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Preface

The field of computer algorithms has flourished since the early 1960s when

the first users of electronic computers started to pay attention to the per-

formance of programs. The limited resources of computers at that time

resulted in additional impetus for devising efficient computer algorithms.

After extensive research in this field, numerous efficient algorithms for dif-

ferent problems emerged. The similarities among different algorithms for

certain classes of problems have resulted in general algorithm design tech-

niques. This book emphasizes most of these algorithm design techniques

that have proved their utility in the solution to many problems. It may be

considered as an attempt to cover the most common techniques in the design

of sequential algorithms. Each technique is presented as follows. First, the

context in which that technique can be applied. Second, the special charac-

teristics of that technique that set it apart. Third, comparison with other

techniques, whenever possible; finally, and most importantly, illustration of

the technique by applying it to several problems.

Although the main theme of the book is algorithm design techniques, it

also emphasizes the other major component in algorithmic design: the anal-

ysis of algorithms. It covers in detail the analysis of most of the algorithms

presented. Appendix A covers most of the mathematical tools that are help-

ful in analyzing algorithms. Chapter 10 is an introduction to the field of

computational complexity, and Chapter 11 covers the basics of establish-

ing lower bounds on the solution of various problems. These chapters are

indispensable for the design of efficient algorithms.

vii
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viii Algorithms: Design Techniques and Analysis

The focus of the presentation is on practical applications of the design

techniques. Each technique is illustrated by providing an adequate num-

ber of algorithms to solve some problems that quite often arise in many

applications in science and engineering.

The style of presentation of algorithms is straightforward and uses pseu-

docode that is similar to the syntax of structured programming languages,

e.g., if-then-else, for and while constructs. The pseudocode is sometimes

intermixed with English whenever necessary. Describing a portion of an

algorithm in English is indeed instructive; it conveys the idea with mini-

mum effort on the part of the reader. However, sometimes it is both easier

and more formal to use a pseudocode statement. For example, the function

of the assignment statement

B[1..n]←A[1..n]

is to replace each entry B[i] with A[i] for all i, 1 ≤ i ≤ n. Neither the

for . . . end for construct nor plain English is more concise or easier to

state than this notation.

The book is divided into eight parts. Each part consists of chapters that

cover those design techniques that have common characteristics or objec-

tives. Part 1 sets the stage for the rest of the book, in addition to providing

the background material that is needed in subsequent chapters. Part 2 is

devoted to the study of recursive design techniques, which are extremely

important, as they emphasize a fundamental tool in the field of computer

science: recursion. Part 3 covers two intuitive and natural design techniques:

the greedy approach and graph traversals. Part 4 is concerned with those

techniques needed to investigate a given problem and the possibility of

either coming up with an efficient algorithm for that problem or proving

its intractability. This part covers NP-completeness, computational com-

plexity and lower bounds. In Part 5, techniques for coping with hard prob-

lems are presented. These include backtracking, randomization and finding

approximate solutions that are reasonable and acceptable using a reason-

able amount of time. Part 6 introduces the concept of iterative improvement

using two important problems that have received extensive attention, which

resulted in increasingly efficient algorithms: the problem of finding a max-

imum flow in a network and the problem of finding a maximum matching

in an undirected graph. Part 7 is an introduction to the relatively new field

of computational geometry. In one chapter, the widely used technique of
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Preface ix

geometric sweeping is presented with examples of important problems in

that field. In the other chapter, the versatile tool of the Voronoi diagram

is covered, and some of its applications are presented. Finally, Part 8 is

an introduction to the exciting field of parallel algorithms. It covers mate-

rial relevant to the most common models of computation: The PRAM, the

hypercube and the mesh.

The book is intended as a text in the field of the design and analysis

of algorithms. It includes adequate material for two courses in algorithms.

Chapters 1–9 provide the core material for an undergraduate course in algo-

rithms at the junior or senior level. Some of the material may be skipped

such as the amortized analysis of the union-find algorithms and the linear

time algorithms in the case of dense graphs for the shortest path and mini-

mum spanning tree problems. The instructor may find it useful to add some

of the material in the following chapters such as backtracking, randomized

algorithms, approximation algorithms or geometric sweeping. The rest of

the material is intended for a graduate course in algorithms.

The prerequisites for this book have been kept to the minimum; only

an elementary background in discrete mathematics and data structures are

assumed.

M. H. Alsuwaiyel

Dhahran, Saudi Arabia
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PART 1

Basic Concepts and Introduction to
Algorithms

This part of the book is concerned with the study of the basic tools and

prerequisites for the design and analysis of algorithms.

Chapter 1 is intended to set the stage for the rest of the book. In this

chapter, we will discuss examples of simple algorithms for solving some of

the fundamental problems encountered in almost all applications of com-

puter science. These problems include searching, merging and sorting. Using

these example algorithms as a reference, we then investigate the mathemati-

cal aspects underlying the analysis of algorithms. Specifically, we will study

in detail the analysis of the running time and space required by a given

algorithm.

Chapter 2 reviews some of the basic data structures usually employed in

the design of algorithms. This chapter is not intended to be comprehensive

and detailed. For a more thorough treatment, the reader is referred to

standard books on data structures.

In Chapter 3, we investigate in more detail two fundamental data struc-

tures that are used for maintaining priority queues and disjoint sets. These

1
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two data structures, namely the heap and disjoint set data structures, are

used as a building block in the design of many efficient algorithms, espe-

cially graph algorithms. In this book, heaps will be used in the design of

an efficient sorting algorithm, namely heapsort. We will also make use of

heaps in Chapter 7 for designing efficient algorithms for the single-source

shortest path problem, the problem of computing minimum cost spanning

trees and the problem of finding variable-length code for data compression.

Heaps are also used in branch-and-bound algorithms, which is the subject

of Sec. 12.5. The disjoint set data structure will be used in Sec. 7.3 in Algo-

rithm kruskal for finding a minimum cost spanning tree of an undirected

graph. Both data structures are used extensively in the literature for the

design of more complex algorithms.
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Chapter 1

Basic Concepts in Algorithmic
Analysis

1.1 Introduction

The most general intuitive idea of analgorithm is a procedure that consists

of a finite set of instructions which, given an input , enables us to obtain

an output if such an output exists or else obtain nothing at all if there is

no output for that particular input through a systematic execution of the

instructions. The set of possible inputs consists of all inputs to which the

algorithm gives an output. If there is an output for a particular input, then

we say that the algorithm can be applied to this input and process it to

give the corresponding output. We require that an algorithm halts on every

input, which implies that each instruction requires a finite amount of time,

and each input has a finite length. We also require that the output of a legal

input to be unique, that is, the algorithm isdeterministic in the sense that

the same set of instructions is executed when the algorithm is initiated on a

particular input more than once. In Chapter 13, we will relax this condition

when we study randomized algorithms.

The design and analysis of algorithms are of fundamental importance in

the field of computer science. As Donald E. Knuth stated “Computer science

is the study of algorithms”. This should not be surprising, as every area

in computer science depends heavily on the design of efficient algorithms.

As simple examples, compilers and operating systems are nothing but direct

implementations of special-purpose algorithms.

3
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The objective of this chapter is twofold. First, it introduces some simple

algorithms, particularly related to searching and sorting. Second, it covers

the basic concepts used in the design and analysis of algorithms. We will

cover in depth the notion of “running time” of an algorithm, as it is of

fundamental importance to the design of efficient algorithms. After all,

time is the most precious measure of an algorithm’s efficiency. We will also

discuss the other important resource measure, namely the space required

by an algorithm.

Although simple, the algorithms presented will serve as the basis for

many of the examples in illustrating several algorithmic concepts. It is

instructive to start with simple and useful algorithms that are used as

building blocks in more complex algorithms.

1.2 Historical Background

The question of whether a problem can be solved using an effective pro-

cedure, which is equivalent to the contemporary notion of the algorithm,

received a lot of attention in the first part of the 20th century, especially

in the 1930s. The focus in that period was on classifying problems as being

solvable using an effective procedure or not. For this purpose, the need

arose for a model of computation by the help of which a problem can be

classified as solvable if it is possible to construct an algorithm to solve that

problem using that model. Some of these models are the recursive func-

tions of Gödel, λ-calculus of Church, Post machines of Post and the Turing

machines of Turing. The RAM model of computation was introduced as a

theoretical counterpart of existing computing machines. By Church Thesis ,

all these models have the same power, in the sense that if a problem is

solvable on one of them, then it is solvable on all others.

Surprisingly, it turns out that “almost all” problems are unsolvable.

This can be justified easily as follows. Since each algorithm can be thought

of as a function whose domain is the set of nonnegative integers and whose

range is the set of real numbers, the set of functions to be computed is

uncountable. Since any algorithm, or more specifically a program, can be

encoded as a binary string, which corresponds to a unique positive integer,

the number of functions that can be computed is countable. So, informally,

the number of solvable problems is equinumerous with the set of integers
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(which is countable), while the number of unsolvable problems is equinu-

merous with the set of real numbers (which is uncountable). As a simple

example, no algorithm can be constructed to decide whether seven con-

secutive 1’s occur in the decimal expansion of π. This follows from the

definition of an algorithm, which stipulates that the amount of time an

algorithm is allowed to run must be finite. Another example is the problem

of deciding whether a given equation involving a polynomial with n vari-

ables x1, x2, . . . , xn has integer solutions. This problem is unsolvable, no

matter how powerful the computing machine used is. That field which is

concerned with decidability and solvability of problems is referred to as com-

putability theory or theory of computation, although some computer scien-

tists advocate the inclusion of the current field of algorithms as part of this

discipline.

After the advent of digital computers, the need arose for investigating

those solvable problems. In the beginning, one was content with a sim-

ple program that solves a particular problem without worrying about the

amount of resources, in particular time, that this program requires. Then,

the need for efficient programs that use as few resources as possible evolved

as a result of the limited resources available and the need to develop com-

plex algorithms. This led to the evolution of a new area in computing,

namely computational complexity. In this area, a problem that is classified

as solvable is studied in terms of its efficiency, that is, the time and space

needed to solve that problem. Later on, other resources were introduced,

e.g., communication cost and the number of processors if the problem is

analyzed using a parallel model of computation.

Unfortunately, some of the conclusions of this study turned out to be

negative: There are many natural problems that are practically unsolv-

able due to the need for huge amount of resources, and in particular time.

On the other hand, efficient algorithms have been devised to solve many

problems. Not only that; it was also proven that those algorithms are opti-

mal in the sense that if any new algorithm to solve the same problem is

discovered, then the gain in terms of efficiency is virtually minimal. For

example, the problem of sorting a set of elements has been studied exten-

sively; and as a result, several efficient algorithms to solve this problem

have been devised, and it was proven that these algorithms are optimal in

the sense that no substantially better algorithm can ever be devised in the

future.
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1.3 Binary Search

Henceforth, in the context of searching and sorting problems, we will assume

that the elements are drawn from a linearly ordered set, for example, the set

of integers. This will also be the case for similar problems, like finding the

median, the kth smallest element, and so forth. Let A[1..n] be a sequence

of n elements. Consider the problem of determining whether a given ele-

ment x is in A. This problem can be rephrased as follows. Find an index

j, 1 ≤ j ≤ n, such that x = A[j] if x is in A, and j = 0 otherwise. A straight-

forward approach is to scan the entries in A and compare each entry with

x. If after j comparisons, 1 ≤ j ≤ n, the search is successful , i.e., x = A[j],

j is returned; otherwise, a value of 0 is returned indicating an unsuccess-

ful search. This method is referred to as sequential search. It is also called

linear search, as the maximum number of element comparisons grows lin-

early with the size of the sequence. The algorithm is shown as Algorithm

linearsearch.

Algorithm 1.1 linearsearch
Input: An array A[1..n] of n elements and an element x.

Output: j if x = A[j], 1 ≤ j ≤ n, and 0 otherwise.

1. j← 1
2. while (j < n) and (x �= A[j])
3. j← j + 1
4. end while
5. if x = A[j] then return j else return 0

Intuitively, scanning all entries of A is inevitable if no more informa-

tion about the ordering of the elements in A is given. If we are also given

that the elements in A are sorted, say in nondecreasing order, then there

is a much more efficient algorithm. The following example illustrates this

efficient search method.

Example 1.1 Consider searching the array

A[1..14] = 1 4 5 7 8 9 10 12 15 22 23 27 32 35 .

In this instance, we want to search for element x = 22. First, we compare x

with the middle element A[�(1 + 14)/2�] = A[7] = 10. Since 22 > A[7], and

since it is known that A[i] ≤ A[i + 1], 1 ≤ i < 14, x cannot be in A[1..7],
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and therefore this portion of the array can be discarded. So, we are left

with the subarray

A[8..14] = 12 15 22 23 27 32 35 .

Next, we compare x with the middle of the remaining elements

A[�(8 + 14)/2�] = A[11] = 23. Since 22 < A[11], and since A[i] ≤
A[i + 1], 11 ≤ i < 14, x cannot be in A[11..14], and therefore this por-

tion of the array can also be discarded. Thus, the remaining portion of the

array to be searched is now reduced to

A[8..10] = 12 15 22 .

Repeating this procedure, we discard A[8..9], which leaves only one entry

in the array to be searched, that is, A[10] = 22. Finally, we find that x =

A[10], and the search is successfully completed.

In general, let A[low ..high ] be a nonempty array of elements sorted

in nondecreasing order. Let A[mid ] be the middle element, and suppose

that x > A[mid ]. We observe that if x is in A, then it must be one of

the elements A[mid + 1], A[mid + 2], . . . , A[high ]. It follows that we only

need to search for x in A[mid + 1..high ]. In other words, the entries in

A[low ..mid ] are discarded in subsequent comparisons since, by assumption,

A is sorted in nondecreasing order, which implies that x cannot be in this

half of the array. Similarly, if x < A[mid ], then we only need to search for x

in A[low ..mid −1]. This results in an efficient strategy which, because of its

repetitive halving, is referred to as binary search. Algorithm binarysearch

gives a more formal description of this method.

Algorithm 1.2 binarysearch
Input: An array A[1..n] of n elements sorted in nondecreasing order and an

element x.
Output: j if x = A[j], 1 ≤ j ≤ n, and 0 otherwise.

1. low← 1; high← n; j← 0
2. while (low ≤ high) and (j = 0)
3. mid←�(low + high)/2�
4. if x = A[mid ] then j←mid
5. else if x < A[mid ] then high←mid − 1
6. else low←mid + 1
7. end while
8. return j
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1.3.1 Analysis of the binary search algorithm

Henceforth, we will assume that each three-way comparison (if-then-else)

counts as one comparison. Obviously, the minimum number of comparisons

is 1, and it is achievable when the element being searched for, x, is in the

middle position of the array. To find the maximum number of comparisons,

let us first consider applying binary search on the array 2 3 5 8 . If

we search for 2 or 5, we need two comparisons, whereas searching for 8

costs three comparisons. Now, in the case of unsuccessful search, it is easy

to see that searching for elements such as 1, 4, 7 or 9 takes 2, 2, 3 and 3

comparisons, respectively. It is not hard to see that, in general, the algo-

rithm always performs the maximum number of comparisons whenever x is

greater than or equal to the maximum element in the array. In this example,

searching for any element greater than or equal to 8 costs three compar-

isons. Thus, to find the maximum number of comparisons, we may assume

without loss of generality that x is greater than or equal to A[n].

Example 1.2 Suppose that we want to search for x = 35 or x = 100 in

A[1..14] = 1 4 5 7 8 9 10 12 15 22 23 27 32 35 .

In each iteration of the algorithm, the bottom half of the array is discarded

until there is only one element:

12 15 22 23 27 32 35 → 27 32 35 → 35 .

Therefore, to compute the maximum number of element comparisons

performed by Algorithm binarysearch, we may assume that x is greater

than or equal to all elements in the array to be searched. To compute

the number of remaining elements in A[1..n] in the second iteration, there

are two cases to consider according to whether n is even or odd. If n is

even, then the number of entries in A[mid + 1..n] is n/2; otherwise, it is

(n − 1)/2. Thus, in both cases, the number of elements in A[mid + 1..n]

is exactly �n/2�.
Similarly, the number of remaining elements to be searched in the third

iteration is ��n/2�/2� = �n/4� (see Eq. (A.3) on page 672).

In general, in the jth pass through the while loop, the number of

remaining elements is �n/2j−1�. In the last iteration, either x is found

or the size of the subsequence being searched reaches 1, whichever occurs
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first. As a result, the maximum number of iterations needed to search for

x is that value of j satisfying the condition

�n/2j−1� = 1.

By the definition of the floor function, this happens exactly when

1 ≤ n/2j−1 < 2,

or

2j−1 ≤ n < 2j,

or

j − 1 ≤ logn < j.a

Since j is integer, we conclude that

j = �logn�+ 1.

Alternatively, the performance of the binary search algorithm can be

described in terms of a decision tree, which is a binary tree that exhibits the

behavior of the algorithm. Figure 1.1 shows the decision tree corresponding

to the array given in Example 1.1. The darkened nodes are those compared

against x in Example 1.1.

Note that the decision tree is a function of the number of the elements

in the array only. Figure 1.2 shows two decision trees corresponding to

32

5

35271297

8

4

1

23

10

15

22

Fig. 1.1. A decision tree that shows the behavior of binary search.

aUnless otherwise stated, all logarithms in this book are to the base 2. The
natural logarithm of x will be denoted by ln x.
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(b)

3
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6

1
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9

14

13

11

8 1242

75(a)

8

6

7

9

10

2

3

4

1

Fig. 1.2. Two decision trees corresponding to two arrays of sizes 10 and 14.

two arrays of sizes 10 and 14, respectively. As implied by the two figures,

the maximum number of comparisons in both trees is 4. In general, the

maximum number of comparisons is one plus the height of the correspond-

ing decision tree (see Sec. 2.5 for the definition of height). It can be shown

that the height of such a tree is �logn� (Exercise 1.4). Hence, we conclude

that the maximum number of comparisons is �logn�+1. We have in effect

given two proofs of the following theorem:

Theorem 1.1 The number of comparisons performed by Algorithm

binarysearch on a sorted array of size n is at most �logn�+ 1.

1.4 Merging Two Sorted Lists

Suppose we have an array A[1..m] and three indices p, q and r, with 1 ≤
p ≤ q < r ≤ m, such that both the subarrays A[p..q] and A[q + 1..r]

are individually sorted in nondecreasing order. We want to rearrange the

elements in A so that the elements in the subarray A[p..r] are sorted in

nondecreasing order. This process is referred to as merging A[p..q] with

A[q + 1..r]. An algorithm to merge these two subarrays works as follows.

We maintain two pointers s and t that initially point to A[p] and A[q + 1],

respectively. We prepare an empty array B[p..r] which will be used as a

temporary storage. Each time, we compare the elements A[s] and A[t] and

append the smaller of the two to the auxiliary array B; if they are equal we

will choose to append A[s]. Next, we update the pointers: If A[s] ≤ A[t],

then we increment s; otherwise, we increment t. This process ends when

s = q + 1 or t = r + 1. In the first case, we append the remaining elements

A[t..r] to B, and in the second case, we append A[s..q] to B. Finally, the
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array B[p..r] is copied back to A[p..r]. This procedure is given in Algorithm

merge.

Algorithm 1.3 merge
Input: An array A[1..m] of elements and three indices p, q and r, with

1 ≤ p ≤ q < r ≤ m, such that both the subarrays A[p..q] and
A[q + 1..r] are sorted individually in nondecreasing order.

Output: A[p..r] contains the result of merging the two subarrays A[p..q] and
A[q + 1..r].

1. comment: B[p..r] is an auxiliary array.

2. s← p; t← q + 1; k← p
3. while s ≤ q and t ≤ r
4. if A[s] ≤ A[t] then
5. B[k]←A[s]
6. s← s+ 1
7. else
8. B[k]←A[t]
9. t← t+ 1

10. end if
11. k← k + 1
12. end while
13. if s = q + 1 then B[k..r] ←A[t..r]
14. else B[k..r] ←A[s..q]
15. end if
16. A[p..r] ←B[p..r]

Let n denote the size of the array A[p..r] in the input to Algorithm

merge, i.e., n = r − p + 1. We want to find the number of comparisons

that are needed to rearrange the entries of A[p..r]. It should be empha-

sized that from now on when we talk about the number of comparisons

performed by an algorithm, we mean element comparisons , i.e., the com-

parisons involving objects in the input data. Thus, all other comparisons,

e.g., those needed for the implementation of the while loop, will be

excluded.

Let the two subarrays be of sizes n1 and n2, where n1 + n2 = n. The

least number of comparisons happens if each entry in the smaller subarray

is less than all entries in the larger subarray. For example, to merge the two

subarrays

2 3 6 and 7 11 13 45 57 ,
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the algorithm performs only three comparisons. On the other hand, the

number of comparisons may be as high as n− 1. For example, to merge the

two subarrays

2 3 66 and 7 11 13 45 57 ,

seven comparisons are needed. It follows that the number of comparisons

done by Algorithm merge is at least n1 and at most n− 1.

Observation 1.1 The number of element comparisons performed by Algo-

rithm merge to merge two nonempty arrays of sizes n1 and n2, where

n1 ≤ n2, into one sorted array of size n = n1 +n2 is between n1 and n− 1.

In particular, if the two array sizes are �n/2� and �n/2�, the number of

comparisons needed is between �n/2� and n− 1.

How about the number of element assignments (again here, we mean

assignments involving input data)? At first glance, one may start by looking

at the while loop, the if statements, etc. in order to find out how the

algorithm works and then compute the number of element assignments.

However, it is easy to see that each entry of array B is assigned exactly

once. Similarly, each entry of arrayA is assigned exactly once, when copying

B back into A. As a result, we have the following observation:

Observation 1.2 The number of element assignments performed by Algo-

rithm merge to merge two arrays into one sorted array of size n is

exactly 2n.

1.5 Selection Sort

Let A[1..n] be an array of n elements. A simple and straightforward algo-

rithm to sort the entries in A works as follows. First, we find the minimum

element and store it in A[1]. Next, we find the minimum of the remaining

n− 1 elements and store it in A[2]. We continue this way until the second

largest element is stored in A[n−1]. This method is described in Algorithm

selectionsort.

It is easy to see that the number of element comparisons performed by

the algorithm is exactly

n−1∑
i=1

(n− i) = (n− 1) + (n− 2) + · · ·+ 1 =

n−1∑
i=1

i =
n(n− 1)

2
.
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Algorithm 1.4 selectionsort
Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. for i← 1 to n− 1
2. k← i
3. for j← i+ 1 to n {Find the ith smallest element.}
4. if A[j] < A[k] then k← j
5. end for
6. if k �= i then interchange A[i] and A[k]
7. end for

It is also easy to see that the number of element interchanges is between 0

and n− 1. Since each interchange requires three element assignments, the

number of element assignments is between 0 and 3(n− 1).

Observation 1.3 The number of element comparisons performed by Algo-

rithm selectionsort is n(n − 1)/2. The number of element assignments

is between 0 and 3(n− 1).

1.6 Insertion Sort

As stated in Observation 1.3 above, the number of comparisons performed

by Algorithm selectionsort is exactly n(n − 1)/2 regardless of how the

elements of the input array are ordered. Another sorting method in which

the number of comparisons depends on the order of the input elements is

the so-called insertionsort. This algorithm, which is shown below, works

as follows. We begin with the subarray of size 1, A[1], which is already

sorted. Next, A[2] is inserted before or after A[1] depending on whether it

is smaller than A[1] or not. Continuing this way, in the ith iteration, A[i]

is inserted in its proper position in the sorted subarray A[1..i− 1]. This is

done by scanning the elements from index i − 1 down to 1, each time

comparing A[i] with the element at the current position. In each iteration

of the scan, an element is shifted one position up to a higher index. This

process of scanning, performing the comparison and shifting continues until

an element less than or equal to A[i] is found or when all the sorted sequence

so far is exhausted. At this point, A[i] is inserted in its proper position, and

the process of inserting element A[i] in its proper place is complete.
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Algorithm 1.5 insertionsort
Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. for i← 2 to n
2. x←A[i]
3. j← i− 1
4. while (j > 0) and (A[j] > x)
5. A[j + 1]← A[j]
6. j← j − 1
7. end while
8. A[j + 1]← x
9. end for

Unlike Algorithm selectionsort, the number of element comparisons

done by Algorithm insertionsort depends on the order of the input ele-

ments. It is easy to see that the number of element comparisons is mini-

mum when the array is already sorted in nondecreasing order. In this case,

the number of element comparisons is exactly n− 1, as each element A[i],

2 ≤ i ≤ n, is compared with A[i − 1] only. On the other hand, the maxi-

mum number of element comparisons occurs if the array is already sorted

in decreasing order and all elements are distinct. In this case, the number

of element comparisons is

n∑
i=2

i− 1 =

n−1∑
i=1

i =
n(n− 1)

2
,

as each element A[i], 2 ≤ i ≤ n, is compared with each entry in the subarray

A[1..i− 1]. This number coincides with that of Algorithm selectionsort.

As to the number of element assignments, notice that there is an element

assignment after each element comparison in the while loop. Moreover,

there are n− 1 element assignments of A[i] to x in Step 2 of the algorithm.

It follows that the number of element assignments is equal to the number

of element comparisons plus n− 1.

Observation 1.4 The number of element comparisons performed by Algo-

rithm insertionsort is between n − 1 and n(n − 1)/2. The number of
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element assignments is equal to the number of element comparisons plus

n− 1.

Notice the correlation of element comparisons and assignments in Algo-

rithm insertionsort. This is in contrast to the independence of the num-

ber of element comparisons in Algorithm selectionsort related to data

arrangement.

1.7 Bottom-Up Merge Sorting

The two sorting methods discussed thus far are both inefficient in the sense

that the number of operations required to sort n elements is proportional

to n2. In this section, we describe an efficient sorting algorithm that per-

forms much fewer element comparisons. Suppose we have the following array

of eight numbers that we wish to sort:

9 4 5 2 1 7 4 6 .

Consider the following method for sorting these numbers (see Fig. 1.3).

First, we divide the input elements into four pairs and merge each pair

into one 2-element sorted sequence. Next, we merge each two consecutive

2-element sequences into one sorted sequence of size four. Finally, we merge

the two resulting sequences into the final sorted sequence, as shown in the

figure.

In general, let A be an array of n elements that is to be sorted. We first

merge �n/2� consecutive pairs of elements to yield �n/2� sorted sequences

41 6 974 52

4 952 1 64

52 1 644 9 7

7

6471259 4

Fig. 1.3. Example of bottom-up merge sorting.
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of size 2. If there is one remaining element, then it is passed to the next

iteration. Next, we merge �n/4� pairs of consecutive 2-element sequences

to yield �n/4� sorted sequences of size 4. If there are one or two remaining

elements, then they are passed to the next iteration. If there are three

elements left, then two (sorted) elements are merged with one element to

form a 3-element sorted sequence. Continuing this way, in the jth iteration,

we merge �n/2j� pairs of sorted sequences of size 2j−1 to yield �n/2j� sorted
sequences of size 2j . If there are k remaining elements, where 1 ≤ k ≤ 2j−1,

then they are passed on to the next iteration. If there are k remaining

elements, where 2j−1 < k < 2j, then these are merged to form a sorted

sequence of size k.

Algorithm bottomupsort implements this idea. The algorithm main-

tains the variable s which is the size of sequences to be merged. Initially, s

is set to 1 and is doubled in each iteration of the outer while loop. i + 1,

i + s and i + t define the boundaries of the two sequences to be merged.

Step 8 is needed in the case when n is not a multiple of t. In this case,

if the number of remaining elements, which is n − i, is greater than s,

then one more merge is applied on a sequence of size s and the remaining

elements.

Example 1.3 Figure 1.4 shows an example of the working of the algo-

rithm when n is not a power of 2. The behavior of the algorithm can be

described as follows.

6 1095 3 84

95 36 111

11

84113596 10 1 2

84 1 2

7

7

1 2 7

41 6 873 52 9 10 11

1 2 763 9 11105 84

0

Fig. 1.4. Example of bottom-up merge sorting when n is not a power of 2.
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Algorithm 1.6 bottomupsort
Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. t← 1
2. while t < n
3. s← t; t← 2s; i← 0
4. while i+ t ≤ n
5. merge(A, i+ 1, i+ s, i+ t)
6. i← i+ t
7. end while
8. if i+ s < n then merge(A, i+ 1, i+ s, n)
9. end while

(1) In the first iteration, s = 1 and t = 2. Five pairs of 1-element sequences

are merged to produce five 2-element sorted sequences. After the end

of the inner while loop, i + s = 10 + 1 �< n = 11, and hence no more

merging takes place.

(2) In the second iteration, s = 2 and t = 4. Two pairs of 2-element

sequences are merged to produce two 4-element sorted sequences. After

the end of the inner while loop, i + s = 8 + 2 < n = 11, and hence

one sequence of size s = 2 is merged with the one remaining element

to produce a 3-element sorted sequence.

(3) In the third iteration, s = 4 and t = 8. One pair of 4-element sequences

is merged to produce one 8-element sorted sequence. After the end of

the inner while loop, i + s = 8 + 4 �< n = 11, and hence no more

merging takes place.

(4) In the fourth iteration, s = 8 and t = 16. Since i+ t = 0+16 �≤ n = 11,

the inner while loop is not executed. Since i + s = 0 + 8 < n = 11,

the condition of the if statement is satisfied, and hence one merge of 8-

element and 3-element sorted sequences takes place to produce a sorted

sequence of size 11.

(5) Since now t = 16 > n, the condition of the outer while loop is not

satisfied, and consequently the algorithm terminates.

1.7.1 Analysis of bottom-up merge sorting

Now, we compute the number of element comparisons performed by the

algorithm for the special case when n is a power of 2. In this case, the outer
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while loop is executed k = logn times, once for each level in the sorting

tree except the topmost level (see Fig. 1.3). Observe that since n is a power

of 2, i = n after the execution of the inner while loop, and hence Algorithm

merge will never be invoked in Step 8. In the first iteration, there are n/2

comparisons. In the second iteration, n/2 sorted sequences of two elements

each are merged in pairs. The number of comparisons needed to merge

each pair is either 2 or 3. In the third iteration, n/4 sorted sequences of

four elements each are merged in pairs. The number of comparisons needed

to merge each pair is between 4 and 7. In general, in the jth iteration of the

while loop, there are n/2j merge operations on two subarrays of size 2j−1

and it follows, by Observation 1.1, that the number of comparisons needed

in the jth iteration is between (n/2j)2j−1 and (n/2j)(2j − 1). Thus, if we

let k = logn, then the number of element comparisons is at least

k∑
j=1

( n
2j

)
2j−1 =

k∑
j=1

n

2
=
kn

2
=
n logn

2

and is at most

k∑
j=1

n

2j
(
2j − 1

)
=

k∑
j=1

(
n− n

2j

)

= kn− n
k∑

j=1

1

2j

= kn− n
(
1− 1

2k

)
(Eq. (A.11), page 678)

= kn− n
(
1− 1

n

)
= n logn− n+ 1.

As for the number of element assignments, there are, by Observation 1.2

applied to each merge operation, 2n element assignments in each iteration

of the outer while loop for a total of 2n logn. As a result, we have the

following observation:

Observation 1.5 The total number of element comparisons performed by

Algorithm bottomupsort to sort an array of n elements, where n is a

power of 2, is between (n logn)/2 and n logn− n+ 1. The total number of

element assignments done by the algorithm is exactly 2n logn.
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1.8 Time Complexity

In this section, we study an essential component of algorithmic analysis,

namely determining the running time of an algorithm. This theme belongs

to an important area in the theory of computation, namely computational

complexity, which evolved when the need for efficient algorithms arose in

the 1960s and flourished in the 1970s and 1980s. The main objects of study

in the field of computational complexity include the time and space needed

by an algorithm in order to deliver its output when presented with legal

input. We start this section with an example whose sole purpose is to reveal

the importance of analyzing the running time of an algorithm.

Example 1.4 We have shown before that the maximum number of ele-

ment comparisons performed by Algorithm bottomupsort when n is a

power of 2 is n logn− n+ 1, and the number of element comparisons per-

formed by Algorithm selectionsort is n(n− 1)/2. The elements may be

integers, real numbers, strings of characters, etc. For concreteness, let us

assume that each element comparison takes 10−6 seconds on some comput-

ing machine. Suppose we want to sort a small number of elements, say 128.

Then, the time taken for comparing elements using Algorithm bottomup-

sort is at most 10−6(128 × 7 − 128 + 1) = 0.0008 seconds. Using Algo-

rithm selectionsort, the time becomes 10−6(128 × 127)/2 = 0.008 sec-

onds. In other words, Algorithm bottomupsort uses one tenth of the time

taken for comparison using Algorithm selectionsort. This, of course, is

not noticeable, especially to a novice programmer whose main concern is

to come up with a program that does the job. However, if we consider a

larger number, say n = 220 = 1,048,576 which is typical of many real-world

problems, we find the following: The time taken for comparing elements

using Algorithm bottomupsort is at most 10−6(220 × 20− 220 + 1) = 20

seconds, whereas, using Algorithm selectionsort, the time becomes

10−6(220 × (220 − 1))/2 = 6.4 days!

The calculations in the above example reveal the fact that time is

undoubtedly an extremely precious resource to be investigated in the anal-

ysis of algorithms.

1.8.1 Order of growth

Obviously, it is meaningless to say that an algorithm A, when presented

with input x, runs in time y seconds. This is because the actual time is
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not only a function of the algorithm used, it is a function of numerous fac-

tors, e.g., how and on what machine the algorithm is implemented and in

what language or even what compiler or programmer’s skills, to mention

a few. Therefore, we should be content with only an approximation of the

exact time. But, first of all, when assessing an algorithm’s efficiency, do

we have to deal with exact or even approximate times? It turns out that

we really do not need even approximate times. This is supported by many

factors, some of which are the following. First, when analyzing the run-

ning time of an algorithm, we usually compare its behavior with another

algorithm that solves the same problem or even a different problem. Thus,

our estimates of times are relative as opposed to absolute. Second, it is

desirable for an algorithm to be not only machine independent but also

capable of being expressed in any language, including human languages.

Moreover, it should be technology independent, that is, we want our mea-

sure of the running time of an algorithm to survive technological advances.

Third, our main concern is not in small input sizes; we are mostly con-

cerned with the behavior of the algorithm under investigation on large input

instances.

In fact, counting the number of operations in some “reasonable” imple-

mentation of an algorithm is more than what is needed. As a consequence

of the third factor above, we can take a giant step further: A precise count

of the number of all operations is very cumbersome, if not impossible, and

since we are interested in the running time for large input sizes, we may talk

about the rate of growth or the order of growth of the running time. For

instance, if we can come up with some constant c > 0 such that the running

time of an algorithm A when presented with an input of size n is at most

cn2, c becomes inconsequential as n gets bigger and bigger. Furthermore,

specifying this constant does not bring about extra insight when comparing

this function with another one of different order, say dn3 for an algorithm

B that solves the same problem. To see this, note that the ratio between

the two functions is dn/c and, consequently, the ratio d/c has virtually no

effect as n becomes very large. The same reasoning applies to lower order

terms as in the function f(n) = n2 logn+ 10n2 + n. Here, we observe that

the larger the value of n the lesser the significance of the contribution of the

lower order terms 10n2 and n. Therefore, we may say about the running

times of algorithms A and B above to be “of order” or “in the order of ”

n2 and n3, respectively. Similarly, we say that the function f(n) above is

of order n2 logn.
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Once we dispose of lower order terms and leading constants from a

function that expresses the running time of an algorithm, we say that we

are measuring the asymptotic running time of the algorithm. Equivalently,

in the analysis of algorithm terminology, we may refer to this asymptotic

time using the more technical term “time complexity”.

Now, suppose that we have two algorithms A1 and A2 of running times

in the order of n logn. Which one should we consider to be preferable to

the other? Technically, since they have the same time complexity, we say

that they have the same running time within a multiplicative constant ,

that is, the ratio between the two running times is constant. In some

cases, the constant may be important and more detailed analysis of the

algorithm or conducting some experiments on the behavior of the algo-

rithm may be helpful. Also, in this case, it may be necessary to investigate

other factors, e.g., space requirements and input distribution. The latter is

helpful in analyzing the behavior of an algorithm on average.

Figure 1.5 shows some functions that are widely used to represent the

running times of algorithms. Higher-order functions and exponential and
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Fig. 1.5. Growth of some typical functions that represent running times.
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Table 1.1. Running times for different sizes of input.

n log n n n log n n2 n3 2n

8 3 nsec 0.01 µ 0.02 µ 0.06 µ 0.51 µ 0.26 µ
16 4 nsec 0.02 µ 0.06 µ 0.26 µ 4.10 µ 65.5 µ
32 5 nsec 0.03 µ 0.16 µ 1.02 µ 32.7 µ 4.29 sec
64 6 nsec 0.06 µ 0.38 µ 4.10 µ 262 µ 5.85 cent
128 0.01 µ 0.13 µ 0.90 µ 16.38 µ 0.01 sec 1020 cent
256 0.01 µ 0.26 µ 2.05 µ 65.54 µ 0.02 sec 1058 cent
512 0.01 µ 0.51 µ 4.61 µ 262.14 µ 0.13 sec 10135 cent
2048 0.01 µ 2.05 µ 22.53 µ 0.01 sec 1.07 sec 10598 cent
4096 0.01 µ 4.10 µ 49.15 µ 0.02 sec 8.40 sec 101214 cent
8192 0.01 µ 8.19 µ 106.50 µ 0.07 sec 1.15 min 102447 cent
16384 0.01 µ 16.38 µ 229.38 µ 0.27 sec 1.22 hrs 104913 cent
32768 0.02 µ 32.77 µ 491.52 µ 1.07 sec 9.77 hrs 109845 cent
65536 0.02 µ 65.54 µ 1048.6 µ 0.07 min 3.3 days 1019709 cent
131072 0.02 µ 131.07 µ 2228.2 µ 0.29 min 26 days 1039438 cent
262144 0.02 µ 262.14 µ 4718.6 µ 1.15 min 7 mnths 1078894 cent
524288 0.02 µ 524.29 µ 9961.5 µ 4.58 min 4.6 years 10157808 cent
1048576 0.02 µ 1048.60 µ 20972 µ 18.3 min 37 years 10315634 cent

Note: “nsec” stands for nanoseconds, “µ” is one microsecond and “cent” stands
for centuries.

hyperexponential functions are not shown in the figure. Exponential and

hyperexponential functions grow much faster than the ones shown in the

figure, even for moderate values of n. Functions of the form logk n, cn, cn2

and cn3 are called, respectively, logarithmic, linear , quadratic and cubic.

Functions of the form nc or nc logk n, 0 < c < 1, are called sublinear . Func-

tions that lie between linear and quadratic, e.g., n logn and n1.5, are called

subquadratic. Table 1.1 shows approximate running times of algorithms with

time complexities logn, n, n logn, n2, n3 and 2n, for n = 23, 24, . . . , 220 ≈
one million, assuming that each operation takes one nanosecond. Note the

explosive running time (measured in centuries) when it is of the order 2n.

Definition 1.1 We denote by an “elementary operation” any compu-

tational step whose cost is always upperbounded by a constant amount of

time regardless of the input data or the algorithm used.

Let us take, for instance, the operation of adding two integers. For the

running time of this operation to be constant, we stipulate that the size
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of its operands be fixed no matter what algorithm is used. Furthermore,

as we are now dealing with the asymptotic running time, we can freely

choose any positive integer k to be the “word length” of our “model of

computation”. Incidentally, this is but one instance in which the beauty

of asymptotic notation shows off; the word length can be any fixed pos-

itive integer. If we want to add arbitrarily large numbers, an algorithm

whose running time is proportional to its input size can easily be writ-

ten in terms of the elementary operation of addition. Likewise, we can

choose from a large pool of operations and apply the fixed-size condi-

tion to obtain as many number of elementary operations as we wish. The

following operations on fixed-size operands are examples of elementary

operation.

• Arithmetic operations: addition, subtraction, multiplication and division.

• Comparisons and logical operations.

• Assignments, including assignments of pointers when, say, traversing a

list or a tree.

In order to formalize the notions of order of growth and time complexity,

special mathematical notations have been widely used. These notations

make it convenient to compare and analyze running times with minimal

use of mathematics and cumbersome calculations.

1.8.2 The O-notation

We have seen before (Observation 1.4) that the number of elementary

operations performed by Algorithm insertionsort is at most cn2, where

c is some appropriately chosen positive constant. In this case, we say that

the running time of Algorithm insertionsort is O(n2) (read “Oh of n2”

or “big-Oh of n2”). This can be interpreted as follows. Whenever the num-

ber of elements to be sorted is equal to or exceeds some threshold n0, the

running time is at most cn2 for some constant c > 0. It should be empha-

sized, however, that this does not mean that the running time is always as

large as cn2, even for large input sizes. Thus, the O-notation provides an

upper bound on the running time; it may not be indicative of the actual

running time of an algorithm. For example, for any value of n, the running

time of Algorithm insertionsort is O(n) if the input is already sorted in

nondecreasing order.
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In general, we say that the running time of an algorithm is O(g(n)), if

whenever the input size is equal to or exceeds some threshold n0, its running

time can be bounded above by some positive constant c times g(n). The

formal definition of this notation is as follows.b

Definition 1.2 Let f(n) and g(n) be two functions from the set of

natural numbers to the set of nonnegative real numbers. f(n) is said to be

O(g(n)) if there exists a natural number n0 and a constant c > 0 such that

∀ n ≥ n0, f(n) ≤ cg(n).
Consequently, if limn→∞ f(n)/g(n) exists, then

lim
n→∞

f(n)

g(n)
�=∞ implies f(n) = O(g(n)).

Informally, this definition says that f grows no faster than some constant

times g. The O-notation can also be used in equations as a simplification

tool. For instance, instead of writing

f(n) = 5n3 + 7n2 − 2n+ 13,

we may write

f(n) = 5n3 + O(n2).

This is helpful if we are not interested in the details of the lower-order

terms.

1.8.3 The Ω-notation

While the O-notation gives an upper bound, the Ω-notation, on the other

hand, provides a lower bound within a constant factor of the running time.

We have seen before (Observation 1.4) that the number of elementary

operations performed by Algorithm insertionsort is at least cn, where

c is some appropriately chosen positive constant. In this case, we say that

the running time of Algorithm insertionsort is Ω(n) (read “omega of n”,

bThe more formal definition of this and subsequent notations is in terms of sets.
We prefer not to use their exact formal definitions, as it only complicates things
unnecessarily.
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or “big-omega of n”). This can be interpreted as follows. Whenever the

number of elements to be sorted is equal to or exceeds some threshold

n0, the running time is at least cn for some constant c > 0. As in the

O-notation, this does not mean that the running time is always as small as

cn. Thus, the Ω-notation provides a lower bound on the running time; it

may not be indicative of the actual running time of an algorithm. For exam-

ple, for any value of n, the running time of Algorithm insertionsort is

Ω(n2) if the input consists of distinct elements that are sorted in decreasing

order.

In general, we say that an algorithm is Ω(g(n)), if whenever the input

size is equal to or exceeds some threshold n0, its running time can be

bounded below by some positive constant c times g(n).

This notation is widely used to express lower bounds on problems as

well. In other words, it is commonly used to state a lower bound for any

algorithm that solves a specific problem. For example, we say that the

problem of matrix multiplication is Ω(n2). This is a shorthand for saying

“any algorithm for multiplying two n × n matrices is Ω(n2)”. Likewise,

we say that the problem of sorting by comparisons is Ω(n logn), to mean

that no comparison-based sorting algorithm with time complexity that is

asymptotically less than n logn can ever be devised. Chapter 11 is devoted

entirely to the study of lower bounds of problems. The formal definition of

this notation is symmetrical to that of the O-notation.

Definition 1.3 Let f(n) and g(n) be two functions from the set of

natural numbers to the set of nonnegative real numbers. f(n) is said to be

Ω(g(n)) if there exists a natural number n0 and a constant c > 0 such that

∀ n ≥ n0, f(n) ≥ cg(n).

Consequently, if limn→∞ f(n)/g(n) exists, then

lim
n→∞

f(n)

g(n)
�= 0 implies f(n) = Ω(g(n)).

Informally, this definition says that f grows at least as fast as some

constant times g. It is clear from the definition that

f(n) is Ω(g(n)) if and only if g(n) is O(f(n)).
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1.8.4 The Θ-notation

We have seen before that the number of element comparisons performed by

Algorithm selectionsort is always proportional to n2 (Observation 1.3).

Since each element comparison takes a constant amount of time, we say

that the running time of Algorithm selectionsort is Θ(n2) (read “theta

of n2”). This can be interpreted as follows. There exist two constants c1 and

c2 associated with the algorithm with the property that on any input of size

n ≥ n0, the running time is between c1n
2 and c2n

2. These two constants

encapsulate many factors pertaining to the details of the implementation

of the algorithm and the machine and technology used. As stated earlier,

the details of the implementation include numerous factors such as the

programming language used and the programmer’s skill.

By Observation 1.5, the number of element comparisons performed by

Algorithm bottomupsort is proportional to n logn. In this case, we say

that the running time of Algorithm bottomupsort is Θ(n logn).

In general, we say that the running time of an algorithm is of order

Θ(g(n)) if whenever the input size is equal to or exceeds some threshold

n0, its running time can be bounded below by c1g(n) and above by c2g(n),

where 0 < c1 ≤ c2. Thus, this notation is used to express the exact order

of an algorithm, which implies an exact bound on its running time. The

formal definition of this notation is as follows.

Definition 1.4 Let f(n) and g(n) be two functions from the set of

natural numbers to the set of nonnegative real numbers. f(n) is said to be

Θ(g(n)) if there exists a natural number n0 and two positive constants c1
and c2 such that

∀ n ≥ n0, c1g(n) ≤ f(n) ≤ c2g(n).

Consequently, if limn→∞ f(n)/g(n) exists, then

lim
n→∞

f(n)

g(n)
= c implies f(n) = Θ(g(n)),

where c is a constant strictly greater than 0.

An important consequence of the above definition is that

f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) = Ω(g(n)).
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Unlike the previous two notations, the Θ-notation gives an exact pic-

ture of the rate of growth of the running time of an algorithm. Thus, the

running time of some algorithms as insertionsort cannot be expressed

using this notation, as the running time ranges from linear to quadratic. On

the other hand, the running time of some algorithms like Algorithm selec-

tionsort and Algorithm bottomupsort can be described precisely using

this notation.

It may be helpful to think of O as similar to ≤, Ω as similar to ≥
and Θ as similar to =. We emphasized the phrase “similar to” since one

should be cautious not to confuse the exact relations with the asymptotic

notations. For example 100n = O(n) although 100n ≥ n, n = Ω(100n)

although n ≤ 100n and n = Θ(100n) although n �= 100n.

1.8.5 Examples

The above O,Ω and Θ notations are not only used to describe the time

complexity of an algorithm; they are so general that they can be applied to

characterize the asymptotic behavior of any other resource measure, say the

amount of space used by an algorithm. Theoretically, they may be used in

conjunction with any abstract function. For this reason, we will not attach

any measures or meanings with the functions in the examples that follow.

We will assume in these examples that f(n) is a function from the set of

natural numbers to the set of nonnegative real numbers.

Example 1.5 Let f(n) = 10n2 + 20n. Then, f(n) = O(n2) since for

all n ≥ 1, f(n) ≤ 30n2. f(n) = Ω(n2) since for all n ≥ 1, f(n) ≥ n2.

Also, f(n) = Θ(n2) since for all n ≥ 1, n2 ≤ f(n) ≤ 30n2. We can also

establish these three relations using the limits as mentioned above. Since

limn→∞(10n2 + 20n)/n2 = 10, we see that f(n) = O(n2), f(n) = Ω(n2)

and f(n) = Θ(n2).

Example 1.6 In general, let f(n) = akn
k + ak−1n

k−1 + . . .+ a1n+ a0.

Then, f(n) = Θ(nk). Recall that this implies that f(n) = O(nk) and f(n) =

Ω(nk).

Example 1.7 Since

lim
n→∞

logn2

n
= lim

n→∞
2 logn

n
= lim

n→∞
2

ln 2

lnn

n
=

2

ln 2
lim
n→∞

1

n
= 0
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(differentiate both numerator and denominator), we see that f(n) = logn2

is O(n), but not Ω(n). It follows that logn2 is not Θ(n).

Example 1.8 Since logn2 = 2 logn, we immediately see that logn2 =

Θ(logn). In general, for any fixed constant k, lognk = Θ(logn).

Example 1.9 Any constant function is O(1),Ω(1) and Θ(1).

Example 1.10 It is easy to see that 2n is Θ(2n+1). This is an example

of many functions that satisfy f(n) = Θ(f(n+ 1)).

Example 1.11 In this example, we give a monotonic increasing function

f(n) such that f(n) is not Ω(f(n + 1)) and hence not Θ(f(n + 1)). Since

(n+ 1)! = (n+ 1)n! > n!, we have that n! = O((n + 1)!). Since

lim
n→∞

n!

(n+ 1)!
= lim

n→∞
1

n+ 1
= 0,

we conclude that n! is not Ω((n+1)!). It follows that n! is not Θ((n+1)!)

Example 1.12 Consider the series
∑n

j=1 log j. Clearly,

n∑
j=1

log j ≤
n∑

j=1

log n.

That is,

n∑
j=1

log j = O(n logn).

Also,

n∑
j=1

log j ≥
�n/2�∑
j=1

log
(n
2

)
= �n/2� log

(n
2

)
= �n/2� logn− �n/2�.

Thus,

n∑
j=1

log j = Ω(n logn).

It follows that
n∑

j=1

log j = Θ(n logn).
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Example 1.13 We want to find an exact bound for the function f(n) =

logn!. First, note that logn! =
∑n

j=1 log j. We have shown in Example 1.12

that
∑n

j=1 log j = Θ(n logn). It follows that logn! = Θ(n logn).

Example 1.14 Since logn! = Θ(n logn) and log 2n = n, we deduce that

2n = O(n!), but n! is not O(2n). Similarly, since log 2n
2

= n2 > n logn, and

logn! = Θ(n logn) (Example 1.13), it follows that n! = O(2n
2

), but 2n
2

is

not O(n!).

Example 1.15 It is easy to see that

n∑
j=1

n

j
≤

n∑
j=1

n

1
= O(n2).

However, this upper bound is not useful since it is not tight. Example A.16

shows that

log(n+ 1)

log e
≤

n∑
j=1

1

j
≤ logn

log e
+ 1.

That is

n∑
j=1

1

j
= O(log n) and

n∑
j=1

1

j
= Ω(log n).

It follows that

n∑
j=1

n

j
= n

n∑
j=1

1

j
= Θ(n logn).

Example 1.16 Consider the brute-force algorithm for primality test

given in Algorithm brute-force primalitytest.

Algorithm 1.7 brute-force primalitytest
Input: A positive integer n ≥ 2.

Output: true if n is prime and false otherwise.

1. s←�√n�
2. for j ← 2 to s
3. if j divides n then return false
4. end for
5. return true
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We will assume here that
√
n can be computed in O(1) time. Clearly,

the algorithm is O(
√
n) since the number of iterations is exactly �√n� − 1

when the input is prime. Besides, the number of primes is infinite, which

means that the algorithm performs exactly �√n�−1 iterations for an infinite

number of values of n. It is also easy to see that for infinitely many values

of n, the algorithm performs only O(1) iterations (e.g., when n is even),

and hence the algorithm is Ω(1). Since the algorithm may take Ω(
√
n) time

on some inputs and O(1) time on some other inputs infinitely often, it is

neither Θ(
√
n) nor Θ(1). It follows that the algorithm is not Θ(f(n)) for

any function f .

1.8.6 Complexity classes and the o-notation

Let R be the relation on the set of complexity functions defined by f R g if

and only if f(n)= Θ(g(n)). It is easy to see that R is reflexive, symmetric

and transitive, i.e., an equivalence relation (see Sec. A.1.2.1). The equiv-

alence classes induced by this relation are called complexity classes. The

complexity class to which a complexity function g(n) belongs includes all

functions f(n) of order Θ(g(n)). For example, all polynomials of degree 2

belong to the same complexity class n2. To show that two functions belong

to different classes, it is useful to use the o-notation (read “little oh”) defined

as follows.

Definition 1.5 Let f(n) and g(n) be two functions from the set of

natural numbers to the set of nonnegative real numbers. f(n) is said to be

o(g(n)) if for every constant c > 0 there exists a positive integer n0 such

that f(n) < cg(n) for all n ≥ n0. Consequently, if limn→∞ f(n)/g(n) exists,

then

lim
n→∞

f(n)

g(n)
= 0 implies f(n) = o(g(n)).

Informally, this definition says that f(n) becomes insignificant relative

to g(n) as n approaches infinity. It follows from the definition that

f(n) = o(g(n)) if and only if f(n) = O(g(n)), but g(n) �= O(f(n)).

For example, n logn is o(n2) is equivalent to saying that n logn is O(n2),

but n2 is not O(n log n).
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We also write f(n) ≺ g(n) to denote that f(n) is o(g(n)). Using this

notation, we can concisely express the following hierarchy of complexity

classes.

1 ≺ log logn ≺ logn ≺ √n ≺ n3/4 ≺ n ≺ n logn ≺ n2 ≺ 2n ≺ n! ≺ 2n
2

.

1.9 Space Complexity

We define the space used by an algorithm to be the number of memory cells

(or words) needed to carry out the computational steps required to solve

an instance of the problem excluding the space allocated to hold the input .

In other words, it is only the work space required by the algorithm. The

reason for not including the input size is basically to distinguish between

algorithms that use “less than” linear work space throughout their compu-

tation. All definitions of order of growth and asymptotic bounds pertaining

to time complexity carry over to space complexity. It is clear that the work

space cannot exceed the running time of an algorithm, as writing into each

memory cell requires at least a constant amount of time. Thus, if we let

T (n) and S(n) denote, respectively, the time and space complexities of an

algorithm, then S(n) = O(T (n)).

To appreciate the importance of space complexity, suppose we want to

sort n = 220 = 1,048,576 elements. If we use Algorithm selectionsort,

then we need no extra storage. On the other hand, if we use Algorithm

bottomupsort, then we need n = 1,048,576 extra memory cells as a

temporary storage for the input elements (see Example 1.19).

In the following examples, we will look at some of the algorithms we

have discussed so far and analyze their space requirements.

Example 1.17 In Algorithm linearsearch, only one memory cell is

used to hold the result of the search. If we add local variables, e.g., for loop-

ing, we conclude that the amount of space needed is Θ(1). This is also the

case in algorithms binarysearch, selectionsort and insertionsort.

Example 1.18 In Algorithm merge for merging two sorted arrays, we

need an auxiliary amount of storage whose size is exactly that of the input,

namely n (Recall that n is the size of the array A[p..r]). Consequently, its

space complexity is Θ(n).
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Example 1.19 When attempting to compute an estimate of the space

required by Algorithm bottomupsort, one may find it to be complex at

first. Nevertheless, it is not difficult to see that the space needed is no more

than n, the size of the input array. This is because we can set aside an array

of size n, sayB[1..n], to be used by Algorithmmerge as an auxiliary storage

for carrying out the merging process. It follows that the space complexity

of Algorithm bottomupsort is Θ(n).

Example 1.20 In this example, we will “devise” an algorithm that uses

Θ(logn) space. Let us modify the Algorithm binarysearch as follows.

After the search terminates, output a sorted list of all those entries of array

A that have been compared against x. This means that after we test x

against A[mid ] in each iteration, we must save A[mid ] using an auxiliary

array, say B, which can be sorted later. As the number of comparisons is

at most �logn� + 1, it is easy to see that the size of B should be at most

this amount, i.e., O(log n).

Example 1.21 An algorithm that outputs all permutations of a given

n characters needs only Θ(n) space. If we want to keep these permutations

so that they can be used in subsequent calculations, then we need at least

n× n! = Θ((n+ 1)!) space.

Naturally, in many problems there is a time–space tradeoff: The more

space we allocate for the algorithm the faster it runs, and vice versa. This,

of course, is within limits: In most of the algorithms that we have discussed

so far, increasing the amount of space does not result in a noticeable speed-

up in the algorithm running time. However, it is almost always the case

that decreasing the amount of work space required by an algorithm results

in a degradation in the algorithm’s speed.

1.10 Optimal Algorithms

In Sec. 11.3.2, we will show that the running time of any algorithm that

sorts an array with n entries using element comparisons must be Ω(n logn)

in the worst case (see Sec. 1.12). This means that we cannot hope for an

algorithm that runs in time that is asymptotically less than n logn in the

worst case. For this reason, it is commonplace to call any algorithm that

sorts using element comparisons in time O(n log n) an optimal algorithm

for the problem of comparison-based sorting . By this definition, it follows
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that Algorithm bottomupsort is optimal. In this case, we also say that

it is optimal within a multiplicative constant to indicate the possibility of

the existence of another sorting algorithm whose running time is a constant

fraction of that of bottomupsort. In general, if we can prove that any

algorithm to solve problem Π must be Ω(f(n)), then we call any algorithm

to solve problem Π in time O(f(n)) an optimal algorithm for problem Π.

Incidentally, this definition, which is widely used in the literature, does

not take into account the space complexity. The reason is twofold. First, as

we indicated before, time is considered to be more precious than space so

long as the space used is within reasonable limits. Second, most of the exist-

ing optimal algorithms compare to each other in terms of space complexity

in the order of O(n). For example, Algorithm bottomupsort, which needs

Θ(n) of space as auxiliary storage, is called optimal, although there are

other algorithms that sort in O(n log n) time and O(1) space. For example,

Algorithm heapsort, which will be introduced in Sec. 3.2.3, runs in time

O(n log n) using only O(1) amount of space.

1.11 How to Estimate the Running Time of an Algorithm

As we discussed before, a bound on the running time of an algorithm, be

it upper, lower or exact, can be estimated to within a constant factor if we

restrict the operations used by the algorithm to those we referred to as ele-

mentary operations . Now, it remains to show how to analyze the algorithm

in order to obtain the desired bound. Of course, we can get a precise bound

by summing up all elementary operations. This is undoubtedly ruled out,

as it is cumbersome and quite often impossible. There is, in general, no

mechanical procedure by the help of which one can obtain a “reasonable”

bound on the running time or space usage of the algorithm at hand. More-

over, this task is mostly left to intuition and, in many cases, to ingenuity

too. However, in many algorithms, there are some agreed-upon techniques

that give a tight bound with straightforward analysis. In the following, we

discuss some of these techniques using simple examples.

1.11.1 Counting the number of iterationsc

It is quite often the case that the running time is proportional to the number

of passes through while loops and similar constructs. Thus, it follows that

cSome of the ideas in this section were contributed by W. G. Al-Khatib.
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counting the number of iterations is a good indicator of the running time

of an algorithm. This is the case with many algorithms including those for

searching, sorting, matrix multiplication and so forth.

Counting the number of iterations can be achieved by looking for one

or more statements in the algorithm that get executed the most and then

estimating the number of times they get executed. Assuming that the cost

of executing such a statement once is constant, the estimate we compute

is asymptotically proportional to the overall cost of the algorithm and can

be expressed in terms of O() or Θ() notation. One way to achieve that is

to map the loop to a mathematical summation formula. Call the iterator

variable of a loop simple if it increases by one. A loop will be called simple

if its iterator variable is simple. In its simplest form, the simple for loop

like

1. count← 0
2. for i← low to high
3. count← count + 1
4. end for

is mapped to the summation

count =

high∑
i=low

1.

Thus, a simple loop can be mapped to a mathematical summation formula

as follows:

• Use the iterator variable in the loop as the summation index.

• Use the starting value of the iterator as the lower limit and the last value

of the iterator as the upper limit of the summation formula.

• Each nested loop is mapped to a nested summation.

Example 1.22 Let n be a perfect square, i.e., an integer whose square

root is integer. Algorithm count1 computes for each perfect square j

between 1 and n the sum
∑j

i=1 i. (Obviously, this sum can be computed

more efficiently).

We will assume that
√
n can be computed in Θ(1) time. It is obvious

that the cost of the algorithm is dominated by the number of times Line 5
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Algorithm 1.8 count1
Input: n = k2 for some integer k.

Output:
∑j

i=1 i for each perfect square j between 1 and n.

1. k←√n
2. for j ← 1 to k
3. sum[j]← 0
4. for i ← 1 to j2

5. sum[j]← sum[j] + i
6. end for
7. end for
8. return sum[1..k]

is executed. Since we have two simple loops, we can immediately map them

to the double summation
∑k

j=1

∑j2

i=1 1 which is computed as follows:

k∑
j=1

j2∑
i=1

1 =

k∑
j=1

j2 =
k(k + 1)(2k + 1)

6
= Θ(k3) = Θ(n1.5).

It follows that the running time of the algorithm is Θ(n1.5).

Example 1.23 Consider Algorithm count2, which consists of two

nested loops and a variable count that counts the number of iterations

performed by the algorithm on input n, which is a positive integer.

Algorithm 1.9 count2
Input: A positive integer n.

Output: count = number of times Step 5 is executed.

1. count← 0
2. for i← 1 to n
3. m← �n/i�
4. for j ← 1 to m
5. count← count + 1
6. end for
7. end for
8. return count
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Again, we have two nested loops that are simple. Hence, the value of

count is

n∑
i=1

m∑
j=1

1 =
n∑

i=1

m =
n∑

i=1

⌊n
i

⌋
.

By the definition of the floor function, we know that

n

i
− 1 <

⌊n
i

⌋
≤ n

i
.

Hence,

n∑
i=1

(n
i
− 1
)
<

n∑
i=1

⌊n
i

⌋
≤

n∑
i=1

n

i
≈ n lnn.

Therefore, we conclude that Step 5 is executed Θ(n logn) times As the

running time is proportional to count, we conclude that it is Θ(n logn).

In the previous examples, the mapping was straightforward, as the loops

were simple. If at least one loop is not simple, then we need to “devise”

a new iterator that is simple in order to include in the summation. This

variable is dependent on the original iterator, and hence we need to preserve

that dependency when evaluating the new summation.

Example 1.24 Consider Algorithm count3, which consists of two

nested loops and a variable count which counts the number of iterations

performed by the algorithm on input n = 2k, for some positive integer k.

Algorithm 1.10 count3
Input: n = 2k, for some positive integer k.

Output: count = number of times Step 5 is executed.

1. count← 0
2. i← 1
3. while i ≤ n
4. for j ← 1 to i
5. count← count + 1
6. end for
7. i← 2i
8. end while
9. return count
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In this case, it is obvious that the for loop is simple, but the while loop

is not. The iterator of the while loop, i, is not simple, as it is doubled in

each iteration. The values that iterator i assumes are

i = 1, 2, 4, . . . , n,

which can be rewritten as

i = 20, 21, 22, . . . , 2k = n.

Obviously, the exponent of 2 in the original iterator is a simple iterator

ranging between 0 and k. Hence, we choose a variable name that is not

used by the algorithm as an index in the summation formula. Let us choose

index r. Note the following relationship between the new iterator and the

original iterator:

i = 2r or r = log i.

Hence, we can express the number of times Line 5 is executed as

k∑
r=0

i∑
j=1

1 =

k∑
r=0

i =

k∑
r=0

2r =
2k+1 − 1

2− 1
= 2logn+1 − 1 = 2n− 1 = Θ(n).

It follows that the running time is Θ(n).

Example 1.25 Consider Algorithm count4, which consists of two

nested loops and a variable count which counts the number of iterations

performed by the algorithm on input n = 2k, for some positive integer k.

Algorithm 1.11 count4
Input: n = 2k, for some positive integer k.

Output: count = number of times Step 4 is executed.

1. count← 0
2. while n ≥ 1
3. for j ← 1 to n
4. count← count + 1
5. end for
6. n← n/2
7. end while
8. return count
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The for loop is simple, whereas the iterator of the while loop starts

with the value n and then decreases by half in each iteration until it reaches

1, inclusive. Let us assign an iterator variable, say i, to the while loop. In

this case, the values of i are

i = n,
n

2
,
n

4
, . . . ,

n
n
2

= 2, 1.

They can be rewritten as

i = 2k, 2k−1, 2k−2, . . . , 21, 20.

Similar to what we did in Example 1.24, we introduce the exponent variable

r, where i = 2r and r = log i, and get the following value for count:

k∑
r=0

i∑
j=1

1.

The above summation is exactly the same as the one in Example 1.24. Since

the running time is proportional to count, we conclude that it is Θ(n).

Example 1.26 Consider Algorithm count5, which consists of two

nested loops and a variable count which counts the number of iterations per-

formed by the while loop on input n that is of the form 22
k

(k = log logn),

for some positive integer k. In this case, the for loop is simple, whereas the

while loop is not.

Algorithm 1.12 count5

Input: n = 22
k

, for some positive integer k.

Output: Number of times Step 6 is executed.

1. count← 0
2. for i ← 1 to n
3. j← 2
4. while j ≤ n
5. j← j2

6. count← count + 1
7. end while
8. end for
9. return count
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So, let us look at the values that are assumed by j.

j = 2, 22, 22
2
= 24, 24

2
= 28, . . . , 22

k

,

which can be rewritten as

j = 22
0

, 22
1

, 22
2

, 22
3

, . . . , 22
k−1

, 22
k

.

Let us introduce the index r such that j = 22
r

, and equivalently, r =

log log j. The value of count becomes equal to

n∑
i=1

k∑
r=0

1 =
n∑

i=1

(k + 1) =
n∑

i=1

(log logn+ 1)

= (log log n+ 1)

n∑
i=1

1 = n(log logn+ 1).

We conclude that the running time of the algorithm is Θ(n log logn).

1.11.2 Counting the frequency of basic operations

In some algorithms, it is cumbersome, or even impossible, to make use of

the previous method in order to come up with a tight estimate of its running

time. Unfortunately, at this point, we have not covered good examples of

such algorithms. Good examples that will be covered in subsequent chap-

ters include the single-source shortest path problem, Prim’s algorithm for

finding minimum spanning trees, depth-first search, computing convex hulls

and others. However, Algorithm merge will serve as a reasonable candi-

date. Recall that the function of Algorithm merge is to merge two sorted

arrays into one sorted array. In this algorithm, if we try to apply the pre-

vious method, the analysis becomes lengthy and awkward. Now, consider

the following argument which we have alluded to in Sec. 1.4. Just prior to

the execution of Step 16 of the algorithm, array B holds the final sorted

list. Thus, for each element x ∈ A, the algorithm executes one element

assignment operation that moves x from A to B. Similarly, in Step 16, the

algorithm executes n element assignment operations in order to copy B

back into A. This implies that the algorithm executes exactly 2n element

assignments (Observation 1.2). On the other hand, there is no other opera-

tion that is executed more than 2n times. For example, at most one element

comparison is needed to move each element from A to B (Observation 1.1).
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In general, when analyzing the running time of an algorithm, we may

be able to single out one elementary operation with the property that its

frequency is at least as large as any other operation. Let us call such an

operation a basic operation. We can relax this definition to include any

operation whose frequency is proportional to the running time.

Definition 1.6 An elementary operation in an algorithm is called a basic

operation if it is of highest frequency to within a constant factor among all

other elementary operations.

Hence, according to this definition, the operation of element assignment

is a basic operation in Algorithm merge and thus is indicative of its running

time. By Observation 1.2, the number of element assignments needed to

merge two arrays into one array of size n is exactly 2n. Consequently, its

running time is Θ(n). Note that the operation of element comparison is

in general not a basic operation in Algorithm merge, as there may be

only one element comparison throughout the execution of the algorithm. If,

however, the algorithm is to merge two arrays of approximately the same

size (e.g., �(n/2)� and �(n/2)�), then we may safely say that it is basic for

that special instance. This happens if, for example, the algorithm is invoked

by Algorithm bottomupsort in which case the two subarrays to be sorted

are of approximately the same size.

In general, this method consists of identifying one basic operation and

utilizing one of the asymptotic notations to find out the order of execution

of this operation. This order will be the order of the running time of the

algorithm. This is indeed the method of choice for a large class of problems.

We list here some candidates of these basic operations:

• When analyzing searching and sorting algorithms, we may choose the

element comparison operation if it is an elementary operation.

• In matrix multiplication algorithms, we select the operation of scalar

multiplication.

• In traversing a linked list, we may select the “operation” of setting or

updating a pointer.

• In graph traversals, we may choose the “action” of visiting a node and

count the number of nodes visited.

Example 1.27 Using this method, we obtain an exact bound for Algo-

rithm bottomupsort as follows. First, note that the basic operations in
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this algorithm are inherited from Algorithm merge, as the latter is called

by the former in each iteration of the while loop. By the above discussion,

we may safely choose the elementary operation of element comparison as the

basic operation. By Observation 1.5, the total number of element compar-

isons required by the algorithm when n is a power of 2 is between (n logn)/2

and n logn − n + 1. This means that the number of element comparisons

when n is a power of 2 is Ω(n logn) and O(n logn), i.e., Θ(n logn). It can

be shown that this holds even if n is not a power of 2. Since the operation

of element comparison used by the algorithm is of maximum frequency to

within a constant factor, we conclude that the running time of the algo-

rithm is proportional to the number of comparisons. It follows that the

algorithm runs in time Θ(n logn).

One should be careful, however, when choosing a basic operation, as

illustrated by the following example.

Example 1.28 Consider the following modification to Algorithm inser-

tionsort. When trying to insert an element of the array in its proper

position, we will not use linear search; instead, we will use a binary search

technique similar to Algorithm binarysearch. Algorithm binarysearch

can easily be modified so that it does not return 0 when x is not an entry

of array A; instead, it returns the position of x relative to other entries of

the sorted array A. For example, when Algorithm binarysearch is called

with A = 2 3 6 8 9 and x = 7, it returns 4. Incidentally, this shows

that using binary search is not confined to testing for the membership of

an element x in an array A; in many algorithms, it is used to find the posi-

tion of an element x relative to other elements in a sorted list. Let Algo-

rithm modbinarysearch be some implementation of this binary search

technique. Thus, modbinarysearch({2, 3, 6, 8, 9}, 7) = 4. The modified

sorting algorithm is given in Algorithm modinsertionsort.

The total number of element comparisons are those performed by Algo-

rithm modbinarysearch. Since this algorithm is called n − 1 times, and

since the maximum number of comparisons performed by the binary search

algorithm on an array of size i − 1 is �log(i− 1)� + 1 (Theorem 1.1), it

follows that the total number of comparisons done by Algorithm modin-

sertionsort is at most

n∑
i=2

(�log(i− 1)�+ 1) = n− 1 +

n−1∑
i=1

�log i� ≤ n− 1 +

n−1∑
i=1

log i = O(n log n).
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Algorithm 1.13 modinsertionsort
Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. for i← 2 to n
2. x←A[i]
3. k ← modbinarysearch (A[1..i− 1], x)
4. for j← i− 1 downto k
5. A[j + 1]← A[j]
6. end for
7. A[k]← x
8. end for

The last equality follows from Example 1.12 and Eq. (A.18) on page 682.

One may be tempted to conclude, based on the false assumption that the

operation of element comparison is basic, that the overall running time

is O(n log n). However, this is not the case, as the number of element

assignments in Algorithm modinsertionsort is exactly that in Algorithm

insertionsort when the two algorithms are run on the same input. This

has been shown to be O(n2) (Observation 1.4). We conclude that this algo-

rithm runs in time O(n2) and not O(n log n).

In some algorithms, all elementary operations are not basic. In these

algorithms, it may be the case that the frequency of two or more operations

combined together may turn out to be proportional to the running time of

the algorithm. In this case, we express the running time as a function of

the total number of times these operations are executed. For instance, if we

cannot bound the number of either insertions or deletions, but can come

up with a formula that bounds their total, then we may say something like:

There are at most n insertions and deletions. This method is widely used in

graph and network algorithms. Here, we give a simple example that involves

only numbers and the two operations of addition and multiplication. There

are better examples that involve graphs and complex data structures.

Example 1.29 Suppose we are given an array A[1..n] of n integers and

a positive integer k, 1 ≤ k ≤ n, and asked to multiply the first k integers in

A and add the rest. An algorithm to do this is sketched below. Observe here

that there are no basic operations, since the running time is proportional

to the number of times both additions and multiplications are performed.

Thus, we conclude that there are n elementary operations, multiplications
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and additions, which imply a bound of Θ(n). Note that in this example, we

could have counted the number of iterations to obtain a precise measure

of the running time as well. This is because in each iteration, the algo-

rithm takes a constant amount of time. The total number of iterations is

k + (n− k) = n.

1. prod← 1; sum← 0
2. for j← 1 to k
3. prod← prod× A[j]
4. end for
5. for j← k + 1 to n
6. sum← sum+ A[j]
7. end for

1.11.3 Using recurrence relations

In recursive algorithms, a formula bounding the running time is usually

given in the form of a recurrence relation, that is, a function whose definition

contains the function itself, e.g., T (n) = 2T (n/2)+ n. Finding the solution

of a recurrence relation has been studied well to the extent that the solution

of a recurrence may be obtained mechanically (see Secs. 1.15 and A.8 for a

discussion on recurrence relations). It may be possible to derive a recurrence

that bounds the number of basic operations in a nonrecursive algorithm.

For example, in Algorithm binarysearch, if we let C(n) be the number

of comparisons performed on an instance of size n in the worst case, we

may express the number of comparisons done by the algorithm using the

recurrence

C(n) ≤
{
1 if n = 1

C(�n/2�) + 1 if n ≥ 2.

The solution to this recurrence reduces to a summation as follows:

C(n) ≤ C(�n/2�) + 1

≤ C(��n/2�/2�) + 1 + 1

= C(�n/4�) + 1 + 1 (Eq. (A.3), page 672)

...

≤ C[1] + �logn�
= �logn�+ 1.
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That is, C(n) ≤ �logn� + 1. It follows that C(n) = O(log n). Since the

operation of element comparison is a basic operation in Algorithm bina-

rysearch, we conclude that its time complexity is O(log n).

1.12 Worst Case and Average Case Analysis

Consider the problem of adding two n× n matrices A and B of integers.

Clearly, the running time expressed in the number of scalar additions of an

algorithm that computes A + B is the same for any two arbitrary n× n
matrices A and B. That is, the running time of the algorithm is insensitive

to the input values; it is dependent only on its size measured in the number

of entries. This is to be contrasted with an algorithm like insertionsort

whose running time is highly dependent on the input values as well. By

Observation 1.4, the number of element comparisons performed on an input

array of size n lies between n− 1 and n(n − 1)/2 inclusive. This indicates

that the performance of the algorithm is not only a function of n but also

a function of the original order of the input elements. The dependence

of the running time of an algorithm on the form of input data, not only

its number, is characteristic of many problems. For example, the process of

sorting is inherently dependent on the relative order of the data to be sorted.

This does not mean that all sorting algorithms are sensitive to input data.

For instance, the number of element comparisons performed by Algorithm

selectionsort on an array of size n is the same regardless of the form or

order of input values, as the number of comparisons done by the algorithm

is a function of n only. More precisely, the time taken by a comparison-

based algorithm to sort a set of n elements depends on their relative order.

For instance, the number of steps required to sort the numbers 6, 3, 4, 5,

1, 7, 2 is the same as that for sorting the numbers 60, 30, 40, 50, 10, 70,

20. Obviously, it is impossible to come up with a function that describes

the time complexity of an algorithm based on both input size and form; the

latter, definitely, has to be suppressed.

Consider again Algorithm insertionsort. Let A[1..n] = {1, 2, . . . , n},
and consider all n! permutations of the elements in A. Each permutation

corresponds to one possible input. The running time of the algorithm pre-

sumably differs from one permutation to another. Consider three permu-

tations: a in which the elements in A are sorted in decreasing order, c in
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Fig. 1.6. Performance of Algorithm insertionsort: worst, average and best
cases.

which the elements in A are already sorted in increasing order and b in

which the elements are ordered randomly (see Fig. 1.6). Thus, input a is

a representative of the worst case of all inputs of size n, input c is a rep-

resentative of the best case of all inputs of size n and input b is between

the two. This gives rise to three methodologies for analyzing the running

time of an algorithm: worst case analysis, average case analysis and best

case analysis. The latter is not used in practice, as it does not give useful

information about the behavior of an algorithm in general.

1.12.1 Worst case analysis

In worst case analysis of time complexity, we select the maximum cost

among all possible inputs of size n. As stated above, for any positive inte-

ger n, Algorithm insertionsort requires Ω(n2) to process some inputs of

size n (e.g., input a in Fig. 1.6). For this reason, we say that the running

time of this algorithm is Ω(n2) in the worst case. Since the running time

of the algorithm is O(n2), we also say that the running time of the algo-

rithm is O(n2) in the worst case. Consequently, we may use the stronger

Θ-notation and say that the running time of the algorithm is Θ(n2) in the

worst case. Clearly, using the Θ-notation is preferred, as it gives the exact
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behavior of the algorithm in the worst case. In other words, stating that

Algorithm insertionsort has a running time of Θ(n2) in the worst case

implies that it is also Ω(n2) in the worst case, whereas stating that Algo-

rithm insertionsort runs in O(n2) in the worst case does not. Note that

for any value of n there are input instances on which the algorithm spends

no more than O(n) time (e.g., input c in Fig. 1.6).

It turns out that under the worst case assumption, the notions of upper

and lower bounds in many algorithms coincide and, consequently, we may

say that an algorithm runs in time Θ(f(n)) in the worst case. As explained

above, this is stronger than stating that the algorithm is O(f(n)) in the

worst case. As another example, we have seen before that Algorithm lin-

earsearch is O(n) and Ω(1). In the worst case, this algorithm is both

O(n) and Ω(n), i.e., Θ(n).

One may be tempted, however, to conclude that in the worst case, the

notions of upper and lower bounds always coincide. This in fact is not the

case. Consider for example an algorithm whose running time is known to

be O(n2) in the worst case. However, it has not been proven that for all

values of n greater than some threshold n0 there exists an input of size n

on which the algorithm spends Ω(n2) time. In this case, we cannot claim

that the algorithm’s running time is Θ(n2) in the worst case, even if we

know that the algorithm takes Θ(n2) time for infinitely many values of n.

It follows that the algorithm’s running time is not Θ(n2) in the worst case.

This is the case in many graph and network algorithms for which only an

upper bound on the number of operations can be proven, and whether this

upper bound is achievable is not clear. The next example gives a concrete

instance of this case.

Example 1.30 Consider for example the algorithm shown below whose

input is an element x and a sorted array A of n elements.

1. if n is odd then k← binarysearch(A, x)
2. else k← linearsearch(A, x)

This algorithm searches for x in A using binary search if n is odd and

linear search if n is even. Obviously, the running time of this algorithm

is O(n), since when n is even, the running time is that of Algorithm lin-

earsearch, which is O(n). However, the algorithm is not Ω(n) in the worst
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case because there does not exist a threshold n0 such that for all n ≥ n0,

there exists some input of size n that causes the algorithm to take at least

cn time for some constant c. We can only ascertain that the running time

is Ω(log n) in the worst case. Note that the running time being Ω(n) for

infinitely many values of n does not mean that the algorithm’s running time

is Ω(n) in the worst case. It follows that, in the worst case, this algorithm is

O(n) and Ω(log n), which implies that, in the worst case, it is not Θ(f(n))

for any function f(n).

1.12.2 Average case analysis

Another interpretation of an algorithm’s time complexity is that of the

average case. Here, the running time is taken to be the average time over

all inputs of size n (see Fig. 1.6). In this method, it is necessary to know

the probabilities of all input occurrences, i.e., it requires prior knowledge

of the input distribution. However, even after relaxing some constraints

including the assumption of a convenient input distribution, e.g., uniform

distribution, the analysis is in many cases complex and lengthy.

Example 1.31 Consider Algorithm linearsearch. To simplify the

analysis, let us assume that all elements of A are distinct and that x is

in the array. Furthermore, and most importantly indeed, we will assume

that each element y in A is equally likely to be in any position in the array.

In other words, the probability that y = A[j] is 1/n, for all y ∈ A. The

number of comparisons performed by the algorithm on average to find the

position of x is

T (n) =

n∑
j=1

j × 1

n
=

1

n

n∑
j=1

j =
1

n

n(n+ 1)

2
=
n+ 1

2
.

This shows that, on average, the algorithm performs (n + 1)/2 element

comparisons in order to locate x. Hence, the time complexity of Algorithm

linearsearch is Θ(n) on average.

Example 1.32 Consider computing the average number of comparisons

performed by Algorithm insertionsort. To simplify the analysis, let us

assume that all elements of A are distinct. Furthermore, we will assume that

all n! permutations of the input elements are equally likely. Now, consider
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inserting element A[i] in its proper position in A[1..i]. If its proper position

is j, 1 ≤ j ≤ i, then the number of comparisons performed in order to insert

A[i] in its proper position is i − j if j = 1 and i − j + 1 if 2 ≤ j ≤ i. Since

the probability that its proper position in A[1..i] is 1/i, the average number

of comparisons needed to insert A[i] in its proper position in A[1..i] is

i− 1

i
+

i∑
j=2

i− j + 1

i
=
i− 1

i
+

i−1∑
j=1

j

i
= 1− 1

i
+
i− 1

2
=
i

2
− 1

i
+

1

2
.

Thus, the average number of comparisons performed by Algorithm inser-

tionsort is

n∑
i=2

(
i

2
− 1

i
+

1

2

)
=
n(n+ 1)

4
− 1

2
−

n∑
i=2

1

i
+
n− 1

2
=
n2

4
+

3n

4
−

n∑
i=1

1

i
.

Since

ln(n+ 1) ≤
n∑

i=1

1

i
≤ lnn+ 1 (Eq. (A.16), page 681),

it follows that the average number of comparisons performed by Algorithm

insertionsort is approximately

n2

4
+

3n

4
− lnn = Θ(n2).

Thus, on average, Algorithm insertionsort performs roughly half the

number of operations performed in the worst case (see Fig. 1.6).

1.13 Amortized Analysis

In many algorithms, we may be unable to express the time complexity in

terms of the Θ-notation to obtain an exact bound on the running time.

Therefore, we will be content with the O-notation, which is sometimes

pessimistic. If we use the O-notation to obtain an upper bound on the

running time, the algorithm may be much faster than our estimate even in

the worst case.

Consider an algorithm in which an operation is executed repeatedly with

the property that its running time fluctuates throughout the execution of
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the algorithm. If this operation takes a large amount of time occasionally

and runs much faster most of the time, then this is an indication that

amortized analysis should be employed, assuming that obtaining an exact

bound is too hard, if not impossible.

In amortized analysis, we average out the time taken by the operation

throughout the execution of the algorithm and refer to this average as the

amortized running time of that operation. Amortized analysis guarantees

the average cost of the operation, and thus the algorithm, in the worst

case. This is to be contrasted with the average time analysis in which the

average is taken over all instances of the same size. Moreover, unlike the

average case analysis, no assumptions about the probability distribution of

the input are needed.

Amortized time analysis is generally harder than worst case analysis,

but this hardness pays off when we derive a lower time complexity. A good

example of this analysis will be presented in Sec. 3.3 when we study the

union-find algorithms, which is responsible for maintaining a data structure

for disjoint sets. It will be shown that this algorithm runs in time that is

almost linear using amortized time analysis as opposed to a straightforward

bound of O(n logn). In this section, we present two simple examples that

convey the essence of amortization.

Example 1.33 Consider the following problem. We have a doubly linked

list (see Sec. 2.2) that initially consists of one node which contains the

integer 0. We have as input an array A[1..n] of n positive integers that are

to be processed in the following way. If the current integer x is odd, then

append x to the list. If it is even, then first append x and then remove all

odd elements before x in the list. A sketch of an algorithm for this problem

is shown below and is illustrated in Fig. 1.7 on the input

5 7 3 4 9 8 7 3 .

First, 5, 7 and 3 are appended to the list. When 4 is processed, it is

inserted and then 5, 7 and 3 are deleted as shown in Fig. 1.7(f). Next, as

shown in Fig. 1.7(i), after 9 and 8 have been inserted, 9 is deleted. Finally,

the elements 7 and 3 are inserted but not deleted, as they do not precede

any integer that is even.
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1. for j← 1 to n
2. x←A[j]
3. append x to the list
4. if x is even then
5. while pred(x) is odd
6. delete pred(x)
7. end while
8. end if
9. end for

(c)

(e)

(g)

(i)

(k)

(b) 0 5 0 5 7

0 5 7 3

40 9

4

0 4 8

37840

(a)

(d)

(f)

(h)

(j)

0

0 75 3

4

8

8 7

0

0

0

4

4

9

Fig. 1.7. Illustration of amortized time analysis.

Now, let us analyze the running time of this algorithm. If the input data

contain no even integers, or if all the even integers are at the beginning,

then no elements are deleted, and hence each iteration of the for loop

takes constant time. On the other hand, if the input consists of n − 1

odd integers followed by one even integer, then the number of deletions

is exactly n − 1, i.e., the number of iterations of the while loop is n − 1.

This means that the while loop may cost Ω(n) time in some iterations. It

follows that each iteration of the for loop takes O(n) time, which results

in an overall running time of O(n2).

Using amortization, however, we obtain a time complexity of Θ(n) as

follows. The number of insertions is obviously n. As to the number of dele-

tions, we note that no element is deleted more than once, and thus the

number of deletions is between 0 and n−1. It follows that the total number

of elementary operations of insertions and deletions altogether is between n

and 2n−1. This implies that the time complexity of the algorithm is indeed

Θ(n). It should be emphasized, however, that in this case, we say that the

while loop takes constant amortized time in the worst case. That is, the

average time taken by the while loop is guaranteed to be O(1) regardless

of the input.
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Example 1.34 Suppose we want to allocate storage for an unknown

number of elements x1, x2, . . . in a stream of input. One technique to handle

the allocation of memory is to first allocate an array A0 of reasonable size,

say m. When this array becomes full, then upon the arrival of the (m+1)st

element, a new array A1 of size 2m is allocated and all the elements stored

in A0 are moved from A0 to A1. Next, the (m + 1)st element is stored in

A1[m+1]. We keep doubling the size of the newly allocated array whenever

it becomes full and a new element is received, until all elements have been

stored.

Suppose, for simplicity, that we start with an array of size 1, that is, A0

consists of only one entry. First, upon arrival of x1, we store x1 in A0[1].

When x2 is received, we allocate a new array A1 of size 2, set A1[1] to A0[1]

and store x2 in A1[2]. Upon arrival of the third element x3, we allocate

a new array A2[1..4], move A1[1..2] to A2[1..2] and store x3 in A2[3]. The

next element, x4, will be stored directly in A2[4]. Now, since A2 is full, when

x5 is received, we allocate a new array A3[1..8], move A2[1..4] to A3[1..4]

and store x5 in A3[5]. Next, we store x6, x7 and x8 in the remaining free

positions of A3. We keep doubling the size of the newly allocated array

upon arrival of a new element whenever the current array becomes full and

move the contents of the current array to the newly allocated array.

We wish to count the number of element assignments. Suppose, for

simplicity, that the total number of elements received, which is n, is a

power of 2. Then, the arrays that have been allocated are A0, A1, . . . , Ak,

where k = logn. Since x1 has been moved k times, x2 has been moved

k − 1 times, etc., we may conclude that each element in {x1, x2, . . . , xn}
has been moved O(k) = O(log n) times. This implies that the total number

of element assignments is O(n log n).

However, using amortized time analysis, we derive a much tighter bound

as follows. Observe that every entry in each newly allocated array has been

assigned to exactly once. Consequently, the total number of element assign-

ments is equal to the sum of sizes of all arrays that have been allocated,

which is equal to

k∑
j=0

2j = 2k+1 − 1 = 2n− 1 = Θ(n) (Eq. (A.10)).

Thus, using amortization, it follows that the time needed to store and move

each of the elements x1, x2, . . . , xn is Θ(1) amortized time.
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1.14 Input Size and Problem Instance

A measure of the performance of an algorithm is usually a function of its

input: its size, order, distribution, etc. The most prominent of these, which is

of interest to us here, is the input size. Using Turing machines as the model

of computation, it is possible, and more convenient indeed, to measure the

input to an algorithm in terms of the number of nonblank cells. This, of

course, is impractical, given that we wish to investigate real-world problems

that can be described in terms of numbers, vertices, line segments and other

varieties of objects. For this reason, the notion of input size belongs to the

practical part of algorithm analysis, and its interpretation has become a

matter of convention. When discussing a problem, as opposed to an algo-

rithm, we usually talk of a problem instance. Thus, a problem instance

translates to input in the context of an algorithm that solves that problem.

For example, we call an array A of n integers an instance of the problem of

sorting numbers. At the same time, in the context of discussing Algorithm

insertionsort, we refer to this array as an input to the algorithm.

The input size, as a quantity, is not a precise measure of the input, and

its interpretation is subject to the problem for which the algorithm is, or is

to be, designed. Some of the commonly used measures of input size are the

following:

• In sorting and searching problems, we use the number of entries in the

array or list as the input size.

• In graph algorithms, the input size usually refers to the number of vertices

or edges in the graph, or both.

• In computational geometry, the size of input to an algorithm is usually

expressed in terms of the number of points, vertices, edges, line segments,

polygons, etc.

• In matrix operations, the input size is commonly taken to be the dimen-

sions of the input matrices.

• In number theory algorithms and cryptography, the number of bits in the

input is usually chosen to denote its length. The number of words used

to represent a single number may also be chosen as well, as each word

consists of a fixed number of bits.

These “heterogeneous” measures have brought about some incon-

sistencies when comparing the amount of time or space required by
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two algorithms. For example, an algorithm for adding two n × n matri-

ces which performs n2 additions sounds quadratic, while it is indeed linear

in the input size.

Consider the brute-force algorithm for primality testing given in

Example 1.16. Its time complexity was shown to be O(
√
n). Since this

is a number problem, the time complexity of the algorithm is measured

in terms of the number of bits in the binary representation of n. Since n

can be represented using k = �log(n+ 1)� bits, the time complexity can

be rewritten as O(
√
n) = O(2k/2). Consequently, Algorithm brute-force

primalitytest is in fact an exponential algorithm.

Now, we will compare two algorithms for computing the sum
∑n

j=1 j.

In the first algorithm, which we will call first, the input is an array A[1..n]

with A[j] = j, for each j, 1 ≤ j ≤ n. The input to the second algorithm,

call it second, is just the number n. These two algorithms are shown as

Algorithm first and Algorithm second.

Algorithm 1.14 first
Input: A positive integer n and an array A[1..n] with A[j] = j, 1 ≤ j ≤ n.

Output:
∑n

j=1 A[j].

1. sum← 0
2. for j ← 1 to n
3. sum← sum + A[j]
4. end for
5. return sum

Algorithm 1.15 second
Input: A positive integer n.

Output:
∑n

j=1 j.

1. sum← 0
2. for j ← 1 to n
3. sum← sum + j
4. end for
5. return sum

Obviously, both algorithms run in time Θ(n). Clearly, the time complex-

ity of Algorithm first is Θ(n). Algorithm second is designed to solve a

number problem and, as we have stated before, its input size is measured in

terms of the number of bits in the binary representation of the integer n. Its
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input consists of k = �log (n+ 1)� bits. It follows that the time complexity

of Algorithm second is Θ(n) = Θ(2k). In other words, it is considered to

be an exponential time algorithm. Notice that the number of elementary

operations performed by both algorithms is the same.

1.15 Divide-and-Conquer Recurrences

The main objective of this section is to study some of the techniques specific

to the solution of the most common divide-and-conquer recurrences that

arise in the analysis of divide-and-conquer algorithms in one variable (see

Chapter 5). These recurrences take the following form:

f(n) =

{
d if n ≤ n0

a1f(n/c1) + a2f(n/c2) + · · ·+ apf(n/cp) + g(n) if n > n0,

where a1, a2, . . . , ap, c1, c2, . . . , cp and n0 are nonnegative integers, d a non-

negative constant, p ≥ 1 and g(n) is a function from the set of nonnegative

integers to the set of real numbers. We discuss here three of the most

common techniques of solving divide-and-conquer recurrences. For general

recurrences, see Appendix A (Sec. A.8).

1.15.1 Expanding the recurrence

Perhaps, the most natural approach to solve a recurrence is by expanding it

repeatedly in the obvious way. This method is so mechanical and intuitive

that it virtually does not need any explanation. However, one should keep

in mind that, in some cases, it is time-consuming and, being mechanical,

susceptible to calculation errors. This method is hard to apply on a recur-

rence in which the ratios in the definition of the function are not equal. An

example of this is given later when we study the substitution method in

Sec. 1.15.2.

Example 1.35 Consider the recurrence

f(n) =

{
d if n = 1

2f(n/2) + bn logn if n ≥ 2,
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where b and d are nonnegative constants and n is a power of 2. We proceed

to solve this recurrence as follows (here k = log n):

f(n) = 2f(n/2) + bn logn

= 2(2f(n/22) + b(n/2) log(n/2)) + bn logn

= 22f(n/22) + bn log(n/2) + bn logn

= 22(2f(n/23) + b(n/22) log(n/22)) + bn log(n/2) + bn logn

= 23f(n/23) + bn log(n/22) + bn log(n/2) + bn logn

...

= 2kf(n/2k) + bn(log(n/2k−1) + log(n/2k−2) + . . .+ log(n/2k−k))

= dn+ bn(log 21 + log 22 + . . .+ log 2k)

= dn+ bn
k∑

j=1

log 2j

= dn+ bn

k∑
j=1

j

= dn+ bn
k(k + 1)

2

= dn+
bn log2 n

2
+
bn logn

2
.

Theorem 1.2 Let b and d be nonnegative constants, and let n be a power

of 2. Then, the solution to the recurrence

f(n) =

{
d if n = 1

2f(n/2) + bn logn if n ≥ 2

is

f(n) = Θ(n log2 n).

Proof. The proof follows directly from Example 1.35. �

Lemma 1.1 Let a and c be nonnegative integers, b, d and x nonnega-

tive constants, and let n = ck, for some nonnegative integer k. Then, the
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solution to the recurrence

f(n) =

{
d if n = 1

af(n/c) + bnx if n ≥ 2

is

f(n) = bnx logc n+ dnx if a = cx,

f(n) =

(
d+

bcx

a− cx
)
nlogc a −

(
bcx

a− cx
)
nx if a �= cx.

Proof. We proceed to solve this recurrence by expansion as follows:

f(n) = af(n/c) + bnx

= a(af(n/c2) + b(n/c)x) + bnx

= a2f(n/c2) + (a/cx)bnx + bnx

...

= akf(n/ck) + (a/cx)k−1bnx + · · ·+ (a/cx)bnx + bnx

= dalogc n + bnx
k−1∑
j=0

(a/cx)j

= dnlogc a + bnx
k−1∑
j=0

(a/cx)j .

The last equality follows from Eq. (A.2) on page 671. We have two cases as

follows:

(1) a = cx. In this case,

k−1∑
j=0

(a/cx)j = k = logc n.

Since logc a = logc c
x = x,

f(n) = bnx logc n+ dnlogc a = bnx logc n+ dnx.
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(2) a �= cx. In this case, by Eq. (A.9) on page 678,

bnx
k−1∑
j=0

(a/cx)j =
bnx(a/cx)k − bnx

(a/cx)− 1

=
bak − bnx

(a/cx)− 1

=
bcxak − bcxnx

a− cx

=
bcxalogc n − bcxnx

a− cx

=
bcxnlogc a − bcxnx

a− cx .

Hence,

f(n) =

(
d+

bcx

a− cx
)
nlogc a −

(
bcx

a− cx
)
nx. �

Corollary 1.1 Let a and c be nonnegative integers, b, d and x nonneg-

ative constants, and let n = ck, for some nonnegative integer k. Then, the

solution to the recurrence

f(n) =

{
d if n = 1

af(n/c) + bnx if n ≥ 2

satisfies

f(n) = bnx logc n+ dnx if a = cx,

f(n) ≤
(

bcx

cx − a
)
nx if a < cx,

f(n) ≤
(
d+

bcx

a− cx
)
nlogc a if a > cx.

Proof. If a < cx, then logc a < x or nlogc a < nx. If a > cx, then

logc a > x or nlogc a > nx. The rest of the proof follows immediately from

Lemma 1.1. �

Corollary 1.2 Let a and c be nonnegative integers, b and d nonnega-

tive constants, and let n = ck, for some nonnegative integer k. Then, the
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solution to the recurrence

f(n) =

{
d if n = 1

af(n/c) + bn if n ≥ 2

is

f(n) = bn logc n+ dn if a = c,

f(n) =

(
d+

bc

a− c
)
nlogc a −

(
bc

a− c
)
n if a �= c.

Proof. Follows immediately from Lemma 1.1. �

Theorem 1.3 Let a and c be nonnegative integers, b, d and x nonnega-

tive constants, and let n = ck, for some nonnegative integer k. Then, the

solution to the recurrence

f(n) =

{
d if n = 1

af(n/c) + bnx if n ≥ 2

is

f(n) =

⎧⎪⎨
⎪⎩

Θ(nx) if a < cx

Θ(nx logn) if a = cx

Θ(nlogc a) if a > cx.

In particular, if x = 1, then

f(n) =

⎧⎪⎨
⎪⎩

Θ(n) if a < c

Θ(n logn) if a = c

Θ(nlogc a) if a > c.

Proof. Follows immediately from Lemma 1.1 and Corollary 1.1. �

1.15.2 Substitution

This method is usually employed for proving upper and lower bounds. It can

also be used to prove exact solutions. In this method, we guess a solution

and try to prove it by appealing to mathematical induction (see Sec. A.2.5).

Unlike what is commonly done in inductive proofs, here we first proceed

to prove the inductive step with one or more unknown constants, and once

the claim is established for f(n), where n is arbitrary, we try to fine-tune
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the constant(s), if necessary, in order to make the solution apply to the

boundary condition(s) as well. The difficulty in this method is in coming

up with an intelligent guess that serves as a tight bound for the given recur-

rence. In many instances, however, the given recurrence resembles another

one whose solution is known a priori . This helps in finding a starting guess

that is reasonably good. The following examples illustrate this method.

Example 1.36 Consider the recurrence

f(n) =

{
d if n = 1

f(�n/2�) + f(�n/2�) + bn if n ≥ 2,

for some nonnegative constants b and d. When n is a power of 2, this

recurrence reduces to

f(n) = 2f(n/2) + bn,

whose solution is, by Corollary 1.2, bn logn + dn. Consequently, we will

make the guess that f(n) ≤ cbn logn+ dn for some constant c > 0, whose

value will be determined later. Assume that the claim is true for �n/2� and
�n/2�, where n ≥ 2. Substituting for f(n) in the recurrence, we obtain

f(n) = f(�n/2�) + f(�n/2�) + bn

≤ cb�n/2� log �n/2�+ d�n/2�+ cb�n/2� log �n/2�+ d�n/2�+ bn

≤ cb�n/2� log �n/2�+ cb�n/2� log �n/2�+ dn+ bn

= cbn log �n/2�+ dn+ bn

≤ cbn log((n+ 1)/2) + dn+ bn

= cbn log(n+ 1)− cbn+ dn+ bn.

In order for f(n) to be at most cbn logn + dn, we must have cbn log(n +

1)− cbn+ bn ≤ cbn logn or c log(n+ 1)− c+ 1 ≤ c logn, which reduces to

c ≥ 1

1 + logn− log(n+ 1)
=

1

1 + log n
n+1

.

When n ≥ 2,

1

1 + log n
n+1

≤ 1

1 + log 2
3

< 2.41,
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and hence, we will set c = 2.41. When n = 1, we have 0 + d ≤ d. It follows
that

f(n) ≤ 2.41bn logn+ dn for all n ≥ 1.

Example 1.37 In this example, we show that the recurrence f(n)

defined in Example 1.36 is at least cbn logn + dn. That is, we show that

cbn logn+dn is a lower bound for the function f(n), for some constant c > 0

that will be determined later. Assume that the claim is true for �n/2� and
�n/2�, where n ≥ 2. Substituting for f(n) in the recurrence, we obtain

f(n) = f(�n/2�) + f(�n/2�) + bn

≥ cb�n/2� log �n/2�+ d�n/2�+ cb�n/2� log �n/2�+ d�n/2�+ bn

≥ cb�n/2� log �n/2�+ d�n/2�+ cb�n/2� log �n/2�+ d�n/2�+ bn

= cbn log �n/2�+ dn+ bn

≥ cbn log(n/4) + dn+ bn

= cbnlogn− 2cbn+ dn+ bn

= cbnlogn+ dn+ (bn− 2cbn).

In order for f(n) to be at least cbn logn+dn, we must have bn−2cbn ≥ 0 or

c ≤ 1/2. Consequently, f(n) ≥ bn logn/2+dn. Since f(n) ≥ bn logn/2+dn
holds when n = 1, it follows that

f(n) ≥ bn logn

2
+ dn for all n ≥ 1.

Theorem 1.4 Let

f(n) =

{
d if n = 1

f(�n/2�) + f(�n/2�) + bn if n ≥ 2,

for some nonnegative constants b and d. Then,

f(n) = Θ(n logn).

Proof. The proof follows from Examples 1.36 and 1.37. �
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Example 1.38 Consider the recurrence

f(n) =

⎧⎨
⎩

0 if n = 0

b if n = 1

f(�c1n�) + f(�c2n�) + bn if n ≥ 2,

for some positive constants b, c1 and c2 such that c1 + c2 = 1. When

c1 = c2 = 1/2, and n is a power of 2, this recurrence reduces to

f(n) =

{
b if n = 1

2f(n/2) + bn if n ≥ 2,

whose solution is, by Corollary 1.2, bnlogn+bn. Consequently, we will make

the guess that f(n) ≤ cbn logn+ bn for some constant c > 0, whose value

will be determined later. Assume that the claim is true for �c1n� and �c2n�,
where n ≥ 2. Substituting for f(n) in the recurrence, we obtain

f(n) = f(�c1n�) + f(�c2n�) + bn

≤ cb�c1n� log �c1n�+ b�c1n�+ cb�c2n� log �c2n�+ b�c2n�+ bn

≤ cbc1n log c1n+ bc1n+ cbc2n log c2n+ bc2n+ bn

= cbn logn+ bn+ cbn(c1 log c1 + c2 log c2) + bn

= cbn logn+ bn+ cben+ bn,

where e = c1 log c1+c2 log c2 < 0. In order for f(n) to be at most cbn logn+

bn, we must have cben + bn ≤ 0 or ce ≤ −1, or c ≥ −1/e, a nonnegative

constant. Consequently, f(n) ≤ −bn logn/e + bn. Clearly, this inequality

holds for n = 1. It follows that

f(n) ≤ −bn logn
c1 log c1 + c2 log c2

+ bn for all n ≥ 1.

For example, if c1 = c2 = 1/2, c1 log c1 + c2 log c2 = −1, and hence f(n) ≤
bn logn + bn for all n ≥ 1. This conforms with Corollary 1.2 when n is a

power of 2.

Example 1.39 In this example, we solve the recurrence defined in

Example 1.38 when c1+ c2 < 1. When c1 = c2 = 1/4 and n is a power of 2,
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this recurrence reduces to the recurrence

f(n) =

{
b if n = 1

2f(n/4) + bn if n ≥ 2,

whose solution is, by Corollary 1.2, f(n) = 2bn − b√n. Consequently, we
will make the guess that f(n) ≤ cbn for some constant c > 0. That is, we

show that cbn is an upper bound for the function f(n) when c1 + c2 < 1,

for some constant c > 0 that will be determined later. Assume that the

claim is true for �c1n� and �c2n�, where n ≥ 2. Substituting for f(n) in the

recurrence, we obtain

f(n) = f(�c1n�) + f(�c2n�) + bn

≤ cb�c1n�+ cb�c2n�+ bn

≤ cbc1n+ cbc2n+ bn

= c(c1 + c2)bn+ bn.

In order for f(n) to be at most cbn, we must have c(c1 + c2)bn+ bn ≤ cbn
or c(c1 + c2) + 1 ≤ c, that is, c(1 − c1 − c2) ≥ 1 or c ≥ 1/(1 − c1 − c2), a
nonnegative constant. Clearly, f(n) ≤ bn/(1− c1 − c2) holds for n = 0 and

n = 1. It follows that

f(n) ≤ bn

1− c1 − c2 for all n ≥ 0.

For example, if c1 = c2 = 1/4, then we have f(n) ≤ 2bn, and the exact

solution is, as stated above, f(n) = 2bn− b√n.

Theorem 1.5 Let b, c1 and c2 be nonnegative constants. Then, the

solution to the recurrence

f(n) =

⎧⎪⎨
⎪⎩

0 if n = 0

b if n = 1

f(�c1n�) + f(�c2n�) + bn if n ≥ 2

is

f(n) =

{
O(n logn) if c1 + c2 = 1

Θ(n) if c1 + c2 < 1.
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Proof. By Example 1.38, f(n) = O(n log n) if c1 + c2 = 1. If c1 + c2 < 1,

then by Example 1.39, f(n) = O(n). Since f(n) = Ω(n), it follows that

f(n) = Θ(n). �

1.15.3 Change of variables

In some recurrences, it is more convenient if we change the domain of the

function and define a new recurrence in the new domain whose solution may

be easier to obtain. In the following, we give two examples. The second

example shows that this method is sometimes helpful, as it reduces the

original recurrence to another much easier recurrence.

Example 1.40 Consider the recurrence

f(n) =

{
d if n = 1

2f(n/2) + bn logn if n ≥ 2,

which we have solved by expansion in Example 1.35. Here, n is a power of

2, so let k = logn and write n = 2k. Then, the recurrence can be rewritten

as

f(2k) =

{
d if k = 0

2f(2k−1) + bk2k if k ≥ 1.

Now, let g(k) = f(2k). Then, we have

g(k) =

{
d if k = 0

2g(k − 1) + bk2k if k ≥ 1.

This recurrence is of the form of Eq. (A.23) on page 686. Hence, we follow

the procedure outlined in Sec. A.8.2 to solve this recurrence. Let

2kh(k) = g(k) with h(0) = g(0) = d.

Then,

2kh(k) = 2(2k−1h(k − 1)) + bk2k,

or

h(k) = h(k − 1) + bk.
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The solution to this recurrence is

h(k) = h(0) +

k∑
j=1

bj = d+
bk(k + 1)

2
.

Consequently,

g(k) = 2kh(k) = d2k +
bk22k

2
+
bk2k

2
= dn+

bn log2 n

2
+
bn logn

2
,

which is the same solution obtained in Example 1.35.

Example 1.41 Consider the recurrence

f(n) =

⎧⎨
⎩

1 if n = 2

1 if n = 4

f(n/2) + f(n/4) if n > 4,

where n is assumed to be a power of 2. Let g(k) = f(2k), where k = logn.

Then, we have

g(k) =

⎧⎨
⎩

1 if k = 1

1 if k = 2

g(k − 1) + g(k − 2) if k > 2.

g(k) is exactly the Fibonacci recurrence discussed in Example A.20, whose

solution is

g(k) =
1√
5

(
1 +
√
5

2

)k

− 1√
5

(
1−√5

2

)k

.

Consequently,

f(n) =
1√
5

(
1 +
√
5

2

)logn

− 1√
5

(
1−√5

2

)log n

.

If we let φ = (1 +
√
5)/2 = 1.61803, then

f(n) = Θ(φlog n) = Θ(nlogφ).
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Example 1.42 Let

f(n) =

{
d if n = 2

2f(
√
n) + b logn if n > 2,

where n = 22
k

, k ≥ 1. f(n) can be rewritten as

f(22
k

) =

{
d if k = 0

2f(22
k−1

) + b2k if k > 0.

Let g(k) = f(22
k

). Then,

g(k) =

{
d if k = 0

2g(k − 1) + b2k if k > 0.

This recurrence is of the form of Eq. (A.23) on page 686. Hence, we follow

the procedure outlined in Sec. A.8.2 to solve this recurrence. If we let

2kh(k) = g(k) with h(0) = g(0) = d,

then we have

2kh(k) = 2(2k−1h(k − 1)) + b2k.

Dividing both sides by 2k yields

h(k) = h(0) +

k∑
j=1

b = d+ bk.

Hence,

g(k) = 2kh(k) = d2k + bk2k.

Substituting n = 22
k

, logn = 2k and log log n = k yields

f(n) = d log n+ b log n log log n.
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1.16 Practice Problems

1.1. How many element comparisons are executed by Algorithm selec-

tionsort when the input size is n = 109? How many element com-

parisons are executed by Algorithm bottomupsort for the same

input size?

1.2. Which algorithm has a running time of Θ(n2), selectionsort or

insertionsort?

1.3. Let t(n) be the running time of Algorithm insertionsort. Express

t(n) using the O,Ω and Θ notations whatever applies. Justify your

answer.

1.4. Is Algorithm bottomupsort O(n logn)? Is it Ω(n logn)? Justify

your answer.

1.5. Fill in the blanks with either true or false:

f(n) g(n) f = O(g) f = Ω(g) f = Θ(g)

2n3 + 3n 100n2 + 2n+ 100

50n+ logn 10n+ log logn

50n logn 10n log logn

logn log2 n

n! 5n

1.6. Is 4n = Θ(2n
2

)? Prove your answer.

1.7. Show that 3n �= Θ(22n). Hint: 22n = 4n.

1.8. Let n be the input to Algorithm 1, where n is a power of 10.

Algorithm 1.16 Algorithm 1
Input: n.

Output: none

1. m← n
2. while m ≥ 1
3. for i← 1 to m
4. x← 100 ⇐= Step 4
5. end for
6. m← m

10
7. end while

(a) What is the number of times (expressed in n) is Step 4 executed?

Give a brief justification.
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(b) What is the time complexity of the algorithm expressed in the

O-notation?

(c) Answer Part (b) if Step 6 is changed to m←� m
100�.

(d) Answer Part (b) if Step 1 is changed to m←�√n�.
1.9. Consider Algorithm 2 whose input is a positive integer n. Compute

the number of times statement 5 is executed and express the running

time using the O-notation.

Algorithm 1.17 Algorithm 2
Input: n.

Output: none.

1. x←�√n�
2. while x ≥ 1
3. y← x
4. while y ≥ 1
5. y← y − 1 ⇐= Step 5
6. end while
7. x← �x/2�
8. end while

1.10. Which algorithm is optimal, insertion sort or bottomupsort?

1.11. Is 3n = o(22n)? Prove your answer. See Problem 1.7.

1.12. Suppose that f(n) = o(g(n)). Does this imply that f(n) = O(g(n))?

Explain.

1.13. Let A[1..n] be an array of 2n elements with the property that both

the odd-indexed elements A[1], A[3], ...A[2n−1] and the even-indexed

elements A[2], A[4], ...A[2n] are sorted independently. Give an algo-

rithm to sort all elements in A in O(n) time.

1.14. Let A be an array of 2n elements, which contains an element x that

is repeated n+ 1 times, and all other elements are distinct. Give an

algorithm to find x using the least number of comparisons. Prove the

correctness of your algorithm. Hint: Use the pigeonhole principle to

show that there is a j such that A[j] = A[j + 1] = x.

1.15. Consider the following recurrence:

f(n) = 2f(n/2) + n2 for n ≥ 2; f(1) = 1,

where n is assumed to be a power of 2.
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(a) Solve the recurrence by expansion.

(b) Solve the recurrence directly by applying Theorem 1.3.

1.17 Exercises

1.1. Let A[1..60] = 11, 12, . . . , 70. How many comparisons are performed

by Algorithm binarysearch when searching for the following val-

ues of x?

(a) 33. (b) 7. (c) 70. (d) 77.

1.2. Let A[1..2000] = 1, 2, . . . , 2000. How many comparisons are per-

formed by Algorithm binarysearch when searching for the follow-

ing values of x?

(a) −3. (b) 1. (c) 1000. (d) 4000.

1.3. Draw the decision tree for the binary search algorithm with an input

of

(a) 12 elements. (b) 17 elements. (c) 25 elements. (d) 35 elements.

1.4. Show that the height of the decision tree for binary search is �logn�.

1.5. Illustrate the operation of Algorithm selectionsort on the

array

45 33 24 45 12 12 24 12 .

How many comparisons are performed by the algorithm?

1.6. Consider modifying Algorithm selectionsort as shown in Algo-

rithm modselectionsort.

(a) What is the minimum number of element assignments per-

formed by Algorithm modselectionsort? When is this min-

imum achieved?

(b) What is the maximum number of element assignments performed

by Algorithm modselectionsort? Note that each interchange

is implemented using three element assignments. When is this

maximum achieved?
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Algorithm 1.18 modselectionsort
Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. for i← 1 to n− 1
2. for j← i+ 1 to n
3. if A[j] < A[i] then interchange A[i] and A[j]
4. end for
5. end for

1.7. Illustrate the operation of Algorithm insertionsort on the array

30 12 13 13 44 12 25 13 .

How many comparisons are performed by the algorithm?

1.8. How many comparisons are performed by Algorithm insertionsort

when presented with the input

4 3 12 5 6 7 2 9 ?

1.9. Prove Observation 1.4.

1.10. Which algorithm is more efficient: Algorithm insertionsort or

Algorithm selectionsort? What if the input array consists of very

large records? Explain.

1.11. Illustrate the operation of Algorithm bottomupsort on the array

A[1..16] = 11 12 1 5 15 3 4 10 7 2 16 9 8 14 13 6 .

How many comparisons are performed by the algorithm?

1.12. Illustrate the operation of Algorithm bottomupsort on the array

A[1..11] = 2 17 19 5 13 11 4 8 15 12 7 .

How many comparisons are performed by the algorithm?

1.13. Give an arrayA[1..8] of integers on which Algorithm bottomupsort

performs

(a) the minimum number of element comparisons.

(b) the maximum number of element comparisons.
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1.14. Fill in the blanks with either true or false:

f(n) g(n) f = O(g) f = Ω(g) f = Θ(g)

2n3 + 3n 100n2 + 2n+ 100

50n+ logn 10n+ log logn

50n logn 10n log logn

logn log2 n

n! 5n

1.15. Express the following functions in terms of the Θ-notation:

(a) 2n+ 3 log100 n.

(b) 7n3 + 1000n logn+ 3n.

(c) 3n1.5 + (
√
n)3 logn.

(d) 2n + 100n + n!.

1.16. Express the following functions in terms of the Θ-notation:

(a) 18n3 + log n8.

(b) (n3 + n)/(n+ 5).

(c) log2 n+
√
n+ log logn.

(d) n!/2n + nn.

1.17. Consider the sorting algorithm shown below, which is called bub-

blesort.

Algorithm 1.19 bubblesort
Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. i← 1; sorted← false
2. while i ≤ n− 1 and not sorted
3. sorted← true
4. for j← n downto i+ 1
5. if A[j] < A[j − 1] then
6. interchange A[j] and A[j − 1]
7. sorted← false
8. end if
9. end for

10. i← i+ 1
11. end while
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(a) What is the minimum number of element comparisons performed

by the algorithm? When is this minimum achieved?

(b) What is the maximum number of element comparisons per-

formed by the algorithm? When is this maximum achieved?

(c) What is the minimum number of element assignments performed

by the algorithm? When is this minimum achieved?

(d) What is the maximum number of element assignments performed

by the algorithm? When is this maximum achieved?

(e) Express the running time of Algorithm bubblesort in terms of

the O and Ω notations.

(f) Can the running time of the algorithm be expressed in terms of

the Θ-notation? Explain.

1.18. Find two monotonically increasing functions f(n) and g(n) such that

f(n) �= O(g(n)) and g(n) �= O(f(n)).

1.19. Is x = O(x sin x)? Use the definition of the O-notation to prove your

answer.

1.20. Prove that
∑n

j=1 j
k is O(nk+1) and Ω(nk+1), where k is a positive

integer. Conclude that it is Θ(nk+1).

1.21. Let f(n) = {1/n+ 1/n2 + 1/n3 + · · · }. Express f(n) in terms of the

Θ-notation. (Hint: Find a recursive definition of f(n)).

1.22. Show that n100 = O(2n), but 2n �= O(n100).

1.23. Show that 2n is not Θ(3n).

1.24. Is n! = Θ(nn)? Prove your answer.

1.25. Is 2n
2

= Θ(2n
3

)? Prove your answer.

1.26. Carefully explain the difference between O(1) and Θ(1).

1.27. Is the function �logn�! O(n), Ω(n), Θ(n)? Prove your answer.

1.28. Can we use the ≺ relation described in Sec. 1.8.6 to compare the

order of growth of n2 and 100n2? Explain.
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1.29. Use the ≺ relation to order the following functions by growth rate:

n1/100,
√
n, logn100, n logn, 5, log logn, log2 n, (

√
n)n, (1/2)n,

2n
2

, n!.

1.30. Consider the following problem. Given an array A[1..n] of integers,

test each element a in A to see whether it is even or odd. If a is even,

then leave it; otherwise, multiply it by 2.

(a) Which one of the O and Θ notations is more appropriate to

measure the number of multiplications? Explain.

(b) Which one of the O and Θ notations is more appropriate to

measure the number of element tests? Explain.

1.31. Give a more efficient algorithm than the one given in Example 1.22.

What is the time complexity of your algorithm?

1.32. Consider Algorithm count6 whose input is a positive integer n.

Algorithm 1.20 count6

1. comment: Exercise 1.32

2. count← 0
3. for i← 1 to �log n�
4. for j← i to i+ 5
5. for k← 1 to i2

6. count← count + 1
7. end for
8. end for
9. end for

(a) How many times Step 6 is executed?

(b) Which one of the O and Θ notations is more appropriate to

express the time complexity of the algorithm? Explain.

(c) What is the time complexity of the algorithm?

1.33. Consider Algorithm count7 whose input is a positive integer n.

(a) What is the maximum number of times Step 6 is executed when

n is a power of 2?

(b) What is the time complexity of the algorithm expressed in the

O-notation?

(c) What is the time complexity of the algorithm expressed in the

Ω-notation?
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Algorithm 1.21 count7

1. comment: Exercise 1.33

2. count← 0
3. for i← 1 to n
4. j← �n/2�
5. while j ≥ 1
6. count← count + 1
7. if j is odd then j← 0 else j← j/2
8. end while
9. end for

(d) Which one of the O and Θ notations is more appropriate to

express the time complexity of the algorithm? Explain briefly.

1.34. Consider Algorithm count8 whose input is a positive integer n.

Algorithm 1.22 count8

1. comment: Exercise 1.34

2. count← 0
3. for i← 1 to n
4. j← �n/3�
5. while j ≥ 1
6. for k← 1 to i
7. count← count + 1
8. end for
9. if j is even then j← 0 else j← �j/3�

10. end while
11. end for

(a) What is the maximum number of times Step 7 is executed when

n is a power of 2?

(b) What is the maximum number of times Step 7 is executed when

n is a power of 3?

(c) What is the time complexity of the algorithm expressed in the

O-notation?

(d) What is the time complexity of the algorithm expressed in the

Ω-notation?

(e) Which one of the O and Θ notations is more appropriate to

express the time complexity of the algorithm? Explain briefly.
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1.35. Write an algorithm to find the maximum and minimum of a sequence

of n integers stored in array A[1..n] such that its time complexity is

(a) O(n).

(b) Ω(n logn).

1.36. Let A[1..n] be an array of distinct integers, where n > 2. Give anO(1)

time algorithm to find an element in A that is neither the maximum

nor the minimum.

1.37. Consider the element uniqueness problem: Given a set of integers,

determine whether two of them are equal. Give an efficient algorithm

to solve this problem. Assume that the integers are stored in array

A[1..n]. What is the time complexity of your algorithm?

1.38. Give an algorithm that evaluates an input polynomial

anx
n + an−1x

n−1 + · · ·+ a1x+ a0

for a given value of x in time

(a) Ω(n2).

(b) O(n).

1.39. Let S be a set of n positive integers, where n is even. Give an efficient

algorithm to partition S into two subsets S1 and S2 of n/2 elements

each with the property that the difference between the sum of the

elements in S1 and the sum of the elements in S2 is maximum. What

is the time complexity of your algorithm?

1.40. Suppose we change the word “maximum” to “minimum” in Exer-

cise 1.39. Give an algorithm to solve the modified problem. Compare

the time complexity of your algorithm with that obtained in Exer-

cise 1.39.

1.41. Let m and n be two positive integers. The greatest common divisor

of m and n, denoted by gcd(m,n), is the largest integer that divides

both m and n. For example gcd(12, 18) = 6. Consider Algorithm

euclid shown below, to compute gcd(m,n).

(a) Does it matter if in the first call gcd(m,n) it happens that n <

m? Explain.
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Algorithm 1.23 euclid
Input: Two positive integers m and n.

Output: gcd(m,n).

1. comment: Exercise 1.41

2. repeat
3. r← n mod m
4. n←m
5. m← r
6. until r = 0
7. return n

(b) Prove the correctness of Algorithm euclid. (Hint: Make use of

the following theorem: If r divides both m and n, then r divides

m− n.)
(c) Show that the running time of Algorithm euclid is maximum if

m and n are two consecutive numbers in the Fibonacci sequence

defined by

f1 = f2 = 1; fn = fn−1 + fn−2 for n > 2.

(d) Analyze the running time of Algorithm euclid in terms of n,

assuming that n ≥ m.

(e) Can the time complexity of Algorithm euclid be expressed using

the Θ-notation? Explain.

1.42. Find the time complexity of Algorithm euclid discussed in Exer-

cise 1.41 measured in terms of the input size. Is it logarithmic, linear,

exponential? Explain.

1.43. Prove that for any constant c > 0, (logn)c = o(n).

1.44. Show that any exponential function grows faster than any polynomial

function by proving that for any constants c and d greater than 1,

nc = o(dn).

1.45. Consider the following recurrence:

f(n) = 4f(n/2) + n for n ≥ 2; f(1) = 1,
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where n is assumed to be a power of 2.

(a) Solve the recurrence by expansion.

(b) Solve the recurrence directly by applying Theorem 1.3.

1.46. Consider the following recurrence:

f(n) = 5f(n/3) + n for n ≥ 2; f(1) = 1,

where n is assumed to be a power of 3.

(a) Solve the recurrence by expansion.

(b) Solve the recurrence directly by applying Theorem 1.3.

1.47. Consider the following recurrence:

f(n) = 9f(n/3) + n2 for n ≥ 2; f(1) = 1,

where n is assumed to be a power of 3.

(a) Solve the recurrence by expansion.

(b) Solve the recurrence directly by applying Theorem 1.3.

1.48. Consider the following recurrence:

f(n) = 2f(n/4) +
√
n for n ≥ 4; f(n) = 1 if n < 4,

where n is assumed to be of the form 22
k

, k ≥ 0.

(a) Solve the recurrence by expansion.

(b) Solve the recurrence directly by applying Theorem 1.3.

1.49. Use the substitution method to find an upper bound for the

recurrence

f(n) = f(�n/2�) + f(�3n/4�) for n ≥ 4; f(n) = 4 if n < 4.

Express the solution using the O-notation.

1.50. Use the substitution method to find an upper bound for the

recurrence

f(n) = f(�n/4�) + f(�3n/4�) + n for n ≥ 4; f(n) = 4 if n < 4.

Express the solution using the O-notation.
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1.51. Use the substitution method to find a lower bound for the recurrence

in Exercise 1.49. Express the solution using the Ω-notation.

1.52. Use the substitution method to find a lower bound for the recurrence

in Exercise 1.50. Express the solution using the Ω-notation.

1.53. Use the substitution method to solve the recurrence

f(n) = 2f(n/2) + n2 for n ≥ 2; f(1) = 1,

where n is assumed to be a power of 2. Express the solution using

the Θ-notation.

1.54. Let

f(n) = f(n/2) + n for n ≥ 2; f(1) = 1,

and

g(n) = 2g(n/2) + 1 for n ≥ 2; g(1) = 1,

where n is a power of 2. Is f(n) = g(n)? Prove your answer.

1.55. Use the change of variable method to solve the recurrence

f(n) = f(n/2) +
√
n for n ≥ 4; f(n) = 2 if n < 4,

where n is assumed to be of the form 22
k

. Find the asymptotic behav-

ior of the function f(n).

1.56. Use the change of variable method to solve the recurrence

f(n) = 2f(
√
n) + n for n ≥ 4; f(n) = 1 if n < 4,

where n is assumed to be of the form 22
k

. Find the asymptotic behav-

ior of the function f(n).

1.57. Prove that the solution to the recurrence

f(n) = 2f(n/2) + g(n) for n ≥ 2; f(1) = 1

is f(n) = O(n) whenever g(n) = o(n). For example, f(n) = O(n) if

g(n) = n1−ε, 0 < ε < 1.
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1.18 Bibliographic Notes
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(2009), Dromey (1982), Horowitz et al. (1978), Hu (1982), Knuth (1968,

1969, 1973), Manber (1989), Mehlhorn (1984a), Moret and Shapiro (1991),

Purdom and Brown (1985), Reingold et al. (1977), Sedgewick (1988) and

Wilf (1986). For a more popular account of algorithms, see Knuth (1977),

Lewis and Papadimitriou (1978) and the two Turing Award Lectures of

Karp (1986) and Tarjan (1987). Some of the more practical aspects of algo-

rithm design are discussed in Bentley (1982) and Gonnet (1984). Knuth

(1973) discusses in detail the sorting algorithms covered in this chapter. He

gives step-counting analyses. The asymptotic notation was used in mathe-

matics before the emergence of the field of algorithms. Knuth (1976) gives

an account of its history. This article discusses the Ω and Θ notations

and their proper usage and is an attempt to standardize these notations.

Purdom and Brown (1985) presents a comprehensive treatment of advanced

techniques for analyzing algorithms with numerous examples. The main

mathematical aspects of the analysis of algorithms can be found in Greene

and Knuth (1981). Weide (1977) provides a survey of both elementary and

advanced analysis techniques. Hofri (1987) discusses the average case anal-

ysis of algorithms in detail.
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Chapter 2

Data Structures

2.1 Introduction

The choice of a suitable data structure can influence the design of an

efficient algorithm significantly. In this chapter, we briefly present some of

the elementary data structures. Our presentation here is not self-contained,

and many details have been omitted. More detailed treatment can be found

in many books on data structures.

2.2 Linked Lists

A linked list consists of a finite sequence of elements or nodes that contain

information plus (except possibly the last one) a link to another node. If

node x points to node y, then x is called the predecessor of y and y the

successor of x. There is a link to the first element called the head of the list.

If there is a link from the last element to the first, the list is called circular.

If in a linked list each node (except possibly the first one) points also to its

predecessor, then the list is called a doubly linked list. If the first and last

nodes of a doubly linked list are connected by a pair of links, then we have

a circular doubly linked list. A linked list and its variations are diagrammed

in Fig. 2.1.

The two primary operations on linked lists are insertion and deletion.

Unlike arrays, it costs only a constant amount of time to insert or delete

an element in a linked list. Imposing some restrictions on how a linked list

is accessed results in two fundamental data structures: stacks and queues.

79
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(a)

(b)

(c)

(d)

Fig. 2.1. Variations of linked lists: (a) Linked list. (b) Circular linked list.
(c) Doubly linked list. (d) Circular doubly linked list.

2.2.1 Stacks and queues

A stack is a linked list in which insertions and deletions are permitted only

at one end called the top of the stack. It may as well be implemented as

an array. This data structure supports two basic operations: pushing an

element into the stack and popping an element off the stack. If S is a

stack, the operation pop(S) returns the top of the stack and removes it

permanently. If x is an element of the same type as the elements in S, then

push(S, x) adds x to S and updates the top of the stack so that it points

to x.

A queue is a list in which insertions are permitted only at one end of

the list called its rear, and all deletions are constrained to the other end

called the front of the queue. As in the case of stacks, a queue may also

be implemented as an array. The operations supported by queues are the

same as those for the stack except that a push operation adds an element

at the rear of the queue.

2.3 Graphs

A graph G = (V,E) consists of a set of vertices V = {v1, v2, . . . , vn} and

a set of edges E. G is either undirected or directed. If G is undirected,

then each edge in E is an unordered pair of vertices. If G is directed, then

each edge in E is an ordered pair of vertices. Figure 2.2 shows an undirected
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db

ca

e

db

ca

e

Fig. 2.2. An undirected and directed graphs.

graph (to the left) and a directed graph (to the right). For ease of reference,

we will call the undirected and directed graphs in this figure G and D,

respectively. Let (vi, vj) be an edge in E. If the graph is undirected, then

vi and vj are adjacent to each other. If the graph is directed, then vj is

adjacent to vi, but vi is not adjacent to vj unless (vj , vi) is an edge in E.

For example, both a and c are adjacent to one another in G, whereas in

D, c is adjacent to a but a is not adjacent to c. The degree of a vertex in

an undirected graph is the number of vertices adjacent to it. The indegree

and outdegree of a vertex vi in a directed graph are the number of edges

directed to vi and out of vi, respectively. For instance, the degree of e in G

is 4, the indegree of c in D is 2 and its outdegree is 1. A path in a graph

from vertex v1 to vertex vk is a sequence of vertices v1, v2, . . . , vk such that

(vi, vi+1), 1 ≤ i ≤ k− 1, is an edge in the graph. The length of a path is the

number of edges in the path. Thus, the length of the path v1, v2, . . . , vk is

k − 1. The path is simple if all its vertices are distinct. The path is a cycle

if v1 = vk. An odd-length cycle is one in which the number of edges is odd.

An even-length cycle is defined similarly. For example, a, b, e, a is an odd-

length cycle of length 3 in both G and D. A graph without cycles is called

acyclic. A vertex v is said to be reachable from vertex u if there is a path

that starts at u and ends at v. An undirected graph is connected if every

vertex is reachable from every other vertex and disconnected otherwise. The

connected components of a graph are the maximal connected subgraphs of

the graph. Thus, if the graph is connected, then it consists of one connected

component, the graph itself. Our example graph G is connected. In the case

of directed graphs, a subgraph is called a strongly connected component if

for every pair of vertices u and v in the subgraph, v is reachable from u and

u is reachable from v. In our directed graph D, the subgraph consisting of

the vertices {a, b, c, e} is a strongly connected component.

An undirected graph is said to be complete if there is an edge between

each pair of its vertices. A directed graph is said to be complete if there
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is an edge from each vertex to all other vertices. Let G = (V,E) be a

complete graph with n vertices. If G is directed, then |E| = n(n− 1). If G

is undirected, then |E| = n(n− 1)/2. The complete undirected graph with

n vertices is denoted by Kn. An undirected graph G = (V,E) is said to be

bipartite if V can be partitioned into two disjoint subsets X and Y such

that each edge in E has one end in X and the other end in Y . Let m = |X |
and n = |Y |. If there is an edge between each vertex x ∈ X and each

vertex y ∈ Y , then it is called a complete bipartite graph, and is denoted

by Km,n.

2.3.1 Representation of graphs

A graph G = (V,E) can be conveniently represented by a boolean matrix

M , called the adjacency matrix of G defined as M [i, j] = 1 if and only if

(vi, vj) is an edge in G. Another representation of a graph is the adjacency

list representation. In this scheme, the vertices adjacent to a vertex are

represented by a linked list. Thus, there are |V | such lists. Figure 2.3 shows

the adjacency list representations of an undirected and directed graphs.

Clearly, an adjacency matrix of a graph with n vertices has n2 entries. In

the case of adjacency lists, it costs Θ(m + n) space to represent a graph

with n vertices and m edges.

1

1

2

3

4

5

2 4 5

1 3 5

2 4 5

3 5

1 2 3 4

1

2

3

4

5

4 5

1 3 5

4

3 4

11

5

2 3

41

5

2 3

4

Fig. 2.3. An example of adjacency list representation.
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2.3.2 Planar graphs

A graph G = (V,E) is planar if it can be embedded in the plane with-

out edge crossings. Figure 2.4(a) shows an example of a planar graph.

This graph is planar because it can be embedded in the plane as shown

in Fig. 2.4(b).

The importance of planar graphs comes from the relationship between

their number of vertices, number of edges and number of regions. Let n,m

and r denote, respectively, the number of vertices, edges and regions in any

embedding of a planar graph. Then, these three parameters are related by

Euler’s formula

n−m+ r = 2

or

m = n+ r − 2.

The proof of this formula can be found in Example A.12 on page 669.

Moreover, there is a useful relationship between the number of vertices and

the number of edges in a planar graph, that is,

m ≤ 3n− 6 n ≥ 3.

The equality is attained if the graph is triangulated, i.e., each one of its

regions (including the unbounded region) is triangular. The graph shown

in Fig. 2.4(b) is triangulated and hence the relation m = 3n − 6 holds

for this graph. The above relationships imply that in any planar graph,

m = O(n). Thus, the amount of space needed to store a planar graph is

only Θ(n). This is to be contrasted with complete graphs, which require an

amount of space in the order of Θ(n2).

(a) (b)

Fig. 2.4. An example of a planar graph.
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2.4 Trees

A free tree (or simply a tree) is a connected undirected graph that contains

no cycles. A forest is a vertex-disjoint collection of trees, i.e., they do not

have vertices in common.

Theorem 2.1 If T is a tree with n vertices, then

(a) Any two vertices of T are connected by a unique path.

(b) T has exactly n− 1 edges.

(c) The addition of one more edge to T creates a cycle.

Since the number of edges in a tree is n− 1, when analyzing the time or

space complexity in the context of trees, the number of edges is insignificant.

2.5 Rooted Trees

A rooted tree T is a (free) tree with a distinguished vertex r called the root

of T . This imposes an implicit direction on the path from the root to every

other vertex. A vertex vi is the parent of vertex vj in T if vi is on the path

from the root to vj and is adjacent to vj . In this case, vj is a child of vi. The

children of a vertex are called siblings. A leaf of a rooted tree is a vertex

with no children; all other vertices are called internal vertices. A vertex u

on the path from the root to a vertex v is an ancestor of v. If u �= v, then

u is a proper ancestor of v. A vertex w on the path from a vertex v to a

leaf is a descendant of v. If w �= v, then w is a proper descendant of v.

The subtree rooted at a vertex v is the tree consisting of v and its proper

descendants. The depth of a vertex v in a rooted tree is the length of the

path from the root to v. Thus, the depth of the root is 0. The height of a

vertex v is defined as the length of the longest path from v to a leaf. The

height of a tree is the height of its root.

Example 2.1 Consider the rooted tree T shown in Fig. 2.5. Its root

is the vertex labeled a. b is the parent of e and f , which in turn are the

children of b. b, c and d are siblings. e, f, g and d are leaves; the others are

internal vertices. e is a (proper) descendant of both a and b, which in turn

are (proper) ancestors of e. The subtree rooted at b is the tree consisting

of b and its children. The depth of g is 2; its height is 0. Since the distance
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a

c db

e f g

Fig. 2.5. An example of a rooted tree.

from a to g is 2, and no other path from a to a leaf is longer than 2, the

height of a is 2. It follows that the height of T is the height of its root,

which is 2.

2.5.1 Tree traversals

There are several ways in which the vertices of a rooted tree can be sys-

tematically traversed or ordered. The three most important orderings are

preorder, inorder and postorder. Let T be a tree with root r and subtrees

T1, T2, . . . , Tn.

• In a preorder traversal of the vertices of T , we visit the root r followed by

visiting the vertices of T1 in preorder, then the vertices of T2 in preorder,

and so on up to the vertices of Tn in preorder.

• In an inorder traversal of the vertices of T , we visit the vertices of T1 in

inorder, then the root r, followed by the vertices of T2 in inorder, and so

on up to the vertices of Tn in inorder.

• In a postorder traversal of the vertices of T , we visit the vertices of T1

in postorder, then the vertices of T2 in postorder, and so on up to the

vertices of Tn in postorder, and finally we visit r.

2.6 Binary Trees

A binary tree is a finite set of vertices that is either empty or consists of a

root r and two disjoint binary trees called the left and right subtrees. The

roots of these subtrees are called the left and right children of r. Binary trees

differ from rooted trees in two important ways. First, a binary tree may be

empty while a rooted tree cannot be empty. Second, the distinction of left
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Fig. 2.6. Two different binary trees.
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Fig. 2.7. A complete binary tree.

and right subtrees causes the two binary trees shown in Figs. 2.6(a) and

2.6(b) to be different, and yet as rooted trees, they are indistinguishable.

All other definitions of rooted trees carry over to binary trees. A binary

tree is said to be full if each internal vertex has exactly two children.

A binary tree is called complete if it is full and all its leaves have the

same depth, i.e., are on the same level. Figure 2.7 shows a complete binary

tree. The set of vertices in a binary tree is partitioned into levels, with each

level consisting of those vertices with the same depth (see Fig. 2.7).

Thus, level i consists of those vertices of depth i. We define a binary

tree to be almost complete if it is complete except that possibly one or

more leaves that occupy the rightmost positions may be missing. Hence,

by definition, an almost-complete binary tree may be complete. Figure 2.8

shows an almost-complete binary tree. This tree is the same as the complete

binary tree shown in Fig. 2.7 with the three rightmost leaves removed.

A complete (or almost-complete) binary tree with n vertices can be

represented efficiently by an array A[1..n] that lists its vertices according

to the following simple relationship: The left and right children (if any) of

a vertex stored in A[j] are stored in A[2j] and A[2j + 1], respectively, and

the parent of a vertex stored in A[j] is stored in A[�j/2�].
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Fig. 2.8. An almost-complete binary tree.

2.6.1 Some quantitative aspects of binary trees

In the following observations, we list some useful relationships between the

levels, number of vertices and height of a binary tree.

Observation 2.1 In a binary tree, the number of vertices at level j is at

most 2j.

Observation 2.2 Let n be the number of vertices in a binary tree T of

height h. Then,

n ≤
h∑

j=0

2j = 2h+1 − 1.

The equality holds if T is complete. If T is almost complete, then we have

2h ≤ n ≤ 2h+1 − 1.

Observation 2.3 The height of any binary tree with n vertices is at least

�logn� and at most n− 1.

Observation 2.4 The height of a complete or almost-complete binary tree

with n vertices is �logn�.
Observation 2.5 In a full binary tree, the number of leaves is equal to the

number of internal vertices plus one.

2.6.2 Binary search trees

A binary search tree is a binary tree in which the vertices are labeled with

elements from a linearly ordered set in such a way that all elements stored
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Fig. 2.9. Two binary search trees representing the same set.

in the left subtree of a vertex v are less than the element stored at vertex v,

and all elements stored in the right subtree of a vertex v are greater than

the element stored at vertex v. This condition, which is called the binary

search tree property, holds for every vertex of a binary search tree. The

representation of a set by a binary search tree is not unique; in the worst

case, it may be a degenerate tree, i.e., a tree in which each internal vertex

has exactly one child. Figure 2.9 shows two binary search trees representing

the same set.

The operations supported by this data structure are insertion, deletion,

testing for membership and retrieving the minimum or maximum.

2.7 Practice Problems

2.1. Give an algorithm that traverses a circular list and reverses the direc-

tion of the links.

2.2. Consider representing a binary tree with n vertices by an array A that

lists its vertices according to the following relationship: The left and

right children (if any) of a vertex stored in A[j] are stored in A[2j]

and A[2j + 1], respectively, and the parent of a vertex stored in A[j]

is stored in A[�j/2�]. What will be the size of A in the worst case?

Explain.

2.3. Let G = (V,E) be an undirected graph, and let d(v) be the degree of

vertex v. Show that ∑
v∈V

d(v) = 2|E|.

2.4. Let G be a planar graph with n vertices.

(a) What is the space complexity if the graph is stored using adjacency

matrix?
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(b) What is the space complexity if the graph is stored using adjacency

lists? Give a brief justification for this part only.

2.5. Give an algorithm to count the number of leaf nodes in a binary tree.

What is the running time of your algorithm?

2.6. Give an algorithm that traverses the nodes in a tree and outputs their

labels in post order. What is the running time of your algorithm?

2.7. Prove that a complete binary tree with n leaves has n − 1 internal

nodes.

2.8. Prove that a graph is bipartite if and only if it contains no odd-length

cycles.

2.9. Show that any tree is a bipartite graph. (Hint: See Problem 2.8).

2.8 Exercises

2.1. Write an algorithm to delete an element x, if it exists, from a doubly

linked list L. Assume that the variable head points to the first ele-

ment in the list and the functions pred(y) and next(y) return the

predecessor and successor of node y, respectively.

2.2. Give an algorithm to test whether a list has a repeated element.

2.3. Rewrite Algorithm insertionsort so that its input is a doubly

linked list of n elements instead of an array. Will the time complexity

change? Is the new algorithm more efficient?

2.4. A polynomial of the form p(x) = a1x
b1 + a2x

b2 + · · ·+ anx
bn , where

b1 > b2 > · · · > bn ≥ 0, can be represented by a linked list in which

each record has three fields for ai, bi and the link to the next record.

Give an algorithm to add two polynomials using this representation.

What is the running time of your algorithm?

2.5. Give the adjacency matrix and adjacency list representations of the

graph shown in Fig. 2.5.

2.6. Describe an algorithm to insert and delete edges in the adjacency

list representation for

(a) a directed graph.

(b) an undirected graph.
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2.7. Let S1 be a stack containing n elements. Give an algorithm to sort

the elements in S1 so that the smallest element is on top of the stack

after sorting. Assume you are allowed to use another stack S2 as a

temporary storage. What is the time complexity of your algorithm?

2.8. What if you are allowed to use two stacks S2 and S3 as a temporary

storage in Exercise 2.7?

2.9. Let G be a directed graph with n vertices and m edges. When is it

the case that the adjacency matrix representation is more efficient

than the adjacency lists representation? Explain.

2.10. Prove that a graph is bipartite if and only if it has no odd-length

cycles.

2.11. Draw the almost-complete binary tree with

(a) 10 nodes.

(b) 19 nodes.

2.12. Prove Observation 2.1.

2.13. Prove Observation 2.2.

2.14. Prove Observation 2.4.

2.15. Prove Observation 2.3.

2.16. Prove Observation 2.5.

2.17. Show how to list the elements stored in a binary tree in level order.

For example, in Fig. 2.10, the output should be a, b, c, d, e, f, g. (Hint:

Use a queue.)

a

b

f

d

c

g

e

Fig. 2.10. Exercise 2.17.
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2.18. Is a tree a bipartite graph? Prove your answer (see Exercise 2.10).

2.19. Let T be a nonempty binary search tree. Give an algorithm to

(a) return the minimum element stored in T .

(b) return the maximum element stored in T .

2.20. Let T be a nonempty binary search tree. Give an algorithm to list all

the elements in T in increasing order. What is the time complexity

of your algorithm?

2.21. Let T be a nonempty binary search tree. Give an algorithm to delete

an element x from T , if it exists. What is the time complexity of

your algorithm?

2.22. Let T be a binary search tree. Give an algorithm to insert an element

x in its proper position in T . What is the time complexity of your

algorithm?

2.23. What is the time complexity of deletion and insertion in a binary

search tree? Explain.

2.24. When discussing the time complexity of an operation in a binary

search tree, which of the O and Θ notations is more appropriate?

Explain.

2.9 Bibliographic Notes

This chapter outlines some of the basic data structures that are frequently

used in the design and analysis of algorithms. More detailed treatment can

be found in many books on data structures. These include, among others,

Aho et al. (1983), Gonnet (1984), Knuth (1968, 1973), Reingold and Hansen

(1983), Standish (1980), Tarjan (1983) and Wirth (1986). The definitions

in this chapter conform with those in Tarjan (1983). The adjacency lists

data structure was suggested by Tarjan and is described in Tarjan (1972)

and Hopcroft and Tarjan (1973).
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Chapter 3

Heaps and the Disjoint Sets
Data Structures

3.1 Introduction

In this chapter, we investigate two major data structures that are more

sophisticated than those in Chapter 2. They are fundamental in the design

of efficient algorithms. Moreover, these data structures are interesting in

their own right.

3.2 Heaps

In many algorithms, there is the need for a data structure that supports

the following two operations: Insert an element and find the element of

maximum (or minimum) value. A data structure that supports both of these

operations is called a priority queue. If a regular queue is used, then finding

the largest (or smallest) element is expensive, as this requires searching the

entire queue. If a sorted array is used, then insertion is expensive, as it may

require shifting a large portion of the elements. An efficient implementation

of a priority queue is to use a simple data structure called a heap. Heaps are

classified as either max-heaps or min-heaps. In this chapter, we will confine

our attention to max-heaps, as the structure and operations associated with

min-heaps are similar.

93
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Definition 3.1 A (binary) heap is an almost-complete binary tree (see

Sec. 2.6) with each node satisfying the heap property: If v and p(v) are a

node and its parent, respectively, then the key of the item stored in p(v) is

not less than the key of the item stored in v.

A heap data structure supports the following operations:

• delete-max[H ]: Delete and return an item of maximum key from a

nonempty heap H .

• insert[H,x]: Insert item x into heap H .

• delete[H, i]: Delete the ith item from heap H .

Thus, the heap property implies that the keys of the elements along

every path from the root to a leaf are arranged in nonincreasing order. As

described in Sec. 2.6, a heap T (being an almost-complete binary tree) with

n nodes can be represented by an array H [1..n] in the following way:

• The root of T is stored in H [1].

• Suppose that a node x in T is stored in H [j]. If it has a left child, then

this child is stored in H [2j]. If it (also) has a right child, then this child

is stored in H [2j + 1].

• The parent of element H [j] that is not the root of the tree is stored in

H [�j/2�].
• The leaves of T are stored at H [�n/2�+ 1], H [�n/2�+ 2], . . . , H [n].

Note that if a node in a heap has a right child, then it must also have

a left child. This follows from the definition of an almost-complete binary

tree. Consequently, a heap can be viewed as a binary tree, while it is in

fact an array H [1..n] with the property that for any index j, 2 ≤ j ≤
n, key(H [�j/2�]) ≥ key(H [j]). Figure 3.1 shows an example of a heap in

both tree and array representations. To simplify this and subsequent figures,

we will treat the keys of the items stored in a heap as if they themselves

are the items. In Fig. 3.1, we note that if the tree nodes are numbered

from 1 to n in a top-down and left-to-right manner, then each entry H [i]

is represented in the corresponding tree by the node numbered i. This

numbering is indicated in the figure by the labels next to the tree nodes.

Thus, using this method, given a heap as an array, we can easily construct

its corresponding tree and vice versa.
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Fig. 3.1. A heap and its array representation.

3.2.1 Operations on heaps

Before describing the main heap operations, we first present two secondary

operations that are used as subroutines in the algorithms that implement

heap operations.

3.2.1.1 Sift-up

Suppose that for some i > 1, H [i] is changed to an element whose key is

greater than the key of its parent. This violates the heap property and,

consequently, the data structure is no longer a heap. To restore the heap

property, an operation called sift-up is needed to move the new item up to

its proper position in the binary tree so that the heap property is restored.

The sift-up operation moves H [i] up along the unique path from H [i] to the

root until its proper location along this path is found. At each step along

the path, the key of H [i] is compared with the key of its parent H [�i/2�].
This is described more precisely in Algorithm sift-up.

Algorithm sift-up
Input: An array H [1..n] and an index i between 1 and n.

Output: H [i] is moved up, if necessary, so that it is not larger than its parent.

1. done← false
2. if i = 1 then exit {node i is the root}
3. repeat
4. if key(H [i]) > key(H [�i/2�]) then interchange H [i] and H [�i/2�]
5. else done← true
6. i← �i/2�
7. until i = 1 or done
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Fig. 3.2. An example of the sift-up operation.

Example 3.1 Suppose the key stored in the 10th position of the heap

shown in Fig. 3.1 is changed from 5 to 25. This will violate the heap prop-

erty, as the new key 25 is now greater than the key stored in its parent

node, namely 11. To restore the heap property, we apply the sift-up oper-

ation to the tree starting from that node in which 25 is stored. This action

is depicted in Fig. 3.2. As shown in the figure, 25 is moved up to the root.

3.2.1.2 Sift-down

Suppose that i ≤ �n/2� and the key of the element stored at H [i] is changed

to a value that is less than the key stored at H [2i] or the maximum of the

keys atH [2i] andH [2i+1] ifH [2i+1] exists. This violates the heap property

and the tree is no longer a representation of a heap. To restore the heap

property, an operation called sift-down is needed to “percolate” H [i] down

the binary tree until its proper location is found. At each step along the

path, its key is compared with the maximum of the two keys stored in

its children nodes (if any). This is described more formally in Algorithm

sift-down.

Example 3.2 Suppose we change the key 17 stored in the second posi-

tion of the heap shown in Figs. 3.1 to 3.3. This will violate the heap prop-

erty, as the new key 3 is now less than the maximum of the two keys stored

in its children nodes, namely 11. To restore the heap property, we apply

the sift-down operation starting from that node in which 3 is stored. This

action is depicted in Fig. 3.3. As shown in the figure, 3 is percolated down

until its proper position is found.

Now, using these two algorithms, it is fairly easy to write the algorithms

for the main heap operations.
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Algorithm sift-down
Input: An array H [1..n] and an index i between 1 and n.

Output: H [i] is percolated down, if necessary, so that it is not smaller
than its children.

1. done← false
2. if 2i > n then exit {node i is a leaf}
3. repeat
4. i← 2i
5. if i+ 1 ≤ n and key(H [i+ 1]) > key(H [i]) then i← i+ 1
6. if key(H [�i/2�]) < key(H [i]) then interchange H [i] and H [�i/2�]
7. else done← true
8. end if
9. until 2i > n or done

3 7

510

11

4 5

9

3

20

Fig. 3.3. An example of the sift-down operation.

3.2.1.3 Insert

To insert an element x into a heap H , append x to the end of H after

its size has been increased by 1, and then sift x up, if necessary. This is

described in Algorithm insert. By Observation 2.4, if n is the size of the

new heap, then the height of the heap tree is �logn�. It follows that the

time required to insert one element into a heap of size n is O(log n).

Algorithm 3.1 insert
Input: A heap H [1..n] and a heap element x.

Output: A new heap H [1..n+ 1] with x being one of its elements.

1. n← n+ 1 {increase the size of H}
2. H [n]← x
3. sift-up(H,n)
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3.2.1.4 Delete

To delete an element H [i] from a heap H of size n, replace H [i] by H [n],

decrease the heap size by 1, and then sift H [i] up or down, if necessary,

depending on the value of its key relative to the keys stored in its par-

ent and children nodes. This is described in Algorithm delete. Since, by

Observation 2.4, the height of the heap tree is �logn�, it follows that the

time required to delete a node from a heap of size n is O(log n).

Algorithm 3.2 delete
Input: A nonempty heap H [1..n] and an index i between 1 and n.

Output: A new heap H [1..n− 1] after H [i] is removed.

1. x←H [i]; y←H [n]
2. n← n− 1 {decrease the size of H}
3. if i = n+ 1 then exit {done}
4. H [i]← y
5. if key(y) ≥ key(x) then sift-up(H, i)
6. else sift-down(H, i)
7. end if

3.2.1.5 Delete-max

This operation deletes and returns an item of maximum key in a nonempty

heap H . It costs Θ(1) time to return the element with maximum key in a

heap, as it is the root of the tree. However, since deleting the root may

destroy the heap, more work may be needed to restore the heap data

structure. A straightforward implementation of this operation makes use

of the delete operation: Simply return the element stored in the root and

delete it from the heap. The method for this operation is given in Algo-

rithm deletemax. Obviously, its time complexity is that of the delete

operation, i.e., O(log n).

Algorithm 3.3 deletemax
Input: A heap H [1..n].

Output: An element x of maximum key is returned and deleted from the heap.

1. x←H [1]
2. delete(H,1)
3. return x
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3.2.2 Creating a heap

Given an array A[1..n] of n elements, it is easy to construct a heap out of

these elements by starting from an empty heap and successively inserting

each element until A is transformed into a heap. Since inserting the jth key

costs O(log j), the time complexity of creating a heap using this method is

O(n log n) (see Example 1.12).

Interestingly, it turns out that a heap can be created from n elements

in Θ(n) time. In what follows, we give the details of this method. Recall

that the nodes of the tree corresponding to a heap H [1..n] can conveniently

be numbered from 1 to n in a top-down left-to-right manner. Given this

numbering, we can transform an almost-complete binary tree with n nodes

into a heap H [1..n] as follows. Starting from the last internal node (the

one numbered �n/2�) to the root (node number 1), we scan all these nodes

one by one, each time transforming, if necessary, the subtree rooted at the

current node into a heap.

Example 3.3 Figure 3.4 provides an example of the linear time algo-

rithm for transforming an array A[1..n] into a heap. An input array and

its tree representation are shown in Fig. 3.4(a). Each subtree consisting of

only one leaf is already a heap, and hence the leaves are skipped. Next,

as shown in Fig. 3.4(b), the two subtrees rooted at the 4th and 5th nodes

are not heaps, and hence their roots are sifted down in order to transform

them into heaps. At this point, all subtrees rooted at the second and third

levels are heaps. Continuing this way, we adjust the two subtrees rooted at

the third and second nodes in the first level, so that they conform to the

heap property. This is shown in Figs. 3.4(c) and 3.4(d). Finally, we move

up to the topmost level and percolate the element stored in the root node

down to its proper position. The resulting tree, which is now a heap, and

its array representation are shown in Fig. 3.4(e).

So far, we have shown how to work with trees. Performing the same

procedure directly on the input array is fairly easy. Let A[1..n] be the given

array and T the almost-complete binary tree corresponding to A. First, we

note that the elements

A[�n/2�+ 1], A[�n/2�+ 2], . . . , A[n]
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Fig. 3.4. An example of creating a heap.
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correspond to the leaves of T , and therefore we start adjusting the array at

A[�n/2�] and continue the adjustments at

A[�n/2� − 1], A[�n/2� − 2], . . . , A[1].

Once the subtree rooted at A[1], which is T itself, is adjusted, the resulting

array is the desired heap. Algorithm makeheap constructs a heap whose

items are the elements stored in an array A[1..n].

Algorithm 3.4 makeheap
Input: An array A[1..n] of n elements.

Output: A[1..n] is transformed into a heap

1. for i← �n/2� downto 1
2. sift-down(A, i)
3. end for

The running time of Algorithm makeheap is computed as follows. Let

T be the almost-complete binary tree corresponding to the array A[1..n],

and assume n ≥ 2. Then, by Observation 2.4, the height of T is h =

�logn�. Let A[j] correspond to the jth node in level i of the tree. The

number of iterations executed by Algorithm sift-down when invoked by

the statement sift-down(A, j) is at most h − i. Since there are exactly

2i nodes on level i, 0 ≤ i < h, the total number of iterations is bounded

above by

h−1∑
i=0

(h− i)2i = 20(h) + 21(h− 1) + 22(h− 2) + · · ·+ 2h−1(1)

= 1(2h−1) + 2(2h−2) + · · ·+ h(2h−h)

=
h∑

i=1

i2(h−i)

= 2h
h∑

i=1

i/2i

≤ n

h∑
i=1

i/2i

< 2n.
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The last inequality follows from Eq. (A.14) on page 678. The one before

the last follows from the fact that the number of nodes n in a heap of

height h is at least

20 + 21 + · · ·+ 2h−1 + 1 = 2h.

Since there are at most two element comparisons in each iteration of Algo-

rithm sift-down, the total number of element comparisons is bounded

above by 4n. Moreover, since there is at least one iteration in each call

to Algorithm sift-down for the first �n/2� nonleaf nodes, the minimum

number of element comparisons is 2�n/2� ≥ n − 1. Finally, it is obvious

that the algorithm takes Θ(1) space to construct a heap out of n elements.

Thus, we have the following theorem:

Theorem 3.1 Let C(n) be the number of element comparisons per-

formed by Algorithm makeheap for the construction of a heap of n ele-

ments. Then, n − 1 ≤ C(n) < 4n. Hence, the algorithm takes Θ(n) time

and Θ(1) space to construct a heap out of n elements.

3.2.3 Heapsort

We now turn our attention to the problem of sorting by making use of

the heap data structure. Recall that Algorithm selectionsort sorts an

array of n elements by finding the minimum in each of the n− 1 iterations.

Thus, in each iteration, the algorithm searches for the minimum among

the remaining elements using linear search. Since searching for the mini-

mum using linear search costs Θ(n) time, the algorithm takes Θ(n2) time.

It turns out that by choosing the right data structure, Algorithm selec-

tionsort can be improved substantially. Since we have at our disposal

the heap data structure with the delete-max operation, we can exploit it

to obtain an efficient algorithm. Given an array A[1..n], we sort its ele-

ments in nondecreasing order efficiently as follows. First, we transform A

into a heap with the property that the key of each element is the element

itself, i.e., key(A[i]) = A[i], 1 ≤ i ≤ n. Next, since the maximum of the

entries in A is now stored in A[1], we may interchange A[1] and A[n] so

that A[n] is the maximum element in the array. Now, the element stored in

A[1] may be smaller than the element stored in one of its children. There-

fore, we use Algorithm sift-down to transform A[1..n − 1] into a heap.
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Next, we interchange A[1] with A[n − 1] and adjust the array A[1..n − 2]

into a heap. This process of exchanging elements and adjusting heaps is

repeated until the heap size becomes 1, at which point A[1] is minimum.

The formal description is shown in Algorithm heapsort.

Algorithm 3.5 heapsort
Input: An array A[1..n] of n elements.

Output: Array A sorted in nondecreasing order.

1. makeheap(A)
2. for j← n downto 2
3. interchange A[1] and A[j]
4. sift-down(A[1..j − 1], 1)
5. end for

An important advantage of this algorithm is that it sorts in place, i.e., it

needs no auxiliary storage. In other words, the space complexity of Algo-

rithm heapsort is Θ(1). The running time of the algorithm is computed as

follows. By Theorem 3.1, creating the heap costs Θ(n) time. The sift-down

operation costs O(log n) time and is repeated n − 1 times. It follows that

the time required by the algorithm to sort n elements is O(n log n). This

implies the following theorem:

Theorem 3.2 Algorithm heapsort sorts n elements in O(n logn) time

and Θ(1) space.

3.2.4 Min and max heaps

So far, we have viewed the heap as a data structure whose primary oper-

ation is retrieving the element with maximum key. The heap can trivially

be modified so that the element with minimum key value is stored in the

root instead. In this case, the heap property mandates that the key of the

element stored in a node other than the root is greater than or equal to

the key of the element stored in its parent. These two types of heaps are

commonly referred to as max-heaps and min-heaps. The latter is not less

important than the former, and they are both used quite often in optimiza-

tion algorithms. It is customary to refer to either one of them as a “heap”

and which one is meant is understood from the context in which it is used.
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3.3 Disjoint Sets Data Structures

Suppose we are given a set S of n distinct elements. The elements are

partitioned into disjoint sets. Initially, each element is assumed to be in

a set by itself. A sequence σ of m union and find operations, which will

be defined in the following, is to be executed so that after each union

instruction, two disjoint subsets are combined into one subset. Observe

that the number of unions is at most n− 1. In each subset, a distinguished

element will serve as the name of the set or set representative. For example,

if S = {1, 2, . . . , 11} and there are 4 subsets {1, 7, 10, 11}, {2, 3, 5, 6}, {4, 8}
and {9}, these subsets may be labeled as 1, 3, 8 and 9, in this order. The

find operation returns the name of the set containing a particular element.

For example, executing the operation find(11) returns 1, the name of the set

containing 11. These two operations are defined more precisely as follows:

• find(x): Find and return the name of the set containing x.

• union(x, y): Replace the two sets containing x and y by their union. The

name of the union set is either the name of the old set containing x or

the name of the old set containing y; it will be determined later.

The goal is to design efficient algorithms for these two operations. To

achieve this, we need a data structure that is both simple and at the same

time allows for the efficient implementation of the union and find opera-

tions. A data structure that is both simple and leads to efficient implemen-

tation of these two operations is to represent each set as a rooted tree with

data elements stored in its nodes. Each element x other than the root has

a pointer to its parent p(x) in the tree. The root has a null pointer, and it

serves as the name or set representative of the set. This results in a forest

in which each tree corresponds to one set.

For any element x, let root(x) denote the root of the tree containing x.

Thus, find(x) always returns root(x). As the union operation must have

as its arguments the roots of two trees, we will assume that for any two

elements x and y, union(x, y) actually means union(root(x), root(y)).

If we assume that the elements are the integers 1, 2, . . . , n, the forest

can conveniently be represented by an array A[1..n] such that A[j] is the

parent of element j, 1 ≤ j ≤ n. The null parent can be represented by

the number 0. Figure 3.5(a) shows four trees corresponding to the four

sets {1, 7, 10, 11}, {2, 3, 5, 6}, {4, 8} and {9}. Figure 3.5(b) shows their
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101 2 3 4 5 6 7 8 9 11

0 3 0 8 2 2 1 0 0 1 1

(b)

1

7 10 11

3

2

5 6

8

4 9

(a)

Fig. 3.5. An example of the representation of disjoint sets. (a) Tree representa-
tion. (b) Array representation when S = {1, 2, . . . , n}.

array representation. Clearly, since the elements are consecutive integers,

the array representation is preferable. However, in developing the algo-

rithms for the union and find operations, we will assume the more general

representation, that is, the tree representation.

Now, we focus our attention on the implementation of the union and

find operations. A straightforward implementation is as follows. In the case

of the operation find(x), simply follow the path from x until the root is

reached, then return root(x). In the case of the operation union(x, y), let

the link of root(x) point to root(y), i.e., if root(x) is u and root(y) is v,

then let v be the parent of u.

In order to improve on the running time, we present in the following

two sections two heuristics: union by rank and path compression.

3.3.1 The union by rank heuristic

An obvious disadvantage of the straightforward implementation of the

union operation stated above is that the height of a tree may become very

large to the extent that a find operation may require Ω(n) time. In the

extreme case, a tree may become degenerate. A simple example of this case

is in order. Suppose we start with the singleton sets {1}, {2}, . . . , {n} and
then execute the following sequence of unions and finds (see Fig. 3.6(a)):

union(1, 2),union(2, 3), . . . ,union(n− 1, n),

find(1), find(2), . . . , find(n).
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n

2

31

(b)

n-1

n

n-1

2

1

(a)

Fig. 3.6. The result of n − 1 union operations. (a) Without union by rank.
(b) With union by rank.

In this case, the total cost of the n find operations is proportional to

n+ (n− 1) + · · ·+ 1 =
n(n+ 1)

2
= Θ(n2).

In order to constrain the height of each tree, we adopt the union by rank

heuristic: We store with each node a nonnegative number referred to as

the rank of that node. The rank of a node is essentially its height (recall

that the height of node v is the length of the longest path from v to a leaf

node). Let x and y be two roots of two different trees in the current forest.

Initially, each node has rank 0. When performing the operation union(x, y),

we compare rank(x) and rank(y). If rank(x) < rank(y), we make y the

parent of x. If rank(x) > rank(y), we make x the parent of y. Otherwise,

if rank(x) = rank(y), we make y the parent of x and increase rank(y) by

one. Applying this rule to the sequence of operations above yields the tree

shown in Fig. 3.6(b). Note that the total cost of the n find operations is now

reduced to Θ(n). This, however, is not always the case. As will be shown

later, using this rule, the time required to process n finds is O(n log n).

Let x be any node and p(x) the parent of x. The following two obser-

vations are fundamental.

Observation 3.1 rank(p(x)) ≥ rank(x) + 1.

Observation 3.2 The value of rank(x) is initially zero and increases in

subsequent union operations until x is no longer a root. Once x becomes a

child of another node, its rank never changes.
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Lemma 3.1 The number of nodes in a tree with root x is at least 2rank(x).

Proof. By induction on the number of union operations. Initially, x is a

tree by itself and its rank is zero. Let x and y be two roots, and consider the

operation union(x, y). Assume that the lemma holds before this operation.

If rank(x) < rank(y), then the formed tree rooted at y has more nodes than

the old tree with root y and its rank is unchanged. If rank(x) > rank(y),

then the formed tree rooted at x has more nodes than the old tree with root

x and its rank is unchanged. Thus, if rank(x) �= rank(y), then the lemma

holds after the operation. If, however, rank(x) = rank(y), then in this case,

by induction, the formed tree with root y has at least 2rank(x) + 2rank(y) =

2rank(y)+1 nodes. Since rank(y) will be increased by one, the lemma holds

after the operation. �

Clearly, if x is the root of tree T , then the height of T is exactly the rank

of x. By Lemma 3.1, if the number of nodes in the tree rooted at x is k, then

the height of that tree is at most �log k�. It follows that the cost of each

find operation is O(log n). The time required by the operation union(x, y)

is O(1) if both arguments are roots. If not both x and y are roots, then

the running time reduces to that of the find operation. Consequently, the

time complexity of a union operation is that of the find operation, which

is O(log n). It follows that, using the union by rank heuristic, the time

complexity of a sequence of m interspersed union and find instructions is

O(m log n).

3.3.2 Path compression

To enhance the performance of the find operation further, another heuristic

known as path compression is also employed. In a find(x) operation, after

the root y is found, we traverse the path from x to y one more time and

change the parent pointers of all nodes along the path to point directly

to y. The action of path compression is illustrated in Fig. 3.7. During the

execution of the operation find(4), the name of the set is found to be 1.

Therefore, the parent pointer of each node on the path from 4 to 1 is reset so

that it points to 1. It is true that path compression increases the amount of

work required to perform a find operation. However, this process will pay

off in subsequent find operations, as we will be traversing shorter paths.
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1

3 24

1

3

2

4

(a) (b)

Fig. 3.7. The effect of executing the find operation find(4) with path
compression.

Note that when path compression is used, the rank of a node may be

greater than its height, so it serves as an upper bound on the height of

that node.

3.3.3 The union-find algorithms

Algorithms find and union describe the final versions of the find and union

operations, respectively, using the two heuristics stated above.

Algorithm 3.6 find
Input: A node x.

Output: root(x), the root of the tree containing x.

1. y← x
2. while p(y) �= null {Find the root of the tree containing x}
3. y← p(y)
4. end while
5. root← y; y← x
6. while p(y) �= null {Do path compression}
7. w← p(y)
8. p(y)← root
9. y← w

10. end while
11. return root
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Algorithm 3.7 union
Input: Two elements x and y.

Output: The union of the two trees containing x and y. The original trees are
destroyed.

1. u← find(x); v← find(y)
2. if rank(u) ≤ rank(v) then
3. p(u)← v
4. if rank(u) = rank(v) then rank(v)← rank(v) + 1
5. else p(v)← u
6. end if

Example 3.4 Let S = {1, 2, . . . , 9} and consider applying the follow-

ing sequence of unions and finds: union(1, 2), union(3, 4), union(5, 6),

union(7, 8), union(2, 4), union(8, 9), union(6, 8), find(5), union(4, 8),

find(1). Figure 3.8(a) shows the initial configuration. Figure 3.8(b) shows

the data structure after the first four union operations. The result of the

next three union operations is shown in Fig. 3.8(c). Figure 3.8(d) shows

the effect of executing the operation find(5). The results of the operations

union(4, 8) and find(1) are shown in Figs. 3.8(e) and 3.8(f), respectively.
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Fig. 3.8. An example of the union-find algorithms.
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3.3.4 Analysis of the union-find algorithms

We have shown before that the running time required to process an inter-

spersed sequence σ of m union and find operations using union by rank is

O(m log n). Now, we show that if path compression is also employed, then

using amortized time analysis (see Sec. 1.13), it is possible to prove that

the bound is almost O(m).

Lemma 3.2 For any integer r ≥ 0, the number of nodes of rank r is at

most n/2r.

Proof. Fix a particular value of r. When a node x is assigned a rank of r,

label by x all the nodes contained in the tree rooted at x. By Lemma 3.1,

the number of labeled nodes is at least 2r. If the root of that tree changes,

then the rank of the root of the new tree is at least r+1. This means that

those nodes labeled with x will never be labeled again. Since the maximum

number of nodes labeled is n, and since each root of rank r has at least 2r

nodes, it follows that there are at most n/2r nodes with rank r. �

Corollary 3.1 The rank of any node is at most �logn�.

Proof. If for some node x, rank(x) = r ≥ �logn�+1, then by Lemma 3.2,

there are at most n/2�logn�+1 < 1 nodes of rank r. �

Definition 3.2 For any positive integer n, log∗ n is defined as

log∗ n =

⎧⎪⎨
⎪⎩
0 if n = 0 or 1

min{i ≥ 0 | log log . . . log︸ ︷︷ ︸
i times

n ≤ 1} if n ≥ 2.

For example, log∗ 2 = 1, log∗ 4 = 2, log∗ 16 = 3, log∗ 65536 = 4

and log∗ 265536 = 5. For the amortized time complexity analysis, we will

introduce the following function:

F (j) =

{
1 if j = 0

2F (j−1) if j ≥ 1.

The most important property of F (j) is its explosive growth. For example,

F (1) = 2, F (2) = 4, F (3) = 16, F (4) = 65536 and F (5) = 265536.
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Let σ be a sequence of m union and find instructions. We partition the

ranks into groups. We put rank r in group log∗ r. For example, ranks 0 and 1

are in group 0, rank 2 is in group 1, ranks 3 and 4 are in group 2, ranks

5 through 16 are in group 3 and ranks 17 through 65536 are in group 4.

Since the largest possible rank is �logn�, the largest group number is at

most log∗ logn = log∗ n− 1.

We assess the charges of a find instruction find(u) as follows. Let v be

a node on the path from node u to the root of the tree containing u, and

let x be that root. If v is the root, a child of the root, or if the parent of v

is in a different rank group from v, then charge one time unit to the find

instruction itself. If v �= x, and both v and its parent are in the same rank

group, then charge one time unit to node v. Note that the nodes on the

path from u to x are monotonically increasing in rank, and since there are

at most log∗ n different rank groups, no find instruction is charged more

than O(log∗ n) time units. It follows that the total number of time units

charged to all the find instructions in the sequence σ is O(m log∗ n).
After x is found to be the root of the tree containing u, by applying path

compression, x will be the parent of both u and v. If later on, x becomes

a child of another node, and v and x are in different groups, no more node

costs will be charged to v in subsequent find instructions. An important

observation is that if node v is in rank group g > 0, then v can be moved

and charged at most F (g) − F (g − 1) times before it acquires a parent in

a higher group. If node v is in rank group 0, it will be moved at most once

before having a parent in a higher group.

Now, we derive an upper bound on the total charges made to the nodes.

By Lemma 3.2, the number of nodes of rank r is at most n/2r. If we define

F (−1) = 0, then the number of nodes in group g is at most

F (g)∑
r=F (g−1)+1

n

2r
≤ n

2F (g−1)+1

∞∑
r=0

1

2r

=
n

2F (g−1)

=
n

F (g)
.

Since the maximum number of node charges assigned to a node in group

g is equal to F (g) − F (g − 1), the number of node charges assigned to all
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nodes in group g is at most

n

F (g)
(F (g)− F (g − 1)) ≤ n.

Since there are at most log∗ n groups (0, 1, . . . , log∗ n−1), it follows that the
number of node charges assigned to all nodes is O(n log∗ n). Combining this

with the O(m log∗ n) charges to the find instructions yields the following

theorem:

Theorem 3.3 Let T (m) denote the running time required to process an

interspersed sequence σ of m ≥ n union and find operations using union by

rank and path compression. Then, T (m) = O(m log∗ n).

Note that for almost all practical purposes, log∗ n ≤ 5. This means that

the running time is O(m) for virtually all practical applications.

3.4 Practice Problems

3.1. Which of the following two statements is correct?

(a) A priority queue is a heap.

(b) A heap is a priority queue.

3.2. Explain how to implement a priority queue using a linked list.

3.3. What are the running times of insertion and deletion in the linked

list representation of priority queue in Problem 3.2?

3.4. Use the O(n) time algorithm for making a heap to transform the

array 3 2 5 4 6 7 into a heap. Show your work.

3.5. Let H [1..n] be a heap (max heap) of size n. Where is the second

largest element located?

3.6. Use the heap data structure to design an algorithm to find the second

largest element in an array A[1..n] in Θ(n) time. Hint: Make use of

Problem 3.5.

3.7. Give an algorithm that finds the minimum element in a heap

H [1..n] using no more than n
2 comparisons. Assume that n is

even.

3.8. Let A be an array of numbers. Design an algorithm to test whether A

is a heap.

3.9. Use algorithm heapsort to sort the array 6 5 4 3 2 1 .
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3.10. Is the running time of Algorithm heapsort Θ(n logn)? Justify your

answer

3.11. Compare the space complexity of Algorithm heapsort to that of

bottomupsort.

3.12. Let {1}, {2}, {3}, . . . , {8} be n singleton sets, each represented by

a tree with exactly one node. Use the union-find algorithms with

union by rank and path compression to find the tree representa-

tion of the set resulting from each of the following unions and

finds: union(1, 2), union(3, 4),union(5, 6), union(7, 8), union(1, 3),

union(5, 7), find(1), union(1, 5), find(1).

3.13. Solve Problem 3.12 using the weight-balancing rule and path com-

pression (see Exercise 3.28).

3.5 Exercises

3.1. What are the merits and demerits of implementing a priority queue

using an ordered list?

3.2. What are the costs of insert and delete-max operations of a priority

queue that is implemented as a regular queue.

3.3. Which of the following arrays are heaps?

(a) 8 6 4 3 2 . (b) 7 . (c) 9 7 5 6 3 .

(d) 9 4 8 3 2 5 7 . (e) 9 4 7 2 1 6 5 3 .

3.4. Where do the following element keys reside in a heap?

(a) Second largest key. (b) Third largest key. (c) Minimum key.

3.5. Give an efficient algorithm to test whether a given array A[1..n] is a

heap. What is the time complexity of your algorithm?

3.6. Which heap operation is more costly: insertion or deletion? Justify

your answer. Recall that both operations have the same time com-

plexity, that is, O(log n).

3.7. Let H be the heap shown in Fig. 3.1. Show the heap that results

from

(a) deleting the element with key 17.

(b) inserting an element with key 19.
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3.8. Show the heap (in both tree and array representations) that results

from deleting the maximum key in the heap shown in Fig. 3.4(e).

3.9. How fast is it possible to find the minimum key in a max-heap of n

elements?

3.10. Prove or disprove the following claim. Let x and y be two elements

in a heap whose keys are positive integers, and let T be the tree

representing that heap. Let hx and hy be the heights of x and y in

T , respectively. Then, if x is greater than y, hx cannot be less than

hy (see Sec. 2.5 for the definition of node height).

3.11. Illustrate the operation of Algorithm makeheap on the array

3 7 2 1 9 8 6 4 .

3.12. Show the steps of transforming the following array into a heap:

1 4 3 2 5 7 6 8 .

3.13. Let A[1..19] be an array of 19 integers, and suppose we apply Algo-

rithm makeheap on this array.

(a) How many calls to Algorithm sift-down will there be? Explain.

(b) What is the maximum number of element interchanges in this

case? Explain.

(c) Give an array of 19 elements that requires the above maximum

number of element interchanges.

3.14. Show how to use Algorithm heapsort to arrange in increasing order

the integers in the array

4 5 2 9 8 7 1 3 .

3.15. Given an array A[1..n] of integers, we can create a heap B[1..n] from

A as follows. Starting from the empty heap, repeatedly insert the

elements of A into B, each time adjusting the current heap, until B

contains all the elements in A. Show that the running time of this

algorithm is Θ(n logn) in the worst case.
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3.16. Illustrate the operation of the algorithm in Exercise 3.15 on the array

6 9 2 7 1 8 4 3 .

3.17. Explain the behavior of Algorithm heapsort when the input array

is already sorted in

(a) increasing order.

(b) decreasing order.

3.18. Give an example of a binary search tree with the heap property.

3.19. Give an algorithm to merge two heaps of the same size into one heap.

What is the time complexity of your algorithm?

3.20. Compute the minimum and maximum number of element compar-

isons performed by Algorithm heapsort.

3.21. A d-heap is a generalization of the binary heap discussed in this

chapter. It is represented by an almost-complete d-ary rooted tree

for some d ≥ 2. Rewrite Algorithm sift-up for the case of d-heaps.

What is its time complexity?

3.22. Rewrite Algorithm sift-down for the case of d-heaps (see Exer-

cise 3.21). What is its time complexity measured in terms of d and n?

3.23. Give a sequence of n union and find operations that results in a tree

of height Θ(logn) using only the heuristic of union by rank. Assume

the set of elements is {1, 2, . . . , n}.

3.24. Give a sequence of n union and find operations that requires

Θ(n logn) time using only the heuristic of union by rank. Assume

the set of elements is {1, 2, . . . , n}.

3.25. What are the ranks of nodes 3, 4 and 8 in Fig. 3.8(f)?

3.26. Let T be a tree resulting from a sequence of unions and finds using

both the heuristics of union by rank and path compression, and let x

be a node in T . Prove that rank(x) is an upper bound on the height

of x.
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3.27. Let σ be a sequence of union and find instructions in which all the

unions occur before the finds. Show that the running time is linear if

both the heuristics of union by rank and path compression are used.

3.28. Another heuristic that is similar to union by rank is the weight-

balancing rule. In this heuristic, the action of the operation

union(x, y) is to let the root of the tree with fewer nodes point to

the root of the tree with a larger number of nodes. If both trees have

the same number of nodes, then let y be the parent of x. Compare

this heuristic with the union by rank heuristic.

3.29. Prove that the weight-balancing rule described in Exercise 3.28 guar-

antees that the resulting tree is of height O(log n).

3.30. Let T be a tree resulting from a sequence of unions and finds using

the heuristics of union by rank and path compression. Let x be the

root of T and y a leaf node in T . Prove that the ranks of the nodes

on the path from y to x form a strictly increasing sequence.

3.31. Prove the observation that if node v is in rank group g > 0, then v

can be moved and charged at most F (g) − F (g − 1) times before it

acquires a parent in a higher group.

3.32. Another possibility for the representation of disjoint sets is by using

linked lists. Each set is represented by a linked list, where the set

representative is the first element in the list. Each element in the list

has a pointer to the set representative. Initially, one list is created

for each element. The union of two sets is implemented by merging

the two sets. Suppose two sets S1 represented by list L1 and S2

represented by list L2 are to be merged. If the first element in L1 is

to be used as the name of the resulting set, then the pointer to the

set name at each element in L2 must be changed so that it points to

the first element in L1.

(a) Explain how to improve this representation so that each find

operation takes O(1) time.

(b) Show that the total cost of performing n− 1 unions is Θ(n2) in

the worst case.
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3.33. (Refer to Exercise 3.32). Show that if when performing the union of

two sets, the first element in the list with a larger number of elements

is always chosen as the name of the new set, then the total cost of

performing n− 1 unions becomes O(n log n).

3.6 Bibliographic Notes

Heaps and the data structures for disjoint sets appear in several books on

algorithms and data structures (see the Bibliographic Notes of Chapters 1

and 2). They are covered in greater depth in Tarjan (1983). Heaps were

first introduced as part of heapsort by Williams (1964). The linear time

algorithm for building a heap is due to Floyd (1964). A number of variants of

heaps can be found in Cormen et al. (2009), e.g., binomial heaps, Fibonacci

heaps. A comparative study of many data structures for priority queues can

be found in Jones (1986). The disjoint sets data structure was first studied

by Galler and Fischer (1964) and Fischer (1972). A more detailed analysis

was carried out by Hopcroft and Ullman (1973) and then a more exact

analysis by Tarjan (1975). In this paper, a lower bound that is not linear

was established when both union by rank and path compression are used.
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PART 2

Techniques Based on Recursion

Recursive algorithms. This part of the book is concerned with a particular

class of algorithms, called recursive algorithms. These algorithms turn out

to be of fundamental importance and indispensable in virtually every area

in the field of computer science. The use of recursion makes it possible to

solve complex problems using algorithms that are concise, easy to com-

prehend and efficient (from an algorithmic point of view). In its simplest

form, recursion is the process of dividing the problem into one or more

subproblems, which are identical in structure to the original problem and

then combining the solutions to these subproblems to obtain the solution to

the original problem. We identify three special cases of this general design

technique: (1) Induction or tail-recursion; (2) Nonoverlapping subproblems;

(3) Overlapping subproblems with redundant invocations to subproblems,

allowing trading space for time. The higher numbered cases subsume the

lower numbered ones. The first two cases will not require additional space

for the maintenance of solutions for continued reuse. The third class, how-

ever, renders the possibility of efficient solutions for many problems that at

first glance appear to be time-consuming to solve.

119
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Chapter 4 is devoted to the study of induction as a technique for the

development of algorithms. In other words, the idea of induction in math-

ematical proofs is carried over to the design of efficient algorithms. In this

chapter, several examples are presented to show how to use induction to

solve increasingly sophisticated problems.

Chapter 5 provides a general overview of one of the most important

algorithm design techniques, namely divide and conquer. First, we derive

divide-and-conquer algorithms for the search problem and sorting by merg-

ing. In particular, Algorithm mergesort is compared with Algorithm

bottomupsort presented in Chapter 1, which is an iterative version of

the former. This comparison reveals the most appealing merits of divide-

and-conquer algorithms: conciseness, ease of comprehension and implemen-

tation, and most importantly, the simple inductive proofs for the correctness

of divide-and-conquer algorithms. Next, some useful algorithms like Algo-

rithm quicksort and Algorithm select for finding the kth smallest ele-

ment are discussed in detail.

Chapter 6 provides some examples of the use of dynamic programming

to solve problems for which recursion results in many redundant calls. In

this design technique, recursion is first used to model the solution of the

problem. This recursive model is then converted into an efficient iterative

algorithm. By trading space for time, this is achieved by saving results of

subproblems as they get solved and using a kind of table lookup for future

reference to those solved subproblems. In this chapter, dynamic program-

ming is applied to solve the longest common subsequence problem, matrix

chain multiplication, the all-pairs shortest path problem and the knapsack

problem.
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Chapter 4

Induction

4.1 Introduction

Consider a problem with parameter n, which normally represents the num-

ber of objects in an instance of the problem. When searching for a solution

to such a problem, sometimes it is easier to start with a solution to the prob-

lem with a smaller parameter, say n− 1, n/2, etc., and extend the solution

to include all the n objects. This approach is based on the well-known

proof technique of mathematical induction. Basically, given a problem with

parameter n, designing an algorithm by induction is based on the fact that

if we know how to solve the problem when presented with a parameter less

than n, called the induction hypothesis, then our task reduces to extending

that solution to include those instances with parameter n.

This method can be generalized to encompass all recursive algorithm

design techniques including divide and conquer and dynamic programming.

However, since these two have distinct marking characteristics, we will con-

fine our attention in this chapter to those strategies that use tail recur-

sion and devote Chapters 5 and 6 to the study of divide and conquer and

dynamic programming, respectively. The algorithms that we will cover in

this chapter are usually recursive with only one recursive call, commonly

called tail recursion. Thus, in most cases, they can conveniently be con-

verted into iterative algorithms.

An advantage of this design technique (and all recursive algorithms

in general) is that the proof of correctness of the designed algorithm is

121
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naturally embedded in its description, and a simple inductive proof can

easily be constructed if desired.

4.2 Finding the Majority Element

Let A[1..n] be a sequence of integers. An integer a in A is called themajority

if it appears more than �n/2� times in A. For example, 3 is the major-

ity in the sequence 1, 3, 2, 3, 3, 4, 3 since it appears four times and the

number of elements is seven. There are several ways to solve this prob-

lem. The brute-force method is to compare each element with every other

element and produce a count for each element. If the count of some ele-

ment is more than �n/2�, then it is declared as the majority; otherwise,

there is no majority in the list. But the number of comparisons here is

n(n− 1)/2 = Θ(n2), which makes this method too costly. A more efficient

algorithm is to sort the elements and count how many times each element

appears in the sequence. This costs Θ(n logn) in the worst case, as the sort-

ing step requires Ω(n logn) comparisons in the worst case (Theorem 11.2).

Another alternative is to find the median, i.e., the �n/2�th element. Since

the majority must be the median, we can scan the sequence to test if the

median is indeed the majority. This method takes Θ(n) time, as the median

can be found in Θ(n) time. As we will see in Sec. 5.5, the hidden constant

in the time complexity of the median finding algorithm is too large, and

the algorithm is fairly complex.

It turns out that there is an elegant solution that uses much fewer

comparisons. We derive this algorithm using induction. The essence of the

algorithm is based on the following observation:

Observation 4.1 If two different elements in the original sequence are

removed, then the majority in the original sequence remains the majority

in the new sequence.

This observation suggests the following algorithm for finding an element

that is a candidate for being the majority. Set a counter to zero and let

x = A[1]. Starting from A[2], scan the elements one by one increasing the

counter by one if the current element is equal to x and decreasing the

counter by one if the current element is not equal to x. If all the elements

have been scanned and the counter is greater than zero, then return x as

the candidate. If the counter becomes zero when comparing x with A[j],
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1 < j < n, then call Algorithm candidate recursively on the elements

A[j + 1..n]. Notice that decrementing the counter implements the idea of

throwing two different elements as stated in Observation 4.1. This method is

described more precisely in Algorithm majority. Converting this recursive

algorithm into an iterative one is straightforward and is left as an exercise.

Clearly, the running time of Algorithm majority is Θ(n).

Algorithm 4.1 majority
Input: An array A[1..n] of n elements.

Output: The majority element if it exists; otherwise, none.

1. c← candidate(1)
2. count← 0
3. for j← 1 to n
4. if A[j] = c then count← count + 1
5. end for
6. if count > �n/2� then return c
7. else return none

Algorithm candidate(m)

1. j←m; c←A[m]; count← 1
2. while j < n and count > 0
3. j← j + 1
4. if A[j] = c then count← count + 1
5. else count← count − 1
6. end while
7. if j = n then return c {See Exercises 4.7 and 4.8}
8. else return candidate(j + 1)

4.3 Integer Exponentiation

In this section, we develop an efficient algorithm for raising a real number

x to the nth power, where n is a nonnegative integer. The straightforward

method is to iteratively multiply x by itself n times. This method is very

inefficient, as it requires Θ(n) multiplications, which is exponential in the

input size (see Sec. 1.14). An efficient method can be deduced as follows.

Let m = �n/2�, and suppose we know how to compute xm. Then, we have

two cases: If n is even, then xn = (xm)2; otherwise, xn = x(xm)2. This idea

immediately yields the recursive algorithm shown as Algorithm exprec.

Algorithm exprec can be rendered iterative using repeated squaring as

follows. Let the binary digits of n be dk, dk−1, . . . , d0. Starting from y = 1,
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Algorithm 4.2 exprec
Input: A real number x and a nonnegative integer n.

Output: xn.

1. power(x, n)

Algorithm power(x,m) {Compute xm}
1. if m = 0 then y← 1
2. else
3. y← power(x, �m/2�)
4. y← y2

5. if m is odd then y← xy
6. end if
7. return y

we scan the binary digits from left to right. If the current binary digit is 0,

we simply square y, and if it is 1, we square y and multiply it by x. This

yields Algorithm exp.

Algorithm 4.3 exp
Input: A real number x and a nonnegative integer n.

Output: xn.

1. y← 1
2. Let n be dkdk−1 . . . d0 in binary notation.
3. for j← k downto 0
4. y← y2

5. if dj = 1 then y← xy
6. end for
7. return y

Assuming that each multiplication takes constant time, the running time

of both versions of the algorithm is Θ(logn), which is linear in the input size.

4.4 Evaluating Polynomials (Horner’s Rule)

Suppose we have a sequence of n+1 real numbers a0, a1, . . . , an and a real

number x, and we want to evaluate the polynomial

Pn(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.
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The straightforward approach would be to evaluate each term separately.

This approach is very inefficient since it requires n + n − 1 · · · + 1 =

n(n+1)/2 multiplications. A much faster method can be derived by induc-

tion as follows. We observe that

Pn(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

= ((. . . (((anx+ an−1)x+ an−2)x + an−3) . . .)x+ a1)x+ a0.

This evaluation scheme is known as Horner’s rule. Using this scheme leads

to the following more efficient method. Suppose we know how to evaluate

Pn−1(x) = anx
n−1 + an−1x

n−2 + · · ·+ a2x+ a1.

Then, using one more multiplication and one more addition, we have

Pn(x) = xPn−1(x) + a0.

This implies Algorithm horner.

Algorithm 4.4 horner
Input: A sequence of n+ 1 real numbers a0, a1, . . . , an and a real number x.

Output: Pn(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0.

1. p← an

2. for j← 1 to n
3. p← xp+ an−j

4. end for
5. return p

It is easy to see that Algorithm horner costs n multiplications and

n additions. This is a remarkable achievement, which is attributed to the

judicious choice of the induction hypothesis.

4.5 Radix Sort

In this section, we study a sorting algorithm that runs in linear time for

almost all practical purposes. Let L = {a1, a2, . . . , an} be a list of n numbers

each consisting of exactly k digits. That is, each number is of the form

dkdk−1 . . . d1, where each di is a digit between 0 and 9. In this problem,

instead of applying induction on n, the number of objects, we use induction
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on k, the number of digits. One way to sort the numbers in L is to distribute

them into 10 lists L0, L1, . . . , L9 by theirmost significant digit, so that those

numbers with dk = 0 constitute list L0, those with dk = 1 constitute list

L1 and so on. At the end of this step, for each i, 0 ≤ i ≤ 9, Li contains

those numbers whose most significant digit is i. We have two choices now.

The first choice is to sort each list using another sorting algorithm and then

concatenate the resulting lists into one sorted list. Observe that in the worst

case, all numbers may have the same most significant digit, which means

that they will all end up in one list and the other nine lists will be empty.

Hence, if the sorting algorithm used runs in Θ(n logn) time, the running

time of this method will be Θ(n logn). Another possibility is to recursively

sort each list on digit dk−1. But this approach will result in the addition of

more and more lists, which is undesirable.

Surprisingly, It turns out that if the numbers are first distributed

into the lists by their least significant digit, then a very efficient algo-

rithm results. This algorithm is commonly known as radix sort. It is

straightforward to derive the algorithm using induction on k. Suppose that

the numbers are sorted lexicographically according to their least k − 1

digits, i.e., digits dk−1, dk−2, . . . , d1. Then, after sorting them on their kth

digits, they will eventually be sorted. The implementation of the algorithm

does not require any other sorting algorithm. Nor does it require recursion.

The algorithm works as follows. First, distribute the numbers into 10 lists

L0, L1, . . . , L9 according to digit d1, so that those numbers with d1 = 0

constitute list L0, those with d1 = 1 constitute list L1 and so on. Next, the

lists are coalesced in the order L0, L1, . . . , L9. Then, they are distributed

into 10 lists according to digit d2, coalesced in order, and so on. After dis-

tributing them according to dk and collecting them in order, all numbers

will be sorted. The following example illustrates the idea.

Example 4.1 Figure 4.1 shows an example of radix sort. The left column

in the figure shows the input numbers. Successive columns show the results

after sorting by the 1st, 2nd, 3rd and 4th digits.

The method is described more precisely in Algorithm radixsort. There

are k passes, and each pass costs Θ(n) time. Thus, the running time of the

algorithm is Θ(kn). If k is constant, the running time is simply Θ(n). The

algorithm uses Θ(n) space, as there are 10 lists needed and the overall size

of the lists is Θ(n).
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7467 6792 9134 9134 1239
1247 9134 1239 9187 1247
3275 3275 1247 1239 3275
6792 4675 7467 1247 4675
9187 7467 3275 3275 6792
9134 1247 4675 7467 7467
4675 9187 9187 4675 9134
1239 1239 6792 6792 9187

Fig. 4.1. Example of radix sort.

Algorithm 4.5 radixsort
Input: A linked list of numbers L = {a1, a2, . . . , an} and k, the number of

digits.

Output: L sorted in nondecreasing order.

1. for j← 1 to k
2. Prepare 10 empty lists L0, L1, . . . , L9.
3. while L is not empty
4. a← next element in L. Delete a from L.
5. i← jth digit in a. Append a to list Li.
6. end while
7. L← L0

8. for i← 1 to 9
9. L← L,Li {append list Li to L}

10. end for
11. end for
12. return L

It should be noted that the algorithm can be generalized to any radix,

not just radix 10 as in the algorithm. For example, we can treat each four

bits as one digit and work on radix 16. The number of lists will always be

equal to the radix. More generally, we can use Algorithm radixsort to

sort whole records on each field. If, for example, we have a file of dates each

consisting of year, month and day, we can sort the whole file by sorting first

by day, then by month and finally by year.

4.6 Generating Subsets of a Set

In this section, we study the problem of generating all 2n subsets of the set

of numbers Sn = {1, 2, . . . , n}. One simple method would be to generate all



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch04 page 128

128 Algorithms: Design Techniques and Analysis

subsets of Sn−1 = {1, 2, . . . , n− 1} and then setting the subsets of Sn as

Wn = {s | s ∈Wn−1} ∪ {s ∪ {n} | s ∈ Wn−1}.

This, however, results in space complexity of Θ(2n), which is undesirable.

In what follows, we present two recursive and one iterative algorithms that

use only Θ(n) of space. All algorithms are simple and efficient.

4.6.1 The first algorithm

Using induction, it is fairly easy to derive several algorithms more efficiently.

In this section, we present a simple algorithm that has only Θ(n) space

complexity. The algorithm is based on the assumption that we can generate

all the subsets of n − 1 numbers. Suppose we can generate all subsets of

n− 1 numbers. Then, we can extend our method to generate the subsets of

the numbers 1, 2, . . . , n as follows: (1) The algorithm first generates {} and
then all subsets of the numbers 2, 3, . . . , n. (2) It then generates {1} and

then prepends 1 to all subsets of the numbers 2, 3, . . . , n. This method is

described in Algorithm subsets1 below. The algorithm maintains a vector

v of n binary digits such that the kth digit is 1 if and only if k is included

in the current subset. For example, v = {0, 1, 1} corresponds to the subset

{2, 3} for the case n = 3.

Algorithm 4.6 subsets1
Input: A positive integer n.

Output: All subsets of the numbers 1, 2, . . . , n.

1. for j← 1 to n
2. v[j]← 0
3. end for
4. sub1(1)

Algorithm sub1(k)

1. if k ≤ n then
2. for j← 0 to 1
3. v[k]← j
4. sub1(k + 1)
5. if k = n then
6. for i← 1 to n if v[i] = 1 then output i
7. end for
8. end if
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Example 4.2 Consider running the algorithm on inputs n = 2 and

n = 3. If we trace the output for n = 2, we obtain the following subsets in

their order of generation:

{}, {2}, {1}, {1, 2}.
For input n = 3, the output of the algorithm will consist of the following

subsets in their order of generation:

{}, {3}, {2}, {2, 3}, {1}, {1, 3}, {1, 2}, {1, 2, 3}.
We analyze the running time of the algorithm as follows. First, we count

the number of iterations of the for loop. The for loop is executed 2 times

plus the number of times it is executed in the recursive call sub1(k + 1).

Since when n = 0, the number of iterations is zero, the number of iterations

f(n) can be expressed by the recurrence

f(n) =

{
0 if n = 0

2f(n− 1) + 2 if n ≥ 1.

We proceed to solve this recurrence as follows:

f(n) = 2f(n− 1) + 2

= 2(2f(n− 1) + 2) + 2

= 22f(n− 1) + 22 + 2

...

= 2nf(0) +

n∑
j=1

2j

= 0 + 2n+1 − 2 = 2n+1 − 2.

Since the output statement takes Θ(n) steps and is executed 2n times, it

follows that the running time of the entire algorithm is Θ(n2n), which is

optimal. Clearly, the space needed by the algorithm is Θ(n).

4.6.2 The second algorithm

Using induction, we derive another efficient algorithm for generating the

subsets of the set of numbers {1, 2, . . . , n}. The algorithm to be presented

also has Θ(n) space complexity. It is based on the assumption that we can
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generate all the subsets of n − 1 numbers. Suppose we can generate all

subsets of n − 1 numbers. Then, we can extend our method to generate

the subsets of the numbers 1, 2, . . . , n as follows: (1) The algorithm first

generates {} and then all subsets of the numbers 2, 3, . . . , n. (2) It then

generates {1} and then prepends 1 to all subsets of the numbers 2, 3, . . . , n.

This method is described in Algorithm subsets2.

Algorithm 4.7 subsets2
Input: A positive integer n.

Output: All subsets of the numbers 1, 2, . . . , n.

1. i← 0
2. sub2(1)

Algorithm sub2(k)

1. if k ≤ n then
2. sub2(k + 1)
3. if k = n then for j← 1 to i output A[j]
4. i← i+ 1
5. A[i]← k
6. sub2(k + 1)
7. if k = n then for j← 1 to i output A[j]
8. i← i− 1
9. end if

Example 4.3 If we run the algorithm on inputs n = 2 and n = 3, we

get the same output as that of the first algorithm. Namely, the output for

n = 2, in order of generation of the subsets is

{}, {2}, {1}, {1, 2},

and the output for n = 3, in order of generation of the subsets is

{}, {3}, {2}, {2, 3}, {1}, {1, 3}, {1, 2}, {1, 2, 3}.

The analysis of the algorithm is very similar to that of the first algo-

rithm. In particular, the number of iterations is 2n+1 − 2, and the overall

running time of the algorithm is O(n2n). Clearly, the space needed by the

algorithm is Θ(n).



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch04 page 131

Induction 131

4.6.3 Iterative algorithm

In this section, we derive an iterative algorithm for generating the subsets

of the set of numbers S = {1, 2, . . . , n}. The algorithm to be presented is

based on the assumption that if we can generate a subset, then we can gen-

erate the next subset in lexicographic order. It is shown below as Algorithm

subsets3. It uses Algorithm nextsubset to generate each and every sub-

set. Note that A and k are global in the algorithm, that is, they are common

to both Algorithm subsets3 and Algorithm nextsubset.

The subsets are generated as Sj , 0 ≤ j ≤ 2n − 1, where each subset

is represented by a vector of 0s and 1s. A vector representing a subset

Sj occupies the first k locations of the array A and is the reverse of the

binary number j. For example, the subset {1, 2, 5} is represented by the

vector A[1..5] = 〈1, 1, 0, 0, 1〉, which is the reverse of the binary number

10011. In this case, the next subset has the vector representation A[1..5] =

〈0, 0, 1, 0, 1〉, which is the reverse of the binary number 10100. This vector

is the representation of the subset {3, 5}.
In the main algorithm, the for loop is iterated 2n times, once for

each subset to be generated. The while loop in Algorithm nextsubset

is iterated as many times as there are consecutive 1s in the beginning of

Algorithm nextsubset
Input: An array A[1..k] of binary digits representing a subset of {1, 2, . . . , n}.
Output: The next subset in lexicographic order.

1. if k = 0 then
2. k ← k+1
3. A[k] = 0
4. exit
5. end if
6. i← 1
7. while A[i] = 1 and i < k
8. A[i] = 0
9. i← i+ 1

10. end while
11. if A[i] = 1 and i = k then
12. A[i] = 0
13. k← k + 1
14. A[k] = 1
15. else A[i] = 1
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Algorithm 4.8 subsets3
Input: A positive integer n.

Output: All subsets of the set {1, 2, . . . , n}.
1. k← 0;
2. for j← 1 to 2n

3. nextsubset()
4. for l← 1 to k if A[l] = 1 then output l
5. end for

the subset representation. In each iteration, a 1 is flipped to 0. If all bits in

A[1..k] are 1s, they are all changed to 0s and a 1 is appended at position

k+1; this is done in Steps 11–14. Finally, the leftmost 0, if any, is changed

to 1.

Example 4.4 Consider computing the next vector of 〈1, 1, 1, 0, 1〉 cor-
responding to subset {1, 2, 3, 5}. Here, k = 5. The while loop is executed

three times, once for each 1 in the beginning of the vector. Thus, these 1s

are flipped to 0s. Next, the first 0 from the left is flipped to 1. The result-

ing vector is 〈0, 0, 0, 1, 1〉, which corresponds to the subset {4, 5}. On the

other hand, the next vector of 〈1, 1, 1, 1, 1〉 is 〈0, 0, 0, 0, 0, 1〉 corresponding
to subsets {1, 2, 3, 4, 5} and {6}, respectively.
Example 4.5 If we run the main algorithm subsets3 on input n = 3,

it will generate the binary vectors

〈0〉, 〈1〉, 〈0, 1〉, 〈1, 1〉, 〈0, 0, 1〉, 〈1, 0, 1〉, 〈0, 1, 1〉, 〈1, 1, 1〉,
and output the corresponding subsets

{}, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}.
If we run the algorithm on input n = 4, it will output the subsets

{}, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, {4}, {1, 4}, {2, 4}, {1, 2, 4},
{3, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}.

We analyze the running time of the algorithm as follows. First we count

the number of iterations in the while loop of Algorithm nextsubset. This

loop is iterated at most k−1 times for each subset, which is O(n) for a total

of O(n2n). It can be shown, however, that the total number of iterations

is Θ(2n). To see this, we count the total number of flips (flipping a 0 to 1

and a 1 to 0). A[1] is flipped in every call to Algorithm nextsubset for a
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total of 2n flips, A[2] is flipped in every other call for a total of 2n/2 flips

and A[3] is flipped in every fourth call for a total of 2n/4 flips. In general,

A[i] is flipped in every (2i−1)th call for a total of 2n/2i−1 flips. Hence, the

total number of flips is

2n + 2n−1 + · · ·+ 21 = 2n+1 − 2 = Θ(2n).

It is not hard to see that the total number of iterations in the while loop

is equal to the number of flips minus two if all bits are 1s and is equal to

the number of flips minus one otherwise. Hence, the number of iterations

in the while loop is Θ(2n). Finally, the for loop in the output statement

is iterated k times for each subset, which is O(n). It follows that the overall

running time of the algorithm is O(n2n). Since the working space required

by the algorithm is that for storing the array A and local variables, the

space complexity of the algorithm is Θ(n).

4.7 Generating Permutations

In this section, we study the problem of generating all permutations of the

numbers 1, 2, . . . , n. We will use an array P [1..n] to hold each permutation.

Using induction, it is fairly easy to derive several algorithms. In this section,

we will present two of them that are based on the assumption that we can

generate all the permutations of n− 1 numbers.

4.7.1 The first algorithm

Suppose we can generate all permutations of n− 1 numbers. Then, we can

extend our method to generate the permutations of the numbers 1, 2, . . . , n

as follows. Generate all the permutations of the numbers 2, 3, . . . , n and

add the number 1 to the beginning of each permutation. Next, generate

all permutations of the numbers 1, 3, 4, . . . , n and add the number 2 to

the beginning of each permutation. Repeat this procedure until finally the

permutations of 1, 2, . . . , n− 1 are generated and the number n is added at

the beginning of each permutation. This method is described in Algorithm

permutations1. Note that when P [j] and P [m] are interchanged before

the recursive call, they must be interchanged back after the recursive call.
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In the algorithm, the call to Algorithm perm1(m) finds the permutations

of m,m+ 1, . . . , n.

Algorithm 4.9 permutations1
Input: A positive integer n.

Output: All permutations of the numbers 1, 2, . . . , n.

1. for j← 1 to n
2. P [j]← j
3. end for
4. perm1(1)

Algorithm perm1(m)

1. if m = n then output P [1..n]
2. else
3. for j←m to n
4. interchange P [j] and P [m]
5. perm1(m+ 1)
6. interchange P [j] and P [m]
7. comment: At this point P [m..n] = m,m+1, . . . , n.

8. end for
9. end if

We analyze the running time of the algorithm as follows. Since there are

n! permutations, Step 1 of Algorithm perm1 takes Θ(nn!) time to output all

permutations. Now, we count the number of iterations of the for loop. In

the first call to Algorithm perm1, m = 1. Hence, the for loop is executed n

times plus the number of times it is executed in the recursive call perm1(2).

Since when n = 1, the number of iterations is zero, the number of iterations

f(n) can be expressed by the recurrence

f(n) =

{
0 if n = 1

nf(n− 1) + n if n ≥ 2.

Following the technique outlined in Sec. A.8.2, we proceed to solve this

recurrence as follows. Let n!h(n) = f(n) (note that h(1) = 0). Then,

n!h(n) = n(n− 1)!h(n− 1) + n,

or

h(n) = h(n− 1) +
n

n!
= h(n− 1) +

1

(n− 1)!
.
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The solution to this recurrence is

h(n) = h(1) +

n∑
j=2

1

(j − 1)!
=

n−1∑
j=1

1

j!
<

∞∑
j=1

1

j!
= (e − 1),

where e = 2.7182818 . . . (Eq. (A.1)). Hence,

f(n) = n!h(n) < n!(e − 1).

Since the running time of the output statement is Θ(nn!), it follows that

the running time of the entire algorithm is Θ(nn!).

4.7.2 The second algorithm

In this section, we describe another algorithm for enumerating all the per-

mutations of the numbers 1, 2, . . . , n. At the beginning, all n entries of the

array P [1..n] are free, and each free entry will be denoted by 0. For the

induction hypothesis, let us assume that we have a method that generates

all permutations of the numbers 1, 2, . . . , n − 1. Then, we can extend our

method to generate all the permutations of the n numbers as follows. First,

we put n in P [1] and generate all the permutations of the first n− 1 num-

bers using the subarray P [2..n]. Next, we put n in P [2] and generate all

the permutations of the first n − 1 numbers using the subarrays P [1] and

P [3..n]. Then, we put n in P [3] and generate all the permutations of the

first n − 1 numbers using the subarrays P [1..2] and P [4..n]. This contin-

ues until finally we put n in P [n] and generate all the permutations of the

first n− 1 numbers using the subarray P [1..n− 1]. Initially, all n entries of

P [1..n] contain 0’s. The method is described more precisely in Algorithm

permutations2.

Algorithm permutations2 works as follows. If the value of m is equal

to 0, then this is an indication that Algorithm perm2 has been called for

all consecutive values n, n− 1, . . . , 1. In this case, array P [1..n] has no free

entries and contains a permutation of the numbers 1, 2, . . . , n. If, on the

other hand, m > 0, then we know that m + 1,m + 2, . . . , n have already

been assigned to some entries of the array P [1..n]. Thus, we search for a free

entry P [j] in the array and set P [j] to m, and then we call Algorithm perm2

recursively with parameter m−1. After the recursive call, we must set P [j]

to 0 indicating that it is now free and can be used in subsequent calls.
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Algorithm 4.10 permutations2
Input: A positive integer n.

Output: All permutations of the numbers 1, 2, . . . , n.

1. for j← 1 to n
2. P [j]← 0
3. end for
4. perm2(n)

Algorithm perm2(m)

1. if m = 0 then output P [1..n]
2. else
3. for j← 1 to n
4. if P [j] = 0 then
5. P [j]←m
6. perm2(m− 1)
7. P [j]← 0
8. end if
9. end for

10. end if

We analyze the running time of the algorithm as follows. Since there are

n! permutations, Step 1 of Algorithm perm2 takes Θ(nn!) time to output

all permutations. Now, we count the number of iterations of the for loop.

The for loop is executed n times in every call perm2(m) plus the number

of times it is executed in the recursive call perm2(m− 1). When Algorithm

perm2 is invoked by the call perm2(m) with m > 0, the array P contains

exactly m zeros, and hence the recursive call perm2(m−1) will be executed

exactly m times. Since when m = 0, the number of iterations is zero, the

number of iterations can be expressed by the recurrence

f(m) =

{
0 if m = 0

mf(m− 1) + n if m ≥ 1.

Following the technique outlined in Sec. A.8.2, we proceed to solve this

recurrence as follows. Let m!h(m) = f(m) (note that h(0) = 0). Then,

m!h(m) = m(m− 1)!h(m− 1) + n,

or

h(m) = h(m− 1) +
n

m!
.
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Initially, m = n, so we set m = n, and we have as a result

h(n) = h(n− 1) +
n

n!
= h(n− 1) +

1

(n− 1)!
.

The solution to this recurrence is

h(n) = h(1) +
n∑

j=1

1

(j − 1)!
=

n−1∑
j=0

1

j!
<

∞∑
j=0

1

j!
= e,

where e = 2.7182818 . . . (Eq. (A.1)). Hence,

f(n) = n!

n−1∑
j=0

1

j!
< en!.

Since the running time of the output statement is Θ(nn!), it follows that

the running time of the entire algorithm is Θ(nn!).

4.7.3 Iterative algorithm

In this section, we describe an iterative algorithm for generating the permu-

tations of the numbers 1, 2, . . . , n. The algorithm to be presented is based

on the assumption that if we can generate a permutation, then we can gen-

erate the next permutation in lexicographic order. Thus, the algorithm is

straightforward; it first generates the first permutation, which is 1, 2, . . . , n,

and then loops n! − 1 times, each time finding the next permutation in

lexicographic order. An outline of the algorithm that generates the next

permutation given the current one is shown below. Here, P is the input per-

mutation and n is its length. The details are given in Algorithm nextperm.

Note that when the rightmost index i is 0, then this is an indication that

the current permutation is the last one in lexicographic order.

Example 4.6 As an example, consider running Algorithm nextperm

on input P = 2, 1, 4, 3. Here, n = 4. First, the algorithm finds the rightmost

index i such that P [i] is less than P [i+ 1], which is 2. Next, the algorithm

finds the highest index j to the right of index i = 2 such that P [j] >

P [2], which is 4. It then interchanges P [2] = 1 with P [4] = 3, which gives

2, 3, 4, 1. Finally, it reverses P [3..4] = 4, 1. The resulting next permutation

is P = 2, 3, 1, 4.
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1. Find the rightmost index i such that P [i] is less than P [i+ 1].
2. Find the highest index j to the right of index i such that P [j] > P [i]

(P [i+ 1..n] is sorted in decreasing order).
3. Interchange P [i] and P [j].
4. Reverse the elements in P [i+ 1..n].
5. return P .

Algorithm 4.11 nextperm
Input: A permutation P of the numbers 1, 2, . . . , n.

Output: The next permutation in lexicographic order.

1. i← n− 1
2. while P [i] > P [i+ 1]
3. i = i− 1
4. if i = 0 then return (0)
5. j← n;
6. while j > i and P [j] < P [i]
7. j← j − 1
8. Interchange P [i] and P [j]
9. P [i+ 1..n]← reverse(P[i+1..n])

10. return P .

Example 4.7 As another example, let P = 5, 1, 4, 2, 7, 6, 3. Then, the

algorithm first finds the rightmost index i such that P [i] is less than P [i+1],

which is 4. Next, the algorithm finds the highest index j to the right of index

i = 4 such that P [j] > P [4], which is 7. It then interchanges P [4] = 2 with

P [7] = 3, which gives 5, 1, 4, 3, 7, 6, 2. Finally, it reverses P [5..7] = 7, 6, 2.

The resulting next permutation is P = 5, 1, 4, 3, 2, 6, 7.

Hence, to generate all permutations of 1, 2, . . . , n, we only need to invoke

Algorithm nextperm n!−1 times, as shown in Algorithm permutations3

below.

Algorithm 4.12 permutations3
Input: A positive integer n.

Output: All permutations of the numbers 1, 2, . . . , n.

1. P [1..n]← 1, 2, . . . , n
2. for k← 1 to n output P [k]
3. for i← 1 to n!− 1
4. P = nextperm(P )
5. for k← 1 to n output P [k]
6. end for
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Clearly, the running time of Algorithm nextperm is O(n), and hence

the running time of Algorithm permutations3 is dominated by the output

step, which costs Θ(nn!). The space complexity of the algorithm is Θ(n).

4.8 Practice Problems

4.1. Show that no more than one majority element may exist in an array.

4.2. Let A be a sorted array of n elements, which is known to have a

majority element. Explain how to find the majority element in O(1)

time.

4.3. Illustrate the operation of Algorithm majority on the arrays

(a) 5 7 5 4 5 .

(b) 5 7 5 4 8 .

(c) 2 4 1 4 4 4 6 4 .

4.4. Use induction to develop a recursive algorithm for finding the maxi-

mum element in a given sequence A[1..n] of n elements.

4.5. Use induction to develop a recursive algorithm for finding the average

of n real numbers A[1..n].

4.6. Use induction to develop a recursive algorithm that searches for an

element x in a given sequence A[1..n] of n elements.

4.7. Use Algorithm exprec to compute 212.

4.8. Use Algorithm exp to compute 212.

4.9. Use Horner’s rule described in Sec. 4.4 to evaluate the following poly-

nomials at the point x = 2:

(a) 3x5 + 2x4 + 4x3 + x2 + 2x+ 5.

(b) 2x7 + 3x5 + 2x3 + 5x2 + 3x+ 7.

4.10. Illustrate the operation of Algorithm radixsort on the following

sequence of eight numbers:

(a) 4567, 2463, 6523, 7461, 4251, 3241, 6492, 7563.

(b) 16543, 25895, 18674, 98256, 91428, 73234, 16597, 73195.

4.11. Consider Algorithm nextsubset in Sec. 4.6.3. What is the next

subset of {2, 4, 5} generated by the algorithm? Here, k = 5.

4.12. Consider Algorithm nextperm in Sec. 4.7.3. What is the next per-

mutation of 5, 1, 4, 3, 2, 6, 7 generated by the algorithm?
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4.9 Exercises

4.1. Give a recursive algorithm that computes the nth Fibonacci number

fn defined by

f1 = f2 = 1; fn = fn−1 + fn−2 for n ≥ 3.

4.2. Give a recursive version of Algorithm selectionsort.

4.3. Give a recursive version of Algorithm insertionsort.

4.4. Give a recursive version of Algorithm bubblesort given in Exer-

cise 1.17.

4.5. Derive a linear time and iterative version of Algorithm majority.

Do not compute the median.

4.6. Prove Observation 4.1.

4.7. Prove or disprove the following claim. If in Step 7 of Algorithm can-

didate in Algorithm majority j = n but count = 0, then c is the

majority element.

4.8. Prove or disprove the following claim. If in Step 7 of Algorithm can-

didate in Algorithm majority j = n and count > 0, then c is the

majority element.

4.9. Use Algorithm exprec to compute

(a) 25. (b) 27. (c) 35. (d) 57.

4.10. Solve Exercise 4.9 using Algorithm exp instead of Algorithm

exprec.

4.11. Let A be a square matrix. Explain how to compute An efficiently,

where n is a positive integer. How many matrix multiplications did

you use?

4.12. Let A be a square matrix. Explain how to compute A+A2+ . . .+An

efficiently, where n is a positive integer. Use the Θ-notation to express

the number of matrix multiplications.
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(a) Using integer exponentiation. Assume each power is evaluated

separately.

(b) Using Horner’s rule.

4.13. Express the time complexity of Algorithm radixsort in terms of n

when the input consists of n positive integers in the interval

(a) [1..n].

(b) [1..n2].

(c) [1..2n].

4.14. Let A[1..n] be an array of positive integers in the interval [1..n!].

Which sorting algorithm do you think is faster: bottomupsort or

radixsort? (see Sec. 1.7).

4.15. What is the time complexity of Algorithm radixsort if arrays are

used instead of linked lists? Explain.

4.16. A sorting method known as bucket sort works as follows. Let A[1..n]

be a sequence of n numbers within a reasonable range, say all num-

bers are between 1 and m, where m is not too large compared to n.

The numbers are distributed into k buckets, with the first bucket

containing those numbers between 1 and �m/k�, the second bucket

containing those numbers between �m/k�+ 1 to �2m/k� and so on.

The numbers in each bucket are then sorted using another sorting

algorithm, say Algorithm insertionsort. Analyze the running time

of the algorithm.

4.17. Instead of using another sorting algorithm in Exercise 4.16, design

a recursive version of bucket sort that recursively sorts the numbers

in each bucket. What is the major disadvantage of this recursive

version?

4.18. A sorting algorithm is called stable if the order of equal elements is

preserved after sorting. Which of the following sorting algorithms are

stable?

(a) selectionsort (b) insertionsort (c) bubblesort

(d) bottomupsort (e) heapsort (f) radixsort.



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch04 page 142

142 Algorithms: Design Techniques and Analysis

4.19. Let f(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1 be a polynomial of

degree n − 1, where n is a power of 2. Design a recursive algorithm

to implement Horner’s rule to evaluate f(x) at the point x = b. What

is the time complexity of your algorithm?

4.20. Modify Algorithm subsets1 in Sec. 4.6 for generating the subsets of

numbers so that it outputs only m-subsets, that is, subsets of size m.

4.21. Modify Algorithm subsets1 in Sec. 4.6 for generating the subsets of

numbers so that it outputs all subsets containing 1 before all subsets

without 1.

4.22. Do Exercise 4.20 for Algorithm subsets2.

4.23. Do Exercise 4.21 for Algorithm subsets2.

4.24. Explain why in Algorithm subsets2 in Sec. 4.6, the statement

i← i− 1 is necessary.

4.25. Carefully explain why in Algorithm permutations1 when P [j] and

P [m] are interchanged before the recursive call, they must be inter-

changed back after the recursive call.

4.26. Carefully explain why in Algorithm permutations2 P [j] must be

reset to 0 after the recursive call.

4.27. Carefully explain why in Algorithm permutations2, when Proce-

dure perm2 is invoked by the call perm2(m) with m > 0, the array P

contains exactly m zeros, and hence the recursive call perm2(m− 1)

will be executed exactly m times.

4.28. Modify Algorithm permutations2 so that the permutations of the

numbers 1, 2, . . . , n are generated in a reverse order to that produced

by Algorithm permutations2.

4.29. Let A[1..n] be a sorted array of n integers and x an integer. Design

a recursive O(n) time algorithm to determine whether there are two

elements in A, if any, whose sum is exactly x.

4.30. Convert the algorithm in Exercise 4.29 into an iterative algorithm.
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4.31. Let a and b be two positive integers. The greatest common divisor

of a and b, denoted by gcd(a, b), is the largest integer that divides

both a and b. Derive a recursive algorithm to compute gcd(a, b). Hint:

If c divides a and b, then c divides their difference.

4.32. Derive the running time of the algorithm in Exercise 4.31. Note that

the running time is in terms of the size of the input, which is the

number of digits in max{a, b}.

4.33. Convert the algorithm in Exercise 4.31 into an iterative algorithm.

An efficient iterative algorithm for computing the gcd of two numbers

was given in Exercise 1.41.

4.34. Use induction to solve Exercise 2.7.

4.35. Use induction to solve Exercise 2.8.

4.10 Bibliographic Notes

The use of induction as a mathematical technique for proving the correct-

ness of algorithms was first developed by Floyd (1967). Recursion has been

studied extensively in algorithm design. See for example the books of Burge

(1975) and Paull (1988). The use of induction as a design technique appears

in Manber (1988). Manber (1989) is a whole book that is mostly devoted

to the induction design technique. Unlike this chapter, induction in that

book encompasses a wide variety of problems and is used in its broad sense

to cover other design techniques like divide and conquer and dynamic pro-

gramming. The problem of finding the majority was studied for example by

Misra and Gries (1982). Fischer and Salzberg (1982) show that using more

sophisticated data structures, the number of comparisons can be reduced to

3n/2+1 in the worst case, and this bound is optimal. Horner’s rule for poly-

nomial evaluation is named after the English mathematician W. G. Horner.

Radix sort is used by card-sorting machines. In old machines, the machine

did the distribution step and the operator collected the piles after each pass

and combined them into one for the next pass. Algorithm permutations2

appears in Banachowski et al. (1991).
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Chapter 5

Divide and Conquer

5.1 Introduction

The name “divide and conquer” has been given to a powerful algorithm

design technique that is used to solve a variety of problems. In its sim-

plest form, a divide-and-conquer algorithm divides the problem instance

into a number of subinstances (in most cases, two), recursively solves each

subinstance separately, and then combines the solutions to the subinstances

to obtain the solution to the original problem instance. To illustrate this

approach, consider the problem of finding both the minimum and maxi-

mum in an array of integers A[1..n] and assume for simplicity that n is a

power of 2. A straightforward algorithm might look like the one below. It

returns a pair (x, y), where x is the minimum and y is the maximum.

1. x←A[1]; y←A[1]
2. for i← 2 to n
3. if A[i] < x then x←A[i]
4. if A[i] > y then y←A[i]
5. end for
6. return (x, y)

Clearly, the number of element comparisons performed by this method

is 2n−2. However, using the divide-and-conquer strategy, we can find both

the minimum and maximum in only (3n/2)− 2 element comparisons. The

idea is very simple: Divide the input array into two halves A[1..n/2] and

A[(n/2) + 1..n], find the minimum and maximum in each half and return

145



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch05 page 146

146 Algorithms: Design Techniques and Analysis

the minimum of the two minima and the maximum of the two maxima.

The divide-and-conquer algorithm is given in Algorithm minmax.

Algorithm 5.1 minmax
Input: An array A[1..n] of n integers, where n is a power of 2.

Output: (x, y): the minimum and maximum integers in A.

1. minmax(1, n)

Algorithm minmax(low , high)

1. if high − low = 1 then
2. if A[low ] < A[high] then return (A[low ], A[high])
3. else return (A[high], A[low ])
4. end if
5. else
6. mid←�(low + high)/2�
7. (x1, y1)← minmax(low ,mid)
8. (x2, y2)← minmax(mid + 1, high)
9. x← min{x1, x2}

10. y← max{y1, y2}
11. return (x, y)
12. end if

Let C(n) denote the number of comparisons performed by the algorithm

on an array of n elements, where n is a power of 2. Note that the element

comparisons are performed only in steps 2, 9 and 10. Also note that the

number of comparisons performed by steps 7 and 8 as a result of the recur-

sive calls is C(n/2). This gives rise to the following recurrence relation for

the number of comparisons done by the algorithm:

C(n) =

{
1 if n = 2

2C(n/2) + 2 if n > 2.

We proceed to solve this recurrence by expansion as follows (k = log n):

C(n) = 2C(n/2) + 2

= 2(2C(n/4) + 2) + 2

= 4C(n/4) + 4 + 2

= 4(2C(n/8) + 2) + 4 + 2
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= 8C(n/8) + 8 + 4 + 2

...

= 2k−1C(n/2k−1) + 2k−1 + 2k−2 + · · ·+ 22 + 2

= 2k−1C(2) +

k−1∑
j=1

2j

= (n/2) + 2k − 2 (Eq. (A.10), page 678)

= (3n/2)− 2.

This result deserves to be called a theorem.

Theorem 5.1 Given an array A[1..n] of n elements, where n is a power

of 2, it is possible to find both the minimum and maximum of the elements

in A using only (3n/2)− 2 element comparisons.

5.2 Binary Search

Recall that in binary search, we test a given element x against the mid-

dle element in a sorted array A[low ..high ]. If x < A[mid ], where mid =

�(low + high)/2�, then we discard A[mid ..high ] and the same procedure is

repeated on A[low ..mid − 1]. Similarly, if x > A[mid ], then we discard

A[low ..mid ] and repeat the same procedure on A[mid + 1..high]. This sug-

gests the recursive Algorithm binarysearchrec as another alternative to

implement this search method.

5.2.1 Analysis of the recursive binary search algorithm

To find the running time of the algorithm, we compute the number of ele-

ment comparisons, since this is a basic operation, i.e., the running time of

the algorithm is proportional to the number of element comparisons per-

formed (see Sec. 1.11.2). We will assume that each three-way comparison

counts as one comparison. First, note that if n = 0, i.e., the array is empty,

then the algorithm does not perform any element comparisons. If n = 1, the

else part will be executed and, in case x �= A[mid ], the algorithmwill recurse

on an empty array. It follows that if n = 1, then exactly one comparison is
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Algorithm 5.2 binarysearchrec
Input: An array A[1..n] of n elements sorted in nondecreasing order and

an element x.
Output: j if x = A[j], 1 ≤ j ≤ n, and 0 otherwise.

1. binarysearch(1, n)

Algorithm binarysearch(low , high)

1. if low > high then return 0
2. else
3. mid←�(low + high)/2�
4. if x = A[mid ] then return mid
5. else if x < A[mid ] then return binarysearch(low ,mid − 1)
6. else return binarysearch(mid + 1, high)
7. end if

performed. If n > 1, then there are two possibilities: If x = A[mid ], then

only one comparison is performed; otherwise, the number of comparisons

required by the algorithm is one plus the number of comparisons done by

the recursive call on either the first or second half of the array. If we let

C(n) denote the number of comparisons performed by Algorithm bina-

rysearchrec in the worst case on an array of size n, then C(n) can be

expressed by the recurrence

C(n) ≤
{
1 if n = 1

1 + C(�n/2�) if n ≥ 2.

Let k be such that 2k−1 ≤ n < 2k, for some integer k ≥ 2. If we expand the

above recurrence, we obtain

C(n) ≤ 1 + C(�n/2�)
≤ 2 + C(�n/4�)

...

≤ (k − 1) + C(�n/2k−1�)
= (k − 1) + 1

= k,
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since ��n/2�/2� = �n/4�, etc. (see Eq. (A.3), page 672) and �n/2k−1� = 1

(since 2k−1 ≤ n < 2k). Taking the logarithms of the inequalities

2k−1 ≤ n < 2k

and adding 1 to both sides yields

k ≤ logn+ 1 < k + 1,

or

k = �logn�+ 1,

since k is integer. It follows that

C(n) ≤ �logn�+ 1.

We have, in effect, proved the following theorem.

Theorem 5.2 The number of element comparisons performed by Algo-

rithm binarysearchrec to search for an element in an array of n elements

is at most �logn� + 1. Thus, the time complexity of Algorithm binary-

searchrec is O(log n).

We close this section by noting that the recursion depth is O(log n), and

since in each recursion level Θ(1) of space is needed, the total amount of

space needed by the algorithm is O(log n). Contrast this recursive algorithm

with the iterative version which needs only Θ(1) space (see Sec. 1.3).

5.3 Mergesort

In this section, we consider an example of a simple divide-and-conquer

algorithm that reveals the essence of this algorithm design technique. We

give here more detailed description of how a generic divide-and-conquer

algorithm works in order to solve a problem instance in a top-down manner.

Consider the example of bottomupsort shown in Fig. 1.3. We have seen

how the elements were sorted by an implicit traversal of the associated

sorting tree level by level. In each level, we have pairs of sequences that have

already been sorted and are to be merged to obtain larger sorted sequences.

We continue ascending the tree level by level until we reach the root at

which the final sequence has been sorted.
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Now, let us consider doing the reverse, i.e., top-down instead of bottom-

up. In the beginning, we have the input array

A[1..8] = 9 4 5 2 1 7 4 6 .

We divide this array into the two 4-element arrays

9 4 5 2 and 1 7 4 6 .

Next, we sort these two arrays individually and then simply merge them

to obtain the desired sorted array. Call this algorithm sort. As for the

sorting method used for each half, we are free to make use of any sorting

algorithm to sort the two subarrays. In particular, we may use Algorithm

sort itself. If we do so, then we have indeed arrived at the well-known

mergesort algorithm. A precise description of this algorithm is given in

Algorithm mergesort.

Algorithm 5.3 mergesort
Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. mergesort(A, 1, n)

Algorithm mergesort(A, low , high)

1. if low < high then
2. mid←�(low + high)/2�
3. mergesort(A, low ,mid)
4. mergesort(A,mid + 1, high)
5. merge (A, low ,mid , high)
6. end if

A simple proof by induction establishes the correctness of the algorithm.

5.3.1 How the algorithm works

Consider Fig. 5.1, which illustrates the behavior of Algorithm mergesort

on the input array

A[1..8] = 9 4 5 2 1 7 4 6 .

As shown in the figure, the main call mergesort(A, 1, 8) induces a series

of recursive calls represented by an implicit binary tree. Each node of the
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Fig. 5.1. The behavior of Algorithm mergesort.

tree consists of two arrays. The top array is the input to the call repre-

sented by that node, whereas the bottom array is its output. Each edge

of the tree is replaced with two antidirectional edges indicating the flow

of control. The main call causes the call mergesort(A, 1, 4) to take effect,

which, in turn, produces the call mergesort(A, 1, 2), and so on. Edge labels

indicate the order in which these recursive calls take place. This chain of

calls corresponds to a preorder traversal of the tree: Visit the root, the left

subtree and then the right subtree (see Sec. 2.5.1). The computation, how-

ever, corresponds to a postorder traversal of the tree: Visit the left subtree,

the right subtree and then the root. To implement this traversal, a stack is

used to hold the local data of each active call.

As indicated in the figure, the process of sorting the original array

reduces to that used in Algorithm bottomupsort when n is a power of 2.

Each pair of numbers are merged to produce 2-element sorted sequences.

These sorted 2-element sequences are then merged to obtain 4-element

sorted sequences and so on. Compare Fig. 5.1 with Fig. 1.3. The only

difference between the two algorithms is in the order of merges: In Algo-

rithm bottomupsort, merges are carried out level by level, while in Algo-

rithm mergesort, the merges are performed in postorder. This justifies

the remark stated in Observation 5.1 that the number of comparisons per-

formed by mergesort is identical to that of Algorithm bottomupsort

when n is a power of 2.
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5.3.2 Analysis of the mergesort algorithm

As in the binary search algorithm, the basic operation here is element com-

parison. That is, the running time is proportional to the number of element

comparisons performed by the algorithm. Now, we wish to compute the

number of element comparisons C(n) required by Algorithm mergesort

to sort an array of n elements. For simplicity, we will assume that n is a

power of 2, i.e., n = 2k for some integer k ≥ 0. If n = 1, then the algorithm

does not perform any element comparisons. If n > 1, then steps 2 through

5 are executed. By definition of the function C, the number of compar-

isons required to execute steps 3 and 4 is C(n/2) each. By Observation 1.1,

the number of comparisons needed to merge the two subarrays is between

n/2 and n − 1. Thus, the minimum number of comparisons done by the

algorithm is given by the recurrence

C(n) =

{
0 if n = 1

2C(n/2) + n/2 if n ≥ 2.

Letting d = 0, a = c = 2 and b = 1/2 in Corollary 1.2, we obtain

C(n) =
n logn

2
.

The maximum number of comparisons done by the algorithm is given by

the recurrence

C(n) =

{
0 if n = 1

2C(n/2) + n− 1 if n ≥ 2.

We proceed to solve this recurrence by expansion as follows:

C(n) = 2C(n/2) + n− 1

= 2(2C(n/22) + n/2− 1) + n− 1

= 22C(n/22) + n− 2 + n− 1

= 22C(n/22) + 2n− 2− 1

...

= 2kC(n/2k) + kn− 2k−1 − 2k−2 − . . .− 2− 1
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= 2kC(1) + kn−
k−1∑
j=0

2j

= 2k × 0 + kn− (2k − 1) (Eq. (A.10), page 678)

= kn− 2k + 1

= n logn− n+ 1.

As a result, we have the following observation:

Observation 5.1 The total number of element comparisons performed by

Algorithm mergesort to sort an array of size n, where n is a power of 2,

is between (n logn)/2 and n logn − n + 1. These are exactly the numbers

stated in Observation 1.5 for Algorithm bottomupsort.

As described before, this is no coincidence, as Algorithm bottomup-

sort performs the same element comparisons as Algorithm mergesort

when n is a power of 2. Section 5.6.4 shows empirical results in which the

number of comparisons performed by the two algorithms are close to each

other when n is not a power of 2.

If n is any arbitrary positive integer (not necessarily a power of 2), the

recurrence relation for C(n), the number of element comparisons performed

by Algorithm mergesort, becomes

C(n) =

{
0 if n = 1

C(�n/2�) + C(�n/2�) + bn if n ≥ 2

for some nonnegative constant b. By Theorem 1.4, the solution to this

recurrence is C(n) = Θ(n logn).

Since the operation of element comparison is a basic operation in the

algorithm, it follows that the running time of Algorithm mergesort is

T (n) = Θ(n logn). By Theorem 11.2, the running time of any algorithm for

sorting by comparisons is Ω(n logn). It follows that Algorithm mergesort

is optimal.

Clearly, as in Algorithm bottomupsort, the algorithm needs Θ(n)

of space for carrying out the merges. It is not hard to see that the space

needed for the recursive calls is Θ(n) (Problem 5.7). It follows that the space

complexity of the algorithm is Θ(n). The following theorem summarizes the

main results of this section.
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Theorem 5.3 Algorithm mergesort sorts an array of n elements in

time Θ(n logn) and space Θ(n).

5.4 The Divide-and-Conquer Paradigm

Now, since we have at our disposal Algorithm bottomupsort, why resort

to a recursive algorithm such as mergesort, especially if we take into

account the amount of extra space needed for the stack and the extra time

brought about by the overhead inherent in handling recursive calls? From

a practical point of view, there does not seem to be any reason to favor

a recursive algorithm on its equivalent iterative version. However, from a

theoretical point of view, recursive algorithms share the merits of being

easy to state, grasp and analyze. To see this, compare the pseudocode of

Algorithm mergesort with that of bottomupsort. It takes much more

time to debug the latter or even to comprehend the idea behind it. This

suggests that a designer of an algorithm might be better off starting with

an outline of a recursive description, if possible, which may afterwards be

refined and converted into an iterative algorithm. Note that this is always

possible, as every recursive algorithm can be converted into an iterative

algorithm which functions in exactly the same way on every instance of

the problem. In general, the divide-and-conquer paradigm consists of the

following steps:

(a) The divide step. In this step of the algorithm, the input is partitioned

into p ≥ 1 parts, each of size strictly less than n, the size of the orig-

inal instance. The most common value of p is 2, although other small

constants greater than 2 are not uncommon. We have already seen an

example of the case when p = 2, i.e., Algorithm mergesort. If p = 1

as in Algorithm binarysearchrec, then part of the input is discarded

and the algorithm recurses on the remaining part. This case is equiva-

lent to saying that the input data is divided into two parts, where one

part is discarded; note that some work must be done in order to discard

some of the elements. p may also be as high as logn, or even nε, where

ε is some constant, 0 < ε < 1.

(b) The conquer step. This step consists of performing p recursive call(s)

if the problem size is greater than some predefined threshold n0. This

threshold is derived by mathematical analysis of the algorithm. Once it
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is found, it can be increased by any constant amount without affect-

ing the time complexity of the algorithm. In Algorithm mergesort,

although n0 = 1, it can be set to any positive constant without affect-

ing the Θ(n logn) time complexity. This is because the time complexity,

by definition, is concerned with the behavior of the algorithm when n

approaches infinity. For example, we can modify mergesort so that

when n ≤ 16, the algorithm uses a straightforward (iterative) sorting

algorithm, e.g., insertionsort. We can increase it to a much larger

value, say 1000. However, after some point, the behavior of the algo-

rithm starts to degrade. An (approximation to the) optimal threshold

may be found empirically by fine tuning its value until the desired con-

stant is found. It should be emphasized, however, that in some algo-

rithms, the threshold may not be as low as 1, that is, it must be greater

than some constant that is usually found by a careful analysis of the

algorithm. An example of this is the median finding algorithm which

will be introduced in Sec. 5.5. It will be shown that the threshold for

that particular algorithm must be relatively high in order to guarantee

linear running time.

(c) The combine step.a In this step, the solutions to the p recursive call(s)

are combined to obtain the desired output. In Algorithm mergesort,

this step consists of merging the two sorted sequences obtained by the

two recursive calls using Algorithm merge. The combine step in a

divide-and-conquer algorithm may consist of merging, sorting, search-

ing, finding the maximum or minimum, matrix addition, etc.

The combine step is very crucial to the performance of virtually all

divide-and-conquer algorithms, as the efficiency of the algorithm is largely

dependent on how judiciously this step is implemented. To see this, sup-

pose that Algorithm mergesort uses an algorithm that merges two sorted

arrays of size n/2 each in time Θ(n logn). Then, the recurrence relation

that describes the behavior of this modified sorting algorithm becomes

T (n) =

{
0 if n = 1

2C(n/2) + bn logn if n ≥ 2,

aSometimes, this step is referred to as the merge step; this has nothing to do
with the process of merging two sorted sequences as in Algorithm mergesort.
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for some nonnegative constant b. By Theorem 1.2, the solution to this

recurrence is T (n) = Θ(n log2 n), which is asymptotically larger than the

time complexity of Algorithm mergesort by a factor of logn.

On the other hand, the divide step is invariant in almost all divide-

and-conquer algorithms: Partition the input data into p parts and proceed

to the conquer step. In many divide-and-conquer algorithms, it takes O(n)

time or even only O(1) time. For example, the time taken by Algorithm

mergesort to divide the input into two halves is constant; it is the time

needed to compute mid . In quicksort algorithm, which will be introduced

in Sec. 5.6, it is the other way around: The divide step requires Θ(n) time,

whereas the combine step is nonexistent.

In general, a divide-and-conquer algorithm has the following format:

(1) If the size of the instance I is “small”, then solve the problem using a

straightforward method and return the answer. Otherwise, continue to

the next step.

(2) Divide the instance I into p subinstances I1, I2, . . . , Ip of approximately

the same size.

(3) Recursively call the algorithm on each subinstance Ij , 1 ≤ j ≤ p, to

obtain p partial solutions.

(4) Combine the results of the p partial solutions to obtain the solution to

the original instance I. Return the solution of instance I.

The overall performance of a divide-and-conquer algorithm is very sen-

sitive to changes in these steps. In the first step, the threshold should be

chosen carefully. As discussed before, it may need to be fine tuned until a

reasonable value is found and no more adjustment is needed. In the sec-

ond step, the number of partitions should be selected appropriately so as

to achieve the asymptotically minimum running time. Finally, the combine

step should be as efficient as possible.

5.5 Selection: Finding the Median and the kth

Smallest Element

The median of a sequence of n sorted numbers A[1..n] is the “middle”

element. If n is odd, then the middle element is the (n+ 1)/2th element in

the sequence. If n is even, then there are two middle elements occurring at
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positions n/2 and n/2 + 1. In this case, we will choose the n/2th smallest

element. Thus, in both cases, the median is the �n/2�th smallest element.

A straightforward method of finding the median is to sort all elements

and pick the middle one. This takes Ω(n logn) time, as any comparison-

based sort process must spend at least this much in the worst case

(Theorem 11.2).

It turns out that the median, or in general the kth smallest element, in

a set of n elements can be found in optimal linear time. This problem is

also known as the selection problem. The basic idea is as follows. Suppose

after the divide step of every recursive call in a recursive algorithm, we

discard a constant fraction of the elements and recurse on the remaining

elements. Then, the size of the problem decreases geometrically. That is,

in each call, the size of the problem is reduced by a constant factor. For

concreteness, let us assume that an algorithm discards 1/3 of whatever

objects it is processing and recurses on the remaining 2/3. Then, the number

of elements becomes 2n/3 in the second call, 4n/9 in the third call, 8n/27

in the fourth call and so on. Now, suppose that in each call, the algorithm

does not spend more than a constant time f̧or each element. Then, the

overall time spent on processing all elements gives rise to the geometric

series

cn+ (2/3)cn+ (2/3)2cn+ · · ·+ (2/3)jcn+ · · · ,

where c is some appropriately chosen constant. By Eq. (A.12), this quantity

is less than

∞∑
j=0

cn(2/3)j = 3cn = Θ(n).

This is exactly what is done in the selection algorithm. Algorithm

select shown below for finding the kth smallest element behaves in the

same way. First, if the number of elements is less than 44, a predefined

threshold, then the algorithm uses a straightforward method to compute

the kth smallest element. The choice of this threshold will be apparent later

when we analyze the algorithm. The next step partitions the elements into

�n/5� groups of five elements each. If n is not a multiple of 5, the remain-

ing elements are excluded, and this should not affect the performance of

the algorithm. Each group is sorted and its median, the third element, is

extracted. Next, the median of these medians, denoted bymm, is computed



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch05 page 158

158 Algorithms: Design Techniques and Analysis

recursively. Step 6 of the algorithm partitions the elements in A into three

arrays:A1, A2 and A3, which, respectively, contain those elements less than,

equal to and greater than mm. Finally, in Step 7, it is determined in which

of the three arrays the kth smallest element occurs, and depending on the

outcome of this test, the algorithm either returns the kth smallest element

or recurses on either A1 or A3.

Algorithm 5.4 select
Input: An array A[1..n] of n elements and an integer k, 1 ≤ k ≤ n.

Output: The kth smallest element in A.

1. select(A, k)

Algorithm select(A, k)

1. n← |A|
2. if n < 44 then sort A and return (A[k])
3. Let q = �n/5�. Divide A into q groups of 5 elements each. If 5 does not

divide p, then discard the remaining elements.
4. Sort each of the q groups individually and extract its median. Let the set

of medians be M .
5. mm← select(M, �q/2�) {mm is the median of medians}
6. Partition A into three arrays:

A1 = {a | a < mm}
A2 = {a | a = mm}
A3 = {a | a > mm}

7. case
|A1| ≥ k: return select(A1, k)
|A1|+ |A2| ≥ k: return mm
|A1|+ |A2| < k: return select(A3, k − |A1| − |A2|)

8. end case

Example 5.1 For the sake of this example, let us temporarily change

the threshold in the algorithm from 44 to a smaller number, say 6. Suppose

we want to find the median of the following 25 numbers: 8, 33, 17, 51, 57,

49, 35, 11, 25, 37, 14, 3, 2, 13, 52, 12, 6, 29, 32, 54, 5, 16, 22, 23, 7. Let

A[1..25] be this sequence of numbers and k = �25/2� = 13. We find the

13th smallest element in A as follows.

First, we divide the set of numbers into 5 groups of 5 elements each: (8,

33, 17, 51, 57), (49, 35, 11, 25, 37), (14, 3, 2, 13, 52), (12, 6, 29, 32, 54), (5, 16,

22, 23, 7). Next, we sort each group in increasing order: (8, 17, 33, 51, 57),

(11, 25, 35, 37, 49), (2, 3, 13, 14, 52), (6, 12, 29, 32, 54), (5, 7, 16, 22, 23).
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Now, we extract the median of each group and form the set of medians:

M = {33, 35, 13, 29, 16}. Next, we use the algorithm recursively to find

the median of medians in M : mm = 29. Now, we partition A into three

sequences: A1 = {8, 17, 11, 25, 14, 3, 2, 13, 12, 6, 5, 16, 22, 23, 7}, A2 = {29}
and A3 = {33, 51, 57, 49, 35, 37, 52, 32, 54}. Since 13 ≤ 15 = |A1|, the ele-

ments in A2 and A3 are discarded, and the 13th element must be in A1. We

repeat the same procedure above, so we set A = A1. We divide the elements

into 3 groups of 5 elements each: (8,17,11,25,14),(3,2,13,12,6),(5,16,22,23,7).

After sorting each group, we find the new set of medians: M = {14, 6, 16}.
Thus, the new median of medians mm is 14. Next, we partition A into

three sequences: A1 = {8, 11, 3, 2, 13, 12, 6, 5, 7}, A2 = {14} and A3 =

{17, 25, 16, 22, 23}. Since 13 > 10 = |A1|+ |A2|, we set A = A3 and find the

3rd element in A (3 = 13− 10). The algorithm will return A[3] = 22. Thus,

the median of the numbers in the given sequence is 22.

5.5.1 Analysis of the selection algorithm

It is not hard to see that Algorithm select correctly computes the kth

smallest element. Now, we analyze the running time of the algorithm.

Consider Fig. 5.2 in which a number of elements have been divided into

5-element groups with the elements in each group ordered from bottom to

top in increasing order.

increasing
    order

Set of group medians
sorted in  increasing
order from left to right

All elements here are
less than or equal to
the median of medians

All elements here are
greater than or equal to
the median of medians

mm

W

XY

Z

Fig. 5.2. Analysis of Algorithm select.



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch05 page 160

160 Algorithms: Design Techniques and Analysis

Furthermore, these groups have been aligned in such a way that their

medians are in increasing order from left to right. It is clear from the figure

that all elements enclosed within the rectangle labeled W are less than or

equal to mm, and all elements enclosed within the rectangle labeled X are

greater than or equal to mm. Let A′
1 denote the set of elements that are

less than or equal to mm and A′
3 the set of elements that are greater than

or equal to mm. In the algorithm, A1 is the set of elements that are strictly

less than mm and A3 is the set of elements that are strictly greater than

mm. Since A′
1 is at least as large as W (see Fig. 5.2), we have

|A′
1| ≥ 3��n/5�/2� ≥ 3

2
�n/5�.

Hence,

|A3| ≤ n− 3

2
�n/5� ≤ n− 3

2

(
n− 4

5

)
= n− 0.3n+ 1.2 = 0.7n+ 1.2.

By a symmetrical argument, we see that

|A′
3| ≥

3

2
�n/5� and |A1| ≤ 0.7n+ 1.2.

Thus, we have established upper bounds on the number of elements in

A1 and A3, i.e., the number of elements less than mm and the number of

elements greater than mm, which cannot exceed roughly 0.7n, a constant

fraction of n.

Now, we are in a position to estimate T (n), the running time of the

algorithm. Steps 1 and 2 of Algorithm select in the algorithm cost Θ(1)

time each. Step 3 costs Θ(n) time. Step 4 costs Θ(n) time, as sorting each

group costs a constant amount of time. In fact, sorting each group costs no

more than seven comparisons. The cost of Step 5 is T (�n/5�). Step 6 takes

Θ(n) time. By the above analysis, the cost of Step 7 is at most T (0.7n+1.2).

Now, we wish to express this ratio in terms of the floor function and get

rid of the constant 1.2. For this purpose, let us assume that 0.7n + 1.2 ≤
�0.75n�. Then, this inequality will be satisfied if 0.7n + 1.2 ≤ 0.75n − 1,

that is, if n ≥ 44. This is why we have set the threshold in the algorithm

to 44. We conclude that the cost of this step is at most T (�0.75n�) for
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n ≥ 44. This analysis implies the following recurrence for the running time

of Algorithm select:

T (n) ≤
{
c if n < 44

T (�n/5�) + T (�3n/4�) + cn if n ≥ 44,

for some constant c that is sufficiently large. Since (1/5) + (3/4) < 1, it

follows by Theorem 1.5 that the solution to this recurrence is T (n) = Θ(n).

In fact, by Example 1.39,

T (n) ≤ cn

1− 1/5− 3/4
= 20cn.

Note that each ratio > 0.7n results in a different threshold. For instance,

choosing 0.7n + 1.2 ≤ �0.71n� results in a threshold of about 220. The

following theorem summarizes the main result of this section.

Theorem 5.4 The kth smallest element in a set of n elements drawn

from a linearly ordered set can be found in Θ(n) time. In particular, the

median of n elements can be found in Θ(n) time.

It should be emphasized, however, that the multiplicative constant in

the time complexity of the algorithm is too large. In Sec. 13.5, we will

present a simple randomized selection algorithm with Θ(n) expected run-

ning time and a small multiplicative constant. Also, Algorithm select

can be rewritten without the need for the auxiliary arrays A1, A2 and A3

(Exercise 5.22).

5.6 Quicksort

In this section, we describe a very popular and efficient sorting algo-

rithm: quicksort. This sorting algorithm has an average running time

of Θ(n logn). One advantage of this algorithm over Algorithm mergesort

is that it sorts the elements in place, i.e., it does not need auxiliary storage

for the elements to be sorted . Before we describe the sorting algorithm, we

need the following partitioning algorithm, which is the basis for Algorithm

quicksort.
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5.6.1 A partitioning algorithm

Let A[low ..high ] be an array of n numbers and x = A[low ]. We consider

the problem of rearranging the elements in A so that all elements less

than or equal to x precede x which in turn precedes all elements greater

than x. After permuting the elements in the array, x will be A[w] for

some w, low ≤ w ≤ high . For example, if A = 5 3 9 2 7 1 8 , and

low = 1 and high = 7, then after rearranging the elements, we will have

A = 1 3 2 5 7 9 8 . Thus, after the elements have been rearranged,

w = 4. The action of rearrangement is also called splitting or partitioning

around x, which is called the pivot or splitting element.

Definition 5.1 We say that an element A[j] is in its proper position or

correct position if it is neither smaller than the elements in A[low ..j − 1]

nor larger than the elements in A[j + 1..high].

An important observation is the following:

Observation 5.2 After partitioning an array A using x ∈ A as a pivot, x

will be in its correct position.

In other words, if we sort the elements in A in nondecreasing order after

they have been rearranged, then we will still have A[w] = x. Note that

it is fairly simple to partition a given array A[low ..high ] if we are allowed

to use another array B[low ..high ] as an auxiliary storage. What we are

interested in is carrying out the partitioning without an auxiliary array. In

other words, we are interested in rearranging the elements of A in place.

There are several ways to achieve this from which we choose the method

described formally in Algorithm split.

Throughout the execution of the algorithm, we maintain two pointers

i and j that are initially set to low and low + 1, respectively. These two

pointers move from left to right so that after each iteration of the for loop,

we have (see Fig. 5.3(a)):

(1) A[low ] = x.

(2) A[k]≤ x for all k, low ≤ k ≤ i.
(3) A[k]> x for all k, i < k ≤ j.

After the algorithm scans all elements, it interchanges the pivot with

A[i], so that all elements smaller than or equal to the pivot are to its left
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Algorithm 5.5 split
Input: An array of elements A[low ..high].

Output: (1) A with its elements rearranged, if necessary, as described above.
(2) w, the new position of the splitting element A[low ].

1. i← low
2. x←A[low ]
3. for j← low + 1 to high
4. if A[j] ≤ x then
5. i← i+ 1
6. if i 	= j then interchange A[i] and A[j]
7. end if
8. end for
9. interchange A[low ] and A[i]

10. w← i
11. return A and w

(b) After the algorithm terminates.

(a) After each iteration of the for loop.

x

i j

?

low high

low high

x

w

x x

x x

Fig. 5.3. The behavior of Algorithm split.

and all elements larger than the pivot are to its right (see Fig. 5.3(b)).

Finally, the algorithm sets w, the position of the pivot, to i.

Example 5.2 To aid in the understanding of the algorithm, we apply it

to the input array 5 7 1 6 4 8 3 2 . The working of the algorithm

on this input is illustrated in Fig. 5.4. Figure 5.4.(a) shows the input array.

Here, low = 1 and high = 8, and the pivot is x = 5 = A[1]. Initially, i and

j point to elements A[1] and A[2], respectively (see Fig. 5.4(a)). To start

the partitioning, j is moved to the right, and since A[3] = 1 ≤ 5 = x,

i is incremented and then A[i] and A[j] are interchanged, as shown in

Fig. 5.4(b). Similarly, j is incremented twice and then A[3] and A[5] are

interchanged, as shown in Fig. 5.4(c). Next, j is moved to the right where an
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6 715 4 8 3 2

(c)

j

i

6715 4 83 2

(d)

j

i

6 715 4 83 2

(e)

j

i

6 71 54 832

(f)

j

i

6715 4 8 3 2

(b)

j

i

67 15 4 8 3 2

(a)

j

i

Fig. 5.4. Example of partitioning a sequence of numbers using Algorithm split.

element that is less than x, namelyA[7] = 3 is found. Again, i is incremented

and A[4] and A[7] are interchanged, as shown in Fig. 5.4(d). Once more j is

incremented and since A[8] = 2 is less than the pivot, i is incremented and

then A[5] and A[8] are interchanged (see Fig. 5.4(e)). Finally, before the

algorithm ends, the pivot is moved to its proper position by interchanging

A[i] with A[1], as shown in Fig. 5.4(f).

The following observation is easy to verify:

Observation 5.3 The number of element comparisons performed by Algo-

rithm split is exactly n− 1. Thus, its time complexity is Θ(n).

Finally, we note that the only extra space used by the algorithm is that

needed to hold its local variables. Therefore, the space complexity of the

algorithm is Θ(1).

5.6.2 The sorting algorithm

In its simplest form, Algorithm quicksort can be summarized as follows.

The elements A[low ..high ] to be sorted are rearranged using Algorithm

split so that the pivot element, which is always A[low ], occupies its correct

position A[w], and all elements that are less than or equal to A[w] occupy
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the positions A[low ..w − 1], while all elements that are greater than A[w]

occupy the positions A[w+1..high]. The subarrays A[low ..w−1] and A[w+

1..high ] are then recursively sorted to produce the entire sorted array. The

formal algorithm is shown as Algorithm quicksort.

Algorithm 5.6 quicksort
Input: An array A[1..n] of n elements.

Output: The elements in A sorted in nondecreasing order.

1. quicksort(A, 1, n)

Algorithm quicksort(A, low , high)

1. if low < high then
2. split(A[low ..high ], w) {w is the new position of A[low ]}
3. quicksort(A, low , w − 1)
4. quicksort(A,w + 1, high)
5. end if

The relationship of Algorithm split to Algorithm quicksort is sim-

ilar to the relationship of Algorithm merge to Algorithm mergesort;

both sorting algorithms consist of a series of calls to one of these two basic

algorithms, namely merge and split. However, there is a subtle difference

between the two from the algorithmic point of view: In Algorithm merge-

sort, merging the sorted sequences belongs to the combine step, whereas

splitting in Algorithm quicksort belongs to the divide step. Indeed, the

combine step in Algorithm quicksort is nonexistent.

Example 5.3 Suppose we want to sort the array 4 6 3 1

8 7 2 5 . The sequence of splitting the array and its subarrays is illus-

trated in Fig. 5.5. Each pair of arrays in the figure corresponds to an input

to and output of Algorithm split. Darkened boxes are used for the piv-

ots. For example, in the first call, Algorithm split was presented with

the above 8-element array. By Observation 5.2, after splitting the array, 4

will occupy its proper position, namely position 4. Consequently, the prob-

lem now reduces to sorting the two subarrays 2 3 1 and 8 7 6 5 .

Since calls are implemented in a preorder fashion, the second call induces

the third call on input 1 . Another call on only one element, namely 3

is executed. At this point, the flow of control backs up to the first call and

another call on the subarray 8 7 6 5 is initiated. Continuing this way,

the array is finally sorted after eight calls to Algorithm quicksort.
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1st call

2nd call

3rd call

4th call

6th call

5th call

7th call

8th call

4 6 3 1 8 7 2 5
2 3 1 4 8 7 6 5

2 3 1
31 2

1
1

1 2 3 4 5 6 7 8

8 7 6 5
5 7 6 8

6
6

3
3

5 7 6
5 7 6

7 6
6 7

Fig. 5.5. Example of the execution of Algorithm quicksort.

5.6.3 Analysis of the quicksort algorithm

In this section, we analyze the running time of Algorithm quicksort. We

will show that although it exhibits a running time of Θ(n2) in the worst

case, its average time complexity is indeed Θ(n logn). This together with

the fact that it sorts in place makes it very popular and comparable to

heapsort in practice. Although no auxiliary storage is required by the

algorithm to store the array elements, the space required by the algorithm

is O(n). This is because in every recursive call, the left and right indices of

the right part of the array to be sorted next, namely w+1 and high, must

be stored. It will be left as an exercise to show that the work space needed

by the algorithm varies between Θ(logn) and Θ(n) (Exercise 5.31).



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch05 page 167

Divide and Conquer 167

5.6.3.1 The worst case behavior

To find the running time of Algorithm quicksort in the worst case, we

only need to find one situation in which the algorithm exhibits the longest

running time for each value of n. Suppose that in every call to Algorithm

quicksort, it happens that the pivot, which is A[low ], is the smallest

number in the array. This means that Algorithm split will return w =

low and, consequently, there will be only one nontrivial recursive call, the

other call being a call on an empty array. Thus, if Algorithm quicksort is

initiated by the call quicksort(A, 1, n), the next two recursive calls will be

quicksort(A, 1, 0) and quicksort(A, 2, n), with the first being a trivial

call. It follows that the worst case happens if the input array is already

sorted in nondecreasing order! In this case the smallest element will always

be chosen as the pivot, and as a result, the following n calls to Algorithm

quicksort will take place:

quicksort(A, 1, n), quicksort(A, 2, n), . . . , quicksort(A, n, n).

These, in turn, initiate the following nontrivial calls to Algorithm split.

split(A[1..n], w), split(A[2..n], w), . . . , split(A[n..n], w).

Since the number of comparisons done by the splitting algorithm on

input of size j is j − 1 (Observation 5.3), it follows that the total number

of comparisons performed by Algorithm quicksort in the worst case is

(n− 1) + (n− 2) + · · ·+ 1 + 0 =
n(n− 1)

2
= Θ(n2).

It should be emphasized, however, that this extreme case is not the only

case that leads to a quadratic running time. If, for instance, the algorithm

always selects one of the smallest (or largest) k elements, for any constant

k that is sufficiently small relative to n, then the algorithm’s running time

is also quadratic.

The worst case running time can be improved to Θ(n logn) by always

selecting the median as the pivot in linear time, as shown in Sec. 5.5.

This is because the splitting of elements is highly balanced; in this

case, the two recursive calls have approximately the same number of
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elements. This results in the following recurrence for counting the number of

comparisons:

C(n) =

{
0 if n = 1

2C(n/2) + Θ(n) if n > 1,

whose solution is C(n) = Θ(n logn). However, the hidden constant in the

time complexity of the median finding algorithm is too high to be used

in conjunction with Algorithm quicksort. Thus, we have the following

theorem:

Theorem 5.5 The running time of Algorithm quicksort is Θ(n2) in

the worst case. If, however, the median is always chosen as the pivot, then

its time complexity is Θ(n logn).

It turns out, however, that Algorithm quicksort as originally stated,

is a fast sorting algorithm in practice (given that the elements to be sorted

are in random order); this is supported by its average time analysis, which

is discussed below. If the elements to be sorted are not in random order,

then choosing the pivot randomly, instead of always using A[low ], results

in a very efficient algorithm. This version of Algorithm quicksort will be

presented in Sec. 13.4.

5.6.3.2 The average case behavior

It is important to note that the above extreme cases are practically rare,

and in practice, the running time of Algorithm quicksort is fast. This

motivates the investigation of its performance on average. It turns out that,

on average, its time complexity is Θ(n logn), and not only that, but also the

multiplicative constant is fairly small. For simplicity, we will assume that

the input elements are distinct. Note that the behavior of the algorithm is

independent of the input values; what matters is their relative order. For

this reason, we may assume without loss of generality, that the elements to

be sorted are the first n positive integers 1, 2, . . . , n. When analyzing the

average behavior of an algorithm, it is important to assume some probability

distribution on the input. In order to simplify the analysis further, we will

assume that each permutation of the elements is equally likely. That is, we

will assume that each of the n! permutations of the numbers 1, 2, . . . , n is

equally likely. This ensures that each number in the array is equally likely
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to be the first element and thus chosen as the pivot, i.e., the probability

that any element of A will be picked as the pivot is 1/n. Let C(n) denote

the number of comparisons done by the algorithm on average on an input of

size n. From the assumptions stated (all elements are distinct and have the

same probability of being picked as the pivot), the average cost is computed

as follows. By Observation 5.3, Step 2 costs exactly n − 1 comparisons.

Steps 3 and 4 cost C(w−1) and C(n−w) comparisons, respectively. Hence,

the total number of comparisons is

C(n) = (n− 1) +
1

n

n∑
w=1

(C(w − 1) + C(n− w)). (5.1)

Since
n∑

w=1

C(n− w) = C(n− 1) + C(n− 2) + · · ·+ C(0) =

n∑
w=1

C(w − 1),

Eq. (5.1) can be simplified to

C(n) = (n− 1) +
2

n

n∑
w=1

C(w − 1). (5.2)

This recurrence seems to be complicated when compared with the recur-

rences we are used to, as the value of C(n) depends on all its history:

C(n − 1), C(n − 2), . . . , C(0). However, we can remove this dependence as

follows. First, we multiply Eq. (5.2) by n:

nC(n) = n(n− 1) + 2
n∑

w=1

C(w − 1). (5.3)

If we replace n by n− 1 in Eq. (5.3), we obtain

(n− 1)C(n− 1) = (n− 1)(n− 2) + 2

n−1∑
w=1

C(w − 1). (5.4)

Subtracting Eq. (5.4) from Eq. (5.3) and rearranging terms yields

C(n)

n+ 1
=
C(n− 1)

n
+

2(n− 1)

n(n+ 1)
. (5.5)

Now, we change to a new variable D by letting

D(n) =
C(n)

n+ 1
.
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In terms of the new variable D, Eq. (5.5) can be rewritten as

D(n) = D(n− 1) +
2(n− 1)

n(n+ 1)
, D(1) = 0. (5.6)

Clearly, the solution of Eq. (5.6) is

D(n) = 2

n∑
j=1

j − 1

j(j + 1)
.

We simplify this expression as follows:

2

n∑
j=1

j − 1

j(j + 1)
= 2

n∑
j=1

2

(j + 1)
− 2

n∑
j=1

1

j

= 4

n+1∑
j=2

1

j
− 2

n∑
j=1

1

j

= 2
n∑

j=1

1

j
− 4n

n+ 1

= 2 lnn−Θ(1) (Eq. (A.16))

=
2

log e
logn−Θ(1)

≈ 1.44logn.

Consequently,

C(n) = (n+ 1)D(n) ≈ 1.44n logn.

We have, in effect, proven the following theorem.

Theorem 5.6 The average number of comparisons performed by Algo-

rithm quicksort to sort an array of n elements is Θ(n logn).

5.6.4 Comparison of sorting algorithms

Table 5.1 gives the output of a sorting experiment for the average number

of comparisons of five sorting algorithms using values of n between 500 and

5000.

The numbers under each sorting algorithm are the counts of the number

of comparisons performed by the respective algorithm. From the table, we
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Table 5.1. Comparison of sorting algorithms.

n selectionsort insertionsort bottomupsort mergesort quicksort

500 124750 62747 3852 3852 6291
1000 499500 261260 8682 8704 15693
1500 1124250 566627 14085 13984 28172
2000 1999000 1000488 19393 19426 34020
2500 3123750 1564522 25951 25111 52513
3000 4498500 2251112 31241 30930 55397
3500 6123250 3088971 37102 36762 67131
4000 7998000 4042842 42882 42859 79432
4500 10122750 5103513 51615 49071 98635
5000 12497500 6180358 56888 55280 106178

can see that the average number of comparisons performed by Algorithm

quicksort is almost double that of mergesort and bottomupsort.

5.7 Quickselect

Consider Algorithm select, which was presented in Sec. 5.5. We have

shown that the algorithm’s running time is Θ(n) with a large multiplica-

tive constant that makes the algorithm impractical, especially for small and

moderate values of n. In this section, we present a simple and fast algorithm

for selection. Its running time is Θ(n) on average with a small multiplica-

tive constant, although it exhibits an O(n2) behavior in the worst case.

The algorithm behaves like the binary search algorithm in the sense that

it keeps discarding portions of the input until the desired kth smallest ele-

ment is found. A precise description of the algorithm is given in Algorithm

quickselect.

To improve the performance of the algorithm, instead of selecting the

pivot as A[1], a sample of the input elements is chosen and their median is

computed. In the median-of-three heuristic, the median of three elements

(e.g., the first, middle and last elements; see Exercise 5.27) is found and

set as the pivot. If the size of the sample grows with n and is o(n), then

the average number of comparisons to select an item of random rank is

2n + o(n). By analyzing the lower-order terms, it can be shown that the

optimal sample size is Θ(
√
n). This analysis pertaining to selecting the pivot

also applies to Algorithm quicksort.
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Algorithm 5.7 quickselect
Input: An array A[1..n] of n elements and an integer k, 1 ≤ k ≤ n.

Output: The kth smallest element in A.

1. qselect(A, k)

Algorithm qselect(A, k)

1. v←A[1]
2. Partition A into three arrays:

A1 = {a | a < v}
A2 = {a | a = v}
A3 = {a | a > v}

3. case
|A1| ≥ k: return qselect(A1, k)
|A1|+ |A2| ≥ k: return v
|A1|+ |A2| < k: return qselect(A3, k − |A1| − |A2|)

4. end case

5.8 Multiselection

Let A[1..n] be an array of n elements drawn from a linearly ordered set, and

let K[1..r], 1 ≤ r ≤ n, be a sorted array of r positive integers between 1

and n, that is an array of ranks. The multiselection problem is to select the

K[i]th smallest element in A for all values of i, 1 ≤ i ≤ r. For simplicity, we

will assume that the elements in A are distinct. To make the presentation

simple, we will assume that the elements are represented by the sequence

A = 〈a1, a2, . . . , an〉 and the ranks are represented by the sorted sequence

K = 〈k1, k2, . . . , kr〉. If r = 1, then we have the selection problem. On the

other hand, if r = n, then the problem is tantamount to the problem of

sorting.

The algorithm for multiselection, which we will refer to as multi-

select, is straightforward. Let the middle rank be k = k�r/2�. Use

Algorithm select to find and output the kth smallest element a. Next,

partition A into two subsequences A1 and A2 of elements, respectively,

smaller than and larger than a. Let K1 = 〈k1, k2, . . . , k�r/2�−1〉 and K2 =

〈k�r/2�+1−k, k�r/2�+2−k, . . . , kr−k〉. Finally, make two recursive calls: One

with A1 and K1 and another with A2 and K2. A less informal description

of the algorithm is shown below.

In Step 4, select is the Θ(n) time algorithm for selection pre-

sented in Sec. 5.5. Obviously, Algorithm multiselect solves the
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Algorithm 5.8 multiselect
Input: A sequence A = 〈a1, a2, . . . , an〉 of n elements and a sorted sequence

of r ranks K = 〈k1, k2, . . . , kr〉.
Output: The kith smallest element in A, 1 ≤ i ≤ r.

1. multiselect(A,K)

Algorithm multiselect(A,K)

1. r← |K|
2. If r > 0 then
3. Set k = k�r/2�.
4. Use Algorithm select to find a, the kth smallest element in A.
5. Output a.
6. Let A1 = 〈ai | ai < a〉 and A2 = 〈ai | ai > a〉.
7. Let K1 = 〈k1, k2, . . . , k�r/2�−1〉 and

K2 = 〈k�r/2�+1 − k, k�r/2�+2 − k, . . . , kr − k〉.
8. multiselect(A1, K1).
9. multiselect(A2, K2).

10. end if

O(n)

O(n)

O(n)

O(n)

⎡log r⎤

Fig. 5.6. Recursion tree for multiselection.

multiselection problem. We now analyze its time complexity. Consider the

recursion tree depicted in Fig. 5.6. The root of the tree corresponds to

the main call, and its two children correspond to the first two recursive

calls. The rest of the nodes correspond to the remaining recursive calls.

In particular, the leaves represent calls in which there is only one rank.

The bulk of the work done in the root node is that for executing Algo-

rithm select on an input of size n, partitioning the elements into A1

and A2 and dividing K into K1 and K2. Obviously, this takes O(n) time,

as Algorithm select runs in time O(n). Similarly, the next two recur-

sive calls execute Algorithm select on inputs of sizes n1 and n2, where

n1+n2 = n−1. These two recursive calls plus partitioning A and K require
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O(n1)+O(n2) = O(n) time. In each subsequent level of the tree, Algorithm

select is called a number of times using a total of less than n elements,

for a total time of O(n). The total time needed for partitioning in each

level is O(n). Hence, the time needed in each level of the tree is O(n). But

the number of levels in the recursion tree is equal to �log r�, assuming that

r > 1. It follows that the overall running time of Algorithm multiselect

is O(n log r).

As to the lower bound for multiselection, suppose that it is o(n log r).

Then, by letting r = n, we would be able to sort n elements in o(n logn)

time, contradicting the Ω(n logn) lower bound for comparison-based sort-

ing (see Sec. 11.3.2 and Theorem 11.2). It follows that the multiselection

problem is Ω(n log r), and hence the algorithm given above runs in time

Θ(n log r) and is optimal.

5.9 Multiplication of Large Integers

We have assumed in the beginning that multiplication of integers whose size

is fixed costs a unit amount of time. This is no longer valid when multiplying

two integers of arbitrary length. As explained in Sec. 1.14, the input to an

algorithm dealing with numbers of variable size is usually measured in the

number of bits or, equivalently, digits. Let u and v be two n-bit integers. The

traditional multiplication algorithm requires Θ(n2) digit multiplications to

compute the product of u and v. Using the divide-and-conquer technique,

this bound can be reduced significantly as follows. For simplicity, assume

that n is a power of 2.

Each integer is divided into two parts of n/2 bits each. Then, u and v

can be rewritten as u = w2n/2 + x and v = y2n/2 + z (see Fig. 5.7).

The product of u and v can be computed as

uv = (w2n/2 + x)(y2n/2 + z) = wy2n + (wz + xy)2n/2 + xz. (5.7)

u = w2n/2 + x : w x

v = y2n/2 + z : y z

Fig. 5.7. Multiplication of two large integers.



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch05 page 175

Divide and Conquer 175

Note that multiplying by 2n amounts to simply shifting by n bits to the left,

which takes Θ(n) time. Thus, in this formula, there are four multiplications

and three additions. This implies the following recurrence:

T (n) =

{
d if n = 1

4T (n/2) + bn if n > 1,

for some constants b and d > 0. The solution to this recurrence is, by

Theorem 1.3, T (n) = Θ(n2).

Now, consider computing wz + xy using the identity

wz + xy = (w + x)(y + z)− wy − xz. (5.8)

Since wy and xz need not be computed twice (they are computed in

Eq. (5.7)), combining Eqs. (5.7) and (5.8) results in only three multipli-

cations, namely

uv = wy2n + ((w + x)(y + z)− wy − xz)2n/2 + xz.

Thus, multiplying u and v reduces to three multiplications of integers of

size n/2 and six additions and subtractions. These additions cost Θ(n) time.

This method yields the following recurrence:

T (n) =

{
d if n = 1

3T (n/2) + bn if n > 1,

for some appropriately chosen constants b and d > 0. Again, by Theorem 1.3,

T (n) = Θ(nlog 3) = O(n1.59),

a remarkable improvement on the traditional method.

5.10 Matrix Multiplication

Let A and B be two n × n matrices. We wish to compute their product

C = AB. In this section, we show how to apply the divide-and-conquer

strategy to this problem to obtain an efficient algorithm.
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5.10.1 The traditional algorithm

In the traditional method, C is computed using the formula

C(i, j) =
n∑

k=1

A(i, k)B(k, j).

It can be easily shown that this algorithm requires n3 multiplications and

n3−n2 additions (Problem 5.17). This results in a time complexity of Θ(n3).

5.10.2 Strassen’s algorithm

This algorithm has a o(n3) time complexity, i.e., its running time is asymp-

totically less than n3. This is a remarkable improvement on the traditional

algorithm. The idea behind this algorithm consists in reducing the num-

ber of multiplications at the expense of increasing the number of additions

and subtractions. In short, this algorithm uses seven multiplications and 18

additions of n/2× n/2 matrices.

Let

A =

(
a11 a12

a21 a22

)
and B =

(
b11 b12

b21 b22

)

be two 2× 2 matrices. To compute the matrix product

C =

(
c11 c12

c21 c22

)
=

(
a11 a12

a21 a22

)(
b11 b12

b21 b22

)
,

we first compute the following products:

d1 = (a11 + a22)(b11 + b22),

d2 = (a21 + a22)b11,

d3 = a11(b12 − b22),
d4 = a22(b21 − b11),
d5 = (a11 + a12)b22,

d6 = (a21 − a11)(b11 + b12),

d7 = (a12 − a22)(b21 + b22).
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Next, we compute C from the equation

C =

(
d1 + d4 − d5 + d7 d3 + d5

d2 + d4 d1 + d3 − d2 + d6

)
.

Since commutativity of scalar products is not used here, the above for-

mula holds for matrices as well. So, the di’s are in general n/2×n/2matrices.

5.10.2.1 Time complexity

The number of additions used is 18 and the number of multiplications is

seven. In order to count the number of scalar operations, let a andm denote

the costs of scalar addition and multiplication, respectively. If n = 1, the

total cost is just m since we have only one scalar multiplication. Thus, the

total cost of multiplying two n× n matrices is governed by the recurrence

T (n) =

{
m if n = 1

7T (n/2) + 18(n/2)2a if n ≥ 2,

or

T (n) =

{
m if n = 1

7T (n/2) + (9a/2)n2 if n ≥ 2.

Assuming that n is a power of 2, then by Lemma 1.1,

T (n) =

(
m+

(9a/2)22

7− 22

)
nlog 7 −

(
(9a/2)22

7− 22

)
n2

= mnlog 7 + 6anlog 7 − 6an2.

That is, the running time is Θ(nlog 7) = O(n2.81).

5.10.3 Comparison of the two algorithms

In the above derivations, the coefficient of a is the number of additions

and the coefficient of m is the number of multiplications. Strassen’s algo-

rithm significantly reduces the total number of multiplications, which are

more costly than additions. Table 5.2 compares the number of arithmetic

operations performed by the two algorithms.

Table 5.3 compares Strassen’s algorithm with the traditional algorithm

for some values of n.
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Table 5.2. The number of arithmetic operations done by the
two algorithms.

Multiplications Additions Complexity

Traditional alg. n3 n3 − n2 Θ(n3)
Strassen’s alg. nlog 7 6nlog 7 − 6n2 Θ(nlog 7)

Table 5.3. Comparison between Strassen’s algorithm and
the traditional algorithm.

n Multiplications Additions

Traditional alg. 100 1,000,000 990,000
Strassen’s alg. 100 411,822 2,470,334
Traditional alg. 1000 1,000,000,000 999,000,000
Strassen’s alg. 1000 264,280,285 1,579,681,709
Traditional alg. 10,000 1012 9.99 × 1012

Strassen’s alg. 10,000 0.169 × 1012 1012

5.11 The Closest Pair Problem

Let S be a set of n points in a plane. In this section, we consider the problem

of finding a pair of points p and q in S whose mutual distance is minimum.

In other words, we want to find two points p1 = (x1, y1) and p2 = (x2, y2)

in S with the property that the distance between them defined by

d(p1, p2) =
√
(x1 − x2)2 + (y1 − y2)2

is minimum among all pairs of points in S. Here, d(p1, p2) is referred to as

the Euclidean distance between p1 and p2. The brute-force algorithm simply

examines all the possible n(n − 1)/2 distances and returns that pair with

the smallest separation. In this section, we describe a Θ(n logn) time algo-

rithm to solve the closest pair problem using the divide-and-conquer design

technique. Instead of finding that pair which realizes the minimum distance,

the algorithm to be developed will only return the distance between them.

Modifying the algorithm to return that pair as well is easy.

The general outline of the algorithm can be summarized as follows.

The first step in the algorithm is to sort the points in S by increasing
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x-coordinate. This sorting step is done only once throughout the execution

of the algorithm. Next, the point set S is divided about a vertical line L

into two subsets Sl and Sr such that |Sl| = �|S|/2� and |Sr| = �|S|/2�.
Let L be the vertical line passing by the x-coordinate of S[�n/2�]. Thus,
all points in Sl are on or to the left of L, and all points in Sr are on or to

the right of L. Now, recursively, the minimum separations δl and δr of the

two subsets Sl and Sr, respectively, are computed. For the combine step,

the smallest separation δ′ between a point in Sl and a point in Sr is also

computed. Finally, the desired solution is the minimum of δl, δr and δ′.
As in most divide-and-conquer algorithms, most of the work comes

from the combine step. At this point, it is not obvious how to implement this

step. The crux of this step is in computing δ′. The näıve method which com-

putes the distance between each point in Sl and each point in Sr requires

Ω(n2) in the worst case, and hence an efficient approach to implement this

step must be found.

Let δ = min{δl, δr}. If the closest pair consists of some point pl in Sl

and some point pr in Sr, then pl and pr must be within distance δ of the

dividing line L. Thus, if we let S′
l and S

′
r denote, respectively, the points in

Sl and in Sr within distance δ of L, then pl must be in S′
l and pr must be

in S′
r (see Fig. 5.8).

Again, comparing each point in S′
l with each point in S′

r requires Ω(n2)

in the worst case, since we may have S′
l = Sl and S′

r = Sr. The crucial

observation is that not all these O(n2) comparisons are indeed necessary;

we only need to compare each point p in Sl, say, with those within distance

δ. A close inspection of Fig. 5.8 reveals that the points lying within the two

L

Fig. 5.8. Illustration of the combine step.
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L

T

Fig. 5.9. Further illustration of the combine step.

strips of width δ around L have a special structure. Suppose that δ′ ≤ δ.

Then, there exist two points pl ∈ S′
l and pr ∈ S′

r such that d(pl, pr) =

δ′. It follows that the vertical distance between pl and pr is at most δ.

Furthermore, since pl ∈ S′
l and pr ∈ S′

r, these two points are inside or on

the boundary of a δ× 2δ rectangle centered around the vertical line L (see

Fig. 5.9).

Let T be the set of points within the two vertical strips. Referring again

to Fig. 5.9, if the distance between any two points in the δ × 2δ rectangle

must be at most δ, then the rectangle can accommodate at most eight

points: at most four points from Sl and at most four points from Sr. The

maximum number is attained when one point from Sl coincides with one

point from Sr at the intersection of L with the top of the rectangle, and

one point from Sl coincides with one point from Sr at the intersection of

L with the bottom of the rectangle. This implies the following important

observation.

Observation 5.4 Each point in T needs to be compared with at most

seven points in T .

The above observation gives only an upper bound on the number of

points to be compared with each point p in T but does not give any infor-

mation as to which points are to be compared with p. A moment of reflec-

tion shows that p must be compared with its neighbors in T . To find such

neighbors, we resort to sorting the points in T by increasing y-coordinate.

After that, it is not hard to see that we only need to compare each point
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p in T with those seven points following p in increasing order of their

y-coordinates.

5.11.1 Time complexity

Let us analyze the running time of the algorithm developed so far. Sorting

the points in S requires O(n log n) time. Dividing the points into Sl and Sr

takes Θ(1) time, as the points are sorted. As to the combine step, we see

that it consists of sorting the points in T and comparing each point with

at most seven other points. Sorting costs |T | log |T | = O(n log n), and there

are at most 7|T | comparisons. Thus, the combine step takes Θ(n logn) time

in the worst case, and hence the recurrence relation for the performance of

the algorithm becomes

T (n) =

{
c if n ≤ 3

2T (n/2) +O(n log n) if n > 3,

for some nonnegative constant c since if the number of points is 2 or 3, the

minimum separation can be calculated in a straightforward method. By

Theorem 1.2, the solution to the above recurrence is T (n) = O(n log2 n),

which is not the desired bound.

We observe that if we reduce the time taken by the combine step to

Θ(n), then the time complexity of the algorithm will be Θ(n logn). This

can be achieved by embedding Algorithm mergesort in the algorithm

for finding the closest pair for sorting the points by their y-coordinates.

After dividing the points into the two halves Sl and Sr, these two sub-

sets are sorted recursively and stored in Yl and Yr, which are merged

to obtain Y . This approach reduces the time required by the combine

step to Θ(n), as sorting in every recursive invocation is now replaced

by merging, which costs only Θ(|Y |) time. Thus, the recurrence relation

reduces to

T (n) =

{
c if n ≤ 3

2T (n/2) + Θ(n) if n > 3,

for some nonnegative constant c. The solution to this familiar recurrence

is the desired Θ(n logn) bound. The above discussion implies Algorithm

closestpair. In the algorithm, for a point p, x(p) denotes the x-coordinate

of point p. Also, Sl = S[low ..mid ] and Sr = S[mid + 1..high].
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Algorithm 5.9 closestpair
Input: A set S of n points in the plane.

Output: The minimum separation realized by two points in S.

1. Sort the points in S in nondecreasing order of their x-coordinates.
2. (δ, Y )← cp(1, n)
3. return δ

Algorithm cp(low , high)

1. if high − low + 1 ≤ 3 then
2. compute δ by a straightforward method.
3. Let Y contain the points in nondecreasing order of y-coordinates.
4. else
5. mid←�(low + high)/2�
6. x0 ← x(S[mid ])
7. (δl, Yl)← cp(low ,mid)
8. (δr, Yr)← cp(mid + 1, high)
9. δ← min{δl, δr}

10. Y ← Merge Yl with Yr in nondecreasing order of y-coordinates.
11. k← 0
12. for i← 1 to |Y | {Extract T from Y }
13. if |x(Y [i]) − x0| ≤ δ then
14. k← k + 1
15. T [k]← Y [i]
16. end if
17. end for {k is the size of T}
18. δ′← 2δ {Initialize δ′ to any number greater than δ}
19. for i← 1 to k − 1 {Compute δ′}
20. for j← i+ 1 to min{i+ 7, k}
21. if d(T [i], T [j]) < δ′ then δ′← d(T [i], T [j])
22. end for
23. end for
24. δ← min{δ, δ′}
25. end if
26. return (δ, Y )

The following theorem summarizes the main result. Its proof is embed-

ded in the description of the algorithm and the analysis of its running time.

Theorem 5.7 Given a set S of n points in the plane, Algorithm clos-

estpair finds the minimum separation between the pairs of points in S in

Θ(n logn) time.
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5.12 A Dominance Problem

Let S be a set of n points in the plane. A point p ∈ S is dominated by

another point q ∈ S, denoted by p ≺ q, if x(p) < x(q) and y(p) < y(q). In

this section, we consider the problem of finding for each point p ∈ S the

number of points in S dominated by p.

Assume that no two points have the same x-coordinate (see Exer-

cise 5.42). Let count(p) denote the number of points dominated by p.

The first step in the algorithm is to sort the points in S by increasing

x-coordinate. This sorting step is done only once throughout the execution

of the algorithm. Next, the point set S is divided about a vertical line L

into two subsets Sl and Sr such that |Sl| = �|S|/2� and |Sr| = �|S|/2�.
All points in Sl are on or to the left of L, and all points in Sr are to the

right of L. Now, recursively, solve the problem for the two halves Sl and

Sr. For the combine step, assume the points in Sl and Sr are sorted by

y-coordinates. Initialize d← 0. Sweep a horizontal line from the bottom to

the top, stopping at every point p ∈ Sl ∪ Sr. If p ∈ Sl, then increment

d← d+ 1, else assign count(p) = count(p) + d.

To keep the points sorted by y-coordinate, we merge the points in Sl

and Sr, assuming that they are both sorted by y-coordinate. This can be

achieved by embedding Algorithm mergesort in the algorithm for sorting

the points by their y-coordinates. After dividing the points into the two

halves Sl and Sr, these two subsets are sorted recursively and stored in

Yl and Yr, which are merged to obtain Y . This approach reduces the time

required by the combine step to Θ(n), as sorting in every recursive invoca-

tion is now replaced by merging, which costs only Θ(|Y |) time. Thus, the

recurrence relation is

T (n) =

{
c if n = 1

2T (n/2) + Θ(n) if n > 1,

for some nonnegative constant c. The solution to this familiar recurrence

is the desired Θ(n logn) bound. The above discussion implies Algorithm

dominance.
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Algorithm 5.10 dominance
Input: A set S of n points in the plane.

Output: The number of points in S dominated by each point p.

1. Sort the points in S in nondecreasing order of their x-coordinates.
2. dom(S)
3. return count(p) for all points p ∈ S

Algorithm dom(S)

1. if S consists of one point p then count(p)← 0
2. else
3. Let L be the vertical line passing by the median point.
4. Divide S into two parts Sl and Sr such that the points

in Sl are on or to the left of L, and all points in Sr are to the
right of L.

5. dom(Sl); dom(Sr)
6. d← 0
7. Sweep a horizontal line bottom-up starting from the point

in S with lowest y-coordinate:
8. for each point p ∈ S
9. if p ∈ Sl then d← d+ 1

10. else count(p) = count(p) + d
11. end if
12. end if

5.13 Practice Problems

5.1. Give a divide-and-conquer version of Algorithm linearsearch given

in Sec. 1.3. The algorithm should start by dividing the input elements

into approximately two halves. How much work space is required by

the algorithm?

5.2. Give a divide-and-conquer algorithm to find the sum of all numbers

in an arrayA[1..n] of integers. The algorithm should start by dividing

the input elements into approximately two halves. How much work

space is required by the algorithm?

5.3. Give a divide-and-conquer algorithm to find the average of all num-

bers in an array A[1..n] of integers, where n is a power of 2. The algo-

rithm should start by dividing the input elements into two halves.

How much work space is required by the algorithm?

5.4. Let A[1..n] be an array of n integers and x an integer. Derive a

divide-and-conquer algorithm to find the frequency of x in A, i.e., the
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number of times x appears in A. What is the time complexity of your

algorithm?

5.5. Consider Algorithm slowminmax which is obtained from Algorithm

minmax by replacing the test

if high − low = 1

by the test

if high = low

and making some other changes in the algorithm accordingly. Thus,

in Algorithm slowminmax, the recursion is halted when the size

of the input array is 1. Count the number of comparisons required

by this algorithm to find the minimum and maximum of an array

A[1..n], where n is a power of 2. Explain why the number of compar-

isons in this algorithm is greater than that in Algorithm minmax.

(Hint : In this case, the initial condition is C(1) = 0).

5.6. Use Algorithm mergesort to sort the array

(a) 32 15 14 15 11 17 25 51 .

(b) 12 25 17 19 51 32 45 18 22 37 15 .

5.7. Show that the space complexity of Algorithm mergesort is Θ(n).

5.8. Carry out Algorithm select on the array below to return the 18th

smallest element in the array. Assume that if the number of elements

in the array is less than six elements, then you can sort and return

the sought element.

8, 36, 17, 51, 54, 40, 35, 11, 9, 37, 12, 3, 2, 13, 15, 12, 6, 5, 8, 13, 5,

34, 37, 36, 7, 4, 10, 14, 16

5.9. Repeat Problem 5.8 using Algorithm quickselect in Sec. 5.7.

5.10. Repeat Problem 5.9 using the median-of-three heuristic stated in

Sec. 5.7.

5.11. Repeat Problem 5.9 using the median of the sample consisting of the

first �√n� elements as the pivot.

5.12. Apply Algorithm split on the array 27 13 31 18 45 16 17 53 .

5.13. Use Algorithm quicksort to sort the array

(a) 24 33 24 45 12 12 24 12 .

(b) 3 4 5 6 7 .

(c) 23 32 27 18 45 11 63 12 19 16 25 52 14 .

5.14. Explain the behavior of Algorithm quicksort when the input is

already sorted in decreasing order. You may assume that the input

elements are all distinct.
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5.15. Repeat Problem 5.14 for Algorithm quickselect.

5.16. Write out an algorithm for the traditional algorithm for matrix mul-

tiplication described in Sec. 5.10.

5.17. Show that the traditional algorithm for matrix multiplication

described in Sec. 5.10 requires n3 multiplications and n3 − n2 addi-

tions (see Problem 5.16).

5.14 Exercises

5.1. Give a divide-and-conquer algorithm that returns a pair (x, y), where

x is the largest number and y is the second largest number in an array

of n numbers. Derive the time complexity of your algorithm.

5.2. Repeat Exercise 5.1 for finding the largest and second largest ele-

ments using n− 2 + logn comparisons. (Hint : See Sec. 11.3.4.2).

5.3. Modify Algorithm minmax so that it works when n is not a power

of 2. Is the number of comparisons performed by the new algorithm

�3n/2− 2� even if n is not a power of 2? Prove your answer.

5.4. Derive an iterative minimax algorithm that finds both the minimum

and maximum in a set of n elements using only 3n/2−2 comparisons,

where n is a power of 2.

5.5. Modify Algorithm binarysearchrec so that it searches for two

keys. In other words, given an array A[1..n] of n elements and two

elements x1 and x2, the algorithm should return two integers k1 and

k2 representing the positions of x1 and x2, respectively, in A.

5.6. Design a search algorithm that divides a sorted array into one

third and two thirds instead of two halves as in Algorithm bina-

rysearchrec. Analyze the time complexity of the algorithm.

5.7. Modify Algorithm binarysearchrec so that it divides the sorted

array into three equal parts instead of two as in Algorithm binary-

searchrec. In each iteration, the algorithm should test the element

x to be searched for against two entries in the array. Analyze the

time complexity of the algorithm.
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5.8. Use mathematical induction to prove the correctness of Algorithm

mergesort. Assume that Algorithm merge works correctly.

5.9. It was shown in Sec. 5.3 that algorithms bottomupsort and

mergesort are very similar. Give an example of an array of numbers

in which

(a) Algorithm bottomupsort and Algorithm mergesort per-

form the same number of element comparisons.

(b) Algorithm bottomupsort performs more element compar-

isons than Algorithm mergesort.

(c) Algorithm bottomupsort performs fewer element compar-

isons than Algorithm mergesort.

5.10. Consider the following modification of Algorithm mergesort. The

algorithm first divides the input array A[low ..high ] into four parts

A1, A2, A3 and A4 instead of two. It then sorts each part recursively

and finally merges the four sorted parts to obtain the original array

in sorted order. Assume for simplicity that n is a power of 4.

(a) Write out the modified algorithm.

(b) Analyze its running time.

5.11. What will be the running time of the modified algorithm in Exer-

cise 5.10 if the input array is divided into k parts instead of 4? Here,

k is a fixed positive integer greater than 1.

5.12. Consider the following modification to Algorithm mergesort. We

apply the algorithm on the input array A[1..n] and continue the

recursive calls until the size of a subinstance becomes relatively small,

say m or less. At this point, we switch to Algorithm insertionsort

and apply it on the small instance. So, the first test of the modified

algorithm will look like the following:

if high − low + 1 ≤ m then insertionsort(A[low ..high ]).

What is the largest value of m in terms of n such that the running

time of the modified algorithm will still be Θ(n logn)? You may

assume for simplicity that n is a power of 2.

5.13. Use Algorithm select to find the kth smallest element in the list of

numbers given in Example 5.1, where

(a) k = 1. (b) k = 9. (c) k = 17. (d) k = 22. (e) k = 25.
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5.14. What will happen if in Algorithm select the true median of the

elements is chosen as the pivot instead of the median of medians?

Explain.

5.15. Let A[1..105] be a sorted array of 105 integers. Suppose we run Algo-

rithm select to find the 17th element in A. How many recursive calls

to Algorithm select in Algorithm select will there be? Explain your

answer clearly.

5.16. Explain the behavior of Algorithm select if the input array is

already sorted in nondecreasing order. Compare that to the behavior

of Algorithm binarysearchrec.

5.17. In Algorithm select, groups of size 5 are sorted in each invocation

of the algorithm. This means that finding an algorithm that sorts

a group of size 5 that uses the fewest number of comparisons is

important. Show that it is possible to sort five elements using only

seven comparisons.

5.18. One reason that Algorithm select is inefficient is that it does not

make full use of the comparisons that it makes: After it discards one

portion of the elements, it starts on the subproblem from scratch.

Give a precise count of the number of comparisons the algorithm

performs when presented with n elements. Note that it is possible to

sort five elements using only seven comparisons (see Exercise 5.17).

5.19. Based on the number of comparisons counted in Exercise 5.18, deter-

mine for what values of n one should use a straightforward sorting

method and extract the kth element directly.

5.20. Let g denote the size of each group in Algorithm select for some

positive integer g ≥ 3. Derive the running time of the algorithm in

terms of g. What happens when g is too large compared to the value

used in the algorithm, namely 5?

5.21. Which of the following group sizes 3, 4, 5, 7, 9, 11 guarantees Θ(n)

worst case performance for Algorithm select? Prove your answer

(see Exercise 5.20).
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5.22. Rewrite Algorithm select using Algorithm split to partition the

input array. Assume for simplicity that all input elements are dis-

tinct. What is the advantage of the modified algorithm?

5.23. Let A[1..n] and B[1..n] be two arrays of distinct integers sorted in

increasing order. Give an efficient algorithm to find the median of

the 2n elements in both A and B. What is the running time of your

algorithm?

5.24. Make use of the algorithm obtained in Exercise 5.23 to device a

divide-and-conquer algorithm for finding the median in an array

A[1..n]. What is the time complexity of your algorithm? (Hint: Make

use of Algorithm mergesort).

5.25. Consider the problem of finding all the first k smallest elements in an

array A[1..n] of n distinct elements. Here, k is not constant, i.e., it

is part of the input. We can solve this problem easily by sorting the

elements and returning A[1..k]. This, however, costs O(n log n) time.

Give a Θ(n) time algorithm for this problem. Note that running

Algorithm select k times costs Θ(kn) = O(n2) time, as k is not

constant.

5.26. Let f(n) be the number of element interchanges that Algorithm

split makes when presented with the input array A[1..n] exclud-

ing interchanging A[low ] with A[i].

(a) For what input arrays A[1..n] is f(n) = 0?

(b) What is the maximum value of f(n)? Explain when this maxi-

mum is achieved?

5.27. Modify Algorithm split so that it partitions the elements in

A[low ..high ] around x, where x is the median of {A[low ],

A[�(low + high)/2�], A[high ]}. Will this improve the running time

of Algorithm quicksort? Explain.

5.28. Algorithm split is used to partition an array A[low ..high ] around

A[low ]. Another algorithm to achieve the same result works as fol-

lows. The algorithm has two pointers i and j. Initially, i = low and
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j = high . Let the pivot be x = A[low ]. The pointers i and j move

from left to right and from right to left, respectively, until it is found

that A[i] > x and A[j] ≤ x. At this point, A[i] and A[j] are inter-

changed. This process continues until i ≥ j. Write out the complete

algorithm. What is the number of comparisons performed by the

algorithm?

5.29. Let A[1..n] be a sequence of integers. Give an algorithm to reorder the

elements in A so that all negative integers are positioned to the left

of all nonnegative integers. Your algorithm should run in time Θ(n).

5.30. Convert Algorithm quickselect into an iterative algorithm.

5.31. Show that the work space needed by Algorithm quicksort varies

between Θ(logn) and Θ(n). What is its average space complexity?

5.32. Explain the behavior of Algorithm quicksort when the input array

A[1..n] consists of n identical elements.

5.33. Give an iterative version of Algorithm quicksort.

5.34. Which of the following sorting algorithms are stable (see Exer-

cise 4.18)?

(a) heapsort (b) mergesort (c) quicksort

5.35. A sorting algorithm is called adaptive if its running time depends

not only on the number of elements n but also on their order. Which

of the following sorting algorithms are adaptive?

(a) selectionsort (b) insertionsort (c) bubblesort

(d) heapsort (e) bottomupsort (f) mergesort

(g) quicksort (h) radixsort

5.36. Let x = a+ bi and y = c+ di be two complex numbers. The product

xy can easily be calculated using four multiplications, that is, xy =

(ac − bd) + (ad + bc)i. Devise a method for computing the product

xy using only three multiplications.
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5.37. Explain how to modify Strassen’s algorithm for matrix multiplication

so that it can also be used with matrices whose size is not necessarily

a power of 2.

5.38. Let f(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1 be a polynomial of

degree n− 1, where n is a power of 2. Design a divide and conquer

algorithm to implement Horner’s rule to evaluate f(x) at the point

x = b. What is the time complexity of your algorithm?

5.39. Give a divide-and-conquer algorithm to solve the one-dimensional

closest pair problem: Given a set of n points on the x-axis, determine

the two points that are closest to each other. Your algorithm should

run in O(n log n) time.

5.40. Suppose we modify the algorithm for the closest pair problem so that

not each point in T is compared with seven points in T . Instead, every

point to the left of the vertical line L is compared with a number of

points to its right.

(a) What are the necessary modifications to the algorithm?

(b) How many points to the right of L have to be compared with

every point to its left? Explain.

5.41. Rewrite the algorithm for the closest pair problem without making

use of Algorithm mergesort. Instead, use a presorting step in which

the input is sorted by y-coordinates at the start of the algorithm

once and for all. The time complexity of your algorithm should be

Θ(n logn).

5.42. Modify Algorithm dominance in Sec. 5.12 to solve the more general

case, in which some points may lie on the same vertical line.

5.43. Give a divide-and-conquer algorithm for the dominance problem in

Sec. 5.12, which starts by dividing the input into four parts instead

of two (see Fig 5.10).

5.44. Design a divide-and-conquer algorithm to determine whether two

given binary trees T1 and T2 are identical.

5.45. Design a divide-and-conquer algorithm that computes the height of

a binary tree.
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BA

CD

Fig. 5.10. Problem 5.43.
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Chapter 6

Dynamic Programming

6.1 Introduction

In this chapter, we study a powerful algorithm design technique that is

widely used to solve combinatorial optimization problems. An algorithm

that employs this technique is not recursive by itself, but the underlying

solution of the problem is usually stated in the form of a recursive function.

Unlike the case in divide-and-conquer algorithms, immediate implementa-

tion of the recurrence results in identical recursive calls that are executed

more than once. For this reason, this technique resorts to evaluating the

recurrence in a bottom-up manner, saving intermediate results that are

used later on to compute the desired solution. This technique applies to

many combinatorial optimization problems to derive efficient algorithms.

It is also used to improve the time complexity of the brute-force methods

to solve some of the NP-hard problems (see Chapter 9). For example, the

traveling salesman problem can be solved in time O(n22n) using dynamic

programming, which is superior to the Θ(n!) bound of the obvious algo-

rithm that enumerates all possible tours. The two simple examples that

follow illustrate the essence of this design technique.

Example 6.1 One of the most popular examples used to introduce

recursion and induction is the problem of computing the Fibonacci

sequence:

f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8, f7 = 13, . . . .

193
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Each number in the sequence 2, 3, 5, 8, 13, . . . is the sum of the two preceding

numbers. Consider the inductive definition of this sequence:

f(n) =

{
1 if n = 1 or n = 2

f(n− 1) + f(n− 2) if n ≥ 3.

This definition suggests a recursive algorithm that looks like the following

(assuming that the input is always positive).

1. algorithm f (n)
2. if (n = 1) or (n = 2) then return 1
3. else return f(n− 1) + f(n− 2)

This recursive version has the advantages of being concise, easy to write

and debug and, most of all, its abstraction. It turns out that there is a rich

class of recursive algorithms and, in many instances, a complex algorithm

can be written succinctly using recursion. We have already encountered

in the previous chapters a number of efficient algorithms that possess the

merits of recursion. It should not be thought, however, that the recursive

algorithm given above for computing the Fibonacci sequence is an efficient

one. On the contrary, it is far from being efficient, as there are many dupli-

cate recursive calls to the algorithm. To see this, just expand the recurrence

a few times:

f(n) = f(n− 1) + f(n− 2)

= 2f(n− 2) + f(n− 3)

= 3f(n− 3) + 2f(n− 4)

= 5f(n− 4) + 3f(n− 5).

This leads to a huge number of identical calls. If we assume that comput-

ing f(1) or f(2) requires a unit amount of time, then the time complexity

of this algorithm can be stated as

T (n) =

{
1 if n = 1 or n = 2

T (n− 1) + T (n− 2) if n ≥ 3.
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Clearly, the solution to this recurrence is T (n) = f(n), i.e., the time

required to compute f(n) is f(n) itself. It is well known that f(n) = O(φn)

for large n, where φ = (1+
√
5)/2 ≈ 1.61803 is the golden ratio (see Exam-

ple A.20). In other words, the running time required to compute f(n) is

exponential in the value of n. An obvious approach that reduces the time

complexity drastically is to enumerate the sequence bottom-up starting from

f1 until fn is reached. This takes Θ(n) time and Θ(1) space, a substantial

improvement.

Example 6.2 As a similar example, consider computing the binomial

coefficient
( n
k

)
defined recursively as

(
n

k

)
=

⎧⎪⎨
⎪⎩
1 if k = 0 or k = n(
n− 1

k − 1

)
+

(
n− 1

k

)
if 0 < k < n.

Using the same argument as in Example 6.1, it can be shown that the

time complexity of computing
( n
k

)
using the above formula is proportional

to
( n
k

)
itself. The function (

n

k

)
=

n!

k!(n− k)!
grows rapidly. For example, by Stirling’s formula (Eq. (A.4) on page 673),

we have (assuming n is even)(
n

n/2

)
=

n!

((n/2)!)2
≈
√
2πn nn/en

πn(n/2)n/en
≥ 2n√

πn
.

An efficient computation of
( n
k

)
may proceed by constructing the

Pascal triangle row by row (see Fig. A.1) and stopping as soon as the

value of
( n
k

)
has been computed. The details will be left as an exercise

(Exercise 6.2).

6.2 The Longest Common Subsequence Problem

A simple problem that illustrates the principle of dynamic programming is

the following. Given two strings A and B of lengths n and m, respectively,
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over an alphabet Σ, determine the length of the longest subsequence that

is common to both A and B. Here, a subsequence of A = a1a2, . . . an is

a string of the form ai1ai2 , . . . aik , where each ij is between 1 and n and

1 ≤ i1 < i2 < · · · < ik ≤ n. For example, if Σ = {x, y, z}, A = zxyxyz

and B = xyyzx, then xyy is a subsequence of length 3 of both A and B.

However, it is not the longest common subsequence of A and B since the

string xyyz is also a common subsequence of length 4 of both A and B.

Since these two strings do not have a common subsequence of length greater

than 4, the length of the longest common subsequence of A and B is 4.

One way to solve this problem is to use the brute-force method:

enumerate all the 2n subsequences of A, and for each subsequence, deter-

mine if it is also a subsequence of B in Θ(m) time. Clearly, the running

time of this algorithm is Θ(m2n), which is exponential.

In order to make use of the dynamic programming technique, we first

find a recursive formula for the length of the longest common subsequence.

Let A = a1a2, . . . an and B = b1b2, . . . bm. Let L[i, j] denote the length of

a longest common subsequence of a1a2, . . . ai and b1b2, . . . bj. Note that i

or j may be zero, in which case one or both of a1a2, . . . ai and b1b2, . . . bj
may be the empty string. Naturally, if i = 0 or j = 0, then L[i, j] = 0. The

following observation is easy to prove:

Observation 6.1 Suppose that both i and j are greater than 0. Then,

• If ai = bj, L[i, j] = L[i− 1, j − 1] + 1.

• If ai �= bj, L[i, j] = max{L[i, j − 1], L[i− 1, j]}.

The following recurrence for computing the length of the longest com-

mon subsequence of A and B follows immediately from Observation 6.1:

L[i, j] =

⎧⎪⎨
⎪⎩

0 if i = 0 or j = 0

L[i− 1, j − 1] + 1 if i > 0, j > 0 and ai = bj

max{L[i, j − 1], L[i− 1, j]} if i > 0, j > 0 and ai �= bj .

6.2.1 The algorithm

Using the technique of dynamic programming to solve the longest common

subsequence problem is now straightforward. We use an (n+ 1)× (m+ 1)

table to compute the values of L[i, j] for each pair of values of i and j,
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0 ≤ i ≤ n and 0 ≤ j ≤ m. We only need to fill the table L[0..n, 0..m]

row by row using the above formula. The method is formally described in

Algorithm lcs.

Algorithm 6.1 lcs
Input: Two strings A and B of lengths n and m, respectively, over an alpha-

bet Σ.
Output: The length of the longest common subsequence of A and B.

1. for i← 0 to n
2. L[i, 0]← 0
3. end for
4. for j← 0 to m
5. L[0, j]← 0
6. end for
7. for i← 1 to n
8. for j← 1 to m
9. if ai = bj then L[i, j]← L[i− 1, j − 1] + 1

10. else L[i, j]← max{L[i, j − 1], L[i− 1, j]}
11. end if
12. end for
13. end for
14. return L[n,m]

Algorithm lcs can easily be modified so that it outputs the longest com-

mon subsequence. Clearly, the time complexity of the algorithm is exactly

the size of the table, Θ(nm), as filling each entry requires Θ(1) time. The

algorithm can easily be modified so that it requires only Θ(min{m,n})
space (Exercise 6.3). This implies the following theorem.

Theorem 6.1 An optimal solution to the longest common subsequence

problem can be found in Θ(nm) time and Θ(min{m,n}) space.
Example 6.3 Figure 6.1 shows the result of applying Algorithm lcs on

the instance A =“xyxxzxyzxy” and B =“zxzyyzxxyxxz”.

First, row 0 and column 0 are initialized to 0. Next, the entries are filled

row by row by executing Steps 9 and 10 exactly mn times. This generates

the rest of the table. As shown in the table, the length of a longest common

subsequence is 6. One possible common subsequence is the string “xyxxxz”

of length 6, which can be constructed from the entries in the table in bold

face.
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0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1
2 0 0 1 1 2 2 2 2 2 2 2 2 2
3 0 0 1 1 2 2 2 3 3 3 3 3 3
4 0 0 1 1 2 2 2 3 4 4 4 4 4
5 0 1 1 2 2 2 3 3 4 4 4 4 5
6 0 1 2 2 2 2 3 4 4 4 5 5 5
7 0 1 2 2 3 3 3 4 4 5 5 5 5
8 0 1 2 3 3 3 4 4 4 5 5 5 6
9 0 1 2 3 3 3 4 5 5 5 6 6 6
10 0 1 2 3 4 4 4 5 5 6 6 6 6

Fig. 6.1. An example of the longest common subsequence problem.

6.3 Matrix Chain Multiplication

In this section, we study in detail another simple problem that reveals the

essence of dynamic programming. Suppose we want to compute the product

M1M2M3 of three matricesM1,M2 andM3 of dimensions 2×10, 10×2 and
2× 10, respectively, using the standard method of matrix multiplication. If

we multiply M1 and M2 and then multiply the result by M3, the number

of scalar multiplications will be 2× 10× 2+ 2× 2× 10 = 80. If, instead, we

multiply M1 by the result of multiplying M2 and M3, then the number of

scalar multiplications becomes 10× 2× 10 + 2× 10× 10 = 400. Thus, car-

rying out the multiplication M1(M2M3) costs five times the multiplication

(M1M2)M3.

In general, the cost of multiplying a chain of n matrices M1M2 . . .Mn

depends on the order in which the n−1 multiplications are carried out. That

order which minimizes the number of scalar multiplications can be found

in many ways. Consider for example the brute-force method that tries to

compute the number of scalar multiplications of every possible order. For

instance, if we have four matrices M1,M2,M3 and M4, the algorithm will

try all the following five orderings:

(M1(M2(M3M4))),

(M1((M2M3)M4)),

((M1M2)(M3M4)),

((M1M2)M3)M4)),

((M1(M2M3))M4).
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In general, the number of orderings is equal to the number of ways to

place parentheses to multiply the n matrices in every possible way. Let

f(n) be the number of ways to fully parenthesize a product of n matrices.

Suppose we want to perform the multiplication

(M1M2 . . .Mk)× (Mk+1Mk+2 . . .Mn).

Then, there are f(k) ways to parenthesize the first k matrices. For each one

of the f(k) ways, there are f(n − k) ways to parenthesize the remaining

n − k matrices, for a total of f(k)f(n − k) ways. Since k can assume any

value between 1 and n− 1, the overall number of ways to parenthesize the

n matrices is given by the summation

f(n) =

n−1∑
k=1

f(k)f(n− k).

Observe that there is only one way to multiply two matrices and two ways

to multiply three matrices. That is, f(2) = 1 and f(3) = 2. In order for the

recurrence to make sense, we let f(1) = 1. It can be shown that

f(n) =
1

n

(
2n− 2

n− 1

)
.

This recurrence generates the so-called Catalan numbers defined by

Cn = f(n+ 1),

the first 10 terms of which are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, . . . .

Thus, for example, there are 4862 ways to multiply 10 matrices. By Stirling’s

formula (Eq. (A.4) on page 673),

n! ≈ √2πn (n/e)n, where e = 2.71828 . . . ,

we have

f(n) =
1

n

(
2n− 2

n− 1

)
=

(2n− 2)!

n((n− 1)!)2
≈ 4n

4
√
π n1.5

.

Thus,

f(n) = Ω

(
4n

n1.5

)
.
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Since for each parenthesized expression, finding the number of scalar

multiplications costs Θ(n), it follows that the running time of the brute-

force method to find the optimal way to multiply the n matrices is

Ω(4n/
√
n), which is impractical even for values of n of moderate size.

In the rest of this section, we derive a recurrence relation for the least

number of scalar multiplications and then apply the dynamic program-

ming technique to find an efficient algorithm for evaluating that recurrence.

Extending the algorithm to find the order of matrix multiplications is easy

(Exercise 6.7). Since for each i, 1 ≤ i < n, the number of columns of matrix

Mi must be equal to the number of rows of matrix Mi+1, it suffices to

specify the number of rows of each matrix and the number of columns of

the rightmost matrix Mn. Thus, we will assume that we are given n + 1

dimensions r1, r2, . . . , rn+1, where ri and ri+1 are, respectively, the number

of rows and columns in matrix Mi, 1 ≤ i ≤ n. Henceforth, we will write

Mi,j to denote the product of MiMi+1 . . .Mj. We will also assume that the

cost of multiplying the chain Mi,j, denoted by C[i, j], is measured in terms

of the number of scalar multiplications. For a given pair of indices i and j

with 1 ≤ i < j ≤ n, Mi,j can be computed as follows. Let k be an index

between i+1 and j. Compute the two matricesMi,k−1 =MiMi+1 . . .Mk−1

and Mk,j = MkMk+1 . . .Mj. Then, Mi,j = Mi,k−1Mk,j . Clearly, the total

cost of computingMi,j in this way is the cost of computingMi,k−1 plus the

cost of computingMk,j plus the cost of multiplyingMi,k−1 andMk,j , which

is rirkrj+1. This leads to the following formula for finding that value of k

which minimizes the number of scalar multiplications required to perform

the matrix multiplication MiMi+1 . . .Mj :

C[i, j] = min
i<k≤j

{C[i, k − 1] + C[k, j] + rirkrj+1}. (6.1)

It follows that in order to find the minimum number of scalar multi-

plications required to perform the matrix multiplication M1M2 . . .Mn, we

only need to solve the recurrence

C[1, n] = min
1<k≤n

{C[1, k − 1] + C[k, n] + r1rkrn+1}.

However, as noted in Examples 6.1 and 6.2, this will lead to a huge number

of overlapping recursive calls and hence solving the recurrence directly in a

top-down fashion will not result in an efficient algorithm.
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6.3.1 The dynamic programming algorithm

In what follows, we describe how the technique of dynamic programming

can be used to efficiently evaluate the above recurrence in time Θ(n3).

Consider Fig. 6.2, which illustrates the method on an instance consisting of

n = 6 matrices. In this figure, diagonal d is filled with the minimum costs

of multiplying various chains of d + 1 consecutive matrices. In particular,

diagonal 5 consists of exactly one entry which represents the minimum cost

of multiplying the six matrices, which is the desired result. In diagonal 0,

each chain consists of one matrix only, and hence this diagonal is filled with

0’s. We fill this triangular table with costs of multiplication diagonalwise,

starting at diagonal 0 and ending at diagonal 5. First, diagonal 0 is filled

with 0’s, as there are no scalar multiplications involved. Next, diagonal 1

is filled with the costs of multiplying two consecutive matrices. The rest

of the diagonals are filled using the formula stated above and the values

previously stored in the table. Specifically, to fill diagonal d, we make use

of the values stored in diagonals 0, 1, 2, . . . , d− 1.

As an example, the computation of C[2, 5] is the minimum of the fol-

lowing three costs (see Fig. 6.2):

(1) The cost of computing M2,2 (which is 0) plus the cost of computing

M3,5 plus the cost of multiplying M2,2 by M3,5.

1

2

3

4

5

6

d=0 d=1 d=2 d=3 d=4 d=5

C[1,1] C[1,2] C[1,3] C[1,4] C[1,5] C[1,6]

C[2,2] C[2,3] C[2,4] C[2,5] C[2,6]

C[3,3] C[3,4] C[3,5] C[3,6]

C[4,4] C[4,5] C[4,6]

i

C[5,5] C[5,6]

C[6,6]

Fig. 6.2. Illustration of matrix chain multiplication.
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(2) The cost of computing M2,3 plus the cost of computing M4,5 plus the

cost of multiplying M2,3 by M4,5.

(3) The cost of computing M2,4 plus the cost of computing M5,5 (which

is 0) plus the cost of multiplying M2,4 by M5,5.

To compute any other entry C[i, j] in the table other than the main

diagonal, we do the following. First, we draw two directed vectors: one

from C[i, i] to C[i, j − 1] and one from C[i + 1, j] to C[j, j] (see Fig. 6.2).

Next, we compute the cost of multiplying each pair of matrices as we follow

the two arrows starting from the pair C[i, i] and C[i + 1, j] to the pair

C[i, j − 1] and C[j, j]. Finally, we select the minimum cost and store it in

C[i, j].

In general, multiplying a chain of n matrices gives rise to a triangular

table of n rows and n columns similar to the one shown in Fig. 6.2. The for-

mal algorithm that produces such a table is given as Algorithm matchain.

Algorithm 6.2 matchain
Input: An array r[1..n + 1] of positive integers corresponding to the

dimensions of a chain of n matrices, where r[1..n] are the number
of rows in the n matrices and r[n+1] is the number of columns in Mn.

Output: The least number of scalar multiplications required to multiply
the n matrices.

1. for i← 1 to n {Fill in diagonal d0}
2. C[i, i]← 0
3. end for
4. for d← 1 to n− 1 {Fill in diagonals d1 to dn−1}
5. for i← 1 to n− d {Fill in entries in diagonal di}
6. j← i+ d
7. comment: The next three lines compute C[i, j]

8. C[i, j]←∞
9. for k← i+ 1 to j

10. C[i, j]← min{C[i, j], C[i, k − 1] + C[k, j] + r[i]r[k]r[j + 1]}
11. end for
12. end for
13. end for
14. return C[1, n]

Step 1 fills diagonal 0 with 0’s. The execution of each iteration of the

for loop in Step 2 advances to the next diagonal. Each iteration of the

for loop in Step 3 advances to a new entry in that diagonal (each diagonal
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C[1, 1] = 0 C[1, 2] = 200 C[1, 3] = 320 C[1, 4] = 620 C[1, 5] = 348
C[2, 2] = 0 C[2, 3] = 240 C[2, 4] = 640 C[2, 5] = 248

C[3, 3] = 0 C[3, 4] = 240 C[3, 5] = 168
C[4, 4] = 0 C[4, 5] = 120

C[5, 5] = 0

Fig. 6.3. An example of the matrix chain multiplication algorithm.

contains n − d entries). Steps 8–11 compute entry C[i, j] using Eq. (6.1).

First, it is initialized to a very large value. Next, its value is chosen as the

minimum of d quantities corresponding to d multiplications of subchains,

as explained for the case of the instance C[2, 5] described above and shown

in Fig. 6.2.

Example 6.4 Figure 6.3 shows the result of applying Algorithm

matchain to find the minimum number of scalar multiplication required

to compute the product of the following five matrices:

M1 : 5× 10, M2 : 10× 4, M3 : 4× 6, M4 : 6× 10, M5 : 10× 2.

Each entry C[i, j] of the upper triangular table is labeled with the minimum

number of scalar multiplications required to multiply the matrices Mi ×
Mi+1 × · · ·Mj for 1 ≤ i ≤ j ≤ 5. The final solution is C[1, 5] = 348.

Finding the time and space complexities of Algorithm matchain is

straightforward. For some constant c > 0, the running time of the algorithm

is proportional to

n−1∑
d=1

n−d∑
i=1

d∑
k=1

c =
cn3 − cn

6
.

Hence, the time complexity of the algorithm is Θ(n3). Clearly, the work

space needed by the algorithm is dominated by that needed for the trian-

gular array, i.e., Θ(n2). So far, we have demonstrated an algorithm that

computes the minimum cost of multiplying a chain of matrices. The follow-

ing theorem summarizes the main result.

Theorem 6.2 The minimum number of scalar multiplications required

to multiply a chain of n matrices can be found in Θ(n3) time

and Θ(n2) space.
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Finally, we close this section by noting that, surprisingly, this problem

can be solved in time O(n log n) (see the Bibliographic Notes).

6.4 The Dynamic Programming Paradigm

Examples 6.1 and 6.2 and Secs. 6.2 and 6.3 provide an overview of the

dynamic programming algorithm design technique and its underlying prin-

ciple. The idea of saving solutions to subproblems in order to avoid their

recomputation is the basis of this powerful method. This is usually the

case in many combinatorial optimization problems in which the solution

can be expressed in the form of a recurrence whose direct solution causes

subinstances to be computed more than once.

An important observation about the working of dynamic programming

is that the algorithm computes an optimal solution to every subinstance

of the original instance considered by the algorithm. In other words, all

the table entries generated by the algorithm represent optimal solutions

to the subinstances considered by the algorithm. For example, in Fig. 6.1,

each entry L[i, j] is the length of a longest common subsequence for the

subinstance obtained by taking the first i letters from the first string and

the first j letters from the second string. Also, in Fig. 6.2, each entry C[i, j]

is the minimum number of scalar multiplications needed to perform the

product MiMi+1 . . .Mj . Thus, for example, the algorithm that generates

Fig. 6.2 not only computes the minimum number of scalar multiplication

for obtaining the product of the n matrices but also computes the min-

imum number of scalar multiplication of the product of any sequence of

consecutive matrices in M1M2 . . .Mn.

The above argument illustrates an important principle in algorithm

design called the principle of optimality : Given an optimal sequence of deci-

sions, each subsequence must be an optimal sequence of decisions by itself.

We have already seen that the problems of finding the length of a longest

common subsequence and the problem of matrix chain multiplication can

be formulated in such a way that the principle of optimality applies. As

another example, let G = (V,E) be a directed graph and let π be a shortest

path from vertex s to vertex t, where s and t are two vertices in V . Suppose

that another vertex, say x ∈ V , is on this path. Then, it follows that the

portion of π from s to x must be a path of shortest length, and so is the

portion of π from x to t. This can trivially be proven by contradiction.

On the other hand, let π′ be a simple path of longest length from s to t.
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If vertex y ∈ V is on π′, then this does not mean, for example, that the

portion of π′ from s to y is a longest simple path from s to y. This suggests

that dynamic programming may be used to find a shortest path, but it

is not obvious if it can be used to find a longest simple path. In the case

of directed acyclic graphs, dynamic programming may be used to find the

longest path between two given vertices (Exercise 6.24). Note that in this

case, all paths are simple.

6.5 The All-Pairs Shortest Path Problem

Let G = (V,E) be a directed graph in which each edge (i, j) has a non-

negative length l[i, j]. If there is no edge from vertex i to vertex j, then

l[i, j] =∞. The problem is to find the distance from each vertex to all other

vertices, where the distance from vertex x to vertex y is the length of a short-

est path from x to y. For simplicity, we will assume that V = {1, 2, . . . , n}.
Let i and j be two different vertices in V . Define dki,j to be the length

of a shortest path from i to j that does not pass through any vertex in

{k + 1, k + 2, . . . , n}. Thus, for example, d0i,j = l[i, j], d1i,j is the length of

a shortest path from i to j that does not pass through any vertex except

possibly vertex 1, d2i,j is the length of a shortest path from i to j that does

not pass through any vertex except possibly vertex 1 or vertex 2 or both,

and so on. Then, by definition, dni,j is the length of a shortest path from i

to j, i.e., the distance from i to j. Given this definition, we can compute

dki,j recursively as follows:

dki,j =

{
l[i, j] if k = 0

min{dk−1
i,j , dk−1

i,k + dk−1
k,j } if 1 ≤ k ≤ n.

6.5.1 The algorithm

The following algorithm, which is due to Floyd, proceeds by solving

the above recurrence in a bottom-up fashion. It uses n + 1 matrices

D0, D1, . . . , Dn of dimension n × n to compute the lengths of the short-

est constrained paths.

Initially, we set D0[i, i] = 0, D0[i, j] = l[i, j] if i �= j and (i, j) is an edge

in G; otherwise, D0[i, j] = ∞. We then make n iterations such that after

the kth iteration, Dk[i, j] contains the value of a shortest length path from

vertex i to vertex j that does not pass through any vertex numbered higher
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6
9

2 1
8

32

Fig. 6.4. An instance of the all-pairs shortest path problem.

than k. Thus, in the kth iteration, we compute Dk[i, j] using the formula

Dk[i, j] = min{Dk−1[i, j], Dk−1[i, k] +Dk−1[k, j]}.

Example 6.5 Consider the directed graph shown in Fig. 6.4.

The matrices D0, D1, D2 and D3 are

D0 =

⎡
⎣ 0 2 9

8 0 6

1 ∞ 0

⎤
⎦, D1 =

⎡
⎣ 0 2 9

8 0 6

1 3 0

⎤
⎦,

D2 =

⎡
⎣ 0 2 8

8 0 6

1 3 0

⎤
⎦, D3 =

⎡
⎣ 0 2 8

7 0 6

1 3 0

⎤
⎦.

The final computed matrix D3 holds the desired distances.

An important observation is that in the kth iteration, both the kth row

and kth column are not changed. Therefore, we can perform the compu-

tation with only one copy of the D matrix. An algorithm to perform this

computation using only one n× n matrix is given as Algorithm floyd.

Algorithm 6.3 floyd
Input: An n× n matrix l[1..n, 1..n] such that l[i, j] is the length of the edge

(i, j) in a directed graph G = ({1, 2, . . . , n}, E).

Output: A matrix D with D[i, j] = the distance from i to j.

1. D← l {copy the input matrix l into D}
2. for k← 1 to n
3. for i← 1 to n
4. for j← 1 to n
5. D[i, j] = min{D[i, j], D[i, k] +D[k, j]}
6. end for
7. end for
8. end for
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Clearly, the running time of the algorithm is Θ(n3) and its space com-

plexity is Θ(n2).

6.6 The Knapsack Problem

The knapsack problem can be defined as follows. Let U = {u1, u2, . . . , un}
be a set of n items to be packed in a knapsack of size C. For 1 ≤ j ≤ n,

let sj and vj be the size and value of the jth item, respectively. Here C

and sj , vj , 1 ≤ j ≤ n, are all positive integers. The objective is to fill the

knapsack with some items from U whose total size is at most C and such

that their total value is maximum. Assume without loss of generality that

the size of each item does not exceed C. More formally, given U of n items,

we want to find a subset S ⊆ U such that∑
ui∈S

vi

is maximized subject to the constraint∑
ui∈S

si ≤ C.

This version of the knapsack problem is sometimes referred to in the liter-

ature as the 0/1 knapsack problem. This is because the knapsack cannot

contain more than one item of the same type. Another version of the prob-

lem in which the knapsack may contain more than one item of the same

type is discussed in Exercise 6.17.

We derive a recursive formula for filling the knapsack as follows. Let

V [i, j] denote the value obtained by filling a knapsack of size j with items

taken from the first i items {u1, u2, . . . , ui} in an optimal way. Here, the

range of i is from 0 to n and the range of j is from 0 to C. Thus, what we

seek is the value V [n,C]. Obviously, V [0, j] is 0 for all values of j, as there

is nothing in the knapsack. On the other hand, V [i, 0] is 0 for all values of i

since nothing can be put in a knapsack of size 0. For the general case, when

both i and j are greater than 0, we have the following observation, which

is easy to prove:

Observation 6.2 V [i, j] is the maximum of the following two quantities:

• V [i − 1, j]: The maximum value obtained by filling a knapsack of size j

with items taken from {u1, u2, . . . , ui−1} only in an optimal way.
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• V [i − 1, j − si] + vi: The maximum value obtained by filling a knapsack

of size j − si with items taken from {u1, u2, . . . , ui−1} in an optimal way

plus the value of item ui. This case applies only if j ≥ si and it amounts

to adding item ui to the knapsack.

Observation 6.2 implies the following recurrence for finding the value in

an optimal packing:

V [i, j] =

⎧⎪⎨
⎪⎩

0 if i = 0 or j = 0

V [i− 1, j] if j < si

max{V [i− 1, j], V [i− 1, j − si] + vi} if i > 0 and j ≥ si.

6.6.1 The algorithm

Using dynamic programming to solve this integer programming problem is

now straightforward. We use an (n+1)×(C+1) table to evaluate the values

of V [i, j]. We only need to fill the table V [0..n, 0..C] row by row using the

above formula. The method is formally described in Algorithm knapsack.

Algorithm 6.4 knapsack
Input: A set of items U = {u1, u2, . . . , un} with sizes s1, s2, . . . , sn and

values v1, v2, . . . , vn and a knapsack capacity C.

Output: The maximum value of the function
∑

ui∈S vi subject to∑
ui∈S si ≤ C for some subset of items S ⊆ U .

1. for i← 0 to n
2. V [i, 0]← 0
3. end for
4. for j← 0 to C
5. V [0, j]← 0
6. end for
7. for i← 1 to n
8. for j← 1 to C
9. V [i, j]← V [i− 1, j]

10. if si ≤ j then V [i, j]← max{V [i, j], V [i− 1, j − si] + vi}
11. end for
12. end for
13. return V [n, C]

Clearly, the time complexity of the algorithm is exactly the size of the

table, Θ(nC), as filling each entry requires Θ(1) time. Algorithm knapsack

can easily be modified so that it outputs the items packed in the knapsack



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch06 page 209

Dynamic Programming 209

as well. It can also be easily modified so that it requires only Θ(C) of space,

as only the last computed row is needed for filling the current row. This

implies the following theorem:

Theorem 6.3 An optimal solution to the Knapsack problem can be

found in Θ(nC) time and Θ(C) space.

Note that the time bound, as stated in the above theorem, is not polyno-

mial in the input size. Therefore, the algorithm is considered to be exponen-

tial in the input size. For this reason, it is referred to as a pseudopolynomial

time algorithm, as the running time is polynomial in the input value.

Example 6.6 Suppose that we have a knapsack of capacity 9, which we

want to pack with items of four different sizes 2, 3, 4 and 5 and values 3, 4,

5 and 7, respectively. Our goal is to pack the knapsack with as many items

as possible in a way that maximizes the total value without exceeding the

knapsack capacity. We proceed to solve this problem as follows. First, we

prepare an empty rectangular table with five rows numbered 0 to 4 and 10

columns labeled 0 through 9. Next, we initialize the entries in column 0 and

row 0 with the value 0. Filling row 1 is straightforward: V [1, j] = 3, the

value of the first item, if and only if j ≥ 2, the size of the first item. Each

entry V [2, j] in the second column has two possibilities. The first possibility

is to set V [2, j] = V [1, j], which amounts to putting the first item in the

knapsack. The second possibility is to set V [2, j] = V [1, j − 3] + 4, which

amounts to adding the second item so that it either contains the second

item only or both the first and second items. Of course, adding the second

item is possible only if j ≥ 3. Continuing this way, rows 3 and 4 are filled

to obtain the table shown in Fig. 6.5.

The ith entry of column 9, that is, V [i, 9] contains the maximum value

we can get by filling the knapsack using the first i items. Thus, an optimal

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 0 3 3 3 3 3 3 3 3
2 0 0 3 4 4 7 7 7 7 7
3 0 0 3 4 5 7 8 9 9 12
4 0 0 3 4 5 7 8 10 11 12

Fig. 6.5. An example of the algorithm for the knapsack problem.
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packing is found in the last entry of the last column and is achieved by pack-

ing items 3 and 4. There is also another optimal solution, which is packing

items 1, 2 and 3. This packing corresponds to entry V [3, 9] in the table,

which is the optimal packing before the fourth item was considered.

6.7 Practice Problems

6.1. Give an efficient algorithm to compute f(n), the nth number in the

Fibonacci sequence (see Example 6.1). What is the time complexity

of your algorithm? Is it a polynomial time algorithm? Explain.

6.2. Give an efficient algorithm to compute the binomial coefficient
( n
k

)
(see Example 6.2). What is the time complexity of your algorithm? Is

it a polynomial time algorithm? Explain.

6.3. Use Algorithm lcs to find the length of a longest common subsequence

of the two stringsA = “xzyzzyx” andB = “zxyyzxz”. Give one longest

common subsequence.

6.4. Consider using Algorithm matchain to multiply the following five

matrices:

M1 : 4× 5, M2 : 5× 3, M3 : 3× 6, M4 : 6× 4, M5 : 4× 5.

Assume the intermediate results shown in Fig. 6.6 for obtaining the

multiplicationM1×M2×M3×M4×M5, where C[i, j] is the minimum

number of scalar multiplications needed to carry out the multiplication

Mi × · · · ×Mj , 1 ≤ i ≤ j ≤ 5. Also shown in the figure parenthesized

expressions showing the optimal sequence for carrying out the multi-

plication Mi × · · · ×Mj. Find C[1, 5] and the optimal parenthesized

expressions for carrying out the multiplication M1 × · · · ×M5.

C[1, 1] = 0 C[1, 2] = 60 C[1, 3] = 132
M1 M1M2 (M1M2)M3

C[1, 4] = 180
(M1M2)(M3M4)

C[2, 2] = 0 C[2, 3] = 90 C[2, 4] = 132
M2 M2M3 M2(M3M4)

C[2, 5] = 207
M2((M3M4)M5)

C[3, 3] = 0 C[3, 4] = 72 C[3, 5] = 132
M3 M3M4 (M3M4)M5

C[4, 4] = 0 C[4, 5] = 120
M4 M4M5

C[5, 5] = 0
M5

Fig. 6.6. An incomplete table for the matrix chain multiplication problem.
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Fig. 6.7. An instance of the all-pairs shortest path problem.

6.5. Let G = (V,E) be a weighted directed graph, and let s, t ∈ V . Assume

that there is at least one path from s to t.

(a) Let π be a path of shortest length from s to t that passes by

another vertex x. Show that the portion of the path from s to x

is a shortest path from s to x.

(b) Let π′ be a longest simple path from s to t that passes by another

vertex y. Show that the portion of the path from s to y is not

necessarily a longest path from s to y.

6.6. Run the all-pairs shortest path algorithm on the weighted directed

graph shown in Fig. 6.7.

6.7. Use the all-pairs shortest path algorithm to compute the distance

matrix for the directed graph with the lengths of the edges between

all pairs of vertices are as given by the matrix

(a)

⎡
⎢⎢⎣

0 1 ∞ 2

2 0 ∞ 2

∞ 9 0 4

8 2 3 0

⎤
⎥⎥⎦ (b)

⎡
⎢⎢⎣
0 2 4 6

2 0 1 2

5 9 0 1

9 ∞ 2 0

⎤
⎥⎥⎦.

6.8. Solve the following instance of the knapsack problem. There are four

items of sizes 2, 3, 5 and 6 and values 3, 4, 5 and 7, and the knapsack

capacity is 11.

6.8 Exercises

6.1. Prove Observation 6.1.

6.2. Show how to modify Algorithm lcs so that it outputs a longest

common subsequence as well.



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch06 page 212

212 Algorithms: Design Techniques and Analysis

6.3. Show how to modify Algorithm lcs so that it requires only

Θ(min{m,n}) space.

6.4. Give a parenthesized expression for the optimal order of multiplying

the five matrices in Example 6.4.

6.5. Consider applying Algorithm matchain on the following five

matrices:

M1 : 2× 3, M2 : 3× 6, M3 : 6× 4, M4 : 4× 2, M5 : 2× 7.

(a) Find the minimum number of scalar multiplications needed to

multiply the five matrices, (that is C[1, 5]).

(b) Give a parenthesized expression for the order in which this opti-

mal number of multiplications is achieved.

6.6. Give an example of three matrices in which one order of their mul-

tiplication costs at least 100 times the other order.

6.7. Show how to modify the matrix chain multiplication algorithm so

that it also produces the order of multiplications as well.

6.8. Give an example of a directed graph that contains some edges with

negative costs and yet the all-pairs shortest path algorithm gives the

correct distances.

6.9. Give an example of a directed graph that contains some edges with

negative costs such that the all-pairs shortest path algorithm fails to

give the correct distances.

6.10. Show how to modify the all-pairs shortest path algorithm so that

it detects negative-weight cycles (A negative-weight cycle is a cycle

whose total length is negative).

6.11. Prove Observation 6.2.

6.12. Solve the following instance of the knapsack problem. There are five

items of sizes 3, 5, 7, 8 and 9 and values 4, 6, 7, 9 and 10, and the

knapsack capacity is 22.
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6.13. Explain what would happen when running the knapsack algorithm

on an input in which one item has negative size.

6.14. Show how to modify Algorithm knapsack so that it requires only

Θ(C) space, where C is the knapsack capacity.

6.15. Show how to modify Algorithm knapsack so that it outputs the

items packed in the knapsack as well.

6.16. In order to lower the prohibitive running time of the knapsack prob-

lem, which is Θ(nC), we may divide C and all the si’s by a large

number K and take the floor. That is, we may transform the given

instance into a new instance with capacity 
C/K� and item sizes


si/K�, 1 ≤ i ≤ n. Now, we apply the algorithm for the knapsack

discussed in Sec. 6.6. This technique is called scaling and rounding

(see Sec. 14.6). What will be the running time of the algorithm when

applied to the new instance? Give a counterexample to show that

scaling and rounding does not always result in an optimal solution

to the original instance.

6.17. Another version of the knapsack problem is to let the set U contain

a set of types of items, and the objective is to fill the knapsack with

any number of items of each type in order to maximize the total

value without exceeding the knapsack capacity. Assume that there

is an unlimited number of items of each type. More formally, let

T = {t1, t2, . . . , tn} be a set of n types of items and C the knapsack

capacity. For 1 ≤ j ≤ n, let sj and vj be, respectively, the size

and value of the items of type j. Find a set of nonnegative integers

x1, x2, . . . , xn such that

n∑
i=1

xivi

is maximized subject to the constraint

n∑
i=1

xisi ≤ C.

x1, x2, . . . , xn are nonnegative integers.
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Note that xj = 0 means that no item of the jth type is packed in

the knapsack. Rewrite the dynamic programming algorithm for this

version of the knapsack problem.

6.18. Solve the following instance of the version of the knapsack problem

described in Exercise 6.17. There are four types of items with sizes 2,

3, 5 and 6 and values 4, 7, 9 and 11, and the knapsack capacity is 8.

6.19. Show how to modify the knapsack algorithm discussed in Exer-

cise 6.17 so that it computes the number of items packed from

each type.

6.20. Consider the money change problem. We have a currency system

that has n coins with values v1, v2, . . . , vn, where v1 = 1, and we

want to pay change of value y in such a way that the total number of

coins is minimized. More formally, we want to minimize the quantity

n∑
i=1

xi

subject to the constraint

n∑
i=1

xivi = y.

Here, x1, x2, . . . , xn are nonnegative integers (so xi may be zero).

(a) Give a dynamic programming algorithm to solve this problem.

(b) What are the time and space complexities of your algorithm?

(c) Can you see the resemblance of this problem to the version of

the knapsack problem discussed in Exercise 6.17? Explain.

6.21. Apply the algorithm in Exercise 6.20 to the instance v1 = 1,

v2 = 5, v3 = 7, v4 = 11 and y = 20.

6.22. Let G = (V,E) be a directed graph with n vertices. G induces a rela-

tion R on the set of vertices V defined by: u R v if and only if there

is a directed edge from u to v, i.e., if and only if (u, v) ∈ E. Let MR

be the adjacency matrix of G, i.e., MR is an n× n matrix satisfying

MR[u, v] = 1 if (u, v) ∈ E and 0 otherwise. The reflexive and transi-

tive closure of MR, denoted by M∗
R, is defined as follows. For u, v ∈
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V , if u = v or there is a path in G from u to v, thenM∗
R[u, v] = 1 and

0 otherwise. Give a dynamic programming algorithm to computeM∗
R

for a given directed graph. (Hint: You only need a slight modification

of Floyd’s algorithm for the all-pairs shortest path problem).

6.23. Let G = (V,E) be a directed graph with n vertices. Define the n×n
distance matrix D as follows. For u, v ∈ V , D[u, v] = d if and only if

the length of the shortest path from u to v measured in the number

of edges is exactly d. For example, for any v ∈ V , D[v, v] = 0 and for

any u, v ∈ V D[u, v] = 1 if and only if (u, v) ∈ E. Give a dynamic

programming algorithm to compute the distance matrixD for a given

directed graph. (Hint: Again, you only need a slight modification of

Floyd’s algorithm for the all-pairs shortest path problem).

6.24. Let G = (V,E) be a directed acyclic graph (dag) with n vertices. Let

s and t be two vertices in V such that the indegree of s is 0 and the

outdegree of t is 0. Give a dynamic programming algorithm to com-

pute a longest path in G from s to t. What is the time complexity

of your algorithm?

6.9 Bibliographic Notes

Dynamic programming was first popularized in the book by Bellman (1957).

Other books in this area include Bellman and Dreyfus (1962), Dreyfus

(1977) and Nemhauser (1966). Two general survey papers by Brown (1979a)

and Held and Karp (1967) are highly recommended. The all-pairs short-

est paths algorithm is due to Floyd (1962). Matrix chain multiplication is

described in Godbole (1973). An O(n logn) algorithm to solve this prob-

lem can be found in Hu and Shing (1980, 1982, 1984). The one- and two-

dimensional knapsack problems have been studied extensively; see for exam-

ple Gilmore (1977), Gilmore and Gomory (1966) and Hu (1969).
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PART 3

First-Cut Techniques

When a solution to a problem is sought, perhaps the first strategy that

comes to one’s mind is the greedy method. If the problem involves graphs,

then one might consider traversing the graph, visiting its vertices and per-

forming some actions depending on a decision made at that point. The tech-

nique used to solve that problem is usually specific to the problem itself.

A common characteristic of both greedy algorithms and graph traversal is

that they are fast, as they involve making local decisions.

A graph traversal algorithm might be viewed as a greedy algorithm and

vice versa. In graph traversal techniques, the choice of the next vertex to

be examined is restricted to the set of neighbors of the current node. This

is in contrast to examining a bigger neighborhood, clearly a simple greedy

strategy. On the other hand, a greedy algorithm can also be viewed as a

graph traversal of a particular graph. For any greedy algorithm, there is

an implicit directed acyclic graph (dag) each of whose nodes stands for a

state in that greedy computation. An intermediate state represents some

decisions that were already taken in a greedy fashion, while others remain

to be determined. In that dag, an edge from vertex u to vertex v exists only

if in the greedy method, the algorithm’s state represented by v is arrived

217
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at from that represented by vertex u as a consequence of one decision by

the greedy algorithm.

Although these techniques tend to be applied as initial solutions, they

rarely remain as the providers of optimal solutions. Their contribution con-

sequently is one of providing an initial solution that sets the stage for careful

examination of the specific properties of the problem.

In Chapter 7, we study in detail some algorithms that give optimal solu-

tions to well-known problems in computer science and engineering. The two

famous problems of the single-source shortest path and finding a minimum

cost spanning tree in an undirected graph are representative of those prob-

lems for which the greedy strategy results in an optimal solution. Other

problems, like Huffman code, will also be covered in this chapter.

Chapter 8 is devoted to graph traversals (depth-first search and breadth-

first search) that are useful in solving many problems, especially graph and

geometric problems.
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Chapter 7

The Greedy Approach

7.1 Introduction

As in the case of dynamic programming algorithms, greedy algorithms are

usually designed to solve optimization problems in which a quantity is to

be minimized or maximized. However, unlike dynamic programming algo-

rithms, greedy algorithms typically consist of an iterative procedure that

tries to find a local optimal solution. In some instances, these local optimal

solutions translate to global optimal solutions. In others, they fail to give

optimal solutions. A greedy algorithm makes a correct guess on the basis

of little calculation without worrying about the future. Thus, it builds a

solution step by step. Each step increases the size of the partial solution

and is based on local optimization. The choice made is that which pro-

duces the largest immediate gain while maintaining feasibility. Since each

step consists of little work based on a small amount of information, the

resulting algorithms are typically efficient. The hard part in the design of a

greedy algorithm is proving that the algorithm does indeed solve the prob-

lem it is designed for. This is to be contrasted with recursive algorithms

that usually have very simple inductive proofs. In this chapter, we will

study some of the most prominent problems for which the greedy strat-

egy works, i.e., gives an optimal solution: the single-source shortest path

problem, minimum cost spanning trees (Prim’s and Kruskal’s algorithms)

and Huffman codes. We will postpone those greedy algorithms that give

suboptimal solutions to Chapter 14. The exercises contain some problems

for which the greedy strategy works (e.g., Exercises 7.1, 7.5 and 7.23) and

219
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others for which the greedy method fails to give the optimal solution on

some instances (e.g., Exercises 7.2–7.4 and 7.7). The following is a simple

example of a problem for which the greedy strategy works.

Example 7.1 Consider the money change problem: Given a set of coins

C = {c1, c2, . . . , cn} of values v1, v2, . . . , vn, where 1 = v1 < v2 < · · · < vn,

and a value x, it is required to give a change of x using the least number

of coins from the set C. This problem was stated in Exercise 6.20. For

instance, C could consist of the following coins: dollar (100 cents), quarter

(25 cents), dime (10 cents), nickel (5 cents) and 1-cent coins. (A unit-value

coin is always required). A greedy algorithm to solve this problem consists

in giving as many as possible of cn, then as many as possible of cn−1, and

so on. In the case of the example above, the algorithm gives as many dollars

as possible, then as many quarters as possible, etc. Using this strategy, a

value x = 236 = 2 × 100 + 3 × 10 + 1 × 5 + 1 × 1, for a total of 7 coins.

This strategy always works by giving an optimal solution for this particular

coinage system. However, for some sets of denominations, it may not work

(see Problem 7.1).

Example 7.2 Consider the fractional knapsack problem defined as fol-

lows. Given n items of sizes s1, s2, . . . , sn, and values v1, v2, . . . , vn and size

C, the knapsack capacity, the objective is to find nonnegative real numbers

x1, x2, . . . , xn, 0 ≤ xi ≤ 1, that maximize the sum

n∑
i=1

xivi

subject to the constraint

n∑
i=1

xisi ≤ C.

This problem can easily be solved using the following greedy strategy.

For each item, compute yi = vi/si, the ratio of its value to its size. Sort the

items by decreasing ratio and fill the knapsack with as much as possible

from the first item, then the second, and so forth. This problem reveals

many of the characteristics of a greedy algorithm discussed above: The

algorithm consists of a simple iterative procedure that selects that item

which produces the largest immediate gain while maintaining feasibility.
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7.2 The Shortest Path Problem

Let G = (V,E) be a directed graph in which each edge has a nonnegative

length, and there is a distinguished vertex s called the source. The single-

source shortest path problem, or simply the shortest path problem, is to

determine the distance from s to every other vertex in V , where the distance

from vertex s to vertex x is defined as the length of a shortest path from

s to x. For simplicity, we will assume that V = {1, 2, . . . , n} and s = 1.

This problem can be solved using a greedy technique known as Dijkstra’s

algorithm. Initially, the set of vertices is partitioned into two sets X = {1}
and Y = {2, 3, . . . , n}. The intention is that X contains the set of vertices

whose distance from the source has already been determined. At each step,

we select a vertex y ∈ Y whose distance from the source vertex has already

been found and move it to X . Associated with each vertex y in Y is a label

λ[y], which is the length of a shortest path that passes only through vertices

in X . Once a vertex y ∈ Y is moved to X , the label of each vertex w ∈ Y
that is adjacent to y is updated indicating that a shorter path to w via y

has been discovered. Throughout this section, for any vertex v ∈ V , δ[v]

will denote the distance from the source vertex to v. As will be shown later,

at the end of the algorithm, δ[v] = λ[v] for each vertex v ∈ V . A sketch of

the algorithm is given below.

1. X ←{1}; Y ← V − {1}
2. For each vertex v ∈ Y if there is an edge from 1 to v, then let λ[v]

(the label of v) be the length of that edge; otherwise, let λ[v] = ∞. Let
λ[1] = 0.

3. while Y �= {}
4. Let y ∈ Y be such that λ[y] is minimum.
5. move y from Y to X.
6. update the labels of those vertices in Y that are adjacent to y.
7. end while

Example 7.3 To see how the algorithm works, consider the directed

graph shown in Fig. 7.1(a). The first step is to label each vertex v with

λ[v] = length[1, v]. As shown in the figure, vertex 1 is labeled with 0,

and vertices 2 and 3 are labeled with 1 and 12 since length[1, 2] = 1 and

length[1, 3] = 12. All other vertices are labeled with ∞ since there are

no edges from the source vertex to these vertices. Initially, X = {1} and



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch07 page 222

222 Algorithms: Design Techniques and Analysis

1

2

3

6

4

5

1

12

15

4

9 134

3

5

(e)

1

0

8

4

17

13

1

2

3

6

4

5

1

12

15

4

9 134

3

5

(f)

1

0

8

4

17

13

1

2

3

6

4

5

1

12

15

4

9 134

3

5

(c)

1

0

8

4

19

17

1

2

3

6

4

5

1

12

15

4

9 134

3

5

(d)

1

0

8

4

19

13

1

2

3

6

4

5

1

12

15

4

9 134

3

5

(b)

1

0

10

4

1

2

3

6

4

5

1

12

15

4

9 134

3

5

(a)

1

0

12

Fig. 7.1. An example of Dijkstra’s algorithm.

Y = {2, 3, 4, 5, 6}. In the figure, those vertices to the left of the dashed line

belong to X and the others belong to Y . In Fig. 7.1(a), we note that λ[2]

is the smallest among all vertices’ labels in Y , and hence it is moved to X

indicating that the distance to vertex 2 has been found. To finish processing

vertex 2, the labels of its neighbors 3 and 4 are inspected to see if there are

paths that pass through 2 and are shorter than their old paths. In this case,

we say that we update the labels of the vertices adjacent to 2. As shown in

the figure, the path from 1 to 2 to 3 is shorter than the path from 1 to 3,

and thus λ[3] is changed to 10, which is the length of the path that passes

through 2. Similarly, λ[4] is changed to 4 since now there is a finite path

of length 4 from 1 to 4 that passes through vertex 2. These updates are

shown in Fig. 7.1(b). The next step is to move that vertex with minimum

label, namely 4, to X and update the labels of its neighbors in Y as shown

in Fig. 7.1(c). In this figure we notice that the labels of vertices 5 and 6

became finite and λ[3] is lowered to 8. Now, vertex 3 has a minimum label,

so it is moved to X and λ[5] is updated accordingly as shown in Fig. 7.1(d).
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Continuing in this way, the distance to vertex 5 is found and thus it is

moved to X as shown in Fig. 7.1(e). As shown in Fig. 7.1(f), vertex 6 is the

only vertex remaining in Y and hence its label coincides with the length

of its distance from 1. In Fig. 7.1(f), the label of each vertex represents its

distance from the source vertex.

7.2.1 Implementation of the shortest path algorithm

A more detailed description of the algorithm is given in Algorithm

dijkstra.

Algorithm 7.1 dijkstra
Input: A weighted directed graph G = (V,E), where V = {1, 2, . . . , n}.
Output: The distance from vertex 1 to every other vertex in G.

1. X = {1}; Y ← V − {1}; λ[1]← 0
2. for y← 2 to n
3. if y is adjacent to 1 then λ[y]← length [1, y]
4. else λ[y]←∞
5. end if
6. end for
7. for j← 1 to n− 1
8. Let y ∈ Y be such that λ[y] is minimum
9. X←X ∪ {y} {add vertex y to X}

10. Y ← Y − {y} {delete vertex y from Y }
11. for each edge (y, w)
12. if w ∈ Y and λ[y] + length[y, w] < λ[w] then
13. λ[w]← λ[y] + length [y, w]
14. end for
15. end for

We will assume that the input graph is represented by adjacency lists,

and the length of edge (x, y) is stored in the vertex for y in the adjacency

list for x. For instance, the directed graph shown in Fig. 7.1 is represented

as shown in Fig. 7.2. We will also assume that the length of each edge in

E is nonnegative. The two sets X and Y will be implemented as boolean

vectors X [1..n] and Y [1..n]. Initially, X [1] = 1 and Y [1] = 0, and for all

i, 2 ≤ i ≤ n, X [i] = 0 and Y [i] = 1. Thus, the operation X←X ∪ {y}
is implemented by setting X [y] to 1, and the operation Y ← Y − {y} is

implemented by setting Y [y] to 0.
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Fig. 7.2. Directed graph representation for the shortest path algorithm.

7.2.2 Correctness

Lemma 7.1 In Algorithm dijkstra, when a vertex y is chosen in

Step 8, if its label λ[y] is finite, then λ[y] = δ[y].

Proof. By induction on the order in which vertices leave the set Y and

enter X . The first vertex to leave is 1, and we have λ[1] = δ[1] = 0. Assume

that the statement is true for all vertices which left Y before y. Since λ[y]

is finite, there must exists a path from 1 to y whose length is λ[y]. Now, we

show that λ[y] ≤ δ[y]. Let π = 1, . . . , x, w, . . . , y be a shortest path from 1

to y, where x is the rightmost vertex to leave Y before y (see Fig. 7.3). We

have

λ[y] ≤ λ[w] since y left Y before w

≤ λ[x] + length(x,w) by the algorithm

= δ[x] + length(x,w) by induction

= δ[w] since π is a path of shortest length

≤ δ[y] since π is a path of shortest length. �

It will be left as an exercise to show that the above proof is based on

the assumption that all edge lengths are nonnegative (Exercise 7.11).

7.2.3 Time complexity

The time complexity of the algorithm is computed as follows. Step 1 costs

Θ(n) time. The for loop in step 2 costs Θ(n) time. The time taken by Step 8

to search for the vertex with minimum label is Θ(n). This is because the

algorithm has to inspect each entry in the vector representing the set Y .
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x w y
X

1

Fig. 7.3. Proof of correctness of Algorithm dijkstra.

Since it is executed n − 1 times, the overall time required by Step 8 is

Θ(n2). Steps 9 and 10 cost Θ(1) time per iteration for a total of Θ(n) time.

The for loop in Step 11 is executed m times throughout the algorithm,

where m = |E|. This is because each edge (y, w) is inspected exactly once

by the algorithm. It follows that the time complexity of the algorithm is

Θ(m+ n2) = Θ(n2).

Theorem 7.1 Given a directed graph G with nonnegative weights on its

edges and a source vertex s, Algorithm dijkstra finds the length of the

distance from s to every other vertex in Θ(n2) time.

Proof. Lemma 7.1 establishes the correctness of the algorithm and the

time complexity follows from the above discussion. �

7.2.4 Improving the time bound

Now, we are ready to make a major improvement to Algorithm dijkstra

in order to lower its Θ(n2) time complexity to O(m logn) for graphs in

which m = o(n2). We will also improve it further, so that in the case of

dense graphs it runs in time linear in the number of edges.

The basic idea is to use the min-heap data structure (see Sec. 3.2) to

maintain the vertices in the set Y so that the vertex y in Y closest to a

vertex in V −Y can be extracted in O(log n) time. The key associated with

each vertex v is its label λ[v]. The final algorithm is shown as Algorithm

shortestpath.

Each vertex y ∈ Y is assigned a key which is the cost of the edge

connecting 1 to y if it exists; otherwise, that key is set to ∞. The heap

H initially contains all vertices adjacent to vertex 1. Each iteration of the
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Algorithm 7.2 shortestpath
Input: A weighted directed graph G = (V,E), where V = {1, 2, . . . , n}.
Output: The distance from vertex 1 to every other vertex in G.

Assume that we have an empty heap H at the beginning.

1. Y ← V − {1}; λ[1]← 0; key(1)← λ[1]
2. for y← 2 to n
3. if y is adjacent to 1 then
4. λ[y]← length[1, y]
5. key(y)← λ[y]
6. insert(H,y)
7. else
8. λ[y]←∞
9. key(y)← λ[y]

10. end if
11. end for
12. for j← 1 to n− 1
13. y← deletemin(H)
14. Y ← Y − {y} {delete vertex y from Y }
15. for each vertex w ∈ Y that is adjacent to y
16. if λ[y] + length [y, w] < λ[w] then
17. λ[w]← λ[y] + length [y, w]
18. key(w)← λ[w]
19. end if
20. if w /∈ H then insert(H,w)
21. else siftup(H,H−1(w))
22. end if
23. end for
24. end for

for loop in Step 12 starts by extracting that vertex y with minimum key.

The key of each vertex w in Y adjacent to y is then updated. Next, if w is not

in the heap, then it is inserted; otherwise, it is sifted up, if necessary. The

function H−1(w) returns the position of w in H . This can be implemented

by simply having an array that has for its jth entry the position of vertex

j in the heap (recall that the heap is implemented as an array H [1..n]).

The running time is dominated by the heap operations. There are n − 1

deletemin operations, n − 1 insert operations and at most m − n + 1

siftup operations. Each heap operation takes O(log n) time, which results

in O(m log n) time in total. It should be emphasized that the input to the

algorithm is the adjacency lists of the graph.

A d-heap is essentially a generalization of a binary heap in which each

internal node in the tree has at most d children instead of 2, where d is a
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number that can be arbitrarily large (see Exercise 3.21). If we use a d-heap,

the running time is improved as follows. Each deletemin operation takes

O(d logd n) time, and each insert or siftup operation requires O(logd n)

time. Thus, the total running time is O(nd logd n+m logd n). If we choose

d = �2 +m/n�, the time bound is O(m log�2+m/n� n). If m ≥ n1+ε for some

ε > 0 that is not too small, i.e., the graph is dense, then the running time is

O(m log�2+m/n� n) = O(m log�2+nε� n)

= O

(
m

logn

lognε

)

= O

(
m

logn

ε logn

)

= O
(m
ε

)
.

This implies the following theorem:

Theorem 7.2 Given a graph G with nonnegative weights on its edges

and a source vertex s, Algorithm shortestpath finds the distance from s

to every other vertex in O(m log n) time. If the graph is dense, i.e., if m ≥
n1+ε for some ε > 0, then it can be further improved to run in time O(m/ε).

7.3 Minimum Cost Spanning Trees (Kruskal’s Algorithm)

Definition 7.1 Let G = (V,E) be a connected undirected graph with

weights on its edges. A spanning tree (V, T ) of G is a subgraph of G that

is a tree. If G is weighted and the sum of the weights of the edges in T is

minimum, then (V, T ) is called a minimum cost spanning tree or simply a

minimum spanning tree.

We will assume throughout this section that G is connected. If G is not

connected, then the algorithm can be applied to each connected component

of G. Kruskal’s algorithm works by maintaining a forest consisting of several

spanning trees that are gradually merged until finally the forest consists of

exactly one tree: a minimum cost spanning tree. The algorithm starts by

sorting the edges in nondecreasing order by weight. Next, starting from the

forest (V, T ) consisting of the vertices of the graph and none of its edges,

the following step is repeated until (V, T ) is transformed into a tree: Let

(V, T ) be the forest constructed so far, and let e ∈ E−T be the current edge
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being considered. If adding e to T does not create a cycle, then include e

in T ; otherwise, discard e. This process will terminate after adding exactly

n− 1 edges. The algorithm is summarized below.

1. Sort the edges in G by nondecreasing weight.
2. For each edge in the sorted list, include that edge in the spanning tree T if

it does not form a cycle with the edges currently included in T ; otherwise,
discard it.

Example 7.4 Consider the weighted graph shown in Fig. 7.4(a). As

shown in Fig. 7.4(b), the first edge that is added is (1, 2) since it is of

minimum cost. Next, as shown in Figs. 7.4(c)–7.4(e), edges (1, 3), (4, 6) and

then (5, 6) are included in T in this order. Next, as shown in Fig. 7.4(f),

the edge (2, 3) creates a cycle and hence is discarded. For the same reason,

as shown in Fig. 7.4(g), edge (4, 5) is also discarded. Finally, edge (3, 4)
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Fig. 7.4. An example of Kruskal algorithm.
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is included, which results in the minimum spanning tree (V, T ) shown in

Fig. 7.4(h).

7.3.1 Implementation of Kruskal’s algorithm

To implement the algorithm efficiently, we need some mechanism for test-

ing whether including an edge creates a cycle. For this purpose, we need to

specify a data structure that represents the forest at each instant of the algo-

rithm and detects cycles dynamically as edges are added to T . A suitable

choice of such data structure is the disjoint sets representation discussed

in Sec. 3.3. In the beginning, each vertex of the graph is represented by a

tree consisting of one vertex. During the execution of the algorithm, each

connected component of the forest is represented by a tree. This method

is described more formally in Algorithm kruskal. First, the set of edges

is sorted in nondecreasing order by weight. Next, n singleton sets are cre-

ated, one for each vertex, and the set of spanning tree edges is initially

empty. The while loop is executed until the minimum cost spanning tree is

constructed.

Algorithm 7.3 kruskal
Input: A weighted connected undirected graph G = (V,E) with n vertices.

Output: The set of edges T of a minimum cost spanning tree for G.

1. Sort the edges in E by nondecreasing weight.
2. for each vertex v ∈ V
3. makeset({v})
4. end for
5. T = {}
6. while |T | < n− 1
7. Let (x, y) be the next edge in E.
8. if find(x) �= find(y) then
9. Add (x, y) to T

10. union(x, y)
11. end if
12. end while

7.3.2 Correctness

Lemma 7.2 Algorithm kruskal correctly finds a minimum cost span-

ning tree in a weighted undirected graph.
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Proof. We prove by induction on the size of T that T is a subset of

the set of edges in a minimum cost spanning tree. Initially, T = {} and the

statement is trivially true. For the induction step, assume before adding the

edge e = (x, y) in Step 9 of the algorithm that T ⊂ T ∗, where T ∗ is the set

of edges in a minimum cost spanning tree G∗ = (V, T ∗). Let X be the set

of vertices in the subtree containing x. Let T ′ = T ∪{e}. We will show that

T ′ is also a subset of the set of edges in a minimum cost spanning tree. By

the induction hypothesis, T ⊂ T ∗. If T ∗ contains e, then there is nothing to

prove. Otherwise, by Theorem 2.1(c), T ∗ ∪ {e} contains exactly one cycle

with e being one of its edges. Since e = (x, y) connects one vertex in X to

another vertex in V − X , T ∗ must also contain another edge e′ = (w, z)

such that w ∈ X and z ∈ V −X . We observe that cost(e′) ≥ cost(e); for

otherwise, e′ would have been added before since it does not create a cycle

with the edges of T ∗ which contains the edges of T . If we now construct

T ∗∗ = T ∗−{e′}∪{e}, we notice that T ′ ⊂ T ∗∗. Moreover, T ∗∗ is the set of

edges in a minimum cost spanning tree since e is of minimum cost among

all edges connecting the vertices in X with those in V −X . �

7.3.3 Time complexity

We analyze the time complexity of the algorithm as follows. Step 1 costs

O(m logm), where m = |E|. The for loop in Step 2 costs Θ(n). Step 7

costs Θ(1), and since it is executed O(m) times, its total cost is O(m).

Step 9 is executed exactly n− 1 times for a total of Θ(n) time. The union

operation is executed n−1 times, and the find operation at most 2m times.

By Theorem 3.3, the overall cost of these two operations is O(m log∗ n).
Thus, the overall running time of the algorithm is dominated by the sorting

step, i.e., O(m logm) = O(m logn).

Theorem 7.3 Algorithm kruskal finds a minimum cost spanning tree

in a weighted undirected graph with m edges in O(m log n) time.

Proof. Lemma 7.2 establishes the correctness of the algorithm and the

time complexity follows from the above discussion. �

Since m can be as large as n(n − 1)/2 = Θ(n2), the time complexity

expressed in terms of n is O(n2 logn). If the graph is planar, then m =

O(n) (see Sec. 2.3.2) and hence the running time of the algorithm becomes

O(n log n).
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7.4 Minimum Cost Spanning Trees (Prim’s Algorithm)

As in the previous section, we will assume throughout this section that G

is connected. If G is not connected, then the algorithm can be applied to

each connected component of G.

This is another algorithm for finding a minimum cost spanning tree in a

weighted undirected graph that has a totally different approach from that

of Algorithm kruskal. Prim’s algorithm for finding a minimum spanning

tree for an undirected graph is very similar to Dijkstra’s algorithm for the

shortest path problem. The algorithm grows the spanning tree starting from

an arbitrary vertex. Let G = (V,E), where for simplicity V is taken to be

the set of integers {1, 2, . . . , n}. The algorithm begins by creating two sets

of vertices: X = {1} and Y = {2, 3, . . . , n}. It then grows a spanning tree,

one edge at a time. At each step, it finds an edge (x, y) of minimum weight,

where x ∈ X and y ∈ Y and moves y from Y to X . This edge is added to

the current minimum spanning tree edges in T . This step is repeated until

Y becomes empty. The algorithm is outlined below. It finds the set of edges

T of a minimum cost spanning tree.

1. T ←{}; X ←{1}; Y ← V − {1}
2. while Y �= {}
3. Let (x, y) be of minimum weight such that x ∈ X and y ∈ Y .
4. X←X ∪ {y}
5. Y ← Y − {y}
6. T← T ∪ {(x, y)}
7. end while

Example 7.5 Consider the graph shown in Fig. 7.5(a). The vertices to

the left of the dashed line belong to X and those to its right belong to Y .

First, as shown in Fig. 7.5(a),X = {1} and Y = {2, 3, . . . , 6}. In Fig. 7.5(b),

vertex 2 is moved from Y to X since edge (1, 2) has the least cost among all

the edges incident to vertex 1. This is indicated by moving the dashed line

so that 1 and 2 are now to its left. As shown in Fig. 7.5(b), the candidate

vertices to be moved from Y to X are 3 and 4. Since edge (1, 3) is of least

cost among all edges with one end in X and one end in Y , 3 is moved from

Y to X . Next, from the two candidate vertices 4 and 5 in Fig. 7.5(c), 4 is

moved since the edge (3, 4) has the least cost. Finally, vertices 6 and then
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Fig. 7.5. An example of Prim’s algorithm.

5 are moved from Y to X , as shown in Fig. 7.5(e). Each time a vertex y

is moved from Y to X , its corresponding edge is included in T , the set of

edges of the minimum spanning tree. The resulting minimum spanning tree

is shown in Fig. 7.5(f).

7.4.1 Implementation of Prim’s algorithm

We will assume that the input is represented by adjacency lists. The cost

(i.e., weight) of an edge (x, y), denoted by c[x, y], is stored at the node

for y in the adjacency list corresponding to x. This is exactly the input

representation for Dijkstra’s algorithm shown in Fig. 7.2 (except that here

we are dealing with undirected graphs). The two sets X and Y will be

implemented as boolean vectors X [1..n] and Y [1..n], respectively. Initially,

X [1] = 1 and Y [1] = 0, and for all i, 2 ≤ i ≤ n, X [i] = 0 and Y [i] = 1.

Thus, the operation X←X ∪{y} is implemented by setting X [y] to 1, and

the operation Y ← Y −{y} is implemented by setting Y [y] to 0. The set of

tree edges T will be implemented as a linked list, and thus the operation

T← T ∪ {(x, y)} simply appends edge (x, y) to T . It is easy to build the
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adjacency list representation of the resulting minimum cost spanning tree

from this linked list.

If (x, y) is an edge such that x ∈ X and y ∈ Y , we will call y a bordering

vertex. Bordering vertices are candidates for being moved from Y to X . Let

y be a bordering vertex. Then, there is at least one vertex x ∈ X that is

adjacent to y. We define the neighbor of y, denoted by N [y], to be that

vertex x in X with the property that c[x, y] is minimum among all vertices

adjacent to y in X . We also define C[y] = c[y,N [y]]. Thus, N [y] is the

nearest neighbor to y in X , and C[y] is the cost of the edge connecting

y and N [y]. A detailed description of the algorithm is given as Algorithm

prim.

Initially, we set N [y] to 1 and C[y] = c[1, y] for each vertex y adjacent

to 1. For each vertex y that is not adjacent to 1, we set C[y] to ∞. In each

iteration, that vertex y with minimum C[y] is moved from Y to X . After it

has been moved, N [w] and C[w] are updated for each vertex w in Y that

is adjacent to y.

Algorithm 7.4 prim
Input: A weighted connected undirected graph G = (V,E), where

V = {1, 2, . . . , n}.
Output: The set of edges T of a minimum cost spanning tree for G.

1. T ←{}; X ←{1}; Y ← V − {1}
2. for y← 2 to n
3. if y adjacent to 1 then
4. N [y]← 1
5. C[y]← c[1, y]
6. else C[y]←∞
7. end if
8. end for
9. for j← 1 to n− 1 {find n− 1 edges}

10. Let y ∈ Y be such that C[y] is minimum
11. T← T ∪ {(y,N [y])} {add edge (y,N [y]) to T}
12. X←X ∪ {y} {add vertex y to X}
13. Y ← Y − {y} {delete vertex y from Y }
14. for each vertex w ∈ Y that is adjacent to y
15. if c[y, w] < C[w] then
16. N [w]← y
17. C[w]← c[y, w]
18. end if
19. end for
20. end for
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7.4.2 Correctness

Lemma 7.3 Algorithm prim correctly finds a minimum cost spanning

tree in a connected undirected graph.

Proof. We prove by induction on the size of T that (X,T ) is a subtree

of a minimum cost spanning tree. Initially, T = {} and the statement is

trivially true. Assume the statement is true before adding edge e = (x, y),

where x ∈ X and y ∈ Y . Let X ′ = X ∪{y} and T ′ = T ∪{e}. We will show

that G′ = (X ′, T ′) is also a subset of some minimum cost spanning tree.

First, we show that G′ is a tree. Since e is connected to exactly one vertex

in X , namely x, and since by the induction hypothesis (X,T ) is a tree, G′ is
connected and has no cycles, i.e., a tree. We now show that G′ is a subtree

of a minimum cost spanning tree. By the induction hypothesis, T ⊂ T ∗,
where T ∗ is the set of edges in a minimum spanning tree G∗ = (V, T ∗). If T ∗

contains e, then there is nothing to prove. Otherwise, by Theorem 2.1(c),

T ∗ ∪ {e} contains exactly one cycle with e being one of its edges. Since

e = (x, y) connects one vertex in X to another vertex in Y , T ∗ must also

contain another edge e′ = (w, z) such that w ∈ X and z ∈ Y . If we now

construct T ∗∗ = T ∗ − {e′} ∪ {e}, we notice that T ′ ⊆ T ∗∗. Moreover, T ∗∗

is the set of edges in a minimum cost spanning tree since e is of minimum

cost among all edges connecting the vertices in X with those in Y . �

7.4.3 Time complexity

The time complexity of the algorithm is computed as follows. Step 1 costs

Θ(n) time. The for loop in Step 2 requires Θ(n) time. The time taken by

Step 10 to search for a vertex y closest to X is Θ(n) per iteration. This

is because the algorithm inspects each entry in the vector representing the

set Y . Since this step is executed n − 1 times, the overall time taken by

Step 10 is Θ(n2). Steps 11–13 cost Θ(1) time per iteration for a total of

Θ(n) time. The for loop in Step 14 is executed 2m times, where m = |E|.
This is because each edge (y, w) is inspected twice: once when y is moved to

X and the other when w is moved to X . Hence, the overall time required by

the for loop is Θ(m). It follows that the time complexity of the algorithm

is Θ(m+ n2) = Θ(n2).

Theorem 7.4 Algorithm prim finds a minimum cost spanning tree in a

weighted undirected graph with n vertices in Θ(n2) time.
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Proof. Lemma 7.3 establishes the correctness of the algorithm and the

rest follows from the above discussion. �

7.4.4 Improving the time bound

Now, we improve on Algorithm prim as we did to Algorithm dijkstra in

order to lower its Θ(n2) time complexity to O(m log n) for graphs in which

m = o(n2). We will also improve it further, so that in the case of dense

graphs it runs in time linear in the number of edges.

As in Algorithm shortestpath, the basic idea is to use the min-heap

data structure (see Sec. 3.2) to maintain the set of bordering vertices so that

the vertex y in Y incident to an edge of lowest cost that is connected to a

vertex in V −Y can be extracted in O(log n) time. The modified algorithm

is given as Algorithm mst.

Algorithm 7.5 mst
Input: A weighted connected undirected graph G = (V,E), where

V = {1, 2, . . . , n}.
Output: The set of edges T of a minimum cost spanning tree for G.

Assume that we have an empty heap H at the beginning.

1. T ←{}; Y ← V − {1}
2. for y← 2 to n
3. if y is adjacent to 1 then
4. N [y]← 1
5. key(y)← c[1, y]
6. insert(H,y)
7. else key(y)←∞
8. end if
9. end for

10. for j← 1 to n− 1 {find n− 1 edges}
11. y← deletemin(H)
12. T← T ∪ {(y,N [y])} {add edge (y,N [y]) to T}
13. Y ← Y − {y} {delete vertex y from Y }
14. for each vertex w ∈ Y that is adjacent to y
15. if c[y, w] < key(w) then
16. N [w]← y
17. key(w)← c[y, w]
18. end if
19. if w /∈ H then insert(H,w)
20. else siftup(H,H−1(w))
21. end for
22. end for
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The heap H initially contains all vertices adjacent to vertex 1. Each

vertex y ∈ Y is assigned a key which is the cost of the edge connecting y to

1 if it exists; otherwise, that key is set to ∞. Each iteration of the for loop

starts by extracting that vertex y with minimum key. The key of each vertex

w in Y adjacent to y is then updated. Next, if w is not in the heap, then

it is inserted; otherwise, it is sifted up, if necessary. The function H−1(w)

returns the position of w in H . This can be implemented by simply having

an array that has for its jth entry the position of vertex j in the heap. As

in Algorithm shortestpath, the running time is dominated by the heap

operations. There are n−1 deletemin operations, n−1 insert operations

and at most m − n + 1 siftup operations. Each one of these operations

takes O(log n) time using binary heaps which results in O(m logn) time in

total.

A d-heap is essentially a generalization of a binary heap in which each

internal node in the tree has at most d children instead of 2, where d is

a number that can be arbitrarily large (see Exercise 3.21). If we use a

d-heap, the running time is improved as follows. Each deletemin takes

O(d logd n) time, and each insert or siftup operation requires O(logd n)

time. Thus, the total running time is O(nd logd n+m logd n). If we choose

d = �2 +m/n�, the time bound becomes O(m log�2+m/n� n). If m ≥ n1+ε

for some ε > 0 that is not too small, i.e., the graph is dense, then the

running time is

O(m log�2+m/n� n) = O(m log�2+nε� n)

= O

(
m

logn

log(2 + nε)

)

= O

(
m

logn

lognε

)

= O
(m
ε

)
.

This implies the following theorem:

Theorem 7.5 Given a weighted undirected graph G, Algorithm mst

finds a minimum cost spanning tree in O(m logn) time. If the graph is

dense, i.e., if m ≥ n1+ε for some ε > 0, then it can be improved further to

run in time O(m/ε).
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7.5 File Compression

Suppose we are given a file, which is a string of characters. We wish to

compress the file as much as possible in such a way that the original

file can easily be reconstructed. Let the set of characters in the file be

C = {c1, c2, . . . , cn}. Let also f(ci), 1 ≤ i ≤ n, be the frequency of char-

acter ci in the file, i.e., the number of times ci appears in the file. Using

a fixed number of bits to represent each character, called the encoding of

the character, the size of the file depends only on the number of charac-

ters in the file. However, since the frequency of some characters may be

much larger than others, it is reasonable to use variable length encodings.

Intuitively, those characters with large frequencies should be assigned short

encodings, whereas long encodings may be assigned to those characters with

small frequencies. When the encodings vary in length, we stipulate that the

encoding of one character must not be the prefix of the encoding of another

character; such codes are called prefix codes. For instance, if we assign the

encodings 10 and 101 to the letters “a” and “b”, there will be an ambiguity

as to whether 10 is the encoding of “a” or is the prefix of the encoding of the

letter “b”.

Once the prefix constraint is satisfied, the decoding becomes unambigu-

ous; the sequence of bits is scanned until an encoding of some character is

found. One way to “parse” a given sequence of bits is to use a full binary

tree, in which each internal node has exactly two branches labeled by 0 and

1. The leaves in this tree correspond to the characters. Each sequence of

0’s and 1’s on a path from the root to a leaf corresponds to a character

encoding. In what follows, we describe how to construct a full binary tree

that minimizes the size of the compressed file.

The algorithm presented is due to Huffman. The code constructed by

the algorithm satisfies the prefix constraint and minimizes the size of the

compressed file. The algorithm consists of repeating the following procedure

until C consists of only one character. Let ci and cj be two characters with

minimum frequencies. Create a new node c whose frequency is the sum

of the frequencies of ci and cj , and make ci and cj the children of c. Let

C = C − {ci, cj} ∪ {c}.

Example 7.6 Consider finding a prefix code for a file that consists of

the letters a, b, c, d and e. See Fig. 7.6. Suppose that these letters appear in
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Fig. 7.6. An example of a Huffman tree.

the file with the following frequencies.

f(a) = 20, f(b) = 7, f(c) = 10, f(d) = 4 and f(e) = 18.

Each leaf node is labeled with its corresponding character and its frequency

of occurrence in the file. Each internal node is labeled with the sum of the

weights of the leaves in its subtree and the order of its creation. For instance,

the first internal node created has a sum of 11 and it is labeled with 1. From

the binary tree, the encodings for a, b, c, d and e are, respectively, 01, 110,

10, 111 and 00. Suppose each character was represented by three binary

digits before compression. Then, the original size of the file is 3(20 + 7 +

10 + 4 + 18) = 177 bits. The size of the compressed file using the above

code becomes 2× 20 + 3× 7 + 2× 10 + 3× 4 + 2× 18 = 129 bits, a saving

of about 27%.

7.5.1 The algorithm

Since the main operations required to construct a Huffman tree are inser-

tion and deletion of characters with minimum frequency, a min-heap is a

good candidate data structure that supports these operations. The algo-

rithm builds a tree by adding n − 1 internal vertices one at a time; its

leaves correspond to the input characters. Initially and during its execu-

tion, the algorithm maintains a forest of trees. After adding n− 1 internal

nodes, the forest is transformed into a tree: the Huffman tree. Algorithm

huffman below gives a more precise description of the construction of

a full binary tree corresponding to a Huffman code of an input string of

characters together with their frequencies.
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Algorithm 7.6 huffman
Input: A set C = {c1, c2, . . . , cn} of n characters and their frequencies

{f(c1), f(c2), . . . , f(cn)}.
Output: A Huffman tree (V, T) for C.

1. Insert all characters into a min-heap H according to their frequencies.
2. V ←C; T = {}
3. for j← 1 to n− 1
4. c← deletemin(H)
5. c′← deletemin(H)
6. f(v)← f(c) + f(c′) {v is a new node}
7. insert(H,v)
8. V = V ∪ {v} {Add v to V }
9. T = T ∪ {(v, c), (v, c′)} {Make c and c′ children of v in T}

10. end while

7.5.2 Time complexity

The time complexity of the algorithm is computed as follows. The time

needed to insert all characters into the heap is Θ(n) (Theorem 3.1). The

time required to delete two elements from the heap and add a new element

is O(log n). Since this is repeated n− 1 times, the overall time taken by the

for loop is O(n log n). It follows that the time complexity of the algorithm

is O(n logn).

7.6 Practice Problems

7.1. Give a counterexample to show that the greedy algorithm obtained in

Example 7.1 for the money change problem does not always work if

we instead use coins of values 1 cent, 5 cents, 7 cents and 11 cents.

Note that in this case dynamic programming can be used to find the

minimum number of coins (see Exercises 6.20 and 6.21).

7.2. Apply Algorithm dijkstra on the directed graph shown in Fig. 7.7.

Assume that vertex 1 is the start vertex.
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Fig. 7.7. Directed graph.



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch07 page 240

240 Algorithms: Design Techniques and Analysis

1 3 5

642

1

2

3
3

6

7

6

4

9

7

2

Fig. 7.8. An undirected graph.

7.3. Is Algorithm dijkstra optimal? Explain.

7.4. What are the merits and demerits of using the adjacency matrix rep-

resentation instead of the adjacency lists in the input to Algorithm

dijkstra?

7.5. Give an example of a directed graph to show that Algorithm dijkstra

does not always work if some of the edges have negative weights.

7.6. Show the result of applying Algorithm kruskal to find a minimum

cost spanning tree for the undirected graph shown in Fig. 7.8.

7.7. Show the result of applying Algorithm prim to find a minimum cost

spanning tree for the undirected graph shown in Fig. 7.8.

7.8. Use Algorithm huffman to find an optimal code for the characters

a, b, c, d, e and f whose frequencies in a given text are, respectively,

7, 5, 3, 2, 12 and 9.

7.7 Exercises

7.1. Suppose in the money change problem of Example 7.1, the coin

values are: 1, 2, 4, 8, 16, . . . , 2k, for some positive integer k. Give an

O(log n) algorithm to solve the problem if the value to be paid is

y < 2k+1.

7.2. Let G = (V,E) be an undirected graph. A vertex cover for G is a

subset S ⊆ V such that every edge in E is incident to at least one

vertex in S. Consider the following algorithm for finding a vertex

cover for G. First, order the vertices in V by decreasing order of

degree. Next, execute the following step until all edges are covered.

Pick a vertex of highest degree that is incident to at least one edge

in the remaining graph, add it to the cover, and delete all edges
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incident to that vertex. Show that this greedy approach does not

always result in a vertex cover of minimum size.

7.3. Let G = (V,E) be an undirected graph. A clique C inG is a subgraph

of G that is a complete graph by itself. A clique C is maximum if

there is no other clique C′ in G such that the size of C′ is greater than
the size of C. Consider the following method that attempts to find

a maximum clique in G. Initially, let C = G. Repeat the following

step until C is a clique. Delete from C a vertex that is not connected

to every other vertex in C. Show that this greedy approach does not

always result in a maximum clique.

7.4. Let G = (V,E) be an undirected graph. A coloring of G is an assign-

ment of colors to the vertices in V such that no two adjacent vertices

have the same color. The coloring problem is to determine the min-

imum number of colors needed to color G. Consider the following

greedy method that attempts to solve the coloring problem. Let the

colors be 1, 2, 3, . . .. First, color as many vertices as possible using

color 1. Next, color as many vertices as possible using color 2, and so

on. Show that this greedy approach does not always color the graph

using the minimum number of colors.

7.5. Let A1, A2, . . . , Am be m arrays of integers each sorted in nonde-

creasing order. Each arrayAj is of size nj . Suppose we want to merge

all arrays into one array A using an algorithm similar to Algorithm

merge described in Sec. 1.4. Give a greedy strategy for the order

in which these arrays should be merged so that the overall number

of comparisons is minimized. For example, if m = 3, we may merge

A1 with A2 to obtain A4 and then merge A3 with A4 to obtain A.

Another alternative is to merge A2 with A3 to obtain A4 and then

merge A1 with A4 to obtain A. Yet another alternative is to merge

A1 with A3 to obtain A4 and then merge A2 with A4 to obtain A.

(Hint: Give an algorithm similar to Algorithm huffman.)

7.6. Analyze the time complexity of the algorithm in Exercise 7.5. (Hint:

If we merge the two smallest arrays, then the next two smallest

arrays, etc., then each time we merge, the resulting array size is at

least double the smaller array size.)
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7.7. Consider the following greedy algorithm which attempts to find the

distance from vertex s to vertex t in a directed graph G with pos-

itive lengths on its edges. Starting from vertex s, go to the near-

est vertex, say x. From vertex x, go to the nearest vertex, say y.

Continue in this manner until you arrive at vertex t. Give a graph

with the fewest number of vertices to show that this heuristic does

not always produce the distance from s to t. (Recall that the dis-

tance from vertex u to vertex v is the length of a shortest path from

u to v.)

7.8. Modify Algorithm dijkstra so that it finds the shortest paths in

addition to their lengths. (Hint: Use an array P such that P [v] stores

the parent of the new vertex v.)

7.9. Prove that the subgraph defined by the paths obtained from the

modified shortest path algorithm as described in Exercise 7.8 is a

tree. This tree is called the shortest path tree.

7.10. Can a directed graph have two distinct shortest path trees (see Exer-

cise 7.9)? Prove your answer.

7.11. Show that the proof of correctness of Algorithm dijkstra

(Lemma 7.1) does not work if some of the edges in the input graph

have negative weights.

7.12. Let G = (V,E) be a directed graph such that removing the directions

from its edges results in a planar graph. What is the running time

of Algorithm shortestpath when applied to G? Compare that to

the running time when using Algorithm dijkstra.

7.13. Let G = (V,E) be a directed graph such that m = O(n1.2), where

n = |V | and m = |E|. What changes should be made to Algorithm

shortestpath so that it will run in time O(m)?

7.14. Let G = (V,E) be an undirected graph such that m = O(n1.99),

where n = |V | and m = |E|. Suppose you want to find a minimum

cost spanning tree for G. Which algorithm would you choose: Algo-

rithm prim or Algorithm kruskal? Explain.
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Fig. 7.9. Undirected graph.

7.15. Refer to Fig. 7.9.

(a) Run Prim’s algorithm starting from vertex 3 in order to find a

minimum spanning tree of the graph. Make sure you indicate the

order in which each edge is added to the minimum spanning tree.

(b) Can this graph have more than one minimum spanning trees?

Justify your answer.

7.16. Let e be an edge of minimum weight in an undirected graph G. Show

that e belongs to some minimum cost spanning tree of G.

7.17. Does Algorithm prim work correctly if the graph has negative

weights? Prove your answer.

7.18. Let G be an undirected weighted graph such that no two edges have

the same weight. Prove that G has a unique minimum cost spanning

tree.

7.19. What is the number of spanning trees of a complete undirected graph

G with n vertices? For example, the number of spanning trees of K3,

the complete graph on three vertices, is 3.
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7.20. Let G be a directed weighted graph such that no two edges have the

same weight. Let T be a shortest path tree for G (see Exercise 7.9).

Let G′ be the undirected graph obtained by removing the directions

from the edges of G. Let T ′ be a minimum spanning tree for G′.
Prove or disprove that T = T ′.

7.21. Prove that the graph obtained in Algorithm huffman is a tree.

7.22. Algorithm huffman constructs the code tree in a bottom-up fashion.

Is it a dynamic programming algorithm?

7.23. Let B = {b1, b2, . . . , bn} and W = {w1, w2, . . . , wn} be two sets

of black and white points in the plane. Each point is repre-

sented by the pair (x, y) of x and y coordinates. A black point

bi = (xi, yi) dominates a white point wj = (xj , yj) if and only

if xi ≥ xj and yi ≥ yj . A matching between a black point bi
and a white point wj is possible if bi dominates wj . A match-

ing M = {(bi1 , wj1 ), (bi2 , wj2), . . . , (bik , wjk)} between the black and

white points is maximum if k, the number of matched pairs in M ,

is maximum. Design a greedy algorithm to find a maximum match-

ing in O(n log n) time. (Hint: Sort the black points in increasing

x-coordinates and use a heap for the white points.)

7.8 Bibliographic Notes

The greedy graph algorithms are discussed in most books on algorithms

(see the Bibliographic Notes of Chapter 1).

Algorithm dijkstra for the single source shortest path problem is from

Dijkstra (1959). The implementation using a heap is due to Johnson (1977);

see also Tarjan (1983). The best known asymptotic running time for this

problem is O(m+ n logn), which is due to Fredman and Tarjan (1987).

Graham and Hell (1985) discuss the long history of the minimum cost

spanning tree problem, which has been extensively studied. Algorithm

kruskal comes from Kruskal (1956). Algorithm prim is due to Prim

(1957). The improvement using heaps can be found in Johnson (1975).

More sophisticated algorithms can be found in Yao (1975), Cheriton and

Tarjan (1976) and Tarjan (1983). Algorithm huffman for file compression

is due to Huffman (1952) (see also Knuth, 1968).
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Chapter 8

Graph Traversal

8.1 Introduction

In some graph algorithms such as those for finding shortest paths or min-

imum spanning trees, the vertices and edges are visited in an order that

is imposed by their respective algorithms. However, in some other algo-

rithms, the order of visiting the vertices is unimportant; what is important

is that the vertices are visited in a systematic order, regardless of the input

graph. In this chapter, we discuss two methods of graph traversal: depth-

first search and breadth-first search.

8.2 Depth-First Search

Depth-first search is a powerful traversal method that aids in the solution

of many problems involving graphs. It is essentially a generalization of the

preorder traversal of rooted trees (see Sec. 2.5.1). Let G = (V,E) be a

directed or undirected graph. A depth-first search traversal of G works as

follows. First, all vertices are marked unvisited. Next, a starting vertex is

selected, say v ∈ V , and marked visited. Let w be any vertex that is adjacent

to v. We mark w as visited and advance to another vertex, say x, that is

adjacent to w and is marked unvisited. Again, we mark x as visited and

advance to another vertex that is adjacent to x and is marked unvisited.

This process of selecting an unvisited vertex adjacent to the current vertex

continues as deep as possible until we find a vertex y whose adjacent vertices

245
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have all been marked visited. At this point, we back up to the most recently

visited vertex, say z, and visit an unvisited vertex that is adjacent to z, if

any. Continuing this way, we finally return back to the starting vertex v.

This method of traversal has been given the name depth-first search, as it

continues the search in the forward (deeper) direction. The algorithm for

such a traversal can be written using recursion, as shown in Algorithm dfs

or a stack (see Exercise 8.1).

Algorithm 8.1 dfs
Input: A (directed or undirected) graph G = (V,E).

Output: Preordering and postordering of the vertices in the corresponding
depth-first search tree.

1. predfn← 0; postdfn← 0
2. for each vertex v ∈ V
3. mark v unvisited
4. end for
5. for each vertex v ∈ V
6. if v is marked unvisited then dfs(v)
7. end for

Algorithm dfs(v)

1. mark v visited
2. predfn← predfn + 1
3. for each edge (v, w) ∈ E
4. if w is marked unvisited then dfs(w)
5. end for
6. postdfn← postdfn + 1

The algorithm starts by marking all vertices unvisited. It also initializes

two counters predfn and postdfn to zero. These two counters are not part of

the traversal ; their importance will be apparent when we later make use of

depth-first search to solve some problems. The algorithm then calls Algo-

rithm dfs for each unvisited vertex in V . This is because not all the vertices

may be reachable from the start vertex. Starting from some vertex v ∈ V ,

Algorithm dfs performs the search on G by visiting v, marking v visited and

then recursively visiting its adjacent vertices. When the search is complete,

if all vertices are reachable from the start vertex, a spanning tree called

the depth-first search spanning tree is constructed whose edges are those

inspected in the forward direction, i.e., when exploring unvisited vertices.

In other words, let (v, w) be an edge such that w is marked unvisited and
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suppose the algorithm was invoked by the call dfs(v). Then, in this case,

that edge will be part of the depth-first search spanning tree. If not all the

vertices are reachable from the start vertex, then the search results in a

forest of spanning trees instead.

After the search is complete, each vertex is labeled with predfn and

postdfn numbers. These two labels impose preorder and postorder num-

bering on the vertices in the spanning tree (or forest) generated by the

depth-first search traversal. They give the order in which visiting a vertex

starts and ends. In the following, we say that edge (v, w) is being explored

to mean that within the call dfs(v), the algorithm is inspecting the edge

(v, w) to test whether w has been visited before or not. The edges of the

graph are classified differently according to whether the graph is directed

or undirected.

8.2.1 The case of undirected graphs

Let G = (V,E) be an undirected graph. As a result of the traversal, the

edges of G are classified into the following two types:

(1) Tree edges: Edges in the depth-first search tree. An edge (v, w) is a

tree edge if w was first visited when exploring the edge (v, w).

(2) Back edges: All other edges.

Example 8.1 Figure 8.1(b) illustrates the action of depth-first search

traversal on the undirected graph shown in Fig. 8.1(a). Vertex a has

been selected as the start vertex. The depth-first search tree is shown in

Fig. 8.1(b) with solid lines. Dotted lines represent back edges. Each ver-

tex in the depth-first search tree is labeled with two numbers: predfn and

postdfn. Note that since vertex e has postdfn = 1, it is the first vertex whose

depth-first search is complete. Note also that since the graph is connected,

the start vertex is labeled with predfn = 1 and postdfn = 10, the number

of vertices in the graph.

8.2.2 The case of directed graphs

Depth-first search in directed graphs results in one or more (directed) span-

ning trees whose number depends on the start vertex. If v is the start vertex,

depth-first search generates a tree consisting of all vertices reachable from v.

If not all vertices are included in that tree, the search resumes from another
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Fig. 8.1. An example of depth-first search traversal of an undirected graph.

unvisited vertex, say w, and a tree consisting of all unvisited vertices that

are reachable from w is constructed. This process continues until all ver-

tices have been visited. In depth-first search traversal of directed graphs,

however, the edges of G are classified into four types:

(1) Tree edges: Edges in the depth-first search tree. An edge (v, w) is a

tree edge if w was first visited when exploring the edge (v, w).

(2) Back edges: Edges of the form (v, w) such that w is an ancestor of

v in the depth-first search tree (constructed so far) and vertex w was

marked visited when (v, w) was explored.

(3) Forward edges: Edges of the form (v, w) such that w is a descendant

of v in the depth-first search tree (constructed so far) and vertex w was

marked visited when (v, w) was explored.

(4) Cross edges: All other edges.

Example 8.2 Figure 8.2(b) illustrates the action of depth-first search

traversal on the directed graph shown in Fig. 8.2(a). Starting at vertex a,

the vertices a, b, e and f are visited in this order. When Algorithm dfs is

initiated again at vertex c, vertex d is visited and the traversal is complete

after b is visited from c. We notice that the edge (e, a) is a back edge since

e is a descendant of a in the depth-first search tree, and (e, a) is not a tree

edge. On the other hand, edge (a, f) is a forward edge since a is an ancestor

of f in the depth-first search tree, and (a, f) is not a tree edge. Since neither
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Fig. 8.2. An example of depth-first search traversal of a directed graph.

e nor f is an ancestor of the other in the depth-first search tree, edge (f, e)

is a cross edge. The two edges (c, b) and (d, e) are, obviously, cross edges;

each edge connects two vertices in two different trees. Note that had we

chosen to visit vertex f immediately after a instead of visiting vertex b,

both edges (a, b) and (a, f) would have been tree edges. In this case, the

result of the depth-first search traversal is shown in Fig. 8.2(c). Thus, the

type of an edge depends on the order in which the vertices are visited.

8.2.3 Time complexity of depth-first search

Now, we analyze the time complexity of Algorithm dfs when applied to

a graph G with n vertices and m edges. The for loop of the algorithm

in lines 2–4 costs Θ(n) time. The for loop of the algorithm in lines 5–7

costs Θ(n) time. The number of algorithm calls is exactly n since once the

algorithm is invoked on vertex v, it will be marked visited and hence no

more calls on v will take place. The cost of an algorithm call if we exclude

the for loop in Algorithm dfs is Θ(1). It follows that the overall cost of

algorithm calls excluding the for loop is Θ(n). Now, it remains to find the
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cost of the for loop in Algorithm dfs. The number of times this step is

executed to test whether a vertex w is marked unvisited is equal to the

number of vertices adjacent to vertex v. Hence, the total number of times

this step is executed is equal to the number of edges in the case of directed

graphs and twice the number of edges in the case of undirected graphs.

Consequently, the cost of this step is Θ(m) in both directed and undirected

graphs. It follows that the running time of the algorithm is Θ(m+ n). If

the graph is connected or m ≥ n, then the running time is simply Θ(m). It

should be emphasized, however, that the graph is assumed to be represented

by adjacency lists. The time complexity of Algorithm dfs when the graph

is represented by an adjacency matrix is left as an exercise (Exercise 8.2).

8.3 Applications of Depth-First Search

Depth-first search is used quite often in graph and geometric algorithms.

It is a powerful tool and has numerous applications. In this section, we list

some of its important applications.

8.3.1 Graph acyclicity

Let G = (V,E) be a directed or undirected graph with n vertices and

m edges. To test whether G has at least one cycle, we apply depth-first

search on G. If a back edge is detected during the search, then G is cyclic;

otherwise, G is acyclic.

8.3.2 Topological sorting

Given a directed acyclic graph (dag for short) G = (V,E), the problem of

topological sorting is to find a linear ordering of its vertices in such a way

that if (v, w) ∈ E, then v appears before w in the ordering. For example, one

possible topological sorting of the vertices in the dag shown in Fig. 8.3(a)

is a, b, d, c, e, f, g. We will assume that the dag has only one vertex, say s,

of indegree 0. If not, we may simply add a new vertex s and edges from s

to all vertices of indegree 0 (see Fig. 8.3(b)).

Next, we simply carry out a depth-first search on G starting at vertex s.

When the traversal is complete, the values of the counter postdfn define

a reverse topological ordering of the vertices in the dag. Thus, to obtain
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Fig. 8.3. Illustration of topological sorting.

the ordering, we may add an output step to Algorithm dfs just after the

counter postdfn is incremented. The resulting output is reversed to obtain

the desired topological ordering.

8.3.3 Finding articulation points in a graph

A vertex v in an undirected graph G with more than two vertices is called

an articulation point if there exist two vertices u and w different from v

such that any path between u and w must pass through v. Thus, if G is

connected, the removal of v and its incident edges will result in a discon-

nected subgraph of G. A graph is called biconnected if it is connected and

has no articulation points. To find the set of articulation points, we perform

a depth-first search traversal on G. During the traversal, we maintain two

labels with each vertex v ∈ V : α[v] and β[v]. α[v] is simply predfn in the

depth-first search algorithm, which is incremented at each call to the depth-

first search algorithm. β[v] is initialized to α[v], but may change later on

during the traversal. For each vertex v visited, we let β[v] be the minimum

of the following:

• α[v].
• α[u] for each vertex u such that (v, u) is a back edge.

• β[w] for each edge (v, w) in the depth-first search tree.

The articulation points are determined as follows:

• The root is an articulation point if and only if it has two or more children

in the depth-first search tree.

• A vertex v other than the root is an articulation point if and only if v

has a child w with β[w] ≥ α[v].
The formal algorithm for finding the articulation points is given as

Algorithm articpoints.
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Algorithm 8.2 articpoints
Input: A connected undirected graph G = (V,E).

Output: Array A[1..count] containing the articulation points of G, if any.

1. Let s be the start vertex.
2. for each vertex v ∈ V
3. mark v unvisited
4. end for
5. predfn← 0; count← 0; rootdegree← 0
6. dfs(s)

Algorithm dfs(v)

1. mark v visited; artpoint← false ; predfn← predfn + 1
2. α[v]← predfn ; β[v]← predfn {Initialize α[v] and β[v]}
3. for each edge (v, w) ∈ E
4. if (v, w) is a tree edge then
5. dfs(w)
6. if v = s then
7. rootdegree← rootdegree + 1
8. if rootdegree = 2 then artpoint← true
9. else

10. β[v]← min{β[v], β[w]}
11. if β[w] ≥ α[v] then artpoint← true
12. end if
13. else if (v, w) is a back edge then β[v]← min{β[v], α[w]}
14. else do nothing {w is the parent of v}
15. end if
16. end for
17. if artpoint then
18. count← count + 1
19. A[count ]← v
20. end if

First, the algorithm performs the necessary initializations. In particular,

count is the number of articulation points and rootdegree is the degree of

the root of the depth-first search tree. This is needed to decide later whether

the root is an articulation point as mentioned above. Next, the depth-first

search commences starting at the root. For each vertex v visited, α[v] and

β[v] are initialized to predfn. When the search backs up from some vertex w

to v, two actions take place. First, β[v] is set to β[w] if β[w] is found to be

smaller then β[v]. Second, if β[w] ≥ α[v], then this is an indication that v is

an articulation point. This is because any path from w to an ancestor of v
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Fig. 8.4. Illustration of the algorithm for finding the articulation points.

must pass through v. This is illustrated in Fig. 8.4 in which any path from

the subtree rooted at w to u must include v, and hence v is an articulation

point. The subtree rooted at w contains one or more connected components.

In this figure, the root u is an articulation point since its degree is greater

than 1.

Example 8.3 We illustrate the action of Algorithm articpoints by

finding the articulation points of the graph shown in Fig. 8.1(a). See Fig. 8.5.

Each vertex v in the depth-first search tree is labeled with α[v] and β[v].

The depth-first search starts at vertex a and proceeds to vertex e. A back

edge (e, c) is discovered, and hence β[e] is assigned the value α[c] = 3. Now,

when the search backs up to vertex d, β[d] is assigned β[e] = 3. Similarly,

when the search backs up to vertex c, its label β[c] is assigned the value

β[d] = 3. Now, since β[d] ≥ α[c], vertex c is marked as an articulation

point. When the search backs up to b, it is also found that β[c] ≥ α[b],

and hence b is also marked as an articulation point. At vertex b, the search

branches to a new vertex f and proceeds, as illustrated in the figure, until

it reaches vertex j. The back edge (j, h) is detected, and hence β[j] is set

to α[h] = 8. Now, as described before, the search backs up to i and then

h and sets β[i] and β[h] to β[j] = 8. Again, since β[i] ≥ α[h], vertex h is

marked as an articulation point. For the same reason, vertex g is marked

as an articulation point. At vertex g, the back edge (g, a) is detected, and
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Fig. 8.5. An example of finding the articulation points in a graph.

hence β[g] is set to α[a] = 1. Finally, β[f ] and then β[b] are set to 1 and

the search terminates at the start vertex. The root a is not an articulation

point since it has only one child in the depth-first search tree.

8.3.4 Strongly connected components

Given a directed graph G = (V,E), a strongly connected component in G

is a maximal set of vertices in which there is a path between each pair of

vertices. Algorithm strongconnectcomp below uses depth-first search in

order to identify all the strongly connected components in a directed graph.

Algorithm 8.3 strongconnectcomp
Input: A directed graph G = (V,E).

Output: The strongly connected components in G.

1. Perform a depth-first search onG and assign each vertex its corresponding
postdfn number.

2. Construct a new graph G′ by reversing the direction of edges in G.
3. Perform a depth-first search on G′ starting from the vertex with

highest postdfn number. If the depth-first search does not reach all
vertices, start the next depth-first search from the vertex with highest
postdfn number among the remaining vertices.

4. Each tree in the resulting forest corresponds to a strongly connected
component.
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Example 8.4 Consider the directed graph G shown in Fig. 8.2(a).

Applying depth-first search on this directed graph results in the forest

shown in Fig. 8.2(b). Also shown in the figure is the postordering of the

vertices, which is e, f, b, a, d, c. If we reverse the direction of the edges

in G, we obtain G′, which is shown in Fig. 8.6(a). Starting from ver-

tex c in G′, a depth-first search traversal yields the tree consisting of

vertex c only. Similarly, applying depth-first search on the remaining ver-

tices starting at vertex d results in the tree consisting of only vertex d.

Finally, applying depth-first search on the remaining vertices starting at

vertex a yields the tree whose vertices are a, b, e and f . The resulting

forest is shown in Fig. 8.6(b). Each tree in the forest corresponds to a

strongly connected component. Thus, G contains three strongly connected

components.

8.4 Breadth-First Search

Unlike depth-first search, in breadth-first search, when we visit a vertex

v, we next visit all vertices adjacent to v. The resulting tree is called a

breadth-first search tree. This method of traversal can be implemented by a

queue to store unexamined vertices. Algorithm bfs for breadth-first search

can be applied to directed and undirected graphs. Initially, all vertices are

marked unvisited. The counter bfn, which is initialized to zero, represents

the order in which the vertices are removed from the queue. In the case of

undirected graphs, an edge is either a tree edge or a cross edge. If the graph

is directed, an edge is either a tree edge, a back edge or a cross edge; there

are no forward edges.
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Algorithm 8.4 bfs
Input: A directed or undirected graph G = (V,E).

Output: Numbering of the vertices in breadth-first search order.

1. bfn← 0
2. for each vertex v ∈ V
3. mark v unvisited
4. end for
5. for each vertex v ∈ V
6. if v is marked unvisited then bfs(v)
7. end for

Algorithm bfs(v)

1. Q← {v}
2. mark v visited
3. while Q �= {}
4. v← Pop(Q)
5. bfn← bfn + 1
6. for each edge (v, w) ∈ E
7. if w is marked unvisited then
8. Push(w,Q)
9. mark w visited

10. end if
11. end for
12. end while

cross edgestree edges
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Fig. 8.7. An example of breadth-first search traversal of an undirected graph.

Example 8.5 Figure 8.7 illustrates the action of breadth-first search

traversal when applied to the graph shown in Fig. 8.1(a) starting from

vertex a. After popping off vertex a, vertices b and g are pushed into the
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queue and marked visited. Next, vertex b is removed from the queue, and

its adjacent vertices that have not yet been visited, namely c and f , are

pushed into the queue and marked visited. This process of pushing vertices

into the queue and removing them later on is continued until vertex j is

finally removed from the queue. At this point, the queue becomes empty

and the breadth-first search traversal is complete. In the figure, each vertex

is labeled with its bfn number, the order in which that vertex was removed

from the queue. Notice that the edges in the figure are either tree edges or

cross edges.

8.4.1 Time complexity

The time complexity of breadth-first search when applied to a graph

(directed or undirected) with n vertices and m edges is the same as that of

depth-first search, i.e., Θ(n+m). If the graph is connected or m ≥ n, then
the time complexity is simply Θ(m).

8.5 Applications of Breadth-First Search

We close this chapter with an application of breadth-first search that is

important in graph and network algorithms. Let G = (V,E) be a connected

undirected graph and s a vertex in V . When Algorithm bfs is applied to

G starting at s, the resulting breadth-first search tree is such that the path

from s to any other vertex has the least number of edges. Thus, suppose we

want to find the distance from s to every other vertex, where the distance

from s to a vertex v is defined to be the least number of edges in any path

from s to v. This can easily be done by labeling each vertex with its distance

prior to pushing it into the queue. Thus, the start vertex will be labeled 0,

its adjacent vertices with 1, and so on. Clearly, the label of each vertex is its

shortest distance from the start vertex. For instance, in Fig. 8.7, vertex a

will be labeled 0, vertices b and g will be labeled 1, vertices c, f and h will

be labeled 2, and finally vertices d, e, i and j will be labeled 3. Note that

this vertex numbering is not the same as the breadth-first numbering in

the algorithm. The minor changes to the breadth-first search algorithm are

left as an exercise (Exercise 8.16). In this case, the resulting search tree is

the shortest path tree.
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8.6 Practice Problems

8.1. Show the result of running depth-first search on the undirected graph

shown in Fig. 8.8(a) starting at vertex a. Give the classification of

edges as tree edges or back edges.

8.2. Show the result of running depth-first search on the directed graph

shown in Fig. 8.8(b) starting at vertex a. Give the classification of

edges as tree edge, back edges, forward edges or cross edges.

8.3. Show the result of running depth-first search on the undirected graph

of Fig. 8.9 starting at vertex f . Give the classification of edges.

8.4. Show the result of running depth-first search on the directed graph

of Fig. 8.10 starting at vertex e. Give the classification of edges.
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Fig. 8.8. Undirected and directed graphs.

i

j

h

gfec

d

b

a

Fig. 8.9. An undirected graph.
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Fig. 8.10. A directed graph.
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8.5. Apply the articulation points algorithm to obtain the articulation

points of the undirected graph shown in Fig. 8.9.

8.6. Show that in the strongly connected components algorithm, any

choice of the first vertex to carry out the depth-first search traversal

leads to the same solution.

8.7. Apply the strongly connected components algorithm on the directed

graph shown in Fig. 8.10.

8.8. Show the result of running breadth-first search on the undirected

graph shown in Fig. 8.8(a) starting at vertex a.

8.9. Show the result of running breadth-first search on the directed graph

shown in Fig. 8.8(b) starting at vertex a.

8.7 Exercises

8.1. Give an iterative version of Algorithm dfs that uses a stack to store

unvisited vertices.

8.2. What will be the time complexity of the depth-first search algo-

rithm if the input graph is represented by an adjacency matrix (see

Sec. 2.3.1 for graph representation).

8.3. Show that when depth-first search is applied to an undirected graph

G, the edges of G will be classified as either tree edges or back edges.

That is, there are no forward edges or cross edges.

8.4. Suppose that Algorithm dfs is applied to an undirected graph G.

Give an algorithm that classifies the edges of G as either tree edges

or back edges.

8.5. Suppose that Algorithm dfs is applied to a directed graph G. Give

an algorithm that classifies the edges of G as either tree edges, back

edges, forward edges or cross edges.

8.6. Give an algorithm that counts the number of connected compo-

nents in an undirected graph using depth-first search or breadth-first

search.

8.7. Given an undirected graph G, design an algorithm to list the vertices

in each connected component of G separately.
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8.8. Give anO(n) time algorithm to determine whether a connected undi-

rected graph with n vertices contains a cycle.

8.9. Let T be the depth-first search tree resulting from a depth-first search

traversal on a connected undirected graph. Show that the root of T

is an articulation point if and only if it has two or more children (see

Sec. 8.3.3).

8.10. Let T be the depth-first search tree resulting from a depth-first search

traversal on a connected undirected graph. Show that a vertex v other

than the root is an articulation point if and only if v has a child w

with β[w] ≥ α[v] (see Sec. 8.3.3).

8.11. An edge of a connected undirected graph G is called a bridge if its

deletion disconnects G. Modify the algorithm for finding articulation

points so that it detects bridges instead of articulation points.

8.12. Show the result of running breadth-first search on the undirected

graph of Fig. 8.9 starting at vertex f .

8.13. Show the result of running breadth-first search on the directed graph

of Fig. 8.10 starting at vertex e.

8.14. Show that when breadth-first search is applied to an undirected

graph G, the edges of G will be classified as either tree edges or

cross edges. That is, there are no back edges or forward edges.

8.15. Show that when breadth-first search is applied to a directed graph

G, the edges of G will be classified as tree edges, back edges or cross

edges. That is, unlike the case of depth-first search, the search does

not result in forward edges.

8.16. Let G be a graph (directed or undirected), and let s be a vertex in G.

Modify Algorithm bfs so that it outputs the shortest path measured

in the number of edges from s to every other vertex.

8.17. Use depth-first search to find a spanning tree for the complete bipar-

tite graph K3,3 (see Sec. 2.3 for the definition of K3,3).
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8.18. Use breadth-first search to find a spanning tree for the complete

bipartite graph K3,3. Compare this tree with the tree obtained in

Exercise 8.17.

8.19. Suppose that Algorithm bfs is applied to an undirected graph G.

Give an algorithm that classifies the edges of G as either tree edges

or cross edges.

8.20. Suppose that Algorithm bfs is applied to a directed graph G. Give

an algorithm that classifies the edges of G as either tree edges, back

edges or cross edges.

8.21. Show that the time complexity of breadth-first search when applied

on a graph with n vertices and m edges is Θ(n+m).

8.22. Design an efficient algorithm to determine whether a given graph is

bipartite (see Sec. 2.3 for the definition of a bipartite graph).

8.23. Design an algorithm to find a cycle of shortest length in a directed

graph. Here, the length of a cycle is measured in terms of its number

of edges.

8.24. Let G be a connected undirected graph and T the spanning tree

resulting from applying breadth-first search on G starting at ver-

tex r. Prove or disprove that the height of T is minimum among all

spanning trees with root r.

8.8 Bibliographic Notes

Graph traversals are discussed in several books on algorithms, either sep-

arately or intermixed with other graph algorithms (see the Bibliographic

Notes of Chapter 1). Hopcroft and Tarjan (1973a) were the first to rec-

ognize the algorithmic importance of depth-first search. Several applica-

tions of depth-first search can be found in this paper and in Tarjan (1972).

Algorithm strongconnectcomp for the strongly connected components

is similar to the one by Sharir (1981). Tarjan (1972) contains an algorithm

for finding the strongly connected components that needs only one depth-

first search traversal. Breadth-first search was discovered independently by

Moore (1959) and Lee (1961).
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PART 4

Complexity of Problems

In this part of the book, we turn our attention to the study of the com-

putational complexity of a problem as opposed to the cost of a particular

algorithm to solve that problem. We define the computational complex-

ity of a problem to be the computational complexity of the most efficient

algorithm to solve that problem.

In Chapter 9, we study a class of problems known as NP-complete prob-

lems. This class of problems encompasses numerous problems drawn from

many problem domains. These problems share the property that if any one

problem in the class is solvable in polynomial time, then all other prob-

lems in the class are solvable in polynomial time. We have chosen to cover

this topic informally, in the sense that no specific model of computation

is assumed. Instead, only the abstract notion of algorithm is used. This

makes it easy to the novice reader to comprehend the ideas behind NP-

completeness without missing out on the details of a formal model (e.g., the

Turing machine). The most important point stressed in this chapter is to

study the standard technique of proving that a problem is NP-complete.

This is illustrated using several examples of NP-complete problems.

263



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch09 page 264

264 Algorithms: Design Techniques and Analysis

A more formal treatment of NP-completeness, as a special case of com-

pleteness in general, is postponed to Chapter 10. This chapter is somewhat

advanced and relies heavily on more than one variant of the Turing machine

model of computation. This chapter is concerned with the classification of

problems based on the amount of time and space needed to solve a particu-

lar problem. First, the two variants of Turing machines, one for measuring

time and the other for space, are introduced. Next, the most prominent

time and space classes are defined, and the relationships among them are

studied. This is followed by defining the technique of transformation or

reduction in the context of Turing machines. The notion of completeness

in general is then addressed with the help of some examples. Finally, the

chapter closes with a preview of the polynomial time hierarchy.

Chapter 11 is concerned with establishing lower bounds for various

problems. In this chapter, two models of computations are used for that

purpose. First, the decision tree model is used to establish lower bounds

for comparison-based problems like searching and sorting. Next, the more

powerful algebraic decision tree model is used to establish lower bounds

for some other problems. Some of these problems belong to the field of

computational geometry, namely the convex hull problem, the closest pair

problem and the Euclidean minimum spanning tree problem.
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Chapter 9

NP-Complete Problems

9.1 Introduction

In the previous chapters, we have been working mostly with the design and

analysis of those algorithms for which the running time can be expressed

in terms of a polynomial of low degree, say 3. In this chapter, we turn our

attention to a class of problems for which no efficient algorithms have been

found. Moreover, it is unlikely that an efficient algorithm will someday

be discovered for any one of these problems. Let Π be any problem. We

say that there exists a polynomial time algorithm to solve problem Π if

there exists an algorithm for Π whose time complexity is O(nk), where n

is the input size and k is a nonnegative integer. It turns out that many of

the interesting real-world problems do not fall into this category, as their

solution requires an amount of time that is measured in terms of exponential

and hyperexponential functions, e.g., 2n and n!. It has been agreed upon

in the computer science community to refer to those problems for which

there exist polynomial time algorithms as tractable and those for which it

is unlikely that there exist polynomial time algorithms as intractable.

In this chapter, we will study a subclass of intractable problems, com-

monly referred to as the class of NP-complete problems. This class contains,

among many others, hundreds of well-known problems having the common

property that if one of them is solvable in polynomial time, then all the oth-

ers are solvable in polynomial time. Interestingly, many of these are natural

problems in the sense that they arise in real-world applications. Moreover,

the running times of the existing algorithms to solve these problems are

265
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invariably measured in terms of hundreds or thousands of years for inputs

of moderate size (see Table 1.1 on page 22).

When studying the theory of NP-completeness, it is easier to restate a

problem so that its solution has only two outcomes: yes or no. In this case,

the problem is called a decision problem. In contrast, an optimization prob-

lem is a problem that is concerned with the minimization or maximization

of a certain quantity. In the previous chapters, we have encountered numer-

ous optimization problems, like finding the minimum or maximum in a list

of elements, finding the shortest path in a directed graph and computing a

minimum cost spanning tree of an undirected graph. In the following, we

give three examples of how to formulate a problem as a decision problem

and an optimization problem.

Example 9.1 Let S be a sequence of real numbers. The ELEMENT

UNIQUENESS problem asks whether all the numbers in S are distinct.

Rephrased as a decision problem, we have

Decision problem: element uniqueness.

Input: A sequence S of integers.

Question: Are there two elements in S that are equal?

Stated as an optimization problem, we are interested in finding an element

in S of highest frequency. For instance, if S = 1, 5, 4, 5, 6, 5, 4, then 5 is

of highest frequency since it appears in the sequence 3 times, which is

maximum. Let us call this optimization version element count. This

version can be stated as follows.

Optimization problem: element count.

Input: A sequence S of integers.

Output: An element in S of highest frequency.

This problem can be solved in optimal O(n logn) time in the obvious way,

which means it is tractable.

Example 9.2 Given an undirected graph G = (V,E), a coloring of G

using k colors is an assignment of one of k colors to each vertex in V in

such a way that no two adjacent vertices have the same color. The coloring

problem asks whether it is possible to color an undirected graph using a

specified number of colors. Formulated as a decision problem, we have
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Decision problem: coloring.

Input: An undirected graph G = (V,E) and a positive integer k ≥ 1.

Question: Is G k-colorable?, i.e., can G be colored using at most k colors?

This problem is intractable. If k is restricted to 3, the problem reduces to

the well-known 3-coloring problem, which is also intractable even when

the graph is planar.

An optimization version of this problem asks for the minimum number of

colors needed to color a graph in such a way that no two adjacent vertices

have the same color. This number, denoted by χ(G), is called the chromatic

number of G.

Optimization problem: chromatic number.

Input: An undirected graph G = (V,E).

Output: The chromatic number of G.

Example 9.3 Given an undirected graph G = (V,E), a clique of size

k in G, for some positive integer k, is a complete subgraph of G with k

vertices. The clique problem asks whether an undirected graph contains a

clique of a specified size. Rephrased as a decision problem, we have

Decision problem: clique.

Input: An undirected graph G = (V,E) and a positive integer k.

Question: Does G have a clique of size k?

The optimization version of this problem asks for the maximum number k

such that G contains a clique of size k but no clique of size k + 1. We will

call this problem max-clique.

Optimization problem: max-clique.

Input: An undirected graph G = (V,E).

Output: A positive integer k, which is the maximum clique size in G.

If we have an efficient algorithm that solves a decision problem, then

it can easily be modified to solve its corresponding optimization problem.

For instance, if we have an algorithm A that solves the decision problem for

graph coloring, we can find the chromatic number of a graph G using binary

search and Algorithm A as a subroutine. Clearly, 1 ≤ χ(G) ≤ n, where n

is the number of vertices in G. Hence, the chromatic number of G can

be found using only O(log n) calls to algorithm A. Because of this reason,
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in the study of NP-complete problems, and computational complexity or

even computability in general, it is easier to restrict one’s attention to

decision problems.

It is customary in the study of NP-completeness, or computational com-

plexity in general, to adopt a formal model of computation, such as the

Turing machine model of computation, as it makes the topic more formal

and the proofs more rigorous. In this chapter, however, we will work with

the abstract notion of “algorithm”, and will not attempt to formalize it by

associating it with any model of computation. A more formal treatment

that uses the Turing machine as a model of computation can be found in

Chapter 10.

9.2 The Class P

Definition 9.1 Let A be an algorithm to solve a problem Π. We say

that A is deterministic if, when presented with an instance of the problem

Π, it has only one choice in each step throughout its execution. Thus, if A is

run again and again on the same input instance, its output never changes.

All algorithms we have covered in the previous chapters are determinis-

tic. The modifier “deterministic” will mostly be dropped if it is understood

from the context.

Definition 9.2 The class of decision problems P consists of those deci-

sion problems whose yes/no solution can be obtained using a deterministic

algorithm that runs in polynomial number of steps, i.e., in O(nk) steps, for

some nonnegative integer k, where n is the input size.

We have encountered numerous such problems in the previous chapters.

Since in this chapter, we are dealing with decision problems, we list here

some of the decision problems in the class P. The solutions to these problems

should be fairly easy.

sorting: Given a list of n integers, are they sorted in nondecreasing order?

set disjointness: Given two sets of integers, is their intersection empty?

shortest path: Given a directed graph G = (V,E) with positive weights

on its edges, two distinguished vertices s, t ∈ V and a positive integer k, is

there a path from s to t whose length is at most k?
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2-coloring: Given an undirected graph G, is it 2-colorable?, i.e., can its

vertices be colored using only 2 colors such that no two adjacent vertices

are assigned the same color? Note that G is 2-colorable if and only if it is

bipartite, that is, if and only if it does not contain cycles of odd length (see

Sec. 2.3).

2-sat: Given a boolean expression f in conjunctive normal form (CNF),

where each clause consists of exactly two literals, is f satisfiable? (see

Sec. 9.4.1).

We say that a class of problems C is closed under complementation if

for any problem Π ∈ C, the complement of Π is also in C. For instance, the
complement of the 2-coloring problem can be stated as follows. Given

a graph G, is it not 2-colorable? Let us call this problem not-2-color.

We can show that it is in P as follows. Since 2-coloring is in P, there

is a deterministic algorithm A which when presented with a 2-colorable

graph halts and answers yes and when presented with a graph that is not

2-colorable halts and answers no. We can simply design a deterministic

algorithm for the problem not-2-color by simply interchanging the yes

and no answers in Algorithm A. This, informally, proves the following fun-

damental theorem:

Theorem 9.1 The class P is closed under complementation.

9.3 The Class NP

The class NP consists of those problems Π for which there exists a deter-

ministic algorithm A which, when presented with a claimed solution to an

instance of Π, will be able to verify its correctness in polynomial time. That

is, if the claimed solution leads to a yes answer, there is a way to verify this

solution in polynomial time.

In order to define this class less informally, we must first define the

concept of a nondeterministic algorithm. On input x, a nondeterministic

algorithm consists of two phases:

(1) The guessing phase: In this phase, an arbitrary string of characters y is

generated. It may correspond to a solution to the input instance or not.

In fact, it may not even be in the proper format of the desired solution.

It may differ from one run to another of the nondeterministic algorithm.
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It is only required that this string be generated in a polynomial number

of steps, i.e., inO(ni) time, where n = |x| and i is a nonnegative integer.
In many problems, this phase can be accomplished in linear time.

(2) The verification phase: In this phase, a deterministic algorithm verifies

two things. First, it checks whether the generated solution string y is

in the proper format. If it is not, then the algorithm halts with the

answer no. If, on the other hand, y is in the proper format, then the

algorithm continues to check whether it is a solution to the instance x

of the problem. If it is indeed a solution to the instance x, then it halts

and answers yes; otherwise, it halts and answers no. It is also required

that this phase be completed in a polynomial number of steps, i.e., in

O(nj) time, where j is a nonnegative integer.

Let A be a nondeterministic algorithm for a problem Π. We say that A

accepts an instance I of Π if and only if on input I there is a guess that

leads to a yes answer. In other words, A accepts I if and only if it is possible

on some run of the algorithm that its verification phase will answer yes.

It should be emphasized that if the algorithm answers no, then this does

not mean that A does not accept its input, as the algorithm might have

guessed an incorrect solution.

As to the running time of a (nondeterministic) algorithm, it is simply

the sum of the two running times: the one for the guessing phase and

that for the verification phase. So, it is O(ni) + O(nj) = O(nk), for some

nonnegative integer k.

Definition 9.3 The class of decision problems NP consists of those deci-

sion problems for which there exists a nondeterministic algorithm that runs

in polynomial time.

Example 9.4 Consider the problem coloring. We show that this prob-

lem belongs to the class NP in two ways.

(1) The first method is as follows. Let I be an instance of the problem

coloring. Let s be a claimed solution to I. It is easy to construct a

deterministic algorithm that tests whether s is indeed a solution to I.

It follows by our informal definition of the class NP that the problem

coloring belongs to the class NP.
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(2) The second method is to construct a nondeterministic algorithm for this

problem. An algorithmA can easily be constructed that does the follow-

ing when presented with an encoding of a graph G. First, A “guesses”

a solution by generating an arbitrary assignment of the colors to the

set of vertices. Next, A verifies that the guess is a valid assignment.

If it is a valid assignment, then A halts and answers yes; otherwise,

it halts and answers no. First, note that according to the definition of

a nondeterministic algorithm, A answers yes only if the answer to the

instance of the problem is yes. Second, regarding the operation time

needed, A spends no more than polynomial time in both the guessing

and verification phases.

We have the following distinction between the two important classes P

and NP:

• P is the class of decision problems that we can decide or solve using a

deterministic algorithm that runs in polynomial time.

• NP is the class of decision problems that we can check or verify their

solution using a deterministic algorithm that runs in polynomial time.

Equivalently, NP is the class of decision problems solvable by nondeter-

ministic polynomial time algorithms.

9.4 NP-Complete Problems

The term “NP-complete” denotes the subclass of decision problems in NP

that are hardest in the sense that if one of them is proven to be solvable

by a polynomial time deterministic algorithm, then all problems in NP are

solvable by a polynomial time deterministic algorithm, i.e., NP = P. For

proving that a problem is NP-complete, we need the following definition.

Definition 9.4 Let Π and Π′ be two decision problems. We say that Π

reduces to Π′ in polynomial time, symbolized as Π ∝poly Π′, if there exists

a deterministic algorithm A that behaves as follows. When A is presented

with an instance I of problem Π, it transforms it into an instance I ′ of
problem Π′ such that the answer to I is yes if and only if the answer to I ′

is yes. Moreover, this transformation must be achieved in polynomial time.
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Definition 9.5 A decision problem Π is said to be NP-hard if for every

problem Π′ in NP, Π′ ∝poly Π.

Definition 9.6 A decision problem Π is said to be NP-complete if

(1) Π is in NP, and

(2) for every problem Π′ in NP, Π′ ∝poly Π.

Thus, the difference between an NP-complete problem Π and an NP-

hard problem Π′ is that Π must be in the class NP whereas Π′ may not be

in NP.

9.4.1 The satisfiability problem

Given a boolean formula f , we say that it is in conjunctive normal form

(CNF) if it is the conjunction of clauses. A clause is the disjunction of

literals, where a literal is a boolean variable or its negation. An example of

such a formula is

f = (x1 ∨ x2) ∧ (x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4).

A formula is said to be satisfiable if there is a truth assignment to its

variables that makes it true. For example, the above formula is satisfiable,

since it evaluates to true under any assignment in which both x1 and x3
are set to true.

Decision problem: satisfiability.

Input: A CNF boolean formula f .

Question: Is f satisfiable?

The satisfiability problem was the first problem proven to be NP-

complete. Being the first NP-complete problem, there was no other NP-

complete problem that reduces to it. Therefore, the proof was to show that

all problems in the class NP can be reduced to it in polynomial time. In

other words, the essence of the proof is to show that any problem in NP can

be solved by a polynomial time algorithm that uses the satisfiability prob-

lem as a subroutine that is invoked by the algorithm exactly once. The proof

consists of constructing a boolean formula f in conjunctive normal form for

an instance I of Π such that there is a truth assignment that satisfies f if

and only if a nondeterministic algorithm A for the problem Π accepts the
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instance I. f is constructed so that it “simulates” the computation of A on

instance I. This, informally, implies the following fundamental theorem.

Theorem 9.2 satisfiability is NP-complete.

9.4.2 Proving NP-completeness

The following theorem states that the reducibility relation ∝P is transitive.

This is necessary to show that other problems are NP-complete as well. We

explain this as follows. Suppose that for some problem Π in NP we can

prove that satisfiability reduces to Π in polynomial time. By the above

theorem, all problems in NP reduce to satisfiability in polynomial time.

Consequently, if the reducibility relation ∝P is transitive, then this implies

that all problems in NP reduce to Π in polynomial time.

Theorem 9.3 Let Π,Π′ and Π′′ be three decision problems such that

Π ∝poly Π′ and Π′ ∝poly Π′′. Then, Π ∝poly Π′′.

Proof. Let A be an algorithm that realizes the reduction Π ∝poly Π′ in
p(n) steps for some polynomial p. Let B be an algorithm that realizes the

reduction Π′ ∝poly Π′′ in q(n) steps for some polynomial q. Let x be an

input to A of size n. Clearly, the size of the output of algorithm A when

presented with input x cannot exceed cp(n), as the algorithm can output

at most c symbols in each step of its execution for some positive integer

c > 0. If algorithm B is presented with an input of size p(n) or less, its

running time is, by definition, O(q(cp(n))) = O(r(n)) for some polynomial

r. It follows that the reduction from Π to Π′ followed by the reduction from

Π′ to Π′′ is a polynomial time reduction from Π to Π′′. �

Corollary 9.1 If Π and Π′ are two problems in NP such that Π′ ∝poly Π,

and Π′ is NP-complete, then Π is NP-complete.

Proof. Since Π′ is NP-complete, every problem in NP reduces to Π′ in
polynomial time. Since Π′ ∝poly Π, then by Theorem 9.3, every problem in

NP reduces to Π in polynomial time. It follows that Π is NP-complete. �

By the above corollary, to prove that a problem Π is NP-complete, we

only need to show that

(1) Π ∈ NP, and

(2) there is an NP-complete problem Π′ such that Π′ ∝poly Π.
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Example 9.5 Consider the following two problems.

(1) The problem HAMILTONIAN CYCLE: Given an undirected graph

G = (V,E), does it have a Hamiltonian cycle, i.e., a cycle that visits

each vertex exactly once?

(2) The problem TRAVELING SALESMAN: Given a set of n cities with

their intercity distances, and an integer k, does there exist a tour of

length at most k? Here, a tour is a cycle that visits each city exactly

once.

It is well known that the problem Hamiltonian cycle is NP-complete.

We will use this fact to show that the problem traveling salesman is

also NP-complete.

The first step in the proof is to show that traveling salesman is in

NP. This is very simple, since a nondeterministic algorithm can start by

guessing a sequence of cities, and then verifies that this sequence is a tour.

If this is the case, it then continues to see if the length of the tour is at

most k, the given bound.

The second step is to show that Hamiltonian cycle can be reduced

to traveling salesman in polynomial time, i.e.,

Hamiltonian cycle ∝poly traveling salesman.

Let G be any arbitrary instance of Hamiltonian cycle. We construct a

weighted graph G′ and a bound k such that G has a Hamiltonian cycle if

and only if G′ has a tour of total length at most k. Let G = (V,E). We let

G′ = (V,E′) be the complete graph on the set of vertices V , i.e.,

E′ = {(u, v) | u, v ∈ V }.

Next, we assign a length to each edge in E′ as follows:

l(e) =

{
1 if e ∈ E
n if e /∈ E,

where n = |V |. Finally, we assign k = n. It is easy to see from the construc-

tion that G has a Hamiltonian cycle if and only if G′ has a tour of length

exactly n. It should be emphasized that the assignment k = n is part of the

reduction.
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9.4.3 3-Satisfiability

The problem 3-sat is defined as follows. Given a boolean formula f in

conjunctive normal form such that each clause consists of exactly three

literals, is f satisfiable? 3-sat is very useful as it is much easier to prove

many problems to be NP-complete by reducing from 3-sat rather than

from satisfiability.

Theorem 9.4 3-sat is NP-complete.

Proof. It is straightforward to prove that 3-SAT is in NP. We prove

that satisfiability ∝poly 3-SAT. Given an instance of satisfiability

f = C1∧C2∧· · ·∧Cm withm clauses and n boolean variables x1, x2, . . . , xn,

we construct an instance of 3-sat f ′ = C′
1∧C′

2∧· · ·∧C′
m′ of 3-literal clauses

with the property that f is satisfiable if and only if f ′ is satisfiable. More-

over, m′ = O(p(m)) for some polynomial p. We convert each clause Cj ,

1 ≤ j ≤ m, into one or more 3-literal clauses as follows. For this purpose,

we introduce new literals yj1, y
j
2, . . .. Let Cj be (x1, x2, . . . , xk). We have four

cases depending on the value of k.

k = 1. Cj = (x1) is converted to four clauses:

(x1 ∨ yj1 ∨ yj2)(x1 ∨ yj1 ∨ yj2)(x1 ∨ yj1 ∨ yj2)(x1 ∨ yj1 ∨ yj2).

k = 2. Cj = (x1, x2) is converted to two clauses:

(x1 ∨ x1 ∨ yj1)(x1 ∨ x1 ∨ yj1).

k = 3. C′
j = Cj .

k = 4. Cj = (x1, x2, x3, x4) is converted to the two clauses:

(x1 ∨ x2 ∨ yj1)(yj1 ∨ x3 ∨ x4).

k > 4. Cj = (x1, x2, . . . , xk) is converted to the clauses:

(x1∨x2∨yj1)(yj1∨x3∨yj2)(yj2∨x3∨yj3) . . . (yjk−2∨xk−2∨yjk−3)(y
j
k−3∨xk−1∨xk).

�
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9.4.4 Vertex cover, independent set and clique problems

In this section, we prove the NP-completeness of three famous problems in

graph theory.

CLIQUE: Given an undirected graph G = (V,E) and a positive integer k,

does G contain a clique of size k? (recall that a clique in G of size k is a

complete subgraph of G on k vertices).

VERTEX COVER: Given an undirected graph G = (V,E) and a positive

integer k, is there a subset C ⊆ V of size k such that each edge in E is

incident to at least one vertex in C?

INDEPENDENT SET: Given an undirected graph G = (V,E) and a positive

integer k, does there exist a subset S ⊆ V of k vertices such that for each

pair of vertices u,w ∈ S, (u,w) /∈ E?

It is easy to show that all these three problems are indeed in NP. In what

follows, we give reductions that establish their NP-completeness.

satisfiability ∝poly clique

Given an instance of satisfiability f = C1∧C2∧· · ·∧Cm with m clauses

and n boolean variables x1, x2, . . . , xn, we construct a graph G = (V,E),

where V is the set of all occurrences of the 2n literals (recall that a literal

is a boolean variable or its negation), and

E = {(xi, xj) | xi and xj are in two different clauses and xi 	= xj}.
It is easy to see that the above construction can be accomplished in poly-

nomial time.

Example 9.6 An example of the reduction is provided in Fig. 9.1. Here,

the instance of satisfiability is

f = (x ∨ y ∨ z) ∧ (x ∨ y) ∧ (x ∨ y ∨ z).
Lemma 9.1 f is satisfiable if and only if G has a clique of size m.

Proof. A clique of size m corresponds to an assignment of true to m

literals in m different clauses. An edge between two literals a and b means

that there is no contradiction when both a and b are assigned the value

true. It follows that f is satisfiable if and only if there is a noncontradictory

assignment of true to m literals in m different clauses if and only if G has

a clique of size m. �
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Fig. 9.1. Reducing satisfiability to clique.

satisfiability ∝poly vertex cover

Given an instance I of satisfiability, we transform it into an instance I ′

of vertex cover. Let I be the formula f = C1 ∧ C2 ∧ · · · ∧ Cm with m

clauses and n boolean variables x1, x2, . . . , xn. We construct I ′ as follows:

(1) For each boolean variable xi in f , G contains a pair of vertices xi and

xi joined by an edge.

(2) For each clause Cj containing nj literals, G contains a clique Cj of size

nj .

(3) For each vertex w in Cj , there is an edge connecting w to its corre-

sponding literal in the vertex pairs (xi, xi) constructed in part (1). Call

these edges connection edges.

(4) Let k = n+
∑m

j=1(nj − 1).

It is easy to see that the above construction can be accomplished in

polynomial time.

Example 9.7 An example of the reduction is provided in Fig. 9.2. Here,

the instance I is the formula

f = (x ∨ y ∨ z) ∧ (x ∨ y).

It should be emphasized that the instance I ′ is not only the figure shown;

it also includes the integer k = 3 + 2 + 1 = 6. A boolean assignment of

x = true, y = true and z = false satisfies f . This assignment corresponds

to the 6 covering vertices shown shaded in the figure.
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zz y xy x

Fig. 9.2. Reducing satisfiability to vertex cover.

Lemma 9.2 f is satisfiable if and only if the constructed graph has a

vertex cover of size k.

Proof. ⇒: If xi is assigned true, add vertex xi to the vertex cover; oth-

erwise, add xi to the vertex cover. Since f is satisfiable, in each clique Cj

there is a vertex u whose corresponding literal v has been assigned the

value true, and thus the connection edge (u, v) is covered. Therefore, add

the other nj − 1 vertices in each clique Cj to the vertex cover. Clearly, the

size of the vertex cover is k = n+
∑m

j=1(nj − 1).

⇐: Suppose that the graph can be covered with k vertices. At least one

vertex of each edge (xi, xi) must be in the cover. We are left with k − n =∑m
j=1(nj − 1) vertices. It is not hard to see that any cover of a clique of

size nj must have at least nj − 1 vertices. So, in each clique, the cover

must include all its vertices except the one that is incident to a connection

edge that is covered by a vertex in some vertex pair (xi, xi). To see that

f is satisfiable, for each vertex xi, if it is in the cover, then let xi = true;

otherwise, (if xi is in the cover), let xi = false. Thus, in each clique, there

must be one vertex which is connected to a vertex xi or xi, which is assigned

the value true since it is in the cover. It follows that each clause has at least

one literal whose value is true, i.e., f is satisfiable. �

vertex cover ∝poly independent set

The transformation from vertex cover to independent set is straight-

forward. The following lemma provides the reduction:

Lemma 9.3 Let G = (V,E) be a connected undirected graph. Then,

S ⊆ V is an independent set if and only if V − S is a vertex cover in G.
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Proof. Let e = (u, v) be any edge in G. S is an independent set if and

only if at least one of u or v is in V − S, i.e., V − S is a vertex cover

in G. �

A simple reduction from vertex cover to clique is left as an exercise

(Exercise 9.6). A reduction from independent set to clique is straight-

forward since a clique in a graph G is an independent set in G, the com-

plement of G. Thus, we have the following theorem:

Theorem 9.5 The problems vertex cover, independent set and

clique are NP-complete.

Proof. It is fairly easy to show that these problems are in the class NP.

The above reductions whose proofs are given in Lemmas 9.1–9.3 complete

the proof. �

9.4.5 More NP-complete problems

The following is a list of additional NP-complete problems.

(1) 3-coloring: Given an undirected graph G = (V,E), can G be colored

using three colors? This problem is a special case of the more general

problem coloring stated on page 267, which is known to be NP-

complete.

(2) Three-dimensional matching: Let X,Y and Z be pairwise disjoint sets

of size k each. Let W be the set of triples {(x, y, z) | x ∈ X, y ∈ Y,

z ∈ Z}. Does there exist a perfect matching M ofW? That is, does there

exist a subset M ⊆W of size k such that no two triplets in M agree in

any coordinate? The corresponding two-dimensional matching problem

is the regular perfect bipartite matching problem (see Chapter 16).

(3) Hamiltonian path: Given an undirected graph G = (V,E), does it

contain a simple open path that visits each vertex exactly once?

(4) partition: Given a set S of n integers, is it possible to partition S into

two subsets S1 and S2 so that the sum of the integers in S1 is equal to

the sum of the integers in S2?

(5) knapsack: Given n items with sizes s1, s2, . . . , sn and values

v1, v2, . . . , vn, a knapsack capacity C and a constant integer k, is it

possible to fill the knapsack with some of these items whose total size

is at most C and whose total value is at least k? This problem can be
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solved in time Θ(nC) using dynamic programming (Theorem 6.3). This

is polynomial in the input value but exponential in the input size.

(6) bin packing: Given n items with sizes s1, s2, . . . , sn, a bin capacity C

and a positive integer k, is it possible to pack the n items using at most

k bins?

(7) set cover: Given a set X , a family F of subsets of X and an integer

k between 1 and |F|, do there exist k subsets in F whose union is X?

(8) multiprocessor scheduling: Given n jobs J1, J2, . . . , Jn each having

a run time ti, a positive integerm (number of processors) and a finishing

time T , can these jobs be scheduled on m identical processors so that

their finishing time is at most T ? The finishing time is defined to be

the maximum execution time among all the m processors.

(9) longest path: Given a weighted graph G = (V,E), two distinguished

vertices s, t ∈ V and a positive integer c, is there a simple path in G

from s to t of length c or more?

9.5 The Class co-NP

The class co-NP consists of those problems whose complements are in NP.

One might suspect that the class co-NP is comparable in hardness to the

class NP. It turns out, however, that this is highly unlikely, which supports

the conjecture that co-NP 	= NP. Consider, for example, the complement

of traveling salesman: Given n cities with their intercity distances,

is it the case that there does not exist any tour of length k or less? It

seems that there is no nondeterministic algorithm that solves this prob-

lem without exhausting all the (n − 1)! possibilities. As another example,

consider the complement of satisfiability: Given a formula f , is it the

case that there is no assignment of truth values to its boolean variables

that satisfies f? In other words, is f unsatisfiable? There does not seem to

be a nondeterministic algorithm that solves this problem without inspect-

ing all the 2n assignments, where n is the number of boolean variables

in f .

Definition 9.7 A problem Π is complete for the class co-NP if

(1) Π is in co-NP, and

(2) for every problem Π′ in co-NP, Π′ ∝poly Π.
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Let some deterministic algorithm A realize a reduction from one prob-

lem Π′ to another problem Π, both in NP. Recall that, by definition of

reduction, A is deterministic and runs in polynomial time. Therefore, by

Theorem 9.1, A is also a reduction from Π′ to Π, where Π and Π′ are

the complements of Π and Π′, respectively. This implies the following

theorem:

Theorem 9.6 A problem Π is NP-complete if and only if its comple-

ment, Π, is complete for the class co-NP.

In particular, since satisfiability is NP-complete, the complement of

satisfiability is complete for the class co-NP. It is not known whether the

class co-NP is closed under complementation. It follows, however, that the

complement of satisfiability is in NP if and only if NP is closed under

complementation.

A CNF formula f is unsatisfiable if and only if its negation is a tautology

(A formula f is called a tautology if f is true under all truth assignments

to its boolean variables). The negation of a CNF formula C1∧C2∧· · ·∧Ck,

where Ci = (x1 ∨ x2 ∨ · · · ∨ xmi), for all i, 1 ≤ i ≤ k, can be converted

into a disjunctive normal form (DNF) formula C′
1 ∨ C′

2 ∨ · · · ∨ C′
k, where

C′
i = (y1 ∧ y2 ∧ · · · ∧ ymi), for all i, 1 ≤ i ≤ k, using the identities

(C1 ∧ C2 ∧ · · · ∧Ck) = (C1 ∨ C2 ∨ · · · ∨ Ck)

and

(x1 ∨ x2 ∨ · · · ∨ xmi) = (x1 ∧ x2 ∧ · · · ∧ xmi).

The resulting DNF formula is a tautology if and only if the negation of the

CNF formula is a tautology. Therefore, we have the following theorem:

Theorem 9.7 The problem tautology: Given a formula f in DNF, is

it a tautology? is it complete for the class co-NP.

It follows that

• tautology is in P if and only if co-NP = P, and

• tautology is in NP if and only if co-NP = NP.
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The following theorem is fundamental. Its simple proof is left as an

exercise (Exercise 9.19).

Theorem 9.8 If a problem Π and its complement Π are NP-complete,

then co-NP = NP.

In other words, If both a problem Π and its complement are NP-

complete, then the class NP is closed under complementation. As discussed

before, this is highly unlikely, and it is an open question. In fact, it is

stronger than the NP 	= P question. The reason is that if we can prove

that co-NP 	= NP, then it follows immediately that NP 	= P. For suppose

it has been proven that co-NP 	= NP, and assume for the sake of contra-

diction that NP = P. Then, substituting P for NP in the proven result,

we obtain co-P 	= P. But this contradicts the fact that P is closed under

complementation (Theorem 9.1). This contradiction implies that NP 	= P.

9.6 The Relationships between the Three Classes

Figure 9.3 shows the relationships between the three classes we have dis-

cussed in this chapter. From the figure, it is clear that P lies in the inter-

section of NP and co-NP, assuming that NP 	= co-NP.

complete
co-NP- NP-

complete

TAUTOLOGY

UNSAT

SORTING

      LINEAR
PROGRAMMING

TSP SAT

CLIQUE

VC IS

MATCHING

CO-NP NP

P

Fig. 9.3. The relationships between the three complexity classes.
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9.7 Practice Problems

9.1. Give an efficient algorithm to solve the decision version of the problem

sorting stated on page 268. What is the time complexity of your

algorithm?

9.2. Give an efficient algorithm to solve the problem set disjointness

stated on page 268. What is the time complexity of your algorithm?

9.3. Design a polynomial time algorithm for the problem 2-coloring

defined on page 269. (Hint : Color the first vertex white, all adjacent

vertices black, etc.)

9.4. Let I be an instance of the problem coloring, and let s be a claimed

solution to I. Describe a deterministic algorithm to test whether s is

a solution to I.

9.5. Design a nondeterministic algorithm to solve the problem

satisfiability.

9.6. Design a nondeterministic algorithm to solve the problem traveling

salesman.

9.7. Convert the following instance of satisfiability into an instance of

3-sat:

(a) (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3)
(b) (x1 ∨ x2) ∧ (x1 ∨ x2)
(c) (x1) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5)

9.8. Consider the following instance of satisfiability:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2)

(a) Following the reduction method from satisfiability to clique,

transform the above formula into an instance of clique for which

the answer is yes if and only if the above formula is satisfiable.

(b) Find a clique of size 4 in your graph and convert it into a satis-

fying assignment for the formula given above.

9.9. Consider the formula f given in Problem 9.8.

(a) Following the reduction method from satisfiability to vertex

cover, transform f into an instance of vertex cover for which

the answer is yes if and only if f is satisfiable.

(b) Find a vertex cover in your graph and convert it into a satisfying

assignment for f .
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9.8 Exercises

9.1. Let Π1 and Π2 be two problems such that Π1 ∝poly Π2. Suppose that

problem Π2 can be solved in O(nk) time and the reduction can be

done in O(nj) time. Show that problem Π1 can be solved in O(njk)

time.

9.2. Given that the Hamiltonian cycle problem for undirected graphs is

NP-complete, show that the Hamiltonian cycle problem for directed

graphs is also NP-complete.

9.3. Show that the problem bin packing is NP-complete, assuming that

the problem partition is NP-complete.

9.4. Let Π1 and Π2 be two NP-complete problems. Prove or disprove that

Π1 ∝poly Π2.

9.5. Give a polynomial time algorithm to find a clique of size k in a

given undirected graph G = (V,E) with n vertices. Here, k is a

fixed positive integer. Does this contradict the fact that the problem

clique is NP-complete? Explain.

9.6. The NP-completeness of the problem clique was shown by reducing

satisfiability to it. Give a simpler reduction from vertex cover

to clique.

9.7. Show that any cover of a clique of size n must have exactly n − 1

vertices.

9.8. Show that if one can devise a polynomial time algorithm for the

problem satisfiability, then NP = P (see Exercise 9.1).

9.9. In Chapter 6, it was shown that the problem knapsack can be

solved in time Θ(nC), where n is the number of items and C is the

knapsack capacity. However, it was mentioned in this chapter that

it is NP-complete. Is there any contradiction? Explain.

9.10. When showing that an optimization problem is not harder than its

decision problem version, it was justified by using binary search and
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an algorithm for the decision problem in order to solve the optimiza-

tion version. Will the justification still be valid if linear search is

used instead of binary search? Explain. (Hint : Consider the problem

traveling salesman.)

9.11. Prove that if an NP-complete problem Π is shown to be solvable in

polynomial time, then NP = P (see Exercises 9.1 and 9.8).

9.12. Prove that NP = P if and only if for some NP-complete problem Π,

Π ∈ P.

9.13. Is the problem longest path NP-complete when the path is not

restricted to be simple? Prove your answer.

9.14. Is the problem longest path NP-complete when restricted to

directed acyclic graphs? Prove your answer (see Exercises 9.13

and 6.24).

9.15. Show that the problem of finding a shortest simple path between two

vertices s and t in a directed or undirected graph is NP-complete if

the weights are allowed to be negative.

9.16. Show that the problem set cover is NP-complete by reducing the

problem vertex cover to it.

9.17. Simplify the reduction from the problem satisfiability to vertex

cover by using 3-sat instead of satisfiability.

9.18. Compare the difficulty of the problem tautology to satisfiabil-

ity. What does this imply about the difficulty of the class co-NP.

9.19. Prove Theorem 9.8.

9.9 Bibliographic Notes

The study of NP-completeness started with two papers. The first was the

seminal paper of Cook (1971) in which the problem satisfiability was
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in which a list of 24 problems were shown to be NP-complete. Both Stephen
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and Johnson (1979) provides comprehensive coverage of the theory of NP-

completeness and covers the four basic complexity classes introduced in

this chapter. Their book contains the proof that satisfiability is NP-

complete and a list of several hundred NP-complete problems. One of the

most famous of the open problems to be resolved is linear programming.

This problem has been proven to be solvable in polynomial time using

the ellipsoid method (Khachiyan, 1979). It has received much attention,

although its practical significance is yet to be determined. An introduction

to the theory of NP-completeness can also be found in Aho et al. (1974)

and Hopcroft and Ullman (1979).
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Chapter 10

Introduction to Computational
Complexity

10.1 Introduction

Computational complexity is concerned with the classification of problems

based on the amount of time, space or any other resource needed to solve

a problem, such as the number of processors and communication cost. In

this chapter, we review some of the basic concepts in this field and confine

our attention to the two classical resource measures: time and space.

10.2 Model of Computation: The Turing Machine

When studying computational complexity, a universal computing device

is required for the classification of computational problems. It turns out

that most, if not all, of the results are robust and are invariant under dif-

ferent models of computations. In this chapter, we will choose the Turing

machine as our model of computation. In order to measure the amount

of time and space needed to solve a problem, it will be much easier

to consider those problems whose solution output is either yes or no.

A problem of this type is called a decision problem (see Sec. 9.1). The

set of instances of a decision problem is partitioned into two sets: those

instances for which the answer is yes and those for which the answer is

no. We can encode such problems as languages. An alphabet Σ is a finite

set of symbols. A language L is simply a subset of the set of all finite

287
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length strings of symbols chosen from Σ, denoted by Σ∗. For example, a

graph G = (V,E), where V = {1, 2, . . . , n} can be encoded by the string

w(G) = (x11, x12, . . . , x1n)(x21, x22, . . . , x2n) · · · (xn1, xn2, . . . , xnn), where
xij = 1 if (i, j) ∈ E and 0 otherwise. Thus, the encoded graph w(G) is a

string of symbols over the finite alphabet {0, 1, (, )}.
The standard Turing machine has only one worktape, which is divided

into separate cells. Each cell of the worktape contains one symbol from some

finite alphabet Σ. The Turing machine has the ability to read and rewrite

the symbol contained in the cell of the worktape currently scanned by its

worktape head. The worktape head moves either one cell to the left, one

cell to the right, or it remains on the current cell at each step. The actions

of the Turing machine are specified by its finite state control . A Turing

machine at any moment of time is in some state. For the current state and

for the current scanned symbol on the worktape, the finite state control

specifies which actions are possible: It specifies which one of the states to

enter next, which symbol to print on the scanned cell of the worktape, and

in what way to move the worktape head.

10.3 k-Tape Turing Machines and Time Complexity

Since the standard Turing machine as described in the previous section

can move its worktape head one cell per step, it clearly needs n steps to

move the head n cells. In order to make an appropriate model of Turing

machine adequately measure the amount of time used by an algorithm, we

need to allow for more than one worktape. A k-tape Turing machine, for

some k ≥ 1, is just the natural extension of the one-tape Turing machine.

It has k worktapes instead of just one, and it has k worktape heads. Each

worktape head is associated with one of the worktapes and the heads can

move independently from one another.

Definition 10.1 A (nondeterministic) k-tape Turing machine is a

6-tuple M = (S,Σ,Γ, δ, p0, pf ), where

(1) S is a finite set of states ,

(2) Γ is a finite set of tape symbols which includes the special symbol B

(the blank symbol),

(3) Σ ⊆ Γ− {B}, the set of input symbols,
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(4) δ, the transition function, is a function that maps elements of S × Γk

into finite subsets of S × ((Γ− {B})× {L, P,R})k,
(5) p0 ∈ S, the initial state, and

(6) pf ∈ S, the final or accepting state.

Note that we have assumed without loss of generality that there is

only one final state. A k-tape Turing machine M = (S,Σ,Γ, δ, p0, pf) is

deterministic if for every p ∈ S and for every a1, a2, . . . , ak ∈ Γ, the set

δ(p, a1, a2, . . . , ak) contains at most one element.

Definition 10.2 LetM = (S,Σ,Γ, δ, p0, pf ) be a k-tape Turing machine.

A configuration of M is a (k + 1)-tuple

K = (p, w11↑w12, w21↑w22, . . . , wk1↑wk2),

where p ∈ S and wj1↑wj2 is the content of the jth tape of M , 1 ≤ j ≤ k.

Here, the head of the jth tape is pointing to the first symbol in the string

wj2. If wj1 is empty, then the head is pointing to the first nonblank symbol

on the tape. If wj2 is empty, then the head is pointing to the first blank

symbol after the string wj1. Both wj1 and wj2 may be empty, indicating

that the tape is empty. This is the case in the beginning of the computation,

where all tapes except possibly the input tape are empty. Thus, the initial

configuration is denoted by

(p0, ↑x, ↑B, . . . , ↑B),

where x is the initial input. The set of final or accepting configurations is

the set of all configurations

(pf , w11↑w12, w21↑w22, . . . , wk1↑wk2).

Definition 10.3 A computation by a Turing machine M on input x is

a sequence of configurations K1,K2, . . . ,Kt, for some t ≥ 1, where K1 is

the initial configuration, and for all i, 2 ≤ i ≤ t, Ki results from Ki−1 in

one move of M . Here, t is referred to as the length of the computation.

If Kt is a final configuration, then the computation is called an accepting

computation.
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Definition 10.4 The time taken by a Turing machine M on input x,

denoted by TM (x), is defined as follows:

(1) If there is an accepting computation of M on input x, then TM (x) is

the length of the shortest accepting computation, and

(2) If there is no accepting computation ofM on input x, then TM (x) =∞.

Let L be a language and f a function from the set of nonnegative inte-

gers to the set of nonnegative integers. We say that L is in DTIME(f)

(resp., NTIME(f)) if there exists a deterministic (resp., nondeterminis-

tic) Turing machine M that behaves as follows. On input x, if x ∈ L,

then TM (x) ≤ f(|x|); otherwise, TM (x) = ∞. Similarly, we may define

DTIME(nk),NTIME(nk) for any k ≥ 1. The two classes P and NP dis-

cussed in Chapter 9 can now be defined formally as follows:

P = DTIME(n) ∪DTIME(n2) ∪DTIME(n3) ∪
· · · ∪DTIME(nk) ∪ · · · ,

and

NP = NTIME(n) ∪ NTIME(n2) ∪ NTIME(n3) ∪
· · · ∪ NTIME(nk) ∪ · · · .

In other words, P is the set of all languages recognizable in polynomial time

using a deterministic Turing machine, and NP is the set of all languages

recognizable in polynomial time using a nondeterministic Turing machine.

We have seen many examples of problems in the class P in earlier chapters.

We have also encountered several problems that belong to the class NP in

Chapter 9. There are also other important time complexity classes; two of

them are

DEXT =
⋃
c≥0

DTIME(2cn), NEXT =
⋃
c≥0

NTIME(2cn),

EXPTIME =
⋃
c≥0

DTIME(2n
c

) NEXPTIME =
⋃
c≥0

NTIME(2n
c

).

Example 10.1 Consider the following 1-tape Turing machine M that

recognizes the language L = {anbn | n ≥ 1}. Initially, its tape contains

the string anbn. M repeats the following step until all symbols on the tape

have been marked or M cannot move its tape head. M marks the leftmost
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unmarked symbol if it is an a and then moves its head all the way to the

right and marks the rightmost unmarked symbol if it is a b. If the number of

a’s is equal to the number of b’s, then all symbols on the tape will eventually

be marked, and hence M will enter the accepting state. Otherwise, either

the number of a’s is less than or greater than the number of b’s. If the

number of a’s is less than the number of b’s, then after all the a’s have

been marked, and after marking the last b, the leftmost symbol is a b, and

hence M will not be able to move its tape head. This will also be the

case if the number of a’s is greater than the number of b’s. It is easy to

see that if the input string is accepted, then the number of moves of the

tape head is less than or equal to cn2 for some constant c > 0. It follows

that L is in DTIME(n2).

10.4 Off-line Turing Machines and Space Complexity

For an appropriate measure of space, we need to separate the space used

to store computed information. For example, to say that a Turing machine

uses only 	logn
 of its worktape cells is possible only if we separate the

input string and we do not count the n cells used to store the input string

of length n. For this reason, our model of a Turing machine that will be

used to measure space complexity will have a separate read-only input tape.

The Turing machine is not permitted to rewrite the symbols that it scans

on the input tape. This version of Turing machines is commonly referred

to as an off-line Turing machine. The difference between a k-tape Turing

machine and an off-line Turing machine is that an off-line Turing machine

has exactly two tapes: a read-only input tape and a read-write worktape.

Definition 10.5 A (nondeterministic) off-line Turing machine is a

6-tuple M = (S,Σ,Γ, δ, p0, pf ), where

(1) S is a finite set of states ,

(2) Γ is a finite set of tape symbols , which includes the special symbol B

(the blank symbol),

(3) Σ ⊆ Γ−{B} is the set of input symbols; it contains two special symbols

# and $ (the left endmarker and the right endmarker , respectively),

(4) δ, the transition function, is a function that maps elements of S×Σ×Γ

into finite subsets of S × {L, P,R} × (Γ− {B})× {L, P,R},
(5) p0 ∈ S is the initial state, and

(6) pf ∈ S is the final or accepting state.
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Note that we have assumed without loss of generality that there is only

one final state. The input is presented to an off-line Turing machine in

its read-only tape enclosed by the endmarkers, $ and #, and it is never

changed. In the case of off-line Turing machines, a configuration is defined

by the 3-tuple

K = (p, i, w1↑w2),

where p is the current state, i is the cell number in the input tape pointed

to by the input head and w1↑w2 is the contents of the worktape. Here, the

head of the worktape is pointing to the first symbol of w2.

Definition 10.6 The space used by an off-line Turing machine M on

input x, denoted by SM (x), is defined as follows:

(1) If there is an accepting computation of M on input x, then SM (x) is

the number of worktape cells used in an accepting computation that

uses the least number of worktape cells, and

(2) If there is no accepting computation of M on input x, then

SM (x) = ∞.

Example 10.2 Consider the following Turing machine M that recog-

nizes the language L = {anbn | n ≥ 1}. M scans its input tape from left to

right and counts the number of a’s representing the value of this count in

binary notation on its worktape. It does this by incrementing a counter in

its worktape.M then verifies that the number of occurrences of the symbol

b is the same by subtracting 1 from the counter for each b scanned. If n is

the length of the input string x, then M uses �log(n/2) + 1� worktape cells
in order to accept x.

Let L be a language and f a function from the set of nonnegative integers

to the set of nonnegative integers. We say that L is in DSPACE(f) (resp.,

NSPACE(f)) if there exists a deterministic (resp., nondeterministic) off-

line Turing machine M that behaves as follows. On input x, if x ∈ L, then
SM (x) ≤ f(|x|); otherwise, SM (x) =∞. For example, L(M) = {anbn | n ≥
1} in Example 10.2 is in DSPACE(logn) since M is deterministic and for

any string x, if x ∈ L,M uses at most �log(n/2) + 1� worktape cells in

order to accept x, where n = |x|. Similarly, we may define DSPACE(nk),
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NSPACE(nk) for any k ≥ 1. We now define two important space complexity

classes PSPACE and NSPACE as follows.

PSPACE = DSPACE(n) ∪DSPACE(n2) ∪DSPACE(n3) ∪
· · · ∪DSPACE(nk) ∪ · · ·NSPACE

= NSPACE(n) ∪NSPACE(n2) ∪ NSPACE(n3) ∪
· · · ∪NSPACE(nk) ∪ · · · .

In other words, PSPACE is the set of all languages recognizable in polyno-

mial space using a deterministic off-line Turing machine, and NSPACE is

the set of all languages recognizable in polynomial space using a nondeter-

ministic off-line Turing machine. There are also two fundamental complexity

classes:

LOGSPACE = DSPACE (log n) and NLOGSPACE = NSPACE (log n),

which define the two classes of languages recognizable in logarithmic space

using a deterministic and nondeterministic off-line Turing machine, respec-

tively. In the following example, we describe a problem that belongs to the

class NLOGSPACE.

Example 10.3 graph accessibility problem (gap): Given a finite

directed graph G = (V,E), where V = {1, 2, . . . , n}, is there a path from

vertex 1 to vertex n? Here, 1 is the start vertex and n is the goal vertex. We

construct a nondeterministic Turing machine M that determines whether

there is a path from vertex 1 to vertex n. M performs this task by first

beginning with the path of length zero from vertex 1 to itself, and extending

the path at each later step by nondeterministically choosing a next vertex,

which is a successor of the last vertex in the current path. It records in

its worktape only the last vertex in this path; it does not record the entire

list of vertices in the path. Since the last vertex can be represented by

writing its number in binary notation on the worktape, M uses at most

�log(n+ 1)� worktape cells. Since M chooses a path nondeterministically,

if a path from vertex 1 to vertex n exists, then M will be able to make a

correct sequence of choices and construct such a path. It will answer yes

when it detects that the last vertex in the path chosen is n. On the other

hand, M is not forced to make the right sequence of choices, even when an

appropriate path exists. For example, M may loop, by choosing an endless
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sequence of vertices in G that form a cycle or M may terminate without

indicating that an appropriate path exists by making an incorrect choice

for the successor of the last vertex in the path. SinceM needs to store in its

worktape only the binary representation of the current vertex whose length

is �log(n+ 1)�, it follows that gap is in NLOGSPACE.

10.5 Tape Compression and Linear Speed-up

Since the tape alphabet can be arbitrarily large, several tape symbols

can be encoded into one. This results in tape compression by a constant

factor, i.e., the amount of space used is reduced by some constant c > 1.

Similarly, one can speed up the computation by a constant factor. Thus,

in computational complexity, the constant factors may be ignored; only

the rate of growth is important in classifying problems. In the following, we

state without proof two theorems on tape compression and linear speed-up.

Theorem 10.1 If a language L is accepted by an S(n) space-bounded

off-line Turing machineM , then for any constant c, 0 < c < 1, L is accepted

by a cS(n) space-bounded off-line Turing machine M ′.

Theorem 10.2 If a language L is accepted by a T (n) time-bounded

Turing machine M with k > 1 tapes such that n = o(T (n)), then for

any constant c, 0 < c < 1, L is accepted by a cT (n) time-bounded Turing

machine M ′.

Example 10.4 Let L = {wwR | w ∈ {a, b}+}, i.e., L consists of the

set of palindromes over the alphabet {a, b}. A 2-tape Turing machine M

can be constructed to accept L as follows. The input string is initially

in the first tape. The second tape is used to mark the input symbols in

the following way. Scan the first symbol and mark it. Go to the rightmost

symbol, scan it and mark it. Continue this process until the input string

is consumed, in which case it is accepted, or until a mismatch is found, in

which case the input string is rejected. Another 2-tape Turing machine M ′

that recognizes the language L works as follows. Scan simultaneously the

two leftmost symbols, mark them and go to the right to scan and mark the

two rightmost symbols, etc. Clearly, the time required by M ′ is almost half

the time required by M .
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10.6 Relationships between Complexity Classes

Definition 10.7 A total function T from the set of nonnegative integers

to the set of nonnegative integers is said to be time constructible if and only

if there is a Turing machine which on every input of length n halts in exactly

T (n) steps. A total function S from the set of nonnegative integers to the set

of nonnegative integers is said to be space constructible if and only if there is

a Turing machine which on every input of length n halts in a configuration

in which exactly S(n) tape cells of its work space are nonblank, and no

other work space has been used during the computation. Almost all known

functions are time and space constructible, e.g., nk, cn, n!.

Theorem 10.3

(a) DTIME(f(n)) ⊆ NTIME(f(n)) and DSPACE(f(n)) ⊆ NSPACE(f(n)).

(b) DTIME(f(n)) ⊆ DSPACE(f(n)) and NTIME(f(n)) ⊆ NSPACE(f(n)).

(c) If S is a space constructible function and S(n) ≥ logn, then

NSPACE(S(n)) ⊆ DTIME(cS(n)), c ≥ 2.

(d) If S is a space constructible function and S(n) ≥ log n, then

DSPACE(S(n)) ⊆ DTIME(cS(n)), c ≥ 2.

(e) If T is a time constructible function, then

NTIME(T (n)) ⊆ DTIME(cT (n)), c ≥ 2.

Proof.

(a) By definition, every deterministic Turing machine is nondeterministic.

(b) In n steps, at most n+ 1 tape cells can be scanned by the tape heads.

(c) Let M be a nondeterministic off-line Turing machine such that on all

inputs of length n, M uses a work space bounded above by S(n) ≥ logn.

Let s and t be the number of states and worktape symbols of M , respec-

tively. Since M is S(n) space-bounded and S(n) is space constructible, the

maximum number of distinct configurations that M can possibly enter on

input x of length n is s(n+2)S(n)tS(n). This is the product of the number of

states, number of input tape head positions, number of worktape head posi-

tions and number of possible worktape contents. Since S(n) ≥ logn, this

expression is bounded above by dS(n) for some constant d ≥ 2. Therefore,
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M cannot make more than dS(n) moves, for otherwise one configuration will

be repeated and the machine will never halt. Without loss of generality, we

may assume that ifM accepts, it erases both of its tapes and brings the tape

heads to the first cell before entering the accepting state. Consider a deter-

ministic Turing machineM ′ that, on input x of length n, generates a graph

having all the configurations of M as its vertices, and setting a directed

edge between two configurations if and only if the second one is reachable

from the first in one step according to the transition function of M . The

number of configurations is computed using the space constructibility of S.

M ′ then checks whether there is a directed path in the graph joining the

initial and the unique accepting configuration, and accepts if and only if

this is the case. This can be done in time O(d2S(n)) = O(cS(n)) for some

constant c ≥ 2 (a shortest path in a directed graph with n vertices can be

found in O(n2) time). Obviously,M ′ accepts the same language asM does,

and therefore this language is in DTIME(cS(n)) for some constant c ≥ 2.

(d) The proof follows immediately from parts (a) and (c).

(e) The proof follows immediately from parts (b) and (c). �

Corollary 10.1 LOGSPACE ⊆ NLOGSPACE ⊆ P.

Theorem 10.4 If S is a space constructible function and S(n) ≥ logn,

then NSPACE(S(n)) ⊆ DSPACE(S2(n)).

Proof. Let M be an S(n) nondeterministic off-line Turing machine that

halts on all inputs. We will construct an S2(n) deterministic off-line Turing

machine M ′ such that L(M ′) = L(M). The strategy is that M ′ can simu-

late M using divide and conquer. Let s and t be the number of states and

worktape symbols of M , respectively. Since M is S(n) space-bounded and

S(n) is space constructible, the maximum number of distinct configurations

that M can possibly enter on input x of length n is s(n+2)S(n)tS(n). This

is the product of the number of states, number of input tape head posi-

tions, number of worktape head positions and number of possible worktape

contents. Since S(n) ≥ logn, this expression is bounded above by 2cS(n)

for some constant c ≥ 1. Therefore, M cannot make more than 2cS(n)

moves, for otherwise one configuration will be repeated and the machine

will never halt. Let the initial configuration on input x be Ci and the final

configuration Cf . M will accept x if and only if x causes the machine to

go from Ci to Cf . Suppose that this takes M j moves. Then, there must
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exist a configuration C such that x causes M to go into configuration C of

size O(S(n)) in at most j/2 steps and then from C to Cf in at most j/2

steps. M ′ will check for all possible configurations C using the divide-and-

conquer function reachable shown below. The first call to this function

is reachable(Ci, Cf , 2
cS(n)).

The function reachable decides whether there is a partial computation

of length at most j between two configurations. It does so by looking for

the middle configuration C and checking recursively that it is indeed the

middle configuration. This checking amounts to verifying the existence of

two partial computations of length at most j/2 each.

1. Function reachable(C1, C2, j)
2. if j = 1 then
3. if C1 = C2 or C2 is reachable from C1 in one step
4. then return true
5. else return false
6. end if
7. else for each possible configuration C of size ≤ S(n)
8. if reachable (C1, C, j/2) and reachable (C,C2, j/2)
9. then return true

10. else return false
11. end if
12. end if
13. end reachable.

It is immediately clear that M ′ accepts its input if and only if M does.

Let us show the space bound for M ′. To simulate the recursive calls, M ′

uses its worktape as a stack, storing in it the information corresponding to

successive calls of the function. Each call decreases the value of j by a factor

of 2. Therefore, the depth of recursion is cS(n), and hence no more than

cS(n) calls are active simultaneously. For each call, M ′ stores the current

values of C1, C2 and C, of size O(S(n)) each. Therefore, O(S2(n)) space

suffices to hold the whole stack. It follows thatM ′ is an S2(n) deterministic

off-line Turing machine with L(M ′) = L(M). �

Corollary 10.2 For any k ≥ 1,

NSPACE(nk) ⊆ DSPACE(n2k) and NSPACE(logk n) ⊆ DSPACE(log2k n).

Moreover, NSPACE = PSPACE.
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Corollary 10.3 There is a deterministic algorithm to solve the problem

gap using O(log2 n) space.

Proof. Immediate from Theorem 10.4 and the fact that gap has a non-

deterministic algorithm that uses O(log n) space (see Example 10.3). �

10.6.1 Space and time hierarchy theorems

Now we present two hierarchy theorems which are concerned with the rela-

tionships between classes when the same resource on the same model is

bounded by different functions. Specifically, we will present some sufficient

conditions for the strict inclusion between deterministic time and space

classes. These theorems are known as the space hierarchy and time hierar-

chy theorems. LetM be a 1-tape Turing machine. We encode M as a string

of 0’s and 1’s corresponding to a binary number as follows. Assume without

loss of generality that the input alphabet of M is {0, 1}, and the blank is

the only additional tape symbol. For convenience, call the symbols 0, 1 and

the blank X1, X2 and X3, respectively, and denote by D1, D2 and D3 the

directions L,R and P , respectively. Then, a move δ(qi, Xj) = (qk, Xl, Dm)

is encoded by the binary string 0i10j10k10l10m. Thus, the binary code for

M is 111C111C211 . . . 11Cr111, where each Ci is the code for one move

as shown above. Each Turing machine may have many encodings, as the

encodings of moves can be listed in any order. On the other hand, there

are binary numbers that do not correspond to any encodings of Turing

machines. These binary numbers may collectively be taken as the encod-

ings of the null Turing machine, i.e., the Turing machine with no moves. It

follows that we may talk of the nth Turing machine and so on. In a similar

manner, we can encode k-tape Turing machines for all k ≥ 1 and off-line

Turing machines.

Theorem 10.5 Let S(n) and S′(n) be two space constructible space

bounds, and assume that S′(n) is o(S(n)). Then, DSPACE(S(n)) contains

a language that is not in DSPACE(S′(n)).

Proof. The proof is by diagonalization. Without loss of generality, we

may consider only off-line Turing machines with input alphabet {0, 1}. We

may also assume that a prefix of any number of 1’s is permitted in any

encoding of a Turing machine, so that each Turing machine has infinitely

many encodings. We construct a Turing machineM with space bound S(n)
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that disagrees on at least one input with any Turing machine with space

bound S′(n). M treats its input x as an encoding of an off-line Turing

machine. Let x be an input to M of length n. First, to ensure that M

does not use more than S(n) space, it first marks exactly S(n) cells of its

worktape. Since S(n) is space constructible, this can be done by simulating

a Turing machine that uses exactly S(n) space on each input of length n.

From now on, M aborts its operation whenever the computation attempts

to use a cell beyond the marked cells. Thus, M is indeed an S(n) bounded

Turing machine, that is, L(M) is in DSPACE(S(n)). Next, M simulates

Mx on input x, where Mx is the Turing machine whose encoding is the

input x. M accepts x if and only if it completes the simulation using S(n)

space and Mx halts and rejects x. If Mx is S′(n) space bounded and uses t

tape symbols, then the simulation requires �log t�S′(n).
It should be noted that L(M) may be accepted by a Turing machine

other than M . We now show that if a Turing machine M ′ accepts L(M),

then M ′ cannot be S′(n) space bounded. For suppose that there exists an

S′(n) space bounded Turing machine M ′ that accepts L(M), and assume

without loss of generality thatM ′ halts on all inputs. Since S′(n) is o(S(n)),
and since any off-line Turing machine can have an encoding with arbitrarily

many 1’s, there exists an encoding x′ ofM ′ such that �log t�S′(n′) < S(n′),
where n′ = |x′|. Clearly, on input x′,M has sufficient space to simulateM ′.
But then, on input x′, M will accept if and only if M ′ halts and rejects.

It follows that L(M ′) 
= L(M), and hence L(M) is in DSPACE(S(n)) and

not in DSPACE(S′(n)). �

For the time hierarchy theorem, we need the following lemma whose

proof is omitted:

Lemma 10.1 If L is accepted by a k-tape Turing machine in time T (n),

then L is accepted by a 2-tape Turing machine in time T (n) logT (n).

Theorem 10.6 Let T (n) and T ′(n) be two time bounds such that T (n)

is time constructible and T ′(n) log T ′(n) is o(T (n)). Then, DTIME(T (n))

contains a language which is not in DTIME(T ′(n)).

Proof. The proof is similar to that of Theorem 10.5. Therefore, we will

only state here the necessary modifications. On input x of length n, M

shuts itself off after executing exactly T (n) steps. This can be done by

simulating a T (n) time bounded Turing machine on extra tapes (note that
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this is possible since T (n) is time constructible). It should be noted that

M has only a fixed number of tapes, and it is supposed to simulate Turing

machines with arbitrarily many tapes. By Lemma 10.1, this results in a

slowdown by a factor of logT ′(n). Also, as in the proof of Theorem 10.5,

M ′ may have many tape symbols, which slows down the simulation by

a factor of c = �log t�, where t is the number of tape symbols used by

M ′. Thus, the encoding x′ of M ′ of length n′ must satisfy the inequality

cT ′(n′) logT ′(n′) ≤ T (n′). Since M accepts x′ only if M ′ halts and rejects

x′, it follows that L(M ′) 
= L(M), and hence L(M) is in DTIME(T (n))

and not in DTIME(T ′(n)). �

10.6.2 Padding arguments

Suppose we are given any particular problem Π. Then, we can create a

version of Π that has lower complexity by padding each instance of Π with

a long sequence of extra symbols. This technique is called padding. We

illustrate the idea behind this concept in connection with an example. Let

L ⊆ Σ∗ be a language, where Σ is an alphabet that does not contain the

symbol 0. Suppose that L is in DTIME(n2). Define the language

L′ = {x0k | x ∈ L and k = |x|2 − |x|}.
L′ is called a padded version of L. Now, we show that L′ is in DTIME(n).

Let M be a Turing machine that accepts L. We construct another Turing

machine M ′ that recognizes L′ as follows. M ′ first checks that the input

string x′ is of the form x0k, where x ∈ Σ∗ and k = |x|2 − |x|. This can be

done in an amount of time bounded by |x′|. Next, if x′ is of the form x0k,

thenM ′ simulates on input x′ = x0k the computation ofM on input x. IfM

accepts x, thenM ′ accepts; otherwise,M ′ rejects. SinceM requires at most

|x|2 steps to decide if x is in the language L, M ′ needs at most |x′| = |x|2
steps to decide if x′ is in the language L′. Therefore, L′ is in DTIME(n). In

more general terms, if L is in DTIME(f(n2)), then L′ is in DTIME(f(n)).

For example, if L is in DTIME(n4), then L′ is in DTIME(n2), and if L is

in DTIME(2n
2

), then L′ is in DTIME(2n).

We now present two theorems that are based on padding arguments.

Theorem 10.7 If DSPACE(n) ⊆ P, then PSPACE = P.

Proof. Assume that DSPACE(n) ⊆ P. Let L ⊆ Σ∗ be a set in PSPACE,

where Σ is an alphabet that does not contain the symbol 0. Let M be
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a Turing machine that accepts L in space p(n) for some polynomial p.

Consider the set

L′ = {x0k | x ∈ L and k = p(|x|)− |x|}.

Then, as in the discussion above, there is a Turing machine M ′ that rec-

ognizes L′ in linear space. That is, L′ is in DSPACE(n). By hypothesis, L′

is in P. Hence, there is a Turing machine M ′′ that accepts L′ in polyno-

mial time. Clearly, another Turing machine, which on input x appends to

it 0k, where k = p(|x|) − |x|, and then simulates M ′′, can easily be con-

structed. Obviously, this machine accepts L in polynomial time. It follows

that PSPACE ⊆ P. Since P ⊆ PSPACE, it follows that PSPACE = P. �

Corollary 10.4 P 
= DSPACE(n).

Proof. If P = DSPACE(n), then by the above theorem, PSPACE = P.

Consequently, PSPACE = DSPACE(n). But this violates the space hierar-

chy theorem (Theorem 10.5). It follows that P 
= DSPACE(n). �

Theorem 10.8 If NTIME(n) ⊆ P, then NEXT = DEXT.

Proof. Assume that NTIME(n) ⊆ P. Let L ⊆ Σ∗ be a set in

NTIME(2cn), where Σ is an alphabet that does not contain the symbol 0.

Let M be a nondeterministic Turing machine that accepts L in time 2cn

for some constant c > 0. Consider the set

L′ = {x0k | x ∈ L and k = 2cn − |x|}.

Then, there is a nondeterministic Turing machine M ′ that recognizes L′ in
linear time, that is, L′ is in NTIME(n). By hypothesis, L′ is in P. Hence,

there is a deterministic Turing machine M ′′ that accepts L′ in polyno-

mial time. Clearly, another deterministic Turing machine, which on input

x appends to it 0k, where k = 2cn− |x|, and then simulates M ′′, can easily

be constructed. Obviously, this machine accepts L in time 2cn. It follows

that NTIME(2cn) ⊆ DTIME(2cn). Since DTIME(2cn) ⊆ NTIME(2cn), we

have as a result NTIME(2cn) = DTIME(2cn). Since c is arbitrary, it follows

that NEXT = DEXT. �

In other words, the above theorem says that if NEXT 
= DEXT,

then there is a language L that is recognizable in linear time by a
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nondeterministic Turing machine but not recognizable by any polynomial

time deterministic Turing machine.

Corollary 10.5 If NP = P, then NEXT = DEXT.

10.7 Reductions

In this section, we develop methods for comparing complexity classes of

computational problems. Such comparisons will be made by describing

transformations from one problem to another. A transformation is sim-

ply a function that maps instances of one problem into instances of another

problem. Let A ∈ Σ∗ and B ∈ Δ∗ be two arbitrary problems, which are

encoded as sets of strings over the alphabets Σ and Δ, respectively. A func-

tion f which maps strings over the alphabet Σ into strings over the alphabet

Δ is a transformation of A into B, if the following property is satisfied:

∀x ∈ Σ∗ x ∈ A if and only if f(x) ∈ B.

A transformation f from A to B is useful since it implies a transforma-

tion also from any algorithm to solve B into an algorithm to solve A. That

is, one may construct the following algorithm to solve the problem A, given

as input an arbitrary string x ∈ Σ∗:

(1) Transform x into f(x).

(2) Decide whether f(x) ∈ B or not.

(3) If f(x) ∈ B, then answer yes; otherwise, answer no.

The complexity of this algorithm to solve A depends upon two factors:

the complexity of transforming x into f(x), and the complexity of deciding

whether a given string is in B or not. However, it is clear that an efficient

algorithm for B will be transformed into an efficient algorithm for A by the

above process if the transformation is not too complex.

Definition 10.8 If there is a transformation f from a problem A to a

problem B, then we say that A is reducible to B, denoted by A ∝ B.

Definition 10.9 Let A ⊆ Σ∗ and B ⊆ Δ∗ be sets of strings. Suppose

that there is a transformation f : Σ∗ → Δ∗. Then,
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• A is polynomial time reducible to B, denoted by A ∝poly B, if f(x) can

be computed in polynomial time.

• A is log space reducible to B, denoted by A ∝log B, if f(x) can be

computed using O(log |x|) space.

Definition 10.10 Let ∝ be a reducibility relation. Let L be a family of

languages. Define the closure of L under the reducibility relation ∝ by

closure∝(L) = {L | ∃L′ ∈ L (L ∝ L′)}.

Then, L is closed under the reducibility relation ∝ if and only if

closure∝(L) ⊆ L.

If L consists of one language L, then we will write closure∝(L) instead of

closure∝({L}).

For example, closure∝poly (P) is the set of all languages that are

reducible to P in polynomial time, and closure∝log(P) is the set of all

languages that are reducible to P in log space. We will show later that P

is closed under both the reducibility relations ∝poly and ∝log by showing

that closure∝poly (P) ⊆ P and closure∝log(P) ⊆ P.

Now, we establish the relationship between the two important forms of

reducibility: polynomial time and log space reducibilities.

Lemma 10.2 The number of distinct configurations that a log space

bounded off-line Turing machine M can enter with an input of length n is

bounded above by a polynomial in n.

Proof. Let s and t be the number of states and worktape symbols of

M , respectively. The number of distinct configurations that M can possi-

bly enter on an input of length n is given by the product of the following

quantities: s (the number of states of M), n + 2 (the number of distinct

input head positions of M on an input of length n plus the left and right

markers), logn (the number of distinct worktape head positions) and tlogn

(the number of distinct strings that can be written within the logn work-

tape cells). Thus, the number of distinct configurations of M on an input
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of length n is

s(n+ 2)(logn)tlogn = s(n+ 2)(log n)nlog t ≤ nc, c > 1,

for all but finitely many n. It follows that the number of configurations is

bounded by a polynomial in n. �

Theorem 10.9 For any two languages A and B,

if A ∝log B, then A ∝poly B.

Proof. Immediate from Lemma 10.2 (also Corollary 10.1). �

Consequently, any log space reduction is a polynomial time reduction. It

follows that for any family L of languages, if L is closed under polynomial

time reductions, then it is also closed under log space reductions.

Lemma 10.3 P is closed under polynomial time reductions.

Proof. Let L ⊆ Σ∗, for some finite alphabet Σ, be any language such

that L ∝poly L
′ for some language L′ ∈ P . By definition, there is a function

f computable in polynomial time, such that

∀x ∈ Σ∗ x ∈ L if and only if f(x) ∈ L′.

Since L′ ∈ P, there exists a deterministic Turing machine M ′ that accepts
L′ and operates in time nk, for some k ≥ 1. Since f is computable in poly-

nomial time, there exists a deterministic Turing machineM ′′ that computes

f and operates in time nl, for some l ≥ 1. We construct a Turing machine

M that accepts the set L. M performs the following steps on input x over

the alphabet Σ:

(1) Transform x into f(x) using Turing machine M ′′.
(2) Determine whether f(x) ∈ L′ or not using the Turing machine M ′.
(3) If M ′ decides that f(x) ∈ L′, then accept; otherwise, do not accept.

The time complexity of this algorithm for the Turing machine M is simply

the sum of the amounts of time spent doing Steps (1), (2) and (3). Let x be

a string of length n and let f(x) be a string of length m. Then, the amount

of time used by this algorithm on input x is bounded by nl +mk +1, since

Step (1) takes at most nl steps, Step (2) at mostmk steps, and Step (3) one

step. We observe that f(x) cannot be longer than nl, since M ′′ operates in
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nl steps and at most one symbol is printed by M ′′ on the output tape per

step. In other words, m ≤ nl. Therefore, nl +mk +1 ≤ nl + nkl +1, for all

but finitely many n. We have demonstrated thereby that a deterministic

Turing machine exists that recognizes the set L in polynomial time. Thus,

if L ∝poly L
′ then L ∈ P. �

The proof of the following lemma is similar to the proof of Lemma 10.3:

Lemma 10.4 NP and PSPACE are closed under polynomial time

reductions.

Corollary 10.6 P, NP and PSPACE are closed under log space

reductions.

Lemma 10.5 LOGSPACE is closed under log space reductions.

Proof. Let L ⊆ Σ∗, for some finite alphabet Σ, be any language such

that L ∝log L
′ for some language L′ ∈ LOGSPACE. By definition, there is

a function f computable in log space such that

∀x ∈ Σ∗ x ∈ L if and only if f(x) ∈ L′.

Since L′ ∈ LOGSPACE, there exists a deterministic Turing machine M ′

that accepts L′ in space logn. Since f is computable in log space, there

exists a deterministic Turing machine M ′′ that computes f using at most

logn worktape cells on input of size n. We construct a deterministic Turing

machineM that accepts the set L.M performs the following steps on input

x over the alphabet Σ:

(1) Set i to 1.

(2) If 1 ≤ i ≤ |f(x)|, then compute the ith symbol of f(x) using the Turing

machine M ′′. Call this symbol σ. If i = 0, then let σ be the left endmarker

symbol #. If i = |f(x)|+ 1, then let σ be the right endmarker symbol $.

(3) Simulate the actions of the Turing machine M ′ on the symbol σ until

the input head of M ′ moves right or left. If the input head moves to the

right, then add one to i and go to Step (2). If the input head of M ′ moves

to the left, then subtract one from i and go to Step (2). If M ′ enters a final

state before moving its input head either right or left, thereby accepting

f(x), then accept the input string x.
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It should be noted that M does indeed recognize the set L. It accepts

a string x if and only if M ′ accepts the string f(x). Step (2) requires at

most logn worktape space, since M ′′ works in logn space. The worktape

contents of the simulated Turing machine M ′ are stored in the worktape

space of M . This needs at most log |f(x)| space, since M ′ is a log space

Turing machine and it is being simulated on input f(x). As we have seen

in Lemma 10.2, M ′′ is polynomially time bounded, since M ′′ operates in

space logn and eventually terminates with the value of the function f .

Therefore, |f(x)| ≤ |x|c, for some c > 0. Thus, the worktape space needed

for representing the contents of the worktape of M ′ is bounded by

log |f(x)| ≤ log |x|c = c log |x|, c > 0.

Also, the value i, 0 ≤ i ≤ |f(x)| + 1, that records the position of the

input head ofM ′ can be stored on the worktape ofM using binary notation

within space log |f(x)| ≤ log |x|c = c log |x| worktape cells. Therefore, the

algorithm described for the Turing machine M requires at most d logn

worktape cells, for some d > 0, to recognize the set L. It follows that L is

in LOGSPACE and hence closure∝log(LOGSPACE) ⊆ LOGSPACE. �

The following lemma is proven in the same manner as Lemma 10.5.

Lemma 10.6 NLOGSPACE is closed under log space reductions.

10.8 Completeness

Definition 10.11 Let ∝ be a reducibility relation, and L a family of

languages. A language L is complete for L with respect to the reducibility

relation ∝ if L is in the class L and every language in L is reducible to the

language L by the relation ∝, that is, L ⊆ closure∝(L).

We have presented in Chapter 9 some problems that are complete for

the class NP with respect to polynomial time reductions. In fact, most of

the reductions in the proofs of NP-completeness found in the literature are

log space reductions.

We observe that every set S ∈ LOGSPACE is log space reducible to

a set with just one element. That is, given a set S ⊆ Σ∗ in LOGSPACE,
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we define the function fS by

fS(x) =

{
1 if x ∈ S
0 otherwise.

It follows, trivially, that the set {1} is LOGSPACE-complete with respect to

log space reduction. In fact, every problem in LOGSPACE is LOGSPACE-

complete with respect to log space reduction. This is because log space

reductions are too powerful to distinguish between sets in LOGSPACE.

10.8.1 NLOGSPACE-complete problems

In the following theorem, we prove that the problem gap is complete for

the class NLOGSPACE.

Theorem 10.10 gap is log space complete for the class NLOGSPACE.

Proof. We have shown in Example 10.3 that gap is in the class

NLOGSPACE. It remains to show that any problem in that class reduces

to gap using log space reduction. Let L be in NLOGSPACE. We show

that L ∝log gap. Since L is in NLOGSPACE, there is a nondeterministic

off-line Turing machine M that accepts L, and for every x in L, there is an

accepting computation byM that visits at most logn worktape cells, where

n = |x|. We construct a log space reduction which transforms each input

string x into an instance of the problem gap consisting of a directed graph

G = (V,E). The set of vertices V consists of the set of all configurations

K = (p, i, w1↑w2) of M on input x such that |w1w2| ≤ logn. The set of

edges consists of the set of pairs (K1,K2) such thatM can move in one step

on input x from the configurationK1 to the configurationK2. Furthermore,

the start vertex s is chosen to be the initial configuration Ki ofM on input

x. If we assume that when M enters the final state qf , it erases all symbols

in its worktape and positions its input head on the first cell, then the goal

vertex t is chosen to be the final configuration Kf = (pf , 1, ↑B). It is not

hard to see that M accepts x within logn worktape space if and only if G

has a path from its start vertex s to its goal vertex t. To finish the proof,

note that G can be constructed using only O(log n) space. �
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Corollary 10.7 gap is in LOGSPACE if and only if

NLOGSPACE = LOGSPACE.

Proof. If NLOGSPACE = LOGSPACE, then clearly gap is in

LOGSPACE. On the other hand, assume that gap is in LOGSPACE. Then,

closure∝log (gap) ⊆ closure∝log (LOGSPACE) ⊆ LOGSPACE,

since LOGSPACE is closed under ∝log. Since gap is complete for the class

NLOGSPACE, we have

NLOGSPACE ⊆ closure∝log(gap).

Thus, NLOGSPACE ⊆ LOGSPACE. Since LOGSPACE ⊆ NLOGSPACE,

it follows that NLOGSPACE = LOGSPACE. �

The proof of the following theorem is left as an exercise (Exercise 10.15).

Theorem 10.11 2-SAT is log space complete for the class NLOGSPACE.

10.8.2 PSPACE-complete problems

Definition 10.12 A problem Π is PSPACE-complete if it is in PSPACE

and all problems in PSPACE can be reduced to Π using polynomial time

reduction.

The relationship of the following problem to PSPACE is similar to the

relationship of the problem satisfiability to NP.

quantified boolean formulas (qbf): Given a boolean expression E on

n variables x1, x2, . . . , xn, is the boolean formula

F = (Q1x1)(Q2x2) · · · (Qnxn)E

true? Here, each Qi is either ∃ or ∀.

Theorem 10.12 quantified boolean formula is PSPACE-complete.

That quantified boolean formula is in PSPACE follows from the

fact that we can check whether F is true by trying all the possible truth
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assignments for the variables x1, x2, . . . , xn and evaluating E for each. It is

not hard to see that no more than polynomial space is needed, even though

exponential time will be required to examine all 2n truth assignments. The

proof that each language L ∈ PSPACE can be transformed to quantified

boolean formula is similar to the proof that the problem satisfiability

is NP-complete.

An interesting PSPACE-complete problem is the following:

csg recognition: Given a context-sensitive grammar G and a string x, is

x ∈ L(G)? Here, L(G) is the language generated by G.

It is well known that the class NSPACE(n) is precisely the set of languages

generated by context-sensitive grammars. This problem can be rephrased

in terms of Turing machines as follows. A linear bounded automaton is a

restricted type of Turing machine in which the worktape space consists of

n + 2 cells, where n is the input length. Thus, equivalently, the following

problem is PSPACE-complete:

lba acceptance: Given a nondeterministic linear bounded automatonM

and a string x, does M accept x?

This problem remains PSPACE-complete even if the Turing machine is

deterministic. Thus, all problems that are solvable in polynomial space

can be reduced in polynomial time to a problem that requires only linear

space.

In addition to the above problems, the set of PSPACE-complete prob-

lems includes many interesting problems in widely different areas, espe-

cially in game theory. Several two-person games involving a natural alter-

nation of turns for the two players which correspond to an alternation of

quantifiers in quantified boolean formula are known to be PSPACE-

complete. For example, generalized versions of the games hex, geogra-

phy and kayles are PSPACE-complete. Also, generalized versions of the

more familiar games checkers and go are known to be PSPACE-complete

under certain drawing restrictions.

10.8.3 P-complete problems

Although the class P contains all problems for which there exists an efficient

algorithm, there are problems in P that are practically intractable. The

following example reveals the hardness of a practical problem in this class.
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Example 10.5 Consider the problem k-clique defined as follows. Given

an undirected graph G = (V,E) with n vertices, determine whether G

contains a clique of size k, where k is fixed . The only known algorithm to

solve this problem is by considering all the k subsets of V . This results in

Ω(nk/k!) time complexity. Thus, even for moderate values of k, the problem

is practically intractable.

Definition 10.13 A problem Π is P-complete if it is in P and all prob-

lems in P can be reduced to Π using log space reduction.

It is widely conjectured that there are problems in P for which any

algorithm must use an amount of space that is more than logarithmic in

the input size, that is, the set P — LOGSPACE is not empty.

The class of P-complete problems is not empty, and it does contain

several problems that are solvable in polynomial time of low degree such

as depth-first search, which is solvable in linear time, and the max-flow

problem, which is solvable in O(n3) time. These problems are important in

the field of parallel algorithms, as they contain those problems which are

hard to parallelize efficiently; they usually admit sequential algorithms that

are greedy in nature and thus inherently sequential.

Definition 10.14 The class NC consists of those problems that can be

solved in polylogarithmic time, that is O(logk n) time, using a polynomial

number of processors.

This class remains invariant under different models of parallel compu-

tation. It encompasses those problems that are well-parallelizable in the

sense that increasing the number of processors results in significant speedup.

Observe that NC ⊆ P, as the total number of steps performed by a parallel

algorithm is the product of the running time and the number of processors,

which is polynomial in the case of NC algorithms. In other words, such a

parallel algorithm can be transformed into a polynomial time sequential

algorithm.

However, there is a general belief that NC 
= P. Interestingly, if a prob-

lem is P-complete, then every other problem in P can be reduced to it

in polylogarithmic time using a polynomial number of processors. This

type of transformation is called NC-reduction. It can be shown that NC is

closed under NC-reduction. This motivates the next alternative definition of

P-complete problems.
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Definition 10.15 A problem Π is P-complete if it is in P and all prob-

lems in P can be reduced to Π using NC-reduction.

This definition yields the following theorem:

Theorem 10.13 If a problem Π is P-complete and Π is in NC, then

P = NC.

In other words, if P 
= NC, then all P-complete problems must belong

to P−NC. Thus, although P-complete problems are not likely to be solv-

able in logarithmic space, they also do not seem to admit efficient parallel

algorithms.

The following is a sample of some P-complete problems.

(1) circuit value problem (cvp): Given a boolean circuit C consist-

ing of m gates {g1, g2, . . . , gm}, and a specified set of input values

{x1, x2, . . . , xn}, determine whether the output of the circuit is equal

to 1. Here, a gate is ∨,∧ or ¬.
(2) ordered depth-first search: Given a directed graph G = (V,E)

and three vertices s, u, v ∈ V , determine whether u is visited before v

in a depth-first search traversal of G starting at s.

(3) linear programming: Given an n×m matrix A of integers, a vector

b of n integers, a vector c of m integers and an integer k, determine

whether there exists a vector x ofm nonnegative rational numbers such

that Ax ≤ b and cx ≥ k.
(4) max-flow: Given a weighted directed graph G = (V,E) with two

distinguished vertices s and t, determine whether the maximum flow

from s to t is odd.

10.8.4 Some conclusions of completeness

Theorem 10.14 Let Π be an NP-complete problem with respect to poly-

nomial time reductions. Then, NP = P if and only if Π ∈ P.

Proof. The theorem is easily established using the definition of complete-

ness. Suppose that NP = P. Since Π is complete for NP,Π ∈ NP, and hence

Π ∈ P. On the other hand, suppose that Π ∈ P. Since Π is NP-complete,
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NP ⊆ closure∝poly (Π). Thus,

NP ⊆ closure∝poly (Π) ⊆ closure∝poly (P) ⊆ P,

as P is closed under ∝poly. Since P ⊆ NP, it follows that NP = P. �

Theorem 10.14 is also true when the problem Π is complete for NP

with respect to log space reductions. This results in the following stronger

theorem, whose proof is similar to the proof of Theorem 10.14.

Theorem 10.15 Let Π be a problem that is complete for NP with respect

to log space reductions. Then,

(1) NP = P if and only if Π ∈ P.

(2) NP = NLOGSPACE if and only if Π ∈ NLOGSPACE.

(3) NP = LOGSPACE if and only if Π ∈ LOGSPACE.

In comparing Theorem 10.14 with Theorem 10.15, the number of con-

clusions that can be drawn from knowing that a problem Π is log space

complete for the class NP is more than the number of conclusions that can

be drawn from knowing that Π is complete for NP with respect to polyno-

mial time reductions. In fact, most, if not all, polynomial time reductions

between natural NP-complete problems described in the literature are also

log space reductions. Also, log space reductions can distinguish between the

complexity of sets in P and polynomial time reductions cannot. The proofs

of the following theorems are similar to the proof of Theorems 10.14.

Theorem 10.16 Let Π be a problem that is complete for the class

PSPACE with respect to log space reductions. Then,

(1) PSPACE = NP if and only if Π ∈ NP.

(2) PSPACE = P if and only if Π ∈ P.

Theorem 10.17 If a problem Π is P-complete, then

(1) P = LOGSPACE if and only if Π is in LOGSPACE.

(2) P = NLOGSPACE if and only if Π is in NLOGSPACE.
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The following theorem is a generalization of Corollary 10.7.

Theorem 10.18 Let Π be a problem that is complete for NLOGSPACE

with respect to log space reductions. Then,

NLOGSPACE = LOGSPACE if and only if Π ∈ LOGSPACE.

10.9 The Polynomial Time Hierarchy

An oracle Turing machine is a k-tape Turing machine with an additional

tape called the oracle tape and a special state called the query state. The

purpose of the oracle is to answer questions about the membership of an

element in an arbitrary set. Let M be a Turing machine for an arbitrary

set A with an oracle for another arbitrary set B. Whenever M wants to

know whether an element x is in the set B, it writes x on its oracle tape,

and then enters its query state. The oracle answers this question in one

step: It erases the oracle tape and then prints yes on the oracle tape if the

string x is in the set B and no if the string x is not in the set B. M can

consult the oracle more than once. Thus, it may ask during the course of a

computation whether each of the strings x1, x2, . . . , xk are in the set B.

Let A and B be arbitrary sets. A is said to be recognizable determin-

istically (nondeterministically) in polynomial time using an oracle for B

if there is a deterministic (nondeterministic) oracle Turing machine which

accepts the set A using an oracle for B and, for some fixed k ≥ 1, takes at

most |x|k steps on any input string x.

Definition 10.16 If a language A is accepted by a deterministic oracle

Turing machine in polynomial time using an oracle for the language B, then

A is said to be polynomial time Turing reducible to B.

Let PB denote the family of all languages recognizable deterministically

in polynomial time using an oracle for the set B, and let NPB denote the

family of all languages recognizable nondeterministically in polynomial time

using an oracle for the set B. Let F be a family of languages. The family

co-F denotes the family of complements of sets in F . That is, co-F = {co-
S | S ∈ F}.
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Definition 10.17 The polynomial time hierarchy consists of the families

of sets Δp
i ,Σ

p
i ,Π

p
i , for all integers i ≥ 0, defined by

Δp
0 = Σp

0 = Πp
0 = P,

and for all i ≥ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Δp
i+1 =

⋃
B∈Σp

i

PB

Σp
i+1 =

⋃
B∈Σp

i

NPB

Πp
i+1 = co-Σp

i+1.

The following theorems summarize some of the properties of the classes

in the polynomial time hierarchy. In these theorems, we will use the more

general concept of algorithm in place of Turing machines.

Theorem 10.19 Δp
1 = P,Σp

1 = NP and Πp
1 = co-NP.

Proof. We show that, for any set B in P, every set A in PB is again in

P. Let the oracle set B be recognized in polynomial time by a deterministic

algorithm TB that runs in cnk steps, for some c > 0. Let TA be an algo-

rithm that accepts the set A in polynomial time using oracle B and runs

in dnl steps, for some d > 0. One can replace each request for an answer

from the oracle in TA by the execution of the algorithm TB, which decides

the membership in the set B. Since the algorithm TA runs in dnl steps, the

maximum length of any question, i.e., string, to the oracle is dnl. In replac-

ing each one of these requests by an execution of the algorithm TB, we make

each such step of TA take at most c(dnl)k steps. So, the new algorithm rec-

ognizes A without the use of an oracle in at most dnl(cdknkl) steps. Since

dnlcdknkl ≤ c′nkl+l, for some constant c′ > 0, it follows that there is a

polynomial time algorithm for A. Thus, for every set B ∈ Σp
0 = P,PB ⊆ P.

It follows that Δp
1 =

⋃
B∈Σp

0
PB ⊆ P. To finish the proof, note that P = Pφ

and the empty set φ is in Σp
0, that is, P ⊆ Δp

1. The proof that Σp
1 = NP is

similar. It follows, by definition, that Πp
1 = co-NP. �
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Theorem 10.20 For all i ≥ 0,Σp
i ∪ Πp

i ⊆ Δp
i+1.

Proof. By definition, Δp
i+1 =

⋃
B∈Σp

i
PB. Since a polynomial time algo-

rithm can easily be constructed to accept B using the set B as an oracle, it

follows that Σp
i ⊆ Δp

i+1. Also, as we have seen, a polynomial time algorithm

can easily be constructed to accept co-B using an oracle for B. Therefore,

Πp
i = co−Σp

i ⊆ Δp
i+1. �

Theorem 10.21 For all i ≥ 1,Δp
i ⊆ Σp

i ∩ Πp
i .

Proof. First, Δp
i =

⋃
B∈Σp

i−1
PB ⊆ ⋃B∈Σp

i−1
NPB = Σp

i , since a nonde-

terministic algorithm is a generalization of a deterministic algorithm. To

show that Δp
i ⊆ Πp

i , for all i ≥ 1, it is sufficient to show that co-Δp
i = Δp

i .

That is, since Δp
i ⊆ Σp

i , we have also that co-Δp
i ⊆ co-Σp

i = Πp
i . Thus, if

Δp
i = co-Δp

i , then Δp
i ⊆ Πp

i . So, we must show that co-Δp
i = Δp

i . Let A be

a set in Δp
i =

⋃
B∈Σp

i−1
PB. Then, there is a deterministic polynomial time

algorithmMA for accepting A which uses an oracle for a set B in the family

Σp
i−1. An algorithm M ′

A for co-A can be constructed which uses an oracle

for B. M ′
A simply stops and accepts if MA does not accept, and stops and

rejects if MA does stop and accept. It follows that co-Δp
i = Δp

i . �

The known relationships between the classes in the polynomial time

hierarchy are shown in Fig. 10.1.

p
2

p
2

p
2

p p

p
0

p
0

p
0

p
1==== P

11 co-NP NP= =

Fig. 10.1. Inclusion relations among complexity classes in the polynomial time
hierarchy.



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch10 page 316

316 Algorithms: Design Techniques and Analysis

Theorem 10.22 If Σp
i = Σp

i+1 for some i ≥ 0, then Σp
i+j = Σp

i for all

j ≥ 1.

Proof. We prove this by induction on j. Assume Σp
i+j = Σp

i , for some

j ≥ 1. Then,

Σp
i+j+1 =

⋃
B∈Σp

i+j

NPB =
⋃

B∈Σp
i

NPB = Σp
i+1 = Σp

i .

So, Σp
i+j+1 = Σp

i , and hence Σp
i+j = Σp

i for all j ≥ 1. �

.

Corollary 10.8 If NP = P, then the polynomial time hierarchy col-

lapses, that is, each family in the polynomial time hierarchy coincides

with P.

In fact, the converse implication is also true. If, for any i ≥ 1, it were

true that Σp
i = P, then since NP ⊆ Σp

1 ⊆ Σp
i , it would follow that NP = P.

Thus, any set A that is complete for the class Σp
i , for any i ≥ 1, satisfies

the property that it is in P if and only if NP = P.

Many problems which are not known to be in NP are in the polyno-

mial time hierarchy. Several of these problems are related to NP-complete

problems but are concerned with finding a maximum or a minimum. The

following are two examples of problems in PNP and NPNP.

Example 10.6 chromatic number. Given an undirected graph G =

(V,E) and a positive integer k, is k the smallest number of colors that

can be assigned to the vertices of G such that no two adjacent vertices

are assigned the same color? Recall that the problem coloring stated on

page 267 is the problem of deciding whether it is possible to color a given

graph using k colors, where k is a positive number that is part of the input.

It is well known that the problem coloring is NP-complete. An algorithm

to accept chromatic number using an oracle for coloring is as follows:

(1) If (G, k) is not in coloring, then stop and reject, otherwise continue.

(2) If (G, k − 1) is in coloring, then stop and reject, otherwise continue.

(3) Stop and accept.

We observe that checking whether (G, k) is in coloring is implemented

by asking the oracle coloring and is answered in one step, by assumption.

So, the algorithm presented above is clearly polynomial time bounded, since
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it needs at most two steps to either accept or reject. It follows that chro-

matic number is in Δp
2 = PNP.

Example 10.7 minimum equivalent expression. Given a well-

formed boolean expression E and a nonnegative integer k, is there a well-

formed boolean expressionE′ that contains k or fewer occurrences of literals
such that E′ is equivalent to E (i.e., E′ if and only if E)?

minimum equivalent expression does not appear to be in Δp
2.

It is not obvious whether an oracle for a problem in NP can be used

to solve minimum equivalent expression in deterministic polynomial

time. However, this problem can be solved in nondeterministic poly-

nomial time using an oracle for satisfiability. The algorithm is as

follows:

(1) Guess a boolean expression E′ containing k or fewer occurrences of

literals.

(2) Use satisfiability to determine whether ¬((E′ → E) ∧ (E → E′)) is
satisfiable.

(3) If it is not satisfiable, then stop and accept, otherwise stop and reject.

The correctness of the above algorithm follows from the fact that a well-

formed formula E is not satisfiable if and only if its negation is a tautology.

Thus, since we want (E′ if and only if E) to be a tautology, we only need

to check whether

¬((E′ → E) ∧ (E → E′))

is not satisfiable. As to the time needed, Step 1, generating E′, can easily

be accomplished in polynomial time using a nondeterministic algorithm.

Step 2, querying the satisfiability oracle, is done in one step. It follows

that minimum equivalent expression is in Σp
2 = NPNP.

10.10 Practice Problems

10.1. Show that the language in Example 10.1 is in DTIME(n). (Hint : Use

a 2-tape Turing machine.)

10.2. Show that the language L = {ww | w ∈ {a, b}+} is in LOGSPACE

by constructing a log space bounded off-line Turing machine that
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recognizes L. Here, {a, b}+ denotes all nonempty strings over the

alphabet {a, b}.
10.3. Consider the following decision problem of sorting: Given a sequence

of n distinct positive integers between 1 and n, are they sorted in

increasing order? Show that this problem is in

(a) DTIME(n logn).

(b) LOGSPACE.

10.4. Give an algorithm to solve the problem k-clique defined in

Example 10.5. Use the O-notation to express the time complexity

of your algorithm.

10.5. Show that the problem k-clique defined in Example 10.5 is in

LOGSPACE. Recall that k is fixed.

10.6. Consider the following decision problem of the selection problem.

Given an array A[1..n] of integers, an integer x and an integer k, 1 ≤
k ≤ n, is the kth smallest element in A equal to x? Show that this

problem is in LOGSPACE.

10.7. Let A be an n×nmatrix. Show that computing A2 is in LOGSPACE.

How about computing Ak for an arbitrary k ≥ 3, where k is part of

the input?

10.8. Show that all finite sets are in LOGSPACE.

10.9. Show that the family of sets accepted by finite state automata is a

proper subset of LOGSPACE. (Hint : The language {anbn | n ≥ 1} is
not accepted by any finite state automaton, but it is in LOGSPACE).

10.11 Exercises

10.1. Show that the problem 2-SAT described in Sec. 9.2 on page 268 is

in NLOGSPACE. Conclude that it is in P.

10.2. Show that if T1 and T2 are two time-constructible functions, then

so are T1 + T2, T1T2 and 2T1 .

10.3. Show that if NSPACE(n) ⊆ NP, then NP = NSPACE. Conclude

that NSPACE(n) 
= NP.

10.4. Show that if LOGSPACE = NLOGSPACE, then for every

space constructible function S(n) ≥ logn, DSPACE(S(n)) =

NSPACE(S(n)).
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10.5. Describe a log space reduction from the set L = {www | w ∈
{a, b}+} to the set L′ = {ww | w ∈ {a, b}+}. That is, show that

L ∝log L
′.

10.6. Show that the relation ∝poly is transitive. That is, if Π ∝poly Π′

and Π′ ∝poly Π′′, then Π ∝poly Π′′.

10.7. Show that the relation ∝log is transitive. That is, if Π ∝log Π′ and
Π′ ∝log Π′′, then Π ∝log Π′′.

10.8. The problems 2-coloring and 2-SAT were defined in Sec. 9.2.

Show that 2-coloring is log space reducible to 2-SAT. (Hint : Let

G = (V,E). Let the boolean variable xv correspond to vertex v for

each vertex v ∈ V , and for each edge (u, v) ∈ E, construct the two

clauses (xu ∨ xv) and (¬xu ∨ ¬xv).)

10.9. Show that for any k ≥ 1, DTIME(nk) is not closed under polyno-

mial time reductions.

10.10. Show that, for any k ≥ 1, the class DSPACE(logk n) is closed under

log space reductions.

10.11. A set S is linear time reducible to a set T , denoted by S ∝n T , if

there exists a function f that can be computed in linear time (that

is, f(x) can be computed in c|x| steps, for all input strings x, where
c is some constant > 0) such that

∀x x ∈ S if and only if f(x) ∈ T.

Show that if S ∝n T and T is in DTIME(nk), then S is in

DTIME(nk). That is, DTIME(nk) (k ≥ 1) is closed under linear

time reducibility.

10.12. Suppose that k in Problem 10.5 (see also Example 10.5) is not

fixed, that is, k is part of the input. Will the problem still be in

LOGSPACE? Explain.

10.13. Show that the class NLOGSPACE is closed under complemen-

tation. Conclude that the complement of the problem gap is

NLOGSPACE-complete.
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10.14. Show that the problem gap remains NLOGSPACE-complete even

if the graph is acyclic.

10.15. Show that the problem 2-SAT described in Sec. 9.2 on page 268

is complete for the class NLOGSPACE under log space reduction

(see Exercise 10.1). (Hint: Reduce the complement of the prob-

lem gap to it. Let G = (V,E) be a directed acyclic graph. gap

is NLOGSPACE-complete even if the graph is acyclic (Exercise

10.14). By Exercise 10.13, the complement of the problem gap

is NLOGSPACE-complete. Associate with each vertex v in V a

boolean variable xv. Associate with each edge (u, v) ∈ E the clause

(¬xu ∨ xv), and add the clauses (xs) for the start vertex and (¬xt)
for the goal vertex t. Prove that 2-SAT is satisfiable if and only if

there is no path from s to t).

10.16. Define the class

POLYLOGSPACE =
⋃
k≥1

DSPACE(logk n).

Show that there is no set that is complete for the class POLY-

LOGSPACE. (Hint : The class DSPACE(logk n) is closed under log

space reduction.)

10.17. Prove that PSPACE ⊆ P if and only if PSPACE ⊆ PSPACE(n).

(Hint : Use padding argument.)

10.18. Does there exist a problem that is complete for the class DTIME(n)

under log space reduction? Prove your answer.

10.19. Let L be a class that is closed under complementation and let the

set L (that is not necessarily in L) be such that

∀L′ ∈ L L′ ∝ L.

Show that

∀L′′ ∈ co-L L′′ ∝ L.
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10.20. Show that for any class of languages L, if L is complete for the class

L, then L is complete for the class co-L.

10.21. Show that NLOGSPACE is strictly contained in PSPACE.

10.22. Show that DEXT 
= PSPACE. (Hint : Show that DEXT is not

closed under ∝poly.)

10.23. Show that polynomial time Turing reduction as defined on page 313

implies polynomial time transformation as defined in Sec. 10.7. Is

the converse true? Explain.

10.24. Consider the max-clique problem defined as follows. Given a

graph G = (V,E) and a positive integer k, decide whether the max-

imal complete subgraph of G is of size k. Show that max-clique

is in Δp
2.

10.25. Show that Σp
1 = NP.

10.26. Show that if Σp
k ⊆ Πp

k, then Σp
k = Πp

k.
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Chapter 11

Lower Bounds

11.1 Introduction

When we described algorithms in the previous chapters, we analyzed their

time complexities, mostly in the worst case. We have occasionally charac-

terized a particular algorithm as being “efficient” in the sense that it has

the lowest possible time complexity. In Chapter 1, we have denoted by an

optimal algorithm an algorithm for which both the upper bound of the

algorithm and the lower bound of the problem are asymptotically equiva-

lent. For virtually all algorithms we have encountered, we have been able to

find an upper bound on the amount of computation the algorithm requires.

But the problem of finding a lower bound of a particular problem is much

harder, and indeed there are numerous problems whose lower bound is

unknown. This is due to the fact that when considering the lower bound of

a problem, we have to establish a lower bound on all algorithms that solve

that problem. This is by no means an easy task compared with computing

the worst case running time of a given algorithm. It turns out, however,

that most of the known lower bounds are either trivial or derived using a

model of computation that is severely constrained, in the sense that it is

not capable of performing some elementary operations, e.g., multiplication.

11.2 Trivial Lower Bounds

In this section, we consider those lower bounds that can be deduced using

intuitive argument without resorting to any model of computation or doing

323
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sophisticated mathematics. We will give two examples of establishing trivial

lower bounds.

Example 11.1 Consider the problem of finding the sum in a list of n

numbers. Clearly, every element in the list must be inspected. This means

that we must spend at least Ω(1) time corresponding to one addition for

each element. It follows that any algorithm to find the sum of n numbers

must spend Ω(n) time.

Example 11.2 Consider the problem of matrix multiplication. Any

algorithm to multiply two n × n matrices must compute exactly n2 val-

ues. Since at least Ω(1) time must be spent in each evaluation, the time

complexity of any algorithm for multiplying two n× n matrices is Ω(n2).

11.3 The Decision Tree Model

There are certain problems where it is realistic to consider the branching

instruction as the basic operation (see Definition 1.6 on page 40). Thus,

in this case, the number of comparisons becomes the primary measure of

complexity. In the case of sorting, for example, the output is identical to

the input except for order. Therefore, it becomes reasonable to consider

a model of computation in which all steps are two-way branches, based

on a comparison between two quantities. The usual representation of an

algorithm consisting solely of branches is a binary tree called a decision

tree.

Let Π be a problem for which a lower bound is sought, and let the size

of an instance of Π be represented by a positive integer n. Then, for each

pair of algorithm and value of n, there is a corresponding decision tree that

“solves” instances of the problem of size n. As an example, Fig. 1.2 shows

two decision trees corresponding to Algorithm binarysearch on instances

of sizes 10 and 14, respectively.

11.3.1 The search problem

In this section, we derive a lower bound on the search problem: Given an

array A[1..n] of n elements, determine whether a given element x is in the

array. In Chapter 1, we have presented Algorithm linearsearch to solve
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this problem. We have also presented Algorithm binarysearch for the

case when the list is sorted.

In the case of searching, each node of the decision tree corresponds to a

decision. The test represented by the root is made first and control passes

to one of its children depending on the outcome. If the element x being

searched for is less than the element corresponding to an internal node,

control passes to its left child. If it is greater, then control passes to its

right child. The search ceases if x is equal to the element corresponding to

a node or if the node is a leaf.

Consider first the case when the list is not sorted. It is easy to see that

n comparisons are both necessary and sufficient in the worst case. It follows

that the problem of searching an arbitrary list requires at least Ω(n) time

in the worst case, and hence Algorithm linearsearch is optimal.

As regards the case when the list is sorted, we argue as follows. Let A

be an algorithm for searching a sorted list with n elements, and consider

the decision tree T associated with A and n. Let the number of nodes in

T be m. We observe that m ≥ n. We also observe that the number of

comparisons performed in the worst case must correspond to the longest

path from the root of T to a leaf plus one. This is exactly the height of T

plus one. By Observation 2.3, the height of T is at least �logn�. It follows
that the number of comparisons performed in the worst case is �logn�+1.

This implies the following theorem:

Theorem 11.1 Any algorithm that searches a sorted sequence of n ele-

ments must perform at least �logn�+ 1 comparisons in the worst case.

By the above theorem and Theorem 1.1, we conclude that Algorithm

binarysearch is optimal.

11.3.2 The sorting problem

In this section, we derive a lower bound on the problem of sorting by com-

parisons . All sorting problems that are not comparison-based, e.g., radix

sort and bucket sort are excluded. In the case of sorting, each internal ver-

tex of the tree represents a decision, and each leaf corresponds to an output.

The test represented by the root is made first and control passes to one of its

children depending on the outcome. The desired output is available at the

leaf reached. With each pair of sorting algorithm and value of n representing
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1:2

2:3

1:3

1:3

2:3a1<a2 <a3 a2<a1 <a3

a1<a3 <a2 a3<a1 <a2 a3<a2 <a1a2<a3 <a1

Fig. 11.1. A decision tree for sorting three elements.

the number of elements to be sorted, we associate a decision tree. Thus, for

a fixed value of n, the decision tree corresponding to mergesort, for exam-

ple, is different from that of heapsort or insertionsort. If the elements

to be sorted are a1, a2, . . . , an, then the outcome is a permutation of these

elements. It follows that any decision tree for the sorting problem must

have at least n! leaves. Figure 11.1 shows an example of a decision tree for

an algorithm that sorts three distinct elements.

Clearly, the time complexity in the worst case is the length of a longest

path from the root to a leaf, which is the height of the decision tree.

Lemma 11.1 Let T be a binary tree with at least n! leaves. Then, the

height of T is at least n logn− 1.5n = Ω(n logn).

Proof. Let l be the number of leaves in T , and let h be its height. By

Observation 2.1, the number of vertices at level h, which are leaves, is at

most 2h. Since l ≥ n!, we have

n! ≤ l ≤ 2h.

Consequently, h ≥ logn!. By Eq. (A.18) (page 682),

h ≥ logn! =

n∑
j=1

log j ≥ n logn− n log e+ log e ≥ n logn− 1.5n. �

Lemma 11.1 implies the following important theorem.
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Theorem 11.2 Any comparison-based algorithm that sorts n elements

must perform Ω(n logn) element comparisons in the worst case.

In Chapter 5, we have shown that if n is a power of 2, then Algorithm

mergesort performs n logn− n+ 1 comparisons in the worst case, which

is very close to the lower bound in Lemma 11.1. In other words, the lower

bound we have obtained is almost achievable by Algorithm mergesort.

11.3.3 Finding the maximum

Any decision tree for finding the maximum of n elements must have at

least 2n−1 leaves since each path from the root to one of the leaves must

contain at least n− 1 internal nodes. It follows that any comparison-based

algorithm for finding the maximum must perform at least log 2n−1 = n− 1

comparisons.

11.3.4 Finding the largest and second largest elements

In this section, we derive a lower bound on the problem of finding the largest

and second largest in a set of n elements and outline an algorithm to find

them using the least number of comparisons.

11.3.4.1 Lower bound

Theorem 11.3 Any comparison-based algorithm for computing the

largest and second largest elements in a set of n elements must do at least

n− 2 + logn comparisons in the worst case.

Proof. Partition the set of all possible inputs into equivalence classes

Ci, 1 ≤ i ≤ n, such that two inputs are in the same equivalence class if

their maximum appears in position i. The set of all leaves of the decision

tree are also partitioned into equivalence classes Li, where Li corresponds

to Ci. For all leaves of the decision tree in Li, the position of the largest

element, which is i, is identical, and hence, in the subtree that defines Li,

all comparisons are made on the positions of the n − 1 smallest elements

since the second largest element is to be determined. Therefore, this subtree

can be viewed as a comparison tree for determining the largest element in a

set of n− 1 elements, and thus it has at least 2n−2 leaves (see Sec. 11.3.3).

Since there are n classes, the original tree contains at least n2n−2 leaves.
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It follows that the number of comparisons, which is the height of the tree,

is at least log(n2n−2) = n− 2 + logn. �

11.3.4.2 Optimal algorithm

We now describe a simple algorithm for finding the largest and second

largest elements in a sequence of n elements that uses n − 2 + logn com-

parisons. This means that the bound in Theorem 11.3 is achievable, and

thus the algorithm is optimal. Assume without loss of generality that n

is a power of 2. The method used is called the tournament method, which

derives its name from the fact that it performs its comparisons in the same

way that tournaments are played. In the first round, pairs of elements are

compared. In succeeding rounds, the winners from the preceding round are

compared, and so on until there is only one element left. At this point,

the largest element has been found at the root of the tree using n − 1

comparisons, which is the number of internal nodes. Next, to compute the

second largest element, we do a second pass bottom-up and compare the

maximum element with elements that lost to the maximum; their number

is equal to logn − 1. It follows that the total number of comparisons is

n− 1 + logn− 1 = n− 2 + log n.

Example 11.3 Figure 11.2 depicts the complete binary tree for the

tournament of finding the largest and second largest elements in the

sequence of 8 numbers 〈6, 1, 5, 3, 8, 7, 4, 2〉. In the first pass, the maximum

is found at the root. In the second pass, the largest element 8 is compared

with 7, 4 and 6, and the second largest element 7 is found. These elements

are shown in bold in the figure.

1

6

6

6 78

8

8

8

23 4

4

5

5

Fig. 11.2. A tournament for finding the largest and second largest elements.
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Using a simple adversary argument, it can be shown that in order to

find the second largest element, the maximum must also be determined.

This implies the following corollary.

Corollary 11.1 Any comparison-based algorithm for computing the sec-

ond largest element in a set of n elements must do at least n − 2 + logn

comparisons in the worst case.

11.4 The Algebraic Decision Tree Model

The decision tree model as described in Sec. 11.3 is severely restricted, as it

only allows a comparison between two elements as the primary operation.

If the decision at each internal vertex is a comparison of a polynomial of

the input variables with the number 0, then the resulting decision tree is

called an algebraic decision tree. This model of computation is far more

powerful than the decision tree model and in fact attains the power of the

RAM model of computation. When establishing lower bounds for decision

problems using this model, we usually ignore all arithmetic operations and

confine our attention to the number of branching instructions. Thus, this

model is similar to the decision tree model in the sense that it is best suited

for combinatorial algorithms that deal with rearrangements of elements.

We define this model of computation more formally as follows.

An algebraic decision tree on a set of n variables x1, x2, . . . , xn is a

binary tree with the property that each vertex is labeled with a statement

in the following way. Associated with every internal vertex is a statement

that is essentially a test of the form: If f(x1, x2, . . . , xn) : 0, then branch

to the left child, else branch to the right child. Here, “:” stands for any

comparison relation from the set {=, <,≤}. On the other hand, one of the

answers yes or no is associated with each leaf vertex.

An algebraic decision tree is of order d, for some integer d ≥ 1, if all

polynomials associated with the internal nodes of the tree have degree at

most d. If d = 1, i.e., if all polynomials at the internal vertices of an alge-

braic decision tree are linear, then it is called a linear algebraic decision tree

(or simply linear decision tree). Let Π be a decision problem whose input is

a set of n real numbers x1, x2, . . . , xn. Then, associated with Π is a subset

W of the n-dimensional space En such that a point (x1, x2, . . . , xn) is in W

if and only if the answer to the problem Π when presented with the input
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x1, x2, . . . , xn is yes. We say that an algebraic decision tree T decides the

membership in W if whenever the computation starts at the root of T with

some point p = (x1, x2, . . . , xn), control eventually reaches a yes leaf if and

only if (x1, x2, . . . , xn) ∈W .

As in the decision tree model, to derive a lower bound on the worst

case time complexity of a problem Π, it suffices to derive a lower bound on

the height of the algebraic decision tree that solves Π. Now, let W be the

subset of the n-dimensional space En that is associated with the problem Π.

Suppose that in some way the number #W of the connected components

of the set W is known. We want to derive a lower bound on the height of

the algebraic decision tree for Π in terms of #W . We now establish this

relation for the case of linear decision trees.

Let T be a linear decision tree. Then, every path from the root to a leaf

in T corresponds to a sequence of conditions having one of the following

forms:

f(x1, x2, . . . , xn) = 0, g(x1, x2, . . . , xn) < 0, and h(x1, x2, . . . , xn) ≤ 0.

Note that each of these functions is linear since we have assumed that T

is a linear decision tree. Thus, when the root of T is presented with a

point (x1, x2, . . . , xn), control eventually reaches a leaf l if and only if all

conditions on the path from the root to l are satisfied. By the linearity of

these conditions, the leaf l corresponds to an intersection of hyperplanes,

open halfspaces and closed halfspaces, i.e., it corresponds to a convex set.

Since this set is convex, it is necessarily connected, i.e., it consists of exactly

one component. Thus, each yes-leaf corresponds to exactly one connected

component. It follows that the number of leaves of T is at least #W . By

an argument similar to that in the proof of Lemma 11.1, the height of the

tree is at least 	log(#W )
. This implies the following theorem.

Theorem 11.4 Let W be a subset of En, and let T be a linear decision

tree of n variables that accepts the set W . Then, the height of T is at

least 	log(#W )
.

The linear decision tree model is certainly very restricted. Therefore, it

is desirable to extend it to the more general algebraic decision tree model.

It turns out, however, that in this model, the above argument no longer

applies; a yes-leaf may have associated with it many connected components.
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In this case, more complex mathematical analysis leads to the following

theorem.

Theorem 11.5 Let W be a subset of En, and let d be a fixed positive

integer. Then, the height of any order d algebraic decision tree T that accepts

W is Ω(log#W − n).
One of the most important combinatorial problems is that of sorting a

set of n real numbers using only the operation of comparisons. We have

shown that under the decision tree model, this problem requires Ω(n logn)

comparisons in the worst case. It can be shown that this bound is still valid

under many computational models, and in particular the algebraic decision

tree model of computation. We state this fact as a theorem.

Theorem 11.6 In the algebraic decision tree model of computation, sort-

ing n real numbers requires Ω(n logn) element comparisons in the worst

case.

11.4.1 The element uniqueness problem

The problem element uniqueness is stated as follows. Given a set of n

real numbers, decide whether two of them are equal. We will now obtain

a lower bound on the time complexity of this problem using the algebraic

decision tree model of computation. A set of n real numbers {x1, x2, . . . , xn}
can be viewed as a point (x1, x2, . . . , xn) in the n-dimensional space En.

Let W ⊆ En be the membership set of the problem element unique-

ness on {x1, x2, . . . , xn}. In other words, W consists of the set of points

{x1, x2, . . . , xn} with the property that no two coordinates of which are

equal. It is not hard to see that W contains n! disjoint connected compo-

nents. Specifically, each permutation π of {1, 2, . . . , n} corresponds to the

set of points in En

Wπ = {(x1, x2, . . . , xn) | xπ(1) < xπ(2) < · · · < xπ(n)}.
Clearly,

W =W1 ∪W2 ∪ · · · ∪Wn!.

Moreover, these subsets are connected and disjoint. Thus, #W = n!, and

it follows from Theorem 11.5. that in the algebraic decision tree model of
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computation, any algorithm that solves the element uniqueness problem

requires Ω(logn!) = Ω(n logn) element comparisons in the worst case.

11.4.2 The set equality problem

The problem set equality is stated as follows. Given two sets A =

{x1, x2, . . . , xn} and B = {y1, y2, . . . , yn} of n real numbers each, decide

whether A = B. Assume without loss of generality that B = {1, 2, . . . , n}.
Let W ⊆ En be the membership set of the problem set equality on A

and B. Then,

W = {π(1), π(2), . . . , π(n) | π is a permutation of {1, 2, . . . , n}}.

In other words,W consists of the set of points {x1, x2, . . . , xn} that are per-
mutations of {1, 2, . . . , n}. It is not hard to see thatW consists of n! disjoint

connected components. Thus, #W = n!, and it follows from Theorem 11.5.

that in the algebraic decision tree model of computation, any algorithm that

solves the set equality problem requires Ω(logn!) = Ω(n logn) element

comparisons in the worst case.

11.4.3 The set inclusion problem

The problem set inclusion is stated as follows. Given two sets A =

{x1, x2, . . . , xn} and B = {y1, y2, . . . , yn} of n real numbers each, decide

whether A ⊆ B. Assume without loss of generality that B = {1, 2, . . . , n}.
Let W ⊆ En be the membership set of the problem set inclusion on A

and B. Then,

W = {{x1, x2, . . . , xn} | {x1, x2, . . . , xn} ⊆ {1, 2, . . . , n}}.

In other words,W consists of the set of points {x1, x2, . . . , xn} that are sub-
sets of {1, 2, . . . , n}. It is not hard to see that W contains nn disjoint con-

nected components, as there are n possibilities for each element of A. Thus,

#W = nn, and it follows from Theorem 11.5. that in the algebraic decision

tree model of computation, any algorithm that solves the set inclusion

problem requires Ω(lognn) = Ω(n logn) element comparisons in the worst

case.
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11.4.4 The set disjointness problem

The problem set disjointness is stated as follows. Given two sets A =

{x1, x2, . . . , xn} and B = {y1, y2, . . . , yn} of n real numbers each, decide

whether A∩B = φ. A set of 2n real numbers {x1, x2, . . . , xn, y1, y2, . . . , yn}
can be viewed as a point in the 2n-dimensional space E2n. LetW ⊆ E2n be

the membership set of the problem set disjointness on A and B. Then,

W = {{x1, x2, . . . , xn, y1, y2, . . . , yn} | xi �= yj}.

In other words,W consists of the set of points {x1, x2, . . . , xn, y1, y2, . . . , yn}
having the property that

{x1, x2, . . . , xn} ∩ {y1, y2, . . . , yn} = φ.

It is not hard to see that W contains (n!)2 disjoint connected components,

as there are n!×n! possible permutations for A and B. Thus, #W = (n!)2,

and it follows from Theorem 11.5. that in the algebraic decision tree model

of computation, any algorithm that solves the set disjointness problem

requires Ω(log(n!)2) = Ω(2 logn!) = Ω(n logn) element comparisons in the

worst case.

11.5 Linear Time Reductions

For the problem element uniqueness, we were able to obtain a lower

bound using the algebraic decision tree model of computation directly by

investigating the problem and applying Theorem 11.5. Another approach

for establishing lower bounds is by making use of reductions. Let A

be a problem whose lower bound is known to be Ω(f(n)), where n =

o(f(n)), e.g., f(n) = n logn. Let B be a problem for which we wish to

establish a lower bound of Ω(f(n)). We establish this lower bound for prob-

lem B as follows:

(1) Convert the input to A into a suitable input to problem B.

(2) Solve problem B.

(3) Convert the output into a correct solution to problem A.

In order to achieve a linear time reduction, Steps 1 and 3 above must be

performed in time O(n). In this case, we say that the problem A has been
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reduced to the problem B in linear time, and we denote this by writing

A ∝n B.

Now, we give examples of establishing an Ω(n logn) lower bound for

three problems using the linear time reduction technique.

11.5.1 The convex hull problem

Let {x1, x2, . . . , xn} be a set of positive real numbers. We show that we can

use any algorithm for the convex hull problem to sort these numbers

using additional O(n) time for converting the input and output. Since the

sorting problem is Ω(n logn), it follows that the convex hull problem

is Ω(n logn) as well; otherwise, we would be able to sort in o(n logn) time,

contradicting Theorem 11.6.

With each real number xj , we associate a point (xj , x
2
j ) in the two-

dimensional plane. Thus, all the n constructed points lie on the parabola

y = x2 (see Fig. 11.3).

If we use any algorithm for the convex hull problem to solve the

constructed instance, the output will be a list of the constructed points

sorted by their x-coordinates. To obtain the sorted numbers, first we find the

point with minimum x-coordinate p0. Next, starting from p0, we traverse

the list and read off the first coordinate of each point. The result is the

original set of numbers in sorted order. Thus, we have shown that

Fig. 11.3. Reducing sorting to the convex hull problem.
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sorting ∝n convex hull,

which proves the following theorem.

Theorem 11.7 In the algebraic decision tree model of computation, any

algorithm that solves the convex hull problem requires Ω(n logn) opera-

tions in the worst case.

11.5.2 The closest pair problem

Given a set S of n points in the plane, the closest pair problem calls for

identifying a pair of points in S with minimum separation (see Sec. 5.11).

We show here that this problem requires Ω(n logn) operations in the worst

case by reducing the problem element uniqueness to it.

Let {x1, x2, . . . , xn} be a set of positive real numbers. We show that

we can use an algorithm for the closest pair problem to decide whether

there are two numbers that are equal. Corresponding to each number xj ,

we construct a point pj = (xj , 0). Thus, the constructed set of points are

all on the line y = 0. Let A be any algorithm that solves the closest

pair problem. Let (xi, 0) and (xj , 0) be the output of algorithm A when

presented with the set of constructed points. Clearly, there are two equal

numbers in the original instance of the problem element uniqueness if

and only if the distance between xi and xj is equal to zero. Thus, we have

shown that

element uniqueness ∝n closest pair.

This proves the following theorem.

Theorem 11.8 In the algebraic decision tree model of computation, any

algorithm that solves the closest pair problem requires Ω(n logn) opera-

tions in the worst case.

11.5.3 The Euclidean minimum spanning tree problem

Let S be a set of n points in the plane. The euclidean minimum spanning

tree problem (emst) is to construct a tree of minimum total length whose

vertices are the given points in S. We show that this problem requires

Ω(n logn) operations in the worst case by reducing the sorting problem

to it.
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Let {x1, x2, . . . , xn} be a set of positive real numbers to be sorted.

Corresponding to each number xj , we construct a point pj = (xj , 0). Thus,

the constructed set of points are all on the line y = 0. Let A be any algo-

rithm that solves the euclidean minimum spanning tree problem. If we

feed algorithm A with the constructed set of points, the resulting minimum

spanning tree will consist of n− 1 line segments l1, l2, . . . , ln−1 on the line

y = 0, with the property that for each j, 1 ≤ j ≤ n−2, the right endpoint of
lj is the left endpoint of lj+1. We can obtain the numbers {x1, x2, . . . , xn}
in sorted order by traversing the tree starting from the leftmost point and

reading off the first component of each point. Thus, we have shown that

sorting ∝n euclidean minimum spanning tree.

It follows that in the algebraic decision tree model of computation, any

algorithm that solves the euclidean minimum spanning tree problem

requires Ω(n logn) operations in the worst case.

11.5.4 The diameter of a point set

Let S be a set of n points in the plane. The diameter of S, denoted by

Diam(S), is the maximum distance realized by two points in S. We show

that finding Diam(S) requires Ω(n logn) operations in the worst case.

We reduce the problem set disjointness to diameter. Let the

two sets input to set disjointness be A = {a1, a2, . . . , an} and B =

{b1, b2, . . . , bn}. Map the elements of A into the first quadrant of the unit

circle and the elements of B into the third quadrant of the same circle in

counterclockwise order. Then, the diameter of the mapped elements is equal

to 2 if and only if the two sets have at least one element in common. See

Fig. 11.4, in which A = {1, 3, 5, 7} and B = {2, 4, 5, 8}.

1
3

5

5
8

2
4

7

Fig. 11.4. Reducing set disjointness to diameter.
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11.6 Practice Problems

11.1. Give a trivial lower bound for finding the inverse of an n× n matrix.

11.2. Give a trivial lower bound on the number of comparisons needed for

deciding whether a given array A[1..n] of n elements is sorted.

11.3. Give a trivial lower bound on the number of comparisons needed

to compute the median of n elements using a comparison-based

algorithm.

11.4. Draw the decision tree for Algorithm linearsearch on four

elements.

11.5. Draw the decision tree for Algorithm insertionsort on three

elements.

11.6. Draw the decision tree for Algorithm mergesort on three elements.

11.7. Apply the algorithm in Sec. 11.3.4.2 to find the largest and second

largest in the set of numbers {4, 9, 1, 10, 3, 11, 8, 2}.
11.8. Let A and B be two unordered lists of n elements each. Consider the

problem of deciding whether the elements in A are identical to those

in B, i.e., the elements in A are a permutation of the elements in B.

Use the Ω-notation to express the number of comparisons required

to solve this problem.

11.7 Exercises

11.1. What is the minimum number of comparisons needed to test

whether an array A[1..n] is a heap? Explain.

11.2. Let S be a list of n unsorted elements. Show that constructing a

binary search tree from the elements in S requires Ω(n logn) in the

decision tree model (see Sec. 2.6.2 for the definition of a binary

search tree).

11.3. Let S = {x1, x2, . . . , xn} be a set of n distinct positive integers.

We want to find an element x that is in the upper half when S

is sorted, or in other words, an element that is greater than the

median. Use the Ω-notation to express the minimum number of

element comparisons required to solve this problem.

11.4. Prove Corollary 11.1.
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11.5. Show that any algorithm to merge two sorted lists of size n each

by comparisons does at least 2n− 1 such comparisons in the worst

case.

11.6. Let A and B be two sets of points in the plane each containing n

elements. Show that the problem of finding two closest points, one

in A and the other in B requires Ω(n logn) operations in the worst

case.

11.7. Consider the triangulation problem: Given n points in the plane,

join them by nonintersecting straight line segments so that every

region internal to their convex hull is a triangle. Prove that this

problem requires Ω(n logn) operations in the worst case. (Hint :

Reduce the sorting problem to the special case of the triangu-

lation problem when exactly n − 1 points are collinear and one

point is not on the same line.)

11.8. Consider the nearest point problem: Given a set S of n points in

the plane and a query point p, find a point in S that is closest to p.

Show that any algorithm to solve this problem requires Ω(logn)

operations in the worst case. (Hint : Reduce binary search to the

special case where all points lie on the same line.)

11.9. The closest pair problem is defined as follows. Given a set S of

n points in the plane, find two points in S that are closest to each

other. Show that this problem requires Ω(n logn) operations in the

worst case.

11.10. The all nearest points problem is defined as follows. Given n

points in the plane, find a nearest neighbor of each. Show that this

problem requires Ω(n logn) operations in the worst case. (Hint :

Reduce the closest pair problem to it.)

11.11. Consider the problem of partitioning a planar point set S into

two subsets S1 and S2 such that the maximum of Diam(S1) and

Diam(S2) is minimum. Show that this problem requires Ω(n logn)

operations in the worst case. (Hint : Reduce the problem of finding

the diameter of a point set S to this problem; see Sec. 11.5.4.)
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PART 5

Coping with Hardness

In the previous part of the book, we have seen that many practical problems

have no efficient algorithms, and the known ones for these problems require

an amount of time measured in years or centuries even for instances of

moderate size.

There are three useful methodologies that could be used to cope with

this difficulty. The first methodology is suitable for those problems that

exhibit good average time complexity but for which the worst case poly-

nomial time solution is elusive. This methodology is based on a methodic

examination of the implicit state space induced by the problem instance

under study. In the process of exploring the state space of the instance,

some pruning takes place.

The second methodology in this part is based on the probabilistic notion

of accuracy. At the heart of these solutions is a simple decision maker or test

that can accurately perform one task (either passing or failing the alter-

native) and not say much about the complementary option. An iteration

through this test will enable the construction of the solution or the increase

in the confidence level in the solution to the desired degree.

341
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The final methodology is useful for incremental solutions where one is

willing to compromise on the quality of solution in return for faster (poly-

nomial time) solutions. Only some classes of hard problems admit such

polynomial time approximations. Still fewer of those provide a spectrum of

polynomial time solutions where the degree of the polynomial is a function

of accuracy.

In Chapter 12, we study two solution space search techniques that work

for some problems, especially those in which the solution space is large.

These techniques are backtracking and branch-and-bound. In these tech-

niques, a solution to the problem can be obtained by exhaustively search-

ing through a large but finite number of possibilities. It turns out that

for many hard problems, backtracking and branch-and-bound are the only

known techniques to solve these problems. After all, for some problems like

the traveling salesman problem, even the problem of finding an approxi-

mate solution is NP-hard. In this chapter, a well-known branch-and-bound

algorithm for the traveling salesman problem is presented. Other examples

that are solved using the backtracking technique in this chapter include

3-coloring and the 8-queens problems.

Randomized algorithms are the subject of Chapter 13. In this chapter,

we first show that randomization improves the performance of algo-

rithm quicksort significantly and results in a randomized selection algo-

rithm that is considerably simpler and (almost always) much faster than

Algorithm select discussed in Chapter 5. Next, we present randomized

algorithms for multiselection, min-cut, pattern matching and sampling

problems. Finally, we apply randomization to a problem in number theory:

primality testing. We will describe an efficient algorithm for this problem

that almost all the time decides correctly whether a given positive integer

is prime or not.

Chapter 14 discusses another avenue for dealing with hard problems:

Instead of obtaining an optimal solution, we may be content with an

approximate solution. In this chapter, we study some approximation algo-

rithms for some NP-hard problems, including the bin packing problem,

the Euclidean traveling salesman problem, the knapsack problem and the

vertex cover problem. These problems share the common feature that the

ratio of the optimal solution to the approximate solution is bounded by

a small (and reasonable) constant. For the knapsack problem, we show a

polynomial approximation scheme, that is, an algorithm that receives as
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input the desired approximation ratio and delivers an output whose rel-

ative ratio to the optimal solution is within the input ratio. This kind of

polynomial approximation scheme is not polynomial in the reciprocal of the

desired ratio. For this reason, we extend this scheme to the fully polynomial

time approximation scheme that is also polynomial in the reciprocal of the

desired ratio. As an example of this technique, we present an approximation

algorithm for the subset sum problem.
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Chapter 12

Backtracking

12.1 Introduction

In many real-world problems, as in most of the NP-hard problems, a

solution can be obtained by exhaustively searching through a large but

finite number of possibilities. Moreover, for virtually all these problems,

there does not exist an algorithm that uses a method other than exhaus-

tive search. Hence, the need arose for developing systematic techniques of

searching, with the hope of cutting down the search space to possibly a

much smaller space. In this chapter, we present a general technique for

organizing the search known as backtracking. This algorithm design tech-

nique can be described as an organized exhaustive search which often avoids

searching all possibilities. It is generally suitable for solving problems where

a potentially large but finite number of solutions have to be inspected.

12.2 The 3-Coloring Problem

Consider the problem 3-coloring: Given an undirected graph G = (V,E),

it is required to color each vertex in V with one of three colors, say 1, 2 and

3, such that no two adjacent vertices have the same color. We call such a

coloring legal; otherwise, if two adjacent vertices have the same color, it is

illegal. A coloring can be represented by an n-tuple (c1, c2, . . . , cn) such that

ci ∈ {1, 2, 3}, 1 ≤ i ≤ n. For example, (1, 2, 2, 3, 1) denotes a coloring of a

graph with five vertices. There are 3n possible colorings (legal and illegal)

to color a graph with n vertices. The set of all possible colorings can be

345
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Fig. 12.1. The search tree for all possible three-colorings for a graph with
three vertices.

represented by a complete ternary tree called the search tree. In this tree,

each path from the root to a leaf node represents one coloring assignment.

Figure 12.1 shows such a tree for the case of a graph with three vertices.

Let us call an incomplete coloring of a graph partial if no two adjacent

colored vertices have the same color. Backtracking works by generating the

underlying tree one node at a time. If the path from the root to the current

node corresponds to a legal coloring, the process is terminated (unless more

than one coloring is desired). If the length of this path is less than n and

the corresponding coloring is partial, then one child of the current node is

generated and is marked as the current node. If, on the other hand, the

corresponding path is not partial, then the current node is marked as a

dead node and a new node corresponding to another color is generated.

If, however, all three colors have been tried with no success, the search

backtracks to the parent node whose color is changed and so on.

Example 12.1 Consider the graph shown in Fig. 12.2(a), where we are

interested in coloring its vertices using the colors {1, 2, 3}. Figure 12.2(b)

shows part of the search tree generated during the process of searching for

a legal coloring. First, after generating the third node, it is discovered that

the coloring (1, 1) is not partial, and hence that node is marked as a dead

node by marking it with × in the figure. Next, b is assigned the color 2,

and it is seen that the coloring (1, 2) is partial. Hence, a new child node

corresponding to vertex c is generated with an initial color assignment of 1.

Repeating the above procedure of ignoring dead nodes and expanding those
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Fig. 12.2. An example of using backtracking to solve the problem 3-coloring.

corresponding to partial colorings, we finally arrive at the legal coloring

(1, 2, 2, 1, 3).

It is interesting to note that we have arrived at the solution after gen-

erating only 10 nodes out of the 364 nodes comprising the search tree.

There are two important observations to be noted in Example 12.1,

which generalize to all backtracking algorithms. First, the nodes are gener-

ated in a depth-first-search manner. Second, there is no need to store the

whole search tree; we only need to store the path from the root to the cur-

rent active node. In fact, no physical nodes are generated at all; the whole

tree is implicit. In our example above, we only need to keep track of the

color assignment.

12.2.1 The algorithm

Now we proceed to give two algorithms that use backtracking to solve the

3-coloring problem, one is recursive and the other is iterative. In both

algorithms, we assume for simplicity that the set of vertices is {1, 2, . . . , n}.
The recursive algorithm is shown as Algorithm 3-colorrec.

Initially, no vertex is colored, and this is indicated by setting all colors

to 0 in Step 1. The call graphcolor(1) causes the first vertex to be colored

with 1. Clearly, (1) is a partial coloring, and hence the algorithm is then

recursively called with k = 2. The assignment statement causes the second
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Algorithm 12.1 3-colorrec
Input: An undirected graph G = (V, E).

Output: A 3-coloring c[1..n] of the vertices of G, where each c[j] is 1,2 or 3.

1. for k← 1 to n
2. c[k]← 0
3. end for
4. flag← false
5. graphcolor(1)
6. if flag then output c
7. else output “no solution”

Algorithm graphcolor(k)

1. for color = 1 to 3
2. c[k]← color
3. if c is a legal coloring then set flag← true and exit
4. else if c is partial then graphcolor(k + 1)
5. end for

vertex to be colored with 1 as well. The resulting coloring is (1, 1). If ver-

tices 1 and 2 are not connected by an edge, then this coloring is partial.

Otherwise, the coloring is not partial, and hence the second vertex will be

colored with 2 and the resulting coloring is (1, 2). After the second ver-

tex has been colored, i.e., if the current coloring is partial, the algorithm is

again invoked with k = 3, and so on. Suppose that the algorithm fails to

color vertex j for some vertex j ≥ 3. This happens if the for loop is exe-

cuted three times without finding a legal or partial coloring. In this case,

the previous recursive call is activated and another color for vertex j − 1

is tried. If again none of the three colors result in a partial coloring, the

one before the last recursive call is activated. This is where backtracking

takes place. The process of advancing and backtracking is continued until

the graph is either colored or all possibilities have been exhausted without

finding a legal coloring. Checking whether a coloring is partial can be done

incrementally: If the coloring vector c contains m nonzero numbers and

c[m] does not result in a conflict with any other color, then it is partial;

otherwise, it is not partial. Checking whether a coloring is legal amounts to

checking whether the coloring vector consists of noncontradictory n colors.

The iterative backtracking algorithm is given as Algorithm

3-coloriter. The main part of this algorithm consists of two nested

while loops. The inner while loop implements advances (generating new
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nodes), whereas the outer while loop implements backtracking (to previ-

ously generated nodes). The working of this algorithm is similar to that of

the recursive version.

Algorithm 12.2 3-coloriter
Input: An undirected graph G = (V, E).

Output: A 3-coloring c[1..n] of the vertices of G, where each c[j] is 1,2 or 3.

1. for k← 1 to n
2. c[k]← 0
3. end for
4. flag← false
5. k← 1
6. while k ≥ 1
7. while c[k] ≤ 2
8. c[k]← c[k] + 1
9. if c is a legal coloring then set flag← true

and exit from the two while loops.

10. else if c is partial then k← k + 1 {advance}
11. end while
12. c[k]← 0
13. k← k − 1 {backtrack}
14. end while
15. if flag then output c
16. else output “no solution”

As to the time complexity of these two algorithms, we note that O(3n)

nodes are generated in the worst case. For each generated node, O(n) work

is required to check if the current coloring is legal, partial or neither. Hence,

the overall running time is O(n3n) in the worst case.

12.3 The 8-Queens Problem

The classical 8-queens can be stated as follows. How can we arrange eight

queens on an 8×8 chessboard so that no two queens can attack each other?

Two queens can attack each other if they are in the same row, column or

diagonal. The n-queens problem is defined similarly, where in this case we

have n queens and an n × n chessboard for an arbitrary value of n ≥ 1.

To simplify the discussion, we will study the 4-queens problem, and the

generalization to any arbitrary n is straightforward.
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(a) (b)

Fig. 12.3. Two configurations of the 4-queens problem.

Consider a chessboard of size 4×4. Since no two queens can be put in the

same row, each queen is in a different row. Since there are four positions in

each row, there are 44 possible configurations. Each possible configuration

can be described by a vector with four components x = (x1, x2, x3, x4). For

example, the vector (2, 3, 4, 1) corresponds to the configuration shown in

Fig. 12.3(a). A component is zero (and hence not included explicitly in the

vector) if there is no queen placed in its corresponding row. For example, the

partial vector (3, 1) corresponds to the configuration shown in Fig. 12.3(b).

In fact, since no two queens can be placed in the same column, a legal

placement corresponds to a permutation of the numbers 1, 2, 3 and 4. This

reduces the search space from 44 to 4!. Modifying the algorithm accordingly

will be left as an exercise.

12.3.1 The algorithm

To solve the 4-queens problem using backtracking, the algorithm tries to

generate and search a complete 4-ary rooted tree in a depth-first manner.

The root of the tree corresponds to the placement of no queens. The nodes

on the first level correspond to the possible placements of the queen in the

first row, those on the second level correspond to the possible placements

of the queen in the second row and so on. The backtracking algorithm to

solve this problem is given as Algorithm 4-queens. In the algorithm, we

used the term legal to mean a placement of 4 queens that do not attack

each other, and the term partial to mean a placement of less than 4 queens

that do not attack each other. Clearly, two queens placed at positions xi

and xj are in the same column if and only if xi = xj . It is not hard to see
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that two queens are in the same diagonal if and only if

xi − xj = i− j orxi − xj = j − i.

Algorithm 12.3 4-queens
Input: none.

Output: Vector x[1..4] corresponding to the solution of the 4-queens problem.

1. for k← 1 to 4
2. x[k]← 0 {no queens are placed on the chessboard }
3. end for
4. flag← false
5. k← 1
6. while k ≥ 1
7. while x[k] ≤ 3
8. x[k]← x[k] + 1
9. if x is a legal placement then set flag← true

and exit from the two while loops.

10. else if x is partial then k← k + 1 {advance}
11. end while
12. x[k]← 0
13. k← k − 1 {backtrack}
14. end while
15. if flag then output x
16. else output “no solution”

Example 12.2 Applying the algorithm produces the solution shown in

Fig. 12.4. In the figure, deadend nodes are marked with ×. First, x1 is set

to 1 and x2 is set to 1. This results in a deadend, as the two queens are

in the same column. The same result happens if x2 is set to 2 since in this

case, the two queens are on the same diagonal. Setting x2 to 3 results in

the partial vector (1, 3) and the search advances to find a value for x3. As

shown in the figure, no matter what value x3 assumes, no partial vector

results with x1 = 1, x2 = 3 and x3 > 0. Hence, the search backtracks

to the second level and x2 is reassigned a new value, namely 4. As shown

in the figure, this results in the partial vector (1, 4, 2). Again, this vector

cannot be extended and consequently, after generating a few nodes, the

search backs up to the first level. Now, x1 is incremented to 2 and, in the

same manner, the partial vector (2, 4, 1) is found. As shown in the figure,

this vector is extended to the legal vector (2, 4, 1, 3), which corresponds to

a legal placement.
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x1  = 2

x2  = 4

x3  = 1

x4  = 3

Fig. 12.4. An example of using backtracking to solve the 4-queens problem.

Now, consider a brute-force method to solve the general n-queens prob-

lem. As mentioned before, since no two queens can be placed in the same col-

umn, the solution vector must be a permutation of the numbers 1, 2, . . . , n.

Thus, the brute-force method can be improved to test n! configurations

instead of nn. However, the following argument shows that backtracking

drastically cuts the number of tests. Consider the (n − 2)! vectors corre-

sponding to those configurations in which the first two queens are placed

in the first column. The brute-force method blindly tests all these vec-

tors, whereas in backtracking these tests can be avoided using O(1) tests.

Although the backtracking method to solve the n-queens problem costs

O(nn) in the worst case, it empirically far exceeds the O(n!) brute-force

method in efficiency, as its expected running time is generally much faster.

For example, the algorithm discovered the solution shown in Fig. 12.4 after

generating 27 nodes out of a total of 341 possible nodes.

12.4 The General Backtracking Method

In this section, we describe the general backtracking algorithm as a system-

atic search method that can be applied to a class of search problems whose

solution consists of a vector (x1, x2, . . . , xi) satisfying some predefined con-

straints. Here, i is some integer between 0 and n, where n is a constant that

is dependent on the problem formulation. In the two algorithms we have

covered, 3-coloring and the 8-queens problems, i was fixed. However, in
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some problems, i may vary from one solution to another, as the following

example illustrates.

Example 12.3 Consider a variant of the partition problem defined as

follows. Given a set of n integers X = {x1, x2, . . . , xn} and an integer y,

find a subset Y of X whose sum is equal to y. For instance if

X = {10, 20, 30, 40, 50, 60}

and y = 60, then there are three solutions of different lengths, namely

{10, 20, 30}, {20, 40} and {60}.

It is not hard to devise a backtracking algorithm to solve this problem.

Note that this problem can be formulated in another way so that the solu-

tion is a boolean vector of length n in the obvious way. Thus, the above

three solutions may be expressed by the boolean vectors

{1, 1, 1, 0, 0, 0, }, {0, 1, 0, 1, 0, 0} and {0, 0, 0, 0, 0, 1}.

In backtracking, each xi in the solution vector belongs to a finite linearly

ordered set Xi. Thus, the backtracking algorithm considers the elements of

the Cartesian productX1×X2×· · ·×Xn in lexicographic order. Initially, the

algorithm starts with the empty vector. It then chooses the least element of

X1 as x1. If (x1) is a partial solution, the algorithm proceeds by choosing

the least element of X2 as x2. If (x1, x2) is a partial solution, then the least

element of X3 is included; otherwise, x2 is set to the next element in X2.

In general, suppose that the algorithm has detected the partial solution

(x1, x2, . . . , xj). It then considers the vector v = (x1, x2, . . . , xj , xj+1). We

have the following cases:

(1) If v represents a final solution to the problem, the algorithm records it

as a solution and either terminates in case only one solution is desired

or continues to find other solutions.

(2) (The advance step). If v represents a partial solution, the algorithm

advances by choosing the least element in the set Xj+2.

(3) If v is neither a final nor a partial solution, we have two subcases:

(a) If there are still more elements to choose from in the set Xj+1, the

algorithm sets xj+1 to the next member of Xj+1.
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(b) (The backtrack step). If there are no more elements to choose from

in the set Xj+1, the algorithm backtracks by setting xj to the next

member of Xj . If again there are no more elements to choose from

in the set Xj , the algorithm backtracks by setting xj−1 to the next

member of Xj−1, and so on.

Now, we describe the general backtracking algorithm formally using

two algorithms: one recursive (backtrackrec) and the other iterative

(backtrackiter). We will assume that the solution is one vector.

Algorithm 12.4 backtrackrec
Input: Explicit or implicit description of the sets X1, X2, . . . , Xn.

Output: A solution vector v = (x1, x2, . . . , xi), 0 ≤ i ≤ n.

1. v← ( )
2. flag← false
3. advance(1)
4. if flag then output v
5. else output “no solution”

Algorithm advance(k)

1. for each x ∈ Xk

2. xk← x; append xk to v
3. if v is a final solution then set flag← true and exit
4. else if v is partial then advance(k + 1)
5. end for

These two algorithms very much resemble those backtracking algorithms

described in Secs. 12.2 and 12.3. In general, to search for a solution to a

problem using backtracking, one of these two prototype algorithms may be

utilized as a framework around which an algorithm specially tailored to the

problem at hand can be designed.

12.5 Branch and Bound

Branch-and-bound design technique is similar to backtracking in the sense

that it generates a search tree and looks for one or more solutions. However,

while backtracking searches for a solution or a set of solutions that sat-

isfy certain properties (including maximization or minimization), branch-

and-bound algorithms are typically concerned with only maximization or
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Algorithm 12.5 backtrackiter
Input: Explicit or implicit description of the sets X1, X2, . . . , Xn.

Output: A solution vector v = (x1, x2, . . . , xi), 0 ≤ i ≤ n.

1. v← ( )
2. flag← false
3. k← 1
4. while k ≥ 1
5. while Xk is not exhausted
6. xk← next element in Xk; append xk to v
7. if v is a final solution then set flag← true

and exit from the two while loops.

8. else if v is partial then k← k + 1 {advance}
9. end while

10. Reset Xk so that the next element is the first.
11. k← k − 1 {backtrack}
12. end while
13. if flag then output v
14. else output “no solution”

minimization of a given function. Moreover, in branch-and-bound algo-

rithms, a bound is calculated at each node x on the possible value of any

solution given by nodes that may later be generated in the subtree rooted

at x. If the bound calculated is worse than a previous bound, the subtree

rooted at x is blocked, i.e., none of its children are generated.

Henceforth, we will assume that the algorithm is to minimize a given cost

function; the case of maximization is similar. In order for branch and bound

to be applicable, the cost function must satisfy the following property. For

all partial solutions (x1, x2, . . . , xk−1) and their extensions (x1, x2, . . . , xk),

we must have

cost(x1, x2, . . . , xk−1) ≤ cost(x1, x2, . . . , xk).

Given this property, a partial solution (x1, x2, . . . , xk) can be discarded once

it is generated if its cost is greater than or equal to a previously computed

solution. Thus, if the algorithm finds a solution whose cost is c, and there is

a partial solution whose cost is at least c, no more extensions of this partial

solution are generated.

The traveling salesman problem will serve as a good example for

the branch and bound method. This problem is defined as follows. Given a

set of cities and a cost function that is defined on each pair of cities, find
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Fig. 12.5. An instance matrix of the traveling salesman and its reduction.

a tour of minimum cost. Here, a tour is a closed path that visits each city

exactly once. The cost function may be the distance, travel time, air fare,

etc. An instance of the traveling salesman is given by its cost matrix

whose entries are assumed to be nonnegative. The matrix A in Fig. 12.5 is

an example of such an instance. With each partial solution (x1, x2, . . . , xk),

we associate a lower bound y which is interpreted as follows. The cost of

any complete tour that visits the cities x1, x2, . . . , xk in this order must

be at least y.

We observe that each complete tour must contain exactly one edge and

its associated cost from each row and each column of the cost matrix. We

also observe that if a constant r is subtracted from every entry in any row

or column of the cost matrix A, the cost of any tour under the new matrix

is exactly r less than the cost of the same tour under A. This motivates

the idea of reducing the cost matrix so that each row or column contains

at least one entry that is equal to 0. We will refer to such a matrix as the

reduction of the original matrix. In Fig. 12.5, matrix B is the reduction of

matrix A.

Matrix B in the figure results from subtracting the shown amounts

from each row and from column 4. The total amount subtracted is 63. It

is not hard to see that the cost of any tour is at least 63. In general, let

(r1, r2, . . . , rn) and (c1, c2, . . . , cn) be the amounts subtracted from rows 1

to n and columns 1 to n, respectively, in an n× n cost matrix A. Then,

y =

n∑
i=1

ri +

n∑
i=1

ci

is a lower bound on the cost of any complete tour.
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Now, we proceed to describe a branch-and-bound algorithm to solve the

traveling salesman problem through an example. Our example is to find an

optimal tour for the instance given in Fig. 12.5. The search tree, which is

a binary tree, is depicted in Fig. 12.6.

The root of the tree is represented by the reduction matrix B and is

labeled with the lower bound computed above, namely 63. This node is

split into two nodes corresponding to the left and right subtrees. The right

subtree contains all solutions that exclude the edge (3, 5) and thus the entry

D3,5 is set to ∞. We will justify the choice of the edge (3, 5) later. Since

there are no zeros in row 3 of matrix D, it can be reduced further by 12.

This is accompanied by increasing the lower bound by 12 to become 75.

The left subtree will contain all solutions that include the edge (3, 5) and

thus both the third row and fifth column of matrix C are removed, since we

can never go from 3 to any other city nor arrive at 5 from any other city.

Furthermore, since all solutions in this subtree use the edge (3, 5), the edge

(5, 3) will not be used any more, and hence its corresponding entry C5,3 is

set to ∞. As each row and column of this matrix contains a zero, it cannot

be reduced further and hence the lower bound of this node is the same as

its parent’s lower bound.

Now, as the lower bound of the node containing matrix C is less than

that of the node containing matrix D, the next split is performed on the

node containing matrix C. We use edge (2, 3) to split this node.

The right subtree will contain all solutions that exclude the edge (2, 3)

and thus the entry F2,3 is set to ∞. Since there are no zeros in row 2 of

matrix F , it can be reduced further by 4. This increases the lower bound

from 63 to 67. The left subtree will contain all solutions that include the

edge (2, 3), and hence both the second row and third column of matrix E

are removed. Now, following the same procedure above, we would change

E3,2 to ∞. However, this entry does not exist in matrix E. If we follow

the path from the root to the node containing this matrix, we see that the

two edges (3, 5) and (2, 3), i.e., the subpath 2,3,5 must be in any tour in

the subtree whose root contains matrix E. This implies that the entry E5,2

must be set to ∞. In general, if the edge included is (ui, v1) and the path

from the root contains the two paths u1, u2, . . . , ui and v1, v2, . . . , vj , then

Mvj ,u1 is set to ∞, where M is the matrix at the current node. To finish

processing matrix E, we subtract 10 from the first row, which increases the

lower bound from 63 to 73.
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Fig. 12.6. Solution of the traveling salesman using branch and bound.
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Following the above procedure, the matrices G,H, I, J,K, L,M are

computed in this order. The optimal tour can be traced from the root

by following the lines shown in bold face, that is, 1, 3, 5, 4, 2, 1. Its total

cost is 7 + 12 + 18 + 21 + 9 = 67.

At the beginning of this example, we chose to split using the edge (3, 5)

because it caused the greatest increase in the lower bound of the right

subtree. This heuristic is useful because it is faster to find the solution by

following the left edges, which reduce the dimension as opposed to the right

edges which merely add a new ∞ and probably more zeros. However, we

did not use this heuristic when splitting at the node containing matrix C. It

is left as an exercise to find the optimal solution with fewer node splittings.

From the above example, it seems that the heap is an ideal data struc-

ture to use in order to expand the node with the least cost (or maximum

cost in case of maximization). Although branch-and-bound algorithms are

generally complicated and hard to program, they proved to be efficient in

practice.

12.6 Practice Problems

12.1. Apply the algorithm for 3-coloring presented in Sec. 12.2 on the

graph shown in Fig. 12.7.

12.2. Consider the algorithm for 3-coloring presented in Sec. 12.2. Give

an efficient algorithm to test whether a vector corresponding to a

3-coloring of a graph is legal.

12.3. Consider the algorithm for 3-coloring presented in Sec. 12.2.

Explain how to efficiently test whether the current vector is partial

throughout the execution of the algorithm.

a b

cd

Fig. 12.7. An undirected graph.
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12.4. Give a recursive algorithm for the 4-coloring problem. What is the

running time of your algorithm?

12.5. Give an iterative algorithm for the 4-coloring problem. What is

the running time of your algorithm?

12.6. Apply the algorithm developed in Problem 12.4 or 12.5 on the graph

in Fig. 12.2(a).

12.7. Show that two queens placed at positions xi and xj are in the same

diagonal if and only if

xi − xj = i− j or xi − xj = j − i.

12.8. Give a recursive algorithm for the 8-queens problem.

12.9. Does the n-queens problem have a solution for every value of n ≥ 4?

Prove your answer.

12.7 Exercises

12.1. Modify Algorithm 4-queens so that it reduces the search space

from 44 to 4! as described in Sec. 12.3.

12.2. Design a backtracking algorithm to generate all permutations of

the numbers 1, 2, . . . , n.

12.3. Design a backtracking algorithm to generate all 2n subsets of the

numbers 1, 2, . . . , n.

12.4. Write a backtracking algorithm to solve the knight tour problem:

Given an 8 × 8 chessboard, decide if it is possible for a knight

placed at a certain position of the board to visit every square of the

board exactly once and return to its start position.

12.5. Write a backtracking algorithm to solve the following variant of the

partition problem (see Example 12.3): Given n positive integers

X = {x1, x2, . . . , xn} and a positive integer y, does there exist a

subset Y ⊆ X whose elements sum up to y?

12.6. Give a backtracking algorithm to solve the Hamiltonian cycle

problem: Given an undirected graphG = (V,E), determine whether

it contains a simple cycle that visits each vertex exactly once.
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12.7. Consider the knapsack problem defined in Sec. 6.6. It was shown

that using dynamic programming, the problem can be solved in

time Θ(nC), where n is the number of items and C is the knapsack

capacity.
(a) Give a backtracking algorithm to solve the knapsack problem.

(b) Which technique is more efficient to solve the knapsack prob-

lem: backtracking or dynamic programming? Explain.

12.8. Give a backtracking algorithm to solve the money change problem

defined in Problem 6.20.

12.9. Apply the algorithm in Exercise 12.8 for the money change problem

on the instance in Exercise 6.21.

12.10. Give a backtracking algorithm to solve the assignment problem

defined as follows. Given n employees to be assigned to n jobs such

that the cost of assigning the ith person to the jth job is ci,j , find

an assignment that minimizes the total cost. Assume that the cost

is nonnegative, that is, ci,j ≥ 0 for 1 ≤ i, j ≤ n.

12.11. Modify the solution of the instance of the traveling salesman

problem given in Sec. 12.5 so that it results in fewer node splittings.

12.12. Apply the branch-and-bound algorithm for the traveling sales-

man problem discussed in Sec. 12.5 on the instance

⎡
⎢⎢⎣
∞ 5 2 10

2 ∞ 5 12

3 7 ∞ 5

8 2 4 ∞

⎤
⎥⎥⎦ .

12.13. Consider again the knapsack problem defined in Sec. 6.6. Use

branch and bound and a suitable lower bound to solve the instance

of this problem in Example 6.6.

12.14. Carry out a branch-and-bound algorithm to solve the following

instance of the assignment problem defined in Exercise 12.10. There

are four employees and four jobs. The cost function is represented

by the matrix below. In this matrix, row i corresponds to the ith
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employee, and column j corresponds to the jth job.⎡
⎢⎢⎣
3 5 2 4

6 7 5 3

3 7 4 5

8 5 4 6

⎤
⎥⎥⎦ .

12.8 Bibliographic Notes
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Chapter 13

Randomized Algorithms

13.1 Introduction

In this chapter, we discuss one form of algorithm design in which we relax

the condition that an algorithm must solve the problem correctly for all

possible inputs, and demand that its possible incorrectness is something

that can safely be ignored due, say, to its very low likelihood of occurrence.

Also, we will not demand that the output of an algorithm must be the

same in every run on a particular input. We will be concerned with those

algorithms that in the course of their execution can toss a fair coin, yielding

truly random outcomes. The consequences of adding this element of ran-

domness turn out to be surprising. Rather than producing unpredictable

results, the randomness introduced will be shown to be extremely useful and

capable of yielding fast solutions to problems that have only very inefficient

deterministic algorithms.

A randomized algorithm can be defined as one that receives, in addition

to its input, a stream of random bits that it can use in the course of its

action for the purpose of making random choices. A randomized algorithm

may give different results when applied to the same input in different runs.

It follows that the execution time of a randomized algorithm may vary from

one run to another when applied to the same input. By now, it is recognized

that, in a wide range of applications, randomization is an extremely impor-

tant tool for the construction of algorithms. There are two main advantages

that randomized algorithms often have. First, often the execution time or

space requirement of a randomized algorithm is smaller than that of the

363
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best deterministic algorithm that we know of for the same problem. Second,

if we look at the various randomized algorithms that have been invented so

far, we find that invariably they are extremely simple to comprehend and

implement. The following is a simple example of a randomized algorithm.

Example 13.1 Suppose we have a polynomial expression in n variables,

say f(x1, x2, . . . , xn), and we wish to check whether or not f is identi-

cally zero. To do this analytically could be a horrendous job. Suppose,

instead, we generate a random n-vector (r1, r2, . . . , rn) of real numbers and

evaluate f(r1, r2, . . . , rn). If f(r1, r2, . . . , rn) �= 0, we know that f �= 0.

If f(r1, r2, . . . , rn) = 0, then either f is identically zero or we have been

extremely lucky in our choice of (r1, r2, . . . , rn). If we repeat this several

times and keep on getting f = 0, then we conclude that f is identically

zero. The probability that we have made an error is negligible.

In some deterministic algorithms, especially those that exhibit good

average running time, the mere introduction of randomization suffices to

convert a simple and näıve algorithm with bad worst case behavior into

a randomized algorithm that performs well with high probability on every

possible input. This will be apparent when we study randomized algorithms

for sorting and selection in Secs. 13.4 and 13.5.

13.2 Las Vegas and Monte Carlo Algorithms

Randomized algorithms can be classified into two categories. The first cate-

gory is referred to as Las Vegas algorithms. It constitutes those randomized

algorithms that always give a correct answer or do not give an answer at all.

This is to be contrasted with the other category of randomized algorithms,

which is referred to as Monte Carlo algorithms. A Monte Carlo algorithm

always gives an answer but may occasionally produce an answer that is

incorrect. However, the probability of producing an incorrect answer can

be made arbitrarily small by running the algorithm repeatedly with inde-

pendent random choices in each run.

To be able to generally discuss the computational complexity of a ran-

domized algorithm, it is useful to first introduce some criteria for evaluating

the performance of algorithms. Let A be an algorithm. If A is determinis-

tic, then one measure of the time complexity of the algorithm is its average
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running time: The average time taken by A when for each value of n, each

input of size n is considered equally likely. That is, a uniform distribution

on all its inputs is assumed (see Sec. 1.12.2). This may be misleading, as

the input distribution may not be uniform. If A is a randomized algorithm,

then its running time on a fixed instance I of size n may vary from one

execution to another. Therefore, a more natural measure of performance is

the expected running time of A on a fixed instance I. This is the mean time

taken by algorithm A to solve the instance I over and over.

13.3 Two Simple Examples

Let A[1..n] be an array of n elements. By sampling one element from A,

we mean picking an index j unformly at random from the set {1, 2, . . . , n}
and returning A[j].

13.3.1 A Monte Carlo algorithm

Let A[1..n] be an array of n distinct numbers, where n is even. We wish to

select one number x that is larger than the median. Consider the following

algorithm, which we will refer to as Algorithm MC.

Algorithm 13.1

1. Let x← −∞.
2. Repeat Steps 3 to 4 k times.
3. Sample one element y from A.
4. If y > x then x← y.
5. Return x.

Let Pr[Success] be the probability that the sampled element is > the

median, and let Pr[Failure] be the probability that the sampled element is

≤ the median. Obviously, Pr[Failure] in the first iteration is 1/2. Conse-

quently, Pr[Failure] in all k iterations is 1/2k. Hence, Pr[Success] within

the first k iterations is 1− 1/2k.

An algorithm runs with high probability of success if its probability of

success is of the form 1−1/nc for some constant c > 0, where n is the input

size. So, setting k = logn, we have that the algorithm uses logn iterations

and returns the correct result with probability 1− 1/n.
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13.3.2 A Las Vegas algorithm

Let A[1..n] be an array of n elements, where n is even. A contains (n/2)+1

copies of the same element x and (n/2) − 1 distinct elements that are

different from x. We wish to find this repeated element x. Consider the

following algorithm, which we will refer to as Algorithm LV.

Algorithm 13.2

1. Repeat Steps 2 to 3 indefinitely.
2. Sample two indices i and j from {1, 2, . . . , n}.
3. If i �= j and A[i] = A[j] then set x←A[i] and exit.

If we let Pr[Success] denote the probability that i �= j and A[i] = A[j]

in one iteration, then

Pr[Success] =
(n/2) + 1

n
× n/2

n
>
n/2

n
× n/2

n
=

1

4
.

This is because there are (n/2) + 1 possibilities for the first drawing and

n/2 possibilities for the second drawing. Hence, Pr[Failure] ≤ 3/4 in one

iteration. It follows that the probability of failure in all k iterations is less

than or equal to (3/4)k. Consequently, the probability of success within

the first k iterations is greater than 1− (3/4)k. Since we wish to have the

probability of success to be of the form 1 − 1/nc, setting (3/4)k = 1/nc

and solving for k yields k = c log(4/3) n. If, for example, we set c = 4,

then Algorithm LV always returns the correct result in time O(log n) with

probability 1− 1/n4.

It should be emphasized that in Algorithm MC, the probability is with

respect to its correctness while the running time is fixed. In the case of

Algorithm LV, the probability is with respect to its running time while its

result is always correct.

13.4 Randomized Quicksort

This is, perhaps, one of the most popular randomized algorithms. Consider

Algorithm quicksort which was presented in Sec. 5.6. We have shown

that the algorithm’s running time is Θ(n logn) on average, provided that

all permutations of the input elements are equally likely. This, however, is
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not the case in many practical applications. We have also shown that if

the input is already sorted, then its running time is Θ(n2). This is also the

case if the input is almost sorted. Consider, for instance, an application

that updates a large sorted file by appending a small number of elements

to the original sorted file and then using Algorithm quicksort to sort it

afresh. In this case, the smaller the number of added elements the closer

the running time to Θ(n2).

One approach to circumvent this problem and guarantee an expected

running time of O(n log n) is to introduce a preprocessing step whose sole

purpose is to permute the elements to be sorted randomly. This preprocess-

ing step can be performed in Θ(n) time (Exercise 13.3). Another simpler

approach which leads to the same effect is to introduce an element of ran-

domness into the algorithm. This can be done by selecting the pivot on

which to split the elements randomly. The result of choosing the pivot

randomly is to relax the assumption that all permutations of the input

elements are equally likely. Modifying the original Algorithm quicksort by

introducing this step results in Algorithm randomizedquicksort shown

below. The new algorithm simply chooses uniformly at random an index v

in the interval [low ..high ] and interchangesA[v] with A[low ]. This is because

Algorithm split uses A[low ] as the pivot (see Sec. 5.6.1). The algorithm

then continues as in the original quicksort algorithm. Here, the function

random(low , high) returns a random number between low and high . It is

important to note that any number between low and high is generated with

equal probability of 1/(high − low + 1).

Algorithm 13.3 randomizedquicksort
Input: An array A[1..n] of n elements.

Output: The elements in A sorted in nondecreasing order.

1. rquicksort(1, n)

Algorithm rquicksort(low , high)

1. if low < high then
2. v← random(low , high)
3. interchange A[low ] and A[v]
4. split(A[low ..high ], w) {w is the new position of the pivot}
5. rquicksort(low , w − 1)
6. rquicksort(w + 1, high)
7. end if
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13.4.1 Expected running time of randomized quicksort

Assume without loss of generality that the elements in the array A are

distinct. Let a1, a2, . . . , an be the elements in array A sorted in increasing

order, that is, a1 < a2 < · · · < an. Let pij be the probability that ai
and aj will ever be compared throughout the execution of the algorithm.

In the beginning, an element av is chosen uniformly at random. All other

elements are compared to av resulting in two lists: A1 = {aj | aj < av}
and A2 = {aj | aj > av}. Notice that after this splitting around the pivot

av, none of the elements in A1 will be compared with elements in A2.

Consider the elements in the set S = {ak | ai ≤ ak ≤ aj}. Suppose that
during the execution of the algorithm, ak ∈ S is chosen as the pivot. Then,

if ak ∈ {ai, aj}, ai and aj will be compared; otherwise (if ak /∈ {ai, aj}),
they will never be compared. In other words, ai and aj will be compared

if and only if either ai or aj is first selected as the pivot among all the

elements in S. Consequently, the probability that ai and aj will ever be

compared throughout the execution of the algorithm is

pij =
2

|S| =
2

j − i+ 1
.

Now, we bound the total number of comparisons. Towards this end, define

the indicator random variable Xij to be 1 if ai and aj are ever compared

and 0 otherwise. Then,

Pr[Xij = 1] = pij ,

and the total number of comparisonsX performed by the algorithm satisfies

X =

n−1∑
i=1

n∑
j=i+1

Xij .

Hence, the expected number of comparisons is

E

⎡
⎣n−1∑

i=1

n∑
j=i+1

Xij

⎤
⎦ =

n−1∑
i=1

n∑
j=i+1

E[Xij ],

where the equality follows from the linearity of expectation (see Sec. B.3).
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Substituting for E[Xij ] = pij = 2/(j − i+ 1) yields

E[X ] =

n−1∑
i=1

n∑
j=i+1

2

j − i+ 1

= 2

n−1∑
i=1

n−i+1∑
j=2

1

j

< 2
n∑

i=1

n∑
j=1

1

j

= 2nHn

≈ 2n lnn,

where Hn is the harmonic series. Since Hn = lnn+O(1), it follows that the

expected running time of Algorithm randomizedquicksort is O(n log n).

Thus, we have the following theorem:

Theorem 13.1 The expected number of element comparisons performed

by Algorithm randomizedquicksort on input of size n is O(n logn).

13.5 Randomized Quickselect

Consider Algorithm select, which was presented in Sec. 5.5. We have

shown that the algorithm’s running time is Θ(n) with a large multiplica-

tive constant that makes the algorithm impractical, especially for small

and moderate values of n. On the other hand, Algorithm quickselect,

presented in Sec. 5.7, is fast and simple with an average time complex-

ity of Θ(n). In this section, we present a randomized Las Vegas version of

Algorithm quickselect. Its expected running time is Θ(n) with a small

multiplicative constant. A precise description of the algorithm is given in

Algorithm rquickselect.

13.5.1 Expected running time of randomized quickselect

In what follows we investigate the running time of Algorithm rquickse-

lect. Assume without loss of generality that the elements in A are distinct.

We prove by induction that the expected number of element comparisons
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Algorithm 13.4 rquickselect
Input: An array A[1..n] of n elements and an integer k, 1 ≤ k ≤ n.

Output: The kth smallest element in A.

1. rqselect(A,k)

Algorithm rqselect(A, k)

1. v← random(1, |A|)
2. x←A[v]
3. Partition A into three arrays:

A1 = {a | a < x}
A2 = {a | a = x}
A3 = {a | a > x}

4. case
|A1| ≥ k: return rqselect(A1, k)
|A1|+ |A2| ≥ k: return x
|A1|+ |A2| < k: return rqselect(A3, k − |A1| − |A2|)

5. end case

done by the algorithm is less than 4n. Let C(n) be the expected number

of element comparisons performed by the algorithm on a sequence of n

elements. Since v, which is chosen randomly, may assume any of the integers

1, 2, . . . , n with equal probability, we have two cases to consider according

to whether v < k or v > k. If v < k, the number of remaining elements is

n − v, and if v > k, the number of remaining elements is v − 1. Thus, the

expected number of element comparisons performed by the algorithm is

C(n) = n+
1

n

⎡
⎣k−1∑

j=1

C(n− j) +
n∑

j=k+1

C(j − 1)

⎤
⎦

= n+
1

n

⎡
⎣ n−1∑
j=n−k+1

C(j) +

n−1∑
j=k

C(j)

⎤
⎦.

Maximizing over k yields the following inequality:

C(n) ≤ n+max
k

⎡
⎣ 1

n

⎡
⎣ n−1∑
j=n−k+1

C(j) +

n−1∑
j=k

C(j)

⎤
⎦
⎤
⎦

= n+
1

n

⎡
⎣max

k

⎡
⎣ n−1∑
j=n−k+1

C(j) +

n−1∑
j=k

C(j)

⎤
⎦
⎤
⎦.



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch13 page 371

Randomized Algorithms 371

Since C(n) is a nondecreasing function of n, the quantity

n−1∑
j=n−k+1

C(j) +

n−1∑
j=k

C(j), (13.1)

is maximum when k = �n/2� (Exercise 13.2). Therefore, by induction

C(n) ≤ n+
1

n

⎡
⎣ n−1∑
j=n−�n/2�+1

4j +
n−1∑

j=�n/2�
4j

⎤
⎦

= n+
4

n

⎡
⎣ n−1∑
j=�n/2�+1

j +

n−1∑
j=�n/2�

j

⎤
⎦

≤ n+
4

n

⎡
⎣ n−1∑
j=�n/2�

j +

n−1∑
j=�n/2�

j

⎤
⎦

= n+
8

n

n−1∑
j=�n/2�

j

= n+
8

n

⎡
⎣n−1∑

j=1

j −
�n/2�−1∑

j=1

j

⎤
⎦

= n+
8

n

[
n(n− 1)

2
− �n/2�(�n/2� − 1)

2

]

≤ n+
8

n

[
n(n− 1)

2
− (n/2)(n/2− 1)

2

]

= 4n− 2

< 4n.

Thus, we have the following theorem:

Theorem 13.2 The expected number of element comparisons performed

by Algorithm rquickselect on input of size n is less than 4n.
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13.5.2 The dice problem

Suppose we roll an n-sided die, n > 1. If the outcome is k, 1 < k ≤ n,

then we roll a k-sided die. We continue the process of throwing dice until

the number 1 comes up. Compute the expected number of die flips until we

get 1.

Let Xn be the number of rolls when the die shows n until 1 comes up. If

we flip and k shows up, then

Xn = 1 +Xk; X1 = 0,

where 1 ≤ k ≤ n. Taking expected values, we have

E[Xn] =
n∑

k=1

(1 +E[Xk])
1

n
=

1

n

n∑
k=1

(1 +E[Xk]),

where the equality follows from the linearity of expectation (see Sec. B.3).

Multiplying both sides by n, we have

nE[Xn] =
n∑

k=1

(1 +E[Xk]). (13.2)

For an (n− 1)-sided die, we have

(n− 1)E[Xn−1] =

n−1∑
k=1

(1 +E[Xk]). (13.3)

Subtracting (13.3) from (13.2) yields

nE[Xn]− (n− 1)E[Xn−1] = 1 +E[Xn].

Hence,

E[Xn] = E[Xn−1] +
1

n− 1

= E[xn−2] +
1

n− 2
+

1

n− 1
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= E[X1] +
1

n− 1
+

1

n− 2
+ · · ·+ 1

= 0 +

n−1∑
j=1

1

j

= Hn−1,

where Hn is the harmonic series and Hn = lnn+O(1). It follows that the

total number of rolls before 1 appears is approximately ln(n− 1).

Now, we investigate the problem of finding the total of all numbers that

appear on the dice faces from the beginning of the experiment to the end.

Starting from an n-sided die, let this total be Yn. In this experiment, n is

excluded from the set of possible outcomes. That is, when rolling an n-sided

die, the set of possible outcomes is {1, 2, . . . , n − 1}. Thus, If we flip the

n-sided die and k shows up, 1 ≤ k < n, then

Yn = n+ Yk; Y1 = 1.

Taking expected values, we have

E[Yn] = n+

n−1∑
k=1

E[Yk]
1

n
= n+

1

n

n−1∑
k=1

E[Yk],

where the equality follows from the linearity of expectation (see Sec. B.3).

Multiplying both sides by n, we have

nE[Yn] = n2 +

n−1∑
k=1

E[Yk]. (13.4)

For an (n− 1)-sided die, we have

(n− 1)E[Yn−1] = (n− 1)2 +
n−2∑
k=1

E[Yk]. (13.5)

Subtracting (13.5) from (13.4) yields

nE[Yn]− (n− 1)E[Yn−1] = 2n− 1 + E[Yn−1],

or

E[Yn] = E[Yn−1] +
2n− 1

n
= E[Yn−1] + 2− 1

n
.
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Hence,

E[Yn] = E[Yn−1] + 2− 1

n

= E[Yn−2] + 4− 1

n
− 1

n− 1

= E[Y1] + 2(n− 1)−
n−1∑
j=2

1

j

= 1 + 2(n− 1)−
n−1∑
j=2

1

j

= 2 + 2(n− 1)−
n−1∑
j=1

1

j

= 2n−Hn,

where Hn is the harmonic series, and Hn = lnn+O(1). It follows that the

total numbers on faces before 1 appears is approximately ln(n− 1).

13.5.3 Application of the dice problem: Quickselect

Intuitively, when running Algorithm rquickselect (randomized quickse-

lect), the number of element comparisons is much less when k is small com-

pared to larger values, especially in the middle, e.g., the median. Now, we

investigate the very special case when k = 1, and show that in this case, the

number of comparisons is low. Consider running Algorithm rquickselect

to find the smallest element on an input of size n, that is, the input k = 1

in the algorithm. Assume without loss of generality that the elements in A

are distinct. v, which is chosen randomly, may assume any of the integers

1, 2, . . . , n with equal probability, and the number of remaining elements is

always v − 1. Thus, the number of remaining elements is between 1 and

n − 1 with equal probability. Let r be the number of remaining elements.

Then, r corresponds to the outcome of rolling a fair n-sided die, and then

rolling j-sided dice repeatedly until 1 shows up as described above. It fol-

lows that the total number of iterations in Algorithm rquickselect to

find the smallest element in the worst case is equal to the number of times

the dice are rolled, which is Hn−1 ≈ ln(n − 1), as shown above. Likewise,

the total number of comparisons in the worst case corresponds to the total
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numbers shown on the faces of the rolled dice, which, as shown above, is

2n−Hn ≈ 2n− lnn.

13.6 Occupancy Problems

Given m identical balls and n identical boxes, we want to place each ball

in a bin independently and uniformly at random. This process has a vast

number of applications. Some typical questions related to it include: What

is the expected number of bins with k balls? What is the maximum number

of balls in any bin? How many ball throwings are needed to fill all bins?

What is the probability that one bin contains at least 2 balls? These are

some of the problems referred to as occupancy problems.

Approximations related to e . We will make use of the following

approximations:(
1 +

x

n

)n
≈ ex and, in particular,

(
1− 1

n

)n

≈ e−1

and

1− x ≤ e−x

(
since e−x = 1− x+

x2

2!
− . . .

)
.

13.6.1 Number of balls in each bin

We consider the number of balls in each bin when throwing m balls into

n bins. For any i, 1 ≤ i ≤ n, define the indicator random variable (see

Sec. B.3) Xij for ball j landing in bin i as

Xij =

{
1 if ball j lands into bin i

0 otherwise.

Then, Xij represents a Bernoulli trial (see Sec. B.4.2) with probability

Pr[Xij = 1] = p =
1

n
.

Let Xi =
∑m

j=1Xij . Then, Xi is the number of balls in bin i, and it has

the binomial distribution (see Sec. B.4.3) with probability

Pr[Xi = k] =

(
m

k

)
pk(1 − p)m−k.

E[Xi] = pm = m/n. This should be intuitive. So, if m = n, E[Xi] = 1.
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Number of fixed points. As an example for the case when m = n,

consider a random permutation π = π1, π2, . . . , πn of the numbers 1, 2, ..., n.

The expected number of elements with πi = i is 1.

The Poisson approximation. The probability of the number of balls in

bin Xi can be written as

Pr[Xi = k] =

(
m

k

)
pk(1− p)m−k =

(
m

k

)(
1

n

)k (
1− 1

n

)m−k

.

If m and n are both large compared to k, Pr[Xi = k] can be approximated

by

Pr[Xi = k] ≈ mk

k!

(
1

n

)k ((
1− 1

n

)n)m/n

≈ (m/n)k

k!
e−m/n.

Thus, if we let λ = m/n, then Pr[Xi = k] can be written as

Pr[Xi = k] ≈ λke−λ

k!
.

This is the Poisson distribution with parameter λ = m/n (see Sec. B.4.5).

13.6.2 Number of empty bins

Define the random variable Xi to be 1 if bin i is empty and 0 otherwise.

Clearly, a ball goes into a bin different from i with probability (n − 1)/n.

Hence,

Pr[Xi = 1] =

(
n− 1

n

)m

=

(
1− 1

n

)m

=

((
1− 1

n

)n)m/n

≈ e−m/n.

Since Xi is an indicator random variable (see Sec. B.3),

E[Xi] = Pr[Xi = 1] ≈ e−m/n.

If X is the number of empty bins, then it follows by linearity of expectations

(see Sec. B.3) that the expected number of empty bins E[X ] is

E[X ] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi] = ne−m/n.

Thus, if m = n, then the number of empty bins is n/e.
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13.6.3 Balls falling into the same bin

Assume m ≤ n, that is, the number of balls is no larger than the number of

bins. For 1 ≤ j ≤ m, let Ej be the event that ball j will go into a nonempty

bin. So, we want to compute

Pr[E1 ∪ E2 ∪ · · · ∪ Em].

It is easier to solve the complement: No ball will go into a nonempty bin.

That is, we will compute

Pr[E1 ∩ E2 ∩ · · · ∩ Em].

Clearly, the first ball will fall into an empty bin with probability 1, the

second with probability (n− 1)/n, and so on. Hence,

Pr

⎡
⎣ m⋂
j=1

Ej
⎤
⎦ = 1× n− 1

n
× n− 2

n
× · · · × n−m+ 1

n

= 1×
(
1− 1

n

)
×
(
1− 2

n

)
× · · · ×

(
1− m− 1

n

)

≤ e0 × e−1
n × e−2

n × · · · × e−(m−1)
n

= e−(1+2+···+(m−1))/n

= e−m(m−1)/2n

≈ e−m2/2n.

Consequently, if m ≈ �√2n�, all balls will fall into distinct bins with

probability e−1. It follows that

Pr[at least one bin contains at least two balls] ≥ 1− e−m(m−1)/2n

≈ 1− e−m2/2n.

Sampling. The importance of of the above derivation becomes clear if

we consider the problem of sampling m elements from a universe of size

n. It shows that we should have n large enough to reduce the likelihood of

collisions. For example, if we generatem random numbers between 1 and n,

we should make certain that n is large enough.

The Birthday Paradox. We have essentially proven the following famous

result. We compute the probability that there are two people in a group of
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m people who happen to have the same birthday. If we let the size of the

group m = 23 and n = 365, then the probability is

1− e−23(23−1)/(2×365) = 1− e−0.69315 = 0.50000.

If the group size is 50, the probability is about 0.97.

13.6.4 Filling all bins

Suppose we want to fill all n bins so that each bin has at least one ball using

an unlimited supply of balls. When we throw the first ball, it will go directly

into an empty bin. When we throw the second, it will go to an empty bin

with high probability. After several throws, there may be collisions, i.e., balls

falling into nonempty bins. Intuitively, the more nonempty bins the more

balls we need to hit an empty bin. Call the experiment of throwing a ball at

random a trial. We will call a trial success if the ball lands in an empty bin

and let pi, 1 ≤ i ≤ n, be the probability of success. Let Xi count the number

of trials until the ith success. Then, Xi has the geometric distribution (see

Sec. B.4.4), and hence E[Xi] = 1/pi. Clearly, p1 = 1, p2 = (n − 1)/n, and

in general,

pi =
n− i+ 1

n
and E[Xi] =

n

n− i+ 1
.

Let X be the random variable that counts the total number of trials. Then,

X =
∑n

i=1Xi, and

E[X ] = E

[
n∑

i=1

Xi

]

=

n∑
i=1

E[Xi]

=

n∑
i=1

n

n− i+ 1

= n

n∑
i=1

1

i

= nHn,
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where Hn is the harmonic series. Since Hn = lnn+O(1), E[X ] = n lnn+

O(n) = Θ(n logn).

13.7 Tail Bounds

One of the major tools in the analysis of randomized algorithms is to inves-

tigate the probability of their failure and the deviation from their expected

running time. Instead of stating that an algorithm runs in O(f(n)) expected

time, it is desirable to show that it does not deviate “much” from this time

bound, or in other words, it runs in time O(f(n)) with high probability. To

estimate such a probability, a number of “tail” inequalities are customarily

used to establish such high bounds.

13.7.1 Markov inequality

Markov inequality does not require knowledge of the probability distribu-

tion; only the expected value is needed (see Sec. B.3).

Theorem 13.3 Let X be a nonnegative random variable, and t a positive

number. Then,

Pr[X ≥ t] ≤ E[X ]

t
.

Proof. Since X is nonnegative and t is positive, we have

E[X ] =
∑
x

xPr[X = x]

=
∑
x<t

xPr[X = x] +
∑
x≥t

xPr[X = x]

≥
∑
x≥t

xPr[X = x] since x is nonnegative

≥ t
∑
x≥t

Pr[X = x]

= tPr[X ≥ t]. �
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Example 13.2 Consider a sequence of n flips of a fair coin. We use

Markov inequality to obtain an upper bound on the probability that the

number of heads is at least 2n/3. Let X denote the total number of heads.

Clearly, X has the binomial distribution with parameters (n, 1/2). Hence,

E[X ] = np = n/2. Applying Markov inequality,

Pr

[
X ≥ 2n

3

]
≤ E[X ]

2n/3
=

n/2

2n/3
=

3

4
.

13.7.2 Chebyshev inequality

Chebyshev bound is more useful than Markov inequality. However, it

requires the knowledge of the expected value E[X ] and variance of the

random variable var[X ] (see Sec. B.3). The variance is defined by

var[X ] = E[(X −E[X ])2].

Theorem 13.4 Let t be a positive number. Then,

Pr[|X −E[X ]| ≥ t] ≤ var[X ]

t2
.

Proof. Let Y = (X −E[X ])2. Then,

Pr[Y ≥ t2] = Pr[(X −E[X ])2 ≥ t2] = Pr[|X −E[X ]| ≥ t].

Applying Markov inequality yields

Pr[|X −E[X ]| ≥ t] = Pr[Y ≥ t2] ≤ E[Y ]

t2
=

var[X ]

t2

since E[Y ] = var[X ]. �

A similar proof results in the following variant of Chebyshev Inequality:

Pr[|X −E[X ]| ≥ tσX ] ≤ 1

t2
,

where σX =
√
var[X ] is the standard deviation of X .
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Example 13.3 We apply Chebyshev inequality instead of Markov’s

in Example 13.2. Since X has the binomial distribution with parameters

(n, 1/2), E[X ] = np = n/2 and var[X ] = np(1− p) = n/4.

Pr

[
X ≥ 2n

3

]
= Pr

[
X −E[X ] ≥ 2n

3
− n

2

]

= Pr
[
X −E[X ] ≥ n

6

]
≤ Pr

[
|X −E[X ]| ≥ n

6

]

≤ var[X ]

(n/6)2

=
n/4

(n/6)2

=
9

n
.

So, there is a significant improvement; the bound is not constant as in

Example 13.2.

13.7.3 Chernoff bounds

Let X1, X2, . . . , Xn be a collection of n independent indicator random

variables representing Bernoulli trials such that each Xi has probability

Pr[Xi = 1] = pi. We are interested in bounding the probability that their

sum X =
∑n

i=1Xi will deviate from the mean μ = E[X ] by a multiple

of μ.

13.7.3.1 Lower tail

Theorem 13.5 Let δ be some constant in the interval (0, 1). Then,

Pr[X < (1− δ)μ] <
(

e−δ

(1− δ)(1−δ)

)μ

,

which can be simplified to

Pr[X < (1 − δ)μ] < e−μδ2/2.
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Proof. First we state Pr[X < (1− δ)μ] in terms of exponentials.

Pr[X < (1− δ)μ] = Pr[−X > −(1− δ)μ] = Pr[e−tX > e−t(1−δ)μ],

where t is a positive real number to be determined later. Applying Markov

inequality to the right-hand side yields

Pr[X < (1 − δ)μ] < E[e−tX ]

e−t(1−δ)μ
.

Since X =
∑n

i=1Xi,

e−tX =

n∏
i=1

e−tXi .

Substituting in the above inequality yields

Pr[X < (1− δ)μ] < E
[∏n

i=1 e
−tXi

]
e−t(1−δ)μ

=

∏n
i=1 E[e−tXi ]

e−t(1−δ)μ
.

Now,

E[e−tXi ] = pie
−t×1 + (1 − pi)e−t×0 = pie

−t + (1 − pi) = 1− pi(1− e−t).

Using the inequality 1− x < e−x with x = pi(1− e−t), we have

E[e−tXi ] < epi(e
−t−1).

Since μ =
∑n

i=1pi, simplifying we obtain

n∏
i=1

E[e−tXi ] <

n∏
i=1

epi(e
−t−1) = e(

∑n
i=1 pi(e

−t−1)) = eμ(e
−t−1).

Substituting in the formula for the bound gives

Pr[X < (1 − δ)μ] < eμ(e
−t−1)

e−t(1−δ)μ
= eμ(e

−t+t−tδ−1).

Now, we choose t so as to minimize the quantity μ(e−t + t − tδ − 1).

Setting its derivative to 0 yields

−e−t + 1− δ = 0,
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which solves for t = ln(1/(1−δ)). Substituting for t in the above inequality,

we obtain

Pr[X < (1− δ)μ] < eμ((1−δ)+(1−δ) ln(1/(1−δ))−1),

which simplifies to

Pr[X < (1− δ)μ] <
(

e−δ

(1− δ)(1−δ)

)μ

.

This proves the first part of the theorem. Now, we simplify this expression.

The log of the denominator is (1−δ) ln(1−δ). The expansion of the natural

log of 1− δ is

ln(1− δ) = −δ − δ2

2
− δ3

3
− δ4

4
. . . .

Multiplying by (1− δ) yields

(1− δ) ln(1− δ) = −δ +
(
δ2

1
− δ2

2

)
+

(
δ3

2
− δ3

3

)
+

(
δ4

3
− δ4

4

)
+ · · ·

= −δ + δ2

2
+

∞∑
j=3

δj

j(j − 1)

> −δ + δ2

2
.

Hence,

(1− δ)(1−δ) = e(1−δ) ln(1−δ) > e−δ+δ2/2.

Substituting this inequality into the above bound yields

Pr[X < (1− δ)μ] <
(

e−δ

(1− δ)(1−δ)

)μ

<

(
e−δ

e−δ+δ2/2

)μ

= e−μδ2/2,

which proves the simplified bound. �

13.7.3.2 Upper tail

The proof of the following theorem for the upper tail is similar to the proof

of Theorem 13.5 and is omitted.
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Theorem 13.6 Let δ > 0. Then,

Pr[X > (1 + δ)μ] <

(
eδ

(1 + δ)(1+δ)

)μ

,

which can be simplified to

Pr[X > (1 + δ)μ] < e−μδ2/4 if δ < 2e− 1,

and

Pr[X > (1 + δ)μ] < 2−δμ if δ > 2e− 1.

Example 13.4 We refer to Examples 13.2 and 13.3, where we seek the

probability that the number of heads in a sequence of n flips of a fair coin

is at least 2n/3.

Let μ = E[X ] = n/2. Solving for δ,

(1 + δ)μ =
2n

3

gives δ = 1
3 . We apply Chernoff bound of Theorem 13.6. Since δ < 2e− 1,

we have

Pr

[
X ≥ 2n

3

]
< e−μδ2/4

= e−(n/2)(1/9)/4

= e−n/72.

So, compared to the bounds obtained in Examples 13.2 and 13.3, we see

that there is an exponential fall off.

13.8 Application of Chernoff Bounds: Multiselection

In this section, we propose a simple and efficient algorithm for the problem

of multiselection (see Sec. 5.8), and show how to use Chernoff bound in its

analysis. Let A = 〈a1, a2, . . . , an〉 be a sequence of n elements drawn from

a linearly ordered set, and let K = 〈k1, k2, . . . , kr〉 be a sorted sequence

of r positive integers between 1 and n, that is a sequence of ranks. The

multiselection problem is to select the kith smallest element in A for all

values of i, 1 ≤ i ≤ r.
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Randomized quicksort is a very powerful algorithm, and as it turns

out, a slight modification of the algorithm solves the multiselection problem

efficiently. The idea is very simple and straightforward. Call the elements

sought by the multiselection problem targets . For example, if j ∈ K, then

the jth smallest element in A is a target. Pick an element a ∈ A uniformly

at random and partition the elements in A around a into small and large

elements. If both small and large elements contain targets, let quicksort

continue normally. Otherwise, if only the small (large) elements contain

targets, then discard the large (small) elements and recurse on the small

(large) elements only. So, the algorithm is a hybrid of both quicksort and

quickselect algorithms. Note that by quicksort, we mean the random-

ized version of the algorithm presented in Sec. 13.4.

In the algorithm to be presented, we will use the following notation

to repeatedly partition A into smaller subsequences. Let a ∈ A with rank

ki ∈ K. Partition A into two subsequences

A1 = 〈aj ∈ A | aj ≤ a〉

and

A2 = 〈aj ∈ A | aj > a〉.

This partitioning of A induces the following partitioning of K:

K1 = 〈k ∈ K | k ≤ ki〉

and

K2 = 〈k − ki | k ∈ K and k > ki〉.

In the pair (A,K), A will be called active if |K| > 0; otherwise, it will be

called inactive.

A more formal description of the algorithm is shown as Algorithm

quickmultiselect. Figure 13.1 shows an example of the execution of the

algorithm. In this example, the input to the algorithm is shown in the root

node. Also shown is a, which is the randomly chosen pivot. The rest of the

recursion tree is self explanatory.

Clearly, in Step 3 of the algorithm, recursion should be halted when the

input size becomes sufficiently small. That is, if the size of A is small, then

sort A and return the elements whose ranks are in K. It was stated this
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Algorithm 13.5 quickmultiselect
Input: A sequence A = 〈a1, a2, . . . , an〉 of n elements and a sorted sequence

of r ranks K = 〈k1, k2, . . . , kr〉.
Output: The kith smallest element in A, 1 ≤ i ≤ r.

1. qmultiselect(A,K)

Algorithm qmultiselect(A,K)

1. r← |K|
2. If r > 0 then
3. If |A| = 1 and |K| = 1 then output a and exit.
4. Let a be an an element chosen from A uniformly at random.
5. By comparing a with the elements in A, determine the two subse-

quences A1 and A2 of elements ≤ a and > a, respectively. At the same
time, compute r(a), the rank of a in A.

6. Partition K into K1 = 〈k ∈ K | k ≤ r(a)〉 and
K2 = 〈k − r(a) | k ∈ K and k > r(a)〉

7. qmultiselect (A1,K1).
8. qmultiselect (A2,K2).
9. end if

Fig. 13.1. Example of the execution of Algorithm quickmultiselect.
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way only for the sake of simplifying its analysis and to make it more general

(so that it will degenerate to quicksort when r = n).

For the analysis of the algorithm, we need Boole’s inequality for a finite

number of events:

Boole’s inequality: For any finite sequence of events E1, E2, . . . , En,
Pr[E1 ∪ E2 ∪ . . . ∪ En] ≤ Pr[E1] +Pr[E2] + · · ·+Pr[En]. (13.6)

13.8.1 Analysis of the algorithm

In this section, the sequence A as well as the subsequences A1 and A2

will be called intervals. Fix a target element t ∈ A, and let the intervals

containing t throughout the execution of the algorithm be It0, I
t
1, I

t
2, . . . of

sizes n = nt
0, n

t
1, n

t
2, . . .. Thus, in the algorithm, It0 = A, It1 = A1 if t ∈ A1

and It1 = A2 if t ∈ A2, and so on. For example, there are two targets

in Fig. 13.1, namely 20 and 50. The intervals containing target 20 are:

I200 = 〈70, 30, 10, 40, 20, 60, 50〉, I201 = 〈30, 10, 40, 20〉, I202 = 〈30, 10, 20〉,
I203 = 〈10, 20〉 and I204 = 〈20〉. Henceforth, we will drop the superscript t

and refer to Itj as Ij and refer to nt
j as nj .

In the jth partitioning step, a pivot a chosen randomly partitions the

interval Ij into two intervals, one of which is of size at least 3n/4 if and

only if the rank of a in Ij is ≤ nj/4 or the rank of a in Ij is ≥ 3nj/4. The

probability that a random element is among the smallest or largest nj/4

elements of Ij is ≤ 1/2. It follows that for any j ≥ 0,

Pr[nj+1 ≥ 3nj/4] ≤ 1

2
. (13.7)

Now, we show that the recursion depth is O(log n) with high probability.

Next, we will show that the algorithm’s running time is O(n log r) with

high probability too.

Let d = 16 ln(4/3)+4. For clarity, we will write lg x in place of log4/3 x.

Lemma 13.1 For the sequence of intervals I0, I1, I2, . . ., after dm par-

titioning steps, |Idm| < (3/4)mn with probability 1 − O((4/3)−2m). Con-

sequently, the algorithm will terminate after d lg n partitioning steps with

probability 1−O(n−1).

Proof. Call the jth partitioning step successful if nj+1 < 3nj/4, j ≥ 0.

Thus, the number of successful splittings needed to reduce the size of I0
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to at most (3/4)mn is at most m. Therefore, it suffices to show that the

number of failures exceeds dm −m with probability O((4/3)−2m). Define

the indicator random variable Xj , 0 ≤ j < dm, to be 1 if nj+1 ≥ 3nj/4

and 0 if nj+1 < 3nj/4. Let

X =
dm−1∑
j=0

Xj .

So, X counts the number of failures. Clearly, the Xj ’s are independent with

Pr[Xj = 1] ≤ 1/2 (Eq. 13.7), and hence X is the sum of indicator random

variables of a collection of individual Bernoulli trials, where Xj = 1 if the

jth partitioning step leads to failure. The expected value of X is

μ = E[X ] =

dm−1∑
j=0

E[Xj ] =

dm−1∑
j=0

Pr[Xj = 1] ≤ dm

2
.

Given the above, we can apply Chernoff bound of Theorem 13.6:

Pr[X ≥ (1 + δ)μ] ≤ exp

(−μδ2
4

)
; 0 < δ < 2e− 1

to derive an upper bound on the number of failures. Specifically, we will

bound the probability

Pr[X ≥ dm−m].

Pr[X ≥ dm−m] = Pr[X ≥ (2− 2/d)(dm/2)]

= Pr[X ≥ (1 + (1− 2/d))(dm/2)]

≤ exp

(−(dm/2)(1− 2/d)2

4

)

= exp

(−m(d− 4 + 4/d)

8

)

≤ exp

(−m(d− 4)

8

)

= exp

(−m(16 ln(4/3))

8

)

= e−2m ln(4/3)

= (4/3)−2m.
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Consequently,

Pr[ |Idm| ≤ (3/4)mn] ≥ Pr[X < dm−m] ≥ 1− (4/3)−2m.

Since the algorithm will terminate when the sizes of all active intervals

become 1, setting m = lg n, we have

Pr[ |Id lg n| ≤ 1] = Pr[ |Id lgn| ≤ (3/4) lgn n]

≥ Pr[X < d lg n− lg n]

≥ 1− (4/3)−2 lgn

= 1− n−2.

What we have computed so far is Pr[ |Itd lgn| ≤ 1] for target t. Since

the number of targets can be as large as O(n), using Boole’s inequality

(Eq. 13.6), it follows that the algorithm will terminate after d lg n parti-

tioning steps with probability at least

1−O(n)× n−2 = 1−O(n−1). �

Theorem 13.7 The running time of the algorithm is O(n log r) with

probability 1−O(n−1).

Proof. Assume without loss of generality that r > 1 and is a power

of 2. The algorithm will go through two phases: The first phase consists of

the first log r iterations, and the remaining iterations constitute the second

phase. An iteration here consists of all recursive invocations of the algorithm

on the same level of the recursion tree. The first phase consists of “mostly”

the first log r iterations of Algorithm quicksort, while the second phase

is “mostly” an execution of Algorithm quickselect. At the end of the

first phase, the number of active intervals will be at most r. Throughout

the second phase, the number of active intervals will also be at most r, as

the number of unprocessed ranks is at most r. In each iteration, including

those in the first phase, an active interval I is split into two intervals. If

both intervals are active, then they will be retained; otherwise, one will be

discarded. So, for c ≥ 2, after c log r iterations, O(rc) intervals will have

been discarded, and at most r will have been retained.

Clearly, the time needed for partitioning set A in the first phase of the

algorithm is O(n log r), as the recursion depth is log r. As to partitioning

the set K of ranks, which is sorted, binary search can be employed after
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each partitioning of A. Since |K| = r, binary search will be applied at most

r times for a total of O(r log r) extra steps.

Now, we use Lemma 13.1 to bound the number of comparisons per-

formed by the second phase. In this phase, with probability 1 − O(n−1),

there are at most d lg n−log r iterations with at most r intervals, whose total

number of elements is ≤ n at the beginning of the second phase. Call these

intervals I1log r, I
2
log r, . . . . at the beginning of the second phase. The number

of comparisons needed to partition interval Itj is |Itj |. By Lemma 13.1, it fol-

lows that, with probability 1−O(n−1), the number of comparisons needed

to partition the sequence of intervals Itlog r, I
t
log r+1, I

t
log r+2, . . . is the total

of their lengths, which is at most

d lg n−log r∑
j=0

(
3

4

)j

|Itlog r|.

It follows that, with probability 1−O(n−1), the number of comparisons in

the second phase is upperbounded by

∑
t≥1

d lgn−log r∑
j=0

(
3

4

)j

|Itlog r| =
∑
t≥1

|Itlog r|
d lg n−log r∑

j=0

(
3

4

)j

≤ n
∞∑
j=0

(
3

4

)j

= 4n.

Thus, the running time for the first phase is O(n log r), and for the second,

it is O(n). It follows that the running time of the algorithm is O(n log r)

with probability 1−O(n−1). �

13.9 Random Sampling

Consider the problem of selecting a sample of m elements randomly from

a set of n elements, where m < n. For simplicity, we will assume that the

elements are positive integers between 1 and n. In this section, we present

a simple Las Vegas algorithm for this problem.

Consider the following selection method. First mark all the n elements

as unselected. Next, repeat the following step until exactlym elements have

been selected. Generate a random number r between 1 and n. If r is marked

unselected, then mark it selected and add it to the sample. This method is

described more precisely in Algorithm randomsampling. A disadvantage

of this algorithm is that its space complexity is Θ(n), as it uses an array

of size n to mark all integers between 1 and n. If n is too large compared
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to m (e.g., n > m2), the algorithm can easily be modified to eliminate the

need for this array.

Algorithm 13.6 randomsampling
Input: Two positive integers m,n with m < n.

Output: An array A[1..m] of m distinct positive integers selected
randomly from the set {1, 2, . . . , n}.

1. comment: S[1..n] is a boolean array indicating
whether an integer has been selected.

2. for i← 1 to n
3. S[i]← false
4. end for
5. k← 0
6. while k < m
7. r← random(1, n)
8. if not S[r] then
9. k← k + 1

10. A[k]← r
11. S[r]← true
12. end if
13. end while

Clearly, the smaller the difference between m and n, the larger the

running time. For example, if n = 1000 and m = 990, then the algo-

rithm will spend too much time in order to generate the last integers in the

sample, e.g., the 990th integer. To circumvent this problem, we may select

10 integers randomly, discard them and keep the remaining 990 integers as

the desired sample. Therefore, we will assume that m ≤ n/2, since other-

wise we may select n − m integers randomly, discard them and keep the

remaining integers as our sample.

The analysis is similar to that of filling all bins with balls discussed in

Sec. 13.6.4. Let pk be the probability of generating an unselected integer

given that k − 1 numbers have already been selected, where 1 ≤ k ≤ m.

Clearly,

pk =
n− k + 1

n
.

If Xk, 1 ≤ k ≤ m, is the random variable denoting the number of integers

generated in order to select the kth integer, then Xk has the geometric
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distribution (see Sec. B.4.4) with expected value

E(Xk) =
1

pk
=

n

n− k + 1
.

Let Y be the random variable denoting the total number of integers gener-

ated in order to select m out of n integers. By linearity of expectation (see

Sec. B.3), we have

E(Y ) = E(X1) +E(X2) + · · ·+E(Xm).

Hence,

E(Y ) =

m∑
k=1

E(Xk)

=

m∑
k=1

n

n− k + 1

= n

n∑
k=1

1

n− k + 1
− n

n∑
k=m+1

1

n− k + 1

= n

n∑
k=1

1

k
− n

n−m∑
k=1

1

k
.

By Eq. (A.16) on page 681,

n∑
j=1

1

k
≤ lnn+ 1 and

n−m∑
k=1

1

k
≥ ln(n−m+ 1).

Hence,

E(Y ) ≤ n (lnn+ 1− ln(n−m+ 1))

≈ n (lnn+ 1− ln(n−m))

≤ n (lnn+ 1− ln(n/2)) since m ≤ n/2
= n (ln 2 + 1)

= n ln 2e

≈ 1.69n.

Hence, T (n), the expected running time of the algorithm, is O(n).
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13.10 The Min-Cut Problem

Let G = (V,E) be an undirected graph on n vertices. An edge cut, or simply

a cut, in G is a subset C of the set of edges E whose removal disconnects G

into two or more components. We will present a randomized algorithm to

find a minimum cut, that is, a cut of minimum cardinality. Let (u, v) be

an edge in G. (u, v) is said to be contracted if its two ends u and v are

merged into one vertex, all edges connecting u and v are deleted, and all

other edges are retained. Note that contraction of an edge may result in

multiple edges, but no self loops, so G may become a multigraph (with no

self loops).

The algorithm is very simple. It consists of n − 2 iterations. In the

ith iteration, where 1 ≤ i ≤ n− 2, select an edge uniformly at random and

contract it. After each edge contraction, the number of vertices will decrease

by 1. See Fig. 13.2 for an example of the algorithm. In this example, the

resulting cut shown in Fig. 13.2(e) is of size 4, which is not minimum.

Now, we show that this simple algorithm results in a minimum cut with

probability at least 2/n(n − 1). Let k be the size of a minimum cut in G,

and fix a cut C of size k. We will compute the probability that no edge in

the cut C is selected (and hence deleted) throughout the execution of the

uv wxyz

(e)

uv yz
wx

(d)

uv

y

zx

w

(b)

yzuv

x
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u y
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v
(a)

Fig. 13.2. Example of successive contractions.
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algorithm. For iteration i, 1 ≤ i ≤ n− 2, let Ai denote the event that the

ith edge selected by the algorithm is not in C, and let Bi = A1∩A2 · · ·∩Ai.

That is, Bi is the event that all of the first i chosen edges are not in the

cut C. Since the size of a minimum cut is k, the minimum vertex degree

is k, which means that the total number of edges is at least kn/2. Hence,

the probability of the first event B1 = A1 is at least

1− k

kn/2
= 1− 2

n
.

Now, assume that the selected edge in the first iteration is not in C. Then,

since the vertex degrees do not decrease, the probability of the second event

B2 = A1 ∩ A2 is at least

1− k

k(n− 1)/2
= 1− 2

n− 1
.

Similarly, in the ith iteration, the probability of the ith event

Bi = A1 ∩A2 ∩ · · · ∩Ai

is at least

1− k

k(n− i+ 1)/2
= 1− 2

n− i+ 1
.

Applying the multiplication rule in Eq. (B.3) on page 693, the probabil-

ity that a minimum cut is found after n − 2 contractions is at least the

probability that no edge in the cut C is contracted, which is

Pr[Bn−2] = Pr[A1 ∩A2 ∩ · · · ∩ An−2]

= Pr[A1] Pr[A2 | A1] · · ·Pr[An−2 | A1 ∩ A2 ∩ · · · ∩ An−3]

=

(
1− 2

n

)(
1− 2

n− 1

)
· · ·
(
1− 2

n− i+ 1

)
· · ·
(
2

4

)(
1

3

)

=

(
n− 2

n

)(
n− 3

n− 1

)
. . .

(
n− i− 1

n− i+ 1

)
. . .

(
2

4

)(
1

3

)

=
2

n(n− 1)
.
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It follows that the algorithm will fail to find a minimum cut with probability

at most

1− 2

n(n− 1)
≤ 1− 2

n2
.

Hence, repeating the algorithm n2/2 times and selecting the minimum cut,

the probability that the minimum cut is not found in any of the n2/2

repetitions is at most (
1− 2

n2

)n2/2

<
1

e
.

Hence, repeating the algorithm n2/2 times and selecting the minimum cut,

the probability of finding a cut of minimum cardinality is at least

1− 1

e
.

Now, we analyze the running time of the algorithm. Each contraction costs

O(n) time, and this is repeated n−2 times for each run of the algorithm for

a total ofO(n2) time. Since the algorithm is repeated n2/2 times, the overall

running time of the algorithm is O(n4). Repeating the algorithm further

will result in better probability of success on the expense of increasing the

running time.

The best known deterministic algorithm for finding a minimum cut runs

in time O(n3). It can be shown that the running time of the randomized

algorithm can be substantially improved to O(n2 logn) with probability

of success Ω(1/ logn). Consequently, in order to have constant probability

of finding a minimum cut it is sufficient to repeat this algorithm O(log n)

times. The time complexity becomes O(n2 log2 n).

13.11 Testing String Equality

In this section, we outline an example of how randomization can be

employed to cut down drastically on the communication cost. Suppose that

two parties A and B can communicate over a communication channel, which

we will assume to be very reliable. A has a very long string x and B has a

very long string y, and they want to determine whether x = y. Obviously,

A can send x to B, who in turn can immediately test whether x = y. But

this method would be extremely expensive, in view of the cost of using
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the channel. Another alternative would be for A to derive from x a much

shorter string that could serve as a “fingerprint” of x and send it to B.

B then would use the same derivation to obtain a fingerprint for y and

then compare the two fingerprints. If they are equal, then B would assume

that x = y; otherwise, B would conclude that x �= y. B then notifies A of

the outcome of the test. This method requires the transmission of a much

shorter string across the channel. For a string w, let I(w) be the integer

represented by the bit string w. One method of fingerprinting is to choose

a prime number p and then use the fingerprint function

Ip(x) = I(x) (mod p).

If p is not too large, then the fingerprint Ip(x) can be sent as a short string.

The number of bits to be transmitted is thus O(log p). If Ip(x) �= Ip(y), then

obviously x �= y. However, the converse is not true. That is, if Ip(x) = Ip(y),

then it is not necessarily the case that x = y. We refer to this phenomenon

as a false match. In general, a false match occurs if x �= y, but Ip(x) =

Ip(y), i.e., p divides I(x) − I(y). We will later bound the probability of a

false match.

The weakness of this method is that, for fixed p, there are certain pairs

of strings x and y on which the method will always fail. We get around the

problem of the existence of these pairs x and y by choosing p at random

every time the equality of two strings is to be checked, rather than agree-

ing on p in advance. Moreover, choosing p at random allows for resending

another fingerprint and thus increasing the confidence in the case x = y.

This method is described in Algorithm stringequalitytest (the value of

M will be determined later).

Algorithm 13.7 stringequalitytest

1. A chooses p at random from the set of primes less than M .
2. A sends p and Ip(x) to B.
3. B checks whether Ip(x) = Ip(y) and confirms the equality or inequality

of the two strings x and y.

Now, we compute the probability of a false match. Let n be the number

of bits in the binary representation of x. Of course, n is also equal to the

number of bits in the binary representation of y; otherwise, the problem

is trivial. Let π(n) be the number of distinct primes less than n. It is
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well known that π(n) is asymptotic to n/ lnn. It is also known that if

k < 2n, then, except when n is very small, the number of distinct primes

that divide k is less than π(n). Since failure can occur only in the case of a

false match, i.e., x �= y but Ip(x) = Ip(y), this is only possible if p divides

I(x)−I(y). Hence, the probability of failure for two n-bit strings x and y is

|{p | p is a prime < 2n and p divides I(x)− I(y)}|
π(M)

≤ π(n)

π(M)
.

If we choose M = 2n2, we obtain

Pr [failure] ≤ π(n)

π(M)
≈ n/ lnn

2n2/ lnn2
=

1

n
.

Furthermore, if we repeat the algorithm k times, each time selecting

a prime number less than M at random, then the probability becomes at

most (1/n)k. If, for example, we set k = �log logn�, then the probability of

failure becomes

Pr [failure] ≤ 1

n�log logn� .

Example 13.5 Suppose that x and y are one million bits each, i.e., n =

1,000,000. Then, M = 2 × 1012 = 240.8631. In this case, the number

of bits required to transmit p is at most �logM� + 1 = 40 + 1 = 41.

The number of bits required to transmit the fingerprint of x is at most

�log(p− 1)�+ 1 ≤ �logM�+ 1 = 41. Thus, the total number of bits trans-

mitted is at most 82. The probability of failure in one transmission is at most

1/n = 1/1,000,000. Since �log logn� = 5, repeating the algorithm five times

reduces the probability of false match to n−�log logn� = (106)−5 = 10−30,

which is negligible.

13.12 Pattern Matching

Now, we apply the same idea of fingerprinting described in Sec. 13.11 to

a classical problem in computer science: pattern matching. Given a string

of text X = x1x2 . . . xn and a pattern Y = y1y2 . . . ym, where m ≤ n,

determine whether or not the pattern appears in the text. Without loss

of generality, we will assume that the text alphabet is Σ = {0, 1}. The
most straightforward method for solving this problem is simply to move the

pattern across the entire text, and in every position, compare the pattern
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with the portion of the text of lengthm. This brute-force method leads to an

O(mn) running time. There are, however, more complicated deterministic

algorithms whose running time is O(n+m).

Here, we will present a simple and efficient Monte Carlo algorithm that

also achieves a running time of O(n + m). We will convert it later into

a Las Vegas algorithm having the same time complexity. The algorithm

follows the same brute-force algorithm of sliding the pattern Y across the

text X , but instead of comparing the pattern with each block X(j) =

xjxj+1 . . . xj+m−1, we will compare the fingerprint Ip(Y ) of the pattern

with the fingerprints Ip(X(j)) of the blocks of text. The O(n) fingerprints

of the text are fortunately easy to compute. The key observation is that

when we shift from one block of text to the next, the fingerprint of the

new block X(j + 1) can easily be computed from the fingerprint of X(j).

Specifically,

Ip(X(j + 1)) = (2Ip(X(j))− 2mxj + xj+m) (mod p).

If we let Wp = 2m (mod p), then we have the recurrence

Ip(X(j + 1)) = (2Ip(X(j))−Wpxj + xj+m) (mod p). (13.8)

The pattern matching algorithm is shown as Algorithm pattern-

matching (the value of M will be determined later).

Algorithm 13.8 patternmatching
Input: A string of text X and a pattern Y of length n and m, respectively.

Output: The first position of Y in X if Y occurs in X; otherwise, 0.

1. Choose p at random from the set of primes less than M .
2. j← 1
3. Compute Wp = 2m (mod p), Ip(Y ) and Ip(Xj)
4. while j ≤ n−m+ 1
5. if Ip(Xj) = Ip(Y ) then return j {A match is found (probably)}
6. j← j + 1
7. Compute Ip(Xj) using Eq. 13.8.
8. end while
9. return 0 {Y does not occur in X (definitely)}

The computation of each of Wp, Ip(Y ) and Ip(X(1)) costs O(m) time.

When implementing the computation of Ip(X(j + 1)) from Ip(X(j)), we

do not need to use the more expensive operations of multiplication and
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division; only a constant number of additions and subtractions is needed.

Thus, the computation of each Ip(X(j)), for 2 ≤ j ≤ n−m+ 1, costs only

O(1) time for a total of O(n) time. Hence, the running time is O(n+m). The

above analysis is valid under the uniform-cost RAM model of computation.

If we use the more realistic logarithmic-cost RAM model of computation,

then the time complexity is increased by a factor of log p.

Now, we analyze the frequency with which this algorithm will fail.

A false match will occur only if for some j, we have

Y �= X(j) but Ip(Y ) = Ip(X(j)).

This is only possible if the chosen prime number p divides

∏
{j | Y �=X(j)}

|I(Y )− I(X(j))|.

This product cannot exceed (2m)n = 2mn, and hence the number of primes

that divide it cannot exceed π(mn). If we choose M = 2mn2, then the

probability of a false match cannot exceed

π(mn)

π(M)
≈ mn/ ln(mn)

2mn2/ ln(mn2)
=

ln(mn2)

2n ln(mn)
<

ln(mn)2

2n ln(mn)
=

1

n
.

It is interesting to note that, according to the above derivation, the

probability of failure depends only on the length of the text, and the length

of the pattern has no effect on this probability. Note also that in the case

when m = n, the problem reduces to that of testing the equality of two

strings of equal length discussed in Sec. 13.11, and that the probability of

failure is identical to the one derived for that problem.

To convert the algorithm into a Las Vegas algorithm is easy. Whenever

the two fingerprints Ip(Y ) and Ip(X(j)) match, the two strings are tested

for equality. The expected time complexity of this Las Vegas algorithm

becomes

O(n +m)

(
1− 1

n

)
+mn

(
1

n

)
= O(n+m).

Thus, we have an efficient pattern matching algorithm that always gives

the correct result.
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13.13 Primality Testing

In this section, we study a well-known Monte Carlo algorithm for testing

whether a given positive integer n is prime. The obvious method of repeat-

edly dividing by the numbers from 2 to �√n� is extremely inefficient, as it

leads to exponential time complexity in the input size (see Example 1.16).

This method is appropriate only for small numbers, and its only advantage

is that it outputs a divisor of n if it is composite. It turns out that factoring

an integer is a much harder problem than merely testing whether it is prime

or composite.

In primality tests, we use the idea of finding a “witness”, which is a

proof that a number is composite. Obviously, finding a divisor of n is a

proof that it is composite. However, such witnesses are very rare. Indeed,

if we take a number n that is fairly large, the number of its prime divisors

is very small compared to the number of integers between 1 and n. It is

well known that if n < 2k, then except when k is very small, the number

of distinct primes that divide n is less than π(k) ≈ k/ lnk.
This motivates the search for another type of witness. Before discussing

the alternate witness, we will dispose of an algorithm for an operation that

will be used throughout this section. Let a,m and n be positive integers with

m ≤ n. We need the operation of raising a to the mth power and reducing

the result modulo n. Algorithm expmod below computes am (mod n). It

is similar to the exponentiation algorithm presented in Sec. 4.3. Notice

that we reduce modulo n after each squaring or multiplication rather than

first computing am and reducing modulo n once at the end. A call to this

algorithm is of the form expmod(a,m, n).

Algorithm 13.9 expmod
Input: Positive integers a,m and n with m ≤ n.

Output: am (mod n).

1. Let the binary digits of m be bk = 1, bk−1, . . . , b0.
2. c← 1
3. for j← k downto 0
4. c← c2 (mod n)
5. if bj = 1 then c← ac (mod n)
6. end for
7. return c
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It is easy to see that the running time of Algorithm expmod is

Θ(logm) = O(log n), if we want to charge one unit of time per one multipli-

cation. However, since we are dealing here with arbitrarily large integers,

we will count the exact number of bit multiplications performed by the

algorithm. If we use the obvious way of multiplying two integers, then each

multiplication costs O(log2 n). Thus, the overall running time of Algorithm

expmod is O(log3 n).

Now, we present a series of primality tests all of which are based on

Fermat’s theorem:

Theorem 13.8 If n is prime, then for all a �≡ 0 (mod n), we have

an−1 ≡ 1 (mod n).

Consider Algorithm ptest1. By Fermat’s theorem, if Algorithm ptest1

returns composite, then we are sure that n is composite. The ancient

Chinese conjectured that a natural number n must be prime if it satis-

fies the congruence 2n ≡ 2 (mod n). The question remained open until

1819, when Sarrus showed that 2340 ≡ 1 (mod 341), and yet 341 = 11× 31

is composite. Some other composite numbers that satisfy the congruence

2n−1 ≡ 1 (mod n) are 561, 645, 1105, 1387, 1729 and 1905. Thus, if Algo-

rithm ptest1 returns prime, then n may or may not be prime.

Algorithm 13.10 ptest1
Input: A positive odd integer n ≥ 5.

Output: prime if n is prime; otherwise, composite.

1. if expmod(2, n− 1, n) ≡ 1 (mod n) then return prime {probably}
2. else return composite {definitely}

Surprisingly, this simple test gives an erroneous result very rarely. For

example, for all composite numbers between 4 and 2000, the algorithm

returns prime only for the numbers 341, 561, 645, 1105, 1387, 1729 and

1905. Moreover, there are only 78 values of n less than 100,000 for which

the test errs, the largest of which is 93961 = 7× 31× 433.

It turns out, however, that for many composite numbers n, there exist

integers a for which an−1 ≡ 1 (mod n). In other words, the converse of

Fermat’s theorem is not true (we have already proven this for a = 2).
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Indeed, there are composite integers n known as Carmichael numbers that

satisfy Fermat’s theorem for all positive integers a that are relatively prime

to n. The smallest Carmichael numbers are 561 = 3 × 11 × 17, 1105 =

5×13×17, 1729 = 7×13×19 and 2465 = 5×17×29. Carmichael numbers

are very rare; there are, for example, only 255 of them less than 108. When a

composite number n satisfies Fermat’s theorem relative to base a, n is called

a base-a pseudoprime. Thus, Algorithm ptest1 returns prime whenever n

is prime or base-2 pseudoprime. One way to improve on the performance

of Algorithm ptest1 is to choose the base randomly between 2 and n− 2.

This yields Algorithm ptest2. As in Algorithm ptest1, Algorithm ptest2

errs only if n is a base-a pseudoprime. For example, 91 = 7 × 13 is base-3

pseudoprime since 390 ≡ 1 (mod 91).

Algorithm 13.11 ptest2
Input: A positive odd integer n ≥ 5.

Output: prime if n is prime; otherwise, composite.

1. a← random(2, n− 2)
2. if expmod(a, n− 1, n) ≡ 1 (mod n) then return prime {probably}
3. else return composite {definitely}

Let Z∗
n be the set of positive integers less than n that are relatively

prime to n. It is well known that Z∗
n forms a group under the operation of

multiplication modulo n. Define

Fn = {a ∈ Z∗
n | an−1 ≡ 1 (mod n)}.

If n is prime or a Carmichael number, then Fn = Z∗
n. So, suppose n is not a

Carmichael number or a prime number. Then, Fn �= Z∗
n. It is easy to verify

that Fn under the operation of multiplication modulo n forms a group that

is a proper subgroup of Z∗
n. Consequently, the order of Fn divides the order

of Z∗
n, that is, |Fn| divides |Z∗

n|. It follows that the number of elements in

Fn is at most half the number of elements in Z∗
n. This proves the following

lemma.

Lemma 13.2 If n is not a Carmichael number, then Algorithm ptest2

will detect the compositeness of n with probability at least 1/2.
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Unfortunately, it has recently been shown that there are, in fact,

infinitely many Carmichael numbers. In the remainder of this section, we

describe a more powerful randomized primality test algorithm that circum-

vents the difficulty that arises as a result of the existence of infinitely many

Carmichael numbers. The algorithm has the property that if n is compos-

ite, then the probability that this is discovered is at least 1
2 . In other words,

the probability that it will err is at most 1
2 . Thus, by repeating the test k

times, the probability that it will err is at most 2−k. The algorithm, which

we will call ptest3, is based on the following reasoning. Let n ≥ 5 be an

odd prime. Write n−1 = 2qm (q ≥ 1 since n−1 is even). Then, by Fermat’s

theorem, the sequence

am (mod n), a2m (mod n), a4m (mod n), . . . , a2
qm (mod n)

must end with 1, and the value just preceding the first appearance of 1 will

be n− 1. This is because the only solutions to x2 ≡ 1 (mod n) are x = ±1
when n is prime. This reasoning leads to Algorithm ptest3.

Algorithm 13.12 ptest3
Input: A positive odd integer n ≥ 5.

Output: prime if n is prime; otherwise, composite.

1. q← 0; m← n− 1
2. repeat {find q and m}
3. m←m/2
4. q← q + 1
5. until m is odd
6. a← random(2, n− 2)
7. x← expmod(a,m, n)
8. if x = 1 then return prime {probably}
9. for j← 0 to q − 1

10. if x ≡ −1 (mod n) then return prime {probably}
11. x← x2 (mod n)
12. end for
13. return composite {definitely}

Theorem 13.9 If Algorithm ptest3 returns “composite”, then n is

composite.

Proof. Suppose that Algorithm ptest3 returns “composite”, but n is

an odd prime. We claim that a2
jm ≡ 1 (mod n) for j = q, q−1, . . . , 0. If so,

then setting j = 0 yields am ≡ 1 (mod n), which means that the algorithm
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must have returned prime by Step 8, a contradiction to the outcome of

the algorithm. This contradiction establishes the theorem. Now, we prove

our claim. By Fermat’s theorem, since n is prime, the statement is true for

j = q. Suppose it is true for some j, 1 ≤ j ≤ q. Then, it is also true for

j − 1 also because

(a2
j−1m)2 = a2

jm ≡ 1 (mod n)

implies that the quantity being squared is ±1. Indeed, the equation x2 = 1

in Z∗
n has only the solution x = ±1. But −1 is ruled out by the outcome of

the algorithm since it must have executed Step 13. Consequently,

a2
j−1m ≡ 1 (mod n).

This completes the proof of the claim. �

Note that the contrapositive statement of the above theorem is: If n

is prime, then Algorithm ptest3 returns prime, which means that the

algorithm will never err if n is prime.

Obviously, Algorithm ptest3 is as good as Algorithm ptest2 in dealing

with non-Carmichael numbers. It can be shown, although we will not pursue

it here, that the probability that Algorithm ptest3 errs when presented

with a Carmichael number is at most 1/2. So, the probability that it will

err on any composite number is at most 1/2. Thus, by repeating the test k

times, the probability that it will err is at most 2−k. If we set k = �logn�,
the probability of failure becomes 2−�logn� ≤ 1/n. In other words, the

algorithm will give the correct answer with probability at least 1 − 1/n,

which is negligible when n is sufficiently large. This results in our final

algorithm, which we will call primalitytest.

We compute the running time of Algorithm primalitytest as follows

(assuming that a random integer can be generated in O(1) time). The value

of q computed in Step 4 is O(log n). So, the repeat loop costs O(q) =

O(log n) time. We have shown before that the cost of Step 8 is Θ(log3 n).

It is repeated at most k = �logn� times for a total of O(log4 n). The

cost of the inner for loop is equal to the cost of each squaring, O(log2 n),

times O(q) = O(log n) times O(k) = O(log n) for a total of O(kq log2 n) =

O(log4 n). Thus, the time complexity of the algorithm is O(log4 n). The

following theorem summarizes the main result.
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Algorithm 13.13 primalitytest
Input: A positive odd integer n ≥ 5.

Output: prime if n is prime; otherwise, composite.

1. q← 0; m← n− 1; k← �log n�
2. repeat {find q and m}
3. m←m/2
4. q← q + 1
5. until m is odd
6. for i← 1 to k
7. a← random(2, n− 2)
8. x← expmod(a,m,n)
9. if x = 1 then return prime {probably}

10. for j← 0 to q − 1
11. if x ≡ −1 (mod n) then return prime {probably}
12. x← x2 (mod n)
13. end for
14. end for
15. return composite {definitely}

Theorem 13.10 In time O(log4 n), Algorithm primalitytest behaves

as follows when presented with an odd integer n ≥ 5:

(1) If n is prime, then it outputs prime.

(2) If n is composite, then it outputs composite with probability at least

1− 1/n.

13.14 Practice Problems

13.1. Let p1, p2 and p3 be three polynomials of degrees n, n and 2n,

respectively. Give a randomized algorithm to test whether p3(x) =

p1(x) × p2(x).
13.2. Consider the following modification of Algorithm binarysearch

(see Sec. 1.3). Instead of halving the search interval in each itera-

tion, select one of the remaining positions at random. Assume that

every position between low and high is equally likely to be chosen

by the algorithm. Compare the performance of this algorithm with

that of Algorithm binarysearch.

13.3. In the discussion of Algorithm randomizedquicksort, it was

stated that one possibility to obtain a Θ(n logn) expected time for
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Algorithm quicksort is by permuting the input elements so that

their order becomes random. Describe an O(n) time algorithm to

randomly permute the input array before processing it by Algorithm

quicksort.

13.4. A fair die is tossed 1000 times. Give a Markov bound for the proba-

bility that the sum is greater than 5000.

13.5. Apply Markov inequality to find the probability that in the dice

problem discussed in Sec. 13.5.2, there will be more than 20 rolls

using a 100-sided die.

13.6. Apply Markov inequality to find the probability that in the prob-

lem of finding the minimum using rquickselect, the number of

comparisons is more than 3n. See Sec. 13.5.3.

13.7. A fair die is tossed 1000 times. Give a Chebyshev bound for the

probability that the sum is greater than 5000.

13.8. Suppose there are n items to be stored in a hash table of size k,

where the location of each item in the hash table is chosen uniformly

at random. A collision happens if two items are assigned to the same

location. How large should k be in order to have a probability at least

a half for a collision? (Hint : This is similar to the birthday paradox.)

13.15 Exercises

13.1. Let n be a positive integer. Design an efficient randomized

algorithm that generates a random permutation of the integers

1, 2, . . . , n. Assume that you have access to a fair coin. Analyze

the time complexity of your algorithm.

13.2. Show that Eq. (13.1) is maximum when k = �n/2�.

13.3. Consider randomized binary search discussed in Problem 13.2.

Apply the result in the dice problem discussed in Sec. 13.5.2 to

find the expected number of comparisons when searching for an

element x that is not in the searched array A[1..n] and less than

or greater than all elements in A. Compare your answer with that

obtained in Problem 13.2.

13.4. Suppose that a Monte Carlo algorithm gives the correct solution

with probability at least 1− ε1, regardless of the input. How many
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executions of the same algorithm are necessary in order to raise the

probability to at least 1− ε2, where 0 < ε2 < ε1 < 1.

13.5. Let A be a Monte Carlo algorithm whose expected running time

is at most T (n) and gives a correct solution with probability p(n).

Suppose the correctness of any solution of the algorithm can always

be verified in time T ′(n). Show that A can be converted into a Las

Vegas algorithm A′ for the same problem that runs in expected

time at most (T (n) + T ′(n))/p(n).

13.6. Let L = x1, x2, . . . , xn be a sequence of elements that contains

exactly k occurrences of the element x (1 ≤ k ≤ n). We want

to find one j such that xj = x. Consider repeating the following

procedure until x is found. Generate a random number i between

1 and n and check whether xi = x. Which method is faster, on the

average, this method or linear search? Explain.

13.7. Let L be a list of n elements that contains a majority element

(see Sec. 4.2). Give a randomized algorithm that finds the majority

element. Is randomization suitable for this problem in view of the

fact that there is an O(n) time algorithm to solve it?

13.8. Let A,B and C be three n×nmatrices. Give a Θ(n2) time algorithm

to test whether AB = C. The algorithm is such that if AB = C,

then it returns true. What is the probability that it returns true

when AB �= C? (Hint : Let x be a vector of n random entries.

Perform the test A(BX) = CX .)

13.9. Let A and B be two n× n matrices. Give a Θ(n2) time algorithm

to test whether A = B−1. See Exercise 13.8.

13.10. An instructor collects the homeworks of his n students and later

distributes them back randomly. That is, he gives each homework

to a random student. What is the expected number of students

who will receive their own homeworks? (Hint : Define the random

variables Xi = 1 if student i gets his own homework, and Xi = 0

otherwise. Then, E[Xi] = Pr [Xi = 1] = 1/n. Apply linearity of

expectations (see Sec. B.3).)
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13.11. Ifm balls are randomly thrown into n bins, compute the probability

that
(a) bins 1 and 2 are empty.

(b) two bins are empty.

13.12. If m balls are randomly thrown into two bins, compute the prob-

ability that bin 1 contains m1 balls and bin 2 contains m2 balls,

where m1 + m2 = m.

13.13. If m balls are randomly thrown into three bins, compute the proba-

bility that bin 1 containsm1 balls, bin 2 containsm2 balls and bin 3

contains m3 balls, where m1 +m2 +m3 = m. See Exercise 13.12.

13.14. (The coupon collector’s problem) There are n types of coupons, and

at each trial, a coupon is chosen randomly. Each chosen coupon is

equally likely to be of any of the n types. Compute the expected

number of trials needed to collect at least one coupon from each

of the n types. (Hint: This is similar to filling all bins with balls

discussed in Sec. 13.6.4.)

13.15. (Random linear search) Consider performing linear search on an

array A of n elements to search for an element x in a ran-

dom fashion. In each iteration, the algorithm compares x with

a random element of A and reports the outcome. Show that

this method performs Θ(n logn) comparisons in the worst case.

(Hint : This is similar to filling all bins with balls discussed in

Sec. 13.6.4.)

13.16. A fair coin is tossed 1000 times. Give a Chernoff bound for the

probability that the number of heads is less than 5000.

13.17. Consider the sampling problem in Sec. 13.9. Suppose we perform

one pass over the n integers and choose each one with probability

m/n. Show that the size of the resulting sample has a large variance,

and hence its size may be much smaller or larger than m.

13.18. Modify Algorithm randomsampling in Sec. 13.9 to eliminate the

need for the boolean array S[1..n]. Assume that n is too large com-

pared to m, say n > m2. What is the new time and space complex-

ities of the modified algorithm?
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13.19. Amultigraph is a graph in which multiple edges are allowed between

pairs of vertices. Show that the number of distinct minimum cuts in

a multigraph with n vertices is at most n(n− 1)/2 (see Sec. 13.10).

13.20. Consider the algorithm for finding a minimum cut discussed in

Sec. 13.10. Suppose the algorithm is repeated n(n − 1) lnn times

instead of n2/2. Compute the probability of success and the running

time of the algorithm. (Hint : You may make use of the inequality

1− 2
n(n−1) ≤ e−

2
n(n−1) .)

13.21. Consider the algorithm for finding a minimum cut discussed in

Sec. 13.10. Suppose we stop the contractions when the number of

remaining vertices is
√
n and find the minimum cut in the result-

ing graph using a deterministic O(n3) time algorithm. Show that

the probability of success is Ω(1/n). Give probabilistic and timing

analyses of the algorithm that results from repeating this modified

algorithm n times.

13.22. Suppose A and B can communicate through a communication chan-

nel. A has n strings x1, x2, . . . , xn, xi ∈ {0, 1}n, and B has n strings

y1, y2, . . . , yn, yi ∈ {0, 1}n. The problem is to determine whether

there is a j ∈ {1, 2, . . . , n} such that xj = yj . Describe a ran-

domized algorithm to solve this problem. Give its probabilistic and

timing analyses.

13.23. Consider Fn as defined on page 402. Suppose that n is neither a

Carmichael number nor a prime. Show that Fn under the oper-

ation of multiplication modulo n forms a group that is a proper

subgroup of Z∗
n.
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Chapter 14

Approximation Algorithms

14.1 Introduction

There are many hard combinatorial optimization problems that cannot be

solved efficiently using backtracking or randomization. An alternative in

this case for tackling some of these problems is to devise an approxima-

tion algorithm, given that we will be content with a “reasonable” solution

that approximates an optimal solution. Associated with each approximation

algorithm, there is a performance bound that guarantees that the solution

to a given instance will not be far away from the neighborhood of the exact

solution. A marking characteristic of (most of) approximation algorithms

is that they are fast, as they are mostly greedy heuristics. As stated in

Chapter 7, the proof of correctness of a greedy algorithm may be com-

plex. In general, the better the performance bound, the harder it becomes

to prove the correctness of an approximation algorithm. This will be evi-

dent when we study some approximation algorithms. One should not be

optimistic, however, about finding an efficient approximation algorithm, as

there are hard problems for which even the existence of a “reasonable”

approximation algorithm is unlikely unless NP = P.

14.2 Basic Definitions

A combinatorial optimization problem Π is either a minimization problem

or a maximization problem. It consists of three components:

411
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(1) A set DΠ of instances.

(2) For each instance I ∈ DΠ, there is a finite set SΠ(I) of candidate

solutions for I.

(3) Associated with each solution σ ∈ SΠ(I) to an instance I in DΠ, there

is a value fΠ(σ) called the solution value for σ.

If Π is a minimization problem, then an optimal solution σ∗ for an

instance I ∈ DΠ has the property that for all σ ∈ SΠ(I), fΠ(σ
∗) ≤ fΠ(σ).

An optimal solution for a maximization problem is defined similarly.

Throughout this chapter, we will denote by OPT (I) the value fΠ(σ
∗).

An approximation algorithm A for an optimization problem Π is a (poly-

nomial time) algorithm such that given an instance I ∈ DΠ, it outputs some

solution σ ∈ SΠ(I). We will denote by A(I) the value fΠ(σ).

Example 14.1 In this example, we illustrate the above definitions. Con-

sider the problem bin packing: Given a collection of items of sizes between

0 and 1, it is required to pack these items into the minimum number of

bins of unit capacity. Obviously, this is a minimization problem. The set

of instances DΠ consists of all sets I = {s1, s2, . . . , sn}, such that for all

j, 1 ≤ j ≤ n, sj is between 0 and 1. The set of solutions SΠ consists of a set

of subsets σ = {B1, B2, . . . , Bk} which is a disjoint partition of I such that

for all j, 1 ≤ j ≤ k, ∑
s∈Bj

s ≤ 1.

Given a solution σ, its value f(σ) is simply |σ| = k. An optimal solution for

this problem is that solution σ having the least cardinality. Let A be (the

trivial) algorithm that assigns one bin for each item. Then, by definition,

A is an approximation algorithm. Clearly, this is not a good approximation

algorithm.

Throughout this chapter, we will be interested in optimization problems

as opposed to decision problems. For example, the decision problem version

of the bin packing problem has also as input a boundK, and the solution is

either yes if all items can be packed using at most K bins and no otherwise.

Clearly, if a decision problem is NP-hard, then the optimization version of

that problem is also NP-hard.
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14.3 Difference Bounds

Perhaps, the most we can hope from an approximation algorithm is that

the difference between the value of the optimal solution and the value of

the solution obtained by the approximation algorithm is always constant.

In other words, for all instances I of the problem, the most desirable solu-

tion that can be obtained by an approximation algorithm A is such that

|A(I) −OPT (I)| ≤ K, for some constant K. There are very few NP-hard

optimization problems for which approximation algorithms with difference

bounds are known. One of them is the following problem.

14.3.1 Planar graph coloring

Let G = (V,E) be a planar graph. By the Four Color Theorem, every

planar graph is 4-colorable. It is fairly easy to determine whether a graph is

2-colorable or not (Exercise 9.3). On the other hand, to determine whether

it is 3-colorable is NP-complete. Given an instance I of G, an approximation

algorithm A may proceed as follows. Assume G is nontrivial, i.e., it has at

least one edge. Determine if the graph is 2-colorable. If it is, then output 2;

otherwise, output 4. If G is 2-colorable, then |A(I) −OPT (I)| = 0. If it is

not 2-colorable, then |A(I) −OPT (I)| ≤ 1. This is because in the latter

case, G is either 3-colorable or 4-colorable.

14.3.2 Hardness result: The knapsack problem

The problem knapsack is defined as follows (see Sec. 6.6). Given n

items {u1, u2, . . . , un} with integer sizes s1, s2, . . . , sn and integer values

v1, v2, . . . , vn, and a knapsack capacity C that is a positive integer, the

problem is to fill the knapsack with some of these items whose total size is

at most C and whose total value is maximum. In other words, find a subset

S ⊆ U such that ∑
uj∈S

sj ≤ C and
∑
uj∈S

vj is maximum.

We will show that there is no approximation algorithm with difference

bound that solves the knapsack problem. Suppose there is an approxima-

tion algorithm A to solve the knapsack problem with difference bound

K, i.e., for all instances I of the problem, |A(I) −OPT (I)| ≤ K, where
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K is a positive integer. Given an instance I, we can use algorithm A to

output an optimal solution as follows. Construct a new instance I ′ such

that for all j, 1 ≤ j ≤ n, s′j = sj and v′j = (K + 1)vj . It is easy to see that

any solution to I ′ is a solution to I and vice versa. The only difference is

that the value of the solution for I ′ is (K+1) times the value of the solution

for I. Since A(I ′) = (K + 1)A(I), |A(I ′)−OPT (I ′)| ≤ K implies

|A(I)−OPT (I)| ≤
⌊

K

K + 1

⌋
= 0.

This means that A always gives the optimal solution, i.e., it solves the knap-

sack problem. Since the knapsack problem is known to be NP-complete, it is

highly unlikely that the approximation algorithm A exists unless NP = P.

(Recall that, by definition, an approximation algorithm runs in polynomial

time).

14.4 Relative Performance Bounds

Clearly, a difference bound is the best bound guaranteed by an approxima-

tion algorithm. However, it turns out that very few hard problems possess

such a bound, as exemplified by the knapsack problem for which we have

shown that the problem of finding an approximation algorithm with a dif-

ference bound is impossible unless NP = P. In this section, we will discuss

another performance guarantee, namely the relative performance guarantee.

Let Π be a minimization problem and I an instance of Π. Let A be

an approximation algorithm to solve Π. We define the approximation ratio

RA(I) to be

RA(I) =
A(I)

OPT (I)
.

If Π is a maximization problem, then we define RA(I) to be

RA(I) =
OPT (I)

A(I)
.

Thus, the approximation ratio is always greater than or equal to one. This

has been done so that we will have a uniform measure for the quality of the

solution produced by A.
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The absolute performance ratio RA for the approximation algorithm A

is defined by

RA = inf{r | RA(I) ≤ r for all instances I ∈ DΠ}.
The asymptotic performance ratio R∞

A for the approximation algorithm A

is defined by

R∞
A = inf

{
r ≥ 1

∣∣∣∣ for some integer N,RA(I) ≤ r for all

instances I ∈ DΠ with OPT (I) ≥ N
}
.

It turns out that quite a few problems possess approximation algorithms

with relative performance ratios. For some problems, the asymptotic ratio

is more appropriate than the absolute performance ratio. For some others,

both ratios are identical. In the following sections, we will consider some

problems for which an approximation algorithm with constant relative per-

formance ratio exists.

14.4.1 The bin packing problem

The optimization version of the bin packing problem can be stated as fol-

lows. Given a collection of items u1, u2, . . . , un of sizes s1, s2, . . . , sn, where

each sj is between 0 and 1, we are required to pack these items into the

minimum number of bins of unit capacity. We list here four heuristics for

the bin packing problem.

• First Fit (FF): In this method, the bins are indexed as 1,2, . . . . All

bins are initially empty. The items are considered for packing in the

order u1, u2, . . . , un. To pack item ui, find the least index j such that bin

j contains at most 1− si, and add item ui to the items packed in bin j.

• Best Fit (BF): This method is the same as the FF method except that

when item ui is to be packed, we look for that bin, which is filled to level

l ≤ 1− si and l is as large as possible.

• First Fit Decreasing (FFD): In this method, the items are first

ordered by decreasing order of size, and then packed using the FF

method.

• Best Fit Decreasing (BFD): In this method, the items are first

ordered by decreasing order of size, and then packed using the BF

method.

It is easy to prove that RFF < 2, where RFF is the absolute performance

ratio of the FF heuristic. Let FF (I) denote the number of bins used by the
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FF heuristic to pack the items in instance I, and let OPT (I) be the number

of bins in an optimal packing. First, we note that if FF (I) > 1, then

FF (I) <

⌈
2

n∑
i=1

si

⌉
. (14.1)

To see this, note that no two bins can be half empty. Suppose for the sake of

contradiction that there are two bins Bi and Bj that are half empty, where

i < j. Then, the first item uk put into bin Bj is of size 0.5 or less. But

this means that the FF algorithm would have had put uk in Bi instead of

starting a new bin. To see that this bound is achievable, consider the case

when for all i, 1 ≤ i ≤ n, si = 0.5+ ε, where ε < 1/(2n) is arbitrarily small.

Then, in this case, the number of bins needed is exactly n, which is less

than �n+ 2nε� = n+ 1.

On the other hand, it is easy to see that the minimum number of bins

required in an optimal packing is at least the sum of the sizes of all items.

That is,

OPT (I) ≥
⌈

n∑
i=1

si

⌉
. (14.2)

Dividing inequality (14.1) by inequality (14.2), we have that

RFF (I) =
FF (I)

OPT (I)
< 2.

In the bin packing problem, it is more appropriate to use the asymp-

totic performance ratio, as it is more indicative of the performance of the

algorithm for large values of n. A better bound for the FF heuristic is given

by the following theorem whose proof is lengthy and complex.

Theorem 14.1 For all instances I of the bin packing problem,

FF (I) ≤ 17

10
OPT (I) + 2.

It can be shown that the BF heuristic also has a performance ratio of

17/10. The FFD algorithm has a better performance ratio, which is given

by the following theorem.
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Theorem 14.2 For all instances I of the bin packing problem,

FFD(I) ≤ 11

9
OPT (I) + 4.

Again, it can be shown that the BFD heuristic also has a performance

ratio of 11/9.

14.4.2 The Euclidean traveling salesman problem

In this section, we consider the following problem. Given a set S of n points

in the plane, find a tour τ on these points of shortest length. Here, a tour

is a circular path that visits every point exactly once. This problem is a

special case of the traveling salesman problem and is commonly referred

to as the euclidean traveling salesman problem (etsp), which is

known to be NP-complete.

Let p1 be an arbitrary starting point. An intuitive method would proceed

in a greedy manner, visiting first that point closest to p1, say p2, and then

that point which is closest to p2, and so on. This method is referred to as

the nearest neighbor (NN ) heuristic, and it can be shown that it does not

result in a bounded performance ratio, i.e., RNN = ∞. Indeed, it can be

shown that this method results in the performance ratio

RNN (I) =
NN (I)

OPT (I)
= O(log n).

An alternative approximation algorithm satisfying RA = 2 can be sum-

marized as follows. First, a minimum cost spanning tree T is constructed.

Next, a multigraph T ′ is constructed from T by making two copies of each

edge in T . Next, an Eulerian tour τe is found (an Eulerian tour is a cycle

that visits every edge exactly once). Once τe is found, it can easily be con-

verted into the desired Hamiltonian tour τ by tracing the Eulerian tour

τe and deleting those vertices that have already been visited. Figure 14.1

illustrates the method. A minimum spanning tree of the input graph shown

in Fig. 14.1(a) is converted into an Eulerian multigraph in Fig. 14.1(b).

Figure 14.1(c) shows the resulting tour after bypassing those points that

have already been visited.

Call this method the MST (minimum spanning tree) heuristic. We now

show thatRMST < 2. Let τ∗ denote an optimal tour. Then, the length of the
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(a) (b) (c)
start

Fig. 14.1. An illustration of the approximation algorithm for the euclidean
traveling salesman problem.

constructed minimum spanning tree T is strictly less than the length of τ∗.
This is because deleting an edge from τ∗ results in a spanning tree. Thus,

the length of T ′ is strictly less than twice the length of τ∗. By the triangle

inequality, bypassing those vertices that have already been visited in τe
does not increase the length of the tour (recall that the triangle inequality

states that the sum of the lengths of any two sides in a triangle is greater

than or equal to the length of the third side). It follows that the length

of τ is strictly less than twice the length of τ∗. This establishes the bound

RMST < 2.

The idea behind the MST approximation algorithm can be improved to

obtain a better performance ratio for this problem. To make T Eulerian,

we do not double its edges. Instead, we first identify the set X of vertices

of odd degree. The cardinality of X is always even (Exercise 14.2). Next,

we find a minimum weight matching M on the members of X . Finally, we

set T ′ = T ∪M . Clearly, each vertex in T ′ has an even degree, and thus T ′

is Eulerian. Continuing as before, we proceed to find τ . Let us refer to this

method as the minimum matching (MM ) heuristic. It is described more

precisely in Algorithm etspapprox.

Now, we show that the performance ratio of this algorithm is 3/2. Let τ∗

be an optimal tour. First, observe that length(T ) < length(τ∗). Next, note
that length(M) ≤ (1/2)length(τ∗). To see this, let τ ′ be τ∗ with all vertices

not in X removed. Then, τ ′, which is a cycle, consists of two matchings

M1 and M2 on the set of points in X . In other words, if we let the edges

in τ ′ be numbered as e1, e2, e3, . . ., then M1 = {e1, e3, e5, . . .} and M2 =

{e2, e4, e6, . . .}. Since M is a minimum weight matching, its total weight is
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Algorithm 14.1 etspapprox
Input: An instance I of euclidean traveling salesman problem.

Output: A tour τ for instance I .

1. Find a minimum spanning tree T of S.
2. Identify the set X of odd degree in T .
3. Find a minimum weight matching M on X.
4. Find an Eulerian tour τe in T ∪M .
5. Traverse τe edge by edge and bypass each previously visited vertex.

Let τ be the resulting tour.

less than or equal to either one of M1 or M2. It follows that

length(τ) ≤ length(τe)

= length(T ) + length(M)

< length(τ∗) +
1

2
length(τ∗)

=
3

2
length(τ∗).

Thus, for any instance of euclidean traveling salesman problem,

RMM (I) =
MM (I)

OPT (I)
<

3

2
.

We remark that the above two approximation algorithms apply to any

instance of the general traveling salesman problem in which the triangle

inequality is respected. Since Algorithm etspapprox involves finding a

minimum weight matching, its time complexity is O(n3).

14.4.3 The vertex cover problem

Recall that a vertex cover C in a graph G = (V,E) is a set of vertices such

that each edge in E is incident to at least one vertex in C. We have shown

in Sec. 9.4.4 that the problem of deciding whether a graph contains a vertex

cover of size k, where k is a positive integer, is NP-complete.

Perhaps, the most intuitive heuristic that comes to mind is as follows.

Repeat the following step until E becomes empty. Pick an edge e arbitrarily

and add one of its endpoints, say v, to the vertex cover. Next, delete e and

all other edges incident to v. Surely, this is an approximation algorithm that



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch14 page 420

420 Algorithms: Design Techniques and Analysis

outputs a vertex cover. However, it can be shown that the performance ratio

of this algorithm is unbounded. Surprisingly, if when considering an edge

e, we add both of its endpoints to the vertex cover, then the performance

ratio becomes 2. The process of picking an edge, adding its endpoints to

the cover and deleting all edges incident to these endpoints is equivalent

to finding a maximal matching in G. Note that this matching need not

be of maximum cardinality. This approximation algorithm is outlined in

Algorithm vcoverapprox.

Algorithm 14.2 vcoverapprox
Input: An undirected graph G = (V,E).

Output: A vertex cover C for G.

1. C←{}
2. while E �= {}
3. Let e = (u, v) be any edge in E.
4. C←C ∪ {u, v}
5. Remove e and all edges incident to u or v from E.
6. end while

Algorithm vcoverapprox clearly outputs a vertex cover. We now show

that RV C = 2. It is not hard to see that the edges picked in Step 3 of the

algorithm correspond to a maximal matching M , that is, a matching on

the set of edges that cannot be extended. To cover the edges inM , we need

at least |M | vertices. This implies that the size of an optimal vertex cover

is at least |M |. However, the size of the cover obtained by the algorithm is

exactly 2|M |. It follows that RV C = 2. To see that this ratio is achievable,

consider the graph

G = ({v1, v2}, {(v1, v2)}).

For this graph, an optimal cover is {v1}, while the cover obtained by the

algorithm is {v1, v2}.

14.4.4 Hardness result: The traveling salesman problem

In the last sections, we have presented approximation algorithms with rea-

sonable performance ratios. It turns out, however, that there are many

problems that do not admit bounded performance ratios. For example,
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the problems coloring, clique, independent set and the general

traveling salesman problem (see Chapter 9) have no known approxi-

mation algorithms with bounded ratios. Let G = (V,E) be an undirected

graph. By Lemma 9.3, a subset S ⊆ V is an independent set of vertices if

and only if V −S is a vertex cover. Moreover, it can be shown that if S is of

maximum cardinality, then V −S is of minimum cardinality (Exercise 14.6).

One may be tempted to conclude from this that an approximation algo-

rithm for vertex cover will help in finding an approximation algorithm

for independent set. This, however, is not the case. To see why, suppose

that G has a minimum vertex cover of size (n/2)− 1. The approximation

algorithm vcoverapprox above for the vertex cover problem will find one

of size at most n−2. But the complement of this cover is an independent set

of size 2, while the size of a maximum independent set is, by Exercise 14.6,

exactly n− ((n/2)− 1) = (n/2) + 1.

Now, we turn our attention to the general traveling salesman problem.

The following theorem shows that it is impossible to find an approximation

algorithm with bounded ratio for the traveling salesman problem unless

NP = P.

Theorem 14.3 There is no approximation algorithm A for the problem

traveling salesman with RA <∞ unless NP = P.

Proof. Suppose, to the contrary, that there is an approximation algo-

rithm A for the problem traveling salesman with RA ≤ K, for some

positive integer K. We will show that this can be used to derive a polyno-

mial time algorithm for the problem Hamiltonian cycle, which is known

to be NP-complete (see Chapter 9). Let G = (V,E) be an undirected graph

with n vertices. We construct an instance I of the traveling salesman prob-

lem as follows. Let V correspond to the set of cities and define a distance

function d(u, v) for all pairs of cities u and v by

d(u, v) =

{
1 if (u, v) ∈ E
Kn if (u, v) 
∈ E.

Clearly, if G has a Hamiltonian cycle, then OPT (I) = n; otherwise,

OPT (I) > Kn. Therefore, since RA ≤ K, we will have A(I) ≤ Kn if

and only if G has a Hamiltonian cycle. This implies that there exists a

polynomial time algorithm for the problem Hamiltonian cycle. But this

implies that NP = P, which is highly unlikely. To finish the proof, note that
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the construction of instance I of the traveling salesman problem can easily

be achieved in polynomial time. �

14.5 Polynomial Approximation Schemes

So far we have seen that for some NP-complete problems there exist approx-

imation algorithms with bounded approximation ratio. On the other hand,

for some problems, it is impossible to devise an approximation algorithm

with bounded ratio unless NP = P. On the other extreme, it turns out that

there are problems for which there exists a series of approximation algo-

rithms whose performance ratio converges to 1. Examples of these prob-

lems include the problems knapsack, subset-sum and multiprocessor

scheduling.

Definition 14.1 An approximation scheme for an optimization problem

is a family of algorithms {Aε | ε > 0} such that RAε ≤ 1 + ε.

Thus, an approximation scheme can be viewed as an approximation

algorithm A whose input is an instance I of the problem and a bound error

ε such that RA(I, ε) ≤ 1 + ε.

Definition 14.2 A polynomial approximation scheme (PAS) is an

approximation scheme {Aε}, where each algorithm Aε runs in time that

is polynomial in the length of the input instance I.

Note that in this definition, Aε may not be polynomial in 1/ε. In the

next section, we will strengthen the definition of an approximation scheme

so that the algorithms run in time that is also polynomial in 1/ε. In this sec-

tion, we will investigate a polynomial approximation scheme for the knap-

sack problem.

14.5.1 The knapsack problem

Let U = {u1, u2, . . . , un} be a set of items to be packed in a knapsack of

size C. For 1 ≤ j ≤ n, let sj and vj be the size and value of the jth item,

respectively. Recall that the objective is to fill the knapsack with some

items in U whose total size is at most C and such that their total value is
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maximum (see Sec. 6.6). Assume without loss of generality that the size of

each item is not larger than C.

Consider the greedy algorithm that first orders the items by decreasing

value to size ratio (vj/sj) and then considers the items one by one for

packing. If the current item fits in the available space, then it is included;

otherwise, the next item is considered. The algorithm terminates as soon

as all items have been considered or no more items can be included in the

knapsack. This greedy algorithm does not result in a bounded ratio as is

evident from the following instance. Let U = {u1, u2}, s1 = 1, v1 = 2, s2 =

v2 = C > 2. In this case, the algorithm will pack only item u1, while in

the optimal packing, item u2 is selected instead. Since C can be arbitrarily

large, the performance ratio of this greedy algorithm is unbounded.

Surprisingly, a simple modification of the above algorithm results in

a performance ratio of 2. The modification is to also test the pack-

ing consisting of the item of largest value only, and then the better of

the two packings is chosen as the output. Call this approximation algo-

rithm knapsackgreedy. This approximation algorithm is outlined in

Algorithm knapsackgreedy. It will be left as an exercise to show that

Rknapsackgreedy = 2 (Exercise 14.3).

Algorithm 14.3 knapsackgreedy
Input: 2n+ 1 positive integers corresponding to item sizes {s1, s2, . . . , sn},

item values {v1, v2, . . . , vn} and the knapsack capacity C.

Output: A subset Z of the items whose total size is at most C.

1. Renumber the items so that v1/s1 ≥ v2/s2 ≥ . . . ≥ vn/sn.
2. j← 0; K← 0; V ← 0; Z←{}
3. while j < n and K < C
4. j ← j+1
5. if sj ≤ C −K then
6. Z← Z ∪ {uj}
7. K←K + sj
8. V ← V + vj
9. end if

10. end while
11. Let Z′ = {us}, where us is an item of maximum value.
12. if V ≥ vs then return Z
13. else return Z′.

Now, we describe a polynomial approximation scheme for the knapsack

problem. The idea is quite simple. Let ε = 1/k for some positive integer k.
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Algorithm Aε consists of two steps. The first step is to choose a subset of

at most k items and put them in the knapsack. The second step is to run

Algorithm knapsackgreedy on the remaining items in order to complete

the packing. These two steps are repeated
∑k

j=0

( n
j

)
times, once for each

subset of size j, 0 ≤ j ≤ k. In the following theorem, we bound both the

running time and performance ratio of Algorithm Aε, for all k ≥ 1.

Theorem 14.4 Let ε = 1/k for some integer k ≥ 1. Then, the running

time of Algorithm Aε is O(knk+1), and its performance ratio is 1 + ε.

Proof. Since
∑k

j=0

( n
j

)
= O(knk) (see Exercise 14.4), the number of sub-

sets of size at most k is O(knk). The amount of work done in each iteration

is O(n), and hence the time complexity of the algorithm is O(knk+1).

Now, we bound the performance ratio of the algorithm. Let I be an

instance of the knapsack problem with items U = {u1, u2, . . . , un} and C

being the knapsack capacity. Let X be the set of items corresponding to

an optimal solution. If |X | ≤ k, then there is nothing to prove, as the

algorithm will try all possible k-subsets. So, suppose that |X | > k. Let

Y = {u1, u2, . . . , uk} be the set of k items of largest value in X , and let

Z = {uk+1, uk+2, . . . , ur} denote the set of remaining items in X , assuming

vj/sj ≥ vj+1/sj+1 for all j, k + 1 ≤ j ≤ r − 1. Since the elements in Y are

of largest value, we must have

vj ≤ OPT (I)

k + 1
for j = k + 1, k + 2, . . . , r. (14.3)

Consider now the iteration in which the algorithm tries the set Y as the ini-

tial k-subset, and let um be the first item of Z not included in the knapsack

by the algorithm. If no such item exists, then the output of the algorithm is

optimal. So, assume that um exists. The optimal solution can be written as

OPT (I) =

k∑
j=1

vj +

m−1∑
j=k+1

vj +

r∑
j=m

vj . (14.4)

Let W denote the set of items packed by the algorithm, but not in

{u1, u2, . . . , um}, that were considered by the algorithm before um. In

other words, if uj ∈ W , then uj /∈ {u1, u2, . . . , um} and vj/sj ≥ vm/sm.
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Now, A(I) can be written as

A(I) ≥
k∑

j=1

vj +

m−1∑
j=k+1

vj +
∑
j∈W

vj . (14.5)

Let

C′ = C −
k∑

j=1

sj −
m−1∑
j=k+1

sj , and C′′ = C′ −
∑
j∈W

sj

be the residual capacities available, respectively, in the optimal and approx-

imate solutions for the items of U − Y following um−1. From 14.4,

OPT (I) ≤
k∑

j=1

vj +

m−1∑
j=k+1

vj + C′ vm
sm

.

By definition of m, we have C′′ < sm and vj/sj ≥ vm/sm for every item

uj ∈W . Since

C′ =
∑

uj∈W

sj + C′′, and C′′ < sm,

we must have

OPT (I) <

k∑
j=1

vj +

m−1∑
j=k+1

vj +
∑
j∈W

vj + vm.

Hence, from 14.5, OPT (I) < A(I) + vm, and from 14.3,

OPT (I) < A(I) +
OPT (I)

k + 1
,

that is,

OPT (I)

A(I)

(
1− 1

k + 1

)
=

OPT (I)

A(I)

(
k

k + 1

)
< 1.

Consequently,

Rk =
OPT (I)

A(I)
< 1 +

1

k
= 1 + ε. �
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14.6 Fully Polynomial Approximation Schemes

The polynomial approximation scheme described in Sec. 14.5 runs in time

that is exponential in 1/ε, the reciprocal of the desired error bound. In this

section, we demonstrate an approximation scheme in which the approxi-

mation algorithm runs in time that is also polynomial in 1/ε. This can be

achieved for some NP-hard problems using a constrained approximation

scheme which we define below.

Definition 14.3 A fully polynomial approximation scheme (FPAS) is

an approximation scheme {Aε}, where each algorithm Aε runs in time that

is polynomial in both the length of the input instance and 1/ε.

Definition 14.4 A pseudopolynomial time algorithm is an algorithm

that runs in time that is polynomial in the value of L, where L is the

largest number in the input instance.

Notice that if an algorithm runs in time that is polynomial in logL, then

it is a polynomial time algorithm. Here, logL is commonly referred to as

the size of L. In Chapter 6, we have seen an example of a pseudopolynomial

time algorithm, namely the algorithm for the knapsack problem. The idea

behind finding an FPAS for an NP-hard problem is typical to all problems

for which a pseudopolynomial time algorithm exists. Starting from such an

algorithm A, scaling and rounding are applied to the input values in an

instance I to obtain an instance I ′. Then, the same algorithm A is applied

to the modified instance I ′ to obtain an answer that is an approximation

of the optimal solution. In this section, we will investigate an FPAS for the

subset-sum problem.

14.6.1 The subset-sum problem

The subset-sum problem is a special case of the knapsack problem in which

the item values are identical to their sizes. Thus, the subset-sum problem

can be defined as follows. Given n items of sizes s1, s2, . . . , sn, and a positive

integer C, the knapsack capacity, the objective is to find a subset of the

items that maximizes the total sum of their sizes without exceeding the

knapsack capacity C. Incidentally, this problem is a variant of the partition

problem (see Sec. 9.4.5). The algorithm to solve this problem is almost
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identical to that for the knapsack problem described in Sec. 6.6. It is shown

below as Algorithm subsetsum.

Algorithm 14.4 subsetsum
Input: A set of items U = {u1, u2, . . . , un} with sizes s1, s2, . . . , sn and

a knapsack capacity C.

Output: The maximum value of the function
∑

ui∈S si subject to∑
ui∈S si ≤ C for some subset of items S ⊆ U .

1. for i← 0 to n
2. T [i, 0]← 0
3. end for
4. for j← 0 to C
5. T [0, j]← 0
6. end for
7. for i← 1 to n
8. for j← 1 to C
9. T [i, j]← T [i− 1, j]

10. if si ≤ j then
11. x← T [i− 1, j − si] + si
12. if x > T [i, j] then T [i, j]← x
13. end if
14. end for
15. end for
16. return T [n,C]

Clearly, the time complexity of Algorithm subsetsum is exactly the

size of the table, Θ(nC), as filling each entry requires Θ(1) time. Now, we

develop an approximation algorithm Aε, where ε = 1/k for some positive

integer k. The algorithm is such that for any instance I,

RAε(I) =
OPT (I)

Aε(I)
≤ 1 +

1

k
.

Let

K =
C

2(k + 1)n
.

First, we set C′ = �C/K� and s′j = �sj/K� for all j, 1 ≤ j ≤ n, to obtain

a new instance I ′. Next, we apply Algorithm subsetsum on I ′. The run-

ning time is now reduced to Θ(nC/K) = Θ(kn2). Now, we estimate the

error in the approximate solution. Since an optimal solution cannot con-

tain more than all the n items, we have the following relationship between
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the two optimum values OPT (I) and OPT (I ′) corresponding to the origi-

nal instance I and the new instance I ′:

OPT (I)−K ×OPT (I ′) ≤ Kn.

That is, if we let the approximate solution be K times the output of the

algorithm when presented with instance I ′, then we have

OPT (I)−Aε(I) ≤ Kn,

or

Aε(I) ≥ OPT (I)−Kn = OPT (I)− C

2(k + 1)
.

We may assume without loss of generality that OPT (I) ≥ C/2. This is

because it is easy to obtain the optimal solution if OPT (I) < C/2 (see

Exercise 14.7). Consequently,

RAε(I) =
OPT (I)

Aε(I)

≤ Aε(I) + C/2(k + 1)

Aε(I)

≤ 1 +
C/2(k + 1)

OPT (I)− C/2(k + 1)

≤ 1 +
C/2(k + 1)

C/2− C/2(k + 1)

= 1 +
1

k + 1− 1

= 1 +
1

k
.

Thus, the algorithm’s performance ratio is 1 + ε, and its running time

is Θ(n2/ε). For example, if we let ε = 0.1, then we obtain a quadratic

algorithm with performance ratio of 11/10. If we let ε = 1/nr for some

r ≥ 1, then we have an approximation algorithm that runs in time Θ(nr+2)

with performance ratio of 1 + 1/nr.
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14.7 Practice Problems

14.1. Give an instance I of the bin packing problem such that FF (I) ≥
3
2OPT (I).

14.2. Show that the number of vertices of odd degree in an undirected

graph is even.

14.3. Consider the following algorithm for finding a vertex cover in an undi-

rected graph. Execute the following step until all edges are deleted.

Pick a vertex of highest degree that is incident to at least one edge

in the remaining graph, add it to the cover and delete all edges inci-

dent to that vertex. Show that this greedy approach does not always

result in a vertex cover of minimum size.

14.4. Consider the following approximation algorithm for the problem of

finding a maximum clique in a given graph G. Repeat the following

step until the resulting graph is a clique. Delete from G a vertex

that is not connected to every other vertex in G and also delete all

its incident edges. Show that this greedy approach does not always

result in a clique of maximum size.

14.5. Consider the following approximation algorithm for the problem of

finding a maximum clique in a given graph G. Set C = {} and

repeat the following step until G has no vertex that is not in C and

is connected to every other vertex in C. Add to C a vertex that is

not in C and is connected to every other vertex in C. Show that this

greedy approach does not always result in a clique of maximum size.

14.6. Show that Algorithm vcoverapprox does not always give an opti-

mal vertex cover by giving a counterexample of a graph consisting

of at least three vertices.

14.7. Consider the subset-sum problem discussed in Sec. 14.6.1. Show

that if OPT (I) < C/2, then it is straightforward to obtain the opti-

mal solution. Hint: Show that
∑n

j=1 sj < C.

14.8 Exercises

14.1. Show that the performance ratio of the MST heuristic is achievable.

In other words, give an instance of the Euclidean traveling sales-

man problem on which the MST heuristic results in a performance

ratio of 2.



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch14 page 430

430 Algorithms: Design Techniques and Analysis

14.2. Show that the performance ratio of the NN approximation algo-

rithm for the Euclidean traveling salesman problem is unbounded.

14.3. Show that the performance ratio of Algorithm knapsackgreedy

for the knapsack problem is 2.

14.4. Show that
∑k

j=0

(
n

j

)
= O(knk).

14.5. Theorem 14.4 states that the running time of Algorithm Aε is

O(knk+1), where k = 1/ε is part of the input. Explain why this

is an exponential algorithm.

14.6. Let G = (V,E) be an undirected graph. By Lemma 9.3, a subset

S ⊆ V is an independent set of vertices if and only if V − S is a

vertex cover for G. Show that if S is of maximum cardinality, then

V − S is a vertex cover of minimum cardinality.

14.7. Show that the performance ratio of the approximation algorithm

in Exercise 14.3 for the vertex cover problem is unbounded.

14.8. Show that the performance ratio of the approximation algorithm

in Exercise 14.4 for the maximum clique problem is unbounded.

14.9. Show that the performance ratio of the heuristic algorithm in Exer-

cise 14.5 for the maximum clique problem is unbounded.

14.10. Give an approximation algorithm for the coloring problem: Find

the minimum number of colors needed to color an undirected graph

so that adjacent vertices are assigned different colors. Prove or dis-

prove that its performance ratio is bounded.

14.11. Give an approximation algorithm for the independent set prob-

lem: Find the maximum number of vertices that are mutually dis-

connected from each other. Prove or disprove that its performance

ratio is bounded.

14.12. Give an O(n) time algorithm that finds a minimum vertex cover in

a tree in linear time.
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14.13. Show in more detail that the running time of the polynomial

approximation scheme for the knapsack problem discussed in the

proof of Theorem 14.4 is O(knk+1). You should take into account

the time needed to generate the subsets.

14.14. Consider the optimization version of the set cover problem

defined in Sec. 9.4.5: Given a set X of n elements, a family F
of subsets of X , find a subset C ⊆ F of minimum size that covers

all the elements in X . An approximation algorithm to solve this

problem is outlined as follows. Initialize S = X, and C = {}, and
repeat the following step until S = {}. Choose a subset Y ∈ F that

maximizes |Y ∩ S|, add Y to C and set S = S − Y . Show that this

greedy algorithm does not always produce a set cover of minimum

size.

14.15. Show that the performance ratio of the approximation algorithm

described in Exercise 14.14 for the set cover problem is unbounded.

14.16. Show that the performance ratio of the approximation algorithm

described in Exercise 14.14 for the set cover problem is O(log n).

14.17. Consider the optimization version of the multiprocessor

scheduling problem defined in Sec. 9.4.5: Given n jobs

J1, J2, . . . , Jn, each having a run time ti and a positive integer m

(number of processors), schedule those jobs on the m processors

so as to minimize the finishing time. The finishing time is defined

to be the maximum execution time among all the m processors.

An approximation algorithm to solve this problem is similar to the

FF algorithm: The jobs are considered in their order J1, J2, . . . , Jn,

each job is assigned to the next available processor (ties are broken

arbitrarily). In other words, the next job is assigned to that proces-

sor with the least finishing time. Show that the performance ratio

of this algorithm is 2− 1/m.

14.18. Show that the 2 − 1/m bound of the approximation algorithm in

Exercise 14.17 is tight by exhibiting an instance that achieves this

ratio.
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14.19. Consider modifying the approximation algorithm described in

Exercise 14.17 for the multiprocessor scheduling problem by

first ordering the jobs by decreasing value of their run times. Prove

that in this case the performance ratio becomes

4

3
− 1

3m
.
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PART 6

Iterative Improvement for
Domain-Specific Problems

In this part of the book, we study an algorithm design technique that

we will refer to as iterative improvement. In its simplest form, this tech-

nique starts with a simple-minded (usually a greedy) solution and continues

to improve on that solution in stages until an optimal solution is found.

One more aspect of problem-specificity characterizes this technique. Some

marking characteristics of the iterative improvement technique are in order.

First, devicing new data structures to meet the data access requirements of

the algorithm effectively, e.g., splay trees and Fibonacci heaps. Second, the

introduction of innovative analysis techniques to carefully account for the

true cost of the computation. This will be evident when, for example, count-

ing the number of phases or augmentations in network flow and matching

algorithms. Third, exploiting the problem specific observations to improve

upon the existing solution.

As examples of this design technique, we will study in detail two prob-

lems: finding a maximum flow in a network and finding a maximum match-

ing in undirected graphs. Both of these problems have received a great

433
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amount of attention by researchers, and as a result many algorithms have

been developed. Beside being interesting in their own right, these problems

arise as subproblems in many practical applications.

For the maximum flow problem, which is the subject of Chapter 15,

we present a sequence of increasingly efficient algorithms, starting from an

algorithm with unbounded time complexity to an algorithm that runs in

cubic time.

Chapter 16 is devoted to the problem of finding a maximum matching

in an undirected graph. We will give algorithms for bipartite graphs and

general graphs. We close this chapter with an elegant matching algorithm

in bipartite graphs that runs in time O(n2.5).
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Chapter 15

Network Flow

15.1 Introduction

Let G = (V,E) be a directed graph with two distinguished vertices s

and t called, respectively, the source and sink, and a capacity function

c(u, v) defined on all pairs of vertices. Throughout this chapter, the 4-tuple

(G, s, t, c), or simply G, will denote a network . Also, n and m will denote,

respectively, the number of vertices and edges in G, that is, n = |V | and
m = |E|. In this chapter, we consider the problem of finding a maximum

flow in a given network (G, s, t, c) from s to t. This problem is called the

max-flow problem. We will present a series of algorithms to solve this prob-

lem starting from a method of unbounded time complexity to an algorithm

that runs in time O(n3).

15.2 Preliminaries

Let G = (V,E) be a directed graph with two distinguished vertices s and

t called, respectively, the source and sink, and a capacity function c(u, v)

defined on all pairs of vertices with c(u, v) > 0 if (u, v) ∈ E and c(u, v) = 0

otherwise.

Definition 15.1 A flow in G is a real-valued function f on vertex pairs

having the following three conditions:

C1. Skew symmetry. ∀ u, v ∈ V, f(u, v) = −f(v, u). We say there is a flow

from u to v if f(u, v) > 0.

435
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C2. Capacity constraints. ∀ u, v ∈ V, f(u, v) ≤ c(u, v). We say edge (u, v)

is saturated if f(u, v) = c(u, v).

C3. Flow conservation. ∀ u ∈ V −{s, t}, ∑v∈V f(u, v) = 0. In other words,

the net flow (total flow out minus total flow in) at any interior vertex is 0.

C4. ∀ v ∈ V, f(v, v) = 0.

Definition 15.2 A cut {S, T } is a partition of the vertex set V into two

subsets S and T such that s ∈ S and t ∈ T . The capacity of the cut {S, T },
denoted by c(S, T ), is

c(S, T ) =
∑

u∈S,v∈T

c(u, v).

The flow across the cut {S, T }, denoted by f(S, T ), is

f(S, T ) =
∑

u∈S,v∈T

f(u, v).

Thus, the flow across the cut {S, T } is the sum of the positive flow on

edges from S to T minus the sum of the positive flow on edges from T to S.

For any vertex u and any subset A ⊆ V , let f(u,A) denote f({u}, A) and
f(A, u) denote f(A, {u}). For a capacity function c, c(u,A) and c(A, u) are

defined similarly.

Definition 15.3 The value of a flow f , denoted by |f |, is defined to be

|f | = f(s, V ) =
∑
v∈V

f(s, v).

Lemma 15.1 For any cut {S, T } and a flow f , |f | = f(S, T ).

Proof. By induction on the number of vertices in S. If S = {s}, then it

is true by definition. Assume it is true for the cut {S, T }. We show that it

also holds for the cut {S∪{w}, T −{w}} for w ∈ T −{t}. Let S′ = S∪{w}
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and T ′ = T − {w}. Then,
f(S′, T ′) = f(S, T ) + f(w, T )− f(S,w)− f(w,w)

= f(S, T ) + f(w, T ) + f(w, S)− 0 (by conditions C1 and C4)

= f(S, T ) + f(w, V )

= f(S, T ) + 0 (by condition C3)

= f(S, T )

= |f |. (by induction) �

Definition 15.4 Given a flow f on G with capacity function c, the

residual capacity function for f on the set of pairs of vertices is defined

as follows. For each pair of vertices u, v ∈ V, r(u, v) = c(u, v) − f(u, v).

The residual graph for the flow f is the directed graph R = (V,Ef ), with

capacities defined by r and

Ef = {(u, v)|r(u, v) > 0}.

The residual capacity r(u, v) represents the amount of additional flow

that can be pushed along the edge (u, v) without violating the capacity

constraints C2. If f(u, v) < c(u, v), then both (u, v) and (v, u) are present

in R. If there is no edge between u and v in G, then neither (u, v) nor (v, u)

are in Ef . Thus, |Ef | ≤ 2|E|.
Figure 15.1 shows an example of a flow f on a networkG with its residual

graph R. In Fig. 15.1(a), the capacity of each edge and its assigned flow are

separated by comma. The edge (s, a) in G induces two edges in R, namely

(s, a) and (a, s). The residual capacity of (s, a) is equal to c(s, a)−f(s, a) =

6 − 2 = 4. This means that we can push 4 additional units of flow along

the edge (s, a). The residual capacity of (a, s) is equal to the flow along
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Fig. 15.1. A network with flow and its residual graph.
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the edge (s, a) = 2. This means that we can push 2 units of backward flow

along the edge (s, a). The edge (s, b) is not present in the residual graph R,

since its residual capacity is zero.

Let f and f ′ be any two flows in a network G. Define the function

f + f ′ by (f + f ′)(u, v) = f(u, v) + f ′(u, v) for all pairs of vertices u and v.

Similarly, define the function f − f ′ by (f − f ′)(u, v) = f(u, v)− f ′(u, v).
The following two lemmas, which appear to be intuitive, provide the

basis for the iterative improvement technique in network flow. Their proofs

are left for the exercises.

Lemma 15.2 Let f be a flow in G and f ′ the flow in the residual graph

R for f . Then, the function f + f ′ is a flow in G of value |f |+ |f ′|.

Lemma 15.3 Let f be any flow in G and f∗ a maximum flow in G. If

R is the residual graph for f , then the value of a maximum flow in R is

|f∗| − |f |.

Definition 15.5 Given a flow f in G, an augmenting path p is a directed

path from s to t in the residual graph R. The bottleneck capacity of p is

the minimum residual capacity along p. The number of edges in p will be

denoted by |p|.

In Fig. 15.1(b), the path s, a, c, b, d, t is an augmenting path with bottle-

neck capacity 2. If two additional units of flow are pushed along this path,

then the flow becomes maximum.

Theorem 15.1 (max-flow min-cut theorem). Let (G, s, t, c) be a network

and f a flow in G. The following three statements are equivalent:

(a) There is a cut {S, T } with c(S, T ) = |f |.
(b) f is a maximum flow in G.

(c) There is no augmenting path for f .

Proof. (a)→(b). Since |f | ≤ c(A,B) for any cut {A,B}, c(S, T ) = |f |
implies f is a maximum flow.

(b)→(c). If there is an augmenting path p in G, then |f | can be increased

by increasing the flow along p, i.e., f is not maximum.
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(c)→(a). Suppose there is no augmenting path for f . Let S be the set of

vertices reachable from s by paths in the residual graph R. Let T = V −S.

Then, R contains no edges from S to T . Thus, in G, all edges from S to T

are saturated. It follows that c(S, T ) = |f |. �

The proof of the implication (c)→(a) suggests an algorithm for finding

a minimum cut in a given network.

15.3 The Ford–Fulkerson Method

Theorem 15.1 suggests a way to construct a maximum flow by itera-

tive improvement: One keeps finding an augmenting path arbitrarily and

increases the flow by its bottleneck capacity. This is known as the Ford–

Fulkerson method.

Algorithm 15.1 ford–fulkerson
Input: A network (G, s, t, c).

Output: A flow in G.

1. Initialize the residual graph: Set R = G.
2. for each edge (u, v) ∈ E
3. f(u, v)← 0
4. end for
5. while there is an augmenting path p = s, . . . , t in R
6. Let Δ be the bottleneck capacity of p.
7. for each edge (u, v) in p
8. f(u, v)← f(u, v) + Δ
9. end for

10. Update the residual graph R.
11. end while

Step 1 initializes the residual graph to the original network. The for loop

in Step 2 initializes the flow in G to the zero flow. The while loop is

executed for each augmenting path found in the residual graph R. Each

time an augmenting path is found, its bottleneck capacity Δ is computed

and the flow is increased by Δ. This is followed by updating the residual

graph R. Updating R may result in the addition of new edges or the deletion

of some of the existing ones. It should be emphasized that the selection of

the augmenting path in this method is arbitrary.
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Fig. 15.2. An example of a graph on which the ford-fulkerson method
performs badly.

The Ford–Fulkerson method may not halt if the capacities are irrational.

If the flow does converge, however, it may converge to a value that is not

necessarily maximum. If the capacities are integers, this method always

computes the maximum flow f∗ in at most |f∗| steps, since each augmenta-

tion increases the flow by at least 1. As each augmenting path can be found

in O(m) time (e.g., using depth-first search), the overall time complexity

of this method (when the input capacities are integers) is O(m|f∗|). Notice
that this time complexity is dependent on the input values. As an exam-

ple, consider the network shown in Fig. 15.2(a). If the method alternately

selects the augmenting paths s, a, b, t and s, b, a, t, the number of augment-

ing steps is 1000. The first two residual graphs are shown in Figs. 15.2(b)

and 15.2(c).

15.4 Maximum Capacity Augmentation

In this section, we consider improving the Ford–Fulkerson method by select-

ing among all possible augmenting paths that path with maximum bottle-

neck capacity. This heuristic is due to Edmonds and Karp. As an exam-

ple, consider the original graph with zero flow of the network shown in

Fig. 15.1(a). According to this heuristic, the augmenting path s, a, c, b, d, t

with bottleneck capacity 6 is first selected. This is followed by choosing

the augmenting path s, b, c, t with bottleneck capacity 2. If the augmenting

path s, b, c, d, t with bottleneck capacity 2 is next selected, then the flow

becomes maximum. As to the network shown in Fig. 15.2, a maximum flow

can be found using this method after exactly two augmentations.

To analyze the time complexity of this method, which we will refer to

as the maximum capacity augmentation (mca) method, we first show that

there always exists a sequence of at most m augmentations that lead to a
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maximum flow. Next, we show that if the input capacities are integers, then

its time complexity is polynomial in the input size, which is a significant

improvement on the Ford–Fulkerson method.

Lemma 15.4 Starting from the zero flow, there is a sequence of at most

m augmentations that lead to a maximum flow.

Proof. Let f∗ be a maximum flow. Let G∗ be the subgraph of G induced

by the edges (u, v) such that f∗(u, v) > 0. Initialize i to 1. Find a path pi
from s to t in G∗. Let Δi be the bottleneck capacity of pi. For every edge

(u, v) on pi, reduce f
∗(u, v) by Δi deleting those edges whose flow becomes

zero. Increase i by 1 and repeat the above procedure until t is no longer

reachable from s. This algorithm halts after at most m steps, since at least

one edge is deleted in each iteration. It produces a sequence of augmenting

paths p1, p2, . . . with flows Δ1,Δ2, . . .. Now, beginning with the zero flow,

push Δ1 units along p1, Δ2 units along p2, . . . to construct a maximum flow

in at most m steps. �

This lemma is not constructive in the sense that it does not provide

a way of finding this sequence of augmenting paths; it only proves the

existence of such a sequence.

Theorem 15.2 If the edge capacities are integers, then the mca con-

structs a maximum flow in O(m log c∗) augmenting steps, where c∗ is the

maximum edge capacity.

Proof. Let R be the residual graph corresponding to the initial zero

flow. Since the capacities are integers, there is a maximum flow f∗ that is

an integer. By Lemma 15.4, f∗ can be achieved in at most m augment-

ing paths, and hence there is an augmenting path p in R with bottleneck

capacity at least f∗/m. Consider a sequence of 2m consecutive augmenta-

tions using the mca heuristic. One of these augmenting paths must have

bottleneck capacity of f∗/2m or less. Thus, after at most 2m augmenta-

tions, the maximum bottleneck capacity is reduced by a factor of at least 2.

After at most 2m more augmentations, the maximum bottleneck capacity

is reduced further by a factor of at least 2. In general, after at most 2km

augmentations, the maximum bottleneck capacity is reduced by a factor of

at least 2k. Since the maximum bottleneck capacity is at least one, k cannot

exceed log c∗. This means the number of augmentations is O(m log c∗). �
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A path of maximum bottleneck capacity can be found in O(n2) time

using a modification of Dijkstra’s algorithm for the single-source shortest

path problem (see Sec. 7.2). Therefore, the mca heuristic finds a maximum

flow in O(mn2 log c∗) time.

The time complexity is now polynomial in the input size. However, it is

undesirable that the running time of an algorithm be dependent on its input

values. This dependence will be removed using the algorithms presented in

the following three sections.

15.5 Shortest Path Augmentation

In this section, we consider another heuristic, also due to Edmonds and

Karp, that puts some order on the selection of augmenting paths. It results

in a time complexity that is not only polynomial but also independent of

the input values.

Definition 15.6 The level of a vertex v, denoted by level(v), is the least

number of edges in a path from s to v. Given a directed graph G = (V,E),

the level graph L is (V,E′), where E′ = {(u, v) | level(v) = level(u) + 1}.

Given a directed graph G and a source vertex s, its level graph L can

easily be constructed using breadth-first search. As an example of the con-

struction of the level graph, see Figs. 15.3(a) and 15.3(b). In these figures,

the graph shown in (b) is the level graph of the network shown in (a).

Here, {s}, {a, b}, {c, d} and {t} constitute levels 0, 1, 2 and 3, respectively.

Observe that edges (a, b), (b, a) and (d, c) are not present in the level graph,

as they connect vertices in the same level. Also the edge (c, b) is not included

since it is directed from a vertex of higher level to a vertex of lower level.

This heuristic, which we will refer to as minimum path length augmen-

tation (mpla) method, selects an augmenting path of minimum length and

increases the current flow by an amount equal to the bottleneck capacity

of that path. The algorithm starts by initializing the flow to the zero flow

and setting the residual graph R to the original network. It then proceeds

in phases. Each phase consists of the following two steps:

(1) Compute the level graph L from the residual graph R. If t is not in L,

then halt; otherwise, continue.
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(2) As long as there is a path p from s to t in L, augment the current flow by

p, remove saturated edges from L and R and update them accordingly.

Note that augmenting paths in the same level graph are of the same

length. Moreover, as will be shown later, the length of an augmenting path

in any phase after the first is strictly longer than the length of an aug-

menting path in the preceding phase. The algorithm terminates as soon as

t does not appear in the newly constructed level graph. An outline of the

algorithm is shown as Algorithm mpla (see Fig. 15.3 for an example).

Algorithm 15.2 mpla
Input: A network (G, s, t, c).

Output: The maximum flow in G.

1. for each edge (u, v) ∈ E
2. f(u, v)← 0
3. end for
4. Initialize the residual graph: Set R = G.
5. Find the level graph L of R.
6. while t is a vertex in L
7. while t is reachable from s in L
8. Let p be a path from s to t in L.
9. Let Δ be the bottleneck capacity on p.

10. Augment the current flow f by Δ.
11. Update L and R along the path p.
12. end while
13. Use the residual graph R to compute a new level graph L.
14. end while

To analyze the running time of the algorithm, we need the following

lemma.

Lemma 15.5 The number of phases in the mpla algorithm is at most n.

Proof. We show that the number of level graphs computed using the

algorithm is at most n. First, we show that the sequence of lengths of

augmenting paths using the mpla algorithm is strictly increasing. Let p be

any augmenting path in the current level graph. After augmenting using

p, at least one edge will be saturated and will disappear in the residual

graph. At most |p| new edges will appear in the residual graph, but they

are back edges and hence will not contribute to a shortest path from s to t.



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch15 page 444

444 Algorithms: Design Techniques and Analysis

t

c

b d

s

a

4

19

7

11

12

11

12

Final flow.

(j)

s

a

2

4
(i)

b d
3

Third level graph.

t

c

b d

s

a 8/7

7/7
9/7

4
(g)

t

c

b d

s

a

4

1

12

9 72 10

11
Residual graph.

12 19

11

4

3

4

(h)

t

c

s

b d

a

4

8

12

9 79 10

4
Residual graph.

12 12

4

4

10

4

(e)

t

c

b d

s

a 8

7
9

4

10
Second level graph.

(f)

t

c

b d

s

a

4/413/4

(d)

14/4

Augment s, , , .

t

c

b d

s

a 20/12
12/12

16/12
(c)

Input graph.

t

Augment s, , , .

b d

c

s

a

4

20

7

14

9

12

410

13

16(a) (b)

14

First level graph.

t

c

b d

s

a

4

20
12

13

16

10/7

Augment s, , , c, .

Fig. 15.3. Example of the mpla algorithm.

There can be at most m paths of length |p| since each time an edge in the

level graph disappears. When t is no longer reachable from s in the level

graph, any augmenting path must use a back edge or a cross edge, and

hence must be of length strictly greater than |p|. Since the length of any

augmenting path is between 1 and n− 1, the number of level graphs used
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for augmentations is at most n− 1. Since one more level graph is computed

in which t does not appear, the total number of level graphs computed is

at most n. �

The running time of the mpla algorithm is computed as follows. Since

there can be at most m augmentations along paths of the same length,

and since by Lemma 15.5 the number of level graphs computed that are

used for augmenting is at most n − 1, the number of augmenting steps is

at most (n − 1)m. Finding a shortest augmenting path in the level graph

takes O(m) time using breadth-first search. Thus, the total time needed

to compute all augmenting paths is O(nm2). Computing each level graph

takes O(m) using breadth-first search, and hence the total time required to

compute all level graphs is O(nm). It follows that the overall running time

of Algorithm mpla is O(nm2).

As to the correctness of the algorithm, note that after computing at

most n−1 level graphs, there are no more augmenting paths in the original

network. By Theorem 15.1, this implies that the flow is maximum. Hence,

we have the following theorem:

Theorem 15.3 The mpla algorithm finds a maximum flow in a network

with n vertices and m edges in O(nm2) time.

15.6 Dinic’s Algorithm

In Sec. 15.5, it was shown that finding the maximum flow can be achieved

in O(nm2) time. In this section, we show that the time complexity can be

reduced to O(mn2) using a method due to Dinic. In the mpla algorithm,

after a level graph is computed, augmenting paths are found individually.

In contrast, the algorithm in this section finds all these augmenting paths

more efficiently, and this is where the improvement in the running time

comes from.

Definition 15.7 Let (G, s, t, c) be a network and H a subgraph of G

containing both s and t. A flow f in H is a blocking flow (with respect to

H) if every path in H from s to t contains at least one saturated edge.

In Fig. 15.4(c), the flow is a blocking flow with respect to the level graph

shown in Fig. 15.4(b). Dinic’s method is shown in Algorithm dinic. As in
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Algorithm 15.3 dinic
Input: A network (G, s, t, c).

Output: The maximum flow in G.

1. for each edge (u, v) ∈ E
2. f(u, v)← 0
3. end for
4. Initialize the residual graph: Set R = G.
5. Find the level graph L of R.
6. while t is a vertex in L
7. u ← s
8. p ← u
9. while outdegree(s) > 0 {begin phase}

10. while u �= t and outdegree(s) > 0
11. if outdegree(u) > 0 then {advance}
12. Let (u, v) be an edge in L.
13. p← p, v
14. u← v
15. else {retreat}
16. Delete u and all adjacent edges from L.
17. Remove u from the end of p.
18. Set u to the last vertex in p (u may be s).
19. end if
20. end while
21. if u = t then {augment}
22. Let Δ be the bottleneck capacity along p. Augment

the current flow along p by Δ. Adjust capacities
along p in both residual graph and level graph, delet-
ing saturated edges. Set u to the last vertex on p
reachable from s. Note that u may be s.

23. end if
24. end while
25. Compute a new level graph L from the current residual graph R.
26. end while

the mpla algorithm, Dinic’s algorithm is divided into at most n phases.

Each phase consists of finding a level graph, a blocking flow with respect

to that level graph and increasing the current flow by that blocking flow.

By Lemma 15.5, the number of phases is at most n. Each iteration of the

outer while loop corresponds to one phase. The intermediate while loop

is essentially a depth-first search in which augmenting paths are found and

used to increase the flow. Here, p = s, . . . , u is the current path found so

far. There are two basic operations in the inner while loop. If u, which is
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the end of the current path, is not t and there is at least one edge out of u,

say (u, v), then an advance operation takes place. This operation consists

of appending v to p and making it the current endpoint of p. If, on the

other hand, u is not t and there is no edge out of it, a retreat operation

takes place. This operation simply amounts to removing u from the end

of p and removing it and all adjacent edges in the current level graph

L, as there cannot be any augmenting path that passes by u. The inner

while loop terminates if either t is reached or the search backs up to s

and all edges out of s have been explored. If t is reached, then this is an

indication that an augmenting path has been discovered and augmenting

by that path is carried out in the steps following the inner while loop. If,

on the other hand, s has been reached and all edges out of it have been

deleted, then no augmentation takes place and processing the current level

graph is complete. An example of the execution of the algorithm is given

in Fig. 15.4.

We compute the running time in each phase as follows. The number of

augmentations is at most m since at least one edge of the level graph is

deleted in each augmentation. Each augment costs O(n) time to update

the flow values and to delete edges in both the level graph, the residual

graph and the path p used in the algorithm and possibly to add edges to

the residual graph. Hence, the total cost of all augments in each phase is

O(mn). The number of retreats (the else part of the inner while loop) is at

most n−2 since each retreat results in the deletion of one vertex other than

s or t. The total number of edges deleted from the level graph in the retreats

is at most m. This means that the total cost of all retreats is O(m+ n) in

each phase. The number of advances (the if part of the inner while loop)

before each augment or retreat cannot exceed n−1; for otherwise, one vertex
will be visited more than once before an augment or retreat. Consequently,

the total number of advances is O(mn) in each phase. It follows that the

overall cost of each phase is O(mn), and since there are at most n phases,

the overall running time of the algorithm is O(mn2).

As to the correctness of the algorithm, note that after computing at

most n−1 level graphs, there are no more augmenting paths in the residual

graph. By Theorem 15.1, this implies that the flow is maximum. Hence, we

have the following theorem:

Theorem 15.4 Dinic’s algorithm finds a maximum flow in a network

with n vertices and m edges in O(mn2) time.
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Fig. 15.4. Example of Dinic’s algorithm.

15.7 The MPM Algorithm

In this section, we outline an O(n3) time algorithm to find the maximum

flow in a given network. The algorithm is due to Malhotra, Pramodh-Kumar

and Maheshwari. It is an improvement on Dinic’s algorithm. The O(n3)

bound is due to a faster O(n2) time method for computing a blocking flow.
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In this section, we will consider only the method of finding such a blocking

flow. The rest of the algorithm is similar to Dinic’s algorithm. For this, we

need the following definition.

Definition 15.8 For a vertex v in a network (G, s, t, c) different from s

and t, we define the throughput of v as the minimum of the total capacity

of incoming edges and the total capacity of outgoing edges. That is, for

v ∈ V − {s, t},

throughput(v) = min

{∑
u∈V

c(u, v),
∑
u∈V

c(v, u)

}
.

The throughputs of s and t are defined by

throughput(s) =
∑

v∈V −{s}
c(s, v) and throughput(t) =

∑
v∈V−{t}

c(v, t).

As in Dinic’s algorithm, updating the residual graph, computing the

level graph and finding a blocking flow comprise one phase of the algorithm.

Finding a blocking flow from the level graph L can be described as follows.

First, we find a vertex v such that g = throughput(v) is minimum among

all other vertices in L. Next, we “push” g units of flow from v all the way

to t and “pull” g units of flow all the way from s. When pushing a flow

out of a vertex v, we saturate some of its outgoing edges to their capacity

and leave at most one edge partially saturated. We then delete all outgoing

edges that are saturated. Similarly, when pulling a flow into a vertex v,

we saturate some of its incoming edges to their capacity and leave at most

one edge partially saturated. We then delete all incoming edges that are

saturated. Either all incoming edges or all outgoing edges will be saturated.

Consequently, vertex v and all its adjacent edges are removed from the level

graph and the residual graph R is updated accordingly. The flow out of v

is pushed through its outgoing edges to (some of) its adjacent vertices

and so on until t is reached. Note that this is always possible, as v has

minimum throughput among all other vertices in the current level graph.

Similarly, the flow into v is propagated backward until s is reached. Next,

another vertex of minimum throughput is found and the above procedure

is repeated. Since there are n vertices, the above procedure is repeated at

most n− 1 times. The method is outlined in Algorithm mpm.
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Algorithm 15.4 mpm
Input: A network (G, s, t, c).

Output: The maximum flow in G.

1. for each edge (u, v) ∈ E
2. f(u, v)← 0
3. end for
4. Initialize the residual graph: Set R = G.
5. Find the level graph L of R.
6. while t is a vertex in L
7. while t is reachable from s in L
8. Find a vertex v of minimum throughput = g.
9. Push g units of flow from v to t.

10. Pull g units of flow from s to v.
11. Update f , L and R.
12. end while
13. Use the residual graph R to compute a new level graph L.
14. end while

The time required by each phase of the algorithm is computed as fol-

lows. The time required to find the level graph L is O(m) using breadth-

first search. Finding a vertex of minimum throughput takes O(n) time.

Since this is done at most n − 1 times, the total time required by this

step is O(n2). Deleting all saturated edges takes O(m) time. Since at most

one edge is partially saturated for each vertex, the time required to par-

tially saturate edges in each iteration of the inner while loop takes O(n)

time. Since there are at most n − 1 iterations of the inner while loop,

the total time required to partially saturate edges is O(n2). It follows that

the total time required to push flow from v to t and to pull flow from

s to v is O(n2). The time required to update the flow function f and

the residual graph R is no more than the time required to push and pull

flows, i.e., O(n2). As a result, the overall time required by each phase is

O(n2 +m) = O(n2).

As there are at most n phases (in the final phase, t is not a vertex of

L), the overall time required by the algorithm is O(n3). Finally, note that

after computing at most n− 1 level graphs, there are no more augmenting

paths in the residual graph. By Theorem 15.1, this implies that the flow is

maximum. Hence, we have the following theorem:

Theorem 15.5 The mpm algorithm finds a maximum flow in a network

with n vertices and m edges in O(n3) time.
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Fig. 15.5. A network with capacities.

15.8 Practice Problems

15.1. Use the Ford–Fulkerson method to find a maximum flow in the net-

work shown in Fig. 15.5. Show your work.

15.2. Find a minimum cut in the network shown in Fig. 15.5. Show your

work.

15.3. Use the maximum capacity augmentation (mca) method to find a

maximum flow in the network shown in Fig. 15.5. Show your work.

15.4. Use the minimum path length augmentation (mpla) method to find

a maximum flow in the network shown in Fig. 15.5. Show your work.

15.5. Use Dinic’s algorithm to find a maximum flow in the network shown

in Fig. 15.5. Show your work.

15.6. Prove or disprove the following statement. If all capacities in a net-

work are distinct, then there exists a unique flow function that gives

the maximum flow.

15.7. Prove or disprove the following statement. If all capacities in a net-

work are distinct, then there exists a unique min-cut that separates

the source from the sink.

15.8. Explain how to solve the max-flow problem with multiple sources

and multiple edges.

15.9 Exercises

15.1. Give an O(m) time algorithm to construct the residual graph of a

given network with positive edge capacities.

15.2. Show how to find efficiently an augmenting path in a given residual

graph.
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15.3. Adapt the Ford–Fulkerson algorithm to the case where the vertices

have capacities as well.

15.4. Give an efficient algorithm to find a path of maximum bottleneck

capacity in a given directed acyclic graph.

15.5. Give an efficient algorithm to find the level graph of a given directed

acyclic graph.

15.6. Show by example that a blocking flow in the level graph of a residual

graph need not be a blocking flow in the residual graph.

15.7. Let G = (V,E) be a directed acyclic graph, where |V | = n. Give

an algorithm to find a minimum number of directed vertex-disjoint

paths which cover all the vertices, i.e., every vertex is in exactly

one path. There are no restrictions on the lengths of the paths,

where they start and end. To do this, construct a flow network

G′ = (V ′, E′), where

V ′ = {s, t} ∪ {x1, x2, . . . , xn} ∪ {y1, y2, . . . , yn},
E′ = {(s, xi) | 1 ≤ i ≤ n} ∪ {(yi, t) | 1 ≤ i ≤ n}

∪{(xi, yj) | (vi, vj) ∈ E}.

Let the capacity of all edges be 1. Finally, show that the number

of paths which cover V is |V | − |f |, where f is the maximum flow

in G′.

15.8. Let G = (V,E) be a directed graph with two distinguished vertices

s, t ∈ V . Give an efficient algorithm to find the maximum number

of edge-disjoint paths from s to t.

15.9. Let G = (V,E) be an undirected weighted graph with two dis-

tinguished vertices s, t ∈ V . Give an efficient algorithm to find a

minimum weight cut that separates s from t.

15.10. Let G = (X ∪ Y,E) be a bipartite graph. An edge cover C for G

is a set of edges in E such that each vertex of G is incident to at

least one edge in C. Give an algorithm to find an edge cover for G

of minimum size.
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15.11. Let G = (X∪Y,E) be a bipartite graph. Let C be a minimum edge

cover (see Exercise 15.10) and I a maximum independent set. Show

that |C| = |I|.

15.12. The vertex connectivity of a graph G = (V,E) is defined as the

minimum number of vertices whose removal disconnects G. Prove

that if G has vertex connectivity k, then |E| ≥ k |V |/2.

15.10 Bibliographic Notes
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method is due to Ford and Fulkerson (1956). The two heuristics of augment-

ing by paths with maximum bottleneck capacity and augmenting by paths

of shortest lengths are due to Edmonds and Karp (1972). Dinic’s algorithm

is due to Dinic (1970). The O(n3) MPM algorithm is due to Malhotra et al.
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Chapter 16

Matching

16.1 Introduction

In this chapter, we study in detail another example of a problem whose

existing algorithms use the iterative improvement design technique: the

problem of finding a maximum matching in an undirected graph. In its

most general setting, given an undirected graph G = (V,E), the maximum

matching problem asks for a subset M ⊆ E with the maximum number

of nonoverlapping edges, that is, no two edges in M have a vertex in com-

mon. This problem arises in many applications, particularly in the areas of

communication and scheduling. While the problem is interesting in its own

right, it is indispensable as a building block in the design of more complex

algorithms. That is, the problem of finding a maximum matching is often

used as a subroutine in the implementation of many practical algorithms.

16.2 Preliminaries

Let G = (V,E) be a connected undirected graph. Throughout this chapter,

we will let n and m denote, respectively, the number of vertices and edges

in G, that is, n = |V | and m = |E|.
A matching in G is a subset M ⊆ E such that no two edges in M have a

vertex in common. We will assume throughout this chapter that the graph

is connected, and hence the modifier “connected” will be dropped. An edge

e ∈ E is matched if it is in M , and unmatched or free otherwise. A vertex

v ∈ V is matched if it is incident to a matched edge, and unmatched or

455
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Fig. 16.1. A matching in an undirected graph.

free otherwise. The size of a matching M , i.e., the number of matching

edges in it, will be denoted by |M |. A maximum matching in a graph is

a matching of maximum cardinality. A perfect matching is one in which

every vertex in V is matched. Given a matching M in an undirected graph

G = (V,E), an alternating path p with respect to M is a simple path that

consists of alternating matched and unmatched edges. The length of p is

denoted by |p|. If the two endpoints of an alternating path coincide, then

it is called an alternating cycle. An alternating path with respect to M is

called an augmenting path with respect to M if all the matched edges in

p are in M and its endpoints are free. Clearly, the number of edges in an

augmenting path is odd, and as a result, it cannot be an alternating cycle.

These definitions are illustrated in Fig. 16.1 in which matched edges are

shown as jagged edges.

In Fig. 16.1, M = {(b, c), (f, g), (h, l), (i, j)} is a matching. The edge

(a, b) is unmatched or free and the edge (b, c) is matched. Vertex a is free

and vertex b is matched. The path a, b, c, d is an alternating path. It is also

an augmenting path (with respect to M). Another augmenting path with

respect to M is a, b, c, g, f, e. Clearly, the matching M is neither maximum

nor perfect.

Let M1 and M2 be two matchings in a graph G. Then,

M1 ⊕M2 = (M1 ∪M2)− (M1 ∩M2)

= (M1 −M2) ∪ (M2 −M1).

That is, M1 ⊕M2 is the set of edges that are in M1 or in M2 but not in

both. Consider the matching shown in Fig. 16.1 and the augmenting path

p = a, b, c, g, f, e.
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Fig. 16.2. An augmented matching.

Reversing the roles of edges in p (matched to unmatched and vice-versa)

results in the matching shown in Fig. 16.2. Moreover, the size of the new

matching is exactly the size of the old matching plus one. This illustrates

the following lemma whose proof is easy:

Lemma 16.1 Let M be a matching and p an augmenting path with

respect to M . Then, M ⊕ p is a matching of size |M ⊕ p| = |M |+ 1.

The following corollary characterizes a maximum matching.

Corollary 16.1 A matching M in an undirected graph G is maximum

if and only if G contains no augmenting paths with respect to M .

Theorem 16.1 Let M1 and M2 be two matchings in an undirected graph

G = (V,E) such that |M1| = r, |M2| = s and s > r. Then, M1⊕M2 contains

k = s− r vertex-disjoint augmenting paths with respect to M1.

Proof. Consider the graph G′ = (V,M1 ⊕ M2). Each vertex in V is

incident to at most one edge in M2−M1 and at most one edge in M1−M2.

Thus, each connected component in G′ is either

• an isolated vertex,

• a cycle of even length,

• a path of even length, or

• a path of odd length.

Moreover, the edges of all paths and cycles in G′ are alternately in

M2−M1 and M1−M2, which means that all cycles and even-length paths

have the same number of edges from M1 as the number of edges from M2.
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Fig. 16.3. Illustration of Theorem 16.1. (a) M2. (b) M1 ⊕M2.

Since there are k more M2 edges than M1 edges in G′, it must be the

case that G′ contains k odd-length paths with one more edge from M2.

But these odd-length paths are augmenting paths with respect to M1 since

their endpoints are free with respect toM1. Consequently,M1⊕M2 contains

k = s− r augmenting paths with respect to M1. �

Example 16.1 Consider the matching M1 shown in Fig. 16.1 and the

matching M2 shown in Fig. 16.3(a) for the same graph. As shown in

Fig. 16.3(b), G′ = (V,M1 ⊕ M2) consists of an even length cycle, two

isolated vertices and two augmenting paths with respect to M1. Moreover,

|M2| − |M1| = 2.

16.3 The Network Flow Method for Bipartite Graphs

Recall that an undirected graph is called bipartite if it contains no cycles

of odd length. For example the graph in Fig. 16.1 is bipartite. Let G =

(X ∪Y,E) be a bipartite graph. We can utilize one of the maximum network

flow algorithms to find a maximum matching in G as shown in Algorithm

bimatch1.

The correctness of the algorithm is easy to verify. It is also easy to

see that the construction of the flow network takes no more than O(m)

time, where m = |E|. Its running time is dependent on the maximum flow

algorithm used. If, for example, Algorithm mpm is used, then the running

time is O(n3), where n = |X |+ |Y |.
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Algorithm 16.1 bimatch1
Input: A bipartite graph G = (X ∪ Y,E).

Output: A maximum matching M in G.

1. Direct all edges in G from X to Y .
2. Add a source vertex s and a directed edge (s, x) from s to x for each

vertex x ∈ X.
3. Add a sink vertex t and a directed edge (y, t) from y to t for each vertex

y ∈ Y .
4. Assign a capacity c(u, v) = 1 to each (directed) edge (u, v).
5. Use one of the maximum network flow algorithms to find a maximum

flow for the constructed network. M consists of those edges connect-
ing X to Y whose corresponding directed edge carries a flow of one
unit.

16.4 The Hungarian Tree Method for Bipartite Graphs

Let G = (V,E) be an undirected graph. Lemma 16.1 and Corollary 16.1

suggest a procedure for finding a maximum matching in G. Starting from

an arbitrary (e.g., empty) matching, we find an augmenting path p in G,

invert the roles of the edges in p (matched to unmatched and vice-versa),

and repeat the process until there are no more augmenting paths. At that

point, the matching, by Corollary 16.1, is maximum. Finding an augmenting

path in the case of bipartite graphs is much easier than in the case of general

graphs.

Let G = (X∪Y,E) be a bipartite graph with |X |+|Y | = n and |E| = m.

Let M be a matching in G. We call a vertex in X an x-vertex. Similarly

a y-vertex denotes a vertex in Y . First, we pick a free x-vertex, say r, and

label it outer. From r, we grow an alternating path tree, i.e., a tree in which

each path from the root r to a leaf is an alternating path. This tree, call

it T , is constructed as follows. Starting from r, add each unmatched edge

(r, y) connecting r to the y-vertex y and label y inner. For each y-vertex

y adjacent to r, add the matched edge (y, z) to T if such a matched edge

exists and label z outer. Repeat the above procedure and extend the tree

until either a free y-vertex is encountered or the tree is blocked, i.e., cannot

be extended any more (note that no vertex is added to the tree more than

once). If a free y-vertex is found, say v, then the alternating path from the

root r to v is an augmenting path. On the other hand, if the tree is blocked,
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then in this case the tree is called a Hungarian tree. Next, we start from

another free x-vertex, if any, and repeat the above procedure.

If T is a Hungarian tree, then it cannot be extended; each alternating

path traced from the root is stopped at some outer vertex. The only free

vertex in T is its root. Notice that if (x, y) is an edge such that x is in

T and y is not in T , then x must be labeled inner. Otherwise, x must be

connected to a free vertex or T is extendable through x. It follows that no

vertex in a Hungarian tree can occur in an augmenting path. For suppose

that p is an alternating path that shares at least one vertex with T . If p

“enters” T , then it must be through a vertex labeled inner. If it “leaves”

T , then it must also be through a vertex labeled inner. But then, p is not

an alternating path; a contradiction. This implies the following important

observation:

Observation 16.1 If, in the process of searching for an augmenting path,

a Hungarian tree is found, then it can be removed permanently without

affecting the search.

Example 16.2 Consider the bipartite graph shown in Fig. 16.4. Starting

from vertex c, the alternating path tree shown in the figure is constructed.

Note that the vertices on any path from c to a leaf are alternately labeled

o (outer) and i (inner). In this alternating path tree, the augmenting path

p = c, f, g, j is discovered. Augmenting the current matching by p results in

the matching shown in Fig. 16.5. Now, if we try to grow another alternating

path tree from the free x-vertex i, the search becomes blocked and results

in the Hungarian tree shown in the figure. Since there are no more free

x-vertices, we conclude that the matching shown in Fig. 16.5 is maximum.

The algorithm for finding a maximum matching in a bipartite graph is

outlined in Algorithm bimatch2.

The running time of the algorithm is computed as follows. The construc-

tion of each alternating tree costs O(m) time using breadth-first search.

Since at most |X | = O(n) trees are constructed, the overall running time is

O(nm). The correctness of the algorithm follows from Corollary 16.1 and

Observation 16.1. Thus, we have the following theorem:

Theorem 16.2 Algorithm bimatch2 finds a maximum matching in a

bipartite graph with n vertices and m edges in O(nm) = O(n3) time.
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Fig. 16.4. A matching with an alternating path tree rooted at c.
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Fig. 16.5. A matching with a Hungarian tree rooted at i.

Algorithm 16.2 bimatch2
Input: A bipartite graph G = (X ∪ Y,E).

Output: A maximum matching M in G.

1. Initialize M to any arbitrary (possibly empty) matching.
2. while there exists a free x-vertex and a free y-vertex
3. Let r be a free x-vertex. Using breadth-first search, grow an

alternating path tree T rooted at r.

4. if T is a Hungarian tree then let G←G− T {remove T}
5. else find an augmenting path p in T and let M = M ⊕ p.
6. end while
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16.5 Maximum Matching in General Graphs

In this section, we consider finding a maximum matching in general graphs.

Edmonds was the first who gave a polynomial time algorithm for this prob-

lem. Here, we study a variant of his original algorithm. If we try to apply

Algorithm bimatch2 in Sec. 16.4 on general graphs, it will not work. The

culprit is the odd-length cycles that might exist in a general graph (there

are no odd cycles in bipartite graphs). Consider Fig. 16.6. If we start search-

ing for an augmenting path at the free vertex a, we may not detect any of

the two augmenting paths

a, b, c, d, e, f, g, h or a, b, c, g, f, e, d, i.

If we try to grow an alternating path tree starting at the free vertex a,

we may end up with the Hungarian tree shown in Fig. 16.7. This causes

the above augmenting paths to be overlooked. Edmonds called an odd

cycle that consists of alternately matched and unmatched edges a blossom.

Thus, in Fig. 16.6, the odd cycle c, d, e, f, g, c is a blossom. c is called the

base of the blossom. The alternating path a, b, c is called the stem of the

blossom. Edmonds incredible idea consists in shrinking the blossom into a

supervertex and continuing the search for an augmenting path in the result-

ing graph. Figure 16.8 shows the result of shrinking the blossom shown in

Fig. 16.6.

c

e

a b

fgh

i d

Fig. 16.6. A blossom.

c

e

a b

fg

d

Fig. 16.7. A Hungarian tree.
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a b B

i

h

Fig. 16.8. A shrunken blossom.

In the resulting graph, there are two augmenting paths a, b, B, h and

a, b, B, i. In Fig. 16.6, vertex g divides the odd cycle into two simple paths:

an odd-length path c, g, and an even-length path c, d, e, f, g. To find an

augmenting path in the original graph, we replace B in the augmenting path

a, b, B, h by the even-length simple path c, d, e, f, g to obtain the augmenting

path a, b, c, d, e, f, g, h. We may equally replace B in the augmenting path

a, b, B, h by the even-length simple path c, g, f, e, d to obtain the augmenting

path a, b, c, g, f, e, d, i. This procedure is in fact general and always detects

those augmenting paths that would otherwise be overlooked.

Let G = (V,E) be an undirected graph and B a blossom in G (we use

B to denote both the odd cycle and the supervertex). Let G′ denote G in

which B is shrunk into a supervertex B. By shrinking a blossom, we mean

the deletion of its vertices and connecting all their incident edges to B, as

shown in Fig. 16.8. The following theorem is fundamental to the correctness

of the matching algorithm to be presented.

Theorem 16.3 Let G = (V,E) be an undirected graph, and suppose

that G′ is formed from G by shrinking a blossom B. Then, G′ contains an

augmenting path if and only if G does.

Proof. We prove the only if part. The proof of the if part is rather com-

plicated and therefore omitted (see the bibliographic notes). Suppose that

G′ contains an augmenting path p′. If p′ avoids B, then p′ is an augmenting

path in G. So, suppose that p′ passes by B. We expand p′ into an aug-

menting path p in G as follows. Let (u,B) be the matched edge incident

to B, and (B, x) the unmatched edge incident to B that is on the path p′

(see Fig. 16.9(a)). The matched edge corresponds in G to the edge (u, v)

incident to the base of the blossom. Similarly, the unmatched edge corre-

sponds to an unmatched edge (w, x) incident to the blossom. We modify p′

to obtain p as follows:

(1) Replace (u,B) with (u, v).

(2) Replace (B, x) with (w, x).
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Fig. 16.9. Illustration of the proof of Theorem 16.3.

(3) Insert between v and w the even-length portion of the blossom between

these two vertices (see Fig. 16.9(b)). �

The above proof is constructive in the sense that it describes how an

augmenting path in G′ can be transformed into an augmenting path in G.

Before presenting the algorithm, we illustrate in the following example

the process of finding an augmenting path by shrinking and expanding

blossoms.

Example 16.3 Consider Fig. 16.10 in which the augmenting path

a, b, c, d, k, l, v, u, e, f, g, h

is not so obvious.

First, we start at the free vertex a and begin to trace an augmenting

path. As in the algorithm for bipartite graphs, the matched vertices are

alternately labeled outer and inner starting from a free vertex. We label

a outer and try to grow an alternating path tree rooted at a. We add the

two edges (a, b) and (b, c) to the tree and label b inner and c outer. Next,

we add the two edges (c, d) and (d, k) to the tree and label d inner and k

outer. Again, we add the two edges (k, j) and (j, i) to the tree and label

j inner and i outer. At this point, if we try to explore the edge (i, c), we

find that its endpoints have been labeled outer. This is an indication of

the existence of an odd cycle, i.e., a blossom. Thus, we have discovered the

blossom c, d, k, j, i, c and therefore proceed by shrinking it to a single vertex

W and label it outer, as shown in Fig. 16.11(a). Now, we continue the search

from an outer vertex. As W is labeled outer, we continue the search from

it and add the two edges (W, e) and (e, u) labeling e inner and u outer.

Again, we find another odd cycle, namely u, v, l, u. We reduce this blossom

into an outer vertex and call it X . This is shown in Fig. 16.11(b). This, in
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Fig. 16.10. A matching that is not maximum.
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Fig. 16.11. Finding an augmenting path.

turn, results in the odd cycle W, e,X,W , which we reduce into one vertex

Y and label it outer. This is shown in Fig. 16.11(c). It should be noted at

this point that we have nested blossoms, i.e., a blossom, in this case Y , that

contains other blossoms, namely W and X . The process of nesting blossoms

continues when the odd cycle Y, f, g, Y is detected. We call the blossom Z

and label it outer (see Fig. 16.11(d)). Finally, from the outer vertex Z, we

discover a free vertex h, which signals the existence of an augmenting path.

Now, we trace the augmenting path a, b, Z, h backward starting at h in

order to construct the augmenting path in the original graph. The rule of

expanding blossoms is that we interpolate the even-length path starting at

the vertex at which we enter the blossom to the base of the blossom as
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described in the proof of Theorem 16.3 and illustrated in Fig. 16.9. With

this rule in mind, the construction of the augmenting path reduces to the

following blossom expansions

(1) Expand Z in a, b, Z, h to obtain a, b, Y, f, g, h.

(2) Expand Y to obtain a, b,W,X, e, f, g, h.

(3) Expand X to obtain a, b,W, l, v, u, e, f, g, h

(4) Expand W to obtain a, b, c, d, k, l, v, u, e, f, g, h.

The algorithm for matching in general graphs is described more formally

in Algorithm gmatch. This algorithm is similar to Algorithm bimatch2 of

Sec. 16.4 with the addition of the necessary steps for handling blossoms as

described in Example 16.3. First, the matching is initialized to be empty.

The outer while loop iterates as long as the matching is not maximum.

In each iteration, an augmenting path is found and the matching is aug-

mented by that path. The intermediate while loop iterates for at most all

the free vertices until an augmenting path is found. In each iteration of

this while loop, a free vertex is chosen to be the root of the alternating

path tree. From this root, exploration of the graph commences in the inner

while loop, whose function is to grow an alternating path tree two edges

at a time. In each iteration, it picks arbitrarily an outer vertex x and a cor-

responding edge (x, y). If such an edge exists, then we have the following

cases:

(1) If y is inner, then that edge is useless, as it forms an even-length cycle.

(2) If y is outer, then this is an indication that a blossom has been found.

This blossom is pushed on top of the stack and shrunk into a super-

vertex so that it can be expanded later on when an augmenting path

is discovered. If the blossom contains the root, then it is labeled free.

(3) If y is labeled free, then an augmenting path has been found. In this

case, the inner while loop is terminated and augmenting by the aug-

menting path found takes place. Note that the augmenting path may

contain blossoms that are stored in the stack. These blossoms are

popped off the stack, expanded and the appropriate even-length path

is inserted into the augmenting path.

(4) Otherwise, the alternating path tree T is extended by two more edges,

and the search for an augmenting path continues.
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Algorithm 16.3 gmatch
Input: An undirected graph G = (V, E).

Output: A maximum matching M in G.

1. M←{} {Initialize M to the empty matching}
2. maximum ← false
3. while not maximum
4. determine the set of free vertices F with respect to M
5. augment ← false
6. while F �= {} and not augment
7. Empty stack, unmark edges and remove labels from vertices.
8. Let x be a vertex in F ; F← F − {x}; T← x
9. Label x outer {initialize the alternating path tree}

10. hungarian ← false
11. while not augment
12. Choose an outer vertex x and an unmarked edge (x, y).
13. if (x, y) exists then Mark (x, y)
14. else
15. hungarian ← true
16. exit this while loop
17. end if
18. if y is inner then do nothing {even-length cycle found}
19. else if y is outer then {a blossom found}
20. Place the blossom on top of the stack, shrink it.
21. Replace the blossom with a vertex w and label w outer.
22. If the blossom contains the root, then label w free.
23. else if y is free then
24. augment ← true
25. F← F − {y}
26. else
27. Let (y, z) be in M . Add (x, y) and (y, z) to T .
28. Label y inner and z outer.
29. end if
30. end while
31. if hungarian then remove T from G.
32. else if augment then
33. Construct p by popping blossoms from the stack,
34. expanding them and adding the even-length portion.
35. Augment G by p.
36. end if
37. end while
38. if not augment then maximum ← true
39. end while

If, however, the edge (x, y) does not exist, then T is Hungarian. By

Observation 16.1, T can be removed from G permanently in the current

iteration and all subsequent iterations.
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To analyze the running time of the algorithm, we note that there can

be no more than �n/2� augmentations. With careful handling of blos-

soms (shrinking and expanding blossoms), which we will not describe here,

searching for an augmenting path and augmenting the current matching

by that path costs O(m) time. The O(m) bound includes the time needed

to shrink and expand blossoms. It follows that the time complexity of the

algorithm is O(nm) = O(n3). The correctness of the algorithm follows from

Theorem 16.3, Corollary 16.1 and Observation 16.1. This implies the fol-

lowing theorem.

Theorem 16.4 Algorithm gmatch finds a maximum matching in an

undirected graph with n vertices and m edges in O(nm) = O(n3) time.

16.6 An O(n2.5) Algorithm for Bipartite Graphs

In this section, we study an algorithm that finds a maximum matching in a

bipartite graph G = (X ∪ Y,E) in time O(m
√
n), where n = |X |+ |Y | and

m = |E|. The algorithm is due to Hopcroft and Karp. In this algorithm,

instead of starting at a free x-vertex and finding one augmenting path,

the algorithm carries out the breadth-first search starting at all the free

x-vertices. It then finds a maximal set of vertex-disjoint augmenting paths

of minimum length and simultaneously augments the current matching by

all these augmenting paths. The process of finding a maximal set of vertex-

disjoint augmenting paths and augmenting the current matching by them

constitutes one phase of the algorithm. The above time complexity follows

from an upper bound of O(
√
n) on the number of phases whose cost is

O(m) each. This is reminiscent of Dinic’s algorithm for finding a maximum

flow in a network.

Lemma 16.2 Let M be a matching, p an augmenting path with respect

to M and p′ an augmenting path with respect to M⊕p. Let M ′ = M⊕p⊕p′.
Then, M ⊕M ′ = p⊕ p′.

Proof. Clearly, we only need to consider edges in p∪ p′. Let e be an edge

in p ∪ p′. If e is in p⊕ p′, then its status (matched or unmatched) in M is

different from its status in M ′ since its status will change only once: either

by p or p′. Consequently, e is in M ⊕M ′. On the other hand, if e is in p∩ p′,
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then its status is the same in both M and M ′ since its status will change

twice: first by p and then by p′, that is, e is not in M ⊕M ′. Consequently,
M ⊕M ′ = p⊕ p′. �

Lemma 16.3 Let M be a matching, p a shortest augmenting path with

respect to M and p′ an augmenting path with respect to M ⊕ p. Then,

|p′| ≥ |p|+ 2|p ∩ p′|.
Proof. Let M ′ = M ⊕ p ⊕ p′. By Lemma 16.1, M ′ is a matching and

|M ′| = |M | + 2. By Theorem 16.1, M ⊕M ′ contains two vertex-disjoint

augmenting paths p1 and p2 with respect to M . Since, by Lemma 16.2,

M ⊕M ′ = p⊕ p′, we have

|p⊕ p′| ≥ |p1|+ |p2|.
Since p is of shortest length, |p1| ≥ |p| and |p2| ≥ |p|. Therefore,

|p⊕ p′| ≥ |p1|+ |p2| ≥ 2|p|.
From the identity

|p⊕ p′| = |p|+ |p′| − 2|p ∩ p′|,
we obtain

|p′| ≥ |p|+ 2|p ∩ p′|. �

Let M be a matching, k the length of a shortest augmenting path with

respect to M and S a maximal set of vertex-disjoint augmenting paths with

respect to M of length k. Let M ′ be obtained from M by augmenting M

by all the augmenting paths in S. Let p be an augmenting path in M ′. We

have the following important corollary of Lemma 16.3.

Corollary 16.2 |p| ≥ k + 2.

Thus, by Corollary 16.2, starting from the empty matching M0, we

obtain the matching M1 by finding a maximal set of augmenting paths of

length one and simultaneously augmenting by these paths. In general, we

construct a sequence of matchings M0,M1, . . ., where matching Mi+1 is

obtained from matching Mi by finding a maximal set of augmenting paths

of the same length with respect to Mi and simultaneously augmenting by

these paths. As stated before, we will denote by a phase the procedure of
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finding a maximal set of augmenting paths of the same length with respect

to the current matching and augmenting by these paths. By Corollary 16.2,

the length of augmenting paths increases from one phase to the next by at

least 2. The following theorem establishes an upper bound on the number

of phases.

Theorem 16.5 The number of phases required to find a maximum

matching in a bipartite graph is at most 3�√n�/2.

Proof. Let M be the matching obtained after at least �√n�/2 phases and
M∗ a maximum matching. Since the length of augmenting paths increases

from one phase to the next by at least 2, the length of any augmenting path

in M is at least �√n�+ 1. By Theorem 16.1, there are exactly |M∗| − |M |
vertex-disjoint augmenting paths with respect to M . Since the length of

each path is at least �√n� + 1, and hence each path consists of at least

�√n�+ 2 vertices, we must have

|M∗| − |M | ≤ n

�√n�+ 2
<

n√
n
=
√
n.

Since each phase contributes at least one augmenting path, the remaining

number of phases is at most �√n�. It follows that the total number of phases

required by the algorithm is at most 3�√n�/2. �

The above analysis implies Algorithm bimatch3. The algorithm starts

with the empty matching. It then iterates through the while loop until

the matching becomes maximum. During each iteration, a directed acyclic

graph (dag) D is constructed from which a maximal set of vertex-disjoint

augmenting paths is constructed. The current matching is then augmented

by these paths and the procedure is repeated. To construct a dag, we use

breadth-first search to find the sets of vertices L0, L1, . . . and sets of edges

E0, E1, . . . as follows:

(1) L0 is the set of free vertices in X .

(2) L1 is the set of vertices in Y connected by an unmatched edge to the

set of free vertices in X .

(3) If L1 contains at least one free vertex, then the construction of the

dag is complete, as there is at least one augmenting path consisting of

exactly one edge.



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch16 page 471

Matching 471

Algorithm 16.4 bimatch3
Input: A bipartite graph G = (X ∪ Y,E).

Output: A maximum matching M in G.

1. Start with the empty matching M = {}.
2. maximum← false
3. while not maximum { Construct a dag D}
4. L0← Set of free vertices in X.
5. L1←{y ∈ Y | (x, y) ∈ E for some x ∈ L0}
6. E0 = {(x, y) ∈ E | x ∈ L0, y ∈ L1}
7. Mark all vertices in L0 and L1.
8. i← 0
9. while Li+1 contains no free vertices and is not empty

10. i← i+ 2
11. Li←{x ∈ X | x is unmarked and is joined by
12. a matched edge to a vertex y ∈ Li−1}
13. Ei−1 = {(x, y) ∈ E | y ∈ Li−1, x ∈ Li}
14. Li+1←{y ∈ Y | y is unmarked and is joined by
15. an unmatched edge to a vertex x ∈ Li}
16. Ei = {(x, y) ∈ E | x ∈ Li, y ∈ Li+1}
17. Mark all vertices in Li and Li+1.
18. end while
19. if Li+1 is empty then maximum ← true
20. else
21. for each free vertex y ∈ Li+1 {augment}
22. Starting at y, use depth-first search to find an augment-

ing path p that ends at a free vertex x ∈ L0. Remove
all vertices on p and incident edges from the dag D. Set
M = M ⊕ p.

23. end for
24. end if
25. end while

(4) If L1 does not contain free vertices, two more sets are constructed,

namely L2 and L3, where L2 consists of the set of vertices in X con-

nected by matched edges to elements of L1 and L3 consists of those

vertices in Y − L1 connected to elements of L2 by unmatched edges.

(5) If L3 contains at least one free vertex, then the construction is complete,

as there is at least one augmenting path connecting a free vertex in L3

to a free vertex in L0.

(6) If L3 does not contain any free vertices, the process is repeated to

construct sets L4, L5, . . .. The construction ends whenever a set L2i+1
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of y-vertices is found to contain at least one free vertex or when L2i+1

is empty.

(7) After the construction of each set Li, i ≥ 1, a set of edges Ei−1 is added.

Ei−1 consists of the set of edges connecting those vertices in Li−1 and

Li. The sets E0, E1, . . . consist alternately of unmatched and matched

edges.

Note that whenever a vertex is added to a set Li, it is marked so that

it is not added later on to another set Lj , j > i. Incidentally, note that a

maximal set does not necessarily imply maximum. If a set is maximal, then

no more vertex-disjoint augmenting paths of the same length can be added.

Example 16.4 Consider the bipartite graph shown in Fig. 16.12(a).

The matching shown is the result of the first phase of the algorithm. In

the first phase, the algorithm found a maximal set of three augmenting

paths (see Fig. 16.12(a)). As noted above, this set is maximal, but not

maximum, as there are more than three augmenting paths in the origi-

nal graph. Figure 16.12(b) shows the dag created in the second phase. In

this dag, there are two vertex-disjoint augmenting paths of shortest length.

Augmenting by these two augmenting paths results in a maximum match-

ing of size 5. Thus, the number of phases required to achieve a maximum

matching for this graph is 2.

(a)
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Fig. 16.12. An example of the algorithm.
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As to the time complexity of the algorithm, Theorem 16.5 guarantees

that the number of iterations of the outer while loop is at most 3�√n�/2,
that is, the number of iterations is O(

√
n). It is not hard to see that the

construction of the dag in each iteration takes O(m) time. The time taken

for augmentations is also O(m). It follows that the running time of the

entire algorithm is O(m
√
n) = O(n2.5).

Theorem 16.6 Algorithm bimatch3 finds a maximum matching in a

bipartite graph with n vertices and m edges in O(m
√
n) = O(n2.5) time.

16.7 Practice Problems

16.1. Use the network flow method to find a maximum matching in the

bipartite graph shown in Fig. 16.13. Show your work.

16.2. Use the Hungarian tree method to find a maximum matching in the

bipartite graph shown in Fig. 16.13. Show your work.

16.3. Use the O(n2.5) algorithm for matching in bipartite graphs to find a

maximum matching in the bipartite graph shown in Fig. 16.13. Show

your work.

16.4. Hall’s theorem: If G = (X ∪Y,E) is a bipartite graph, then all ver-

tices in X can be matched to a subset of Y if and only if |Γ(S)| ≥ |S|
for all subsets S of X . Here, Γ(S) is the set of all vertices in Y

a

c

g

i

b

d

f

h

j

e

Fig. 16.13. A bipartite graph.
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Fig. 16.14. An undirected graph.

adjacent to at least one vertex in S. Hall’s theorem is sometimes

called the marriage theorem since it can be rephrased as follows.

Given a set of n men and a set of n women, let each man make a

list of the women he is willing to marry. Then each man can be mar-

ried to a woman on his list if and only if the union of any k of the

mens’ lists contains at least k women. Verify Hall’s theorem on the

bipartite graph shown in Fig. 16.13.

16.5. Find a maximum matching in the general graph shown in Fig. 16.14.

16.6. Use Hall’s theorem to show that there is no perfect matching in the

bipartite graph shown in Fig. 16.5.

16.8 Exercises

16.1. Prove Hall’s theorem (see Problem 16.4).

16.2. A graph G is called k-regular if the degree of each vertex of G is k.

Prove the following corollary of Hall’s theorem: If G is a k-regular

bipartite graph with k > 0, then G has a perfect matching. Note

that if G = (X ∪ Y,E) is k-regular, then |X | = |Y |.

16.3. Let G be a graph with no isolated vertices. Prove that the size of a

maximum matching is less than or equal to the size of a minimum

vertex cover for G.
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16.4. Use the max-flow min-cut theorem to prove König’s theorem: If G

is a bipartite graph, then the size of a maximum matching in G is

equal to the size of a minimum vertex cover for G.

16.5. How many perfect matchings are there in the graph Kn,n, the com-

plete bipartite graph with 2n vertices?

16.6. Prove or disprove the following statement. Using an algorithm for

finding a maximum matching by finding augmenting paths and aug-

menting using these paths, whenever a vertex becomes matched,

then it will remain matched throughout the algorithm.

16.7. Prove that a (free) tree has at most one perfect matching. Give a

linear time algorithm to find such a matching.

16.8. Give an algorithm that finds an independent set of vertices of max-

imum cardinality in a bipartite graph.

16.9. Give a recursive algorithm that finds an independent set of vertices

of maximum cardinality in an arbitrary graph.

16.10. Show that Observation 16.1 applies in the case of general graphs.

16.11. Let G be a bipartite graph, and let M be a matching in G. Show

that there is a maximum matching M∗ such that every vertex

matched in M is also matched in M∗.

16.12. Let G be a graph and S1 and S2 be two disjoint subsets of its

vertices. Show how to find the maximum number of vertex-disjoint

paths between S1 and S2 by modeling the problem as a matching

problem. For simplicity, you may assume that S1 and S2 have the

same size.

16.13. The stable marriage problem. In a group of n boys and n girls, each

boy ranks the n girls according to his preference and each girl ranks

the n boys according to her preference. A marriage corresponds to

a perfect matching between the boys and girls. A marriage is unsta-

ble if there is a pair of one boy and one girl who are unmarried to
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each other but like each other more than their respective spouses.

A marriage is stable if it is not unstable. Show that a stable mar-

riage always exists. Give an efficient algorithm to find one stable

marriage.

16.14. Show that the bound of Algorithm bimatch2 is tight by exhibiting

a bipartite graph that requires Θ(n) iterations each taking Θ(m)

time.

16.15. Let G = (V,E) be a graph with no isolated vertices. An edge cover

C for G is a subset of its edges that cover all its vertices, i.e., each

vertex in V is incident to at least one edge in C. Show that if M

is a matching, then there exists an edge cover C such that |C| =
|V | − |M |.

16.16. Use the result of Exercise 16.15 to show that the problem of finding

an edge cover of minimum size can be reduced to the problem of

matching. In other words, show how to use matching techniques to

find an edge cover of minimum cardinality.

16.17. Let S1, S2, . . . , Sn be n sets. A set {r1, r2, . . . , rn} is called a system

of distinct representatives (SDR) if rj ∈ Sj , 1 ≤ j ≤ n. Give an

algorithm for finding an SDR, if one exists, by defining a bipartite

graph and solving a matching problem.

16.18. Let S1, S2, . . . , Sn be n sets. Prove that an SDR exists for these sets

(see Exercise 16.17) if and only if the union of any k sets contains

at least k elements, for 1 ≤ k ≤ n. (Hint: See Problem 16.4.)

16.9 Bibliographic Notes

Algorithms for maximum matching and maximum-weight matching can be

found in several books including Lawler (1976), McHugh (1990), Minieka

(1978), Moret and Shapiro (1991), Papadimitriou and Steiglitz (1982) and

Tarjan (1983). Algorithms for bipartite matching were studied a long time

ago; see for example Hall (1956). Corollary 1.1 was proved independently by

both Berge (1957) and Norman (1959). The idea of the algorithm for match-

ing in general graphs is due to the pioneering work of Edmonds (1965).
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Edmonds’ proposed implementation requires O(n4) time. Improvements in

the efficiency of blossom handling are due to Gabow (1976), whose imple-

mentation requires O(n3) time. The O(m
√
n) algorithm for matching in

bipartite graphs is due to Hopcroft and Karp (1973). In Even and Tarjan

(1975), it was first pointed out that this algorithm is a special case of

the maximum flow algorithm applied to simple networks. An algorithm for

maximum matching in general graphs with the same time complexity is

described in Micali and Vazirani (1980).
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PART 7

Techniques in Computational
Geometry

Computational geometry is defined as the study of problems that are inher-

ently geometric in nature. There are several techniques to solve geometric

problems, some of them we have already covered in the previous chapters.

There are, however, standard techniques that are specific to solving geo-

metric problems. It is important to have fast geometric algorithms in many

fields like computer graphics, scientific visualization and graphical user

interfaces. Also, speed is fundamental in real-time applications in which

the algorithm receives its input dynamically.

In Chapter 17, we will study an important design technique generally

referred to as geometric sweeping. We will show how this technique can be

employed to solve fundamental problems in computational geometry such

as finding the maxima of a set of points, finding the intersection of line

segments, computing the convex hull of a point set and finally computing

the diameter of a set of points.

Chapter 18 will be devoted to the study of two variants of Voronoi

diagrams: the nearest-point Voronoi diagram and the farthest-point Voronoi

479
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diagram. We will demonstrate the power of the former by presenting solu-

tions to problems that are concerned with “nearness”, and show how the

latter can be used to solve problems that have to do with “farthness”. Some

of these solutions include linear time algorithms for the following problems:

(1) The convex hull problem.

(2) The all nearest neighbors problem.

(3) The Euclidean minimum spanning tree problem.

(4) The all farthest neighbors problem.

(5) Finding the smallest enclosing circle that enclose a planar point set.
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Chapter 17

Geometric Sweeping

17.1 Introduction

In geometric algorithms, the main objects considered are usually points,

line segments, polygons and others in two-dimensional, three-dimensional

and higher-dimensional spaces. Sometimes, a solution to a problem calls

for “sweeping” over the given input objects to collect information in order

to find a feasible solution. This technique is called plane sweep in the two-

dimensional plane and space sweep in the three-dimensional space. In its

simplest form, a vertical line sweeps from left to right in the plane stop-

ping at each object, say a point, starting from the leftmost object to the

rightmost object.

17.2 A Simple Example: Computing the Maximal Points

of a Point Set

We illustrate the method of geometric sweeping in connection with a simple

problem in computational geometry: Computing the maximal points of a

set of points in the plane.

Definition 17.1 Let p1 = (x1, y1) and p2 = (x2, y2) be two points in

the plane. p2 is said to dominate p1, denoted by p1 ≺ p2, if x1 ≤ x2 and

y1 ≤ y2.

481
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Definition 17.2 Let S be a set of points in the plane. A point p ∈ S is

a maximal point or a maximum if there does not exist a point q ∈ S such

that p �= q and p ≺ q.
The following problem has a simple algorithm, which is a good example

of a geometric sweeping algorithm.

maximal points: Given a set S of n points in the plane, determine the

maximal points in S.

This problem can easily be solved as follows. First, we sort all the points

in S in nonincreasing order of their x-coordinates. The rightmost point (the

one with maximum x-value) is clearly a maximum. The algorithm sweeps

the points from right to left and for each point p it determines whether it

is dominated on the y-coordinate by any of the previously scanned points.

The algorithm is given as Algorithm maxima.

Algorithm 17.1 maxima
Input: A set S of n points in the plane.

Output: The set M of maximal points in S.

1. Let A be the points in S sorted in nonincreasing order of their
x-coordinates. If two points have the same x-coordinate then the
one with larger y-coordinate appears first in the ordering.

2. M←{A[1]}
3. maxy← y-coordinate of A[1]
4. for j← 2 to n
5. (x, y)←A[j]
6. if y > maxy then
7. M←M ∪ {A[j]}
8. maxy← y
9. end if

10. end for

Figure 17.1 illustrates the behavior of the algorithm on a set of points.

As shown in the figure, the set of maxima {a, b, c, d} forms a staircase. Note

that, for example, e is dominated by a only, whereas f is dominated by both

a and b, and g is dominated by c only.

It is easy to see that the running time of the Algorithm maxima is

dominated by the sorting step and hence is O(n logn).

The above example reveals the two basic components of a plane sweep

algorithm. First, there is the event point schedule, which is a sequence of the
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Fig. 17.1. A set of points with their maxima.

x-coordinates ordered from right to left. These points define the “stopping”

positions of the sweeping line, which in this case is a vertical line. Unlike

the case in the previous example, in some plane sweep algorithms, the event

point schedule may be updated dynamically, and thus data structures that

are more complex than a simple array or a queue may be required for

efficient implementation.

The other component in the plane sweep method is the sweep line status.

This is an appropriate description of the geometric objects at the sweeping

line. In the above example, the sweep line status consists of a “description”

of the most recent maximal point detected. This description is simply the

value of its y-coordinate. In other geometric algorithms, the sweep line

status may require storing the relevant information needed in the form of

a stack, a queue, a heap, etc.

17.3 Geometric Preliminaries

In this section, we present the definitions of some of the fundamental con-

cepts in computational geometry that will be used in this chapter. Most

of these definitions are within the framework of the two-dimensional space;

their generalization to higher dimensions is straightforward. A point p is

represented by a pair of coordinates (x, y). A line segment is represented by

two points called its endpoints. If p and q are two distinct points, we denote

by pq the line segment whose endpoints are p and q. A polygonal path π

is a sequence of points p1, p2, . . . , pn such that pipi+1 is a line segment for

1 ≤ i ≤ n− 1. If p1 = pn, then π (together with the closed region bounded

by π) is called a polygon. In this case, the points pi, 1 ≤ i ≤ n, are called
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(a) (b)

Fig. 17.2. (a) A simple polygon. (b) A nonsimple polygon.

(b)(a)

Fig. 17.3. (a) A convex polygon. (b) A nonconvex polygon.

the vertices of the polygon, and the line segments p1p2, p2p3, . . . , pn−1pn are

called its edges. A polygon can conveniently be represented using a circular

linked list to store its vertices. In some algorithms, it is represented by a

circular doubly linked list. As defined above, technically, a polygon refers

to the closed connected region called the interior of the polygon plus the

boundary that is defined by the closed polygonal path. However, we will

mostly write “polygon” to mean its boundary. A polygon P is called simple

if no two of its edges intersect except at its vertices; otherwise, it is non-

simple. Figure 17.2 shows two polygons, one is simple and the other is not.

Henceforth, it will be assumed that a polygon is simple unless otherwise

stated, and hence the modifier “simple” will be dropped. A polygon P is

said to be convex if the line segment connecting any two points in P lies

entirely inside P . Figure 17.3 shows two polygons, one is convex and the

other is not.

Let S be a set of points in the plane. The convex hull of S, denoted by

CH (S), is defined as the smallest convex polygon enclosing all the points

in S. The vertices of CH (S) are called hull vertices and are also referred to

as the extreme points of S.

Let u = (x1, y1), v = (x2, y2) and w = (x3, y3). The signed area of the

triangle formed by these three points is half the determinant

D =

∣∣∣∣∣∣
x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣ .
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(b)
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Fig. 17.4. (a) A left turn. (b) A right turn.

D is positive if u, v, w, u form a counterclockwise cycle, in which case

we say that the path u, v, w is a left turn. It is negative if u, v, w, u form a

clockwise cycle, in which case we say that the path u, v, w is a right turn.

(see Fig. 17.4). D = 0 if and only if the three points are collinear, i.e., lie

on the same line.

17.4 Computing the Intersections of Line Segments

In this section, we consider the following problem. Given a set L =

{l1, l2, . . . , ln} of n line segments in the plane, find the set of points at which

they intersect. We will assume that no line segment is vertical and no three

line segments intersect at the same point. Removing these assumptions will

only make the algorithm more complicated.

Let li and lj be any two line segments in L. If li and lj intersect the

vertical line with x-coordinate x at two distinct points pi and pj , respec-

tively, then we say that li is above lj at x, denoted by li >x lj, if pi lies

above pj on the vertical line with x-coordinate x. The relation >x defines a

total order on the set of all line segments intersecting the vertical line with

x-coordinate x. Thus, in Fig. 17.5, we have

l2 >x l1, l2 >x l3, l3 >y l2 and l4 >z l3.

The algorithm starts by sorting the 2n endpoints of the n line segments

in nondecreasing order of their x-coordinates. Throughout the algorithm,

a vertical line sweeps all endpoints of the line segments and their inter-

sections from left to right. Starting from the empty relation, each time

an endpoint or an intersection point is encountered, the order relation
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x y z

l3

l1
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l2

Fig. 17.5. Illustration of the relation >x.

changes. Specifically, the order relation changes whenever one of the fol-

lowing “events” occurs while the line is swept from left to right.

(1) When the left endpoint of a line segment is encountered.

(2) When the right endpoint of a line segment is encountered.

(3) When the intersection point of two line segments is encountered.

The sweep line status S is completely described by the order relation>x.

As to the event point schedule E, it includes the sorted endpoints plus the

intersections of the line segments, which are added dynamically while the

line is swept from left to right.

The actions taken by the algorithm on each event are as follows.

(1) When the left endpoint of a line segment l is encountered, l is added to

the order relation. If there is a line segment l1 immediately above l and

l and l1 intersect, then their intersection point is inserted into the event

point schedule E. Similarly, if there is a line segment l2 immediately

below l and l and l2 intersect, then their intersection point is inserted

into E.

(2) When the right endpoint p of a line segment l is encountered, l is

removed from the order relation. In this case, the two line segments l1
and l2 immediately above and below l are tested for a possible intersec-

tion at a point q to the right of p. If this is the case, q is inserted into E.

(3) When the intersection point p of two line segments is encountered, their

relative order in the relation is reversed. Thus, if l1 >x l2 to the left of

their intersection, the order relation is modified so that l2 >x l1. Let

l3 and l4 be the two line segments immediately above and below the
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l2

l3

l4

p

l1

Fig. 17.6. Reversing the order of two line segments at an intersection point.

intersection point p, respectively (see Fig. 17.6). In other words, l3 is

above l2 and l4 is below l1 to the right of the intersection point (see

Fig. 17.6). In this case, we check for the possibility of l2 intersecting

with l3 and l1 intersecting with l4. As before, we insert their intersection

points into E, if any.

It remains to specify the data structures needed to implement the event

point schedule and the sweep line status. To implement the event point

schedule E, we need a data structure that supports the following operations:

• insert(p,E): Insert point p into E.

• delete-min(E): Return the point with minimum x-coordinate and delete

it from E.

These two operations are clearly supported by the heap data structure

in O(log n) time. Thus, E is implemented as a heap that initially contains

the 2n sorted points. Each time the sweep line is to be moved to the right,

the point with minimum x-coordinate is extracted. As explained above,

when the algorithm detects an intersection point p, it inserts p into E.

As we have seen in the description of the algorithm above, the sweep

line status S must support the following operations:

• insert(l, S): Insert line segment l into S.

• delete(l, S): Delete line segment l from S.

• above(l, S): Return the line segment immediately above l.

• below(l, S): Return the line segment immediately below l.

A data structure known as a dictionary supports each of the above

operations in O(log n) time. Note that above(l, S) or below(l, S) may not
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exist; a simple test (which is not included in the algorithm) is needed to

handle these two cases.

A more precise description of the algorithm is given in Algorithm inter-

sectionsls. In the algorithm, Algorithm process(p) inserts p into E and

outputs p.

Algorithm 17.2 intersectionsls
Input: A set L = {l1, l2, . . . , ln} of n line segments in the plane.

Output: The intersection points of the line segments in L.

1. Sort the endpoints in nondecreasing order of their x-coordinates and
insert them into a heap E (the event point schedule).

2. while E is not empty
3. p← delete-min(E)
4. if p is a left endpoint then
5. let l be the line segment whose left endpoint is p
6. insert(l, S)
7. l1← above(l, S)
8. l2← below(l, S)
9. if l intersects l1 at point q1 then process(q1)

10. if l intersects l2 at point q2 then process(q2)
11. else if p is a right endpoint then
12. let l be the line segment whose right endpoint is p
13. l1← above(l, S)
14. l2← below(l, S)
15. delete(l, S)
16. if l1 intersects l2 at point q to the right of p then process(q)
17. else {p is an intersection point}
18. Let the two intersecting line segments at p be l1 and l2
19. where l1 is above l2 to the left of p
20. l3← above(l1, S) {to the left of p}
21. l4← below(l2, S) {to the left of p}
22. if l2 intersects l3 at point q1 then process(q1)
23. if l1 intersects l4 at point q2 then process(q2)
24. interchange the ordering of l1 and l2 in S
25. end if
26. end while

As regards the running time of the algorithm, we observe the following.

The sorting step takes O(n logn) time. Let the number of intersections

be m. Then, there are 2n + m event points to be processed. Each point

requires O(log(2n+m)) processing time. Hence, the total time required by

the algorithm to process all intersection points is O((2n+m) log(2n+m)).
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Since m ≤ n(n − 1)/2 = O(n2), the bound becomes O((n + m) logn).

Since the näıve approach to find all intersections runs in time O(n2), the

algorithm is not suitable to process a set of line segments whose number

of intersections is known a priori to be Ω(n2/logn). On the other hand, if

m = O(n), then the algorithm runs in O(n log n) time.

17.5 The Convex Hull Problem

In this section, we consider, perhaps, the most fundamental problem in

computational geometry: Given a set S of n points in the plane, find CH (S),

the convex hull of S. We describe here a well-known geometric sweeping

algorithm called “Graham scan”.

In its simplest form, Graham scan uses a line centered at a certain point

and makes one rotation that sweeps the whole plane stopping at each point

to decide whether it should be included in the convex hull or not. First,

in one scan over the list of points, the point with minimum y-coordinate

is found, call it p0. If there are two or more points with the minimum

y-coordinate, p0 is chosen as the rightmost one. Clearly, p0 belongs to the

convex hull. Next, the coordinates of all points are transformed so that p0
is at the origin. The points in S−{p0} are then sorted by polar angle about

the origin p0. If two points pi and pj form the same angle with p0, then the

one that is closer to p0 precedes the other in the ordering. Note that here,

we do not have to calculate the real distance from the origin, as it involves

computing the square root which is costly; instead, we only need to compare

the squares of the distances. Let the sorted list be T = {p1, p2, . . . , pn−1},
where p1 and pn−1 form the least and greatest angles with p0, respectively.

Figure 17.7 shows an example of a set of 13 points after sorting them by

polar angle about p0.

Now, the scan commences with the event point schedule being the sorted

list T and the sweep line status being implemented using a stack St. The

stack initially contains (pn−1, p0), with p0 being on top of the stack. The

algorithm then traverses the points starting at p1 and ending at pn−1.

At any moment, let the stack content be

St = (pn−1, p0, . . . , pi, pj)

(i.e., pi and pj are the most recently pushed points), and let pk be the next

point to be considered. If the triplet pi, pj, pk forms a left turn, then pk is
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Fig. 17.7. A set of points sorted in polar angle about p0.
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Fig. 17.8. The convex hull after processing point p5.

pushed on top of the stack and the sweep line is moved to the next point.

If pi, pj, pk form a right turn or are collinear, then pj is popped off the stack

and the sweep line is kept at point pk.

Figure 17.8 shows the resulting convex hull just after p5 has been pro-

cessed. At this point, the stack content is

(p12, p0, p1, p3, p4, p5).

After processing point p6, the points p5, p4 and p3 are successively

popped off the stack, and the point p6 is pushed on top of the stack (see

Fig. 17.9). The final convex hull is shown in Fig. 17.10.
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Fig. 17.9. The convex hull after processing point p6.
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Fig. 17.10. The final convex hull.

Given below is a more formal description of the algorithm. At the end

of the algorithm, the stack St contains the vertices of CH (S), so it can be

converted into a linked list to form a convex polygon.

The running time of Algorithm convexhull is computed as follows.

The sorting step costs O(n logn) time. As to the while loop, we observe

that each point is pushed exactly once and is popped at most once. More-

over, checking whether three points form a left turn or a right turn amounts

to computing their signed area in Θ(1) time. Thus, the cost of the while loop

is Θ(n). It follows that the time complexity of the algorithm is O(n log n).

See Exercise 17.7 for an alternative approach that avoids computing the

polar angles. Other algorithms for computing the convex hull are outlined

in Exercises 17.3 and 17.8.
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Algorithm 17.3 convexhull
Input: A set S of n points in the plane.

Output: CH (S), the convex hull of S stored in a stack St.

1. Let p0 be the rightmost point with minimum y-coordinate.
2. T [0]← p0
3. Let T [1..n − 1] be the points in S − {p0} sorted in increasing polar

angle about p0. If two points pi and pj form the same angle with p0,
then the one that is closer to p0 precedes the other in the ordering.

4. push (St, T [n− 1]); push (St, T [0])
5. k← 1
6. while k < n− 1
7. Let St = (T [n− 1], . . . , T [i], T [j]), T [j] is on top of the stack.
8. if T [i], T [j], T [k] is a left turn then
9. push (St, T [k])

10. k← k + 1
11. else pop (St)
12. end if
13. end while

17.6 Computing the Diameter of a Set of Points

Let S be a set of points in the plane. The diameter of S, denoted by

Diam(S), is defined to be the maximum distance realized by two points

in S. A straightforward algorithm to solve this problem compares each pair

of points and returns the maximum distance realized by two points in S.

This approach leads to a Θ(n2) time algorithm. In this section, we study

an algorithm to find the diameter of a set of points in the plane in time

O(n log n).

We start with the following observation, which seems to be intuitive (see

Fig. 17.11):

Observation 17.1 The diameter of a point set S is equal to the diameter

of the vertices of its convex hull, i.e., Diam(S) = Diam(CH (S)).

Consequently, to compute the diameter of a set of points in the plane,

we only need to consider the vertices on its convex hull. Therefore, in what

follows, we will be concerned primarily with the problem of finding the

diameter of a convex polygon.
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Fig. 17.11. The diameter of a set of points is the diameter of its convex hull.

Fig. 17.12. Some supporting lines of a convex polygon.

p

q

Fig. 17.13. Two parallel supporting lines with largest separation.

Definition 17.3 Let P be a convex polygon. A supporting line of P is

a straight line l passing through a vertex of P such that the interior of P

lies entirely on one side of l (see Fig. 17.12).

A useful characterization of the diameter of a convex polygon is given

in the following theorem (see Fig. 17.13).

Theorem 17.1 The diameter of a convex polygon P is equal to the

greatest distance between any pair of parallel supporting lines of P .

Definition 17.4 Any two points that admit two parallel supporting lines

are called antipodal pair.



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch17 page 494

494 Algorithms: Design Techniques and Analysis

We have the following corollary of Theorem 17.1:

Corollary 17.1 Any pair of vertices realizing the diameter in a convex

polygon is an antipodal pair.

By the above corollary, the problem now reduces to finding all antipodal

pairs and selecting the one with maximum separation. It turns out that we

can accomplish that in optimal linear time.

Definition 17.5 We define the distance between a point p and a line

segment qr, denoted by dist(q, r, p) to be the distance of p from the straight

line on which the line segment qr lies. A vertex p is farthest from a line

segment qr if dist(q, r, p) is maximum.

Consider Fig. 17.14(a) in which a convex polygon P is shown. From

the figure, it is easy to see that p5 is the farthest vertex from edge p12p1.

Similarly, vertex p9 is the farthest from edge p1p2.

It can be shown that a vertex p forms an antipodal pair with p1 if and

only if it is one of the vertices p5, p6, . . . , p9. In general, let the vertices

on the convex hull of the point set be p1, p2, . . . , pm for some m ≤ n, in

counterclockwise ordering. Let pk be the first farthest vertex from edge

pmp1 and pl the first farthest vertex from edge p1p2 when traversing the

boundary of CH (S) in counterclockwise order (see Fig. 17.14(b)). Then, any

p
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Fig. 17.14. Computing the set of antipodal pairs.
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vertex between pk and pl (including pk and pl) forms an antipodal pair with

p1. Moreover, all other vertices do not form an antipodal pair with p1.

This important observation suggests the following method for finding all

antipodal pairs. First, we traverse the boundary of CH (S) in counterclock-

wise order starting at p2 until we find pk, the farthest vertex from pmp1.

We add the pair (p1, pk) to an initially empty set for holding the antipodal

pairs. We then keep traversing the boundary and include the pair (p1, pj)

for each vertex pj encountered until we reach pl, the vertex farthest from

p1p2. It may be the case that l = k+1 or even l = k, i.e., pl = pk. Next, we

advance to the edge p2p3 to find the vertices that form antipodal pairs with

p2. Thus, we are simultaneously doing two counterclockwise traversals of

the boundary: one from p1 to pk and the other from pk to pm. The traver-

sal ends when the antipodal pair (pk, pm) is detected. Finally, a linear scan

over the set of antipodal pairs is clearly sufficient to find the diameter of

the convex hull, which by Observation 17.1 is the desired diameter of the

point set. This method is described more formally in Algorithm diameter.

If the convex hull contains no parallel edges, the number of antipodal

pairs will be exactly m, which is the size of the convex hull. If there are

pairs of parallel edges, then their number is at most �m/2� and hence the

total number of antipodal pairs is at most �3m/2�.

Algorithm 17.4 diameter
Input: A set S of n points in the plane.

Output: Diam(S), the diameter of S.

1. {p1, p2, . . . , pm}← CH (S) {Compute the convex hull of S}
2. A←{} {Initialize the set of antipodal pairs}
3. k← 2
4. while dist(pm, p1, pk+1) > dist(pm, p1, pk) {Find pk}
5. k← k + 1
6. end while
7. i← 1; j← k
8. while i ≤ k and j ≤ m
9. A←A ∪ {(pi, pj)}

10. while dist(pi, pi+1, pj+1) ≥ dist(pi, pi+1, pj) and j < m
11. A←A ∪ {(pi, pj)}
12. j← j + 1
13. end while
14. i← i+ 1
15. end while
16. Scan A to obtain an antipodal pair (pr, ps) with maximum separation.
17. return the distance between pr and ps.
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When comparing the distance between a vertex and a line segment,

we do not compute the actual distance (which involves taking the square

roots); instead, we compare the signed area since it is proportional to the

actual distance (see Sec. 17.3 for the definition of the signed area). For

example, the comparison

dist(pi, pi+1, pj+1) ≥ dist(pi, pi+1, pj)

in the algorithm can be replaced with the comparison

area(pi, pi+1, pj+1) ≥ area(pi, pi+1, pj),

where area(q, r, p) is the area of the triangle formed by the line segment qr

and the point p. This area is half the magnitude of the signed area of these

three points.

The running time of the algorithm is computed as follows. Finding the

convex hull requires O(n logn) time. Since the two nested while loops con-

sist of two concurrent sweeps of the boundary of the convex hull, the time

taken by these nested while loops is Θ(m) = O(n), where m is the size of

the convex hull. It follows that the overall running time of the algorithm is

O(n log n).

17.7 Practice Problems

17.1. Let I be a set of intervals on the horizontal line. Design an algorithm

to report all those intervals that are contained in another interval

from I. What is the running time of your algorithm?

17.2. Consider the decision problem version of the line segment intersection

problem: Given n line segments in the plane, determine whether two

of them intersect. Give an O(n log n) time algorithm to solve this

problem.

17.3. Give an efficient algorithm to report all intersecting pairs of a set

of n horizontal line segments. What is the time complexity of the

algorithm?

17.4. Explain how to determine whether a given polygon is simple. Recall

that a polygon is simple if and only if no two of its edges intersect

except at its vertices.

17.5. Let P and Q be two simple polygons whose total number of vertices

is n. Give an O(n logn) time algorithm to determine whether P and

Q intersect.
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17.6. Give an O(n) time algorithm to solve the problem in Problem 17.5

in the case where the two polygons are convex.

17.7. In Graham scan for finding the convex hull of a point set, the points

are sorted by their polar angles. However, computing the polar angles

is costly. One alternative to computing the convex hull is to sort

using the sines or cosines of the angles instead. Another alterna-

tive is to sort the points around the point (0,−∞) instead. This is

equivalent to sorting the points by x-coordinates. Explain how to

use this idea to come up with another algorithm for computing the

convex hull.

17.8 Exercises

17.1. Let S be a set of n points in the plane. Design an iterative O(n logn)

time algorithm to compute for each point p the number of points

in S dominated by p. A recursive algorithm to solve this prob-

lem was given in Sec. 5.12. Hint : Use a line sweep algorithm to

scan the points in ascending x-coordinates while maintaining a

(dynamic) binary search tree for the points already scanned in

sorted y-coordinates. When a new point is scanned, you just search

in the BST and count the number of points whose y-coordinates

are less than (or equal to) that of the current point.

17.2. Give an efficient algorithm to report all intersecting pairs of a given

set of n horizontal and vertical line segments. What is the time

complexity of the algorithm?

17.3. Another algorithm for finding the convex hull is known as Jarvis

march. In this algorithm, the edges of the convex hull are found

instead of its vertices. The algorithm starts by finding the point

with the least y-coordinate, say p1, and finding the point p2 with

the least polar angle with respect to p1. Thus, the line segment p1p2
defines an edge of the convex hull. The next edge is determined by

finding the point p3 with the least polar angle with respect to p2,

and so on. From its description, the algorithm resembles Algorithm

selectionsort. Give the details of this method. What is its time

complexity?
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17.4. What are the merits and demerits of Jarvis march for finding the

convex hull as described in Exercise 17.3?

17.5. Let P be a convex polygon. A line segment tangent to P , or a

supporting line for P , is a line segment L that intersects P at one

vertex or an edge, so P lies on one side of L. How many supporting

lines for P that pass through a point p external to P?

17.6. Let P and Q be two disjoint convex polygons. A supporting

line for both P and Q is one that is tangent to both P and Q

(see Exercise 17.5). How many supporting lines for P and Q are

possible?

17.7. Let p be a point external to a convex polygon P . Explain how to

compute in O(log n) time the convex hull of their union, i.e., the

convex hull of P ∪ {p}. (Hint: Find the supporting lines of p and P

(see Exercise 17.5).)

17.8. Use the result of Exercise 17.7 to devise an incremental algorithm

for computing the convex hull of a set of points. The algorithm

builds the convex hull by testing one point at a time and deciding

whether it belongs to the current convex hull or not. The algorithm

should run in time O(n logn).

17.9. Design an O(n) time algorithm to find the convex hull of two

given convex polygons P and Q, that is, the union of CH(P ) and

CH(Q).

17.10. Let S be a set of points in the plane. Derive a divide-and-conquer

O(n log n) time algorithm to compute CH(S). First, the algorithm

divides S into two subsets S1 and S2 of approximately equal size.

Then, it finds CH(S1) and CH(S2) recursively. The combine step

consists of finding the two tangent lines (supporting lines) above

and below CH(S1) and CH(S2), and concatenating the appropriate

parts of these two hulls (see Exercises 17.5 and 17.9).

17.11. Give an O(n) time algorithm that decides whether a point p is

inside a simple polygon P . (Hint: Draw a horizontal line passing by

p and count the number of intersections it has with P .)
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17.12. Give an O(n) time algorithm that decides whether a point p is

inside a convex polygon P . (Hint: Draw a horizontal line passing

by p and count the number of intersections it has with P or traverse

the boundary of the polygon counterclockwise testing for left turns

with the point p.)

17.13. Prove or disprove the following statement: Given a set of points S

in the plane, there is only one unique simple polygon whose vertices

are the points in S.

17.14. Given a set of n points in the plane, show how to construct a simple

polygon having them as its vertices. The algorithm should run in

time O(n log n).

17.15. Referring to the algorithm for finding the diameter of a given point

set S in the plane, prove that the diameter is the distance between

two points on their convex hull.

17.16. Let P be a simple polygon with n vertices. P is called monotone

with respect to the y-axis if for any line l perpendicular to the

y-axis, the intersection of l and P is either a line segment or a

point. For example, any convex polygon is monotone with respect

to the y-axis. A chord in P is a line segment that connects two

nonadjacent vertices in P and lies entirely inside P . The problem

of triangulating a simple polygon is to partition the polygon into

n − 2 triangles by drawing n − 3 nonintersecting chords inside P .

Give an algorithm to triangulate a simple and monotone polygon P .

What is the time complexity of your algorithm?

17.9 Bibliographic Notes

Some books on computational geometry include de Berg et al. (1997),

Edelsbrunner (1987), Mehlhorn (1984c), O’Rourke (1994), Preparata and

Shamos (1985) and Toussaint (1984). The algorithm for computing line

segment intersections is due to Shamos and Hoey (1975). The convex hull

algorithm is due to Graham (1972). Theorem 17.1 is due to Yaglom and

Boltyanskii (1986). The algorithm of finding the diameter can be found in
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Preparata and Shamos (1985). The problem of triangulating a simple poly-

gon is fundamental in computational geometry. The solution to the problem

of triangulating a monotone polygon in Θ(n) time (Exercise 17.16) can be

found in Garey et al. (1978). In this paper, it was also shown that triangu-

lating a simple polygon can be achieved in O(n log n) time. Later, Tarjan

and Van Wyk (1988) gave an O(n log logn) time algorithm for triangu-

lating a simple polygon. Finally, Chazelle (1990, 1991) gave a linear time

algorithm, which is quite complicated.



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch18 page 501

Chapter 18

Voronoi Diagrams

18.1 Introduction

In this chapter, we study a fundamental geometric structure that aids

in solving numerous proximity problems in computational geometry. This

structure is referred to as the Voronoi diagram. Although there are many

types of Voronoi diagrams, the phrase “Voronoi diagram” with no modifiers

is commonly used to refer to the nearest-point Voronoi diagram. This con-

struct is usually used to solve problems that are concerned with “nearness”.

In this chapter, we will also study another type of Voronoi diagram called

the farthest-point Voronoi diagram. This construct is basically used to solve

problems that have to do with “farthness”. We will demonstrate the power

of these two diagrams by outlining some of their important applications.

18.2 Nearest-Point Voronoi Diagram

Let S = {p1, p2, . . . , pn} be a set of n points in the plane. The locus of

all points in the plane closer to a point pi in S than to any other point

in S defines a polygonal region V (pi) called the Voronoi region of pi. It

is a convex polygon that may be unbounded. It has at most n − 1 edges

with each edge lying on the perpendicular bisector of pi and another point

in S. Figure 18.1(a) shows the Voronoi region V (p) of a point p. The col-

lection of all n Voronoi regions, one for each point, constitute the nearest-

point Voronoi diagram, or simply the Voronoi diagram, of the point set S,

501
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Fig. 18.1. (a) Voronoi region. (b)–(d) Voronoi diagrams of two, three and four
points.

denoted by V(S). The Voronoi diagrams of sets of two, three and four points

are shown in Figs. 18.1(b)–18.1(d). The Voronoi diagram of two points p1
and p2 is just the perpendicular bisector of the line segment p1p2. As shown

in Fig. 18.1(c), the Voronoi diagram of three points that are not collinear

consists of three bisectors that meet at one point. The region V (p4) asso-

ciated with p4 in Fig. 18.1(d) is bounded.

In general, let pi and pj be two points in S. The half plane H(pi, pj)

containing pi and defined by the perpendicular bisector of pi and pj is the

locus of all points in the plane closer to pi than to pj . The Voronoi region

V (pi) associated with point pi is the intersection of n−1 half-planes. That is,

V (pi) =
⋂
i�=j

H(pi, pj).

The Voronoi regions V1, V2, . . . , Vn define V(S), the Voronoi diagram of S.

Figure 18.2 shows the Voronoi diagram of a number of points chosen ran-

domly in the plane.
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Fig. 18.3. The Voronoi diagram of three points.

The Voronoi diagram of a point set S is a planar graph whose vertices

and edges are respectively called Voronoi vertices and Voronoi edges. By

construction, each point p ∈ S belongs to a unique region V (p), and hence

for any point q in the interior of V (p), q is closer to p than to any other

point in S. The Voronoi diagram of a point set enjoys a number of inter-

esting properties and can be used to answer several questions that have

to do with proximity relationships. To simplify the discussion and make

the justifications easier, we will assume henceforth that the points are in

general position in the sense that no three points are collinear and no four

points are cocircular, i.e., lie on the circumference of a circle.

Consider Fig. 18.3, which is Fig. 18.1(c) redrawn with more details. It

is well known that the three perpendicular bisectors of the three sides of

the triangle defined by the three points intersect at one point, the center

of the circle that passes through these three points. Indeed, every vertex of
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the Voronoi diagram is the common intersection of exactly three edges of

the Voronoi diagram (see Fig. 18.2). These edges lie on the perpendicular

bisectors of the sides of the triangle defined by the three points, and hence

that Voronoi vertex is the center of the unique circle passing through these

three points.

Let v be a vertex in a Voronoi diagram V(S) for some planar point set

S, and let C(v) denote the circle centered at v and passing through the

points p1, p2 and p3 (see for example Fig. 18.3). If some other point p4 is

inside C(v), then v is closer to p4 than to any of the three points p1, p2 and

p3. This means that v must lie in V (p4), which contradicts the fact that v is

common to V (p1), V (p2) and V (p3). It follows that C(v) contains no other

point in S. These facts are summarized in the following theorem (here S is

the original point set):

Theorem 18.1 Every Voronoi vertex v is the common intersection of

three Voronoi edges. Thus, v is the center of a circle C(v) defined by three

points in S. Moreover, C(v) contains no other point in S.

18.2.1 Delaunay triangulation

Let V(S) be a Voronoi diagram of a planar point set S. Consider the

straight-line dual D(S) of V(S), i.e., the graph embedded in the plane

obtained by adding a straight-line segment between each pair of points in S

whose Voronoi regions share an edge. The dual of an edge in V(S) is an edge

in D(S), and the dual of a vertex in V(S) is a triangular region in D(S).
D(S) is a triangulation of the original point set and is called the Delaunay

triangulation after Delaunay who proved this result in 1934. Figure 18.4

shows the dual of the Voronoi diagram in Fig. 18.2, i.e., the Delaunay tri-

angulation of the set of points in Fig. 18.2. Figure 18.5 shows the Delaunay

triangulation superimposed on its corresponding Voronoi diagram. Note

that an edge in the Voronoi diagram and its dual in the Delaunay tri-

angulation need not intersect, as is evident in the figure. In a Delaunay

triangulation, the minimum angle of its triangles is maximum over all

possible triangulations. Another property of the Delaunay triangulation

D(S) of a planar point set S is that its boundary is CH (S), the convex

hull of S.

Let m and r be the number of edges and regions in a Delaunay triangu-

lation D(S), respectively, where |S| = n. Clearly, D(S) is a planar graph,
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Fig. 18.4. The Delaunay triangulation of a set of points.

Fig. 18.5. The Voronoi diagram and Delaunay triangulation of a set of points.

and hence by Euler’s formula (page 83), we have

n−m+ r = 2

and, for n ≥ 3,

m ≤ 3n− 6.

Thus, its number of regions satisfies the inequality

r ≤ 2n− 4.

Since each edge in a Delaunay triangulation is the dual of an edge in its

corresponding Voronoi diagram, the number of edges in the latter is also

no more than 3n− 6. Since each region (except the unbounded region) in a

Delaunay triangulation is the dual of a vertex in its corresponding Voronoi
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diagram, the number of vertices of the latter is at most 2n − 5. Thus, we

have the following theorem:

Theorem 18.2 Let V(S) and D(S) be, respectively, the Voronoi diagram
and Delaunay triangulation of a planar point set S, where |S| = n ≥ 3.

Then,

(1) the number of vertices and edges in V(S) is at most 2n− 5 and 3n− 6,

respectively, and

(2) the number of edges in D(S) is at most 3n− 6.

It follows that the size of V(S) or D(S) is Θ(n), which means that both

diagrams can be stored using only Θ(n) of space.

18.2.2 Construction of the Voronoi diagram

A straightforward approach to the construction of the Voronoi diagram

is the construction of each region one at a time. Since each region is the

intersection of n − 1 half-planes, the construction of each region can be

achieved in O(n2) time, leading to an O(n3) algorithm to construct the

Voronoi diagram. Indeed, the intersection of n− 1 half-planes can be con-

structed in O(n log n) time, thereby resulting in an overall time complexity

of O(n2 logn).

It turns out that the entire Voronoi diagram can be constructed in

O(n log n) time. One method that we will describe in this section uses the

divide-and-conquer technique to construct the diagram in O(n log n) time.

In what follows, we will illustrate the method in connection with an exam-

ple and give only the high-level description of the algorithm. More detailed

description of the algorithm can be found in the references (see the biblio-

graphic notes).

Let S be a set of n points in the plane. If n = 2, then the Voronoi

diagram is the perpendicular bisector of the two points (see Fig. 18.1(b)).

Otherwise, S is partitioned into two subsets SL and SR consisting of �n/2�
and �n/2� points, respectively. The Voronoi diagrams V(SL) and V(SR) are

then computed and merged to obtain V(S) (see Fig. 18.6).

In this figure, a set of 16 points {1, 2, . . . , 16} is partitioned into two

subsets SL = {1, 2, . . . , 8} and SR = {9, 10, . . . , 16} using the median

x-coordinate as a separator, that is, the x-coordinate of any point in SL is
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Fig. 18.6. Construction of the Voronoi diagram.

less than the x-coordinate of any point in SR. Figures 18.6(a) and 18.6(b)

show V(SL) and V(SR), the Voronoi diagrams of SL and SR, respectively.

Figure 18.6(c) shows how the merge step is carried out. The basic idea of

this step is to find the dividing chain C, which is a polygonal curve with
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the property that any point to its left is closest to some point in SL and any

point to its right is closest to some point in SR. C is shown in Fig. 18.6(c)

as a heavy polygonal path running from +∞ to −∞. Since S is partitioned

into SL and SR by the median x-coordinate, the dividing chain C is mono-

tonic in y, that is, each horizontal line intercepts C at exactly one point.

C consists of a ray, some line segments, and another ray, which are all part

of the final constructed Voronoi diagram. Let CH (SL) and CH (SR) be the

convex hulls of SL and SR, respectively. In order to compute the dividing

chain, these two convex hulls are first merged to form CH (S), the con-

vex hull of the entire set S. In CH (S), there are two line segments on the

upper and lower supporting lines that join a point in CH (SL) to a point

in CH (SR) (6, 10 and 5, 12 in Fig. 18.6(c)). The perpendicular bisectors

of these two edges are precisely the two rays of C extending to +∞ and

−∞. Once these two rays have been found, the remaining line segments of

C, which are edges of the final Voronoi diagram, are computed as follows.

We imagine a point p moving from +∞ inward along the ray extending

to +∞. Initially, p lies in V (6) and V (10) and proceeds along the locus of

points equidistant from points 6 and 10 until it becomes closer to a different

point. This occurs when p hits the edge of one of the polygons. Referring

to Fig. 18.6(c), as p moves downward, it hits the edge shared by V (6) and

V (8) before crossing any edge of V (10). At this point, p is closer to 8 than

to 6, and therefore it must continue along the 8,10 bisector. Moving further,

p crosses an edge of V (10) and moves off along the 8,11 bisector. Referring

again to the figure, we see that p continues on the 8,11 bisector, then the 7,11

bisector and so on until it reaches the 5,12 bisector, at which point it has

traced out the desired polygonal path C. Once C has been found, the con-

struction ends by discarding those rays of V(SL) to the right of C and those

rays of V(SR) to the left of C. The resulting Voronoi diagram is shown in

Fig. 18.6(d).

The outline of the construction is given in Algorithm voronoid. It can

be shown that the combine step, which essentially consists of finding the

dividing chain, takes O(n) time. Since the sorting step takes O(n logn)

time, the overall time taken by the algorithm is O(n logn). This implies

the following theorem:

Theorem 18.3 The Voronoi diagram of a set of n points in the plane

can be constructed in O(n logn) time.
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Algorithm 18.1 voronoid
Input: A set S of n points in the plane.

Output: V(S), the Voronoi diagram of S.

1. Sort S by nondecreasing order of x-coordinates.
2. V(S)← vd(S, 1, n)

Algorithm vd(S, low , high)

1. If |S| ≤ 3, then compute V(S) by a straightforward method and
return V(S); otherwise, continue.

2. mid← �(low + high)/2�
3. SL← S[low ..mid ]; SR← S[mid + 1..high ]
4. V(SL)← vd(S, low ,mid)
5. V(SR)← vd(S,mid + 1, high)
6. Construct the dividing chain C.
7. Remove those rays of V(SL) to the right of C and those rays of V(SR)

to the left of C.
8. return V(S)

18.3 Applications of the Voronoi Diagram

The Voronoi diagram of a point set is a versatile and powerful geometric

construct that contains almost all the proximity information. In this section,

we list some of the problems that can be solved efficiently if the (nearest-

point) Voronoi diagram is already available. Some problems can be solved

efficiently by first computing the Voronoi diagram.

18.3.1 Computing the convex hull

An important property of the Voronoi diagram V(S) of a point set S is

given in the following theorem:

Theorem 18.4 A Voronoi region V (p) is unbounded if and only if its

corresponding point p is on the boundary of CH (S), the convex hull of S.

Equivalently, the convex hull of S is defined by the boundary of D(S),
the Delaunay triangulation of S. Thus, in O(n) time, it is possible to con-

struct CH (S) from either V(S) or D(S). An outline of an algorithm that

constructs the convex hull from the Voronoi diagram is as follows. Starting

from an arbitrary point p in S, we search for a point whose Voronoi region
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is unbounded. Once p has been found, its neighbor in CH (S) is that point

q whose Voronoi region is separated from that of p by a ray. Continuing

this way, we traverse the boundary of the Voronoi diagram until we return

back to the initial point p. At this point, the construction of the convex

hull is complete.

18.3.2 All nearest neighbors

Definition 18.1 Let S be a set of points in the plane and p and q in S.

q is said to be a nearest neighbor of p if q is closest to p among all points

in S − {p}. That is, q is said to be a nearest neighbor of p if

d(p, q) = min
r∈S−{p}

d(p, r),

where d(p, x) is the Euclidean distance between point p and point x ∈ S.

The “nearest neighbor” is a relation on a set S. Observe that this rela-

tion is not necessarily symmetric, as is evident from Fig. 18.7. In this figure,

p is the nearest neighbor of q, while q is not the nearest neighbors of p.

The all nearest neighbors problem is as follows. Given a set S of n

planar points, find a nearest neighbor for each point in S. The solution to

this problem is immediate from the following theorem.

Theorem 18.5 Let S be a set of points in the plane, and p in S. Every

nearest neighbor of p defines an edge of the Voronoi region V (p).

By Theorem 18.5, given V(S) and a point p in S, its nearest neighbor

can be found by examining all its neighbors and returning one with the

smallest distance from p. This takes O(n) time, as V (p) may consist of O(n)

edges. To find a nearest neighbor for every point in S, we need to examine

all the Voronoi edges. Since each edge is examined no more than twice

(once for each Voronoi region sharing that edge), all nearest neighbors can

be found in time proportional to the number of edges in V(S), i.e., Θ(n).

p

q

r

Fig. 18.7. The nearest neighbor relation.
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It is interesting that, in the worst case, the time complexity of finding one

nearest neighbor is the same as that for finding all nearest neighbors.

18.3.3 The Euclidean minimum spanning tree

Given a set S of n points in the plane, the Euclidean minimum spanning

tree (emst) problem asks for a minimum cost spanning tree whose vertices

are the given point set and such that the cost between two points is the

Euclidean distance between them. The brute-force method is to compute

the distance between each pair of points and use one of the known algo-

rithms for computing the minimum cost spanning tree in general graphs (see

Sec. 7.3). Using Prim’s or Kruskal’s algorithms results in time complexi-

ties Θ(n2) and O(n2 logn), respectively. If, however, we have the Delaunay

triangulation of the point set, then we can compute the tree in O(n logn)

time. Indeed, an algorithm exists for constructing the minimum spanning

tree from the Delaunay triangulation in only Θ(n) time, but we will not

discuss such an algorithm here. The key idea comes from the following the-

orem, which says that we do not have to examine all the Θ(n2) distances

between pairs of points; examining those pairs that are connected by a

Delaunay triangulation edge is all that we need.

Theorem 18.6 Let S be a set of points in the plane and let {S1, S2} be
a partition of S. If pq is the shortest line segment between points of S1 and

points of S2, then pq is an edge in D(S), the Delaunay triangulation of S.

Proof. Suppose that pq realizes the shortest distance between points in

S1 and points in S2, where p ∈ S1 and q ∈ S2, but it is not in D(S). Let
m be the midpoint of the line segment pq. Suppose that pq intersects V (p)

at edge e. Let r be the neighbor of p such that V (p) and V (r) share the

edge e (see Fig. 18.8). It is not hard to show that r lies in the interior of the

disk centered at m with diameter pq. Consequently, pq > pr and pq > qr.

We have two cases. If r ∈ S2, then pq does not realize the shortest distance

between S1 and S2, since pr < pq. If r ∈ S1, then pq does not realize the

shortest distance between S1 and S2, since qr < pq. As both cases lead to a

contradiction, we conclude that p and q must be neighbors in V(S), i.e., pq
is an edge in D(S). �

Now, to obtain an O(n log n) time algorithm, we only need to apply

Kruskal’s algorithm to the Delaunay triangulation of the point set. Recall
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Fig. 18.8. Illustration of the proof of Theorem 18.6.

that the time complexity of Kruskal’s algorithm is O(m logm), where m

is the number of edges, and in any Delaunay triangulation, m = O(n)

(Theorem 18.2).

18.4 Farthest-Point Voronoi Diagram

Let S = {p1, p2, . . . , pn} be a set of n points in the plane. The locus of all

points in the plane farthest from a point pi in S than from any other point in

S defines a polygonal region Vf (pi) called the farthest-point Voronoi region

of pi. It is an unbounded region and is defined only for points on the convex

hull of S (see Exercises 18.6 and 18.7). The collection of all farthest-point

Voronoi regions constitute the farthest-point Voronoi diagram of the point

set, denoted by Vf (S). The Voronoi diagrams of sets of two and three points

are shown in Fig. 18.9. The farthest-point Voronoi diagram of two points p1
and p2 is just the perpendicular bisector of the line segment p1p2. As shown

in Fig. 18.9(b), the farthest-point Voronoi diagram of three points that are

not collinear consists of three bisectors that meet at one point. Compare

these two diagrams with the Voronoi diagrams shown in Figs. 18.1(b) and

18.1(c), in which the same point sets were used.

Figure 18.10 shows the farthest-point Voronoi diagram of a number of

points chosen randomly in the plane. As in the case of Voronoi diagrams, we

will assume that the points are in general position, that is, no three points

are collinear and no four points are cocircular, i.e., lie on the circumference

of a circle. The following theorem is similar to Theorem 18.1.

Theorem 18.7 Every farthest-point Voronoi vertex v is the common

intersection of three Voronoi edges. Thus, v is the center of a circle C(v)

defined by three points in S. Moreover, C(v) contains all other points.
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Fig. 18.9. Farthest-point Voronoi diagrams of two and three points.
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Fig. 18.10. The farthest-point Voronoi diagram of a set of points.

18.4.1 Construction of the farthest-point Voronoi diagram

The construction of the farthest-point Voronoi diagram Vf (S) of a set of

points S starts by discarding all points not on the convex hull, and the rest

of the construction is similar to that of the nearest-point Voronoi diagram

V(S) described in Sec. 18.2.2. There are minor modifications that reflect

the transition from “nearness” to “farthness”. These modifications will be

clear from the construction shown in Fig. 18.11.
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Fig. 18.11. Construction of the farthest-point Voronoi diagram.

The first modification is in finding the dividing chain C (refer to

Figs. 18.11(a)–18.11(c)). When constructing Vf (S) from Vf (SL) and

Vf (SR), the ray coming from +∞ inward is perpendicular to the bottom

supporting line of CH (SL) and CH (SR), that is, the line segment connect-

ing points 1 and 12 in the figure. This means the ray originates in V (1)

of Vf (SL) and V (12) of Vf (SR). It then intersects the boundary between
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V (11) and V (12) of Vf (SR) and hence follows the 1,11 bisector. After that,

it intersects the boundary between V (1) and V (2) of Vf (SL) and hence

follows the 2,11 bisector. The dividing chain continues this way until it

finally becomes perpendicular to the upper supporting line that connects

the points 3 and 8. It then continues in this direction indefinitely.

The second modification is in removing rays of Vf (SL) and Vf (SR) when

merging them to obtain Vf (S). In this case, the rays of Vf (SL) to the left

of the dividing chain and the rays of Vf(SR) to the right of the dividing

chain are removed. The resulting farthest-point Voronoi diagram is shown in

Fig. 18.11(d). Thus, the algorithm for the construction of the farthest-point

Voronoi diagram is identical to that for constructing the Voronoi diagram

except for the two modifications stated above.

The outline of the construction is given in Algorithm fpvoronoid.

Algorithm 18.2 fpvoronoid
Input: A set S of n points in the plane.

Output: Vf (S), the farthest-point Voronoi diagram of S.

1. Sort S by nondecreasing order of x-coordinates.
2. Vf (S)← fpvd(S, 1, n)

Algorithm fpvd(S, low , high)

1. If |S| ≤ 3, then compute Vf (S) by a straightforward method and
return Vf (S); otherwise, continue.

2. mid← �(low + high)/2�
3. SL← S[low ..mid ]; SR← S[mid + 1..high ]
4. Vf (SL)← fpvd(S, low ,mid)
5. Vf (SR)← fpvd(S,mid + 1, high)
6. Construct the dividing chain C.
7. Remove those rays of Vf (SL) to the left of C and those rays of Vf (SR)

to the right of C.
8. return Vf (S)

18.5 Applications of the Farthest-Point Voronoi Diagram

The farthest-point Voronoi diagram is used to answer questions or compute

some results that have to do with “farthness”, e.g., clustering and covering.

In this section, we touch on two problems that can be solved efficiently by

means of the farthest-point Voronoi diagram.
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18.5.1 All farthest neighbors

Definition 18.2 Let S be a set of points in the plane, and p and q in

S. q is said to be a farthest neighbor of p if q is farthest from p among all

other points in S − {p}. That is, q is said to be a farthest neighbor of p if

d(p, q) = max
r∈S−{p}

d(p, r),

where d(p, x) is the Euclidean distance between point p and point x ∈ S.

The “farthest neighbor” is a relation on a set S that is not necessarily

symmetric. For each point p, we need to find in what farthest-point Voronoi

region p lies. If p lies in V (q), then q is the farthest neighbor of p. Thus,

the problem becomes a point location problem, which we will not pursue

here. It suffices to say that the diagram can be preprocessed in O(n logn)

time to produce a data structure that can be used to answer in O(log n)

time any query of the form: Given any point x (not necessarily in S), return

the region in which x lies. It follows that, after preprocessing Vf (S), the
farthest neighbors of all the points in S can be computed in O(n log n) time.

18.5.2 Smallest enclosing circle

Consider the following problem. Given a set S of n points in the plane,

find the smallest circle that encloses them. This problem has received a lot

of attention and is familiar in operations research as the facilities location

problem. The smallest enclosing circle is unique and is either the circum-

circle of three points in S or is defined by two points as the diameter. The

obvious brute-force approach, which considers all two-element and three-

element subsets of S, leads to a Θ(n4) time algorithm. Using Vf (S), finding
the smallest enclosing circle becomes straightforward. First, find CH (S)

and compute D = diam(S), the diameter of S (see Sec. 17.6). If the cir-

cle with diameter D encloses the points, then we are done. Otherwise, we

test every vertex of Vf (S) as a candidate for the center of the enclosing

circle and return the smallest circle; recall that a vertex of a farthest-point

Voronoi diagram is the center of a circle that is defined by three points on

CH (S) and encloses all other points (Theorem 18.7). Computing CH (S)

takes O(n log n) time. Computing the diameter from CH (S) takes Θ(n)

time. Constructing Vf(S) from CH (S) takes O(n log n) time. In fact, Vf (S)
can be constructed from CH (S) in O(n) time. Finally, since the diagram
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(b)(a)

Fig. 18.12. Two triangulations of a set of four points.

consists of O(n) vertices, finding the smallest enclosing circle takes only

O(n) time. It follows that finding the smallest enclosing circle using the

farthest-point Voronoi diagram takes O(n log n) time. Finally, we remark

that finding the smallest enclosing circle can be solved in Θ(n) time by

solving a variant of a three-dimensional linear programming problem.

18.6 Practice Problems

18.1 Draw the Voronoi diagram of four points that are the corners of a

square.

18.2 Which of the two triangulations shown in Fig. 18.12 is a Delaunay

triangulation? Explain.

18.3 The one-dimensional Voronoi diagram of a set of points {x1, x2,

. . . , xn} on the x-axis is a set of points {v1, v2, . . . , vn−1} such that vi
is the midpoint of the line segment xixi+1. Give an efficient algorithm

to determine whether a given point set {v1, v2, . . . , vn−1} is a one-

dimensional Voronoi diagram.

18.4 Let V(S) be the Voronoi diagram of a point set S. Let x ∈ S. Describe

how to find the nearest neighbor(s) of x in S.

18.5 Give a brute-force algorithm to compute the Voronoi diagram of a

planar point set.

18.6 Prove that the farthest neighbor of a point p in a point set S is one

of the vertices of the convex hull of S.

18.7 Exercises

18.1. Give an example of a set S of n points in the plane such that one

of the regions of V(S) has n− 1 vertices.
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18.2. Show that the problem of computing V(S) for a point set S of n

points requires Ω(n logn) by reducing the problem of sorting to it.

18.3. Let V(S) be the Voronoi diagram of a point set S. Let x and y be

two points such that x ∈ S but y /∈ S. Assume further that y lies

in the Voronoi polygon of x. Explain how to construct efficiently

V(S ∪ {y}).

18.4. Use the result of Exercise 18.3 to find an incremental algorithm

that constructs V(S) by processing the points in S one point at a

time. What is the time complexity of your algorithm?

18.5. Let V(S) be the Voronoi diagram of a planar point set S. Let x ∈ S.

Explain how to construct efficiently V(S − {x}).

18.6. Explain how to obtain the Euclidean minimum spanning tree of a

set of points in the plane S directly from D(S) in Θ(n) time.

18.7. Prove that for any set of points in the plane, Vf (S) = Vf (CH (S))

(see Problem 18.6).

18.8. Let P be a convex polygon. Assume for simplicity that each of

its vertices has only one farthest neighbor. For any vertex x of P ,

denote by f(x) the farthest neighbor of x. Show that for two vertices

x and y that are the endpoints of an edge, the two line segments

xf(x) and yf(y) must intersect.

18.9. Modify Algorithm fpvoronoid for the construction of the farthest-

point Voronoi diagram of a set of points S so that in each recursive

call, the algorithm discards all points that are not on the convex

hull.

18.10. Let S be a set of points in the plane. Assume for simplicity that

each point has only one farthest neighbor. For each point x ∈ S

denote by f(x) the farthest neighbor of x. Let d(x, y) denote the

Euclidean distance between x and y. Let x, y and z be three distinct

points in S such that f(x) = y and f(y) = z. Prove that

d(x, y) < d(y, z).
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18.11. This exercise is a generalization of Exercise 18.10. For a point x ∈ S,

show that the finite sequence

d(x, f(x)), d(f(x), f(f(x))), d(f(f(x)), f(f(f(x)))), . . . .

is strictly increasing except the last two elements of the sequence,

which must be equal.

18.8 Bibliographic Notes

The subject of Voronoi diagrams, especially the nearest-point Voronoi dia-

grams, can be found in several books on computational geometry, including

de Berg et al. (1997), Edelsbrunner (1987), Mehlhorn (1984c), O’Rourke

(1994), Preparata and Shamos (1985) and Toussaint (1984). The divide-

and-conquer algorithm for the construction of Voronoi diagrams appeared

first in Shamos and Hoey (1975). The Voronoi diagram can also be com-

puted using line sweeping inO(n log n) time (Fortune, 1992). This algorithm

appears in Fortune (1978). An algorithm for computing the Delaunay tri-

angulation of a point set in the plane (and hence its Voronoi diagram) from

three-dimensional convex hull is due to Edelsbrunner and Seidel (1986),

although Brown (1979b) was the first to establish a connection of Voronoi

diagrams to convex hulls in one higher dimension. This algorithm is detailed

in O’Rourke (1994). A simple O(n log n) iterative algorithm for the con-

struction of the farthest-point Voronoi diagram can be found in Skyum

(1991). This algorithm was used to generate the drawings of the farthest

point Voronoi diagrams in this chapter. It is a modification of a simple

algorithm for computing the smallest enclosing circle. Two survey papers

on Voronoi diagrams are Aurenhammer (1991) and Fortune (1992). The

book by Okabe et al. (1992) covers algorithms as well as applications of

Voronoi diagrams.
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PART 8

Techniques in Parallel Algorithms

In the past few decades, there has been an interest in the study, design and

analysis of parallel algorithms. This is mainly attributed to their impor-

tance in many fields like image processing, computer vision and weather

forecasting, to mention a few.

Chapter 19 is concerned with the study of parallel algorithms. This

chapter is intended to be an introduction to this field from both theoretical

and practical points of view. In this chapter, the study of parallel computer

architectures and the algorithms design techniques for these architectures

will form the nucleus of study. The chapter starts with a study of the well-

known PRAM model of computation and some of the algorithms designed

for it. This is followed by a study of the most common computer architec-

tures, the hypercube and the mesh. The parallel algorithms design tech-

niques are either studied separately or are embedded in the descriptions of

some algorithms.

521
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Chapter 19

Parallel Algorithms

19.1 Introduction

In the previous chapters, we were interested in sequential algorithms, in

which a single processor is used to execute an algorithm with the RAM as

the main model of computation. In this chapter, we are concerned with par-

allel algorithms, those that make use of more than one processor. Parallel

computing is a type of computing architecture in which several processors

execute or process an application or computation simultaneously. Parallel

computing helps in performing large computations by dividing the workload

between more than one processor, all of which work through the computa-

tion at the same time. We start this chapter with two simple examples of

parallel algorithms.

Example 19.1 Consider the problem of adding n numbers s = a1 +

a2 + · · · + an, where n = 2k for some nonnegative integer k. Sequentially,

the expression can be computed by scanning the input from left to right

in the obvious way using n − 1 additions. In parallel, b1 = a1 + a2, b2 =

a3 + a4, . . . , bn/2 = an−1 + an are computed in one parallel step using n/2

processors to produce a new expression b1 + b2 + · · · + bn/2 consisting of

n/2 operands. Then, c1 = b1 + b2, c2 = b3 + b4, . . . , cn/4 = bn/2−1 + bn/2
are computed in one parallel step using n/4 processors to produce a new

expression c1 + c2 + · · · + cn/4 consisting of n/4 operands. This process

continues until there is only one value left. The total number of parallel

steps is k = logn using n/2 processors.

523
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Example 19.2 Recall the search problem: Given a set X =

{x1, x2, . . . , xn} of n unordered and distinct elements and an element y,

determine j such that y = xj if y ∈ X and j = 0 otherwise. n comparisons

are needed in the worst case to solve this problem sequentially. In paral-

lel, assume there are n processors P1, P2, . . . , Pn, and that xi is stored in

Pi, 1 ≤ i ≤ n. Initially, P1 sets j = 0. Then, all processors Pi compare y

with xi simultaneously. If y ∈ X , only one processor Pk will succeed in set-

ting j = k. It follows that the problem can be solved in two parallel steps

using n processors. Notice that concurrent read capability is required, as

all processors need to read y at the same time.

Unlike in sequential algorithms, the performance measures include the

number of processors and communication cost. Let n be the input size, and p

the number of processors. Then, T (n, p), or simply T (n) if p is known from

the context, denotes the running time of the algorithm using p processors.

If the algorithm has two parameters, n and m, then we write T (n,m, p).

We may also write T (n, p) or T (n,m) if m or p are known from the context.

In Example 19.1, T (n, n/2) = Θ(logn), while in Example 19.2, T (n, n) =

Θ(1). The cost of an algorithm is the product of running time and number

of processors, that is, C(n, p) = pT (n, p). In Example 19.1, C(n, n/2) =

Θ(n logn), while in Example 19.2, C(n, n) = Θ(n). The work done by an

algorithm is the total number of operations done by individual processors.

It is less than or equal to the cost of the algorithm. In Example 19.1,

W (n, n/2) = n/2 + n/4 + · · · + 1 = n− 1 = Θ(n), while in Example 19.2,

W (n, n) = Θ(n), since there are n comparisons.

The ratio S(p) = T (n, 1)/T (n, p) is called the speedup of the algo-

rithm, where T (n, 1) should be taken from the best sequential algorithm.

An algorithm achieves a perfect speedup if S(p) = p. In Example 19.1,

S(n/2) = Θ(n/ logn), while in Example 19.2, S(n) = Θ(n). A useful

measure of the utilization of the processors is the efficiency of a paral-

lel algorithm, which is defined as E(n, p) = S(p)/p = T (n, 1)/pT (n, p). The

efficiency is the ratio of the time used by one processor with a sequential

algorithm and the total time used by p processors, which is the cost of the

algorithm. The efficiency indicates the percentage of the processors’ time

that is not wasted, compared to the sequential algorithm. If E(n, p) = 1,

then the amount of work done by all processors throughout the execution

of the algorithm is equal to the amount of work required by the sequential

algorithm. In this case, we get the optimal use of the processors. So, the

goal is to maximize the efficiency. In Example 19.1,E(n, n/2) = Θ(1/ logn),

while in Example 19.2, E(n, n) = Θ(n)/nΘ(1) = Θ(1).
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19.1.1 Classifications of parallel architectures

There are four classifications of parallel architectures based upon the num-

ber of concurrent instruction streams and data streams available in the

architecture.

(1) Single instruction stream, single data stream (SISD): Most conventional

computers with one CPU belong to this class. Examples of SISD archi-

tecture are the traditional uniprocessor machines like older personal

computers and mainframe computers. By 2010, many personal com-

puters had multiple cores.

(2) Single instruction stream, multiple data streams (SIMD): This category

includes machines with a single program and multiple CPUs. In this

class, a parallel computer consists of p identical processors. All proces-

sors operate under the control of a single instruction stream issued by a

central control unit. Processors communicate among themselves during

the computation in order to exchange data or intermediate results in

two ways, giving rise to two subclasses: SIMD computers where com-

munication is through a shared memory and those where it is done via

an interconnection network.

(3) Multiple instruction streams, single data stream (MISD): This is an

uncommon and unrealistic architecture.

(4) Multiple instruction streams, multiple data streams (MIMD): This class

of computers is the most general and most powerful. In this class, there

are p processors, p streams of instructions and p streams of data. The

machines that fall into this category are capable of executing several

programs independently. They include multi-core superscalar proces-

sors, and distributed systems, using either one shared memory space

or a distributed memory space. In MIMD, processors may have multi-

ple processing cores that can execute different instructions on different

data. Most parallel computers, as of 2013, are MIMD systems.

19.2 Shared-Memory Computers (PRAM)

The PRAM was intended as the parallel-computing analogy to the random-

access machine (RAM). It is used to model parallel algorithmic perfor-

mance, such as time complexity, where the number of processors assumed

is typically also stated. As in the RAM, the PRAM model neglects such
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issues as synchronization and communication but includes the number of

processors. Algorithm cost, for instance, is estimated using two parameters:

time × number of processors. Read/write conflicts are resolved by one of

the following strategies:

• Exclusive read exclusive write (EREW): In this strategy, every

processor can read or write to a memory cell at a time.

• Concurrent read exclusive write (CREW): Here, multiple proces-

sors can read a memory cell but only one can write to it at a time.

• Exclusive read concurrent write (ERCW): This is never considered.

• Concurrent read concurrent write (CRCW): In this strategy, mul-

tiple processors can read from or write to the same memory cell at the

same time.

In the CRCW, the writes cause some discrepancies, and hence the write

is further defined as:

• COMMON: If all processors write the same value, it is successful; other-

wise, it is illegal.

• ARBITRARY: Only one arbitrary attempt by an arbitrary processor is

successful.

• PRIORITY: Processors are ranked, and processor with the maximum

rank can write.

• Array reduction binary operation like SUM, Logical AND or MAX of pro-

cessor contents. For instance, only the maximum of processors’ contents

can be written.

In the PRAM, there is no limit on the number of processors in the

machine. Any memory location is uniformly accessible from any processor,

and there is no limit on the amount of shared memory in the system.

19.2.1 The balanced tree method

The balanced tree method is one of the parallel algorithmic design tech-

niques usually implemented either as the main component or as a sub-

task of the parallel algorithm. Let ◦ be a binary associative operation

(e.g., +,×,min,max) and consider computing the expression

s = a1 ◦ a2 ◦ · · · ◦ an,
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where n = 2k for some nonnegative integer k (see Example 19.1). Sequen-

tially, the expression can be computed by scanning the input from left to

right in the obvious way. In parallel, b1 = a1 ◦ a2, b2 = a3 ◦ a4, . . . , bn/2 =

an−1 ◦ an are computed in one parallel step to produce a new expression

s = b1 ◦ b2 ◦ . . . ◦ bn/2 consisting of n/2 operands. This process continues

until there is only one value to compute. This procedure defines a com-

plete binary tree where the input is initially at its leaves, and each internal

node corresponds to a subproblem, while the root corresponds to the overall

problem. Each leaf node is assigned a processor Pi, 1 ≤ i ≤ n. The internal

nodes at level j, 0 ≤ j ≤ k− 1, are assigned processors P1, P2, . . . , P2j . The

computations at the internal nodes of the same level are performed in one

parallel step. Figure 19.1 depicts a typical complete binary tree for n = 8.

It has 2n− 1 nodes. Note that it is represented by the array B[1..2n− 1],

where the children for B[j], 1 ≤ j ≤ n−1, are stored at B[2j] and B[2j+1]

(see Sec. 2.6). For j, 1 ≤ j ≤ n − 1, if B[2j] = x and B[2j + 1] = y, then

B[j] = x ◦ y.
Algorithm paraddition below performs the operation of addition on n

numbers stored initially in array A[1..n]. The first for loop copies the num-

bers in A into B[n], B[n+1], . . . , B[2n− 1], which correspond to the leaves

of the binary tree. The for loop in Line 3 is repeated k = logn times, once

for each internal level of the tree. The for loop at line 4 is for performing 2i

additions in parallel, i = k − 1, k − 2, . . . , 0.

Fig. 19.1. The computation of s = a1 ◦ a2 ◦ . . . ◦ an.
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Algorithm 19.1 paraddition
Input: A[1..n], an array of n numbers, where n = 2k.

Output: A[1] + A[2] + . . .+ A[n].

1. for j← 1 to n do in parallel
2. B[j + n− 1]← A[j]
3. for i← k − 1 downto 0
4. for j← 2i to 2i+1 − 1 do in parallel
5. B[j]← B[2j] +B[2j + 1]
6. end for
7. end for
8. return B[1]

The running time of the algorithm is equal to the depth of the binary

tree, which is Θ(logn). The work done by the algorithm is proportional to

the number of additions performed in the internal nodes, which is n − 1.

The cost of the algorithm is Θ(n logn).

19.2.2 Brent theorem

Consider the algorithm for finding the maximum of n numbers on the

EREW PRAM using the balanced tree method (see Fig. 19.1). The algo-

rithm uses n/2 processors. Note that n/2 processors are actually required

by the first step of the algorithm. In the second step, only n/4 processors

are needed. In the third step, only n/8 processors are needed, and so on.

Therefore, in a very short time, most of the processors will be idle. The

running time of the algorithm is Θ(logn). We can reduce the number of

processors significantly without affecting the time complexity as follows.

Let the number of processors be n/ logn, and assign log n numbers to each

processor. Now, each processor finds the maximum in its group sequen-

tially using logn− 1 comparisons, and the parallel algorithm continues to

find the maximum of the n/ logn group maxima. Thus, the running time

is still Θ(logn), while the cost of the algorithm is reduced from Θ(n logn)

to Θ(n). The following theorem, known as Brent theorem, generalizes the

above discussion.

Theorem 19.1 Suppose an algorithm Ap performs tp parallel steps

using p processors on the PRAM such that the total number of operations

over all processors is s, and let q = s/tp. Then, there exists an algorithm
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Aq that performs at most 2tp parallel steps using q processors. Moreover, if

the sequential time complexity is O(s), then the cost of Aq is optimal.

Proof. Let si, 1 ≤ i ≤ tp, be the number of operations performed by

all p processors in step i of Algorithm Ap. Let Algorithm Aq emulate Ap

by replacing each parallel step i of Ap by �si/q� parallel steps. The total

number of parallel steps performed by algorithm Aq is thus

tq =

tp∑
i=1

⌈
si
q

⌉

=

tp∑
i=1

⌈
si × tp
s

⌉

≤
tp∑
i=1

(
si × tp
s

+ 1

)

= tp +
tp
s

tp∑
i=1

si

= 2tp,

since
∑tp

i=1 si = s. The new cost of the algorithm is ≤ 2tp× s
tp

= 2s = O(s).

Hence, if the sequential time complexity is O(s), then Algorithm Aq is cost-

optimal. �

Thus, in O-notation, if the original running time is O(tp), and the work

is O(s), then the number of processors can be reduced to O(s/tp) without

increasing the running time. Recall Algorithm paraddition in Sec. 19.2.1

for the addition of n numbers using n processors. The running time of the

algorithm is Θ(logn) and it performs a total of O(n) operations. Its cost is

Θ(n logn). By Brent theorem, the number of processors can be reduced to

n/logn without changing the time complexity. The new cost is Θ(n), which

is optimal.

19.2.3 Parallel prefix

Let X = 〈x1, x2, . . . , xn〉 be a sequences of n numbers, where n = 2k for a

nonnegative integer k. Let ◦ be a binary associative operation defined on



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch19 page 530

530 Algorithms: Design Techniques and Analysis

X . The prefix sums problem is to compute the n partial sums: s1 = x1,

s2 = x1 ◦ x2, . . ., si = x1 ◦ x2 ◦ · · · ◦ xi, . . ., sn = x1 ◦ x2 ◦ · · · ◦ xn. It
is also called the scan or the scan operation. Algorithm parprefix below

is a simple iterative procedure to compute the prefix sums. The algorithm

uses n processors. There are k = logn iterations in the outer loop in Step 5.

Since the time needed for the loop in Step 6 is Θ(1), the running time of

the algorithm is Θ(logn). Its cost is n×Θ(logn) = Θ(n logn), which is not

optimal in view of the Θ(n) time complexity for the sequential algorithm.

The work can be computed as follows. The number of operations done by

Step 6 in the first iteration is n− 1, and in the jth iteration, it is n− 2j−1.

Thus, W (n) =
∑k

j=1(n − 2j−1) = Θ(n logn). The cost can be reduced to

Θ(n) by reducing the number of processors to n/ logn and making some

simple modifications.

Algorithm 19.2 parprefix
Input: X = 〈x1, x2, . . . , xn〉, a sequence of n numbers, where n = 2k.

Output: S = 〈s1, s2, . . . , sn〉, the prefix sums of X.

1. for i← 1 to n do in parallel
2. si← xi

3. end for
4. t ← 1
5. for j← 1 to k
6. for i← t+ 1 to n do in parallel
7. si← si−t ◦ si
8. end for
9. t← 2t

10. end for
11. return S

Another algorithm for computing the prefix sums is shown as Algo-

rithm parprefixrec, which is recursive. First, it computes the prefix sums

s1, s2, s4, s6 . . . , sn. It then computes s3, s5, s7, . . . , sn−1 in the combine step

of divide and conquer. Except for the recursive call, the parallel time is Θ(1).

Hence, T (n) = Θ(logn). We compute the work done by the algorithm as

follows. There are n/2 and n/2− 1 iterations in the loops in Steps 3 and 7,

respectively. Therefore, W (n) = W (n/2) + Θ(n) = Θ(n). The cost, how-

ever, is not optimal since the number of processors needed is n/2 for a total

cost of Θ(n logn).
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Algorithm 19.3 parprefixrec
Input: X = 〈x1, x2, . . . , xn〉, a sequence of n numbers, where n = 2k.

Output: S = 〈s1, s2, . . . , sn〉, the prefix sums of X.

1. s1← x1

2. if n = 1 then return S = 〈x1〉
3. for i← 1 to n/2 do in parallel
4. x2i← x2i−1 ◦ x2i

5. end for
6. Recursively compute the prefix sums of 〈x2, x4, . . . , xn〉 and store them in
〈s2, s4, . . . , sn〉

7. for i← 2 to n/2 do in parallel
8. s2i−1← s2(i−1) ◦ x2i−1

9. end for
10. return S = 〈s1, s2, . . . , sn〉

There are no concurrent reads or writes in the above two algorithms,

and hence they run on the EREW PRAM.

19.2.3.1 Array packing

Let A = 〈a1, a2, . . . , an〉 be an array of n elements such that t of them are

“marked” and the remaining n − t elements are “unmarked”. The array

packing problem consists of creating another array D where all the marked

elements are moved to the lower part of D and the unmarked ones to

the upper part of the array D without changing their relative order. One

method of packing consists of assigning a value of 1 to each of the marked

elements and a value of 0 to each of the unmarked elements. A new array

B = 〈b1, b2, . . . , bn〉 is used to hold the 0–1 values, with bi = 1 if and only

if ai is marked. Now, if we apply the prefix sums algorithm to the array B

and store the prefix sums in C = 〈c1, c2, . . . , cn〉, the ranks of the marked

elements will be computed in C. Specifically, if ai is marked, then it is stored

in D at position ci. So, the marked elements are moved to the first t cells

of array D. Likewise, the ranks of the unmarked elements are computed

by interchanging 0’s and 1’s in array B. Finally, the prefix computation is

run again and the unmarked elements are moved to the last n − t cells of

array D.

Example 19.3 We now illustrate array packing explained above. Refer-

ring to Fig 19.2, the problem is to pack the even elements to the left.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 19.2. Example of array packing.

The first row, Fig 19.2(a), contains the input array A. The second row,

Fig 19.2(b), contains the 0–1 values in array B. Array C in Fig 19.2(c) of

the figure contains the result of applying parallel prefix on arrayB. ArrayD

in Fig 19.2(d) contains the even numbers packed in their positions as given

in array C. If we now interchange 0’s and 1’s in B, then we can pack the

odd numbers using the same procedure to pack the even numbers. This is

shown in Figs. 19.2(e)–19.2(g).

19.2.3.2 Parallel quicksort

Recall Algorithm quicksort discussed in Sec. 5.6. A parallel version for

the EREW PRAM with n processors is shown below as Algorithm par-

quicksort. As in the sequential quicksort algorithm, the pivot v is chosen

as A[1]. First, the pivot is copied n times to avoid concurrent reads. This

can be done by a broadcasting procedure in time Θ(logn) (see Practice

question 19.4). Next, array packing is used to partition the array A into

two parts, one with elements less than v and one with elements greater

than v. This takes Θ(logn) as explained in Sec. 19.2.3.1. Next, these two

parts are sorted recursively into A1 and A2, whose concatenation together
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with v is returned as the sorted array. In the worst case, the recursion depth

can be as large as Θ(n), causing the running time to be Θ(n logn). How-

ever, the average recursion depth is Θ(logn), for a total running time of

Θ(log2 n).

Algorithm 19.4 parquicksort
Input: An array A[1..n] of n distinct numbers.

Output: A sorted in increasing order.

1. if n = 1 then return A
2. v← A[1]
3. Let B[i] = v for 1 ≤ i ≤ n
4. for i← 1 to n do in parallel
5. if A[i] < B[i] then C[i]← 1
6. else if A[i] > B[i] then C[i]← 0
7. end for
8. Pack the numbers in A marked 1 in C at the beginning of A followed by

v followed by the numbers in A marked 0 in C
9. Let w be the position of v in A

10. do in parallel
11. A1← parquicksort(A, 1, w − 1)
12. A2← parquicksort(A,w + 1, n)
13. A←A1||v||A2, the concatenation of A1, v and A2

14. return A

19.2.4 Parallel search

Consider the search problem: Given a sequence S = 〈a1, a2, . . . , an〉 of n
distinct elements drawn from a linearly ordered set such that a1 < a2 <

· · · < an, and an element x, find the index k, 1 ≤ k ≤ n, such that x = ak
if x ∈ S and 0 otherwise. Assume that we have a CREW PRAM with p

processors, 1 ≤ p < n. For convenience, let n = (p+1)q. First, the sequence

S is divided into p+1 subsequences of q elements each, and x is compared

to the elements at the p internal boundaries of these subsequences. That

is, the algorithm compares x with p elements simultaneously; processor Pi

compares x with aiq for 1 ≤ i ≤ p. We have the following cases:

(1) If for some i, 1 ≤ i ≤ p, x = aiq, the algorithm returns k = iq and

halts.
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(a)

(b)

(c)

Fig. 19.3. Parallel search.

(2) x < aq, and hence only the elements less than aq are kept for the next

stage. This is shown as the shaded area in Fig. 19.3(a). In this case,

the algorithm returns the index of x in 〈a1, a2, . . . , aq−1〉.
(3) x > apq, and hence only the elements greater than apq are kept for the

next stage. This is shown as the shaded area in Fig. 19.3(b). In this case,

the algorithm returns pq plus the index of x in 〈apq+1, apq+2, . . . , an〉.
(4) There exists an i, 1 ≤ i < p, such that x > aiq and x < a(i+1)q. The

next stage performs the search on 〈aiq+1, aiq+2, . . . , a(i+1)q−1〉. This is

shown as the shaded area in Fig. 19.3(c). In this case, the algorithm

returns iq plus the index of x in 〈aiq+1, aiq+2, . . . , a(i+1)q−1〉.

The above discussion is summarized in Algorithm parsearch.

In Step 1, all processors read x simultaneously in one step. Step 2 is

the stopping condition for recursion, which happens when the number of

remaining elements drops as or below the number of processors. In this

case, n processors are allocated, and each processor tests one element for

equality against x. If one processor finds element ai = x, it sets k = i. The

remaining steps are as explained above.

The size of the recursive call is approximately n
p+1 . Hence, the running

time is given by the recurrence T (n) = T (n/(p+1))+Θ(1) whose solution is

T (n) = logp+1 n = log n
log(p+1) . There are p element comparisons in each stage
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Algorithm 19.5 parsearch
Input: A sequence S = 〈a1, a2, . . . , an〉 of n distinct elements such that

a1 < a2 < · · · < an and an element x.
Output: The index k, 1 ≤ k ≤ n, such that x = ak if x ∈ S and 0 otherwise.

1. Initialize: k← 0, All processors read x
2. if n ≤ p use n processors to compare x with ai, 1 ≤ i ≤ n, and return k.
3. q← n/(p + 1)
4. for i← 1 to p do in parallel
5. Processor Pi compares x with aiq

6. if x = aiq return k = iq
7. if x < aq then
8. let S′ = 〈a1, a2, . . . , aq−1〉
9. k← parsearch(S′, x)

10. return k
11. else if x > apq then
12. let S′ = 〈apq+1, apq+2, . . . , an〉
13. k← parsearch(S′, x)
14. return k + pq
15. else let i be such that x > aiq and x < a(i+1)q.
16. let S′ = 〈aiq+1, aiq+2, . . . , a(i+1)q−1〉
17. k← parsearch(S′, x)
18. return k + iq
19. end if
20. return k = 0

for a total of p logp+1 n, hence the work done by the algorithm is W (n) =

p logp+1 n. If p = nε, 0 < ε < 1, then T (n) = Θ(1) and W (n) = Θ(nε).

19.2.5 Pointer jumping

Let L denote a linked list of n elements, and let us associate a processor with

each element in the list. Each element x has two fields: succ(x) and dist(x).

succ(x) is a pointer that points to the next element in the list. The succ field

of the last element points to itself, that is, succ(n) = n. The other field dist

is initially 1 if succ(x) 	= x and 0 if succ(x) = x. It is required to develop

an algorithm to compute for each element x its distance from the end of

the list and to store it in dist(x). Algorithm pjumping below computes the

distances from each node to the end of the list using a technique called

pointer jumping or doubling.
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Algorithm 19.6 pjumping
Input: A Linked list L = (dist(x), succ(x)), 1 ≤ x ≤ n.

Output: dist(x), 1 ≤ x ≤ n, the distance of x from the end of the list.

1. for x← 1 to n do in parallel
2. s(x)← succ(x)
3. while s(x) �= s(s(x))
4. dist(x)← dist(x) + dist(s(x))
5. s(x)← s(s(x))
6. end while
7. end for

Pointer jumping consists of updating the successor of each node by

that node successor’s successor. Thus, the distance between a node and

its successor doubles unless it is its own successor. Hence, after k itera-

tions, the distance between a node x and its successor is 2k unless succ(x)

is the last element in the list. It follows that the while loop is executed

�logn� times, which means the parallel time complexity of the algorithm is

T (n) = Θ(logn). Its cost, however, is Θ(n logn) since there are n proces-

sors. Figure 19.4 illustrates the algorithm for a list of seven elements. Each

pointer s(x) is shown as an arc from one element to another, and the arc

from element x is labeled with the current value of dist(x). The top of the

figure shows the original list, and the rest are the list after each one of the

three iterations.

19.2.6 Merging by ranking

Given a sequence S and an element x, let rank(x, S) be the number of

elements in S less than x. Equivalently, rank(x, S) is the index of the largest

element in S less than x. It is not hard to modify Algorithm parsearch

given in Section 19.2.4 so that on input S and x, it returns rank(x, S). We

will refer to the modified algorithm as Algorithm modparsearch.

19.2.6.1 Computing ranks

Let A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bm〉 be two sequences of n+m

distinct numbers, each sorted in increasing order. The problem of merging

A and B into a new sequence C = 〈c1, c2, . . . , cm+n〉 may be solved in paral-

lel by computing for each x ∈ A∪B, rA = rank(x,A) and rB = rank(x,B),
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Fig. 19.4. Pointer jumping.

and setting ck = x, where k = rA + rB + 1. The ranks of all items in

B are found in parallel, where a processor Pi is assigned to each ele-

ment bi ∈ B. To find rank(bi, A), Pi performs binary search on A, and

this is done for all bi ∈ B in parallel. To compute the rank of bi in B,

we use the identity rank(bi, B) = i − 1. Next, we repeat the above pro-

cedure for all items aj ∈ A to find rank(aj , B) and set rank(aj, A) =

j − 1. The above algorithm works on the CREW PRAM in time

O(max{logn, logm}).
In what follows, we present a faster algorithm that runs in time

O(log logn) for the case m = n. First, we develop an algorithm for comput-

ing rank(B,A) = {rank(b, A) | b ∈ B}; finding rank(A,B) can be achieved

in a similar fashion. For clarity, let s =
√
m. First, use Algorithm mod-

parsearch to compute in parallel the ranks of bs, b2s, . . . , bm, using
√
n

processors for each rank. Call these ranks r(s), r(2s), . . . , r(m). This divides

the remaining elements in B into s subsequences B0, B1, . . . , Bs−1 of s− 1

elements each, where B0 = {b1, b2, . . . , bs−1}, B1 = {bs+1, bs+2, . . . , b2s−1},
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Fig. 19.5. Computing rank(B,A).

and in general Bi = {bis+1, bis+2, . . . , b(i+1)s−1}. This induces a parti-

tion of {a1, a2, . . . , ar(m)} into s subsequences A0, A1, . . . , As−1, where

A0 = {a1, a2, . . . , ar(s)}, A1 = {ar(s)+1, ar(s)+2, . . . , ar(2s)} and in gen-

eral Ai = {ar(is)+1, ar(is)+2, . . . , ar((i+1)s)} (see Fig. 19.5). Note that |Ai|
may vary; it may be 0 or n. Let bis+j ∈ Bi. Then, we should search for

rank(bis+j , Ai) in Ai and compute rank(bis+j , A) from the equation

rank(bis+j, A) = rank(bis, A) + rank(bis+j , Ai). (19.1)

Note that this means

If rank(b(i+1)s, A) = rank(bis, A), then rank(bis+j, Ai) = 0.

Thus, the problem of computing the ranks of B in A reduces to computing

the ranks of Bi in Ai, 0 ≤ i ≤ s − 1. Call the algorithm recursively on

(Ai, Bi) to compute rank(Bi, Ai) for 0 ≤ i ≤ s − 1. For bis+j ∈ Bi, let

ri(j) = rank(bis+j , Ai). Thus, as stated in Eq. (19.1), rank(bis+j, A) =

r(is) + ri(j).

The above discussion is outlined in Algorithm parrank below. The

algorithm returns R = {r(1), r(2), . . . , r(m)}, a set of m ranks, where

r(i) = rank(bi, A). In Line 7, the algorithm returns Ri = {ri(1), ri(2), . . . ,
ri(s− 1)}, a set of s− 1 ranks corresponding to rank(Bi, Ai).

It is easy to see that the number of processors used by the algorithm

is O(
√
m
√
n) = O(m + n) as required by Steps 3 and 4 of the algorithm.

Steps 1–4 take constant time. Step 9 takes at most T (n,
√
m) time since |Ai|

can be as large as n. Hence, the running time is given by the recurrence

T (n,m) ≤
{
O(1) if m < 4

T (n,
√
m) +O(1) if m ≥ 4,

whose solution is T (n,m) = O(log logm). The work done by Steps 1 and 2

of the algorithm is O(n). The number of operations done by Steps 3 and 4
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Algorithm 19.7 parrank
Input: A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bm〉 are two sequences of

n+m distinct numbers each sorted in increasing order.

Output: rank(B,A) = {rank(bi, A) | bi ∈ B}.
1. if m < 4 then for i← 1 to m do in parallel
2. Use Algorithm modparsearch to compute

r(i) = rank(bi, A) using n processors.
3. for i← 1 to s do in parallel
4. Use Algorithm modparsearch to compute

r(is) = rank(bis, A) using
√
n processors.

5. r(0)← 0
6. for i← 0 to s− 1 do in parallel
7. if r(is) = r((i+ 1)s) then Ri←{0, 0, . . . , 0}
8. else
9. Ri← parrank(Ai, Bi)

10. for j← 1 to s− 1 do in parallel
11. r(is+ j)← r(is) + ri(j)
12. end if
13. end for
14. return R = {r(1), r(2), . . . , r(m)}

is O(
√
m
√
n) = O(m + n) since the call to Algorithm modparsearch

performs O(
√
n) × O(1) = O(

√
n) operations. The work done by Steps 6–

14 of the algorithm except for the recursive calls is O(m). It follows that

the overall work done by the algorithm is W (n,m) = O((n+m) log logm).

Example 19.4 Let A = 〈10, 30, 40, 60, 70, 90, 110, 120〉 and B =

〈20, 50, 80, 100〉, som = 4 and n = 8. s = 2, b2 = 50 and b4 = 100. First, the

ranks of b2 and b4 are computed: r(2) = 3 and r(4) = 6. Next, B0, B1, A0

and A1 are computed: B0 = {20}, B1 = {80}, A0 = {10, 30, 40} and

A1 = {60, 70, 90}. Now, the algorithm recursively computes the ranks of B0

in A0 and B1 in A1: r0(1) = 1 (which is the rank of 20 in A0), so R0 = {1}
and r1(1) = 2 (which is the rank of 80 in A1), so R1 = {2}. Finally, we com-

pute the ranks of B0 in A and B1 in A: r(1) = r(0)+ r0(1) = 0+1 = 1 and

r(3) = r(2) + r1(1) = 3+ 2 = 5. It follows that R = R(B,A) = {1, 3, 5, 6}.

Example 19.5 Suppose we change B in Example 19.4 to B =

〈7, 8, 80, 100〉. Then, b2 = 8, r(2) = 0 and B0 = {7}. Also, A0 = {} and

A1 = {10, 30, 40, 60, 70, 90}. By Step 7 of the algorithm, since r(0) = r(2),
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R0 = {0}, and thus the algorithm will not be called recursively on A0 and

B0. Consequently, r(1) = r(0) + r0(1) = 0 + 0 = 0.

19.2.6.2 Merging

To merge A and B, we only need to compute rank(B,A) and rank(A,B).

Algorithm parmerge below merges A and B into a sequence C. It is

assumed here that |A| = |B| = n. Let bi ∈ B. Then, the index of bi in C is

equal to rank(bi, B)+rank(bi, A)+1 = (i−1)+r(i)+1 = r(i)+i. Similarly,

for aj ∈ A, the index of aj in C is equal to rank(aj, A) + rank(aj, B) + 1 =

(j − 1) + r(j) + 1 = r(j) + j.

Algorithm 19.8 parmerge
Input: A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bn〉 are two sequences of 2n

distinct numbers each sorted in increasing order.

Output: A sequence C = 〈c1, c2, . . . , c2n〉 which is the merge of A and B.

1. {r(1), r(2), . . . , r(n)}← parrank(A,B) (Find rank(B,A))
2. {r′(1), r′(2), . . . , r′(n)}← parrank(B,A) (Find rank(A,B))
3. for i← 1 to n do in parallel
4. ci+r(i)← bi
5. ci+r′(i)← ai

6. end for
7. return C

Clearly, the running time of Algorithm parmerge is T (n) =

O(log logn). The cost of the algorithm is C(n) = O(n log logn).

19.2.6.3 Parallel bottom-up merge sorting

Recall Algorithm bottomupsort in Sec. 1.7. The algorithm works by

merging pairs of consecutive elements, then merging consecutive pairs to

form 4-element sequences, and so on. This algorithm can easily be paral-

lelized as shown below in Algorithm parbottomupsort. Note here that

n = 2k for some positive integer k.

Algorithm parbottomupsort defines a (conceptual) complete binary

tree whose nodes are the sequences Si,j , 0 ≤ i ≤ k, 1 ≤ j ≤ 2k−i. Ini-

tially, the elements are stored at the leaves S0,j, 1 ≤ j ≤ n. Subsequently,

the sequence Si,j corresponding to an internal node is computed by merg-

ing its children Si−1,2j−1 and Si−1,2j . Now, we compute the running time
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Algorithm 19.9 parbottomupsort
Input: A = 〈a1, a2, . . . , an〉, a sequences of n distinct numbers, where n = 2k.

Output: A sorted in increasing order.

1. for j← 1 to n do in parallel
2. S0,j← aj

3. for i← 1 to k
4. t← n/2i

5. for j← 1 to t do in parallel
6. Si,j← parmerge(Si−1,2j−1, Si−1,2j)
7. end for
8. end for
9. A← Sk,1

10. return A

of the algorithm. Algorithm parmerge is called in Step 6, and it takes

O(log log |Si−1,2j−1|) = O(log log 2i−1). This is repeated in the for loop in

Step 3 k times, for sizes 1, 2, 4, . . . , n/2. Hence, the running time is

T (n) =
k∑

i=1

O(log log 2i−1)

=

k∑
i=1

O(log(i− 1))

=

k∑
i=1

O(log k)

= O(k log k)

= O(log n log logn).

19.2.7 The zero-one principle

A sorting algorithm is called oblivious if it consists of comparison-exchange

operations that are prescribed and independent of the input elements and

results of comparisons between them. The zero-one principle states that if a

comparison-based oblivious algorithm sorts any sequence of zeros and ones,

then it sorts any sequence of arbitrary values. It really simplifies the proofs

of correctness of many oblivious sorting algorithms.
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Lemma 19.1 If an oblivious comparison-exchange algorithm sorts any

sequence of zeros and ones, then it sorts any sequence of arbitrary values.

Proof. Suppose for the sake of contradiction that an oblivious

comparison-exchange algorithm sorts all sequences of zeros and ones but

fails to sort the input sequence 〈x1, x2, . . . , xn〉 of arbitrary numbers. Let π

be a permutation such that xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n), and for some per-

mutation σ 	= π, let the output of the algorithm be xσ(1), xσ(2), . . . , xσ(n).

Then, there exists some integer j such that xσ(i) = xπ(i) for i < j and

xσ(j) > xπ(j). Hence, there must exist k > j such that xσ(k) = xπ(j). For

1 ≤ i ≤ n, define yi = 0 if xi ≤ xπ(j), and yi = 1 if xi > xπ(j). Now, con-

sider the action of the algorithm on input 〈y1, y2, . . . , yn〉 of 0s and 1s. The

algorithm will perform the same set of comparison-exchange operations as

it did for the original input 〈x1, x2, . . . , xn〉. In particular, the output of the

algorithm on the yi’s input will be

yσ(1), yσ(2), . . . , yσ(j−1), yσ(j), . . . , yσ(k) . . . = 0, 0, . . . , 0, 1, . . . , 0, . . . ,

which is not sorted. This contradicts the assumption that the algorithm

sorts all sequences of zeros and ones. �

19.2.8 Odd–even merging

Let A = 〈a0, a1, . . . , an−1〉 and B = 〈b0, b1, . . . , bn−1〉 be two sorted

sequences of 2n distinct numbers, where n is a power of 2. The odd–even

merging method is summarized in Algorithm oddevenmerge.

After the execution of Step 6, we have s0 = min{c0, d0}, s1 =

max{c0, d0}, s2 = min{c1, d1}, s3 = max{c1, d1}, . . . , s2n−2 =

min{cn−1, dn−1}, s2n−1 = max{cn−1, dn−1}.
The algorithm uses 2n processors on the EREW PRAM. Obviously,

the time needed in each recursive call is Θ(1). Hence, the running time of

the algorithm is governed by the recurrence T (n) = T (n/2) + Θ(1), whose

solution is T (n) = Θ(logn). The work done by the algorithm is given by

the recurrence W (n) = 2W (n/2) + Θ(n), and hence W (n) = Θ(n logn).

Example 19.6 Let A = 〈1, 3, 4, 7〉 and B = 〈2, 5, 6, 8〉. Then, Aeven =

{1, 4}, Aodd = {3, 7}, Beven = {2, 6}, Bodd = {5, 8}, C = 〈1, 4, 5, 8〉 and
D = 〈2, 3, 6, 7〉. E = 〈1, 2, 4, 3, 5, 6, 8, 7〉. The pair (4, 3) is out of order,

so 4 and 3 are exchanged. The same applies to the pair (8, 7). The sorted

sequence is S = 〈1, 2, 3, 4, 5, 6, 7, 8〉. See Fig. 19.6.
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Algorithm 19.10 oddevenmerge
Input: Two sorted sequences A = 〈a0, a1, . . . , an−1〉 and B =

〈b0, b1, . . . , bn−1〉 of n elements each sorted in ascending order, where
n = 2k ≥ 2.

Output: The elements in S = A ∪B in sorted order.

1. if n ≤ 2 return the merge of A and B, and exit.
2. Let Aeven = 〈a0, a2, . . . , an−2〉 and Aodd = 〈a1, a3, . . . , an−1〉 be the even

and odd subsequences of A, respectively.
3. Let Beven = 〈b0, b2, . . . , bn−2〉 and Bodd = 〈b1, b3, . . . , bn−1〉 be the even

and odd subsequences of B, respectively.
4. Recursively merge Aeven and Bodd to obtain C = 〈c0, c1, . . . , cn−1〉.
5. Recursively merge Aodd and Beven to obtain D = 〈d0, d1, . . . , dn−1〉.
6. Let E be the shuffle of C and D, that is,

E = 〈c0, d0, c1, d1, . . . , cn−1, dn−1〉.
7. Traverse the pairs (ci, di) in E, 0 ≤ i ≤ n − 1, and interchange the

elements in each pair if they are out of order to obtain the sorted sequence
S = 〈s0, s1, . . . , s2n−1〉

8. return S

Fig. 19.6. An example of odd–even merging.

Theorem 19.2 Algorithm oddevenmerge correctly merges A and B

into S.
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Proof. Let A,B,C,D and E be as defined in Algorithm oddeven-

merge, and assume the elements in A ∪ B are distinct. Given a sequence

X and an element x, recall that rank(x,X) is the number of elements in X

less than x. For x ∈ X , let pos(x,X) be the position of x in the sequence

X , where pos(x,X) ≥ 0. Thus, if X is sorted, then pos(x,X) = rank(x,X).

Let x ∈ A ∪B. Then,

rank(x,C) =

⌈
rank(x,A)

2

⌉
+

⌊
rank(x,B)

2

⌋
,

and

rank(x,D) =

⌊
rank(x,A)

2

⌋
+

⌈
rank(x,B)

2

⌉
.

For c ∈ C, let r1 = rank(c, A) and r2 = rank(c, B), and rc = r1 + r2.

Either c ∈ A or c ∈ B. If c ∈ A, then r1 is even since pos(c, A) is even, and

it follows that the position of c in E is

pos(c, E) = 2 rank(c, C) = 2
⌈
r1
2

⌉
+ 2

⌊
r2
2

⌋
≤ r1 + (r2) since r1 is even

= rc.

Since rc − 1 = r1 + (r2 − 1) ≤ 2
⌈
r1
2

⌉
+ 2

⌊
r2
2

⌋
= pos(c, E), we have

rc − 1 ≤ pos(c, E) ≤ rc. (19.2)

Thus, either pos(c, E) = rc − 1 or pos(c, E) = rc. That is, either c is in its

correct position in E or to the left of it.

On the other hand, if c ∈ B, then r2 is odd since pos(c, B) is odd, and

we get the same inequalities.

For d ∈ D, let r3 = rank(d,A), r4 = rank(d,B) and rd = r3 + r4. If

d ∈ A, then r3 is odd since pos(d,A) is odd. It follows that if d ∈ A, then
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the position of d in E is

pos(d,E) = 2 rank(d,D) + 1 = 2
⌊
r3
2

⌋
+ 2

⌈
r4
2

⌉
+ 1

≤ (r3 − 1) + (r4 + 1) + 1 since r3 is odd

= rd + 1.

Since rd = (r3 − 1) + (r4) + 1 ≤ 2
⌊
r3
2

⌋
+ 2

⌈
r4
2

⌉
+ 1 = pos(d,E), we have

rd ≤ pos(d,E) ≤ rd + 1. (19.3)

Thus, either pos(d,E) = rd or pos(d,E) = rd +1. That is, either d is in its

correct position in E or to the right of it.

If d ∈ B, then r4 is even, and we get the same inequalities.

To finish the proof, we must show that the sorted sequence can be

obtained by comparison-exchanges with elements neighbors. Suppose that

E is not sorted. Then, by Eqs. (19.2) and (19.3), this happens if for some

c ∈ C, pos(c, E) = rc − 1, where rc = rank(c, A) + rank(c, B). So, assume

that for some c ∈ C, pos(c, E) = rc − 1. There must exist an element

d < c such that pos(d,E) > rc − 1. First, note that d must belong to

D, since it is to the right of its correct position. By Eq. (19.3), we must

have pos(d,E) ≤ rd + 1, where rd = rank(d,A) + rank(d,B). Thus, we

have rc − 1 < pos(d,E) ≤ rd + 1. Since d < c, we must have rd < rc.

Combining this with the above inequality yields rc − 1 < rd + 1 < rc + 1,

or rc − 2 < rd < rc, whose solution is rd = rc − 1. That is, d should be at

position rc − 1, while now it is at position rd + 1 = (rc − 1) + 1 = rc. In

other words, c ∈ C and d ∈ D, with c > d, are next to each other in E with

pos(c, E) = rd and pos(d,E) = rc. Their order will be fixed by exchanging

them in Step 7 of the algorithm (see Fig. 19.7).

The algorithm for sorting is given as Algorithm oddevensort below.

The running time of the algorithm is Θ(log2 n). Its work is Θ(n log2 n).

(a) (b)

Fig. 19.7. Proof of Theorem 19.2. (a) Before exchange, (b) After exchange.
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Algorithm 19.11 oddevensort
Input: A sequence S = 〈a0, a1, . . . , an−1〉 where n is a power of 2.

Output: The elements in S in sorted order.

1. S1← 〈a0, a1, . . . , an/2−1〉.
2. S2← 〈an/2, an/2+1, . . . , an−1〉.
3. S′

1 ← oddevensort(S1)
4. S′

2 ← oddevensort(S2)
5. S← oddevenmerge(S′

1, S
′
2)

6. return S

19.2.9 Bitonic merging and sorting

A sequence S = 〈a1, a2, . . . , an〉 is monotonically increasing if a1 ≤ a2 ≤
· · · ≤ an and is monotonically decreasing if a1 ≥ a2 ≥ · · · ≥ an. A sequence

is monotone if it is monotonically increasing or monotonically decreas-

ing. A monotone sequence can be represented pictorially as shown in

Fig. 19.8(a), where there is a point for each item in the sequence. The

sequence corresponding to this diagram is T = 〈a1, . . . , ai, . . . , aj, . . . , an〉,
where 1 < i < j < n. However, if we are not interested in the actual values

of the items in the sequence but only in their relative order, then we can

simply represent a monotone sequence by a line segment. An example is

shown in Fig. 19.8(b) for the monotonically increasing sequence T above.

Figure 19.8(c) shows a generic monotone sequence in which the items and

their number are immaterial. Thus, the diagram shown in Fig. 19.8(c) is

the representation of any monotonically increasing sequence. Similarly, a

monotonically decreasing sequence can be represented by a line segment

with negative slope.

an

ai
a1

aj

1 i j n

an

ai

a1

aj

1 i j n

(a) (b) (c)

Fig. 19.8. A monotone sequence.
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A sequence S = 〈a1, a2, . . . , an〉 is bitonic if it monotonically increases

and then monotonically decreases, that is, there is an i, 1 ≤ i ≤ n, such

that

a1 ≤ a2 ≤ · · · ≤ ai ≥ ai+1 ≥ ai+2 ≥ · · · ≥ an,

or can be circularly shifted to become monotonically increasing and then

monotically decreasing. Thus, a sequence is also bitonic if it is monotone.

For example, the sequence 〈1, 3, 5, 7, 4, 2〉 is bitonic while 〈1, 3, 1, 2〉 is not.
The sequence 〈7, 8, 3, 1, 0, 4〉 is also a bitonic sequence because it is a

cyclic shift of 〈0, 4, 7, 8, 3, 1〉. We will represent a bitonic sequence by a

diagram consisting of a polygonal chain composed of line segments inter-

secting at their internal endpoints with at most one local maximum and

one local minimum. Each line segment represents a monotone sequence.

Figure 19.9 shows the diagrams of two bitonic sequences. In part (a) there

is one local maximum, and in part (b) there is one local maximum and one

local minimum. If the number of line segments is 1 or 2, then the diagram

is a bitonic sequence. If the number of line segments is more than 2, then

the diagram is a bitonic sequence if and only if there does not exist a hor-

izontal line that intersects the polygonal chain at more than 2 points. To

see this, consider Fig. 19.10, which shows the diagram of a sequence with

three intersections of the polygonal chain with a horizontal line.

The sequence corresponding to this diagram is 〈a1, . . . , ai, . . . ,
aj , . . . , an〉, where 1 < i < j < n, with the following inequalities:

a1 > ai, ai < aj , aj > an and an < a1. If this sequence is bitonic, then the

sequence α = 〈a1, ai, aj , an〉 such that a1 > ai < aj > an < a1 is bitonic.

(a) (b)

Fig. 19.9. Bitonic sequences.
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Then, it is possible through circular shifts to transform α into two mono-

tonic sequences, one increasing followed by one decreasing. It can be shown,

however, that α cannot be converted to such a sequence. It follows that it

is not bitonic.

Now consider the sequence α′ obtained from α by increasing the value

of an so that an > a1. Then, we have a1 > ai < aj > an > a1, and thus α′

is bitonic, as it can be transformed into α′′ = 〈ai, aj , an, a1〉, which consists

of two monotonic sequences. The diagram of α′ is similar to the one shown

in Fig. 19.9(b); there does not exist a horizontal line that intersects this

diagram at more than 2 points. The diagram of α′′ is similar to the one

shown in Fig. 19.9(a).

Example 19.7 Consider the sequence α = 〈4, 1, 6, 3〉. Its diagram is the

one shown in Fig. 19.10. In this sequence, 4 > 1 < 6 > 3 < 4, so obviously

α is not a bitonic sequence. However, if we change 3 to 5 to obtain α′ =
〈4, 1, 6, 5〉, the new sequence is bitonic since in this case 4 > 1 < 6 > 5 > 4.

Its diagram is similar to the one shown in Fig. 19.9(b). With one cyclic

shift α′ is converted to α′′ = 〈1, 6, 5, 4〉, which consists of two monotonic

sequences, one increasing and one decreasing. Its diagram is similar to the

one shown in Fig. 19.9(a).

Let S = 〈a1, a2, . . . , an〉 be a bitonic sequence. Define

S1 = 〈min(a1, an/2+1), min(a2, an/2+2), . . . , min(an/2, an)〉, (19.4)

and

S2 = 〈max(a1, an/2+1), max(a2, an/2+2), . . . , max(an/2, an)〉. (19.5)

1 i j n

Fig. 19.10. A nonbitonic sequence.
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z

(a) (b)

Fig. 19.11. Bitonic sequences.

Then, both S1 and S2 are bitonic sequences. Moreover,

max(S1) ≤ min(S2). (19.6)

Consider, for example, the bitonic sequence u, v, w, x, y shown in

Fig. 19.11(a). Here, the line segment u, v accounts for approximately half

the elements in the sequence. Shift the line segment u, v to the right until

the vertex u is aligned vertically with w. The resulting line segment u′, v′

intersects the line segment x, y at the vertex z. Then, S1 = u′, z, y and

S2 = w, x, z, v′ as shown in Fig. 19.11(b) are bitonic. It is clear from the

figure that max(S1) ≤ min(S2).

Example 19.8 Consider the bitonic sequence S = 〈2, 3, 5, 7, 9, 10, 8, 6,
4, 1〉 shown in Fig. 19.12(a). If we apply the procedure described above

for splitting this sequence, we obtain the two bitonic sequences S1 =

〈2, 3, 5, 4, 1〉 and S2 = 〈9, 10, 8, 6, 7〉 shown in Fig. 19.12(b). S2 is a cyclic

shift of the sequence 〈10, 8, 6, 7, 9〉. Furthermore, max(S1) = 5 ≤ 6 =

min(S2).

By Eq. (19.6), every element of the sequence S1 is less than or equal

to every element of the sequence S2. Thus, the problem of sorting the

elements in S is reduced to sorting the elements in S1 and S2 separately.

This is summarized in Algorithm bitonicmerge below. It is important to

note that the input to the algorithm is a bitonic sequence S of length n,

where n is a power of 2, and the output is the elements in S in sorted order.

The algorithm first computes S1 and S2 as in Eqs. (19.4) and (19.5). Now,

S1 and S2 are bitonic sequences, so the algorithm recursively computes the
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(a) (b)

Fig. 19.12. Bitonic sequences example.

Algorithm 19.12 bitonicmerge
Input: A bitonic sequence S = 〈a1, a2, . . . , an〉, where n is a power of 2.

Output: The elements in S in sorted order.

1. if |S| = 1 then return S
2. for i← 1 to n/2 do in parallel
3. if ai > ai+n/2 then interchange ai and ai+n/2

4. S1 = 〈a1, a2, . . . , an/2〉
5. S2 = 〈an/2+1, an/2+2, . . . , an〉
6. S′

1 ← bitonicmerge(S1)
7. S′

2 ← bitonicmerge(S2)
8. return S′

1||S′
2, the concatenation of S′

1 and S′
2

two sorted sequences S′
1 and S′

2 and returns their concatenation sequence

S′
1||S′

2.

Algorithm bitonicmerge works on the EREW PRAM with n pro-

cessors. The running time is Θ(logn) and the total amount of work is

Θ(n logn), which is not optimal in view of the O(n) time sequential algo-

rithm.

Example 19.9 Consider the instance given in Fig. 19.13. Line 1 is

the input bitonic sequence. Line 2 shows the first split into two bitonic

sequences. Lines 3 and 4 show the second and third splits, respectively.

A comparator is a devise with two inputs x and y, and two outputs

min(x, y) and max(x, y). It is either an increasing comparator, shown in

Fig. 19.14(a), or decreasing comparator, shown in Fig. 19.14(b). A network

of comparators is composed solely of wires and comparators. Algorithm

bitonicmerge can be implemented on a network of comparators, also
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Fig. 19.13. Bitonic merge example for n = 8.

(a) (b)

Fig. 19.14. (a) Increasing comparator. (b) Decreasing comparator.

Fig. 19.15. Bitonic merge network for n = 8.

called a merging network, as illustrated in Fig. 19.15. A sample input of

bitonic sequence is shown on the wires. The merging network with n inputs

consists of logn columns, called stages.

19.2.9.1 Bitonic sorting

Bitonic sorting essentially works like Algorithm mergesort in that it

divides the input into two halves, sorts each half recursively and uses Algo-

rithm bitonicmerge to merge the two sorted sequences. It is given in Algo-

rithm bitonicsort below. To merge two monotonic sequences S′
1 and S′

2
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sorted in ascending order, first reverse S′
2 and form the bitonic sequence

S3 obtained by concatenating S′
1 and S′′

2 , where S
′′
2 is the reverse of S′

2.

Finally, apply Algorithm bitonicmerge to S3.

Algorithm 19.13 bitonicsort
Input: A sequence S of n elements, where n is a power of 2.

Output: The elements in S in sorted order.

1. if |S| > 1 then
2. S1← 〈a1, a2, . . . , an/2〉
3. S2← 〈an/2+1, an/2+2, . . . , an〉
4. S′

1← bitonicsort(S1)
5. S′

2← bitonicsort(S2)
6. S′′

2← Reverse of S′
2

7. S3← S′
1||S′′

2 , the concatenation of S′
1 and S′′

2

8. S← bitonicmerge(S3)
9. return S

10. end if

The algorithm uses n processors on the EREW PRAM. Obviously, the

time needed in each recursive call is Θ(logn). Hence, the running time of

the algorithm is governed by the recurrence

T (n) =

{
c if n = 1

T (n/2) + Θ(logn) if n ≥ 2,

whose solution is T (n) = Θ(log2 n). The work done by the algorithm is

W (n) = Θ(n log2 n), which is not optimal.

Theorem 19.3 Algorithm bitonicsort correctly sorts a given sequence

of numbers in ascending order.

Proof. By the zero-one principle (Lemma 19.1 in Sec. 19.2.7), we may

assume that the input consists of 0s and 1s. Let A and B be two strings of

0’s and 1s such that |A| + |B| = n, and assume without loss of generality

that n = 2m ≥ 2. The proof is by induction on m. If m = 1, then clearly

the input will be sorted, so assume that the algorithm correctly sorts its

input for all powers h, 1 ≤ h < m, and let |A|+ |B| = 2m. First, A and B

will be sorted separately, and B will be reversed, and so they will look like
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the following:

A = 0i1j , B = 1k0l.

Next, some 1s in A will be swapped with 0s in B by Step 3 of Algorithm

bitonicmerge. Let A′ and B′ be A and B after swapping, respectively. If

j ≤ l, all 1s in A will be swapped with 0s in B, and A′ will consist of 0s

only. In this case, A′ and B′ will look like:

A′ = 0i+j , B′ = 1k0l−j1j.

If, however, j > l, then l 1’s in A will be swapped with l 0s in B, and A′

and B′ will look like the following:

A′ = 0i1j−l0l, B′ = 1k+l.

Finally, A′ and B′ will be merged separately and concatenated by Algorithm

bitonicmerge to produce A′′||B′′, which is sorted in ascending order. �

We can derive a sorting network by unrolling recursion as follows.

Starting from n = 1, any sequence of length 1 is monotonic, and hence

any sequence of length 2 is bitonic. In the first stage of bitonic sort,

bitonic sequences of size 2 are merged to create ordered lists of size 2.

If these sequences alternate between being ordered into increasing and

decreasing order, then at the end of this stage of merging, we have n/4

bitonic sequences of size 4. In the next stage, bitonic sequences of size 4

are merged into sorted sequences of size 4, alternately into increasing and

decreasing order, so as to form n/8 bitonic sequences of size 8. Given an

unordered sequence of size n, exactly log n stages of merging are required

to produce a completely ordered sequence. Figure 19.16 shows a bitonic

sorting network with sample input of size 8. This network has three stages

labeled Merge(2), Merge(4) and Merge(8). Stage 3 in the figure is identical

to the merging network of Fig. 19.15.

19.2.10 Pipelined merge sort

Recall the parallel bottom-up merge sorting algorithm, Algorithm par-

bottomupsort, discussed in Sec. 19.2.6.3. The algorithm works by merg-

ing pairs of consecutive elements, then merging consecutive pairs to form

4-element sequences, and so on. The running time of the algorithm was

shown to be O(log n log log n). In fact, there is an Ω(log logn) time lower
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Merge (2) Merge (4) Merge (8)

Fig. 19.16. Bitonic sort network for n = 8.

bound for merging two sorted sequences of n elements using n processors

on the CREW PRAM. In this section, we sketch an optimal Θ(logn) time

algorithm for sorting n items on the CREW PRAM with Θ(n) processors.

The algorithm can be modified to work on the EREWPRAM with the same

time complexity. It is a modification of Algorithm parbottomupsort, in

which merges are pipelined efficiently. We will assume in this section that

the elements to be sorted are all distinct and that n is a power of 2.

Let a, b and c be three numbers such that a < c. We say that b is

between a and c if a ≤ b < c. We also say that a and c straddle b. Given

a sequence A and an element a, recall that rank(a,A) denotes the number

of elements in A less than a. We will assume that all sequences and arrays

are implicitly augmented with −∞ and ∞, so the rank of the minimum

element is 1, not 0. Given two arrays A and B, the cross rank R(A,B) =

〈rank(a,B) | a ∈ A〉. Let a and b be two adjacent items in B (if necessary,

we let a = −∞ or b = ∞). We define the range [a, b) to be the interval

induced by item a (including the cases a = −∞ and b = ∞). Let C be a

sorted sequence of numbers. C will be called a 3-cover or simply a cover

of A if each interval induced by consecutive elements of C contains at most

three elements from A. More precisely, for any two consecutive elements a

and c in C∞, the set {b ∈ A | a ≤ b < c} has at most 3 elements, where

C∞ = {−∞} ∪ C ∪ {+∞}. For example, if C contains the numbers 9, 18

and 30 while A contains 1, 5, 20, 23, 25 and 35, then C is a 3-cover for A.
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If, however, A also contains 28, then C is not a 3-cover for A, since in this

case the number of elements between 18 and 30 is more than 3.

19.2.10.1 The algorithm

The sorting algorithm is described in terms of a complete binary tree T with

n leaves. Initially, the n elements to be sorted are placed at the leaves of T ,

one element per leaf, and the internal nodes contain empty sequences. Let v

be an internal node in the tree. Lv will denote the sequence of leaves of the

subtree Tv rooted at v. In the course of the algorithm, the internal nodes

of T will contain sorted sequences of elements. The task of node v is to sort

the sequence Lv. The algorithm goes through stages t, 1 ≤ t ≤ 3 logn− 2.

By Av(t), we denote the sequence associated with node v at stage t. The

items in Av(t) will be a rough sample of the items in L(v). As the algorithm

proceeds, the size of Av(t) increases, and Av(t) becomes a more accurate

approximation of L(v), and it will always be a sorted subsequence of Lv. We

say that node v is complete at stage t if and only if Av(t) = Lv; otherwise, v

is said to be active. Throughout the algorithm, node v receives from its left

son x a sorted sequence Bx(t) and receives from its right son y a sorted

sequence By(t) and produces the sequence Bv(t + 1), which is sent to the

parent of v. In each of these sequences, the size of the next object is twice

as big as the size of the preceding one. That is, for all nodes v,

|Av(t+ 1)| = 2|Av(t)| and |Bv(t+ 1)| = 2|Bv(t)|.

We explain the processing performed in one stage at an arbitrary internal

node v of the tree. The array Av(t) is the array at hand at the start of

the stage; Av(t + 1) is the array at hand at the start of the next stage,

and Av(t − 1) is the array at hand at the start of the previous stage, if

any. Also, in each stage, we will create an array Bv(t) at node v; Bv(t+ 1)

and Bv(t−1) are the corresponding arrays in the next and previous stages,

respectively. Bv(t) is a sorted array comprising every fourth item in Av(t),

for active node v. The computation performed during each stage at each

internal node v comprises the following two phases:

(1) Compute Bv(t)← α(Av(t)) and send it to the parent of v, where

α(Av(t)) is computed as follows. If v is active, then α(Av(t)) consists

of every fourth element of Av(t). During the first stage after v becomes

complete, α(Av(t)) consists of every fourth element of Av(t). During
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the second stage after v becomes complete, α(Av(t)) consists of every

second element of Av(t), while in the third stage, α(Av(t)) consists of

every element of Av(t).

(2) If v is active, then merge Bx(t) with By(t) using the cover Av(t) to

obtain Av(t+ 1). That is, Av(t+ 1)←Bx(t) ∪By(t), where ∪ denotes

merging. If v is complete, then v ignores its inputs Bx(t) and By(t).

By (1) above, three stages after node v becomes complete, its parent

becomes complete too. The exception is in stage 1 in which the nodes at

the level before the last merge their inputs and become complete in one

stage. Hence, the total number of stages of the algorithm is 3 logn− 2.

Figure 19.17 illustrates the flow of the algorithm with n = 8 by depicting

stages 2–7, that is, after nodes d, e, f and g become complete. Note that

the total number of stages is 3 log 8− 2 = 7. In Fig. 19.17(c) of this figure,

(a) (b)

(c) (d)

(e) (f)

Fig. 19.17. The flow of the algorithm with n = 8.
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we have Aa(4) = {}, Bb(4) = 〈8〉 and Bc(4) = 〈6〉. In Fig. 19.17(d) of this

figure, we have Aa(5) = 〈6, 8〉, Bb(5) = 〈5, 8〉 and Bc(5) = 〈3, 6〉. The proof

of the following theorem is omitted.

Theorem 19.4 Bv(t) is a 3-cover of Bv(t+ 1).

We will need the following observation to show that the merge can be

performed in O(1) time.

Observation 19.1 Let A and C be two sets such that C is a cover for A.

Then, for any set D, C ∪D is a cover for A.

By the above theorem, Bx(t− 1) is a 3-cover for Bx(t) for each node x.

By the above observation, since Av(t) = Bx(t− 1) ∪By(t − 1), we deduce

Av(t) is a 3-cover for Bx(t); similarly, Av(t) is a 3-cover for By(t). We will

assume that R(Av(t), Bx(t)) and R(Av(t), By(t)) are available. Let a be an

item in Bx(t); the rank of a in Av(t + 1) = Bx(t) ∪ By(t) is equal to the

sum of its ranks in Bx(t) and By(t). So, to perform the merge, we compute

the cross ranks R(Bx(t), By(t)) and R(By(t), Bx(t)) (the method is given

below).

19.2.10.2 Maintaining ranks

We compute and maintain ranks as described in the following steps:

(1) The first step is to compute R(Bx(t), Av(t)) and R(By(t), Av(t)). For

two adjacent items a and b with a < b, recall that the interval induced

by item a is the range [a, b) (including the cases a = −∞ and b =∞).

Let u be an item in Av(t); u may be −∞. Consider the interval I(u)

in Av(t) induced by u, and consider the set of items X(u) in Bx(t)

contained in I(u) (there are at most three items in X(u) by the 3-cover

property). X(u) can be found in O(1) time since R(Av(t), Bx(t)) is

available, which means rank(u,Bx) is known. Each item a in X(u) is

given its rank in Av(t) as rank(a,Av(t)) = rank(u,Av(t)) + 1 (note

that all elements are distinct, which means a > u). For example, in

Fig. 19.17(d), with t = 5, we have Aa(5) = {6, 8}, Bb(5) = {5, 8}.
If we let u = −∞, then I(u) = (−∞, 6) and X(u) = {5}. Hence,
rank(5, Aa(5)) = 0 + 1 = 1. This takes care of R(Bx(t), Av(t)). We

repeat the symmetrical procedure to compute R(By(t), Av(t)). These
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Fig. 19.18. Computing R(Bx(t),By(t)).

ranks are needed for computing R(Bx(t), By(t)) and R(By(t), Bx(t)),

which are required by the merge step Av(t+ 1)←Bx(t) ∪By(t).

(2) Now, we show how to compute R(Bx(t), By(t)); R(By(t), Bx(t)) can be

found in a similar fashion. Let a be an item in Bx(t); we show how to

compute its rank in By(t) (see Fig. 19.18). We determine the two items

b and c in Av(t) that straddle a, using rank(a,Av(t)) computed above.

Suppose that b and c have ranks r and t, respectively, in By(t). Then,

all items of rank r or less are smaller than item a (recall we assumed

that all the inputs were distinct), while all items of rank greater than t

are larger than item a; thus, the only items about which there is any

doubt as to their size relative to a are the items with rank s, r < s ≤ t.
But there are at most three such items by the 3-cover property. By

means of at most two comparisons, the relative order of a and these (at

most) three items can be determined.

(3) At this point, we find for each item a in Bx(t), using its rank in By(t)

computed above, the two items b and c in By(t) that straddle a, and the

ranks of b and c in Av(t+1). Similarly, we find for each item d in By(t),

using its rank in Bx(t), the two items e and f in Bx(t) that straddle d,

and the ranks of e and f in Av(t + 1). This information is needed for

computing R(Av(t+ 1), Bx(t+ 1)) and R(Av(t+ 1), By(t+ 1)).

(4) Now, we show how to compute R(Av(t + 1), Bx(t + 1)); R(Av(t +

1), By(t + 1)) can be found by a similar means. For each item a in

Av(t+1), we want to determine its rank in Bx(t+1). Given the ranks

for an item from Av(t) in both Bx(t) and By(t), we can immediately

deduce the rank of this item in Av(t+1) = Bx(t)∪By(t) (the new rank

is just the sum of the two old ranks). Similarly, we obtain the ranks for

items from Ax(t) in Ax(t+1). This yields the ranks of items from Bx(t)



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch19 page 559

Parallel Algorithms 559

in Bx(t+1) (for each item in Bx(t) came from Ax(t), and Bx(t+1) com-

prises every fourth or second item in Ax(t+1) or every item in Ax(t+1)).

Consequently, for a ∈ Bx(t), rank(a,Bx(t+ 1)) = 1
4 rank(a,Ax(t+ 1))

if in stage t + 1 x is active or in the first stage after being com-

plete, rank(a,Bx(t+ 1)) = 1
2 rank(a,Ax(t+ 1)) if in stage t + 1 x is

in the second stage after being complete, and rank(a,Bx(t+ 1)) =

rank(a,Ax(t+ 1)) if in stage t + 1 x is in the third stage after

being complete. For example, in Fig. 19.17, if t = 4, then we have

Ab(4) = {2, 5, 7, 8}, Bb(4) = {8}, Ab(5) = Ab(4), Bb(5) = {5, 8}, and
rank(8, Bb(5)) =

1
2 rank(8, Ab(5)) = 2 (note that stages 4 and 5 are in

Figs. 19.17(c) and 19.17(d)). Thus, for every item in Av(t + 1) that

came from Bx(t), we have its rank in Bx(t+ 1); it remains to compute

the rank for those items in Av(t+ 1) that came from By(t).

Let a be an item in By(t). We compute rank(a,Bx(t+ 1)) as follows.

Recall that for each item a from By(t), we computed the straddling

items b and c fromBx(t) (see Fig. 19.19). We know the ranks r and t of b

and c, respectively, in Bx(t+1) (as asserted in the previous paragraph).

Every item of rank r or less in Bx(t+ 1) is smaller than a, while every

item of rank greater than t is larger than a. Thus, the only items about

which there is any doubt concerning their size relative to a are the items

with rank s, r < s ≤ t. But there are at most three such items by the

3-cover property. As before, the relative order of a and these (at most)

three items can be determined by means of at most two comparisons.

19.2.10.3 Analysis of the algorithm

It is not difficult to prove that the merge step takes O(1) time at each stage

of the algorithm given that we assign a processor to every array element.

Fig. 19.19. Computing rank(a,Bx(t+ 1)) for a ∈ By(t).
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Hence, the total running time is Θ(logn). Now we estimate the number of

processors needed, which is equal to the total array elements at any stage

of the algorithm. First, we compute the total number of items in the A(t)

arrays. Let v be an internal node, and assume, as before, that x and y are

the children of v. If |Av(t)| 	= 0 and x is not complete, then

2|Av(t)| = |Av(t+ 1)| = |Bx(t)|+ |By(t)| = 1

4
(|Ax(t)|+ |Ay(t)|) = 1

2
|Ax(t)|,

that is, |Av(t)| = 1
4 |Ax(t)|. So, the total size of the A(t) arrays at v’s level

is 1
8 of the size of the A(t) arrays at x’s level, if x is not complete (the

number of nodes at v’s level is 1
2 of that at x’s level). This need not be true

at complete nodes x. It is true for the first stage in which x is complete; but

for the second stage, |Av(t)| = 1
2 |Ax(t)|, and so the total size of the A(t)

arrays at v’s level is 1
4 of the total size of the arrays at x’s level; likewise, for

the third stage, |Av(t)| = |Ax(t)|, and so the total size of the A(t) arrays

at v’s level is 1
2 of the total size of the A(t) arrays at x’s level.

Thus, on the first stage in which x is complete, the total size of the

A(t) arrays is bounded above by n + n/8 + n/64 + · · · = n + n/7; on the

second stage, by n + n/4 + n/32 + · · · = n + 2n/7; on the third stage,

by n + n/2 + n/16 + · · · = n + 4n/7. Using similar argument, it can be

shown that on the first stage, the total size of the B(t) arrays is bounded

above by 2n/7; on the second stage, by 4n/7; on the third stage, by 8n/7.

We conclude that the algorithm needs Θ(n) processors (so as to have a

processor standing by each item in the A(t) and B(t) arrays) and takes

constant time for the merge step.

The following theorem summarizes the main result. Its proof follows

from Theorem 19.4 and the algorithm’s description and timing analysis.

Recall that the algorithm can be modified to run on the EREW PRAM

with the same complexities.

Theorem 19.5 The pipelined merge sort algorithm sorts a sequence of

n elements in Θ(logn) time using Θ(n) processors on the EREW PRAM.

19.2.11 Selection

Recall the problem of selection discussed in Sec. 5.5: Given a sequence A =

〈a1, a2, . . . , an〉 of n elements and a positive integer k, 1 ≤ k ≤ n, find
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the kth smallest element in A. A straightforward solution would be to

sort A in Θ(logn) time and return the kth smallest element. However, the

work done by this approach is Θ(n logn), which is not optimal. In Sec. 5.5,

we presented Algorithm select, a sequential algorithm that runs in Θ(n)

time. It can be shown that this algorithm can be parallelized to run on

the PRAM in Θ(log2 n) time using n/ logn processors. In this section, we

present an algorithm, which is shown below as Algorithm parselect, to

solve the selection problem, that runs in time O(log n log logn) and uses

n/ logn processors. This algorithm is a modification of the parallel version

of Algorithm select.

Algorithm 19.14 parselect
Input: A sequence A = 〈a1, . . . , an〉 of elements and an integer k, 1 ≤ k ≤ n.

Output: The kth smallest element in A

1. c← 1/ log (4/3)
2. for j← 1 to �c log log n

3. Divide A into |A|/ log |A| groups of log |A| elements each.
4. Find the median of each group individually.

Let the set of medians be M .
5. Sort M and find its median m.
6. Partition A into three sequences:

A1 = {a | a < m}
A2 = {a | a = m}
A3 = {a | a > m}

7. case
|A1| ≥ k: A←A1

|A1|+ |A2| ≥ k: return m
|A1|+ |A2| < k:

8. A = A3

9. k← k − |A1| − |A2|
10. end case
11. end for
12. Sort A and return the kth smallest element in A.

The for loop is executed c log logn times, where c = 1/ log (4/3), after

which the number of elements in A drops to O(n/ logn). The algorithm

then sorts A using the pipelined merge sort algorithm and the kth smallest

element is returned in O(log n) time using O(n/ logn) processors. Within

the for loop, first A is partitioned into |A|/ log |A| blocks of log |A| elements

each. The median of each block is found using one processor in Θ(|A|)
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sequential time, and the median of medians m is computed by sorting the

set M using the pipelined merge sort algorithm in Θ(log(|A|/ log |A|)) =

O(log n) time using Θ(|A|/ log |A|) processors. A is then partitioned to A1

of elements smaller than m, A2 of elements equal to m and A3 of elements

greater than m. If |A1| < k ≤ |A1| + |A2|, the algorithm terminates and

returns m. Else, if |A1| ≥ k, A is set to A1. Otherwise, if |A1| + |A2| < k,

then A is set to A3 and k is set to k − |A1| − |A2|.
Partitioning A can be achieved by labeling the elements in A with num-

bers 1, 2 and 3 according to whether a < m, a = m or a > m, respectively.

Then, the parallel prefix algorithm can be used to extract and compact

the arrays A1, A2 and A3. This can be achieved in Θ(log |A|) time using

O(|A|/ log |A|) = O(n/ logn) processors. It follows that the for loop takes

O(log n) time in each iteration.

If we let s = |A|/ log |A| denote the group size, then the median of

mediansm is smaller than (and greater than) at least (|A|/2s)(s/2) = |A|/4
elements. That is, it is greater than (and smaller than) at most 3|A|/4
elements (see Sec. 5.5 for detailed analysis). Thus, in the second iteration,

|A| ≤ 3n/4, and in the jth iteration |A| ≤ (3/4)jn. Consequently, after

�c log logn� iterations, the size of A is at most(
3

4

)c log logn

× n

= (log n)c log (3/4) × n
=

n

(log n)c log (4/3)

=
n

(log n)log (4/3)/ log (4/3)

=
n

logn
= p.

Therefore, in Step 12, there will be enough processors to sort A in

O(log p) = O(log n) time. Since the time required in each iteration is

O(log n), the running time of the algorithm is O(log n log logn). The work

done in each iteration is O(|A|). Hence, the total work done is at most

n+ (3/4)n+ (3/4)2n+ · · ·+ (3/4)�c log log n�n = Θ(n),

which is optimal. However, the cost, which is O(n log logn), is not optimal.
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19.2.12 Multiselection

Let A = 〈a1, a2, . . . , an〉 be a sequence of n elements drawn from a linearly

ordered set, and let K = 〈k1, k2, . . . , kr〉 be a sorted sequence of positive

integers between 1 and n. The multiselection problem is to select the kith

smallest element for all values of i, 1 ≤ i ≤ r. To make the presentation sim-

ple, we will assume that all elements in A are distinct. Consider Algorithm

parmultiselect1 shown below, which is the parallel version of Algorithm

multiselect in Sec. 5.8. The algorithm initially uses n/ logn processors. In

the two recursive calls, it uses p|A1|/|A| and p|A2|/|A| processors, where p
is the current number of processors. The recurrence for the running time of

this divide-and-conquer algorithm is T (n, r) = T (n, r/2)+O(logn log logn)

since we used the parallel algorithm for selection, Algorithm parselect, of

Sec. 19.2.11. As the recursion depth is log r, the solution to this recurrence

is T (n, r) = O(log n log logn log r).

Algorithm 19.15 parmultiselect1
Input: A sequence A = 〈a1, a2, . . . , an〉 of n elements and a sorted sequence

of r positive integers K = 〈k1, k2, . . . , kr〉. The number of processors p.

Output: The kith smallest element in A, 1 ≤ i ≤ r.

1. r← |K|
2. If r > 0 then
3. Set k = k�r/2�.
4. Use Algorithm parselect to find a, the kth smallest element

in A.
5. Output a.
6. Let A1 = 〈ai | ai < a〉 and A2 = 〈ai | ai > a〉.
7. Let K1 = 〈k1, k2, . . . , k�r/2�−1〉 and

K2 = 〈k�r/2�+1 − k, k�r/2�+2 − k, . . . , kr − k〉.
8. parmultiselect1(A1,K1, p|A1|/|A|).
9. parmultiselect1(A2,K2, p|A2|/|A|).

10. end if

In the remaining of this section, we present an efficient algorithm to

solve this problem that runs in time

T (n, p) = O((n/p+ ts(p, p))(log r + log(n/p)))

on the PRAM with p processors, r ≤ p < n, where ts(p, p) is the time

needed to sort p elements using p processors. If p = n/ logn, the running

time becomes T (n, n/ logn) = O(log n(log r + log logn)).
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In the algorithm to be presented, we will use the following notation

to repeatedly partition A into smaller subsets. Let a ∈ A with rank ka.

Partition A into two subsets A′ = {x ∈ A | x ≤ a} and A′′ = {x ∈
A | x > a}. This partitioning of A induces the following bipartitioning of

K: B′ = {k ∈ K | k ≤ ka} and B′′ = {k − ka | k ∈ K and k > ka}.
In this case, we will call each of (A′, B′) and (A′′, B′′) a selection pair . Let

(A′, B′) be a selection pair. We will label (A′, B′) as “active” if |B′| > 0;

otherwise, it will be called “inactive”. The algorithm is given as Algorithm

parmultiselect2.

We turn to the analysis of the algorithm. First, we allocate a number

of processors for each active set. Specifically, we assign p′ = (|A|/s)p pro-

cessors for active set (A,B), where s is the number of remaining elements

computed in Line 15. There are enough processors for all active sets. The

set A is partitioned into p′ groups of w = |A|/p′ = s/p elements each. Note

that w ≤ n/p = q. The median of medians m is smaller than (and greater

than) at least (|A|/2w)(w/2) = |A|/4 elements. That is, it is greater than

(and smaller than) at most 3|A|/4 elements. Hence, after c log r iterations,

the size of each subset is at most

(
3

4

)c log r

× n

= rc log (3/4) × n
=

n

rc log (4/3)

=
n

rlog (4/3)/ log (4/3)

=
n

r
.

We observe that if A is partitioned into more than r subsets, then at

most r of these subsets are active, and the rest are inactive, since the

number of ranks in B is ≤ r. Consequently, after c log r iterations, there are
at most r subsets of size at most n/r each. Clearly, after c log q additional

iterations, the size of active subsets in the first stage will be reduced further

by a factor of q, so that the size of each subset is upperbounded by n/rq =

p/r. In other words, after c log q additional iterations, there are at most r

subsets of size at most p/r each.
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Algorithm 19.16 parmultiselect2
Input: A sequence A = 〈a1, . . . , an〉 of elements and a sorted sequence of

positive integers B = 〈k1, k2, . . . , kr〉, 1 ≤ ki ≤ n. The number of
processors p.

Output: The kith smallest element in A, 1 ≤ i ≤ r.

1. L← {(A,B)}; Mark (A,B) “active”; s← n; q← n/p.
2. c← 1/ log (4/3)
3. Repeat Steps 4–16 c(log r + log q) times.
4. for each active pair (A,B) ∈ L do in parallel
5. Assign p′ = (|A|/s)p processors for active set (A,B).
6. if |A| ≤ p′ then sort A and return the kith smallest element for

1 ≤ i ≤ |B|.
7. else
8. w← |A|/p′ = s/p. Partition A into p′ subsequences

A1, A2, . . . , Ap′ of size at most w ≤ q each. Find the
median mi of each Ai. Sort these medians to obtain the
median of medians m.

9. Find k, the rank of m in A.
10. Partition A into A′ and A′′, where A′ (resp. A′′) is the set of

elements in A less than or equal to (resp. greater than) m.
11. Partition B into B′ and B′′, where B′ (resp. B′′) is the set

of elements in B less than or equal to (resp. greater than) k.
Subtract k from each rank in B′′.

12. Replace (A,B) in L by (A′, B′) and (A′′, B′′).
13. If B′ is empty, then mark (A′, B′) as “inactive”; otherwise,

mark it as “active”. If B′′ is empty, then mark (A′′, B′′) as
“inactive”; otherwise, mark it as “active”. Discard inactive pairs.

14. end if
15. Let s be the number of all remaining elements.
16. end for
17. Sort all partitions A in all active pairs (A,B) ∈ L, and for each element

in B return its corresponding element in A.

Now, we compute the overall time needed by the algorithm in the first

log r iterations. Consider an arbitrary iteration where there are a number

of subsets of total size less than or equal to n. We analyze the running

time of a subset (A,B) of maximum size, that is, |A| ≤ n is maximum

among all active subsets. Finding the medians mi takes O(q) sequential

time. Sorting the medians can be done in ts(|A|/w, p′) = ts(p
′, p′) ≤ ts(p, p)

parallel time. Computing k, the rank of m in A, and the sets A′ and A′′

can be achieved in O(w + log p′) = O(q + log p) parallel time using parallel
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prefix and compaction. Since K is sorted, both B′ and B′′ are computed

using parallel p′-search in O(logp′ r) = O(log r/ log p′) time. Hence, the time

needed by the first log r iterations is

O

(
(q + ts(p, p) + log p) log r +

log2 r

log p′

)
.

Observe that ts(p, p) ≥ log p and since r ≤ p, we have

log2 r

log p′
≤ log p log r

log p′
≤ log p log r.

Hence, the above expression reduces to

O((q + ts(p, p)) log r) = O((n/p+ ts(p, p)) log r).

The time taken by the next log q iterations is asymptotically the same as

that taken by the first log r iterations, except that the number of iterations

log r is replaced by log q. Hence, the remaining iterations can be completed

in time O((q + ts(p, p)) log q) = O((n/p+ ts(p, p)) log(n/p)).

As to the sorting step in Line 17 of the algorithm, we have at most r

subsets of size at most n/rq = p/r each to be sorted. If we allocate p/r pro-

cessors to each of the r subsets, the time needed for sorting is ts(p/r, p/r),

which is negligible.

It follows that the time complexity of the algorithm is

T (n, p) = O((n/p+ ts(p, p))(log r + log(n/p))).

If, for example, we set p = n1−ε, 0 < ε < 1, we may use a simple O(log2 p)

sorting algorithm, and the above expression reduces to

T (n, n1−ε) = O((nε + log2 p)(log r + log(nε)))

= O(nε(log r + log(nε))),

which is optimal for r ≥ lognε, since the cost of the algorithm will be

O(n log r). If, on the other hand, we set p = n/ logn and use the pipelined
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mergesort algorithm of Sec. 19.2.10, the time complexity becomes

T (n, n/ logn) = O((log n+ log(n/ logn))(log r + log logn))

= O(log n(log r + log logn)),

which is optimal for r ≥ logn. This is superior to the running time of

Algorithm parmultiselect1. If we let r = O(log n), the time complexity

becomes O(log n log logn), which is the same as the running time for clas-

sical selection of one element in Sec. 19.2.11. In the special case when r = 1

and p = n/ logn, the running time reduces to that of the O(log n log logn)

parallel selection algorithm of Sec. 19.2.11.

19.2.13 Matrix multiplication

Given two n × n matrices A and B, consider the problem of computing

the product C = AB, where n = 2k for some positive integer k. Assume

that there are n3 processors available, labeled Pi,j,l, 1 ≤ i, j, l ≤ n. Each

entry ci,j of C is the dot product of two vectors: row i of A and column j

of B. First, we present an algorithm for the dot product. Algorithm dot-

product below computes the dot product of two given vectors row i of A

and column j of B of dimension n each using n processors. Lines 1 and 2

compute W = A[i, ∗]B[∗, j] in Θ(1) time. The rest of the algorithm is sim-

ilar to Algorithm paraddition in Sec. 19.2.1. The second for loop copies

the numbers in W into V [n], V [n+ 1], . . . , V [2n− 1], which correspond to

the leaves of the binary tree. The for loop in Line 5 is repeated k = logn

times, once for each internal level of the tree. The for loop at line 6 is for

performing 2r additions in parallel, r = k− 1, k− 2, . . . , 0 (see Sec. 19.2.1).

The algorithm for matrix multiplication is a parallelization of the tradi-

tional Θ(n3) time sequential algorithm. It is shown below as Algorithm par-

matrixmult. It uses n3 processors. The n processors Pi,j,1, Pi,j,2, . . . , Pi,j,n

compute C[i, j] using Algorithm dotproduct.

Thus, the running time of the algorithm is dominated by the call to

Algorithm dotproduct, which takes Θ(logn) time. The work done by the

algorithm can be computed as follows. Line 3 is executed n2 times, and in

each call to Algorithm dotproduct, it performs Θ(n) operations. Hence,

the work done by the algorithm is Θ(n3). Notice that the algorithm requires

concurrent read capability, and hence it runs on the CREW PRAM.
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Algorithm 19.17 dotproduct
Input: Two n× n matrices A and B and two indices i and j, n = 2k.

Output: The dot product of row i of A and column j of B.

1. for l← 1 to n do in parallel
2. W [l]← A[i, l] ∗B[l, j]
3. for l← 1 to n do in parallel
4. V [l + n− 1]←W [l]
5. for r← k − 1 downto 0
6. for t← 2r to 2r+1 − 1 do in parallel
7. V [t]← V [2t] + V [2t+ 1]
8. end for
9. end for

10. return V [1]

Algorithm 19.18 parmatrixmult
Input: Two n× n matrices A and B, n = 2k.

Output: The product C = AB.

1. for i← 1 to n do in parallel
2. for j← 1 to n do in parallel
3. C[i, j]← dotproduct(A,B, i, j)
4. end for
5. end for
6. return C

19.2.14 Transitive closure

Assume that an n× n adjacency matrix representation of a directed graph

G = (V,E) is given, where |V | = n. In such a representation, A(i, j) = 1 if

and only if there is an edge from vi to vj in E, and A(i, j) = 0 if (vi, vj) /∈ E.

The transitive closure of A is represented as an n × n Boolean matrix A∗

in which A∗(i, j) = 1 if and only if there is a path in G from vi to vj .

A∗(i, j) = 0 if no such path exists. One way to obtain the transitive closure

of A is to compute An by performing �logn� operations of squaring the

matrix: A×A = A2, A2×A2 = A4, and so on until a matrix Am is obtained

wherem ≥ n. Here, we use Boolean matrix multiplication method, in which

the operations of scalar multiplication and addition in the standard matrix

multiplication are replaced by the logical “AND” and “OR” operations,

respectively. Since there are �logn� matrix multiplications, A∗ = An can be
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obtained in time Θ(log2 n) with Θ(n3) processors on the CREW PRAM

using Boolean matrix multiplication (see Sec. 19.2.13). The total number

of operations is Θ(n3 logn).

19.2.15 Shortest paths

Let G = (V,E) be a weighted directed graph on n vertices, in which each

edge (i, j) has a weight w[i, j]. If there is no edge from vertex i to vertex j,

then w[i, j] =∞. For simplicity, we will assume that V = {1, 2, . . . , n}. We

assume that G does not have negative weight cycles, that is, cycles whose

total weight is negative. The problem is to find the distance from each

vertex to all other vertices, where the distance from vertex i to vertex j is

the length of a shortest path from i to j. Let i and j be two different vertices

in V . Define dki,j to be the length of a shortest path from i to j that contains

at most k edges, 1 ≤ k ≤ n − 1. Thus, for example, d1i,j = w[i, j], d2i,j is

the length of a shortest path from i to j that contains at most two edges,

and so on. Then, by definition, dn−1
i,j is the length of a shortest path from i

to j, i.e., the distance from i to j. Given this definition, we can compute

dki,j recursively as follows:

dki,j =

⎧⎪⎨
⎪⎩

0 if i = j

w[i, j] if k = 1

minl{dk/2i,l + d
k/2
l,j } if k ≥ 2.

Let Dk be the matrix whose entries are dki,j , 1 ≤ i, j ≤ n. Then, Dk

can be obtained from Dk/2 by squaring, except that the operations “+”

and “min” replace the usual matrix operations “×” and “+”, respectively.

Letting D1 = (d1i,j), we can use the operations “+” and “min” to evaluate

D2, D4, . . . , Dm, where m is the smallest power of 2 ≥ n − 1. This takes

�log(n− 1)� matrix multiplications. Hence, the running time is Θ(log2 n)

using Θ(n3) processors on the CREW PRAM (see Sec. 19.2.13). The total

number of operations is Θ(n3 logn).

19.2.16 Computing the convex hull of a set of points

Let S = {p1, p2, . . . , pn} be a set of n points in the plane, where n is a

power of 2. The convex hull of S, denoted by CH(S), is the smallest con-

vex polygon containing all the points of S (see Sec. 17.3 for definitions
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Fig. 19.20. (a) The set of points S. (b) Convex hull of S. (c) Convex hulls of S1

and S2.

of geometric concepts). The convex hull is usually represented by a list

of points, called vertices, ordered clockwise (or counterclockwise). See

Figs. 19.20(a) and 19.20(b) for an example, in which S consists of 32 points.

In what follows, we present a divide-and-conquer parallel algorithm to find

CH(S) in Θ(logn) time using O(n) processors on the CREW PRAM.

As a preprocessing step, the points in S are first sorted in ascend-

ing order of their x-coordinates in Θ(logn) time using the pipelined

merge sort algorithm. So, assume that x(p1) ≤ x(p2) ≤ · · · ≤ x(pn),

where x(pi) denotes the x-coordinate of point pi. We will assume for sim-

plicity that no three points of S are collinear and no two points have

the same x-coordinate. Next, the set of points S is divided into two

halves: S1 = 〈p1, p2, . . . , pn/2〉 and S2 = 〈pn/2+1, pn/2+2, . . . , pn〉. Now, we
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recursively determine the two convex hulls of the two halves CH(S1) and

CH(S2). Figure 19.20(c) shows the two convex hulls of the points in

Fig. 19.20(a).

Consider the convex hull CH(S) shown in Fig. 19.20(b). Here, u and v

are the two points with minimum and maximum x-coordinates, respectively

(recall that no two points have the same x-coordinate). These two points

are clearly part of CH(S). The polygonal chain defined by the edges from

u to v in clockwise traversal is called the upper hull UH(S). The lower

hull, LH(S), is defined similarly as the polygonal chain defined by the

edges from v to u in clockwise traversal. The algorithm, after determining

CH(S1) and CH(S2), proceeds by constructing the upper and lower hulls

of S. The upper hull of S, UH(S), is constructed by joining UH(S1) and

UH(S2) by a line segment, called tangent such that CH(S1) and CH(S2)

are below it. The lower hull LH(S) is constructed in a similar manner to

obtain the desired CH(S). In what follows, we compute the upper tangent

and upper hull UH(S).

Let 〈x1, x2, . . . , xr〉 and 〈y1, y2, . . . , ys〉 be the upper hulls UH(S1) and

UH(S2) of S1 and S2, respectively. We now show how to find the line

of tangent x∗y∗ with the property that both of UH(S1) and UH(S2) are

below it. That is, x∗y∗ is a tangent to both UH(S1) and UH(S2). The most

crucial phase of the algorithm is the identification of the upper and lower

tangents. We outline the steps of the algorithm for determining x∗y∗ in the

following two observations.

Observation 19.2 If xi is a vertex of UH(S1), its tangent line xivi with

UH(S2) can be found in Θ(1) time using
√
s processors.

Proof. We find the vertex vi in UH(S2) such that xivi is a tangent of

UH(S2) as follows. Let yj be any vertex in UH(S2), and let yj−1 and yj+1

be the two vertices to the left and right of yj , respectively. If xiyjyj−1 is

a right turn and xiyjyj+1 is a left turn, then vi is to the right of yj (see

Fig. 19.21(a)). If xiyjyj−1 is a left turn and xiyjyj+1 is a right turn, then

vi is to the left of yj (see Fig. 19.21(b)). If both xiyjyj−1 and xiyjyj+1 are

right turns, then vi = yj (see Fig. 19.21(c)). Hence, we do parallel search

on the set of vertices of UH(S2) using
√
s processors to identify the vertex

yk such that vi = yk. There are log√s s = 2 iterations in this search, which

implies that the running time is Θ(1). �
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Fig. 19.21. Tangents to UH(S2).

Observation 19.3 The common tangent x∗y∗ of UH(S1) and UH(S2) can

be determined in Θ(1) time using
√
r
√
s processors.

Proof. Let xivi be a tangent to UH(S2) at vi determined as described in

Observation 19.2, and let xi−1 and xi+1 be the two vertices to the left and

right of xi, respectively. If xivi is also a tangent to UH(S1), then x
∗ = xi.

If xi−1xivi is a left turn, then x∗ is to the left of xi (see Fig. 19.22(a)). If

xi−1xivi is a right turn, then x∗ is to the right of xi (see Fig. 19.22(b)).

This allows us to determine, for any given vertex xi of UH(S1), whether

the vertex x∗ appears to the left of, to the right of, or equal to xi in Θ(1)

time. Thus, to locate x∗, we do double parallel search, the outer search is on

the vertices of UH(S1), and for each vertex xi in UH(S1), we do the inner

parallel search on the vertices of UH(S2). The parallel search performed

on the set of vertices of UH(S2) is done as outlined in Observation 19.2

to obtain the tangent xivi and next apply the test for the location of x∗

relative to xi as stated above. We will use
√
r processors for the outer

search on the vertices of UH(S1), and so there are log√r r = 2 iterations
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Fig. 19.22. Tangents to UH(S1).

in this search. We use
√
s processors for the inner search on the vertices of

UH(S2), which amounts to two iterations for the inner search. Thus, the

total number of processors used is
√
r
√
s ≤ n, that is,

√
s processors for

every vertex considered in UH(S1). It follows that the overall running time

to find the upper tangent is Θ(1) using
√
r
√
s ≤ n processors. �

Observations 19.2 and 19.3 provide the steps for finding the upper com-

mon tangent x∗y∗. The lower common tangent can be found in a sim-

ilar fashion. It remains to finish the construction of CH(S). Let xi =

x∗ and yj = y∗. To construct UH(S), first, we remove the vertices

xi+1, xi+2, . . . , xr from UH(S1) and remove the vertices y1, y2, . . . , yj−1

from UH(S2) to obtain UH ′(S1) and UH ′(S2), respectively. That is,

UH ′(S1) = 〈x1, x2, . . . , xi〉 and UH ′(S2) = 〈yj , yj+1, . . . , ys〉. Next, con-
necting xi in UH ′(S1) to yj in UH ′(S2) by the edge e = x∗y∗ = xiyj
yields the desired upper hull UH(S) (see Fig. 19.23). Finally, the problem

of computing LH(S) can be solved in a similar fashion.

The above discussion is summarized in Algorithm parconvexhull

below. The recurrence for the running time of the algorithm is T (n) =

T (n/2)+Θ(1), which implies a running time of Θ(logn). Clearly, there are

concurrent read operations, and hence the algorithm works on the CREW

PRAM.
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Fig. 19.23. Upper hull of S, UH(S).

Algorithm 19.19 parconvexhull
Input: A set S = {p1, . . . , pn} of n points in the plane, where n is a power of 2.

Output: The convex hull of S, CH(S).

1. Sort the points in S in nondecreasing order of their x-coordinates.
2. CH(S)← ch(S)
3. return CH(S)

Algorithm ch(S)

1. if |S| ≤ 4 then
2. compute CH(S)by a straightforward method.
3. return (CH(S))
4. end if
5. Divide S into two halves S1 = 〈p1, p2, . . . , pn/2〉 and S2 =
〈pn/2+1, pn/2+2, . . . , pn〉.

6. CH(S1)← ch(S1); CH(S2)← ch(S2)
7. Let UH(S1)← 〈x1, x2, . . . , xr〉 and UH(S2)← 〈y1, y2, . . . , ys〉 be the

upper hulls of S1 and S2, respectively.
8. Find the common upper tangent xiyj .
9. UH ′(S1)← 〈x1, x2, . . . , xi〉 and UH ′(S2)← 〈yj , yj+1, . . . , ys〉.

10. UH(S)← UH ′(S1) ∪ UH ′(S1) ∪ xiyj .
11. Repeat Steps 7–10 to find the lower hull of S,LH(S).
12. CH(S)← UH(S) ∪ LH(S)
13. return CH(S)

19.3 Interconnection-Network Computers

Interconnection networks or distributed memory machines are constructed

as processor–memory pairs and connected to each other in a well-defined

pattern. These processor–memory pairs are often referred to as process-

ing elements or PEs, or sometimes just as processors. An interconnection
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network may be viewed as an undirected graph G = (V,E), where V is the

set of nodes or processors, and E is the set of two-way links. Processors

communicate between each other by sending messages.

The topology of a network refers to its general infrastructure, the pat-

tern in which multiple processors are connected. This pattern could either

be regular or irregular, though many multi-core architectures today use

highly regular interconnection networks. On one extreme, there is the

complete graph, which models an interconnection network in which every

processor is connected to every other processor. This kind of connection is

prohibitive, as it is impractical. On the other extreme, the line graph, which

models the linear array, connects each node to one or two other nodes. In

between, there is a multitude of interconnection networks that have both

advantages and disadvantages. For instance, there is the hypercube, the

mesh, the tree, the pyramid to mention a few.

The degree of the network is the maximum degree of any vertex in the

underlying graph. The degree of processor P corresponds to the number

of processors directly connected to P . Naturally, networks of high degree

become very difficult to manufacture. Therefore, it is desirable to use net-

works of low degree, especially if the network is to be scaled to extremely

large number of processors. In a network with n processors, a constant

degree is preferable to one that is a function of n. For example, the degree

of the mesh is 4 while that of the hypercube is logn.

The network diameter is defined as the maximum shortest path distance

between any two processors. A low communication diameter is highly desir-

able, in that it allows for efficient communication between arbitrary pro-

cessors. For instance, the diameter of the hypercube with n processors is

logn, while the diameter of a mesh with the same number of processors is

2
√
n− 2.

The bisection width of an interconnection network is the minimum num-

ber of links that have to be removed in order to disconnect the network into

two approximately equal size subnetworks. In general, machines with a high

bisection width are difficult to build, but they provide users with the pos-

sibility of moving large amounts of data efficiently. The bisection width

implies a lower bound on the computations in an interconnection network,

especially in algorithms that require massive data movements. For instance,

in the problem of sorting n elements, Ω(n) data items may have to be moved

from one half of the network to the other. For example, the bisection width
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of the hypercube is Θ(n), and it admits sorting algorithms in the order

of Θ(log2 n) and Θ(logn logn), while the bisection width of the mesh is

Θ(
√
n), which explains why sorting on the mesh is Ω(

√
n).

19.4 The Hypercube

The hypercube is one of the most popular, versatile and efficient topologi-

cal structures of interconnection networks. It has many excellent features,

and thus became the first choice for the topological structure of parallel

processing and computing systems. Let d ≥ 0. The d-dimensional hyper-

cube Hd has p = 2d nodes and d2d−1 edges. Each node corresponds to a

d-bit binary string, and two nodes are linked by an edge if and only if their

binary strings differ in precisely one bit. Each node is incident to d = log p

other nodes, one for each bit position. Figure 19.24 shows the d-dimensional

hypercubes for d = 1, 2, 3.

An edge in the hypercube is called a dimension k edge if it links two

nodes that differ in their kth bit position. In the d-dimensional hypercube

Hd, for any k ≤ d, the removal of the dimension k edges leaves two dis-

joint copies of a (d−1)-dimensional hypercube. Conversely, a d-dimensional

hypercube Hd can be constructed from two (d−1)-dimensional hypercubes

Hd−1 by simply connecting the ith node of one Hd−1 to the ith node of

the other Hd−1. Thus, a hypercube has a simple recursive structure. For

example, see Fig. 19.25. The d-dimensional hypercube Hd has a diameter d,

which is low, and a high bisection width of 2d−1.

Let G1 = (V1, E1) and G2 = (V2, E2) be two undirected graphs. The

Cartesian product of G1 and G2 is an undirected graph, denoted by G1×G2,

Fig. 19.24. d-dimensional hypercubes for d = 1, 2, 3.
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Fig. 19.25. The construction of H4 from two H3’s.

where V (G1 × G2) = V1 × V2, two distinct vertices x1x2 and y1y2, where

x1, y1 ∈ V (G1) and x2, y2 ∈ V (G2), are linked by an edge in G1×G2 if and

only if either x1 = y1 and (x2, y2) ∈ E(G2) or x2 = y2 and (x1, y1) ∈ E(G1).

Examples of Cartesian products are shown in Figs. 19.24 and 19.25, where

H2 = H1×H1, H3 = H2×H1 and H4 = H3×H1. Let K2 be the complete

graph on two vertices. Then, Hd can be defined recursively as follows:

H1 = K2, Hd = Hd−1 ×H1 = H1 ×H1 × · · · ×H1︸ ︷︷ ︸
d

, d ≥ 2.

19.4.1 The butterfly

The butterfly interconnection network is closely related to the hypercube.

Th d-dimensional butterfly Bd consists of p = (d + 1)2d processors and

d2d+1 links. Each processor in Bd is represented by the pair (u, i), where i

is the level or dimension of the processor, 0 ≤ i ≤ d, and u is a d-bit

binary number that denotes the row of the processor. Two processors (u, i)

and (v, j) are connected by a link if and only if j = i + 1 and either u

and v are identical or u and v differ in exactly the jth bit. Figure 19.26

shows the d-dimensional butterfly for d = 1, 2, 3. If u and v are identical,

the link is said to be a straight link; otherwise, it is called a cross link.

Edges connecting processors on levels i and i + 1 are called level i + 1

edges.

There are structural similarities between the hypercube and the butter-

fly. In particular, the ith node of Hd corresponds naturally to the ith row

of Bd, and the ith dimension edge (u, v) of Hd corresponds to cross edges
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B1 B2 B3

Fig. 19.26. d-dimensional butterfly for d = 1, 2, 3.

((u, i − 1), (v, i)) and ((v, i − 1), (u, i)) in level i of Bd. We can obtain the

hypercube Hd from the butterfly Bd by merging all nodes in the same row

in Bd and then removing the extra copy of each edge.

The butterfly has a simple recursive structure. Figure 19.27 shows a

three-dimensional butterfly with level 3 nodes removed. The result is two

two-dimensional butterflies, one consisting of even rows (solid edges) and

the other of odd rows (dashed edges). Alternatively, we could remove the

level 0 nodes of Bd to obtain two identical Bd−1’s.

A useful property of the d-dimensional butterfly is that the level 0 pro-

cessor in any row u is linked to the level d processor in any row v by a

unique path of length d. The path traverses each level exactly once, using

the cross edge from level i to level i+ 1 if and only if u and v differ in the

(i + 1)th bit. We will call this path the greedy path. Figure 19.28(a) shows

the greedy path from (000, 0) to (110, 3). It follows that the diameter of the

d-dimensional butterfly is 2d = Θ(log p).

Figure 19.28(b) shows a 2d-leaf complete binary tree contained within

the d-dimensional butterfly. The leaves of the tree are the level d nodes of

the butterfly.
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Fig. 19.27. Recursive structure of the butterfly.

(a) (b)

Fig. 19.28. (a) The greedy path from (000, 0) to (110, 3). (b) A complete binary
tree contained within B3.
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19.4.2 Embeddings of the hypercube

There is an ever-growing interest in the portability of algorithms developed

for architectures based on other topologies, such as linear arrays, rings,

two-dimensional meshes, and complete binary trees, into the hypercube.

Let G = (Vg, Eg) and H = (Vh, Eh) be two undirected graphs, called the

guest and host graphs, respectively. An embedding of G into H is defined

by two mappings: φ : Vg → Vh from the set of vertices of G to the set

of vertices of H and ψ : Eg → Π(H) from the set of edges of G to the

set of paths in H . Note that a path may consist of one edge, so in some

embeddings, the mapping is ψ : Eg → Eh in which edges in G are mapped

to edges in H .

There are some important properties associated with an embedding:

• Dilation: The dilation of an embedding is the maximum length of a path

in Π(H) mapped to by one single edge of G. It measures how much an

edge in G is stretched in H .

• Congestion: The congestion of an embedding is the maximum number

of edges in G mapped to one single edge in H . This counts the maximum

number of paths in the image of ψ that pass through one particular edge

in H .

• Expansion: The expansion of an embedding is defined by |Vh|
|Vg| .• Load: This is the maximum number of nodes in G that are mapped to

one single node in H .

Example 19.10 Consider the two graphs G and H shown in Fig. 19.29.

Define the embedding functions φ and ψ by: φ(a) = w, φ(b) = x, φ(c) = z,

ψ((a, b)) = w, x, ψ((b, c)) = x, z, and ψ((a, c)) = w, y, z. Since the edge

(a, c) is mapped to the path w, y, z, the dilation is 2. All edges of H are

Fig. 19.29. Example of graph embedding.
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used at most once, and hence the congestion is 1. The expansion is 4/3.

The load is 1.

19.4.2.1 Gray codes

A Gray code is an ordering of all possible d-bit binary sequences so that

for all k ≥ 0, k and k + 1 differ in exactly one bit. The sequence of 3-bit

numbers corresponding to 0, 1, . . . , 7 is 000, 001, 011, 010, 110, 111, 101, 100.

The Gray code of d bits is denoted by Gd, which is defined recursively as

G1 = {0, 1} and Gk+1 = {0Gk, 1G
R
k },

where 0Gk and 1Gk denote prefixing each element in the sequenceGk with 0

and 1, respectively, and GR
k denotes Gk in reverse order. Thus, for example,

to construct the sequence G3, we do the following steps (see Fig. 19.30):

(1) Write down the sequence for G1 columnwise, that is 0
1 .

(2) Next, construct G2 as 0G1

1GR
1
.

(3) Repeat step 2 to get G3 as 0G2

1GR
2
.

Figure 19.31 shows the recursive construction of G3 pictorially. Note

that this is a Hamiltonian cycle in H3.

0
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10

G
111

G2
G3

G11
R

G21
R

G10

G20
000
001
011
010

110

101
111

100

Fig. 19.30. Construction of G3.

Fig. 19.31. Pictorial illustration of the construction of G3.
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000 001 010 011 100 101 110 111

Fig. 19.32. Embedding of a linear array into the hypercube.

19.4.2.2 Embedding of a linear array into the hypercube

The embedding of a linear array with n = 2d processors onto Hd is straight-

forward (see Fig. 19.32). As we saw above, renumbering the hypercube pro-

cessors using the Gray code induces a Hamiltonian cycle. Hence, a linear

array or a ring with n = 2d processors can be embedded onto Hd with

dilation 1 and congestion 1.

19.4.2.3 Embedding of a mesh into the hypercube

The linear array is really a one-dimensional mesh. Although the word mesh

usually refers to the two-dimensional mesh, there are d-dimensional meshes

in general with dimensions r1, r2, . . . , rd. A d-dimensional mesh is the cross

product (Cartesian product) of d arrays. This is similar to the hypercube

in which a d-dimensional hypercube is the cross product of d hypercubes

of dimension 2. A two-dimensional mesh or two-dimensional array can be

embedded by extending the idea discussed above for the case of linear arrays

to two dimensions. LetM be a mesh with 2r rows and 2c columns. We treat

each row independently as a linear array. Next, we generate the numbers

0, 1, . . . , 2c − 1 in Gray code and prefix each processor number in row j

with the number j in Gray code. Figure 19.33 provides an example of

embedding a mesh with 21 × 22 nodes into H3. First, label each node in

row 0 with the numbers 0, 1, 2, 3(00, 01, 11, 10) using G2 code. Do the same

for row 1. Finally, prefix each node label in rows 0 and 1 with 0 and 1,

respectively.
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Fig. 19.33. Embedding of a mesh into the hypercube.

19.4.2.4 Embedding of a binary tree into the hypercube

There are several embeddings of binary trees into hypercubes.

Theorem 19.6 It is impossible to embed a complete binary tree T with

n− 1 nodes into a hypercube H with n ≥ 8 nodes with dilation 1.

Proof. Assume n = 2d. Since T has n − 1 nodes, the number of leaves

in T is n/2. Suppose for the sake of contradiction that a complete binary

tree with n − 1 nodes is a subgraph of the d-dimensional hypercube Hd.

A node in Hd has even parity if the number of ones in its binary string

is even; otherwise, it has odd parity. It is easy to see that the number

of nodes of even parity is n/2 and the number of nodes of odd parity

is n/2. Assume without loss of generality that the hypercube node that

contains the root of T has even parity. Since the neighbors of this node

have odd parity, the children of the root of T are contained in odd parity

hypercube nodes. Similarly, the grandchildren of the root of T are contained

in even parity hypercube nodes, and so on. Hence, the leaves and their

grandparents, which account for n/2 + n/8 = 5n/8 nodes, must all be

contained in hypercube nodes of the same parity. This is impossible, as

there are only n/2 nodes with the same parity in Hd. It follows that T is

not a subgraph of Hd. �

It is possible, however, to embed a complete binary tree T with n leaves

into a hypercube H with n nodes with dilation 1. Note that the tree has

a total of 2n–1 nodes. In this embedding, the ith leaf of the binary tree T

is mapped to the ith node of the hypercube, and each internal node of T

is mapped to the same hypercube node as its leftmost descendant leaf. See

Fig. 19.34.
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Fig. 19.34. One possible embedding of a binary tree with n leaves into the hyper-
cube with n nodes with dilation 1.

19.4.3 Broadcasting on the hypercube

Let Hd be a d-dimensional hypercube. Broadcasting a datum x from P0

to all other processors can be achieved as follows. In the first step, P0

sends x to P1. In Step 2, P0 and P1 send in parallel x to P2 and P3. In

Step 3, P0, P1, P2 and P3 send in parallel x to P4, P5, P6 and P7. The formal

algorithm is shown as Algorithm hcbroadcast below. The notation j(i)

means j with the ith bit complemented, 0 ≤ i ≤ d − 1. For example,

1012 = 001. The total number of steps in the algorithm is d.

Algorithm 19.20 hcbroadcast
Input: x.

Output: Broadcast x from P0 to all other processors.

1. for i← 0 to d− 1
2. for all j < 2i and j < j(i) do in parallel
3. Processor Pj sends x to processor Pj(i)

4. end for
5. end for

19.4.4 Permutation routing in the hypercube

Consider the problem of routing in the d-dimensional hypercube Hd with

p = 2d processors. We consider the problem of permutation routing in which

every processor tries to send to a different destination. Processor i wants

to send a packet vi to destination δ(i). We also assume oblivious routing,

in which the route taken by packet vi depends only on the destination δ(i)

and not on any other packet’s destination δ(j). A collision occurs when

two packets arrive at the same processor at the same time, and try to leave
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at the same link. To deal with collisions, every processor has a queue and

a prioritizing scheme for each incoming packet. If incoming packets try to

leave along the same link, they are placed in a queue and sent off in different

time steps.

19.4.4.1 The greedy algorithm

A straightforward method for oblivious routing is called bit fixing, which

works by taking the bit address of the source processor and changing one

bit at a time to the address of the destination processor. Each time a bit

is changed, the packet is forwarded to a neighboring processor. Clearly, bit

fixing is an optimal routing scheme for a single packet. If the source i and

destination j differ by k bits, then the packet must traverse at least k links

in the hypercube to get to its destination. Bit fixing takes exactly k steps.

19.4.4.2 The randomized algorithm

If we have to route many packets, bit fixing can cause collisions. In fact,

so can any deterministic oblivious routing strategy. We have the following

theorem, which is quite general:

Theorem 19.7 Any deterministic oblivious permutation routing scheme

for a parallel machine with p processors, each with d outward links, requires

Ω(
√
p/d) steps.

Luckily, we can avoid this bad case by using a randomized routing

scheme. In fact, most permutations cause very few collisions. So, the idea

is to first route all the packets using a random permutation, and then from

there to their final destination. That is,

(a) Phase 1. Choose a random permutation σ of {1, 2, . . . , p}. Route

packet vi to destination σ(i) using bit fixing.

(b) Phase 2. Route packet vi from σ(i) to destination δ(i) using bit fixing.

The following observation about bit fixing during one of the two phases

above is important.

Observation 19.4 Two packets can come together along a route and then

separate, but only once. That is, a pair of routes can look like Fig. 19.35(a),

but 19.35(b) is impossible.
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(b)(a)

Fig. 19.35. Packets collision.

To see this, notice that during bit fixing routing, an intermediate address

is always of the form y1 . . . ykxk+1 . . . xd, where xi is a bit of the source

address and yj is a bit of the destination address. If two routes collide at

the kth step, that means their destination addresses agree in their first k

bits, and the source addresses agree in their d−k bits. At each time step, we

add one more bit of the destination address, which means we increment k.

Eventually, the destination bits must disagree since the destinations are

different. Let k0 be the value of k at which this happens. Then, the yk0

destination bit is different for the two packets. At this point, the two packets

separate, and they will never collide again because all the later intermediate

destinations will include the yk0 bit. Observation 19.4 is the crux of the

proof of the following theorem:

Theorem 19.8 Let S be the set of packets whose routes intersect vi’s

route. Then, the delay of packet vi is ≤ |S|.
Notice that whenever the routes of two packets intersect, one of the

packets may be delayed by one time step. Once that packet is delayed by

one time step at the first shared node, it will flow along the shared route

behind the other packet and will not be delayed any more by that packet.

If the same route intersects other routes, each of them may add a delay

of one time step. This happens either because another packet collides with

the current packet along a shared route, or because another packet collides

with a packet that is ahead of the current packet along a part of the route

which is shared by all three. In either case, an extra delay of at most one

results.

To get the running time of this scheme, we compute the expected value

of the size of the set S above. Define the indicator random variable Xi,j

which is 1 when the routes of packets vi and vj share at least one edge,

and Xi,j is 0 otherwise. Then, by the above theorem, the expected delay

of packet vi is the expected size of S, which is E
[∑p

j=1Xi,j

]
. It is rather

difficult to get an estimate of this quantity. It is easier to think of Y (e),
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which is the number of routes that pass through a given edge e. Now,

suppose the route of packet vi consists of the edges (e1, e2, . . . , ek). Then,

we have
∑p

j=1Xi,j ≤
∑k

l=1 Y (el). Hence,

E

⎡
⎣ p∑
j=1

Xi,j

⎤
⎦ ≤ E

[
k∑

l=1

Y (el)

]
.

To use this bound, we next compute E[Y (e)]. Notice that

E[Y (e)] = (sum of lengths of all routes)/(total edges in the network).

The sum of lengths of all routes is the expected length of a route times p (the

number of all routes). The average length of a route is d/2 because a d-bit

source differs from a random destination address in d/2 bits on average. So,

the sum of route lengths is pd/2. The total number of edges in the network

is the number of nodes times the number of outbound links, which is pd. So,

E[Y (e)] = (pd/2)/(pd) = 1/2. Thus, if the path for packet vi has k edges

along it, then

μ = E

⎡
⎣ p∑
j=1

Xi,j

⎤
⎦ ≤ E

[
k∑

l=1

Y (el)

]
=

k∑
l=1

E[Y (el)] =
k

2
≤ d× 1

2
=
d

2
.

Now, we can apply Chernoff bound in Theorem 13.6 to the probability

of there being a substantial number of paths intersecting vi’s path. The

Chernoff bound is

Pr

⎡
⎣ p∑
j=1

Xi,j > (1 + δ)μ

⎤
⎦ < 2−δμ.

We now compute the probability that vi is delayed at least 3d steps. So,

we require that (1+ δ)μ = 3d. Notice that we do not actually know what μ

is, but we have a bound for it of μ ≤ d/2. It follows that μδ ≥ 2.5d. Thus,

the probability that vi is delayed by at least 3d steps is bounded above by

2−2.5d.

This is a bound for the probability that a given packet is delayed more

than 3d steps. But we want to get a bound for the probability that no

packet gets delayed more than 3d steps. For that, it is enough to use Boole’s

inequality for probabilities as a bound:
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Boole’s inequality: For any finite sequence of events E1, E2, . . . , En,

Pr[E1 ∪ E2 ∪ · · · ∪ En] ≤ Pr[E1] +Pr[E2] + · · ·+Pr[En]. (19.7)

There are p = 2d routes in total, and the probability that one of these

takes more than 3d steps is bounded above by 2d2−2.5d = 2−1.5d. So, we

can make the following assertion: With probability at least 1− 2−1.5d every

packet reaches its destination σ(i) in 4d or fewer steps. The 4d comes from

the delay time 3d plus the time for bit fixing steps, which is ≤ d. Notice that
all of this applies to just one phase of the algorithm. So, the full algorithm

(two phases) routes all packets to their destinations with high probability

in 8d or fewer steps.

19.4.5 Permutation routing in the butterfly

Consider the problem of sending packets from level 0 to level d in the

d-dimensional butterfly Bd. Processor (i, 0) in level 0 wants to send a

packet vi to destination (δ(i), d) in level d. We consider the problem of

permutation routing in which every processor in level 0 tries to send to a

different destination in level d. That is, the function δ(i) is a permutation.

A simple process for routing a single packet obliviously is called bit

fixing. For definitions of bit fixing, its lower bound, collision and oblivious

routing see Sec. 19.4.4. Next, we discuss in detail a randomized routing

scheme for the butterfly. This scheme consists of three phases:

(a) Phase 1. Choose a random permutation σ of {1, 2, . . . , 2d}. Route

packet vi to destination (σ(i), d) using the greedy path.

(b) Phase 2. Route packet vi from (σ(i), d) to destination row but in

level 0 (δ(i), 0) using the greedy path.

(c) Phase 3. Route packet vi from (δ(i), 0) in level 0 to (δ(i), d) in level d

through direct links.

In what follows, we analyze phase 1; phase 2 is the reverse of phase 1,

and phase 3 takes d steps.

Let S be the set of packets whose routes intersect vi’s route. Define

the indicator random variable Xi,j which is 1 when the routes of pack-

ets vi and vj share at least one edge, and Xi,j is 0 otherwise. Then, by

Theorem 19.8, the expected delay of packet vi is the expected size of S,
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which is E
[∑2d

j=1Xi,j

]
. It is rather difficult to get an estimate of this quan-

tity. It is easier to think of Y (e), which is the number of routes that pass

through a given edge e. Now, suppose the route of packet vi consists of the

edges (e1, e2, . . . , ed). Then, we have
∑2d

j=1Xi,j ≤
∑d

l=1 Y (el). Hence,

E

⎡
⎣ 2d∑
j=1

Xi,j

⎤
⎦ ≤ E

[
d∑

l=1

Y (el)

]
.

To use this bound, we next compute E[Y (el)]. Consider the link el at level l,

which connects level l− 1 node to level l node. The number of packets that

can potentially go through el is 2l−1 since there are only 2l−1 processors

at level 0 for which there are greedy paths through this link. In fact, if

el = ((u, l − 1), (v, l)), then u is the root of a complete binary tree with

2l−1 leaves in level 0. Now, we compute the probability that packet vi will

go through link el. Consider what happens to packet vi in level 0, when

it wants to move to level 1. There are two links to choose from to go to

level 1, either the direct link or the cross link. Thus, it takes one of these

two links with probability 1/2. It follows that in order for packet vi to go

through link el, it has to go through l links with probability (1/2)l. Clearly,

Y (el) has the binomial distribution with parameters 2l−1 and (1/2)l (see

Sec. B.4.3). Hence, E[Y (el)] = 2l−1 × (1/2)l = 1/2.

Thus,

E

⎡
⎣ 2d∑
j=1

Xi,j

⎤
⎦ ≤ E

[
d∑

l=1

Y (el)

]
=

d∑
l=1

E[Y (el)] =
d

2
.

Now, we can apply Chernoff bound in Theorem 13.6 to the probability

of there being a substantial number of paths intersecting vi’s path. The

Chernoff bound is

Pr

⎡
⎣ 2d∑
j=1

Xi,j > (1 + δ)μ

⎤
⎦ < 2−δμ.

We compute the probability that vi is delayed at least 3d steps. So, we

require that (1 + δ)μ = 3d. Notice that we do not actually know what μ

is, but we have a bound for it of μ ≤ d/2. It follows that μδ ≥ 2.5d. Thus,

the probability that vi is delayed by at least 3d steps is bounded above by

2−2.5d.
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This is a bound for the probability that a given packet is delayed more

than 3d steps. But we want to get a bound for the probability that no

packet gets delayed more than 3d steps. For that it is enough to use Boole’s

inequality for probabilities as a bound (Eq. 19.7): There are 2d routes total,

and the probability that one of these takes more than 3d steps is bounded

above by 2d2−2.5d = 2−1.5d. So, we can make the following assertion: With

probability at least 1−2−1.5d every packet vi reaches its phase 1 destination

(σ(i), d) in 4d or fewer steps. The 4d comes from the delay time 3d plus the

time for bit fixing steps, which is d. Notice that all of this applies to just

one phase of the algorithm. So, the full algorithm (three phases) routes all

packets to their destinations with high probability in 4d + 4d + d = 9d or

fewer steps.

19.4.6 Computing parallel prefix on the hypercube

The parallel prefix problem was defined in Sec. 19.2.3. In this section, we

show how to compute it on the hypercube. Let Hd be a d-dimensional

hypercube, where each processor Pi contains item xi, 0 ≤ i ≤ n − 1 =

2d−1. Assume that each processor has two registers: s and z. The algorithm

is shown as Algorithm hcparprefix below. The notation j(i) means j

with the ith bit complemented, 0 ≤ i ≤ d − 1, where i = 0 corresponds

to the rightmost least significant binary digit. For example, 1001 = 110.

sj computes the sum x0 ◦ x2 ◦ · · · ◦ xj , and zj is a temporary variable.

Initially, si = zi = xi, 0 ≤ i ≤ n− 1.

Algorithm 19.21 hcparprefix
Input: X = 〈x0, x1, . . . , xn−1〉, a sequence of n numbers, where n = 2d.

Output: S = 〈s0, s1, . . . , sn−1〉, the prefix sums of X.

1. for i← 0 to d− 1
2. for all j < j(i) do in parallel
3. zj(i)← zj(i) ◦ zj
4. sj(i)← sj(i) ◦ zj
5. zj← zj(i)
6. end for
7. end for

Figure 19.36 illustrates the operation of the algorithm on the three-

dimensional hypercube. For clarity, the intermediate calculations have been
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(a) (b)

(c) (d)

Fig. 19.36. Example of computing parallel prefix on the three-dimensional
hypercube.

shown with indices of the form si−j , which is equal to xi ◦ xi+1 ◦ . . . ◦ xj ,
0 ≤ i ≤ j ≤ n− 1. The same thing applies to zi−j . Figure 19.36(b) shows

the contents of registers after the computations in the first iteration (i =

0). Figures 19.36(c) and 19.36(d) show the contents of registers after the

computations in the second and third iterations (i = 1 and 2). There are

d = logn iterations in the algorithm, each takes Θ(1) time. Hence, its

running time is Θ(logn).

19.4.7 Hyperquicksort

Quicksort is a very popular sorting algorithm. There have been numerous

attempts to parallelize it for a variety of machines and models of computa-

tion; see Sec. 19.2.3.2 for an example. One attempt is hyperquicksort, which

is targeted for the case of hypercubes with p < n. The algorithm is shown

as Algorithm hchyperquicksort below. Initially, it is assumed that the n

elements are evenly distributed among the p = 2d processors, so that every

processor contains n/p elements.
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Algorithm 19.22 hchyperquicksort
Input: X = 〈x1, x2, . . . , xn〉, a sequence of n numbers.

Output: X sorted in ascending order.

1. Each processor sorts its n/p items using a sequential sorting algorithm.
2. Processor P0 determines the median m of its elements and broadcasts it

to all other processors.
3. Every processor Pi partitions its items into X of items ≤ m and Y of

items > m.
4. Let the two subcubes of size 2d−1 each be L and U . Every processor Pi

in L sends its set Y to its adjacent processor Pj in U . Likewise, Pj sends
its set X to Pi.

5. Every processor merges the elements that it already has with those it
received from its adjacent processor.

6. Repeat Steps 2–5 to recursively sort L and U in parallel until the sub-
cubes consist of one processor.

Clearly, Algorithm hchyperquicksort sorts its input. It remains to

find its running time. Assume that the data is balanced, so that after Step 5

is executed, each processor has Θ(n/p) elements. In this case, the recursion

depth is O(log p) = O(d). Step 1 takes Θ((n/p) log(n/p)) time. Determining

the median in Step 2 takes Θ(1) time since the items in each processor are

sorted. Broadcasting m takes Θ(d) time in one recursive call for a total of

d+(d−1)+(d−2)+ · · · = d(d+1)
2 = Θ(d2) in all recursive calls. Step 3 takes

Θ(n/p) time. Step 4 of data transmission takes Θ(n/p) time. By the end

of this step, every element in L is ≤ every element in U . Step 5 of merging

the two sets takes Θ(n/p) time.

It can be shown that if the data is initially distributed in random fashion,

the expected running time of the algorithm is

Θ
(
(n/p) log(n/p) + d2 + dn/p

)
.

The (n/p) log(n/p) term represents the sorting step. The d2 term repre-

sents broadcasting as stated above, and the dn/p term represents the time

required for exchanging and merging sets of elements in all recursive calls.

One disadvantage of the algorithm is that the elements may not be evenly

distributed after the algorithm terminates.
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19.4.8 Selection on the hypercube

Recall the problem of selection discussed in Secs. 5.5 and 19.2.11: Given a

sequence A = 〈a1, a2, . . . , an〉 of n elements and a positive integer k, 1 ≤
k ≤ n, find the kth smallest element in A. In this section, we develop an

algorithm that runs on the hypercube with p < n processors. The algorithm

is shown as Algorithm hcselect.

Algorithm 19.23 hcselect
Input: A sequence A = 〈a1, . . . , an〉 of elements and an integer k, 1 ≤ k ≤ n.

Output: The kth smallest element in A.

1. if |A| ≤ p then sort A and return the kth smallest element.
2. for i← 0 to p− 1 do in parallel
3. Processor Pi computes the median mi of its local n/p elements

using an optimal sequential algorithm for selection. Let the set of
medians be M .

4. Sort M and find its median m.
5. Broadcast m to all p processors.
6. Partition A into three sequences:

A1 = {a | a < m}
A2 = {a | a = m}
A3 = {a | a > m}

7. case
8. |A1| ≥ k:
9. Distribute A1 evenly over all processors

10. hcselect(A1, k)
11. |A1|+ |A2| ≥ k: return m
12. |A1|+ |A2| < k:
13. Distribute A3 evenly over all processors
14. k← k − |A1| − |A2|
15. hcselect(A3, k)
16. end case

The time complexity of the algorithm can be computed as follows. Step 3

of the algorithm takes O(n/p) time using an optimal sequential algorithm

for selection. The sorting step in Line 4 takes ts(p, p) time, which is the

time needed to sort p elements using p processors. Broadcastingm in Step 5

requires O(log p) time. Partitioning A into A1, A2 and A3 can be done by

first each processor splitting its data and then computing the global sizes

of A1, A2 and A3. This takes O(n/p+ log p) time using parallel prefix and
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compaction. The load balancing problem is to redistribute data items stored

in a hypercube such that the number of items in different processors differ

by at most one after the redistribution. We use a load balancing algorithm

that has a time complexity of O(M + log p), where M is the maximum

number of items at any processor before the redistribution. Thus, data

distribution in Steps 9 and 13 takes O(n/p+ log p) time.

The median of medians m is smaller than (and greater than) at least

(|A|/2p)(p/2) = |A|/4 elements. That is, it is greater than (and smaller

than) at most 3|A|/4 elements (see Sec. 5.5). Hence, the recursive call takes

at most T (3n/4). This implies the following recurrence for the running

time:

T (n, p) =

⎧⎨
⎩
O(n) if p = 1

O(ts(p, p)) if p ≥ n
T (3n/4, p) +O(n/p+ ts(p, p)) if 1 < p < n.

The recursion depth is logn − log p, and hence the solution to this recur-

rence is

T (n, p) = O(n/p+ ts(p, p)(logn− log p)) = O(n/p+ ts(p, p) log(n/p)).

If, for example, we let p = n/ logn and use the O(log p log log p) time sorting

algorithm, then the time complexity becomes

T (n, n/ logn) = O(log n+ log p log log p log(log n))

= O(log n+ logn(log logn)2)

= O(log n(log logn)2).

19.4.9 Multiselection on the hypercube

Let A = 〈a1, a2, . . . , an〉 be a sequence of n distinct elements drawn from a

linearly ordered set, and let K = 〈k1, k2, . . . , kr〉 be a sequence of positive

integers between 1 and n. The multiselection problem is to select the kith

smallest element for all values of i, 1 ≤ i ≤ r. The hypercube structure lends
itself well for parallel execution of balanced divide-and-conquer algorithms.

This leads to the following idea of the multiselection algorithm. First use

Algorithm hcselect to find the median m of A. Use m as a splitter to par-

tition A into A1 of items smaller than or equal to m and A2 of items larger

than m. This induces a bipartition of B into two subsequences B1 of items
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less than k = �n/2� and B2 of items greater than k. The algorithm is then

recursively called in parallel with (A1, B1) and (A2, B2). Note that since

the elements are distinct, |A1| = �n/2� and |A2| = �n/2�. Following this

idea, the algorithm is shown as Algorithm hcmultiselect. In cube(s, d),

s is the starting address of the cube and d is its dimension. Initially, the

algorithm is called with hcmultiselect(A,B, cube(0, log p)).

Algorithm 19.24 hcmultiselect
Input: A sequence A = 〈a1, . . . , an〉 of elements and a sequence of positive

integers B = 〈k1, k2, . . . , kr〉, 1 ≤ ki ≤ n. cube(s, d), the starting
address of the cube s and its dimension d.

Output: The kith smallest element in A, 1 ≤ i ≤ r.

1. p← 2d.
2. if p = 1 then use a sequential multiselection algorithm and exit.
3. else if |A| ≤ p then sort A and return the kith smallest element,

1 ≤ i ≤ r.
4. else if |B| = 1 then use Algorithm hcselect to find the k1th smallest

element.
5. else do Steps 6–24
6. Use Algorithm hcselect to find the median element m
7. Broadcast m to all p processors.
8. k←�|A|/2�.
9. Partition A into A1 and A2, where A1 (resp. A2) is the set of elements

in A less than or equal to (resp. greater than) m.
10. Partition B into B1 and B2, where B1 (resp. B2) is the set of elements

in B less than or equal to (resp. greater than) k. Subtract k from each
item in B2.

11. case
12. |B1| = 0:
13. Distribute A2 evenly over all processors
14. hcmultiselect(A2, B2, s, d)
15. |B2| = 0:
16. Distribute A1 evenly over all processors
17. hcmultiselect(A1, B1, s, d)
18. |B1| > 0 and |B2| > 0:
19. Distribute A1 evenly over all processors in

L =cube(s, d− 1)
20. Distribute A2 evenly over all processors in

U =cube(s+ 2d−1, d− 1)
21. do in parallel
22. hcmultiselect(A1, B1, cube(s, d− 1))
23. hcmultiselect(A2, B2, cube(s+ 2d−1, d− 1))
24. end case
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In Step 13, A1 is discarded, since |B1| = 0. Similarly, in Step 16, A2

is discarded, since |B2| = 0. Let Q denote our hypercube with p = 2d

processors. Q can be divided into two disjoint halves L and U , where L

consists of processors with addresses 0x, and U consists of processors with

addresses 1x. Now, we show how to move the elements in A1 and A2 to L

and U , respectively, as stated in Steps 19 and 20. Every processor P in Q

logically partitions its local set of data into two groups X and Y , where X

contains those elements less than or equal to the median m, and Y contains

those elements greater than m. This requires O(n/p) sequential time. Now,

each processor P0x in L sends its set Y to its adjacent processor P1x in U .

Likewise, each processor P1x in U sends its set X to its adjacent proces-

sor P0x in L. Notice that when this step is complete, all elements less than

or equal to m are in L, while all elements greater than m are in U . This

step requires O(n/p) time for the transmission of data. It is followed by

load balancing. The load balancing problem is to redistribute data items

stored in a hypercube such that the number of items in different processors

differ by at most one after the redistribution. The load balancing algorithm

has a time complexity of O(M + log p), where M is the maximum number

of items at any processor before the redistribution. Thus, it runs in time

O(n/p+ log p).

The time complexity of the algorithm can be computed as follows. Find-

ing the median m by Algorithm hcselect in Step 6 requires O(n/p +

ts(p, p) log(n/p)) time, where ts(p, p) is the time needed to sort p ele-

ments using p processors. Partitioning A into A1 and A2 can be done by

each processor splitting its data in time O(n/p). Data redistribution takes

O(n/p + log p) time. This implies the following recurrence for the running

time:

T (n, r, p) ≤

⎧⎪⎪⎨
⎪⎪⎩
O(n log r) if p = 1

O(n/p+ ts(p, p) log(n/p)) if r = 1

O(ts(p, p)) if p ≥ n
T (n/2, r− 1, p/2)+O(n/p+ ts(p, p) log(n/p)) if 1<p, r <n.

In the worst case, the recursion depth is min{r, log p, logn} = min{r, log p}
since p < n. It follows that the solution to this recurrence is

T (n, r, p) = O((n/p+ ts(p, p) log(n/p))min{r, log p}).
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If we use the O(log p log log p) time sorting algorithm, then the time com-

plexity becomes

T (n, r, p) = O((n/p+ log p log log p log(n/p))min{r, log p}).

If we let p = n1−ε for 0 < ε < 1, then there is always a constant n0 such

that n/p = nε > log p log log p log(n/p) holds for all n > n0. This shows that

T (n, r, n1−ε) = O(nε min{r, logn1−ε}). This bound is optimal for r ≥ n1−ε.

19.4.10 Computing parallel prefix on the butterfly

The parallel prefix problem was defined in Sec. 19.2.3. In this section, we

show how to compute it on the butterfly. For simplicity, we will assume

addition as the binary operation. Recall from Sec. 19.4.1 that a complete

binary tree with 2d leaves corresponding to level 0 processors, and rooted

at (0, d) is a subgraph of the d-dimensional butterfly (see Fig. 19.28(b)).

Assume that each processor has two registers: s and z. Register s at node v,

denoted by s(v), contains the sum of all items at the leaves of the subtree

rooted at v, and z(v) contains the sum of all items at the leaves of the

subtree rooted at the left child of node v. Initially, the items x1, x2, . . . , xn
are input to the n = 2d processors at level 0 in registers z and s. The

algorithm consists of two passes: Bottom-up and top-down. It is shown as

Algorithm bfparprefix.

Algorithm 19.25 bfparprefix
Input: X = 〈x1, x2, . . . , xn〉, a sequence of n numbers, where n = 2d.

Output: S = 〈s1, s2, . . . , sn〉, the prefix sums of X.

(a) Bottom-up phase. See Fig. 19.37(a). Each leaf node l sends its item
s(l) to its parent. Each internal node v upon receipt of two s-values
s(x) and s(y) from its children x and y computes their sum and stores it
in register s(v). It also stores s(x), the left child sum, in register z(v).

(b) Top-down phase. See Figs. 19.37(b)–19.37(d). Initially, the root sends 0
to its left child and z to its right child. Each node v upon receipt of value y
from its parent does the following: If v is a leaf, it sets s(v) = s(v) + y;
otherwise, it sends y to its left child and sends y+ z(v) to its right child.
At the end, the s value at the ith leaf contains si = x1 + x2 + · · · + xi,
1 ≤ i ≤ n.
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(a) (b)

(c) (d)

Fig. 19.37. Example of computing parallel prefix on the two-dimensional
butterfly.

Obtaining the running time is straightforward; it is Θ(d) in both the

bottom-up phase and the top-down phase.

19.5 The Linear Array and the Mesh

Linear arrays are the simplest example of a fixed-connection network. An

example of a linear array is shown in Fig. 19.38(a). It consists of p pro-

cessors P1, P2, . . . , Pp, where each interior processor is connected with bidi-

rectional links to its left neighbor and its right neighbor. The outermost

processors P1 and Pp have just one connection each. If we connect them by

a link, we obtain a ring, which is a simple extension of the linear array (see

Fig. 19.38(b)).

A two-dimensionalmesh is an extension of the linear array to two dimen-

sions. A mesh of size p consists of p simple processors arranged in a square

lattice. To simplify exposition, it is assumed that p = 4k for some positive

integer k. For all i, j, 1 ≤ i, j ≤ √p, processor Pi,j representing the proces-

sor in row i and column j, is connected via bidirectional communication

links to its four neighbors, processors Pi±1,j and Pi,j±1, assuming they exist

(see Fig. 19.38(c)).

The communication diameter of a mesh of size p is 2(
√
p− 1) = Θ(

√
p),

as can be seen by examining the distance between processors in opposite
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(a) (c)

(b)

Fig. 19.38. (a) A linear array. (b) A ring. (c) A mesh.

(a) (b)

Fig. 19.39. Mesh indexing schemes. (a) Row-major. (b) Snakelike.

corners of the mesh. This means if a processor in one corner of the mesh

needs data from a processor in another corner of the mesh sometime during

the execution of an algorithm, then a lower bound on the running time of

the algorithm is Ω(
√
p). The bisection width of a mesh of size p can be seen

to be
√
p.

There is no linear ordering on the set of processors in the mesh. However,

there are several two-dimensional orderings, called indexing schemes, like

row-major and snakelike shown in Fig. 19.39.

19.5.1 Broadcasting in the linear array and the mesh

Let L be a linear array of p processors. To broadcast a datum x from P1 to

all other processors, x is sent to P2, P3, . . . , Pp in this order. The number of

steps is p− 1 = Θ(p). If the origin of broadcasting is not P1, say Pi(i < n),
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x is sent in both directions in parallel. The number of steps in this case is

equal to the maximum of the distances from Pi to P1 and Pp.

LetM be a mesh of size p. Broadcasting a datum x from P1,1 to all other

processors can be achieved in two phases. First, x is sent to all processors

in row 1. Next, x is sent in parallel from all processors in row 1 along

all columns of the mesh. The total number of steps in the two phases is

2(
√
p− 1) = Θ(

√
p).

If the origin of broadcasting is Pi,j that is different from P1,1, then

broadcasting of x to all other processors can be achieved in two phases. In

phase 1, x is sent to all processors in row i. In phase 2, x is sent in parallel

from all processors in row i along all columns in M . The running time is

Θ(
√
p).

19.5.2 Computing parallel prefix on the mesh

The parallel prefix problem was defined in Sec. 19.2.3. In this section, we

show how to compute it on the linear array and the mesh. For simplicity,

we will assume addition as the binary operation. Let L be a linear array

with p processors, where each processor Pi contains item xi, 1 ≤ i ≤ p.

Assume that each processor Pi has register si. The algorithm is shown as

Algorithm laparprefix. In this algorithm, si−1 is passed to Pi, 2 ≤ i ≤ p,
where xi is added to it to produce si, as in the sequential algorithm. The

algorithm runs in time Θ(p).

Algorithm 19.26 laparprefix
Input: X = 〈x1, x2, . . . , xp〉, a sequence of p numbers.

Output: S = 〈s1, s2, . . . , sp〉, the prefix sums of X.

1. s1← x1

2. for i← 2 to p
3. Processor Pi computes si← si−1 + xi.
4. end for

Now, we consider computing parallel prefix on the mesh. Let M be√
p×√p mesh, and assume the row-major indexing scheme. The algorithm

is given as Algorithm meshparprefix below. First, the individual prefix

sums of all rows are computed using Algorithm laparprefix. For 1 ≤ i ≤√
p, let the prefix sums of row i be yi,1, yi,2, . . . , yi,√p. Note that these are
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not the final prefix sums, except for row 1. Next, the prefix sums of column√
p are computed, again using Algorithm laparprefix. These are denoted

by s1,√p, s2,√p, . . . , s√p,
√
p, and they are the final prefix sums for column√

p. Finally, for all processors Pi,j , 2 ≤ i ≤ √p, 1 ≤ j ≤ √p − 1, we set

si,j← yi,j + si−1,
√
p. This implies broadcasting si−1,

√
p to row i.

Steps 1 and 2 take Θ(
√
p) time. Step 3 takes Θ(

√
p) time too. Steps 4–

8 take Θ(1) time plus the time needed for broadcasting, which is Θ(
√
p).

Hence, the total running time of the algorithm is Θ(
√
p).

Algorithm 19.27 meshparprefix
Input: X = 〈xi,j | 1 ≤ i, j ≤ √p〉, a sequence of p numbers.

Output: S = 〈si,j | 1 ≤ i, j ≤ √p〉, the prefix sums of X.

1. for i← 1 to
√
p do in parallel

2. Use Algorithm laparprefix to compute the prefix sums of row i.
Let these be yi,1, yi,2, . . . , yi,√p.

3. Use Algorithm laparprefix to compute the prefix sums
of column

√
p. Let these be s1,√p, s2,√p, . . . , s√p,

√
p.

4. for i← 2 to
√
p do in parallel

5. for j← 1 to
√
p− 1 do in parallel

6. si,j← yi,j + si−1,
√

p

7. end for
8. end for

19.5.3 Odd–even transposition sort

This sorting algorithm is for linear arrays (and rows and columns of

meshes). The algorithm is very simple. It alternates between odd steps

and even steps. At odd steps, we compare the contents of processors P1

and P2, P3 and P4, and so on exchanging values if necessary. At even steps,

we repeat the same procedure on processors P2 and P3, P4 and P5, and so

on. The algorithm takes p steps to sort its input 〈x1, x2, . . . , xp〉, one item

xi per processor Pi, 1 ≤ i ≤ p. Hence, its running time is Θ(p). An example

of the algorithm is shown in Fig. 19.40.

Theorem 19.9 Odd–even transposition sort correctly sorts any

sequence of numbers.

Proof. By Lemma 19.1 in Sec. 19.2.7, we may assume that the input

sequence X consists of 0s and 1s. We prove by induction on |X | that the
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Fig. 19.40. Example of odd–even transposition sort.

algorithm sorts the binary sequence X . If p = 1 or 2, then the hypothesis

is true. So, assume it is true for all sequences of size k, 1 ≤ k ≤ p− 1. Let

X = 〈x1, x2, . . . , xp〉 stored in processors P1, P2, . . . , Pp. Let xj be the right-

most 1, where 1 ≤ j ≤ p. xj will start moving rightward in the first or second

step of the algorithm. Once it starts moving, it will subsequently move right-

ward in each step until it reaches the right end, that is, until xp = 1. Now,

it remains to sort X ′ = 〈x1, x2, . . . , xp−1〉 in processors P1, P2, . . . , Pp−1.

By induction, X ′ will be sorted by the algorithm. It follows that X will be

sorted correctly by the algorithm. �

19.5.4 Shearsort

This sorting algorithm is for meshes, and it sorts in snakelike order. It con-

sists of log p+1 phases, where p is the number of processors. The algorithm

alternates between odd and even phases. At odd phases, it sorts the rows of

the mesh, and at even phases, it sorts its columns. The odd rows are sorted

so that smaller numbers move leftward, and the even rows are sorted so that

smaller numbers move rightward. The columns are sorted so that smaller

numbers move upward. Odd–even transposition sort may be used to sort

the rows and columns. In this case, the running time of the algorithm is

Θ(
√
p log p).
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Theorem 19.10 Algorithm Shearsort correctly sorts any sequence of

numbers in log p+ 1 phases.

Proof. By Lemma 19.1 in Sec. 19.2.7, we may assume that the input

consists of 0s and 1s. So, let the input be initially stored in the
√
p×√p

mesh, one number per processor. A row of the mesh will be called dirty

if it consists of 0s and 1s, and clean if it consists of only 0s or only 1s.

Initially, there may be as many as
√
p dirty rows. During the execution of

the algorithm, there will be rows all 0s followed by dirty rows followed by

rows with all 1s. After the algorithm terminates, there will be at most one

dirty row. Let an iteration of the algorithm consist of two phases, a row

sort phase and a column sort phase.

We will show that after each iteration, at least half of the dirty rows

become clean. This will imply that after log(
√
p) iterations there will be at

most one dirty row, which can be sorted using an additional sorting phase

for a total of 2 log(
√
p) + 1 = log p + 1 phases. Thus, it remains to show

that the number of dirty rows will decrease by a factor of at least 2 in each

iteration.

Consider two adjacent rows in an iteration after the phase of row sorting.

There are three possibilities according to whether there are more 0s than

1s (Fig. 19.41(a)), more 1s than 0s (Fig. 19.41(b)), or an equal number of

0s and 1s (Fig. 19.41(c)).

Now, after sorting the columns of the mesh, each one of these three

cases will contribute at least one clean row. If there are more 0s than

1s (Fig. 19.41(a)), then after sorting the columns, there will be at least

one more clean row consisting of all 0s. If there are more 1s than 0s

(Fig. 19.41(b)), then after sorting the columns, there will be at least one

more clean row consisting of all 1s. If there are equal number of 0s and 1s

(Fig. 19.41(c)), then after sorting the columns, there will be two more clean

rows one consisting of all 0s and one consisting of all 1s. Thus, the number

of dirty rows will decrease by a factor of at least 2 in each iteration. �

(a) (b) (c)

Fig. 19.41. Dirty rows after rows are sorted.
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19.5.5 Odd–even merging and sorting on the mesh

In this section, we implement odd–even merging and sorting on a
√
n×√n

mesh; odd–even merging and sorting on the PRAM were discussed in

Sec. 19.2.8. Let A = 〈a0, a1, . . . , an/2−1〉 and B = 〈b0, b1, . . . , bn/2−1〉 be
two sorted sequences of n distinct numbers, where n is a power of 4. Ini-

tially, A and B are input in the first and second
√
n/2 columns of the

mesh. The odd–even merging method is outlined in Algorithm meshod-

devenmerge. k, the number of columns, is input to the algorithm. In the

beginning, k =
√
n, which is a power of 2. The algorithm divides the input

into Aeven, Aodd, Beven and Bodd, and each part occupies k/4 columns. Next,

Aodd and Bodd are interchanged, and the algorithm recursively mergesAeven

with Bodd to produce C, and recursively merges Beven with Aodd to pro-

duce D. C and D are then shuffled into E, which is scanned from left to

right for pairs that are out of order, which are ordered, if necessary.

Algorithm 19.28 meshoddevenmerge
Input: Two sorted sequences A = 〈a0, a1, . . . , an/2−1〉 and B =

〈b0, b1, . . . , bn/2−1〉 of n/2 elements each sorted in ascending order,
where n = 4k ≥ 4, number of columns k, 2 ≤ k ≤ √n.

Output: The elements in S = A ∪B in sorted order.

1. if k = 2, then merge the two columns using an algorithm for the linear
array to produce a sorted snake with two columns and

√
n rows. Exit.

2. Let Aeven = 〈a0, a2, . . . , an/2−2〉 and Aodd = 〈a1, a3, . . . , an/2−1〉 be the
even and odd subsequences of A, respectively. Aeven and Aodd are snakes
with k/4 columns and

√
n rows each.

3. Let Beven = 〈b0, b2, . . . , bn/2−2〉 and Bodd = 〈b1, b3, . . . , bn/2−1〉 be the
even and odd subsequences of B, respectively. Beven and Bodd are snakes
with k/4 columns and

√
n rows each.

4. Interchange Aodd with Bodd. Thus, Aeven and Bodd occupy the first k/2
columns, and Beven and Aodd occupy the next k/2 columns.

5. Recursively merge Aeven and Bodd to obtain C = 〈c0, c1, . . . , cn/2−1〉, a
mesh of k/2 columns and

√
n rows.

6. Recursively merge Aodd and Beven to obtain D = 〈d0, d1, . . . , dn/2−1〉, a
mesh of k/2 columns and

√
n rows.

7. Let E be the shuffle of C and D, that is,
E = 〈c0, d0, c1, d1, . . . , cn/2−1, dn/2−1〉.

8. Traverse the pairs (ci, di) in E, 0 ≤ i ≤ n/2 − 1, and interchange the
elements in each pair if they are out of order to obtain the sorted sequence
S = 〈s0, s1, . . . , sn−1〉 in a mesh with k columns and

√
n rows.

9. return S
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Notice that the algorithm is general for any mesh with k columns and√
n rows, where k is a power of 2. We express the running time of the

algorithm in terms of the number of columns k, 2 ≤ k ≤ √n. Step 1 takes

T (2) = Θ(
√
n), which is the time needed to merge in a linear array with

2
√
n processors. Steps 2 and 3 take Θ(k), as data has to be routed from left

to right and from right to left. Step 4 of interchanging columns takes Θ(k).

Steps 5 and 6 take T (k/2) time. Step 7 of shuffling columns takes Θ(k).

Step 8 takes Θ(1). Hence, the running time of the algorithm is governed by

the recurrence T (k) = T (k/2)+Θ(k), whose solution is T (k) = Θ(k)+T (2).

When k =
√
n, T (

√
n) = Θ(

√
n). The proof of correctness is given by

Theorem 19.2 in Sec. 19.2.8.

Example 19.11 Consider the mesh shown in Fig. 19.42. It consists of

four rows and four columns. The first input A is in the first half of the mesh,

in the first two columns in a snakelike order. The second input B is in the

last two columns in a snakelike order. A = 〈3, 5, 6, 9, 11, 13, 14, 16〉 and B =

〈1, 2, 4, 7, 8, 10, 12, 15〉. First, we partition A and B into their even on odd

parts. The even are shown in shaded squares of Fig. 19.42(a). Thus, Aeven =

{3, 6, 11, 14} is in the first column (see Fig. 19.42(b)), Aodd = {5, 9, 13, 16}
is in the second column. Beven = {1, 4, 8, 12} is shown in the third col-

umn and Bodd = {2, 7, 10, 15} is in the last column. These are shown in

Fig. 19.42(b). In 19.42(c), Aodd is interchanged with Bodd. So, the first two

(a) (b) (c)

(d) (e) (f)

Fig. 19.42. An example of odd–even merging on the mesh.
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columns are merged recursively to produce C = 〈2, 3, 6, 7, 10, 11, 14, 15〉 in
snakelike order, and the last two columns are merged recursively to produce

D = 〈1, 4, 5, 8, 9, 12, 13, 16〉 in snakelike order. In Fig. 19.42(e), C and D are

shuffled to produce E = 〈2, 1, 3, 4, 6, 5, 7, 8, 10, 9, 11, 12, 14, 13, 15, 16〉, which
spans the four columns in a snakelike order. The pair (2, 1) is out of order,

so 2 and 1 are exchanged. The same applies to the pair (6, 5), etc. The

sorted sequence is S = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16〉 shown
in Fig. 19.42(f).

The algorithm for sorting is given as Algorithm meshoddevensort

below. It is similar to Algorithm oddevensort for the PRAM in Sec. 19.2.8.

Algorithm 19.29 meshoddevensort
Input: A sequence S = 〈a0, a1, . . . , an−1〉 where n is a power of 4.

Output: The elements in S in sorted order.

1. S1← 〈a0, a1, . . . , an/2−1〉.
2. S2← 〈an/2, an/2+1, . . . , an−1〉.
3. S′

1 ←meshoddevensort(S1)
4. S′

2 ←meshoddevensort(S2)
5. S← meshoddevenmerge(S′

1, S
′
2)

6. return S

The running time of the algorithm is governed by the recurrence T (n) =

T (n/2)+Θ(
√
n), whose solution is T (n) = Θ(

√
n). The cost of the algorithm

is Θ(
√
n)× n = Θ(n1.5).

19.5.6 Computing the convex hull of a set of points

on the mesh

Let S = {p1, p2, . . . , pn} be a set of n points in the plane stored in a√
n × √n mesh one point per processor, where n is a power of 4. For

definitions related to the convex hull, refer to Sec. 19.2.16; see Sec. 17.3 for

definitions of geometric concepts. In this section, we present two algorithms

for computing the convex hull of S, CH(S), on the
√
n×√n mesh; the first

runs in time O(
√
n logn) and the other in time Θ(

√
n).
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19.5.6.1 The first algorithm

The first algorithm is almost a straightforward implementation of the

PRAM algorithm presented in Sec. 19.2.16 and given in Algorithm par-

convexhull. The algorithm consists of repeated applications of the steps

given in Observations 19.2 and 19.3.

As a preprocessing step, the points in S are first sorted in ascend-

ing order of their x-coordinates in Θ(
√
n) time. So, assume that x(p1) ≤

x(p2) ≤ · · · ≤ x(pn), where x(pi) denotes the x-coordinate of point pi. We

will assume for simplicity that no three points of S are collinear and no two

points have the same x-coordinate. Next, the set of points S is divided

into four parts S1 = 〈p1, p2, . . . , pn/4〉, S2 = 〈pn/4+1, pn/4+2, . . . , pn/2〉,
S3 = 〈pn/2+1, pn/2+2, . . . , p3n/4〉 and S4 = 〈p3n/4+1, p3n/4+2, . . . , pn〉, and
arranged in the mesh, as shown in Fig. 19.43(b). Now, we recursively deter-

mine the four convex hulls of the four parts CH(S1), CH(S2), CH(S3)

and CH(S4). Figure 19.43(c) shows the four convex hulls of the points in

Fig. 19.43(a).

From CH(S1) and CH(S2), we identify CH(S1 ∪ S2), and denote the

set of vertices representing S1 ∪ S2 as P . From CH(S3) and CH(S4), we

identify CH(S3 ∪S4) and denote the set of vertices representing S3 ∪S4 as

Q. From CH(P ) and CH(Q), we identify CH(P ∪Q), which is the desired

convex hull CH(S). In what follows, we turn our attention to computing

the upper hull of P , UH(P ). Computing the lower hull of P , LH(P ), and

hence CH(P ) can be determined in a similar fashion and in parallel with

UH(P ). Finally, finding CH(Q), and hence CH(S) can be achieved by a

similar means.

The steps for finding UH(P ) and hence LH(P ) are similar to those

described in Sec. 19.2.16. In each iteration of the binary search, vertex xi
of UH(S1) is broadcast to the processors holding the vertices of UH(S2)

and one of those processors succeeds in finding its tangent line xivi with

UH(S2). Clearly, this takes Θ(
√
n) time on the

√
n
2 ×

√
n
2 mesh. Since there

are O(log n) iterations in the binary search for finding the upper common

tangent, the overall running time for finding this tangent is O(
√
n logn).

Recall that the computation of LH(P ) is done in parallel with that of

UH(P ). Clearly, the remaining work of finding UH(P ) and then CH(P )

takes Θ(
√
n) time. Hence, the overall running time for finding CH(P ) from

CH(S1) and CH(S2) is O(
√
n logn). It should be noted that finding CH(P )

and CH(Q) are done concurrently, and it remains to find CH(S), which
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(b)
S1 S2

(a)

S3

v

u

S1 S2 S3

(c)

S4

v

u

S4

UH(S )1 UH(S )2 UH(S )3 UH(S )4

Fig. 19.43. (a) The set of points S. (b) Arrangement of the subsets on the mesh.
(c) Convex hulls of S1, S2, S3 and S4.

asymptotically takes the same running time. It follows that the running

time of the algorithm obeys the recurrence T (n) = T (n/4)+O(
√
n log n) =

O(
√
n logn).

19.5.6.2 The second algorithm

The algorithm to be presented is similar to the first algorithm. However,

the main difference is in the binary search and how it is conducted. In this

algorithm, the number of elements considered in iteration i is O(
√
n/2i),

which results in Θ(
√
n) running time for the binary search. This is to be

contrasted to the first algorithm in which each iteration takes O(
√
n) for a

total of O(
√
n logn).
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v
u
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Fig. 19.44. Proof of Lemma 19.2.

In what follows, we describe in detail finding the tangents using binary

search for the two sets S1 and S2. The rest of the algorithm is similar to

that of the first algorithm.

The correctness of the algorithm hinges on the following lemma (see

Fig. 19.44). Here, v and u are the vertices with minimum and maximum

x-coordinate in CH(S1), respectively, and v′ and u′ are the vertices with

minimum and maximum x-coordinate in CH(S2), respectively.

Lemma 19.2 Let w be a vertex of CH(S1). If there is another vertex

w′ of CH(S2) such that ww′ is the common upper tangent of CH(S1) and

CH(S2), then all vertices in CH(S2) must lie below the line passing by xw

and some points in CH(S2) must lie above the line passing by wy, where x

and y are the two vertices in CH(S1) immediately succeeding and preceding

w in counterclockwise order.

Proof. The tangent line must lie entirely within the wedge defined by

xw and wy. If xw is not above all points in CH(S2), then any line that

passes by w and lies entirely inside the wedge either intersects CH(S2) at

more than one point or lies below the line v′u′. On the other hand, if wy is

above CH(S2), then this wedge does not contain a point from CH(S2). In

both cases, there does not exist a common upper tangent ww′ of CH(S1)

and CH(S2). �

Lemma 19.2 suggests the following method for identifying the vertex w.

We perform binary search on the set of vertices of CH(S1). Initially, w is
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assigned the hull vertex in CH(S1) that is half the way between u and v in

counterclockwise order. Next, in each iteration, we do one of the following

according to the result of the test implied by Lemma 19.2 (see Fig. 19.44).

(a) If all vertices in CH(S2) lie below the line passing by xw and some

points in CH(S2) lie above the line passing by wy, then w, x and y

have been identified.

(b) If xw is not above CH(S2), then assign the vertex x to u and recompute

w as the middle between u and v in counterclockwise order.

(c) If (a) above is not satisfied and xw is above CH(S2), then assign ver-

tex y to v and recompute w as the middle between u and v in counter-

clockwise order.

Example 19.12 Consider Fig. 19.45 in which the steps of binary search

are shown. In Fig. 19.45(a), the two convex hulls are shown. w is set half the

way between v and u, in counterclockwise order. The extension of the line

xw crosses CH(S2) at more than one point. Hence, the vertex x is assigned

to u. w is recomputed as half the way between u and v and x and y are

relocated as shown in Fig. 19.45(b). y is assigned to the vertex before w in

counterclockwise order, which happens to be u. Next, since the extensions

of both xw and wy are above CH(S2), v is set equal to y in Fig. 19.45(c).

Then, w, x and y are recomputed as shown in Fig. 19.45(c). In this part of

the figure, u = v = w, and the test in (a) above is satisfied, so the search is

halted, and w is declared as one end of the tangent line.

After the end of each iteration of the binary search, the remaining ver-

tices in CH(S1) and CH(S2) are compressed into the smallest square set

of processors using parallel prefix. Thus, in the ith iteration, the binary

search is performed on Θ(n/2i) vertices, which means that the ith itera-

tion takes Θ(
√
n/2i) time, including the time required for broadcasting and

data compression. This implies that the total running time for the binary

search is
∑O(log n)

i=0 Θ(
√
n/2i), which is Θ(

√
n).

Note that in each iteration, w, x and y are broadcast to the processors

holding hull vertices in CH(S2) above the line u′v′. Then, the equations of

the two lines xw and wy are computed. The results of the tests given in

(a)–(c) above are sent to the vertices of CH(S1) above the line vu.

Similar computations of all the above are performed to identify

w′, w′x′, y′w′ for CH(S2). It is important that identifying w and w′ be

done simultaneously, and so is data compression for the remaining data of
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w
u = y

x

CH(S )1v
CH(S )2

y
x

u = v = w

CH(S )1

y

u

w

CH(S )2

x

CH(S )1v

(a)

(b)

CH(S )2

(c)

Fig. 19.45. Example of binary search.

CH(S1) and CH(S2). This is to ensure that half the number of hull vertices

after compression in CH(S1) between v and u and in CH(S2) between v
′

and u′ are eliminated from further inspection in subsequent iterations of

the two binary searches.
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Let P = S1 ∪ S2 and Q = S3 ∪ S4. Now, we construct CH(P ) =

CH(S1) ∪ CH(S2) by connecting w and w′ and z and z′ by two edges,

where zz′ is the lower tangent. Also, the vertices inside the quadrilateral

defined by w,w′, z and z′ are removed. At the same time, we construct

CH(Q) = CH(S3) ∪CH(S4), and finally CH(S)= CH(P ) ∪ CH(Q). Note

that the computations of CH(P ) and CH(Q) are done concurrently. The

above discussion implies that the overall running time of the algorithm

obeys the recurrence T (n) = T (n/4) + Θ(
√
n) = Θ(

√
n).

19.5.7 Three-dimensional mesh

A three-dimensional mesh of sides m = n1/3 can be viewed as a connection

of m successive levels of two-dimensional meshes of size m × m. It has

n = m3 processors and 3m3 − 3m2 links. Two processors are connected by

a two-way link if and only if they differ in precisely one coordinate and if

the absolute value of the difference in that coordinate is 1 (see Fig. 19.46).

In this figure, m = 4 and n = 64.

(3,0,0)

(3,1,0)

(3,2,0)

(3,3,0)

(0,0,0)

(0,1,0)

(0,2,0)

(0,3,0) (0,3,1) (0,3,2) (0,3,3)

(0,2,1) (0,2,2) (0,2,3)

(0,1,1) (0,1,2) (0,1,3)

(3,3,1) (3,3,2)

(0,0,1) (0,0,2) (0,0,3)

(3,3,3)

(3,2,1) (3,2,2) (3,2,3)

(3,0,1)

(3,1,1) (3,1,2) (3,1,3)

(3,0,2) (3,0,3)

Fig. 19.46. A three-dimensional mesh.
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In three-dimensional mesh, the degree of each node is between 3 and 6,

and the diameter is 3(m − 1) = Θ(n1/3), so meshes are not regular. Of

course, the degree of a corner vertex is less than the degree of an internal

vertex.

19.5.7.1 Sorting on three-dimensional meshes

Consider the problem of sorting n = m3 numbers on a three-dimensional

mesh with n processors in lexicographic zyx-order. In a zyx-ordering, ele-

ments of processors in the plane with coordinate z = 0 come first, followed

by those with z = 1, and so on. The xy-planes are sorted in yx-order,

that is, in columnwise order. The following algorithm needs just five steps,

where each step sorts numbers within two-dimensional meshes. These steps

are outlined in Algorithm threedmeshsort.

Algorithm 19.30 threedmeshsort
Input: n = m3 elements stored in a three-dimensional mesh.

Output: The elements sorted in ascending zyx-order.

1. Sort all xz-planes in zx-order.
2. Sort all yz-planes in zy-order.
3. Sort all xy-planes in yx-order. Reverse the order on every other

plane.
4. Perform one odd–even and one even–odd transposition within all columns

in parallel.
5. Sort all xy-planes in yx-order.

Recall that a dirty row is a row consisting of 0s and 1s. A dirty plane

is one containing at least one dirty row or column. A z-column is a column

of processors parallel to the z-axis. A 0-row is a row of 0s and no 1s.

Theorem 19.11 Algorithm threedmeshsort correctly sorts a given

sequence of numbers in zyx-order.

Proof. By the zero-one principle (Lemma 19.2.7), we may consider any

input sequence of 0’s and 1’s. After Step 1 is completed, in every xz-plane,

there is at most one dirty row, and therefore the difference in the number

of zeroes between any two z-columns in the same xz-plane is at most one.

Hence, any two yz-planes can differ in at most m 0’s. It follows that after

Step 2 is completed, the difference in the number of 0-rows between any
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two yz-planes is at most one, which means that all dirty rows can span at

most two adjacent xy-planes. If there is only one dirty xy-plane, we can go

directly to Step 5 and we are done. If there are two dirty xy-planes, Steps 3

and 4 eliminate at least one of them and Step 5 completes the sorting. �

Example 19.13 Figure 19.47 illustrates the algorithm on a sequence

of 0s and 1s shown in Fig. 19.47(a). First, the xz-planes are sorted in

Fig. 19.47(b). Next, the yz-planes are sorted in Fig. 19.47(c). In this part of

the figure, both the middle and top xy-planes are dirty, and so Steps 3 and 4

are needed, as shown in Fig. 19.47(d) and 19.47(e). Finally, Fig. 19.47(f)

shows the result after Step 5 is executed, in which the input is sorted. Note

that there is only one dirty plane, the middle xy-plane.
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Fig. 19.47. Sorting in the three-dimensional mesh of 0s and 1s.
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Example 19.14 Figure 19.48 illustrates the algorithm on a sequence

of integers shown in Fig. 19.48(a). First, the xz-planes are sorted in

Fig. 19.48(b). Next, the yz-planes are sorted in Fig. 19.48(c). The xy-planes

are then sorted in reverse order according to Step 3 of the algorithm as

shown in Fig. 19.48(d). Next, two iterations of odd–even sort are executed,

and the result is shown in Fig. 19.48(e). Finally, Fig. 19.48(f) shows the

result after Step 5 is executed, in which the input is sorted.
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Fig. 19.48. Sorting in the three-dimensional mesh of arbitrary numbers.
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19.5.8 Fast Fourier transform

The Fourier transform has a wide range of applications in science and engi-

neering. We will describe a version of Fourier transform called discrete

Fourier transform (DFT) and present a fast method for computing the

DFT, called the fast Fourier transform (FFT).

Let r and θ be the polar coordinates of the point (x, y) corresponding

to the complex number z = x + iy, where i =
√−1. Since x = r cos θ and

y = rsin θ, z can be written in polar form as z = r(cos θ + isin θ). Using

Euler’s formula eiθ = cos θ + isin θ, z can also be written as z = reiθ .

For n ≥ 2, the n distinct roots of the equation xn− 1 = 0 are called the

n roots of unity. Define the complex number

ω = ei2π/n = cos 2π
n + i sin 2π

n .

ω is called a primitive nth root of unity, which means ωn = 1 and ωj 	= 1

for 0 < j < n. If ωn = 1, then (ωj)n = (ωn)j = 1. Hence, the remaining

complex roots of unity are the powers of ω. That is, 1 = ω0, ω, ω2, . . . , ωn−1

constitute the n distinct roots of unity, where

ωk = ei2πk/n = cos 2πk
n + i sin 2πk

n .

Pictorially, these roots are distributed in the complex plane evenly

around the circumference of the unit circle. Figure 19.49 illustrates the n

roots of unity for n = 2, 4, 8, which are powers of 2. As shown in the figure,

the pairs ωj and ωj+n/2 are symmetrically located with respect to the ori-

gin. Algebraically, we have ωj+n/2 = −ωj (Property 2), and in particular,

ωn/2 = −1.
Let a be the column vector [a0, a1, . . . , an−1]

T , where n is a power of 2.

Let Fn be the Vandermonde matrix⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1

1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2n−2

...
...

...
...

...

1 ωn−2 ω2(n−2) . . . ω(n−1)(n−2)

1 ωn−1 ω2(n−1) . . . ω(n−1)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, the product b = Fna is called the DFT of a.
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1ω  = (1/2) + (1/2)i3

ω

 = −(1/2) + (1/2)i

5 ω = −(1/2) −(1/2)i 7

(a) n = 2. (b) n = 4.

 = (1/2) −(1/2)i

(c) n = 8.

Fig. 19.49. The n roots of unity for n = 2, 4, 8.

Thus, computing the DFT b of a vector a is equivalent to evaluating the

polynomial P (x) = a0+a1x+· · ·+an−1x
n−1 at the points 1, ω, ω2, . . . , ωn−1.

It is easy to see that the DFT of a vector a can be computed in Θ(n2)

sequential time and Θ(logn) parallel time using n2/ logn processors on

the PRAM. We now show that it can be computed in optimal Θ(n logn)

sequential time and Θ(logn) parallel time using n processors on the PRAM.

The efficiency of the algorithm is based on the following properties of the

n roots of unity.

Property 1 For even n, if ω is an nth root of unity, then ω2 is an (n/2)th

root of unity.

Property 2 For even n, ωk+n/2 = −ωk.

For 0 ≤ i < n/2, bi can be expressed as

bi =
n−1∑
j=0

(ωi)jaj

= (ωi)0a0 + (ωi)1a1 + · · ·+ (ωi)n−1an−1
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= (ωi)0a0 + (ωi)2a2 + · · ·+ (ωi)n−2an−2

+(ωi)1a1 + (ωi)3a3 + · · ·+ (ωi)n−1an−1

=

(n/2)−1∑
j=0

(ωi)2ja2j +

(n/2)−1∑
j=0

(ωi)2j+1a2j+1

=

(n/2)−1∑
j=0

(ω2i)ja2j + ωi

(n/2)−1∑
j=0

(ω2i)ja2j+1. (19.8)

Since

(ωi+(n/2))k =

{
ωki if k is even

−ωki if k is odd,

we have

bi+(n/2) =

(n/2)−1∑
j=0

(ω2i)ja2j − ωi

(n/2)−1∑
j=0

(ω2i)ja2j+1. (19.9)

By Eqs. (19.8) and (19.9), Fna is computed recursively from F(n/2)ae
and F(n/2)ao, where ae and ao are, respectively, the even and odd parts

of a. On the PRAM, this gives rise to the recurrence T (n) = T (n/2)+Θ(1),

which solves for T (n) = Θ(logn). The number of processors needed is Θ(n).

19.5.8.1 Implementation on the butterfly

Let

c = F(n/2)

⎡
⎢⎢⎢⎢⎢⎣

a0
a2
a4
...

an−2

⎤
⎥⎥⎥⎥⎥⎦ and d = F(n/2)

⎡
⎢⎢⎢⎢⎢⎣

a1
a3
a5
...

an−1

⎤
⎥⎥⎥⎥⎥⎦.

Then, for 0 ≤ i < n/2, Eqs. (19.8) and (19.9) can be rewritten as

bi = ci + ωidi (19.10)

and

bi+n/2 = ci − ωidi. (19.11)
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Fig. 19.50. Implementation of FFT on the butterfly for n = 8.

By Eqs. (19.10) and (19.11), the implementation of the Fourier trans-

form on the d-dimensional butterfly, where n = 2d, is straightforward.

These two equations are implemented naturally on the butterfly, as shown

in Fig. 19.50 for n = 8. The bi’s are computed recursively in level 0, and

ci’s and di’s are computed recursively in level 1, and so on. As an exam-

ple in the figure, b3 is computed as b3 = c3 + ω3d3 and b6 is computed as

b6 = c2 − ω2d2.

Each parallel step is carried out by one level of the butterfly. Hence,

the number of parallel steps can be expressed by the recurrence T (n) =

T (n/2) + 1, whence the number of steps is equal to d = logn.

Example 19.15 Let a = [1, 2, 3, 4]T . In this example, we compute F4a,

where

F4 =

⎡
⎢⎢⎢⎢⎣
1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎥⎥⎦ .
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Since F2 =
[
1 1
1 −1

]
, c =

[
1 1
1 −1

] [
1
3

]
=
[

4
−2

]
and d =

[
1 1
1 −1

] [
2
4

]
=
[

6
−2

]
.

By Eq. (19.10), b0 = c0 + i0d0 = 10, and b1 = c1 + i1d1 = −2 − 2i, since

ω = i. By Eq. (19.11), b2 = c0 − i0d0 = −2, and b3 = c1 − i1d1 = −2 + 2i.

Hence, b = F4a = [10,−2− 2i,−2,−2 + 2i]T , as can be verified by direct

multiplication.

19.5.8.2 Iterative FFT on the butterfly

Unfolding recursion in the FFT algorithm discussed above results in a

simple iterative procedure for computing Fna on the d-dimensional but-

terfly, where n = 2d. The algorithm proceeds in the reverse order, from

level d to level 0, where the processors in level d contain the input. If

a = [a1, a2, . . . , an]
T , then aj is stored in node (jR, d), where jR is the

number whose representation in binary is the reverse of the representation

of j. For example, if j = 1, and the number of bits is 3, then jR = 4.

The reason for this renumbering is that in the recursive algorithm, the

items are divided into even and odd. The items are divided into two halves;

those even in the upper half have 0 as their most significant bit, and those

odd in the lower half have 1 as their most significant bit. Appending 0s

and 1s is repeated recursively with repeated divisions into even and odd

halves.

The algorithm proceeds in d phases corresponding to levels d − 1, d −
2, . . . , 0, where the output of each phase except the last is the input to the

next. Each phase is carried out in one parallel step, for a total of d parallel

steps. In phase 1, the algorithm starts by evaluating the contents of the

processors at level d − 1. Each pair of consecutive processors perform the

multiplication F2u, where u is the vector of corresponding pair of values

entered at level d. F2u is not computed using the recursive algorithm dis-

cussed above, or using direct matrix multiplication; it is computed using

Eqs. 19.10 and 19.11. There are n/2 computations of the products F2u.

Next, in phase 2, each group of four consecutive processors in level d−2 per-
form the multiplication F4v using Eqs. (19.10) and (19.11), where v is the

vector of corresponding four elements computed in phase 1 while processing

level d− 1. There are n/4 computations of the products F4v. This process

of doubling the group size in each phase and computing the Fourier trans-

forms using Eqs. (19.10) and (19.11) is repeated in the following phases,
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phases 3, 4, . . . , d, until the final product Fna is computed. In general, in

phase j, n/2j computations of F2jw in level d − j are carried out using

Eqs. (19.10) and (19.11).

Example 19.16 (see Fig. 19.51) As in Example 19.15, let a =

[1, 2, 3, 4]T . We compute F4a. The input is entered into level d = 2, where

aj is stored in node (jR, d), as explained above. In phase 1 of the algo-

rithm, the contents of the processors at level d − 1 = 1 are evaluated.

Each pair of consecutive processors perform the multiplication F2u using

Eqs. (19.10) and (19.11), where u is the vector of corresponding pair of

values entered at level 2. For example, the contents of node (0, 1) is com-

puted as c0 + (−1)0d0 = 1 + (−1)03 = 4 (here, ω = −1). Similarly, the

contents of node (1, 1) is computed as c0 − (−1)0d0 = 1 − (−1)03 = −2.
Hence, F2u =

[
1 1
1 −1

] [
1
3

]
=

[
4
−2

]
. Likewise, in the lower half of level 1,[

1 1
1 −1

] [
2
4

]
=
[

6
−2

]
. Next, in phase 2, the group of four consecutive pro-

cessors in level 0 perform the multiplication F4v using Eqs. (19.10) and

c + (−1) d = 40

0

0

11
c + i d  = −2 − 2i

0
0c  −  i d  = −2

0

0
0c  +  i d  = 10

0

c − (−1) d = −20

0

0

c + (−1) d = 60

0

0

3 

1 

2 

00

4 

01

10

11

level 2

0c

level 1

0c

1

level 0ω = −1 ω = i

c

1c

0c

0c

0c

0c 0d

0d
1d

1d

0d

0d

0d

0d

c − (−1) d = −20

0

0 11
c  − i d  = −2 + 2i

Fig. 19.51. Iterative FFT on the butterfly.
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(19.11), where v = [4,−2, 6,−2]T is the vector of corresponding four ele-

ments computed in phase 1. For example, the contents of node (0, 0) is

computed as c0 + i0d0 = 4+ i06 = 10 (here, ω = i). Similarly, the contents

of node (1, 0) is computed as c1 + id1 = −2 + i(−2) = −2 − 2i. Likewise,

the contents of nodes (2, 0) and (3, 0) are computed as −2 and −2 + 2i,

respectively. Hence,

F4a = F4v =

⎡
⎢⎢⎢⎢⎣
1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

4

−2
6

−2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

10

−2− 2i

−2
−2 + 2i

⎤
⎥⎥⎦ .

This conforms with the result obtained in Example 19.15.

19.5.8.3 The inverse Fourier transform

The inverse of the matrix Fn turns out to be easy to describe: for 1 ≤ k < n,

the kth row of nF−1
n is the n− kth row of Fn:

F−1
n =

1

n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1

1 ωn−1 ω2(n−1) . . . ω(n−1)2

1 ωn−2 ω2(n−2) . . . ω(n−1)(n−2)

...
...

...
...

...

1 ω2 ω4 . . . ω2n−1

1 ω ω2 . . . ωn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Simplifying yields another easy description of F−1
n :

F−1
n =

1

n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1

1 ω−1 ω−2 . . . ω−(n−1)

1 ω−2 ω−4 . . . ω−2(n−1)

...
...

...
...

...

1 ω−(n−2) ω−2(n−2) . . . ω−(n−2)(n−1)

1 ω−(n−1) ω−2(n−1) . . . ω−(n−1)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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That is,

(F−1
n )ij =

ω−ij

n
.

So, the inverse of Fn is 1/n times the Fourier transform matrix of a different

primitive root of unity, namely ω−1.

To show that it is indeed the inverse of Fn, we need the following prop-

erty.

Property 3 Since

n−1∑
j=0

ωj =
ωn − 1

ω − 1
=

1− 1

ω − 1
= 0,

we have

n−1∑
j=0

ωij =

{
0 if i 	≡ 0(mod n)

n if i ≡ 0(mod n).

By Property 3, we have

(Fn × F−1
n )ij =

1

n

n−1∑
k=0

ωikω−kj

=
1

n

n−1∑
k=0

ωk(i−j)

= 1 if i = j and 0 otherwise.

Example 19.17

Since F4 =

⎡
⎢⎢⎣
1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎦ , F−1

4 =
1

4

⎡
⎢⎢⎢⎢⎣
1 1 1 1

1 −i −1 i

1 −1 1 −1
1 i −1 −i

⎤
⎥⎥⎥⎥⎦

as can be easily verified.

Clearly, the algorithm for the inverse Fourier transform is the same as

the algorithm for FFT described above.
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19.5.8.4 Applications of FFT

We list here two of the many applications of FFT.

19.5.8.5 Product of polynomials

Let f(x) and g(x) be two polynomials of degree n− 1, where

f(x) =

n−1∑
j=0

ajx
j and g(x) =

n−1∑
j=0

bjx
j ,

where n is a power of 2. The product polynomial h(x) is given by

h(x) = f(x)g(x) =

2n−1∑
j=0

cjx
j ,

where c2n−1 = 0.

Recall that if a is a vector of n coefficients of the polynomial f(x), then

Fna denotes the vector consisting of the values of f(x) evaluated at the n

roots of unity. Likewise, Fnb denotes the vector consisting of the values of

g(x) evaluated at the n roots of unity. That is,

⎡
⎢⎢⎢⎢⎣

f(ω0)

f(ω1)

...

f(ωn−1)

⎤
⎥⎥⎥⎥⎦ = Fn

⎡
⎢⎢⎢⎢⎣

a0

a1
...

an−1

⎤
⎥⎥⎥⎥⎦ and

⎡
⎢⎢⎢⎢⎣

g(ω0)

g(ω1)

...

g(ωn−1)

⎤
⎥⎥⎥⎥⎦ = Fn

⎡
⎢⎢⎢⎢⎣

b0

b1
...

bn−1

⎤
⎥⎥⎥⎥⎦ .

By inverting Fn, we can perform the process of interpolation, which in

the above functions obtains the ai’s from the vector of f(ωi)’s and the bi’s

from the vector of g(ωi)’s. That is,

⎡
⎢⎢⎢⎢⎣

a0

a1
...

an−1

⎤
⎥⎥⎥⎥⎦ = F−1

n

⎡
⎢⎢⎢⎢⎣

f(ω0)

f(ω1)

...

f(ωn−1)

⎤
⎥⎥⎥⎥⎦ and

⎡
⎢⎢⎢⎢⎣

b0

b1
...

bn−1

⎤
⎥⎥⎥⎥⎦ = F−1

n

⎡
⎢⎢⎢⎢⎣

g(ω0)

g(ω1)

...

g(ωn−1)

⎤
⎥⎥⎥⎥⎦ .
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The componentwise product of vectors Fna and Fnb is defined as

⎡
⎢⎢⎢⎢⎢⎣

f(ω0)g(ω0)

f(ω1)g(ω1)

...

f(ωn−1)g(ωn−1)

⎤
⎥⎥⎥⎥⎥⎦ ,

where f(ωi)g(ωi) = h(ωi), 0 ≤ i ≤ n − 1. By taking the inverse Fourier

transform of the componentwise product of vectors Fna and Fnb, we can

obtain h(x) in its coefficient form. There is a little difficulty, however. Given

a polynomial p(x) of degree m in its (point, value) pairs, it is well known

that m+ 1 points are needed in order to reconstruct p(x) in its coefficient

form. The componentwise product of Fna and Fnb provides the values of

h(x) at only n points, but h(x) is of degree 2n− 2. Hence, we extend f(x)

and g(x) to degree 2n − 1 by adding zeros for the terms with degree n

through 2n − 1. Thus, define a′ = [a0, a1, a2, . . . , an−1, 0, 0, . . . , 0]
T and

b′ = [b0, b1, b2, . . . , bn−1, 0, 0, . . . , 0]
T . We compute the coefficients of h(x) as

⎡
⎢⎢⎢⎣

c0
c1
...

c2n−1

⎤
⎥⎥⎥⎦ = F−1

2n

⎡
⎢⎢⎢⎣

f(ω0)g(ω0)

f(ω1)g(ω1)
...

f(ω2n−1)g(ω2n−1)

⎤
⎥⎥⎥⎦ .

Note here that ω is the 2nth primitive root of unity. In summary, to con-

struct the product h(x) = f(x)g(x), we do the following steps:

(1) Compute c1 = F2na
′ and c2 = F2nb

′.
(2) Perform the componentwise product c1 � c2.

(3) Interpolate by computing the inverse Fourier transform c = F−1
2n (c1 �

c2).

(4) Output c = [c0, c1, c2, . . . , c2n−1]
T .

Steps 1 and 3 take Θ(logn) parallel time on the d-dimensional butter-

fly using Θ(n logn) operations. Step 2 takes Θ(1) parallel time. Hence, the

algorithm for computing the product of two polynomials requires Θ(n logn)

operations and runs in Θ(logn) parallel time on the logn-dimensional but-

terfly. This is much more efficient than the Θ(n2) direct multiplication

algorithm.
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Example 19.18 Let f(x) = 1+2x and g(x) = 1+3x. We will compute

the product h(x) = f(x)g(x) using fast Fourier transform. Write f(x) = ax,

where a = [1, 2], and x = [1, x]T , and g(x) = bx, where b = [1, 3]. Let

a′ = [1, 2, 0, 0]T and b′ = [1, 3, 0, 0]T . Then,

c1 = F4a
′ =

⎡
⎢⎢⎣
1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎦
⎡
⎢⎢⎣
1

2

0

0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

3

1 + 2i

−1
1− 2i

⎤
⎥⎥⎦ .

Similarly,

c2 = F4b
′ =

⎡
⎢⎢⎣
1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎦
⎡
⎢⎢⎣
1

3

0

0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4

1 + 3i

−2
1− 3i

⎤
⎥⎥⎦ .

Now, we compute c1 � c2, which is the componentwise multiplication of

c1and c2.

c1 � c2 =

⎡
⎢⎢⎣

3

1 + 2i

−1
1− 2i

⎤
⎥⎥⎦�

⎡
⎢⎢⎣

4

1 + 3i

−2
1− 3i

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

12

−5 + 5i

2

−5− 5i

⎤
⎥⎥⎦ .

Next, we interpolate.

c = F−1
4 (c1�c2) = 1

4

⎡
⎢⎢⎢⎢⎣
1 1 1 1

1 −i −1 i

1 −1 1 −1
1 i −1 −i

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

12

−5 + 5i

2

−5− 5i

⎤
⎥⎥⎦ =

1

4

⎡
⎢⎢⎣

4

20

24

0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1

5

6

0

⎤
⎥⎥⎦ .

Hence, h(x) = 1 + 5x+ 6x2, as can be verified by direct multiplication.

19.5.8.6 Computing the convolution of two vectors

Given two sequences of numbers

A = a0, a1, . . . , an−1 and B = b0, b1, . . . , bn−1,

the convolution of A and B denoted by A⊕B is defined as

a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, . . . , a0bn−1 + a1bn−2 + · · ·+ an−1b0.



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch19 page 627

Parallel Algorithms 627

So, if

f(x) =

n−1∑
j=0

ajx
j and g(x) =

n−1∑
j=0

bjx
j ,

then the kth term in f(x)g(x) is the kth element in the sequence A⊕B.

Example 19.19 As in Example 19.18, let a′ = [1, 2, 0, 0]T and b′ =

[1, 3, 0, 0]T . Then,

(a0b0) + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x
2 = 1 + 5x+ 6x2.

It follows that a0b0 = 1, a0b1 + a1b0 = 5, and a0b2 + a1b1 + a2b0 = 6, as

can be verified by direct evaluation.

19.6 Systolic Computation

Systolic computation refers to one in which the processors, usually called

processing elements, are arranged in a very regular way (most often, as

one- or two-dimensional arrays), and the data move through them in a

regular fashion. Processors are usually primitive and perform very simple

operations on the data they receive, e.g., computing the maximum and

minimum of two items.

19.6.1 An on-chip bubble sorter

The basic component of the bubble sorter is the compare/steer unit, which

is shown in Fig. 19.52. It consists of four interconnected cells: A,B,C andD.

The sorter consists of a stack of n comparators that work synchronously in

one of two modes: downward and upward (see Fig. 19.53). In the downward

mode, cell A in every unit receives its input from the unit above or from

outside, the content of C is routed to B, and the content of D, which is the

larger of the two numbers, is moved to the next comparator below. Next,

the contents of A and B are compared, and the minimum and maximum

are delivered to C and D, respectively. That is, C = min{A,B} and D =

max{A,B}. In the upward mode, an outside key is loaded from the bottom

into cell B of the unit, and an inside key previously at D is loaded into A.

After loading, the comparison is executed, and the minimum is delivered to

C and the maximum to D. Loading and comparison are executed almost
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A

D=max(A,B) D

C=min(A,B) C

B

Fig. 19.52. A compare/steer unit (comparator).

Fig. 19.53. Sorter.

simultaneously, so all these operations are performed in all comparators in

every period, which we will take for convenience as one unit.

During the downward input phase, n keys are loaded into n units in 2n

periods. During the upward output phase, each unit delivers the smaller key

to its upper unit in every period, outputting one item per period from the

sorted keys. The sorting time is completely absorbed in the input/output

time. So, it takes 2n periods to sort n numbers.

Example 19.20 Figures 19.54 and 19.55 illustrate the action of the

sorter during the sorting of an input of six numbers, 4, 3, 1, 6, 2 and 5

in the downward and upward phases, respectively. Initially, at time t0, the
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Fig. 19.54. Up-down sorter.
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Fig. 19.55. Bottom-up sorter.

contents of the buffer cells in each comparator are all set to ∞. During the

first cycle, the first number 4 is compared to ∞ and routed to the upper

right cell. During the second cycle, the number 3 is loaded and compared

to 4; then, the number 3 is routed to the upper right cell and 4 is routed

to the lower left cell of the first unit. During the third cycle, as the third

number is being loaded into the first unit, the number 4 is loaded into the
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second unit. In other words, the larger of the two numbers will be pushed

out of the comparator in which it resides. At the end of time t3, the upper

right cell of the first unit contains 1 and the lower left cell contains 3; and

the upper right cell of the second unit contains 4 and the lower left cell

contains ∞. At the end of time t6, all the six numbers have been loaded

into the sorter, thus completing the input downward phase. From time t7
on, the output upward phase begins. Note that in the input phase, the ∞’s

are pushed out of the bottom of the sorter; in the output phase, the ∞’s

are pushed back into the sorter from the bottom. At the end of time t7, the

smallest number 1 is out and the second smallest 2 is in the upper right cell

of the first unit awaiting to be output. In this output phase, the smaller of

the two numbers within each comparator is popped up, leaving the unit it

resides in and entering the unit on top of it. In the case of the top unit, the

smaller number is delivered as output. Thus, the sorter continues to put out

the numbers in order. At the end of time t12, all data in the sorter will have

been output in ascending order as desired. At the same time, the sorter is

automatically reset to its initial state (all ∞) and is ready to accept the

next input sequence.

Theorem 19.12 The sorter correctly sorts the input numbers.

Assume the elements to be sorted are distinct, and n is even. Let Ci

and Di denote the contents stored in cells C and D of the ith comparator.

First, we show that min{Ci+1, Di+1} ≥ min{Ci, Di}. In input phase, Ci+1

and Di+1 are obtained by comparing the contents of the ith comparator

and hence must be greater than or equal to the keys in it. Similarly, in

output phase, Ci and Di are obtained by comparing the contents of the

(i + 1)st comparator and hence must be less than or equal to the keys in

it, that is, Ci+1 and Di+1. In both cases, min{Ci+1, Di+1} ≥ min{Ci, Di}.
Consequently, the kth smallest element is in one of the top k comparators.

To see this, assume that the kth smallest element x is not in the first k

comparators, that is, it is in comparator j for some j > k. Then, since

min{C1, D1} ≤ min{C2, D2} ≤ · · · ≤ min{Cj , Dj} ≤ x, at least k elements

are smaller than x, which is a contradiction. It follows that after n keys have

been read into the sorter, the minimum must be in the top comparator, the

second smallest must be either in the first or second comparator, and so on.

Thus, the first element to be output must be the smallest, followed by the

second smallest, etc.
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19.7 Practice Problems

19.1. Give a parallel algorithm to compute the maximum of n numbers

in the sequence 〈x1, x2, . . . , xn〉 on the EREW PRAM. What is the

running time of your algorithm?

19.2. Use parallel prefix to compute the sequence of maximums

x1,max{x1, x2},max{x1, x2, x3}, . . . ,max{x1, x2, . . . , xn} for the

sequence S = 〈x1, x2, . . . , xn〉.
19.3. Let S = 〈x1, x2, . . . , xn〉 be a sequence of integers. Give an

algorithm to rearrange the elements of S so that all nega-

tive integers precede all positive integers. For example, if S =

〈3,−2, 1,−5, 4,−6, 7〉, the result should be 〈−2,−5,−6, 3, 1, 4, 7〉.
19.4. Give an algorithm to broadcast an item x stored in processor P0 to

all other processors in the EREW PRAM with n = 2k processors.

What is the running time of your algorithm?

19.5. Consider Algorithm parquicksort in Sec. 19.2.3.2 for parallel

quicksort. What is the cost of the algorithm on average? How about

in the worst case?

19.6. Carry out the algorithm for parallel search using two processors on

the sequence

S = 〈1, 3, 4, 6, 9, 12, 14, 15, 20〉, and x = 8.

How many parallel steps are there?

19.7. Illustrate the operation of Algorithm parrank in Sec. 19.2.6.1 for

computing the ranks of B in A on the input:

A = 〈1, 4, 7, 10, 12, 14, 19, 20〉 and B = 〈5, 11, 15, 18〉.
19.8. Illustrate the operation of Algorithm oddevenmerge in Sec. 19.2.8

for odd–even merging on the input:

A = 〈2, 5, 6, 8〉 and B = 〈1, 3, 7, 9〉.

19.9. Do Problem 19.8 with the following modification. Merge Aodd with

Bodd and Aeven with Beven (see Exercise 19.21).

19.10. Illustrate the operation of the bitonic sort network shown in

Fig. 19.16 on the input sequence 〈6, 7, 1, 4, 2, 5, 8, 3〉.
19.11. Give an example of a bitonic sequence with one local maximum and

one local minimum.
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19.12. Consider Algorithm parmultiselect1 for multiselection discussed

in Sec. 19.2.12. Compare the algorithm given with direct application

of Algorithm parselect given in Sec. 19.2.11.

19.13. Repeat Problem 19.12 with the second algorithm for multiselection

for the PRAM, Algorithm parmultiselect2.

19.14. Suggest an algorithm for sorting using multisession. What is the

time complexity of your algorithm?

19.15. Consider the algorithm for matrix multiplication discussed in

Sec. 19.2.13. What is the cost of the algorithm? What modifica-

tion should be done in order to make the total cost O(n3).

19.16. Design a recursive algorithm for parallel prefix on the hypercube.

What is the time complexity of your algorithm?

19.17. Describe how to implement the odd–even merge sort on a hypercube

of dimension d = 2k.

19.18. Consider the algorithm for permutation routing in the hypercube

discussed in Sec. 19.4.4. What is the probability that the algorithm

will route all packets to their destinations in 8d steps or fewer?

19.19. Consider Algorithm hcmultiselect for multiselection on the

hypercube discussed in Sec. 19.4.9. Compare the algorithm given

with direct application of Algorithm hcselect given in Sec. 19.4.8.

19.20. Explain how to broadcast an item in an arbitrary processor to all

other processors in the ring.

19.21. One method to smooth a picture is as follows. Let p be the pixel

in the middle of a square of a 3 × 3 square of pixels. Replace the

value of p by the average of all the 3× 3 pixels. Suggest a network

computation model to solve this problem, and show how to solve it.

19.22. Let P be a simple polygon (that is not necessarily convex) with n

vertices, and let x be a point. Assume that there are n processors,

each assigned to one edge. Give an efficient parallel algorithm to

decide whether x is in the interior of P . (Hint : Draw a horizontal

line L such that x lies on L. Count how many times L intersects

with the edges of P .)

19.23. The tree-connected computer with n leaf processors consists of 2n−
1 processors connected in the form of a complete binary tree. Design

an algorithm to find the sum of n numbers on a tree-connected

computer with n leaf processors. The input numbers are stored at

the leaves, and the output is to be stored in the root processor.

What is the time complexity of your algorithm?
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19.24. Design an algorithm to find the maximum of n numbers on a tree-

connected computer with O(log n) processors. The input numbers

are stored at the leaves, and the output is to be stored in the root

processor. What is the time complexity of your algorithm?

19.25. The d-dimensional cube-connected cycles (CCC) is constructed

from the d-dimensional hypercube by replacing each node with a

cycle of length d (see Fig. 19.56). The nodes in the cycle correspond-

ing to node x in the hypercube are labeled as (x, 1), (x, 2), . . . , (x, d).

Node (x, i) is connected to node (y, j) if and only if x = y and

| i− j | = 1 (mod d) or i = j and x and y are connected in the

hypercube. The CCC has d2d nodes. Derive an algorithm to find

the sum of n = d2d numbers stored in the CCC, one number per

processor. The resulting sum should be stored in processor P(0d,1).

19.26. What are the degree, diameter and bisection width of the

d-dimensional cube-connected cycles described in Problem 19.25?

19.27. Give an algorithm for computing parallel prefix on the

d-dimensional cube-connected cycles described in Problem 19.25.

Your algorithm should run in O(d) = O(log n) time.

19.28. Give an embedding function from the d-dimensional hypercube

to the cube-connected cycles (CCC) network described in Prob-

lem 19.25. What are the expansion, dilation and congestion of the

embedding?

(000,1)

(000,2)(000,3)

(001,1)

(001,2)

(011,2)

(011,3)

(010,1) (011,1)(010,2)

(010,3)(100,3)

(100,2) (100,1)
(110,3)

(110,1) (111,1)

(101,2)

(101,3)

(111,2)

(101,1)

(110,2)

(001,3)

(111,3)

Fig. 19.56. Three-dimensional cube-connected cycles (CCC).
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19.8 Exercises

19.1. Let x1, x2, . . . , xn be n Boolean variables. Show how to find the

logical OR of these variables in O(1) time on the COMMONCRCW

PRAM with n processors.

19.2. Let 〈x1, x2, . . . , xn〉 be a sequence of n distinct numbers. Show how

to find the maximum of these numbers in O(1) time on the CRCW

PRAM with n2 processors.

19.3. Let 〈x1, x2, . . . , xn〉 be a sequence of n distinct numbers. Show how

to find the maximum of these numbers in O(log logn) time on the

CRCW PRAM with n processors. (Hint : Partition the input into√
n parts and recursively find the maximum in each part. Use Exer-

cise 19.2.)

19.4. Let S be a sequence of n distinct numbers and x ∈ S. The rank

of x in S is the number of elements in S less than x. Show how to

compute the rank of x in S in O(log n) time on the CREW PRAM

with n processors.

19.5. Let S be a sequence of n integers and x an integer. Show how to

compute rank(x, S), the rank of x in S, in O(log n) time on the

EREW PRAM using O(n) operations.

19.6. Let S = {x1, x2, . . . , xn} be n numbers and k an integer, 1 ≤ k ≤ n.
Show how to find the kth smallest element in S in O(log n) time

on the CREW PRAM with n2 processors.

19.7. Let S = 〈x1, x2, . . . , xn〉 be a sequence of n numbers. Consider

the simple recursive algorithm for parallel prefix that divides the

sequence S into two halves: S1 = 〈x1, x2, . . . , xn/2〉 and S2 =

〈xn/2+1, xn/2+2, . . . , xn〉, and then calls the algorithm recursively

on each of S1 and S2.

(a) Write down the detailed algorithm.

(b) Will the algorithm work on the EREW PRAM?

(c) What is the total work done by the algorithm?
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(d) Will Brent theorem (Theorem 19.1) help in reducing the

number of processors without increasing the running time

complexity?

19.8. Let 〈x1, x2, . . . , xn〉 be a sequence of n numbers. The prefix minima

is to compute for each i, 1 ≤ i ≤ n, the minimum among the

elements {x1, x2, · · · , xi}. Develop an algorithm to compute the

prefix minima that runs in time O(log n) on the EREW PRAM.

19.9. Do Exercise 19.8 using suffix minima instead, that is, compute

for each i, 1 ≤ i ≤ n, the minimum among the elements

{xi, xi+1, . . . , xn}.

19.10. Let 〈x1, x2, . . . , xn〉 be a sequence of n numbers. The suffix compu-

tation problem is to compute the suffixes xn, xn−1 ◦xn, . . . , x1 ◦x2 ◦
· · · ◦ xn. Give an O(log n) time algorithm to solve this problem on

the CREW PRAM with n processors.

19.11. Do Exercise 19.10 for the case of EREW PRAM.

19.12. Let X = 〈x1, x2, . . . , xn〉 be a sequences of n numbers, where n =

2k for a nonnegative integer k. Explain how to perform the prefix

computation on the sequence X using p processors, where p < n.

Assume the binary operation of addition.

19.13. Let T1, T2, . . . , Tm be m directed and rooted binary trees on n ver-

tices. Each node has a pointer to its parent, except the root which

points to itself. Design a parallel algorithm to allow each vertex

to know the identity of the tree to which it belongs (the trees are

identified by their roots. The roots are numbered 1, 2, . . . ,m).

19.14. Parallelize Horner’s rule to evaluate a polynomial of degree n under

the EREW PRAM in time O(log n).

19.15. Let 〈x1, x2, . . . , xn〉 be a sequence of n distinct numbers. Design a

parallel algorithm for the CREW PRAM to sort this sequence in

time O(log n). Assume an unlimited number of processors.
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19.16. Let n be a positive integer. Consider the problem of computing the

polynomials yi = xi, for 1 ≤ i ≤ n. Show how to compute the yi’s

in O(log n) time. Specify the PRAM model used.

19.17. Let A be a sequence of integers and x an integer. Develop an EREW

PRAM algorithm to find all occurrences, if any, of x in A. Your

algorithm should run in time O(log n) and use a linear number of

operations.

19.18. Consider Algorithm parquicksort presented in Sec. 19.2.3.2. Sup-

pose we always select the median as the pivot (see Sec. 19.2.11).

What will be the running time of the algorithm?

19.19. Let A and B be two sequences of distinct number sorted in ascend-

ing order. Design an O(1) time algorithm to merge A and B on the

CRCW PRAM. Assume an unlimited number of processors.

19.20. Apply Brent theorem on Algorithm parmerge presented in

Sec. 19.2.6.2.

19.21. In Algorithm oddevenmerge in Sec. 19.2.8, Aeven is merged with

Bodd and Aodd is merged with Beven. Rewrite the algorithm with

the modification that it merges Aodd with Bodd and Aeven with

Beven. It is important to know that this will change the step of

traversing the shuffle of C and D.

19.22. Let G = (V,E) be an undirected graph with n vertices. Give an

algorithm to decide whether G contains a triangle, that is, three

mutually adjacent vertices. Assume that G is represented by its

adjacency matrix. Your algorithm should run in O(log n) time on

the CRCW PRAM with n3 processors.

19.23. Illustrate the operation of the pipelined mergesort algorithm on the

input 〈6, 7, 1, 4, 2, 5, 8, 3〉.

19.24. Parallelize Algorithm select given in Sec. 5.5 using n/ logn pro-

cessors on the PRAM. Analyze your algorithm.

19.25. Explain how to make Algorithm parselect of Sec. 19.2.11 cost

optimal.
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19.26. Rewrite Algorithm parselect for selection discussed in

Sec. 19.2.11 for the case when the number of processors is p < n.

Derive its running time.

19.27. Let A = 〈a1, a2, . . . , an〉 be a sequence of numbers and let k be a

given integer between 1 and n. Design and analyze a parallel algo-

rithm to find all k smallest items in A. Do not use multiselection.

What model of computation did you use?

19.28. Compute the bisection width of the d-dimensional butterfly Bd.

19.29. Give an O(d) time algorithm for broadcasting in the d-dimensional

hypercube Hd if the origin of the message is an arbitrary processor.

19.30. Design an algorithm to compute the sum of n numbers on the

hypercube with p processors, 1 ≤ p < n. Is your algorithm always

optimal?

19.31. Give an O(pd) time algorithm for the problem of routing in the

d-dimensional hypercube if every processor has a packet to be sent

to every other processor, where p = 2d. (Hint : Use randomized

routing p times.)

19.32. Give an O(p) time algorithm for the problem in Exercise 19.31.

19.33. Give an algorithm to evaluate the polynomial an−1x
n−1 +

an−2x
n−2 + · · · + a1x + a0 at the point x0 on the d-dimensional

hypercubeHd with n = 2d processors. Assume that each ai is stored

in processor Pi, 0 ≤ i ≤ n− 1.

19.34. Let S = 〈x0, x1, . . . , xn−1〉 be a sequence of numbers stored in a

hypercube with n processors, where xi is stored in Pi, 0 ≤ i < n,

and let y be stored in P0. Give an algorithm to count the number

of elements in S that are larger than y.

19.35. Consider running odd–even transposition sort on a p-processor lin-

ear array if each item in the input is known to start within distance d

from its final position. What is the number of steps needed to sort p

items in this case?
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19.36. Consider Algorithm merge-split, which is a generalization of odd–

even transposition sort for the case p < n. Let S be a sequence

of numbers to be sorted, and assume that each of the p proces-

sors in the linear array holds a subsequence S of length n/p. In

Algorithm merge-split, the comparison-exchange operations of

odd–even transposition sort are now replaced with merge-split oper-

ations on subsequences. Let Si denote the subsequence held by pro-

cessor Pi. Initially, the Si’s are random subsequences of S. In step 1,

each Pi sorts Si using a sequential algorithm. In Step 2 each odd-

numbered processor Pi merges the two subsequences Si and Si+1,

into a sorted sequence S′
i. It retains the first half of S′

i and assigns

to its neighbor Pi+1, the second half. Step 3 is identical to 2 except

that it is performed by all even-numbered processors. Steps 2 and 3

are repeated alternately. After �p/2� iterations, no further exchange
of elements can take place between two processors, where an iter-

ation consists of Steps 2 and 3. Analyze the running time of this

algorithm.

19.37. Do Exercise 19.36 for the case p = logn. Is the algorithm optimal?

19.38. Show how to compute the prefix sums on the mesh for the snakelike

indexing scheme.

19.39. Give an algorithm to evaluate the polynomial an−1x
n−1 +

an−2x
n−2 + · · ·+ a1x + a0 at the point x0 on the

√
n×√n mesh.

Assume that each ai is stored in processor Pi, 0 ≤ i ≤ n − 1 (the

processors are indexed as P0, P1, . . . , Pn−1). What is the running

time of your algorithm?

19.40. Consider the following method for sorting on the mesh. The method

alternately sorts all rows from left to right and all columns from

top to bottom. Will this method always work in sorting any input?

Assume an unlimited amount of time.

19.41. Consider sorting the rows and then the columns of a 2 × n mesh.

Does this leave the rows in sorted order?

19.42. This is a generalization of Exercise 19.41. Consider sorting the rows

and then the columns of a general n× n mesh. Does this leave the

rows in sorted order?
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19.43. Let A = 〈a1, a2, . . . , an〉 be a sequence of elements stored in the

processors of a
√
n×√n mesh, one element per processor, and let x

be a given element. Design an algorithm for the search problem in

the mesh: If ai = x for some i, 1 ≤ i ≤ n, then return i, else

return 0. Analyze its running time.

19.44. Outline an algorithm for broadcasting an item x stored in processor

P0,0,0 in a three-dimensional mesh with n processors to all other

processors. How many steps in your algorithm?

19.45. Give an algorithm to find the maximum in a set of numbers stored

in a three-dimensional mesh with n processors. How many steps in

your algorithm?

19.46. What is the bisection width of a three-dimensional mesh with

n = m3 processors if m is even?

19.47. Illustrate the operation of Algorithm threedmeshsort for sorting

the 0s and 1s shown in Fig. 19.57.

19.48. Illustrate the operation of Algorithm threedmeshsort for sorting

the numbers shown in Fig. 19.58.
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Fig. 19.57. Exercise 19.47.
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Fig. 19.58. Exercise 19.48.
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19.49. Use the FFT to compute F4a, where a = [2, 1,−1, 3]T .

19.50. Use the iterative FFT on the butterfly to compute the product F4a,

where a = [2, 1,−1, 3]T .

19.51. Use FFT to compute the product f(x)g(x), where f(x) = 1 + 3x

and g(x) = 1 + 4x.

19.52. Explain how to use FFT to compute (1+ x)n efficiently, where n is

a power of 2. What is the time complexity of your algorithm?

19.53. Explain how to make the bubble sorter output the numbers in

descending order.
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19.10 Solutions

19.1. Let x1, x2, . . . , xn be n Boolean variables. Show how to find the

logical OR of these variables in O(1) time on the COMMONCRCW

PRAM with n processors.

Let y hold the output. Initially, set y = 0. Each processor Pi exe-

cutes the command: if xi = 1 then y = 1. Then all processors Pj

with xj = 1 will write the same value. Hence, the output is y = 1

using the COMMON PRAM if and only if at least one xi is 1.

19.2. Let 〈x1, x2, . . . , xn〉 be a sequence of n distinct numbers. Show how

to find the maximum of these numbers in O(1) time on the CRCW

PRAM with n2 processors.

Assume the xi’s are distinct. Label the n2 processors as Pi,j ,

1 ≤ i, j ≤ n. Let processors Pi,1, Pi,2, . . . , Pi,n define group i,

1 ≤ i ≤ n. Then, group i will find the OR of x′i,1, x
′
i,2, . . . , x

′
i,n,

where x′i,j = xi < xj , as shown in the solution of Exercise 19.1.

The output of group i is 0 if and only if xi is the maximum. Each

processor Pi executes the command: if xi = 0 then output xi.

Only one processor will succeed and output its element. The reason

concurrent writes are needed is the computation of the OR’s.

19.3. Let 〈x1, x2, . . . , xn〉 be a sequence of n distinct numbers. Show how

to find the maximum of these numbers in O(log logn) time on the

CRCW PRAM with n processors. (Hint : Partition the input into√
n parts and recursively find the maximum in each part. Use Exer-

cise 19.2.)

Partition the input into
√
n parts and recursively find the maximum

in each part. Each part is assigned
√
n processors to find the maxi-

mum recursively (number of elements equals number of processors).

Let the maximums be x′1, x
′
2, . . . , x

′√
n
. Use Exercise 19.2 to find the

maximum of x′1, x
′
2, . . . , x

′√
n
using n processors in O(1) time. The

running time is given by the recurrence T (n) = T (
√
n)+O(1) whose

solution is T (n) = O(log logn).

19.4. Let S be a sequence of n distinct numbers and x ∈ S. The rank

of x in S is the number of elements in S less than x. Show how to
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compute the rank of x in S in O(log n) time on the CREW PRAM

with n processors.

Let S = 〈a1, a2, . . . , an〉. Compute A[i] = ai < x for 1 ≤ i ≤ n. Let
r be the sum of the 1’s in array A. Output r. r can be found by

addition or parallel prefix in O(log n) time. The reason concurrent

reads are required is that all processors read x at the same time.

19.5. Let S be a sequence of n integers, and x an integer. Show how to

compute rank(x, S), the rank of x in S, in O(log n) time on the

EREW PRAM using O(n) operations.

To adapt the solution of the previous exercise to the EREWPRAM,

first broadcast x to all processors, say B[i] = x for 1 ≤ i ≤ n, then
compute A[i] < B[i] for 1 ≤ i ≤ n. To broadcast x, first P1 copies

B[1] = x to B[2]. Next, P1 and P2 copy B[1] and B[2] to B[3]

and B[4], respectively. Next, P1, P2, P3 and P4 copy B[1], B[2], B[3]

and B[4] to B[5], B[6], B[7] and B[8], respectively, and so on. The

number of writes is equal to 1 + 2 + 4 + · · · + 2k = 2n − 1, where

k = logn. The number of comparisons (A[i] < B[i]) is n, which

is equal to the number of assignments. Hence, the total number of

operations is Θ(n).

19.6. Let S = {x1, x2, . . . , xn} be n numbers and k an integer, 1 ≤ k ≤ n.
Show how to find the kth smallest element in S in O(log n) time

on the CREW PRAM with n2 processors.

Assume the xi’s are distinct. Label the n2 processors as Pi,j , 1 ≤
i, j ≤ n. Let processors Pi,1, Pi,2, . . . , Pi,n define group i, 1 ≤ i ≤ n.
For i = 1, 2, . . . , n, we use Exercise 19.4 to find the rank of xi in

group i and store it in B[i], 1 ≤ i ≤ n. Now, for i = 1, 2, . . . , n,

processor Pi,1 outputs xi if its rank B[i] is equal to k−1. Note that

exactly one processor will output the kth smallest element, so there

are no concurrent writes. The running time is O(log n) and the fact

that it runs on the CREW PRAM follows from Exercise 19.4.

19.7. Let S = 〈x1, x2, . . . , xn〉 be a sequence of n numbers. Consider

the simple recursive algorithm for parallel prefix that divides the

sequence S into two halves: S1 = 〈x1, x2, . . . , xn/2〉 and S2 =

〈xn/2+1, xn/2+2, . . . , xn〉, and then calls the algorithm recursively

on each of S1 and S2.
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(a) Write down the detailed algorithm.

(b) Will the algorithm work on the EREW PRAM?

(c) What is the total work done by the algorithm?

(d) Will Brent theorem (Theorem 19.1) help in reducing the

number of processors without increasing the running time

complexity?

(a) The algorithm is shown below as Algorithm parprefix2.

Algorithm 19.31 parprefix2
Input: X = 〈x1, x2, . . . , xn〉, a sequence of n numbers, where n = 2k.

Output: S = 〈s1, s2, . . . , sn〉, the prefix sums of X.

1. if n = 1 then return x1

2. else
3. X1 = 〈x1, x2, . . . , xn/2〉
4. X2 = 〈xn/2+1xn/2+2, . . . , xn〉
5. S1← parprefix2(X1)
6. S2← parprefix2(X2)
7. for j← (n/2 + 1) to n
8. sj← sj + sn/2

9. end for
10. return S1 ∪ S2

(b) The algorithm will not work on the EREW PRAM. There are

concurrent reads of sn/2.

(c) The total number of operations (additions) done by the algo-

rithm is given by the recurrence W (n) = 2W (n/2) + n/2,

whose solution is W (n) = Θ(n logn), which is the total work

performed by the algorithm.

(d) Brent theorem does not help in reducing the number of pro-

cessors without increasing the running time complexity, since

the total number of operations is Θ(n logn).

19.8. Let 〈x1, x2, . . . , xn〉 be a sequence of n numbers. The prefix minima

is to compute for each i, 1 ≤ i ≤ n, the minimum among the ele-

ments {x1, x2, . . . , xi}. Develop an algorithm to compute the prefix

minima that runs in time O(log n) on the EREW PRAM.

This is the parallel prefix problem using the associative binary oper-

ation MIN.
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19.9. Do Exercise 19.8 using suffix minima instead, that is, compute

for each i, 1 ≤ i ≤ n, the minimum among the elements

{xi, xi+1, . . . , xn}.
The algorithm is similar to Algorithm parprefixrec. It is shown

as Algorithm psminima.

Algorithm 19.32 psminima
Input: X = 〈x1, x2, . . . , xn〉, a sequence of n numbers, where n = 2k.

Output: S = 〈s1, s2, . . . , sn〉, where si = min{xi, xi+1, . . . , xn} are the suffix
minima.

1. sn← xn

2. if n = 1 then return S = 〈xn〉
3. for i← 1 to n/2 do in parallel
4. x2i−1← min{x2i−1, x2i}
5. end for
6. Recursively compute the prefix minima of 〈x1, x3, . . . , xn−1〉 and store

them in 〈s1, s3, . . . , sn−1〉
7. for i← 1 to (n/2) − 1 do in parallel
8. s2i← min{x2i, s2i+1}
9. end for

10. return S = 〈s1, s2, . . . , sn〉

19.10. Let 〈x1, x2, . . . , xn〉 be a sequence of n numbers. The suffix compu-

tation problem is to compute the suffixes xn, xn−1 ◦xn, . . . , x1 ◦x2 ◦
. . . ◦ xn. Give an O(log n) time algorithm to solve this problem on

the CREW PRAM with n processors.

The algorithm is similar to Algorithm parprefix2 in the solution

of Exercise 19.7. It is shown below as Algorithm parsuffix.

Algorithm 19.33 parsuffix
Input: X = 〈x1, x2, . . . , xn〉, a sequence of n numbers, where n = 2k.

Output: S = 〈s1, s2, . . . , sn〉, where si = xi ◦ xi+1 ◦ . . . ◦ xn.

1. if n = 1 then return x1

2. else
3. X1 = 〈x1, x2, . . . , xn/2〉
4. X2 = 〈xn/2+1xn/2+2, . . . , xn〉
5. S1← parsuffix(X1)
6. S2← parsuffix(X2)
7. for j← 1 to n/2
8. sj← sj ◦ s(n/2)+1

9. end for
10. return S1 ∪ S2



October 25, 2021 13:13 Algorithms: Design Techniques and. . . 9in x 6in b4265-ch19 page 645

Parallel Algorithms 645

19.11. Do Exercise 19.10 for the case of EREW PRAM.

The algorithm is a generalization of Algorithm psminima in the

solution of Exercise 19.9. Replace the MIN operator with ◦.

19.12. Let X = 〈x1, x2, . . . , xn〉 be a sequence of n numbers, where n =

2k for a nonnegative integer k. Explain how to perform the prefix

computation on the sequence X using p processors, where p < n.

Assume the binary operation of addition.

Split the sequenceX into p subsequencesX1, X2, . . . , Xp of q = n/p

elements each, where Xi = 〈x(i−1)q+1, x(i−1)q+2, . . . , xiq〉. First, in
parallel, processor Pi, 1 ≤ i ≤ p, computes sequentially the prefix

sums of sequence Xi in time Θ(n/p). Let the prefix sums of pro-

cessor Pi be Yi = 〈y(i−1)q+1, y(i−1)q+2, . . . , yiq〉. Next, all processors
find the prefix sums of 〈yq, y2q, . . . , ypq〉 in time Θ(log p). Finally,

for 2 ≤ i ≤ p, processor Pi adds y(i−1)q to the elements of the

sequence Yi. This takes Θ(n/p) time. The resulting prefix sums are

y1, y2, . . . , yn, and the overall running time is Θ(n/p+ log p).

19.13. Let T1, T2, . . . , Tm be m directed and rooted binary trees on n ver-

tices. Each node has a pointer to its parent, except the root which

points to itself. Design a parallel algorithm to allow each vertex

to know the identity of the tree to which it belongs (the trees are

identified by their roots. The roots are numbered 1, 2, . . . ,m).

Use pointer jumping to let each node point to its root. Then assign

root(s) ← succ(s) for all nodes s.

19.14. Parallelize Horner’s rule to evaluate a polynomial of degree n under

the EREW PRAM in time O(log n).

a0 + x(a1 + x(a2 + x((. . . x(an−2 + an−1x) . . .))))

= a0 + x(a1 + x(a2 + x((. . . x(an/2−2 + an/2−1x) . . .))))

+ xn/2(an/2 + x(an/2+1 + x(an/2+2

+ x((. . . x(an−2 + an−1x) . . .)))).

Thus, recursively compute the two halves and multiply the right

half by xn/2, which is computed by doubling in each recursive call:

x← x ∗ x.
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19.15. Let 〈x1, x2, . . . , xn〉 be a sequence of n distinct numbers. Design a

parallel algorithm for the CREW PRAM to sort this sequence in

time O(log n). Assume an unlimited number of processors.

Use n groups of processors. Each group gk, 1 ≤ k ≤ n, consists of n2

processors and uses Exercise 19.6 to find the kth smallest element

on the CREW PRAM.

19.16. Let n be a positive integer. Consider the problem of computing the

polynomials x′i = xi, for 1 ≤ i ≤ n. Show how to compute the x′i’s
in O(log n) time. Specify the PRAM model used.

Use parallel prefix.

19.17. Let A be a sequence of integers and x an integer. Develop an EREW

PRAM algorithm to find all the occurrences, if any, of x in A. Your

algorithm should run in time O(log n) and use a linear number of

operations.

Define B[i], 1 ≤ i ≤ n, to be 1 if A[i] = x and 0 otherwise. Apply

parallel prefix on A so as to move all x’s to the beginning of A

(array packing). Output A[1], A[2], . . . , A[j], where j is the number

of occurrences of x. The number of operations is O(n) if we use

n/ logn processors (the detailed description is skipped here).

19.18. Consider Algorithm parquicksort presented in Sec. 19.2.3.2. Sup-

pose we always select the median as the pivot (see Sec. 19.2.11).

What will be the running time of the algorithm?

We will use n/ logn processors. The running time for finding the

median is that for selection, which is O(log n log logn). Since there

are logn levels, the overall running time is O(log2 n log logn).

19.19. Let A and B be two sequences of distinct number sorted in ascend-

ing order. Design an O(1) time algorithm to merge A and B on the

CRCW PRAM. Assume an unlimited number of processors.
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There is no need for concurrent writes, so we will adopt the CREW

PRAM. Assume |A| = |B| = n, and let C be the array that will

hold the merge of A and B. We will use n-ary search (parallel search

using n processors for each element-search). Associate n processors

with each element of A and B. Let Pi,1, Pi,2, . . . , Pi,n be the n pro-

cessors associated with A[i]. Processor Pi,j tests whether B[j] <

A[i] and B[j + 1] > A[i]. If this is the case, then rank(A[i], B) = j,

and we set C[i + j] = A[i]. This is done for each element of A. We

repeat the procedure in parallel for array B. The total number of

processors needed is 2n2.

19.20. Apply Brent theorem on Algorithm parmerge presented in

Sec. 19.2.6.2.

The amount of work done by Algorithm parmerge is

O(n log log n), assuming n = m. Since the work is equal to the

cost, Brent theorem is of no help in reducing the cost by reducing

the number of processors.

19.21. In Algorithm oddevenmerge in Sec. 19.2.8, Aeven is merged with

Bodd andAodd is merged with Beven. Rewrite the algorithm with the

modification that it merges Aodd with Bodd and Aeven with Beven.

It is important to know that this will change the step of traversing

the shuffle of C and D.

In this case, we traverse E starting from d0. Thus, we compare d0
with c1, d1 with c2, and so on.

19.22. Let G = (V,E) be an undirected graph with n vertices. Give an

algorithm to decide whether G contains a triangle, that is, three

mutually adjacent vertices. Assume that G is represented by its

adjacency matrix. Your algorithm should run in O(log n) time on

the CRCW PRAM with n3 processors.

Let A be the n × n adjacency matrix. There is a triangle in G if

and only if there is a 1 in the diagonal of A3. Thus, to test for the

presence of a triangle, compute A3 in Θ(logn) time, and test its
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diagonal for the occurrence of 1 by taking the OR of the diagonal

in O(1) time as explained in Exercise 19.1.

Similar to the example in Fig. 19.16.

19.23. Illustrate the operation of the pipelined mergesort algorithm on the

input 〈6, 7, 1, 4, 2, 5, 8, 3〉.
Similar to the example in Fig. 19.17.

19.24. Parallelize Algorithm select given in Sec. 5.5 using n/ logn pro-

cessors on the PRAM. Analyze your algorithm.

Each step of the sequential algorithm is done in parallel using the

available processors. Dividing the inputs into groups of five elements

will be changed to logn elements. Sorting the log n-element groups

takes Θ(logn) sequential time (each group is assigned one proces-

sor). Computing A1, A2 and A3 takes Θ(logn) time using parallel

prefix and packing as explained in the parallel quicksort algorithm.

The recursive calls take T (n/5) and at most T (3n/4). Hence, the

running time is given by the recurrence T (n) ≤ T (3n/4)+T (n/5)+
Θ(logn), whose solution is T (n) = O(log2 n).

19.25. Explain how to make Algorithm parselect of Sec. 19.2.11 cost

optimal.

Apply Brent theorem (Theorem 19.1). Since the work done

is O(n), we may reduce the number of processors to

O(n)/O(log n log logn) = O(n/(logn log logn)). The running time

will remain unchanged, that is, O(log n log logn). However, the new

cost is

O

(
n

logn log logn

)
O(log n log logn) = O(n).

19.26. Rewrite Algorithm parselect for selection discussed in

Sec. 19.2.11 for the case when the number of processors is p < n.

Derive its running time.
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The modified algorithm is shown as Algorithm parselect2. First,

we count the number of iterations of the for loop. In the second

iteration, |A| ≤ 3n/4, and in the jth iteration |A| ≤ (3/4)jn. Hence,

after c log(n/p) iterations, the size of A is at most

(
3

4

)c log(n/p)

× n

= (n/p)c log (3/4) × n

=
n

(n/p)c log (4/3)

=
n

(n/p)log (4/3)/ log (4/3)

=
n

n/p

= p.

Therefore, in Step 12, there will be enough processors to sort A in

O(log p) time. In Step 4, the median of each block is found using one

processor in O(|A|/p) sequential time. We have to be careful about

estimating the time taken by Step 4. The time taken by Step 4

throughout the algorithm is

O

(
n

p
+

(
3

4

)
n

p
+

(
3

4

)2
n

p
+ · · ·

)
= O(n/p).

The median of medians m (Step 5) is computed by sorting the

set M using the pipelined merge sort algorithm in O(log p) time.

Partitioning A (Step 6) can be achieved in O(log p) time using

p processors. Hence, the total time taken by these two steps is

O(log p log(n/p)) throughout the algorithm. Therefore, the for loop

takes O(n/p+ log p log(n/p)). When the for loop terminates, A is

sorted using the pipelined merge sort algorithm and the kth

smallest element is returned in O(log p) time using the available

p processors. It follows that the running time of the algorithm is

O(n/p+ log(n/p) log p)).
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Algorithm 19.34 parselect2
Input: A sequence A = 〈a1, . . . , an〉 of elements and an integer k, 1 ≤ k ≤ n.

Output: The kth smallest element in A.

1. c← 1/ log (4/3)
2. for j← 1 to c log(n/p)
3. q = �|A|/p
. Divide A into p groups of q elements each.
4. Find the median of each of the p groups individually.

Let the set of medians be M .
5. Sort M and find its median m.
6. Partition A into three sequences:

A1 = {a | a < m}
A2 = {a | a = m}
A3 = {a | a > m}

7. case
|A1| ≥ k: A←A1

|A1|+ |A2| ≥ k: return m
|A1|+ |A2| < k:

8. A = A3

9. k← k − |A1| − |A2|
10. end case
11. end for
12. Sort A and return the kth smallest element in A.

19.27. Let A = 〈a1, a2, . . . , an〉 be a sequence of numbers and let k be a

given integer between 1 and n. Design and analyze a parallel algo-

rithm to find all k smallest items in A. Do not use multiselection.

What model of computation did you use?

Use Exercise 19.6 to find the kth smallest element on the CREW

PRAM with n2 processors, call it x. For 1 ≤ i ≤ n, let B[i] = 1 if

ai ≤ x and B[i] = 0 otherwise. Now, use parallel prefix and packing

to move the k smallest elements to the beginning of A or to any

other location. The model used is the CREW PRAM.

19.28. Compute the bisection width of the d-dimensional butterfly Bd.

Figure 19.26 shows the d-dimensional butterfly for d = 1, 2, 3. From

the figure, it is clear that for j > 1, Bj can be divided into two

halves with 2 × 2d−1 = 2d connections between them. Hence, the

bisection width is 2d.
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19.29. Give an O(d) time algorithm for broadcasting in the d-dimensional

hypercube Hd if the origin of the message is an arbitrary processor.

Let Pi be the origin of broadcasting datum x. First, transfer x from

Pi to P0 using bit fixing in O(d) steps, then broadcast it to all other

processors in O(d) time as shown in Algorithm hcbroadcast.

19.30. Design an algorithm to compute the sum of n numbers on the

hypercube with p processors, 1 ≤ p < n. Is your algorithm always

optimal?

Assume that each processor Pi contains at least one number; if not

then, let Pi contain 0. First, compute the sum of the numbers in

each processors. Next, compute the sum of the p = 2d resulting

numbers using the technique of reduction, which is a method sim-

ilar to that used in broadcasting in the hypercube but in reverse

order. This is shown in Algorithm hcsum below. Here, the nota-

tion j(i) means j with the ith bit complemented, 0 ≤ i ≤ d − 1.

If the numbers are distributed evenly among the p processors, so

that each processor contains n/p numbers, then the running time

is O(max{np , d}), which is optimal. Otherwise, the algorithm is not

optimal, as the running time may be as large as Θ(n). In this case

data redistribution may be helpful if it takes o(m), where m is the

maximum number of elements in all processors.

Algorithm 19.35 hcsum
Input: x0, x1, . . . , x2d−1.

Output: The sum of the numbers x0, x1, . . . , x2d−1 stored in processors
P0, P1, . . . , P2d−1 of Hd.

1. for i← d− 1, d− 2, . . . , 1, 0
2. for all j < 2i and j < j(i) do in parallel
3. xj← xj + xj(i)

4. end for
5. end for

19.31. Give an O(pd) time algorithm for the problem of routing in the

d-dimensional hypercube if every processor has a packet to be sent

to every other processor, where p = 2d. Note that the total number
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of packets to be routed is p(p−1). (Hint : Use randomized routing p

times.)

Use randomized routing sequentially p times. Each run takes O(d)

time for a total of O(pd).

19.32. Give an O(p) time algorithm for the problem in Exercise 19.31.

Use randomized routing in parallel p times. This takes O(d) time

if we ignore the delays. However, there are queues that will expand

the running time. There are p(p − 1) paths, and hence each node

of the hypercube is included in p(p−1)
p = p − 1 paths. This results

in a queue of size O(p) at each node. This means the running time

will be expanded to O(p) +O(d) = O(p).

19.33. Give an algorithm to evaluate the polynomial an−1x
n−1 +

an−2x
n−2 + · · · + a1x + a0 at the point x0 on the d-dimensional

hypercubeHd with n = 2d processors. Assume that each ai is stored

in processor Pi, 0 ≤ i ≤ n− 1.

First, use parallel prefix to compute 1, x0, x
2
0, . . . , x

n−1
0 in processors

P0, P1, . . . , Pn−1. Next, within each processor, multiply ai×xi0, 0 ≤
i ≤ n− 1. Finally, use Algorithm hcsum in Exercise 19.30 above to

find the desired sum. The running time is Θ(logn).

19.34. Let S = 〈x0, x1, . . . , xn−1〉 be a sequence of numbers stored in a

hypercube with n processors, where xi is stored in Pi, 0 ≤ i < n,

and let y be stored in P0. Give an algorithm to count the number

of elements in S that are larger than y.

First, broadcast y to all processors. Next, each processor Pi sets

zi = 1 if xi > y and zi = 0 if xi ≤ y. Finally, find the sum of

zi, 0 ≤ i ≤ n− 1 in all processors, and store the sum, which is the

number of 1s, in P0. Use Algorithm hcsum in Exercise 19.30 above.

19.35. Consider running odd–even transposition sort on a p-processor lin-

ear array if each item in the input is known to start within distance d

from its final position. What is the number of steps needed to sort p

items in this case?
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Consider the input: 5 7 8 6 1 3 2 4. If we run the algorithm on

this input, 6 will move two steps to the left away from its final

position. This shows that the number of steps may be more than d.

However, we will show that this is not the case, that is, the number

of steps will be at most d. Let the input be a1, a2, . . . , ap, which is a

permutation of the numbers 1, 2, . . . , p. Thus, the position of ai is i,

and the final position of ai is ai itself. For instance, in the above

example, the position of 6 is 4, while its final position is 6. Define

δ(ai, t) to be an upper bound on the distance of ai from its final

position at the end of step t of the algorithm, where 1 ≤ t ≤ T (T

is the total number of steps). Thus, δ(ai, T ) = 0 for all i, 1 ≤ i ≤ n,
since the input is sorted, and δ(ai, 0) = d, which is given.

We will prove our claim by contradiction. Suppose that ai is the

leftmost number such that for some t1 > 1, δ(ai, t1) > d. Assume

without loss of generality that ai − i > 0, that is, ai is initially to

the left of its sorted position ai. Since δ(ai, t1) > d, there exists a

step number t0 < t1 such that δ(ai, t0) = d. Going from step t0
to step t1, it must be the case that ai−1 > ai, that is, ai−1 is

larger than ai (e.g., ai−1 = 8 and ai = 6 in the above example).

But this implies that δ(ai−1, t1) > δ(ai, t1) > d. This contradicts

the assumption that ai is the leftmost number such that for some

t1 > 1, δ(ai, t1) > d.

19.36. Consider Algorithm merge-split, which is a generalization of odd–

even transposition sort for the case p < n. Let S be a sequence

of numbers to be sorted, and assume that each of the p proces-

sors in the linear array holds a subsequence of S of length n/p.

In Algorithm merge-split, the comparison-exchange operations

of odd–even transposition sort are now replaced with merge-split

operations on subsequences. Let Si denote the subsequence held by

processor Pi. Initially, the Si’s are random subsequences of S. In

Step 1, each Pi sorts Si using a sequential algorithm. In Step 2,

each odd-numbered processor Pi merges the two subsequences Si

and Si+1, into a sorted sequence S′
i. It retains the first half of S

′
i and

assigns to its neighbor Pi+1, the second half. Step 3 is identical to 2

except that it is performed by all even-numbered processors. Steps

2 and 3 are repeated alternately. After �p/2� iterations no further

exchange of elements can take place between two processors, where
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an iteration consists of Steps 2 and 3. Analyze the running time of

this algorithm.

There are p phases, where an iteration consists of two phases. The

first phase, the sorting step, takes O(np log n
p ) time. The merge-split

phases after that take O(np ) each for a total of O(n) time. Hence,

the running time is O(max{np log n
p , n}).

19.37. Do Exercise 19.36 for the case p = logn. Is the algorithm optimal?

If p = logn, then the running time is Θ(n), which is optimal.

19.38. Show how to compute the prefix sums on the mesh for the snakelike

indexing scheme.

Modify Algorithm meshparprefix discussed in Sec. 19.5.2.

19.39. Give an algorithm to evaluate the polynomial an−1x
n−1 +

an−2x
n−2 + · · ·+ a1x + a0 at the point x0 on the

√
n×√n mesh.

Assume that each ai is stored in processor Pi, 0 ≤ i ≤ n − 1 (the

processors are indexed as P0, P1, · · · , Pn−1). What is the running

time of your algorithm?

Compute the sequence 1, x0, x
2
0, . . . , x

n−1
0 using parallel prefix. Each

xj0 is stored in Pj , 0 ≤ j ≤ n−1. Next, compute the products aj×xj0,
0 ≤ j ≤ n− 1. Finally, compute the sum a0 + a1x0 + a2x

2
0 + · · ·+

an−1x
n−1
0 . The total running time is Θ(

√
n).

19.40. Consider the following method for sorting on the mesh. The method

alternately sorts all rows from left to right and all columns from

top to bottom. Will this method always work in sorting any input?

Assume an unlimited amount of time.

The method will not work in sorting any input. We will succeed

in showing that if we can exhibit an example in which the method

does not terminate or terminates before sorting the input. We will

choose the latter. Let M =

∣∣∣∣x1,1 x1,2x2,1 x2,2

∣∣∣∣ ,
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where x1,1 = 3, x1,2 = 2, x2,1 = 1 and x2,2 = 4. After sorting by

rows and then by columns, M becomes:

Mh =

∣∣∣∣ 2 3

1 4

∣∣∣∣ Mv =

∣∣∣∣1 3

2 4

∣∣∣∣ .
Clearly, Mv is sorted by rows and by columns, but the input is not

sorted. So, the method terminated without sorting the input.

19.41. Consider sorting the rows and then the columns of a 2 × n mesh

M . Does this leave the rows in sorted order?

Call a column Cj of the mesh “good” if sorting that column leaves

the rows sorted. We prove by induction on the number of columns

that all columns are good, and hence sorting the mesh by columns

leaves the rows sorted. If all columns are unsorted, then there is

nothing to prove, as exchanging the two rows leaves them sorted.

So, assume without loss of generality that column C1 = 〈x1,1, x2,1〉
is sorted, that is, x1,1 < x2,1. Hence, column C1 is good by assump-

tion. Assume for the induction hypothesis that column Ck−1 is

good, 1 < k < n. We show that column Ck is also good. We have

the following situation:

M =

∣∣∣∣x1,1 . . . x1,k−1 x1,k . . .

x2,1 . . . x2,k−1 x2,k . . .

∣∣∣∣ .
By induction, x1,k−1 < x2,k−1 < x2,k. If x1,k > x2,k, then we have

the following situation after sorting column Ck:

M =

∣∣∣∣x1,1 . . . x1,k−1 x2,k . . .

x2,1 . . . x2,k−1 x1,k . . .

∣∣∣∣ .
In this case, we have x1,k−1 < x2,k−1 < x2,k < x1,k, whence

x1,k−1 < x2,k and x2,k−1 < x1,k. Thus, column Ck is good and,

by induction, all columns are good. It follows that if all columns

are sorted, then the rows will remain sorted.

19.42. This is a generalization of Exercise 19.41. Consider sorting the rows

and then the columns of a general n× n mesh. Does this leave the

rows in sorted order?
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Call a column Cj of the mesh “good” if sorting that column

leaves the rows sorted. We prove by induction on the number

of columns that all columns are good, and hence sorting the

mesh by columns leaves the rows sorted. Let the first column

be C1 = 〈x1,1, x2,1, . . . , xn,1〉 and let C1 after sorting be C′
1 =

〈x′1,1, x′2,1, . . . , x′n,1〉. Thus, we have x′j,1 ≤ xj,1 for 1 ≤ j ≤ n. Since
row i is sorted, and since x′i,1 ≤ xi,1, we have x′i,1 ≤ xi,2. Therefore,
we may assume without loss of generality that column C1 is sorted.

Hence, column C1 is good by assumption. Assume for the induction

hypothesis that column Ck−1 is good, 1 < k < n. We show that

column Ck is also good. We have the following situation:

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣

...
...

. . . xi,k−1 xi,k . . .
...

...

. . . xj,k−1 xj,k . . .
...

...

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We show that sorting column k leaves the rows sorted. We will use

Algorithm selectionsort to sort column k. Recall that this algo-

rithm sorts by interchanging the elements to be sorted if they are

out of order. Let xi,k and xj,k, where i < j, be the next two num-

bers in column k to be interchanged by Algorithm selectionsort

because xi,k > xj,k. We have the following situation for columns

k − 1 and k after the interchange of xi,k and xj,k:

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣

...
...

. . . xi,k−1 xj,k . . .
...

...

. . . xj,k−1 xi,k . . .
...

...

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where xi,k−1 < xi,k and xj,k−1 < xj,k since the rows are sorted.

By Exercise 19.41, exchanging xi,k and xj,k will leave the two

rows i and j sorted. Now, the procedure is repeated for each

pair xi′,k and xj′,k that are out of order until column k is sorted.

Thus, column Ck is good and, by induction, all columns are good.
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It follows that if all columns are sorted, then the rows will remain

sorted.

19.43. Let A = 〈a1, a2, . . . , an〉 be a sequence of elements stored in the

processors of a
√
n×√n mesh, one element per processor, and let x

be a given element. Design an algorithm for the search problem in

the mesh: If ai = x for some i, 1 ≤ i ≤ n, then return i, else

return 0. Analyze its running time.

Assume the processors are numbered P1, P2, . . . , Pn. First, initialize

the search index k← 0, which is stored in P1. Next, broadcast x to

all processors in Θ(
√
n) time. Each processor Pj now compares aj

with x. If aj = x, then processor Pj sends j to P1 in Θ(
√
n) time,

which sets k← j. Note that we have assumed here that the aj ’s are

distinct. The total running time is Θ(
√
n).

19.44. Outline an algorithm for broadcasting an item x stored in processor

P0,0,0 in a three-dimensional mesh with n processors to all other

processors. How many steps are there in your algorithm?

First, broadcast x to all processors along the x-axis in the row

z = 0, y = 0. Next, broadcast in parallel all occurrences of x in

row z = 0, y = 0 to all processors in the two-dimensional mesh

y = 0. Finally, broadcast x in parallel from all processors in the

two-dimensional mesh y = 0 to all other processors. The number of

steps executed is 3(n1/3–1) steps.

19.45. Give an algorithm to find the maximum in a set of numbers stored

in a three-dimensional mesh with n processors. How many steps in

your algorithm?

We use reduction. First, find the maximum in each two-dimensional

mesh and store it in the respective processor with x = 0, y = 0.

Next, find the maximum in the z-column x = 0, y = 0. The number

of steps executed is 3(n1/3–1) steps.

19.46. What is the bisection width of a three-dimensional mesh with

n = m3 processors if m is even?

The bisection width is m2 if m is even.
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Fig. 19.59. Exercise 19.47.
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Fig. 19.60. Exercise 19.48.

19.47. Illustrate the operation of Algorithm threedmeshsort for sorting

the 0s and 1s shown in Fig. 19.59.

Similar to Example 19.13.

19.48. Illustrate the operation of Algorithm threedmeshsort for sorting

the numbers shown in Fig. 19.60.

Similar to Example 19.14.

19.49. Use the fast Fourier transform (FFT) to compute F4a, where a =

[2, 1,−1, 3]T .

Similar to Example 19.15.

19.50. Use the iterative FFT on the butterfly to compute the product F4a,

where a = [2, 1,−1, 3]T .

Similar to Example 19.16.
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19.51. Use FFT to compute the product f(x)g(x), where f(x) = 1 + 3x

and g(x) = 1 + 4x.

Similar to Example 19.18.

19.52. Explain how to use FFT to compute (1+ x)n efficiently, where n is

a power of 2. What is the time complexity of your algorithm?

We compute (1 + x)2, (1 + x)4, (1 + x)8, . . . , (1 + x)n in this order

using FFT. There are logn applications of FFT costing Θ(log 2) +

Θ(log 4) + · · · + Θ(logn) = Θ(log2 n) in parallel. The sequential

time complexity is Θ(n log2 n).

19.53. Explain how to make the bubble sorter output the numbers in

descending order.

We propose two possibilities. The first approach is that we still use

the same sorting mechanism except that on top of the sorter we

add a multiplier which multiplies each input/output datum by −1.
The second approach is to exchange the input and output ports.

That is, let the input data enter the sorter from the lower right end

(i.e., where the number ∞ enters) and output data come out from

the lower left end (i.e., where∞ comes out). In addition to the I/O

port exchange, the sorter must be initialized to contain a number

known to be smaller than the input data.
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Appendix A

Mathematical Preliminaries

When analyzing an algorithm, the amount of resources required is usually

expressed as a function of the input size. A nontrivial algorithm typically

consists of repeating a set of instructions either iteratively, e.g., by execut-

ing a for orwhile loop, or recursively by invoking the same algorithm again

and again, each time reducing the input size until it becomes small enough,

in which case the algorithm solves the input instance using a straightforward

method. This implies that the amount of resources used by an algorithm

can be expressed in the form of summation or recursive formula. This man-

dates the need for the basic mathematical tools that are necessary to deal

with these summations and recursive formulas in the process of analyzing

an algorithm.

In this appendix, we review some of the mathematical preliminaries

and discuss briefly some of these mathematical tools that are frequently

employed in the analysis of algorithms.

A.1 Sets, Relations and Functions

When analyzing an algorithm, its input is considered to be a set drawn from

some particular domain e.g., the set of integers. An algorithm, in the formal

sense, can be thought of as a function, which is a constrained relation, that

maps each possible input to a specific output. Thus, sets and functions are

at the heart of algorithmic analysis. In this section, we briefly review some

of the basic concepts of sets, relations and functions that arise naturally

661
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in the design and analysis of algorithms. More detailed treatments can be

found in most books on set theory and discrete mathematics.

A.1.1 Sets

The term set is used to refer to any collection of objects, which are called

members or elements of the set. A set is called finite if it contains n ele-

ments, for some constant n ≥ 0, and infinite otherwise. Examples of infinite

sets include the set of natural numbers {1, 2, . . .} and the sets of integers,

rationals and reals.

Informally, an infinite set is called countable if its elements can be listed

as the first element, second element, and so on; otherwise, it is called

uncountable. For example, the set of integers {0, 1,−1, 2,−2, . . .} is count-
able, while the set of real numbers is uncountable.

A finite set is described by listing ITS elements in some way and

enclosing this list in braces. If the set is countable, three dots may be used

to indicate that not all the elements have been listed. For example, the set

of integers between 1 and 100 can be stated as {1, 2, 3, . . . , 100} and the set

of natural numbers can be stated as {1, 2, 3, . . .}. A set may also be denoted

by specifying some property. For example, the set {1, 2, . . . , 100} can also

be denoted by {x | 1 ≤ x ≤ 100 and x is integer}. An uncountable set can

only be described this way. For example, the set of real numbers between 0

and 1 can be expressed as {x | x is a real number and 0 ≤ x ≤ 1}. The
empty set is denoted by { } or φ.

If A is a finite set, then the cardinality of A, denoted by |A|, is the

number of elements in A. We write x ∈ A if x is a member of A, and x /∈ A
otherwise. We say that a set B is a subset of a set A, denoted by B ⊆ A, if
each element ofB is an element ofA. If, in addition, B �= A, we say that B is

a proper subset of A, and we write B ⊂ A. Thus, {a, {2, 3}} ⊂ {a, {2, 3}, b},
but {a, {2, 3}} �⊆ {a, {2}, {3}, b}. For any set A, A ⊆ A and φ ⊆ A. We

observe that if A and B are sets such that A ⊆ B and B ⊆ A, then A = B.

Thus, to prove that two sets A and B are equal, we only need to prove that

A ⊆ B and B ⊆ A.
The union of two sets A and B, denoted by A ∪ B, is the set {x | x ∈

A or x ∈ B}. The intersection of two sets A and B, denoted by A ∩ B, is

the set {x | x ∈ A and x ∈ B}. The difference of a set A from a set B,

denoted by A − B, is the set {x | x ∈ A and x /∈ B}. The complement of

a set A, denoted by A, is defined as U − A, where U is the universal set
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containing A, which is usually understood from the context. If A,B and C

are sets, then A ∪ (B ∪C) = (A ∪B) ∪C and A ∩ (B ∩C) = (A ∩B) ∩C.
We say that two sets A and B are disjoint if A∩B = φ. The power set of a

set A, denoted by P (A), is the set of all subsets of A. Note that φ ∈ P (A)
and A ∈ P (A). If |A| = n, then |P (A)| = 2n.

A.1.2 Relations

An ordered n-tuple (a1, a2, . . . , an) is an ordered collection that has a1 as

its first element, a2 as its second element, . . . , and an as its nth element. In

particular, 2-tuples are called ordered pairs . Let A and B be two sets. The

Cartesian product of A and B, denoted by A×B, is the set of all ordered

pairs (a, b) where a ∈ A and b ∈ B. In set notation,

A×B = {(a, b) | a ∈ A and b ∈ B}.
More generally, the Cartesian product of A1, A2, . . . , An is defined as

A1 ×A2 × · · · ×An = {(a1, a2, . . . , an) | ai ∈ Ai, 1 ≤ i ≤ n}.
Let A and B be two nonempty sets. A binary relation, or simply a relation,

R from A to B is a set of ordered pairs (a, b), where a ∈ A and b ∈ B, that

is, R ⊆ A × B. If A = B, we say that R is a relation on the set A. The

domain of R, sometimes written Dom(R), is the set

Dom(R) = {a | for some b ∈ B (a, b) ∈ R}.
The range of R, sometimes written Ran(R), is the set

Ran(R) = {b | for some a ∈ A, (a, b) ∈ R}.

Example A.1 Let R1 = {(2, 5), (3, 3)}, R2 = {(x, y) | x, y are positive

integers and x ≤ y} and R3 = {(x, y) | x, y are real numbers and x2 + y2 ≤
1}. Then, Dom(R1) = {2, 3} and Ran(R1) = {5, 3}, Dom(R2) = Ran(R2)

is the set of natural numbers, and Dom(R3) = Ran(R3) is the set of real

numbers in the interval [−1..1].

LetR be a relation on a set A. R is said to be reflexive if (a, a) ∈ R for all

a ∈ A. It is irreflexive if (a, a) /∈ R for all a ∈ A. It is symmetric if (a, b) ∈ R
implies (b, a) ∈ R. It is asymmetric if (a, b) ∈ R implies (b, a) /∈ R. It is

antisymmetric if (a, b) ∈ R and (b, a) ∈ R implies a = b. Finally, R is said
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to be transitive if (a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R. A relation

that is reflexive, antisymmetric and transitive is called a partial order .

Example A.2 Let R1 = {(x, y) | x, y are positive integers and x divides

y}. Let R2 = {(x, y) | x, y are integers and x ≤ y}. Then, both R1 and

R2 are reflexive, antisymmetric and transitive, and hence both are partial

orders.

A.1.2.1 Equivalence relations

A relation R on a set A is called an equivalence relation if it is reflex-

ive, symmetric and transitive. In this case, R partitions A into equivalence

classes C1, C2, . . . , Ck such that any two elements in one equivalence class

are related by R. That is, for any Ci, 1 ≤ i ≤ k, if x ∈ Ci and y ∈ Ci,

then (x, y) ∈ R. On the other hand, if x ∈ Ci and y ∈ Cj and i �= j, then

(x, y) /∈ R.

Example A.3 Let x and y be two integers, and let n be a positive

integer. We say that x and y are congruent modulo n, denoted by

x ≡ y (mod n)

if x− y = kn for some integer k. In other words, x ≡ y (mod n) if both x

and y leave the same (positive) remainder when divided by n. For example,

13 ≡ 8 (mod 5) and 13 ≡ −2 (mod 5). Now, define the relation

R = {(x, y) | x, y are integers and x ≡ y (mod n)}.
Then, R is an equivalence relation. It partitions, the set of integers into n

classes C0, C1, . . . , Cn−1 such that x ∈ Ci and y ∈ Ci if and only if x ≡ y

(mod n).

A.1.3 Functions

A function f is a (binary) relation such that for every element x ∈ Dom(f)

there is exactly one element y ∈ Ran(f) with (x, y) ∈ f . In this case, one

usually writes f(x) = y instead of (x, y) ∈ f and says that y is the value or

image of f at x.
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Example A.4 The relation {(1, 2), (3, 4), (2, 4)} is a function, while the

relation {(1, 2), (1, 4)} is not. The relation {(x, y) | x, y are positive integers

and x = y3} is a function, while the relation {(x, y) | x is a positive integer,

y is integer and x = y2} is not. In Example A.1, R1 is a function, while R2

and R3 are not.

Let f be a function such that Dom(f) = A and Ran(f) ⊆ B for some

nonempty sets A and B. We say that f is one to one if for no different

elements x and y in A, f(x) = f(y). That is, f is one to one if f(x) = f(y)

implies x = y. We say that f is onto B if Ran(f) = B. f is said to be a

bijection or one to one correspondence between A and B if it is both one to

one and onto B.

A.2 Proof Methods

Proofs constitute an essential component in the design and analysis of algo-

rithms. The correctness of an algorithm and the amount of resources needed

by the algorithm such as its computing time and space usage are all estab-

lished by proving postulated assertions. In this section, we briefly review

the most common methods of proof used in the analysis of algorithms.

A.2.1 Notation

A proposition or an assertion P is simply a statement that can be either

true or false but not both. The symbol “¬” is the negation symbol. For

example, ¬P is the converse of proposition P . The symbols “→”and “↔”

are used extensively in proofs. “→” is read “implies” and “↔” is read “if

and only if”. Thus, if P and Q are two propositions, then the statement

“P → Q” stands for “P implies Q” or “if P then Q”, and the statement

“P ↔ Q”, stands for “P if and only if Q”, that is, “P is true if and

only if Q is true”. The statement “P ↔ Q” is usually broken down into

two implications: “P → Q” and “Q → P”, and each statement is proven

separately. If P → Q, we say that Q is a necessary condition for P , and P

is a sufficient condition for Q.
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A.2.2 Direct proof

To prove that “P → Q”, a direct proof works by assuming that P is true

and then deducing the truth of Q from the truth of P . Many mathematical

proofs are of this type.

Example A.5 We wish to prove the assertion: If n is an even integer,

then n2 is an even integer. A direct proof for this claim is as follows. Since

n is even, n = 2k for some integer k. So, n = 4k2 = 2(2k2). It follows

that n2 is an even integer.

A.2.3 Indirect proof

The implication “P → Q” is logically equivalent to the contrapositive

implication “¬Q→ ¬P”. For example the statement “if it is raining then it

is cloudy” is logically equivalent to the statement “if it is not cloudy then

it is not raining”. Sometimes, proving “if not Q then not P” is much easier

than using a direct proof for the statement “if P then Q”.

Example A.6 Consider the assertion: If n2 is an even integer, then n

is an even integer. If we try to use the direct proof technique to prove

this theorem, we may proceed as in the proof in Example A.5. An alter-

native approach, which is much simpler, is to prove the logically equiv-

alent assertion: If n is an odd integer, then n2 is an odd integer. We

prove the truth of this statement using the direct proof method as fol-

lows. If n is an odd integer, then n = 2k + 1 for some integer k. Thus,

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. That is, n2 is an odd

integer.

A.2.4 Proof by contradiction

This is an extremely powerful method and is widely used to make proofs

short and simple to follow. To prove that the statement “P → Q” is true

using this method, we start by assuming that P is true but Q is false. If

this assumption leads to a contradiction, it means that our assumption that

“Q is false” must be wrong, and hence Q must follow from P . This method

is based on the following logical reasoning. If we know that P → Q is true

and Q is false, then P must be false. So, if we assume at the beginning
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that P is true, Q is false, and reach the conclusion that P is false, then we

have that P is both true and false. But P cannot be both true and false,

and hence this is a contradiction. Thus, we conclude that our assumption

that Q is false is wrong, and it must be the case that Q is true after all.

It should be noted that this is not the only contradiction that may result;

for example, after assuming that P is true and Q is false, we may reach

the conclusion that, say, 1 = −1. The following example illustrates this

method of proof. In this example, we make use of the following theorem. If

a, b and c are integers such that a divides both b and c, then a divides their

difference, that is, a divides b− c.

Example A.7 We prove the assertion: There are infinitely many primes.

We proceed to prove this assertion by contradiction as follows. Suppose

to the contrary that there are only k primes p1, p2, . . . , pk, where p1 = 2,

p2 = 3, p3 = 5, etc. and that all other integers greater than 1 are composite.

Let n = p1p2 . . . pk+1 and let p be a prime divisor of n (recall that n is not a

prime by assumption since it is larger than pk). Since n is not a prime, one of

p1, p2, . . . , pk must divide n. That is, p is one of the numbers p1, p2, . . . , pk,

and hence p divides p1p2 . . . pk. Consequently, p divides n−p1p2 . . . pk. But
n − p1p2 . . . pk = 1, and p does not divide 1 since it is greater than 1, by

definition of a prime number. This is a contradiction. It follows that the

number of primes is infinite.

The proof of Theorem A.3 provides an excellent example of the method

of proof by contradiction.

A.2.5 Proof by counterexample

This method provides quick evidence that a postulated statement is false.

It is usually employed to show that a proposition that holds true quite

often is not always true. When we are faced with a problem that requires

proving or disproving a given assertion, we may start by trying to disprove

the assertion with a counterexample. Even if we suspect that the assertion

is true, searching for a counterexample might help to see why a counterex-

ample is impossible. This often leads to a proof that the given statement is

true. In the analysis of algorithms, this method is frequently used to show

that an algorithm does not always produce a result with certain properties.
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Example A.8 Let f(n) = n2 + n+ 41 be a function defined on the set

of nonnegative integers. Consider the assertion that f(n) is always a prime

number. For example, f(0) = 41, f(1) = 43, . . . f(39) = 1601 are all primes.

To falsify this statement, we only need to find one positive integer n such

that f(n) is composite. Since f(40) = 1681 = 412 is composite, we conclude

that the assertion is false.

Example A.9 Consider the assertion that 
√�x�� = 
√ x� holds for

all nonnegative real numbers. For example, 
√�π�� = 
√ π�. To prove that

this assertion is false, we only need to come up with a counterexample, that

is, a nonnegative real number x for which the equality does not hold. This

counterexample is left as an exercise (Exercise A.11).

A.2.6 Mathematical induction

Mathematical induction is a powerful method for proving that a property

holds for a sequence of natural numbers n0, n0+1, n0+2, . . .. Typically, n0

is taken to be 0 or 1, but it can be any natural number. Suppose we want

to prove a property P (n) for n = n0, n0 + 1, n0 + 2, . . . whose truth follows

from the truth of property P (n − 1) for all n > n0. First, we prove that

the property holds for n0. This is called the basis step. Then, we prove that

whenever the property is true for n0, n0 + 1, . . . , n− 1, then it must follow

that the property is true for n. This is called the induction step. We then

conclude that the property holds for all values of n ≥ n0. In general, if we

want to prove P (n) for n = nk, nk+1, nk+2, . . . whose truth follows from the

truth of properties P (n−1), P (n−2), . . . , P (n−k), for some k ≥ 1, then we

must prove P (n0), P (n0+1), . . . , P (n0+k−1) directly before proceeding to

the induction step. The following examples illustrate this proof technique.

Example A.10 We prove Bernoulli’s inequality: (1 + x)n ≥ 1 + nx for

every real number x ≥ −1 and every natural number n.

Basis step: If n = 1, then 1 + x ≥ 1 + x.

Induction step: Suppose the hypothesis holds for all k, 1 ≤ k < n, where

n > 1. Then,

(1 + x)n = (1 + x)(1 + x)n−1

≥ (1 + x)(1 + (n− 1)x) {by induction and since x ≥ −1}
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= (1 + x)(1 + nx− x)
= 1 + nx− x+ x+ nx2 − x2
= 1 + nx+ (nx2 − x2)
≥ 1 + nx. {since (nx2 − x2) ≥ 0 for n ≥ 1}

Hence, (1 + x)n ≥ 1 + nx for all n ≥ 1.

Example A.11 Consider the Fibonacci sequence 1, 1, 2, 3, 5, 8, . . . ,

defined by

f(1) = f(2) = 1, and f(n) = f(n− 1) + f(n− 2) if n ≥ 3,

and let

φ =
1 +
√
5

2
.

We prove that f(n) ≤ φn−1 for all n ≥ 1.

Basis step: If n = 1, we have 1 = f(1) ≤ φ0 = 1. If n = 2, we have

1 = f(2) ≤ φ1 = (1 +
√
5)/2.

Induction step: Suppose the hypothesis holds for all k, 1 ≤ k < n, where

n > 2. First, note that

φ2 =

(
1 +
√
5

2

)2

=

(
1 + 2

√
5 + 5

4

)
=

(
2 + 2

√
5 + 4

4

)
= φ+ 1.

Consequently,

f(n) = f(n−1)+f(n−2)≤ φn−2+φn−3 = φn−3(φ+1) = φn−3φ2 = φn−1.

Hence, f(n) ≤ φn−1 for all n ≥ 1.

Example A.12 This example shows that if the problem has two or more

parameters, then the choice of the parameter on which to use induction is

important. Let n,m and r denote, respectively, the number of vertices, edges

and regions in an embedding of a connected planar graph (see Sec. 2.3.2).

We will prove Euler’s formula:

n−m+ r = 2

stated on page 83. We prove the formula by induction on m, the number

of edges.
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Basis step: If m = 1, then there is only one region and two vertices; so

2− 1 + 1 = 2.

Induction step: Suppose the hypothesis holds for 1, 2, . . . ,m− 1. We show

that it also holds for m. Let G be a connected planar graph with n vertices,

m−1 edges and r regions, and assume that n−(m−1)+r = 2. Suppose we

add one more edge. Then, we have two cases to consider. If the new edge

connects two vertices that are already in the graph, then one more region

will be introduced and consequently the formula becomes n−m+(r+1) =

n− (m−1)+r = 2. If, on the other hand, the added edge connects a vertex

in the graph with a new added vertex, then no more regions are introduced,

and the formula becomes (n + 1) −m + r = n − (m − 1) + r = 2. Thus,

the hypothesis holds for m and hence for all connected planar graphs with

m ≥ 1.

A.3 Logarithms

Let b be a positive real number greater than 1, x a real number, and suppose

that for some positive real number y, we have y = bx. Then, x is called the

logarithm of y to the base b, and we write this as

x = logb y.

Here, b is referred to as the base of the logarithm. For any real numbers x

and y greater than 0, we have

logb xy = logb x+ logb y,

and

logb (c
y) = y logb c, if c > 0.

When b = 2, we will write log x instead of log2 x.

Another useful base is e, which is defined by

e = lim
n→∞

(
1 +

1

n

)n

= 1 +
1

1!
+

1

2!
+

1

3!
+ · · · = 2.7182818 . . . . (A.1)

It is common to write lnx instead of loge x. The quantity lnx is called the

natural logarithm of x. The natural logarithm is also defined by

lnx =

∫ x

1

1

t
dt.
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To convert from one base to another, we use the chain rule:

loga x = logb x loga b or logb x =
loga x

loga b
.

For example,

log x =
lnx

ln 2
and lnx =

log x

log e
.

The following important identity can be proven by taking the logarithms

of both sides:

xlogb y = ylogb x, x, y > 0. (A.2)

A.4 Floor and Ceiling Functions

Let x be a real number. The floor of x, denoted by �x�, is defined as the

greatest integer less than or equal to x. The ceiling of x, denoted by 
x�,
is defined as the least integer greater than or equal to x. For example,

�√2� = 1, 
√2� = 2, �−2.5� = −3, 
−2.5� = −2.

We list the following identities without proofs.


x/2�+ �x/2� = x.

�−x� = −
x�.

−x� = −�x�.

The following theorem is useful.

Theorem A.1 Let f(x) be a monotonically increasing function such that

if f(x) is integer, then x is integer. Then,

�f(�x�)� = �f(x)� and 
f(
x�)� = 
f(x)�.
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For example,⌈√

x�
⌉
=
⌈√
x
⌉

and �log �x�� = �log x�.

The following formula follows from Theorem A.1.

��x�/n� = �x/n� and 

x�/n� = 
x/n�, n a positive integer.

(A.3)

For example,

���n/2�/2�/2� = ��n/4�/2� = �n/8�.

A.5 Factorial and Binomial Coefficients

In this section, we briefly list some of the important combinatorial proper-

ties that are frequently used in the analysis of algorithms, especially those

designed for combinatorial problems. We will limit the coverage to permu-

tations and combinations, which lead to the definitions of factorials and

binomial coefficients.

A.5.1 Factorials

A permutation of n distinct objects is defined to be an arrangement of the

objects in a row. For example, there are 6 permutations of a, b and c, namely:

a b c, a c b, b a c, b c a, c a b, c b a.

In general, let there be n > 0 objects, and suppose we want to count the

number of ways to choose k objects and arrange them in a row, where

1 ≤ k ≤ n. Then, there are n choices for the first position, n− 1 choices for

the second position, . . . , and n−k+1 choices for the kth position. Therefore,

the number of ways to choose k ≤ n objects and arrange them in a row is

n(n− 1) · · · (n− k + 1).

This quantity, denoted by Pn
k , is called the number of permutations of n

objects taken k at a time. When k = n, the quantity becomes

Pn
n = n× (n− 1)× · · · × 1
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and is commonly called the number of permutations of n objects . Because

of its importance, this quantity is denoted by n!, read “n factorial”. By con-

vention, 0! = 1, which gives the following simple recursive definition of n!:

0! = 1, n! = n(n− 1)! if n ≥ 1.

n! is an extremely fast growing function. For example,

30! = 265252859812191058636308480000000.

A useful approximation to n! is Stirling’s formula:

n! ≈
√
2πn

(n
e

)n
, (A.4)

where e = 2.7182818 . . . is the base of the natural logarithm. For example,

using Stirling’s formula, we obtain

30! ≈ 264517095922964306151924784891709,

with relative error of about 0.27%.

A.5.2 Binomial coefficients

The possible ways to choose k objects out of n objects, disregarding order,

is customarily called the combinations of n objects taken k at a time. It is

denoted by Cn
k . For example, the combinations of the letters a, b, c and d

taken three at a time are

a b c, a b d, a c d, b c d.

Since order does not matter here, the combinations of n objects taken k at

a time is equal to the number of permutations of n objects taken k at a

time divided by k!. That is,

Cn
k =

Pn
k

k!
=
n(n− 1) . . . , (n− k + 1)

k!
=

n!

k!(n− k)! , n ≥ k ≥ 0.

This quantity is denoted by

(
n

k

)
, read “n choose k”, which is called the

binomial coefficient . For example, the number of combinations of 4 objects
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taken 3 at a time is (
4

3

)
=

4!

3!(4− 3)!
= 4.

Equivalently,
(

n
k

)

is the number of k-element subsets in a set of n elements.

For example, the 3-element subsets of the set {a, b, c, d} are

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.

Since the number of ways to choose k elements out of n elements is equal

to the number of ways not to choose n− k elements out of n elements, we

have the following identity:

(
n

k

)
=

(
n

n− k
)
, in particular

(
n

n

)
=

(
n

0

)
= 1. (A.5)

The following identity is important:

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
. (A.6)

Equation (A.6) can be proven using the following argument. Let A =

{1, 2, . . . , n}. Then, the k-element subsets can be partitioned into those

subsets containing n and those that do not contain n. The number of sub-

sets not containing n is the number of ways to choose k elements from the

set {1, 2, . . . , n− 1}, which is
(

n − 1
k

)

. The number of subsets containing n

is the number of ways to choose k−1 elements from the set {1, 2, . . . , n−1},
which is

(
n − 1
k − 1

)

. This establishes the correctness of Eq. (A.6).

The binomial theorem, stated below, is one of the fundamental tools in

the analysis of algorithms. For simplicity, we will state only the special case

when n is a positive integer.

Theorem A.2 Let n be a positive integer. Then,

(1 + x)n =

n∑
j=0

(
n

j

)
xj .
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Fig. A.1. The first six rows of Pascal triangle.

If we let x = 1 in Theorem A.2, we obtain

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
= 2n.

In terms of combinations, this identity states that the number of all subsets

of a set of size n is equal to 2n, as expected. If we let x = −1 in Theorem A.2,

we obtain (
n

0

)
−
(
n

1

)
+

(
n

2

)
− · · · ±

(
n

n

)
= 0

or

∑
j even

(
n

j

)
=
∑

j odd

(
n

j

)
.

Letting n = 1, 2, 3, . . . in Theorem A.2, we obtain the expansions:

(1 + x) = 1 + x, (1 + x)2 = 1 + 2x+ x2, (1 + x)3 = 1+ 3x+ 3x2 + x3, and

so on. If we continue this way indefinitely, we obtain Pascal triangle, which

is shown in Fig. A.1. In this triangle, each row after the first is computed

from the previous row using Eq. (A.6).

A.6 The Pigeonhole Principle

This principle, although easy and intuitive, is extremely powerful and is

indespensable in the analysis of algorithms.
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Theorem A.3 If n balls are distributed into m boxes, then

(1) one box must contain at least 
n/m� balls and

(2) one box must contain at most �n/m� balls.

Proof. (1) If all boxes have less than 
n/m� balls, then the total number

of balls is at most

m
(⌈ n
m

⌉
− 1
)
≤ m

((
n

m
+
m− 1

m

)
− 1

)
= n+m− 1−m = n− 1 < n,

which is a contradiction.

(2) If all boxes have greater than �n/m� balls, then the total number of

balls is at least

m
(⌊ n
m

⌋
+ 1
)
≥ m

((
n

m
− m− 1

m

)
+ 1

)
= n−m+ 1 +m = n+ 1 > n,

which is also a contradiction. �

Example A.13 Let G = (V,E) be a connected undirected graph with

m vertices (see Sec. 2.3). Let p be a path in G that visits n > m vertices.

We show that p must contain a cycle. Since 
n/m� > 2, there is at least

one vertex, say v, that is visited by p more than once. Thus, the portion of

the path that starts and ends at v constitutes a cycle.

A.7 Summations

A sequence a1, a2, . . . , . . . is defined formally as a function whose domain

is the set of natural numbers. It is useful to define a finite sequence

{a1, a2, . . . , an} as a function whose domain is the set {1, 2, . . . , n}.
Throughout this book, we will assume that a sequence is finite, unless

stated otherwise. Let S = a1, a2, . . . , an be any sequence of numbers. The

sum a1 + a2 + · · ·+ an can be expressed compactly using the notation

n∑
j=1

af(j) or
∑

1≤j≤n

af(j),

where f(j) is a function that defines a permutation of the elements

1, 2, . . . , n. For example, the sum of the elements in the above sequence
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can be stated as
n∑

j=1

aj or
∑

1≤j≤n

aj .

Here, f(j) is simply j. If, for example, f(j) = n − j + 1, then the sum

becomes
n∑

j=1

an−j+1.

This sum can be simplified as follows:

n∑
j=1

an−j+1 = an−1+1, an−2+1, . . . , an−n+1 =

n∑
j=1

aj.

Using the other notation, it is simpler to change indices, as in the fol-

lowing example.

Example A.14

n∑
j=1

an−j =
∑

1≤j≤n

an−j (Rewrite summation in other form.)

=
∑

1≤n−j≤n

an−(n−j) (Substitute n− j for j.)

=
∑

1−n≤n−j−n≤n−n

an−(n−j) (Subtract n from inequalities.)

=
∑

1−n≤−j≤0

aj (Simplify)

=
∑

0≤j≤n−1

aj (Multiply inequalities by −1.)

=

n−1∑
j=0

aj .

The above procedure applies to any permutation function f(j) of the

form k ± j, where k is an integer that does not depend on j.

In what follows, we list closed form formulas for some of the summa-

tions that occur quite often when analyzing algorithms. The proofs of these

formulas can be found in most standard books on discrete mathematics.
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The arithmetic series:

n∑
j=1

j =
n(n+ 1)

2
= Θ(n2). (A.7)

The sum of squares:

n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

6
= Θ(n3). (A.8)

The geometric series:

n∑
j=0

cj =
cn+1 − 1

c− 1
= Θ(cn), c �= 1. (A.9)

If c = 2, we have

n∑
j=0

2j = 2n+1 − 1 = Θ(2n). (A.10)

If c = 1/2, we have

n∑
j=0

1

2j
= 2− 1

2n
< 2 = Θ(1). (A.11)

When | c | < 1 and the sum is infinite, we have the infinite geometric series

∞∑
j=0

cj =
1

1− c = Θ(1), | c | < 1. (A.12)

Differentiating both sides of Eq. (A.9) and multiplying by c yields

n∑
j=0

jcj =

n∑
j=1

jcj =
ncn+2 − ncn+1 − cn+1 + c

(c− 1)2
= Θ(ncn), c �= 1. (A.13)

Letting c = 1/2 in Eq. (A.13) yields

n∑
j=0

j

2j
=

n∑
j=1

j

2j
= 2− n+ 2

2n
= Θ(1). (A.14)
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Differentiating both sides of Eq. (A.12) and multiplying by c yields

∞∑
j=0

jcj =
c

(1− c)2 = Θ(1), | c | < 1. (A.15)

A.7.1 Approximation of summations by integration

Let f(x) be a continuous function that is monotically decreasing or increas-

ing, and suppose we want to evaluate the summation

n∑
j=1

f(j).

We can obtain upper and lower bounds by approximating the summation

by integration as follows.

If f(x) is decreasing, then we have (see Fig. A.2 for example)

∫ n+1

m

f(x) dx ≤
n∑

j=m

f(j) ≤
∫ n

m−1

f(x) dx.

If f(x) is increasing, then we have (see Fig. A.3 for example)

∫ n

m−1

f(x) dx ≤
n∑

j=m

f(j) ≤
∫ n+1

m

f(x) dx.

Example A.15 We derive an upper and lower bounds for the

summation

n∑
j=1

jk, k ≥ 1

as follows. Since jk is increasing, we have∫ n

0

xk dx ≤
n∑

j=1

jk ≤
∫ n+1

1

xk dx.

That is,

nk+1

k + 1
≤

n∑
j=1

jk ≤ (n+ 1)k+1 − 1

k + 1
.
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Hence, by definition of the Θ-notation, we have

n∑
j=1

jk = Θ(nk+1), k ≥ 1.

Example A.16 In this example, we derive upper and lower bounds for

the harmonic series

Hn =

n∑
j=1

1

j
.

From Fig. A.2(a), it is clear that

n∑
j=1

1

j
= 1 +

n∑
j=2

1

j

≤ 1 +

∫ n

1

dx

x

= 1 + lnn.

Similarly, from Fig. A.2(b), we obtain

n∑
j=1

1

j
≥
∫ n+1

1

dx

x

= ln(n+ 1).

1 2 n n+1

(b)
1 2 n

(a)

1
x

1
x

Fig. A.2. Approximation of the sum
∑n

j=1
1
j
.
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It follows that

ln(n+ 1) ≤
n∑

j=1

1

j
≤ lnn+ 1, (A.16)

or

log(n+ 1)

log e
≤

n∑
j=1

1

j
≤ logn

log e
+ 1. (A.17)

Hence, by definition of the Θ-notation, we have

Hn =

n∑
j=1

1

j
= Θ(logn).

Example A.17 In this example, we derive upper and lower bounds for

the series

n∑
j=1

log j.

From Fig. A.3(a), it is clear that

n∑
j=1

log j = logn+

n−1∑
j=1

log j

≤ logn+

∫ n

1

log x dx

= logn+ n logn− n log e+ log e.

(b)

n-11 21 2

log x

(a)

n-1 n

log x

n

Fig. A.3. Approximation of the sum
∑n

j=1 log j.
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Similarly, from Fig. A.3(b), we obtain

n∑
j=1

log j =

n∑
j=2

log j

≥
∫ n

1

log x dx

= n logn− n log e+ log e.

It follows that

n logn− n log e+ log e ≤
n∑

j=1

log j ≤ n logn− n log e+ logn+ log e.

(A.18)

Hence, by definition of the Θ-notation, we have

n∑
j=1

log j = Θ(n logn).

This is the same bound derived in Example 1.12. However, the derivation

here is more precise. For example, taking exponentials in Eq. (A.18) yields

2n logn−n log e+log e ≤ n! ≤ 2n logn−n log e+log n+log e,

or

e
(n
e

)n
≤ n! ≤ ne

(n
e

)n
,

which is fairly close to Stirling approximation formula (Eq. (A.4) on

page 673).

A.8 Recurrence Relations

In virtually all recursive algorithms, the bound on the running time is

expressed recursively. This makes solving recursive formulas of paramount

importance to the algorithm analyst. A recursive formula is simply a for-

mula that is defined in terms of itself. In this case, we call such a definition
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a recurrence relation or simply a recurrence. For example, the sequence of

odd positive integers can be described by the recurrence

f(n) = f(n− 1) + 2, if n > 1 and f(1) = 1.

Computing f(n) for large values of n using the recurrence directly is

tedious, and hence it is desirable to express the sequence in a closed form

from which f(n) can be computed directly. When such a closed form is

found, we say that the recurrence has been solved. In what follows, we give

some techniques for solving some elementary recurrences.

A recurrence relation is called linear homogeneous with constant coeffi-

cients if it is of the form

f(n) = a1f(n− 1) + a2f(n− 2) + · · ·+ akf(n− k).

In this case, f(n) is said to be of degree k. When an additional term involv-

ing a constant or a function of n appears in the recurrence, then it is called

inhomogeneous .

A.8.1 Solution of linear homogeneous recurrences

Let

f(n) = a1f(n− 1) + a2f(n− 2) + · · ·+ akf(n− k). (A.19)

The general solution to A.19 involves a sum of individual solutions of the

form f(n) = xn. Substituting xn for f(n) in (A.19) yields

xn = a1x
n−1 + a2x

n−2 + · · ·+ akx
n−k.

Dividing both sides by xn−k yields

xk = a1x
k−1 + a2x

k−2 + · · ·+ ak,

or equivalently

xk − a1xk−1 − a2xk−2 − · · · − ak = 0. (A.20)

Equation (A.20) is called the characteristic equation of the recurrence

relation (A.19).

In what follows, we will confine our attention to first and second lin-

ear homogeneous recurrences. The solution to a first-order homogeneous
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recurrence is straightforward. Let f(n) = af(n− 1), and suppose that the

sequence starts from f(0). Since

f(n) = af(n− 1) = a2f(n− 2) = · · · = anf(0),

it is easy to see that f(n) = anf(0) is the solution to the recurrence.

If the degree of the recurrence is 2, then the characteristic equation

becomes x2 − a1x− a2 = 0. Let the roots of this quadratic equation be r1
and r2. Then, the solution to the recurrence is

f(n) = c1r
n
1 + c2r

n
2 , if r1 �= r2 and f(n) = c1r

n + c2nr
n if r1 = r2 = r.

Here, c1 and c2 are determined by the initial values of the sequence: f(n0)

and f(n0 + 1).

Example A.18 Consider the sequence 1, 4, 16, 64, 256, . . ., which can be

expressed by the recurrence f(n) = 3f(n−1)+4f(n−2) with f(0) = 1 and

f(1) = 4. The characteristic equation is x2−3x−4 = 0, and hence r1 = −1
and r2 = 4. Thus, the solution to the recurrence is f(n) = c1(−1)n + c24

n.

To find the values of c1 and c2, we solve the two simultaneous equations:

f(0) = 1 = c1 + c2 and f(1) = 4 = −c1 + 4c2.

Solving the two simultaneous equations, we obtain c1 = 0 and c2 = 1. It

follows that f(n) = 4n.

Example A.19 Consider the sequence 1, 3, 5, 7, 9, . . . of odd integers,

which can be expressed by the recurrence f(n) = 2f(n− 1)− f(n− 2) with

f(0) = 1 and f(1) = 3. The characteristic equation is x2 − 2x + 1 = 0,

and hence r1 = r2 = 1. Thus, the solution to the recurrence is f(n) =

c11
n + c2n1

n = c1 + c2n. To find the values of c1 and c2, we solve the two

simultaneous equations:

f(0) = 1 = c1 and f(1) = 3 = c1 + c2.

Solving the two simultaneous equations, we obtain c1 = 1 and c2 = 2. It

follows that f(n) = 2n+ 1.

Example A.20 Consider the Fibonacci sequence 1, 1, 2, 3, 5, 8, . . .,

which can be expressed by the recurrence f(n) = f(n − 1) + f(n − 2)

with f(1) = f(2) = 1. To simplify the solution, we may introduce the extra

term f(0) = 0. The characteristic equation is x2 − x − 1 = 0, and hence
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r1 = (1+
√
5)/2 and r2 = (1−√5)/2. Thus, the solution to the recurrence

is

f(n) = c1

(
1 +
√
5

2

)n

+ c2

(
1−√5

2

)n

.

To find the values of c1 and c2, we solve the two simultaneous equations:

f(0) = 0 = c1 + c2 and f(1) = 1 = c1

(
1 +
√
5

2

)
+ c2

(
1−√5

2

)
.

Solving the two simultaneous equations, we obtain c1 = 1/
√
5 and c2 =

−1/√5. It follows that

f(n) =
1√
5

(
1 +
√
5

2

)n

− 1√
5

(
1−√5

2

)n

.

Since (1 − √5)/2) ≈ −0.618034, when n is large the second term

approaches 0, and hence when n is large enough,

f(n) ≈ 1√
5

(
1 +
√
5

2

)n

≈ 0.447214(1.61803)n.

The quantity φ = (1 +
√
5)/2 ≈ 1.61803 is called the golden ratio. In

Example A.11, we have proven that f(n) ≤ φn−1 for all n ≥ 1.

A.8.2 Solution of inhomogeneous recurrences

Unfortunately, there is no convenient method for dealing with inhomoge-

neous recurrences in general. Here, we will confine our attention to some

elementary inhomogeneous recurrences that arise frequently in the analysis

of algorithms. Perhaps, the simplest inhomogeneous recurrence is

f(n) = f(n− 1) + g(n), n ≥ 1, (A.21)

where g(n) is another sequence. It is easy to see that the solution to recur-

rence (A.21) is

f(n) = f(0) +

n∑
i=1

g(i).
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For example, the solution to the recurrence f(n) = f(n−1)+1 with f(0) = 0

is f(n) = n.

Now, consider the homogeneous recurrence

f(n) = g(n)f(n− 1), n ≥ 1. (A.22)

It is also easy to see that the solution to recurrence (A.22) is

f(n) = g(n)g(n− 1) . . . g(1)f(0)

For example, the solution to the recurrence f(n) = nf(n−1) with f(0) = 1

is f(n) = n!.

Next, consider the inhomogeneous recurrence

f(n) = g(n)f(n− 1) + h(n), n ≥ 1. (A.23)

where h(n) is also another sequence. We define a new function f ′(n) as

follows. Let

f(n) = g(n)g(n− 1) . . . g(1)f ′(n), n ≥ 1; f ′(0) = f(0).

Substituting for f(n) and f(n− 1) in recurrence (A.23), we obtain

g(n)g(n− 1) . . . g(1)f ′(n) = g(n)(g(n− 1) . . . g(1)f ′(n− 1)) + h(n),

which simplifies to

f ′(n) = f ′(n− 1) +
h(n)

g(n)g(n− 1) . . . g(1)
, n ≥ 1.

Consequently,

f ′(n) = f ′(0) +
n∑

i=1

h(i)

g(i)g(i− 1) . . . g(1)
, n ≥ 1.

It follows that

f(n) = g(n)g(n− 1) . . . g(1)

(
f(0) +

n∑
i=1

h(i)

g(i)g(i− 1) . . . g(1)

)
, n ≥ 1.

(A.24)
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Example A.21 Consider the sequence 0, 1, 4, 18, 96, 600, 4320, 35280 . . .,

which can be expressed by the recurrence

f(n) = nf(n− 1) + n!, n ≥ 1; f(0) = 0.

We proceed to solve this inhomogeneous recurrence as follows. Let f(n) =

n!f ′(n) (f ′(0) = f(0) = 0). Then,

n!f ′(n) = n(n− 1)!f ′(n− 1) + n!,

which simplifies to

f ′(n) = f ′(n− 1) + 1,

whose solution is

f ′(n) = f ′(0) +
n∑

i=1

1 = 0 + n.

Hence,

f(n) = n!f ′(n) = nn!.

Example A.22 Consider the sequence 0, 1, 4, 11, 26, 57, 120, . . ., which

can be expressed by the recurrence

f(n) = 2f(n− 1) + n, n ≥ 1; f(0) = 0.

We proceed to solve this inhomogeneous recurrence as follows. Let f(n) =

2nf ′(n) (f ′(0) = f(0) = 0). Then,

2nf ′(n) = 2(2n−1f ′(n− 1)) + n,

which simplifies to

f ′(n) = f ′(n− 1) +
n

2n
,

whose solution is

f ′(n) = f ′(0) +
n∑

i=1

i

2i
.

Hence (since f ′(0) = f(0) = 0),

f(n) = 2nf ′(n) = 2n
n∑

i=1

i

2i
.
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By Eq. (A.14) on page 678,

f(n) = 2n
n∑

i=1

i

2i
= 2n

(
2− n+ 2

2n

)
= 2n+1 − n− 2.

A.9 Divide-and-Conquer Recurrences

See Sec. 1.15.

A.10 Exercises

A.1. Let A and B be two sets. Prove the following properties, which are

known as De Morgan’s laws .

(a) A ∪B = A ∩B.

(b) A ∩B = A ∪B.

A.2. Let A,B and C be finite sets.

(a) Prove the principle of inclusion–exclusion for two sets :

|A ∪B| = |A|+ |B| − |A ∩B|.
(b) Prove the principle of inclusion–exclusion for three sets :

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩C|
+ |A ∩B ∩C|.

A.3. Show that if a relation R on a set A is transitive and irreflexive, then

R is asymmetric.

A.4. Let R be a relation on a set A. Then, R2 is defined as {(a, b) | (a, c) ∈
R and (c, b) ∈ R for some c ∈ A}. Show that if R is symmetric, then

R2 is also symmetric.

A.5. Let R be a nonempty relation on a set A. Show that if R is symmetric

and transitive, then R is not irreflexive.

A.6. Let A be a finite set and P (A) the power set of A. Define the relation

R on the set P (A) by (X,Y ) ∈ R if and only if X ⊆ Y . Show that

R is a partial order.
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A.7. Let A = {1, 2, 3, 4, 5} and B = A× A. Define the relation R on the

set B by {((x, y), (w, z)) ∈ B} if and only if xz = yw.

(a) Show that R is an equivalence relation.

(b) Find the equivalence classes induced by R.

A.8. Given the sets A and B and the function f from A to B, determine

whether f is one to one, onto B or both (i.e., a bijection).

(a) A = {1, 2, 3, 4, 5}, B = {1, 2, 3, 4} and
f ={(1, 2), (2, 3), (3, 4), (4, 1), (5, 2)}.

(b) A is the set of integers, B is the set of even integers and f(n) =

2n.

(c) A = B is the set of integers and f(n) = n2.

(d) A = B is the set of real numbers with 0 excluded and f(x) =

1/x.

(e) A = B is the set of real numbers and f(x) = |x |.

A.9. A real number r is called rational if r = p/q, for some integers p and

q; otherwise, it is called irrational . The numbers 0.25, 1.3333333 . . .

are rational, while π and
√
p, for any prime number p, are irrational.

Use the proof by contradiction method to prove that
√
7 is irrational.

A.10. Prove that for any positive integer n

�logn�+ 1 = 
log(n+ 1)�.

A.11. Give a counterexample to disprove the assertion given in Exam-

ple A.9.

A.12. Use mathematical induction to show that n! > 2n for n ≥ 4.

A.13. Use mathematical induction to show that a tree with n vertices has

exactly n− 1 edges.

A.14. Prove that φn = φn−1 + φn−2 for all n ≥ 2, where φ is the golden

ratio (see Example A.11).

A.15. Prove that for every positive integer k,
∑n

i=1 i
k log i = O(nk+1 logn).
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A.16. Show that
n∑

j=1

j log j = Θ(n2 logn)

(a) using algebraic manipulations.

(b) using the method of approximating summations by integration.

A.17. Show that
n∑

j=1

log(n/j) = O(n),

(a) using algebraic manipulations.

(b) using the method of approximating summations by integration.

A.18. Solve the following recurrence relations.

(a) f(n) = 3f(n− 1) for n ≥ 1; f(0) = 5.

(b) f(n) = 2f(n− 1) for n ≥ 1; f(0) = 2.

(c) f(n) = 5f(n− 1) for n ≥ 1; f(0) = 1.

A.19. Solve the following recurrence relations.

(a) f(n) = 5f(n− 1)− 6f(n− 2) for n ≥ 2; f(0) = 1, f(1) = 0.

(b) f(n) = 4f(n− 1)− 4f(n− 2) for n ≥ 2; f(0) = 6, f(1) = 8.

(c) f(n) = 6f(n− 1)− 8f(n− 2) for n ≥ 2; f(0) = 1, f(1) = 0.

(d) f(n)=−6f(n− 1)− 9f(n− 2) for n≥ 2; f(0)=3, f(1)=−3.
(e) 2f(n) = 7f(n− 1)− 3f(n− 2) for n ≥ 2; f(0) = 1, f(1) = 1.

(f) f(n) = f(n− 2) for n ≥ 2; f(0) = 5, f(1) = −1.

A.20. Solve the following recurrence relations:

(a) f(n) = f(n− 1) + n2 for n ≥ 1; f(0) = 0.

(b) f(n) = 2f(n− 1) + n for n ≥ 1; f(0) = 1.

(c) f(n) = 3f(n− 1) + 2n for n ≥ 1; f(0) = 3.

(d) f(n) = 2f(n− 1) + n2 for n ≥ 1; f(0) = 1.

(e) f(n) = 2f(n− 1) + n+ 4 for n ≥ 1; f(0) = 4.

(f) f(n) = −2f(n− 1) + 2n − n2 for n ≥ 1; f(0) = 1.

(g) f(n) = nf(n− 1) + 1 for n ≥ 1; f(0) = 1.
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Appendix B

Introduction to Discrete Probability

B.1 Definitions

The sample space Ω is the set of all possible outcomes (also called

occurrences or points) of an experiment. An event E is a subset of the

sample space. For example, when tossing a die, Ω = {1, 2, 3, 4, 5, 6} and

E = {1, 3, 5} is one possible event.

Let E1 and E2 be two events. Then, E1 ∪ E2 is the event consisting of

all points either in E1 or in E2 or both, and E1 ∩ E2 is the event consisting

of all points that are in both E1 and E2. Other set operations are defined

similarly. E1 and E2 are called mutually exclusive if E1 ∩ E2 = φ.

Let x1, x2, . . . , xn be the set of all n possible outcomes of an experiment.

Then, we must have 0 ≤ Pr[xi] ≤ 1 for 1 ≤ i ≤ n and
∑n

i=1 Pr[xi] = 1.

Here, Pr, the function from the set of all events of the sample space to a

subset of [0..1] is called a probability distribution. For many experiments,

it is natural to assume that all outcomes have the same probability. For

example, in the experiment of tossing a die, Pr[k] = 1
6 for 1 ≤ k ≤ 6.

B.2 Conditional Probability and Independence

Let E1 and E2 be two events. Then, the conditional probability of E1 given

E2, denoted by Pr[E1 | E2], is defined as

Pr[E1 | E2] = Pr[E1 ∩ E2]
Pr[E2] . (B.1)

691
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E1 and E2 are called independent if

Pr[E1 ∩ E2] = Pr[E1]Pr[E2],

and they are called dependent if they are not independent. Equivalently,

E1 and E2 are independent if

Pr[E1 | E2]×Pr[E2] = Pr[E1]Pr[E2].

Example B.1 Consider the experiment of flipping two coins, where

all outcomes are assumed to be equally likely. The sample space is

{HH,HT, TH, TT }. Let E1 be the event that the first coin lands heads

and let E2 be the event that at least one coin lands tails. Now, Pr[E1] =
Pr[{HT,HH}] = 1

2 , and Pr[E2] = Pr[{HT, TH, TT }] = 3
4 . Hence,

Pr[E1 | E2] = Pr[{HT,HH} ∩ {HT, TH, TT }]
Pr[{HT, TH, TT }] =

Pr[{HT }]
Pr[{HT, TH, TT }] =

1
3 .

Since Pr[E1 ∩ E2] = 1
4 �= 3

8 = Pr[E1]Pr[E2], we conclude that E1 and E2 are

not independent.

Now, consider changing E2 to the event that the second coin lands tails.

Then, Pr[E2] = Pr[{HT, TT }] = 1
2 . Hence,

Pr[E1 | E2] = Pr[{HT,HH} ∩ {HT, TT }]
Pr[{HT, TT }] =

Pr[{HT }]
Pr[{HT, TT }] =

1
2 .

Since Pr[E1 ∩E2] = 1
4 = 1

2 × 1
2 = Pr[E1]Pr[E2], we conclude that E1 and E2

are independent.

Example B.2 Consider the experiment of tossing two dice, where

all outcomes are assumed to be equally likely. The sample space is

{(1, 1), (1, 2), . . . , (6, 6)}. Let E1 be the event that the sum of the two

dice is 6 and let E2 be the event that the first die equals 4. Then,

Pr[E1] = Pr[{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}] = 5
36 , and Pr[E2] =

Pr[{(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)}] = 1
6 . Since Pr[E1 ∩ E2] =

Pr[{(4, 2)}] = 1
36 �= 5

36 × 1
6 = 5

216 = Pr[E1]Pr[E2], we conclude that E1
and E2 are not independent.

Now, change E1 to the event that the sum of the two dice equals 7. Then,

Pr[E1] = Pr[{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}] = 1
6 . Since Pr[E1 ∩

E2] = Pr[{(4, 3)}] = 1
36 = 1

6 × 1
6 = Pr[E1]Pr[E2], we conclude that E1 and

E2 are independent.
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B.2.1 Multiplication rule for conditional probability

Rearranging (B.1), one obtains

Pr[E1 ∩ E2] = Pr[E1 | E2]Pr[E2]

or

Pr[E1 ∩ E2] = Pr[E1]Pr[E2 | E1]. (B.2)

In the case of three events, (B.2) can be extended to

Pr[E1 ∩ E2 ∩ E3] = Pr[E1] Pr[E2 | E1] Pr[E3 | E1 ∩ E2].

In general, we have

Pr[E1 ∩ · · · ∩ En] = Pr[E1] Pr[E2 | E1] · · ·Pr[En | E1 ∩ E2 ∩ · · · ∩ En−1].

(B.3)

B.3 Random Variables and Expectation

A random variable X is a function from the sample space to the set of real

numbers. For example, we may letX denote the number of heads appearing

when throwing three coins. Then, the random variable X takes on one of

the values 0, 1, 2 and 3 with probabilities

Pr[X = 0] = Pr[{TTT }] = 1
8 , Pr[X = 1] = Pr[{HTT, THT, TTH}] =

3
8 , Pr[X = 2] = Pr[{HHT,HTH, THH}] = 3

8 and Pr[X = 3] =

Pr[{HHH}] = 1
8 .

The expected value of a (discrete) random variable X with range S is

defined as

E[X ] =
∑
x∈S

xPr[X = x].

For example, if we let X denote the number appearing when throwing a

die, then the expected value of X is

E[X ] =

6∑
k=1

kPr[X = k] =
1

6
(1 + 2 + 3 + 4 + 5 + 6) =

7

2
. (B.4)

E[X ] represents the mean of the random variable X and is often writ-

ten as μX or simply μ. An important and useful property is linearity of
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expectation:

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi],

which is always true regardless of independence.

Another important measure is the variance of X , denoted by var[X ] or

σ2
X , which is defined as

var[X ] = E[(X − μ)2] =
∑
x∈S

(x− μ)2Pr[X = x],

where S is the range of X . It can be shown that var[X ] = E[X2]− μ2. For

example, in the experiment of throwing a die,

var[X ] =

(
6∑

k=1

k2Pr[X = k]

)
−
(
7

2

)2

=
1

6
(1 + 22 + 32 + 42 + 52 + 62)−

(
7

2

)2

=
91

6
− 49

4

=
35

12
.

σX , or simply σ, is called the standard deviation. So, in the above exam-

ple, σ =
√
35/12 ≈ 1.7.

B.4 Discrete Probability Distributions

B.4.1 Uniform distribution

The uniform distribution is the simplest of all probability distributions in

which the random variable assumes all its values with equal probability. If

X takes on the values x1, x2, . . . , xn with equal probability, then for all k,

1 ≤ k ≤ n, Pr[X = k] = 1
n . The random variable denoting the number

that appears when a die is rolled is an example of such a distribution.
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B.4.2 Bernoulli distribution

A Bernoulli trial is an experiment with exactly two outcomes, e.g., flipping

a coin. These two outcomes are often referred to as success and failure with

probabilities p and q = 1 − p, respectively. Let X be the random variable

corresponding to the toss of a biased coin with probability of heads 1
3 and

probability of tails 2
3 . If we label the outcome as success when heads appear,

then

X =

{
1 if the trial succeeds

0 if it fails.

A random variables that assumes only the numbers 0 and 1 is called an

indicator random variable. The expected value and variance of an indicator

random variable with probability of success p are given by

E[X ] = p and var[X ] = pq = p(1− p).

B.4.3 Binomial distribution

Let X =
∑n

i=1Xi, where the Xi’s are indicator random variables corre-

sponding to n independent Bernoulli trials with parameter p (identically dis-

tributed). Then,X is said to have the binomial distribution with parameters

p and n. The probability that there are exactly k successes is given by

Pr[X = k] =

(
n

k

)
pkqn−k,

where q = 1− p. The expected value and variance of X are given by

E[X ] = np and var[X ] = npq = np(1− p).

The first equality follows from the linearity of expectations, and the second

follows from the fact that all Xi
′s are pairwise independent.

For example, the probabilities of getting k heads, 0 ≤ k ≤ 4, when

tossing a fair coin four times are

1

16
,
1

4
,
3

8
,
1

4
,
1

16
.

E[X ] = 4× (1/2) = 2, and var[X ] = 4× (1/2)× (1/2) = 1.
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B.4.4 Geometric distribution

Suppose we have a (biased) coin with probability p of heads. Let the random

variable X denote the number of coin tosses until heads appears for the first

time. Then, X is said to have the geometric distribution with parameter p.

The probability of having a success after k ≥ 1 trials is P[X = k] = qk−1p,

where q = 1 − p. The expected value of X is E[X ] = 1/p and its variance

is var[X ] = q/p2.

Consider the experiment of tossing a coin until heads appear for the

first time. Suppose we toss a coin 10 times with no success, that is, tails

appears 10 times. What is the probability of getting heads in the 11th toss?

The answer is 1
2 . This observation about the geometric distribution is called

the memoryless property: the probability of having an event in the future

is independent of the past.

B.4.5 Poisson distribution

A discrete random variable X that takes on one of the values 0, 1, 2, . . . is

called a Poisson random variable with parameter λ > 0 if

Pr[X = k] =
e−λλk

k!
; k ≥ 0.

If X is a Poisson random variable with parameter λ, then E[X ] =

var[X ] = λ. That is, both the expected value and variance of a Poisson

random variable with parameter λ are equal to λ.



October 25, 2021 13:14 Algorithms: Design Techniques and. . . 9in x 6in b4265-bib page 697

Bibliography

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1974) The Design and Analysis
of Computer Algorithms, Addison-Wesley, Reading, MA.

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1983) Data Structures and Algo-
rithms, Addison-Wesley, Reading, MA.

Ahuja, R. K., Orlin, J. B., and Tarjan, R. E. (1989) “Improved time bounds for
the maximum flow problem”, SIAM Journal on Computing , 18, 939–954.

Akl, S. G. (1984) “An optimal algorithm for parallel selection”, Information Pro-
cessing Letters, 19 (1984), 47–50.

Akl, S. G. (1989) The Design and Analysis of Parallel Algorithms, Prentice Hall,
Englewood Cliffs, New Jersey.

Akl, S. G. (1997) Parallel Computation: Models and Methods, Prentice-Hall,
Englewood Cliffs, NJ.

Alsuwaiyel, M. H. (2001) “An Efficient and Adaptive Algorithms for Mul-
tiselection on the PRAM”, Proceedings of the International Conference
on Software Engineering, Artificial Intelligence, Networking and Paral-
lel/Distributed Computing (SNPD01), Nagoya, Japan, pp. 140–143.

Alsuwaiyel, M. H. (2006) “A random algorithm for multiselection”, Journal of
Discrete Mathematics and Applications, 16(2), 175–180.

Aurenhammer, F. (1991) “Voronoi diagrams: A survey of a fundamental data
structure”, ACM Computing Surveys, 23, 345–405.

Batcher, K. (1968) “Sorting networks and their applications”, AFIPS Spring Joint
Computing Conference, Atlantic City, NJ, pp. 307–314.

Baase, S. (1988) Computer Algorithms: Introduction to Design and Analysis, 2nd
edn. Addison-Wesley, Reading, MA.

Balcazar, J. L., Diaz, J., and Gabarro J. (1988) Structural Complexity I , Springer-
Verlag, Berlin.

Balcazar, J. L., Diaz, J., and Gabarro J. (1990) Structural Complexity II ,
Springer-Verlag, Berlin.

697



October 25, 2021 13:14 Algorithms: Design Techniques and. . . 9in x 6in b4265-bib page 698

698 Algorithms: Design Techniques and Analysis

Banachowski, L., Kreczmar, A., and Rytter, W. (1991) Analysis of Algorithms
and Data Structures, Addison-Wesley, Reading, MA.

Bellman, R. E. (1957) Dynamic Programming , Princeton University Press, Prince-
ton, NJ.

Bellman, R. E., and Dreyfus, S. E. (1962) Applied Dynamic Programming , Prince-
ton University Press, Princeton, NJ.

Bellmore, M., and Nemhauser, G. (1968) “The traveling salesman problem: A
survey”, Operations Research, 16(3), 538–558.

Ben-Or, M. (1983) “Lower bounds for algebraic computation trees”, Proceedings
of the 15th ACM Annual Symposium on Theory of Computation, pp. 80–86.

Blum, M., Floyd, R. W., Pratt, V. R., Rivest, R. L., and Tarjan, R. E. (1973)
“Time bounds for selection”, Journal of Computer and System Sciences, 7,
448–461.

Berge, C. (1957) “Two theorems in graph theory”, Proceedings of the National
Academy of Science, 43, 842–844.

Bovet, D. P., and Crescenzi, P. (1994) Introduction to the Theory of Complexity ,
Prentice-Hall, Englewood Cliffs, NJ.

Brassard, G., and Bratley, P. (1988) Fundamentals of Algorithmics, Prentice-Hall,
Englewood Cliffs, NJ.

Brassard, G., and Bratley, P. (1996) Algorithmics: Theory and Practice, Prentice-
Hall, Englewood Cliffs, NJ.

Brown, K. (1979a) Dynamic Programming in Computer Science, Carnegie-Mellon
University, Pittsburgh, PA, USA.

Brown, K. (1979b) “Voronoi diagrams from convex hulls”, Information Processing
Letters, 9, 223–228.

Burge, W. H. (1975) Recursive Programming Techniques, Addison-Wesley, Read-
ing, MA.

Chandran, S., and Rosenfeld, A. (1988) “Order statistics on a hypercube”, Infor-
mation Processing Letters, 27, 129–132.

Chazelle, B. (1990) “Triangulating a simple polygon in linear time”, Proceedings
of 31th Annual IEEE Symposium on the Foundations of Computer Science,
pp. 220–230.

Chazelle, B. (1991) “Triangulating a simple polygon in linear time”, Discrete &
Computational Geometry , 6, 485–524.

Cheriton, D., and Tarjan, R. E. (1976) “Finding minimum spanning trees”, SIAM
Journal on Computing , 5(4), 724–742.

Christofides, N. (1976) “Worst-case analysis of a new heuristic for the travel-
ing salesman problem”, Technical Report, Graduate School of Industrial
Administration, Carnegie-Mellon University, Pittsburgh, PA.

Cole, R. (1988) “Parallel merge sort”, SIAM Journal on Computing, 17(4),
770–785.

Cook, S. A. (1971) “The complexity of theorem-proving procedures”, Proceedings
of 3rd Annual ACM Symposium on the Theory of Computing , pp. 151–158.

Cook, S. A. (1973) “An observation on time-storage trade off”, Proceedings of 5th
Annual ACM Symposium on the Theory of Computing , pp. 29–33.



October 25, 2021 13:14 Algorithms: Design Techniques and. . . 9in x 6in b4265-bib page 699

Bibliography 699

Cook, S. A. (1974) “An observation on time-storage trade off”, Journal of Com-
puter and System Sciences, 7, 308–316.

Cook, S. A. (1983) “An overview of computational complexity”, Communication
of the ACM , 26(6), 400–408 (Turing Award Lecture).

Cook, S. A. (1985) “A taxonomy of problems with fast parallel algorithms”,
Information and Control , 64, 2–22.

Cook, S. A., and Sethi, R. (1976) “Storage requirements for deterministic polyno-
mial time recognizable languages”, Journal of Computer and System Sci-
ences, 13(1), 25–37.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009) Introduction
to Algorithms, MIT Press, Cambridge, MA.

Cyphcr, R., and Plaxton, G. (1990) “Deterministic sorting in nearly logarithmic
time on the hypercube and related computers”, Proceedings of the 22nd
ACM Symp. Theory of Computing, ACM Press.

de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. (1997) Com-
putational Geometry: Algorithms and Applications, Springer, Berlin.

Dijkstra, E. W. (1959) “A note on two problems in connexion with graphs”,
Numerische Mathematik , 1, 269–271.

Dinic, E. A. (1970) “Algorithm for solution of a problem of maximal flow in a
network with power estimation”, Soviet Mathematics Doklady , 11, 1277–
1280.

Dobkin, D., and Lipton, R. (1979) “On the complexity of computations under
varying set of primitives”, Journal of Computer and System Sciences, 18,
86–91.

Dobkin, D., Lipton, R., and Reiss, S. (1979) “Linear programming is log-space
hard for P”, Information Processing Letters, 8, 96–97.

Dreyfus, S. E. (1977) The Art and Theory of Dynamic Programming , Academic
Press, New York, NY.

Dromey, R. G. (1982) How to Solve It by Computer , Prentice-Hall, Englewood
Cliffs, NJ.

Edelsbrunner, H. (1987) Algorithms in Combinatorial Geometry , Springer-Verlag,
Berlin.

Edelsbrunner, H., and Seidel, R. (1986) “Voronoi diagrams and arrangements”,
Discrete Computation Geometry, 1, 25–44.

Even, S. (1979) Graph Algorithms, Computer Science Press, Rockville, MD.
Even, S., and Tarjan, R. E. (1975) “Network flow and testing graph connectivity”,

SIAM Journal on Computing , 4, 507–512.
Edmonds, J. (1965) “Paths, trees and flowers”, Canadian Journal of Mathematics,

17, 449–467.
Edmonds, J., and Karp, R. M. (1972) “Theoretical improvements in algorithmic

efficiency for network problems”, Journal of the ACM , 19, 248–264.
Fischer, M. J. (1972) “Efficiency of equivalence algorithms”, in R. E. Miller

and J. W. Thatcher, eds., Complexity and Computations, Plenum Press,
New York, pp. 153–168.



October 25, 2021 13:14 Algorithms: Design Techniques and. . . 9in x 6in b4265-bib page 700

700 Algorithms: Design Techniques and Analysis

Fischer, M. J., and Salzberg, S. L. (1982) “Finding a majority among n votes”,
Journal of Algorithms, 3, 375–379.

Floyd, R. W. (1962) “Algorithm 97: Shortest Path”, Communications of the
ACM , 5, 345.

Floyd, R. W. (1964) “Algorithm 245: Treesort 3”, Communications of the ACM ,
7, 701.

Floyd, R. W. (1967) “Assigning meanings to programs”, Symposium on Applied
Mathematics, American Mathematical Society , pp. 19–32.

Ford, L. R., Jr., and Fulkerson, D. R. (1956) “Maximal flow through a network”,
Canadian Journal of Mathematics, 8, 399–404.

Ford, L. R., Jr., and Johnson, S. (1959) “A tournament problem”, American
Mathematical Monthly , 66, 387–389.

Fortune, S. (1978) “A sweeping algorithm for Voronoi diagrams”, Algorithmica,
2, 153–174.

Fortune, S. (1992) “Voronoi diagrams and Delaunay triangulations”, in Du, D. Z.
and Hwang, F. eds., Computing in Euclidean Geometry , Lecture Notes
Series on Computing, Vol. 1, World Scientific, Singapore, pp. 193–234.

Fredman, M. L., and Tarjan, R. E. (1987) “Fibonacci heaps and their uses in
network optimization”, Journal of the ACM , 34, 596–615.

Friedman, N. (1972) “Some results on the effect of arithmetics on comparison
problems”, Proceedings of the 13th Symposium on Switching and Automata
Theory, IEEE , pp. 139–143.

Fussenegger, F., and Gabow, H. (1976) “Using comparison trees to derive lower
bounds for selection problems”, Proceedings of the 17th Found. C. S., IEEE ,
pp. 178–182.

Gabow, H. N. (1976) “An efficient implementation of Edmonds’ algorithm for
maximum matching on graphs”, Journal of the ACM , 23, 221–234.

Galil, Z. (1980) “An O(V 5/3E2/3) algorithm for the maximal flow problem”, Acta
Informatica, 14, 221–242.

Galil, Z., and Tardos, E. (1988) “An O(n2(m+n log n) log n) min-cost flow algo-
rithm”, Journal of the ACM , 35, 374–386.

Galler, B. A., and Fischer, M. J. (1964) “An improved equivalence algorithm”,
Communications of the ACM , 7, 301–303.

Garey, M. R., and Johnson, D. S. (1979) Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman and Co., San Francisco,
CA.

Garey, M. R. Johnson, D. S., Preparata, F. P., and Tarjan, R. E. (1978)
“Triangulating a simple polygon”, Information Processing Letters, 7,
175–179.

Gibbons, A., and Rytter, W. (1990) Efficient Parallel Algorithms, Cambridge
University Press, London.

Gilmore, P. C. (1977) “Cutting stock, linear programming, knapsack, dynamic
programming and integer programming, some interconnections”, IBM
Research Report RC6528.



October 25, 2021 13:14 Algorithms: Design Techniques and. . . 9in x 6in b4265-bib page 701

Bibliography 701

Gilmore, P. C., and Gomory, R. E. (1966) “The theory and computation of knap-
sack functions”, Journal of Operations Research, 14(6), 1045–1074.

Godbole, S. (1973) “On efficient computation of matrix chain products”, IEEE
Transactions on Computers, C-22(9), 864–866.

Goldberg, A. V., and Tarjan, R. E. (1988) “A new approach to the maximum
flow problem”, Journal of the ACM , 35, 921–940.

Goldschlager, L., Shaw, L., and Staples, J. (1982) “The maximum flow problem
is log space complete for P”, Theoretical Computer Science, 21, 105–111.

Golomb, S., and Brumert, L. (1965) “Backtrack programming”, Journal of the
ACM , 12(4), 516–524.

Gonnet, G. H. (1984) Handbook of Algorithms and Data Structures, Addison-
Wesley, Reading, MA.

Graham, R. L. (1972) “An efficient algorithm for determining the convex hull of
a finite planar set”, Information Processing Letters, 1, 132–133.

Graham, R. L., and Hell, P. (1985) “On the history of the minimum spanning
tree problem”, Annals of the History of Computing , 7(1), 43–57.

Greene, D. H., and Knuth, D. E. (1981) Mathematics for the Analysis of Algo-
rithms, Birkhauser, Boston, MA.

Greenlaw, R., Hoover, J., and Ruzzo, W. (1995), Limits to Parallel Computation:
P-completeness Theory , Oxford University Press, New York.

Gupta, R., Smolka, S., and Bhaskar, S. (1994) “On randomization in sequential
and distributed algorithms”, ACM Computer Surveys, 26(1), 7–86.

Hall, M., Jr. (1956) “An Algorithm for distinct representatives”, American
Mathematical Monthly , 63, 716–717.

Hartmanis, J., and Stearns, R. E. (1965) “On the computational complexity of
algorithms”, Transactions of American Mathematical Society , 117, 285–
306.

Held, M., and Karp, R. M. (1967) “Finite-State Process and Dynamic program-
ming”, SIAM Journal on Computing , 15, 693–718.

Hoare, C. A. R. (1961) “Algorithm 63 (partition) and Algorithm 65 (find)”, Com-
munication of the ACM , 4(7), 321–322.

Hoare, C. A. R. (1962) “Quicksort”, Computer Journal , 5, 10–15.
Hofri, M. (1987) Probabilistic Analysis of Algorithms, Springer Verlag, Berlin.
Hopcroft, J. E., and Karp, R. M. (1973) “A n5/2 algorithm for maximummatching

in bipartite graphs”, SIAM Journal on Computing , 2, 225–231.
Hopcroft, J. E., and Tarjan, R. E. (1973) “Dividing a graph into triconnected

components”, SIAM Journal on Computing , 2, 135–158.
Hopcroft, J. E., and Tarjan, R. E. (1973a) “Efficient algorithms for graph manip-

ulation”, Communication of the ACM , 16(6), 372–378.
Hopcroft, J. E., and Ullman, J. D. (1973) “Set merging algorithms”, SIAM Jour-

nal on Computing , 2(4), 294–303.
Hopcroft, J. E., and Ullman, J. D. (1979) Introduction to Automata Theory,

Languages, and Computation, Addison-Wesley, Reading, MA.



October 25, 2021 13:14 Algorithms: Design Techniques and. . . 9in x 6in b4265-bib page 702

702 Algorithms: Design Techniques and Analysis

Horowitz, E., Sahni, S., and Rajasekaran, S. (1998) Computer Algorithms, Com-
puter Science Press, Rockville, MD.

Hromkovic, J. (2005) Design and Analysis of Randomized Algorithms: Introduc-
tion to Design Paradigms, Springer-Verlag, Berlin.

Hu, T. C. (1969) Integer Programming and Network Flows, Addison-Wesley,
Reading, MA.

Hu, T. C. (1982) Combinatorial Algorithms, Addison-Wesley, Reading, MA.
Hu, T. C., and M. T. Shing (1980) “Some theorems about matrix multiplication”,

Proceedings of the 21st Annual Symposium on Foundations of Computer
Science, pp. 28–35.

Hu, T. C., and Shing, M. T. (1982) “Computation of matrix chain products”,
Part 1, SIAM Journal on Computing , 11(2), 362–373.

Hu, T. C., and Shing, M. T. (1984) “Computation of matrix chain products”,
Part 2, SIAM Journal on Computing , 13(2), 228–251.

Huffman, D. A. (1952) “A method for the construction of minimum redundancy
codes”, Proceedings of the IRA, 40, 1098–1101.

Hwang, F. K., and Lin, S. (1972) “A simple algorithm for merging two disjoint
linearly ordered sets”, SIAM Journal on Computing , 1, 31–39.

Hyafil, L. (1976) “Bounds for selection”, SIAM Journal on Computing , 5(1),
109–114.

Ibarra, O. H., and Kim, C. E. (1975) “Fast approximation algorithms for the
knapsack and sum of subset problems”, Journal of the ACM , 22, 463–468.
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A

adjacency lists, 82, 91

adjacency matrix, 82, 259

algebraic decision tree

connected component, 330

definition of, 329

height of, 330

linear, 329–330

model of computation, 329,
331

order of, 329

algorithm

adaptive, 190

analysis of (see also algorithm
analysis), 44

cryptography, 52

definition of, 3

deterministic, 3, 268

exact order of, 26

exponential, 53–54

graph, 46, 52

network, 46

nondeterministic, 269, 280

number theory, 52

optimal (see also optimal
algorithm), 32

probabilistic, 409

randomized (see also randomized
algorithm), 363

recursive, 43

algorithm analysis, 44, 52

amortized (see also amortized
analysis), 48

average case (see also average case
analysis), 45

worst case (see also worst case
analysis), 45

algorithm design technique

approximation algorithms, 411

backtracking, 345

divide and conquer, 121, 145

dynamic programming, 121, 193

geometric sweeping, 481

graph traversal, 245

greedy approach, 219

induction, 121, 143

iterative improvement (flow in
network), 435

iterative improvement (matching),
455

randomized algorithms, 363

Voronoi diagrams, 501

all-pairs shortest path problem, 205,
207, 211–212, 215

almost-complete binary tree, 86, 94

709
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alternating path, 456
augmenting (see also augmenting

path), 456
cycle, 456
length of, 456

alternating path tree, 459
amortized analysis, 48, 52
ancestor (of a vertex), 84
antipodal pair, 493–494
applications of the farthest-point

Voronoi diagram, 515, 517
computing all farthest neighbors,

516
computing the smallest enclosing

circle, 516–517
applications of the Voronoi diagram,

509, 512
computing all nearest neighbors,

510–511
computing the convex hull,

509–510
computing the Euclidean minimum

spanning tree, 511–512
approximation algorithm, 411

definition of, 412
difference bound, 413–414
fully polynomial approximation

scheme, 426, 428, 432
performance bound, 411
polynomial approximation scheme,

422, 425, 432
relative bound, 414, 422

array packing, 531
articpoints algorithm, 251–253
articulation point, 251, 254, 259–260
assignment problem, 361
asymptotic running time, 21, 23
augmenting path, 438, 456–457

bottleneck capacity of, 438
vertex-disjoint, 457, 468–469, 475

average case analysis, 45, 47–49, 78

B

backtracking, 345, 362

advance step, 353

backtrack step, 354
depth-first search, 347
general method, 352, 354
search tree, 347

backtrackiter algorithm, 354–355
backtrackrec algorithm, 354
balanced tree method, 526

basic operation, 40–41
Bernoulli distribution, 695
Bernoulli trial, 695
best case, 45
bfparprefix algorithm, 597
bfs algorithm, 255–257, 260–261
bimatch1 algorithm, 458–459
bimatch2 algorithm, 460–462, 466,

476
bimatch3 algorithm, 470–471, 473
bin packing problem, 280, 284, 412,

415–417, 429, 432

approximation algorithms for, 415,
417

binary search, 6, 10, 41, 46
randomized, 405
recursive algorithm, 147, 149

binary search tree, 87–88, 91

binary tree, 85, 87
almost-complete (see also

almost-complete binary tree), 86
complete (see also complete binary

tree), 86

full (see also full binary tree), 86
height of (see also height (of a

binary tree)), 87
levels in (see also levels (in binary

tree)), 86
quantitative aspects of, 87

binarysearch algorithm, 7–8, 10,
31–32, 41, 43–44, 46, 68, 324–325,
405

binarysearchrec algorithm,
147–149, 154, 186, 188

binomial coefficient, 195, 210, 673
binomial distribution, 695
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binomial theorem, 674
bipartite graph, 82, 90, 261

complete (Km,n), 82
edge cover for, 452
independent set in, 453, 475

birthday paradox, 377
bisection width, 575
bitonic merging and sorting, 546, 553
bitonic sorting, 551
bitonicmerge algorithm, 549–553
bitonicsort algorithm, 551–552
blossom, 462, 477

expanding of, 464
shrinking of, 462–464

Boole’s inequality, 387
bottom-up merge sorting, 15, 19

parallel (see also parallel
bottom-up merge sorting), 540

bottomupsort algorithm, 16–19,
26–27, 31–33, 40, 66, 69, 113, 120,
141, 149, 151, 153–154, 171, 187,
190, 540

bound
exact, 26, 33, 48–49
lower, 33, 46
tight, 33
upper, 33, 46

branch and bound, 354, 359, 362
breadth-first search, 255, 257,

259–261
applications of, 257
back edge, 255
cross edge, 255
time complexity, 257
tree edge, 255

Brent theorem, 528
broadcasting on the hypercube, 584
brute-force primalitytest

algorithm, 29, 53
bubblesort algorithm, 70–71,

140–141, 190
bucketsort, 141
butterfly, 577

permutation routing in, 588

C

2-coloring problem, 269, 283, 319
3-coloring problem, 267, 279, 342,

345, 347, 349, 352, 359
3-coloriter algorithm, 348–349
3-colorrec algorithm, 347–348
Carmichael numbers, 402, 409
CCC (see also cube-connected

cycles), 633
ceiling function, 671–672
Chebyshev inequality, 380–381
Chernoff bounds, 381, 384

lower tail, 381, 383
upper tail, 383

child (of a vertex), 84
chromatic number, 267
chromatic number problem, 267,

316–317
Church Thesis, 4
Church, A., 4
circuit value problem, 311, 322
class of problems

co-NP (see also co-NP), 280
DEXT (see also DEXT), 290
EXPTIME (see also EXPTIME),

290
LOGSPACE (see also

LOGSPACE), 293
NC (see also NC), 310
NEXPTIME (see also

NEXPTIME), 290
NEXT (see also NEXT), 290
NLOGSPACE (see also

NLOGSPACE), 293
NP (see also NP), 269, 290
NSPACE (see also NSPACE),

293
P (see also P), 268, 290
POLYLOGSPACE (see also

POLYLOGSPACE), 320
PSPACE (see also PSPACE),

293
clique problem, 267, 276–277, 279,

283–284, 421
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clique, 267

maximum (see also max-clique),
429

closed form, 683
closest pair problem, 178, 182,

191–192, 335, 338
1-dimensional, 191
lower bound on, 335

closestpair algorithm, 181–182
closure of a class of problems, 303
co-NP (class of problems), 280–281
co-NP-complete, 280–281
collinear, 485

coloring problem, 267, 270, 279,
283, 316, 421, 430

coloring
of planar graph, 413

combine step, 155
complete binary tree, 86

complete bipartite graph, 260–261
complete problem, 306, 313

definition of, 306
for co-NP (see also

co-NP-complete), 280
for LOGSPACE (see also

LOGSPACE-complete), 307
for NLOGSPACE (see also

NLOGSPACE-complete), 307
for NP (see also NP-complete),

271
for P (see also P-complete), 309
for PSPACE (see also

PSPACE-complete), 308
complexity

space (see also space complexity),
31

time (see also time complexity), 19
complexity classes, 30–31
computability theory, 5
computational complexity, 5, 19, 287,

294, 321–322
computational geometry, 52, 499
computer science, 3
conditional probability, 691

connected component, 81
finding, 259
listing vertices in, 259

connected graph, 81
convex hull problem, 334–335
conquer step, 154
convex hull, 484, 504

computing the, 489, 491, 499
on the mesh, 606, 612
parallel algorithm, 569, 573

convex hull problem
lower bound on, 334–335

convexhull algorithm, 491–492
csg recognition problem, 309, 321
cube-connected cycles, 633

bisection width of, 633
degree of, 633
diameter of, 633
embedding of hypercube in, 633
parallel prefix on, 633

cycle (in a graph), 81
even-length, 81
odd-length, 81
of shortest length, 261

D

3-dimensional mesh, 612
sorting on, 613

decidability, 5
decision problem, 266, 287, 329
decision tree, 9

height of, 326
model of computation, 324

degree of the network, 575
Delaunay triangulation, 504, 506
delete algorithm, 98
delete operation, 94, 487–488
delete-max operation, 94, 102, 113
delete-min operation, 487–488
deletemax algorithm, 98
depth (of a vertex), 84
depth-first search, 245, 255, 258–259,

261
back edge, 247–248
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cross edge, 248

forward edge, 248
in directed graphs, 247
in undirected graphs, 247
iterative, 259
postorder numbering, 247
preorder numbering, 247
spanning tree, 247, 260–261

time complexity of, 249
tree edge, 247–248

depth-first search applications, 250,
255

depth-first search applications of
articulation points (see also
articulation point), 251
connected components (see also

connected component), 259

graph acyclicity, 250
strongly connected components

(see also strongly connected
component), 254

topological sorting (see also
topological sorting), 250

descendant (of a vertex), 84
DEXT (class of problems), 290
dfs algorithm, 246, 249–251, 259
diameter, 575
diameter algorithm, 495

diameter of a point set
lower bound on, 336

diameter of a set of points, 492,
499
computing the, 492, 496, 499

dice problem, 372, 375

dijkstra algorithm, 223–225, 235,
239–240, 242, 244

dinic algorithm, 445–446
disjoint sets data structure, 49, 104,

112, 117

divide and conquer
combine step, 155
conquer step, 154
divide step, 154
general format, 156

paradigm, 154
threshold in, 156

divide and conquer recurrence, 54, 65
change of variables, 63, 65
expanding of, 54, 58
substitution, 58, 63

divide step, 154
dominance problem, 183, 191
dominance relation, 481
dotproduct algorithm, 567–568
DTIME, 290
dynamic programming, 193, 219

paradigm, 204–205
principle of optimality (see also

principle of optimality), 204

E

edge
free, 455
matched, 455
unmatched, 455

edge cover, 452, 476
effective procedure, 4
element assignment, 12
element comparison, 11, 40
element uniqueness problem, 74,

266, 331–333, 335
lower bound on, 331

elementary operation, 22–23, 33, 40
embedding of a binary tree, 583
embeddings of the hypercube, 580
equivalence relation, 30, 664
etspapprox algorithm, 418–419
etsp problem, 417
euclid algorithm, 74–75
Euclidean minimum spanning tree

problem
lower bound on, 335–336

Euclidean minimum spanning tree
problem, 335–336

euclidean traveling salesman
problem, 417–419
approximation algorithm for, 417,

419
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minimum spanning tree heuristic,
417, 429

nearest neighbor heuristic, 417, 430
Euler’s formula, 83, 505
event, 691
event point schedule, 482
exp algorithm, 124, 139–140
expectation, 693–694
expected value, 693
expmod algorithm, 400–403, 405
exponentiation

integer, 123–124
exprec algorithm, 123–124, 139–140
EXPTIME (class of problems), 290
extreme points, 484

F

factorial, 672–673
farthest-point Voronoi diagram,

512–513
a simple algorithm for, 519
applications of (see also

applications of the farthest-point
Voronoi diagram), 515

construction of, 513, 515
regions, 512
vertices, 512

fast Fourier transform, 616, 627
Fermat’s theorem, 401
Fibonacci sequence, 64, 140, 193–194,

210, 669, 684
file compression, 237, 239, 244
find algorithm, 108
find operation, 104–113, 115–116, 230
fixed points, 376
floor function, 671–672
flow in network

augmenting path (see also
augmenting path), 438

blocking flow, 445
cut, 436
definition of, 435
Dinic’s algorithm, 445, 448
Ford-Fulkerson method, 439–440

level graph, 442

maximum capacity augmentation,
440, 442

MPM algorithm, 448, 451

residual capacity, 437

residual graph, 437

shortest path augmentation, 442,
445

value of, 436

floyd algorithm, 206

ford–fulkerson algorithm, 439

ford-fulkerson algorithm, 440

forest, 84

formula

satisfiable, 269, 272, 275

tautology, 281

unsatisfiable, 281

fpvoronoid algorithm, 515, 518

full binary tree, 86–87

function, 664–665

cubic, 22

linear, 22

logarithmic, 22

quadratic, 22

space constructible, 295

sublinear, 22

subquadratic, 22

time constructible, 295, 318

G

gap problem, 293–294, 298, 307–308,
319–320, 322

Gödel, K., 4

geometric distribution, 696

gmatch algorithm, 466–468

golden ratio, 195

Graham scan, 489, 497

graph, 80, 83

2-colorable, 413

3-colorable (see also 3-color), 413

4-colorable, 413

acyclic, 81

acyclicity, 250



October 25, 2021 13:14 Algorithms: Design Techniques and. . . 9in x 6in b4265-index page 715

Index 715

bipartite (see also bipartite graph),
82

bridge, 260
chromatic number of, 267
clique in, 267
coloring, 266–267
complete (Kn), 81
connected (see also connected

graph), 81
connected component in (see also

connected component), 81
connectivity of, 453
cycle in (see also cycle (in a

graph)), 81
directed, 80
disconnected, 81
k-regular, 474
path in (see also path (in a

graph)), 81
planar (see also planar graph), 83,

504
representation of, 82
strongly connected (see also

strongly connected component),
81

triangulated (see also triangulated
graph), 83

undirected, 80
graph accissibility problem, 322
graph representation

adjacency lists (see also adjacency
lists), 82

adjacency matrix (see also
adjacency matrix), 82

graph traversal, 40, 261
breadth-first search, see

breadth-first search, 255
depth-first search (see also

depth-first search), 245, 261
Gray Codes, 581
greatest common divisor, 74, 143

H

Hall’s theorem, 473–474

Hamiltonian cycle problem, 274,
360, 421

Hamiltonian path problem, 279
harmonic series, 680
hashing, 406
hcbroadcast algorithm, 584, 651
hchyperquicksort algorithm, 591–592
hcmultiselect algorithm, 595, 632
hcparprefix algorithm, 590
hcselect algorithm, 593–596, 632
heap, 93, 103, 117

creating a, 99, 102, 117
delete-max, 98
deletion, 98
d-heap, 115
insertion, 97
min and max-heaps, 103
operations on, 95, 99
property, 94
variants of, 117

heapsort, 102–103, 117
heapsort algorithm, 2, 33, 103,

113–115, 141, 166, 190, 326
height (of a binary tree), 87
height (of a tree), 84
height (of a vertex), 84
height of a binary tree, 191
horner algorithm, 125
Horner’s rule, 124, 139, 142, 191
huffman algorithm, 238–241, 244
Huffman tree, 237–238
Hungarian tree, 460

removal of, 460
hypercube, 576

broadcasting on, 584
embedding of a linear array in, 582
embedding of a mesh in, 582
permutation routing in, 584

hyperquicksort, 591

I

independent set, 430
in bipartite graph, 475
of maximum cardinality, 475
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independent set problem, 278–279,
421, 430

indepenence, 691–692
indicator random variable, 695
induction design technique, 121
inorder traversal, 85
input

distribution, 52
order, 52
size, 52

insert algorithm, 97
insert operation, 94, 113, 487–488
insertion sort, 13, 15

average case analysis of, 47
insertionsort algorithm, 13–15,

23–25, 27, 31, 41–42, 44–48, 52, 66,
69, 89, 140–141, 155, 187, 190, 326,
337

interconnection network, 574
internal vertex, 84
intersections of line segments, 485,

489, 499
intersectionsls algorithm, 488
intractable problem, 265

J

Jarvis march, 497–498

K

König’s theorem, 475
k-clique problem, 310, 318
knapsack algorithm, 208, 213
knapsack problem, 207, 210–215,

279, 284, 361, 413, 422, 432
0/1, 207
another version of, 213
fractional, 220
hardness result, 413–414
polynomial approximation scheme

for, 422, 425
two dimensional, 215

knapsackgreedy algorithm,
423–424, 430

knight tour problem, 360

Knuth, D. E., 3
kruskal algorithm, 2, 229–231, 240,

242, 244

L

lba acceptance problem, 309, 321
λ-calculus, 4
laparprefix algorithm, 600–601
lcs algorithm, 197, 210–212
leading constants, 21
leaf vertex, 84
left turn, 485
levels (in binary tree), 86
line segment, 483
linear array, 598

broadcasting on, 599
linear programming problem, 286,

311, 322
linear search, 6, 41, 46

average case analysis of, 47
linearity of expectation, 694
linearsearch algorithm, 6, 31,

46–47, 184, 324–325, 337
linked list, 79
logarithm, 670–671
LOGSPACE (class of problems), 293
LOGSPACE-complete, 307
longest common subsequence, 195,

197
longest path problem, 280, 285
longest simple path, 204, 211

in a directed acyclic graph, 215
lower bound, 46

for finding the maximum, 327
for finding largest and second

largest, 327
for sorting, 325
on a problem, 323
trivial, 323

lower order terms, 20–21

M

minimum equivalent expression
problem, 317
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majority algorithm, 123, 139–140

majority element, 122–123, 143, 407

makeheap algorithm, 101–103, 114

Markov inequality, 379–380

marriage theorem, 474

matchain algorithm, 202–203, 210,
212

matching

alternating path (see also
alternating path), 456

definition of, 455

in bipartite graph (see also
matching in bipartite graph),
458

in general graph (see also matching
in general graph), 458

max-clique problem, 267, 321

max-flow problem, 311–322

maximum, 456–457, 476

maximum-weight, 476

perfect, 456, 475

size of, 456

matching in bipartite graph

algorithms for, 476

an improved algorithm for, 468,
473

maximum, 460, 473

the Hungarian tree algorithm for,
459–460

the network flow method, 458

matching in general graph

an algorithm for, 462, 468

blossom (see also blossom), 462

maximum, 468

mathematical notations, 23

examples, 27, 30

O-notation (see also O-notation),
23

o-notation (see also o-notation), 30

Ω-notation, (see also Ω-notation),
24

Θ-notation, (see also Θ-notation),
26

matrix chain multiplication, 198, 204,
212, 215

matrix multiplication, 34, 40, 175,
177, 324

comparison of algorithms for, 177

parallel, 567

randomized verification of, 407

Strassen’s algorithm, 176–177,
191–192

traditional algorithm, 176, 186

max-clique, 429

max-flow (see also flow in network),
435

max-flow min-cut theorem, 438, 475

max-flow problem, 435

maxima algorithm, 482

maximal matching, 420

maximal point, 482

mca algorithm, 440–442

mean, 693

median, 157

median finding algorithm (see also
selection), 156

memoryless property, 696

merge algorithm, 11–12, 17–18,
31–32, 39–41, 150, 155, 165, 187,
241

merge sort

pipelined merge sort, 553, 560

mergesort, 149, 154, 185, 187, 192

mergesort algorithm, 120, 150–156,
161, 165, 171, 181, 183, 185, 187,
189–192, 326–327, 337, 551

merging, 10, 12, 540

lower bound on, 339

merging by ranking, 536

mesh, 598

3-dimensional, 612

broadcasting on, 599

odd-even merging and sorting, 604

meshoddevenmerge algorithm, 604,
606

meshoddevensort algorithm, 606
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meshparprefix algorithm, 600–601,
654

minimum spanning tree

Euclidean (see also Euclidean
minimum spanning tree
problem), 335

minimum-cost spanning tree, 227,
237, 245

an efficient algorithm for, 235, 237

Kruskal’s algorithm, 227, 230

Prim’s algorithm, 231, 235

minmax algorithm, 146, 185–186

model of computation, 268

algebraic decision tree, 329, 331

decision tree, 324

λ-calculus, 4

parallel, 5

Post machines, 4

RAM, 4

recursive functions, 4

Turing machine, 4, 268, 287

modparsearch algorithm, 536–537,
539

money change problem, 214, 220,
239–240, 361

mpla algorithm, 442–446

mpm algorithm, 449–450, 458

mst algorithm, 235–236

multiplication

matrix chain (see also matrix chain
multiplication), 198

of complex numbers, 190

of large integers, 174–175, 192

of matrices (see also matrix
multiplication), 175

multiselect algorithm, 172–174, 563

multiselection, 172, 384

analysis of randomized, 387, 390

parallel (see also parallel
multiselection), 563

randomized algorithm for, 384,
387

multiselection on the hypercube, 594

multiprocessor scheduling
problem, 280, 422, 431–432

mutually exclusive event, 691

N

NC (class of problems), 310
nearest point problem, 338
neighbor

farthest, 516–518
nearest, 510

network, 435
network flow (see also flow in

network), 435
NEXPTIME (class of problems), 290
NEXT (class of problems), 290
nextperm algorithm, 137–139
nextsubset algorithm, 131–132, 139
NLOGSPACE (class of problems),

293
NLOGSPACE-complete, 307–308
NP (class of problems), 269, 280, 290

definition of, 270–271
NP-complete, 265, 271–272, 280,

285–286, 306
NP-hard, 272, 412
NP-hard problems, 193
NSPACE (class of problems), 293
NTIME, 290

O

O-notation, 23–24
o-notation, 30–31
occupancy problems, 375, 379
odd-even merging, 542
odd-even merging and sorting, 604
odd-even transposition sort, 601
ordered depth-first search

problem, 311–322
oddevenmerge algorithm, 542–544,

546, 631, 636, 647
oddevensort algorithm, 545–546,

606
Ω-notation, 24–25, 78
on-chip bubble sorter, 627



October 25, 2021 13:14 Algorithms: Design Techniques and. . . 9in x 6in b4265-index page 719

Index 719

operation
amortized running time of, 49
average cost of, 49
basic (see also basic operation), 40
element assignment (see also

element assignment), 40
element comparison (see also

element comparison), 40
elementary (see also elementary

operation), 22
optimal algorithm, 32–33, 323
optimal solution, 219–220, 412
optimization problem, 193, 204, 219,

266, 411
oracle Turing machine, 313
order of growth, 19, 23

P

Pascal
triangle, 195
P (class of problems), 268–269, 290

definition of, 268, 271
P-complete, 309, 311, 322

definition of, 310–311
padding argument, 300, 302
paraddition algorithm, 527–529, 567
parallel architectures

classifications of, 525
parallel bottom-up merge sorting, 540
parallel multiselection, 563, 567
parallel prefix, 529
parallel prefix on the butterfly,

597
parallel prefix on the hypercube,

590
parallel prefix on the mesh, 600
parallel quicksort, 532
parallel search, 533
parallel selection, 560
parbottomupsort algorithm,

540–541, 553–554
parconvexhull algorithm, 573–574,

607
parent (of a vertex), 84

parmatrixmult algorithm, 567–568

parmerge algorithm, 540–541, 636,
647

parmultiselect1 algorithm, 563,
567, 632

parmultiselect2 algorithm,
564–565, 632

parprefix algorithm, 530

parprefixrec algorithm, 530–531,
644

parquicksort algorithm, 532–533,
631, 636, 646

parrank algorithm, 538–540, 631
parsearch algorithm, 534–536
parselect algorithm, 561, 563, 632,

636–637, 648
partial order, 664
partitioning

a set of points, 338

partition problem, 279, 284, 353,
360

path

alternating (see also alternating
path), 456

augmenting (see also augmenting
path), 438

longest (see also longest simple
path), 204

shortest (see also shortest path),
204

path (in a graph), 81
length of, 81
simple, 81

path compression heuristic, 105, 107,
109–113, 115–117

pattern matching, 397, 399
patternmatching algorithm, 398

performance ratio
absolute, 415
asymptotic, 415
constant, 415

relative, 414
permutation, 32, 133

algorithms for generating, 133, 137
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generating using backtracking, 360
random, 406

permutation routing in the butterfly,
588

permutation routing in the
hypercube, 584

permutations
iterative algorithm, 137

permutations1 algorithm, 133–134,
142

permutations2 algorithm, 135–136,
142–143

permutations3 algorithm, 138–139
pigeonhole principle, 675–676
pipelined merge sort, 553, 560
pjumping algorithm, 535–536
planar graph, 83

coloring of, 413
Euler’s formula (see also Euler’s

formula), 83
point, 483

maximal, 482
Poisson approximation, 376
Poisson distribution, 376, 696
polygon, 483

boundary of, 484
chord in, 499
convex, 484
edges of, 484
interior of, 484
monotone, 499
nonsimple, 484
simple, 484, 496
vertices of, 484

polygonal path, 483
POLYLOGSPACE (class of

problems), 320
polynomial

representation of, 89
testing, 364, 405

polynomial evaluation
Horner’s rule, 124–125, 139, 143

polynomial time hierarchy, 313, 317,
322

definition of, 314
problems in the, 316
properties of, 314

Post machines, 4
Post, E. L., 4
postorder traversal, 85
PRAM, 525
≺ relation, 31
preorder traversal, 85, 245
prim algorithm, 233–235, 240,

242–244
primality test, 400, 405, 409
primality test problem, 29
primalitytest algorithm, 404–405
principle

of inclusion-exclusion, 688
of optimality (see also principle of

optimality), 204
pigeonhole (see also pigeonhole

principle), 675
principle of optimality, 204
priority queue, 93, 117
probability distribution, 691
problem complete (see also complete

problem), 306
decision, 266, 287
intractable, 265
lower bound on, 25
NP-hard (see also NP-hard

problems), 193
optimization (see also optimization

problem), 193, 266
solvable, 4–5
tractable, 265
unsolvable, 4–5
well-parallelizable, 310

problem instance, 52
proof method, 665, 670

by contradiction, 666–667
by counterexample, 667–668
direct, 666
indirect, 666
induction, 668, 670

PSPACE (class of problems), 293
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PSPACE-complete, 308–309
ptest1 algorithm, 401–402
ptest2 algorithm, 402, 404
ptest3 algorithm, 403–404

Q

4-queens algorithm, 350–351, 360
4-queens problem, 350
8-queens problem, 349, 352, 360
queue, 80
quantified boolean formula

problem, 308–309
quickmultiselect algorithm,

385–386
quickselect, 171, 374
quickselect algorithm, 171–172,

185–186, 190, 192, 369
quicksort, 161, 171, 185, 190, 192

expected running time, 368
partitioning algorithm for, 162
randomized algorithm, 366, 369,

410
quicksort algorithm, 120, 156, 161,

164–168, 170–171, 185, 189–190,
192, 342, 366–367, 406, 532

R

radix sort, 125, 127, 143
radixsort algorithm, 126–127, 139,

141, 190
RAM, 4
random sampling, 390, 392
random variables, 693–694
randomized algorithm, 363–364, 409

definition of, 363
expected running time of, 365
Las Vegas, 364, 366, 407
Monte Carlo, 364–365, 406

randomized select
expected running time, 369, 371

randomizedquicksort algorithm,
367, 369, 405

randomsampling algorithm,
390–391, 408

ranks
computing, 536

rate of growth (see also order of
growth), 20

recurrence relation, 43–44, 65, 682
definition of, 683
degree of, 683
divide and conquer (see also divide

and conquer recurrence), 54
homogeneous, 683
linear, 683
linear homogeneous, 683, 685
linear inhomogeneous, 685, 688
with constant coefficients, 683

recursive function, 4
reduction, 302, 306

definition of, 302
linear time, 333–334
log space, 303
NC, 310
polynomial time, 271, 273, 303
Turing, 313

relation, 663–664
equivalence (see also equivalence

relation), 664
partial order (see also partial

order), 664
right turn, 485
rquickselect algorithm, 369–371,

374, 406
running time, 19, 31, 33–34

asymptotic (see also asymptotic
running time), 21

counting basic operations, 39, 42
counting number of iterations, 33,

39
dependent on input values, 44
estimate of, 33, 44
exact bound of, 26, 33
lower bound on, 24–25, 33
upper bound on, 23, 33

S

2-sat problem, 269
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3-sat problem, 275, 283, 285

sample space, 691

sampling (see also random sampling),
377, 390

satisfiability problem, 272–273,
275–278, 280–281, 283–286,
308–309, 317

scaling and rounding, 213, 426

searching, 34, 40, 52

lower bound on, 324–325

second largest element, 186

algorithm for, 328

lower bound for, 331

select algorithm, 120, 157–159, 161,
171–172, 185, 187–189, 342, 369,
561, 636, 648

selection, 156, 161, 188–189, 192

lower bound on, 339

on the hypercube, 593

parallel (see also parallel selection),
560

randomized algorithm, 369, 410

selection sort, 12–13

selectionsort algorithm, 12–15, 19,
26–27, 31, 44, 66, 68–69, 102,
140–141, 190, 497

sequence, 676

finite, 676

sequential search (see also linear
search), 6

set, 662–663

set cover problem, 280, 285, 431

set disjointness problem, 268, 283,
333, 336

lower bound on, 333

set equality problem, 332

lower bound on, 332

set inclusion problem, 332

lower bound on, 332

shared-memory computers, 525

shearsort, 602

shortest path, 204, 211, 219, 221, 227,
231, 244–245

all-pairs (see also all-pairs shortest
path problem), 205

an efficient algorithm for, 225, 227
Dijkstra’s algorithm, 221, 225
tree (see also shortest path tree),

242
shortest path problem, 268
shortest path tree, 242, 244
shortest paths

parallel, 569
shortestpath algorithm, 225–227,

235, 236, 242
siblings, 84
sift-down algorithm, 96–98,

101–103, 114–115
sift-down operation, 96–97, 103
sift-up algorithm, 95, 97–98, 115

sift-up operation, 95–96
signed area, 484
simple polygon

triangulation of (see also
triangulation of a simple
polygon), 499

solvability, 5
solvable problem, 4–5
sorting, 5, 34, 40, 44, 52, 78

bitonic sorting, 551
bottom-up merge (see also

bottom-up merge sorting), 15
bucketsort (see also bucketsort),

141
by comparisons, 325
comparison of algorithms for, 170
comparison-based, 25, 32

comparison-based algorithm for,
327

heapsort (see also heapsort), 102
hyperquicksort, 591
insertion sort (see also insertion

sort), 13
lower bound on, 325, 327, 331, 339
mergesort (see also mergesort), 149
odd-even, 542
on 3-dimensional mesh, 613
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parallel bottom-up, 540

parallel quicksort, 532
pipelined merge sort, 553, 560
quicksort (see also quicksort), 161
radix sort (see also radix sort), 125

selection sort (see also selection
sort), 12

stable, 141, 190

topological (see also topological
sorting), 250

sorting problem, 268, 283, 326, 334,
336, 338

space
complexity (see also space

complexity), 31

definition of, 31
hierarchy (see also space and time

hierarchy theorems), 298
hierarchy theorems, 298, 301, 321

work, 31–32
space and time hierarchy theorems,

298, 300
space complexity, 31–33

spanning tree
depth-first search, 246–247
minimum-cost (see also

minimum-cost spanning tree),
227

split algorithm, 162–165, 167, 185,
189, 367

stable marriage problem, 475
stack, 80
standard deviation, 380, 694
string equality, 395, 397

stringequalitytest algorithm, 396
strongconnectcomp algorithm,

254, 261

strongly connected component, 81,
254–255, 259, 261

subset-sum problem, 422, 429, 432
fully polynomial approximation

scheme for, 426, 428
subsets

algorithms for generating, 127, 133

subsets1 algorithm, 128, 142
subsets2 algorithm, 130, 142
subsets3 algorithm, 131–132
subsetsum algorithm, 427
subtree, 84
summation, 676, 682

approximation by integration, 679,
682

formulas, 677, 679
supporting line, 493, 498
sweep line status, 483
system of distinct representatives,

476
systolic computation, 627

T

tail bounds, 379, 384
tail recursion, 121
tangent, 498
tautology problem, 281, 285
theory of computation, 5, 19
Θ-notation, 26–27, 78
tight bound, 33
time

complexity (see also time
complexity), 19

hierarchy (see also space and time
hierarchy theorems), 298

hierarchy theorems, 298–299, 321
time complexity, 19, 31
time-space tradeoff, 32
topological sorting, 250–251
topology, 575
tournament, 328
tractable problem, 265
transformation (see also reduction),

302
transitive closure, 568
traveling salesman problem, 193

branch and bound solution, 355
hardness result, 420, 422

traveling salesman problem, 274,
280, 283, 285, 355–356, 358,
361–362, 421, 432
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tree, 84, 88
binary (see also binary tree), 85
binary search (see also also binary

search tree), 87
height of (see also height (of a

tree)), 84
Hungarian (see also Hungarian

tree), 460
root of, 84
rooted, 84
siblings (see also siblings), 84
subtree (see also subtree), 84
traversal (see also tree traversal),

85
tree traversal, 85

inorder (see also inorder traversal),
85

postorder (see also postorder
traversal), 85

preorder (see also preorder
traversal), 85

tree-connected computer, 632
triangulated graph, 83
triangulation

of a set of points, 338
triangulation of a simple polygon,

499
O(n) time algorithm, 500
O(n log log n) time algorithm, 500
O(n log n) time algorithm, 500

Turing machine, 4, 52, 268, 287–288
configuration of, 289
deterministic, 289
encoding of, 298
k-tape, 288, 291
off-line, 291, 293
space used by, 292
standard, 288
time taken by, 290

Turing reduction, 313
Turing, A. M., 4

U

uniform distribution, 694

union algorithm, 108–109
union by rank heuristic, 105, 107,

110, 112–113, 115–117
union operation, 104–113, 115–117,

230
union-find algorithms, 49, 108, 112

analysis of, 110, 112
unsolvable problem, 5
upper bound, 46

V

variance, 380, 694
vcoverapprox algorithm, 420–421,

429
vertex (in a graph), 80

adjacent, 81
degree of, 81
free, 456
indegree of, 81
matched, 455
outdegree of, 81
reachable, 81
unmatched, 455

vertex cover problem, 277–279,
283–285, 421

vertex (in a tree)
ancestor of (see also ancestor (of a

vertex)), 84
child of (see also child (of a

vertex)), 84
depth of (see also depth (of a

vertex)), 84
descendant of (see also descendant

(of a vertex)), 84
height of (see also height (of a

vertex)), 84
internal (see also internal vertex),

84
vertex cover, 429–430

in a tree, 430
minimum size of, 474

vertex cover problem
approximation algorithm for,

419–420
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Voronoi diagram, 501–502, 504, 519
applications of (see also

applications of the Voronoi
diagram), 509

computing from three-dimensional
convex hull, 519

construction of, 506, 508
divide-and-conquer algorithm for,

519
dividing chain, 507
edges, 503
line sweeping algorithm for, 519
regions, 501
vertices, 503

voronoid algorithm, 508–509

W

weight-balancing rule, 116
word length, 23
work space, 31–32
worst case analysis, 45, 47

Z

zero-one principle, 541
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