Copyrighted Materials

Copyright © 2015 Oxford University Press Retrieved from www.knovel.com

|

Design and Analysis

Harsh Bhasin

Assistant Professor
Department of Computer Science
Jamia Hamdard
New Delhi

OXFORD

UNIVERSITY PRESS

OXFORD

UNIVERSITY PRESS

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press
YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2015
The moral rights of the author/s have been asserted.
First published in 2015

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the
prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics
rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the
address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-945666-6
ISBN-10: 0-19-945666-6

Typeset in Times New Roman
by Welkyn Software Solutions Pvt. Ltd, Coimbatore
Printed in India by Magic International (P) Ltd., Greater Noida

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.
Oxford University Press disclaims any responsibility for the material contained therein.

Copyrighted Materials

Copyright © 2015 Oxford University Press Retrieved from www.knovel.com

To
My Mother

Copyrighted Materials

Copyright © 2015 Oxford University Press Retrieved from www.knovel.com

About the Author

Harsh Bhasin is currently an Assistant Professor in the Department of Computer
Science, Jamia Hamdard, New Delhi. Prior to this, he has taught as visiting faculty in
many colleges including Delhi Technological University and also has a rich industrial
experience as a programmer. He was also the proprietor of S.S. Developers, a firm based
in Faridabad, Haryana.

Prof. Bhasin is a B. Tech and M. Tech in Computer Science as also a UGC NET
qualified. He has been actively involved in research and had also received the Young
Researcher’s Award by ErNet in 2012. His areas of interest include genetic algorithms,
cellular automata, big data, theory of computation, C#, and algorithms.

Prof. Bhasin has been involved in the development of a number of Enterprise Resource
Planning Systems. He has published around 60 research papers in various national and
international journals of repute and is the author of “Programming in C#” published by
OUP, India. He has also reviewed papers, journals, and books for renowned publishers.
He has been the Editor-in-Chief of the special issue on ‘Applicability of Soft Computing
Techniques in NP Problems,” SciEp, USA.

Mr Bhasin can be reached at his Facebook page DTUComputation and via e-mail
at i_harsh_bhasin@yahoo.com or at thevibrantindian@blogspot.com.

Copyrighted Materials

Copyright © 2015 Oxford University Press Retrieved from www.knovel.com

Preface

There are only two ways to live your life. One is as though nothing is a miracle. The
other is as though everything is a miracle.
— Albert Einstein

An algorithm is a step-by-step process of analysing and solving the given problem in
a logical manner. A well-designed algorithm is required to develop efficient program
codes as well as minimize the usage of computer resources. Algorithms are imple-
mented using a programming language. Mere knowledge of a programming language
without the fundamental understanding of algorithms may make one a competent
coder but not a programmer. Thus, algorithms form the building blocks of computer
programming.

Design and analysis of algorithms is one of the key subjects offered in computer
science and information technology streams. Knowledge of basic data structures and
mathematics is a prerequisite for studying this subject. This course makes the students
learn the standard design techniques, such as divide and conquer, greedy approach, and
dynamic programming, as also analyse the applicability of a technique in a given prob-
lem. Another important goal of this course is to help students develop the ability to study
an algorithm and find its complexity.

Thus, this book discusses the know-hows of the paradigms used for designing an
algorithm and illustrates the standard procedures for accomplishing the task. It provides
a sound understanding of the asymptotic notations required to analyse the effect of the
increase in input size of an algorithm on its space and time requirements. It also dis-
cusses the various artificial intelligence techniques which would help the readers handle
intractable problems.

ABOUT THE BOOK []

Algorithms: Design and Analysis is a textbook designed for the undergraduate and post-
graduate students of computer science engineering, information technology, and com-
puter applications. It will help the students understand the fundamentals and applications

PREFACE WV

of algorithms. The book will serve as a useful reference for researchers and practising
programmers who intend to pursue a career in algorithm designing as well as students
preparing for interviews and exams such as GATE and UGC NET.

The book offers an adequate mix of both theoretical and mathematical treatment of
the concepts. It covers the basics, design techniques, advanced topics, and applications
of algorithms. The concepts and algorithms are explained with the help of examples.
However, every attempt has been made to keep the text as precise as possible. Moreover,
some advanced topics in the book have been included considering the fact that they
would be used or implemented in research.

Each chapter of the book includes a variety of chapter-end exercises in the form of
MCQs (with answers), review questions, and programming exercises to help readers
test their knowledge. In the book, many problems have been solved using more than one
method for better understanding.

KEY FEATURES |

The following are the salient features of the book:

» Offers in-depth treatment of topics such as complexity analysis, design paradigms,
data structures, and machine learning algorithms

* Introduces topics such as decrease and conquer, transform and conquer, and PSpace
along with standards paradigms

e Explains numerical methods including Euclid’s theorem and Chinese Remainder
Theorem, and also reviews essential mathematical concepts

* Provides points to remember and a list of key terms at the end of each chapter that
will help readers quickly recapitulate the important concepts

* Includes exercises given at the end of each chapter and Appendix A10 (Problems) to
help students prepare for their examinations and job interviews

ORGANIZATION OF THE BOOK |

The book has been divided into four sections. The first section introduces the fundamen-
tal concepts and complexity analysis of algorithms. The second section deals with basics
of data structures. The third section introduces the various design techniques and the
fourth section deals with advanced topics. The sections are followed by ten appendices.

Section I: Basic Concepts of Algorithms

The first section of the book defines algorithms and discusses the application of algo-
rithms and the techniques to analyse them. It includes four chapters.

Chapter I introduces the subject by tracing the evolution of algorithms and high-
lighting the importance and applications of algorithms in recent times. The chapter also
explains the different ways of writing an algorithm.

VI = PREFACE

Chapter 2 presents basic mathematical techniques such as logarithms, arithmetic,
and geometric progression along with an involved discussion on the asymptotic nota-
tions. The chapter also provides a comparison of the asymptomatic notations.

Chapter 3 introduces the concept of recursion and deals with different methods of
solving recursive equations.

Chapter 4 discusses ways to find complexities along with the proving techniques. It
also covers amortized and probabilistic analysis.

Section Il: Data Structures

Knowledge about data structures is a prerequisite for understanding the concepts dis-
cussed in the following sections. Therefore, this section has been added to aid the readers
in refreshing the basics of data structures while studying the design techniques. The rest
of the book relies heavily on the terminology used in these chapters. This section has
four chapters.

Chapter 5 discusses stacks, queues, linked lists, and arrays along with their imple-
mentations, while Chapter 6 presents an overview of trees and the algorithms involved
therein. Chapter 7 revisits the concepts of graphs and its applications and Chapter 8 pre-
sents various linear and quadratic sorting algorithms.

Section l11: Design Techniques

This section forms the core of the course on design and analysis of algorithms. It covers
the various design paradigms and their applications and implementation. This section
includes six chapters.

Chapter 9 discusses the divide and conquer technique and its applications in solving
problems such as quick sort, merge sort, selection sort, convex hull, Strassen’s matrix
multiplication, defective chessboard, and finding minimum distance between N points.
Master theorem and its proof is also explained in this chapter.

Chapter 10 introduces the concept of greedy approach. This concept has been used
to solve problems such as job scheduling, knapsack, coin changing, and minimum cost
spanning tree. Other problems that can be solved using the greedy approach are quick
sort, merge sort, binary search, and Strassen’s matrix multiplication.

Chapter 11 explains dynamic programming. Some of the problems, namely, subset
sum problem, 0/1 knapsack, matrix chain multiplication, longest common sub-sequence,
optimal binary search, and travelling salesman problem that can be solved using dynamic
programming have been illustrated in this book.

Chapters 12 and 13 discuss backtracking and branch and bound techniques, respec-
tively. In spite of being similar to backtracking, branch and bound technique is more
effective and efficient. Some of the problems that can be solved by these two tech-
niques are the maze problem, subset sum problem, the N-Queens problem, m-colouring
problem, travelling salesman problem, and Hamiltonian cycle.

PREFACE M VII

Chapter 14 introduces the concept of randomization, which would help in analysing
and understanding algorithms in an altered way. The chapter discusses the Monte Carlo
and Las Vegas algorithms and applications of randomized algorithms through the book
problem, load balancing, and quick sort problems.

Most of the problems discussed in the book can be solved in linear or quadratic time.
That is, for these problems the running time is O(n) or O(n?). Such problems which can
be solved in polynomial time, that is, problems which have complexity O(n*), where k
is an integral constant, are referred to as P-type problems. The problems that cannot be
verified in polynomial time are called NP problems. These concepts are also discussed
in this chapter.

Section IV: Advanced Topics

The fourth section of the book introduces some advanced topics and includes 10 chapters.

Chapter 15 explains the transform and conquer technique. The technique is used
to solve problems such as Gauss elimination method for finding the solution of a set
of linear equation; the LU decomposition for solving a set of equations; the Horner’s
method for finding the lowest common multiple, etc.

Chapter 16 introduces decrease and conquer approach. The method can be used to
solve many problems notably permutation generation, which is used to handle NP-hard
problems like the travelling salesman problem.

Chapter 17 deals with the number theoretic algorithms and covers topics such as
GCD and Euclid theorem. The Chinese remainder theorem has also been discussed in
this chapter. These topics are widely used in cryptography and cryptanalysis.

Chapter 18 introduces an immensely important topic, called string matching, which finds
applications in many areas including computational biology. It includes Naive string match-
ing algorithm, Rabin—Karp algorithm, deterministic and non-deterministic finite automata,
and Knuth—Morris—Pratt Automata. The chapter also discusses tries and suffix trees along
with the most common methods used for accomplishing the task of string matching.

Chapter 19 discusses the complexity classes—P and NP problems. It explains Cook’s
theorem, the concept of reducibility, and NP hard problems.

The book not only discusses the time complexity but also the space complexity.
Chapter 20 introduces the space complexity of an algorithm, PSpace, along with its
applications.

Chapter 21 presents the concept of approximation algorithms. These are one of the
most important tools for handling the NP complete problems. The chapter also covers
p-approximation and its applications.

Chapter 22 discusses the concept of parallel algorithms. The chapter discusses basic
concepts such as the generations of computers and parallel computers before introduc-
ing the parallel random access machine (PRAM) model. Hypercube algorithms have
also been covered in the chapter.

VIII = PREFACE

Artificial intelligence techniques are now widely used to handle intractable problems.
In order to equip the readers with such techniques, the book introduces the concepts of
genetic algorithms and machine learning in Chapter 23. Applications of genetic algo-
rithms in solving knapsack, subset sum, travelling salesman, vertex cover, and maxi-
mum clique problems have been presented in this chapter.

Chapter 24 of this book introduces computational biology and bioinformatics. This
is essential as the readers would be able to apply the algorithms techniques studied ear-
lier in these areas.

The book also has 10 appendices which carry forward the concepts studied in the
previous sections. Topics such as probability, matrix operations, Red-black tress, lin-
ear programming, DFT, scheduling, and a reprise of sorting, searching, and amortized
analysis have been discussed in the appendices (A1 to A9).

The last Appendix A10 includes some interesting problems based on almost all the
topics discussed in the book.

ONLINE RESOURCES]

To aid teachers and students, the book is accompanied with online resources which
are available at http://oupinheonline.com/book/bhasin-algorithms/9780199456666. The
contents of online resources include:

For Faculty

* Chapter-wise PowerPoint slides
* Solution manual for select chapter-end problems
* Assignment questions with answers

For Students

* Additional MCQs for test generator (with answers) for each chapter
* C language implementation of algorithms
* Interview questions with answers

ACKNOWLEDGMENTS |

I have been lucky enough to get the motivation and guidance from various people dur-
ing the journey of developing this book. First of all, I would like to thank Professor
Moin Uddin, Dean, Faculty of Management and Information Technology, former Pro-
Vice Chancellor, Delhi Technological University for showing faith in me and inspiring
me to achieve my goals. I am also thankful to Professor A.K. Sharma, former Dean
and Chairperson, Department of Computer Science, YMCA, Faridabad, for his constant
encouragement while working on this book, research papers, and other projects.

PREFACE m IX

Dr Michael Wing’s ACM Sigsoft Software Engineering Notes has helped me improve
my writing skills and inspired me to be more articulate. Moreover, I have learnt the most
important lesson of my life from Dr Wing: ‘If you know a thing but you cannot express
it then it is of no use.’

I would like to thank esteemed Professor Ranjit Biswas, Head, Department of
Computer Science, Jamia Hamdard, Professor Naresh Chauhan, Head and Chairperson,
Department of Computer Sceince, YMCA University of Science and Technology,
Professor Daya Gupta, Department of Computer Science, Delhi Technological
University, and Dr S.K. Pal, Scientist, Department of Defence and Research Organization,
Government of India, for their valuable suggestions regarding the book. I would also
like to acknowledge my colleagues, Dr Farheen Siddique and Dr G.D. Panda, for their
contributions in the chapter on computational biology and my students, Faisal Naved,
Mohd. Haider, Sourav Gupta, Yogesh Kumar, Chirag Ahuja, and Subham Kumar, for
their critical reviews and contributions in developing the web resources of this book.

I would like to express my sincere gratitude to my mother, sister, and rest of the fam-
ily including my pets, Zoe and Xena, and friend Mr. Naved Alam and others for extend-
ing their unconditional support to me.

I am also thankful to the editorial team of Oxford University Press for providing
valuable assistance.

I would be glad to receive comments or suggestions from the readers and users of
this book for further improvement of the future editions of the book. You can reach me
at i_harsh_bhasin@yahoo.com.

Harsh Bhasin

Preface

Copyrighted Materials

Copyright © 2015 Oxford University Press Retrieved from www.knovel.com

Brief Contents

Features of the Book
Detailed Contents

SECTION |1 Basic Concepts of Algorithms

Chapter 1
Chapter 2
Chapter 3
Chapter 4

Introduction to Algorithms
Growth of Functions
Recursion

Analysis of Algorithms

SECTION Il Data Structures

Chapter 5
Chapter 6
Chapter 7
Chapter 8

Basic Data Structures
Trees
Graphs

Sorting in Linear and Quadratic Time

SECTION IIl Design Techniques

Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14

Divide and Conquer
Greedy Algorithms
Dynamic Programming
Backtracking

Branch and Bound

Randomized Algorithms

“”E””” N =
HE = BHEr Y pEaeg Blalg

[\l
191
oo

[\
oo
N

W
—
=]

(O8]
(98]
[\

xiv M BRIEF CONTENTS

SECTION IV Advanced Topics

Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Chapter 21
Chapter 22
Chapter 23
Chapter 24

Transform and Conquer

Decrease and Conquer

Number Theoretic Algorithms

String Matching

Complexity Classes

Introduction to PSpace

Approximation Algorithms

Parallel Algorithms

Introduction to Machine Learning Approaches

Introduction to Computational Biology and Bioinformatics

APPENDICES

Appendix Al
Appendix A2
Appendix A3
Appendix A4
Appendix A5
Appendix A6
Appendix A7
Appendix A8
Appendix A9
Appendix A10
Bibliography
Index

Amortized Analysis—Revisited

2-3-4 and Red-Black Trees

Matrix Operations

Linear Programming

Complex Numbers and Introduction to DFT
Probability

Scheduling

Searching Reprise

Analysis of Sorting Algorithms

Problems

About the Author

A-b-b-h-hwwwwE
Ol I & (<] =] o]] 9] |»
& =] O] &) |9 (] 1] |9 [©

9]
—
NN

AN DN [A [|af [n] |n] [N
m-bw@oo\lmwwE
oof 1N [|oof (] =] [«]] [©

[*))
(@)
~J

N
Co
~

ﬁ
Co
W

o))
\O
~

Detailed Contents

Preface

Features of the Book

Brief Contents

SECTION | Basic Concepts of Algorithms
CHAPTER1 Introduction to Algorithms

1.1 Introduction

1.2 Importance of Algorithms

1.3 History of Algorithm

1.4 Algorithm: Definition

1.5 Ways of Writing an Algorithm
1.5.1 English-Like Algorithm
1.5.2 Flowchart
1.5.3 Pseudocode

1.6 Design and Analysis vs Analysis and Design

1.7 Present and Future

1.8 Flow of the Book

1.9 Conclusion

CHAPTER2 Growth of Functions
2.1 Introduction
2.2 Basic Mathematical Concepts
2.2.1 Logarithms
2.2.2 Arithmetic Progression
2.2.3 Geometric Progression
2.3 Asymptotic Notation
2.3.1 O Notation: Big Oh Notation
2.3.2 Q Notation: Omega Notation

NEEEEE SR EEEE R e s E

Xxvi M DETAILED CONTENTS

2.3.3 0 Notation: Theta Notation

2.3.4 o Notation: Small Omega Notation
2.3.5 o Notation: Small oh Notation
2.3.6 Comparison of Functions

2.4 Properties of Asymptotic Comparisons
2.5 Theorems Related to Asymptotic Notations
2.6 Conclusion

CHAPTER3 Recursion
3.1 Introduction
3.2 Rabbit Problem

3.3 Deriving an Explicit Formula from Recurrence Formula
3.3.1 Substitution Method

3.4 Solving Linear Recurrence Equation
3.5 Solving Non-linear Recurrence Equation
3.6 Generating Functions

3.7 Conclusion

CHAPTER4 Analysis of Algorithms

4.1 Introduction

4.2 Complexity of Recursive Algorithms
4.3 Finding Complexity by Tree Method

4.4 Proving Techniques
4.4.1 Proof by Contradiction
4.4.2 Proof by Mathematical Induction

4.5 Amortized Analysis

4.6 Probabilistic Analysis
4.6.1 Viva Problem
4.6.2 Marriage Problem
4.6.3 Applications to Algorithms

4.7 Tail Recursion

4.8 Conclusion

SECTION Il Data Structures
CHAPTER5 Basic Data Structures

5.1 Introduction
5.2 Abstract Data Types

N
\]\]\l! [eN 1A R e R ieA 1= [(@) | [(91 I 10,1 [FEoN I EON]) EANY | BN) BN) AN (O8] Iy (OS] [(OS] [(U] | LOS] | (O8] § | \9]
\O| |C0] |C9 ~| 3] || | == oo| |oo K] [oo] [N [o) |— B o] o] === =]+

5.3 Arrays
5.3.1
532
533
534
535

DETAILED CONTENTS M xvii

Linear Search

Reversing the Order of Elements of a Given Array
Sorting

2D Array

Sparse Matrix

5.4 Linked List

54.1
542
543
544
545
54.6
54.7
54.38
549
5.4.10

5.5 Stack
5.5.1
552
553
554
555
5.5.6

5.6 Queue
5.6.1
5.6.2
5.6.3
5.6.4

Advantages of a Linked List
Creation of a Linked List

Insertion at the Beginning

Insertion at End

Inserting an Element in the Middle
Deleting a Node from the Beginning
Deleting a Node from the End
Deletion from a Particular Point
Doubly Linked List

Circular linked list

Static Implementation of Stack
Dynamic Implementation of Stack
Applications of Stack

Evaluation of a Postfix Expression
Infix to Postfix

Infix to Prefix

Static Implementation

Problems with the Above Implementation
Circular Queue

Applications of a Queue

5.7 Conclusion

CHAPTER6 Trees

6.1 Introduction

6.2 Binary Trees

6.3 Representation of Trees

6.4 Applications of Trees

6.5 Tree Traversal

6.5.1
6.5.2
6.5.3

Pre-order Traversal
In-order Traversal
Post-order Traversal

o.e] | [0} | [0 e] OO 00| |OQ] |CR] |O0] |OR |O0] |OR] |O0] o0 ~J
oo || N | BB [D] 9] |—=][—=]|[— \O

O O |\O| |\ O
EE EEEEEEE

—
o
—_

—] [—
OH
[SS1 IS

EH
g

—
=
o0

—|[=]|=] |—] [—] |[—
BEEIEIEIS
D[] (9] |2] |2

—
—
~J

xviii M DETAILED CONTENTS

6.6
6.7
6.8
6.9

6.10
6.11
6.12

To Draw a Tree When Pre-order and In-order Traversals are Given

Binary Search Tree
B-Tree

Heap

6.9.1 Creation of a Heap
6.9.2 Deletion from a Heap
6.9.3 Heapsort

Binomial and Fibonacci Heap
Balanced Trees

Conclusion

CHAPTER7 Graphs

7.1
7.2
7.3
7.4
7.5
7.6

7.7

7.8

7.9
7.10

Introduction

Concept of Graph

Representation of Graph

Cyclic Graphs: Hamiltonian and Eulerian Cycles
Isomorphic and Planar Graphs

Graph Traversals
7.6.1 Breadth First Search
7.6.2 Depth First Search

Connected Components

Topological Sorting

7.8.1 Applications of Topological Sorting
Spanning Tree

Conclusion

CHAPTER8 Sorting in Linear and Quadratic Time

8.1
8.2
8.3

8.4
8.5

Introduction
Sorting

Classification

8.3.1 Classification Based on the Number of Comparisons
8.3.2 Classification Based on the Number of Swaps

8.3.3 Classification Based on Memory

8.3.4 Use of Recursion

8.3.5 Adaptability

8.3.6 Stable Sort

Selection Sort
Bubble Sort

—| =] =] [—=]| |— —| =] [=| [=|I=lI—~=]|]=] [—=]| |—=] [—
R R N RN AR Q| W [[D] |E] 0] (B9 o] |—
| || W] 89 o | =] =] NN][] O] =] |

—
\ul
-]

p—
Al
S

—
N
1)

— | =] === =] = =] =] = —| =] [=|]==] [—
| [2] D] D] [()] B (@) Bl (oY | (9,1 B (9]
| 1= =] S]] D] 1] [NO] |\O] |o0 —| =] =]l |~

k.
~J
N

DETAILED CONTENTS M Xxix

8.6 Insertion Sort
8.7 Diminishing Incremental Sort
8.8 Counting Sort
8.9 Radix Sort
8.10 Bucket Sort

8.11 Conclusion

—| =] =] [=] [—
ool |oo] |oo] |oo] |
= S [=] [S] |[e

—
oo
N

SECTION IIl Design Techniques
CHAPTERY Divide and Conquer

9.1 Introduction
9.2 Concept of Divide and Conquer

9.3 Master Theorem
9.3.1 Proof of Master Theorem

9.4 Quick Sort
9.4.1 Worst-case Complexity

9.5 Merge Sort
9.6 Selection

Do D] (o] =] == |—] |— E
(=] il [e»] |l [e»] | Nl i No] | Nol i Kol B Ko
N |92 =]\ |9]|9?] 2] |

9.7 Convex Hull 208
9.8 Strassen’s Matrix Multiplication
9.9 Minimum Distance Between N Points
9.10 Miscellaneous Problems 215
9.10.1 Multiplying Numbers Using Divide and Conquer

9.10.2 Defective Chessboard Problem 216

9.11 Conclusion

CHAPTER 10 Greedy Algorithms
10.1 Introduction
10.2 Concept of Greedy Approach
10.3 0/1 Knapsack Problem
10.4 Job Sequencing with Deadlines
10.5 Kruskal’s Algorithm
10.6 Prim’s Algorithm

[N I [N INS] I (N7l [\S] I [\ \]
QI || |B9] [BI] |bo] [_
N =] |o0] |V |—] |— (@)

10.7 Coin Changing 239
10.8 Huffman Codes
10.9 Single-source Shortest Path 243

XX B DETAILED CONTENTS

10.10

10.11
10.12

CHAPTER 11

11.1

Miscellaneous Problems

10.10.1

Container Loading Problem

10.10.2 Subset Cover Problem

10.10.3

Optimal Storage

Analysis and Design for Greedy Approach

Conclusion

Dynamic Programming

Introduction

11.2 Concept of Dynamic Programming

11.3

11.4
11.5

11.6
11.7

11.8
11.9

11.2.1

Implementing the Dynamic Approach

Longest Common Subsequence

11.3.1

Brute Force Approach

11.3.2 Using the Dynamic Approach

Matrix Chain Multiplication

Travelling Salesman Problem

11.5.1

Using Brute Force Approach

11.5.2 Using Dynamic Approach

Optimal Substructure Lemma

Optimal Binary Search Tree Problem

11.7.1

Using Brute Force Approach

11.7.2 Using Dynamic Approach
Floyd’s Algorithm
Miscellaneous Problems

11.9.1

Coin Changing Problem

11.9.2 Calculating Binomial Coefficients

11.10 Conclusion

CHAPTER12 Backtracking

12.1
12.2
12.3
12.4
12.5
12.6

12.7

12.8

Introduction

Concept of Backtracking

Subset Sum Problem
N-Queens Problem
m-Colouring Problem

Hamiltonian Cycle

12.6.1

Solution of Hamiltonian Cycle Using Backtracking

Miscellaneous Problems

12.7.1

Knapsack Problem

12.7.2 Other Problems
Conclusion

N1 1\
R I E
~J| |

[Nl 11\S]
AR
(=] IN=)

[\] [NS] [\
N | |
o0 o] |—=

[\
(o))
=]

[\O) B[O [[\ | [\S7 § [\ B |\
| [[V] |
Ol] [o] o] [—

[\®]
~J
S

Q| ||| [2] |2 2] D] D] [B 9] B2 DO DD [[D2] D] D] D [D] 2] B
jes) | (@w] | (an] | (an] | [an] |} (an] § No] | (o/e] |} [o/e] i (o/e] oof |1oof ool ool (] [N I3] |
Q| || | |R][09] 1] [19] O]] [& —| [2][S]S] |] |V ||| |&] |2

|o)
S
~

CHAPTER 13 Branch and Bound

13.1
13.2

13.3

13.4

13.5

13.6
13.7

13.8

Introduction

Concept of Branch and Bound
13.2.1 FIFO Search

13.2.2 LIFO Search

13.2.3 Example of Branch and Bound: 0/1 Knapsack

Travelling Salesman Problem
13.3.1 Calculation of Cost
13.3.2 Procedure

Knapsack Problem

13.4.1 Knapsack Using Branch and Bound (Least Cost)

8-Puzzle Problems

13.5.1 First In First Out
13.5.2 Last In First Out
13.5.3 Least Cost Search
Efficiency Considerations
Optimization and Relaxation
13.7.1 Optimization

13.7.2 Relaxation

Conclusion

CHAPTER 14 Randomized Algorithms

14.1
14.2
14.3

14.4

14.5
14.6

14.7

Introduction

Randomization

Monte Carlo vs Las Vegas Algorithms

14.3.1 Selection of Appropriate Technique
Uses of Randomized Algorithms

Complexity Classes of Randomized Algorithms

Applications of Randomized Algorithms
14.6.1 Book Problem

14.6.2 Load Balancing

14.6.3 Quick Sort

14.6.4 Equality of Polynomials

Conclusion

SECTION IV Advanced Topics

CHAPTER 15 Transform and Conquer

15.1
15.2

Introduction

Presorting

DETAILED CONTENTS M xxi

w
—
[—)

[O8)
—_
S

o] [oo] [@o] [R][9] [
e | = | =] =] =] =
] =] =] =

oY)
—_
o

W || [[[W
NNNN'—‘H
W | D]] |\O|NO

o8}
o
~

(O8] | [WI] | |2
98] NSRS TN IS
\°] 0| (][] |

O8]
(O8]
3

EE A £l ElE)E
AR B[S [oof [oo] [oo] |0
. DN =S A S RS S

W] |
| [
el I =)

xxii M DETAILED CONTENTS

15.3
15.4
15.5
15.6
15.7
15.8

15.2.1 Applications of Presorting
Gauss Elimination Method

LU Decomposition

Horner’s Method

Lowest Common Multiple
NP-Hard Problems

Conclusion

CHAPTER16 Decrease and Conquer

16.1
16.2
16.3
16.4
16.5
16.6

Introduction

Finding the Power Set of a Given Set
Breadth First Search and Depth First Search
Permutation Generation

Decrease and Conquer: Variable Decrease

Conclusion

CHAPTER17 Number Theoretic Algorithms

17.1
17.2
17.3
17.4
17.5
17.6

17.7

17.8

17.9
17.10

Introduction

GCD of Two Numbers
Euclid Theorem
Extended Euclid Theorem
Modular Linear Equations

Chinese Remainder Theorem

17.6.1 Applications

Cryptography

17.7.1 Symmetric Key Cryptography
17.7.2 Asymmetric Key Cryptography

Digital Signatures
RSA Algorithm

Conclusion

CHAPTER 18 String Matching

18.1
18.2

18.3
18.4

Introduction

String Matching—Meaning and Applications
18.2.1 Applications

18.2.2 Algorithms and Data Structures
Naive String Matching Algorithm
Rabin—Karp Algorithm

W W WO | |2
| || 0] || [N

O8]
(@)
—

|98
EH
—

98]
N
N

W |W] |Wf |W W W] W] W] |
IR ~| ||] [|
O [o0] [N | | | (=] INO] |3

[O%]
o]
[®]

(U] | (O] | (U] § (OS] I (98] | (U] [(O8]
Nl B [ee] | [oe] | [e] i [e/e] | [oe] ll [0re)

O8]
O
—_

W] || W] W2 |2 W
O IO\ |\2] [\© O
~| ||| [N —

98]
\O
o0

18.5

18.6
18.7
18.8
18.9

DETAILED CONTENTS M xxiii

Deterministic Finite Automata
18.5.1 Non-deterministic Finite Automata

Knuth—Morris—Pratt Automata
Tries
Suffix Tree

Conclusion

CHAPTER 19 Complexity Classes

19.1
19.2
19.3
19.4
19.5

19.6
19.7

Introduction

Concept of P and NP Problems

Important Problems and Their Classes

Cook’s Theorem

Reducibility

19.5.1 How to Convert a CNF into an AND-OR Graph?
19.5.2 Maximum Clique from SAT3

19.5.3 Independent Set

19.5.4 Vertex Cover

Problems that are NP-Hard But not NP-Complete

Conclusion

CHAPTER 20 Introduction to PSpace

20.1
20.2
20.3

20.4
20.5

Introduction
Quantified Satisfiability

Planning Problems
20.3.1 N-Puzzle Problem
20.3.2 Solution

Regular Expressions

Conclusion

CHAPTER21 Approximation Algorithms

21.1
21.2
213
214

21.5

Introduction
Taxonomy
Approximation Algorithm for Load Balancing

Vertex Cover Problem

21.4.1 Vertex Cover Problem Using Approximation Algorithm
21.4.2 Cormen Approximation Approach

21.4.3 Modified Vertex Cover

Set Cover Problem

==
OIS
] | (=]

NN NI NSNS IR EER RN
DD DD D] (O] D] =]] [== =l 2] 2] |<
el IR ESIES R ES R =1 B N=1§ %I L] | O] | [«

=~
W)
()

ElEE
[USTRAY S (O
e =]

=
o
[*))

RIEIEE[E
EN N N [VS) | O8) | o)
w| 1S o]

= ===
INEINEINENS
ool |1o0] |O\] | O

=
T
=

Li
n||n
— | |—

4;i
| |
2 S

xxiv B DETAILED CONTENTS

21.6

21.7
21.8

21.5.1 Greedy Approach for Approximate Set Cover
21.5.2 Subset Cover (Sets with Weights Associated with Them)

p-Approximation Algorithms
21.6.1 Load Balancing Problem Using 2-Approximation Algorithm
21.6.2 Travelling Salesman Problem

Use of Linear Programming in Approximation Algorithms

Conclusion

CHAPTER22 Parallel Algorithms

22.1
222
22.3
22.4
22.5
22.6

22.7
22.8
22.9

22.10

Introduction

Generations of Computers
Parallel Computers

Basics

Parallel Random Access Machine

Finding Maximum Number from a Given Set
22.6.1 Using CRCW
22.6.2 Using EREW

Prefix Computation
Merge
Hypercube Algorithms

22.9.1 Broadcasting
22.9.2 Prefix Computation Using Hypercube Algorithm

Conclusion

CHAPTER 23 Introduction to Machine Learning Approaches

23.1
232
233

23.4
23.5

23.6
23.7

Introduction

Artificial Intelligence
Machine Learning
23.3.1 Learning
Neural Networks
Genetic Algorithms
23.5.1 Crossover
23.5.2 Mutation
23.5.3 Selection
23.5.4 Process
Knapsack Problem
Subset Sum Using GA
23.7.1 Solution Using GA

=~
O
N

=~
Lh
(@)}

N R BERIERIER
N || [N |n] [N
—| [\O] |\O] |||

~
N
4;

BB [B] B >
| | [[|
—| [\O] |o0] |OY] |+

=
Q
—

ii
| |
W |

=~
3
N

HEE|E(EE
(-] oo 13|
i | |90 |V |

~
oo
~

IR R R IER R
\=] | Ko} | No] | No] | No] } (o] |l (ole] | (ole] B (o]
||\ || N][] [t2] |[00] |00] | |

N
\O

g
\O
\O

N
]
—_

o0

DETAILED CONTENTS

23.8 Travelling Salesman Problem
23.8.1 GA Approach to Solve Travelling Salesman Problem

23.9 Vertex Cover Problem
23.9.1 Approximation Algorithm
23.9.2 Solution of Vertex Cover via GAs

23.10 Maximum Clique Problem
23.10.1 Solution of Maximum Clique via GAs

23.11 Conclusion

CHAPTER 24 Introduction to Computational Biology and Bioinformatics
24.1 Introduction
24.2 Basics of Computational Biology and Bioinformatics
24.3 Basics of Life Sciences
24.3.1 Cell
24.3.2 DNA and RNA
24.3.3 Genome
24.3.4 Amino Acids

24.4 Sequencing and Problems Therein
24.4.1 Sequence—Structure Deficit
24.42 Folding Problem

24.5 Algorithms

24.6 Conclusion

APPENDICES

APPENDIXAT Amortized Analysis—Revisited
Al.1 Introduction
Al.2 Aggregate Analysis

A1.3 Dynamic Tables: Aggregation, Accounting, and Potential
Amortized Analysis

Al.4 Conclusion

APPENDIXA2 2-3-4 and Red-Black Trees
A2.1 Introduction

A2.2 2-3-4 Tree

A2.3 Red-Black Trees

A2.4 Conclusion

[|
| | -
o) | [an)]
e 1S <

| ||| [a]||a|[n]|n] [n] [N | (]| [n]][
D] B[] 1] 1= 1= 1=1 =] 1] = =1 1212 |12 19] &S
| (o] (o] 2] 2] \O] [N [[a] | | | O]\ [oo]][

[
o
~

£l EE] B ii@ﬂ
B2 |2 W[| | |2
!@o S = S| S

N
n
\O

xxvi B DETAILED CONTENTS

APPENDIXA3 Matrix Operations

A3.1

Basics

A3.2 Operations on Matrices

A33
A34
A3.5
A3.6

A3.2.1
A3.22
A3.23
A324
A3.25
A3.2.6
A3.2.7
A3.2.8
A329
A3.2.10
A3.2.11

Equality of Matrices
Addition of Matrices
Subtraction of Matrices
Scalar Multiplication
Transpose of a Matrix
Symmetric Matrix
Skew-symmetric Matrix
Multiplication of Matrices
Determinant of a Matrix
Minor and Cofactor of an Element
Inverse of a Matrix

Solving System of Linear Equations: Cramer’s Rule

Solving System of Linear Equations: Inverse Method

Elementary Row Operations

Conclusion

APPENDIXA4 Linear Programming

A4.1
A4.2
A4.3
A44

A4.5

Introduction
Graphical Method
Simplex Method

Finding Dual and an Introduction to the Dual
Simplex Method

Conclusion

APPENDIXA5 Complex Numbers and Introduction to DFT

AS5.1

Introduction

A5.2 Complex Numbers

AS5.2.1
A522
A523
AS524

A5.25
A5.2.6
A5.2.7

Complex Number: Cartesian and Polar Form
Conversion of a Complex Number into Polar Form
Power and Root of a Complex Number

Finding Powers and Roots of a Complex Number
Using the Polar Form

Roots of a Complex Number

Cube Roots of Unity

nth Roots of Unity

A5.3 Discrete Fourier Transform

| || || |n] |n| [n] |n]|n]] |n]] |n]|An] [N
A [N DD Al A Al Al] |n| N |n]|n] [N
| 1= S]] \O] |00 [|| |V [V |\ [N [N [

N
(o)}
~J

| |
Q| D
O |\O

(5,
~
Y

W | || [N
o] | |d] |
p—t AN I |—

|9
(o]
98]

| |V
ool |00
~| |

V)
o]
o0

91
o]
o0

o)1
o2}
\O

W 9}
O o0
!!

W
O
—_

)
\O
[\

)
Nel
W

Y
\O
=

AS54
AS55

DETAILED CONTENTS M xxvii

Use of Divide and Conquer in DFT
Conclusion

APPENDIXA6 Probability

A6.1

A6.2

A6.3

A6.4

A6.5

A6.6

A6.7
A6.8

Introduction

Basics
A6.2.1 Taxonomy
A6.2.2 Pigeonhole Principle

Independent Events
A6.3.1 Bay’s theorem

Probability Distribution
A6.4.1 Mean and Variance of a Probability Distribution

Binomial Distribution
A6.5.1 Recurrence Formula for Binomial Distribution

Poisson’s Distribution
A6.6.1 Recurrence Formula for Poisson’s Distribution

Normal Distribution

Conclusion

APPENDIXA7 Scheduling

A7.1

A7.2

A7.3
A7.4
A7.5

Introduction
A7.1.1 Scheduling Problems

Definitions and Discussions

A7.2.1 Job Scheduling

A7.2.2 NP-complete Job Scheduling Problem

A7.2.3 Single Execution Time Scheduling with Variable
Number of Processors

A7.2.4 Pre-emptive Scheduling

How to Handle Scheduling Problems?

Tools

Conclusion

APPENDIXA8 Searching Reprise

A8.1
A8.2
A8.3
A8.4
A8.5

Introduction

Binary Search Tree—Revisited
Deletion in a BST

Problem with BST and AVL Trees

Conclusion

[Nl [®) DD | D ||| [N | |
FEEEEEEEEE BE
RS N9 =] [\Of|o0] [e0 [SNRES

@)}
—
Ne)

[*NRI=N oAl IeN IS [[A [[
QI |W] |W] W2 (8] 1 |95] | (U] I LN] | (8] IR RS NS
ool 1) || NN |N] [&[> x| W] =[S

[®))
|I8)
\O

A |
W |

[@)
.J;
\O

O\ﬁ
| |
4;!

xxviii M DETAILED CONTENTS

APPENDIXA9 Analysis of Sorting Algorithms

A9.1
A9.2

A9.3

A94

A9.5

A9.6

Introduction
Lab 1: Quick Sort
A9.2.1 Goal: Implement and Analyse Quick Sort for Small Input
Size (Exactly Reverse of What We Should Have Done)
A9.2.2 Related Problems
Lab 2: Selection Sort
A9.3.1 Goal: Implement and Analyse Selection Sort
A9.3.2 Related Problems
Lab 3: Insertion Sort
A9.4.1 Goal: Implement and Analyse Insertion Sort
A9.4.2 Related Problems
Lab 4: Bubble Sort
A9.5.1 Goal: Implement and Analyse Bubble Sort
A9.5.2 Related Problems

Problems Based on Sorting

APPENDIXA10 Problems

A10.1
A10.2

Al10.3
Al10.4
A10.5
A10.6

A10.7

Introduction

Problems

A10.2.1 To Design an O(n) Algorithm to Find the nth Fibonacci Term
A10.2.2 To Find Whether a Strictly Binary Tree is a Heap

A10.2.3 To Develop an O(N) Algorithm to Sort Numbers

Division of a List Into Two Parts Whose Sum has Minimum Difference
Complexity-related Problems

Algorithm to Store Subsets Having Two Elements

Divide and Conquer

A10.6.1 Non-recursive Binary Search

A10.6.2 Binary Search in a 2-Dimensional array

A10.6.3 Complexity of Divide and Conquer

Applications of Dynamic Programming

Bibliography
Index
About the Author [691]

N AN A D
[N W | |
) \O \O| |0

[*))
(o))
[N

i
[N
[\

N
[®))
(O8]

(=) (o R= 1= 1=
S\ N DN DN S
~l ANy [N | (U] i (O8]

(@)
(@)
~

A 1 | DD [
U RRN RN [N (e] [*
W] 1N |© 0|1

(@)}
~

[N 1[*)] [*
~ \]
~J e

(o))
-
o0

~
W

N

. S || - |-

Copyrighted Mate'rials

Copyright © 2015 Oxford University Press Retrieved from www.knovel.com

E -] . I 1
L W ! | =
4
! 4

SECTION |
CEPTS OF ALGORITHMS

Some infinities are bigger than other infinities.
— John Green

Chapter 1 Introduction to Algorithms
Chapter 2 Growth of Functions
Chapter 3 Recursion

Chapter 4 Analysis of Algorithms

CHAPTER 1

Introduction to Algorithms

OBJECTIVES

After studying this chapter, the reader will be able to

e Understand the importance of algorithms

* Trace the origin of algorithm

e Define an algorithm

e Learn the various ways of writing an algorithm

* Understand what the future has in store for us vis-a-vis algorithms
e Understand the concept of designing an algorithm

1.1 INTRODUCTION]

A computer engineer is expected to tackle any given problem in the most efficient man-
ner. This efficiency can be in terms of memory or time or both. However, efficiency
becomes important only if the solution, proposed by the person, solves the problem. The
steps followed to do so constitute an algorithm. This chapter introduces the concept of
algorithm, discusses the ways of writing an algorithm, and explores the basics of algo-
rithmic designing. We start with the informal definition of an algorithm.

Definition Algorithm refers to the steps to be carried out in order to accomplish a
particular task.

Algorithms are used everywhere, from a coffee machine to a nuclear power plant.
A good algorithm should use the resources such as the CPU usage, time, and memory
judiciously. It should also be unambiguous and understandable. The output produced
by an algorithm lies in a set called range. The input, is taken from a set ‘domain’ (input
constraints). From the domain only the values satisfying given constraints can be taken.
These constraints are referred to as input constraints. Input constraints determine the
values of x;, i.e., input. The inputs are related to each other as governed by relation corre-
sponding to the task that is to be accomplished. This is referred to as explicit constraint.

INTRODUCTION TO ALGORITHMS ™ 3

The formal definition and characteristics of an algorithm are discussed later in this
chapter. However, the above discussion introduces the concept.

1.2 IMPORTANCE OF ALGORITHMS]

To understand the importance of algorithms, let us take an example. Most of us must have
found solutions to a lot of our problems using Google. When we type a query in Google,
we are presented with the ordered set of results that are more or less relevant. However,
this ranking is done via an algorithm, which ranks the pages in accordance with the query
entered. This ranking algorithm not only checks the textual similarity of the query with
the web page, but also calculates the inlinks (number of pages pointing to that page) and
the outlinks (number of pages that the page is pointing to) of that page. This algorithm
has helped Google in achieving its present status. Most of us would agree that Google has
changed our life. Therefore, the credit goes to the page rank algorithm that Google uses.

Another example that can be cited here is that of ‘Google Maps’. Most of us must
have used it to find the route from one location to another. ‘Google Maps’ helps us to get
driving directions by using the shortest path algorithms explained in this book. So, even
Google Maps is based on algorithms. The application fascinates and at times annoys
owing to the incorrect results displayed. However, one must appreciate the fact that it
is a computer program, which is an implementation of some algorithm. The algorithm
is still being refined but the fact is that it presents us with a thing which, at one point of
time, was the sole prerogative of man.

Nowadays, algorithms have become important even for biological endeavours.
Governments across the world want to make a global database of DNAs to combat the
menace of terrorism. This would be possible only if sorting and searching algorithms are
developed, which can extract information from billions of DNAs. In order to accomplish
this task, nature-based algorithms are being developed. The subsequent chapters of this
book examine the searching algorithms and their complexities. One of the nature-based
search procedures called genetic algorithms have been explained in Chapter 23.

Let us take another example to demonstrate the importance of algorithms. Optimization
problems are one of the most important problems not only in computer science but also in
economics. The study of algorithms helps us to solve optimization problems as well. All of
us know the fact that, in order to make a business profitable, the total cost should be mini-
mized and the profit should be maximized. Algorithmic designing techniques like ‘greedy
approach’, introduced in Section III of the book, help in achieving the task of optimization.

Summarizing the importance of algorithms discussed earlier, we can say the following:
e It helps in enhancing the thinking process. They are like brain stimulants that will

give a boost to our thinking process.

e It helps in solving many problems in computer science, computational biology, and
€conomics.
* Without the knowledge of algorithms we can become a coder but not a programmer.

4 W ALGORITHMS: DESIGN AND ANALYSIS

* A good understanding of algorithms will help us to get a job. There is an immense
demand of good programmers in the software industry who can analyse the problem
well.

e The fourth section of the book that introduces genetic algorithms and randomized
approach will help us to retain that job.

Having discussed the importance of the subject, let us move on to the history of the
subject. It is important to know the history of the subject as it helps in creating an inter-
est in the subject. The problems faced in the past pave way for deducing the possible
solutions in the future.

1.3 HISTORY OF ALGORITHM |

The origin of the word algorithm is indirectly linked to India. A scholar in the, ‘House
of Wisdom’ in Baghdad, Abu Abdullah Muhammad Ibn Musa Al Khwarizmi, wrote
a book about Indian numerals in which rules of performing arithmetic with such
numerals were discussed. These rules were referred to as ‘algorism’ from which the
word algorithm was derived. His book was translated into Latin in the 18th century.
This was followed by the invention of Boolean algebra by George Boole and the
creation of language in special symbols by Frege. The concept of algorithms, given
its present form by a genius named Alan Turing, helped in the inception of artificial
intelligence.

Algorithms have been used for long in mathematics and computer science. Euclid’s
theorem and the algorithm of Archimedes to calculate the value of ‘Pi’ are classic exam-
ples of algorithms. These events reinforced the belief that if a task is to be performed,
then it must be performed with a predefined sequence of steps that are unambiguous
and efficient. However, this belief would be challenged in the late 20th century with the
introduction of non-deterministic algorithms.

Not only in mathematics and computer science are there algorithms, they are part
of our daily lives. When a person is taught how to make tea, even then an algorithm is
edified. Algorithms are camouflaged as directions and rules, which form the basis of
our existence. The challenge, however, is to make these algorithms efficient and robust.

1.4 ALGORITHM: DEFINITION]

An algorithm is a sequence of steps that must be carried out in order to accomplish a
particular task. Three things are to be considered while writing an algorithm: input,
process, and output. The input that we give to an algorithm is processed with the help
of the procedure and finally, the algorithm returns the output. It may be stated at this
point that an algorithm may not even have an input. An example of such an algorithm is
pseudorandom number generator (PRNG). Some random number generators generate

INTRODUCTION TO ALGORITHMS M 5

a number without a seed. In such cases, the algorithm does not require any input. The
processing of the inputs generates an output. This processing is the most important part
of the algorithm. This book intends to examine the various methodologies used to write
a good algorithm. It may be noted though that algorithm writing is more of an art. We
can be taught the basics, but the art of writing an algorithm will have to be developed by
practicing more and more algorithms.

While writing an algorithm, the time taken to accomplish the task and the memory
usage must also be considered. The prime motto is to solve the problem but efficiency of
the process followed should not be compromised.

There is a distinction between natural language and algorithmic writing. While
speaking or writing a letter, we may use ambiguous terms unknowingly or deliberately.
However, the intelligence of the reader or the listener disambiguates the whole thing.
For example, if we have reservations about a person with regard to his/her knowledge of
the subject, then we might camouflage our unwillingness to work with him/her as a per-
sonal or social problem. This may not be the case when algorithms are concerned. While
writing an algorithm we will have to be clear and unambiguous about our objectives.
Moreover, any statement in an algorithm should be strictly deterministic. However, in
non-deterministic algorithms, this condition does not hold.

To summarize the discussion
* An algorithm is a sequence of steps in order to carry out a particular task.

e It can have zero or more inputs.

e It must have at least one output.

* It should be efficient both in terms of memory and time.
* It should be finite.

» Every statement should be unambiguous.

The meaning of finite is that the algorithm should have countable number of steps.
It may be stated that a program can run infinitely but an algorithm is always finite. For
example, an operating system of a server, in spite of being a program runs 24 X 7 but an
algorithm cannot be infinite.

1.5 WAYS OF WRITING AN ALGORITHM]

There are various ways of writing an algorithm. In this section, three ways have been
explained and exemplified taking requisite examples. However, the chapters that follow
explain the problems introduced in this section in detail.

1.5.1 English-Like Algorithm

An algorithm can be written in many ways. It can be written in simple English but this
methodology also has some demerits. Natural languages can be ambiguous and there-
fore lack the characteristic of being definite. Since each step of an algorithm should be
clear and should not have more than one meaning, English language-like algorithms

6 M ALGORITHMS: DESIGN AND ANALYSIS

are not considered good for most of the tasks. However, an example of linear search, in
which an element is searched at every position of the array and the position is printed if
an element is found, is given below. In this algorithm, ‘A’ is the array in which elements
are stored and ‘item’ is the value which is to be searched. The algorithm assumes that all
the elements in ‘A’ are distinct. Algorithm 1.1 depicts the above process.

,i Algorithm 1.1 English-like algorithm of linear search

Step 1. Compare ‘item’ with the first element of the array, A.

Step 2. If the two are same, then print the position of the element and exit.
Step 3. Else repeat the above process with the rest of the elements.

Step 4. If the item is not found at any position, then print ‘not found'and exit.

However, Algorithm 1.1, in spite of being simple, is not commonly used. The flow-
chart or a pseudocode is more common as compared to ‘English-like algorithms’, which
is used in some chapters such as Chapters 23 and 24 of this book.

1.5.2 Flowchart

Flowcharts pictorially depict a process. They are easy to understand and are commonly
used in the case of simple problems. The process of linear search, explained in the pre-
vious subsection, is depicted in the flowchart illustrated in Fig. 1.1. The conventions of
flowcharts are depicted in Table 1.1.

Print the
location ‘7’

Figure 1.1 Flowchart of linear search

INTRODUCTION TO ALGORITHMS & 7

Table 1.1 Flowchart conventions

S. No. Name Element Representation Meaning

1. Start/End An oval is used to indicate the beginning and
end of an algorithm.

2. Arrows An arrow indicates the direction of flow of

l the algorithm.

3. Connectors Circles with arrows connect the disconnected
flowchart.

4. Input/Output E A parallelogram indicates the input or output.

5. Process A rectangle indicates a computation.

6. Decision A diamond indicates a point where a decision
is made.

In the flowchart, shown in Fig 1.1, A[] is an array containing N elements. The index of
the first element is O which is also the initial value of i. Such depictions, though easy to
comprehend, are used only for simple straightforward problems. Hence, this book neither
recommends nor uses the above two types for writing algorithms, except for some cases.

1.5.3 Pseudocode

The pseudocode has an advantage of being easily converted into any programming lan-
guage. This way of writing algorithm is most acceptable and most widely used. In order
to be able to write a pseudocode, one must be familiar with the conventions of writing it.
Table 1.2 shows the pseudocode conventions.

Table 1.2 Pseudocode conventions

S. No.

Construct Meaning
// Comment Single line comments start with //
/* Comment Line 1 Multi-line comments occur between /* and */
Comment Line 2
o
o
Comment Line n
*/
{ Blocks are represented using { and }. Blocks can be
statements used to represent compound statements (collection
} of simple statements) or the procedures.
) Statements are delimited by ;

(Contd)

8 M ALGORITHMS: DESIGN AND ANALYSIS

Table 1.2

(Contd)

S. No.

10.

11.

12.

13.

15.
16.

17.

Construct

<variable> =

Q
1l
"

[on

a AND b

NOT a

<Expression>

if<condition>then<statement>

if<condition>then<statementl>
else<statement2>

Case

{

:<condition 1>: <statement 1>

)
O

:<condition n>: <statement n>

:default:

<statement n+1>

Meaning

This is an assignment statement. The statement
indicates that the result of evaluation of the expres-
sion will be stored in the variable.

a and b are expressions, and > is a relational opera-
tor ‘greater than’. The Boolean expressiona > b
returns true if a is greater than b, else returns false.

a and b are expressions, and < is a relational opera-
tor ‘less than’. The Boolean expression a < b returns
true if a is less than b, else returns false.

a and b are expressions, and <= is a relational oper-
ator ‘less than or equal to’. The Boolean expression
a <= b returns true if a is less than or equal to b,
else returns false.

a and b are expressions, and >= is a relational
operator ‘greater than or equal to’. The Boolean
expression a >= b returns true if a is greater than
or equal to b, else returns false.

a and b are expressions, and ! = is a relational opera-
tor ‘not equal to’. The Boolean expression a != b
returns true if a is not equal to b, else returns false.

a and b are expressions, and == is a relational
operator ‘equal to’. The Boolean expression a ==
returns true if a is equal to b, else returns false.

a and b are expressions, and AND is a logical opera-
tor. The Boolean expression a AND b returns true
if both the conditions are true, else it returns false.

a and b are expressions, and OR is a logical opera-
tor. The Boolean expression a OR b returns true if
any of the condition is true, else it returns false.

a is an expression, and NOT is a logical operator.
The Boolean expression ‘NOT a’ returns true if the
result of a evaluates to False, else returns False.

The statement indicates the conditional operator if.

The statement is an enhancement of the above if
statement. It can also handle the case wherein the
condition is not satisfied.

The statement is a depiction of switch case used in
C or C++.

(Contd)

INTRODUCTION TO ALGORITHMS ™ 9

Table 1.2 (Contd)
S.No. Construct Meaning
18. while<condition>do The statement depicts a while loop
{
statements
¥
19. repeat The statement depicts a do-while loop
statements
until<condition>
20. for variable = valuel to value2 The statement depicts a for loop
{
statements
}
21. Read Input instruction
22. Print Output instruction
23. Algorithm<name> (<parameter list>) The name of the algorithm is <name> and the argu-

ments are stored in the <parameter list>

Algorithm 1.2 depicts the process of linear search. The name of the algorithm is
‘Linear Search’. The element ‘item’ is to be searched in the array ‘A’. The algorithm

uses the conventions stated in Table 1.2.

Algorithm 1.2 Linear search

Algorithm Linear_Search(A, n, item)

{
for i =1 to n step 1 do

{
if(A[i] == item)
{
print i;
exit();
¥
¥

print “Not Found”

Two approaches of writing an algorithm are described in the following chap-
ters, the first approach, followed in Chapters 9-11 explicitly states the input, out-
put constraints, etc. The algorithms stated in this fashion require least effort to
implement. However, at times, when the details of the implementation are not to be
included in the algorithm, the English-like algorithms come to our rescue. The algo-
rithm broadly describes what is to be done, not exactly how it is to be done. As stated
earlier, some chapters such as Chapters 23 and 24 follow this approach.

10 ™ ALGORITHMS: DESIGN AND ANALYSIS

1.6 DESIGN AND ANALYSIS vs ANALYSIS AND DESIGN |

In order to accomplish a task, a solution needs to be developed. This is called designing
of an algorithm. For example, if an array ‘A’ of length # is given and our requirement is
to find out the maximum element of the array, then we can take a variable ‘Max’ whose
initial value is A[1], which is the first element of the array. Now, start traversing the
array, compare the value of Max with each element, if we are able to find any element
greater than Max, then we can set Max to the value of that element, else continue. The
process is depicted in Algorithm 1.3.

,’ Algorithm 1.3 Finding maximum element from an array

Algorithm Max(A, n)

{
Max = A[1];
for i =2 to n step 1 do
{
if(A[i]>Max) then
{
Max=A[1];
}
}
Print “The maximum element is A[i]”
}

The next step would be to analyse the time complexity of the algorithm. Table 1.3
shows the number of times each statement is executed.

The above analysis gives an idea of maximum amount of resources (in this case time)
required to run the algorithm. This is referred to as algorithm design and analysis (ADA)
(see Fig. 1.2).

However, this may not be the case most of the times. Often, we have to develop
software for the client. The client has some set-up and will not want to upgrade his sys-
tems in order to install the software. In such cases, we must analyse the hardware and

Table 1.3 Number of times each statement is executed in Algorithm 1.3

Max = A[1]; 1

for i := 2 to n step 1 dof n

if(A[i]>max) { n—1

Max=A[1];}} less than or equal to (n—1)
print “The maximum element is A[i]” 1

Maximum: (n)

INTRODUCTION TO ALGORITHMS ™ 11

{ Design] [Analyse] {Analyse] { Design]
Figure 1.2 Design and Figure 1.3 Analysis and
analysis design

the set-up of the client and then decide on the algorithms we would be using in order to
accomplish the tasks. Here, we cannot apply techniques like diploid genetic algorithm
on a system that uses a P4, similarly there is no point in using algorithms that are time
efficient but probably use extensive resources in a very advanced set-up. The process is
referred to as analysis and design. The process is depicted in Fig. 1.3.

The general approach being used is design and analysis; however, analysis and design
is far more practical and hence implementable.

1.7 PRESENT AND FUTURE |

The algorithms developed at present focus more on efficiency and optimization. When we
develop an algorithm, the first and foremost task is to solve the problem at hand. So, cor-
rectness comes first even if it is at the expense of time and memory. When we are able to
solve the problem, then we try to make our algorithm efficient. That is to say, we try to use
constructs that require less time and perhaps less memory too. Most of the algorithms devel-
oped also cater to the requirement that each statement should be unambiguous and definite.
So to summarize, in developing an algorithm, the following things are taken care of:

1. Make sure that the solution is correct.

2. Try to make sure that the time consumption is least.

3. Try to make sure that the memory consumption is also least.

4. Try to keep each statement unambiguous and definite.

However, doing so can be a problem in the following cases:

When the search space is so large that it is not possible to obtain an exact solution.
2. The algorithm implements a non-deterministic machine.

The above two points have become common owing to the stress laid on the non-
deterministic algorithms in recent years and the need to process huge amount of data in
web mining.

Consuming least time and least memory would also be irrelevant in future because
processes have become so fast that even if our algorithm produces better results in spite
of taking more time, it will be considered good.

As far as memory is concerned, consuming a little more memory and giving bet-
ter results is considered acceptable in the present scenario and become more acceptable
owing to the decrease in the cost of memory. For example, a 20 GB hard disk would have
cost 33000 in 2001-2002, however, now we would get a 500 GB hard disk at the same

—

12 W ALGORITHMS: DESIGN AND ANALYSIS

price. So, 25 times increase in the memory and no increase in the cost in a decade points
to the fact that memory is becoming cheap. Therefore, it would not be advisable to spend
a lot of time devising algorithms which would save a few bytes of memory.

It may also be noted that the algorithms will now be based on artificial intelligence tech-
niques rather than determinism. The development of Deep Blue, a computer which could
play chess and was able to challenge Garry Kasparov, is an example of such algorithms.

So, the future algorithms will depend on
1. Artificial intelligence techniques, which would help in optimization.

2. Ability to utilize hardware capabilities and process power as well.
3. Non-determinism which will have to be integrated so as to solve real-time problems
and parallel processes.

1.8 FLOW OF THE BOOK N

This book has been divided into four sections: Basic Concepts of Algorithms, Data
Structures, Design Techniques, and Advanced Topics. The first section lays stress on
the importance of algorithms and the complexity measurements and the second section
deals with the basic data structures. This section have been included in this book so
that the readers who have not studied data structures should not find it difficult to com-
prehend the rest of the chapters. The section forms the basis of the concepts explained
in Sections III and IV. The readers who have done a basic course of data structures
may jump to the third section. However, it would be beneficial to at least go through
the sections to be able to implement the strategies examined in the sections that follow.

The third section focuses on the paradigms such as divide and conquer, dynamic approach,
backtracking, and branch and bound to solve various problems. The web resources of the
book also include the codes of some of the standard problems such as knapsack and job
sequencing. The section is the most important of the three sections and it is important to
understand the section to be able to become an accomplished algorithm designer.

The fourth section explores some of the yet unexplored areas such as artificial intel-
ligence and computational biology. The section is essential for those doing or intending
to do an advanced course in algorithms. Figure 1.4 depicts the organization of the book.

1.9 CONCLUSION |

This chapter introduces the concept of algorithms. It may be stated at this point that
before proceeding any further, it is essential to be able to write an algorithm. In order
to do so the conventions of algorithm writing must be clearly understood. Moreover,
it is also important to understand the difference between analyses of algorithms and
followed by design and the concept of analysis and design. The chapter examines the
concept, and it will become clear as we proceed further. Although an algorithm can be
written in any of the three ways explained in the chapter, following the convention of

INTRODUCTION TO ALGORITHMS

Decoding algorithms

|. Basic concepts
of algorithms

Il. Data
structures

1. Design
techniques

IV. Advanced
topics

Introduction to
algorithms,
complexity
measurement, etc.

Essential data
structure and
recursion, sorting in
linear and quadratic
time and introduc-
tion to graphs

Techniques of
designing, divide
and conquer,
greedy algorithms,
dynamic program-
ming, backtracking,
branch and bound,
and randomized
algorithms, etc.

Transform and
conquer,
NP-completeness,
approximation
algorithms, number
theoretic, decrease
and conquer
approach,
topological sorting,
space-time trade
offs, limitations of
algorithmic power,
parallel algorithms,
hypercube, artificial
intelligence
approaches, and
miscellaneous
topics

13

Figure 1.4 Organization of the book

Algorithms 1.2 and 1.3 is advisable. The chapters that follow discuss the various strate-
gies of designing and analysing algorithms. Hence, this chapter serves as a foundation
stone of the text that follows. In order to become an accomplished programmer, the
know-how of algorithms is essential. So, it would be better to understand and implement
the concepts given in the chapters that follow.

Points to Remember

+ Analgorithm is different from a program. An algorithm is finite; a program can be infinite.
+ An algorithm can be pictorially depicted by a flowchart.

« The analysis of an algorithm is essential in order to judge whether it can be implemented
in the given conditions.

+ The analysis of an algorithm may consider time or space or both.

« The design of an algorithm can follow the analysis of the requirements. This approach is
referred to as analysis and design.

« The algorithm can be designed in order to accomplish a task, and then can be analysed.
This approach is referred to as design and analysis.

14 W ALGORITHMS: DESIGN AND ANALYSIS

KEY TERMS

Algorithm It is a sequence of steps to accomplish a particular task efficiently and effectively.
Constraint The conditions that control the selection of elements in backtracking.

Explicit Constraint The conditions that determine how should various x/’s are related to each
other.

Implicit Constraint An element x; can take its values only from a legal set of values called
domain.

EXERCISES

I. Multiple Choice Questions

1. Which of the following is a part of an algorithm?
(a) Input
(b) Output
(c) Steps to be carried out in order to accomplish the task
(d) All of the above
2. What is the most desirable characteristic of an algorithm?
(a) Usability
(b) Documentation
(c) Ability to accomplish task
(d) None of the above
3. Which of the following disciplines make use of ADA?

(a) Automation (c) Biology

(b) Computer science (d) All of the above
4. Who gave the concept of algorithms in its present form?

(a) George Boole (¢) Al Khwarizmi

(b) Frege (d) Alan Turing
5. Who invented Boolean algebra?

(a) George Boole (¢) Al Khwarizmi

(b) Frege (d) Alan Turing
6. Who created a language in special symbols?

(a) George Boole (c) Al Khwarizmi

(b) Frege (d) Alan Turing

7. Which is not an essential characteristic of algorithm?
(a) Definiteness
(b) Finiteness
(c) Efficiency
(d) Effectiveness

10.

R A I e

—_
o

A

INTRODUCTION TO ALGORITHMS ™ 15

. Definiteness property of algorithm means

(a) Considering the time taken to accomplish the task and the memory usage

(b) Each step of an algorithm must be precisely defined, unambiguously

(c) The number of steps in an algorithm must be finite and further each step must
be executable in finite amount of time

(d) Each step must be sufficiently basic so that it can be done exactly by a person
using pencil and paper

Effectiveness property of algorithm means

(a) Considering the time taken to accomplish the task and the memory usage

(b) Each step of an algorithm must be precisely defined, unambiguously

(c) The number of steps in an algorithm must be finite and further each step must
be executable in finite amount of time

(d) Each step must be sufficiently basic so that it can be done exactly by a person
using pencil and paper

Algorithm must be

(a) Programming language dependent

(b) Programming language independent

(c) Either of the above

(d) None of the above

. Review Questions

What are algorithms? What are the characteristics of an algorithm?
What is meant by time complexity and memory complexity?

Briefly trace the history of algorithms.

What are the various ways of writing an algorithm?

Why do you think that each instruction of an algorithm must be definite?
Give an example of an algorithm which does not take any input.

Can there be an algorithm that does not have an output?

What are the differences between an algorithm and a program?

Explain the various approaches of writing an algorithm.

. Explain with the help of an example time memory trade-off.

. Application-based Questions

Write an algorithm to find the smallest number from amongst three numbers.
Write an algorithm to find the greatest common divisor of two numbers.

Write an algorithm to find the square root of a number.

Given an array write an algorithm to search an element from the array.

Given an array write an algorithm to find the maximum element from the array.
Given an array write an algorithm to find the minimum element from the array.

16 M ALGORITHMS: DESIGN AND ANALYSIS

7. Write an algorithm to find second maximum element from an array.
8. Write an algorithm to sort an array.

9. Write an algorithm to find out the maximum element from a matrix.
10. Write an algorithm to find the trace of a matrix.

Answers to MCQs

1. (d) 3. (d) 5. (a) 7. (d) 9. (d)
2. (¢) 4. (@) 6. (b) 8. (b) 10. (b)

Copyrighted Materials

Copyright © 2015 Oxford University Press Retrieved from www.knovel.com

CHAPTER 2

Growth of Functions

OBJECTIVES

After studying this chapter, the reader will be able to

* Understand the concept and importance of asymptotic notations

* Understand basic mathematical concepts such as arithmetic progression, geometric
progression, and logarithms

* Explain the properties of asymptotic functions

e Compare algorithms on the basis of asymptotic complexity

2.1 INTRODUCTION |

In order to accomplish a task, the most important thing is to design a correct algorithm.
An algorithm can be called correct if it accomplishes the required task. However, some-
times in spite of being correct, an algorithm may not be of much use, in the case where
it takes a lot of time. For example, applying linear search in order to find out an element
is correct, but what if the array contains more than 10" elements?

Even if one element is processed in 107 seconds, it will take 10,000 seconds or
around 3 hours to search an element. Now imagine that the same task is to be accom-
plished in an array that contains the roll numbers of all the students of a university. In that
case this procedure will require a lot of time. So, it is important that the algorithm should
be correct as well as efficient. The understanding of running time is also important in
order to compare the efficiency of two algorithms. This chapter deals with the analysis
of algorithms. The analysis is aimed at finding out the running time of an algorithm.

It is difficult to find the exact running time of an algorithm. It requires rigorous math-
ematical analysis. The calculation of exact running time also requires the knowledge of
sequences and series and logarithms among others. Moreover, the exact analysis pro-
vides no additional advantage compared to an approximate analysis. The exact analysis
gives the exact polynomial function that relates the input size with the running time,
whereas the approximate analysis gives the power of input size on which the running
time depends. For example, the exact running time of an algorithm may be 3 x n* + 2 x
n + 3. In this case, the approximate running time would be f(n*). So, the highest power of

18 M ALGORITHMS: DESIGN AND ANALYSIS

n is what matters while calculating the approximate running time of an algorithm. Even
the constants that are there with the term containing the highest power do not matter.

It may also be stated that the number of inputs to an algorithm may not always be the
number of variables that are given as an input to the algorithm. For example, if an algo-
rithm takes an array as an input, then the input size is generally taken as n and not 1. So,
the idea is that since an array contains n elements, the number of inputs to the algorithm
must be taken as the number of elements in that array. The algorithm will most probably
deal with most, if not all, of the elements of the array.

Tip: In an array, the number of input elements is the length of the array, not 1.

The argument can be extended to a two-dimensional array as well. The number of
inputs of an algorithm that manipulates an array having n rows and m columns is taken
as n X m, and not 1. This is because the number of elements in the data structure is n X m.

Section 2.3 introduces the asymptotic notations and the procedure to find the asymp-
totic complexity of an algorithm. However, in order to understand the mathematics of
the asymptotic notations, basic mathematical concepts are needed, which have been
presented in Section 2.2. The topics discussed in Section 2.2 will help the readers to
understand the complexity analysis of the algorithms given in the subsequent chapters.

2.2 BASICMATHEMATICAL CONCEPTS |

This section deals with the basic topics such as an arithmetic progression, geometric
progression, and logarithms. The definition of the general sequence and the sum of
n terms of arithmetic and geometric progressions have been dealt with in the present
section. This section also throws light on logarithms, so that the idea of complexity can
be understood clearly.

2.2.1 Logarithms

Logarithm is one of the most important concepts in mathematics. The analysis of algo-
rithms also requires the concept of logarithms. The concept can be used in O notation
and for making calculations simpler. The definition of logarithm is as follows:

Definition If a’=c, then log, c=b, that s, log c to the base a is b.
For example, since 5° =125, logs 125=3

The standard notations are as follows:

log,, x =logx
log, x=Inx

log, x =1gx

GROWTH OF FUNCTIONS ™ 19

Moreover, the important properties of logarithms are as follows:

loga+loghb =logab Formula 1
loga—logb=1logalb Formula 2
loga”=bxloga Formula 3
log b= o84 Formula 4
logh
1
log b= Formula 5
og, a

For example,
log5+1log2 =1ogl10
log15—log3 =1log5
log2’ =3 xlog2

log, 7= log7
log2

log,3=
& log, 2

The above properties can be used to simplify and solve the equations involving log.
For example, in order to express log, 1000 in terms of log, 5, 1000 needs to be factor-
ized. Since

1000 = 5" x 2°
log, 1000 = log, 2° +log, 5° = 3log, 2 +3log, 5=3+3log, 5

It may be noted at this point that In(1 + x) can be evaluated with the help of the follow-
ing formula:

Log to the base 10 can be calculated by calculating In and then applying the base change
formula (Formula 4). For example, in order to calculate log 5 to the base 10, the follow-
ing steps must be followed:
4* 4 4 1. .
Inl+4)=4—-—+———+---=1.395,s0log5 = 1.395 =0.60206, sincelog, 10 =2.31.
21 31 41 2.31
It may be stated at this point that the function log grows at a very slow rate. Figure 2.1
shows the variation of x and log, x.

20 W ALGORITHMS: DESIGN AND ANALYSIS

5
4.5
4
3.5
3
Log 25 ya
og ', / — Log
517
1l
0.5
0 LU LLLL LLLLLLE
TN OOULTTNOOUT-INMO LW — I
TTANOOTITOLOONNNOOOO®

Figure 2.1 The log function

The composition of log is defined as
Inlnx = (In(In x))
There is a difference between In’ x = taking Inof In,x (k — 1) times and (In,, x)*, which is

multiplying (In, x) k times.

2.2.2 Arithmetic Progression

An arithmetic progression (AP) is one in which the difference between any two terms
is constant. The first term of the sequence is generally denoted by ‘a’ and the constant
difference is denoted by ‘d’. The terms of an AP are therefore as follows:

a,(a+d), (a+2xd),(a+3xd),... Formula 6
The nth term 7, of the sequence is given by Formula 7:
T =a+(n-1)xd Formula 7

For example, the sequence 2, 7, 12, 17, 22, ... is an AP since the difference between
any two terms is 5. However, the following sequence is not an AP since the difference
between the consecutive terms is not constant,

2,8,12,18,22, ...

In order to understand the concept, let there be an AP having the first term = 23 and
common difference 12. The ninth term of the AP would be

T,=23+(9-1)x12=23+96=119
In order to find the mth term from the end, the following formula can be used:

mth term from the end = (n — m + 1)th term from the beginning Formula 8(a)

GROWTH OF FUNCTIONS ™ 21

In order to find out the number of terms of an AP, whose ‘a’, ‘d’, and ‘T, are given,
apply Formula 7 and equate it to the given value of 7, in order to obtain the value of 7.
The value of n so obtained would be the number of terms.

For example, in the sequence

213,247, ...,519

the value of ‘a’ is 213, the value of ‘d’ is 34, and that of T, is 519. Since T, =213 +
(n—1)x34 =519, the value of n comes out to be 10. However, if the value of n comes out to
be a non-integer, then the given last term does not form the part of the sequence.

The sum of the terms of an AP is given by

S = g(z xa+(n—1)xd) Formula 8(b)

where a is the first term, d is the common difference, and # is the number of terms of
the AP.

2.2.3 Geometric Progression

A geometric progression (GP) is one in which the ratio of any two terms is constant. The
first term of the sequence is generally denoted by ‘a’ and the common ratio is denoted
by ‘r’. The terms of GP are, therefore, as follows:

a, (axr), (axr®), (axr’),...

The nth term 7, of the sequence is given by Formula 9

1

T =axr" Formula 9

For example, the sequence
2, 10, 50, 250, ...

is a GP since the ratio of any two terms is 5. However, the following sequence is not a
GP since the ratio of the consecutive terms is not constant.

2,8,12, 18,22, ...
In order to understand the concept, let there be a GP having the first term =23 and com-
mon ratio 12. The ninth term of the GP would be
T, =23x12° =9889579008

In order to find the mth term from the end, the following formula can be used.

mth term from the end = (n — m + 1)th term from the beginning.

[I3

In order to find out the number of terms of a GP, whose ‘a’, ‘r’, and ‘T, are given,
apply Formula 9, and equate it to the given value of 7,, in order to obtain the value of n.
The value of n so obtained would be the number of terms.

22 W ALGORITHMS: DESIGN AND ANALYSIS

For example, in the sequence

245,735, ..., 59535

the value of a is 245, the value of r is 3, and that of 7, is 59535. Since
T, =245x3"" =59535

the value of n comes out to be 6. However, if the value of n comes out to be a non-
integer, then the given last term does not form the part of the sequence.
The sum of the terms of a GP is given by Formula 10 (a)
n _ 1
= a’ - Formula 10(a)
(r—1)
where a is the first term, r is the common ratio, and #n is the number of terms of the GP,
if the value r > 1.

If r < 1, then the formula becomes S = %, In this case, the value of sum upto
-r
infinity is given by the following formula:
S = a Formula 10(b)
(I-r)
2.3 ASYMPTOTIC NOTATION]

The word ‘asymptotic’ is made up of three words: ‘a’, ‘sym’, and ‘totic’. The meaning
of ‘a’ is not, and ‘sym’ means touch. Asymptote, therefore, means a line that approaches
the curve of the polynomial approximately.

Asymptotic notation finds the upper bound of the polynomial as in the case of ‘big
Oh’ notation; or the lower bound as in the case of @ notation; or containment as in the
case of 6 notation. This section throws some light on the three notations and illustrates
the procedure to find asymptotic notations.

2.3.1 0 Notation: Big Oh Notation

The big Oh notation is used when the upper bound of a polynomial is to be found. The
notation is helpful in finding out the maximum amount of resources an algorithm requires,
in order to run. This is important as pre-empting the maximum time (or resources)
requirement can help us to schedule the task accordingly. It is also helpful to compare
the best-suited algorithm amongst the set of algorithms, if more than one algorithm can
accomplish a given task. Figure 2.2 shows the relation between g(n) and O(g(n)).

Definition f(n)=0(g(n)) if f(n)<Cxg(n), n>n,, Cand n, are constants.

GROWTH OF FUNCTIONS ™ 23

fn)

74/ g(n)

Figure 2.2 The big Oh
notation: f(n) = O(g(n))

In order to understand the above point, let us take an example of an algorithm whose
running time varies according to the function: 4 X n* + 5 X n + 3, n being the number of
inputs. The value of the function is less than or equal to 5 x %, if the value of n is 6.
Table 2.1 shows the variation of values of the polynomial and 5n°.

Table 2.1 Comparison of f(n) and g(n)

n 4*n*n + 5%n + 3 S5*n*n
1 12 5
2 29 20
3 54 45
4 87 80
5 128 125
6 177 180

Hence, it becomes evident from the table that the value of n for which 5 X n* becomes
greater than 4 x n” + 5 x n + 3 is 6.
It can, therefore, be stated that

g(n)=5xn’,forn>6

The examples that follow this section examine the concept in more detail. It may be
noted that an algorithm that takes O(n) time is better than the one that takes O(nz) time.

If O(n) is the upper bound of an algorithm, then on®), 0(n®), O(n*), etc., would also
be the upper bounds.

2.3.2 Q) Notation: Omega Notation

The omega notation is used when the lower bound of a polynomial is to be found.
The notation is helpful in finding out the minimum amount of resources, an algorithm

24 W ALGORITHMS: DESIGN AND ANALYSIS

requires, in order to run. Finding out the minimum amount of resources is important as
this time can help us to schedule the task accordingly. It is also helpful to compare the
best-suited algorithm amongst the set of algorithms, if more than one algorithm can
accomplish a given task. Figure 2.3 shows the relation between g(n) and €(g(n)).

30

. /

15 /

10 /
ya

Figure 2.3 f(n) = Q(g(n))

f(n)
—g(n)

E’ Definition f(n)=Q(g(n)), if f(n) >Cxg(n), n=n,, C and n, are constants.

Table2.2 Comparison of The grey line depicts the lower bound of the function. In order

f(n) and g(n) to understand the above point, let us take an example of an algo-
N 5'ntn+2*n+5 4n*n rithm whose running time varies according to the function 5 x n*
1 12 4 + 2 X n + 7. The function is greater than or equal to 4 X n?, if the
E 29 76 value of n is >1. "lz“able 2.2 shows the variation of values of the
3 56 36 polynzo‘mial and 4n”. Henzce, it becomes evident from the table tha}t
A o ” 4 xn”islessthan 5xn +2>2<n+7forallvaluesofn2l.Son

can be stated that g(n) =4 x n”, forn > 1.

2 1:3 122 If Q(n3) is the lower bound of an algorithm, then Q(nz), Q(n),

Q(1), etc., would also be the lower bounds. For example, if the
minimum time taken by an algorithm is 2n + 5 and the maximum
is 4n + 34, then we can say that the time taken by the algorithm is ¢,n < T(n) and hence
T(n)=Q(n)

The examples that follow this section examine the concept in more detail.

2.3.3 O Notation: Theta Notation

The theta notation is used when the bounds of a polynomial are to be found. The notation
is helpful in finding out the minimum and the maximum amount of resources, an algo-
rithm requires, in order to run. Finding out the bounds of resources (or time) is important
as this can help us to schedule the task accordingly. The notation is also helpful in finding

GROWTH OF FUNCTIONS ™ 25

the best-suited algorithm amongst the set of algorithms, if more than one algorithm can
accomplish a given task. Figure 2.4 shows the relation between g(n) and 6(g(n)).

6(n)

30
25 //
20

/ , — Culn)
15 / i
10 -

f(n) and g(n)

Figure 2.4 f(n)=0 (g(n))
Definition f(n)=0(g(n)),if C,g(n) <f(n)<C,g(n),n=n,, C and n, are constants.

The grey and the dashed lines depict C,g(n) and C,g(n), accordingly. In order to
understand the above point, let us take an example of an algorithm whose running time
varies according to the function 3xn”> +2xn+1, where n is the input size. The function
is greater than or equal to 2 X n” and less than or equal to 4n°, if the value of n is >3.
Table 2.3 shows the variation of values of the polynomial and 4n” and 2 x n”.

Table 2.3 Comparison of g(n) and 6(g(n)

n 3*n*n +2*n+1 4*n*n 2*n*n
1 6 4 2
2 17 16 8
3 34 36 18
4 57 64 32
5 86 100 50
6 121 144 72
7 162 196 98
8 209 256 128
9 262 324 162
10 321 400 200
11 386 484 242

Hence, it becomes evident from the table that the value of n for which 2 x n” is less
than 3 X n* +2 X n+ 1 is 1 and the value of n for which the function 4n* becomes greater
than 3 x n* + 2 xn+ 1 is 3.

26 M ALGORITHMS: DESIGN AND ANALYSIS

Therefore, g(n) =4 x n?, forn > 1.
The examples that follow this section examine the concept in more detail.

Two algorithms A, and A, run on the same machine. The running
time of A, is 100n* and the running time of A, is 2". For what value of 7, A, runs faster
than A,?

Solution Table 2.4 shows the variation of values of 100n° and 2" with n. It may be noted
that for n > 15, 2" exceeds 1001°. So, till n =14, A, runs faster.

Table 2.4 Variation of 100n? and 2" with n

n 100n° 2n

1 100 2

2 400

3 900 8

4 1600 16

5 2500 32

6 3600 64

7 4900 128

8 6400 256

9 8100 512

0 10,000 1024 2" is greater

11 12,100 2048 than 100"
for all

12 14,400 4096 n>15

13 16,900 8192

14 19,600 16,384

In order to make the concept clear, let us also analyse the graph of 100n” and 2" with n.
Figure 2.5 shows the graph. It may be noted that after n = 15, 2" is way ahead of 1001,

60,000
50,000 //
40,000
2l1
30,000
100 xnxn
20,000
10,000 /
O I T T T T T 1

LN I R R I R B |
12 3 45 6 7 8 9 1011 1213 14 15

Figure 2.5 Variation of 100n” and 2n with n

GROWTH OF FUNCTIONS ™ 27

Now, most of you must be wondering as to why a question which you could have
solved in the sixth grade is given to you in this book. The reason being this question
portrays the gist of the chapter. It may be noted that in most of the algorithms, the num-
ber of inputs is generally greater than 15. The number can be in 100s or even in 1000s.
The large number of inputs forms the basis of growth of functions which forms the basis
of this chapter. Another example that demonstrates the concept is as follows:

Two algorithms A, and A, run on the same machine. The running
time of A, is 100> and the running time of A, is 2. Can A, run faster than A,?

Solution The question is similar to the first illustration, except for the fact that the power
of n in this case is 30. Now from a quick observation, it appears that A, will always take
more time as compared to A,, but Fig. 2.6 shows the variation of values of 1007 and 2"
with n. It may be noted that for n > 245, 2" exceeds 100n°.

2E+75
1.8E+75
1.6E + 75
14E+75
12E+75
1E+75
8E + 74
6E + 74
4E + 74
2E+74
0 p

— 0 0 MmN
— A < W

_2n

— 100 x n%0

~
o
=)

3
N

113
127
141
155
169
183

- 10
~ o

225
= 239

Figure 2.6 Variation of 100n” and 2" with n

So, it is worth remembering that for large values of n, 2" will always be greater than
cxn™, n being the number of inputs and m is any integer.

m Find omega notation for g(n) = 3xn”> +2xn+5.

Solution As per the definition of ‘Q’ notation, the function f(n) such that

3xn* +2xn+5>cx f(n), n>n,

will be the Q(g(n)).
It may be noted that 3xn”+2xn+5>2xn>,n>n, Table 2.5 shows the values of
3xn’ +2xn+5 and 2 x n*. Hence, for Vn > 1, the above inequality holds

3xn* +2xn+5>2xn’

Therefore, 3xn”> +2xn+5=Q(n*).

28 W ALGORITHMS: DESIGN AND ANALYSIS

Table 2.5 Variation of 3n*>+2n+5
and 2n? with n

n 3n’+2n+5 2n*
1 10

2 21 8
3 38 18
4 61 32
5 90 50
6 125 72
7 166 98
8 213 128
9 266 162
10 325 200
11 390 242
12 461 288
13 538 338
14 621 392
15 710 450

| |[METETY, X8 Find big Oh notation for g(n) = 3xn” +2xn+35.
Solution As per the definition of ‘O’ notation, the function f{n) such that

¢, x f(n)=3xn* +2xn+5n>n,

will be the O(g(n)).
It may be noted that 3xn* +2xn+5<4xn’ n> n,. Table 2.6 shows the values of
3xn® +2xn+5 and 4 x n*. Hence, for Vn >4, the above inequality holds.

Therefore, 3xn*+2xn+5=0(n")

Table 2.6 Variation of 3n% + 2n + 5 and 4n* with n

n 3 +2n+5 4n? for n 24, 4n*
becomes greater

1 10 4 than 30> + 2n + 5

2 21 16

3 38 36

4 61 64

5 90 100

6 125 144

7 166 196

8 213 256

(Contd)

Table 2.6 (Contd)

GROWTH OF FUNCTIONS ™ 29

9

10
11
12
13
14
15

3 +2n+5
266
325
390
461
538
621
710

4n®
324
400
484
576
676
784
900

m Find theta notation for g(n) =3 X nw+2xn+5.

Solution As per the definition of ‘6" notation, the function f{(n) such that
c ><f(n)£3><n2 +2xn+5<c¢,x f(n),n=n,

will be the 6(g(n)). The above two illustrations confirm the fact that if f(n) = n?, then both

Therefore, 3xn”> +2xn+5=0(n").

HITHTEUT PR Find omega notation for g(n) = n X logn + 5.

Solution As per the definition of ‘@’ notation, the function f{n) such that

will be the a(g(n)).

cle(n)s3xn2+2xn+5,n2no

3xn’ +2xn+5<c, x f(n), n>n,

¢ xf(n)y<nxlogn+5,nzn,

Now, if the value of f(n)=1og(n), then the above equation is satisfied. Table 2.7 shows
the variation of the given function, g(n) with f(n). The graph is depicted in Fig. 2.7.

Table 2.7 Variation of nlog(n) + 5 with log(n)

O 0 N O L AW N~ I

—
@

nlog(n) + 5
5
5.60206
6.431364
7.40824
8.49485
9.668908
10.91569
12.22472
13.58818
15

log(n)
0
0.30103
0.477121
0.60206
0.69897
0.778151
0.845098
0.90309
0.954243
1

30 W ALGORITHMS: DESIGN AND ANALYSIS

45
40
35
30
25
20
15
10

nxlog(n) +5

log(n)

LI T
1 3 5 7 9 1 13 156 17 19 21 23

Figure 2.7 Variation of nlog n+ 5 and logn with n

It is evident from the graph that nxlogn+5>logn,n>1. Therefore,
o(nxlogn+5)=Ilogn.

|| TR {ELT WA Find ‘O notation’ for g(n) = nlog n + 5.

Solution As per the definition of ‘O’ notation, the function f{rn) such that
¢, x f(n)znxlogn+5,nzn,
will be the O(g(n)).
Now, if the value of f(n) = 2n, then the above equation is satisfied. Table 2.8 shows
the variation of the given function, g(n) with fin). The graph is depicted in Fig. 2.8.
Since 2 is a constant, therefore, f{n) = n qualifies as O(f(n)).

Table 2.8 Variation of nlog(n) + 5 and 2n

with n
n nlog(n) + 5 2n
1 5 4
2 5.60206 8
3 6.431364 12
4 7.40824 16
5 8.49485 20
6 9.668908 24
7 10.91569 28
8 12.22472 32
9 13.58818 36
10 15 40
11 16.45532 44
12 17.95017 48
13 19.48126 52
14 21.04579 56
15 22.64137 60

GROWTH OF FUNCTIONS ™ 31

120

100

80

nlog(n) +5

60 on

40

20

o ’I T 1

1 3 5 7 9 11 183 15 17 19 21 23
Figure 2.8 Variation of nlogn + 5 and 2n with n

Itis evident from the graph thatn xlogn + 5 <2n, n > 1. Therefore, n x logn + 5 = O(n).

2.3.4 o Notation: Small Omega Notation

The w notation is defined as follows:

(n)

f(n) = w(g(n)), 1ff11mjgc(n) 0

1 —
2xn+3

In most of the cases, the degree of g(n) is one less than f{n). However, the premise
does not always hold good.

If the value of f(n)=2xn"+3xn+7, then g(n) would be n, which has degree one
less than f(n). However, if f{n) = log n, then g(n) = 1.

For instance, if f(n)=2xn+3, then g(n) =1, since lim

n—o0

2.3.5 o Notation: Small oh Notation

The o notation is defined as follows:
Fm)=0(g(n)), iff lim f ((”; 0
> gn

2xn+3

n2

It may be noted that, in most of the cases, the degree of g(n) is one more than f{(n). If
the value is f(n)=2xn" +3xn+7, then g(n) would be n°, which has degree one more

than f(n).

For instance, if f(n)=2xn+3, then g(n) = n’, since lim, =0.

2.3.6 Comparison of Functions

It was stated earlier that 2" surpasses any other function. However, the statement is
not true for all the values of n. The present section compares the values of n, log n, n’,
n’, and 2". The values are given in Table 2.9 and the corresponding graph is shown in
Fig. 2.9.

32 W ALGORITHMS: DESIGN AND ANALYSIS

35000

30000

25000

20000

15000

10000

5000

Table 2.9 Comparison of functions

Logn n n* n’ 2"
0 1 1 1 2
0.30103 2 4 8 4
0.477121 3 9 27 8
0.60206 4 16 64 16
0.69897 5 25 125 32
0.778151 6 36 216 64
0.845098 7 49 343 128
0.90309 8 64 512 256
0.954243 9 81 729 512
1 10 100 1000 1024
1.041393 11 121 1331 2048
1.079181 12 144 1728 4096
1.113943 13 169 2197 8192
1.146128 14 196 2744 16384
1.176091 15 225 3375 32768
//
——

T T T T T 1 T T T T T T
12 3 45 6 7 8 9 10 11 12 13 14 15

Figure 2.9 Variation of various functions with n

log(n)

nxn

nxnxn

Note that 2" is always greater than any function, for larger values of n. It may be
noted that the lines depicting 2" and n seem to overlapp because of the scale of y-axis.

The students are advised to plot the values of n and 2" for smaller scale.

2.4 PROPERTIES OF ASYMPTOTIC COMPARISONS

The first property that is being discussed is reflexivity. Reflexivity, in general, is defined as

f(a)=a,where f(x) is a function and a belongs to its domain.

GROWTH OF FUNCTIONS ™ 33

In the case of asymptotic notations, the reflexivity is defined as follows:

f(n)=Q(f(n))
f(n)=0(f(n))
and f(n)=0(f(n))

The symmetry property in general is defined as follows:

For a function f(x,y), f(a, b)= f(b, a).

In the case of asymptotic functions, symmetry can be stated as f(n)=0(g(n))if
g(n)=0(f(n)). However, as per the definitions of O and €, if f(n) = O(g(n)), then
g(n) = Q(f(n)). This property is called transpose symmetry.

The transpose symmetry is also valid for o and , that is, if f(n)=o0(g(n)), then
g(n)=w(f(n)). The transitivity, in general, is defined as

f(a)=g(b)and g(b) =c, then f(a)=c
In the case of asymptotic notations, the following relations hold:

f(n)=0(g(n)) and g(n) = 0(j(n)), then f(n) = 0(j(n))
f(n)=0(g(n)) and g(n) = O(j(n)), then f(n) = O(j(n))
f(n) =Q(g(n)) and g(n) = Q(j(n)), then f(n) =Q(j(n))
f(n)=o0(g(n)) and g(n) = o(j(n)), then f(n) = o(j(n))
f(n) = o(g(n)) and g(n) = o(j(n)), then f(n) = w(j(n))

However, it may be stated at this point that trichotomy does not hold in the case of
asymptotic notations.

2.5 THEOREMS RELATED TO ASYMPTOTIC NOTATIONS |

This section presents some basic theorems related to the asymptotic notations intro-
duced in the earlier sections. The theorem proofing, in the case of asymptotic func-
tions, requires the understanding of basic definitions. Theorem 2.1 has been proved. The
proofs of Theorems 2.2 and 2.3 are left as an exercise for the readers.

Theorem 2.1 If f(n)=0(g(n))and f(n)=C0Q(g(n)),then f(n)=_0(gn)).
Proof If f(n)=0(g(n)), then there exists ¢, such that

Jm)<c (g(n)

Moreover, f(n)=C(g(n)), therefore, there exists ¢, such that

f(n)= ¢, g(n)

34 W ALGORITHMS: DESIGN AND ANALYSIS

Combining the above two results it may be stated that
¢, xgm< f(n)<c,xg(n)

which means that f(n)=0(g(n)).

The above theorem can be understood with the help of the following example. Let
f(n)y=cx"+ cz)c”’1 +ee cnxo, then

f(n)=0(x")
also
Jf(n)=Q(g(n))
therefore

f(n)=0(g(n))

Theorem 2.2 If f(n) and g(n) are two non-negative functions, then

max(f(n), g(n)) =0(f(n)+g(n))

Theorem 2.3 If f(n) and g(n) are two non-negative functions, then

max(f(n), g(n)) = O(f(n)+g(n))

2.6 CONCLUSION N

This chapter introduces the concept of asymptotic notations. It would help in determin-
ing the space and time complexity of the algorithms that follow. The chapter is the basis
of the rest of the chapters. The knowledge of basic sequences and logarithms is also
necessary in order to handle difficult mathematical tasks. The chapter, therefore, throws
some light on the basic mathematical concepts as well. There are five basic asymptotic
functions, each of which has been defined in Section 2.3. The properties of these func-
tions have been dealt with in Section 2.4. It is highly recommended that the reader
strives to find all the asymptotic notations of as many functions as he/she can.

Points to Remember

« The big Oh notation is used when the upper bound of a polynomial is to be found.
« The omega notation is used when the lower bound of a polynomial is to be found.
« The theta notation is used when the bounds of a polynomial are to be found.

* f(n)=Q(f(n))

GROWTH OF FUNCTIONS ™ 35

. f(n)=0(f(n)) and f(n)=0(f(n))

« If f(n)=0(g(n) and f(n)=Q(g(n), then f(n)=0(g(n)).

- If f(n) and g(n) are two non-negative functions, then max(f(n), g(n)) = 6(f(n) + g(n))
- If fln) and g(n) are two non-negative functions, then max(f(n), g(n)) = O(f(n) + g(n))

- A 6(1) algorithm is better than 6(n), which in turn is better than 6(n? and so on. Same is
the case with O and Q.

« A 6(n" algorithm is better than (k")

KEY TERMS

Arithmetic progression An arithmetic progression (AP) is one in which the difference
between any two terms is constant.

Geometric progression A geometric progression (GP) is one in which the ratio of any two
terms is constant.

O notation f(n)=0(g(n)),if f(n)<Cxg(n),n>n,, Candn,, Candn,, are constants.

o notation f(n)=w(g(n)),iff lim @ =0.

n—w g(n)

Q notation f(n)=Q(g(n)),if f(n)>Cxg(n),n=n,,Candn,, C andn, are constants.
@ notation f(n)=0(g(n)),if c,g(n)<f(n)<c,g(n),n=n,, C and n, are constants.

wnotation f(n)=w(g(n)),ifflim,__ M =0.
f(n)

EXERCISES

I. Multiple Choice Questions
1. If f(n)=2xn+35,then f(n) is

(2) O(n) (c) O

(b) O(nz) (d) All of the above
2. If f(n)=4xn+3, then fin) is

(a) O(n) (c) O(log n)

(b) O(1) (d) All of the above
3. If f(n)=3xn+7, then f(n) is

(@) Qn) (©) Q)

(b) Q%) (d) All of the above
4. If f(n)=3xn+7, then f(n) is

(a) Q(n) (c) Q1)

(b) Q(log n) (d) All of the above

36 M ALGORITHMS: DESIGN AND ANALYSIS

10.

Al e

If f(n)=2xn*+5xn+3, then O(n)
(a) O(n)

(b) O(n*)

If f(n)=2xn>+5xn+3, then O(n)
(a) O(n)

(b) O(1)

If f(n)=3xlogn+7n+3, then f(n) is
(a) Q(n)

(b) Q(n’)

If f(n)=3xlogn+7n+3, then f(n) is
(a) O(n)

(b) O(log n)

If f(n)=3xlogn+7x2"+3, then f(n) is
(a) Q2"

(b) Q(n*)

If f(n)=3xlogn+7n+3, then f(n) is
(a) 02"

(b) O(log n)

. Review Questions

Explain the big Oh notation.

() O")
(d) All of the above

(c) O(log n)
(d) None of the above

(c) Q(log n)
(d) All of the above

(c) Q(1)
(d) All of the above

(c) Qlog n)
(d) All of the above

(c) O(n)
(d) All of the above

Explain the significance of the omega notation.

Explain the importance of the theta notation.

What is the importance of the study of growth of functions?
Why do we need to know the maximum and minimum amount of resources required

by an algorithm to run?

Numerical Problems
Find big Oh notation for the following:
(@) f(n)=3xn+2

(b) f(n)=3xn"+5xn+4
(©) f(n)=n*+3xn+1
(d) f(n)=100xn*+91x n+ 4000

(e) f(n)=3xn’ +2xn*+5xn+2

() f(n)=3xn’+2198xn” +55xn+27

() f(n)=3xn*"+2xn’ +5xn+2
(h) f(n)=2xn"+2xn™ +87xn+19
() f(n)=2"+3xn’+2xn*+5xn+2
G) f(n)=2"+2"+3xn’ +2xn’
+5Xn+2
(k) f(n)=3xlogn+2xn*+5xn+2
f(n)=3xlogn+2

. Find theta notation for the following:
(@) f(n)=5xn+2

(b) f(n)=2xn"+4xn+3

(©) f(m)=n*+Txn+9

(d) f(n)=10xn> +191xn+4296

(e) f(n)=6xn’+12xn*+57xn+23
) f(n)=3xn’+19xn* +50xn+21
(g) f(n)=30xn*+2871xn’ +52xn+2
(h) f(n)=21xn"+12xn* +8xn+119

G) f(m)=2"+90xn*+22xn’
+25%Xn+26

() fm=2"+2"+321xn’+21212xn’
+5113xn+24

(k) f(n)=3xlogn+234xn>+523
+22324

(I) f(n)=03xlogn+23112

. Find omega notation for the following:

(@) f(n)=5xn+2

(b) f(n)=4xn>+3xn+5

(¢) f(n)y=n>+237xn+9345

(d) f(n)=1345xn>+1435xn + 4245

(e) f(n)=643xn’ +14352xn”
+5437xn+236

GROWTH OF FUNCTIONS ™ 37

38 W ALGORITHMS: DESIGN AND ANALYSIS

(H) f(n)=343xn’+1459%xn> +50xn
+2167

(2) f(n)=30xn"+2871xn’
+52xn+2567

(h) f(n)=21xn+152xn™ +65xn+9

() f(n)=2"+90xn® +22567xn>
+2565xn+4

() fn)=2"+2"+3xn’ +2xn’
+3xn+4

(k) f(n)=3xlogn+3xn*+2xn+4
(1) f(n)=3xlogn+4

4. Prove the following:
(@) f(n)=5xn+2=0(n")

(b) f(n)=5xn +2=0(n)

(c) f(n)=n"+237xn=0(n")

(d) f(n)=14xn+42=0(n)

(e) f(m)=6xn’+4xn*+5xn+6=0(n)

) f(m)=3xn’+2xn*+1xn=Qn")

(g) f(n)=30xn*+2871xn’ +52xn+2567=0(n")
(h) f(n)=30xn*+2871xn’ +52xn+2567=0(n")
(i) f(n)=2"+Txn*+6xn+5=0(2")

G) f(m)=2"+2"+2"=0(2™)

(k) f(n)=logn+2xn+4=0(logn)

() f(n)=3xlogn+n=0(n)

(m) O(n) > O(logn)

(n) 02")>0(n")

5. Arithmetic Progression
(a) Find the T, term for the following APs:

() a=+5d=5andn=17.

i) a=2.d=Landn=18.
37773

GROWTH OF FUNCTIONS ™ 39

(iii) a=2++/3,d=2-+/3,and n=20.

(iv) a=2+3i,d=2-3i, and n =23, where i = J—1.
(b) In the above question, consider 7, to be the last term, find the 5th term from the
end in each case.
(c) Find the number of terms in the following sequences:
(1) 213,250, ...,546
(i) 6580, 6817, ..., 8713
Gii) 4, 1,..., 10

. 13
v) —,—, .., 12
(iv) e
(d) In question 20, consider 7, to be the last term, find the sum of the terms in each case.
6. Geometric Progression

(a) Find the 7, term for the following GPs:
() a=+5r=+3,andn=17.

2 1
(il)) a=—,r=—,andn=18.
3 3

(iii) a=2++/3, r=2—+/3,and n=20.
(iv) a=2+3i,r=1-3i,and n =23, where i = V-1.

(b) In the above question, consider 7, to be the last term, find the 5th term from the
end in each case.

(c) Find the number of terms in the following sequences:
(i) 26,69, ..., 16767
(i) 36,216, ..., 1679616
(iii) 0.21,1.89, ..., 111602.6
(iv) 3.124,9.372, ...,2277.396

(d) In question c, consider T, to be the last term, find the sum of the terms in each
case.

7. Miscellaneous Problems

(a) If log 2 =0.3010 and log 5 = 0.6991, then find the values of the logarithm for the

following numbers:

(i) 2560 (vi) 10,000
(i) 320,000 (vii) 5000
(i) 64,000 (viii) 16,000
(iv) 2560 (ix) 64
v) 1289 x) 50

8. Is a"' = O(a") where a is an integer?
9. Is the statement ‘The running time of an algorithm is maximum Q(n”)’ meaningful?

40 ™ ALGORITHMS: DESIGN AND ANALYSIS

10. Whatis O(f(n)) N Q(f(n))?
11. Can you compare any two functions using asymptotic notations?
12. Which of the two is bigger as the value of n approaches oo?

\/; or ncosn

13. Which of the two is bigger as the value of n approacheseo?

log ¢ logn

n or ¢

14. If fin) = O(f(n)>)?
15. Is fin) = Q(f(n/3)?

16. If fin) = O(g(n)), then g(n) = O(f(n))?
17. Find the O notation for log(n!).

Answers to MCQs

1. (d) 3. (@ 5. (b), (c) 7. (c) 9. (d)
2. (a) 4. (d) 6. (d) 8. (@) 10. (a), (c)

Copyrighted Materials

Copyright © 2015 Oxford University Press Retrieved from www.knovel.com

CHAPTER 3

Recursion

OBJECTIVES

After studying this chapter, the reader will be able to

* Understand the importance and meaning of recursion

* Appreciate the importance of stacks in recursion

* Understand the rabbit problem

* Understand various methods for solving a recursive equation

* Apply substitution to solve the recursive equation

* Appreciate the concept of generating functions and their application in solving recur-
sive equations

3.1 INTRODUCTION N

Recursion means calling a function in itself. If a function invokes itself, then the phe-

nomenon is referred to as recursion. However, in order to generate an answer, a termi-

nating condition is must. In order to understand the concept, let us take an example. If

the factorial of a number is to be calculated using the function fac(n) defined as follows:
fac(n) = nxfac(n—1)

and fac(1) = 1, and if the value of n is 5, then the process of calculating fac(5) can be
explained with the help of Fig. 3.1. fac(1) is calculated and its value is used to calculate

fac(5) = 5 x fac(4) «—

fac(4) = 4 x fac(3) -
[
fac(3) = 3 x fac(2) -
[
fac(2) = 2 x fac(1) -—
[

fac(1) = 1
L

Last In First Out

Figure 3.1 Calculation of factorial of 5

42 W ALGORITHMS: DESIGN AND ANALYSIS

fac(2), which in turn is used for calculating fac(3). fac(3) helps to calculate fac(4) and
finally, fac(4) is used to calculate fac(5).

As is evident from Fig. 3.1, recursion uses the principle of last in first out and hence
requires a stack. One can also see that had there been no fac(1), the evaluation would not
have been possible. This was the reason for stating that recursion requires a terminating
condition also.

3.2 RABBIT PROBLEM |

The rabbit problem is one of the most famous problems in recursion. The problem is
the source of Fibonacci series. The problem goes as follows. A newborn rabbit does not
breed for the first 2 months. After which, each pair breeds a pair of rabbits each month.
If initially there is a pair of rabbit, for the first 2 months, there will be a single pair, after
which there would be two and three pairs in the next 2 months. However, in the fifth
month, there would be five pairs. This number increases as shown in Fig. 3.2.

X‘\

" @é‘@

W W
0T

First month: 1

Second month: 1

)

N
G

Q- U
\\%}?)

S g
QL

Third month: 2

The first pair breeds
another pair.

Fourth month: 3

The first pair breeds
another pair.

{QQ /W

Figure 3.2 The rabbit problem

Fifth month: 5

The first pair breeds
another pair. The pair
born in third month
also breeds a pair.

RECURSION M 43

Interestingly, the sequence of the number of rabbit pairs formed is 1, 1,2, 3, 5, 8, etc.
Each term of this sequence is the sum of previous two terms. That is any term can be
found by the following formula:

fm)=fn-D+ f(n-2)
where fMH=1 and f(2)=1

The above formula is easy to comprehend. It is, however, not that easy to find the explicit
formula for the nth term of the above sequence. Section 3.3 would help us to derive an
explicit formula of a given recursion relation.

3.3 DERIVING AN EXPLICIT FORMULA FROM RECURRENCE FORMULA |

Though a recurrence formula gives an idea of how a particular term is related to the pre-
vious or the following term, it does not help us to directly find a particular term without
having gone through all the intervening terms. For that, we need an explicit formula.
There are three methods for finding an explicit formula from a recurrence relation. They
are as follows:

e Substitution

* Generating functions

* Tree method

Substitution requires the substitution of a previous instance of the formula in the pre-
sent relation. This method is discussed in Section 3.3.1. Generating functions are dis-
cussed in Section 3.6. The tree method requires finding the solution by determining
the number of inputs processed at each level of the tree. The tree method is discussed
in Section 4.3 of Chapter 4. The choice of the method, however, is a precarious issue.
There is no thumb rule to determine which method to be used for a particular relation.
However, many illustrations have been included in the following sections, which would
help us to develop an insight into the complex process of deriving an explicit formula
for a recurrence relation.

3.3.1 Substitution Method

The solution of a recurrence equation by substitution requires a previous instance of the
formula to be substituted in the given equation. The process is continued till we are able
to reach to the initial condition. Illustration 3.1 gives an example of the method.

m Solve the following recurrence relation by substitution:

a,=2xa, +3, n=2
a, =2, n=2

Solution Since, a,=2xa, ,+3, n>2, therefore

44 W ALGORITHMS: DESIGN AND ANALYSIS

a,,=2xa, ,+3, nx2 3.1
Substituting the value of a,_,, we get

a,=2x(2xa),,+3)+3 (3.2)
which is same as, a,=4xa, ,+2x3+3

From the given equation, it can be inferred that
a, ,=2xa, ;+3 (3.3)
By substituting Eq. (3.3) in Eq. (3.2), we get
a, =2x((2x(2xa),_, +3)+3)+3, that is,

a, =2f><an_r+3><(]+2+,__+2r—1)

or a,=2"xa, +3x(2’ —1) (3.4)
Putting n—r=2 or r=n-2)
we get a,=2""xa, +3x(2”'2 —1)
Since, a,=2
Therefore, a,=2"7?x2+3x (2"’2 - 1)
This implies, a,=2"+3x(2"7 -1)
o, a,=22"13
"2

A person wants to make an investment at the rate of 10% compounded
annually. What will be the amount after n years if the initial amount is ¥10,000?

Solution As per the problem
a,=a, *0.1,a,=10,000 (3.5)
Therefore, a, , =a, , *0.1, substituting in Eq. (3.5), we get
a,=a, ,x0.1x0.1 (3.6)

Generalizing, we get
a,=a, x0.1" (3.7)
Putting(n—r)=1,wegetr=n—1

a, =a,x(0.1)"", where a,=10,000

RECURSION M 45

Linear Recurrence Relation
A linear recurrence relation is of the form

a, =k xa, , +k,xa, ,+--+k _ xaq (3.8)

where k|, k,, k4, etc., are constants.

Examples of linear recurrence relations are as follows:
* a,=3xa, ,wherea, =1

* a,=a,,+a,,,a=landa,=1

* a,=2xa, +3xa,,,a =2
The following equations are not linear:
* a,=nxa, ,wherea =1

n-1°
* a,=a, + ((a)n_2)2, a,=landa, =1
* a,=2"xa, +3xa, ,,a,=2

Such equations can be solved by the method of generation functions described in the
following discussion. First of all, the characteristic equation of the given relation is
formed. In the characteristic equation formed, the order is the difference between the
highest and the lowest subscripts of the equation.

For example, the equation corresponding to a, = a, , +a, , would be
s’ =s+1
That corresponding to a, =a, ,+a, ,+2xa, , would be
s'=5"+s5+2
and so on.

The characteristic equation thus formed is solved. Suppose the roots are r,, r,, etc.
(all different), then the solution of the given equation is

a,=c,(n)" +c,(r,)" +---
However, if two of the roots are same (=1, r,...) , then the solution would be
a,= ((c)1 +rc2)(r])+, (n) 4+
In this case, where three roots are same, the solution would be
a,= ((c)1 +re, +ric,)(r1)+, (n)" +-

In the above cases, the values of constants can be found by the initial conditions.
Mlustrations 3.3, 3.4, and 3.5 depict the above conditions.

m Find the nth term of Fibonacci series.

Solution The general term of a Fibonacci series can be expressed as a recurrence relation
as follows:

a,=a, +a, ,,a =1 and a,=1

46 MW ALGORITHMS: DESIGN AND ANALYSIS

The characteristic equation of the above equation would be as follows:
s =s5+1
Solving, we get

L SEDEJED —dxix(-D)

2(1)

which is

R EA]

2
So, the solution would be
1+45) -5
a,=c, +ey| ——
2 2

Puttingn=1and a, = 1, we get

3.4 SOLVING LINEAR RECURRENCE EQUATION]

A linear recurrence relation of order ‘” with constant coefficients is of the form

a, =qa, +c2an_2 +--+c.a

where ¢, #0.
For example,
a, =3a,_,is a recurrence relation of order 1.
a,=a, , + a, ,is also a recurrence relation, which depicts the Fibonacci series, of
order 2.
a,=a, ,+a, ,+a, is a recurrence relation of order 3.
The first step in solving a recursive relation is to form its characteristic equation.
A characteristic equation is a polynomial equation formed by retaining the constants
of the given equation and by replacing with the powers of s as shown in the following
examples. As a matter of fact, the answer depends on the solution of the equation. So, it
does not really make a difference, if one opts for other variables, except for s.
Examples of characteristic equations:
* For the equation a, = ¢a,_,
The characteristic equation would be s = ¢,s”
* For the equation a,=ca, ,+c,a, ,

n—1

The characteristic equation would be s*=¢,s' +c,s’

* For the equationa, =c,a, ,+c,a, ,+c,a, ,

n-1

Then characteristic equation would be s° =¢,s” +¢,s' + ¢,s°

RECURSION = 47

The next step is to solve the characteristic equation. We must be familiar with the solution

of a quadratic or a cubic equation. The contentious point is, therefore, to be able to find a,,

from the roots of the characteristic equation. The following rules would help us to do so.
Solving the characteristic equation, we get roots «,, a,, ¢, ...

 Ifa,,a,,a,,... are all distinct, then the solution is

a,=c/(o)" +c,(a,) +c,(o) +-
» If two roots ¢, and o, are same, the solution is of the form
a, =(c, +nc,)(a,)"
» If the characteristic equation has 3 roots and all are equal, then
a, =(c, +nc, + 11263)(051)

The following illustrations would help us to understand the above concepts.

||[VEIENGL R Y Solve the following recurrence relation:

a,=a, +6a,,

n
a=1,a,=2

Solution For a,=a, , +6a, ,,the characteristic equation would be

n-2"7
s =5+6s"
By solving, we get §7—s5—65"=0
or §*=35+25-6=0
or (s=3)(s+2)=0
Hence s=3,-2
So a,=c/(o)" +c,(a,) =c,(-2)" +¢,(3)" (3.9

Putting n =0 in Eq. (3.9), we get
a,=c¢, +c,=2
Putting n =1 in Eq. (3.9), we get
a,=-2c¢, +3c, =1
ie. ¢ +c,=2 (3.10)
or -2¢,+3c, =1 (3.11)

Solving the above two equations, we get ¢, =c, =1

48 W ALGORITHMS: DESIGN AND ANALYSIS

Putting the values in Eq. (3.9), we get
a,=(-2)" +(3

m Solve a,=-6a, ,—12a, ,-8a, ,

Solution The order of a homogeneous equation is 3, so the characteristic equation is
s’ =—65"—125-8
or s° =+65" +125+8=0 (3.12)

s = —2 satisfies the equation, so (s + 2) is a factor of Eq. (3.12).
Dividing Eq. (3.12) by (s + 2), we get

(s+2)(s* +4s5s+4)=0

By solving, we get three identical roots s = -2

Therefore, the answer is
a,=(c, +nc, + 112c3)(—2)"

where ¢, ¢,, and c; are constants. Here, the values of a,, a,, etc., are not given, therefore,
there is no way to find the values of the constants.

3.5 SOLVING NON-LINEAR RECURRENCE EQUATION |

Section 3.4 explored the techniques of solving a linear recurrence equation. This section

takes the concept forward and examines the solution of some special cases of a non-

linear equation. Here, the linear part would be solved in the same way as we described

earlier. However, the non-linear part requires substitution of a,

Table 3.1 Solving non-linear in the given equation (Table 3.1). The general form of the recur-

equation using recursion rence relation is a,=c,a, ,+c¢,a, ,+c,a, ,...= f(n). The value
Sn) a, of f(n) determines what is to be substituted in order to obtain the
Cn en+c, total solution.
cn? en’ +ente, In the case of a,, if the characteristic equation also results in
4" cd' a,, then we multiply the substitution by a,, till the solution of the

characteristic equation and the substitution becomes different.

|ITEE LR Solve a, —5a, ,+6a, ,=3"+n

Solution The RHS of the given equation is 3" + n and the characteristic equation is

s2=5s+6=0

By solving, we get s=3,2

RECURSION ™ 49

So, a,=C3"+C,2"
Since 3" is common to both RHS and complementary function, we take the particular
solution as

a,=nC, +nC,3"

Putting a,,in a, —5a, , +6a, , =3" +n, we get

n—1

(nC, +C, +nC,3")=5[(n-1)C, + C, +(n—1)C,3""]
+6[(n-2)C, +C, +(n—2)C,3"*]1=3" +n

So,
C,=112
C,=7/4
C,=3

The particular solution, therefore, becomes

a,=1/2n+7/4+3n3"

| [TETEGTT WA Solve a, =a, +2a, , +2n’.

Solution The given equation can be written as

a,—a, —2a, ,=2n" (3.13)

Since the RHS is 277, so let us take

2
a,=Cn +C,n+C,

ie.,

a,, =C/(n-17+C,(n-1)+C,
and a,,=C/(n-2) +C,(n-2)+C,
Putting in a,=a, +2a,,+ 2n?

(Cn* +Cn+Cy)=(C,(n=1> +C,(n—1)+C,)+2(C,(n-2)* +C,(n-2) + C,) + 2n’
~2C,n* +n(10C, —2C,) +(-9C, +5C, —2C,) = 2n
Comparing the coefficients, we get
-2C, =2
or C =-1
or 10C, —2C, =0

50 M ALGORITHMS: DESIGN AND ANALYSIS

C,=-5
-9C, +5C, -2C, =0
ie., ¢, =-8
Hence,
a,=Cn’+Cn+C,
The LHS of Eq. (3.13) is
a,=a,,=2a,,

The characteristic equation is s* —s—2=0

1£41+8
or s =
2
143
2
—2, -1
ie., a =C,2" +C,(-1)

Combining the solution of the characteristic equation and the particular solution, we get

a,=C2"+C,(-1)"—=n* -=5n—8

3.6 GENERATING FUNCTIONS |

The third method of solving a recurrence relation is using generating functions. To be
able to solve a recurrence relation via a generating function, let us first of all learn to
form a generating function of a recurrence relation.

An infinite series

2 3 n
a,+a,z2+a,z” +az7 +---+a,z

is called generating function of numeric function (a,, q,, a,,...,a,).

Case 1 If (a,=a,=a,,....,=a,=1)
Then, the generating function becomes

l4z+2+2 42"+

Please note that the above series is a GP and the sum = IL = IL
—r -z
1

Hence, A(,):
Co(-2)

RECURSION M 51

Case2 For2° +2'z+42%72 +237% . 42" 7" 4.

1
A=
(1-22)
Generalization:
For a’+a'z+va’? +a’ - +a"d +
1
A=
Y (1-az)

The following illustrations explore the concept and would help the reader to form a
generating function for a recurrence relation.

||V IETG RS Find generating function for
a,=23"+45"+6.8"
Solution Since for d", the generating function is

1
(1-az)

Therefore, for 3" it becomes

(1-32)

for 5" it becomes and

(1-5z)

for 8" it becomes

(1-82)
The generating function for the given equation is
A= ! +4 ! +6 !
: (1-3z) (1-5z) (1-82)

| VE{ET] R Find generating function for

an — 3n+4
Solution
an — 3n+4
— 3)1 . 34
=3"-81
The generating function for 3= ! 13
-3z
Therefore,
A = 81

52 W ALGORITHMS: DESIGN AND ANALYSIS

Having seen the formation of a generating function for a recurrence relation, let us now
see the method for finding the solution. In the following illustration, the value of A(z) is
given and the recurrence relation is to be solved.

T TEWT el 0] Find the numeric function corresponding to

A = &
(1-2)1+2z)

Solution First of all, the partial fraction for the given function is found

3z _ A N B
(1-2)+2z) (-2) (A+2z)

This is followed by the evaluation of the constants, in this case A and B.

Therefore, A =1
Similarly,

Table 3.2 Generating

functions

Sequence
1

n+1)

Generating function

1

3x1 3

C142%1 3

(1-2) Hence, B=-1
1 A(z) can therefore be written as A= 1 - 1 .
(1-az) (1-z) (+22)
1 The last step requires substituting the solution. Table 3.2 gives
(-2’ the values for a, for various generating functions. On substitut-
z ing the appropriate value, the value of a, can be obtained,
(-2 a,=1)" - (-2)"
¢ If a=(ay,a,,a,,...,a,)and b=(b,, b, b,,...,b,) betwonumeric
functions then the corresponding generating functions are
z(1+2) _ 2
i A()=a,+az+a,z -
f2) B(z)=b_+bz +b,2"
f(z)—a, The convolution C = a*b is defined as
@ a,b,+ab, +a,b, ,...+ab,
f(R)—a-a,
& Generating function of convolution C is the product of generat-

ing functions of the two sequences,

RECURSION M 53

Hence, C(z) = A(2),B(2)

Now let us look at how to solve the recurrence relation using Table 3.2.

m Solve a,=3a, ,+1,n>2

a,=0 a, =1
Using generating equation.
Solution Putting n = n + 1 in the above equation, we get

a,,=3a,+1

e %ﬁf O (1;)
> f(Z)G_3j: <1iz>
> f(Z)(l_;Zj: (1iz>
ie. f(z)zm

Now by applying the partial fraction, we get

Z A N B
(1-2)1-3z) (d-z) (1-32)
A=t 1
a-3 2
Similarly, B will be calculated as
_ /3 1
a-1/3) (2
1/2 1/2
f2)= -
(1-32) (1-2)
Hence, a =l3”_11":l3"_l
"2 2 2 2

m Solvea,=a, ,+a, , (i.e., find the explicit formulae for the Fibonacci

sequence)

a,=1,a,=1

using generating equation.

54 W ALGORITHMS: DESIGN AND ANALYSIS

Solution Since a,=a, +a,
By putting n =n+ 2, we get

an+2 n+1+a
f(Z)—azo —az _f()-a, . F O
< Z
I 1 1
f@QUIZ =1z=D)=——t—+—
z 7z
1 2
f(z)_L
z
1
Therefore, fly=—t
l-z-z

By applying partial fraction, we get

(1/\/5)(1/\6/2)_(—1/\/5)(1/—\/5/2)
~(1++512)z 1-(1-v5/2)z

So, the final answer is
(1/5) (1445 72)" ~(145)(1-+572) " =0

where ¢ is gold number.

3.7 CONCLUSION B

The chapter explores the methods of solving a recurrence relation. The method of sub-
stitution, and that using generating functions have been examined in the chapter. These
topics have also been exemplified. The topics will help the reader to analyse the back-
tracking algorithms and those using recursion effectively. The topics, though mathemati-
cal in nature, are essential for analysing algorithms also.

Points to Remember

« Recursion uses the principle of last in first out and hence requires a stack.

« In the Fibonacci series, the nth term can be found by taking the sum of the (n — 1)th and
(n — 2)th term.

« Substitution, generating functions, and tree method are some of the methods to find the
explicit formula for a recurrence equation.

- Fortheequation a,=c,a, ,, the characteristic equation would be s = ¢,s for the equation

a,=ca,,+c,d, ,, the characteristic equation would be s’ =c¢,s'+ ¢, s for the equation

RECURSION M 55

a,=ca, ,+¢,a, ,+¢,a, 5, the characteristic equation would be s*=c,s* +c,s'+¢,s° and
soon.

« If the roots of a characteristic equation are ¢, @,, ..., then
(@) Ifa,, a,,a,,...are all distinct, then the solution is
a, =¢, ()" +¢,((a,)" +¢;((03)" +---
(b) If two roots ¢ and o, are same, the solution is of the form
a, =(c,+nc,)(a,)"
(c) If the characteristic equation has three roots and all are equal then the solution is
a, =(c, +nc, +n’c,)a"

=

KEY TERM

Recursion It means calling a function in itself. If a function invokes itself, then the phenom-
enon is referred to as recursion.

EXERCISES

I. Multiple Choice Questions

1. Which of the following is necessary to prevent stack overflow in recursion?
(a) An initial condition (c) Range of variables
(b) A recursion relation (d) None of the above

2. The following code evaluates the factorial of a number (in C language)
int fact(int x)

{
if(x==1)
return 1;
else
return (x*fac(x-1));

}
For which of the following the answer would not be correct
(a) 2 ® 9 (c) 3 (d1

3. Which of the following cannot be solved by recursion?
(a) Fibonacci series
(b) Factorial of a number
(c) Power function
(d) All of the above can be solved by recursion
4. Which of the following strategies uses recursion extensively?
(a) Backtracking (c) Both
(b) Greedy (d) None of the above

56 M ALGORITHMS: DESIGN AND ANALYSIS

5. Which of the following is not an example of a linear recursive equation?

(a) a,=7xa, ,,where a, =1

n-172
(b) a,=2xa, ,+3xa, ,a,=landa,=1
(¢c) a,=2xa, ,+3xa, ,a, =2

(d) a,=nxa,_,, where a,=1

n—1-2
6. Which of the following is an example of a linear recursive equation?
(a) a,=3nxa,_,,where a, =1

(b) al‘l = an—] + ((a)n72)7a al = 1 and Clz = 1,

p— n p—
(¢) a,=6"xa, +3xa, ,,a,=2

(d) a,=7a, ,, where a, =1
7. Which of the following methods can be used to solve a linear recursive equation?
(a) Substitution (c) Master theorem
(b) Generating function (d) All of the above
8. Which of the following algorithms does not generally use recursion?
(a) Dep