1,1,...,1].
———— ——
| J] m

Let ¢, be the optimal value of (RP) and suppose it occurs at Y = Y,,, with basis
B.If (,,; = 0, then Y,,;, = 0 and the corresponding X ; solves the constraints 18.11.
Thus we have an optimal solution to (P). What happens when (., > 0?

The dual of (RP) is

Maximize: z=bTW
Subjectto: ATW < 0
: . (DRP)
w < 1

W unrestricted

where ?: [1,1,1,...,1]T. Let W,,, be the solution to (DRP) corresponding to Y,
thatis W,,, = B~T~p (see Theorem 18.7). We call (DRP) the dual-restricted primal.
The situation is that we tried to find a feasible X in (P) using only the columns in .J,
but failed. However, we do have the optimal feasible solution pair Y,,,, W,,, to (RP)
and (DRP), respectively. We also know (. > 0, the value of (RP) at Y, is positive.
Let’s try correcting W by a linear combination of the old W and W,,,. Let

W, =W + 0W,,,.
The value of the objective function at W, is
VW, = bW + 06T W,

Now we know b"W,,, = (., > 0, because Y., W,,, is a primal-dual feasible solu-
tion pair. Thus to maximize the value of the objective function we can take 6 > 0
and large. We also need to maintain feasibility so we need

ATW, = ATW + 0A"W,,, < c.
Consider the j-th equation
T T T
A We=A; W +0A; W, < cj.

If AJTVVOPT < 0, then this equation is satisfied because W is a feasible solution to
(D). Thus, in particular, W; is feasible, if AJTWOPT < 0 for all 7, but in this case we
may take @ > 0 arbitrarily large and the value of the objective function at W, will be
unbounded. Therefore the primal (P) is infeasible, by Theorem 18.6. Hence:

Theorem 18.9. If (,.. > 0in (RP) and W.,, the optimal solution to (DRP) satisfies

T .
A We <0, forall j ¢ J

then (P) is infeasible.

The Primal-Dual Algorithm 497
Therefore we need only worry when
AJTWO,,T > 0 for some j ¢ J.
Consequently, the feasibility conditions are
AJTW* = AJTW + t9AJTVVOPT < ¢;, whenever j ¢ J and AJTVVOPT > 0.
Thus forall j ¢ J and AJTWOPT > 0 we need to chose 6 such that

Cj — ATW
< —+~2—.
- Az—‘ WOPT
This yields the following theorem.

Theorem 18.10. When (.. > 0 in (RP) and there is a j ¢ J with AJTWOPT > 0, the
largest 0 that maintains feasibility of W, = W + 0W,,, is

. Cj — AfW . T
0* = min W] ¢ JandAj WOPT >0;. (18]2)
j OPT

Given a feasible solution W to (D) Algorithm 18.6.1 constructs in W an optimal
solution to (D) or determines if (P) is infeasible.

Algorithm 18.6.1: PRIMAL-DUAL(W)

FEASIBLE < true
OPTIMAL < false
while FEASIBLE and not OPTIMAL
J(*{jATW:CJ}
if|J|=n
then OPTIMAL < true
Solve (RP) by Simplex Algorithm
obtain solution with basis B and objective value (,,,

do if ;. =0
then OPTIMAL < true
else W + B~ Typ

if A?VVOPT <Oforallj € J
else then FEASIBLE < false
else {compute 0, using equation 18.12

W W + 0, W,,

498 Graphs, Algorithms, and Optimization

18.6.1 [Initial feasible solution

In order to start Algorithm 18.6.1 we must first have a feasible solution W to (D). If

¢; > 0 for all 7, we can take W :? as an initial feasible solution. When ¢; < 0
for some i, we can use the following method to obtain a feasible solution W to
(D). Introduce a new variable x to the primal problem (P), set ¢co = 0 and add the
constraint :

$0+$1+"'+xn:b07

where by is taken to be larger than " x;, for every basis solution X = [z1, ..., 2]
to (P). For example, take by = nM where M is given in Lemma 18.11. This new
primal is

Minimize: Z =c'X =[0,c"] [0]

X
Subjectto: xzg+x1+---4+2x, = by P”)
AX = b
i) Z 0, X Z 0
and its dual is
Maximize: 2z = wobg + bIW
Subject to: wg < 0
wo + ATW <
wo+ATW < (D)

wo + AZ;W < eq
W unrestricted

where wy is the new variable corresponding to the new equation in the new primal.
A feasible solution to this new dual is

W — MIN{cy,co,...,cn}, ifi=0
i = 0, ifi=1,2,...,m.

Also [zg, X] is an optimal solution to the new primal (P’) if and only if X is an
optimal solution to (P). A suitable value for by is provided by the following lemma.

Lemma 18.11. Let X = [x1, 2, ..., xy] be a basis solution to (P). Then
lzj| < M =mla™ 1p

where
a = MAX; ;{|a; |}

and
B = MAX{bl,bQ, ey bm}

The Primal-Dual Algorithm 499

Proof. Without loss of generality we assume that the entries of A, b, and ¢ are inte-
gers. If X is a basis solution, then there is a set .JJ of m columns such that X [j] = 0
whenever j ¢ J, and B = [A; : j € J] is nonsingular. Thus BX; = b, where
Xy =[X[j] : j € J] and so by Cramer’s rule

S det(B’)
7 det(B)’

where B’ is the matrix B with column j replaced with b. By integrality we have
| det(B)| > 1, and so

;] < [det(B)]

column in the optimal basis of (RP) remains admissible at the start of the next itera-
tion. O

Theorem 18.12.

Proof. Suppose that the optimal basis B of (RP) includes the column A; Then by
Corollary 18.7 the optimal solution to (DRP) corresponding to X is W,,, = B~ T3,
where vp are the entries of

corresponding to the columns of [A,] that are in B. Consequently, for some ¢,
1<e<|J

’

ATW,. = AJ(B "yp)
= (A]B ")
= (B'A)"s

EéT’YB

= Bl =0,

where E; = [0,0,...,0,1,0,0,...,0]” with 1 in position £. This implies that

ATW, = AJ(W +6W,,)
= AW +0W, A,
= v +0
= %

Thus if j € J at the start of an iteration of the while loop in Algorithm 18.6.1, then
J remains in J in the next iteration. O

500 Graphs, Algorithms, and Optimization

How do we know that the primal-dual algorithm will terminate? If the minimum
calculation of 6, by Equation 18.12 occurs at 7 = j,, then

T
cj, Aj*W

0, =
Ai WOPT

and so
cj, =AW +0,AT W, = AT W,.

Consequently, j, becomes a new column of .J, and we see that |.J| monotonically in-
creases. If J = {1,2,...,n}, then W satisfies the complementary slackness condi-
tion in Equation 18.10 and is therefore optimal. Consequently we have the following
theorem.

Theorem 18.13. Algorithm 18.6.1 correctly solves (P) in at most n iterations.

18.6.2 The shortest-path problem

We illustrate the primal-dual method with the shortest-path problem introduced in
Section 18.5. Observe that the row sum of the coefficient matrix in linear pro-
gram 18.8 is zero. Hence any row may be omitted because it is redundant. If we
choose to omit row ¢, the resulting linear program 18.13 is our primal.

Minimize: Z =¢T'X

+1 | < row s
0

Subjectto: AX = . (18.13)

X>0

The vector of flow is X and each entry of X is O or 1. The dual linear program for
the shortest-path problem is

Maximize 2z = wy
Subjectto: w; — w; < ¢;; for each edge(i, j) € E (18.14)
W unrestricted, except wy = 0.

We fix wy = 0, because its row was omitted from the primal. The set of admissible
columns (i.e., edges) is

J=A{(,4):xi —xj = ¢}

The Primal-Dual Algorithm 501
and the restricted primal is
Minimize: (=y1+y2+- -+ Ym—1

11 rows
0

Subjectto: AX +Y =

: (18.15)
0
x; >0forallj € J
xj =O0forall j ¢ J
Y >0.
Consequently, the dual-restricted primal is
Maximize: 2z = w;
Subject to: w; — w; < ¢;; for each edge(i, j) € J
! = ge(i,) (18.16)

w <1
W unrestricted.

It is easy to solve the dual-restricted primal. Note that w, < 1, and that we are
maximizing ws, so we can try ws = 1. If w; = 1 and (4,) € J, then we can satisfy
the constraint

by also setting w; = 1. Hence if P = iyis- - - iy is a path with (iq,iq41) € J for
alla =1,2,...,h — 1 and w;, = 1. Then we can set w;, = 1 for each a without
violating the constraints. Hence if there is no st-path using edges only in .J, then an
optimal solution to the dual-restricted primal is given by

1, if there is an si-path using only edges in .J
Wolt] = ¢ 0, if there is an i¢-path using only edges in J
1, for all other vertices 7.

We then calculate
9* = MIN{Cij — (wi — U}j) : (Z,j) ¢ J and WOPT[i] — Wow[j] > 0}

and update W and .J, and obtain and solve the new dual-restricted primal. If we get
to a point where there is an st-path using edges in J, then ws = 0 and we are at an
optimal solution, because minimum (is equal to the maximum z which is ws = 0.
Notice that any st-path that uses only edges in J is optimal.

The primal-dual algorithm reduces the shortest-path problem to the easy calcula-
tion which vertices are reachable from the source s.

We illustrate the primal-dual algorithm when applied to the shortest-path problem
with the directed graph given in Figure 18.4.

Graphs, Algorithms, and Optimization

502

FIGURE 18.4

Shortest-path example

Iteration

o
@Dz
=
N ISP
(q\l =
>
=
— — 07
— -
(@]
—o@ o ﬂ
=}
" = k=
— S
~ Q
cO—@ea L2

=)
-/
—
=
— O
~ g
S s
-~~~
i i
o=t >
— . —
~ <f -~
= =
] (]
| o0 | e0
o) il
O ©@ O
ot Ur — Al Ur
= S = 8
P P
[aW [aW
~ | ~
X X
-2z -® ©G-2%

)

n2
1

i

— 17

— 1-/
=
SW =

Iteratio
1

3
S
)

I

®

®
T

n3

3
T
©)

5

1

0* =1 for edge

(DRP): W,

503

The Primal-Dual Algorithm

4
4

Iteration

5

0* = 1 for edge

(DRP): W,

Iteration

5
4

5

0* = 2 for edge
0* =1 for edge

(DRP): W
(DRP): W,

0

D

O,
0

0
3
0

[0,0,0,0,0,0,0,0]

0
®
0

(DRP): W,

18.6.3 Maximum flow

A network N with source s and target ¢ can be described as a linear program as

follows:

504 Graphs, Algorithms, and Optimization

Maximize: v

TV |« row s

U | «—rowt
Subjectto: Af= 0 (18.17)
0
f<e
f=0,

where v = VAL(f) is the value of the flow f and ¢ = [CAP(e) : ¢ € E(N)]T are the
capacities of the edges e in V. This is of course equivalent to

Maximize v

Subjectto: Af +vT'<0 (18.18)
f<e
7f§07
where
—l,ifz=s

0, otherwise.

(Note that Af + vT" < 0 implies Af 4+ vT = 0 because we maximize v.) The set of
admissible columns (i.e., edges) is

J = {uwv: f(uw) =cor — f(uv) = 0}.
Thus J is the set of saturated edges together with the zero-flow edges and the dual-
restricted primal is:
Maximize: v
Subjectto: Af + vT'<0
N —
f(uv)<O0, for all saturated edges uv in 18.18

18.1
— f(uv)<0, for all zero flow edges uv in 18.18 (18.19)
—
f<1
—
v< 1

It is easy to solve the dual-restricted primal in 18.19. We wish to maximize v and so
we can try v = 1. Thus we must choose a flow f such that

Concerning the edges incident to s, the inequalities in 18.19 tell us that we can set
f(su) = 1ifthe edge su has zero flow or is unsaturated and we can set f(us) = —1

if the edge us is saturated and/or does not have zero flow. Let S 1 be the set of vertices
w incident to s satisfying

The Primal-Dual Algorithm 505

. — .
if u — s, then su has zero flow or is unsaturated;
. —_— .
if u — s, then wus is saturated or does not have zero flow.
Hence we choose v; € S and set the flow on the associated edge to 1 if it leaves s

and to —1 if it enters s. Now we must consider [Row,, |(A) and consider the edges
incident to uy. Let Sy be the set of vertices v incident to some v in S satisfying

if u —> s, then su has zero flow or is unsaturated;
(18.20)

. —_— .
if u — s, then us is saturated or does not have zero flow.

In general let Sk, be the set of vertices u incident to some v in S}, satisfying condi-
tions in 18.20 and continue until some Sy contains the target ¢. When and if it does,
we can choose vertices v; € S;, 7 = 1,2,...,k — 1 such that svyvovs - - -v_1tis a
st-path P. We obtain an optimal solution f,,, to the dual-restricted primal in 18.19
as follows:

+1, if wv is a forward edge of P
for(uv) = {1, if uo is a backward edge of P
0, if wv is not an edge of P.

We then calculate

- (c(uv) = F(uv)), if fou(uv) =1
0, = MINy,e E(P) { (O (f(—>))> i fow(w) - _1
B (CAP(ut) — f(uv)), if fon(uv) =1
= MINyyeE(P) { fluv), if fom(ut) = —1
= MIN{RESCAP(uw) : uv € E(P)},
where

RESCAP(uv) — CaP(uv) — f(ut), if uv is a forward edge,
f(ﬁ), if uv is a backward edge.

We update the flow by
f — f + G*fopﬂ

recompute the set of admissible edges .J to get the new dual-restricted primal, and
repeat until J is empty at which point the flow f will be maximum.

It is now easy to see the similarity of this method to that in Section 10.2 and
realize that the primal-dual algorithm for network flow is exactly the Ford-Fulkerson
algorithm.

Exercises

18.6.1 Consider Problem 18.2 the Weighted Matching problem.

506 Graphs, Algorithms, and Optimization
Problem 18.2: Weighted Matching

Instance: undirected graph G and weight w, > 0 for each edge e of G.
Find: a matching M of G with maximal possible weight
Wr(M)= > we.
ecE(M)

Formulate a primal-dual algorithm for solving Problem 18.2 and give an
interpretation for the restricted primal.

18.6.2 Use the primal-dual algorithm as discussed in Section 18.6.2 to find a
shortest path between each pair of nodes in the graph given in Figure 18.5.

FIGURE 18.5
An instance of the shortest-path problem

18.7 Notes

The primal-dual algorithm was first described in 1956 by DANTZIG; see [42]. Our
treatment is similar to that of PAPADIMITRIOU and STIEGLITZ; see [134].

19

Discrete Linear Programming

19.1 Introduction

An integer linear program (ILP) is a linear program in which the variables have been
constrained to be integers.

Minimize: Z=c'X

Subjectto: AX < b
X > 0 (19.1)
X integral.

If all of the variables are each constrained to a finite set of values, we say that
the integer linear program is discrete. Notice that frequently the equality constraints
force the variables to be discrete, for if b;/a; ; > 0 for all j in the constraint

n
> aijx; = b,
i=1

then z; cannot exceed m; = |b;/a;,j|. Hence z; € {0,1,2,...,m;} forall j.

DEFINITION 19.1: A discrete linear program (DLP) is an integer linear program
in which the variables are a bounded

Minimize: Z =c¢’'X

Subjectto: AX = b
OS]]j Smj,j:1,2,...,n
X integral.

(19.2)

Consider Problem 19.1, the Knapsack problem. This problem is motivated by
what to carry on a proposed hiking trip. The weight limit on how much can be carried
is the capacity M. Each of the n objects under consideration have a certain weight
w; and each has a certain value or profit p;, ¢ = 1,2,...,n — 1. Furthermore each
object can be either carried or left behind. We cannot choose to carry a fraction of an
object.

507

508 Graphs, Algorithms, and Optimization

Problem 19.1: Knapsack

Instance: profits — p1, P1,P2s - -+, Pn
weights wy, wy, Wa, ..., wy; and
capacity M,

Find: the maximum value of

n
P= Zpﬂ:?
i=1

subject to

n
Z W; T4 S M
i=1

and [z1,...,2,] € {0,1}™

This problem can be formulated as the discrete linear program:

Minimize: Z = —(p1x1 +p1z1+ -+ pnZn)
Subject to: wyxy +wiwr + -+ wpxTy, < M
0<z;<1,5=1,2,...,n
X integral.

19.2 Backtracking

A discrete integer linear program can be solved with a backtracking search. For ex-
ample, the Knapsack problem can be solved with Algorithm 19.2.1.

Algorithm 19.2.1: KNAPSACKI1(¥)
ifl >n
i=1
then CurrentProfit < Z DiT;
i=1
then < if CurrentProfit > OptimalProfit
th OptimalProfit < CurrentProfit
OptimalX < [z1,...,Zy)
Ty < 1
KNAPSACK1 (£ + 1)
else
xp 0
KNAPSACKI1 (¢ + 1)

Discrete Linear Programming 509

Initially Algorithm 19.2.1 is started with ¢ = 1.

In general the backtracking method to solve a discrete integer linear program is
performed by computing for a partial solution, in which values for x1, xo, ..., 2/—1
have been assigned, the set of possible values C, for x,. Each possible value is ex-
amined to see whether the partial solution can be extended with it. The general back-
tracking algorithm is provided in Algorithm 19.2.2

Algorithm 19.2.2: BACKTRACK ()

if [x1,21,...,x/] is a feasible solution
then process it

Compute Cy

for each z € C;

d Ty <— X
° BACKTRACK (£ + 1)

Algorithm 19.2.1, is an application of Algorithm 19.2.2 with C, = {1,0}. We
can improve the running time of a backtracking algorithm if we can find efficient
ways of reducing the size of the choice sets C,. This process is called pruning.

For the Knapsack problem, one simple method is to observe that we must have

£
Z w;x; < M
=1

for any partial solution |21, z2, ..., 2¢—1]. In other words, we can check partial so-
lutions to see if the feasibility condition is satisfied. Consequently, if / < n and we

set
-1

CurrentWt = Z w;T;,
i=1
then we have
c, — {1,0}, if CurrentWt + w, < M,
7 {0}, otherwise.

Using Algorithm 19.2.2 as a template, we obtain Algorithm 19.2.3, which is invoked
with ¢ = 1 and CurrentWt = 0.

510 Graphs, Algorithms, and Optimization

Algorithm 19.2.3: KNAPSACK2(¥)

if¢{ >n

n

n OptimalProfit < i L
then < if S piz; > OptimalProfit then { ;p *

=1 OptimalX < [x1,...,x,)
ifl{=n
then C; «+ ()
if CurrentWt + w, < M
else then C, < {1,0}
else Cy + {0}
for each z € C;

Ty < T

CurrentWt = CurrentWt + wpxy
KNAPSACK2({ + 1)

CurrentWt = CurrentWt — wpxy

do

A backtracking algorithm with simple pruning for solving the discrete integer
linear program 19.2 in which the coefficient matrix A = [A;, Aa,..., A,] and b
consists of only non-negative entries is given as Algorithm 19.2.4.

Algorithm 19.2.4: BACKTRACK2(¥)

if¢{ >n

n

~ OptimalZ < Ly
then { if > ciw; < OptimalZ then § 1 Z}”

i=1 OptimalX « [x1,...,Zy
comment: Compute Cy
if¢t=n
then C; < ()
Cg — {}
for x = 0 to m;
else . .
d if CurrentWt[i] + A;x <b
then Cy + Cy U {z}

for each z € C;

Ty < T

CurrentWt = CurrentWt + A;xy
BACKTRACK2({ + 1)
CurrentWt = CurrentWt — A;xy

do

Discrete Linear Programming 511

19.3 Branch and bound

Another strategy for solving an integer linear program is to first ignore the integer
constraints and solve the corresponding linear program. This linear program is called
the relaxation of the integer linear program. If a solution is found to the relaxed
integer linear program, it can be rounded to the nearest integer solution. Although
this may seem plausible, it generally leads to solutions that are either infeasible or
far from the optimal solution. We illustrate this difficulty with the following integer
linear program:

Minimize: Z = —x1 — X2
Subjectto: —2x1 + Tz < 14
201 —2x0 < 1 (19.3)
r1,72 = 0

1, Ty integral.

This problem is solved graphically in Figure 19.1, and we see that there are
six feasible solutions to this integer linear program: (0,0), (0,1), (1,1), (0,2),
(1,2), and (2,2). The value of the object function, respectively, at these points is:
0,—1,—2,—2,—3, and —4. Hence (2, 2) is the optimal solution to this integer lin-
ear program. On the other hand, the optimal solution to the relaxed integer linear
program is (3.5, 3) and the value of the objective function at this point is —6.5. The
nearest integer points are (3, 3) and (4, 3) having values —6 and —7. Neither of these
points are feasible and the value of the objective function at them is far from the
value at the true optimal solution.

Thus in practice the relaxation strategy can result in misleading information.
However, not all is lost. It is not to difficult to see that a bound on the value of
the objective function is obtained.

Theorem 19.1. Let X be an optimal solution to relaxation of the integer linear
program

Minimize: Z=c'X

Subjectto: AX = b
X > 0 (19.4)
X integral

Then any solution X to the integer linear program 19.4 satisfies
X < TX.

Proof. If X is a feasible solution to the integer linear program, it is also a feasible
solution to the linear program, in which the integer constraints have been removed.
O

If values have been assigned to each of x1,x9,...,x¢_1, then the remaining

512 Graphs, Algorithms, and Optimization

€2

boe o 0 e

Optimum of LP

Optimum of ILP

Feasible
region

~~— 2$1—2$2:1

® [] (] ([] ([]
L ® ® ® ® *—> 71
FIGURE 19.1

The integer points closest to the optimal solution to the standard linear program are
infeasible in the integer linear program.

Discrete Linear Programming 513

variables x¢, ¢41, - . . , T, must satisfy
Minimize: Z=:"X
Subjectto: A < b
X >0
X integral,
where R
4 = [AéaAZ-‘rla---aAn]
X = [z, Teq1, -, T
E - [nycl+17"'7cn]
b b — CurrentWt
and
—1
CurrentWt = Z x;A;.
=1

(Here A; is the jth column of the coefficient matrix A.) Thus according to Theo-
rem 19.1, any feasible solution X that extends x1, x2, ..., x,—; has value Z = cI'X
no larger than

~

B = CuI‘I‘CHtZ + LZoija

where Zm is value of the objective function Z =27 X for the linear program

Minimize: Z=°"X
Subject to: AX < b
X > o
Consequently, if a feasible solution X has already been obtained that has value
Z = c¢"Xy < B, then no extension of the given assignment to the variables
r1,Ta,...,re—1 Will lead to an improved Z value. Hence the search for such ex-

tensions can be aborted. This method is known as branch and bound and is recorded
as Algorithm 19.3.1, which we start with £ = 1, CurrentWt = 0, CurrentZ = 0, and
OptimalZ = oo.

514 Graphs, Algorithms, and Optimization

Algorithm 19.3.1: BACKTRACK3(¥)

if¢>n
if CurrentWt = b
if CurrentZ < OptimalZ
then { then ¢ {forj = 1 to n do OptimalX[j] + X[j]
OptimalZ < CurrentZ

return
Compute Cy
Use the simplex algorithm to solve the linear program:
Minimize: Z =¢7X 4 =M Aegrs oo And
Subjectto: AX = b, where f(=lze zesr,. ol
)/(: > 0 E Z[Cg.,Cg_;,_l,...,cn]
- b =b— CurrentWt

if the linear program has optimal value ZPT at)?m

B < CurrentZ + LZ,PTJ

if)?OPT is integer valued

if B < OptimalZ
for i<1 to ({—1) do OptimalX[i]< X [i]

then < for i< to n do OptimalX[i]¢—X..i]

OptimalZ < B

for each z € C;

if B > OptimalZ then return

Ty < T

CurrentWt = CurrentWt + Ayxy

do < CurrentZ = CurrentZ + cyxy

BACKTRACK3 (£ + 1)

CurrentWt = CurrentWt — Ayxy

CurrentZ = CurrentZ — cyxy

if the linear program is unbounded

for each z € C;

then

then

else

Ty < X
CurrentWt = CurrentWt + Apxy
then CurrentZ = CurrentZ + cyxy

do BACKTRACK3 (¢ + 1)

CurrentWt = CurrentWt — Apxy
CurrentZ = CurrentZ — cyxy
if the linear program is infeasible then return

By way of example we provide the backtracking state space search tree in Fig-
ure 19.2 that results when Algorithm 19.3.1 is applied to the integer linear pro-
gram 19.3. Observe that adding the two constraints of linear program 19.3 we see

Discrete Linear Programming 515

[]B=-6
(0] 1] B=—4 2] B= -5 BB =6
Z=-2
Xow = [0,2]
[10] [11]B=—2 [12] [13] [20] [21] [22] [23] [30] [31] [32] [33]
I P [A A S A A A A
Z=-3 Z=-4
X, = [1,2] X, = [2,2]
FIGURE 19.2

The backtracking state space search tree that results when Algorithm 19.3.1 is ap-
plied to the integer linear program 19.3.

that o < 3 = m» and thus 1 < 3 = m; as well. These bounds means that the lin-
ear program is a discrete linear program and indeed we can apply Algorithm 19.3.1.
Each leaf-node in Figure 19.2 is decorated with I, P, or an arrow. The I indicates
that the corresponding reduced integer linear program is infeasible, the P indicates
pruning by a previously obtained feasible solution and an arrow indicates that a new
optimal solution X,,, has been found. Its value Z = X, is also given. For this
example the final optimal solution is X,,, = [2, 2] with value Z = —4. This agrees
with our previous analysis.
As a second example consider the linear program

Minimize: Z = —2x1 — 319 — T3 — 214
Subject to: T+ 229 + 323 + 224 < 8
=3z +4xo+ 23+ 324 < 8 (19.5)
3.1’1 — 4.1’2 — 6$3 — 10$4 S —20 ’
L1,X2,T3,T4 Z 0

1, T2, T3, T4 integral.

The constraint 1 + 2x5 + 323 + 224 < 8 provides the upper bounds m; = 8, mg =
4, ms = 2, and my4 = 4, on the variables x1, x2, x3, and x4, respectively. Thus we
can take C; = {0,1,...,8}, Cy = Cy = {0,1,...,4}, and C5 = {0,1,2}. The
backtracking state space search tree is given in Figures 19.3 and 19.4.

Notice in this second example, that if we were to process the subtree with root
[2] prior to the subtree [0] and [1], pruning would be dramatic and the search would
be quite short. This is because the bound obtained when the relaxed linear program
with 1 = 2 leads to a bound of —10, and there is an integer solution that achieves
this bound, namely, X = [2,0, 0, 3] in the subtree with root [2]. The bound obtained
when the root is [0] and [1] is —7 and —10, respectively, so these subtrees will be

516 Graphs, Algorithms, and Optimization

00]B=—6 [01]B=—7 [02] [03] [04]
I I I

[000B=— [001B=-6 [002B=—

/N/I\

OOOO 0001 0002 0003 0004 0010 0011 0012 0013 0014

Z=—4 Z = —5
o = [0,0,0,2] o = [0,0,1,2]
[01]
[010] [011] (012]
I | I
Z=-6
Xow =[0,1,1,1]

FIGURE 19.3

The first part of the backtracking state space search tree that results when Al-

gorithm 19.3.1 is applied to the integer linear program 19.5. So far we see that
X =[0,1,1,1] gives z = —6.

Discrete Linear Programming 517

//N

B=—10 [12] | 1
/I\ |
[100]B 101 B——7 102
[11]B=—10
[1000] [1001] [1002] [1003] [0004]
rorr
7Y 4 110)B=—10 [111] [112]
Xon = [1,0,0,3] I 1
[1100] [1101] [1102] [1103] [1104]
A
2] Z=-9
KXo = [11072]

(0] [21] [22] [23] [24]

=10
XopT = [23 07 07 3]
FIGURE 194

Continuation of Figure 19.3. Notice the subtree with root [101] is pruned because
[1003] gave z = —8. The final solution appears at [20] and is X,., = [2, 0,0, 3]
with objective value z = —10.

518 Graphs, Algorithms, and Optimization

[] B=—11
[2] B=-11 1] B=-10 [0] B=—7
Z =-10
XOPT = [27 Oa 07 3]
FIGURE 19.5

Dramatic pruning when the subtrees are processed in order of the bounds

pruned if [2] is examined first. The search tree with this type of pruning is given in

Figure 19.5.
One way to implement this type of pruning is as follows. After values for
x1,T9,...,Te—1 have been assigned, precompute the bounds obtained for each pos-

sible assignment for z, and then process the assignment in order of increasing bound.
Algorithm 19.3.2 describes this method. The danger in using this method is that at
each node we are required to do sorting. If there are m, choices for xy, this will re-
quire O(my log(my)) additional steps at each node that occurs at level £ — 1 in the
search tree. This computation may be prohibitive. (There no additional calls to the
simplex algorithm.)

The relaxed linear program for the Knapsack problem is easy to solve. A
straightforward method which uses a greedy strategy, to solve the relaxed Knapsack
problem is given in Algorithm 19.3.3. (See Exercises 19.3.4, 19.3.5, and 19.3.6.) It
returns the optimal profit for the Knapsack problem, in which the integer constraint
has been relaxed to allow non-integer (i.e., rational) solutions.

Discrete Linear Programming 519

Algorithm 19.3.2: BACKTRACK4({)

if¢{ >n
if CurrentWt = b
if CurrentZ < OptimalZ
then { then ¢ {forj = 1 to n do OptimalX[j] + X[j]
OptimalZ < CurrentZ
return
Ng +~0
if ¢ <n then
for z < 0 tomy
Use the simplex algorithm to solve the linear program:

o~

Minimize: 2 = /C\T)/(: ;4? i[AZ-i-l?) An]

Subjectto: AX =b , where { =[zes1, ..., Tn]
< ¢ =loer1s e cal
X >0 3

=b—CurrentWt—xx A,
if the linear program has optimal value ZW at X, ot
B + CurrentZ + LZ\OPTJ
if)?0,,1 is integer valued
if B < OptimalZ then
for i<1 to /—1 do OptimalX [i|«+ X [i]
then OptimalX [(]+x
for i<—(+1 to n do OptimalX[i]¢X...|i]
OptimalZ < B
else if B < OptimalZ then
{Ng +— Np+1
Cy[Ny¢] + (z, B)
if the linear program is unbounded
Np<+— Ny+1
then {cwvg] e
if the linear program is infeasible then return
Sort the ordered pairs in C in order of increasing second coordinate
for h < 1to N,
if Bound,[h] > OptimalZ then return
x¢ + first coordinate of the ordered pair Cy[h]
CurrentWt < CurrentWt + Apxy
do < CurrentZ <+ CurrentZ + cpxy
BACKTRACK3 (£ + 1)
CurrentWt < CurrentWt — Apxy
CurrentZ <+ CurrentZ — cpxy

do

then

520 Graphs, Algorithms, and Optimization

Algorithm 19.3.3: RELAXEDKNAPSACK(P1, P2, Pry Wiy, Wy, M)

permute the indices so that p1 /wy > pa/wa > pp/wy,
i+ 1; P+ 0 W<+0

for j <~ 1tondoz; <0

while W < M andi <n

ifW+w, <M
i1, W« W+w; P+ P+p;
then < .]
do 141+ 1
else 441 (M =W)jwi; W= M; P P+zip;
14—1+1
return (P)

To solve an instance of the Knapsack problem, it will be useful to presort the
objects in non-decreasing order of the profit/weight ratio, before we begin the back-
tracking algorithm. Then, when we apply Algorithm 19.3.3, the first step will be
unnecessary, and consequently RELAXEDKNAPSACK will run faster. Thus, we will

assume that
P > P2 > > &

wy T ws Wy,

The improved Knapsack algorithm is given as Algorithm 19.3.4.

Algorithm 19.3.4: KNAPSACK3(¥)

ifl=n
if CurrentProfit > OptimalProfit
then {OptimalProﬁt < CurrentProfit
th .
OptimalX < [x1,...,x,)]

ifl=n

then C; «+ ()

if CurrentWt + wy < M
else then C, < {1,0}
else Cy < {0}
B < CurrentProfit
+RELAXEDKNAPSACK (g, . . ., Py We,y - - .y Wy, M — CurrentWt)

for each z € C;
if B < OptimalProfit then return
Ty < T
CurrentWt = CurrentWt + wpxy
do < CurrentProfit = CurrentProfit + pyxy
KNAPSACK3 (¢ + 1)
CurrentWt = CurrentWt — wyxy
CurrentProfit = CurrentProfit — pyxy

Discrete Linear Programming 521

Exercises

19.3.1

19.3.2

19.3.3

Solve graphically the following integer linear programs:

Minimize: Z = 5x1 — 3we
Subject to: 1 +x9 < 6
(a) 2%1 + 4%2 § 15

z1,x2 > 0
r1,To integral.

Minimize: Z =x1 — To
Subject to: T14+z2 < 6
—8$1 — 5.1’2 S —40
(b) —bx1 + 629 < 30
6x1 + T < 88
9r1 — by < 18
z1,22 2> 0

r1,Ty integral.

Use Algorithm 19.3.4 to solve the following instances of the Knapsack
problem.

(a) Profits 122 2 144133 52 172169 50 11 87 127 31 10 132 59
Weights 63 1 71 73 24 79 82 23 6 43 66 17 5 65 29
Capacity 323

(b) Profits 143 440120146266574386512106418376124 48 535 55
Weights 72 202 56 73 144277182240 54 192183 67 23 244 29
Capacity 1019

(c) Profits 818 460267 75 621280555214721427 78 754704 44 371
Weights 380 213138 35 321138280118361223 37 389387 23 191
Capacity 1617

Algorithm 19.3.4 does not take advantage of the fact that given a partial
solution X", if the optimal solution to the corresponding relaxed knap-
sack problem is integer-valued it gives that best solution X that extends
X'. Hence there is no need to pursue further extensions, and the search
can be pruned. This type of pruning was done for the general problem in
Algorithm 19.3.1. Construct a new algorithm that takes advantage of this
pruning for the Knapsack problem. Test your algorithm on the data in
Exercise 1. How does it compare with Algorithm 19.3.4?

Program Algorithm 19.3.1 and use it to solve the following integer linear

522 Graphs, Algorithms, and Optimization

program.

Minimize: Z =x1 — 319 + 25
Subject to: 1+ 29+ 324 < 6
Sx1+4x0+ 925 < 20
X >0
X integral.

19.3.4 Prove that Algorithm 19.3.3 does indeed solve

Problem 19.2: Relaxed Knapsack

Instance: profits — p1, P1, P2, - - - Pn
weights w1, wy, Wa, .. ., Wy; and
capacity M,

Find: the maximum value of

n
P = Zpﬂ?i
i=1

subject to

n
i=1
and z1,x2 ..., T, are rational

as was claimed.

19.3.5 Verify that the simplex algorithm when applied to Problem 19.2 gives
exactly the same result as Algorithm 19.3.3.

19.3.6 Determine the running time complexity of Algorithm 19.3.3.

19.3.7 In Section 11.6 we studied the traveling salesman problem. Let W (v;v;)
be the non-negative weight on the edge v;v; of the complete graph with

vertices V' = {vy, va, ..., v, }. The traveling salesman problem is to find
a hamilton cycle C' that has minimum weight

Z W (uv).
uveE(C)

Let 2, € {0,1} be a variable that denotes an edge uv in the hamilton
cycle if x,, = 1 and an edge not in the cycle if x,, = 0. Show that the
optimal solution to the discrete linear program

Minimize: Z = Z Ty W (uv)
Subject to: Z Ty W(uwv) = 2, veV
weV\{v}
> zwWw) > 1, D£ScCV
wv€ElS,S]
Ty € {0,1}, foreach edge uv

solves the traveling salesman problem.

Discrete Linear Programming 523

19.3.8 Prove that the problem

Problem 19.3: ILP decision

Instance: an integer linear program.

Question: does the given integer linear program
have a feasible solution?

is NP-complete. (Hint: Transform from 3-Sat.)

19.3.9 Use Algorithm 19.3.1 to determine the maximum number of edge disjoint
triangles in the complete graph K,,, forn = 7,8,9, ..., 13. Hint: Use the
(g) by (g) matrix A whose rows are labeled by the edges, whose columns
are labeled by the triangles and whose [e, t]-entry is 1 if e is an edge on
triangle ¢ and is 0 otherwise. When n = 1, 3(mod 6), then the maximum
number edge disjoint triangles is n(n — 1)/6. The corresponding collec-
tion of edge disjoint triangles is called a Steiner triple system.

19.4 Totally unimodular matrices

In Sections 18.6.2 and 18.6.3 we studied primal-dual algorithms for the
Shortest Path and Max-Flow problems, respectively. Surprisingly we found that
their optimal solutions were always integral although we never required that the vari-
ables be constrained to be integers. The reason for this is that the node-edge incidence
matrix of any digraph is totally unimodular (TUM).

DEFINITION 19.2: Anm by n integer valued matrix is fotally unimodular if the
determinant of each square submatrix is equal to 0, 1, or —1.

Theorem 19.2. Every basis feasible solution to the linear program

Minimize: Z=c'X
Subject to: AX b
X 0,

vVl

where A is a totally unimodular m by n matrix, and b is integer-valued, is integer-
valued.

Proof. 1f X is the basis feasible solution corresponding to the submatrix B composed

of m linearly independent columns A;, , A;,,..., A;, , then
_ ADIJ(B)
Xp=B"b=
B det(B)

where ADJ(B) is the adjoint of B. Hence X has integer values, because the total
unimodularity of A implies that the det(B) = +1. Finally

L[Xl ifje=
Xl = { 0, otherwise,

524 Graphs, Algorithms, and Optimization

and so the entries of X are integers. O
Theorem 19.3. Every basis feasible solution to the linear program
Minimize: Z=c'X
Subjectto: AX < b
X > 0,

where A is a totally unimodular m by n matrix, and b is integer-valued, is integer-
valued.

Proof. Adding slack variables Y we obtain the following equivalent linear program:

Minimize: Z=c'X
Subject to: [A4, I,,,] { ‘;(} = b
XY > 0.

Thus we need only show that if A is a totally unimodular, then [A, I,,] is totally
unimodular, where I,,, is the m by m identity matrix. Then the result follows from
Theorem 19.2. Let M be a square nonsingular submatrix of [A, I,,]; then after a
suitable permutation of the rows and columns we see that M has the form

B 0
N | Lk

where B is a square k by k submatrix of A, and I, is the ¢ by ¢ identity matrix,
for some k and ¢. The determinant of B is +1, because A is totally unimodular and
permutations of the rows and columns of M only change the determinant of M by a
factor of 4-1. Thus

det(M) = £det(B) det(I,—x) = £1.
O

Theorem 19.4. The node-edge incidence matrix of a directed graph is totally uni-
modular.

Proof. Let G = (V, E) be a directed graph and let A be its node-edge incidence

matrix. Then
+1, if eleaves v,

Alv,e] =< —1, ifeenters v,
0, otherwise.

In particular, A has exactly two non-zero entries in each column, one is a —1 and the
otheris +1. Let M be any k by k submatrix of A. If k = 1, then clearly det(M) = 0,
+1, or —1. So suppose k > 1 and proceed by induction. If M contains a column of

Discrete Linear Programming 525

zeros, then det(M) = 0. If M contains a column j with a single non-zero entry a =
+1 say in row 4, then det(M) = +adet(N) where N is the k— 1 by k — 1 submatrix
obtained by removing column j and row 4. By induction we have det(N) = 0, +1
or —1, and so det(M) = 0, +1 or —1. Finally we have the case when each column
has two non-zero entries in each column. One is a —1 and the other is a 41; hence,
each column sums to zero and therefore M is singular and hence has determinant
Zero. O

Exercises

19.4.1 Show that the following statements are all equivalent:

(a) A is totally unimodular.
(b) The transpose of A is totally unimodular.
(¢) [A4, I,,] is totally unimodular.

(d) A matrix obtained by deleting a row or column of A is totally uni-
modular.

(e) A matrix obtained by multiplying a row or column of A by —1 is
totally unimodular.

(f) A matrix obtained by duplicating a row or column of A is totally
unimodular.

(g) A matrix obtained by pivoting on an entry of A is totally unimodular.
19.4.2 Show that the matrix

1 -1 0 0 -1
-1 1 -1 0 0
0 -1 1 -1 0
0 0 -1 1 -1
-1 0 0 -1 1

is totally unimodular.
19.4.3 Let G be an undirected bipartite graph with bipartition (X, Y"). Show that
the vertex-edge incidence matrix M of G is totally unimodular.

1, ifwisincidentto e
Mlv,e] = ’ .
[vse] { 0, otherwise.

19.5 Notes

An excellent treatment of backtracking algorithms is given in the book by KREHER
and STINSON [111]. The treatment of the Knapsack problem and exercise 19.3.1
is taken from this book. Two other good books that discuss general integer lin-
ear programming are PAPIDIMITRIOU and STEIGLITZ [134] and NEMHAUSER and
WOLSEY [132].

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Bibliography

1. A.V. AHO, J.E. HOPCROFT, AND J.D. ULLMAN, The Design and Anal-
ysis of Computer Algorithms, Addison-Wesley Publishing Co., Reading,
Massachusetts, 1974.

2. M. AIGNER, Graph Theory, a Development from the 4-Color Problem,
BCS Associates, Moscow, Idaho, 1987.

3. F. ALLAIRE, Another proof of the four colour theorem, Proceedings of
the Seventh Manitoba Conference on Numerical Mathematics and Com-
puting (Univ. Manitoba, Winnipeg, Man., 1977), pp. 3-72, Congressus
Numerantium, XX, Utilitas Mathematica, Winnipeg, Man.,1978.

4. F. APERY, Models of the Real Projective Plane, Friedr. Vieweg und Sohn
Verlagsgesellschaft, Braunschweig, 1987.

5. K. APPEL AND W. HAKEN, Every planar map is four colorable. part I:
discharging, Illinois Journal of Mathematics 21 (1977), pp. 429-490.

6. K. APPEL AND W. HAKEN, Every planar map is four colorable. part II:
reducibility, lllinois Journal of Mathematics 21 (1977), pp. 491-456.

7. D. ARCHDEACON, A Kuratowski theorem for the projective plane, Jour-
nal of Graph Theory 5 (1981), pp. 243-246.

8. E. ARJOMANDI, An efficient algorithm for colouring the edges of a graph
with A + 1 colours, Discrete Mathematical Analysis and Combinatorial
Computation, University of New Brunswick, 1980, pp. 108-132.

9. J. BANG-JENSEN AND G. GUTIN, Digraphs, Springer-Verlag, New
York, 2002.

10. M. BEHZAD AND G. CHARTRAND, Introduction to the Theory of
Graphs, Allyn & Bacon, Boston, 1971.

11. L.W. BEINEKE AND R.J. WILSON, Selected Topics in Graph Theory,
Academic Press, London, 1978.

12. L.W. BEINEKE AND R.J. WILSON, Selected Topics in Graph Theory 2,
Academic Press, London, 1983.

13. L.W. BEINEKE AND R.J. WILSON, Selected Topics in Graph Theory 3,
Academic Press, London, 1988.

14. CLAUDE BERGE, Graphs and Hypergraphs, North-Holland Publishing
Co., Amsterdam, 1979.

527

528

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Graphs, Algorithms, and Optimization

CLAUDE BERGE, Principles of Combinatorics, Academic Press, New
York, 1971.

J.-C. BERMOND, Hamiltonian graphs, in [11], pp. 127-168.

N. BIGGS, Algebraic Graph Theory, second edition, Cambridge Univer-
sity Press, Cambridge, 1993.

R.G. BLAND, New finite pivoting rules for the simplex method. Mathe-
matics of Operations Research 2 (1977), 103-107.

B. BOLLOBAS, Graph Theory, An Introductory Course, Springer-Verlag,
New York, 1979.

B. BOLLOBAS, Modern Graph Theory, Springer-Verlag, New York,
2002.

J.A. BONDY AND R.L. HEMMINGER, Graph reconstruction — a survey,
J. of Graph Theory 1 (1977), 227-268.

J.A. BONDY, A Graph Reconstructor’s Manual Surveys in Combina-
torics, Ed. A.D. Keedwell, London Mathematical Society Lecture Notes
166, Cambridge University Press, 1991.

J.A. BoNDY AND U.S.R. MURTY, Graph Theory with Applications,
American Elsevier Publishing Co., New York, 1976.

J.A. BONDY AND U.S.R. MURTY, Graph Theory, Springer Verlag,
2008.

D. BRELAZ, New methods to color the vertices of a graph, Communica-
tions ACM 22 (1970), pp. 251-256.

HERMANN BUER AND ROLF H. MOHRING, A fast algorithm for the de-
composition of graphs and posets, Mathematics of Operations Research
8 (1983), pp. 170-184.

G. BUTLER, Fundamental Algorithms for Permutation Groups, Lecture
Notes in Computer Science 559, Springer-Verlag, Berlin, 1991.

M. CAPOBIANCO AND J.C. MOLLUZZO, Examples and Counterexam-
ples in Graph Theory, Elsevier North-Holland, New York, 1978.

D. CHERITON AND R.E. TARJAN, Finding minimum spanning trees,
SIAM Journal of Computing 5 (1976), pp. 724-742.

G. CHARTRAND AND F. HARARY, Graphs with prescribed connectivi-
ties, in, Theory of Graphs, Proceedings Tihany, 1966, Ed. P. Erdés and G.
Katona, Academic Press, 1968, pp. 61-63.

G. CHARTRAND AND L. LESNIAK, Graphs and Digraphs, Wadsworth
& Brooks/Cole, Monterey, California, 1986.

G. CHARTRAND AND O. OELLERMANN, Applied and Algorithmic
Graph Theory, McGraw-Hill, Inc., New York, 1993.

S.A. CHOUDUM, A simple proof of the Erdos-Gallai theorem on graph
sequences, Bulletin of the Australian Math. Soc. 33 (1986), pp. 67-70.

Bibliography

34. N. CHRISTOFIDES, Graphs Theory, An Algorithmic Approach, Academic
Press, London, 1975.

35. V. CHVATAL, Linear Programming, W.H. Freeman and Co., 1983.

36. S.A. CoOK, The complexity of theorem proving procedures, Proc. Third
ACM Symposium on the Theory of Computing, ACM (1971), pp. 151-158.

37. D.G. CORNEIL, H. LERCHS, AND L. STEWART BURLINGHAM, Com-
plement reducible graphs, Discrete Applied Mathematics 3 (1981), pp.
163-174.

38. H.S.M. COXETER, Regular Polytopes, Dover Publications, New York,
1973.

39. D. CveETKOVIC, M.D. DOOB, AND H. SACHS, Spectra of Graphs: The-
ory and Applications, John Wiley & Sons, 1998.

40. G.B. DANTZIG, Programming of independent activities, II, mathematical
model. Econometrics 17 (1949), pp. 200-211.

41. G.B. DANTZIG, Programming of independent activities, II, mathematical
model, in Activative of Production and Allocations, ed. T.C. Koopermans,
John Wiley & Sons, New York, 1951, pp. 19-32.

42. G.B. DANTZIG, Linear Programming and Extensions, Princeton Univer-
sity Press, 1963.

43. N. DEO, Graph Theory with Applications to Engineering and Computer
Science, Prentice-Hall, Englewood Cliffs, New Jersey, 1974.

44. R. DIESTEL, Graph Theory, Graduate Texts in Mathematics 173,
Springer-Verlag, New York, Berlin, Heidelberg, 1997.

45. G.A. DIRAC, Some theorems on abstract graphs, Proceedings London
Mathematical Society 2 (1952), pp. 69-81.

46. J.R. EDMONDS, A combinatorial representation for polyhedral surfaces,
Notices American Mathematical Society 7 (1960), pp. 646.

47. J.R. EDMONDS, Paths, trees, and flowers, Canadian Journal of Mathe-
matics 17 (1965), pp. 449-467.

48. J.R. EDMONDS AND R.M. KARP, Theoretical improvements in algorith-
mic efficiency for network flow problems, Journal of the Association of
Computing Machinery 19 (1972), pp. 248-264.

49. M.C. ESCHER, The Graphic Work of M.C. Escher, Gramercy Publishing
Co., New York, 1984.

50. S. EVEN, Graph Algorithms, Computer Science Press, Potomac, Mary-
land, 1979.

51. J.R. FIEDLER, J.P. HUNEKE, R.B. RICHTER, AND N. ROBERTSON,

Computing the orientable genus of projective graphs, Journal of Graph
Theory 20 (1995), pp. 297-308.

529

530

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Graphs, Algorithms, and Optimization

J-C. FOURNIER, Colorations des aretes d’un graphe, Cahiers du CERO
15 (1973), pp. 311-314.

L.R. FORD, JR. AND D.R. FULKERSON, Maximal flow through a net-
work, Canadian Journal of Mathematics 8 (1956), pp. 399-404.

M. FRECHET AND Ky FAN, Initiation to Combinatorial Topology,
Prindle, Weber, & Schmidt, Inc., Boston, 1967.

C. FREMUTH-PAEGER AND D. JUNGNICKEL, An introduction to bal-
anced network flows, in Codes and Designs, Ohio State University, Math.
Res. Inst. Publ. 10 (2000), pp. 125-144.

RUDOLF FRITSCH AND GERDA FRITSCH, The Four Color Theorem,
Springer Verlag, New York, 1998.

D.R. FULKERSON, ED., Studies in Graph Theory, Parts I and II, Mathe-
matical Association of America, Washington, D.C., 1975.

D.R. FULKERSON, Flow networks and combinatorial operations re-
search, in [57], pp. 139-171.

A. GAGARIN, Graph Embedding Algorithms, Ph.D. thesis, University of
Manitoba, 2003.

A. GAGARIN AND W. KocAy, Embedding graphs contianing K5 subdi-
visions, Ars Combinatoria 64 (2002), pp. 33-49.

A. GAGARIN, W. MYRVOLD, AND J. CHAMBERS, The obstructions for
toroidal graphs with no K3 3’s, Discrete Math. 309 (2009), no. 11, pp.
3625-3631.

T. GALLAI, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hung.
18 (1967), pp. 25-66.

CYRIL F. GARDINER, A First Course in Group Theory, Springer-Verlag,
New York, 1980.

M.R. GAREY AND D.S. JOHNSON, Computers and Intractability, A
Guide to the Theory of NP-Completeness, W.H. Freeman, San Francisco,
California, 1979.

C.F. GAuss, Die Kugel, in Werke 8 (c. 1819), pp. 351-356.

A. GIBBONS, Algorithmic Graph Theory, Cambridge University Press,
Cambridge, 1985.

H.H. GLOVER, J.P. HUNEKE, AND C.S. WANG, 103 graphs that are
irreducible for the projective plane, J. Combin. Theory Ser. B 27 (1979),
pp- 332-370.

C.D. GODSIL, On the full automorphism group of a graph, Combinator-
ica 1(1981), pp. 243-256.

C.D. GopsiL AND W.L. KocAy, Constructing graphs with pairs of
pseudo-similar vertices, J. Combinatorial Th. B 32 (1981), pp. 146-155.

Bibliography 531

70. C. GODSIL AND G. ROYLE, Algebraic Graph Theory, Springer-Verlag,
New York, 2001.

71. MARK GOLDBERG, A non-factorial algorithm for testing isomorphism
of two graphs, Discrete Applied Mathematics 6 (1983), pp. 229-236.

72. A.W. GOODMAN, On the number of acquaintances and strangers at a
party, Amer. Math. Monthly 66 (1959), pp. 778-783.

73. R. GOULD, Graph Theory, Benjamin/Cummings Publishing, Menlo
Park, California, 1988.

74. J.L. GROSS AND T.W. TUCKER, Topological Graph Theory, John Wiley
& Sons, New York, 1987.

75. J. GROSS AND J. YELLEN, Graph Theory and Its Applications, CRC
Press, Boca Raton, Florida, 1999.

76. B. GRUNBAUM, Convex Polytopes, Springer-Verlag, New York, 2003.

77. CARSTEN GUTWENGER AND PETRA MUTZEL, A linear time implemen-
tation of SPQR trees, Proceedings of the Eight International Symposium
on Graph Drawing, Lecture Notes in Computer Science, (2001), pp. 77-
90.

78. G. HADLEY, Linear Programming, Addison-Wesley Publishing Co.,
1962.

79. P. HALL, On representatives of subsets, Journal london Mathematical
Society 10 (1935), pp. 26-30.

80. F. HARARY, Graph Theory, Addison-Wesley Publishing Co., Reading,
Massachusetts, 1972.

81. L. HEFFTER, Uber das Problem der Nachbargebiete, Mathematisce An-
nalen 38 (1891), pp. 477-508.

82. P.HELL AND J. NESETRIL, Graphs and Homomorphisms, Oxford Uni-
versity Press, New York, 2004.

83. D. HILBERT AND S. COHN-VOSSEN, Geometry and the Imagination,
Chelsea Publishing Co., New York, 1983.

84. A.J. HOFFMAN, Eigenvalues of graphs, in [57], pp. 225-245.

85. A.J. HOFFMAN AND R.R. SINGLETON, On Moore graphs with diam-
eters 2 and 3, IBM Journal of Research and Development 4 (1960), pp.
497-504.

86. 1. HOLYER, The NP-completeness of edge-coloring, SIAM Journal of
Computing 10 (1981), pp. 718-720.

87. J.E. HOPCROFT AND R.M. KARP, An n°/2 algorithm for maximum
matching in bipartite graphs, SIAM Journal of Computing 2 (1973), pp.
225-231.

88. J. HOPCROFT AND R.E. TARJAN, Efficient planarity testing, Journal of
the Association of Computing Machinery 21 (1974), pp. 449-568.

532 Graphs, Algorithms, and Optimization

89. J. HOPCROFT AND R.E. TARJAN, Algorithm 447: efficient algorithms
for graph manipulation, CACM 16 (1973), pp. 372-378.

90. J. HOPCROFT AND R.E. TARJAN, Dividing a graph into triconnected
components, SIAM Journal of Computing 2 (1973), pp. 135-158.

91. PIERRE ILLE, Indecomposable graphs, Discrete Mathematics 173 (1997),
pp. 71-78.

92. W. IMRICH, Graphical regular representations of groups of odd order,
Combinatorics (Proc. Hungarian Colloqg., Keszthely, 1976) Vol II, pp.
611-621.

93. B. IVERSEN, Hyperbolic Geometry, London Mathematical Society, Cam-
bridge University Press, 1992.

94. FRANCOIS JAEGER, Nowhere Zero Flow Problems, Selected Topics in
Graph Theory 3, pp. 71-96. Ed. Lowell Beineke and Robin Wilson. Aca-
demic Press, San Diego, CA, 1988.

95. D.S. JOHNSON, Worst case behavior of graph coloring algorithms, Pro-
ceedings of the Fifth Southeastern Conference on Combinatorics, Graph
Theory, and Computing, Congressus Numerantium 10 (1974), pp. 513-
527.

96. R.M. KARP, Reducibility among combinatorial problems, in Complexity
of Computer Computations, eds. R.E. Miller and J.W. Thatcher, Plenum
Press, New York, 1972, pp. 85-103.

97. L.G. KHACHIAN, A polynomial algorithm in linear programing, Doklady
Adademiia Nauk SSR 224 (1979), 1093-1096. (English translation: Soviet
Mathematics Doklady 20 (1979), 191-194.)

98. KIMBLE, SCHWENK, AND STOCKMEYER, Pseudosimilar vertices in a
graph, J. Graph Th. 5 (1981), 171-181.

99. V. KLEE AND G.J. MINTY, How good is the simplex algorithm?, in
Inequalities-111, ed. O. Shisha, Acdemic Press, New York, pp. 159-175,
1972.

100. F. KLEIN, Vergleichende Betrachtungen iiber neuere geometrische
Forschungen (Erlanger Programm), Ges. Math. Abhandl. 1 (1872), 460—
497.

101. W. KLOTZ, A constructive proof of Kuratowski’s theorem, Ars Combina-
toria, 28 (1989), pp. 51-54.

102. D.E. KNUTH, The Art of Computer Programming, Addison-Wesley Pub-
lishing Co., Reading, Massachusetts, 1973.

103. D.E. KNUTH, Searching and Sorting, Addison Wesley Publishing Co.,
Reading, Massachusetts, 1973.

104. W. KocAy, D. NEILSON, AND R. SZYPOWSKI, Drawing graphs on the
torus, Ars Combinatoria 59 (2001), 259-277.

Bibliography

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

W. KocAy, An extension of the multi-path algorithm for finding hamil-
ton cycles, Discrete Mathematics 101, (1992), pp. 171-188.

W. KoCAY, Some new methods in reconstruction theory, Combinatorics
IX, Lecture Notes in Mathematics 952, pp. 89-114, Springer, 1982.

W. KoCAY, On writing isomorphism programs, in Computational and
Constructive Design Theory, pp. 135-175 Editor: W.D. Wallis, Kluwer
Academic Publishers, 1996.

W. KOCAY AND PAK-CHING LI, An algorithm for finding a long path in
a graph, Utilitas Mathematica 45 (1994) pp. 169-185.

W. KOoCcAY AND C. PANTEL, An algorithm for constructing a planar lay-
out of a graph with a regular polygon as outer face, Utilitas Mathematica
48 (1995), pp. 161-178.

W. KoCAY AND D. STONE, Balanced network flows, Bulletin of the In-
stitute of Combinatorics and Its Applications 7 (1993), pp. 17-32.

D.L. KREHER AND D.R. STINSON, Combinatorial Algorithms: Gener-
ation, Enumeration, and Search, CRC Press, Boca Raton, Florida, 2000.

C. KURATOWSKI, Sur le probléme des curbes gauche en topologie, Fund.
Math. 15 (1930), pp. 271-283.

J. LAURI AND R. SCAPELLATO, Topics in Graph Automorphisms and
Reconstruction, London Mathematical Society Student Texts 54, Cam-
bridge University Press, 2003.

E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN, AND D.B.
SHMOYS, EDS., The Traveling Salesman Problem, John Wiley & Sons,
Essex, U.K., 1990.

R.M.R. LEWIS, A Guide to Graph Coloring, Algorithms, and Applica-
tions, Springer Verlag, 2016.

C.C. LINDNER AND C.A. RODGER, Design Theory, CRC Press, Boca
Raton, Florida, 1997.

LOBACHEVSKY, Geometric Researches on the Theory of Parallels,
George B. Halstead, translator, Open Court Publishing, Chicago, 1914.

G. LoPEZ, Deux resultats concernant la determination dune relation par
les types d’isomorphie de ses restrictions, C.R.A.S. Srie A 274 (1972) pp.
1525-1528.

L. LovAsz, Three short proofs in graph theory, Journal of Combinatorial
Theory (B) 19 (1975), pp. 111-113.

L. LovAsz AND M.D. PLUMMER, Matching Theory, Elsevier Science,
1986.

WILHELM MAGNUS, Non-Euclidean Tesselations and Their Groups,
Academic Press, New York, 1974.

533

534

122.

123.

124.

125.

126.

127.

128.
129.

130.

131.

132.

133.
134.

135.

136.

137.

138.

139.

140.

141.

Graphs, Algorithms, and Optimization

D. MCCARTHY AND R.G. STANTON, EDS., Selected Papers of W.T.
Tutte, Charles Babbage Research Centre, St. Pierre, Manitoba, 1979.

B.D. McKAY, Isomorph-free exhaustive generation, Journal of Algo-
rithms 26 (1998), pp. 306-324.

B.D. MCKAY AND A. PIPERNO, Practical graph isomorphism II, J.
Symbolic Computing 60 (2014), pp. 94-112.

B. MOHAR, Projective planarity in linear time, Journal of Algorithms 15
(1993), pp. 482-502.

B. MOHAR AND C. THOMASSEN, Graphs on Surfaces, Johns Hopkins
University Press, Baltimore, 2001.

J.W. MOON, Topics on Tournaments, Holt, Rinehart, and Winston, New
York, 1968.

W. MYRVOLD, personal communication, 2004.

W. MYRVOLD AND W. KOCAY, Errors in graph embedding algorithms,
Journal of Computer and System Sciences 77(2), (2011) pp. 430-438.

W. MYRVOLD AND J. ROTH, Simpler projective planar embedding, Ars
Combinatoria 75, 2005.

C.ST.J.A. NASH-WILLIAMS, The reconstruction problem, Selected Top-
ics in Graph Theory, Ed. L.W. Beineke and R.J. Wilson, Academic Press,
London, 1978.

G.L. NEMHAUSER AND L.A. WOLSEY, Integer and Combinatorial Op-
timization, John Wiley & Sons, 1988.

O. ORE, The Four-Colour Problem, Academic Press, New York, 1967.

C.H. PAPADIMITRIOU AND K.STEIGLITZ, Combinatorial Optimization,
Dover Publications Inc., Mineola, New York, 1998.

DAN PEDOE, Geometry, a Comprehensive Course, Dover Publications
Inc., Mineola, New York, 1988.

H. POINCARE, Théorie des groupes Fuchsien, Acta Math. 1 (1882), pp.
1-62.

H. PRUFER, Neuer Beweis eines Satzes iiber Permutationen, Arch. Math.
Phys. 27 (1918), pp. 742-744.

P.W. PURDOM, JR. AND C.A. BROWN, The Analysis of Algorithms,
Holt, Rinehart, Winston, New York, 1985.

S. RAMACHANDRAN, Graph reconstruction — some new developments,
AKCE J. Graphs. Combin. 1 (2004), pp. 51-61.

A. RAMSAY AND R. RICHTMYER, Introduction to Hyperbolic Geome-
try, Springer, New York, 1995.

R.C. READ, ED., Graph Theory and Computing, Academic Press, New
York, 1972.

Bibliography 535

142. R.C. READ, The coding of various kinds of unlabeled trees, in [141].

143. R.C. READ, Graph theory algorithms, in Graph Theory and its Applica-
tions, ed. Bernard Harris, Academic Press, New York, 1970, pp. 51-78.

144. R.C. READ, A new method for drawing a planar graph given the cyclic
order of the edges at each vertex, Congressus Numerantium 56 (1987),

pp- 31-44.
145. R.C. READ AND W.T. TUTTE, Chromatic polynomials, in [13], pp. 15-
42.

146. K.B. REID AND L.W. BEINEKE, Tournaments, in [11], pp. 83-102.

147. GERHARD RINGEL, Sellbstkomplementidre Graphen, Arch. Math (Basel)
14 (1963) pp. 354-358.

148. N. ROBERTSON AND P.D. SEYMOUR, Graph minors — a survey, in Sur-
veys in Combinatorics 1985, Proceedings of the Tenth British Combinato-
rial Conference, (I. Anderson, ed.), London Math. Society Lecture Notes
103, Cambridge, 1985, pp. 153-171.

149. N. ROBERTSON, D.P. SANDERS, P. SEYMOUR, AND R. THOMAS, The
four-colour theorem, Journal of Combinatorial Theory (B) 70 (1997), pp.
2-44.

150. FIOoNA ROSS AND WILLIAM T. RosS, The Jordan curve theorem is non-
trivial, J. Mathematics and the Arts 5:4 (2011), pp. 213-219.

151. JOSEPH J. ROTMAN, The Theory of Groups, an Introduction, Allyn and
Bacon, Inc., Boston, 1973.

152. F. RUBIN, A search procedure for hamilton paths and circuits, JACM 21
(1974), pp. 576-580.

153. T.L. SAATY AND P.C. KAINEN, The Four-Color Problem, Assaults and
Congquest, Dover Publications, New York, 1977.

154. P.D. SACHS, Uber sellbstkomplementire Graphen, Publ. Math. Debrecen
9 (1962) pp. 270-288.

155. JAMES H. SCHMERL AND WILLIAM T. TROTTER, Critically indecom-
posable partially ordered sets, graphs, tournaments, and other binary re-
lational structures, Discrctc Mathematics 113 (1993), pp. 191-205.

156. A.J. SCHWENK AND R.J. WILSON, Eigenvalues of graphs, in [11], pp.
307-336.

157. R. SEDGEWICK, Algorithms in C++, Addison-Wesley Publishing Co.,
Boston, 1998.

158. Akos SERESS, Permutation Group Algorithms, Cambridge University
Press, New York, 2003.

159. P.D. SEYMOUR, Nowhere-zero 6-flows, J. Comb. Theory B 30 (1981) pp.
130-135.

536

160.

161.

162.
163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.
174.

175.
176.
177.
178.

179.

180.

181.

Graphs, Algorithms, and Optimization

S. STAHL, The Poincaré Half Plane, Jones and Bartlett Publishers,
Boston, MA, 1993.

J. STILLWELL, Classical Topology and Combinatorial Group Theory,
Springer-Verlag, New York, 1980.

J. STILLWELL, Geometry of Surfaces, Springer-Verlag, New York, 1992.

J. STILLWELL, Mathematics and its History, Third Edition, Springer-
Verlag, New York, 2010.

J. STOCKMEYER, The falsity of the reconstruction conjecture for tourna-
ments, J. Graph Th. 1 (1977), pp. 19-25.

H.A. TAHA, Operations Research: An Introduction, Prentice Hall, En-
glewood Cliffs, New Jersey, 2003.

R.E. TARJAN, Depth-first search and linear graph algorithms, SIAM Jour-
nal of Computing 1 (1972) pp. 146-160.

C. THOMASSEN, Kuratowski’s Theorem, Journal of Graph Theory 5
(1981), pp. 225-241.

C. THOMASSEN, The graph genus problem is NP-complete, Journal of
Algorithms 10 (1989), pp. 568-576.

C. THOMASSEN, Planarity and duality of finite and infinite graphs, Jour-
nal of Combinatorial Theory (B) 29 (1980), pp. 244-271.

C. THOMASSEN, Whitney’s 2-switching problem, cycle spaces, and arc
mappings of directed graphs, J. Combin. Th. B 46 (1989), pp. 257-291.

WILLIAM P. THURSTON, Three Dimensional Geometry and Topology,
Princeton University Press, New Jersey, 1997.

R. TRUDEAU, Introduction to Graph Theory, Dover Publications, Mine-
ola, 1994.

W.T.TUTTE, How to draw a graph, in [122], pp. 360-388.

W.T.TUTTE, A short proof of the factor theorem for finite graphs, in
[122], pp. 169-175.

W.T.TUTTE, The factorization of linear graphs, in [122], pp. 89-97.
W.T.TUTTE, Chromials, in [57], pp. 361-377.
W.T.TUTTE, Connectivity in Graphs, University of Toronto Press, 1966.

W.T.TUTTE, Graph Theory, Encyclopedia of Mathematics and its Appli-
cations, vol. 21, Addison Wesley, 1984.

W.T.TUTTE, A contribution to the theory of chromatic polynomials,
Canadian J. Math. 6 (1954), pp. 80-91.

W.T.TUTTE, On the algebraic theory of graph colorings, J. Comb. Theory
1 (1966), pp. 15-50.

W.T.TUTTE, Unsolved problem 48, in [23].

Bibliography

182. S.M. ULAM, A Collection of Mathematical Problems, Wiley, New York,
1960.

183. J.H. VAN LINT AND R.M. WILSON, A Course in Combinatorics, Cam-
bridge University Press, Cambridge, 1992.

184. V.G. VIZING, Critical graphs with given chromatic index, Merody
Diskret. Analiz. 5 (1965), pp. 9-17.

185. R.C. WALKER, Introduction to Mathematical Programming, Prentice
Hall, Englewood Cliffs, New Jersey, 1999.

186. WALTER WALLIS, A Beginner’s Guide to Graph Theory, Birkhaiiser
Boston, Boston, MA, 2007.

187. MARK E. WATKINS, On the action of non-Abelian groups on graphs, J.
Combinatorial Th. (B) 11 (1971), pp. 95-104.

188. M.A. WEISS, Data Structures and Algorithm Analysis, Benjamin Cum-
mings Publishing Co., Redwood City, California, 1992.

189. D.B. WEST, Graph Theory, Prentice Hall, Upper Saddle River, New Jer-
sey, 1996.

190. A.T. WHITE, The Proof of the Heawood Conjecture, in [11].

191. H. WHITNEY, 2-Isomorphic Graphs, American Journal of Mathematics
55 (1933), pp. 245-254.

192. S.G. WILLIAMSON, Embedding graphs in the plane algorithmic aspects,
Annals of Discrete Mathematics 6 (1980), pp. 349-384.

193. R.J. WILSON, Four Colours Suffice, Penguin Books, London, 2002.

194. D.R. WOODALL AND R.J. WILSON, The Appel-Haken proof of the four-
colour theorem, in [11], pp. 83-102.

195. D.H. YOUNGER, Integer Flows, J. Graph Theory 7 (1983), pp. 349-357.

196. G.M. ZIEGLER, Lectures on Polytopes, Springer-Verlag, New York,

1998.

537

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Index

C5-Coloring., 303
H-coloring problem, 296
K5-component, 420
f-factor, 185
k-circulation, 336
k-connected, 128
k-cube, 58

k-face, 414

k-factor, 182
k-factorable, 183
k-factorization, 183
k-regular, 8
m-chromatic, 271
m-coloring, 271
m-critical, 279
m-edge-coloring, 283

(i, j)-subgraph, 284
2-Sat, 266-269, 418-420
2-cell, 361

2-cell embedding, 361
3-Colorability, 297, 300

3-Sat, 235-237, 266, 297, 299-303,

523

abstract dual, 328
activity graph, 251
acyclic, 252

adjacency list, 10
adjacent, 2

admissible columns, 495
All Paths, 29
alternating path, 170
antipodal medial digraph, 409, 435
antipodal walks, 407
antisymmetry, 267
asymptotic lines, 438

augmented K5-component, 420
augmenting path, 170, 199
augmenting the flow, 199
automorphism group, 400
autonomous set, 143
autonomous sets, 145

auxiliary network, 206

backward edges, 197
balanced network, 207
barbell graph, 432
barycentric coordinatization, 339
basis feasible solution, 459
basis solution, 459
Beltrami-Klein disc model, 438
Berge’s theorem, 170

BFS, 30

bicentral trees, 99

binary heap, 43

binary plane, 105

binary tree, 100

bipartite, 57

block graph, 160

block system, 160

blocks, 128

blossom, 178

blossom base, 178

bond, 77

bond space, 77
Bondy-Chvatal theorem, 226
bottleneck, 202

boundary, 312

branch and bound, 513
branches, 97, 98
breadth-first numbering, 80
breadth-first search, 29

539

540 Graphs, Algorithms, and Optimization

bridge, 414 component representative, 24

Brooks’ theorem, 272 condensation, 257, 268

bundle, 349 conflict graph, 349

conjugacy class, 156

C, 304 conjugate, 156

capacity, 193, 196 connected component, 23

Catalan numbers, 105 connected graph, 23

Cayley digraph, 150 connects, 23

Cayley’s theorem, 116 continuous, 360

center, 98, 159 contract, 116, 307

central trees, 99 contractible, 370

centralizer, 156 converse, 258

certificate, 233 convex, 320

Christofides’ algorithm, 246 convex set of feasible solutions, 486

Chromatic Index, 300, 301, 303, coordinate averaging, 340
304 core, 159, 293

chromatic index, 283 corners, 310

chromatic number, 271, 422 coset, 148

chromatic polynomial, 281 coset diagram, 152

chromial, 304 coset representatives, 148

Class I graphs, 289 covering, 187

Class II graph, 289 critical, 279

clause, 234 critical path, 252

Clique, 300 critical path method, 252

clique, 274 crosscap, 364, 368

clockwise, 312 crosscap number, 370

closed surface, 363 crossover, 221, 224

co-cycles, 77 cube, 217

co-tree, 76 current bundle, 350

cofactor, 118 curvilinear polygons, 363

color class, 274 cycle, 23

color rotation, 286 cycle space, 77

color-isomorphic, 274 cylinder, 361

coloring, 271 cylindrical embedding, 380

combinatorial embedding, 315

combinatorial planar dual, 317 decomposable, 144, 265

complement, 3 degree, 5, 312

complementary slackness, 490 degree matrix, 118

complementary strong component, degree saturation method, 276
267 degree sequence, 8

complementing, 7 Dehn and Heegard theorem, 366

complementing permutation, 161 depth-first search, 134

complete bipartite, 57 Desargues, 412

complete graph, 3 Descartes’ formula, 424

complexity, 19 DFS, 134, 256

Index

diagonal cycle, 388
diagonal path, 387
diagonally opposite, 387
diameter, 66

differences, 123

digon, 364

digraph, 3, 193

directed graph, 3, 193

disc embedding, 380
discrete linear program, 507
distance, 29

distinct embeddings, 361
double coset graphs, 154
double cover, 406

double cover map, 406, 435
dual linear program, 479
dual-restricted primal, 496

edge set, 2

edge subgraph, 5

edge subgraph cover, 51
edge subgraphs, 45

edge transitive, 150
edge-chromatic number, 283
edge-connectivity, 125
edge-cut, 76

edges, 23, 130
elementary branches, 105
ellipsoid method, 477
embedding, 359

empty graph, 3
end-block, 140
endomorphism, 293
endpoints, 2

equivalent embeddings, 326, 381

Erdos-Gallai conditions, 17
Erdos-Gallai theorem, 15
Erlanger program, 372
essential, 370

Euler characteristic, 368
Euler tour, 67

Euler trail, 67

Euler’s formula, 312
Euler-Poincaré formula, 371
Eulerian, 67

excluded minor, 377

Féry’s theorem, 338
fabric graph, 262

faces, 312, 360
facewidth, 404

facial cycle, 312, 360
facial walk, 312, 360
factor group, 157
feasible solutions, 453
first chord below, 348
five-color theorem, 334
flow, 193

forbidden minor, 376, 377
forest, 85

forward edges, 197
four-color theorem, 332
fronds, 136

541

full automorphism group, 330, 383,

445
fundamental cycle, 74
fundamental edge-cut, 77
fundamental region, 373

generating function, 105
genus, 370

girth, 62

Graph embeddability, 376
Graph embeddings, 376
Graph Genus, 376, 424
Graph genus, 376

graph homomorphism, 291
graph minor theorem, 377
graph reconstruction, 53
Graphic, 9

graphic, 9

greedy strategy, 518
growth rate, 19

half-plane model, 438
Hall’s theorem, 171

HamCycle, 217, 218, 233-235, 238,

242,243
hamilton closure, 226
hamilton cycle, 217
hamilton path, 217

542

hamiltonian, 217

hamiltonian cycle, 217

handle, 367

Havel-Hakimi theorem, 14
heap, 36

heap property, 36

Heawood graph, 385

Heawood map coloring theorem, 423
Heawood’s theorem, 422

height of a branch, 105
hexagon, 378

hexagon edges, 414
homeomorphic, 307, 360, 361
homeomorphic embeddings, 381
homeomorphism, 361
homomorphism, 159

Hungarian algorithm, 173

ILP decision, 523
implication digraph, 267
imprimitive, 159
in-degree, 251

in-edges, 251

in-flow, 193
inclusion-exclusion, 49
indecomposable, 144, 265
independent set, 274
induced subgraph, 4
induced subgraph cover, 50
induced subgraphs, 45
initial tableau, 461

inner vertices, 175, 310
integer linear program, 507
internally disjoint, 129
interval, 265

intervals, 145

inverter, 301

inverting component, 301
isometry, 372

isomorphic, 4, 381
isomorphic embeddings, 326
isomorphism, 4

Jordan curve, 306
Jordan curve theorem, 306

Graphs, Algorithms, and Optimization

Konig’s theorem, 187

Kelly’s lemma, 53

Kempe, 333

Kempe chain, 333

kernel, 159

Kirchhoff matrix, 118

Klein map, 428

Knapsack, 507-509, 518, 520, 521,
525

Kuratowski graphs, 344

Kuratowski subgraphs, 377

Kuratowski’s theorem, 343

labeled trees, 114
Lagrange’s theorem, 148
Laplacian matrix, 118
leading chord, 348

leaf, 98

leftist binary tree, 88
line-graph, 59

linear, 451

linear fractional transformations, 374
Linear programming, 451
logarithmic growth, 20
longest path, 27

loops, 2

low-point, 136

lower bound, 212

Mobius band, 361, 362
Mobius inversion, 49

Mobius ladder, 403

Mobius lattice, 403

Mobius transformations, 374
matching, 169

Matrix-tree theorem, 118
Max-Flow, 194, 523
max-flow, 194
max-flow-min-cut theorem, 200
maximal matching, 169
maximum, 244

maximum clique, 275
maximum degree, 8

maximum genus, 424
maximum independent set, 275

Index

maximum matching, 169
medial digraph, 329, 382, 409
merge-find, 24

min-cut, 196

minimal, 377

minimal edge-cut, 76
minimum, 198

minimum amount of time, 252
minimum covering, 187
minimum degree, 8

minimum spanning tree problem, 81
minor, 308

minor-order obstruction, 377
mixed subgraphs, 45

modular partition, 265
module, 143, 265

Moore graphs, 62

multi-path method, 218
multigraph, 2, 378

Nash-Williams’ lemma, 54
near 1-factorization, 190

near perfect matching, 190
neighbor set, 171

network, 193

node, 3

node-edge incidence matrix, 491
non-contractible, 370
non-deterministic polynomial, 234
non-orientable, 327, 363
non-orientable embedding, 381
non-planar, 307

normal form, 366

normal subgroup, 157
normalizer, 156

nowhere-zero flow, 335

NP, 233

NP-complete, 218, 234
NP-completeness, 233
null-homotopic, 370

number, 117

obstructions, 344, 376
odd girth, 296
one-sided, 363

543

only, 115

open disc, 360

open surface, 361

optimization problems, 451

orbit, 149

order, 3

Ore’s lemma, 290

orientable, 327, 363

orientable embedding, 381

orientable genus, 370

orientation, 312

orientation preserving automorphism
group, 383, 445

orientation-preserving
automorphism, 330

orientation-preserving automorphism
group, 330

orientation-reversing automorphism,
330

oriented graph, 251

out-degree, 251

out-edges, 251

out-flow, 193

outer face, 312

outer vertices, 175

P, 266

parity lemma, 284
partial subgraph, 5
partial subgraphs, 45
path, 23

path compression, 25
perfect matching, 169
Petersen graph, 395
Phase 1 linear program, 469
Phase 1 tableau, 469
pivoting, 459

planar, 305

planar dual, 315

plane map, 315

Platonic maps, 387
Platonic solids, 319
Poincaré disc model, 438
point, 3

polygons, 319

544

polyhedron, 319, 363
polynomial, 233

polynomial transformation, 234
positive integral weight, 33
Priifer sequence, 114
PrevPt, 174

primal linear program, 479
primal-dual graph, 342
primitive, 159

priority queue, 87
Programming problems, 451
projective map, 398
projective planar, 398
proper coloring, 271

proper edge coloring, 283
pseudo-similar edges, 165
pseudo-similar vertices, 163

quadragon edges, 414
queue, 30
quotient group, 157

reachable, 199

reducibility, 334

reducible configuration, 334
regular, 8

regular polygon, 319

regular polyhedron, 319
relaxation, 511

Relaxed Knapsack, 522
representativity, 404
requirement-space, 486
residual capacity, 197
restricted primal, 495
retract, 293

right regular representation, 151
Ringel-Youngs theorem, 423
Robbins’ theorem, 262

root, 81

root vertex, 97

rooted trees, 97

rotation system, 314, 379

Sat, 234-236, 269
Satisfiability, 249

Graphs, Algorithms, and Optimization

satisfiability of boolean expressions,
234,235

satisfiable, 235

saturated, 169

saturation degree, 276

Schléfli symbols, 320

Sections, 142

segments, 229

self-complementary, 5, 161

self-converse, 258

self-dual, 320

separable, 128

separating cycle, 327

separating set, 125

sequential algorithm, 271

shadow set, 171

Shannon’s theorem, 289

shortest, 202

Shortest Path, 29, 523

Shortest Path (directed graph),
491

shortest-path problem, 491

signature, 396

similar vertices, 163

simple, 2, 251

simple graph, 2

skeleton, 319

slack, 455

slack variable, 455

smallest index rule, 475

source, 193

spanning tree bound, 244

spanning trees, 74

splitting, 308

stabilizer, 148

stable set, 275

standard form, 456

standard linear program, 456

star, 107

Steiner triple system, 523

Steinitz’s theorem, 320

stereographic projection, 324

strict, 251

strong, 256

strong component, 257

Index

strongly connected, 256
subdivided, 307
subdivision, 307
subdivision graph, 60
subgraph, 4
Subgraph Problem, 186
support of the flow, 207
surface, 360
surplus, 455
surplus variable, 456
Sylow p-subgroup, 157
symmetric difference, 170
symmetric group, 148
system of distinct representatives,
172

target, 193

ternary heap, 43

theta-graph, 378

throughput, 208

topological embedding, 315

topological minor, 308

topological obstruction, 376

topological ordering, 253

topologically equivalent, 307

torus map, 379

totally unimodular, 523

tournament, 264

transitive, 150

transitive tournament, 264

tree, 73

tree algorithm, 246

tree graph, 78

triangle inequality, 244

triangle traveling salesman problem,
244

triangulation, 321

545
truncated tetrahedron, 217
TSP, 242
TSP Decision, 242, 243
TUM, 523

Tutte’s theorem, 188
two-sided, 362

Ulam’s problem, 53
ultra-parallel, 438
uncolored edge lemma, 289
unicyclic, 282

uniform selection, 93
unorientable genus, 370
unsaturated, 169, 199

value, 194

Vertex Cover, 235-238, 300

vertex cover, 187, 236

vertex cut, 125

vertex figure, 320

vertex of attachment, 414

vertex set, 2

vertex transitive, 150

vertex-connectivity, 125

vertex-face-incidence graph, 342,
395

Vizing’s theorem, 284

Wagner’s theorem, 344

walk, 28

walk generating matrix, 29
warp and weft, 262

weighted graph, 33

Weighted Matching, 505, 506
wheel, 282

Whitney’s theorem, 327

zero flow, 197

	Cover
	Half Title�����������������
	Title Page�����������������
	Copyright Page���������������������
	Table of Contents������������������������
	Preface��������������
	1: Graphs and Their Complements
	1.1 Introduction�����������������������
	Exercises����������������
	1.2 Degree sequences���������������������������
	1.2.1 Havel-Hakimi theorem���������������������������������
	1.2.2 Erdös-Gallai theorem

	Exercises����������������
	1.3 Analysis�������������������
	Exercises����������������
	1.4 Notes����������������

	2: Paths and Walks
	2.1 Introduction�����������������������
	2.2 Complexity���������������������
	Exercises����������������
	2.3 Walks����������������
	Exercises����������������
	2.4 The shortest-path problem������������������������������������
	2.5 Weighted graphs and Dijkstra’s algorithm���
	Exercises����������������
	2.6 Data structures��������������������������
	2.7 Floyd’s algorithm����������������������������
	Exercises����������������
	2.8 Notes����������������

	3: Subgraphs
	3.1 Counting subgraphs�����������������������������
	3.1.1 Möbius inversion
	3.1.2 Counting triangles�������������������������������

	3.2 Multiplying subgraph counts��������������������������������������
	3.3 Mixed subgraphs��������������������������
	3.4 Graph reconstruction�������������������������������
	3.4.1 Nash-Williams’ lemma���������������������������������

	Exercises����������������
	3.5 Notes����������������

	4: Some Special Classes of Graphs
	4.1 Bipartite graphs���������������������������
	Exercises����������������
	4.2 Line graphs����������������������
	Exercises����������������
	4.3 Moore graphs�����������������������
	Exercises����������������
	4.4 Euler tours����������������������
	4.4.1 An Euler tour algorithm������������������������������������

	Exercises����������������
	4.5 Notes����������������

	5: Trees and Cycles
	5.1 Introduction�����������������������
	Exercises����������������
	5.2 Fundamental cycles�����������������������������
	Exercises����������������
	5.3 Co-trees and bonds�����������������������������
	Exercises����������������
	5.4 Spanning tree algorithms�����������������������������������
	5.4.1 Prim’s algorithm�����������������������������
	5.4.1.1 Data structures������������������������������

	Exercises����������������
	5.4.2 Kruskal’s algorithm��������������������������������
	5.4.2.1 Data structures and complexity���

	5.4.3 The Cheriton-Tarjan algorithm��
	Exercises����������������
	5.4.4 Leftist binary trees���������������������������������

	Exercises����������������
	5.5 Notes����������������

	6: The Structure of Trees
	6.1 Introduction�����������������������
	6.2 Non-rooted trees���������������������������
	Exercises����������������
	6.3 Read’s tree encoding algorithm���
	6.3.1 The decoding algorithm�����������������������������������

	Exercises����������������
	6.4 Generating rooted trees����������������������������������
	Exercises����������������
	6.5 Generating non-rooted trees��������������������������������������
	Exercises����������������
	6.6 Prüfer sequences
	6.7 Spanning trees�������������������������
	6.8 The matrix-tree theorem����������������������������������
	Exercises����������������
	6.9 Notes����������������

	7: Connectivity
	7.1 Introduction�����������������������
	Exercises����������������
	7.2 Blocks�����������������
	7.3 Finding the blocks of a graph��
	Exercises����������������
	7.4 The depth-first search���������������������������������
	7.4.1 Complexity�����������������������

	Exercises����������������
	7.5 Sections and modules�������������������������������
	Exercises����������������
	7.6 Notes����������������

	8: Graphs and Symmetry
	8.1 Groups�����������������
	8.2 Cayley graphs������������������������
	8.3 Coset diagrams�������������������������
	8.3.1 Double cosets��������������������������

	8.4 Conjugation, Sylow subgroups���������������������������������������
	8.5 Homomorphisms������������������������
	8.6 Primitivity and block systems��
	Exercises����������������
	8.7 Self-complementary graphs������������������������������������
	8.8 Pseudo-similar vertices����������������������������������
	Exercises����������������
	8.9 Notes����������������

	9: Alternating Paths and Matchings
	9.1 Introduction�����������������������
	Exercises����������������
	9.2 The Hungarian algorithm����������������������������������
	9.2.1 Complexity�����������������������

	Exercises����������������
	9.3 Edmonds’ algorithm, blossoms���������������������������������������
	9.3.1 Complexity�����������������������

	9.4 Perfect matchings and 1-factorizations���
	Exercises����������������
	9.5 The subgraph problem�������������������������������
	9.6 Coverings in bipartite graphs��
	9.7 Tutte’s theorem��������������������������
	Exercises����������������
	9.8 Notes����������������

	10: Network Flows
	10.1 Introduction������������������������
	10.2 The Ford-Fulkerson algorithm��
	Exercises����������������
	10.3 Matchings and flows�������������������������������
	Exercises����������������
	10.4 Menger’s theorems�����������������������������
	Exercises����������������
	10.5 Disjoint paths and separating sets��
	Exercises����������������
	10.6 Notes�����������������

	11: Hamilton Cycles
	11.1 Introduction������������������������
	Exercises����������������
	11.2 The crossover algorithm�����������������������������������
	11.2.1 Complexity������������������������

	Exercises����������������
	11.3 The Hamilton closure��������������������������������
	Exercises����������������
	11.4 The extended multi-path algorithm���
	11.4.1 Data structures for the segments��

	Exercises����������������
	11.5 Decision problems, NP-completeness��
	Exercises����������������
	11.6 The traveling salesman problem��
	Exercises����������������
	11.7 The TSP�������������������
	11.8 Christofides’ algorithm�����������������������������������
	Exercises����������������
	11.9 Notes�����������������

	12: Digraphs
	12.1 Introduction������������������������
	12.2 Activity graphs, critical paths���
	12.3 Topological order�����������������������������
	Exercises����������������
	12.4 Strong components�����������������������������
	Exercises����������������
	12.4.1 An application to fabrics���������������������������������������

	Exercises����������������
	12.5 Tournaments�����������������������
	12.5.1 Modules���������������������

	Exercises����������������
	12.6 2-Satisfiability����������������������������
	Exercises����������������
	12.7 Notes�����������������

	13: Graph Colorings
	13.1 Introduction������������������������
	13.1.1 Intersecting lines in the plane���

	Exercises����������������
	13.2 Cliques�������������������
	13.3 Mycielski’s construction������������������������������������
	13.4 Critical graphs���������������������������
	Exercises����������������
	13.5 Chromatic polynomials���������������������������������
	Exercises����������������
	13.6 Edge colorings��������������������������
	Exercises����������������
	13.7 Graph homomorphisms�������������������������������
	Exercises����������������
	13.8 NP-completeness���������������������������
	13.9 Notes�����������������

	14: Planar Graphs
	14.1 Introduction������������������������
	14.2 Jordan curves�������������������������
	14.3 Graph minors, subdivisions��������������������������������������
	Exercises����������������
	14.4 Euler’s formula���������������������������
	14.5 Rotation systems����������������������������
	14.6 Dual graphs�����������������������
	14.7 Platonic solids, polyhedra��������������������������������������
	Exercises����������������
	14.8 Triangulations��������������������������
	14.9 The sphere����������������������
	Exercises����������������
	14.10 Whitney’s theorem������������������������������
	14.11 Medial digraphs����������������������������
	Exercises����������������
	14.12 The 4-color problem��������������������������������
	14.13 Nowhere-zero flows�������������������������������
	Exercises����������������
	14.14 Straight-line drawings�����������������������������������
	14.15 Coordinate averaging���������������������������������
	14.16 Kuratowski’s theorem���������������������������������
	Exercises����������������
	14.17 The Hopcroft-Tarjan algorithm��
	14.17.1 Bundles����������������������
	14.17.2 Switching bundles��������������������������������
	14.17.3 The general Hopcroft-Tarjan algorithm��

	14.18 Notes������������������

	15: Graphs and Surfaces
	15.1 Introduction������������������������
	15.2 Surfaces��������������������
	15.2.1 Handles and crosscaps�����������������������������������
	15.2.2 The Euler characteristic and genus of a surface���

	Exercises����������������
	15.3 Isometries of surfaces����������������������������������
	Exercises����������������
	15.4 Graph embeddings, obstructions��
	15.5 Graphs on the torus�������������������������������
	Exercises����������������
	15.5.1 Platonic maps on the torus��
	15.5.2 Drawing torus maps, triangulations��

	Exercises����������������
	15.6 Coordinate averaging��������������������������������
	15.7 Graphs on the projective plane��
	15.7.1 The facewidth���������������������������
	15.7.2 Double covers���������������������������

	Exercises����������������
	15.8 Embedding algorithms��������������������������������
	Exercises����������������
	15.9 Heawood’s map coloring theorem��
	Exercises����������������
	15.10 Notes������������������

	16: The Klein Bottle and the Double Torus
	16.1 The Klein bottle����������������������������
	16.1.1 Rotation systems������������������������������
	16.1.2 The double cover������������������������������

	Exercises����������������
	16.2 The double torus����������������������������
	16.2.1 Isometries of the hyperbolic plane��
	Exercises����������������
	16.2.2 The double torus as an octagon��

	Exercises����������������
	16.3 Notes�����������������

	17: Linear Programming
	17.1 Introduction������������������������
	17.1.1 A simple example������������������������������
	17.1.2 Simple graphical example��������������������������������������
	17.1.3 Slack and surplus variables���

	Exercises����������������
	17.2 The simplex algorithm���������������������������������
	17.2.1 Overview����������������������
	17.2.2 Some notation���������������������������
	17.2.3 Phase 0: finding a basis solution���
	17.2.4 Obtaining a basis feasible solution���
	17.2.5 The tableau�������������������������
	17.2.6 Phase 2: improving a basis feasible solution��
	17.2.7 Unbounded solutions���������������������������������
	17.2.8 Conditions for optimality���������������������������������������
	17.2.9 Phase 1: initial basis feasible solution��
	17.2.10 An example�������������������������

	17.3 Cycling�������������������
	Exercises����������������
	17.4 Notes�����������������

	18: The Primal-Dual Algorithm
	18.1 Introduction������������������������
	18.2 Alternate form of the primal and its dual���
	18.3 Geometric interpretation������������������������������������
	18.3.1 Example���������������������

	18.4 Complementary slackness�����������������������������������
	18.5 The dual of the shortest-path problem���
	Exercises����������������
	18.6 The primal-dual algorithm�������������������������������������
	18.6.1 Initial feasible solution���������������������������������������
	18.6.2 The shortest-path problem���������������������������������������
	18.6.3 Maximum flow��������������������������

	Exercises����������������
	18.7 Notes�����������������

	19: Discrete Linear Programming
	19.1 Introduction������������������������
	19.2 Backtracking������������������������
	19.3 Branch and bound����������������������������
	Exercises����������������
	19.4 Totally unimodular matrices���������������������������������������
	Exercises����������������
	19.5 Notes�����������������

	Bibliography�������������������
	Index������������

