
The Spirit of Computing

David Harel
with

Yishai Feldman

David H
arel

w
ith

Yishai Feldm
an

The Spirit of Computing The Spirit of Com
puting

THIRD EDITION

T
H

IR
D

 E
D

IT
IO

N

THIRD EDITION

AlgorithmicsAlgorithmics

A
lgorithm

ics

From a review of the first edition:

‘This book is a veritable tour de force. Harel writes with uncommon verve,
clarity and imagination.

‘Through the use of tantalizing questions and aptly chosen and often amusing examples,
the author transmits to the reader the excitement and intellectual satisfaction of computer
science research. Without the use of formal mathematics and without any sacrifice of
intellectual integrity, he conveys to the general reader the profound principles on which
computer science is founded and which hitherto were only accessible in abstruse and
esoteric textbooks and papers.

‘This is scientific writing at its best.’

Dr Stan Scott, Queen's University Belfast The Times Higher Education Supplement.

This book tells the story of the concepts, ideas, methods and results fundamental to computer
science, in a form independent of the details of specific computers, languages and formalisms. It
concerns the true ‘spirit’ of computers; with the ‘recipes’ that make them tick – their algorithms.

New to this edition

■ Chapters on software engineering and on reactive systems.
■ Thoroughly revised chapter on programming languages.
■ New material on quantum and molecular computing.
■ Whole text thoroughly updated to include new material on many topics, including abstract

data types, the object–oriented paradigm, primality testing, and system verification and
validation.

David Harel is Professor and Dean of the Faculty of Mathematics and Computer Science at the
Weizmann Institute of Science. He is renowned for outstanding research in many areas of the
field, and has recently been awarded the Israel Prize in Computer Science. Yishai Feldman is on
the faculty of the Efi Arazi School of Computer Science at the Interdisciplinary Centre, Herzliya.
He specializes in the use of artificial–intelligence techniques in software engineering and their
real–world applications.

www.pearson-books.coman imprint of

Harel Cvr.QXD 16/01/2006 09:40 PM Page 1

P1: GIG

PE002-FM PE002-Harel PE002-Harel-FM-v1.cls March 19, 2004 19:35

Algorithmics
The Spirit of Computing

i

P1: GIG

PE002-FM PE002-Harel PE002-Harel-FM-v1.cls March 19, 2004 19:35

We work with leading authors to develop the
strongest educational materials in computing,
bringing cutting-edge thinking and best learning
practice to a global market.

Under a range of well-known imprints, including
Addison-Wesley, we craft high quality print and
electronic publications which help readers to understand
and apply their content, whether studying or at work.

To find out more about the complete range of our
publishing, please visit us on the World Wide Web at:
www.pearsoned.co.uk

ii

P1: GIG

PE002-FM PE002-Harel PE002-Harel-FM-v1.cls March 19, 2004 19:35

Algorithmics
The Spirit of Computing
THIRD EDITION

David Harel
The Weizmann Institute

with

Yishai Feldman
The Interdisciplinary Center, Herzliya

iii

P1: GIG

PE002-FM PE002-Harel PE002-Harel-FM-v1.cls March 19, 2004 19:35

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsoned.co.uk

First published 1987
Second edition 1992
Third edition published 2004

C© Addison-Wesley Publishers Limited 1987, 1992
C© Pearson Education Limited 2004

The rights of David Harel and Yishai Feldman to be identified as authors of this work
have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without either the prior written permission of the
publisher or a licence permitting restricted copying in the United Kingdom issued by the
Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP.

The programs in this book have been included for their instructional value. They have been
tested with care but are not guaranteed for any particular purpose. The publisher does not
offer any warranties or representations nor does it accept any liabilities with respect to the
programs.

All trademarks used herein are the property of their respective owners. The use of any
trademark in this text does not vest in the author or publisher any trademark ownership rights
in such trademarks, nor does the use of such trademarks imply any affiliation with or
endorsement of this book by such owner.

ISBN 0 321 11784 0

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Library of Congress Cataloging-in-Publication Data
Harel, David, 1950–

Algorithmics : the spirit of computing / David Harel, with Yishai Feldman.–3rd ed.
p. cm.

Includes bibliographical references and index.
ISBN 0-321-11784-0
1. Computer algorithms. I. Feldman, Yishai A., 1958– II. Title.

QA76.9.A43H37 2004
005.1–dc22 2004041063

10 9 8 7 6 5 4 3 2 1
08 07 06 05 04

Typeset by 59 in 10/12pt Times
Printed and bound in Great Britain by Biddles Ltd., Guildford and King’s Lynn

iv

P1: GIG

PE002-FM PE002-Harel PE002-Harel-FM-v1.cls March 19, 2004 19:35

For my dear mother, Joyce Fisch
And in memory of my dear father, Harold Fisch

Beloved parents and gifted teachers both

(D.H.)

To the memory of my dear parents,
Hadassa and Moshe Feldman

For their unfailing love and support

(Y.F.)

v

P1: GIG

PE002-FM PE002-Harel PE002-Harel-FM-v1.cls March 19, 2004 19:35

Tell me, I pray thee,
in what thy great strength lies

JUDGES 16: 6

Behold, this I have found . . .

counting one thing to another, to find out the sum

ECCLESIASTES 7: 27

vi

P1: GIG

PE002-FM PE002-Harel PE002-Harel-FM-v1.cls March 19, 2004 19:35

Contents

Declare the things
that are to come
hereafter

ISAIAH 41: 23

Preface xi

Acknowledgments xvii

Part I. Preliminaries 1

� 1. Introduction and Historical Review 3
or, What’s It All About?

� 2. Algorithms and Data 19
or, Getting It Done

� 3. Programming Languages and Paradigms 49
or, Getting It Done by Computer

Part II. Methods and Analysis 79

� 4. Algorithmic Methods 81
or, Getting It Done Methodically

� 5. The Correctness of Algorithms 99
or, Getting It Done Right

vii

P1: GIG

PE002-FM PE002-Harel PE002-Harel-FM-v1.cls March 19, 2004 19:35

viii Contents

� 6. The Efficiency of Algorithms 129
or, Getting It Done Cheaply

Part III. Limitations and Robustness 157

� 7. Inefficiency and Intractability 159
or, You Can’t Always Get It Done Cheaply

� 8. Noncomputability and Undecidability 191
or, Sometimes You Can’t Get It Done At All!

� 9. Algorithmic Universality and Its Robustness 219
or, The Simplest Machines That Get It Done

Part IV. Relaxing the Rules 255

� 10. Parallelism, Concurrency, and Alternative Models 257
or, Getting Lots of Stuff Done at Once

� 11. Probabilistic Algorithms 297
or, Getting It Done by Tossing Coins

� 12. Cryptography and Reliable Interaction 317
or, Getting It Done in Secret

Part V. The Bigger Picture 335

� 13. Software Engineering 337
or, Getting It Done When It’s Large

� 14. Reactive Systems 357
or, Getting It to Behave Properly Over Time

� 15. Algorithmics and Intelligence 379
or, Are They Better at It Than Us?

P1: GIG

PE002-FM PE002-Harel PE002-Harel-FM-v1.cls March 19, 2004 19:35

Contents ix

Postscript 401

Selected Solutions 403

Bibliographic Notes 433

Index 495

P1: GIG

PE002-FM PE002-Harel PE002-Harel-FM-v1.cls March 19, 2004 19:35

x

P1: GIG

PE002-FM PE002-Harel PE002-Harel-FM-v1.cls March 19, 2004 19:35

Preface

(written for the First Edition)
Read this, I pray thee

ISAIAH 29: 12

This book tells a story. The story concerns the concepts, ideas, methods, and results
fundamental to computer science. It is not specifically about computer technology,
nor is it about computer programming, though obviously it is heavily influenced by
both.

The book is intended to fill a rather disturbing gap in the literature related to
the computer revolution. Scores of excellent books can be found on computers
themselves, with details of their structure, workings, and operation. There are also
numerous books about the act of writing programs for computers in any of a growing
number of languages. These books come at a wide range of levels, some aimed at
people with no computer-related background at all, and some aimed at the most
computer-literate professionals. In addition, there are many books on subjects pe-
ripheral to the technology, such as the social and legal aspects of the revolution,
as well as books describing the relevance of computers to a variety of application
areas. All this comes as no surprise. People are curious about computers, and want
to learn how to put them to use. They are typically interested in specific kinds of
computers, and often for specific purposes, too.

Then there are textbooks. Indeed, computer science is a fast-growing academic
discipline, with ever-larger numbers of potential students knocking at the doors of
admission offices. Well-established academic disciplines have a habit of yielding
excellent textbooks, and computer science is no exception. Over the years many
comprehensive and clearly written textbooks have appeared, containing detailed
technical accounts of the subjects deemed appropriate to students of computer sci-
ence. However, despite the dizzying speed with which some of the technological
innovations become obsolete and are replaced by new ones, the fundamentals of the
science of computation, and hence many of the basic concepts that are considered
important in a computer science curriculum, change slowly, if at all. Of course, new
technologies and new languages require revisions in scientific emphasis, which are
eventually reflected in the scientific literature. However, by and large, there is almost

xi

P1: GIG

PE002-FM PE002-Harel PE002-Harel-FM-v1.cls March 19, 2004 19:35

xii Preface

universal agreement on a core of fundamental topics that computer science students
should be taught.

It would appear that anyone associated with computers ought to be aware of these
topics, and not only those who have decided to spend three or four years getting
a particular kind of academic diploma. Moreover, given that a revolution is indeed
taking place before our very eyes, many of these topics, and the special ways of
thinking that go with them, ought to be available to the enquiring person even if that
person is not directly associated with a computer at all.

Books concerned primarily with computers or programming are intended to fulfill
quite different needs. Computers are made of bits and bytes, and programming is car-
ried out using languages with rigid rules of grammar and punctuation. Consequently,
computer books often suffer from the “bit/byte syndrome” and programming books
from the “semicolon syndrome.” In other words, the reader becomes predominantly
involved in the principles of a particular computer or the syntactic rules of a particu-
lar programming language (or both). It would seem that things cannot be explained
without first describing, in detail, either a machine or a medium for communicating
with one (or both).

Many advanced textbooks do treat the fundamentals, but by their very nature
they concentrate on specific topics, and do so at an advanced technical level that
is usually unsuitable for the general reader. Even professional programmers and
systems analysts might lack the background or motivation required to get through
books aimed at full-time computer science students.

Curiously, there appears to be very little written material devoted to the science
of computing and aimed at the technically-oriented general reader as well as the
computer professional. This fact is doubly curious in view of the abundance of
precisely this kind of literature in most other scientific areas, such as physics, biology,
chemistry, and mathematics, not to mention humanities and the arts. There appears to
be an acute need for a technically-detailed, expository account of the fundamentals of
computer science; one that suffers as little as possible from the bit/byte or semicolon
syndromes and their derivatives, one that transcends the technological and linguistic
whirlpool of specifics, and one that is useful both to a sophisticated layperson and
to a computer expert. It seems that we have all been too busy with the revolution to
be bothered with satisfying such a need.

This book is an attempt in this direction. Its objective is to present a readable
account of some of the most important and basic topics of computer science, stress-
ing the fundamental and robust nature of the science in a form that is virtually
independent of the details of specific computers, languages, and formalisms.

� �

This book grew out of a series of lectures given by the first author on “Galei Zahal,”
one of Israel’s national radio channels, between October 1984 and January 1985. It is
about what shall be called algorithmics in this book, that is, the study of algorithms.
An algorithm is an abstract recipe, prescribing a process that might be carried out
by a human, by a computer, or by other means. It thus represents a very general
concept, with numerous applications. Its principal interest and use, however, is in
those areas where the process is to be carried out by a computer.

P1: GIG

PE002-FM PE002-Harel PE002-Harel-FM-v1.cls March 19, 2004 19:35

Preface xiii

The book could be used as the basis of a one-semester introductory course in
computer science or a general computer science literacy course in science and
engineering schools. Moreover, it can be used as supplementary reading in many
kinds of computer-related educational activities, from basic programming courses
to advanced graduate or undergraduate degree programs in computer science. The
material covered herein, while not directly aimed at producing better programmers
or system analysts, can aid people who work with computers by providing an overall
picture of some of the most fundamental issues relevant to their work.

� �

The preliminary chapters discuss the concept of an algorithmic problem and the
algorithm that solves it, followed by cursory discussions of the structure of algo-
rithms, the data they manipulate, and the languages in which they are programmed.
With the stage thus set, Part Two of the book turns to some general methods and
paradigms for algorithmic design. This is followed by two chapters on the ana-
lysis of algorithms, treating, respectively, their correctness and efficiency (mainly
time efficiency), including techniques for establishing the former and estimating the
latter. Part Three of the book is devoted to the inherent limitations of effectively
executable algorithms, and hence of the computers that implement them. Certain
precisely defined problems, including important and practical ones, are shown to
be provably not solvable by any computers of reasonable size in any reasonable
amount of time (say, the lifetime of a person), and never will be. Worse still, it is
shown that some problems are provably not solvable by computers at all, even with
unlimited time! In Part Four of the book1 the requirements are relaxed, for example,
by employing concurrent activities or coin tossing, in order to overcome some
of these difficulties. These chapters also discuss reactive and distributed systems,
and cryptography. Finally, the relationship of computers to human intelligence is
discussed, emphasizing the “soft” heuristic, or intuitive, nature of the latter, and the
problems involved in relating it to the “hard” scientific subject of algorithmics.

The book is intended to be read or studied sequentially, not to be used as a
reference. It is organized so that each chapter depends on the previous ones, but
with smooth readability in mind. Most of the material in the preliminary Part One
should be familiar to people with a background in programming. Thus, Chapters 1
and 2 and parts of Chapter 3 can be browsed through by such readers.

Certain sections contain relatively technical material and can be skipped by the
reader without too much loss of continuity. They are indented, set in smaller type
and are prefixed by a small square. It is recommended, however, that even those
sections be skimmed, at least to get a superficial idea of their contents.

Whenever appropriate, brief discussions of the research topics that are of current
interest to computer scientists are included. The text is followed by a section of
detailed bibliographic notes for each chapter, with “backward” pointers connecting
the discussions in the text with the relevant literature.

� �
1 See the section below, “New to the third edition,” as there is now a fifth Part and the division is

somewhat different.

P1: GIG

PE002-FM PE002-Harel PE002-Harel-FM-v1.cls March 19, 2004 19:35

xiv Preface

It is hoped that this book will facilitate communication between the various groups
of people who are actively involved in the computer revolution, and between that
group, and those who, for the time being, are observers only.

David Harel
Pittsburgh, Pennsylvania February, 1987

� New to the Second Edition

See, this is new; but it has already been

ECCLESIASTES 1: 10

The first edition of this book was intended to be read from beginning to end, and
could be used as supplementary reading in a number of courses. Teaching a course
based exclusively on it was possible, but would have required the instructor to
prepare exercises and add examples and more detail in certain places. The present
edition contains numerous exercises, as well as solutions to about a third of them.
The solved exercises can thus be used to supplement the text. Three chapters have
not been supplied with exercises. Chapter 1 is an introduction, the bulk of Chapter 3
is really just a brief survey of several programming languages, and Chapter 12 is a
nontechnical account of some topics in artificial intelligence.2 In a sense, the three
are not integral parts of the topic of the book—algorithmics—and hence in teaching
a course based on the book these should probably be assigned as homework reading.

The text itself remains largely without change, except for a new section in
Chapter 11 describing the recent topics of interactive proofs and zero-knowledge.
The reader may wonder why a more extensive revision of the text was not called
for. Have computer scientists been idle during the five years since the first edition
was written? Rather than taking this as a criticism of the field, I think that it shows
that the topics selected for inclusion in the book are really of fundamental nature,
so that no significant changes had to be made. The issues discussed herein are thus
probably basic and lasting. Maybe the term “classical” is most fitting.

David Harel
Rehovot, Israel May, 1991

� New to the Third Edition

they three were of one measure

EZEKIEL 40: 10

This time around, a significant revision was carried out. There are several important
changes in this edition of the book, compared to the first and second editions,
including two brand new chapters, new sections, and more.

2 Again, see the section below, “New to the third edition,” as some of these chapter numbers have changed.

P1: GIG

PE002-FM PE002-Harel PE002-Harel-FM-v1.cls March 19, 2004 19:35

Preface xv

The first noticeable difference is that for this revision I needed real help . . . ,
and was fortunately joined by Yishai Feldman. He has taken part in all aspects of
the revision, but most significantly took upon himself the thorough revision of the
material on programming languages and the writing of the new chapter on software
engineering.

The main changes are as follows:
The book now has five Parts, rather than four. In Part I (Preliminaries) Chapter 3

has been completely rewritten, and is now titled “Programming Languages and
Paradigms.” The list of languages discussed has been revised and is organized into
paradigms, thus giving a more informative and updated exposition of the media we
use when we program computers. Discussions of some languages (e.g., APL and
SNOBOL) have been dropped altogether and those of others (e.g., C, C++ and JAVA)
have been added.

Part II (Methods and Analysis) and Part III (Limitations and Robustness), i.e.,
Chapters 4 through 9, required no sweeping changes. This can again be attributed
to the “classical” nature of the topics chosen for these, as mentioned in the “New to
the second edition” section above.

The first chapter of Part IV (Relaxing the Rules) was previously titled “Paral-
lelism and Concurrency” and is now called “Parallelism, Concurrency, and Alterna-
tive Models.” It incorporates new sections on quantum computing, including Shor’s
factoring algorithm, and a discussion of molecular computing. These topics may be
considered to be additional forms of parallelism, albeit more radical ones. The re-
maining two chapters of Part IV were constructed by separating out the material on
probabilistic algorithms (Chapter 11) from that on cryptography (now Chapter 12)—
presented together in a single chapter in the previous editions—and extending both
by discussions of some of the new developments in these fields.

Part V (The Bigger Picture) ends with the closing chapter of the previous edi-
tions, “Algorithmics and Intelligence,” which is now Chapter 15. However, this
is now preceded by two new chapters: Chapter 13, “Software Engineering,” and
Chapter 14, “Reactive Systems.” The first of these is an attempt to provide a general
introduction to the issues and problems arising in the development of large soft-
ware systems. The second new chapter zeros in on the particular difficulties arising
in the special case of reactive systems, as a result of their complex behavior over
time.

Besides these more noticeable changes, the entire text has been brought up to
date in many less subtle and more subtle ways. There are discussions on abstract
data types, on the nonapproximability of certain NP-complete problems, on proba-
bilistically checkable proofs, and on the brand new AKS polynomial-time algorithm
for primality. The final chapter has been modified in many places too, e.g., with a
discussion added on the Chinese room argument.

While we have left the exercises and solutions essentially as they were in the
second edition, the bibliographic notes were a completely different story. Twelve
years in Computer Science is almost an eternity . . . The format of the notes is the
same as in the previous editions; i.e., a general section at the start of each chapter,
which lists relevant books and periodicals, followed by detailed notes that progress
with the text of the chapter itself and point back to its page numbers. In revising
them, we had to prepare new notes for the large amount of newly added material,
of course, but we also had to painstakingly reconsider and thoroughly revise the
entire set of existing notes. Hopefully, the result of all of this will turn out to be a

P1: GIG

PE002-FM PE002-Harel PE002-Harel-FM-v1.cls March 19, 2004 19:35

xvi Preface

useful and up-to-date tool linking the text of this expository book with the accepted
archival scientific literature.

Now that the revision is done, if hard-pressed to give my list of the most significant
developments in pure, “classical” algorithmics (i.e., excluding software and systems
engineering) in the last dozen or so years, it would probably contain three: the non-
approximability results for NP-complete problems, Shor’s quantum polynomial time
factoring algorithm, and the AKS polynomial-time primality test. And all I can say
about these is this: wouldn’t it be wonderful if the bulk of the work on the next
edition of this book—if and when, of course—will be spent on results of similar
caliber and importance.

David Harel
Rehovot, Israel August, 2003

a threefold cord is not quickly broken

ECCLESIASTES 4: 12

Write the vision, and make it plain upon tablets,
that he who reads it may run

HABAKKUK 2: 2

P1: GIG

PE002-FM PE002-Harel PE002-Harel-FM-v1.cls March 19, 2004 19:35

Acknowledgments

Therefore will I give
thanks to thee

PSALM 18: 50

First thanks go to my home institution, the Weizmann Institute of Science, for
providing the ideal supportive and encouraging environment for this kind of
endeavor.

My deepest gratitude goes to Yishai Feldman (who was my very first PhD student
many years ago, and) who graciously agreed to join me in the preparation of this,
the third, edition. I am grateful for the time, energy, and talent he put into this
project. There is absolutely no way the revision would have been carried out without
him.

Parts of the original edition of the book were written while I was visiting Digital
Equipment Corporation’s Systems Research Center in Palo Alto, California, in the
summer of 1985 and Carnegie-Mellon University’s Computer Science Department
for the 1986/7 academic year. I would like to express my deepest gratitude for these
opportunities to work on the book undisturbed. Later visits to Cornell University,
Bell Labs, NASA, and Lucent Technologies provided time to work on some of the
revisions for the second and third editions.

The late T. Yuval, Managing Editor of the Broadcast University programs on the
Israeli radio channel “Galei Zahal,” deserves special thanks for convincing me to
prepare the 1983–4 lecture series out of which the original version of this book later
grew.

I am indebted to my colleagues at the Weizmann Institute, A. Pnueli, A. Shamir,
and S. Ullman, for discussions related to the material appearing herein. It is amazing
how one’s whole approach can benefit from being surrounded by researchers of such
caliber.

A very special thanks goes to R. Rosner, who co-authored the exercises and
solutions, which first appeared as part of the second edition, and to Eyal Mashiah
for his help in preparing the index for the present edition.

I am grateful to the many people who read parts of the original 1987 manuscript or
later editions, identified errors, made bibliographic suggestions, or provided helpful

xvii

P1: GIG

PE002-FM PE002-Harel PE002-Harel-FM-v1.cls March 19, 2004 19:35

xviii Acknowledgments

and insightful feedback. They include: S. Banerjee, M. Ben-Ari, H. Berliner, S. D.
Brookes, A. K. Chandra, N. Dershowitz, R. Fagin, A. Fiat, J. Gal-Ezer, A. Heydon,
C. A. R. Hoare, L. Kari, D. E. Knuth, Q. Limmois, W. Pollock, R. Raz, Z. Reisel,
E. Roberts, R. Rosner, S. Safra, J. Seiferas, D. Sherman, R. Sherman, B. Simons,
D. Sleator, R. Topor, D. Tygar, M. Vardi, P. Wegner, and L. Zuck.

D.H.

P1: GIG

PE002-01drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:38

P A R T I

Preliminaries

Now, these are the foundations

II CHRONICLES 3: 3

1

P1: GIG

PE002-01drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:38

2

P1: GIG

PE002-01drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:38

C H A P T E R 1

Introduction and Historical
Review

or, What’s It All About?

Though thy beginning
was small, yet thy
end will be very
great

JOB 8: 7

Computers are amazing machines. They seem to be able to do anything. They fly
aircraft and spaceships, and control power stations and hazardous chemical plants.
Companies can no longer be run without them, and a growing number of sophisti-
cated medical procedures cannot be performed in their absence. They serve lawyers
and judges who seek judicial precedents in scores of documented trials, and help
scientists in performing immensely complicated and involved mathematical com-
putations. They route and control millions of telephone calls in networks that span
continents. They execute tasks with enormous precision—from map reading and
typesetting to graphical picture processing and integrated circuit design. They can
relieve us of many boring chores, such as keeping a meticulous track of home ex-
penses, and at the same time provide us with diverse entertainment such as computer
games or computerized music. Moreover, the computers of today are hard at work
helping design the even more powerful computers of tomorrow.

It is all the more remarkable, therefore, that the digital computer—even the most
modern and complex one—can be thought of as merely a large collection of switches.
These switches, or bits as they are called, are not “flipped” by the user, but are special,
internal switches that are “flipped” by the computer itself. Each bit can be in one
of two positions, or, to put it another way, can take on one of two values, 0 or 1.
Typically, the value of a bit is determined by some electronic characteristic, such as
whether a certain point has a positive or a negative charge.

A computer can directly execute only a small number of extremely trivial opera-
tions, like flipping, zeroing, or testing a bit. Flipping changes the bit’s value, zeroing
makes sure that the bit ends up in the 0 position, and testing does one thing if the
bit is already in the 0 position, and another if it is not (see Figure 1.1).

Computers may differ in size (according to the number of available bits), in
the types of elementary operations they can perform, in the speed in which these
operations are performed, in the physical media that embody the bits and their
internal organization, and, significantly, in their external environment. This last item
means that two computers, which are otherwise similar in function, might seem very

3

P1: GIG

PE002-01drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:38

4 I. Preliminaries

01011

01001

01101

flip this bit

flip this bit

Flipping

01011

01001

01001

zero this bit

zero this bit

Zeroing

01011

01011

11011

if this bit
is 1, flip
this bit

if this bit
is 1, flip

this bit

Testing

Figure 1.1

Operations on bits.

different to an observer: one might resemble a television set with a keyboard, while
the other might be buried under the dials and knobs of an automatic knitting machine.
However, the outward appearance is of peripheral importance when compared to
the bits and their internal arrangement. It is the bits that “sense” the external stimuli
arriving from the outside world via buttons, levers, keys on a keyboard, electronic
communication lines, and even microphones and cameras. It is the bits that “decide”
how to react to these stimuli and respond accordingly by directing other stimuli to
the outside via displays, screens, printers, loudspeakers, beepers, levers, and cranks.

How do the computers do it? What is it that transforms such trivial operations
on bits into the incredible feats we see computers perform? The answer lies in the
central concepts of this book: the process, and the algorithm that prescribes it and
causes it to take place.

� Some Gastronomy

Imagine a kitchen, containing a supply of ingredients, an array of baking utensils,
an oven, and a (human) baker. Baking a delicious raisin cake is a process that is
carried out from the ingredients, by the baker, with the aid of the oven, and, most
significantly, according to the recipe. The ingredients are the inputs to the process,
the cake is its output, and the recipe is the algorithm. In other words, the algorithm
prescribes the activities that constitute the process. The recipes, or algorithms, rel-
evant to a set of processes under discussion are generally called software, whereas
utensils and oven represent what is generally known as hardware. The baker, in
this case, can be considered a part of the hardware (see Figure 1.2).

As in the case of bit operations, the baker/oven/utensils constellation has very
limited direct abilities. This cake-baking hardware can pour, mix, spread, drip, light
the oven, open the oven door, measure time, or measure quantities but cannot directly
bake cakes. It is the recipes—those magical prescriptions that convert the limited
abilities of kitchen hardware into cakes—and not ovens or bakers, that are the subject
of this book.

P1: GIG

PE002-01drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:38

1. Introduction and Historical Review 5

recipe
oven

utensils
baker

(software) (hardware)

ingredients

cake

Figure 1.2

Baking a cake.

Recipes, as just mentioned, are called algorithms here, while the area of human
study, knowledge, and expertise that concerns algorithms will be termed algorith-
mics in this book. The analogy drawn here has been made as exact as possible: the
recipe, which is in a sense an abstract entity, is the algorithm; the formal written ver-
sion of the recipe, such as the one found in a cookbook, is analogous to a computer
program. Software actually refers more to programs—precise representations of
algorithms written in special computer-readable languages—than to the algorithms
themselves. However, until we discuss programming languages in Chapter 3, this
distinction is quite immaterial.

We confront algorithms wherever we go. Many everyday processes are governed
by algorithms: changing a flat tire, constructing a do-it-yourself cabinet, knitting
a sweater, dividing numbers, looking up a telephone number, updating a list of
expenses, or filling out an income tax form. Some of these (division, for example)
might be more immediately related in our minds to computers, than others (cabinet
construction, for example), but this is of less concern to us here. Although computers
are fundamental to the topic of this book, we shall not concentrate on their physical
aspects at all, except implicitly in parts of Chapters 3 and 9. It is with their spirit
that we are concerned; with the recipes that make them tick—with their algorithms.

� Algorithmics vs. Computer Science

Algorithmics is more than a branch of computer science. It is the core of computer
science, and, in all fairness, can be said to be relevant to most of science, business,
and technology. The very nature of algorithmics renders it particularly applicable to
those disciplines that benefit from the use of computers, and these are fast becoming
an overwhelming majority.

P1: GIG

PE002-01drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:38

6 I. Preliminaries

People have been known to ask: “What really is computer science? Why don’t we
have submarine science, dishwasher science, or telephone science?” Telephones and
dishwashers, it might be argued, are as important to modern life as computers are;
perhaps more so. A slightly more focussed question is whether computer science
is subsumed by such classical disciplines as mathematics, physics, neuro-science,
electrical engineering, linguistics, logic, and philosophy.

This book does not attempt to answer these questions. It is hoped, however, that
the book will implicitly convey something of the uniqueness and universality of
algorithmics, and hence something of the importance of computer science as an
autonomous—albeit, young—field of study. Since computers could conceivably re-
strict the generality of algorithmics, some people view the unavoidable link between
the two as unfortunate. In fact, terming the field “computer science,” someone once
said, is like referring to surgery as “knife science.” Be that as it may, it is clear that
algorithmics would never have developed the way it has without that link. However,
it is generally agreed that the term “computer science” is misleading, and that some-
thing like “information science,” “process science,” or “the science of the discrete”
might be better. Again, we only claim that our subject matter, algorithmics, forms
the underpinnings of computer science, not that it replaces it.

Some of the topics we discuss in the sequel, such as the existence of problems that
computers cannot solve, have philosophical implications, not only on the limits of
the wonderful machines we are able to build, but also on our own limits as mortals
with finite mass and a finite life span. The profound nature of such implications
notwithstanding, the emphasis in this book is on the more pragmatic goal of acquiring
a deep understanding of the fundamentals of machine-executable processes, and the
recipes, or algorithms, that govern them.

� �

� Some History

Let us now review several important milestones in the development of computers
and computer science, mainly to illustrate that as an orderly scientific discipline the
field is extremely young.

Somewhere between 400 and 300 B.C., the great Greek mathematician Euclid
invented an algorithm for finding the greatest common divisor (gcd) of two positive
integers. The gcd of X and Y is the largest integer that exactly divides both X and
Y . For example, the gcd of 80 and 32 is 16. The details of the algorithm itself are
of no concern here, but the Euclidian algorithm, as it is called, is considered to be
the first non-trivial algorithm ever devised.

The word algorithm is derived from the name of the Persian mathematician
Mohammed al-Khowârizmı̂, who lived during the ninth century, and who is cred-
ited with providing the step-by-step rules for adding, subtracting, multiplying, and
dividing ordinary decimal numbers. When written in Latin, the name became Algo-
rismus, from which algorithm is but a small step. Clearly, Euclid and al-Khowârizmı̂
were algorithmicians par excellence.

Turning from software to hardware, one of the earliest machines to carry out a pro-
cess controlled by what might be called an algorithm was a weaving loom invented

P1: GIG

PE002-01drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:38

1. Introduction and Historical Review 7

in 1801 by a Frenchman, Joseph Jacquard. The pattern woven was determined by
cards with holes punched at various locations. These holes, which were sensed by
a special mechanism, controlled the selection of threads and other actions of the
machine. It is interesting that Jacquard’s loom had nothing to do with the narrow
numerical connotation of the term “computation.”

One of the most important and colorful figures in the history of computer science
was Charles Babbage. This English mathematician, after having partially built a
machine in 1833, called “the difference engine,” for evaluating certain mathematical
formulas, conceived and planned a remarkable machine that he called “the analytical
engine.” In contrast to the difference engine, which was designed to carry out a
specific task, the analytical engine was to have been capable of executing algorithms,
or programs, encoded by the user as holes punched in cards. Had the analytical
engine been built, it would have been the mathematical analogue of Jacquard’s
loom, which was in fact its inspiration. Needless to say, Babbage’s machine was
mechanical in nature, based on levers, cogs, and gears, rather than on electronics
and silicon. Nevertheless, the ideas present in his design of the analytical engine
form the basis of the internal structure and workings of today’s computers. Babbage
is generally considered to have lived well ahead of his time, and his ideas were not
really appreciated until much later.

Ada Byron, Countess of Lovelace, was Babbage’s programmer. She is one of the
most interesting figures in the history of computing, and is credited with laying the
foundations for programming, more than a hundred years before the first working
computer was available.

An American engineer by the name of Herman Hollerith invented a machine,
also based on punched cards, that was used by the American Census Bureau to
help tabulate the 1890 national census. However, the first general-purpose com-
puters were built only in the 1940s, partly as a response to the computational
needs of physicists and astronomers, and partly as a natural outgrowth of the avail-
ability of the appropriate electromechanical and electronic devices. Ironically, the
Second World War, with its bomb-building and code-cracking activities, also helped.
Some of the key figures in this crucial and exciting period were the Englishman
Alan Turing, the Americans Howard Aiken, John Mauchly, J. Presper Eckert, and
Herman Goldstine, and the famous German/American mathematician John von
Neumann.

Returning to software and algorithmics, the mid-1930s witnessed some of the
most fundamental work on the theory of algorithms, yielding results that concern
the capabilities and limitations of machine-executable algorithms. It is remarkable
that this work, parts of which will be described later in the book, predated the
actual materialization of the computer. Nevertheless, it is of universal and lasting
importance. Some of the key figures here, all mathematicians, are, again, Alan
Turing, the German Kurt Gödel, the Russian Andreı̆ A. Markov, and the Americans
Alonzo Church, Emil Post, and Stephen Kleene.

The 1950s and 1960s witnessed far-reaching and rapid technological advance-
ments in computer design and construction. This can be attributed to the arrival
of the era of nuclear research and space exploration on the one hand, and to the
boom in large businesses and banks, and diverse government activity on the other.
Precise prediction of various nuclear phenomena required very heavy computing
power, as did the planning and simulation of space missions. Space exploration
also required advances in computer-supported communication, facilitating reliable

P1: GIG

PE002-01drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:38

8 I. Preliminaries

analysis and filtering, and even improvement of data that was communicated to
and from satellites and spaceships. Business, banking, and government activity re-
quired computers to help in the storage, manipulation, and retrieval of information
concerning very large numbers of people, inventory items, fiscal details, and so
on.

Interesting evidence of the importance of the technological machine-oriented de-
velopments during that period can be found in the names of the world’s largest
computer company, IBM, and one of the world’s largest computer-related profes-
sional organizations, the ACM. The former name was coined around 1920 and the
latter around the late 1940s. In both cases the “M” comes from the word “machine”:
International Business Machines, and the Association for Computing Machinery.
(IBM evolved from a company formed in 1896 by the aforementioned Herman
Hollerith to produce his tabulating machines.)

The recognition of computer science as an independent academic discipline oc-
curred around the mid-1960s, when several universities formed computer science
departments. In 1968, the ACM published a widely acclaimed recommendation for
a curriculum of courses in computer science, which forms the basis of most current
computer science programs of study at the undergraduate level. This curriculum is
revised periodically. Today, almost every academic institution has a department of
computer science, or a computer science group within its mathematics or electrical
engineering departments. The 1960s showed a renewed interest in the 1930s work
on algorithmics, and the field has been the subject of extensive and far-reaching
research ever since.

We shall not dwell any further on the present technological situation: computers
are simply everywhere. We use them to surf the internet, which means that we use
them to receive and deliver information, to read, to hear, and to see, and, of course,
to browse and buy. There are desktop, laptop, and palm-sized computers, so we need
never be without one, and the fast-closing gap between cellular phones and comput-
ers is heralding the age of wearable computers. Almost every modern appliance is
controlled by a computer, and a single modern car, for example, contains dozens of
them. Children request, and get, personal computers for their birthdays; students of
computer science in most universities are required to have their own computers for
homework assignments; and there is no industrial, scientific, or commercial activity
that is not crucially assisted by computers.

� A Strange Dichotomy

Despite all of this (or possibly as a result of it) the general public is strangely divided
when it comes to computer literacy. There are still those who know absolutely noth-
ing about computers, and then there are the members of the ever-growing class of
computer literates. Starting with the 10-year-old owners of personal computers, this
expanding group of people who use computers on a day-to-day basis includes man-
agers, engineers, bankers, technicians, and, of course, professional programmers,
system analysts, and members of the computer industry itself.

Why is this strange? Well, here is a science about which some people know
nothing, but about which a rapidly increasing number of people apparently know
everything! As it happens, however, the really unusual phenomenon is that large and

P1: GIG

PE002-01drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:38

1. Introduction and Historical Review 9

important parts of the science of computing are not sufficiently known, not only to
members of the first group, but to members of the second group as well.

It is one of the purposes of this book to try to illuminate an important facet of
the computer revolution by presenting some of the fundamental concepts, results,
and trends underlying the science of computation. It is aimed at both the novice and
the expert. A reader with no knowledge of computers will (it is hoped) learn about
their “spirit” here, and the kind of thinking that goes into making them work while
seeking elsewhere material concerning their “flesh.” The computer-knowledgeable
reader, who might find the first couple of chapters rather slow going, will (it is
hoped) be able to learn much from the later ones.

� Some Limitations of Computers

Before embarking on our tour, let us contrast the opening paragraph of this chapter
with some feats that current computers are as yet incapable of performing. We
shall return to these contrasts in the final chapter of the book, which deals with the
relationship between computers and human intelligence.

Currently, computers are capable of on-the-spot analysis of an enormous quantity
of data resulting from many X-ray pictures of a human patient’s brain, taken from
gradually increasing angles. The analyzed data is then used by the computer to
generate a cross-cut picture of the brain, providing information about the brain’s
tissue structure, thus enabling precise location of such irregularities as tumors or
excess fluids. In striking contrast, no currently available computer can analyze a
single, ordinary picture of the very same patient’s face and determine the patient’s
age with an error margin of, say, five years. However, most 12-year-old kids can!
Even more striking is the ability of a one-year-old baby to recognize its mother’s
face in a photograph it has never before seen, a feat computers are nowhere near
imitating (and this is not merely because they have no mothers . . .).

Computers are capable of controlling, in the most precise and efficient way imag-
inable, extremely sophisticated industrial robots used to construct complex pieces
of machinery consisting of hundreds of components. In contrast, today’s most ad-
vanced computers are incapable of directing a robot to construct a bird’s nest from
a pile of twigs, a feat any 12-month-old bird can perform!

Today’s computers can play chess on the level of an international grand-master,
and hence can beat the vast majority of human players. However, on changing the
rules of the game very slightly (for example, by allowing a knight two moves at a
time, or by limiting the queen’s moves to five squares), the best of these computers
will not be able to adapt without being reprogrammed or reconstructed by humans.
In contrast, a 12-year-old amateur chess player will be able to play a reasonably
good game with the new rules in a very short time, and will become better and better
with experience.

As mentioned, these dissimilarities are related to the difference between human
and computerized intelligence. We shall be in a better position to discuss these
matters further in Chapter 15, after having learnt more about algorithms and their
properties.

� �

P1: GIG

PE002-01drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:38

10 I. Preliminaries

� A Recipe

Here is a recipe for chocolate mousse, taken from Sinclair and Malinowski’s French
Cooking (Weathervane Books, 1978, p. 73). The ingredients—that is, the inputs—
include 8 ounces of semisweet chocolate pieces, 2 tablespoons of water, a 1

4 cup of
powdered sugar, 6 separated eggs, and so on. The outputs are six to eight servings
of delicious mousseline au chocolat. Here is the recipe, or the algorithm for it.

Melt chocolate and 2 tablespoons water in double boiler. When melted, stir in
powdered sugar; add butter bit by bit. Set aside. Beat egg yolks until thick and
lemon-colored, about 5 minutes. Gently fold in chocolate. Reheat slightly to melt
chocolate, if necessary. Stir in rum and vanilla. Beat egg whites until foamy.
Beat in 2 tablespoons sugar; beat until stiff peaks form. Gently fold whites
into chocolate-yolk mixture. Pour into individual serving dishes. Chill at least
4 hours. Serve with whipped cream, if desired. Makes 6 to 8 servings.

This is the “software” relevant to the preparation of the mousse; this is the al-
gorithm that controls the process of producing mousse from the ingredients. The
process itself is carried out by the “hardware,” in this case the person preparing the
mousse, together with the various utensils: the double boiler, the heating apparatus,
beater, spoons, timer, and so on.

� Levels of Detail

Let us take a closer look at the most elementary instructions present in this recipe.
Consider the instruction “stir in powdered sugar.” Why does the recipe not say “take
a little powdered sugar, pour it into the melted chocolate, stir it in, take a little
more, pour, stir, . . .?” Even more specifically, why does it not say “take 2365 grains
of powdered sugar, pour them into the melted chocolate, pick up a spoon and use
circular movements to stir it in, . . .?” Or, to be even more precise, why not “move
your arm towards the ingredients at an angle of 14◦, at an approximate velocity of
18 inches per second, . . .?” The answer, of course, is obvious. The hardware knows
how to stir powdered sugar into melted chocolate, and does not need further details.
Well, how about turning things around and asking whether it is possible that the hard-
ware knows how to prepare sugared and buttered chocolate mixture? In such a case,
the entire first part of the recipe could be replaced by the simple instruction “prepare
chocolate mixture.” Taking this to the extreme, maybe the hardware knows how to
prepare chocolate mousse. This would make it possible to replace the entire recipe by
“prepare chocolate mousse.” Given such a level of hardware expertise, a single line of
instruction is a perfect recipe for obtaining mousseline au chocolat; this short recipe
is clear, it contains no mistakes, and is guaranteed to produce the desired outputs.

Such thought experiments make it clear that the level of detail is very important
when it comes to an algorithm’s elementary instructions. It must be tailored to
fit the hardware’s particular capabilities, and should also be appropriate for the
comprehension level of a potential reader or user of the algorithm.

P1: GIG

PE002-01drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:38

1. Introduction and Historical Review 11

Consider another example learnt early in our lives, and which is somewhat closer
to computation—the orderly multiplication of numbers. Suppose we are asked to
multiply 528 by 46. We know exactly what to do. We multiply the 8 by the 6, yielding
48, write down the units digit of the result, 8, and remember the tens digit, 4; we
then multiply the 2 by the 6 and add the 4, yielding 16; we write down the units
digit 6 to the left of the 8 and remember the tens digit 1; and so on.

Here, the very same questions can be asked. Why “multiply the 8 by the 6?”
Why not “look up the entry appearing in the eighth row and sixth column of a
multiplication table,” or “add 6 to itself 8 times”? Similarly, why can’t we solve the
entire problem in one stroke by the simple and satisfactory algorithm “multiply the
two numbers?” This last question is rather subtle: why are we allowed to multiply
8 by 6 directly, but not 528 by 46? Again, it is clear that the level of detail is a crucial
feature of our acceptance of the multiplication algorithm. We assume that the relevant
hardware (in this case, we ourselves) is capable of carrying out 8 times 6 but not 528
times 46, and that we can do so in our heads, or at least we know of some other way
of doing it, so that we do not have to be told how to look up the result in a table.

These examples show the need for agreeing right at the start on the basic actions
that an algorithm is considered to be capable of prescribing. Without doing so
there is no point in trying to find algorithms for anything. Furthermore, different
problems are naturally associated with different kinds of basic actions. Recipes
entail stirring, mixing, pouring, and heating; multiplying numbers entails addition,
digit multiplication, and, significantly, remembering a digit; looking up a telephone
number might entail turning a page, moving a finger down a list, and comparing a
given name to the one being pointed at.

In the precise kinds of algorithms we shall be discussing, these basic instructions
must be stated clearly and precisely. We cannot accept things like “beat egg whites
until foamy,” since one person’s idea of foam might be quite unlike another’s! In-
structions must be adequately distinguishable from non-instructions such as “makes
6 to 8 servings.” Fuzzy phrases, such as “about 5 minutes,” have no place in an al-
gorithm suited for computer execution, as is the case with ambiguities like “serve
with whipped cream, if desired.” (Is it the actual serving, or the addition of whipped
cream, that depends on the person’s desires?) Recipes for mousse, in contrast with
the algorithms that will be of interest to us, take too many things for granted, the
most notable of which is the fact that a human being is part of the hardware. We
cannot depend on that kind of luxury, and hence have to be far more demanding.
The overall quality of an algorithm depends crucially on the selection of allowed
basic actions and their appropriateness to the matter at hand.

� Abstraction

Earlier it was stated that real computers can only carry out extremely simple opera-
tions on extremely simple objects. This might seem to contrast with the present dis-
cussion, which recommends that different algorithms be designed using basic actions
of varying levels of detail. However, the analogy is still valid. An apprentice chef may
need to be given the chocolate mousse recipe, but after a few years of making mousse
the instruction “prepare chocolate mousse” will be sufficient. We say that concepts

P1: GIG

PE002-01drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:38

12 I. Preliminaries

like “chocolate mousse,” “lemon meringue,” and “Bavaria cream” are on a higher
abstraction level than operations like “mix,” “stir,” and “pour” used in the recipes
for making them. In the same way, by appropriate programming, a computer can be
made to recognize higher-level abstractions such as numbers, text, and pictures.

As in cooking, there are many levels of abstraction in the computer, each appro-
priate for describing different kinds of algorithms. For example, the same computer
is viewed differently by a 12-year-old playing a computer game, by his sister who is
surfing the internet, by his father who is using a spreadsheet program to compute his
students’ grades, and by his mother who is writing a program for the management
of an efficacy trial of a new vaccine. None of them knows or even cares about the
bits that really make up the computational process they are using.

This process of abstracting away from the details in order to see common patterns
in the remainder is at the heart of almost every human endeavor. For example,
reading this book has an effect on your brain, which consists of several distinct
regions, each of which is composed of neurons and other cells. These cells are built
out of complex molecules, which are built out of atoms, which, in turn, are made
of more elementary particles. All these different levels of abstraction are relevant to
what happens in your brain, but they can’t all be considered together. In fact, they
belong to different fields of study: particle physics, chemistry, molecular biology,
neurobiology, and psychology. A psychologist performing experiments on short-
term memory retention will only be distracted by thinking about the relationships
between atoms and molecules in the brain.

The same is true in computer science. If we were forced to think at the bit level at
all times, the computer would hardly be useful. Instead, we can, for example, think
of a group of bits (typically eight bits, or a “byte”) as denoting a character. We can
now consider sequences of bytes to denote English words, sequences of words and
punctuation to denote sentences, and so on to paragraphs, chapters, and books. There
are algorithms appropriate for each of these levels. For example, spell-checking
applies to words but not to characters, left-justification applies to paragraphs, and
creating a table of contents applies to books. In each case, we can describe the algo-
rithm while completely ignoring the bits that make up the words, the paragraphs, or
the entire books. As this book unfolds, and especially in Chapters 3 and 9, we will be
discussing the technical means that allow us to make such abstractions. Meanwhile,
we shall describe each algorithm on the level of abstraction appropriate for it.

� Short Algorithms for Long Processes

Suppose we are given a list of personnel records, one for each employee in a certain
company, each containing the employee’s name, personal details, and salary. We are
interested in the total sum of all salaries of all employees. Here is an algorithm for
carrying out this task:

(1) make a note of the number 0;

(2) proceed through the list, adding each employee’s salary to the noted number;

(3) having reached the end of the list, produce the noted number as output.

P1: GIG

PE002-01drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:38

1. Introduction and Historical Review 13

Name Salary

John Brown

Jack White

Mike Green

Joan Silver

$21,000 21,000

0 Value of noted number

start

end

$34,400 55,400

$18,000 73,400

$26,000 547,200

Figure 1.3

Summing salaries.

Before proceeding, we should first convince ourselves that this simple algorithm
does the job. The “noted” number, which can be thought of as being memorized or
written down on a piece of paper, starts out as having the value zero. After carrying
out the addition in clause (2) for the first employee, this number actually takes on
the value of that employee’s salary. After the second employee, its value is the sum
of the salaries of the first two employees. At the end, its value is clearly the sum of
all salaries (see Figure 1.3).

It is interesting that the text of this algorithm is short and fixed in length, but the
process it describes and controls varies with the length of the employee list and can
be very, very long. Two companies, the first with one employee and the second with
a million, can both feed their employee list into the same algorithm, and the salary
summation problem will be solved equally well for each. Of course, the process will
not take long for the first company, whereas for the second it will be quite lengthy.
The algorithm, however, is fixed.

Not only is the text of the algorithm short and of fixed size, but both the small
and large company require only a single noted number in order to do the job, so that
the quantity of “utensils” here is also small and fixed.

Of course, the potential value of the noted number will presumably have to be
greater for larger companies, but there will be only one number all along.

� �

� The Algorithmic Problem

And so, we have a fixed algorithm prescribing many processes of varying lengths, the
precise duration and nature of the process depending on the inputs to the algorithm.
Indeed, even the simple example of salary summation shows a variety of possible
inputs: one-person companies, companies with a million people, companies in which
some of the salaries are zero, or ones in which all salaries are equal. At times an
algorithm must also work with bizarre inputs, such as companies with no employees
at all, or those that employ people receiving negative salaries (that is, employees
who pay the company for the pleasure of working for it).

Actually, the salary algorithm is supposed to perform satisfactorily for an infi-
nite number of inputs. There is an infinite number of perfectly acceptable lists of

P1: GIG

PE002-01drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:38

14 I. Preliminaries

employees, and the algorithm should be able to sum the salaries in any one of them
when given as an input.

This issue of infinitely many potential inputs does not quite fit the recipe analogy,
since although a recipe should work perfectly no matter how many times it is used,
its ingredients are usually described as being fixed in quantity, and hence in essence
the recipe has only one potential input (at least as quantities go; clearly the molecules
and atoms will be different each time). However, the chocolate mousse recipe could
have been made generic; that is, its list of ingredients could have read something like
“X ounces of chocolate pieces, X/4 tablespoons of water, X/32 cups of powdered
sugar, etc.,” and its final line could have been “makes 3X/4 to X servings.” This
would be more in line with the real notion of an algorithm. In its present form, the
recipe is an algorithm of somewhat trivial nature, as it is tailored for one specific set
of ingredients. It might be carried out (or, in algorithmic terminology, it might be
run or executed) several times, but with essentially the same input, since one cup
of flour is considered exactly the same as any other.

The input itself has to be legal, relative to the purpose of the algorithm. This means,
for example, that the New York Times list of bestsellers would not be acceptable as
input to the salary summation algorithm, any more than peanut butter and jelly
would be accepted as ingredients for the mousse recipe. This entails some kind of
specification of the allowed inputs. Someone must specify precisely which employee
lists are legal and which are not; where exactly in the list the salary occurs; whether it
is given in longhand (for example, $32,000) or perhaps in some abbreviated form (for
example, $32K); where an employee record ends and another begins, and so on.

To put it in the most general terms, recipes, or algorithms, are solutions to certain
kinds of problems, called computational or algorithmic problems. In the salary
example, the problem may be specified in the form of a request for a number that
represents the sum of the salaries of a list of employees of an organization. This list
may vary in length but must be organized in a particular fashion. Such a problem
can be viewed as the search for the contents of a “black box,” which is specified
by a precise definition of the legal inputs and a precise definition of the required
outputs as a function of those inputs; that is, the way in which each output depends
on the input (see Figure 1.4). An algorithmic problem has been solved when an
appropriate algorithm has been found. The black box has then actually been provided
with contents; it “works” according to that algorithm. In other words, the black box
can produce the appropriate output from any legal input by executing the process
that is prescribed and governed by that algorithm. The word “any” in the previous
sentence is very important. We are not interested in solutions that do not work for
all specified inputs. A solution that works well for only some of the legal inputs is
easy to come by. As an extreme example, the trivial algorithm:

(1) produce 0 as output.

works extremely well for several interesting lists of employees: those with no em-
ployees at all, those in which everyone earns $0.00 (or multiples thereof), as well
as those with a payroll that reflects a perfect balance between positive and negative
salaries.

P1: GIG

PE002-01drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:38

1. Introduction and Historical Review 15

characterization
of all legal

inputs

and

any legal
input

desired
output

Algorithmic solutionAlgorithmic problem

algorithm
A

characterization
of desired outputs

as a function
of inputs

Figure 1.4

The algorithmic
problem and its
solution.

Later we shall address such issues as the efficiency and practicality of algorithms.
Here we claim the minimal requirement that an algorithm does, in fact, solve the
problem, even though it might do so inefficiently. Of course, the problem itself
can specify the required behavior of a potential algorithm on undesirable inputs,
but then these inputs, although undesirable, are still legal. For example, the salary
summation problem could conceivably contain the requirement that for an employee
whose record does not show a number in the salary area but, say, a question mark,
or some other nonsensical data the algorithm should add that employee’s name to
a special list, which will be forwarded to the payroll office for further action. Such
an unorthodox list of employees is nevertheless legal; it just is not dealt with in the
standard way, but is given some special treatment that befits its abnormal nature.
Thus, keeping illegal inputs separate is the responsibility of the algorithmic problem,
while treating special classes of unusual or undesirable inputs is the responsibility
of the algorithm itself.

� Bounds on Basic Actions

There is one other important matter that we need to address at this point concerning
the execution of the basic actions, or operations, prescribed by an algorithm. It is
obvious that each of these actions must be carried out in a finite amount of time,
otherwise, of course, the algorithm will never reach an end. Thus, infinitely long
actions are bad. Actions that can take infinitesimally small amounts of time are
outlawed too, a fact that needs little justification. It is unthinkable that a machine
will ever be able to perform actions in diminishing amounts of time. The speed of
light, for one, would always serve as a limit on the speed of any machine. Similar
limits on the resources (that is, utensils) used in performing basic actions have to be
enforced too, but we shall not discuss the reasons here.

P1: GIG

PE002-01drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:38

16 I. Preliminaries

Clearly, these assumptions about basic actions indeed hold for real computers.
The basic bit-manipulation actions, for example, are precise and unambiguous, and
take bounded amounts of time and resources. Thus, as promised, the theory of
algorithmics described herein will be directly applicable to problems intended for
computer-based solution.

� The Problem and Its Solution: Summary

To summarize, an algorithmic problem consists of:

1. a characterization of a legal, possibly infinite, collection of potential input sets,
and

2. a specification of the desired outputs as a function of the inputs.

It is assumed that either a description of the allowed basic actions or a hardware
configuration together with its built-in basic actions are also provided in advance.
A solution to an algorithmic problem consists of an algorithm, composed of el-
ementary instructions prescribing actions from the agreed-on set. This algorithm,
when executed for any legal input set, solves the problem, producing the output as
required. Starting in Chapter 10 we shall be generalizing these notions, but until
then the present definition will suffice.

It is important to recognize the considerable difficulty involved in solving algo-
rithmic problems satisfactorily. By starting out with a mousse recipe and then giving
a simple summation algorithm, a certain amount of injustice has been done, as it
might appear that things are easy. Nothing is further from the truth. Algorithmic
problems, in practice, can be incredibly complex, and can take years of work to
solve successfully. Worse still, as we shall see in later chapters, many problems do
not admit satisfactory solutions, while others do not admit any solutions at all. For
many problems the status, as far as good algorithmic solutions are concerned, is as
yet unknown, despite extensive work by many talented people.

Obviously, we shall not be able to illustrate the issues treated in this book with
overly lengthy and complex examples, but we can get a feel for the difficulty in
designing algorithms by thinking about the following (informally described) algo-
rithmic problems. In the first problem the input is a legal chess position (that is, a
description of the situation reached at some point during a chess game), while the
output is the best move for White (that is, the description of a move that maximizes
White’s chances of winning the game). The second problem concerns newspa-
per distribution. Suppose 20,000 papers are to be distributed to 1000 locations in
100 towns using 50 trucks. The input contains the road distances between the towns
and between the locations within each town, the number of papers required at each
location, the present location of each truck, each truck’s newspaper-carrying ability,
as well as its gasoline capacity and miles-per-gallon performance, and details of
available drivers, including their present whereabouts. The output is to be a list,
matching drivers to trucks, and containing detailed itineraries for each of the trucks
so that the total number of miles driven is minimized. Actually, the problem calls

P1: GIG

PE002-01drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:38

1. Introduction and Historical Review 17

for an algorithm that works for any number of newspapers, locations, towns, and
trucks, so that the numbers of these also vary and form part of the inputs.

Before we can discuss issues of correctness and efficiency, or deeper questions
concerning the nature or very existence of solutions to certain algorithmic problems,
we have to learn more about the structure of algorithms, and the structure of the
objects they manipulate.

I have declared the former things from the beginning

ISAIAH 48: 3

P1: GIG

PE002-01drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:38

18

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

C H A P T E R 2

Algorithms and Data

or, Getting It Done
And this is the
fashion of which
thou shalt make it

GENESIS 6: 15

We already know that algorithms contain carefully selected elementary instructions
that prescribe the basic actions to be performed. We have not yet discussed the
arrangement of these instructions in the algorithm that enables a human or a computer
to figure out the precise order of the actions to be performed. Nor have we discussed
the objects manipulated by these actions.

An algorithm can be thought of as being executed by a little robot, or a processor
(who might appropriately be named Runaround). The processor receives orders to
run around doing this and that, where the “this and thats” are the basic actions
of the algorithm. In the salary summation algorithm of the previous chapter, little
Runaround is told to make a note of 0 and then to start working its way through the
employee list, finding salaries and adding them to the noted number. It should be
quite obvious that the order in which the basic actions are carried out is crucial. It is
of paramount importance not only that the elementary instructions of the algorithm
be clear and unambiguous, but that the same should apply to the mechanism that
controls the sequence in which those instructions are carried out. The algorithm
must therefore contain control instructions to “push” the processor in this or that
direction, telling it what to do at each step and when to stop and say “I’m done.”

� Control Structures

Sequence control is usually carried out with the aid of various combinations of
instructions called control-flow structures, or simply control structures. Even the
chocolate mousse recipe contains several typical ones, such as the following:

� Direct sequencing, of the form “do A followed by B,” or “do A and then B.”
(Every semicolon or period in the recipe hides an implicit “and then” phrase, for
example, “gently fold in chocolate; [and then] reheat slightly . . .”)

19

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

20 I. Preliminaries

� Conditional branching, of the form “if Q then do A otherwise do B,” or just “if Q
then do A,” where Q is some condition. (For example, in the recipe “reheat slightly
to melt chocolate, if necessary,” or “serve with whipped cream, if desired.”)

As it happens, these two control constructs, sequencing and branching, do not ex-
plain how an algorithm of fixed—maybe even short—length can describe processes
that can grow increasingly long, depending on the particular input. An algorithm
containing only sequencing and branching can prescribe processes of some bounded
length only, since no part of such an algorithm is ever executed more than once. Con-
trol constructs that are responsible for prescribing ever-longer processes are indeed
hidden even in the mousse recipe, but they are far more explicit in algorithms that
deal with many inputs of different sizes, such as the salary summation algorithm.
They are generically called iterations, or looping constructs, and come in many
flavors. Here are two:

� Bounded iteration, of the general form “do A exactly N times,” where N is a
number.

� Conditional iteration, sometimes called unbounded iteration, of the form “re-
peat A until Q,” or “while Q do A,” where Q is a condition. (For example, in the
recipe “beat egg whites until foamy.”)

When describing the salary summation algorithm in Chapter 1, we were quite
vague about the way the main part of the algorithm was to be carried out; we said
“proceed through the list, adding each employee’s salary to the noted number,” and
then “having reached the end of the list, produce the noted number as output.” We
should really have used an iteration construct, that not only makes precise the task of
the processor proceeding through the list, but also signals the end of the list. Let us
assume then that the input to the problem includes not only the list of employees, but
also its length; that is, the total number of employees, designated by the letter N . It is
now possible to use a bounded iteration construct, yielding the following algorithm:

(1) make a note of 0; point to the first salary on the list;

(2) do the following N − 1 times:
(2.1) add the salary pointed at to the noted number;
(2.2) point to the next salary;

(3) add the salary pointed at to the noted number;

(4) produce the noted number as output.

The phrase “the following” in clause (2) refers to the segment consisting of
subclauses (2.1) and (2.2). This convention, coupled with textual indentation to
emphasize the “nested” nature of (2.1) and (2.2), will be used freely in the sequel.

You are encouraged to seek the reason for using N − 1 and adding the final salary
separately, rather than simply using N and then producing the output and halting.
Notice that the algorithm fails if the list is empty (that is, if N is 0), since the second
part of clause (1) makes no sense.

If the input does not include N , the total number of employees, we must use a
conditional iteration that requires us to provide a way by which the algorithm can

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

2. Algorithms and Data 21

sense when it has reached the end of the list. The resulting algorithm would look
very much like the version given, but would use the form “repeat the following until
end of list reached” in clause (2). You should try writing down the full algorithm
for this case.

Notice how iteration constructs make it possible for a short portion of an algo-
rithm’s text to prescribe very long processes, the length being dictated by the size of
the inputs—in this case the length of the employee list. Iteration, therefore, is the key
to the seeming paradox of a single, fixed algorithm performing tasks of ever-longer
duration.

� Combining Control Structures

An algorithm can contain many control-flow constructs in nontrivial combinations.
Sequencing, branching, and iteration can be interleaved and nested within each
other. For example, algorithms can contain nested iterations, more commonly called
nested loops. A loop inside a loop can take on the form “do A exactly N times,”
where A itself is, say, of the form “repeat B until C .” The processor executing such
a segment has to work quite hard; each of the N times it carries out A—that is,
each time the outer loop is traversed—the inner loop must be traversed repeatedly
until C becomes true. Here the outer loop is bounded and the inner one conditional,
but other combinations are possible too. The A part of the outer loop can contain
many further segments, each of which can, in turn, employ additional sequencing,
branching, and iteration constructs, and the same goes for the inner loop. Thus, there
is no limit to the potential intricacy of algorithms.

Let us consider a simple example of the power of nested iterations. Suppose that
the problem was to sum salaries, but not of all employees, only of those who earn
more than their direct managers. Of course it is assumed that (except for the true
“boss”) an employee’s record contains the name of that employee’s manager. An
algorithm that solves this problem might be constructed so that an outer loop runs
down the list as before, but for each employee “pointed at” an inner loop searches
the list for the record of that employee’s direct manager. When the manager has
finally been found, a conditional construct is used to determine whether or not the
employee’s salary should be accumulated in the “noted number,” a decision that
requires comparing the two salaries. Upon completing this “internal” activity, the
outer loop resumes control and proceeds to the next employee, whose manager is
then sought for, until the end of the list is reached. (See Figure 2.4 for a diagrammatic
version of this algorithm.)

� Bubblesort: An Example

To further illustrate control structures, let us examine a sorting algorithm. Sorting is
one of the most interesting topics in algorithmics, and many important developments
are connected with it in one way or another. The input to a sorting problem is an
unordered list of elements, say numbers. Our task is to produce the list sorted in

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

22 I. Preliminaries

start end

First traversal Second traversal

typical
dog
body
sun

dogma

(a) (b)

dog
body

typical
dogma

sun

dog
body

typical
sun

dogma

dog
typical
body
sun

dogma

typical
dog
body
sun

dogma

typical
dog
sun

body
dogma

typical
sun
dog
body

dogma

start end

Figure 2.1

Two bubblesort
traversals on five
elements. (Arrows
indicate elements
exchanged, not
elements compared.)

ascending order. The problem can be phrased more generally by substituting, say,
lists of words for lists of numbers, with the intention that they be sorted by their
lexicographic ordering (that is, as in a dictionary or telephone book). It is assumed
that the list of elements is preceded by its length, N , and that the only way to
obtain information concerning the magnitude of these elements is to perform binary
comparisons; that is, to compare two elements and act according to the outcome of
the comparison.1

One of the many known sorting algorithms is called bubblesort. Actually, bubble-
sort is considered to be a bad sorting algorithm, for reasons explained in Chapter 6.
It is used here only to illustrate control structures.

The bubblesort algorithm is based on the following observation. If the jumbled list
is traversed in sequence, one element at a time, and whenever two adjacent elements
are found to be in the wrong order (that is, the first is larger than the second) they are
exchanged, then on completion of the traversal, the largest element is in its rightful
place; namely, at the end of the list.

Figure 2.1(a) illustrates such a traversal for a simple five-element list. (The list
has been drawn from bottom to top: the first element is the lowest in the picture.
The arrows show only the elements exchanged, not those compared.) Clearly, the
traversal might correct other incorrect orderings besides placing the maximal ele-
ment in its final position. However, Figure 2.1(a) shows that one traversal does not
necessarily sort the list. Now, a second traversal will bring the second largest ele-
ment to its proper resting point, the penultimate position in the list, as can be seen in
Figure 2.1(b). This leads to an algorithm that carries out N − 1 such traversals (why
not N?), resulting in the sorted list. The name “bubblesort” stems from the way in
which large elements “bubble up” to the top of the list as the algorithm proceeds,
exchanging places with smaller elements that are pushed lower down.

Before writing down the algorithm in more detail, it should be pointed out that
the second traversal need not extend to the last element, since by the time the second
traversal starts, the last position in the list already contains its rightful tenant—the
largest element in the list. Similarly, the third traversal need not go any further than
the first N − 2 elements. This means that a more efficient algorithm would traverse
only the first N elements in its first traversal, the first N − 1 in its second, N − 2 in
its third, and so on. We shall return to the bubblesort algorithm and this improvement

1 There is some subtlety to this. If we knew in advance, for example, that the input list consisted precisely
of half of the integers between 1 and N jumbled in some unknown way, a trivial sorting algorithm
could be written that simply prepared a new list of length N , initially containing blanks in all locations,
then directly inserted each number encountered in the input list into its proper place in the new list,
and finally simply reading out the contents of the non-blank places from beginning to end.

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

2. Algorithms and Data 23

start end

24

12

78

14

26

8

69

46

78

24

12

69

14

26

8

46

78

69

24

12

46

14

26

8

78

69

46

24

12

26

14

8

78

69

46

26

24

12

14

8

78

69

46

26

24

14

12

8

Figure 2.2

The main stages in
bubblesort of eight
elements. (The first
element of each list is
at the bottom; arrows
indicate elements
changing places.)

in Chapter 6, but for now the unimproved version will suffice. The algorithm reads
as follows:

(1) do the following N − 1 times:
(1.1) point to the first element;
(1.2) do the following N − 1 times:

(1.2.1) compare the element pointed to with the next element;
(1.2.2) if the compared elements are in the wrong order, exchange them;
(1.2.3) point to the next element.

Notice how two-level indentation is used here. The first “following,” on line (1),
involves all lines starting with 1, and the second, on line (1.2), involves those starting
with 1.2. In this way, the nested nature of the looping constructs is clearly visible.

The main steps taken by the algorithm on an eight-item list are illustrated in
Figure 2.2, where the situation is depicted just before each execution of clause (1.2).
The elements appearing above the line are in their final positions. Notice that in this
particular example the last two traversals (not shown) are redundant; the list becomes
sorted after five, not seven, traversals. However, observe that if, for example, the
smallest element happens to be last in the original list (that is, at the top in our
illustrations), then all N − 1 traversals are in fact necessary, since elements that are
to be “bubbled down” (elbbubed? . . .) cause more trouble than those that “bubble
up.”

� The “Goto” Statement

There is another important control instruction that is generally called the goto state-
ment. It has the general form “goto G,” where G marks some point in the text of
the algorithm. In our examples we could write, say, “goto (1.2),” an instruction that
causes the processor Runaround to literally go to line (1.2) of the algorithm and re-
sume execution from there. This construct is controversial for a number of reasons,
the most obvious of which is pragmatic in nature. An algorithm that contains many
“goto” statements directing control backwards and forwards in a tangled fashion

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

24 I. Preliminaries

quickly becomes very difficult to understand. Clarity, as we shall argue later, is a
very important consideration in algorithmic design.

Besides potentially reducing our ability to understand an algorithm, “goto” state-
ments can also introduce technical difficulties. What happens if a “goto” statement
directs the processor into the midst of a loop? Inserting the instruction “goto (1.2.1)”
between (1.1) and (1.2) in the bubblesort algorithm is an example of this. Is the pro-
cessor to execute (1.2.1) through (1.2.3) and then halt, or should these be executed
N − 1 times? What if the same instruction appears within the (1.2.1)–(1.2.3) se-
quence? This kind of problem is rooted in the ambiguity resulting from an attempt
to match the text of an algorithm with the process it prescribes. Clearly, there is
such a match, but since fixed algorithms can prescribe processes of varying length,
a single point in the text of the algorithm can be associated with many points in the
execution of the corresponding process. Consequently, “goto” statements are in a
sense inherently ambiguous creatures, and many researchers are opposed to using
them freely in algorithms.

� Diagrams for Algorithms

Visual, diagrammatic techniques are one way of presenting the control flow of
an algorithm in a clear and readable fashion. There are various ways of “drawing”
algorithms, as opposed to writing them down. One of the best known of these involves
writing the elementary instructions in rectangular boxes and the tests in diamond-
shaped ones, and using arrows to describe how the processor Runaround runs around
executing the algorithm. The resulting objects are called flowcharts. Figure 2.3
shows a flowchart of the regular salary summation algorithm, and Figure 2.4 shows

start

note 0;
point to first salary

add salary pointed
at

to noted number

at
end of
list?

output
noted number

stop

point to
next salary

YES NO

Loop

Figure 2.3

Flowchart for salary
summation.

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

2. Algorithms and Data 25

start

note 0;
point with P to
first employee

point with Q to
first employee

is Q
direct

manager
of P?

is Q
at end
of list?

advance Q to
next employee

advance P to
next employee

output
noted number

is P
at end
of list?

add P’s salary to
noted number

is P’s
salary more
than Q’s?

stop

NO

YES

YES

YES

YES

NO

NO

NO

In
te

rn
al

 lo
op

E
xt

er
na

l l
oo

p

Figure 2.4

Flowchart for
sophisticated salary
summation.

one for the more sophisticated version that involves only employees earning more
than their direct managers.

Notice the way an iteration shows up visually as a cycle of boxes, diamonds,
and arrows, and nested iterations show up as cycles within cycles. This explains
the use of the term “looping.” The flowcharts in Figures 2.3 and 2.4 also illustrate
the appropriateness of the term “branching” that was associated with conditional
instructions.

Flowcharts also have disadvantages. One of these is rooted in the fact that it is
more difficult to encourage people to adhere to a small number of “well-formed”
control structures. When using flowcharts it is easy to succumb to the temptation to
employ many “goto’s,” since these are depicted simply as arrows just like those that

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

26 I. Preliminaries

would represent “while” loops or conditional statements. Thus, this abuse of the
medium of flowcharts has also caused many researchers to recommend that they be
used with caution. Another concern is the fact that many kinds of algorithms simply
do not lend themselves naturally to graphical, diagrammatic rendition offered by the
likes of flowcharts. The resulting artifacts will often be spaghetti-like, decreasing,
rather than increasing, a viewer’s ability to understand what is really going on.

The above discussion notwithstanding, we shall see in Chapter 14 that there
are diagrammatic languages (we shall call them visual formalisms) that are very
successful, mainly in the context of specifying the behavior of large and complex
systems. The problem there is not describing computations, as algorithms do, but
specifying reactive and interactive behavior over time.

� �

� Subroutines, or Procedures

Suppose we are given a lengthy text and we are interested in finding out how
avaricious its author is by counting the number of sentences that contain the word
“money.” In such instances, we are not interested in the number of times the word
“money” occurs, but in the number of sentences in which it occurs. An algorithm
can be designed to run through the text looking for “money.” Upon finding such an
occurrence, it proceeds to run ahead looking for the end of a sentence, which for our
purposes is assumed to be a period followed by a space; that is, the “. ” combination.
When the end of a sentence is found, the algorithm adds 1 to a counter (that is, a
“noted number,” as in the salary summation algorithm), which was initialized to 0
at the start. It then resumes its search for “money” from the beginning of the next
sentence; that is, from the letter following the combination. Of course, the algorithm
must keep looking out for the end of the text, so that it can output the value of the
counter when it is reached.

The algorithm takes the form of an external loop whose duty it is to count the
relevant sentences. Within this loop there are two searches, one for “money” and
one for the “. ” combination, each constituting a loop in itself (see the schematic
flowchart of Figure 2.5). The point is that the two internal loops are very similar; in
fact, they both do exactly the same thing—they search for a sequence of symbols in
a text. Having both loops appear explicitly in the algorithm clearly works, but we
can do better.

The idea is to write the searching loop only once, with a parameter that is
assumed to contain the particular combination of symbols searched for. This
algorithmic segment is called a subroutine or a procedure and it is activated (or
invoked, or called) twice in the main algorithm, once with “money” as its parameter,
and once with the “. ” combination. The text of the subroutine is provided separately,
and it refers to the varying parameter by a name, say X . The subroutine assumes
that we are pointing to some place in the input text, and it might look as follows:

subroutine search-for X :

(1) do the following until either the combination X is being pointed at, or the end of the
text is reached:
(1.1) advance the pointer one symbol in the text;

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

2. Algorithms and Data 27

(2) if the end of the text is reached, output the counter’s value and stop;

(3) otherwise return to the main algorithm.

The main part of the algorithm will utilize the search subroutine twice, by instructions
of the form “call search-for ‘money’ ” and “call search-for ‘. ’ ” Contrast Figure 2.5
with Figure 2.6, in which the version with the subroutine is shown schematically.

The processor that runs around doing things will now have to be slightly more
sophisticated. When told to “call” a subroutine, it will stop whatever it has been
doing, remember where it was, pick up the parameter(s), so to speak, and move

increase
counter

check next
few symbols

check next
few symbols

initialize
counter and

pointer

start

NO

YES

YES

Searching
for end of
sentence

Searching
for “money”

NO

advance pointer
(including check
for end of text)

advance pointer
(including check
for end of text)

output counter

output counter

stop

stop

END OF TEXT

INSIDE
TEXT

INSIDE
TEXT

END OF TEXT

Figure 2.5

Schematic flowchart
for sentences with
“money.”

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

28 I. Preliminaries

subroutine
search-for X

check next
few symbols

found
X?

return stop

output counter

advance pointer
(including check
for end of text)

NO

YES
END OF TEXT

INSIDE
TEXT

start

initialize
counter and

pointer

call
search-for “money”

increase
counter

Main algorithmSubroutine

call
search-for “. ”

Figure 2.6

Sentences with
“money” using a
subroutine.

over to the text of the subroutine. It will then do whatever the subroutine tells it
to do, using the current value of a parameter wherever the subroutine refers to that
parameter by its internal name (X , in our example). If and when the subroutine tells
it to return, it will do just that; namely, it will return to the point following the “call”
that led it to the subroutine in the first place, and will resume its duties from there.

� The Virtues of Subroutines

Obviously, subroutines can be very economical as far as the size of an algorithm is
concerned. Even in this simple example, the searching loop is written once but is used
twice, whereas without it, of course, the algorithm would have had to include two
detailed versions of that loop. This economy becomes considerably more significant
for complex algorithms with many subroutines that are called from various places.
Also, an algorithm can contain subroutines that call other subroutines, and so on.
Thus, algorithmic structure is given a new dimension; there are not only nested
loops but nested subroutines. Moreover, loops, conditional statements, sequential
constructs, “goto” statements, and now subroutines, can all be interleaved, yielding
algorithms of increasing structural complexity.

Economy, however, is not the only advantage of subroutines. A subroutine can be
viewed as a “chunk” of algorithmic material, some kind of building block, which,

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

2. Algorithms and Data 29

once formed, can be used in another algorithmic chunk by a single instruction.
This is just like saying that we have extended our repertoire of allowed elementary
instructions. In the “money” counting example, once the search routine is there (and
even beforehand, as long as it has been decided that such a routine will eventually be
written) the instruction “call search-for ‘abc’ ” is, for every practical purpose, a new
elementary instruction. Thus, subroutines are one way in which we can create our
own abstractions, as is appropriate for the specific problem we are trying to solve.
This is a very powerful idea, as it not only shortens algorithms but also makes them
clear and well structured. Clarity and structure, as is repeatedly emphasized, are
of the utmost importance in algorithmics, and many an effort is devoted to finding
ways of imposing them on algorithm designers.

In the same way that a user of a computer program typically knows nothing
about the algorithms that it uses, a subroutine can be used as a “black box,” without
knowing how it is implemented. All that the user of the subroutine has to know is
what it does, but not how it does it. This greatly simplifies the problem, by reducing
the amount of detail that needs to be kept in mind.

Using subroutines, it is possible to develop a complex algorithm gradually, step by
step. A typical algorithmic problem calls for a fully detailed solution that utilizes the
allowed elementary actions only. The designer can work towards that goal gradually,
by first devising a high-level algorithm, which uses “elementary” instructions that
are not in the book. These are actually calls to subroutines that the designer has
in mind, which are written later (or, perhaps, earlier). These subroutines, in turn,
might use other instructions, which, not being elementary enough, are again regarded
as calls to subroutines that are eventually written. At some point, all elementary
instructions are at a sufficiently low level to be among those explicitly allowed. It is
then that the gradual development process ends. This approach gives rise either to a
“top-down” design, which, as just described, goes from the general to the specific, or
to a “bottom-up” design, whereby one prepares the subroutines that will be needed,
and then designs the more general routines that call them, thus working from the
detailed to the general. There is no universal agreement as to which of these is the
better approach to algorithmic design. The common feeling is that some kind of
mixture should be used. We discuss this question further in Chapter 13.

Returning for a moment to gastronomy, preparing a “chocolate mixture” might be
a good candidate for a subroutine within the chocolate mousse recipe of Chapter 1.
This would enable us to describe the recipe in the following way, where each of the
four instructions is treated as a call to a subroutine (or should we say, a sub-recipe)
whose text would then be written separately:

(1) prepare chocolate mixture;

(2) mix to produce chocolate-yolk mixture;

(3) prepare foam of egg whites;

(4) mix both to produce the mousse.

It is worth pointing out that the book from which the mousse recipe was taken
employs subroutines quite extensively. For example, pages 72–77 therein describe
a number of recipes whose ingredients contain items such as Sweet Pastry Dough,
Croissants, or Puff Pastry, for which the user is referred to previously given recipes
dedicated to these very items.

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

30 I. Preliminaries

It is fair to say that the power and flexibility provided by subroutines cannot be
overestimated.

� Recursion

One of the most useful aspects of subroutines, which to many people is also one of
the most confusing, is recursion. By this we mean simply the ability of a subroutine,
or procedure, to call itself. Now, this might sound absurd, since how on earth does
our processor come any closer to solving a problem by being told, in the midst of
trying to solve that problem, to leave everything and start solving the same problem
all over again?

The following example should aid us in resolving this paradox, and it might help if
we say at the start that the resolution is based on the very same property of algorithms
mentioned earlier: the same text (in this case, that of the recursive subroutine) can
correspond to many portions of the process described by it. Iterative constructs are
one way of mapping lengthy processes on to short texts; recursive subroutines are
another.

The example is based on a rather ancient puzzle known as the Towers of Hanoi,
originating with Hindu priests in the great temple of Benares. Suppose we are given
three towers, or to be more humble, three pegs, A, B, and C . On the first peg, A,
there are three rings piled in descending order of magnitude, while the others are
empty (see Figure 2.7). We are interested in moving the rings from A to B, perhaps
using C in the process. By the rules of the game, rings are to be moved one at a
time, and at no instant may a larger ring be placed atop a smaller one. This simple
puzzle can be solved as follows:

move A to B;
move A to C ;
move B to C ;
move A to B;
move C to A;
move C to B;
move A to B.

Before proceeding, we should first convince ourselves that these seven actions
really do the job, and we should then try the same puzzle with four rather than three
rings on peg A (the number of pegs does not change). A moderate amount of work
should suffice for you to discover a sequence of 15 “move X to Y ” actions that solve
the four-ring version.

Such puzzles are intellectually challenging, and those who enjoy puzzles may
like to consider the original Hindu version which involves the same three pegs,

A B C

Figure 2.7

The Towers of Hanoi
with three rings.

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

2. Algorithms and Data 31

but with no fewer than 64 rings on A. As we shall see in Chapter 7, the inventors
of the puzzle were not completely detached from reality when they stated that the
world will end when all 64 rings are correctly piled on peg B. However, we are
not dealing with puzzles here but with algorithmics, and consequently we are more
interested in the general algorithmic problem associated with the Towers of Hanoi
than with this or that particular instance of it. The input is a positive integer N , and
the desired output is a list of “move X to Y ” actions, which, if followed, solve the
puzzle involving N rings. Clearly, a solution to this problem must be an algorithm
that works for every N , producing a list of actions that satisfy the constraints; in
particular, following them never causes a larger ring to be placed atop a smaller
one.

This is the problem we should really be trying to solve, since once an algorithm is
available, every instance of the puzzle, be it the three-, four-, or 3078-ring version,
can be solved simply by running the algorithm with the desired number of rings as
input. Well, how is it done? The answer is simple: by the magic of recursion.

� A Solution to the Towers of Hanoi

The algorithm presented here accomplishes the task of moving N rings from A to
B via C in the following way. It first checks to see whether N is 1, in which case
it simply moves the one ring it was asked to deal with to its destination (or, more
precisely, it outputs a description of the one move that will do the job), and then
returns immediately. If N is greater than 1, it first moves the top N − 1 rings from
A to the “accessory” peg C using the same routine recursively; it then picks up the
only ring left on A, which has to be the largest ring (why?), and transfers it to its final
destination, B; it then, recursively again, moves the N − 1 rings it had previously
“stored” on C to their final destination, B. That this algorithm abides by the rules
of the game is a little difficult to see, but on the assumption that the two processes
involving the N − 1 rings contain only legal moves, it is fairly easy to see that so
does the overall process of moving the N rings.

Here then is the algorithm. It is written as a recursive routine whose title and
parameters (there are four of them) speak for themselves:

subroutine move N from X to Y using Z :

(1) if N is 1 then output “move X to Y ”;

(2) otherwise (i.e., if N is greater than 1) do the following:
(2.1) call move N − 1 from X to Z using Y ;
(2.2) output “move X to Y ”;
(2.3) call move N − 1 from Z to Y using X ;

(3) return.

To illustrate the workings of this routine, which might look rather ridiculous at first
sight, we could try running it when N is 3; that is, simulating the processor’s work
when there are three rings. This should be done by executing a “main algorithm”
consisting of the single instruction:

call move 3 from A to B using C

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

32 I. Preliminaries

start

move 2 from A to C
using B

move 3 from A to B
using C

move 2 from C to B
using A

move 1 from A to B
using C

move 1 from B to C
using A

move 1 from C to A
using B

move 1 from A to B
using C

stop

A B

A B B C C A A B

A B

A C

A C A B

C B

C BB C C A A B

1 2 3 4 5 6 7

Figure 2.8

Structured run of the
recursive solution to
the Towers of Hanoi.

The simulation should be carried out carefully, since the parameter names X , Y ,
and Z start out innocently enough as being A, B, and C , but change each time the
processor re-enters the routine. As if to make things more confusing, they resume
their old values when the “call” is over and the processor returns to where it came
from. Figure 2.8 helps illustrate the sequence of actions for this case. Notice that
the processor (and we too, if indeed we are trying to simulate the routine) now has
to remember not only where it came from in order to return to the right place, but
also what the values of the parameter names were prior to its new errand, in order to
resume its work properly. Figure 2.8 is organized to reflect the depth of recursion
and the corresponding way the parameters change values. The arrows represent the
processor’s trips: downward arrows correspond to calls, upward arrows to returns,
and horizontal arrows to simple sequencing. As if by magic, the final sequence of
actions is found to be identical to the one arrived at earlier by trial and error.

As it turns out, the Towers of Hanoi problem admits another algorithmic solution,
which employs a simple iteration and no subroutine calls at all, and can be carried
out by a small child! This algorithm will be presented in Chapter 5.

� The Expressive Power of Control Structures

Can we do with only a few simple control structures? The answer is yes. Various
minimal sets of control structures have been identified, meaning that in certain
technical senses other control structures can be replaced by appropriate combinations

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

2. Algorithms and Data 33

of those in the minimal set, so that in practice these are the only ones needed. A
well-known minimal set consists of sequencing (and-then), conditional branching
(if-then), and some kind of unbounded loop construct (for example, while-do). It is
not too difficult, for example, to show that an instruction of the form “repeat A until
Q is true,” can be replaced by “do A, and then while Q is false do A,” so that in
the presence of “while-do” constructs one can do without “repeat-until” constructs.
In a similar vein, it is possible to completely eliminate “goto” statements from any
algorithm, albeit at the expense of expanding the algorithm somewhat and changing
its original structure.

Similarly, there is a precise sense, in which anything that can be done with subrou-
tines and recursion can be done using only simple loops. However, using this result
to rid a given algorithm of its subroutines involves adding considerable “machinery”
(in the form of new elementary instructions) to the algorithm. It is possible to show
that if such machinery is not allowed, then recursive subroutines are more powerful
than iteration, so that certain things can be done with the former only. These topics
are touched upon here only in the most superficial way in order to give you some
feel for the relevant questions of interest.2

� �

� Data Types and Data Structures

So we now know what an algorithm looks like and how, given inputs, the processor
runs around executing the process the algorithm describes. However, we have been
quite vague as to the objects manipulated by an algorithm. We had lists, words, and
texts, as well as funny things like “noted numbers” that increased, and “pointers”
that made progress. If we wish to go to extremes, we can also say we had flour,
sugar, cakes, and chocolate mousse, as well as towers, pegs, and rings. These ob-
jects constituted not only the algorithm’s inputs and outputs, but also intermediate
accessories that were constructed and used during its lifetime, such as the coun-
ters (“noted numbers”) and the pointers. For all of these we use the generic term
data.3

Data elements come in various flavors, or can be of various types. Some of the
most common data types present in algorithms that are executed by computers
are numbers of various kinds (integers, decimals, binary numbers, and so on), and
words written in various alphabets. Actually, numbers can be construed as words
too; decimal integers, for example, are “words” over an alphabet consisting of the
digits 0, 1, 2, . . . , 9, and binary numbers use the alphabet consisting of 0 and 1 only.
It is beneficial, however, to keep such types separate, not only for clarity and good
order, but also because each type admits its own special set of allowed operations,
or actions. It makes no more sense to list the vowels in a number than it does to

2 To better appreciate the subtlety induced by the self-referential nature of recursion, the following book
is heartily recommended, together with those of its references that are heartily recommended therein:
D. Harel, with Y. A. Feldman, Algorithmics: The Spirit of Computing (3rd edn), Addison-Wesley,
Harlow, 2004.

3 The singular form is datum, but we shall mostly use the terms data item and data element here.

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

34 I. Preliminaries

multiply two words! And so, our algorithms will have to be told what objects they can
manipulate and precisely which manipulations are allowed. Manipulation includes
not only carrying out operations but also asking questions, such as testing whether
a number is even or whether two words start with the same letter.

These observations seem quite natural in view of our discussion of elementary
operations in Chapter 1, and are reminiscent of the facts about the bit-manipulation
capabilities of computers. Here we take basic data types and the operations and
tests associated with them for granted. What we are interested in are the ways
algorithms can organize, remember, change, and access collections of data. While
control structures serve to tell the processor where it should be going, data structures,
and the operations upon them, organize the data items in ways that enable it to do
whatever it should do when it gets there.

The world of data structures is just as rich in abstraction levels as the world of
control structures. In fact, a useful mental trick, which is the basis for the object-
oriented programming paradigm, shows that we can switch between them! This will
be discussed further in Chapter 3.

� Variables, or Little Boxes

The first objects of interest are variables. In the salary summation algorithm, for
example, we used a “noted number,” which was first initialized to 0 and was then
used to accumulate the sum of the employees’ salaries. We were actually using a
variable. A variable is not a number, a word, or some other item of data. Rather,
it can be viewed as a small box, or cell, in which a single item can be kept. We
can give the variable a name, say X , and then use instructions like “put 0 in X ,” or
“increase the contents of X by 1.” We can also ask questions about the contents of
X , such as “does X contain an even number?” Variables are very much like hotel
rooms; different people can occupy a room at different times, and the person in the
room can be referred to by the phrase “the occupant of room 326.” The term “326”
is the name of the room, just as X is the name of the variable.

This use of the word “variable” to denote a cell that can contain different values at
different times is unlike the meaning of a variable in mathematics, where it denotes
a single (usually unknown) value. In Chapter 3 we shall be discussing the functional
programming paradigm, which does not deal with cells, but with the values directly,
like in mathematics.

Algorithms typically utilize many variables with different names, and for very
different purposes. In the bubblesort algorithm, for example, a detailed version might
use one variable to count the number of times the outer loop is performed, another
for the inner loop, and a third to help in exchanging two elements in the list. To
perform the exchange, one element is “put in the box” for a moment, the other is
put in its place, and the “boxed” element is then put in the second element’s original
place. Without using the variable, there would appear to be no way to keep the first
element around without losing it. This illustrates the use of variables as memory
or storage in an algorithm. Of course, the fact that elements are exchanged many
times in one run of bubblesort does not mean that we need many variables—the
same “box” can be used each time. This is a result of the fact that all exchanges

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

2. Algorithms and Data 35

in the bubblesort algorithm are disjoint; no exchange starts before the previous one
has ended. Variables can thus be reused.

When variables are used in practice the phrase “contents of” is usually omitted,
and we write things like X ← 0 (read “X gets 0” or “set X to 0”) to set the initial
value of (that is, contents of) X to 0, and X ← X + 1 (read “X gets X + 1”) to
increase the value of X by 1. This last instruction, for example, tells the processor
to “read” the number found in X , increase it by one, and replace it with the result.
More about such instructions and the way to formally write them down can be found
in Chapter 3.

� Vectors, or Lists

Let us take a closer look at our employee list. Such a list might be viewed simply as a
multitude of data elements, which we might decide to keep, or store, in a multitude
of variables, say X, Y, Z , . . . This clearly would not enable an algorithm of fixed
size to “run” through the list, whose length can vary, since each element in the list
would have to be referred to in the algorithm by a unique name. Lengthier lists
would require more variable names and hence longer algorithms. What we need is
a way of referring to many elements in a uniform manner. We need lists of variables
that can be “run through,” or accessed in some other way, but without the need to
name each of their elements explicitly. We want to be able to “point” to elements in
these lists, to refer to the “next” element or the “previous” one, and so on. For these
purposes we use vectors, also called one-dimensional arrays.

If a variable is like a hotel room, then a vector can be thought of as an entire
corridor, or floor, in the hotel. Rooms 301, 302, . . . , 346 might be the individual
“variables”; each can be referred to separately, but in contrast to a simple collection
of variables, the entire corridor or floor also has a name (say “floor 3”), and the rooms
therein can be accessed by their index. The 15th room along that corridor is 315,
and the X th room is 3X . This means that we can use a variable to index the vector.
Changing the value of X can be used to refer to the contents of different elements
in the vector. The notation used in practice separates the name of the vector from its
index by parentheses; we write V [6] for the sixth element of vector V , and similarly
V [X] for the element of V whose index is the current value of the variable X . We
might even write V [X + 1], which refers to the element following V [X] in the list.
(Notice that V [X + 1] and V [X] + 1 denote two completely different things!)

In the bubblesort algorithm, for example, we can use a variable X to control the
inner loop, and at the very same time it can double as a pointer to the vector V
of elements being sorted. Here is what the resulting (more concise, and also more
precise) version of the algorithm might look like, with “<” standing for “is smaller
than”:

(1) do the following N − 1 times:
(1.1) X ← 1;
(1.2) while X < N do the following:

(1.2.1) if V [X + 1] < V [X] then exchange them;
(1.2.2) X ← X + 1.

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

36 I. Preliminaries

You are encouraged to modify this algorithm, incorporating the observation men-
tioned earlier, to the effect that with each traversal of the outer loop the number of
elements inspected in the inner loop can be decreased by 1.

Vectors that represent lists of elements have numerous applications. A telephone
book is a list, and so are dictionaries, personnel files, inventory descriptions, course
requirements, and so on.

In a way, a vector as a data structure is closely related to a loop as a control
structure. Traversing a vector (for the purpose of inspection, search, summation,
etc.) is typically carried out with a single iterative construct. Just as the loop is a
control structure for describing lengthy processes, so is a vector a data structure for
representing lengthy lists of data items.4

There are also special “indexed” versions of iterative control constructs, tailored
towards vector traversal. For example, we can write:

for X going from 1 to 100 do the following

which is similar to:

do the following 100 times

except that with the former we can refer directly to the X th element in a vector
within the repeated segment, whereas with the latter we cannot.

� Arrays, or Tables

In many cases it is convenient to arrange the data not in a simple, one-dimensional
list, but in a table. The corresponding algorithmic data structure is called a matrix,
or a two-dimensional array, or simply an array for short. Here too, applications
are plentiful. The standard second-grade multiplication table is a 10 by 10 array in
which the data item at each point is the product of the row and column indices; a
list of students plotted against a list of courses can be thought of as an array, where
the data items are the student’s grade in the course; the earth’s latitude/longitude
grid can be the basis of an array giving the altitudes at each intersection point, and
so on.

Referring to an array element is typically achieved using two indices, row and
column. We write A[5, 3] for the element located at row 5 and column 3, so that, for
example, if A is the multiplication table, then the value of A[5, 3] is 15. As before,
we may write A[X, Y], as well as A[X + 4, 17 − Y], and the like.

If a variable is like a hotel room and a vector is like a hotel corridor/floor, then
a matrix, or an array, is like an entire hotel. Its “rows” are the various floors, and
its “columns” represent the locations along the corridor/floor. If a vector as a data
structure corresponds to a loop as a control structure, then an array corresponds to
nested loops (see Figure 2.9). Running through the entire array of students’ grades
can be achieved by an outer loop running through all students and an inner one
running through all of a particular student’s grades, or vice versa.

4 Despite this close relationship between vectors and loops, we should emphasize that loops are used
for many other purposes, and that other control structures are also used with vectors.

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

2. Algorithms and Data 37

itemA[1, 1]

item item item item

item

item item

item

itemitem

X V[1] V[2] V[N] A[M, N]

318 301 302 348

floor 12

floor 2

floor 1

hotel room

instruction loop nested loops

hotel corridor entire hotel

Variable

Data
structure

Hotel analog

Corresponding
control

structure

Vector Array

Figure 2.9

Data structures,
control structures, and
hotels.

It is not always the case that data can be arranged in a precise rectangular format.
Take the students and courses example; different students might be associated not
only with different courses, but also with a different number of them. We might still
use an array (wide enough to contain the maximal number of possible courses), but
leaving parts of it empty, wherever the student in question has not taken the course
in question. Alternatively, we can use a new data structure, consisting of a vector
whose elements themselves point to vectors of varying length. The difference is
illustrated in Figure 2.10.

Algorithms can use more elaborate arrays, such as ones with higher dimension-
ality. A three-dimensional array is like a cube, with three indices needed to point

item

item

item item

Array Vector of vectors

item

item pointer item item

item item item

item itempointer

pointer

item

item

item

Figure 2.10

An array vs. a vector
of vectors.

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

38 I. Preliminaries

back front

Queue

in

in out

Stack

out

Figure 2.11

A queue and a stack.

to an element.5 If so desired, we can utilize only special portions of arrays, such as
the upper triangular portion of a two-dimensional array, obtained by restricting the
indices in A[X, Y] so that X is smaller than Y .

� Queues and Stacks

An interesting variation on the vector/array theme follows from the observation that
in many applications of vectors and arrays, we do not need the full power provided
by indices. Sometimes a list is used just to model a queue, in which case all the
algorithm needs in way of interaction with the list is the ability to add elements to
its “back” and remove them from its “front.” Other times the list is to model a stack,
like those used in a restaurant for storing plates. Here the algorithm needs adding
and removing abilities only at one end of the list, its “top.” A queue is sometimes
referred to as a FIFO list (First-In-First-Out), and a stack as a LIFO list (Last-In-
First-Out). Elements are pushed on to a stack, the topmost element being the only
one exposed for inspection, and then the stack can be popped, meaning that the
topmost element is removed (see Figure 2.11). The point in these special cases is
that it is worthwhile, at least for reasons of algorithmic clarity, to think of queues
and stacks as being in themselves data structures, rather than being merely special
kinds of lists. We can then use specially devised elementary instructions such as
“add X to queue A,” or “push X on stack S,” rather than obscure formulations that
explicitly involve indices.

� When discussing recursion earlier, we implicitly came across the need for a vector that
is really used only as a stack. The details will not be presented here, but you are invited
to think about the way the processor goes about remembering where it really is when
executing a recursive algorithm. Remembering its whereabouts in the text of the algorithm
does not pose a problem. What does require some bookkeeping is managing the list of
recursive calls that have not yet been completed, and figuring out where to return to when
each call is completed. It is not too difficult to see—and we can use the Towers of Hanoi
algorithm to illustrate this—that we actually need a stack. Whenever it is asked to re-enter
the routine by a recursive call, the processor “pushes” its return “address” and the current
values of the parameters on to the stack. (In the Towers example there is a choice of
two such possible addresses, corresponding to the locations of the two call instructions

5 Stretching the hotel metaphor becomes difficult here. Is a three-dimensional array not a single hotel
but a whole resort area?

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

2. Algorithms and Data 39

in the algorithm.) When it completes an execution of the recursive routine, it reads the
“pushed” information from the top of the stack, restores the old values to the parameters,
and returns to the specified address in the algorithm’s text. In the process, it also “pops”
that information off the top of the stack and discards it.

Another example of the use of stacks involves traversing a labyrinth by exhausting all
possibilities. Such a traversal requires that we keep a list of crossroads already visited,
adding new ones to the stack as they are reached, and deleting the ones whose paths have
all been traversed. In this way, the stack can be seen to contain at all times a path from
the start to the presently visited point in the labyrinth.

� Trees, or Hierarchies

One of the most important and prominent data structures in existence is the tree.
This is not a tree in the botanic sense of the word, but one of more abstract nature.
We have all seen such trees used to describe family connections. The two most
common kinds of family trees are the “ancestor tree,” which starts at an individual
and works back through parents, grandparents, and so on, and the “descendant tree,”
which works forward through children, grandchildren, and so on.

A tree is essentially a hierarchical arrangement of data. One item resides in a
special place called the root, and the others are organized as the root’s descendants.
In computer science, trees are usually visualized “upside down”—the root at the
top, and the rest of the tree spread out below. The terminology used is a strange
mixture of terms from mathematics, botany, and mono-parental family life. We talk
about the root, about a tree’s nodes (points in the tree), its offspring (immediate
descendants), its leaves (nodes at the “bottom” of the tree, having no offspring), its
paths, or branches (sequences of nodes corresponding to downward traversals in the
direction from the root to a leaf), as well as about parents, ancestors, descendants,
and siblings (two nodes are siblings if they have the same parent). Figure 2.12

Level 4

Level 3

Level 1

54.2

173 Level 2

$20

Figure 2.12

A tree.

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

40 I. Preliminaries

shows a tree, deliberately constructed with no particular explanation in mind for its
contents or arrangement. Nevertheless, the word “blink” is its root, or to use different
terminology, it is a node on level 1 of the tree; the chair and the number 173 are the
root’s offspring, or, equivalently, they are the nodes on level 2 of the tree, and so on.
An example of trees familiar to computer users is the hierarchical organization of
files in directories, which may themselves be contained in other directories.

Trees are to be found elsewhere in everyday life. The organizational charts of
most companies are trees, as are schematic descriptions of the breakup of complex
machines. Even algorithms themselves can often be described in a tree structure;
roughly speaking, the levels of the tree correspond to the levels represented by the
sequences of numbers we use in this book for labeling instructions.

Another important example concerns game trees. The root of a chess tree, for
example, contains a description of the opening board configuration in chess. The
root’s offspring represent the 20 possible board configurations resulting from White
making a first move, and the offspring of each of them would represent the results of
all possible responses on Black’s part, and so on. Most two-person game trees, like
that of chess, have a number of interesting properties. Odd-numbered levels corre-
spond to the first player’s turn to move, whereas even-numbered ones correspond
to the other player’s turn. Paths correspond to actual games, and any possible game
appears as a path in the tree. Finally, leaves represent game endings (for example,
in chess by checkmate or a threefold repetition). We shall have occasion to return
to game trees later on in the book.

Trees are used in numerous diverse applications, and more than any other struc-
tural method for combining parts into a whole they can be said to represent the
special kind of structuring that abounds in algorithmics.

� Treesort: An Example

To give some kind of feel for the usefulness of trees, let us now consider another
sorting routine, based on binary trees. A binary tree is one in which each node has
at most two offspring. (The ancestor family tree, for example, is binary.) A binary
tree can also be defined as a tree whose outdegree is bounded by 2. The advantage
of the latter term is in its generality; we can talk about trees with outdegree 17 or
938, or even of those with infinite outdegree.6 Returning to binary trees, since the
outdegree at each node is at most 2, it is convenient to distinguish between the two
offspring, referring to them as the left-hand and right-hand ones, respectively.

Treesort, as we shall call it, consists of two main steps:

(1) transform the input list into a binary search tree T ;

(2) traverse T in a left-first fashion, and output each element on the second visit.

An explanation is in order here. To sort a list of elements (say numbers), the
algorithm first organizes the elements into a special kind of binary tree, called a
binary search tree. Every node of this tree enjoys the following property: all of its

6 Notice that a tree with outdegree 1 is simply a list, or a vector.

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

2. Algorithms and Data 41

128

76

128

46 106

28 100 112 396

354 1018

402

35

76 106 402 100 46 354 1018 112 28 396 35

first last

Figure 2.13

A list and its resulting
binary search tree.

“left descendants” (that is, all elements in its entire left-hand subtree, not only its
immediate left-hand offspring) are smaller in value than the value of the node itself,
and all of its right descendants are larger than it. Figure 2.13 shows an example of
such a binary search tree. This tree can be constructed as follows: The first element
in the list is taken to be the root, and then each element is considered in turn, and is
attached to the growing tree as a new leaf, possibly “unleafing” previously inserted
leaves in the process. Finding a new element’s rightful place as a leaf in the tree
is done by comparing it repeatedly with the nodes arrived at, turning left or right
according to the outcome of the comparison. If the new element is smaller than the
element at the node we are looking at we go left (since it then belongs to the left of
that node); otherwise we go right. You should use Figure 2.13 to become acquainted
with this procedure, and should then try writing down the subroutine representing
step (1).

Now comes the interesting part. Having constructed the binary search tree, the
second stage of treesort calls for traversing it in the following manner. The processor
starts at the root and moves downwards, always keeping to the left.7 Whenever it
tries to move left but cannot (for example, when there is no left-hand offspring) it
reluctantly moves right. Having exhausted both left and right, either because it finds
no offspring, or because it has already visited those offspring, it backtracks; that is,
it moves upwards to the current node’s parent. If this upward move completes the
trip from the parent node to its left offspring, the processor turns right and plunges
downwards once more; but if it has just returned from the rightward trip, it has

7 Note that we are using the directions from the point of view of an observer looking at the tree as
pictured. The processor itself, if viewed, say, as driving a vehicle, sees our left as its right.

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

42 I. Preliminaries

128

76

46

28 100 112 396

1018354106

402

35

start endFigure 2.14

Left-first traversal of a
binary search tree.

actually exhausted both possibilities of the parent node, and so it moves up to its
parent. This process continues until both downwards directions of the tree’s root
have been exhausted, having thus traversed the entire tree. Figure 2.14 shows the
left-first traversal of the tree of Figure 2.13.

Why do we carry out this strange traversal? Well, first observe that if we consider
the absence of an offspring to cause a short “stump,” or “dead end,” to be present,
which also has to be traversed, then each node in the tree is “visited” precisely three
times. Now, if, when traversing the tree in this fashion, we consistently output the
data element found at a node when visiting it precisely for the second time, the list
will eventually be sent to the output in its entirety, sorted in ascending order! This
might sound like magic, but it can be easily illustrated by following the twisted
traversal arrows in Figure 2.14, jotting down the numbers as they are visited, and
then marking the second appearance of each in the resulting list. These marks form
the sorted list (see Figure 2.15).

Both stages of the treesort algorithm can be described rather easily as recursive
subroutines. Here is a routine for the second stage, where we use “left(T)” to denote
the left-hand subtree of T , and similarly for “right(T).” By our convention regarding
the presence of stumps when offspring do not exist, “left(T),” for a tree that has no
left subtree, will be the special empty tree; that is, the tree containing nothing, not
even a root.

128 76 46

1st 2nd 3rd

28 28

128 402 354 354 396 396 396 354 402 1018 1018 1018 402 12876106

35 35 35 28 46 46 76 106 100 100 100 106 112 112 112

Figure 2.15

Second-visit marking
in the left-first
traversal of
Figure 2.14.

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

2. Algorithms and Data 43

subroutine second-visit-traversal-of T :

(1) if T is empty then return;

(2) otherwise (i.e., if T is not empty) do the following:
(2.1) call second-visit-traversal-of left(T);
(2.2) output the data element found at the root of T ;
(2.3) call second-visit-traversal-of right(T);

(3) return.

In constructing this routine we have exploited the fact that the second time a node
is visited will always be just after completing the traversal of its entire left-hand
subtree, and just before starting that of its right-hand subtree. Thus, we first call
the subroutine recursively in order to complete the entire traversal for the left-hand
subtree, and when that call has terminated (that is, the traversal of that subtree has
been completed), we output the element at the root, since it is now visited for the
second time (the first time being when we proceeded downwards to its left-hand
subtree). We then proceed recursively downwards to the right to carry out the right-
hand traversal.

The “left-first” nature of this special traversal becomes quite apparent from the
structure of the recursive formulation, since for every subtree (that is, for every
recursive call) the routine can easily be seen to go first to the left and then to the
right. Incidentally, it is interesting to see what happens in terms of the output list
when we turn this around, going consistently first to the right and then to the left.
(What does happen, and how do we change the subroutine accordingly?)

The structure of this routine is reminiscent of the move routine for the Towers
of Hanoi. In fact, if we apply this routine to a sample tree and then draw the pic-
ture of the processor’s toils, as was done in Figure 2.8, the picture will precisely
reflect the shape of the sample tree. Figure 2.8 itself forms a tree which, being of
uniform depth (or height, depending on our point of view), is sometimes called a
full tree.

We can, then, conclude that if vectors and arrays as data structures correspond
to loops and nested loops as control structures, then trees correspond to recursive
routines. A tree is an inherently recursive object, consisting of nothing (that is, an
empty tree, as explained earlier), or of a root attached (recursively) to some number
of trees. This explains why tree traversals, such as the one just considered, are
relatively easy to describe recursively.

There are some interesting ways to introduce flexibility into existing data struc-
tures. A good example is the concept of self-adjustment. By this we mean that each
time an element is inserted or deleted from a data structure, the structure executes
an adjustment routine that makes simple changes, intended to retain certain “nice”
properties. For example, in many applications of trees it is possible that, due to
some sequence of insertions/deletions, the tree becomes thin and long, whereas for
reasons of efficiency (see Chapter 6) it might be desirable that it be wide and short.
It is possible—though we shall not get into the details—to make small local changes
to a tree whenever an operation is performed on it, which will guarantee the property
of being wide and short.

� �

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

44 I. Preliminaries

� Databases and Knowledge Bases

For many computer applications data structures are not enough. It is not always a
question of merely pondering an algorithmic problem and finding, or defining, nice
and useful data structures for its solution. At times there is a need for a very large
“pool” of data, which many algorithms treat as part of their inputs, and which must
therefore be of fixed structure, and readily available for retrieval and manipulation.
Examples include the financial and personnel data of a company, the reservations
and flight information of an airline, and the indexing data of a library. Such masses
of data are called databases.

Typically, databases are very large, and contain many different kinds of data,
ranging from names and addresses to obscure codes and symbols, and in some cases
even free text. They are usually subjected to numerous kinds of insertion, deletion,
and retrieval procedures, utilized for different purposes and by different people.
While the addition of a new student to a university database, or the removal of an
old one, are relatively easy tasks, when it comes to querying a database, with the
purpose of retrieving information from it, intricacy seems to have no bounds. Just
for perspective, here are a few queries that might be addressed to the database of a
flight reservation system:

� list all passengers confirmed on flight 123;

� list all seats on flight 123 occupied by passengers with no checked baggage;

� find the number of passengers who have reserved seats on two identically num-
bered flights scheduled for consecutive days in March of this year;

� list the names and seat numbers of all first-class passengers on tomorrow’s Paris-
bound flights, who have ordered vegetarian food, and who have intercontinental
continuation flights upon which economy-class service does not provide special
meals, and whose stopover points are either Zurich or Rome.

These examples illustrate the importance of a “good” organization of the database.
If continuation flights are listed in the database in some obscure place, and if there is
no easy way to gather the information concerning a given passenger’s itinerary, then
writing an algorithm to solve the last-listed retrieval problem will become a difficult
task indeed. As with data structures, good database design is important not only for
reasons of clarity and ease in writing; it can be of the utmost importance when it
comes to questions of efficiency, and to the feasibility of constructing a database
system that can respond to such queries in a reasonable amount of time.

Various general models for database organization have been proposed and are
used in real databases. These models are designed to maintain large quantities of
data, while capturing, faithfully and efficiently, the relationships between the data
items. One of the most popular database models, the relational model, caters for
the arrangement of the data in large tables, which are reminiscent of the array data
structure. Others call for certain kinds of tree-like, or network-like arrangements
such as the hierarchical model, which organizes data in multiple-layer tree-like
form (like that of Figure 3.3). There does not seem to be a sweeping consensus as to
the preferable models for particular applications, and many methods and languages

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

2. Algorithms and Data 45

have been developed for manipulating and querying databases constructed in each of
these models. However, there is a significant movement towards the relational model,
and the more recent object-oriented databases are waiting off-stage for their turn.

Databases are often used to support operational systems that keep track of changes
in the myriad details necessary for the functioning of a large organization. As such,
they must support efficient modifications of the data as well as queries thereof, but
they are less concerned with keeping information that is of historical value only.
However, the large amounts of data stored in databases can also be used for analytical
purposes, such as discovering trends or improving processes. For example, a bank
might wish to discover correlations between loan defaulting and other account-
holder properties, in order to develop better predictive tools. This can be done by
applying statistical analysis methods to the large amount of old data available in the
bank’s own databases. The science of discovering such useful nuggets of information
from huge sources of data is called data mining, and it deals mostly with historical
data that does not change. Typically, the amount of historical data is much greater
than what is needed for operational purposes; often hundreds of times larger. In
recent years, biology offers particularly tantalizing kinds of databases, resulting
from the genome project and its spinoffs, and these are beginning to require the
development of powerful new kinds of data-mining techniques.

A new kind of database, called the data warehouse, has been developed in order
to support huge amounts of data that changes slowly, or in which only very small
portions change at all. Some data warehouses appear to be similar to other databases
to their users; however, the internal organization may use a completely different set
of algorithms to achieve its goals efficiently.

Certain kinds of data are better viewed as fragments of knowledge, rather than just
as numbers, names, or codes. In addition to a large database describing the inventory
of a manufacturing company, we might want to have a large knowledge base con-
taining information relevant to the running of that company. Its knowledge items
might have to somehow encode information such as “Changes in salaries are per-
sonnel issues,” “Mr Smith is a better manager than Ms Brown when it comes to
personnel problems, but not when technical issues are concerned,” or “If the price
of oil goes up we shall have to lower all salaries within the following month.”

Unlike a database, which stores data for later retrieval, a knowledge base uses its
knowledge in more sophisticated ways. For example, we might want to infer from
the rules given above and the fact that oil prices have gone up, that Mr Smith should
handle the salary changes. It is obvious that such inference capabilities require more
complex organization than data items of more or less fixed format, especially if we
are interested in efficient retrieval. Knowledge bases are thus becoming the natural
next step after databases, and they provide a rich source of interesting questions
regarding representation, organization, and algorithmic retrieval. We shall have more
to say about knowledge in Chapter 15.

� Exercises
2.1. The algorithm for summing the salaries of N employees presented in the text performs a

loop that consists of adding one salary to the total and advancing a pointer on the employee
list N − 1 times. The last salary is added separately. What is the reason for this? Why
don’t we perform the loop N times?

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

46 I. Preliminaries

2.2. Consider the bubblesort algorithm presented in the text.

(a) Explain why the outer loop is performed only N − 1 times.
(b) Improve the algorithm so that on every repeated execution of the outer loop, the inner

loop checks one element less.

2.3. Prepare flowcharts for the bubblesort algorithm presented in the text and for the improved
version you were asked to design in Exercise 2.2.

2.4. Write algorithms that, given an integer N and a list L of N integers, produce in S and P
the sum of the even numbers appearing in L and the product of the odd ones, respectively.

(a) Using bounded iteration.
(b) Using “goto” statements.

2.5. Show how to perform the following simulations of some control constructs by others. The
sequencing construct “and-then” is implicitly available for all the simulations. You may
introduce and use new variables and labels if necessary.

(a) Simulate a “for-do” loop by a “while-do” loop.
(b) Simulate the “if-then” and “if-then-else” statements by “while-do” loops.
(c) Simulate a “while-do” loop by “if-then” and “goto” statements.
(d) Simulate a “while-do” loop by a “repeat-until” loop and “if-then” statements.

2.6. Write down the sequence of moves resolving the Towers of Hanoi problem for five rings.

The factorial of a non-negative integer N is the product of all positive integers smaller than
or equal to N . More formally, the expression N factorial, denoted by N !, is recursively
defined by 0! = 1 and (N + 1)! = N ! × (N + 1). For example, 1! = 1 and 4! = 3! ×
4 = . . . = 1 × 2 × 3 × 4 = 24.

2.7. Write algorithms that compute N !, given a non-negative integer N .

(a) Using iteration statements.
(b) Using recursion.

2.8. Show how to simulate a “while-do” loop by conditional statements and a recursive pro-
cedure.

For a positive integer N , denote by AN the set of integers 1 through N . A permutation of
the set AN is an ordered sequence (a1, a2, . . . , aN) in which each integer from the set AN

appears exactly once. For example, (2, 3, 1) and (1, 2, 3) are two different permutations
of the set A3.

2.9. Prove that the number of permutations of AN is N !.

2.10. A permutation (a1, . . . , aN) can be represented by a vector P of length N with P[I] = aI .
Design an algorithm which, given an integer N and a vector of integers P of length N ,
checks whether P represents any permutation of AN .

2.11. Design an algorithm which, given a positive integer N , produces all the permutations of
AN .

We say that a permutation σ = (a1, . . . , aN) can be obtained by a stack, if it is possible to
start from the input sequence (1, 2, . . . , N) and an empty stack S, and produce the output
σ using only the following types of operations:

read(X): Read an integer from the input into variable X .
print(X): Print the integer currently stored in variable X on the output.
push(X, S): Push the integer currently stored in variable X on to the stack S.

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

2. Algorithms and Data 47

pop(X, S): Pop the integer from the top of the stack S into variable X . (This operation
is illegal if S is empty.)

For example, the permutation (2, 1) can be obtained by a stack, since the following series
of operations

read(X), push(X, S), read(X), print(X), pop(X, S), print(X)

applied to the input sequence (1, 2) produces the output sequence (2, 1).
A permutation can be obtained by a queue, if it can be similarly obtained from the input

(1, 2, . . . , N), using an initially empty queue Q, and the operations read(X), print(X),
and

add(X, Q): Add the integer currently stored in X to the rear of Q.
remove(X, Q): Remove the integer from the front of Q into X . (This operation
is illegal if Q is empty.)

We can similarly speak of a permutation obtained by two stacks, if we permit the push
and pop operations on two stacks S and S′.

2.12. (a) Show that the following permutations can be obtained by a stack:
i. (3, 2, 1).

ii. (3, 4, 2, 1).
iii. (3, 5, 7, 6, 8, 4, 9, 2, 10, 1).

(b) Prove that the following permutations cannot be obtained by a stack:
i. (3, 1, 2).

ii. (4, 5, 3, 7, 2, 1, 6).
(c) How many permutations of A4 cannot be obtained by a stack?

2.13. Design an algorithm that checks whether a given permutation can be obtained by a stack. In
case the answer is yes, the algorithm should also print the appropriate series of operations.
In your algorithm, in addition to read, print, push, and pop, you may use the test is-
empty(S) for testing the emptiness of the stack S.

2.14. (a) Give series of operations that show that each of the permutations given in Exercise
2.12(b) can be obtained by a queue and also by two stacks.

(b) Prove that every permutation can be obtained by a queue.
(c) Prove that every permutation can be obtained by two stacks.

2.15. Extend the algorithm you were asked to design in Exercise 2.13, so that if the given
permutation cannot be obtained by a stack, the algorithm will print the series of operations
on two stacks that will generate it.

2.16. Consider the treesort algorithm described in the text.

(a) Construct an algorithm that transforms a given list of integers into a binary search
tree.

(b) What would the output of treesort look like if we were to reverse the order in which
the subroutine second-visit-traversal calls itself recursively? In other words, we
consistently visit the right offspring of a node before we visit the left one.

And thou shalt make loops

EXODUS 26: 4

And he spoke of trees

I KINGS 5: 13

P1: GIG

PE002-02drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:47

48

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

C H A P T E R 3

Programming Languages
and Paradigms

or, Getting It Done by Computer

Come, let us go down,
and there confound
their language, that
they may not
understand one
another’s speech

GENESIS 11: 7

Thinking about algorithmic problems and their solutions is fine, and in fact, as should
be obvious by now, it is beneficial not only in computer-related problem solving,
but also in the realms of cake baking, tire changing, cabinet making, and telephone
book lookup. However, clearly our main concern is with algorithms that are intended
for computer execution, and hence before we continue with our account of the
scientific aspects of algorithmics, we should spend some time relating algorithms
to real computers.

As mentioned in Chapter 1, even the most sophisticated computer is really only
a large, well-organized volume of bits, and moreover it can normally carry out only
a small number of extremely simple operations on them, such as zeroing, flipping,
and testing (see Figure 1.1). How do we present an algorithm to a real computer and
get it to carry out the corresponding process as intended? Let us put it more bluntly.
How do we get a dumb machine, capable of so little, to impressively perform our
subtle and carefully worked-out algorithms? Of course, this question becomes all
the more pressing when we look around and see computers carrying out not only
our toy examples of salary summation and word searching, but incredibly complex
feats such as automatic flight control, graphical simulation of chemical reactions, or
the orderly maintenance of communication networks with millions of subscribers.

The first observation is that our algorithms must be written in an unambiguous
and formal fashion. Before trying to understand how playing around with bits can
be made to accomplish even a simple task such as “proceed through the list, adding
each salary to the noted number,” that task itself has to be precisely specified:
Where does the computer find the list? How does it proceed through it? Where does
it find the salary and the “noted number”? and so on. “Beat egg whites until foamy”
is not much worse in terms of precision and unambiguity than “proceed through
a list.”

To describe an algorithm for a computer’s benefit, rather than just for human
comprehension, we use a programming language, in which we write programs.
A program is an official and formal rendition of the algorithm, suitable for computer

49

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

50 I. Preliminaries

execution. A programming language consists of the notation and rules by which one
writes programs, and the person writing the program is called a programmer. (This
person need not be the one who devised the algorithm upon which the program is
based.)

Of course, the “raw” computer doesn’t directly understand any of these program-
ming languages, but only programs written in machine language, which consists of
bit-manipulation instructions, themselves coded as series of bits. As mentioned in
Chapter 1, it is the use of abstraction that allows us to act as if the computer in fact
understands the high-level programming languages we are discussing here. Later
on we will see some of the mechanics of this abstraction.

� Programs Require Precise Syntax

A programming language is typically associated with a rigid syntax, allowing the
use of only special combinations of selected symbols and keywords. Any attempt
at stretching this syntax might turn out to be disastrous; for example, if input X is
written in a language whose input commands are of the form read X , the chances
are that the result will be a blunt “SYNTAX ERROR E4514 ON LINE 108.” This,
of course, precludes even such polite but imprecise requests such as “please read
a value for X from the input,” or “how about getting me a value for X .” These
might result in a long string of obscure error messages. It is true that nice, talkative
instructions are more pleasant and perhaps less ambiguous than their terse and
impersonal equivalents for a human reader. It also true that we would like computers
to be as “user friendly” as possible. However, these facts should be contrasted with
the current inability of computers to understand freely spoken (or freely typed)
natural languages like English (see Chapter 15). A formal, concise, and rigid set of
syntactic rules is therefore essential.

The formal syntax of a typical programming language includes orderly versions
of several control structures, orderly ways of defining various data structures, and
orderly formats for the basic instructions supported by the language. The difference is
that now our imaginary little robot Runaround is less imaginary, since the computer
is doing the work, and it will not carry out any instruction, however clear and
unambiguous, if that instruction is not among those allowed by the programming
language.

An algorithm for summing the numbers from 1 to N might be written in a typical
(hypothetical) programming language PL as follows:

input N ;
X :=0;
for Y from 1 to N do

X :=X + Y
end;
output X .

Here X :=0 is the assignment statement that sets variable X to initial value 0
(in our algorithms we write X ← 0 for this). Notice the boldface keywords; they
are part of the syntax of PL, meaning that the formal definition of that syntax most

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

3. Programming Languages and Paradigms 51

for-statement

assignment-stmt

statement

for-statement

for-header

for-headerfor do endstatement

variable from value value

variable

digit

value

to valueby

digit

letter

variable
letter

Figure 3.1

Syntax diagrams for
programming
language definition.

probably contains a clause to the effect that one of the legal kinds of statements
in the language is a for-statement, whose general format consists of the keyword
for, followed by a legal for-header, followed by do, followed by a legal statement,
followed by end.1 Syntax definitions can be written symbolically, in a form termed
BNF (standing for Backus-Naur Form, after its inventors), as follows, where “|”
denotes “or”:

〈statement〉 is: 〈for-statement〉 | 〈assignment-stmt〉 | · · ·
〈for-statement〉 is: for〈for-header〉 do 〈statement〉 end

The description of the header clause might read:

〈for-header〉 is: 〈variable〉 from 〈value〉 to 〈value〉
The 〈value〉 might then be specified to be a variable, an explicit number, or some
other object. Figure 3.1 shows a diagrammatic way of presenting such syntax rules.

1 Notice that this definition is recursive. Statements are defined in terms of themselves! To resolve this
apparent cyclicity there must be an “escape clause,” whereby certain statements, such as assignments,
do not recursively refer to statements in their definition, only, say, to values and variables.

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

52 I. Preliminaries

The example shows how the language enforces a special format for a particular kind
of bounded-loop control construct.

Formats for defining data structures are similarly enforced. For example, a two-
dimensional array AR of size 50 by 100, whose values can be integers, might be
defined in the hypothetical language PL by the statement:

define AR array [1. . 50, 8 . . 107] of integers

and the language might allow reference to elements of AR by expressions of the
form:

AR(value, value)

Notice how we have not only specified the dimensions of AR, but also its subscript
values; its rows are numbered 1, 2, . . . , 50, but its columns are (for some reason)
numbered 8, 9, . . . , 107.

Actually, the syntax prescribes much more than the available control and data
structures and the allowed elementary operations. Usually a language has rigid
rules even for such petty issues as the legal strings of symbols that may be used
to name variables or data structures, and the maximal number of digits allowed in
numeric values. Some languages restrict variable names to be at most, say, eight
symbols long, the first being alphabetical. Here punctuation does not get overlooked
either; it is not atypical for a programming language to require that a semicolon is to
follow some kinds of statements, that a space is to follow others, that comments are
to be enclosed in special brackets, and so on, all with penalties for violators. This
is the reason for our use of the term “semicolon syndrome” in the preface to this
book. In order to make readers knowledgeable enough to bend computers to their
will, some computer books start out with a meticulous description of the syntax of a
specific programming language, semicolon rules and all, with these tedious details
of the syntax being the dominant elements a student is required to remember.

� Programs Require Precise Semantics

Providing the language with a precise syntax is only part of a programming language
designer’s job. Without a formal and unambiguous semantics—that is, without a
meaning for each syntactically allowed phrase—the syntax is all but worthless. If
meanings for instructions in the language have not been provided, the program
segment:

for Y from 1 to N do

in the hypothetical language PL might, for all we know, mean “subtract Y from 1
and store the result in N .” Worse still, who says that the keywords from, to, do,
and so on, have anything at all to do with their meaning in conventional English?
Maybe the very same program segment means “erase all of the computer’s memory,
change the values of all variables to 0, output ‘TO HELL WITH PROGRAMMING
LANGUAGES,’ and stop!” Who says that “:=” stands for “assign to” and “+” stands
for “plus?” Who says that instructions are carried out in their written order? Maybe
“;” means “after doing the following” rather than “and then do the following.”

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

3. Programming Languages and Paradigms 53

Of course, we might be able to guess what is meant, since the designer of PL
probably chose keywords and special symbols intending that their meaning be as
similar to the accepted norm as possible. But a computer cannot be made to act on
such assumptions. Even if it could somehow reason about the conventional meaning
of English words and of symbols like “+,” how, without being told explicitly, would
it know what to do with the loop header:

for Y from 1 to N do

when the value of N is, say, −314.1592? Is the body of the loop to be carried out
316 times, with Y working its way through the values 1, 0, −1, −2, . . . ,−313, and
−314? Maybe it is carried out 317 times, including the case −315; or 633 times, run-
ning through 1, 1

2 , 0, − 1
2 , −1, . . . ,−315? Maybe it is not carried out at all, the ratio-

nale being that N ’s value is smaller than 1, and for loops must increase their built-in
counters, not decrease them. Maybe arriving at the for statement with such a bizarre
value in N should be treated as “LOOP INDEX ERROR Z3088 ON LINE 365.”

It seems clear, therefore, that a programming language requires not only rigid rules
for defining the form of a legal program, but also rules, just as rigid, for defining its
meaning.

It might come as a surprise to some people that for many modern programming
languages a satisfactory semantics has not been worked out at all. And we don’t mean
an implementation. Some people think that since a language has been implemented
and its programs actually run (for example, it has a compiler, a term we shall explain
later in the chapter), that is good enough a semantics. The fact is that we need a
rigorous, machine-independent definition of the meaning of each program in the
language; one that can be employed to give unambiguous answers to every possible
question regarding what a program will do under any set of circumstances, whether
what it will do is what we intend it to do, and so on. (See Chapter 5 for more on
this gap between programs and our expectations from them.) Wherever adequate
semantic definitions exist, they were usually prepared, not by the language designer
or the computer manufacturer, but by independent researchers interested in the
semantical problems raised by specific languages and their powerful features.

Designers and manufacturers do supply detailed documentation to go along
with the language—volumes of it. These language manuals, as they are sometimes
called, contain a wealth of information concerning both syntax and semantics, but
the semantical information is usually not sufficient for the user to figure out exactly
what will happen in each and every syntactically legal program. The problem is
a real one, and evidence for this can be found in the deep and intricate work of
programming language semanticists. It is very tempting to add a new and powerful
feature to a language, and to specify how to deal with it in a natural context. However,
it is the unpredictability of the interaction of such a feature with all others supported
by the language that can cause things to get out of hand.

� Routines as Parameters: An Example

Let us assume that a language supporting recursive routines is to allow, not only
variables whose values are numbers or words (= symbol strings), but also special

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

54 I. Preliminaries

variables whose values are the very names of routines. Once such features are
allowed, it should also be possible to use routine variables as parameters to other
routines. In this way if a routine P is defined as:

subroutine P-with-parameter-V

where V is a routine variable, and somewhere inside P there is an instruction of the
form:

call V

then if P is invoked with the value of V being the routine Q, this instruction will
effect a call to Q inside P , whereas if P is invoked with V being some other routine R,
it will effect a call to R inside P . This is quite a powerful feature, enabling external
control over the routines that P calls, simply by changing V ’s value. However,
serious semantical problems arise. What if V is also a routine whose parameter is a
routine variable?

� To sharpen the question, here is an example of such a P:

subroutine P-with-parameter-V

(1) call V -with-parameter-V , placing returned value in X :

(2) if X = 1 then return with 0; else return with 1.

But what will our confused processor do when asked to carry out the following initial
call to P:

call P-with-parameter-P

Syntactically, everything is fine; the routines are all called with the right syntax and
the right kinds of parameters. Nevertheless, there is a paradox embodied in the very
question. It is impossible that the call returns 0, because by the definition of the body of
P , the value returned is 0 if a call to V -with-parameter-V (which is now really a call to
P-with-parameter-P) returns 1. So, the call can return 0 only if it returns 1, which is
ridiculous! A similar argument shows that the P-with-parameter-P call cannot return
1 either, but by the text of P it cannot return anything other than 0 or 1. So what does
it do? Does this strange call entail an endless seesaw process? Is it simply forbidden by
the language? Neither of these suggestions sounds quite right. With the first we might
want to see the infinite nature of the execution reflected more explicitly in the text. The
second is even worse, since it is not clear how to characterize the forbidden programs
syntactically. Obviously, a formal semantics to such a language must imply precise and
unambiguous answers to such questions.

� �

� From High-Level Languages to Bit Manipulation

So here we are, with a high-level programming language PL, syntax, semantics,
and all, and we have just finished devising an algorithm A for the solution of some

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

3. Programming Languages and Paradigms 55

algorithmic problem. We now proceed to program the algorithm in the language PL,
an action sometimes referred to as the coding of A into PL, and we would like to
present the resulting program, called AP , to our computer. What happens next? The
answer is that basically there are two possibilities, depending on the language and
computer used. Here is the first.

The program AP is entered into the computer’s memory, by typing it in from a
keyboard, reading it in from a recording device such as a magnetic disk, receiving
it along an electronic communication channel from another computer, or by some
other means. While these physical media and their use are of no concern here, what
happens next is of importance to us. The program AP goes through a number of
transformations, which gradually bring it “down” to a level the computer can deal
with. The final product of these transformations is a program AM on the machine
level (it is also said to be written in machine language), meaning that its basic
operations are those which the computer “understands,” such as bit-manipulation
instructions. The number of such downward transformations varies from language
to language and from one machine to another, but is typically between two and four.
The intermediate objects are usually legal programs in increasingly more primitive
programming languages. Their repertoire of control and data structures—and hence
the basic instructions—gradually becomes more humble, until finally only the most
elementary bit capabilities remain. It is after this final transformation stage that the
computer can really run, or execute, the original program, or at least can give the
user the impression that it is doing just that, by asking for a set of legal inputs and
running the transformed version AM (see Figure 3.2).

The downward transformations are somewhat reminiscent of replacing subrou-
tines by their bodies. An instruction in a high-level language can be thought of as a
call to a routine, or as a basic instruction that is not basic enough for the computer.
As a consequence, it has to be refined and brought down to the computer’s level of
competence.

� Compilation and Assembly Languages

Let us talk about the first transformation, called compilation, in which the high-
level program AP is translated into a program AS in a lower-level language, called
assembly language. Assembly languages differ from machine to machine, but, as a
rule, they employ rather simple control structures, that resemble goto statements and
if-then constructs, and they deal not only with bits but also with integers and strings
of symbols. They can refer directly to locations in the computer’s memory—that
large area containing acres upon acres of bits—they can read from those locations
whatever numbers and strings they encode, and they can store encodings of numbers
and strings therein.

A typical high-level loop construct such as:

for Y from 1 to N do
〈body-of-loop〉

end

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

56 I. Preliminaries

Algorithmic
idea

algorithmA

programming

program in
high-level language

AP

AS

AM

Programmer
(human)

compilation

program in
assembly language

machine code

Compiler
(software)

Computer
execution

Figure 3.2

Transforming a
high-level program
into machine code.

might be translated into an assembly language equivalent looking like this (the
parenthesized explanations are not part of the program):

MVC 0, Y (move constant 0 to location Y)
LOOP: CMP N , Y (compare values at locations N and Y)

JEQ REST (if equal jump to statement labelled “REST”)
ADC 1, Y (add constant 1 to value at location Y)

〈translated-body-of-loop〉
JMP LOOP (jump back to statement labeled “LOOP”)

REST: (rest of program)

Prior to (or following) the assembly program itself there would appear additional
instructions to associate the symbols Y and N with certain fixed memory locations,
but we shall not get into these matters here.

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

3. Programming Languages and Paradigms 57

Now comes the interesting point. The compilation process that translates high-
level computer programs into assembly language is itself carried out by a computer
program. This lengthy and complex piece of software, called a compiler, is usually
supplied by the computer manufacturer together with the hardware. Figure 3.2 il-
lustrates the downward transformation process, of which compilation is the first and
most intricate part. The remaining steps translate assembly language into machine
language. They are somewhat more straightforward than compilation and hence we
shall not deal with them here.

As an aside, it is worth pointing out that compilers for the various high-level
languages are but one kind of a large number of manufacturer-supplied programs,
sometimes generically called system software. Their general role is to facilitate a
variety of high-level modes of operation of the computer, while subtly insulating the
user from many of the low-level details involved. Running user-written programs
is one of these modes, communicating with other computers and interfacing with
special external equipment is another.

� Interpreters and Immediate Execution

There is another way computers can execute the programs they are presented with,
which does not involve translating the entire program into a lower-level language.
Rather, each of the program’s high-level statements is translated into machine-
level instructions immediately on being encountered, and these in turn are promptly
executed. In a sense, the computer is playing the role of the robot or processor
directly, running around and actually carrying out the high-level instructions one
by one precisely as given. The mechanism responsible for this local-translation-
and-immediate-execution is also a piece of system software, usually called an
interpreter.

The interpreter approach has certain obvious advantages, among which are:

� it is usually easier to write a “quick-and-dirty,” but reasonably useful, interpreter,
than it is to write a reasonable compiler;

� interpreter-driven execution yields a more traceable account of what is happening,
especially when working interactively with the computer through a terminal with
a display screen.

There are, however, several disadvantages of interpretation over compilation, which
will be briefly touched upon in later chapters.

Whether a particular computer will compile or interpret a given program depends
on the computer at hand, the programming language, and the particular package
of system software in use. Nevertheless, while some programming languages lend
themselves to interpretation more easily than others, all languages can, in principle,
be compiled.

� �

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

58 I. Preliminaries

� Why Not an Algorithmic Esperanto?

Since the time high-level programming languages started to appear in the 1950s,
hundreds have been designed, and compilers and/or interpreters have been written
for them. Many are extinct, and probably many more should be, but there are still
scores of languages in common day-to-day use. These languages are, for the most
part, quite diverse in nature, both in looks and in substance. Moreover, new ones
pop up like mushrooms after rain.

Why? Would it not have been better to have a single universal language, some kind
of algorithmic Esperanto, in which all algorithms are written, and which anyone can
easily learn to use? Why the multitude of languages? What makes them different
from one another? Who uses which languages, and for what purposes?

To answer this question, we must go back to the essential purpose of high-level
programming languages, which is to provide new abstractions for programmers.
There are basically two forces that drive the need for new kinds of abstractions: new
technological developments in hardware, and new and diverse application areas.
A good example of the first is the development of parallel computers. These are
machines that employ many distinct but interconnected “single-track” computers.
One of the consequences of these technological developments is the considerable
effort devoted to the development of so-called concurrent programming languages,
which, very briefly, cater for many processors carrying things out simultaneously.
Chapter 10 is devoted to the subject of concurrency, hence we shall not dwell on it
any further here.

As the power of computers is harnessed in more and more application areas, pro-
grammers encounter more and more types of abstractions: from words to pictures,
to video, and to virtual reality environments; from strings of characters to DNA,
to protein folding, and even to entire biochemical processes; and from syntax of
natural languages to story understanding, to commonsense reasoning, and to arti-
ficial intelligence. Each application area has its own set of concepts that need to
be incorporated into computer programs. This can be done in many ways, one of
which is the creation of a variety of special-purpose programming languages, which
embody the concepts of specific areas.

� Programming Paradigms

The multitude of existing programming languages can be organized into several fam-
ilies, based on their organizing principles, or paradigms. A programming paradigm
is a way of thinking about the computer, around which other abstractions are built.
The first, and most prevalent paradigm, is called imperative programming, and
its view of the computer (the “von Neumann model”) is closest to the bare ma-
chine. In this paradigm, which we have used in all the examples up to this point, we
think of the computer as a collection of memory cells, organized into many types
of data structures, such as arrays, lists, and stacks. Programs in this approach are
concerned with building, traversing, and modifying these data structures, by reading
and modifying the values stored in memory.

While this paradigm is close to the real architecture of the computer, it is quite far
from its mathematical origins. As mentioned in Chapter 2, a mathematical variable

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

3. Programming Languages and Paradigms 59

denotes a single value. It is only a variable in that we conceive of different instances
of the same problem (or different calls of the same function), in which it can take
on different values. But while the value of a mathematical variable doesn’t change
in mid-problem, this is exactly what happens in an imperative computer program!
Suppose you see an assignment X ← 3 somewhere in a program. It would be wrong
to assume that when you encounter X again a few lines later, it will have the value 3,
although our mathematical training encourages us to make that assumption. Even
if there is no other assignment to X in the intervening lines, they may contain a
subroutine call that changes the value of X . In general, careful and tedious reasoning
is required in order to ascertain the value of each variable at each point in the program,
and this is one of the causes of complexity in programming and the resulting plethora
of problems, or “bugs.” More about this in Chapter 5.

A different paradigm, called functional programming, looks at the computer
at a higher level of abstraction, as a mathematical model. In this view, programs
define mathematical functions, and have no concept of modifiable memory. Instead
of cells, these programs deal only with immutable values. The details of where these
values are actually stored in the computer are hidden by the functional abstraction.
Programmers used to imperative thinking often find themselves hampered by this
abstraction and the lack of control they have over memory. However, with use, many
find it to be liberating, since they have less to worry about. Furthermore, the fact that
functional programming deals with mathematics as we are used to it, makes it possi-
ble to apply an array of standard mathematical tools to the synthesis and analysis of
functional programs and to reasoning about them. From the theoretical point of view,
it is interesting to note that the concept of a mathematical function is sufficient to
generate all possible kinds of computations (in a sense to be explained in Chapter 9).

Taking its model from logic rather than mathematics, the logic programming
paradigm views the computer as a logical inference device. A logic program is
stated as a set of rules, or simple logical statements of the form if A, B, . . . then
X . When a query is put to the computer, it searches this set of rules for a possible
proof (which can also supply information missing from the original query). Such a
proof provides an answer to the query; if no proof is found, the query is considered
to have no possible answer. Like functional programs, logic programs do not refer
explicitly to the computer’s memory. It is interesting to note that the functional
and logic paradigms have been greatly favored by researchers working in artificial
intelligence.

An important offshoot of imperative programming is the well-known object-
oriented programming paradigm. The major ingredients in an imperative program
are the functions (or subroutines) that build and modify data structures; the func-
tions are active, and the data structures are passive. The object-oriented paradigm, in
contrast, turns the picture on its side. It views the computer’s memory as being com-
posed of many objects, corresponding to the data structures of the imperative view.
Each object has an associated set of operations it can carry out, and the execution of
the program consists of objects sending messages that request operations from one
another, getting responses, and further processing the results to satisfy their own
callers. In this view, objects are active, and the functions from the imperative view
have been reduced to passive messages.

This mental trick is a powerful structuring mechanism. For example, while an
imperative program may be organized as a set of subroutines that operate on various
data structures, an object-oriented program is constructed around the data types,

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

60 I. Preliminaries

usually called classes. One class might represent a queue, and provide operations to
add to it a new element, to remove its first element, to find out whether it is empty,
and so on. Another class might represent a bank account, with operations such as
withdraw, deposit, obtain current balance, etc. And the bank-account class can use
the queue class to keep track of incoming transactions.

The utility of this way of organizing programs is based on the fact that in many
(although by no means all) cases it is a natural way to think about the world we are
trying to model inside the computer. For example, we could have two objects that
represent bank accounts exchanging messages to model a fund transfer operation.
Similarly, an object that represents a car being assembled may exchange messages
with objects corresponding to the various processing stages it has to go through
and the information in the original order that specifies the accessories it needs. It
should come as no surprise that the object-oriented paradigm has developed out of
languages for the simulation of real-world processes.

The rest of this chapter briefly describes a number of programming languages,
touching upon each of these paradigms. It should be noted that no attempt is made
to teach any of the languages, nor is the treatment claimed to come anywhere near
being a survey of them. Rather, the aim is to present a small sample of the essential
features and to give you some idea of what the programs look like and wherein
their power lies. Many other important languages deserve to be mentioned too, but
diversity in form and applications is preferred to extensive coverage.

� Imperative Programming: The Pioneers

Since the view of the imperative paradigm is closest to the “bare” machine, it is
no wonder that the first high-level languages were imperative. Three of the earliest
(whose pedigrees can be traced as far back as the late 1950s) are FORTRAN, COBOL,
and ALGOL. The first two are still in use today, having successfully evolved to meet
new developments in hardware and software, while the third, though defunct, has
been perhaps the most influential of all.

FORTRAN (FORmula TRANslator) was the result of an acute need for numerical
computations in scientific and engineering applications, such as the simulation of
the effects of a nuclear reaction. It was designed with efficient compilation in mind,
rather than clarity or readability. As a result, the basic version of the language
does not support many features for enhancing good program structure, which are
considered important in a high-level language. The 1977 extension of the language,
FORTRAN 77, remedies this situation to some extent. FORTRAN supports vectors and
multi-dimensional arrays, but virtually no other data structures. As to its numerical
capabilities, these are quite powerful and extensive. The popularity of the language
in the scientific and engineering community has resulted in numerous complex
mathematical functions that have been preprogrammed as fixed subroutines, and
which are cataloged in various function libraries. Such functions, although not
an original part of the FORTRAN language, are made available simply by the same
kind of subroutine calling that one would normally use in the language. This can
significantly extend the programmer’s repertoire of elementary operations, and the
availability of these function libraries has played a large part in the continuing
vitality of the language.

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

3. Programming Languages and Paradigms 61

COBOL (COmmon Business Oriented Language) is antithetical to FORTRAN in al-
most every aspect. It was designed in response to the acute need for a language
appropriate to the voluminous data-processing requirements of banks, government
agencies, and large corporations. Thus, while it is quite natural to write programs for
personnel management in COBOL, a typical FORTRAN application, like the numerical
simulation of a nuclear reaction, is hopelessly difficult.

COBOL was designed with readability and certain kinds of clarity in mind, and
to that end programs look less like terse and cryptic mathematics, and more like
human exchanges. This has its disadvantages, of course; programs are much longer
and “watered down” in COBOL, and therefore rather tedious to write, and it can be
quite difficult at times to comprehend a program’s basic structure.

Unlike its commercially-successful cousins, which were developed for specific
applications, with efficiency the paramount design criterion, ALGOL (ALGOrithmic
Language) was designed based on pure algorithmic principles, and included many
ideas that were decades ahead of their time. The large family of languages collec-
tively called ALGOL descendants includes such famous ones as PASCAL and C.

� PL/I: A General-Purpose Language

In 1964, IBM announced its own language, called PL/I (an ambitious acronym for
Programming Language ONE). In the spirit of the “bigger-is-better” school, PL/I col-
lected all the best features of FORTRAN, COBOL, and ALGOL, into one huge language.
In contrast with FORTRAN and COBOL, the designers of PL/I emphasized ease of pro-
gramming, at the expense of the complexity of the implementation of the language
itself. As a result, PL/I was only available on the largest computers of the time, IBM
mainframes. (Today there are implementations of PL/I available for PCs, which are
much stronger than the mainframes of the 1960s and 1970s.)

Here is the bubblesort algorithm, coded in PL/I:2

bubblesort: procedure(a);
declare a(∗) binary fixed;
declare i , j , temp binary fixed;
do i = lbound(a) + 1 to hbound(a);

do j = lbound(a) to i − 1;
if a(j + 1) < a(j) then
begin

temp = a(j + 1)
a(j + 1) = a(j);
a(j) = temp;

end;
end;

end;
end;

2 In this book and elsewhere, programs are often shown adhering to certain typographic conventions,
such as the use of special fonts and indentation. These conventions are not part of the program syntax,
and are ignored by the compiler.

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

62 I. Preliminaries

� This notation is quite similar to the one used earlier in our hypothetical language PL. Note
the unfortunate use of the equals sign for assignment, instead of the more appropriate left
arrow (typographically represented as “:=” in many programming languages, because of
the lack of an arrow on most keyboards). This leads to potentially confusing statements
such as x = x + 1, which means “increment x by 1,” but looks like a mathematical
equation that has no solutions. Also, in PL/I arrays are referred to using parentheses rather
than square brackets.

The control construct we wrote earlier as

for Y from 1 to N do

would be written in PL/I as

do Y = 1 to N ;

Here is a PL/I program that first reads n, the number of elements in the list, then
allocates a vector of the appropriate length and reads the list into it, then sorts it
using the bubblesort subroutine, and finally prints out the sorted result:

sort: procedure options(main);
declare n binary fixed;
get list(n);
begin

declare a(n) binary fixed;
declare i binary fixed;
get list ((a(i), do i = 1 to n));
call bubblesort(a);
put list ((a(i), do i = 1 to n));

end;
end;

The data-processing part of PL/I takes after COBOL. The major innovation in
the design of COBOL is the facility for defining a file structure, whereby objects
resembling arrays crossed with trees are possible. Here is a PL/I definition of a
simple university file containing information relevant to student performance and
university courses. The structure of the file is illustrated in Figure 3.3. The picture
parts appearing in the textual definition specify the format of data items: an “A”
stands for an alphabetic character, and a “9” for a digit. Thus, for example, “(5)A”
means five letters and “AAAA999” means four letters followed by three digits.

declare 1 UNIVERSITY FILE,
2 STUDENT(100),

3 STUDENT NAME picture ′(15)A′,
3 COURSE(30),

4 COURSE CODE picture ′AAAA999′,
4 SCORE picture ′99′,

3 STUDENT ID picture ′99999′,
2 DEPARTMENT(20),

3 DEPT NAME picture ′(10)A′,
3 COURSE(80),

4 COURSE CODE picture ′AAAA999′,
4 TEACHER picture ′(10)A′;

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

3. Programming Languages and Paradigms 63

100

30(15)A (10)A

(10)AAAAA999AAAA999 99

99999 80

20

UNIVERSITY_FILE

DEPARTMENTSTUDENT

STUDENT_NAME STUDENT_IDCOURSE

COURSE_CODE SCORE COURSE_CODE TEACHER

COURSEDEPT_NAME

Figure 3.3

Structure of a PL/I

university file.

� Slimming Down

PASCAL, which first appeared in 1970, was in part a reaction to the sheer size
of PL/I. PASCAL was designed as a language for teaching programming, and it is
characterized by elegance and simplicity rather than extensive features. In this,
PASCAL was hugely successful, and it was used for many years as the major lan-
guage in the computer-science curriculum in many colleges and universities. In-
evitably, this success led to extensive use of PASCAL in commercial applications,
where its shortcomings, such as its meagre facilities for memory management, be-
came apparent. This in turn led to the development of various dialects of PAS-
CAL that extend the basic language with the features necessary for large-scale
applications.

In the late 1970s, the C language came out of AT&T Labs and took the program-
ming world by storm. Here is the bubblesort algorithm, this time in C:

void bubblesort(int ∗a, int n)
{

int i , j , temp;
for (i = 1; i < n; i++)

for (j = 0; j < i ; j++)
if (a[j + 1] < a[j])
{

temp = a[j + 1];
a[j + 1] = a[j];
a[j] = temp;

}
}

It is instructive to compare this program with the corresponding implementation
of the same algorithm in PL/I shown earlier. Of course, the syntactic differences
are apparent, but we shall ignore those, and focus on deeper issues. While the PL/I

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

64 I. Preliminaries

procedure needed a single parameter, the array to be sorted, the C function needs to
receive the size of the array (n) as well. Arrays in PL/I are objects that contain, beside
the cells that store the array’s contents (the “hotel rooms”), information about the
legal range of indexes (the “room numbers”); these are available using the functions
lbound and hbound. However, in C an array is just a pointer to the first cell, and
contains no other information. The first array cell in C always has the number zero,
but there is no way to tell how many cells the array contains. Since this information
is unavailable to the compiler, the machine code it generates for the expression a[j]
just takes the address of a (that is, the first cell of the array), adds j to it, and retrieves
the value stored in that address. (In fact, the same expression can also be written in C

as ∗(a + j), which more closely reflects its implementation.) In contrast, when the
PL/I compiler encounters the corresponding expression, it will also generate code to
check that the index is indeed within the legal bounds.

If the caller of the C bubblesort function gives an erroneous value for n, one that
is greater than the correct value, the function will blithely access and modify the
value stored in the indicated address, although it is not part of the array. With high
likelihood, it is part of some other data structure, which will be wrongly modified.
This could cause the computer to fail in mysterious ways later on. The same thing
will happen if the bubblesort function itself tries to access a cell outside the array
(for example, if the test i < n is mistakenly replaced by i <= n).

In PL/I the first kind of error is impossible, since the caller does not provide the
size argument at all. The second kind of error is obviously possible; however, it
will be caught much earlier, and the error message will point the programmer to
the bubblesort procedure that contains the error rather than to some other innocent
procedure.

The reason for this behavior of the C language is that it was originally meant
to be used for systems programming; that is, writing the most basic programs
without which the computer is just a bit-manipulator. These include the operat-
ing system, through which users interact with the computer; device drivers that
operate peripheral devices such as keyboards, displays, and printers; and compil-
ers. In particular, C was used for writing the immensely-successful Unix operating
system.

System programs often need explicit control of the computer’s resources, which
are usually hidden from high-level languages (and for good reason!). C provides
such low-level control, while bypassing many of the sanity checks incorporated into
high-level languages. This allows it to produce efficient code, which is often nec-
essary for system programs that run very often. However, it also allows, and even
encourages, the creation of subtle errors of the kind we saw before. Worse yet, such
“buffer overrun” bugs in C programs have been used by hackers to subvert computer
operating systems and exploit them to propagate viruses and other malicious soft-
ware over the internet. While it is certainly possible to write high-quality programs
in C, it takes more effort than in some other languages.

Like PASCAL, C has become very popular and is used for almost every kind of
application, way beyond its originally intended purpose. Unfortunately, this has
contributed to the plethora of low-quality software we often encounter.

Nowadays, imperative programming languages have mostly merged into the
newer object-oriented paradigm, which we discuss later.

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

3. Programming Languages and Paradigms 65

� Functional Programming

One of the first high-level languages, dating back to 1958, is LISP (LISt Processing).
Unlike its contemporaries, which were concerned primarily with numerical calcula-
tions, LISP was meant to be used for symbolic computation. Very early in the history
of computer science, people were interested in the capabilities of the computer as a
reasoning device, and not only as a calculating one. Reasoning is naturally carried
out by means of symbols rather than numbers, and LISP was intended to provide
easy means of operating on symbols. Its basic data structure is the list, written as a
sequence of elements in parentheses; for example, (Computers are more than
0 and 1). One of the early and most famous LISP programs was ELIZA (also called
Doctor), which mimicked a psychiatrist having a dialog with a patient. ELIZA is
further discussed in Chapter 15.

Here is an example of our first algorithm, the salary-summing one. This example
is written in SCHEME, one of the many dialects of LISP:

(define (sum-salaries employees)
(if (null? employees)

0
(+ (salary (first employees))

(sum-salaries (rest employees)))))

This code defines a function called sum-salaries with a parameter employees.
One of the peculiarities of LISP is immediately apparent even in this small example,
and that is its use of parentheses as the major syntactic feature. Instead of writing
expressions such as a + b, LISP programmers write (+ a b). While this takes some
getting used to, it makes the syntax particularly straightforward, by virtue of its
simplicity and uniformity: everything is written in the same way, and there are
no problems such as which arguments go with which function, in what order do
functions get evaluated, and so on.

We are assuming that the employees’ records are given as a list; each element of
the list contains the employee’s name (itself as a list) and salary, and possibly other
personal details. Here is a short example of such a list:

(((John A. Doe) 85000 (Senior Accountant) Accounting)
((Jane B. Smith) 97000 Manager (Web Services))
((Michael Brown) 70000 Programmer (Systems Support)))

The function first returns the first element of the list it is given, while rest
returns the tail of the list, that is, a list of all elements except the first. The function
null? checks for the end of a list. It is now easy to see that the sum-salaries
function goes over the list, element by element, extracting the salary of the current
employee, and adding it to the sum it accumulates.

Another way of looking at the above program is as a definition. It actually defines
the value of the function (sum-salaries employees) for a given list of employ-
ees, to be 0 if the list is empty, and otherwise to be the salary of the first employee

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

66 I. Preliminaries

on the list added to the sum of the salaries of all the other employees on the
list. Unlike the formulation of this algorithm in Chapter 1, this definition is re-
cursive. And, in fact, recursion is the central and most natural control structure in
LISP.

Interestingly, since the salary is the second element of the employee record, we
can define it as the first element of the rest of the list (which is reminiscent of
the aphorism stating that today is the first day of the rest of your life . . .):

(define (salary employee)
(first (rest employee)))

Now, it is quite likely that we will want to sum many types of things, not
just employee records. In a functional language, it is natural to generalize the
sum-salaries function to sum-records, which can be used to compute the sum
of any given field in a list of records:

(define (sum-records records selector)
(if (null? records)

0
(+ (selector (first records))

(sum-records (rest records)))))

The structure of sum-records is exactly the same as that of sum-salaries, except
that it takes another parameter, selector, which is itself a function. This function
selects the field of the record we want to add to the sum. Given this definition,
sum-salaries can now be defined more simply as:

(define (sum-salaries employees)
(sum-records employees salary))

In fact, we can generalize the accumulation operation as well; in addition to com-
puting sums of elements, we may want to compute products, maximum elements,
and so on. An accumulation operation is specified by the function that accumulates
a new value into the running total: addition for sums, multiplication for products,
and so on. We need to know the “unit element” of the operation, that is, the value
to be used when we reach the end of the list; this would be 0 for sums and 1 for
products. This generalization, and the new definition of sum-salaries, are written
in SCHEME as follows:

(define (accumulate-records records selector accum unit)
(if (null? records)

unit
(accum (selector (first records))

(accumulate-records records selector accum
unit))))

(define (sum-salaries employees)
(accumulate-records employees salary + 0))

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

3. Programming Languages and Paradigms 67

Similarly, if we have a list of student grades called cs101, we could compute the
maximum grade (assuming they are non-negative) using the following expression
(where the max function computes the maximum of its two arguments):

(accumulate-records cs101 final-grade max 0)

As these examples demonstrate, functional languages treat functions like any
other type of data, and, in particular, they allow passing functions as arguments
to other functions and returning them as the results of computations. This feature,
which is either unavailable in a typical imperative language or is very inconvenient,
gives functional languages great expressive power, and allows them to describe many
algorithms very concisely. It is interesting to note that this treatment of functions
and the computational power it carries date back to the lambda calculus, further
discussed in Chapter 9, which is a mathematical formalism invented in the 1930s,
before general-purpose electronic computers existed.

It is also clear from the examples that the LISP programs themselves look very
similar to the basic LISP data structure—the list. In fact, LISP programs are exactly
lists, which means that they themselves can be easily treated as data. It is therefore
convenient and natural to write LISP programs that process and/or generate other
programs. In particular, it is quite easy to write interpreters for LISP in LISP. This,
together with the fact that many of the people who use LISP also have a strong interest
in programming-language design, has caused the proliferation of many different LISP

dialects. In the early 1980s, the LISP community reached a decision that a single
unified language is necessary, and the result was a new language, COMMON LISP.
Like PL/I, COMMON LISP comes from the “bigger-is-better” school, and contains
most of the good ideas from the various LISP dialects that preceded it.

SCHEME, the language used in the examples above, can be viewed as the reaction
of the “small-and-elegant” school to COMMON LISP. (SCHEME is also nicknamed
“UnCommon Lisp.”) Like PASCAL, it was originally intended as an educational
tool, and is therefore designed to contain a few strong and elegant features rather
than everything that could potentially be useful in practice.

Although LISP and SCHEME are based on the functional paradigm, and can be
used as functional languages, they also contain imperative programming constructs.
In contrast, there are also some purely functional languages, such as HASKELL and
MIRANDA. These languages do not contain any constructs for modifying memory; the
program creates new data elements instead of modifying existing ones. Of course,
the computer’s memory is limited, and will eventually be used up by all these new
data elements. One part of the running environment provided by purely functional
languages for their programs is a garbage collector, which is responsible for au-
tomatically identifying data elements that are no longer in use and reclaiming the
memory they occupy. As a result, a new data element can occupy the same physical
memory previously used for something else. However, this reuse of memory occurs
below the level of abstraction provided by the language; the programmer is free to
think in terms of data elements that never change.

As a result of this abstraction, the semantics of purely functional programming
languages is relatively easy to specify formally. In practical terms, this means that
programmers can use familiar mathematical tools for reasoning about their pro-
grams. For example, the most basic mathematical techniques of substitution of

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

68 I. Preliminaries

equals, which is not valid in imperative languages (see Chapter 2), works as we
expect in purely functional languages, and it considerably simplifies the task of
writing correct programs.

� Logic Programming

All logic programming languages are variants of the first and best-known one,
called PROLOG (PROgrammation en LOGique), which was developed in the early
1970s. A logic program consists of a set of logical axioms, called rules, that define
various properties relevant to the problem to be solved. For example, a chess-playing
program might define a predicate legal move(P, X, Y), which is true when board-
configuration Y is the result of a legal move for player P in configuration X . It
could also use the predicate value(P, X, N) that is true when the value of the board-
configuration X to player P is N . (Providing a good definition for the value of a
game position is one of the secrets of a good chess-playing program; see Chapter 15.)

As a much simpler example, consider the predicate member(X, S), which is true
when X is an element of the list S. The following assertions should all be true
(PROLOG lists are denoted by square brackets):

member(1, [1, 2, 3])
member(b, [a, b, c])
member(apples, [oranges, apples])

However, member(2, [a, b, c]) is false. Here is the definition of this predicate as a
PROLOG program:

member(X, [X |Xs]).
member(X, [Y |Ys]) ← member(X,Ys).

This program consists of two rules. The first states that X is a member of every
list whose first element is X . The second states that X is a member of a list whose
first element is Y and whose tail is the list Ys if X is a member of the tail Ys . (The
direction of the arrow is very important: this rule does not mean that in order for
X to be a member of the list it must be a member of the tail; only that this is one
possible way in which X can belong to the list.)

Given this program, a PROLOG interpreter can easily prove that the first set of
examples above are all true, while member(2, [a, b, c]) is false. However, it can do
more than that; for example, given the query member(X, [a, b, c]), the interpreter
will say that this assertion can be true (only) if X is one of a, b, or c. (PROLOG treats
names starting with an uppercase letter as variables, and other names as constants.)

The first rule of the “member” program is unconditional; it states that its goal
member(X, [X |Xs]) is always true. The second rule is conditional; it says that one
way of proving its goal, member(X, [Y |Ys]), is to try to prove member(X,Ys).
Faced with the query member(X, [a, b, c]), we could try either rule to prove it. The
first would yield one solution: X = a. The second would reduce the problem to
proving member(X, [b, c]). This new problem can be solved using the first rule to
yield X = b, or can be reduced to the problem of proving member(X, [c]) using the

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

3. Programming Languages and Paradigms 69

second rule. This, in turn, will yield the third solution, X = c, or reduce the problem
to member(X, []). However, here we stop, since this last problem cannot be solved
using either of the rules, both of which require a non-empty list. Thus, there are no
further solutions.

The PROLOG interpreter works in the way sketched above. It keeps a set of goals
it is trying to prove, and tries to prove each in turn by using the rules that constitute
the program. An unconditional rule can prove the goal directly, in which case it is
removed from the list of goals to be proved. A conditional rule can be used to reduce
the problem to other ones, by replacing the goal with one or more subgoals, which
are then added to the to-be-proved list. A solution to the original query is found
when all outstanding goals have been proved (that is, the list is empty). If some goal
cannot be proved by any of the rules, there is no solution to the original problem,
which is like saying that the program cannot be run to completion.

Here is a more complex PROLOG program, solving the Towers of Hanoi problem
of Chapter 2. The predicate hanoi(N , A, B, C,Moves) is true when Moves is a list
of moves that solves the problem of moving N rings from A to B using C .

hanoi(0, A, B, C, []).
hanoi(N , A, B, C, Moves) ←

N > 0,N1 is N − 1,

hanoi(N1, A, C, B, M1),
hanoi(N1, C, B, A, M2),
append(M1, [move(A, B)|M2], Moves).

The first rule is unconditional, and states that an empty list of moves solves the
problem of moving zero rings. The second rule says that Moves is a set of moves
that will legally transfer a positive number N of rings from A to B using C , if it
can be decomposed into three parts: the initial portion, M1, is a set of moves that
will legally transfer N − 1 rings from A to C using B; then the single move that
takes the top ring off A and moves it to B; and then M2, a set of moves that will
legally transfer N − 1 rings from C to B using A. This is very similar to our original
formulation of this algorithm in Chapter 2.

Given the query hanoi(3, a, b, c, M), PROLOG will respond with:

M = [move(a, b), move(a, c), move(b, c), move(a, b),

move(c, a), move(c, b), move(a, b)].

A PROLOG program is a set of logical axioms and rules, but these do not have a
computational meaning by themselves. There are many ways of using the rules to
prove a given goal, and the PROLOG interpreter chooses one of them (its strategy
is to try the rules in the order they are given, and also check conditions in rules in
the original order). Suppose we have a database of facts about the employees of a
certain company. The database contains, among other information, facts of the form
supervises(X, Y), meaning that X is the direct supervisor of Y . We can use these facts
to define the relationship outranks(X, Y), which means that X supervises Y , directly
or through a chain of middle managers. This could be written in PROLOG as follows:

outranks(X, Y) ← supervises(X, Y).
outranks(X, Y) ← outranks(X, Z), supervises(Z , Y).

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

70 I. Preliminaries

For simplicity, suppose that the company has just three employees: Huey, the
general manager, supervises Dewey, who in turn manages Louie. The PROLOG inter-
preter will easily prove that Huey outranks Louie. However, if we change the order
of the rules, they will still have the same logical meaning, but the interpreter will be
in trouble when asked to prove the fact outranks(huey, louie).3 It will first try to find
some Z that is outranked by Huey; this can be done by the second rule (which is
now first) if we can first find some Z ′ that is outranked by Z . This may be done by
finding Z ′′ that is outranked by Z ′, and the search continues indefinitely in this way
without ever producing useful results. In fact, even the original program will fail in
the same way when given the goal outranks(louie, huey), instead of stopping and
saying that this is false. (Can you see why?) The solution is to rewrite the second
rule to first test for supervisors, then for outranking employees:

outranks(X, Y) ← supervises(X, Z), outranks(Z , Y).

This dependency of the computation on the behavior of the interpreter is unfor-
tunate, since it means that it is not enough that the rules themselves are correct, and
PROLOG programmers also have to worry about the manner in which the interpreter
tries the rules. This they can do by various means, including carefully arranging the
order of rules and conditions. However, the need to address these issues is a weakness
in a language that tries to specify what should be done rather than how to do it.

PROLOG was given a large boost by the announcement of the Japanese Fifth-
Generation Project in 1981. This ambitious project was considered to have the
potential of producing a significant boost to the state-of-the-art research in computer
science, using parallel computers as the hardware platform and PROLOG as the main
programming language. Unfortunately, while it started with a bang, the project ended
with something of a whimper, and PROLOG is now in use only for some specialized
applications.

� Object-Oriented Programming

Object-oriented languages trace their beginnings to SIMULA, which was developed
in the early 1960s as a special-purpose language for simulation (although SIMULA

actually became a general-purpose programming language). The original goal of
SIMULA’s designers was to create a language that would allow easy programming
of discrete-event simulations, that is, computerized models of real-world events
that are not continuous, like physical phenomena, but happen at distinct points
in time. For example, the simulation of checkout queues in a supermarket may
provide useful information that can be used to manage the number of active checkout
counters at different times of the day, minimizing idle counters and unacceptably
long queues.

It is natural to specify such a program by describing the behavior of each object
participating in the simulation (these are sometimes called agents) separately. In
this example, there are three types of agents: customers, checkout queues, and
cashiers. Customers will be generated by the simulation program with a frequency

3 We cannot capitalize the names here, since they should be considered constants rather than variables.

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

3. Programming Languages and Paradigms 71

that depends on the time of day. Each customer object then decides on the number
of items it has, according to statistics gathered from the real supermarket being
modeled. It then chooses a queue to enter; for example, if it has fewer than 10
items, it will choose the express queue, and otherwise it will choose the shortest
queue. (In the simulation, the customer object figures out which queue is shortest by
sending messages to the queues, asking how many customers they contain, and
comparing the answers.) The customer object then sends a message to the object
representing the chosen queue, asking to join that queue. When the queue object
determines that the customer object has reached the front of the queue, and after
getting a message from the cashier object saying that it is ready for the next customer,
the queue notifies the customer that it can approach the cashier. The customer then
informs the cashier of the number of items it has. The nature of the simulation is such
that the cashier object doesn’t actually do any real work, but simply decides how
much time to wait (making believe, so to speak, that it is ringing up the customer’s
items) based on the number of items the customer has, and after that amount of
(simulated) time has passed, it notifies the queue that it is ready for a new customer.

Such a description of a real-world system in terms of the objects it contains and
the messages they exchange is very natural not just for discrete-event simulations,
but also for many other kinds of computerized models (and, as it turns out, even for
more abstract concepts that have no direct correspondence in the real world). This
view is the first basis for the object-oriented paradigm, in which what happens (the
actions) is subordinate to what makes it happen, and who it happens to (the objects),
and should be contrasted with the imperative view of programming, in which the
routines are dominant, operating on passive data structures. This paradigm leads to
a programming style in which the basic unit, called a class, is a description of a
certain type of object, together with its associated operations (or, equivalently, the
messages they can handle). When the program actually runs, each class is instantiated
by possibly many instance objects.

The second basis of the object-oriented paradigm is called inheritance, and de-
notes the ability of the programmer to define inclusion relationships between classes.
For example, the class of cows is a subclass of the class of mammals, which, in turn,
is a subclass of the class of all animals. Or, to remain somewhat closer to mathematics
and computation, the class of squares is a subclass of the class of rectangles, which
is a subclass of all parallelograms, which is a subclass of all quadrilaterals, and so
on. This means that squares have all the properties of rectangles: all their angles are
straight, and opposite sides are equal. Squares also have properties that are not shared
by all rectangles: all their sides are equal. From the point of view of the programmer,
squares can handle all messages defined for rectangles, such as requests to compute
the perimeter or area. In addition, squares may support messages of their own, not
shared by rectangles, such as a request to return the length of the side of the square,
which is not uniquely defined for rectangles. Thus, the class of squares inherits all
the operations from the rectangle class, including the code that implements them.

This leads to an important style of programming, in which some classes have
only partial code, or even no code at all. Such classes are called abstract, and,
of course, they do not completely describe the behavior of their objects. However,
they are very useful as the high levels of the inheritance hierarchy. For example, it
is possible to define an abstract class that describes queues (see Chapter 2). Such
a class describes what a queue can do, but not how it does it. What is nice about
this distinction is that the “what” is exactly the information that other classes need

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

72 I. Preliminaries

in order to use queues; they don’t really need the “how.” There are many ways to
implement queues, and these differ in the data representation and the algorithms
used. All such implementations can be defined as subclasses of the abstract queue
class, which guarantees that they support all the necessary operations. In this way,
the programs that use the queue class and the programs that implement it have a well-
defined and narrow interface, which is that embodied in the abstract queue class.
This independence allows separate development of the relevant classes, a property
that is crucial for the development of large programs, as we discuss in Chapter 13.

The first truly object-oriented programming language was SMALLTALK, developed
in the 1970s. Since then many other object-oriented languages have been developed,
the best-known of which are C++ and JAVA. C++ is based on C, with object-oriented
features added to it. As such, it suffers from the aforementioned problems of C (but
is very popular nevertheless). JAVA is also based on the C/C++ tradition, but it not
an extension of either; many of the problematic features of these languages have
been removed from JAVA (as well as some of the more useful ones . . .). Here is the
Queue class in JAVA (an “interface” is JAVA’s term for an abstract class that lacks
an implementation).

public interface Queue
{

boolean empty();
Object front();
void add(Object x);
void remove();

}

This class defines four operations (called methods in the common object-oriented
terminology): empty, which returns a boolean value (true or false) according to
whether the queue is empty or not; front, which returns the object at the front of the
queue (the class Object is the top of the inheritance hierarchy, and denotes all objects
in the language); add, which takes an object x and inserts it at the back of the queue;
and remove, which removes the object at the front of the queue. This definition
contains all the information about queues needed by the writer of the Customer
class, which represents the customers in our supermarket simulation example.

Of course, in order to perform the simulation, it is necessary to have some im-
plementation of the Queue class. In order to implement it, we will use a linked list
to hold its elements; the list will be implemented using the class Linkable, which
describes a single link therein.

public class Linkable
{

private Object −item;
private Linkable −next;

public Linkable(Object x)
{

−item = x ;

−next = null;
}

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

3. Programming Languages and Paradigms 73

public Object item()
{

return −item;
}

public Linkable next()
{

return −next;
}

public void set−next(Linkable next)
{

−next = next;
}

}

This is a simple class that only stores data, and in that sense it is similar to a
data structure in an imperative program. Object-oriented programs typically feature
classes with more complex operations. The definition of the Linkable class consists
of two fields that hold the state of the object, a constructor (whose name in JAVA

is the same as the name of the class), used to create new objects of this class, and
three methods.

The object held by the linkable cell is stored in the variable named −item, and
the reference to the next cell is in the variable named −next. These variables are
declared to be private, which means that other classes may not read or modify them.
All outside access to these variables must be routed through the other methods of the
Linkable class. (This is an example of the principle of information hiding, which
we discuss in Chapter 13.) The variable −item is set in the constructor; clients can
only read its value (using the item method) but cannot modify it. The variable −next
is initialized to null in the constructor, and can be read and modified by clients
(using the next and set−next methods).

Here is the definition of the class LinkedQueue, which uses the Linkable class in
order to implement the Queue interface.

public class LinkedQueue implements Queue
{

private Linkable −front = null, −back = null;

public boolean empty()
{

return −front == null;
}

public Object front()
{

return −front.item();
}

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

74 I. Preliminaries

public void add(Object x)
{

Linkable new−back = new Linkable(x);
if (−front == null)
{

−front = new−back;

−back = new−back;
}
else
{

−back.set−next(new−back);

−back = new−back;
}

}

public void remove()
{

−front = −front.next();
}

}

This class has two fields: one points to the front of the queue (which is the first
element of the linked list), and the other points to its back (the last element of the
list). The queue is considered to be empty when the front pointer is null (meaning that
it doesn’t point to any object). Operations that modify the queue need to maintain
the correct relationship between these pointers. Removing the front element is easy,
requiring only that the front pointer move to the next element. Addition is more
complicated, and needs to consider two cases. If the queue is initially empty, adding
an element to it will create a list of one element, so both the front and back pointers
should point to that single element. If the queue is non-empty, the addition of a new
element only affects the back pointer, which moves to point to the newly added
element at the end of the list.

Figure 3.4 illustrates this program in action. Part (a) shows the initial state of an
object that can be generated by the expression new LinkedQueue(). If we insert the
values 1, 2, and 3 (using the method add) and then remove the front element (using
the method remove), we obtain the series of changes shown in parts (b)–(e).

There can be many other ways to implement an interface such as that of the
Queue (not just the way we did it with the LinkedQueue class). A client need not be
aware of which particular implementation is being used; all the information clients
need is available in the abstract interface. This property, called modularity, is an
important feature of the object-oriented paradigm, making possible, indeed encour-
aging, the breaking up of complex problems into relatively independent smaller
parts, and is crucial for the development of large-scale systems, as we shall see in
Chapter 13.

One of the most interesting object-oriented languages is EIFFEL, which was de-
signed based upon a solid theoretical foundation, while at the same time being
practical for large programming projects. In Chapter 5 we will discuss a unique

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

3. Programming Languages and Paradigms 75

(a)

(b)

LinkedQueue

_front

_back

LinkedQueue

_front

_back

Linkable

_item 1

_next

(c)

LinkedQueue

_front

_back

Linkable

_item

_next

Linkable

_item 21

_next

(d)

LinkedQueue

_front

_back

Linkable

_item

_next

Linkable

_item 21

_next

Linkable

_item 3

_next

(e)

LinkedQueue

_front

_back

Linkable

_item

_next

Linkable

_item 32

_next

Figure 3.4

Queue in action.
feature of EIFFEL called design by contract, which is an attempt to bring the proof
methods discussed in that chapter to bear on large-scale programs.

� �

� Research on Programming Languages

Programming languages form an active and widely-addressed research area in com-
puter science, and we have only been able to touch upon a few of the issues involved.

People are interested in general-purpose and special-purpose languages, and in
their precise definition and efficient implementation. Sophisticated compilation and

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

76 I. Preliminaries

translation techniques are developed, new control structures and data structures are
proposed, and powerful methods for enabling programmers to define their own are
established. Languages that encourage “good” programming style are sought for,
and people try to design them to incorporate various recommended ways of thinking
about algorithms. Concurrent programming languages are a major part of this
effort, and some aspects of them will be discussed briefly in Chapters 10 and 14.
The same goes for graphical languages, or as they are more accurately called, visual
formalisms. We shall have more to say about these in Chapter 14.

In terms of paradigms, there is no doubt that object-orientation, in its several
guises, receives more attention than any of the others, and it is the subject of a
tremendous amount of research and extensive commercialization.

As far as semantics goes, computer scientists are interested in providing tools and
methods for producing computer programs with mathematically sound meaning.
This is necessary both for manual, human-driven inspection and for computerized
verification and analysis, as explained in Chapter 5. Obviously, precise syntax is
a prerequisite for precise semantics, and therefore the phrase “semantics of algo-
rithms” is somewhat meaningless. It is only when an algorithm has been programmed
in a formal programming language that it can be given a formal and unambiguous
meaning.

There are several approaches to semantic definitions. One, called operational
semantics, describes the meaning of a program by rigorously defining the sequence
of steps taken during execution, and the effect of each step on the program state. A
state is like a snapshot of all that is of relevance in a program at a given instant, and it
typically includes the values of all variables, parameters, and data structures, as well
as the current location of control (i.e., of the processor) in the program’s text.4 A
more abstract approach, called denotational semantics, describes the meaning of a
program as a pure mathematical object, typically a kind of function that captures the
transformation from the initial start state to the final end state that a program entails.
This approach pays less attention to the actual steps in an execution of the program
and more to its overall externally observable effects. Whatever the approach, getting
such definitions right is not easy even for simple languages, and for ones including
tricky features it can become a formidable task indeed.

We mentioned databases in Chapter 2. Query and data manipulation languages
for databases can actually be viewed as special-purpose programming languages.
People are interested in developing ones that are powerful, flexible, and efficient,
and in this particular case design teams also have to be sensitive to the fact that many
database users are not professional programmers, so that the languages should be
extra easy to use.

Researchers are interested in developing programming environments, namely,
user-friendly interactive systems that enable a programmer to write, edit, change,
execute, analyze, correct, and simulate programs. Some of these involve visual tech-
niques (made possible by modern graphical computer terminals and workstations),
such as the animation of program execution coupled with pictures of the data struc-
tures as they change. As mentioned briefly, and further discussed in Chapter 14,
there is the more recent direction of visual formalisms, in which these and other

4 The functional programming and logic programming paradigms are different in this respect, and must
be given different notions of state and step.

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

3. Programming Languages and Paradigms 77

research issues arise in full force, but with additional dimensions, so to speak. (How,
for example, is recursion best visualized?)

A final remark here concerns the universality of programming languages. In a
certain technical sense, all the programming languages discussed here, and for that
matter virtually all others too, are equivalent in their expressive power. Any algorith-
mic problem solvable in one language is, in principle, solvable in any other language,
too. The differences between languages are pragmatic, and involve appropriateness
for certain applications, clarity and structure, efficiency of implementation, and
varying algorithmic ways of thinking. Given the significant differences between
programming languages this might come as something of a surprise. In actuality, it
is one of the most fundamental facts of algorithmics, and will be discussed in detail
in Chapter 9.

people of a strange speech and of a hard language

EZEKIEL 3: 5

P1: GIG

PE002-03.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:48

78

P1: GIG

PE002-04drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:19

P A R T I I

Methods and Analysis

Come now, and let us reason together

ISAIAH 1: 18

79

P1: GIG

PE002-04drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:19

80

P1: GIG

PE002-04drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:19

C H A P T E R 4

Algorithmic Methods

or, Getting It Done Methodically
And he strictly raises
it according to the
method prescribed

ISAIAH 28: 26

It seems that we can now proceed happily with our algorithmic chores. We know
how algorithms are structured and how to arrange the objects they manipulate, and
we also know how to write them up for computer execution. We can therefore tell
our processor what it should be doing and when. However, this is an overly naive
assessment of the situation, and we shall see various reasons for this as we proceed.

One of the problems is rooted in the fact that we have not provided any methods
that can be used to devise an algorithm. It is all very well talking about the constructs
that an algorithm may use—that is, the pieces it might be composed of—but we
must say something more about the ways of going about using these pieces to make
a whole. In this chapter we shall review a number of quite general algorithmic
methods that a designer can employ in order to find a solution to an algorithmic
problem.

It must be noted, however, that there are no good recipes for devising recipes.
Each algorithmic problem is a challenge for the algorithm designer. Some problems
are straightforward, some are complicated, others are tantalizing; the present chapter
shows only that certain algorithms follow certain general paradigms quite nicely.
As a moral, the algorithm designer might benefit from looking at these first, trying
to see whether they can be used, or adapted for use, in the situation at hand. By
and large, however, algorithmic design is a creative activity that may require real
ingenuity, but which can definitely benefit from mastery of the available toolbox of
techniques and methods.

� Searches and Traversals

Many algorithmic problems give rise to the need to traverse certain structures.
At times, the structure we have to traverse is present explicitly as one of the data
structures defined in the algorithm, but at times it is some implicit abstract structure

81

P1: GIG

PE002-04drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:19

82 II. Methods and Analysis

that perhaps cannot be actually “seen,” but that exists under the surface. At times,
one is looking for something special within the structure (“who is the director
of the public relations department?”), and at times some work has to be done at
each point (“compute the average grades of all students”). The straightforward
salary summation problem of Chapter 1, for example (see Figure 2.3), is readily
seen to require a simple traversal of the given list of employees. On the other
hand, the problem that involved only employees earning more than their managers
(see Figure 2.4) can be thought of as requiring the traversal of an imaginary two-
dimensional array, in which employees are plotted against employees, and the search
is for certain employee/manager pairs.

In such cases the task is to find the most natural way of traversing the data structure
at hand (whether explicit or implicit) and thus devise the algorithm. When vectors or
arrays are involved, loops and nested loops typically appear, as explained in Chap-
ter 2 (see Figure 2.9), and in quite the same vein, when trees are involved recursion
appears, as indeed was the case in the treesort example. It is true that the idea behind
the treesort algorithm is quite subtle and cannot be found by simply figuring out the
best control structure for traversing the given data structure. However, once the idea
has been hit upon, it is a small thing to realize that the second-visit trip, in which
the elements are output in order, is nothing more than a certain traversal of a binary
tree, from which it is not too difficult to reach the conclusion that recursion should
be used.

The traversal induced by the recursive left-first trip of Figure 2.14 is sometimes
called depth-first search with backtracking, as the processor “dives” into the tree
trying to get as deep down as possible, and when it cannot go any further it backtracks
reluctantly, always striving to resume its diving. The only additional feature here
is the requirement that diving be performed as much to the left as possible. There
are several other ways of traversing trees, one of which, dual to depth-first search,
is termed breadth-first search. Traversing in a breadth-first manner means that the
levels of the tree (see Figure 2.12) are exhausted in order; first the root, then all of
its offspring, then their offspring, and so on.

� Exhaustive Search, or the British Museum Procedure

When you need to find something in a data structure, you could simply examine all
its elements one by one until you find what you are looking for. This is what we
did when we were looking for employees earning more than their managers. This
simple idea is called exhaustive search, or, more colorfully, the British Museum
procedure. The latter term alludes to the way a serious-minded person would inspect
each and every exhibit in a museum.

Exhaustive search is sometimes the only way to solve an algorithmic problem.
However, often there are far better ways. For example, if you wanted to find a number
in a telephone book using exhaustive search, you would have to look through every
name in the book until you find the one you are looking for (or discover that it is not
there). This could take you a long time. Instead, you estimate roughly where to open
the book, based on the first letter of the name, then quickly correct your estimate
based on the names in the page you open, and find the number you are looking for in

P1: GIG

PE002-04drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:19

4. Algorithmic Methods 83

3

2 1

2 1

5

4
3

6

5

4

(a) (b)

maximum

maximum

Figure 4.1

Two convex polygons.

less than a minute. This so-called interpolation search procedure, which is much
more efficient than exhaustive search for this problem, is a human-oriented version
of an algorithm we discuss in detail in Chapter 6.

Thus, in many cases, exhaustive search is not the best way to go, to say the least.
Still, it is a useful procedure for those cases where there are no other solutions, and
it also serves as a baseline against which other solutions can be compared.

� Maximal Polygonal Distance: An Example

Many interesting algorithmic problems involve geometric concepts such as points,
lines, and distances, and are thus part of the subject known as computational ge-
ometry. Many of the problems in this area are deceptively easy to “solve” using the
human visual system, but are often a real challenge for algorithm designers. Here is
a very simple one.

Suppose we are given a simple convex polygon1 of the kind appearing in Fig-
ure 4.1, and suppose we are interested in finding two points of maximal distance on
its borderline. The polygon is assumed to be represented by a sequence of the co-
ordinates of the vertices, in clockwise order. As the maximum distance will clearly
occur for two of the vertices (why?), there is no need to look at any points along the
polygon’s edges other than the vertices.

A trivial solution would involve considering all pairs of vertices in some order,
keeping the current maximum and the pair achieving this maximum in variables.
Each new pair considered is subjected to a simple distance computation; the new
distance is compared with the current maximum and the variables are updated if the
new distance is found to be larger, which means that it is actually a new maximum. If
we ponder this solution for a moment, it becomes clear that we are actually traversing
an imaginary array in which vertices are plotted against vertices. The imaginary data
item at point 〈I, J 〉 of this array is the distance between the vertices I and J . The
traversal can then be easily carried out by two nested loops, and you are indeed
encouraged to write down the resulting algorithm.

This solution, however, considers far too many potential pairs. Should it not
be possible to consider only “opposite” pairs of points, such as 〈1, 4〉, 〈2, 5〉, and

1 A polygon is termed simple and convex if its borderline does not cross itself and if none of its angles
is greater than 180◦.

P1: GIG

PE002-04drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:19

84 II. Methods and Analysis

6

1

2

3
6

5 4

3

2

1

6

5 4

3

2

1

45

1

6

5 4

3

2

6

5 4
3

2

5 4

3

2

1

6

1

(a) (b) (c)

(d) (e) (f)

Figure 4.2

Finding maximal
distance by clockwise
traversal.

〈3, 6〉 in Figure 4.1(a)? This would mean traversing only a vector of “special” pairs,
rather than the array of all pairs, clearly resulting in a more efficient algorithm that
requires only a single loop. Now, this is not quite as simple as it sounds, since
the desired opposite pairs are not necessarily those which have an equal number
of vertices on either side; Figure 4.1(b) shows a polygon in which the maximum
occurs in neighboring vertices, which would have been missed by an algorithm
that considered only oppositely numbered ones. The better solution, which indeed
employs a single loop and considers only the “right” kind of opposite pairs, is
illustrated in Figure 4.2.

� Let us describe how it works. We shall do so using informal geometric notions, though
a detailed description of the algorithm would have to translate these into numerical
manipulations using data and control structures, which we shall not carry out here.

First, a line is drawn along the edge between vertex 1 and 2. Next, a line parallel to it
is gradually brought towards the polygon from beyond the polygon on the opposite side
of the first line, until one of the vertices is hit; see Figure 4.2(a), in which it is clear that
vertex 5 is the first one to be thus reached. The initial approximation to the maximum is
now taken to be the larger of the distances between that vertex (5 in this case) and vertices
1 and 2. Then, a clockwise movement is started, each step of which involves:

1. rotating one of these two lines until it lies along the next edge of the polygon in
clockwise order (in Figure 4.2(b) this can be seen to be the bottom line rotating to fit
the edge from 5 to 6); and

2. adjusting the other line to be parallel to it (in Figure 4.2(b) the top line is adjusted).

Exactly which of the lines is rotated and which is adjusted is determined by comparing
the efforts needed for rotation: the line with the smaller angle to the next edge is the
one rotated (in Figure 4.2(a) the angle between the bottom line and the edge from 5 to 6

P1: GIG

PE002-04drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:19

4. Algorithmic Methods 85

is smaller than that between the top line and the edge from 2 to 3). Upon completing
a rotation, a new vertex appears on the line just rotated, one that was not there before
the rotation. The distance between this new vertex and the one on the adjusted line is
computed, and is compared to the current maximum as before. This procedure is carried
out in a complete circle around the entire polygon. When the procedure ends, the current
maximum is the desired maximal distance.

It can be shown that all the actions required by this algorithm involve simple numerical
manipulations of the coordinates of the vertices, which follow from elementary analytic
geometry. Figure 4.2 illustrates the sequence of transformations on the lines.

This example was chosen to further illustrate that recognizing the need for a
traversal, and figuring out what really is to be traversed, is important and can be
of considerable help, but it does not always suffice when it comes to solving tricky
algorithmic problems; some insight and a good deal of knowledge of the relevant
subject matter can do no harm.

� Divide-and-Conquer

Often a problem can be solved by reducing it to smaller problems of the same
kind and solving them, and then, with some additional work, combining the partial
solutions to form a final solution to the original problem. If the smaller problems
are precisely the same problem at hand but applied to “smaller” or “simpler” inputs,
then clearly recursion can be used in the algorithm. This method is called divide-
and-conquer for obvious reasons.

Several algorithms in this book embody this “split-and-hit” idea. We have already
seen it implicitly in the Towers of Hanoi example: the algorithm solved the problem
for N rings by solving two problems for N−1 rings in the proper order and with the
proper parameters. Other cases appear later. Here are two additional applications of
dividing and conquering.

Imagine being given a jumbled telephone book, or, to sound more profound, an
unordered list L . We are not interested in sorting L , but merely in finding the largest
and smallest elements appearing therein. Clearly we can simply traverse the list
once, keeping the current minimum and current maximum in variables, comparing
each element to both as we proceed, and updating them if the element considered
is smaller than the current minimum or larger than the current maximum. How-
ever, the following algorithm utilizes the divide-and-conquer strategy in a simple
way, and, as explained in Chapter 6, is actually slightly better. Schematically, it
reads:

(1) if L consists of one element, then that element is taken as both the minimum and the
maximum; if it consists of two elements, then the smaller is taken as its minimum and
the larger as its maximum;

(2) otherwise do the following:
(2.1) split L into two halves, Lleft and Lright;
(2.2) find their extremal elements MINleft, MAXleft, MINright, and MAXright;

P1: GIG

PE002-04drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:19

86 II. Methods and Analysis

(2.3) select the smaller of MINleft and MINright; it is the minimal element of L;
(2.4) select the larger of MAXleft and MAXright; it is the maximal element

of L .

(Obviously, the splitting in line (2.1) should be defined in such a way as to cover
the case of a list L of odd length, say, by taking the first half to be longer than the
second by one element.)

Now, line (2.2) begs to be carried out recursively, since the problems to be solved
there are precisely the min&max problem on the smaller lists Lleft and Lright. This
recursion is not quite as simple as it seems, since here, in contrast with the Towers
of Hanoi routine, the recursive call has to produce results that are used in the sequel.
Somehow, the processor must not only remember its return address and how to
restore the environment to the situation prior to embarking on the present recursive
endeavor, but it must also be capable of bringing back certain items from its toils. In
this case it would be most helpful if the processor could return from a recursive call
along with the minimum and maximum it was sent out to compute.2 The following
is the result of extending the notion of a subroutine accordingly, and applying it to
the min&max problem:

subroutine find-min&max-of L:

(1) if L consists of one element, then set MIN and MAX to it; if it consists of two elements,
then set MIN to the smaller of them and MAX to the larger;

(2) otherwise do the following:
(2.1) split L into two halves, Lleft and Lright;
(2.2) call find-min&max-of Lleft, placing returned values in MINleft and MAXleft;
(2.3) call find-min&max-of Lright, placing returned values in MINright and

MAXright;
(2.4) set MINto smaller of MINleft and MINright;
(2.5) set MAX to larger of MAXleft and MAXright;

(3) return with MIN and MAX.

As mentioned, the reason this algorithm is actually a little better than the naive one
will become clear in Chapter 6.

The divide-and-conquer paradigm can be used beneficially in sorting a list, not
only in finding its extremal elements. Here is how. To sort a list L containing at least
two elements, we similarly split it into its halves, Lleft and Lright, and recursively
sort them both. The one-element case is treated separately, as in the min&max
example. To obtain the final sorted version of L , we proceed by merging the sorted
halves into a single sorted list. To merge two sorted lists, we repeatedly remove and
send off to the output the smaller of the two elements currently at the heads of the
two lists. The workings of this algorithm, which is called mergesort, are illustrated
in Figure ??, and you are urged to write down the algorithm in detail. Mergesort is
considerably better than both bubblesort and treesort, a fact we shall have more to
say about in Chapter 6.

2 A subroutine or procedure that returns with values is sometimes called simply a function.

P1: GIG

PE002-04drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:19

4. Algorithmic Methods 87

15

15 5 64 8 12 11 4 35

15 5 64 8

5 64 8

5 8 15 64

64

15

8
5

4

11

12

35

5 15 8 64

12

12 11 4 35

11 4 35

4

12
11

35

4

11 12 35

11 12 4 35

4 5 8 11 12 15 35 64

15

5
8

64

MERGE

SPLIT SPLIT

SPLIT

MERGE

MERGE

recursive
call to

mergesort

Figure 4.3

The workings of
mergesort.

� Greedy Algorithms and Railroad Contractors

Many algorithmic problems call for producing some kind of best result from an
appropriate set of possibilities. Consider a network of cities, and a lazy railroad
contractor. The contractor was paid to lay out rails so that it would be possible to
reach any city from any other. The contract, however, did not specify any criteria,
such as the need for certain nonstop rail connections, or a maximum number of
allowed cities on the path connecting any two others. Hence our contractor, being
lazy, is interested in laying down the cheapest (that is, the shortest) combination

P1: GIG

PE002-04drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:19

88 II. Methods and Analysis

10 7

4

8

(Not drawn to scale) Total cost: 63

6

9

16
11

10 7 9

6
11

4

3

13

15

13

1412
17

26
3

Figure 4.4

City network and its
minimal spanning
railroad.

of rail segments. Assume that not all cities can be connected by direct segments of
rail to all others due to objective reasons such as physical obstacles, and that the
distances are given only between those pairs of cities that can be connected. We
further assume that the cost of directly connecting city A with B is proportional
to the distance between them. Also, we do not allow railroad junctions outside
cities.

Such a network is called a labeled graph, or simply a graph for short. Graphs are
similar to trees, except that trees cannot “close on themselves”; that is, they cannot
contain cycles, or loops, whereas graphs can. Figure ?? presents an example of a
city graph and its minimal railroad. Notice that the contractor is really after what
we sometimes call a minimal spanning tree. This is a tree that “spans” the graph,
in the sense that it reaches each and every one of its nodes (that is, the cities, in our
case), and is the cheapest such tree, in the sense that the sum of the labels along the
edges (that is, the distances between cities, in our case) is the smallest possible. It
is quite easy to see that the desired solution must be a tree (that is, it cannot contain
cycles), since if it were to contain some cycle a lazy contractor could have obtained a
cheaper railroad, which still connected all cities, by eliminating one of the segments
of that cycle.

There is an algorithmic approach to such problems, called the greedy method.
It recommends constructing the minimal spanning tree edge by edge, choosing as
the next edge the cheapest one possible as far as the current situation is concerned.
This is really like adopting a kind of “eat and drink as tomorrow we die” attitude:
do as much as you can now because otherwise you might be sorry you didn’t.
Figure ?? illustrates the construction of such a tree. Start out with the degenerate
tree consisting of the cheapest edge in the graph, all alone. Now, at each stage extend
the tree constructed so far by adding the cheapest edge not yet considered, as long
as this results in a connected structure that is actually a tree. In particular, it should
not introduce a cycle; if it does, then go on to the next cheapest edge. For example,
going from Figure ??(e) to ??(f) involves adding the edge labeled 9 instead of the
edge labeled 8. The latter would have introduced a cycle in the graph.

It can be shown that this simple strategy actually produces a minimal spanning
tree, and you are encouraged to write down the algorithm in detail.

Greedy algorithms exist for a variety of interesting algorithmic problems. They
are usually quite easy to come by, and in some cases they are quite intuitive. The
difficult part is usually in showing that a greedy strategy indeed gives the best

P1: GIG

PE002-04drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:19

4. Algorithmic Methods 89

3

3

7

3 3

10 7 7

4
6

9

11

10

3
13

9

11
6

4

10 7

4
6

910

4
6

3 3 3

10 10

4 4
6

10

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.5

The workings of the
greedy spanning tree
algorithm.

solution, and as the next section shows, there are cases in which greed does not pay
at all.

� Dynamic Programming and Weary Travelers

Here is a problem that is similar to that of the minimal spanning tree, but this one
defies naive greedy solutions. It too involves a city network, but instead of a lazy
railroad contractor we have a weary traveler who is interested in traveling from
one city to another. Though both have a job to do, and both want to minimize the
overall cost of getting it done, there is a crucial difference: whereas the contractor
has to connect all cities by a subnetwork of rails, the traveler will usually travel
only through some of the cities. It is clear, therefore, that the traveler is not after a
minimal spanning tree, but a minimal path; that is, the cheapest trip leading from
the start city to the desired destination.

For ease of exposition, we assume that all lines in the city graph are directed,
meaning that if two cities are connected by a line in the graph, then that line represents
a one-way connection. Also, we assume that the graph is connected, meaning that
the graph does not consist of separate, disconnected parts. We further assume that
the city graph has no cycles, so that a really weary traveler will not be liable to go
around in circles, because there will be none to go around in. Such a complex is
called a directed acyclic graph, or a DAG for short.

And so, we are given a DAG, and the traveler is interested in getting from point A
to point B. A greedy approach to the problem might cause a path to be constructed
by starting at A, and continuously adding to the current incomplete path the cheapest
edge leading from the city reached so far to some city not yet visited, until the target
city B is reached. Figure ?? shows an example of applying this natural-looking
algorithm to a graph whose minimal path from A to B is of length 13. The algorithm
finds a path of length 15, which is not as good. Greed does not pay here, as a clever

P1: GIG

PE002-04drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:19

90 II. Methods and Analysis

C
F

C

A

D

G

B

E

F
A

C

D

G

E

B

F

A
E

D
B

G

14

3 11

5

7

6 7

The graph Greedy solution
Total cost:15

Dynamic planning solution
Total cost:13 (optimal)

6

5

7 3

6

6

5 3

5

3

2Figure 4.6

For weary travelers
greed does not pay.

algorithm must be devious enough to take the edge of length 5 to C and then that of
length 3 to E , even though these are not the locally best-looking choices.

A different, non-greedy algorithmic method, called dynamic planning, enables
such subtle choices to be made. (Actually, this method is known as dynamic pro-
gramming, not planning, but we have decided to use the latter word, both to better
reflect the idea behind the method and to avoid a conflict with the algorithmic use of
the term “programming,” which refers to the coding of an algorithm for computer
execution, as explained in Chapter 3.) Dynamic planning is based on a refinement
of the rather coarse criterion of immediate greed, and can be described abstractly as
follows.

Suppose the solution to some algorithmic problem is to consist of a sequence
of choices that is to lead to some optimal solution. As already shown, it is quite
possible that simply picking the best-looking choice from among each local set of
possibilities will not lead to an optimal solution. However, it is often the case that
the optimum can be obtained by considering all combinations of (a) making a single
choice, and (b) finding an optimal solution to the smaller problem represented by the
remaining choices. For example, in Figure ?? the length of the shortest path from A
to B is the smallest of the three numbers obtained by first selecting one of the cities
C , G and D (those directly reachable from A) and then adding its distance from A
to the length of the shortest path leading from it to B. Symbolically, denoting the
length of the shortest path from X to B by L(X), we can write:

L(A) = minimum of: 5 + L(C), 14 + L(G), 3 + L(D)

(See Figure ??.) In other words, we are finding the shortest path from A to B
by finding three “simpler” shortest paths (those from each of C , G and D to B),
combining their solutions with the direct edge from A, and then choosing the best of
the three results. This means that we can find the optimal solution by first finding the
optimum solutions to three “smaller” problems, and then carrying out a few additions
and comparisons. This process can then be continued, writing, for example:

L(D) = minimum of: 7 + L(E), 6 + L(G), 11 + L(C)

When such derivations yield clauses involving L(B) (that is, the minimal distance
from B to itself) no further development is needed, since even an exhausted traveler
knows that L(B) is simply 0, by virtue of the fact that the best way to go from B to
B is to just stay where you are.

P1: GIG

PE002-04drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:19

4. Algorithmic Methods 91

These observations lead to a dynamic planning algorithm for the general weary
traveler problem (sometimes called the shortest-path problem), which works from
the endpoint B backwards to A. In the example of Figure ??, it first calculates the
shortest paths from F and E to B, that is, L(F) and L(E) (these are the only cities
that lead nowhere except to B). It then calculates L(G) and L(C) (here G and C
are the only cities that lead only to B, F and E , that is, to cities already dealt with),
then L(D), and finally L(A). Each calculation is carried out with the help of the
results of those already available, so that, for example, L(G) is the minimum of 6
(the direct distance from G to B) and 7 + L(E). While carrying out this procedure
we also keep track of the backwards path that is gradually constructed from B to A;
it is the optimal path sought for.

Dynamic planning can be thought of as divide-and-conquer taken to the limit: all
subproblems are solved in an order of increasing magnitude, and the results are stored
in some data structure to facilitate easy solutions to the larger ones. The method can
be applied to many more elaborate problems, which require data structures more
complex than mere vectors to store the partial solutions. You might want to try to
devise a dynamic planning algorithm for the closely related “traveling salesman”
problem described in Chapter 7.

� �

� Heaps and Getting Work Done on Time

Many algorithms depend on a clever choice of data structures with properties that are
tailored to the needs of the specific algorithm. For example, the treesort algorithm
described in Chapter 2 employs binary search trees, which restrict the placing of
elements such that smaller elements go to the left and larger elements to the right.
There are a great many types of data structures, some with curious names such as
“Fibonacci heaps” or “red-black trees,” each suitable for a particular algorithmic
purpose.

Suppose we want an algorithm that receives elements in some order, and has
to be able to provide the smallest one whenever queried. For example, consider
the schedule of a printing shop. At any moment, a customer may arrive with some
printing job. Each job has its own deadline; some are urgent and others can wait.
When a copying machine becomes available, the shop manager needs to find the
most urgent job to perform. Here, the elements that the algorithm needs to handle
are printing jobs, ordered by their deadlines.

A suitable data structure for this problem is a heap, which is a binary tree with the
property that the value of each node is smaller than the values of all its offspring.3

As a result of this property, the smallest element of the heap is always located at the
root of the tree, and is immediately accessible. When we indeed access that element,
we have to remove it from the heap (as in the printing shop example). But in doing
so, we must maintain the heap’s characteristic property, by replacing that smallest

3 Note that, unlike the case of binary search trees, there is no requirement distinguishing the left offspring
from the right.

P1: GIG

PE002-04drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:19

92 II. Methods and Analysis

element with the smaller of its offspring, which has just become the smallest element
of the heap. However, if we simply move this new minimal element up to the root,
we create a “hole” in the tree, which must be filled by the smaller of its offspring.
This is indeed done, and the process is continued downward until we reach a leaf.
So much for removing the smallest element. Inserting a new element into the heap
is similar, except it starts from one of the leaves and works its way towards the
root until its proper place is found (that is, until going any higher would violate the
heap’s characteristic property).

A clever implementation of heaps uses a vector. A heap containing N elements will
occupy cells 1 to N of the vector, with the two offspring of the node residing at cell I
being located in cells 2 · I and 2 · I + 1. In this representation, removing the mini-
mum element cannot be done as described above, since that might create a “hole”
in the middle of the vector. Instead, the element from the last position in the vector
replaces the first element (the one just removed), and it is then “bubbled” downward
until it finds its correct place in the heap. This vector representation enjoys certain
properties that make heap-manipulation algorithms quite efficient. We discuss these
further in Chapter 6.

� Nondestructive Algorithms

Another elegant example of the use of data structures comes from the functional
programming paradigm, discussed in Chapter 3. This paradigm makes programs
easier to understand and reason about, at the price of a higher level of abstraction
that uses only nonmodifiable objects. Typically, algorithms are described in an
imperative style, using data structures that the algorithm can modify as it goes
along. Functional algorithms, on the other hand, must treat their data structures with
more respect, since they cannot be modified. In this view, instead of changing data
structures, we always create new ones. For example, the operation of adding an
element to a stack returns a new stack, containing all the elements of the original
stack plus the new element on top. The original stack is not changed, and is available
for further computation if necessary.

Since stacks can be accessed only at one end, it is quite easy to implement stacks
using linked lists. Adding an element to the stack is just adding an element to the
front of the list (or, more accurately, creating another link that points to the original
list, which, as mentioned, does not change). Similarly, removing the top element of
a stack just means moving along to the next element in the list (see Figure ??).

In contrast to stacks, queues are harder to implement in a functional language,
since they allow access (and therefore require modification) at both ends. Removing
an element is easy, and is done just as in a stack. However, adding an element means
adding it to the end of the list, as in the JAVA example we saw in Chapter 3. In an
imperative language, this is easily done by modifying the “next” pointer of the last
link in the list, but this is impossible in a functional language. Of course, we could
copy the entire list and add the new element at the end of the new list, but this would
be a waste of time and memory. A clever idea allows us to implement functional
queues with the same efficiency as in the imperative implementation. The trick is to
implement each queue as two stacks. The “front” stack contains the elements in the

P1: GIG

PE002-04drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:19

4. Algorithmic Methods 93

21

8

(a)

(b)

(c)

(d)

3
Figure 4.7

A functional stack: (a)
a stack containing the
elements 1, 2, and 3;
(b) the result of
adding 8 to the
previous stack; (c) the
result of removing the
top element of (b);
(d) removing another
element.

front of the queue, ordered so that the top element of the stack is the front element
of the queue, and the “back” stack contains the elements in the back of the queue,
in reverse order—the top element of the stack being the last element of the queue
(see Figure ??).

Adding an element to the back of the queue is now easy: it is pushed on the
back stack. Removing an element from the queue is just as easy: simply remove the
element residing on the top of the front stack. Now, what if the front stack is empty
but the back stack is not? In this case, we first turn the back stack into the front
stack by moving all of its elements into the front stack in reverse. The back stack
now becomes empty, which is fine, because we never need to remove anything from
it. (In fact, we never let the front stack become empty while the back stack is non-
empty, by performing this reversal when the last element is removed from the front
stack.) This serial reversal is indeed an expensive operation, involving moving all
the contents of the back stack. However, notice that each element of the queue will
pass from the back stack to the front stack at most once. The cost of this operation
can therefore be “charged” to the element being moved, so that when summarized

4
5

3
1
2

(a)

(b)

(c)

(d)

3
4
5

4
5

32

4
3

1
2

Front BackFigure 4.8

A functional queue
implemented as two
stacks: (a) a queue
containing the
elements 1, 2, 3, and
4; (b) the result of
adding 5 to the
previous queue; (c)
the result of removing
the top element of
(b); (d) removing
another element.

P1: GIG

PE002-04drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:19

94 II. Methods and Analysis

and averaged out over the full execution of the algorithm, each insertion or removal
operation takes a fixed amount of time. This accounting method, called amortized
cost, is an important technique for analyzing the efficiency of algorithms, and will
be discussed further in Chapter 6.

� On-Line Algorithms

Assume that some parents take their children to a ski resort for the first time in their
lives. It is impossible to say how much they will like skiing, and how much of it they
will want to do. Skis can be rented or bought. If it turns out that the children will
want to ski a lot, it would be cheaper to buy skis once and for all. However, if not, it
would be cheaper just to rent skis whenever the fancy takes them. If the parents knew
in advance how much skiing the children would want to do, the choice would be
obvious. However, this information is unknown, and we are left with adopting some
strategy of the general form that calls for starting out by renting skis some number
of times to see how things go, and then deciding to actually buy. What would be the
parents’ best strategy?

Figuring this out is an example of an interesting class of problems whose solution
requires what we call on-line algorithms. The name comes from the fact that these
algorithms must make decisions as they go along, without knowing all the relevant
information; specifically, they do not know what requests may be made on them in
future.

The first question in analyzing on-line algorithms is how to analyze their cost. The
usual method is to compare each algorithm with the omniscient off-line algorithm—
the one that can correctly predict the future (in our case, to what extent will the
kids enjoy skiing). Of course, no on-line algorithm can do better than this off-
line algorithm; the best on-line algorithm is the one that comes closest to that
goal.

In our example, it turns out that the best on-line algorithm for the skiing problem
is to rent until the cost of renting equals the cost of buying, and then buy. This
algorithm is less than twice as bad as the omniscient algorithm. To see this, suppose
the cost of buying skis is equal to the cost of M rentals, and consider the number
of times the children will eventually want to ski. If they ski fewer than M times,
both algorithms will pay the same amount (the off-line omniscient one knows in
advance that they will ski fewer than M times, so it will rent, rather than buy). If
the children want to ski more than M times, the on-line algorithm will rent M−1
times and then buy, for a total cost equal to 2 · M − 1 rentals. The off-line algorithm,
knowing the future, will buy immediately, for a cost of M rentals. In any case, the
on-line algorithm never exceeds twice the cost of the off-line algorithm.

It is possible to show that no other strategy will prove to be better, in general.4 A
strategy that will have the parents buy the skis after K rentals, where K is strictly less
than M − 1, may end up costing K + M rental units while the off-line algorithm
pays only K + 1. (How many times do the children have to want to ski in order for

4 This is a sort of optimality result, and is stated in a worst-case sense, which we shall discuss in detail
in Chapter 6.

P1: GIG

PE002-04drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:19

4. Algorithmic Methods 95

this to happen?) If K is more than M − 1, the on-line algorithm may again cost the
parents K + M , while the off-line algorithm calls for buying skis immediately, for
a cost of only M rentals. In either case, the cost of the on-line algorithm is at least
twice the cost of the off-line omniscient algorithm.

� �

� Research on Algorithmic Methods

There are really very few universally accepted paradigms that are general enough to
deserve a special name and the title “algorithmic method,” and most of the better-
known ones have already been described. Despite this, without particularly aiming at
general paradigms, computer scientists are continually searching for better methods
to solve increasingly more complex algorithmic problems.

It is somewhat difficult to discuss these attempts further here, since issues of
efficiency creep in at a very early stage, and efficiency is treated in detail only
in Chapter 6. Moreover, the notions of concurrency and probabilism, discussed in
Chapters 10 and 11, are becoming more and more crucial to recent developments in
algorithmic design. When treating these topics we shall see some additional ways
of coming up with good algorithms.

� Exercises
In the following exercises, a tree is given by (a pointer to) its root. A node V of a tree with
outdegree N has N offspring, labeled as the first through the N th, and contains some data
item. A leaf is a node without offspring. A binary tree limits the number of offspring of
each node to at most two. The depth of a node of a tree is as follows: the depth of the root
is 0, and if the depth of V is N then the depth of its offspring is N + 1.

For a node V , the available operations include retrieving its contents, testing whether
it has an I th offspring, and if so, assigning a pointer to that offspring.

4.1. Consider the problem of summing the salaries of employees earning more than their direct
manager, assuming each employee has a single manager. The employees are labeled 1, 2,
etc. Write algorithms that solve the problem for each of the following representations of
the input data:

(a) The input is given by an integer N and a two-dimensional array A, where N is the
number of employees, A[I, 1] is the salary of the I th employee and A[I, 2] is the
label of his or her manager.

(b) The input is given by a binary tree constructed as follows: The root of the tree represents
the first employee. For every node V of the tree representing the I th employee,
� V contains the salary of the I th employee;
� the first offspring of V is a leaf containing the label of the manager of the I th

employee; and
� if there are more than I employees, the second offspring of V is the node that

represents the I + 1th employee.

4.2. (a) Write an algorithm which, given a tree T , calculates the sum of the depths of all the
nodes of T .

P1: GIG

PE002-04drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:19

96 II. Methods and Analysis

(b) Write an algorithm which, given a tree T and a positive integer K , calculates the
number of nodes in T at depth K .

(c) Write an algorithm which, given a tree T , checks whether it has any leaf at an even
depth.

4.3. Write algorithms that solve the following problems by performing breadth-first traversals
of the given trees. You may assume the availability of a queue Q. The operations on Q
include adding an item to the rear, retrieving and removing an item from the front, and
testing Q for emptiness.

(a) Given a tree T whose nodes contain integers, print a list consisting of the sum of
contents of nodes at depth 0, the sum of contents of nodes at depth 1, etc.

(b) Given a tree T , find the depth K with the maximal number of nodes in T . If there are
several such K s, return their maximum.

An arithmetic expression formed by non-negative integers and the standard unary oper-
ation “−” and the binary operations “+”, “−”, “×”, and “/”, can be represented by a
binary tree as follows:

� An integer I is represented by a leaf containing I .
� The expression −E , where E is an expression, is represented by a tree whose root

contains “−” and its single offspring is the root of a subtree representing the expression
E .

� The expression E ∗ F , where E and F are expressions and “∗” is a binary operation,
is represented by a tree whose root contains “∗”, its first offspring is the root of a
subtree representing the expression E and its second offspring is the root of a subtree
representing F .

Note that the symbol “−” stands for both unary and binary operations, and the nodes of
the tree containing this symbol may have outdegree either 1 or 2.

4.4. Design an algorithm that checks whether a given tree represents an arithmetic expression.

4.5. (a) Design an algorithm that calculates the value of an arithmetic expression, given its
tree representation. Note that division by zero is undefined.

(b) Extend your algorithm to first print the expression represented by the input tree,
followed by the equality sign “=” and its evaluation. The printed expression should
be fully parenthesized, i.e., a pair of matching parentheses should embrace every
application of a binary operation.

We say that two arithmetic expressions E and F are isomorphic, if E can be obtained
from F by replacing some non-negative integers by others. For example, the expressions
(2 + 3) × 6 − (−4) and (7 + 0) × 6 − (−9) are isomorphic, but none of them is isomor-
phic to any of (−2 + 3) × 6 − (−4) and (7 + 0) + 6 − (−9).
An expression E is said to be balanced, if every binary operation in it is applied to
two isomorphic expressions. For example, the expressions −5, (1 + 2) ∗ (3 + 5) and
((−3)/(−4))/((−1)/(−100)) are balanced, while 12 + (3 + 2) and (−3) ∗ (−3) are not.

4.6. Design an algorithm that checks whether two expressions are isomorphic, given their tree
representation.

4.7. Design an algorithm that checks whether an expression is balanced, given its tree repre-
sentation. (Hint: perform breadth-first traversal of the tree.)

4.8. Prove that the maximal distance between any two points on a polygon occurs between
two of the vertices.

P1: GIG

PE002-04drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:19

4. Algorithmic Methods 97

4.9. Write a program implementing the maximal polygonal distance algorithm.

4.10. Design an algorithm that, given (the vertices of) a not necessarily convex polygon, finds
a pair of vertices of minimal distance.

4.11. Write algorithms that find the two maximal elements in a given vector of N distinct
integers (assume N > 1).

(a) Using an iterative method.
(b) Using the divide-and-conquer method.

4.12. Write in detail the greedy algorithm described in the text for finding a minimal spanning
tree. The integer-knapsack problem asks to find a way to fill a knapsack of some given
capacity with some elements of a given set of available items of various types in the most
profitable way. The input to the problem consists of:

� C , the total weight capacity of the knapsack;
� a positive integer N , the number of item types;
� a vector Q, where Q[I] is the available number of items of type I ;
� a vector W , where W [I] is the weight of each item of type I , satisfying 0 < W [I] ≤ C ;

and
� a vector P , where P[I] is the profit gained by storing an item of type I in the knapsack.

All input values are non-negative integers. The problem is to fill the knapsack with ele-
ments whose total weight does not exceed C , such that the total profit of the knapsack is
maximal. The output is a vector F , where F[I] contains the number of items of type I
that are put into the knapsack.
The knapsack problem is a variation of the integer-knapsack problem, in which instead of
discrete items, there are materials. The difference is that instead of working with integer
numbers, we may put into the knapsack any quantity of material I which does not exceed
the available quantity Q[I]. The vectors W and P now contain the weight and profit,
respectively, of one quantity unit of material I . All input and output values are now
non-negative real numbers, not necessarily integers.

4.13. (a) Design a dynamic planning algorithm for the integer-knapsack problem.
(b) What is your algorithm’s output for the input

� N = 5
� C = 103
� Q = [3,1,4,5,1]
� W = [10,20,20,8,7]
� P = [17,42,35,16,15]
and what is the total profit of the knapsack?

4.14. (a) Design a greedy algorithm for the knapsack problem.
(b) What is your algorithm’s output for the input given in Exercise 4.13(b), and what is

the total profit of the knapsack now?

4.15. (a) How would you relate the total profits gained for a given integer input, when subjected
to the knapsack problem and to the integer knapsack problem?

(b) Consider a modification to the algorithm you have designed in Exercise 4.14(a) that
produces in F the integer part of the quantities calculated by the original algorithm.
Prove that the modified algorithm does not solve the integer-knapsack problem. That
is, give an integer input for which the (modified) greedy algorithm will produce
an acceptable integer filling which is not maximally profitable. Find such an input

P1: GIG

PE002-04drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:19

98 II. Methods and Analysis

with N , the number of types, as small as possible. (Hint: correct solutions to the
integer-knapsack problem, in contrast to the knapsack problem, might leave available
items out of the knapsack, even when it is not full.)

For every matter has its time and method

ECCLESIASTES 8: 6

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

C H A P T E R 5

The Correctness
of Algorithms

or, Getting It Done Right

Behold, I have . . .

erred exceedingly

I SAMUEL 26: 21

Cause me to
understand wherein
I have erred

JOB 6: 24

� In the early 1960s one of the American spaceships in the Mariner series sent to
Venus was lost forever at a cost of millions of dollars, due to a mistake in a flight
control computer program.

� In 1981 one of the television stations covering provincial elections in Quebec,
Canada, was led by its erroneous computer programs into believing that a small
party, originally thought to have no chance at all, was actually leading. This
information, and the consequent responses of commentators, were passed on to
millions of viewers.

� In a series of incidents between 1985 and 1987, several patients received massive
radiation overdoses from Therac-25 radiation-therapy systems; three of them
died from resulting complications. The hardware safety interlocks from previous
models had been replaced by software safety checks, but all these incidents
involved programming mistakes.

� Some years ago, a Danish lady received, around her 107th birthday, a computer-
ized letter from the local school authorities with instructions as to the registration
procedure for first grade in elementary school. It turned out that only two digits
were allotted for the “age” field in the database.

� At the turn of the millennium, software problems became headline news with the
so-called Year 2000 Problem, or the Y2K bug. The fear was that on January 1,
2000, all hell would break loose, because computers that used two digits for
storing years would erroneously assume that a year given as 00 was 1900, when
in fact it was 2000. An extremely expensive (and, in retrospect, quite successful)
effort to correct these programs had to be taken by software companies worldwide.
(We discuss this example further in Chapter 13.)

99

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

100 II. Methods and Analysis

start

is Q
direct

manager
of P?

is P
at end
of list?

is Q
at end
of list?

is P’s
salary more
than Q’s?

advance Q to
next employee

advance P to
next employee

output
noted number

stop

note 0;
point with P to
first employee

point with Q to
first employee

add P’s salary to
noted number

Error

In
te

rn
al

 lo
op

E
xt

er
na

l l
oo

p

YES

YES NO

NO
NO

NO

YES

YES

Figure 5.1

Erroneous version of
the salary summation
flowchart of
Figure 2.4.

These are just a few of the numerous tales of software errors, many of which have
ended in catastrophes, often with loss of life.1 The importance of the correctness
issue cannot be overestimated. We have been naively assuming throughout that the
algorithms and programs we write do precisely what we intend them to do. This has
absolutely no justification; in a preliminary manuscript of the first edition of this
book, the flowchart of Figure 2.4, which sums salaries of employees earning more
than their direct managers, contained an embarrassing error that went undetected
for several months. The original version, presented in Figure 5.1, will not always
work as desired. More about this example later.

1 For some other spectacular examples, see Chapter 13.

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

5. The Correctness of Algorithms 101

� Language Errors

One of the most frequent kinds of errors occurring in the preparation of computer
programs stems from abusing the syntax of the programming language. We met
with these in a previous chapter. Writing:

for Y from 1 until N do

instead of:

for Y from 1 to N do

as the language requires, is wrong, but it is not an error in the algorithm. Syntax
errors are but a troublesome manifestation of the fact that algorithms carried out by
a computer are required to be presented in formal attire.

Compilers and interpreters are made to spot syntax errors, and will notify the
programmer, who will typically be able to correct them with little effort. Moreover,
and here is where compilers have an edge over interpreters, a clever compiler will
attempt to correct certain kinds of syntax errors on its own, making possible the
desired translation into machine language (see Chapter 3).

A compiler is not limited, as is an interpreter, to looking at one line or one
instruction of the program at a time. It is usually also programmed to spot more
subtle errors, which, rather than violating local syntactic rules of the language, cause
contradictions between possibly distant parts of the program, typically between a
definition and an operational instruction. Examples include arithmetical operations
applied to non-numerical variables, references to the 150th element of a vector
whose indices were defined to range from 1 to 100, and subroutine calls with the
wrong number of parameters.

All of these, however, also represent incorrect use of the language. Whether
or not a compiler or interpreter catches such an error in advance, an attempt at
running the program will fail when the offensive part is reached; the program will
be aborted, that is, it will be stopped and an appropriate message will be displayed
to the user. In contrast to the errors discussed in the next section, and despite the
possibly unpleasant nature of program failure, language errors are not considered
to be the most serious. Often they are detected automatically, and they can usually
be corrected with relative ease.

� Logical Errors

Let us recall the “money”-counting algorithm introduced in Chapter 2. The problem
was to count sentences containing occurrences of the word “money.” The solution
consisted of carrying out a search for “money” followed by a search for the end
of the sentence, which, by convention, is always denoted in the input text by the
“. ” combination, namely, a period followed by a space. Upon succeeding in both
searches, the initially zeroed counter is incremented, and the “money” search is
resumed from the beginning of the next sentence (see Figures 2.5 and 2.6).

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

102 II. Methods and Analysis

What would have happened had the algorithm used “.” (without the space) instead
of “. ”? Assume for the moment that we are not discussing the algorithm, but its
formal version, as a program containing no language errors. It is clear that the new
version, which differs from the original only in the absence of the space, contains no
language errors either. To an observer, compilers and interpreters included, the new
program is perfect. Not only are there no discernible syntax errors, but whenever
run on an input text the program dutifully halts and presents a number as the final
value of its counter.

Of course, there is an error in the new program. It is rooted in the fact that periods
can appear within sentences. Consider the following:

The total amount of money in my bank account is $322.56, a truly remarkable
sum, given my talents for making money. I am a rich man.

When turned loose on this two-sentence text, our modified version will output
2, even though “money” appears only in the first sentence. The program is fooled
by the decimal point appearing in $322.56. The new program is correct as far
as the language is concerned, and it actually solves an algorithmic problem, but,
unfortunately, not exactly the one we set out to solve.

The program contains what we shall be calling a logical error, resulting not
in a syntactically incorrect or meaningless program, but in a program that does
something other than that which it was intended to do.

Logical errors can be notoriously elusive. While it might not be too difficult to
notice that a space had been left out of the “. ” combination in the “money”-counting
program, the following mistake is not as easy to find. Let us assume that different
pointers to the text are used for the “money” search and the “. ” search. Clearly,
once “. ” has been found and the counter incremented, the first pointer should be
forwarded to the position of the second, prior to resuming the search for “money.”
Failing to do so constitutes a logical error that would also yield 2 when run on the
previous example, but for a different reason; this time the sentence boundaries are
correctly detected, but the counter is incremented twice within the first sentence.
(Why?)

Such errors do not indicate that something is wrong with the program per se,
but that something is wrong with the combination of the program and a particular
algorithmic problem; the program, which on its own is fine, does not correctly solve
that problem.

Logical errors can be caused by a misunderstanding of the semantics of the
programming language (“I thought that X*Y denoted X raised to the power of Y ,
not X times Y ,” or “I was sure that when a loop of the form for Y from 1 to
N is completed the value of Y is N , not N + 1”), in which case we might term
them semantic errors. However, it is far more typical to encounter “real” logical
errors; that is, errors in the logical process used by the designer of the algorithm to
solve the algorithmic problem. These have nothing to do with the program written
later to implement the algorithm. They represent flaws in the algorithm itself, when
considered as a proposed solution to the problem. They are algorithmic errors, and
are the ones we are interested in here. Failing to forward the “money” counter to
the next sentence is an algorithmic error. So was the erroneous connection, in the
early version of Figure 2.4 presented in Figure 5.1, of one of the exits from “is P’s

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

5. The Correctness of Algorithms 103

salary more than Q’s?” to “advance P to next employee” instead of to “is P at end
of list?”

� Computers Do Not Err

The analogy between algorithms and recipes fails when it comes to issues of cor-
rectness. When a cooking or baking endeavor does not succeed there can be two
reasons:

1. the “hardware” is to blame, or

2. the recipe is imprecise and unclear.

For the most part, the first of these is really the reason, especially after having
decided, as we indeed have done, that cooks and bakers are part of the hardware.
But if there are problems with a recipe, rather than with the baker, oven, or utensils,
they usually have to do with its author’s assumptions about the competence of its
users. “Beat egg whites until foamy” requires some knowledge of egg foam on the
part of the baker, without which the result of the baking endeavor might not be a
chocolate mousse but a chocolate mess!

In contrast to recipes, algorithms written for computer execution end up in a
formal unambiguous programming language, which all but eliminates reason (2).
Moreover, reason (1) can also be discarded. By and large, computers do not make
mistakes! A hardware error is such a rarity in modern computers that when our
bank statement is in error and the banker mumbles something to the effect that the
computer made a mistake, we can be sure that it was not the computer that erred—it
was probably one of the bank’s employees. Either incorrect data was input to one
of the programs, or the program itself, written, of course, by a human, contained an
error.

An incorrectly working program is not the result of a problem with the computer.
If the input data are checked and found to be correct, the problem is with the program
and its underlying algorithm.

� Testing and Debugging

Algorithmic errors can go undetected for ages. Sometimes they are never detected.
It is quite possible that “telltale” inputs for which the error produces an incorrect
output just do not occur in the lifetime of the algorithm. Alternatively, such an input
might indeed appear, but the incorrect output might never be noticed.

To detect the error in the Figure 5.1 version of Figure 2.4, for example, an input
list in which the last employee indeed has a direct manager (and is not, say, the
company’s president) would be required. (Why?) In a similar vein, you should try
to figure out why even the better algorithm of Figure 2.4 works correctly only if

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

104 II. Methods and Analysis

employees are required to have no more than one direct manager. Since we never
imposed this restriction on input lists explicitly when introducing the problem in
Chapter 2, you have really fallen into the little trap; Figure 2.4, strictly speak-
ing, is also incorrect! Only by either explicitly outlawing employees with multiple
managers, or by correcting the algorithm itself (how?), can it really be said to be
correct.

Some logical errors show up when the processor cannot carry out an instruction
for some unanticipated reason. Attempting to divide X by Y , for example, will fail if
Y happens to be 0 at the time. Similarly, failure will result from an attempt to move
down a tree from a node that happens to be a leaf (that is, there is no place to move
down to). These are not language errors, and a compiler will, in general, be unable
to spot them in advance. They are called run-time errors, and follow from logical
flaws in the design of the algorithm. Often the flaw consists simply of forgetting to
provide separate treatment for special “borderline” cases such as zeros (in numbers)
and leaves (in trees).

A designer might try out an algorithm on several typical and atypical inputs and
not find the error. In fact, a programmer will normally test a program on numerous
inputs, sometimes called test sets, and will gradually rid it of its language errors
and most of its logical errors. He cannot be sure, however, that the program (and
its underlying algorithm) is totally error free, simply because most algorithmic
problems have infinite sets of legal inputs, and hence infinitely many candidate test
sets, each of which has the potential of exposing a new error.

Logical errors, someone once said, are like mermaids. The mere fact that you
haven’t seen one doesn’t mean they don’t exist.

The process of repeatedly executing an algorithm, or running a program, with the
intention of finding and eliminating errors is called debugging. The name has an
interesting history. One of the first computers to have been built stopped working
one day and was later found to have a large insect jammed in some crucial part
of its circuitry. Since then, errors, usually logical errors, are affectionately termed
bugs.

Debugging a program, especially a complex and lengthy one, can be quite a hefty
undertaking. Even if the program is observed to produce the wrong outputs on a cer-
tain test case, no indication might be available as to the source of the error. However,
there are several techniques for narrowing down the possibilities. A version of the
program can be run with artificially inserted instructions for intermediate printouts.
These show the debugger partial results and values during execution. Alternatively,
if the program is interpreted, not compiled, its execution can be followed line by line,
making it possible to detect suspicious intermediate values, especially when working
with an interactive display. We also mentioned programming environments. These
support many kinds of testing and simulation tools to aid the algorithm designer and
programmer in getting things to work the way they should.

It is necessary to re-emphasize, however, that none of these methods guarantees
bug-free algorithms that produce the right outputs on any legal input. As someone
once put it, testing and debugging cannot be used to demonstrate the absence of
errors in software, only their presence.

� �

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

5. The Correctness of Algorithms 105

� Infinite Loops

The incorrectness of an algorithm as a solution to an algorithmic problem can thus
manifest itself either in an execution that terminates normally but with incorrect
outputs, or in an aborted execution.

As if to make things worse, an algorithm set out to run on one of the prob-
lem’s legal inputs may not terminate at all! Obviously this represents an error too.
Infinite computations, or infinite loops, as they are sometimes called, can be of
oscillating nature, repeating some number of instructions on the same values over
and over again, or of nonoscillating, but diverging nature, resulting in ever-larger
or ever-smaller values. An example of an oscillating loop is a search routine in
which there is no instruction to forward the appropriate pointer; the algorithm keeps
searching in the very same area of the data structure. An example of a divergence
is a loop that increments X by 1 on each pass and which is instructed to terminate
when X becomes 100. If the loop is erroneously reached with an initial value of
17.6 in X , the loop will “miss” 100 and keep incrementing X forever (see Fig-
ure 5.2). Of course, real computers have limited memories and will generally abort
programs of the second kind when the value of X exceeds some ultimate maxi-
mum, but the algorithm on which the program is based admits the infinite loop
nevertheless.

Testing and debugging can also help in detecting potential infinite loops. By
printing out intermediate values, a debugger may notice suspicious oscillations or
an abnormal increase or decrease of values, which, if left untouched, might lead to
nontermination. As before, there are always more inputs than we can test, hence no
such method is guaranteed to find all potential infinite loops.

In Chapters 10 and 14, we shall discuss algorithms that are not supposed to
terminate at all. For these, nontermination is a blessing, and termination indicates

X = 17.6 here

is X = 100?

X ← X + 1

YES

stop

NO

Figure 5.2

An infinitely looping
algorithm.

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

106 II. Methods and Analysis

the presence of an error. For now, however, a correct algorithm has to terminate
normally on all legal inputs and produce the right outputs each time.

� Partial and Total Correctness

As discussed in Chapter 1, an algorithmic problem can be concisely divided into
two parts:

1. a specification of the set of legal inputs; and

2. the relationship between the inputs and the desired outputs.

For example, each legal input might be required to consist of a list L of words
in English. The relationship between the inputs and desired outputs might specify
that the output must be a list containing the words in L sorted in ascending lexico-
graphic order. In this way, we have specified the algorithmic problem that asks for
an algorithm A, which sorts each legal input list L .

To facilitate precise treatment of the correctness problem for algorithms, re-
searchers distinguish between two kinds of correctness, depending upon whether
termination is or is not included. In one case it is assumed a priori that the program
terminates and in the other it is not. More precisely, it is said that an algorithm A is
partially correct (with respect to its definition of legal inputs and desired relation-
ship with outputs) if, for every legal input X , if A terminates when run on X then the
specified relationship holds between X and the resulting output set. Thus, a partially
correct sorting algorithm might not terminate on all legal lists, but whenever it does,
a correctly sorted list is the result. We say that A terminates if it halts when run on
any one of the legal inputs. Both these notions taken together—partial correctness
and termination—yield a totally correct algorithm, which correctly solves the al-
gorithmic problem for every legal input: the process of running A on any such input
X indeed terminates and produces outputs satisfying the desired relationship (see
Figure 5.3).

algorithm A

any legal
input

output

if
this point is reached

indeed
this point is reached

and
this is the desired output

Total correctnessPartial correctness

then
this is the desired output output

any legal
input

algorithm A

Figure 5.3

Partial and total
correctness.

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

5. The Correctness of Algorithms 107

� The Need for Proving Correctness

We now know exactly what we would like to establish when confronted with an
algorithmic problem and a candidate solution, and we have various testing and
debugging techniques to help us in doing so. However, none of these techniques is
foolproof, and just like the examples quoted at the beginning of the chapter, computer
science folklore is full of stories of catastrophes, some of them fatal, others causing
the loss of incredible amounts of money, and all following from algorithmic errors,
usually in large and complex software systems.

Claiming that a particular algorithm is correct with respect to an algorithmic
problem is perhaps less profound than claiming that mermaids are imaginary, but it
can be so crucial as to have many lives or fortunes depend on it. It suffices to think of
computer systems that control nuclear weapons or multi-million dollar transactions
to appreciate the point.

However, it is not only the many publicized and unpublicized cases of errors that
are of concern. It is commonly believed that more than 70% (!) of the effort and
cost of developing a complex software system is devoted, in one way or another, to
error correcting. This includes delays caused by misconceived specifications (that
is, unclear and imprecise definitions of the algorithmic problems), extensive testing
and debugging of the algorithms themselves, and, worst of all, changes and rewrites
of already working systems (generally termed maintenance), as a result of newly-
discovered bugs.

Referring to large commercially-used software systems, the situation has been
described nicely by saying that software is released for use, not when it is known
to be correct, but when the rate of discovering new errors slows down to one that
managers consider acceptable.

This situation is clearly bad. We need ways of proving that an algorithm is cor-
rect beyond doubt. No one asks whether there might exist some “undiscovered”
equilateral triangle having unequal angles. Someone proved once and for all that all
equilateral triangles have equal angles, and from then on no doubts remained.

Can anything be done to facilitate such proofs? Can the computer itself help
verify the correctness of our algorithms? Actually, what we would like most would
be an automatic verifier; namely, some sort of super-algorithm that would accept
as inputs a description of an algorithmic problem P and an algorithm A that is
proposed as a solution, and would determine if indeed A solves P . Perhaps it would
also point out the errors if the answer was no (see Figure 5.4). In Chapter 8 we shall
see that in general this is but wishful thinking. No such verifier can be constructed.

For now, however, let us ignore the issue of getting a computer to help. Can we
ourselves prove our algorithms to be correct? Is there any way in which we can
use formal, mathematical techniques to realize this objective? Here we have better
news.

� Invariants and Convergents

There do indeed exist methods for program verification. In fact, in a certain
technical sense, any correct algorithm can be rigorously demonstrated to be

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

108 II. Methods and Analysis

algorithmic problem P;
algorithm A

algorithmic
verifier

 YES: algorithm A
is correct with
respect to P

 NO: algorithm A
is not correct with

respect to P.
(the errors are: ...)

Figure 5.4

A hypothetical
algorithmic verifier.

correct!2 Before illustrating with an example, let us say something about the proof
methods themselves.

In trying to establish partial correctness, we are not interested in showing that
certain desirable things do happen, but in showing that certain undesirable things
do not. We do not care whether execution ever reaches the endpoint, but that if it
does we will not be in a situation where the outputs differ from the expected ones.
Accordingly, we wish to capture the behavior of the algorithm by making careful
statements about what it is doing at certain points. To prove partial correctness,
we thus attach intermediate assertions to various checkpoints in the algorithm’s
text. Attaching an assertion to a checkpoint means that we believe that whenever
execution reaches the point in question, in any execution of the algorithm on any
legal input, the assertion will be true. This, of course, includes points that are reached
many times within a single execution, notably, those within loops. For this reason
such assertions are commonly called invariants; they remain true no matter how
often they are reached.

For example, a sorting algorithm might be such that, at a certain point in its
text, exactly half of the input list is sorted, in which case we might attach the
assertion “half the list is sorted” to that point. It is more typical, however, that
invariants depend on the values of the variables available at the checkpoint. Thus,
to some point we might attach the assertion “the partial list from the first location
to the X th is sorted,” where X is a variable that increases as more of the list gets
sorted.

The initial assertion, namely, the one attached to the starting point of the algorithm,
is typically formulated to capture the requirements on legal inputs, and, likewise, the
final assertion, the one attached to the ending point, captures the desired relationship
of outputs to inputs (see Figure 5.5).

2 This fact notwithstanding, in Chapter 8 we shall see that it is impossible to find such proofs algorith-
mically. All we are saying here is that if the program is correct there is a proof of that fact. At present,
we claim nothing about whether such proofs are easy to come by.

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

5. The Correctness of Algorithms 109

input is legal

output satisfies
desired relationship

start

stop

Algorithm

assertion

assertion

assertion

assertion

assertion

assertion

assertion

Figure 5.5

Annotating an
algorithm with
invariants.

Now, suppose we can establish that all the assertions we have attached are indeed
invariants, meaning that they are true whenever reached. Then, in particular, the final
assertion is also an invariant. But this means that the algorithm is partially correct.
Hence all we have to do is establish the invariance of our assertions. This is done by
establishing certain local properties of our assertions, sometimes called verification
conditions, to the effect that proceeding locally from checkpoint to checkpoint
does not bring about any violations of the invariance properties. This approach to
proving correctness is sometimes called the invariant assertion method, or Floyd’s
method, after one of its inventors.

How do we go about choosing checkpoints and intermediate assertions, and how
do we establish the verification conditions? The example given in the next section
should shed some light on these questions.

Turning from partial correctness to termination, our main interest is in showing
that something good eventually happens (not that bad things do not); namely, that
the algorithm indeed reaches its endpoint and terminates successfully. To prove such
a statement we use checkpoints as before, but we now find some quantity depending
on the algorithm’s variables and data structures, and show that it converges. By
this we mean that the quantity keeps decreasing as execution proceeds from one
checkpoint to another, but that it cannot decrease forever—we need to show that
there is some bound below which it can never go. Hence there is no way for the
algorithm to run forever, since the convergent, as it is sometimes called, would then
have to decrease forever, contradicting this bound.

In a sorting algorithm, for example, the number of elements not yet in their final
positions in the sorted list might be shown to decrease as execution proceeds, but
never to be less than 0. When that number reaches 0, the algorithm presumably
terminates.

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

110 II. Methods and Analysis

How does one choose such convergents, and how are they shown to converge?
Again, an example will help to answer these questions.

� �

� Reversing a Symbol String: An Example

A legal input to the following problem is a string S of symbols, say a word or
text in English. The goal is to produce the reverse image of S, denoted reverse(S),
consisting of the symbols of S in reverse order. Thus, for example:

reverse(“ajj$dt8”) = “8td$jja”

Figure 5.6 shows a simple flowchart of an algorithm A that solves the problem.
It uses the unique empty string �, which consists of no symbols at all (and which
we might denote by the empty quotes “”), and the functions head(X) and tail(X),
which, for any string X , denote, respectively, the first symbol of X and the string X
with its head removed. We thus have:

head(“ajj$dt8”) = “a”

and:

tail(“ajj$dt8”) = “jj$dt8”

Also, we use the special symbol “·” for string concatenation, or attachment. Thus:

“ajj$dt8” · “tdd9tr” = “ajj$dt8tdd9tr”

start

stop

YESNO

X ← S;
Y ← Λ

X = Λ?

Y ← head(X) . Y

X ← tail(X)

Figure 5.6

A flowchart for
reversing a symbol
string.

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

5. The Correctness of Algorithms 111

Thus, you will be able to verify easily that attaching the head to the tail of any
string yields the string itself. In symbols:

head(S) · tail(S) = S

The algorithm for reversing S works by repeatedly “peeling off” the symbols of
S one by one, and attaching each in turn to the front of the newly constructed string
Y . The new string Y starts out initially as empty. The procedure ends when there is
nothing left to peel off S. In order not to destroy S in the process, the peeling off is
done in a variable X , which is initialized to the value S.

The claim is that this algorithm correctly produces reverse(S) in the variable
Y . That is, the algorithm A of Figure 5.6 is totally correct with respect to the
algorithmic problem that asks for the output Y to be the reverse image of the input
string S.

We shall first establish that A is partially correct, using the intermediate assertion
method, and then, separately, that it also terminates. We therefore first show that if
A happens to terminate on an input string S, then it produces reverse(S) in Y .

To this end, consider Figure 5.7, in which three checkpoints have been identified.
As already explained, Assertion 1 captures the requirements on the input set, and
Assertion 3 embodies the desired relationship between the input string S and the
output Y , namely that Y is to be equal to reverse(S).

The significance of Figure 5.7, however, is in Assertion 2, which is supposed
to capture the situation just prior to either going around the loop once again, or
terminating. Assertion 2 states that at checkpoint (2) the current values of X and
Y together make up the original string S, in the sense that Y contains some initial
portion of S in reverse, and X contains the rest of S unreversed, which is exactly
the same as saying that concatenating reverse(Y) with X yields S.

start

stop

YESNO

X ← S;
Y ← Λ

X = Λ?

S is a symbol string

Y ← head(X) . Y

(2)

(3)

(1)

Assertion 1

X ← tail(X)

S = reverse (Y) . X

Assertion 2

Y = reverse (S)

Assertion 3

Figure 5.7

An annotated
flowchart for
reversing a symbol
string.

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

112 II. Methods and Analysis

start

stop

YESNO

(2)

(1)

(3)

Figure 5.8

The three paths
through the reverse
algorithm.

We want to show that all three assertions are invariants, meaning that in each
execution of A on any legal input they are true whenever reached. The trick is
to consider all possible “hops” from checkpoint to checkpoint that the processor
might take in executing the algorithm. In this case, given the form of this particular
flowchart, there are three possible hops: point (1) to point (2), point (2) to point
(3), and point (2) back to point (2) (see Figure 5.8). The first of these is traversed
exactly once in any execution of A; the second is traversed at most once, since at its
end the algorithm terminates; the third can be traversed many times (how many?).
Notice that the algorithmic segments corresponding to these paths are loop free.
They consist of simple sequences of elementary instructions and tests, and contain
no iterations. As we shall see, this implies that they can be dealt with quite easily.

We now have to show that, for each of these simple segments, if we assume that the
assertion attached to its start point is true, and that the segment is actually traversed,
then the assertion attached to its endpoint will also be true when reached. The claim
is that this is all it takes to establish partial correctness, since the invariance of all
three assertions will follow.

Why? Well, the reason is rooted in the fact that any legal execution of A consists
of a sequence of segments separated by checkpoints (see Figure 5.9). In this way, if
the truth of the start assertion of each of these segments implies the truth of the end
assertion, and if the first assertion of the entire sequence is the one corresponding
to the input being legal, and is hence assumed to be true to begin with, then truth
of assertions propagates along the entire sequence, making all assertions true as
execution proceeds. In particular, as explained, the final Assertion 3 will be true
upon termination, establishing A’s partial correctness.

(1)

start stop

(2) (2) (2) (2) (3)Figure 5.9

A typical execution
sequence of the
reverse algorithm.

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

5. The Correctness of Algorithms 113

To summarize, we have to show now that truth of assertions indeed propagates
forward along the simple paths between checkpoints.

The details of these proofs will not be presented here, but you are urged to try
to fill them in. It helps, however, to make careful note, in symbols, not words, of
what exactly has to be proved. Consulting Figures 5.7 and 5.8, and recalling the
three possible “hops” between checkpoints, we find that there are three statements
to prove:

(1 → 2): for any string S, after carrying out the two instructions X ← S; Y ← �,
the equality S = reverse(Y) · X will hold.

(2 → 3): if S = reverse(Y) · X , and X = �, then Y = reverse(S).

(2 → 2): if S = reverse(Y) · X , and X �= �, then after carrying out the instructions
Y ← head(X) · Y ; X ← tail(X), the same equality, namely S = reverse(Y) · X ,
will hold for the new values of X and Y .

Formally establishing that these three statements are true concludes the proof that
the algorithm is partially correct.

We now have to show that the algorithm terminates for any input string S. To
that end, let us consider checkpoint (2) again. The only way an execution of the
algorithm might not terminate is by passing through point (2) infinitely often. That
is shown to be impossible by exhibiting a convergent (that is, a quantity that de-
pends on the current values of the variables) which, on the one hand, decreases
each time checkpoint (2) is revisited, but, on the other hand, cannot become ever
smaller.

The convergent that works in our case is simply the length of the string X . Each
time the loop is traversed, X is made shorter by precisely one symbol, since it
becomes the tail of its previous value. However, its length cannot be less than 0
because when X is of length 0 (that is, it becomes the empty string) the loop is not
traversed further and the algorithm terminates.

This concludes the proof that the reverse algorithm is totally correct. It might
occur to you that this proof is not worth the trouble, since the correctness of the
program seems obvious enough, and the proof appears to be tediously technical.
There is some truth to this here, and the example was chosen to illustrate the proof
technique itself, not so much the need for it in this particular example. Nevertheless,
it is not too difficult to imagine a version of the same algorithm with some subtle
bug in one of the extremal cases, or a more complicated version where, say, the
even-numbered positions are to be reversed and the odd-numbered ones not. In
these cases, verifying the program by just looking at it is dangerously inadequate
and formal proofs are a necessity.

As an aside, we need not work with flowcharts when verifying correctness. Al-
though the visual nature of a flowchart can at times be helpful in choosing check-
points and reasoning about the dynamics of the algorithm, there are straightforward
ways of attaching intermediate assertions to points in standard textual formats of an
algorithm.

Even in this small example, the problematic nature of imperative programming is
apparent. The statements to be proved were all phrased in terms of different times,
distinguishing between the “new” and “original” values of the variables. Writing

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

114 II. Methods and Analysis

this algorithm in a functional programming language is straightforward, and the
statements to be proved would be simpler. For example, the last one becomes:

(2 → 2): if S = reverse(Y) · X , and X �= �, then
S = reverse(head(X) · Y) · tail(X).

This does not solve the essential problem of proving correctness, but it removes
the somewhat cumbersome element of dealing explicitly with the changes of values
over time, which does not always mesh naturally with our mathematical expectations
regarding variables.

� What’s in a Proof?

The correctness proof outlined in the last section is one of the simplest of its kind,
without being completely trivial. This is rather discouraging, to say the least.

Let us discuss its constituents. A basic element in both the partial correctness
and termination proofs is the selection of checkpoints in the text of the algorithm.
These, in general, consist of the start and stop points and sufficiently many interme-
diate locations, so that every loop of the algorithm’s text contains at least one such
location.

Having chosen checkpoints, we must attach intermediate assertions to them,
whose invariance has to be established by proving the local verification condi-
tions. These involve only loop-free algorithmic segments because we were careful
to “break open” all of the loops with checkpoints. We also have to exhibit a conver-
gent and show that it actually converges. Which of these activities can be automated
algorithmically? In other words, for which can we expect to get considerable help
from a computer?

Finding a set of checkpoints to cover each of the loops, even some kind of minimal
set, can be fully automated. Moreover, under certain technical conditions, much of
the local checking of verification conditions, as well as the local decrease in the value
of a convergent, can be automated too. However, the heart of such proofs is to be
found elsewhere. It lies in the choice of the appropriate invariants and convergents.
Here it can be shown that there is no general algorithm that can automatically find
invariants and convergents that “work,” meaning that they satisfy the local conditions
needed for producing the proof (this issue is taken up in more detail in Chapter 8).
The right choice of an invariant is a delicate and subtle art, and can demand more
ingenuity than that involved in designing the algorithm in the first place. Indeed,
the algorithm designer may possess the right kind of intuition required to produce a
good algorithm, but might be at a loss when asked to formulate precisely “what is
going on” at a certain point therein.

Paradoxically, adequate invariants and convergents always exist, so that, as men-
tioned earlier, a correct algorithm can, in principle, always be proved correct. This
seems to contradict our statements to the effect that the verification process cannot be
automated, and that an algorithm designer might not be able to prove correctness. It
does not. And the key is the phrase “in principle.” Although proofs exist, they cannot

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

5. The Correctness of Algorithms 115

always be found by a computer, and humans are often also at a loss. For large and
complex software systems, after-the-fact verification is often impossible, simply
because of the unmanageable magnitude and intricacy of the task. When presented
with a large piece of software that has been endlessly changed, corrected, patched,
and updated, providing formal and precise assertions that completely characterize
its behavior at various points is essentially out of the question.

In such cases, an alternative method, called as-you-go verification, to be discussed
later, has to be adopted.

� �

� The Towers of Hanoi: An Example

The foregoing discussion notwithstanding, verification is at times somewhat easier
than anticipated. It might appear that the subtle nature of recursion would render
the verification of recursive subroutines more difficult than that of mere iterative
algorithms. This is not always so.

Recall the Towers of Hanoi problem and the following recursive solution, pre-
sented in Chapter 2:

subroutine move N from X to Y using Z :

(1) if N is 1 then output “move X to Y ”;

(2) otherwise (that is, if N is greater than 1) do the following:
(2.1) call move N − 1 from X to Z using Y ;
(2.2) output “move X to Y ”;
(2.3) call move N − 1 from Z to Y using X ;

(3) return.

That this routine terminates for every N (where the values of X , Y , and Z are A, B,
and C in some order) seems quite easy to see: the only kind of infinite computation
at all possible is obtained by performing an infinitely deep cascade of recursive calls.
However, on observing that the depth of the tree of recursive calls (see Figure 2.8)
cannot be greater than N , since the only things that happen to N during execution
are a decrease by 1 whenever a lower-level recursive call is executed, we find that
N must “hit” the value 1 at some point. But when N is exactly 1 the escape clause
of the recursion is reached, causing not another, deeper recursive call, but a simple
instruction followed by a return, which entails ascending the tree. Consequently,
the tree of recursive calls is finite and execution must terminate.

Notice that this termination proof does not require any “understanding” of the
workings of the routine; we only used superficial observations about the behavior
of N and the presence of an appropriate escape clause. However, the proof is not
entirely correct! If the initial value of N is zero or less, it is possible to decrease
it an infinite number of times without hitting 1, and the routine will indeed not
terminate if given such a value for N . What we must do here is to add to this

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

116 II. Methods and Analysis

routine a specification of the legal inputs that precludes non-positive values of N .
(Interestingly, a comparison of this algorithm with the version given in PROLOG in
Chapter 3, shows that the PROLOG version will in fact handle the case of N = 0
correctly.)

To prove partial correctness, we use a variant of the intermediate assertion method
that befits the non-iterative nature of recursive algorithms. Rather than trying to
formulate the local situation at a given point, we try to formulate our expectations
of the entire recursive routine just prior to entering it. This is then used in a cyclic-
looking, but perfectly sound, fashion to support itself! Here is a possible formulation
for the move routine.

For any N , the following statement, call it (S), holds true:

Assume that the peg names A, B, and C are associated, in some order, with the
variables X , Y , and Z . Then, a terminating execution of the call move N from
X to Y using Z lists a sequence of ring-moving instructions, which, if started
(and followed faithfully) in any legal configuration of the rings and pegs in
which at least the N smallest rings are on peg X , correctly moves those N rings
from X to Y , possibly using Z as temporary storage. Moreover, the sequence
adheres to the rules of the Towers of Hanoi problem, and it leaves all other rings
untouched.

If we can now show that (S) is true for all N , we will have established the partial
correctness of our solution, since we are interested particularly in a call to move N
from A to B using C , where A holds N rings and B and C are empty. In this case,
(S) is but a rephrasing of the requirements of the problem, as you can verify.

Statement (S) can be established by the classical method of mathematical in-
duction. This means that we first show directly that the statement is true when N
is 1 and then show that under the assumption that it is true for some given N − 1
(where N − 1 is at least 1, so that N is at least 2), it must also be true for N itself. It
follows, therefore, that (S) must be true for all N , since the separately proven truth
for the case N = 1 implies truth for N = 2 which, in turn, implies truth for N = 3,
and so on, ad infinitum.

� Let us now carefully go through the details of the proof. That (S) holds when N is 1 is
trivial: asserting (S) in this case is simply asserting that when the subroutine is called
with N being 1 a sequence is produced, which correctly moves the topmost ring from X
to Y . This is immediately seen to be accomplished by the first line of the subroutine.

Assume now that the statement (S) holds for some arbitrary N − 1. We now have to
show that it holds also for N . Accordingly, let us assume that a call to the move routine
has just been made with the number N and some association of pegs A, B, and C with
the variables X , Y , and Z . The three pegs contain some legal arrangement of rings, with
peg X containing at least the N smallest rings (see Figure 5.10(a)). Now, since the value
of N is not 1, the first thing the routine does is to call itself recursively on line (2.1) with
parameter N − 1. By the inductive hypothesis, that is, by our assumption that (S) holds
for calls to the routine with N − 1, that call, if completed successfully, will correctly and
legally move the topmost N − 1 rings from X to Z , leaving everything else unchanged
(see Figure 5.10(b)). However, since X was guaranteed to contain at least N rings to
begin with, there is still at least one ring left on X after the call on line (2.1) is completed,
and the instruction on line (2.2) moves that ring directly to Y (see Figure 5.10(c)). Since

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

5. The Correctness of Algorithms 117

X
(a) Initial configuration: X contains (at least) N smallest rings; others are scattered.

N

Y Z

X

(b) Inductive hypothesis: N − 1 top rings on X are correctly moved to Z.

N − 1

Y Z

N − 1

X
(c) Direct move: 1 ring on X is moved directly to Y.

Y Z

X
(d) Inductive hypothesis: N − 1 top rings on Z are correctly moved to Y.

N

Y Z

Figure 5.10

Partial correctness of
the Towers of Hanoi:
proving N from N−1.

all the rings on Y before this move (if any) must have been larger than the N th ring being
moved, this move is legal. The same assumption about N − 1, but now applied to the
next call, on line (2.3) of the subroutine, can be seen to complete the picture by moving
the N − 1 rings from Z to Y , right on top of the single ring that was moved separately
(see Figure 5.10(d)).

You should go through this proof carefully, noticing why the legality of all moves is
also guaranteed throughout the process, not only the final outcome. Also, it is possible to
show (using the same inductive hypothesis for the two calls) that no rings other than the
top N ones on peg X are touched by this procedure, so that (S) has been established in
full for this call with N , assuming it for calls with N − 1. As mentioned, this establishes
that the statement (S) holds for all N .

The partial correctness of the recursive Towers of Hanoi algorithm is thus proven,
and since we have already proved termination, the algorithm is totally correct.

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

118 II. Methods and Analysis

� More on the Towers of Hanoi: A Simple
Iterative Solution

In Chapter 2 we promised to exhibit an extremely simple-to-execute iterative algo-
rithm for the Towers of Hanoi problem. The reason for discussing it here, rather
than in Chapter 2, is rooted in the fact that it is not quite clear why it works and the
fact that it does requires proof. Indeed, we shall not present a proof of its correctness
here, and you are invited to try to construct a proof, by showing that the iterative
and recursive algorithms are really equivalent. This can be done by induction on N .

To describe the algorithm, let us assume that the three pegs are arranged in a
circle, and that all N rings are piled on one of them (the names of the pegs are
unimportant). Here is the algorithm:

(1) do the following repeatedly, until, prior to step (1.2), all rings are correctly piled on
some other peg:
(1.1) move the smallest ring from its current peg to the next peg in clockwise

order;
(1.2) make the only move possible that does not involve the smallest ring.

It should be clear that step (1.2) is well defined and unambiguous, since one of the
pegs has to have the smallest ring on top, and of the two remaining pegs one has a
smaller ring on top than the other; hence the only move not involving the smallest
ring is transferring that smaller ring to the other peg.

This algorithm can be executed easily by a small child, even if many rings are
involved. Notice, in passing, that if N is odd the rings will end up on the next peg
in clockwise order, and if N is even they will end up on the next one in counter-
clockwise order.

� �

� After-the-Fact vs. As-You-Go Verification

The alternative to proving correctness of an already-completed algorithm is to de-
velop the algorithm and proof hand in hand. The idea is to match the disciplined,
gradual, step-by-step construction of the algorithm or software system with the
gradual construction of proof segments, which will ultimately accumulate to form
a complete proof of the entire system.

Clearly, this is easier said than done. However, an obvious mechanism that encour-
ages such practice is the subroutine. As explained in Chapter 2, a complex program
can be built carefully out of many routines, some nested inside others, resulting in
a well-structured and stratified piece of software. Good design practice dictates that
each routine be carefully analyzed in terms of its overall purpose, and then verified
as a separate entity. In principle, once this has been done, the entire system will also
have been verified. The reason is that what has been proved about a given routine

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

5. The Correctness of Algorithms 119

can be used to prove things about other routines that call it. If, for example, we
verify that the search-for routine of Chapter 2 (cf. Figure 2.6) correctly finds X in
an input text and outputs the counter if it reaches the end of the text, then that proof
could be used to verify the “money”-finding algorithm.

Here, too, there are many possible pitfalls. It is far from easy to correctly identify
the interface of a routine and its intended behavior under all circumstances, but
good algorithmic design recommends that we do not construct a subroutine unless
we can do so. Of course, a recursive routine requires a cyclic-looking verification
process, which involves assuming it to be correct for its self-calls, as was done for
the Towers of Hanoi. Obviously, this process is not always as straightforward as it
sounds either.

In short, good stepwise algorithmic design, coupled with informative and precise
documentation of design decisions, can form the basis of the construction of verified
software, by breaking up the overall proof into pieces that reflect the breakup of the
software itself. When concurrency and reactivity are introduced into algorithms,
as is done in Chapters 10 and 14, things become more difficult, and even a small
and innocent-looking algorithm can cause formidable problems when it comes to
verification. We shall discuss that bridge, but not quite cross it, when we reach it.

� Design by Contract

The object-oriented paradigm carries this idea of as-you-go verification a step for-
ward, in the form of a methodology called design by contract. As mentioned in
Chapter 3, each class in an object-oriented program describes some abstract set of
objects with their associated behaviors, or methods. Such a description may include
instructions on how to carry out each method, but it doesn’t have to. In fact, it is
often very useful to have completely abstract classes that only specify what is to
be done, but not how. The JAVA incarnation of the Queue class is such an example,
in that it does not specify the behavior of each method, only how it is to be called.
Moreover, by replacing the word “Queue” with “Stack” we would get a perfectly
legal description of stacks instead of queues. What is missing is the meaning of each
method: how it affects the state of the object and what (if anything) it returns. In the
design-by-contract approach, this specification is called a contract, and it consists
of three kinds of assertions: class invariants, method preconditions, and method
postconditions.

Class invariants state conditions that must be true for every object of the class
before and after the execution of each operation. Method preconditions specify
the legal inputs to each method (or, in other words, what has to hold prior to the
execution of the method), and method postconditions specify what must hold after
the execution of the method. In terms of the previous discussions in this chapter,
method preconditions and postconditions are really just the assertions at the start
and end of routines, and class invariants are analogous to loop invariants.

For example, in the Queue class, the precondition for the front method would be
that the queue is not empty. The postcondition for add(X) is that front will return
X if the queue was empty before calling add, and otherwise it will return the same

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

120 II. Methods and Analysis

value it would have returned prior to this operation. In contrast, the postcondition
for the corresponding method in the Stack class would say that after calling the
method add(X), front will return X , regardless of the previous state of the object.
This captures the essential difference between stacks and queues.

The design-by-contract methodology calls for specifying the contract before writ-
ing the implementing program, and for carefully modifying the contract as the spec-
ification changes. From here, it is but a short step to the verification of the program,
and tools are emerging to help in this endeavor.

Design by contract is an integral feature of the programming language EIFFEL,
which also supports loop invariants and convergents. While not yet part of the official
JAVA language, there are a number of tools that add this capability to JAVA too. They
allow the compiler to generate code that actually checks the assertions while the
program is running, alerting the programmer to violations as they are encountered.
However, while such tools are useful for testing programs, the major contribution
of the design-by-contract method is the attention given to the correctness of the
program as it is being written and modified. As such, it can be practiced even by
programmers using object-oriented languages that do not yet have tool support for
checking assertions at run-time.

Specifying the behavior of functions or subroutines by preconditions and post-
conditions is possible in every programming language. There are essentially two
reasons why design by contract is especially appropriate for the object-oriented
paradigm. First, the division of the program into classes and methods and the pos-
sibility of abstract classes provide natural points for placing the assertions. Second,
the object-oriented style provides a real promise of the possibility of code reuse,
which is the ability to use the same class—implementing code and all—in many
different applications. However, in order for this to work, a clear specification of
what classes and methods are intended to mean is essential. Lacking this, a program-
mer trying to reuse somebody else’s class might make such mistakes as confusing
a queue for a stack. A spectacular example of this is the loss of the first Ariane 5
launch3 in 1996. The failure of the navigation module has been traced to the practice
of reusing programs from Ariane 4 without understanding the assumptions on which
the original programs were based; these assumptions were no longer true for the
Ariane 5, but were not documented in the code. (Some details about this incident
appear in Chapter 13.)

� Interactive Verification and Proof Checking

Despite the fact that, in general, automatic algorithmic verification is out of the
question, there is much that can be done with a computer’s aid. We shall only
examine a number of issues briefly here since most of them are too technical to be
discussed here in detail.

A computer can be programmed to help in after-the-fact verification. A possible
scenario involves an interactive program that attempts to verify a given algorithm
with respect to a formal description of the algorithmic problem. Every now and then

3 The Ariane series of rockets are part of the European Union’s space program.

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

5. The Correctness of Algorithms 121

it asks the human user to supply it with, say, a candidate invariant (recall that this is
the kind of task it cannot, in general, do on its own). It then goes ahead and tries to
establish the relevant verification conditions, then moves on to additional points in
the algorithm if it succeeds, or backtracks to previous decisions if it fails.

Since the entire procedure is interactive, the human user can stop it whenever
it seems to be going off in wrong directions, and attempt to put it back on track.
The computer is being used here as a fast and meticulous apprentice, checking the
details of local logical conditions, keeping track of past invariants, assertions, and
comments, and never tiring of trying out another possibility.

Such a process can also lead to the discovery of hidden bugs or missing assump-
tions. For example, a computerized verifier will not accept the erroneous proof given
earlier for the termination of the Towers of Hanoi program. Examination of why the
proof is rejected would lead the programmer to the realization that an appropriate
precondition was missing.

This idea can also be used to aid in as-you-go verification efforts. Here, previously
established proofs of portions of the algorithm (say, subroutines) can be kept track
of by the automatic apprentice, and used in algorithmic attempts to verify larger
portions (say, calling routines). Such an interactive system can be part of the entire
programming environment, which might include the editing, debugging, and testing
tools too. A user might be interested in verifying some of the smaller and better
identified algorithms in the software system under development, and leave the less
manageable parts to be debugged and tested conventionally.

Another possibility for computer-aided verification is in proof checking. Here,
a human produces what seems to be a proof—invariants, convergents, and all—and
a computer is programmed to generate and verify the lengthy sequences of logical
and symbolic manipulations that constitute the fully-fledged proof. Considerable
work has been, and still is, devoted to these topics, and several systems exist that
can aid in the design and verification of nontrivial programs.

As we discuss in Chapters 10 and 14, powerful methods (many of them based on a
technique called model checking) have been developed for verifying even complex
software and hardware systems. Under certain reasonable assumptions, such as a
finite number of states of system behavior and simple, well-defined properties to
verify, these work pretty well in practice. So there are encouraging signs. Still, many
problems remain, and the use of smooth and widely applicable verification aids will
still take a while to become common practice.

� �

� Research on Algorithmic Correctness

Besides the topics discussed in the previous section, researchers are interested in
developing new and useful methods for verification, and the invariant and conver-
gent methods are examples of only the most basic of these. Different language
constructs trigger different methods, as will become apparent with the introduction
of concurrency and probabilism in Chapters 10 and 11.

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

122 II. Methods and Analysis

One issue we have not treated at all is that of specification languages, sometimes
called assertion languages. How do we specify the algorithmic problem formally?
How do we write down the intermediate assertions so that they are unambiguous
and lend themselves to algorithmic manipulation? The alternatives differ not only
in pragmatics, but also in the underlying mathematics. For some kinds of assertion
languages, establishing the local verification conditions of loop-free segments be-
tween checkpoints is algorithmically feasible, whereas for others the problem can be
shown to be as hard as the global verification problem itself, and hence not solvable
algorithmically. In both cases, people are interested in developing theorem-proving
techniques that form the basis of condition-checking algorithms.

Many research topics are relevant both to verification and debugging, and to effi-
cient and informative compilation. A good example is data-flow analysis, whereby
methods are developed to symbolically follow the flow of data in an algorithm.
This means that the possible changes a variable can undergo during execution are
analyzed without actually running the algorithm. Such analysis can reveal potential
errors, such as out-of-bounds indexes for arrays, possible zero values for divisors in
arithmetic operations, and so on.

Researchers are also interested in more complex properties of algorithms. At
times it may be important to know whether two algorithms are equivalent. One
reason for this might be the availability of a simple but inefficient algorithm, and
a designer’s candidate for a more efficient but more intricate algorithm. The desire
here is to prove that both algorithms will terminate on the same class of inputs and
produce identical results.

One of the approaches to the investigation of such richer classes of algorithmic
properties is to formulate logics of programs, or algorithmic logics, which are
analogous to classical systems of mathematical logic, but which enable us to reason
about algorithms and their effects. Whereas classical systems are sometimes called
static, algorithmic logics are dynamic in nature; the truth of statements made in these
formalisms depends not only on the present state of the world (as in the statement “it
is raining”), but on the relationship between the present state and other possible ones.

As an example, consider the basic construct of such dynamic logics:

after(A, F)

which means that after executing algorithm A, the assertion F will necessarily be
true. The assertion F might state that the list L is sorted, in which case the statement
can be used to formalize the partial correctness of a sorting routine. The power
of such a construct, however, is in the possibility of using it more than once in a
statement and combining it with other logical objects. Consider the following, where
“→” stands for “implies”:

if F1 → after (A, F2) and F2 → after (B, F3)
then F1 → after (A; B, F3)

This statement asserts that if (1) whenever F1 is true F2 is true after executing A,
and if also (2) whenever F2 is true F3 is true after executing B, then we can conclude
(3) whenever F1 is true F3 is true after executing A; B (that is, A followed imme-
diately by B). This statement might seem obvious, but it is quite subtle. It ac-
tually forms the mathematical justification for inserting intermediate assertions
into an algorithm. F2 can be thought of as an intermediate assertion attached to

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

5. The Correctness of Algorithms 123

the point separating A from B, and the statement says that establishing the local
conditions on A and B separately amounts to establishing the more global condition
on A; B.

More complicated statements can be made (and proved) in such logics, concern-
ing the equivalence and termination of programs, and other properties of interest.
Logics of programs thus help place the theory of algorithmic verification on a sound
mathematical basis. Moreover, they enable us to investigate questions concerning the
feasibility of automating proof methods for termination, correctness, equivalence,
and the like. One of the most successful methods for verification, called model
checking, can be used to check a program against a logical formula, but here too
there are inherent limitations to any such effort, which will be further discussed
in Chapters 7 and 8. Also, Chapter 10 discusses the verification of concurrent sys-
tems, and Chapter 12 discusses the addition of interaction to mathematical proofs in
general, as well as proofs that are both interactive and probabilistically checkable.
Chapters 13 and 14, which discuss large and complex systems, also touch upon
some issues of correctness.

Another promising line of research is concerned with automatic or semiautomatic
algorithmic synthesis. Here the interest is in synthesizing a working algorithm or
program from a specification of the algorithmic problem. As with verification, the
general synthesis problem is algorithmically unsolvable, but parts of the process can
be aided by a computer.

One of the issues relevant to both synthesis and equivalence proofs is that of pro-
gram transformations, in which parts of an algorithm or program are transformed
in ways that preserve equivalence. For example, we might be interested in such trans-
formations in order to make an algorithm comply with the rules of some program-
ming language (for example, replacing recursion by iteration when the language
does not allow recursion) or for efficiency purposes, as illustrated in Chapter 6.

Research in the fields of correctness and logics of algorithms blends nicely with
research on the semantics of programming languages. It is impossible to prove
anything about a program without a rigorous and unambiguous meaning for that
program. The more complex the languages we use, the more difficult it is to
provide them with semantics, and the more difficult it is to devise methods of
proof and to investigate them using algorithmic logics. This is another reason why
functional languages are more amenable to proofs of correctness than imperative
languages.

� The Four-Color Theorem

It seems appropriate to close this chapter with a story of some philosophical interest.
The four-color problem was formulated in 1852, and for about 120 years was
considered to be one of the most interesting open problems in all of mathematics.
It involves maps, of the kind found in an atlas: diagrams consisting of partitions of
a finite portion of the plane by closed regions signifying countries.

Let us assume we want to color such a map, associating a color with each country,
but in such a way that no two countries that share part of a border will be colored

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

124 II. Methods and Analysis

Figure 5.11

Coloring a map.

with the same color. (Figure 5.11 shows a legal coloring of a sample map; notice
that two countries sharing only a point may have the same color.) How many colors
are necessary to color any map?

At first sight it seems that we can construct increasingly intricate maps that require
ever-larger numbers of colors. When we play with some examples, however, it turns
out that four colors always suffice. The four-color problem asks whether this is
always true. On the one hand, no one could prove that four colors were sufficient to
color any map, but, on the other hand, no one was able to exhibit a map requiring five.

Over the years many people worked on the problem, and many deep and beautiful
results emerged in the branch of mathematics called topology. A couple of “proofs”
that four colors suffice were published, but were later shown to contain subtle errors.
Then, in 1976, the problem was finally solved by two mathematicians. They proved
what is now known as the four-color theorem, which asserts that four colors do
indeed suffice.

What has this got to do with us? Well, the 1976 proof was achieved with the aid
of a computer. The proof can be viewed as consisting, very roughly, of two parts.
In the first, the two researchers used several previously established results, with
some additional mathematical reasoning, to prove that the general problem could
be reduced to showing that a finite number of special cases could be colored with
four colors. Computer programs were then written to meticulously generate all such
cases (there turned out to be about 1700 of them) and to go through them all in order
to find a four-coloring. The theorem was established when the programs terminated,
answering the question positively: all 1700 cases were found to be four-colorable.

Can we put the traditional Q.E.D. (standing for quod erat demonstrandum, freely
translated as “that which was to be proved”) at the end of the proof? The problem
is that no one has ever verified the programs used in the proof. It is possible that
the algorithms constructed to carry out the subtle case generation were flawed. Not
only that, no one has ever verified the correctness of the compiler used to translate
the programs into machine-executable code. No one has verified any of the other
relevant system programs that could influence the correct running of the programs,
and for that matter (though this is not our concern here) no one has verified that the
hardware was working the way it should.

In actuality, the mathematics community has accepted the theorem. Possibly rele-
vant to this is the fact that since 1976 a number of additional proofs have appeared, all
of which use a computer, but some of which need to check only a smaller and more

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

5. The Correctness of Algorithms 125

manageable set of cases and use shorter and clearer programs. The philosophical
question, however, remains: will absolute mathematical truth, as opposed to practical
computer applications, be allowed to depend on the somewhat doubtful performance
of unverified software?

� Exercises
5.1. Consider the problem of sorting lists of mutually distinct integers, each of which is between

1 and 12. Let us assume that you have a candidate algorithm for solving this problem,
which is known to terminate on every input.

(a) Could you prove the partial correctness of this algorithm (if it is indeed correct) by
employing testing only?

(b) Would your answer to (a) change if the algorithm was designed to lexicographically
sort lists of mutually distinct words in English?

(c) How would you generalize your answers to these two questions?
(d) When would you recommend performing such testing in practice?

5.2. Consider the following suggestion for the construction of an automated verifier for algo-
rithms operating on finite sets of inputs. The verifier accepts three inputs:
� an algorithm;
� the finite set of legal inputs to this algorithm;
� a specification of the input/output requirements from the algorithm.
Upon receiving these inputs, the verifier proceeds to “run” the given algorithm on the
first legal input, then on the second, etc. If all these runs yield outputs that satisfy the
given specification, the verifier declares the algorithm to be partially correct. Otherwise,
it declares it to be incorrect.

What is wrong with this suggestion, and how may it be remedied by adding an assump-
tion about the algorithms? Can this assumption be similarly tested?

5.3. Construct an employee list that generates an error if subjected to the algorithm in Fig-
ure 5.1, but produces the correct answer if subjected to the algorithm of Figure 2.4.

5.4. (a) Modify Figure 2.4, so that if an employee has several direct managers then the em-
ployee’s salary is added to the accumulated sum if it is higher than that of at least one
of those direct managers. Call the new algorithm C A.

(b) Prove the total correctness of algorithm C A with respect to this new specification.
(c) Assuming that each employee has at most one manager, is algorithm C A correct with

respect to the original specification given for Figure 2.4?
(d) Assuming that each employee has at most one manager, is the algorithm of Figure 2.4

correct with respect to the new specification for algorithm C A?

5.5. Suppose your algorithm C A is used as a subroutine in a large salary accounting system,
and that on some occasion a salary report is found to be erroneous.

(a) What are the possible sources of the error? What potential source of error can you
eliminate with confidence?

(b) What can you say in general about the correctness of a system, some part of which
has been proven to be partially correct? Totally correct?

(c) Suppose you are required to design and manage the production of a large software
system. Your team includes someone who is capable of verifying programs, but who,
obviously, is unable to verify all of the software you intend to produce. Is there any
point in asking that person to work on verification (assuming that he or she could
otherwise be utilized as a programmer)? If your answer is “yes,” how would you
characterize the kinds of programs you would ask the person to verify?

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

126 II. Methods and Analysis

5.6. We have seen in the correctness demonstration for the reverse algorithm that only three
(well-placed) invariants are sufficient for the proof.

(a) How would you generalize the above claim to any algorithm whose structure (i.e., the
structure of its flowchart) is similar to reverse?

(b) What kind of flowchart enables a partial correctness proof of the corresponding algo-
rithm with only two invariants, attached to the start and stop points?

(c) How many well-attached invariants are sufficient for proving the partial correctness
of an algorithm whose flowchart contains two loops?

(d) For any flowchart with two loops, how many invariants are necessary for proving
partial correctness in the method given in the text? How would you classify the
sufficient number of assertions according to the structure of a two-loop flowchart?
(Hint: consider connectedness, nesting.)

5.7. Prove the three verification conditions for the reverse algorithm presented in the text.

For Exercises 5.8–5.14 you are given the following three new operations on strings:

� last(X): yields the last symbol of string X ;
� all-but-last(X): yields the string X with its last symbol removed;
� eq(s, t): is applicable to symbols only, and is true if s and t are identical symbols.

For example, last(“town”) = “n”, all-but-last(“town”) = “tow”, and eq(“a”, “a”) is true,
but eq(“a”, “b”) is false.

Also, by convention, head(�) = last(�) = tail(�) = all-but-last(�) = �.

5.8. Construct a function rev(X) that reverses the string X , using only the operations last,
all-but-last, eq, and “·” (concatenation), in addition to testing the emptiness of a string.
Prove the total correctness of your algorithm.

5.9. Construct a function equal(X, Y) that tests whether the strings X and Y are equal. It
should return true or false accordingly. You may use the operations mentioned in the text
and those defined above. (Note, however, that there is no way of comparing arbitrarily
long strings in a single operation.) Prove the total correctness of your algorithm.

5.10. A palindrome is a string that is the same when read forwards and backwards. Consider the
following algorithm Pal1 for checking whether a string is a palindrome. The algorithm
returns true or false, according to whether the input string S is a palindrome or not.

Y ← rev(S);
return equal(S, Y).

(a) Prove the total correctness of Pal1.
(b) The termination of Pal1 can be easily proved by relying on the termination of the func-

tions rev and equal. Can you generalize this type of reasoning to a similar composition
of any two programs?

5.11. Algorithm Pal1 is not very efficient, as it always reverses entire strings. Often, a string
can be shown not to be a palindrome with far fewer applications of the allowed basic
operations.

(a) Give an example of such a string.
(b) How many operations would suffice to determine whether your string is a palindrome?

5.12. Here is another algorithm, Pal2, designed to perform the same task as Pal1, but more
efficiently:

X ← S;

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

5. The Correctness of Algorithms 127

E ← true;
while X �= � do the following:

if eq(head(X), last(X)) then X ← all-but-last(tail(X));
otherwise E ← false.

return E .

Unfortunately, Pal2 is not totally correct. Prove or disprove:

(a) Pal2 is partially correct.
(b) Pal2 terminates on every input string S.

5.13. The following algorithm, Pal3, is another attempt to improve Pal1:

X ← S;
E ← true;
while X �= � and E is true do the following:

Y ← tail(X);
if eq(head(X), last(Y)) then X ← all-but-last(Y);
otherwise E ← false.

return E .

Pal3 is not totally correct either. Prove or disprove:

(a) Pal3 is partially correct.
(b) Pal3 terminates on every input string S.

5.14. (a) Construct a correct solution to the problem of checking efficiently whether a string is
a palindrome, following the general ideas of Pal2 and Pal3. Call your algorithm Pal4.

(b) Prove the total correctness of Pal4.
(c) Explain why the string you gave in Exercise 5.11 to exhibit the inefficiency of Pal1

is no longer a “bad” example for the efficiency of Pal4.
For any two positive integer numbers m and n, denote by mn the number m raised to the
power of n. For example, 23 = 2 × 2 × 2 = 8, and 32 = 3 × 3 = 9. Also, m1 = m and
1n = 1, for every positive m and n. In addition, for n = 0, we define m0 = 1 for every
positive integer m.

5.15. Each of the following algorithms, Pwr1, Pwr2, Pwr3, and Pwr4, computes the value of mn

and produces the result in the variable PW . It is assumed that m is a positive integer and
that n is a natural number (i.e., either 0 or a positive integer). Prove the total correctness
of all four algorithms.

i. Algorithm Pwr1:

PW ← 1;
do the following n times:

PW ← PW × m.

ii. Algorithm Pwr2:

call compute-power-of m and n.

The subroutine compute-power is defined as:

subroutine compute-power-of B and E :
if E = 0 then PW ← 1;
otherwise (i.e., if E is positive) do the following:

call compute-power-of B and E − 1;
PW ← B × PW ;

return.

P1: IOI

PE002-05drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:25

128 II. Methods and Analysis

iii. Algorithm Pwr3:

PW ← 1;
B ← m;
E ← n;
while E �= 0 do the following:

if E is an even number then do the following:
B ← B × B;
E ← E/2;

otherwise (i.e., if E is an odd number) do the following:
PW ← PW × B;
E ← E − 1.

iv. Algorithm Pwr4:

call times-power-of 1, m, and n.

The subroutine times-power is defined by:

subroutine times-power-of Q, B, and E :
if E = 0 then PW ← Q;
otherwise, if E is an even number then

call times-power-of Q, B × B, and E/2;
otherwise (i.e., if E is an odd number)

call times-power-of Q × B, B, and E − 1;
return.

5.16. (a) Prove total correctness of the algorithm for testing whether a given vector represents
a permutation you were asked to design in Exercise 2.10.

(b) Prove total correctness of the algorithm for generating all permutations of AN you
were asked to design in Exercise 2.11.

5.17. Prove total correctness of the algorithms you were asked to design in Exercise 4.3.

5.18. Prove total correctness of the algorithm for testing tree isomorphism you were asked to
design in Exercise 4.6.

5.19. Algorithms Pwr1 and Pwr2 can be said to be equivalent, in the sense that for every positive
number m and natural number n, they both terminate and produce mn in the variable PW .
Therefore, a proof of the total correctness of both these algorithms serves as a proof of
their equivalence.

(a) How would you define the equivalence of programs that do not necessarily terminate
on all legal inputs?

(b) Does a proof of the partial correctness of two given algorithms serve as a proof of
equivalence in the sense you gave in (a)? If not, can you re-answer (a) so that a partial
correctness proof is sufficient?

(c) Is there any sense in defining the equivalence of programs for which we do not have
a correctness specification at all?

let thy word be verified

II CHRONICLES 6: 17

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

C H A P T E R 6

The Efficiency of Algorithms

or, Getting It Done Cheaply

I would declare to
him the number of
my steps

JOB 31: 37

answer me speedily

PSALM 69: 18

When asked to construct a bridge over a river, it is easy to construct an “incorrect”
one. The bridge might not be wide enough for the required lanes, it might not be
strong enough to carry rush-hour traffic, or it might not reach the other side at all!
However, even if it is “correct,” in the sense that it fully satisfies the operational
requirements, not every candidate design for the bridge will be acceptable. It is
possible that the design calls for too much manpower, or too many materials or
components. It might also require far too much time to bring to completion. In other
words, although it will result in a good bridge, a design might be too expensive.

The field of algorithmics is susceptible to similar problems. An algorithm might
be too expensive, and hence unacceptable. And so, while Chapter 5 was devoted
to proving that incorrect algorithms are bad, and that methods are needed for es-
tablishing algorithmic correctness, this chapter argues that even a correct algorithm
might leave much to be desired.

Since manpower and other related costs are not relevant here, we are left with two
criteria for measuring economy—materials and time. In computer science these are
termed the complexity measures of memory space (or simply space) and time.
The first of these is measured by several things, including the number of variables,
and the number and sizes of the data structures used in executing the algorithm. The
other is measured by the number of elementary actions carried out by the processor
in such an execution.

Both the space and the time required by an algorithm typically differ from input
to input, and, accordingly, the performance of an algorithm reflects the way these
resources are consumed as the inputs vary. It is clear that the salary summation
algorithm takes longer on bigger lists. This does not mean that we cannot formulate
its time performance precisely; all it means is that the formulation will have to
account for the fact that the algorithm’s running time depends on, or is a function
of, the length of the input list. The same applies to memory space. In the dynamic
planning solution to the weary traveler problem of Chapter 4, we calculated many
optimal partial trips, and had to store them in a vector since they were used in the

129

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

130 II. Methods and Analysis

calculation of others. Their number, and hence the amount of memory the algorithm
uses, depends directly on the number of nodes in the input city graph.

Although we concentrate on the time measure in this chapter, it should be remarked
that issues quite analogous to the ones raised here apply to the space measure
too.

� Improvements Are Needed

It is only proper to start our discussion of time efficiency in algorithmics with a
downright rejection of the myth concerning the computer’s speed. Some people
think that computers are so incredibly fast that there is no real problem of time.
Well, this opinion is groundless.

Here are two brief examples, about which we shall have more to say in later
chapters. Assume we are interested in finding the shortest route for a traveler who
wishes to visit each of, say, 200 cities. As of now, there is no computer that can find
the route in fewer than millions of years of computing time! Similarly, no computer
is capable of factoring (that is, finding the prime numbers that divide) large integers,
say, 300 digits long, in fewer than millions of years. The status of both of these
problems may change, but as of now no one knows of any reasonable solutions for
them. A more detailed discussion of the actual time a modern computer would take
to solve these problems appears in Chapter 7.

Time is a crucial factor in almost every use of computers. Even in day-to-day
applications, such as weather prediction programs, inventory management systems,
and library lookup programs, there is vast room for improvement. Time is money,
and computer time is no exception. Moreover, where computers are concerned,
time can actually be the critical factor. Certain kinds of computerized systems, such
as flight control, missile guidance, and navigation programs, are termed real-time
systems. They have to respond to external stimuli, such as pressing buttons, in “real”
time; that is, almost instantaneously. Failing to do so could prove to be fatal. See
more on these in Chapter 14.

� After-the-Fact Improvements

There are many standard ways of improving the running time of a given algorithm.
Some are incorporated into compilers, turning them into optimizing compilers,
which actually make amends for certain kinds of poor decisions on the part of the
programmer.

Many chores of an optimizing compiler can be thought of as carrying out certain
kinds of program transformations (see Chapter 5). One of the most widely appli-
cable of these is modifying a program or an algorithm by transferring instructions
from the inside to the outside of loops. Sometimes this is straightforward, as in
the following example. Assume that a teacher, in the interest of getting a class to
register reasonably good results in an exam, wants to normalize the list of grades,

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

6. The Efficiency of Algorithms 131

by giving the student who scored best in the exam 100 points and upgrading the rest
accordingly. A high-level description of the algorithm might look like this:

(1) compute the maximum score in MAX;

(2) multiply each score by 100 and divide it by MAX.

(We must assume that there is at least one nonzero grade, for the division to be well
defined.)

If the list is given in a vector L(1), . . . , L(N), both parts can be executed by
simple loops running through the vector. The first searches for the maximum in
some standard way, and the second might be written:

(2) for I from 1 to N do:
(2.1) L(I) ← L(I) × 100/MAX

Notice that for each grade L(I) the algorithm carries out one multiplication and
one division within the loop. However, neither 100 nor the value of MAX actually
changes within the loop. Hence, the time for executing this second loop can be cut
almost in two (!) by calculating the ratio 100/MAX before the loop starts. This is
done by simply inserting the statement:

FACTOR ← 100/MAX

between steps (1) and (2), and multiplying L(I) by FACTOR within the loop. The
resulting algorithm is:

(1) compute the maximum score in MAX;

(2) FACTOR ← 100/MAX;

(3) for I from 1 to N do:
(3.1) L(I) ← L(I) × FACTOR.

The reason for the near 50% improvement is that the body of the second loop,
which originally consisted of two arithmetical operations, now consists of only
one. Of course, not in all implementations of such an algorithm will the time be
dominated by the arithmetical instructions; it is possible that updating the value of
L(I) is more time consuming than numerical division. Even so, there is a significant
improvement in the running time, and clearly the longer the list the more time is
gained by this change.

As mentioned, modifications such as this are quite straightforward, and many
compilers are able to carry them out automatically. However, even simple instruction
removal sometimes requires a sly trick or two. Let us look at another example.

� Linear Search: An Example

Suppose that we are searching for an element X in an unordered list (say for a
telephone number in a jumbled telephone book). The standard algorithm calls for

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

132 II. Methods and Analysis

a simple loop, within which two tests are carried out: (1) “have we found X?”
and (2) “have we reached the end of the list?” A positive answer to any one of
these questions causes the algorithm to terminate—successfully in the first case and
unsuccessfully in the second. Again, we may assume that these tests dominate the
time performance of the searching algorithm.

The second test can be taken outside of the loop using the following trick. Prior
to commencing the search, the required element X is added fictitiously to the end of
the list. Then the search loop is carried out, but without testing for the end of the list;
within the loop we only test whether X has been found. This also reduces the time
of the entire algorithm by a factor of about 50%. Now, since we have added X to the
list, X will always be found, even if it did not appear in the original list. However,
in this case we will find ourselves at the end of the new list when confronting X for
the first time, whereas we will end up somewhere within it if X did appear in the
original list. Consequently, upon reaching X , a test for being at the end of the list
is carried out once, and the algorithm reports success or failure depending on the
outcome. (Incidentally, a common error can occur here if we forget to remove the
fictitious X from the end of the list before terminating.) This time we had to be a
little more creative to save the 50%.

� �

� Order-of-Magnitude Improvements

A 50% decrease in the running time of an algorithm is quite impressive. However,
as it happens, we can do much better on many occasions. When we say “better”
we do not mean just fixed-rate decreases of 50%, 60%, or even 90%, but decreases
whose rate gets increasingly better as the size of the input increases.

One of the best-known examples involves searching for an element in an ordered,
or sorted list (for example, looking up a telephone number in a normal telephone
book). To be more precise, assume that the input consists of a name Y and a list L
of names and their telephone numbers. The list, which is of length N , is assumed
to be sorted in alphabetic order by the names.

A naive algorithm that searches for Y ’s telephone number is the one previously
described for an unsorted list: work through the list L one name at a time, checking
Y against the current name at each step, and either checking for the end of the list at
the same time, or applying the trick described in the previous section and checking
for it only once, when Y is found. Even if the trick is employed to cut the running
time by 50%, there still might be a case in which fully N comparisons are necessary;
namely, when Y does not appear in L at all, or when it appears in the last position.
We say that the algorithm, call it A, has a worst-case running time which is linear
in N , or, to use an equivalent term, it is on the order of N . This is described more
concisely by saying that A runs in time O(N) in the worst case, with the big-O
standing for “order of.”

The O(N) notation is quite subtle. Notice that we said “A runs in time O(N).”
We did not particularize the statement to refer only to the number of comparisons,

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

6. The Efficiency of Algorithms 133

although comparisons between Y and the names in L were the only type of instruction
we were counting. The reason for this will be explained later. For now, it suffices to
say that when using the big-O notation, as it is sometimes called, we do not care
whether the algorithm takes time N (that is, it executes N elementary instructions),
time 3N (that is, it takes threefold that number of elementary instructions), or 10N ,
or even 100N . Furthermore, even if it takes only a fraction of N , say N/6, we still
say that it runs in time O(N). The only thing that matters is that the running time
grows linearly with N . This means that there is some constant number K , such that
the algorithm runs in time that is no more than K × N in the worst case. Indeed, the
version that checks for the end of the list each time runs roughly in time 2N , and
the tricky version cuts that down to roughly N . Both, however, have running time
directly proportional to N . They are thus linear-time algorithms, having a worst-case
running time of O(N).

The term “worst-case” means that the algorithm could presumably run for much
less on certain inputs, perhaps on most inputs. All we are saying is that the algorithm
never runs for more than K × N time, and that this is true for any N and for any
input of length N , even the worst ones. Clearly, if we try to improve the linear-time
search algorithm by starting the comparisons from the end of the list, there would
still be equally bad cases—Y not appearing at all, or Y appearing as the first name
on the list. Actually, if an exhaustive search throughout the list is called for by the
algorithm, the order in which names are compared to Y is of no importance. Such
an algorithm will still have an O(N) worst-case running time.

Despite this, we can do better in searching an ordered list, not only in terms of
the constant factor “hidden inside” the big-O , but in terms of the O(N) estimate
itself. This is an order-of-magnitude improvement, and we shall now see how it
can be achieved.

� Binary Search: An Example

For concreteness, let us assume that the telephone book contains a million names,
that is, N is 1,000,000, and let us call them X1, X2, . . . , X1,000,000.

The first comparison carried out by the new algorithm is not between Y and the
first or last name in L , but between Y and the middle name (or, if the list is of even
length, then the last name in the first half of the list), namely X500,000. Assuming that
the compared names turn out to be unequal, meaning that we are not done yet, there
are two possibilities: (1) Y precedes X500,000 in alphabetic order, and (2) X500,000

precedes Y . Since the list is sorted alphabetically, if (1) is the case we know that
if Y appears in the list at all it has to be in the first half, and if (2) is the case it
must appear in the second half. Hence, we can restrict our successive search to the
appropriate half of the list.

Accordingly, the next comparison will be between Y and the middle element of
that half: X250,000 in case (1) and X750,000 in case (2). And again, the result of this
comparison will be to narrow the possibilities down to half of this new, shorter, list;
that is, to a list whose length is a quarter of the original. This process continues,
reducing the length of the list, or in more general terms, the size of the problem,

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

134 II. Methods and Analysis

start

consider the
entire input list L

compare Y
to middle element

of considered
list

NOT
FOUND Y FOUND Y

consider first or second
half of considered list,

depending on the outcome
of the comparison

is
considered
list empty?

output
"not found"

output
"found"

stop

NO YES

stop

Figure 6.1

Schematic flowchart
for binary search.

by half at each step, until either Y is found, in which case the procedure terminates,
reporting success, or the trivial empty list is reached, in which case it terminates,
reporting failure (see Figures 6.1 and 6.2).

This procedure is called binary search, and it is really an application of the
divide-and-conquer paradigm discussed in Chapter 4. The difference between this
example and the ones introduced therein (min&max search and mergesort) is that
here after dividing we need only conquer one of the parts, not both. Figure 6.1
contains a schematic iterative version of binary search, but it is actually possible to
write down a simple recursive version too. You are encouraged to do so.

What is the time complexity of binary search? To answer this, let us first count
comparisons. It is quite instructive to try to guess how many comparisons the binary
search algorithm will require in the worst case on our one-million-name telephone
book. Recall that the naive search would require a million comparisons.

Well, in the very worst case (what is an example of one? how many worst cases
are there?) the algorithm will require only 20 comparisons! Moreover, the larger N
becomes, the more impressive the improvement. An international telephone book
containing, say, a billion names, would require at most 30 comparisons, instead of
a billion!

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

6. The Efficiency of Algorithms 135

 (1) Allen

 (2) Baley

 (3) Boyer

 (4) Casy

 (5) Davis

 (6) Davison

 (7) Glen

 (8) Greer

 (9) Haley

(10) Hanson

(11) Harrison

(12) Lister

(13) Mendel

(14) Morgenstern

(15) Patton

(16) Perkins

(17) Quinn

(18) Reed

(19) Schmidt

(20) Woolf

eureka !!

Casy > Boyer

Casy < Davis

Casy < Davison

Casy < Harrison

start

Length = 20

Number of comparisons = 5

Figure 6.2

Binary search applied
to a small telephone
book (numbers
omitted).

Recall that each comparison reduces the length of the input list L by half, and
that the process terminates when, or before, the list becomes empty. Hence, the
worst-case number of comparisons is obtained by figuring out how many times a
number N can be repeatedly divided by 2 before it is reduced to 0. (The rules of
the game are to ignore fractions.) This number is termed the base-2 logarithm1

of N , and is denoted by log2 N . Actually, log2 N counts the number required to
reduce N to 1, not 0, so the number we are really after is 1 + log2 N .2 In any
event, we can safely say the algorithm takes O(log N) comparisons in the worst
case.

We can get a feel for the kind of improvement binary search offers by studying the
following table, which plots several values of N against the number of comparisons
required by binary search in the worst case:

1 The similarity between the words “algorithm” and “logarithm” is purely coincidental.
2 We are abusing the term slightly by using the integer part of 1 + log N . Our logarithms can thus be

thought of as always yielding integers.

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

136 II. Methods and Analysis

N 1 + log2 N

10 4
100 7

1000 10
a million 20
a billion 30

a billion billions 60

It is noteworthy that we ourselves use a variant of binary search when we search
for a number in a telephone book. The difference is that we do not necessarily
compare the name at hand with the one occurring precisely at the middle of the
book and then with that at the 1

4 or 3
4 position, and so on. Rather, we make use of

additional knowledge we possess, concerning the expected distribution of names
in the book. This technique is often called interpolation search. If we are searching
for “Mary D. Ramsey,” for example, we would open the book roughly at the two-
thirds point. Obviously this is far from being precise, and we work with rough,
intuitive rules of thumb, to be discussed under the term heuristics in Chapter 15.
Nevertheless, there are precise formulations of search algorithms that proceed in a
skewed fashion, dictated by the nature and distribution of the elements. In general,
while being considerably more economical on the average, these variations also
exhibit a similar worst-case behavior of O(log2 N) comparisons.

� Why Is It Enough to Count Comparisons?

To complete our complexity analysis of binary search, we now show that if we are
happy with a big-O estimate, it suffices to count comparisons only. Why? Clearly,
in binary search there are considerably more instructions executed than just com-
parisons. Refocussing on the correct half of the list and preparing it for the next time
around the loop would presumably involve some testing and changing of indices.
And then there is the test for an empty list, and so on.

As it turns out, the checkpoints used in the previous chapter for correctness proofs
turn out to be helpful here too. Figure 6.3 shows the schematic flowchart of Figure 6.1
with checkpoints included, and it illustrates the possible local paths, or “hops,”
between them. Notice that here too the checkpoints cut all loops—there is only one
in this case—so that the four local paths are loop free, as in the example given in
Chapter 5. Whereas this fact was important for correctness proofs because it gave
rise to manageable verification conditions, here it is important because loop-free
and subroutine-free segments take at most fixed amounts of time. It is true that the
presence of conditional statements in such a segment might yield several different
ways of traversing it. However, the absence of loops (and of recursive routines)
guarantees that there is a bound on this number, and hence that the total number
of instructions carried out in any single execution of such a segment is no greater
than some constant. As we shall now see, this often facilitates easy calculation of
the time taken by the algorithm.

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

6. The Efficiency of Algorithms 137

start

(1)

(2)

(4)

(3)

K1

stop

stop

K2

K3

K4

Figure 6.3

Binary search with
checkpoints and local
time bounds.

� In Figure 6.3 we have associated the constants K1 through K4 with the four possible local
paths. For example, this means that any single execution of the local path from checkpoint
(2) back to itself is assumed to involve no more than K2 instructions. (By convention,
this is taken to include the comparison made at the beginning of the segment, but not the
one made at its end.) Now consider a typical execution of binary search (see Figure 6.4).
Since checkpoint (2) is the only place in the text of the algorithm involving a comparison,
it is reached (in the worst case) precisely 1 + log2 N times, since, as discussed above,
this is the total number of comparisons made. Now, all but the last of these comparisons
result in the processor going around the loop again, hence executing at most another
K instructions. This means that the total time cost of all these log2 N traversals of the
(2) → (2) segment is K2 × log2 N .

To complete the analysis, notice that the total number of all instructions carried out,
which are not part of (2) → (2) segments, is either K1 + K3 or K1 + K4, depending on
whether the algorithm halts at checkpoint (3) or (4) (see Figure 6.4); in both cases we
have a constant that does not depend on N . If we denote by K the maximum of these
two sums, we can conclude that the total number of instructions carried out by the binary
search algorithm on a list of length N is bounded by:

K + (K2 × log2 N)

(1)
K1 K2 K2 K2 K2

K3

K4

(2) (2) (2) (2)

(3)

(4)

log2N segments,
totaling at most K2 × log2N instructions

Figure 6.4

A typical worst-case
execution of binary
search.

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

138 II. Methods and Analysis

Hence, since we are using the order-of-magnitude notation, the constants K and K2 can
be “buried” beneath the big-O , and we may conclude simply that binary search runs in
time O(log2 N) in the worst case. This is called a logarithmic-time algorithm.

� �

� The Robustness of the Big-O Notation

As explained, big-Os hide constant factors. Hence, in the worst-case analysis of
binary search there was no need for us to be more specific about the details of the
particular instructions that make up the algorithm. It was sufficient to analyze the
algorithm’s loop structure and to convince ourselves that between any two compar-
isons there is only a constant number of instructions in the worst case.

Somehow this does not sound quite right. Surely the time complexity of binary
search does depend on the elementary instructions allowed. If we were to allow the
instruction:

search list L for item Y

the algorithm would consist simply of a single instruction, and hence its time com-
plexity would be O(1), that is, a constant number not depending on N at all. So how
can we say that the details of the instructions are unimportant?

Well, the time complexity of an algorithm is indeed a relative concept, and it makes
sense only in conjunction with an agreed-on set of elementary instructions. Never-
theless, standard kinds of problems are usually thought of in the context of standard
kinds of elementary instructions. For example, searching and sorting problems usu-
ally involve comparisons, index updates, and end-of-list tests, so that complexity
analysis is carried out with respect to these. Moreover, if a particular programming
language is fixed in advance, then a particular set of elementary instructions has
also been fixed, for better or for worse. What makes these observations significant is
the fact that for most standard kinds of elementary instructions we can afford to be
quite vague when it comes to order-of-magnitude complexity. Writing an algorithm
in a particular programming language, or using a particular compiler, can obviously
make a difference in the final running time. However, if the algorithm uses conven-
tional basic instructions, these differences will consist of only a constant factor per
basic instruction, and this means that the big-O complexity is invariant under such
implementational fluctuations.

In other words, as long as the basic set of allowed elementary instructions is
agreed on, and as long as any shortcuts taken in high-level descriptions (such as
that of Figure 6.1) do not hide unbounded iterations of such instructions, but merely
represent finite clusters of them, big-O time estimates are robust.

Actually, for the benefit of readers who feel at home with logarithms, it should
be added that the logarithmic base is of no importance either. For any fixed K ,
the number log2 N and logK N differ only by a constant factor, and hence this
difference can also be hidden under the big-O notation. Consequently, we shall
refer to logarithmic-time performance simply as O(log N), not O(log2 N).

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

6. The Efficiency of Algorithms 139

The robustness of the big-O notation constitutes both its strength and its weakness.
When someone exhibits a logarithmic-time algorithm A, whereas someone else’s
algorithm B runs in linear time, it might very well be found that B runs faster on
sample inputs than A! The reason is in the hidden constants. Let us say that we have
painstakingly taken into account the constant number of elementary instructions
between checkpoints, the programming language in which the algorithm is coded,
the compiler which translates it downwards, the basic machine instructions used by
the computer running the machine code, and the very speed of that computer. Having
done so, we might find that algorithm A performs in time bounded by K × log2 N
nanoseconds, and B performs within J × N nanoseconds, but with K being 1000
and J being 10. This means, as you can verify, that for every input of length less than
a thousand (actually, the precise number is 996), algorithm B is superior to A. Only
when inputs of size 1000 or more are reached does the difference between N and
log2 N become apparent, and, as already hinted, when the difference starts paying
off, it does so very handsomely: by the time inputs of size a million are reached,
algorithm A becomes upwards of 500 times more efficient than algorithm B, and
for inputs of size a billion the improvement is over 330,000-fold!

Thus, a user who is interested only in inputs of length less than a thousand should
definitely adopt algorithm B, despite A’s order-of-magnitude superiority. In most
cases, however, the constant factors are not quite as far apart as 10 and 1000, hence
big-O estimates are usually far more realistic than in this contrived example.

The moral of the story is to first search for a good and efficient algorithm, stressing
big-O performance, and then to try improving it by tricks of the kind used earlier
to decrease the constant factors involved. In any event, since big-O efficiency can
be misleading, candidate algorithms should be run experimentally and their time
performances for various typically occurring kinds of inputs should be tabulated.

The robustness of big-O estimates, coupled with the fact that in the majority of
cases algorithms that are better in the big-O sense are also better in practice, renders
the study of order-of-magnitude time complexity the most interesting to computer
scientists. Accordingly, in the name of science and robustness, we shall concentrate
in the sequel mainly on big-O estimates and similar notions, although they may
hide issues of possible practical importance, such as constant factors.

� �

� Time Analysis of Nested Loops

Obviously, complicated algorithms, which involve many intertwined control struc-
tures and contain possibly recursive subroutines, can become quite difficult to ana-
lyze. Let us briefly discuss the time complexity of some of the algorithms appearing
in previous chapters.

The bubblesort algorithm of Chapter 2 consisted of two loops nested as follows:

(1) do the following N − 1 times:
. . .

(1.2) do the following N − 1 times:
. . .

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

140 II. Methods and Analysis

The inner loop is executed N − 1 times for each of the N − 1 times the outer loop is
executed. As before, everything else is constant; hence the total time performance of
bubblesort is on the order of (N − 1) × (N − 1), which is N 2 − 2N + 1. In this case,
the N 2 is called the dominant term of the expression, meaning that the other parts,
namely, the −2N and the +1, get “swallowed” by the N 2 when the big-O notation
is used. Consequently, bubblesort is an O(N 2), or quadratic-time, algorithm.

Recall our discussion of the improved bubblesort version, which allowed for
traversing smaller and smaller portions of the input list. The first traversal is of N − 1
elements, the next is of N − 2 elements, and so on. The time analysis, therefore,
results in the sum:

(N − 1) + (N − 2) + (N − 3) + · · · + 3 + 2 + 1

which can be shown to evaluate to (N 2 − N)/2. This is less than the N 2 − 2N + 1
of the naive version, but is still quadratic, since the dominant factor is N 2/2, and
the constant factor of 1

2 gets lost too. We thus have a 50% reduction in time, but not
a big-O improvement.

The simple salary summation algorithm (Figure 2.3) is easily seen to be linear,
that is, O(N), but the one for the more sophisticated version, which entailed a nested
loop to search for direct managers (Figure 2.4), is quadratic. (Why?)

The “money”-searching algorithm, with or without the use of a routine (Fig-
ures 2.5 and 2.6) can be seen to be linear, a fact that you should carefully check;
although there might be two pointers advancing separately, the text is traversed only
once, in linear fashion.

With the knowledge acquired in the present chapter, it should be quite straight-
forward to figure out the reason we tried to improve the algorithm for maximal
polygonal distance in Chapter 4. The naive algorithm, which runs through all pairs
of vertices, is quadratic (where N is taken to be the number of vertices), whereas
the improved algorithm cycles around the polygon only once, and can be shown to
be linear.

� Time Analysis of Recursion

Let us now consider the min&max problem of Chapter 4, which called for finding
the extremal elements in a list L . The naive algorithm runs through the list iteratively,
updating two variables that hold the current extremal elements. It is clearly linear.
Here is the recursive routine, which was claimed in Chapter 4 to be better:

subroutine find-min&max-of L:

(1) if L consists of one element, then set MIN and MAX to it; if it consists of two elements,
then set MIN to the smaller of them and MAX to the larger;

(2) otherwise do the following:
(2.1) split L into two halves, Lleft and Lright;
(2.2) call find-min&max-of Lleft, placing returned values in MINleft and MAXleft;
(2.3) call find-min&max-of Lright, placing returned values in MINright and

MAXright;

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

6. The Efficiency of Algorithms 141

(2.4) set MIN to smaller of MINleft and MINright;
(2.5) set MAX to larger of MAXleft and MAXright;

(3) return with MIN and MAX.

It will turn out that this recursive routine runs in linear time too. (In fact, as
we argue later, no algorithm for the min&max problem can possibly be sublinear,
say, logarithmic.) However, the recursive routine has a smaller constant under the
big-O .

To see why, a more refined complexity analysis is called for. The iterative algo-
rithm operates by carrying out two comparisons for each element in the list, one
with the current maximum and one with the current minimum. Hence it yields a
total comparison count of 2N . The interesting part is the way one counts time for a
recursive routine. Since we do not know offhand how many comparisons the routine
requires, we use a specially tailored abstract notation: let C(N) denote the (worst-
case) number of comparisons required by the recursive min&max routine on lists
of length N .

Now, although we do not know the explicit value of C(N) as a function of N , we
do know two things:

1. If N is 2, precisely one comparison is carried out—the one implied by line
(1) of the routine; if N is 3, three comparisons are carried out, as you can
verify.

2. If N is greater than 3, the comparisons carried out consist precisely of two sets
of comparisons for lists of length N/2, since there are two recursive calls, and
two additional comparisons—those appearing on lines (2.4) and (2.5). (If N is
odd, the lists are of length (N + 1)/2 and (N − 1)/2.)

We can therefore write down the following equations, sometimes called recur-
rence relations, which capture, respectively, the two observations just made:

i. C(2) = 1

ii. C(N) = 2 × C(N/2) + 2

(This is for the case where N is a power of 2. The general case is a little more
complicated.) We would like to find a function C(N) satisfying these constraints.
And indeed, methods do exist for solving such recurrence equations, and in this
case, as can be readily checked, the solution turns out to be:

C(N) = 3N/2 − 2

That is, C(N) is less than 1.5N . Even in the general case, for numbers that are
not powers of 2, the recursive routine requires fewer than 1.7N comparisons for
lists of length N , which is better than the 2N required by the iterative solution. As
mentioned, this is still O(N), but it is nevertheless an improvement, especially if
comparisons are highly time consuming in the desired application.

The recursive min&max routine was presented here to give an example of the time
analysis of a recursive algorithm. However, it is noteworthy that we can actually
achieve a better behavior, using only 1.5N comparisons for the general case of

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

142 II. Methods and Analysis

28

28

first last

1018 402 396 35 46 354 76 128 112 106 100

1018

402

396

35

46

354

76

128

112

106

100

Figure 6.5

A list and its long and
thin binary search tree
(compare with
Figure 2.13).

finding the minimum and maximum in a list by a (different) iterative algorithm as
follows. First arrange the N elements into pairs, then compare the two elements
within each pair, marking the larger of the two. This costs N/2 comparisons. Then
go through the N/2 larger elements, keeping track of the current maximum, and
similarly through the N/2 smaller elements, keeping track of the minimum. This
costs twice more N/2 comparisons, yielding a total of 1.5N .

In Chapters 2 and 4 two additional sorting algorithms were briefly described,
treesort and mergesort. We shall not embark on a detailed time analysis here, except
to make the following remarks: Treesort, if implemented naively, is a quadratic
algorithm. The reason stems from the possibility that certain sequences of elements
result in very long and narrow binary search trees, such as the one in Figure 6.5.
Although traversing such a tree in left-first traversal is a linear-time procedure,
constructing the tree from the input sequence can be shown to be quadratic. However,
it is possible to employ a self-adjustment scheme, of the kind hinted at in Chapter 2,

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

6. The Efficiency of Algorithms 143

and keep the tree wide and short. Incorporating such a scheme into the construction
phase of treesort will result in an order-of-magnitude improvement, yielding an
algorithm that uses time on the order of the product of N and the logarithm of N
(rather than N); in symbols, then, it is an O(N × log N) algorithm. The following
table should give an idea of the savings this improvement provides, though its effect
on the constant factors does not show up.

N N 2 N × log2 N

10 100 33
100 10,000 665

1000 a million 9966
a million a thousand billions 20 million
a billion a billion billions 30 billion

Turning to mergesort, you are left with the interesting exercise of showing that
this algorithm is in itself O(N × log N). Mergesort is really one of several time-
efficient sorting algorithms, and is definitely the easiest to describe from among the
O(N × log N) ones. It should be remarked, however, that it uses a new list to store
partial results, and hence it requires an additional linear amount of space, which is
a disadvantage when compared to some of the other sorting methods.

Thus, mergesort is one of the most time-efficient sorting routines and also one
of the easiest to describe. We would like to credit recursion with both virtues: it
makes the algorithm easy to describe, and it also provides a clean mechanism for
splitting the problem into two smaller problems of half the size, which is the root of
the algorithm’s O(N × log N) time performance.

A different approach uses a heap (described in Chapter 4) instead of a binary
search tree as in treesort. The heapsort algorithm first inserts all the elements of
the input list into the heap, and then repeatedly extracts the minimum element to
form the sorted list. The representation of a heap as a vector (see Chapter 4) ensures
that the heap is always balanced, and therefore each insertion and extract-minimum
operation takes logarithmic time, yielding a total running time of O(N × log N).

� Average-Case Complexity

The worst-case nature of our time analyses can be construed as a disadvantage.
It is true that one cannot guarantee, say, linear-time performance of an algorithm
unless the time bound applies to all legal inputs. However, it might be the case that
an algorithm is very fast for most of the standard kinds of inputs, and the ones that
cause its worst-case performance to soar are a minority that we are willing to ignore.

Accordingly, there are other useful estimates of an algorithm’s time performance,
such as its average-case behavior. Here we are interested in the time required by
the algorithm on the average, taking the entire set of inputs and their probability of
occurring into consideration. We shall not get into the technical details here, except
to remark that average-case analysis is considerably more difficult to carry out than
worst-case analysis. The mathematics required is usually far more sophisticated, and

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

144 II. Methods and Analysis

many algorithms exist for which researchers have not been able to obtain average-
case estimates at all.

Despite the fundamental difference, many algorithms have the same big-O time
bound for both worst-case and average-case behavior. For example, simple salary
summation behaves in a fixed fashion, always running to the very end of the list, and
is hence linear in the worst, best, and average cases. The version that goes looking
for direct managers, which is quadratic in the worst case, might, on average, have
to look through only half of the list for each employee’s manager, not through it all.
However, this only decreases N 2 to about N 2/2, retaining the O(N 2) time bound
even in the average case, since the constant of one-half is hidden under the big-O .

In contrast, for some algorithms average-case analysis can reveal significantly bet-
ter performance. The classical example of this is yet another sorting algorithm, called
quicksort, which we shall not describe here. Quicksort, also a naturally recursive al-
gorithm, has a worst-case quadratic running time, and hence appears to be inferior to
both mergesort and the self-adjusting version of treesort. Nevertheless, its average-
case performance can be shown to be O(N × log N), matching that of the better
sorting algorithms. What makes quicksort particularly interesting is the fact that its
average-case performance involves a very small constant. In fact, on only count-
ing comparisons, the time performance of quicksort is a little over 1.4N × log N
on average. Taking into account the fact that it requires only a small fixed amount of
additional storage space, and despite its inferior worst-case performance, quicksort
is actually one of the best sorting algorithms known, and is definitely the best among
the ones mentioned here.

To complete our brief discussion of the sorting methods presented, we should
remark that bubblesort is the worst of the lot, having even an average case behavior
of O(N 2). (This fact, however, is rather tricky to prove.) Many people are opposed to
describing bubblesort in computer science courses, since its elegance is sufficiently
misleading, and students might actually be lured into using it in practice. . .

� �

� Upper and Lower Bounds

We showed earlier how the naive linear-time algorithm for searching an ordered list
can be improved to logarithmic time by using binary search. More precisely, we
showed that there was an algorithm that performed such a search using no more
than log2 N comparisons in the worst case on a list of length N .

Can we do better? Is it possible to search for an element in a million-entry
telephone book with fewer than 20 comparisons in the worst case? Is it possible to
find an algorithm for the ordered list search problem that requires only

√
(log2 N),

or maybe only log2(log2 N), comparisons in the worst case?
To put these questions into perspective, think of any algorithmic problem as sitting

out there, endowed with an inherent optimal solution, which is what we are after.
Then, along comes someone with an algorithm, say an O(N 3) one (termed cubic-
time), and thus approaches the desired solution “from above.” With this algorithm
as evidence, we know that the problem cannot require a higher than cubic running

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

6. The Efficiency of Algorithms 145

an O(N3) algorithm for P

an O(N 2) algorithm for P

Upper
bounds on P

Lower
bounds on P

a proof that P requires
O(N × logN)

P’s inherent time complexity

a proof that P requires
O(N)

N)O(N)

N)O(N2)

N)O(N3)

N)O(N × logN)

algorithmic
problem P

?

Figure 6.6

Upper and lower
bounds on an
algorithmic problem.

time; it can’t be worse than O(N 3). Later on, someone else discovers a better
algorithm, say one that runs in quadratic time, thus coming closer to the desired
optimal solution, also from above. We are now convinced that the problem cannot
be inherently worse than O(N 2), and the previous algorithm becomes obsolete. The
question is, how far down can these improvements go?

With the “approaching-from-above” metaphor in mind (see Figure 6.6), the dis-
covery of an algorithm is said to place an upper bound on the algorithmic problem.
Better algorithms bring the problem’s best-known time bound downwards, closer to
the unknown inherent complexity of the problem itself. The questions we are asking
are concerned with the problem’s lower bound. If we can prove rigorously that
algorithmic problem P cannot be solved by any algorithm that requires less than,
say, quadratic time in the worst case, then people trying to find efficient algorithms
for solving P can give up if and when they find a quadratic-time algorithm, because
there is no way they can do better. Such a proof constitutes a lower bound on the

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

146 II. Methods and Analysis

algorithmic problem, since it shows that no algorithm can improve on the O(N 2)
bound.3

In this way, discovering a clever algorithm shows that the problem’s inherent time
performance is no worse than some bound, and discovering a lower bound proof
shows that it is no better than some bound. In both cases, a property of the algorithmic
problem has been discovered, not a property of a particular algorithm. This might
sound confusing, especially since a lower bound on a problem requires consideration
of all algorithms for it, while an upper bound is achieved by constructing one
particular algorithm and analyzing its time performance (see Figure 6.6).

Achieving a lower bound seems like an impossibility. How do we prove something
about all algorithms? How can we be sure that someone will not discover a very
subtle but efficient algorithm that we have not anticipated? These are not easy
questions to answer, but perhaps contemplation of the following example will give
us some partial answers.

� A Lower Bound for Telephone Book Search

Before the example, however, we should re-emphasize the fact that any discussion
of inherent time complexity, lower bounds included, must be carried out relative to a
set of allowed basic instructions. No one can prove that the search problem requires
any more than a single time unit if basic instructions like:

search list L for item Y

are allowed. The rules of the game, therefore, must be carefully specified before we
make any attempt at proving lower bounds.

We now wish to show that binary search is optimal. In other words, we would like
to prove that in general we cannot find a name in a telephone book of length N in
fewer than log2 N comparisons in the worst case; 20 comparisons are the minimum
for a million names, 30 for a billion, 60 for a billion billions, and so on. In more
general terms, there is no algorithm for the ordered list searching problem whose
worst-case time performance is better than logarithmic.

The rules of the game here are quite straightforward. The only way a proposed
algorithm is allowed to extract any kind of information from the inputs is by carrying
out two-way comparisons. The algorithm might compare two elements from the
input list L among themselves, or an element from L with the input element Y
whose position in L is sought for. No other queries can be addressed to the inputs
L and Y . However, there are no restrictions on instructions not concerning L or Y ;
any of these can be included, and each will cost only a single time unit.

To show that any algorithm for this problem requires log2 N comparisons, we shall
argue as follows. Given an algorithm, any algorithm, we will show that it cannot
possibly better the claimed log2 N lower bound on the problem. Accordingly, say
we have come up with an algorithm A for the ordered list search problem that is

3 All this, of course, is only insofar as order-of-magnitude improvements are concerned. Decreasing the
factor hidden within the big-O might still be possible. Chapters 10 and 11 show that using more liberal
notions of an algorithm can change things drastically.

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

6. The Efficiency of Algorithms 147

Sequences of
comparison-free

instructions

Comparisons

Y is 6th
in L

Y is 4th
in L

Y is 4th
in L

Y is 3rd
in L

Y is 7th
in L

Final
conclusions

Y is 1st
in L

Y is 5th
in L

Y is 7th
in L

Y is 2nd
in L

Figure 6.7

A comparison tree for
searching in a list.

based on two-way comparisons. We shall prove that there are input lists of length
N upon which algorithm A will necessarily perform log2 N comparisons.

� To that end, let us observe A’s behavior on a typical list L of length N . To make
life easier, let us stick to the special case in which L consists precisely of the numbers
1, 2, 3, . . . , N in order, and where Y is one of those numbers. We can also safely assume
that all comparisons have but two results, “less than” or “more than,” since if a comparison
yields “equal to,” Y has been found (unless some useless comparison of an element with
itself was carried out, in which case the algorithm can do without it). The algorithm
A, working on our special list L , might perform some number of other actions, but
eventually it reaches its first comparison. It then presumably branches off in one of two
directions, depending on the (two-way) outcome. In each of these, A might work some
more before reaching the next comparison, which again splits A’s behavior into two
further possibilities. A’s behavior can be thus described schematically as a binary tree
(see Figure 6.7), in which edges correspond to possible sequences of noncomparison
actions, and nodes correspond to comparisons and their branching outcomes. This tree
captures A’s behavior for all possible lists consisting of the numbers 1, 2, 3, . . . , N .

Now, the tree is definitely finite, since A has to terminate on all legal inputs, and its
leaves correspond to reaching a final decision concerning Y ’s position in L , or, in other
words, concerning Y ’s value from among 1, 2, . . . , N . Clearly, no two different values
of Y can be represented by the same leaf, because that would mean that A produces the
same output (that is, position in L) for two different values of Y —obviously an absurdity.
Since Y has N possible values, the tree must have at least N possible leaves. (It might
have more, since there may be more than one way of reaching the same conclusion about

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

148 II. Methods and Analysis

Y ’s position.) We now use the following standard fact about binary trees, whose truth you
should try establishing:

Any binary tree having at least N leaves has depth at least log2 N; that is, the tree contains
at least one path from the root whose length is log2 N or more.

It follows that our comparison tree contains a path of length at least log2 N . But a path in
the tree corresponds precisely to the execution of the proposed algorithm A on some input
list of length N , with the nodes marking the comparisons made in that very execution
(see Figure 6.7). Hence, if there is a path of length at least log2 N in the tree, it follows
that there is some input list that requires A to perform at least log2 N comparisons.

This completes the proof that log2 N is a lower bound on the number of compar-
isons, and hence that the algorithmic problem of searching in an ordered list has a
logarithmic-time lower bound. Notice how the argument was made general enough
to apply to any proposed algorithm, as long as it uses comparisons as the sole means
for extracting information from the input list.

� Closed Problems and Algorithmic Gaps

Lower bounds can be established for many other algorithmic problems. Searching
in an unordered list, for example, is the quintessential linear-time problem, and can
easily be shown to require N comparisons in the worst case. It therefore has a lower
bound of O(N) for algorithms based on comparisons. You might want to work out
the argument for this.

Several of the problems we have talked about can be construed as variations
of unordered search, and are consequently also bounded from below by O(N).
These include the min&max problem, simple salary summation, maximal polygonal
distance, and so on. Notice that for each of these we indeed supplied linear-time
algorithms. This means that the upper and lower bounds actually meet (except for
the possibly different constant factors). In other words, these algorithmic problems
are closed as far as big-O time estimates go. We have a linear algorithm, and we
know that we can do no better.

Searching in an ordered list, as we have shown, is also a closed problem; it has
upper and lower bounds of logarithmic-time. Sorting is also closed: on the one
hand we have algorithms, like mergesort, heapsort, or the self-adjusting version of
treesort, that are O(N × log N), and on the other we can prove an O(N × log N)
lower bound for sorting a list of length N . In both these cases the bounds are based
on the comparison model, whereby information about inputs is obtained only by
two-way comparisons.

Many algorithmic problems, however, do not yet enjoy the property of being
closed. Their upper and lower bounds do not meet. In such cases we say that they
give rise to algorithmic gaps, the best-known upper bound being different from
(and therefore higher than) the best-known lower bound. In Chapter 4 we presented
a quadratic algorithm for finding minimal railroads (the minimal spanning tree
problem), but the best-known lower bound is linear. That is, although we can prove

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

6. The Efficiency of Algorithms 149

that the problem requires O(N) time (here N is the number of edges in the railroad
graph, not the number of nodes), no one knows of a linear-time algorithm, and hence
the problem is not closed.

In Chapter 7 we shall see several striking examples of algorithmic gaps that are
unacceptably large. For now, it suffices to realize that if a problem gives rise to an
algorithmic gap, the deficiency is not in the problem but in our knowledge about it.
We have failed either in finding the best algorithm for it or in proving that a better
one does not exist, or in both.

� �

� Barricading Sleeping Tigers: An Example

The following algorithm uses sorting in a rather unexpected way, and inherits its
complexity bounds too.

Assume we are confronted with N sleeping tigers, and to avoid being eaten when
one or more of them wake up we are interested in constructing a fence around them.
Algorithmically, we are given the precise locations of the tigers, and we want to
find the smallest polygon that surrounds them all. Clearly, the problem reduces to
finding a minimal sequence of some of the tigers’ locations which, when connected
by linear pieces of fence (which we shall call line segments), will enclose all the
others (see Figure 6.8). This enclosure is called the convex hull of the set of points.

Note that this problem has been presented in a zoological guise only to make
it sound a little more entertaining. The convex hull problem is actually one of the
basic problems that arise in computer graphics. Finding fast algorithms for this
problem and a number of other problems in computational geometry can make a
big difference in the speed and applicability of many graphics applications.

The algorithm now presented is based on the following simple observation. For
some line segment connecting two of the points to be part of the convex hull it is
necessary and sufficient that all the other points are on the same side of it (or rather,
of its extension to a full line).

Figure 6.8

Sleeping tigers and
their convex hull.

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

150 II. Methods and Analysis

This observation gives rise to a straightforward algorithm: consider each potential
line segment in turn, and check whether all the N − 2 points that are not on it are
on one side of it. The test to decide which side of a line a given point belongs to
can easily be carried out in constant time using elementary analytic geometry. Since
there are N points, there are N 2 potential segments, one possibly connecting each
pair of points, and each of them has to be checked against N − 2 points. This yields
a cubic (that is, an O(N 3)) algorithm, as you can readily see. However, there is a
way of doing far better.

Here are the main steps in the proposed algorithm:

(1) find the “lowest” point P1;

(2) sort the remaining points by the magnitude of the angle they form with the horizontal
axis when connected with P1, and let the resulting list be P2, . . . , PN ;

(3) start out with P1 and P2 in the current hull;

(4) for I from 3 to N do the following:
(4.1) add PI tentatively to the current hull;
(4.2) work backwards through the current hull, eliminating a point PJ if the two

points P1 and PI are on different sides of the line between PJ−1 and PJ , and
terminating this backwards scan when a PJ that does not need to be eliminated
is encountered.

It may be a little tricky to see what the algorithm is doing, but a glance at Figures 6.9
and 6.10 should help. Figure 6.9 shows the points sorted after step (2) in the order
they will be considered in step (4), and Figure 6.10 shows the first few additions and
eliminations in step (4). In Figure 6.10 point P13 has just been added, and the next
step will consider P14. However, since the line between P12 and P13 goes between
P1 and P14, point P13 will be eliminated, bringing the hull around the points, above
P13. While proving the correctness of this algorithm is an instructive exercise, we
are more interested here in its time efficiency. We shall therefore assume that the
algorithm is correct and concentrate on its time analysis.

It is easy to see that step (1), which involves a simple search for the point that lies
lowest down in the picture, that is, the one with the smallest vertical coordinate, takes

2

1

3

4

5
6

7

9

11

14

15

13

12

10

8Figure 6.9

The points of
Figure 6.8 sorted by
angle.

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

6. The Efficiency of Algorithms 151

12

15

13

10

9

7

6

4

5

8

2 3

1

11

14

Figure 6.10

First few steps in
barricading the tigers
of Figure 6.8.

linear time. Now, step (2), the sorting, can be carried out by any efficient sorting
routine. Therefore, since computing an angle or comparing two angles can be carried
out in constant time, step (2) takes total time O(N × log N). The interesting part
concerns step (4).

It would appear that the nested loop structure of step (4) yields quadratic time
performance. However, the right way to analyze this part of the algorithm involves
disregarding its structure and accounting for time on a point-by-point basis. Notice
that step (4.2) only eliminates points, and it stops when a point that should not be
eliminated is encountered. Now, since no point gets eliminated more than once,
the total number of times points are considered in the nested loop of step (4.2)
cannot be more than O(N). Since all the remaining parts of step (4) take no more
than linear time too, step (4) in its entirety takes linear time.

The total time of the algorithm, therefore, is:

Step (1) O(N)
Step (2) O(N × log N)
Step (3) O(1)
Step (4) O(N)

Total O(N × log N)

It is a little surprising that sorting has anything at all to do with finding the
convex hull. It is more surprising that the sorting part of the algorithm is actually
the dominant part as far as computational complexity goes.

� �

� Research on the Efficiency of Algorithms

Finding efficient algorithms for pressing algorithmic problems is one of the most
common research topics in computer science. Indeed, almost all the issues discussed

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

152 II. Methods and Analysis

in this chapter are subjects of considerable research efforts, and most are gathered
under the general term concrete complexity theory.

In this area, people are interested in developing and exploiting data structures
and algorithmic methods in order to improve existing algorithms or to conceive new
ones. Many ingenious ideas find their way into sophisticated algorithms, providing
at times surprising cuts in running time. Most often, this is done with the practical
goal of solving the problem faster by computer. However, at times the driving force is
simply the desire to nail down a problem’s inherent order-of-magnitude complexity,
even if the results, from a practical point of view, are no better than previously known
ones.

A good example of this is the railroad layout (spanning tree) problem of Chapter 4.
We presented a quadratic-time algorithm for this, which with some effort can be
improved to O(N × log N). For all practical purposes, this improved algorithm, or
any of a number of other algorithms of similar complexity, works just fine. However,
complexity theorists are not happy with this, since the best-known lower bound is
linear. They want to know whether or not a linear-time algorithm can actually be
found for the problem. Recently, using rather clever and complicated techniques,
the upper bound has been brought quite close to O(N). Specifically, there is an
algorithm that runs in time bounded by O(f (N) × N), where f (N) is a function
that grows incredibly slowly—much, much slower than, say, log N . The following
table shows the smallest Ns for the first few values of this function:

Smallest N such that f (N) is

4 2
16 3

64,000 4
far more than the total
number of particles in

the known universe 5
absolutely unimaginable 6

Clearly, for all practical purposes an O(f (N) × N) algorithm is really linear; the
value of f (N) is 5 or less for any number we shall ever be interested in. However,
we must remember that no matter how slowly growing f (N) is, it would eventually
become larger than any constant. Hence, from some point on, that is, for all suf-
ficiently large N , any given linear-time algorithm outperforms the O(f (N) × N)
one, and we say that the former is asymptotically better than the latter. Thus,
the spanning tree problem is still open, as it still yields an algorithmic gap, and re-
searchers have not given up on it. It is hoped that in the foreseeable future the problem
will be closed, one way or another. Either a linear-time algorithm will be discov-
ered, or a nonlinear lower bound proof, matching the known upper bound, will be
found.

As mentioned earlier, lower bounds are very hard to come by, and for many
problems no one knows of any nonlinear lower bounds. In other words, despite the
fact that the best algorithms for some problems are quadratic, cubic, or worse, no one
can prove that there does not exist some linear-time algorithm for them out there,
awaiting discovery. Methods for proving nonlinear lower bounds are extremely
scarce, and researchers expend considerable efforts in trying to find them.

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

6. The Efficiency of Algorithms 153

Average-case performance yields another difficult research direction, and there
are still many known algorithms for which satisfactory average-case analyses have
not been performed.

We have not discussed space complexity here at all, but it is worth stating that
achieving good upper and lower bounds on the memory space requirements of algo-
rithmic problems is also the subject of considerable research in concrete complexity
theory. People are interested not only in separate bounds on time and space, but also
in the joint time/space complexity of a problem. It might be possible to achieve, say,
a linear-space upper bound on a problem with some algorithm and, say, a quadratic-
time upper bound with another algorithm, but that does not imply the existence of an
algorithm that achieves both simultaneously. It is possible that there is a time/space
tradeoff inherent in the problem, meaning that we pay for time economy with more
space, and for space economy with more time. In such cases researchers try to prove
that there is such a tradeoff. This usually takes the form of a proof that the per-
formance of any algorithm solving the problem satisfies a certain equation, which
holds as either a lower bound or an upper bound (or both). The equation typically
captures a three-way relationship between the input length N and the (worst-case)
running time and memory space of any solution algorithm.

� For example, assume that the following equation has been established as both an upper
and a lower bound on the time/space complexity of a problem P:

S2 × T = O(N 3 × (log N)2)

This means that if we are willing to spend O(N 3) time we can solve the problem using
only O(log N) space, whereas if we insist on spending no more than O(N 2) time, we
would need O(

√
N × log N) space.

The next two chapters will focus on the bad news complexity theory has for us.
They will also discuss notions that are even more robust than the big-O notation.

� Exercises
6.1. Consider the following salary computation problem. The input consists of a number N , a

list, BT (1), . . . , BT (N), of before-tax salaries, and two tax rates, Rh for salaries that are
larger than M , and Rl for salaries that are no larger than M . Here Rh and Rl are positive
fractions, i.e., 0 < Rh, Rl < 1. It is required to compute a list, AT (1), . . . , AT (N), of
after-tax salaries, and two sums, T h and T l, containing the total taxes paid according to
the two rates, respectively. Here is a solution to the problem. It calculates the after-tax
salaries first and then the tax totals:

for I from 1 to N do the following:
if BT (I) > M then AT (I) ← BT (I) × (1 − Rh);
otherwise AT (I) ← BT (I) × (1 − Rl);

T h ← 0;
T l ← 0;
for I from 1 to N do the following:

if BT (I) > M then T h ← T h + BT (I) × Rh;
otherwise T l ← T l + BT (I) × Rl.

(a) Suggest a series of transformations that will make the program as efficient as pos-
sible, by minimizing both the number of arithmetical operations and the number of

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

154 II. Methods and Analysis

comparisons. Estimate the improvement to these complexity measures that is gained
by each of your transformations.

(b) How would you further improve the program, if you are guaranteed that no before-tax
salary is strictly less than M (i.e., there might be before-tax salaries of exactly M , but
not less)? How would you characterize the rate of improvement in this case?

6.2. For the following pairs of time complexities of two algorithms A and B, find the least
positive integer N for which algorithm B is better than algorithm A:

A B
N/2 4 × log2 N
N 2 100 × N × log2 N
N 6 6 × N 5

3N 12 × 2N

2N 4 × N log2 N

2N×log2 N N 100 × 2N

6.3. Analyze the worst-case time complexity of each of the four algorithms given in Exer-
cise 5.15 for computing mn . Count multiplications only.

6.4. Consider the binary search scheme of Figure 6.1, and a telephone book with a million
entries given as input to the algorithm.

(a) Describe an input list that exhibits worst-case behavior.
(b) Estimate how many such worst cases there are, and their proportion.

6.5. (a) Write an algorithm for searching an element in a sorted list, based on ternary (three-
way) comparisons. A ternary comparison may be written as follows:

compare(L , M, N)
case L ≤ M ≤ N : . . . ;
case L ≤ N ≤ M : . . . ;
case M ≤ N ≤ L : . . . ;

· · ·
with as many “case” clauses as necessary. The cost of such a comparison is one time
unit.

(b) Given that the cost of each ternary comparison is a single time unit, analyze the worst-
case time complexity of your algorithm, and explain why it is no better than binary
search in terms of the big-O notation.

6.6. Analyze the time complexity of the following program scheme:
while N > 0 do the following:

 · · ·

;

do the following N times:
 · · ·


;

N←N/5;

(Every program segment denoted by . . . is executed in some fixed number of time units,
and you may assume that the value of N does not change within it. “/” denotes integer
division, e.g., 4/5 = 0.)

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

6. The Efficiency of Algorithms 155

6.7. Given that the list of employees is of length N , use the checkpoints technique to analyze
the time complexity of the algorithm of Figure 2.4.

6.8. Prove that the following algorithms are of linear-time complexity:

(a) The algorithm for counting sentences containing the word “money”, presented in
Chapter 2.

(b) The algorithm for maximal polygonal distance, presented in Chapter 4.

6.9. (a) Prove that the treesort algorithm takes quadratic time in the worst case.
(b) Give an example of a worst-case input to treesort.
(c) Prove that the mergesort algorithm takes O(N × log2 N) time in the worst case.
(d) What is the average-case time complexity of mergesort?

6.10. Analyze the worst-case time complexity of the algorithms for traversing and processing
information stored in trees that you were asked to design in Exercises 4.3 and 4.2.

6.11. Analyze the worst-case time and space complexities of the breadth-first algorithm for
checking whether a given tree is balanced you were asked to design in Exercise 4.7.
Compare them with the complexities of a straightforward depth-first algorithm for the
same problem, which uses the algorithm for tree isomorphism that you were asked to
design in Exercise 4.6 as a subroutine applied to the offspring of every node containing a
binary operation.

6.12. Analyze the worst-case time and space complexities of the dynamic planning algorithm
for the integer-knapsack problem you were asked to design in Exercise 4.13.

6.13. Prove a lower bound of O(N × log2 N) on the time complexity of any comparison-based
sorting algorithm.

6.14. Explain the relevance, if any, of upper and lower bounds on the worst-case time complexity
of the sorting problem to the time complexity of the greedy algorithm for the knapsack
problem you were asked to design in Exercise 4.14.

6.15. Recall the problem of detecting palindromes, described in Exercise 5.10. In the following,
consider the two correct solutions to this problem: algorithm Pal1, presented in Exercise
5.10, and algorithm Pal4, which you were asked to construct in Exercise 5.14. Assume
that strings are composed of the two symbols “a” and “b” only, and that the only operations
we count are comparisons (that is, applications of the eq predicate).

(a) Analyze the worst-case time complexity of algorithms Pal1 and Pal4, providing upper
bounds for both.

(b) Suggest a good lower bound for the problem of detecting palindromes.
(c) Assume a uniform distribution of the strings input by the algorithms. In other words,

for each N , all strings of length N over the alphabet {a, b} can occur as inputs with
equal probability. Perform an average-case time analysis of algorithms Pal1 and Pal4.

6.16. A correct solution to Exercise 6.15 shows that the average-case complexity of Pal4 is
better than the lower bound on the palindrome detection problem.

(a) Explain why this fact is not self-contradictory.
(b) What does this fact mean with regards to the performance of algorithm Pal4 on a large

set of strings (“most” strings)? What does it mean with regards to the performance on
a small set of strings?

(c) How would your answer to (b) change if the worst-case complexity of Pal4 was
significantly larger than the lower bound on the problem?

6.17. Assume two algorithms A and B solve the same algorithmic problem, but while the worst-
case complexity of A is lower than that of B, the average-case complexity of B is lower

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

156 II. Methods and Analysis

than that of A. Would you consider either one of these two algorithms better than the
other? If you answer in the affirmative, explain why; otherwise, describe situations and/or
applications for which you consider each of the algorithms to be better.

If mk = n for integers m, n > 1, and k ≥ 0, we say that k is the logarithm base m of
n. In general, this logarithm need not necessarily be an integer. Let us define the integer
logarithm base m of n to be the greatest integer k ≥ 0, such that mk ≤ n, and denote it
by k = lgm n. In Exercises 6.18–6.20 you are asked to design a number of algorithms for
calculating the integer logarithm function. The only arithmetical operations you may use
are addition and multiplication. When analyzing the time complexity of these algorithms,
you are to count arithmetical operations only, assuming that every operation takes a
single time unit. For memory space analysis, count the number of integers that are stored
simultaneously, assuming that an integer can be stored (in a variable or list-element) in a
single unit of memory space.

6.18. Design an algorithm LG1, with input integers m, n > 1, that calculates lgm n by repeatedly
calculating the powers m0, m1, . . . , mk , until a number k is found satisfying mk ≤ n <

mk+1. Analyze the time and space complexity of LG1.

It is well known that each positive integer k can be written uniquely as a sum of integer
powers of 2, i.e., in the form k = 2l1 + 2l2 + · · · + 2l j , where l1 > l2 > · · · > l j ≥ 0. For
example, 12 = 23 + 22, and 31 = 24 + 23 + 22 + 21 + 20. Hence, mk = m2l1 × m2l2 ×
· · · × m2l j , and if we need to calculate k = lgm n, it is enough to find the appropriate
exponents l1, l2, . . . , l j .

6.19. Design an iterative (i.e., nonrecursive) algorithm LG2 to calculate lgm n by first finding an
integer l1 satisfying m2l1 ≤ n < m2l1+1

, then finding an integer l2 < l1, satisfying m2l1 ×
m2l2 ≤ n < m2l1 × m2l2+1

, and so on. Use a fixed amount of memory space (no lists).
Analyze the time and space complexity of algorithm LG2.

6.20. The time complexity of the previous algorithm can be improved by calculating each of

the values m2l1 , m2l2 , . . . , m2l j only once.

(a) Design such an algorithm LG3, and analyze its time and space complexity.
(b) Discuss the time/space tradeoff concerning the last two algorithms. Suggest joint

time/space complexity measures under which LG3 has better/equivalent/worse com-
plexity than LG2. What happens when you replace LG2 in this analysis with LG1?

how long shall it be then?

II SAMUEL 2: 26

In an acceptable time have I answered thee

ISAIAH 49: 8

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

P A R T I I I

Limitations and Robustness

Thou didst set a bound that they might not pass over

PSALM 104: 9

157

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

158

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

C H A P T E R 7

Inefficiency and
Intractability

or, You Can’t Always Get It Done Cheaply

. . . increased
abundantly,
and multiplied,
and grew exceedingly

EXODUS 1: 7

nor is this a work of
one day or two

EZRA 10: 13

In the previous chapter we saw that certain algorithmic problems admit solutions
that are far more time efficient than their naive counterparts. We saw, for example,
that it is possible to search a sorted list in logarithmic time, a result which, when
refined, implies that we can search for a name in a million-entry telephone book
with only 20 comparisons in the worst case, not a million. In a similar vein, sorting
an unsorted million-entry telephone book can be achieved with only several million
comparisons, not many billions, as there exist O(N × log N) sorting algorithms that
outperform the naive quadratic ones.

At this point, you may be unimpressed. You may claim to be sufficiently “rich”
to afford a million comparisons for searching a list. Or that a few extra seconds
of computer time makes no difference, and hence that linear search is just as good
as binary search. This argument gains credence on realizing that it is not a human
user, but a computer, that carries out the dull and unimaginative chore of leafing
through all the names in the book. A similar argument can be made for sorting too,
particularly if the application is such that sorting is to be carried out rarely, and the
lists to be sorted never contain more than, say, a million items.

Given this attitude, questions of algorithmic gaps become uninteresting too. Once
a reasonably good algorithm has been found for a pressing algorithmic problem, we
may not be interested in better algorithms or in proofs that they do not exist.

The purpose of this chapter is to show that the “let’s-put-up-with-what-we-have”
approach cannot always be adopted. We shall see that in many cases reasonable
algorithms, say linear or quadratic ones, do not exist at all. The best algorithms for
many important algorithmic problems will be shown to require formidable amounts
of time or memory space, rendering them quite useless.

� The Towers of Hanoi Revisited

Recall the Towers of Hanoi problem of Chapter 2, in which we were asked to
produce a sequence of one-ring moves to transfer N rings from one of three pegs

159

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

160 III. Limitations and Robustness

to another according to certain rules (see Figure 2.7). You are encouraged to carry
out a simple time analysis of the recursive solution move described therein, similar
to the analysis carried out in Chapter 6 for the min&max routine. It will show that
the number of single-ring moves produced by the algorithm for the N -ring case, is
precisely 2N − 1 that is, one less than 2 × 2 × 2 × . . . × 2, with the 2 appearing N
times. Since N appears in the exponent, such a function is called exponential. It
can be shown that 2N − 1 is also a lower bound on the required number of moves
for solving the problem, so that our solution is really optimal and we cannot do any
better.1

Is this news good or bad? Well, to answer the question in an indirect way, if the
Hindu priests originally confronted with the 64-ring case were to brush up their act
and move a million rings every second, it would still take them more than half a
million years to complete the process! If, somewhat more realistically, they were to
move one ring every 10 seconds, it would take them well over five trillion years to
get the job done. No wonder they believed the world will end before then!

It seems, therefore, that the Towers of Hanoi problem, at least for 64 rings or
more, is hopelessly time consuming. While this statement appears hard to contest,
it might cause the feeling that the difficulty stems from the desire to output the
entire sequence of moves, and since hopelessly many moves are required, it will
obviously take hopelessly long to find them and print them all out. We might be
tempted, therefore, to expect such devastating time performance to occur only for
problems whose outputs are unreasonably lengthy.

To convince ourselves that this is not so, it is instructive to consider yes/no
problems; that is, algorithmic problems that do not produce any “real” outputs
except a “yes” or a “no.” These are sometimes called decision problems, as their
purpose is merely to decide whether a certain property holds for their inputs. Most
of this chapter (and the next) will be devoted to decision problems.

� The Monkey Puzzle Problem: An Example

At some point in life, you may have encountered one or more versions of the very
frustrating monkey puzzle (see Figure 7.1). It involves nine square cards whose sides
are imprinted with the upper and lower halves of colored monkeys. The objective is
to arrange the cards in the form of a 3 by 3 square such that halves match and colors
are identical wherever edges meet.

In the general algorithmic problem associated with this puzzle, we are given
(descriptions of) N cards, where N is some square number, say, N is M2, and the
problem calls for exhibiting, if possible, an M by M square arrangement of the N
cards, so that colors and halves behave as stated. We shall assume that the cards
are oriented, meaning that the edges have fixed directions, “up,” “down,” “right,”
and “left,” so that they are not to be rotated. We shall concentrate on the seemingly
easier yes/no version, that simply asks whether any such M by M arrangement
exists, without asking for one to actually be exhibited.

1 Incidentally, the iterative solution presented in Chapter 5 and the recursive one of Chapter 2 produce
exactly the same sequence of 2N − 1 moves.

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

7. Inefficiency and Intractability 161

Figure 7.1

A 3-by-3 instance of
the monkey puzzle.

A naive solution to the problem is not too hard to come by. We need only observe
that each input involves only finitely many cards, and that there are only finitely
many locations to fill with them. Hence, there are only finitely many different ways
of arranging the input cards into an M by M square. Moreover, a given arrangement
can easily be tested for legality (that is, that all input cards are indeed used, and that
halves and colors match) by simply considering each card and each of the meeting
edges in turn. Consequently, an algorithm can be designed to work its way through
all possible arrangements, stopping and saying “yes” if the arrangement at hand is
legal, and stopping and saying “no” if all arrangements have been considered, and
they have all been found to be illegal. Of course, it is possible to make this approach
somewhat less brute-force, by avoiding the need to explicitly check extensions of a
partial arrangement that has already been shown to be illegal. Some bookkeeping
is required to make sure that all possible arrangements are indeed considered and
that none is considered twice, but we shall not dwell on the details of the algorithm
here—we are more interested in its time performance.

Let us assume that N is 25, meaning that the final square is to be of size 5 by 5.
Let us also assume that we have a computer capable of constructing and evaluating
a billion arrangements every second (that is, one arrangement every nanosecond),
including all the bookkeeping involved. This is quite a reasonable assumption, given
today’s computers. The question is: how long will the algorithm take in the worst
case (which is when there is no legal arrangement, so that all possible arrangements
are checked)?

If we arbitrarily number the locations in a 5 by 5 grid, there are obviously 25
possibilities for choosing a card to be placed in the first location. Having placed
some card in that location, there are 24 cards to choose from for the second location,
23 for the third, and so on. The total number of arrangements can, therefore, reach:

25 × 24 × 23 × . . . × 3 × 2 × 1

a number denoted by 25! and called 25 factorial. What is astonishing is the size
of this innocent-looking number; it contains 26 digits, a fact that does not seem
alarming until we realize that our billion-arrangements-per-second computer will
take well over 490 million years to work its way through all 25! arrangements. If

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

162 III. Limitations and Robustness

Arrangements always exist

(a)

Arrangements never exist

(b)

Figure 7.2

Trivial monkey
puzzles.

we simply increase the size of the square by one, going from a 5 by 5 square to a
6 by 6 one, so that N is 36, things become a lot worse. The time it would take to
go through all 36! values would be unimaginably long, far, far, FAR longer than the
time that has elapsed since the Big Bang.

Obviously, particular monkey card puzzles can be prepared in ways that make
life easy. (To give a couple of extreme examples, if all cards are either identical to
the one in Figure 7.2(a) or identical to that in Figure 7.2(b), the question has trivial
answers.) Moreover, the smarter version of the algorithm, that does not consider
extensions of illegal partial arrangements, will perform much better for many input
puzzles. However, worst-case analysis is the name of our game. The puzzle designer
actually strives for sets of cards that admit many partial solutions (in which portions
of the square are legally covered with cards), but only very few complete solutions—
maybe only one. This is what prevents the problem from admitting fast and easy
solutions. Hence, even the less naive version of the algorithm will exhibit similarly
disastrous worst-case behavior.

The brute-force solution, therefore, is quite useless, even for a very small 5 by
5 version (or, say, a 10 by 10 version if the less naive version is used, and we are
willing to make do with average-case performance). If you are now expecting a truly
clever solution to be presented, which would show how to really solve the problem
in a useful way, you are in for a disappointment. The only known solutions that are
better than the ones discussed are not sufficiently better as to be reasonable; if N is
25 they would still require, in the worst case, many, many of years of computation
for a single instance, and if N is 36, well, . . . forget it . . .

Is there some hidden solution to the monkey puzzle problem, one that would be
practical for a reasonable number of cards, say up to 225? By this we mean to ask if
there is some easy way of solving the problem, which we have not yet discovered.
Perhaps there is an arrangement precisely when the number of distinct cards is a
multiple of 17, for some strange reason. The answer to this question is “probably
not, but we are not quite sure.” We shall discuss this matter further after examining
the general behavior of such impractical algorithms as the one just described.

� Reasonable vs. Unreasonable Time

The factorial function N ! grows at a rate that is orders of magnitude larger than
the growth rate of any of the functions mentioned in previous chapters. It grows
much, much faster than linear or quadratic functions, for example, and, in fact,
easily dwarfs all functions of the form N K , for any fixed K . It is true that N 1000,
for example, is larger than N ! for many values of N (for all N up to 1165, to be

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

7. Inefficiency and Intractability 163

N 20 60 100 300 1000

100 300 500 1500 5000

86 354 665 2469 9966

400 3600 10,000 90,000 1 million
(7 digits)

8000 216,000 1 million
(7 digits)

27 million
(8 digits)

1 billion
(10 digits)

1,048,576 a 19-digit
number

a 31-digit
number

a 91-digit
number

a 302-digit
number

a 19-digit
number

an 82-digit
number

a 161-digit
number

a 623-digit
number

unimaginably
large

a 27-digit
number

5N

N × log2N

N2

N3

2N

N!

NN a 107-digit
number

a 201-digit
number

a 744-digit
number

unimaginably
large

Function

E
xp

on
en

ti
al

P
ol

yn
om

ia
l

Figure 7.3

Some values of some
functions. For
comparison: the
number of protons in
the known universe
has 79 digits; the
number of
nanoseconds since the
Big Bang has 27 digits.

precise). However, for any K , there is some value of N (1165, if K is 1000) beyond
which the function N ! leaves N K far behind, very, very quickly.

Other functions exhibit similarly unacceptable growth rates. For example, the
function N N , denoting N × N × N × . . . × N with N occurrences of N , grows
even faster than N !. The function 2N , that is, 2 × 2 × 2 × . . . × 2, with N occur-
rences of 2, grows slower than N !, but is also considered a “bad” function; it still
grows much faster than the N K functions. If N is 20 the value of 2N is about a
million, and if N is 30 it is about a billion. (This is because 2N relates to N precisely
as N does to log2 N .) If N is 300 the number 2N is billions of times larger than the
number of protons in the entire known universe. Figures 7.3 and 7.4 illustrate the
relative growth rates of some of these functions.

A striking illustration of the differences between these functions is in the running
times of algorithms. Figure 7.5 gives the actual running times of several hypothetical
algorithms for the monkey puzzle problem for various values of N . It is assumed that
the algorithms are run on a computer capable of carrying out a billion instructions per
second (that is, one instruction per nanosecond). As can be seen, even the smallest
of the “bad” functions appearing therein, 2N , might require 400 billion centuries for
a single instance of the 10 by 10 problem! For functions like N ! or N N , the time is
unimaginably worse.

These facts lead to a fundamental classification of functions into “good” and “bad”
ones. The distinction to be made is between polynomial and super-polynomial
functions. For our purposes a polynomial function of N is one which is bounded
from above by N K for some fixed K (meaning, essentially, that it is no greater
in value than N K for all values of N from some point on). All others are super-
polynomial. Thus, logarithmic, linear, and quadratic functions, for example, are
polynomial, whereas ones like 1.001N + N 6, 5N , N N , and N ! are exponential
or worse. Although there are functions, like N log2 N for example, that are super-
polynomial but not quite exponential, and others, like N N , that are super-exponential,

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

164 III. Limitations and Robustness

10

2 4 8 16 32 64 128 256 512 1024 2048

100
1000

A million

A billion

A trillion

1015

1020

Number of
nanoseconds
in one day

Number of
nanoseconds
since
Big Bang1025

1030

1035

1040

NN

N10

N5

N3

2N

5N

1.2N

Figure 7.4

Growth rates of some
functions.

current practice will be followed in abusing the terminology slightly by using “ex-
ponential” as a synonym for “super-polynomial” in the sequel.

An algorithm whose order-of-magnitude time performance is bounded from
above by a polynomial function of N , where N is the size of its inputs, is
called a polynomial-time algorithm, and will be referred to here as a reasonable

N

1/2500
millisecondN2

N5

2N

NN

1/625
millisecond

1/10
second

18.3
minutes

1/278
millisecond

1/100
millisecond

1/11
millisecond

1/300
second

78/100
second

10
seconds

40.5
minutes

1/1000
second

36.5
years

400 billion
centuries

a 72-digit
number of
centuries

a 46-digit
number of
centuries

3.3 billion
years

an 89-digit
number of
centuries

a 182-digit
number of
centuries

a 725-digit
number of
centuries

20 40 60 100 300Function

E
xp

on
en

ti
al

P
ol

yn
om

ia
l

Figure 7.5

Time consumption of
hypothetical solutions
to the monkey puzzle
problem (assuming
one instruction per
nanosecond). For
comparison: the Big
Bang was 13–15
billion years ago.

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

7. Inefficiency and Intractability 165

intractable
problems

tractable
problems

Problems not admitting
reasonable algorithms

Problems admitting
reasonable (polynomial-time)

algorithms

Figure 7.6

The sphere of
algorithmic problems:
Version I.

algorithm. Similarly, an algorithm that, in the worst case, requires super-polynomial,
or exponential time, will be called unreasonable.

As far as the algorithmic problem is concerned, a problem that admits a reasonable
or polynomial-time solution is said to be tractable, whereas a problem that admits
only unreasonable or exponential-time solutions is termed intractable.

The discussion and examples surrounding Figures 7.3–7.5 are intended to support
this distinction. In general, intractable problems require impractically large amounts
of time even on relatively small inputs, whereas tractable problems admit algorithms
that are practical for reasonably-sized inputs. We might be justified in questioning
the wisdom of drawing the line between good and bad precisely where we did. As
already mentioned, an N 1000 algorithm (which is reasonable by our definition, since
N 1000 is a polynomial function) is worse than a very unreasonable N ! algorithm for
inputs under size 1165, and the turning point is much larger if N 1000 is compared, say,
with the slower growing exponential function 1.001N . Nevertheless, the majority of
unreasonable algorithms are really useless, and most reasonable ones are sufficiently
useful to warrant the distinction made. In fact, the vast majority of polynomial-time
algorithms for practical problems feature an exponent of N that is no more than 5 or
6. In Chapter 9 evidence will be presented to the effect that the dichotomy introduced
here is actually extremely robust, even more so than the ignoring of constants that
comes with the use of the big-O notation.2

The sphere of all algorithmic problems can therefore be divided into two major
classes as illustrated in Figure 7.6. The dividing line embodies one of the most im-
portant classifications in the theory of algorithmic complexity. In Chapter 8 another,
even more fundamental, line will be drawn.

� �

� More on the Monkey Puzzle Problem

The monkey puzzle problem is really worse than anything we have seen so far. It asks
only for a simple yes/no answer, yet even when using the best-known algorithms

2 There is a possibility of a dent in this robustness. It concerns the relatively new and exciting area
of quantum computing, discussed in Chapter 10, which could possibly lead to intractable problems
becoming tractable. Why we are being so careful in the wording of this footnote, will be explained
there. However, even if this does happen it is still a very long way off, so for now we shall proceed with
the knowledge that tractability is a strong and robust notion, insensitive to anything we know about
now.

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

166 III. Limitations and Robustness

we could spend our entire lifetime on a single, very small instance of the problem
and never find out the correct answer. A problem for which there is no known
polynomial-time algorithm is thus not much better than a problem for which there
is no known algorithm at all. The crucial question here is whether there really is no
reasonable solution; in other words, is the monkey puzzle problem really intractable?

To sharpen our understanding of the situation, let us focus on several possibly
bothersome issues.

1. Computers are becoming faster by the week. Over the past 10 years or so computer
speed has increased roughly by a factor of 50. Perhaps obtaining a practical
solution to the problem is just a question of awaiting an additional improvement
in computer speed.

2. Doesn’t the fact that we have not found a better algorithm for this problem
indicate our incompetence at devising efficient algorithms? Shouldn’t computer
scientists be working at trying to improve the situation rather than spending their
time writing books about it?

3. Haven’t people tried to look for an exponential-time lower bound on the problem,
so that we might have a proof that no reasonable algorithm exists?

4. Maybe the whole issue is not worth the effort, as the monkey puzzle problem is
just one specific problem. It might be a colorful one, but it certainly doesn’t look
like a very important one.

These points are well taken, but the following unusual situation provides answers
to them all. First of all, let us do away with objection number (1). Figure 7.7 shows
that even if the fastest computer were to be made 1000 times faster, a 2N algorithm
for the monkey puzzle problem would be able, in a given time frame (say, an hour),
to cope with only about 10 more cards than it can today. In contrast, if the algorithm
were to take time N it could cope with 1000 times the number of cards it can today.
Hence, improving the computer’s speed by a mere constant factor, even a large one,
will improve things, but if the algorithm is exponential then it will do so only in a
very insignificant way.

Let us now relate to point (4)—the two other points are treated implicitly later. It
so happens that the monkey puzzle problem is not alone. There are other problems
in the same boat. Moreover, the boat is large, impressive, and many-sided. The
monkey puzzle problem is just one of close to 1000 diverse algorithmic problems,
all of which exhibit precisely the same phenomena. They all admit unreasonable,
exponential-time solutions, but none of them is known to admit reasonable ones.

Function

N

N2

2N

A

B

C

100 × A

10 × B

C + 6.64

1000 × A

31.6 × B

C + 9.97

with today’s
computer

with computer
100 times faster

with computer
1000 times faster

Maximal number of cards solvable in one hour:
Figure 7.7

Algorithmic
improvements
resulting from
improvements in
computer speed.

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

7. Inefficiency and Intractability 167

Moreover, no one has been able to prove that any of them require super-polynomial
time. In fact, the best-known lower bounds on most of the problems in this class are
O(N), meaning that it is conceivable (though unlikely) that they admit very efficient
linear-time algorithms.

We shall denote this class of problems NPC, standing for the NP-complete prob-
lems, as explained later. The algorithmic gap associated with the problems in NPC
is thus enormous. Their lower bounds are linear, and their upper bounds exponen-
tial! The issue is not whether we spend linear or quadratic time in solving them,
or whether we need 20 comparisons for a search or a million. It boils down to the
ultimate question of whether we can or cannot solve these problems for even reason-
ably small inputs on even the largest and most powerful computers. It is as simple
as that. The location of these algorithmic problems in the sphere of Figure 7.6 is
thus unknown, since their upper and lower bounds lie on either side of the dividing
line.

There are two additional properties that characterize the special class NPC, and
which make it all the more remarkable. However, before discussing them, it should
be stressed that the class NPC contains an ever-growing diversity of algorithmic
problems, arising in such areas as combinatorics, operations research, economics,
graph theory, game theory, and logic. It is worth looking at some of the other
problems found there.

� Two-Dimensional Arrangement Problems

Some of the most appealing problems in NPC are arrangement problems derived
from two-dimensional puzzles like the monkey puzzle. Other good examples are
those puzzles, sometimes handed out on airlines, which involve a number of irregular
shapes that are to be arranged into a rectangle (see Figure 7.8). The general decision
problem calls for deciding whether N given shapes can be arranged into a rectangle,
and is in NPC. One reason for the apparent absence of a fast solution is rooted in the
existence of many different partial solutions that cannot be extended to complete
ones. Sometimes an arrangement puzzle admits only one complete solution.

Figure 7.8

An airline puzzle.

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

168 III. Limitations and Robustness

Consider ordinary jigsaw puzzles. They admit virtually no partial solutions except
as parts of the unique final solution. Adding a piece to a partially solved jigsaw puzzle
is usually just a matter of running through all unused pieces and finding the single
piece that will fit. This is a consequence of either the unique shapes of the jigs and
jags on individual pieces, or the heterogeneous character of the picture to be formed,
or of both. Therefore, as we can verify, an ordinary, “well-behaved” jigsaw puzzle
with N pieces can be solved in quadratic time.

However, anyone who has ever labored on a jigsaw puzzle containing lots of
sky, sea, or desert knows that not all jigsaw puzzles are that easy. (In such puzzles
several parts might appear to fit perfectly in a given place, and some undoing of partial
solutions will be necessary in order to obtain a full solution.) A general jigsaw-based
algorithmic problem has to cope with all possible input puzzles, including those that
involve less heterogeneous pictures and whose pieces contain many identical jigs
and jags. The general N -piece jigsaw problem also turns out to be in the class NPC.
In essence, it is just the monkey puzzle problem or the irregular shapes problem in
disguise.

� Path-Finding Problems

In Chapter 4 two problems were described, both concerned with finding certain
structures of minimal cost in city networks. They involved, respectively, lazy railroad
contractors (finding minimal spanning trees) and weary travelers (finding shortest
paths). A city network is a graph consisting of N points (the cities), and edges with
associated costs (these are the distances between cities). The time behavior of both
the algorithms presented in Chapter 4 is quadratic, and therefore both problems are
tractable.

Here is another problem, which at first sight looks very similar to the other two. It
involves a traveling salesman who has to visit each of the cities in a given network
before returning to his starting point, whence his trip is complete. The algorithmic
problem asks for the cheapest route, namely for a closed tour that passes through
each of the nodes in the graph and whose total cost (that is, the sum of the distances
labeling the edges) is minimal. Figure 7.9 shows a six-city network, in which such
an optimal tour is shown.

3

3

3

3

6

5

6

4

4 4
9 8

10

57
7

7

(not drawn to scale) Total cost: 28

Figure 7.9

A city network and a
minimal round tour.

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

7. Inefficiency and Intractability 169

In the yes/no version the inputs include a number K besides the city graph G,
and the decision problem asks simply whether there is a tour of G with total cost of
no more than K . Thus, for the graph of Figure 7.9, the answer would be “yes” if K
is 30, but “no” if K is 27.

Despite its somewhat playful description, the traveling salesman problem, like
the minimal spanning tree and shortest path problems, is not a toy example. Its
variants arise in the design of telephone networks and integrated circuits, in planning
construction lines, and in the programming of industrial robots, to mention but a
few applications. In all of these, the ability to find inexpensive tours of the graphs
in question can be quite crucial.

Again, a naive exponential-time solution is easy to come by. Just consider all
possible tours, stopping and saying “yes” if the cost of the tour at hand is no more
than K , and “no” if all tours have been considered but have all been found to cost
more than K . This is actually an O(N !) algorithm. (Why?) Again, even the case
where N is 25 is simply hopeless, and we must realize that while for a traveling
salesman with a suitcase full of bits and pieces 25 cities might sound a lot, it is an
almost laughable number for the kind of real-world applications mentioned above.
The fact is that the traveling salesman problem is also in NPC, rendering the problem
insolvable in practice, as far as we know.

It is worth briefly considering some other path-finding problems. Let us see what
happens when we leave out edge lengths altogether. Given a graph consisting of
points and edges, we can ask simply whether there exists a path, any path, that passes
through all points exactly once. Such paths are termed Hamiltonian. Figure 7.10(a)
shows a graph that has no Hamiltonian path, and Figure 7.10(b) shows how the
addition of a single edge can change the situation. Although seemingly much easier,
this problem is also in NPC. There is a simple exponential-time algorithm that checks
all N ! paths, searching for one that reaches each point once, but no one knows of a
polynomial-time solution.

Curiously enough, if we are after a path that is to pass through all edges ex-
actly once, rather than all points, the story is quite different. Such paths are termed
Eulerian, and Figure 7.11 is an Eulerian analog of Figure 7.10. At first glance it
seems that there is no better way to find an Eulerian path than to similarly go through
every possible path. (In the worst case there are about (N 2)! of them. Why?) However,

(a) (b)

Has no Hamiltonian path
without the additional edge

A Hamiltonian path

Figure 7.10

Hamiltonian paths.

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

170 III. Limitations and Robustness

Has no Eulerian path without
the additional edge

An Eulerian path

(a) (b)

Figure 7.11

Eulerian paths.

a simple but rather clever polynomial-time solution to the Eulerian path problem
was found in 1736 by the great Swiss mathematician Leonhard Euler. The solution
is obtained by showing that a graph contains an Eulerian path precisely when it
satisfies the following two properties: (1) it is connected (that is, any point is reach-
able from any other), and (2) the number of edges emanating from any point (with
the possible exception of two points) is even. Accordingly, an algorithm need only
check whether an input graph satisfies these properties. Checking for the second is
trivial, and the first can easily be shown to admit a fast algorithm, one that is actually
linear in the number of edges.

� Scheduling and Matching Problems

Many NPC problems are concerned, in one way or another, with scheduling or
matching. For example, suppose we are given the particular hours that each of
N teachers is available, and the particular hours that each of M classes can be
scheduled. In addition, we are given the number of hours each of the teachers has
to teach each of the classes. The timetable problem asks whether it is possible to
match teachers, classes, and hours so that all the given constraints are met, so that
no two teachers teach the same class at the same time, and so that no two classes
are taught by the same teacher at the same time.

The timetable problem also belongs to the special class NPC. Other matching
problems in NPC involve fitting loads of various sizes into trucks with various
capacities (sometimes called the bin-packing problem), or assigning students to
dormitory rooms in a way that satisfies certain constraints.

It must be emphasized that many other scheduling and matching problems are
quite tractable, as is the case with arrangements, path finding problems, and so on.

� Determining Logical Truth

One of the best-known problems in NPC involves determining the truth or falsity
of sentences in a simple logical formalism called the propositional calculus. In
this language, we are allowed to combine symbols denoting elementary assertions

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

7. Inefficiency and Intractability 171

into more complex assertions, using the logical connectives & (denoting “and”), ∨
(denoting “or”), ∼ (“not”), and → (“implies”). Thus, for example, the sentence:

∼(E → F) & (F ∨ (D → ∼E))

states that (1) it is not the case that the truth of E implies the truth of F , and (2)
either F is true or the truth of D implies the falsity of E .

The algorithmic problem calls for determining the satisfiability of such sentences.
In other words, given a sentence as an input, we want to know whether it is possible
to assign “true” or “false” to the basic assertions appearing in it, so that the entire
sentence will turn out to be true. An assignment of truth values to the basic assertions
is called a truth assignment. In the example, we can fix E to be true and D and
F to be false. This will cause (1) to be true because E is true but F is not, so that
E cannot imply F . Also, (2) is true, despite F’s falsity, by virtue of D’s falsity.3

Hence, the sample sentence is satisfiable. You might want to verify that the similar
sentence:

∼((D & E) → F) & (F ∨ (D → ∼E))

is unsatisfiable; there is no way to assign truth values to D, E , and F that will make
this sentence true.

It is not too difficult to come up with an exponential-time algorithm for the
satisfiability problem, where N is the number of distinct elementary assertions in the
input sentence. We simply try out all possible truth assignments. There are precisely
2N of them (why?), and it is easy to test the truth of the formula with respect to each
one of these truth assignments in time that is polynomial in N . Consequently, the
entire algorithm runs in exponential time. Unfortunately, the satisfiability problem
for the propositional calculus is also in NPC, so that the naive exponential-time
algorithm is, in essence, the best known. It is impossible, as far as is known at
present, to check algorithmically whether even quite short sentences can be made
true.

� Coloring Maps and Graphs

In Chapter 5 we described the four-color theorem, which proves that any map of
countries can be colored using only four colors in such a way that no two adjacent
countries are colored the same (see Figure 5.11). It follows that the algorithmic
problem of determining whether a given map can be four-colored, as this kind of
process is termed, is trivial: on any input map the answer is simply “yes.” The very
same problem, but where only two colors are allowed, is not very hard either. A map
can be two-colored exactly when it contains no point that is the junction of an odd
number of countries (why?), and this property is easy to check for.

Note that the number of colors is not taken here as part of the input. We are
discussing the algorithmic problems obtained by fixing the number of colors allowed,
and asking whether an input country map can be colored with that fixed number.
As we have shown, the cases of two and four colors are trivial. The interesting case

3 A false assertion implies anything. The sentence “if I am an alligator then so are you” is true by virtue
of my not being an alligator, regardless of your own standing.

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

172 III. Limitations and Robustness

is that of three colors. Determining whether a map can be three-colored is in NPC,
meaning that we know of only unreasonable solutions, thus making the problem
unsolvable in practice except for extremely small numbers of countries.

A related problem involves coloring graphs. The coloring rule here is similar
to that of map coloring, except that nodes (points in the graph) play the role of
countries. No two neighboring nodes (that is, nodes connected by an edge) may be
monochromatic. In contrast to country maps, whose flatness restricts the possible
configurations of bordering countries, any node in a graph can be connected by edges
to any other. It is easy to construct graphs that require large numbers of colors. A
graph containing K nodes, each connected to all others, clearly requires K colors.
Such a graph is called a clique. The algorithmic problem asks for the minimal
number of colors required to color a given graph. The yes/no version, which asks if
the graph can be colored with K colors, where K is part of the input, is also in NPC,
and hence is not known to have a reasonable solution. Since the original version is
at least as hard as the yes/no version (why?), it too is not known to be solvable in
reasonable time.

� �

� Short Certificates and Magic Coins

All these NPC problems seem to require, as part of their inherent nature, that we try
out partial matchings, partial truth assignments, partial arrangements, or partial
colorings, and that we continuously extend them in the hope of reaching a final
complete solution. When a partial solution cannot be extended, we apparently have
to backtrack; that is, to undo things already done, in preparation for trying an
alternative. If this process is carried out carefully no possible solution is missed, but
an exponential amount of time is required in the worst case.

Thus, given an input to an NPC problem, it appears to be extremely hard to
tell whether the answer to the question embodied in the problem is a “yes” or a
“no.” However, it is interesting that in all these problems if the answer happens to be
“yes” there is an easy way to convince someone of it. There is a so-called certificate,
which contains conclusive evidence to the effect that the answer is indeed “yes.”
Furthermore, this certificate can always be made reasonably short. Its size can always
be bounded by a polynomial in N . (In fact, most often it is linear in N .)

For example, as discussed earlier, it seems to be notoriously difficult to tell whether
a graph contains a Hamiltonian path, or whether it contains one whose length is no
greater than some given number K . On the other hand, if such a path indeed exists,
it can be exhibited (as in Figures 7.9 and 7.10) and easily checked to be of the
desired kind, thus serving as an excellent proof that the answer is “yes.” Similarly,
although it is difficult to find a truth assignment that satisfies a sentence in the
propositional calculus, it is easy to certify its satisfiability, by simply exhibiting
an assignment that satisfies it. Moreover, it is easy to verify in polynomial time
that this particular truth assignment does the job. In a similar vein, exhibiting a
legal arrangement of monkey puzzle cards serves as conclusive evidence that the
corresponding algorithmic problem says “yes” when applied to the puzzle as an

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

7. Inefficiency and Intractability 173

input. Here, too, the legality of the arrangement (colors and halves match) can be
verified easily in polynomial time.

Figuring out whether an NPC problem says “yes” to an input is thus hard, but
certifying that it indeed does, when it does, is easy.

There is another way of describing this phenomenon. Assume we have a very
special magic coin, to be used in the backtracking procedure just described. When-
ever it is possible to extend a partial solution in two ways (for example, two monkey
cards can be legally placed at a currently empty location, or the next assertion sym-
bol can be assigned “true” or “false”), the coin is flipped and the choice is made
according to the outcome. However, the coin does not fall at random; it possesses
magical insight, always indicating the best possibility. The coin will always select
a possibility that leads to a complete solution, if there is a complete solution. (If
both possibilities lead to complete solutions, or if neither does, the coin acts like a
normal random coin.)

Technically, we say that algorithms that use such magic coins are nondetermin-
istic, in that they always “guess” which of the available options is better, rather than
having to employ some deterministic procedure to go through them all. Somehow,
they always manage to make the right choice. Clearly, if algorithms were allowed
to exploit such magical nondeterminism we might have been able to improve the
solutions to certain algorithmic problems, since the work associated with trying
out possibilities is avoided. For the NPC problems this improvement is not at all
marginal: every NPC problem has a polynomial-time nondeterministic algorithm.
This fact can be proved by showing that the “short” certificates discussed above
correspond directly to the polynomial-time “magical” executions; all we have to do
is follow the instructions of the magic coin and when we have a complete candidate
solution simply check whether it is legal. Since the coin always indicates the best
possibility, we can safely say “no” if the candidate solution is in violation of the
rules. A legal solution would have been found by the coin if one existed.

Thus, NPC problems are apparently intractable, but become “tractable” by using
magical nondeterminism. This explains part of the acronym NPC: the N and P stand
for Nondeterministic Polynomial-time, so that a problem is said to be in NP if it
admits a short certificate. We now turn to the C, which stands for “Complete.”

� NP-Completeness: Standing or Falling Together

Besides admitting deterministic solutions that take unreasonable time, and “mag-
ical,” nondeterministic ones that take reasonable time, NPC problems have an ad-
ditional, most remarkable, property. Each one’s fate is tightly bound to that of all
the others. Either all NPC problems are tractable, or none of them is! The term
“complete” is used to signify this additional property, so that, as mentioned, the
problems in NPC are known as the NP-complete problems.

Let us sharpen this statement. If someone were to find a polynomial-time algo-
rithm for any single NP-complete problem, there would immediately be polynomial-
time algorithms for all of them. This implies the dual fact: if someone were to prove
an exponential-time lower bound for any NP-complete problem, establishing that
it cannot be solved in polynomial time, it would follow immediately that no such

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

174 III. Limitations and Robustness

1

1

2

1

2

12

2

1 1

Hamiltonian path emphasized

G T

Traveling salesman tour of
length 6 emphasized

Figure 7.12

Reducing Hamiltonian
paths to traveling
salesmen.

problem can be solved in polynomial time. In terms of Figure 7.6, it is not known
on which side of the line the NP-complete problems belong, but it is known that
they all belong on the same side.

This is the ultimate in solidarity, and it is not a conjecture—it has been proved:
all the NP-complete problems stand or fall together. We just don’t know which one
it is. Paraphrasing the brave old Duke of York, we might say:

And when they are up they are up
And when they are down they are down

And since they can’t be halfway up
They are either up or down

How do we prove such a sweeping claim? Recall that close to 1000 different
problems in diverse areas are known to be NP-complete!

The concept that is used to establish this stand-or-fall-together phenomenon is that
of a polynomial-time reduction. Given two NP-complete problems, a polynomial-
time reduction is an algorithm that runs in polynomial time, and reduces one problem
to the other, in the following sense. If someone comes along with an input X to the
first problem and wants the “yes” or “no” answer, we use the algorithm to transform
X into an input Y to the second problem, in such a way that the second problem’s
answer to Y is precisely the first problem’s answer to X .

For example, it is quite easy to reduce the Hamiltonian path problem to the
traveling salesman problem.4 Given a graph G with N nodes, construct a traveling
salesman network T as follows. The nodes of T are precisely the nodes of G, but
edges are drawn between every two nodes, assigning cost 1 to an edge if it was present
in the original graph G, and 2 if it was not. Figure 7.12 illustrates the transformation.
It is not too difficult to see that T has a traveling salesman tour of length N + 1 or
less (passing once through each point) precisely if G contains a Hamiltonian path.
Thus, to answer questions about the existence of Hamiltonian paths, take the input
graph G and carry out the transformation to T . Then ask whether T has a traveling

4 Here we take the version of the traveling salesman problem that forbids tours to pass through points
more than once.

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

7. Inefficiency and Intractability 175

T:

G:

1

1

2

1
2

12
2

1 1

transform G
into new T

does T have a
traveling salesman tour

of length ≤ N + 1?

number
of nodes

N

number
of nodes

N

YES NO

YES, G has a
Hamiltonian path

NO, G has no
Hamiltonian path

(hypothetical)
polynomial time

p2(N)

polynomial time
p1(N)

Total
(hypothetical)

polynomial time
p1(N) + p2(N)

,

,

Figure 7.13

Using the reduction of
Figure 7.12.

salesman tour that is no longer than N + 1, where N is the number of nodes in
G. The answer to the first question on G is “yes” precisely when the answer to
the second question on T is “yes.” Notice, too, that the transformation takes only a
polynomial amount of time.

Why is this fact of interest? Because it shows that, in terms of tractability, the
Hamiltonian path problem is no worse than the traveling salesman problem; if the
latter has a reasonable solution then so does the former. Figure 7.13 illustrates how
the reduction is used to obtain a reasonable Hamiltonian path algorithm from a
(hypothetical) reasonable traveling salesman algorithm.

Now comes the fact that establishes the common fate phenomenon of the NP-
complete problems: every NP-complete problem is polynomially reducible to every
other! Consequently, tractability of one implies tractability of all, and intractability
of one implies intractability of all.

It is interesting that to establish a newly-considered problem R as NP-complete we
need not construct polynomial-time reductions between R and all other NP-complete
problems. It suffices, in fact, to polynomially reduce R to a single problem already
known to be NP-complete, call it Q, and to reduce another such problem (possibly
the same one), call it S, to R. The first of these reductions shows that, in terms of

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

176 III. Limitations and Robustness

tractability, R cannot be any worse than Q, and the second shows that it cannot be
any better than S. Thus, if Q is tractable so is R, and if R is tractable so is S. But
since Q and S are both NP-complete, they stand and fall together, hence R stands
and falls with them too, implying its own NP-completeness. It follows that once we
know of one NP-complete problem we can show that others are NP-complete too
by using the reduction mechanism twice for each new candidate problem. Actually,
in practice one carries out only the second of these reductions. To establish the
fact that R cannot be any worse than the NP-complete problems, that is, it is in
NP, it is usually easier to exhibit a short certificate or a polynomial-time magical
nondeterministic algorithm than to explicitly reduce R to some known NP-complete
problem. Also, to show that a problem R is complete in NP, we do not necessarily
need a problem previously shown to be NP-complete. Instead, we can use a general
argument to show that every problem in NP can be polynomially reduced to R.

Now, clearly all this had to start somewhere; there had to be a first problem
proved to be NP-complete. Indeed, in 1971 the satisfiability problem for the propo-
sitional calculus was shown to be NP-complete, thus providing the anchor for NP-
completeness proofs. The result, known as Cook’s theorem, is considered to be
one of the most important results in the theory of algorithmic complexity. Its proof
relies on concepts we shall discuss in Chapter 9.

� Reducing Oranges to Apples

Polynomial-time reductions between NP-complete problems can be far subtler than
the one just given. While it is not at all clear what timetables and monkey puzzles
have to do with each other, we know that there must be a reduction between them,
for they are both NP-complete. Since a new problem requires only one reduction in
each direction, often the best-known reduction between two problems consists of a
chain of reductions leading through several other NP-complete problems.

It would be fruitless to tire you with one of the really difficult cases, so here is
an example of a reduction that is not too difficult but not quite trivial either. We
show how to reduce the problem of three-coloring a map to that of satisfiability in
the propositional calculus. This establishes that the former cannot be any worse, in
terms of tractability, than the latter. Specifically, we have to describe an algorithm that
inputs the description of some arbitrary map M , and outputs a propositional sentence
F , such that M can be three-colored if, and only if, F is satisfiable. Furthermore, the
algorithm must run in polynomial time, which, among other things, implies that the
number of symbols in the formula F is allowed to be at most polynomially more than
the number of countries in M .

Let M be a given map, assumed to involve the countries C1, . . . , CN . We shall
describe the sentence F , and argue that its size is polynomial in N . You should
be able to see quite easily how this can be turned into a general polynomial-time
algorithm that works for every M .

� Assuming the three colors are R, B, and Y (red, blue, and yellow), the sentence F
involves 3N elementary assertions, one for each combination of color and country. The
assertion “CI -is-Y ”, for example, is intended to mean that country CI is colored yellow.
We construct F by “and”-ing together two parts.

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

7. Inefficiency and Intractability 177

The first part asserts that each country is colored with exactly one of the three colors,
no more and no less. It consists of “and”-ing together the following subsentences for each
country CI :

((CI -is-R & ∼CI -is-B & ∼CI -is-Y)

∨ (CI -is-B & ∼CI -is-R & ∼CI -is-Y)

∨ (CI -is-Y & ∼CI -is-B & ∼CI -is-R))

meaning that CI is colored red and not blue or yellow, or blue and not red or yellow,
or yellow and not blue or red. The second part is obtained by identifying all pairs of
countries CI and CJ that are adjacent in the map M , and “and”-ing together the following
subsentences for each such pair, asserting that the two countries are not colored with the
same color:

∼((CI -is-R & CJ -is-R)

∨ (CI -is-B & CJ -is-B)

∨ (CI -is-Y & CJ -is-Y))

meaning that it is not the case that both CI and CJ are colored red, or both are colored
blue, or both are colored yellow.

How long is the sentence F? The first part is linear in N , since it contains one subsen-
tence of fixed length for each country CI . The second is no worse than quadratic in N ,
since it contains one fixed-length subsentence for each pair of adjacent countries I and
J , and there can be no more than N 2 pairs. Hence, clearly F is polynomial in N .

It remains to show that F is satisfiable if, and only if, M is three-colorable. To prove
this, we proceed in both directions. If M is three-colorable by some coloring scheme S
(which, it can be assumed, involves the colors red, blue, and yellow), we can satisfy F
simply by assigning “true” to the elementary assertion CI -is-X if the scheme S calls for
coloring country CI with color X , and “false” otherwise. It is easy to see that all parts
of F are thus satisfied. Conversely, if F is satisfied by some truth assignment S, then M
can be colored with three colors by assigning color X to country CI precisely when the
assignment S assigns “true” to the assertion CI -is-X . The construction of F guarantees
that each country is colored with exactly one color, and that there are no conflicts. This
concludes the reduction.

� Is P Equal to NP?

Just as NP stands for the class of problems that admit nondeterministic polyno-
mial-time algorithms, P stands for what we have been calling tractable problems;
namely, those that admit polynomial-time algorithms. The large class of problems
we have been extensively discussing, the NP-complete problems, are the “hardest”
problems in NP, in the sense that there are polynomial-time reductions from every
problem in NP to each of them. If one of them turns out to be easy, that is, in P, then
all problems in NP are also in P. Now, since obviously P is part of NP (why?), the
question really boils down to whether P is equal to NP or not.

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

178 III. Limitations and Robustness

The P = NP? problem, as it is called, has been open since it was posed in
1971, and is one of the most difficult unresolved problems in computer science.
It is definitely the most intriguing. Either all of these interesting and important
problems can be solved reasonably by computer, or none of them can. Many of the
most talented theoretical computer scientists have worked on the problem, but to no
avail. Most of them believe that P �= NP, meaning that the NP-complete problems
are inherently intractable, but no one knows for sure. In any case, showing that an
algorithmic problem is NP-complete is regarded as weighty evidence of its probable
intractability.

Some problems that have been shown to be in NP are not known to be either NP-
complete or in P. For many years the best-known example of this was the problem of
testing a number for primality; that is, asking whether it has any factors (numbers
that divide it exactly) other than 1 and itself. If the problem is phrased in a form
that asks whether the number is not a prime, there is an obvious short certificate in
case the answer is “yes” (that is, the number is not prime). The certificate is simply
a factor that is neither 1 nor the number itself. We check that it is indeed a factor by
a simple division. Thus, the nonprimality problem is easily seen to be in NP. On the
other hand, if the problem asks whether the number is a prime, it is far from obvious
that there is a short certificate.5 Nevertheless, almost 30 years ago the primality
problem was also shown to be in NP. Still, just as for all problems that are in NP but
are not known to be in P, there was always the nagging possibility that the primality
problem would turn out to be intractable.

The big surprise is that primality is in fact in P. Just shortly before this edition
of the book was completed, a remarkable polynomial-time algorithm for primality
was discovered (nicknamed the AKS algorithm, after the initials of its authors), thus
putting to rest one of the most interesting open problems in algorithmics. Chapters 11
and 12 contain more detailed discussions of prime numbers and their detection, and
some issues related to their centrality and importance in algorithmics.

� Imperfect Solutions to NP-Complete Problems

Many NP-complete decision problems are yes/no versions of what are sometimes
called combinatorial optimization problems. The traveling salesman problem is a
good example. Clearly, the problem of actually finding an optimal tour cannot be
tractable without the yes/no version being tractable too, since once we have found an
optimal tour we can easily check whether its overall length is no greater than a given
number K . For this reason, the original problem is also said to be NP-complete, and
thus, as far as current knowledge goes, it is intractable.

In some cases, however, we can solve optimization problems in ways that are less
than perfect, yet of considerable practical value. The algorithms designed for this
purpose are generically called approximation algorithms, and are based on the
assumption that in many cases a less than optimal tour is better than no tour at all,
and a timetable with a few constraint violations is better than no timetable at all.

5 In number-theoretic problems, the size of the input number is not that number itself but, rather, its
length in digits, which is on the order of the logarithm of the number.

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

7. Inefficiency and Intractability 179

One type of approximation algorithm produces results that are guaranteed to be
“close” to the optimal solution. For example, there is a rather clever algorithm for
a certain version of the traveling salesman problem (where the graph is assumed to
represent a realistic two-dimensional map) that runs in cubic time and produces a
tour that is guaranteed to be no longer than 1.5 times the (unknown) optimal tour.
The guarantee, of course, is based on a rigorous mathematical proof. Actually, there
is a much less sophisticated algorithm that guarantees a tour of no longer than twice
the optimal tour, and which you might want to try constructing. It is based on finding
the minimal spanning tree (see Chapters 4 and 6) and traversing each edge in it twice.
(Why is the tour no longer than twice the optimum?)

Another approach to approximation yields solutions that are not guaranteed to
be always within some fixed range of the optimum, but to be very close to the op-
timum almost always. Here the analysis required is similar to that carried out for
the average-case performance of algorithms, and usually involves somewhat sophis-
ticated probability theory. For example, there is a fast algorithm for the traveling
salesman problem that for some input graphs might yield tours much longer than
the optimum. However, in the vast majority of cases the algorithm yields almost
optimal tours. This particular algorithm is based upon a heuristic, that is, rule of
thumb, whereby the graph is first partitioned into many local clusters containing
very few points each. One then finds the optimal tours within each of these, and
then combines them into a global tour by a method similar to the greedy algorithm
for the spanning tree problem.

Do NP-complete problems always admit fast approximation algorithms? If we
are willing to be slightly flexible in our requirements for optimality, can we be
sure to succeed? Well, this is a difficult question. People had harbored hopes that
powerful approximation algorithms could be found for most NP-complete problems
even without knowing the answer to the real P vs. NP question. The hope was that
we might be able to come close to the optimal result even though finding the true
optimum would still be beyond our reach. In recent years, however, this hope has
been delivered a crippling blow with the discovery of more bad news: for many
NP-complete problems (not all), approximations turn out to be no easier than full
solutions! Finding a good approximation algorithm for any one of these problems
has been shown to be tantamount to finding a good nonapproximate solution.6

This has the following striking consequence. Finding a good approximation al-
gorithm for one of these special NP-complete problems is enough to render all the
NP-complete problems tractable; that is, it would establish that P = NP. Put the
other way around, if P �= NP, then not only do the NP-complete problems have no
good full solutions, but many of them can’t even be approximated!

As an example, consider the problem that asks for the minimal number of colors
required to color an arbitrary graph. Since this is NP-complete, researchers looked
for an approximation algorithm that would come close to the optimal number in a
polynomial amount of time. So perhaps there is a method, which, given an input
graph, finds a number that is never more than 10% or 20% larger than the minimal
number of colors needed to color the network. Well, it turns out that this is as hard
as the real thing. It has been shown that if any polynomial-time algorithm can find

6 These results are closely related to the powerful recent characterization of NP in terms of probabilistic
interaction, which we discuss in Chapter 12.

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

180 III. Limitations and Robustness

a coloring that is within any fixed constant factor of the minimal number of colors
needed to color a graph, then there is a polynomial-time algorithm for the original
problem of finding the optimal number itself. This has the far-reaching consequence
just described: discovering a good approximation algorithm for coloring graphs is
just as difficult as showing that P = NP.

� �

� Provably Intractable Problems

Despite our inability to find reasonable solutions to the numerous NP-complete
problems, we are not sure that such solutions do not exist; for all we know, NP-
complete problems might have very efficient polynomial-time solutions. It should be
realized, however, that many problems (though not the NP-complete ones) have been
proved to be intractable, and these are not restricted only to ones (like the Towers
of Hanoi) whose outputs are unreasonably lengthy. Here are some examples.

Towards the end of Chapter 1 we discussed the problem of deciding whether,
given a board configuration of chess, White has a guaranteed winning strategy. As
you will have realized, the game tree for chess grows exponentially. In other words,
if we fix some initial configuration at the root of the tree and each node is extended
downwards by descendants corresponding to all possible next configurations, the
size of the tree, in general, becomes exponential in its depth. If we want to look N
moves ahead we might have to consider KN configurations, for some fixed number
K that is larger than 1.

This fact does not mean that chess, as a game, is intractable. In fact, since there
are only finitely many configurations in the entire game (albeit a very large number
of them) the winning strategy problem is not really an algorithmic problem, for
which we can talk about order-of-magnitude performance. The algorithmic prob-
lem commonly associated with chess involves a generalized version, where there
is a different game for each N , played on an N by N board, the set of pieces and
allowed moves being extended appropriately. Generalized chess, as well as gener-
alized checkers, has indeed been shown to have an exponential-time lower bound.
It is thus provably intractable.

In addition to these somewhat contrived generalizations of fixed-size games,
several very simple games whose initial configurations vary in size have also been
shown to have exponential-time lower bounds. One of them is called roadblock,
and is played by two players, Alice and Bob, on a network of intersecting roads,
each colored with one of three colors. (Roads may pass under others.) Certain
intersections are marked “Alice wins” or “Bob wins,” and each player has a fleet of
cars that occupy certain intersections. In his (or her) turn, a player moves one of his
cars along a stretch of road, all of whose segments must be of the same color, to a
new intersection, as long as no cars are met along the way. The winner is the first
player to reach one of his “win” intersections.

The algorithmic problem inputs the description of a network, with cars placed
at certain intersections, and asks whether Alice (whose turn it is) has a winning

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

7. Inefficiency and Intractability 181

B

B wins

B wins

A wins

A wins

A

A

B

Figure 7.14

A roadblock
configuration that
Alice can win.

strategy. Figure 7.14 shows a roadblock configuration that Alice can win, no matter
what Bob does. (How?)

The roadblock problem has an exponential-time lower bound, meaning that there
is a constant number K (greater than 1) such that any algorithm solving the problem
takes time that grows at least as fast as KN , where N is the number of intersec-
tions in the network. In other words, while certain configurations might be easy to
analyze, there is no practical algorithmic method, and there never will be, for deter-
mining whether a given player has a guaranteed strategy for winning a roadblock
game. For the best algorithm we might design there will always be relatively small
configurations that will cause it to run for an unreasonable amount of time.

We should remark that these inherently exponential-time problems do not admit
the kind of short certificates that NP-complete problems do. Not only is it provably
difficult to tell whether there is a winning strategy for a roadblock player from a
given configuration, it is also impossibly time consuming to convince someone that
there is one, if there is.

� A Provably Intractable Satisfiability Problem

Another example of a provably intractable problem involves logical satisfiability.
Earlier, we met with the propositional calculus, a formalism that enables us to write
sentences consisting of logical combinations of basic assertions. A set of truth values
for the basic assertions determines a truth value for the sentence itself. A sentence
in the propositional calculus is thus “static” in nature—its truth depends only on the
present truth values of its constituents. In Chapter 5 we briefly discussed dynamic
logics, in which we are allowed to use the construct:

after(A, F)

where A is an algorithm and F is an assertion, or statement. It asserts that F is true
after A is executed. Here, of course, the truth of a sentence no longer depends only

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

182 III. Limitations and Robustness

on the state of affairs at present, but also on the state of affairs after the algorithm is
executed.

One version of dynamic logic, called propositional dynamic logic (or PDL for
short), restricts the algorithms, or programs, allowed inside the after construct to be
combinations of unspecified elementary programs. Just as we can build up complex
assertions from basic assertion symbols, using &, ∨, ∼, and →, we can now build
up complex programs from basic program symbols, using programming constructs
such as sequencing, conditional branching, and iteration. Programs and assertions
are then combined using the after construct. The following is a sentence of PDL,
which states that E is false after the two programs inside the after are executed in
order:

after(while E do A end; if E then do B end, ∼E)

This sentence is always true, no matter what assertion E stands for, and no matter
what programs A and B stand for, even if B might have the ability to change E’s
truth value. You are encouraged to convince yourself of this fact.

The satisfiability problem for the propositional calculus is interesting because it
concerns the feasibility of reasoning about logical sentences of static nature. In the
same vein, the satisfiability problem for PDL is interesting because it concerns the
feasibility of reasoning about logical sentences of dynamic nature, involving pro-
grams and some of their most elementary properties. The satisfiability problem for
the propositional calculus is NP-complete, and is hence suspected to be intractable.
The satisfiability problem for PDL, on the other hand, has an exponential-time lower
bound, and is hence known to be intractable. There is no algorithmic method, and
there never will be, which can be used in practice to decide whether PDL sentences
can be made true. Any such algorithm will necessarily run for formidable amounts
of time on certain sentences of very reasonable size.

We should remark that all of the problems just described (chess, checkers, road-
block, and PDL) happen to admit exponential-time algorithms, so that we have
matching upper and lower bounds, and thus we know their tractability status ex-
actly; they are all inherently exponential-time problems.

� Problems That Are Even Harder!

This chapter has been based on the assumption that algorithmic problems whose best
algorithms are exponential in time are intractable. However, there are problems that
are even worse. Among these, some of the most interesting ones involve satisfiability
and truth determination in various rich logical formalisms.

We have already met with the propositional calculus and PDL, in which basic
assertions were simply symbols like E and F that could take on truth values. How-
ever, when statements are made about real mathematical objects, such as numbers,
we want the basic assertions to be more expressive. We would like to be able to
write X = 15, or Y + 8 > Z ; we would like to be able to consider sets of numbers
or other objects, and talk about all elements in a set; we would like to talk about the
existence of elements with certain properties, and so on. There are numerous logical

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

7. Inefficiency and Intractability 183

formalisms that cater for such desires, and most interesting mathematical theorems,
conjectures, and statements can be written in them.

It is, therefore, natural that computer scientists seek efficient methods for deter-
mining whether sentences in such formalisms are true; this is one way to establish
absolute mathematical truth. Now, we know that satisfiability in the propositional
calculus most probably cannot be determined in less than exponential time, since the
problem is NP-complete, and that truth in PDL definitely cannot, since this prob-
lem is provably exponential. Several of the more elaborate formalisms are much
worse.

Consider the function 22N
which is 2 × 2 × . . . × 2, with 2 appearing 2N times.

If N is 5 the value is well over a billion, while if N is 9 the value is much larger
than our friend, the number of protons in the known universe. The function 22N

,
of course, relates to the unreasonable 2N , just as 2N relates to the very reasonable
function N . It is therefore doubly unreasonable, and in fact is referred to as a double-
exponential. The triple-exponential function 222N

is defined similarly, as are all
the K -fold exponential-time functions 22···2N

with K appearances of 2.
Several formalisms have been shown to have lower bounds of double-exponential

time. Among these is a logic known as Presburger arithmetic, which allows us to
talk about positive integers, and variables whose values are positive integers. It also
allows the “+” operation, and the “=” symbol. We combine assertions using the
logical operations of propositional calculus, as well as the quantifiers existsX and
forallX . For example, the following formula states that there are infinitely many
even numbers, by stating that for every X there is an even Y that is at least as large
as X :

forallX existsY existsZ (X + Z = Y & existsW (W + W = Y))

While truth in Presburger arithmetic is provably double-exponential, another for-
malism, called WS1S, is far worse. In WS1S we can talk not only about (positive)
integers, but also about sets of integers. We can assert that a set S contains an element
X by writing X ∈ S.

� The following is a true formula of WS1S, stating that every even number is obtained by
adding 2 to 0 some number of times.

forallB ((0 ∈ B & forallX (X ∈ B → X + 2 ∈ B))
→ forallY (existsW (Y = W + W) → Y ∈ B))

It accomplishes this by asserting that any set B, which contains 0, and contains X + 2
whenever it contains X , must contain all even numbers.

WS1S is unimaginably difficult to analyze. It has actually been shown to admit no
K -fold exponential algorithm, for any K ! (Exclamation mark here, not factorial . . .)
This means that for any algorithm A that determines truth of WS1S formulas (and
there are such algorithms), and for any fixed number K , there will be formulas of
length N , for larger and larger N , that will require A to run for longer than 22···2N

time
units, with K appearances of 2. In such devastating cases we say that the decision
problem is provably nonelementary. Not only is it intractable, it is not even doubly
or triply intractable. Its time performance is worse than any K -fold exponential, and
we might justifiably say that it is of unlimited intractability.

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

184 III. Limitations and Robustness

� Unreasonable Amounts of Memory Space

Although we have committed ourselves to concentrate on time performance, we must
spend a moment contemplating unreasonable memory-space requirements. There
are algorithmic problems that have been proven to have lower bounds of exponential
space. This means that any algorithm solving them will require, say, 2N memory
cells on certain inputs of size N . In fact, it can be shown that a consequence of a
double-exponential-time lower bound (like that of the truth problem for Presburger
arithmetic) is an exponential-space lower bound. Similarly, a nonelementary lower
bound on time (like that of truth in WS1S) implies a nonelementary lower bound
on space too.

These facts have striking consequences. If a problem has a 2N lower bound on
memory space, then for any algorithm there will be inputs of quite reasonable
size (less than 270, to be specific) that would require so much space for interme-
diate data that even if each bit were to be the size of a proton, the whole known
universe would not suffice to write it all down! The situation is clearly unimaginably
worse for nonelementary space bounds.

� �

� Research on Complexity Classes and Intractability

In the mid-1960s people began to realize the importance of obtaining polynomial-
time algorithms for algorithmic problems, and the significance of the dividing line
of Figure 7.6 became apparent. Ever since, the issues and concepts discussed in this
chapter have been the subject matter of intense and widespread research by many
theoretical computer scientists.

Every now and then, a polynomial-time algorithm or an exponential-time lower
bound is found for a problem whose tractable/intractable status was unknown. The
most striking recent example is primality testing, mentioned earlier. Another is
linear planning, better known as linear programming. Linear planning is a general
framework within which we can phrase many kinds of planning problems arising
in organizations where time, resources, and personnel constraints have to be met
in a cost-efficient way. The linear planning problem, it must be emphasized, is not
NP-complete, but the best algorithm that anyone was able to find for it was an
exponential-time procedure known as the simplex method. Despite the fact that
certain inputs forced the simplex method to run for an exponential amount of time,
they were rather contrived, and tended not to arise in practice; when the method
was used for real problems, even of nontrivial size, it usually performed very well.
Nevertheless, the problem was not known officially to be in P, nor was there a lower
bound to show that it wasn’t.

In 1979, an ingenious polynomial-time algorithm was found for the problem,
but it was something of a disappointment. The exponential-time simplex method
outperformed it in many of the cases arising in practice. Nevertheless, it did show
that linear programming is in P. Moreover, recent work based on this algorithm has

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

7. Inefficiency and Intractability 185

produced more efficient versions, and people currently believe that before long there
will be a fast polynomial-time algorithm for linear planning, which will be useful
in practice for all inputs of reasonable size.

This kind of work is aimed at improving our knowledge about specific problems,
and is analogous to the search for efficient algorithms within P itself, as discussed
in Chapter 6.

Work of more general nature involves complexity classes such as P and NP
themselves. Here we are interested in identifying large and significant classes of
problems, all of which share inherent performance characteristics. Using the pre-
fix LOG for logarithmic, P for polynomial, EXP for exponential, and 2EXP for
double-exponential, we can write LOGTIME for the class of problems solvable
in logarithmic time, PTIME for the class called P above, PSPACE for the prob-
lems solvable with a polynomial amount of memory space, and so on. We can then
establish the following inclusion relations (where ⊆ means “is a subset of”) (see
Figure 7.15):

LOGTIME ⊆ LOGSPACE ⊆ PTIME ⊆ PSPACE

⊆ EXPTIME ⊆ EXPSPACE ⊆ 2EXPTIME . . .

If we add the prefix N for “nondeterministic,” writing, for example, NPTIME for
NP, we obtain many more classes, and many interesting questions of the interrela-
tionships arise. For example, it is known that NP falls between PTIME and PSPACE,
but in many cases no one knows whether the ⊆ symbols represent strict inclusions

EXPSPACE

Presburger arithmetic

Roadblock
(see Figure 7.14)

Monkey puzzles
(see Figure 7.1)

Salary summation (trivial)
and

Testing primality (nontrivial)

Telephone book search
(see Figures 6.1 and 6.2)

EXPTIME

PSPACE

PTIME

LOG
TIME

LOG
SPACE

NPC

co-NPTIME NPTIME

Figure 7.15

Some complexity
classes with sample
problems.

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

186 III. Limitations and Robustness

or not. Is there a problem in PSPACE that is not in PTIME? If there is, we would
like to know which of the two inclusions in the following sequence is strict:

PTIME ⊆ NPTIME ⊆ PSPACE

The strictness of the first, of course, is just the P vs. NP problem.
We can also consider dual complexity classes, such as co-NP, for example, which

is the class of problems whose complement, or dual version (in which the “yes”
and “no” answers are interchanged) is in NP. It is not known, for example, whether
NP = co-NP. On the other hand, it is known that if NP �= co-NP, then also P �= NP.
The converse, however, is not true; it might be the case that NP and co-NP are equal,
while P and NP are not. Many other questions arise, for some of which the answers
are known, and for others they are not.

Another important area of research concerns approximate solutions, and solutions
guaranteed to be good on average. These are sought for even if a problem is known or
suspected to be intractable. Researchers are still trying to understand the connections
between a problem’s inherent worst-case time complexity, and the availability of
fast approximate solutions.

� �

Despite the rather disheartening nature of the facts discussed in this chapter, it
appears that most common problems arising in everyday applications of computers
can be solved efficiently. This statement is slightly misleading, however, since we
tend to equate “common” and “everyday” problems with those that we know how to
solve. In actuality, a growing number of problems arising in nontrivial applications
of computers turn out to be NP-complete or worse. In such cases, we have to
resort to approximation algorithms, or to probabilism and heuristics, as discussed
in Chapters 11 and 15.

Before we return to more cheerful material, however, there is worse news to come.
Some algorithmic problems admit no solutions at all, not even unreasonable ones.

� Exercises
7.1. (a) Carry out the recursive analysis described in the text for the procedure move (the

recursive procedure for solving the Towers of Hanoi problem).
(b) Prove a lower bound of 2N on the Towers of Hanoi problem.
(c) Calculate the time for Towers of Hanoi with 64 rings according to the following cost:

the N rings are of sizes 1 to N ; moving a ring of size i takes i time units.

7.2. (a) Redo the calculation of the number of arrangements for the monkey puzzle, for the
case where cards may be rotated.

(b) How long would an exhaustive search through all the arrangements you calculated in
part (a) take, assuming, as in the text, that one billion arrangements can be evaluated
every second (regardless of the number of cards such an arrangement contains)?

(c) Why is the suggestion that there might be an arrangement precisely when the number
of distinct cards is a multiple of 17 silly? (Hint: try constructing a different set with a
different number of cards, but with similar behavior.)

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

7. Inefficiency and Intractability 187

7.3. For each of the following pairs of time complexities of algorithms A and B, find the least
positive integer N for which algorithm B is better than algorithm A:

A B

2(log2 N)3
N 10

3(log2 N)5
9(log2 N)3

N ! 5N

N N 100 × N !

(N 2)! 18 × N N 2

222N

200 × (N 2)N 2

7.4. (a) The following table adds several lines to the table in Figure 7.7. Fill in the missing
entries.

Maximal number of cards solvable in one hour:

with today’s with computer with computer
Function computer 100 times faster 1000 times faster

log N A
(log N)2 B

2N 2
C

22N
D

(b) As in the above table, estimate the number of cards solvable in one hour by computers
10, 100 and 1000 times faster, but for the function N !, assuming 9 cards are solvable
in an hour with present computers.

7.5. (a) Explain why the naive solution to the traveling salesman problem described in the
text (considering all possible tours) has time complexity O(N !).

(b) Explain why the similarly naive solution to the Eulerian path problem given in the
text, has time complexity O((N 2)!), rather that O(N !) too.

(c) Prove the correctness of Euler’s algorithm and establish its time complexity.

7.6. (a) For each of the following formulas in the propositional calculus, determine whether
it is satisfiable, and if it is, find a satisfying truth assignment:
ϕ1 : ∼E
ϕ2 : (∼E ∨ ∼F ∨ G) & E & F
ϕ3 : (E & F) ∨ (∼E & ∼F)
ϕ4 : (E ∨ F) → (E → ∼F)
ϕ5 : G & (E ∨ F) & ∼(E & F) & (G → E) & (G → ∼F)
ϕ6 : (E ∨ F) & ∼(E & F) & (E → G) & (G → F)
ϕ7 : ((E & F) ∨ (E & ∼G)) & ((∼E & ∼F) ∨ (E & G))

(b) What is the number of truth assignments to a given formula in the propositional
calculus with N distinct elementary propositions?

(c) Show that satisfiability of formulas of length N in the propositional calculus
can be checked in time O(2N). What is the amount of space your algorithm
uses?

(d) Improve the algorithm you proposed in part (c) to answer for a given formula, how
many satisfying truth assignments it has. Are the time or space complexities of the
new algorithm any worse than those of the previous one?

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

188 III. Limitations and Robustness

7.7. For each of the following formulas in propositional dynamic logic, determine if it is
always true (i.e., true in any initial assignment to the elementary propositions, and under
any interpretation of the basic programs):

ϕ1 : after(A;B, E) → after(A, after(B, E))
ϕ2 : (after(A, E) & after(A, F)) → after(A, E&F)
ϕ3 : (after(A, E) & after(A, F → E)) → after(A, F)
ϕ4 : (after(A, E) & (E → F)) → after(A, F)
ϕ5 : (after(A, E) & after(A, E → F)) → after(A, F)
ϕ6 : (after(if E then A else if F then A, E) & (E ∨ F)) → after(A, E)
ϕ7 : (after(if E then A else (A;B), E) & after(A, E → after(B, E)))

→ after(A;B, E)
ϕ8 : (after(while E do A, G) & after(while F do A, G))

→ after(while E&F do A, G)
ϕ9 : (after(while E do A, G) & after(while F do A, G))

→ after(while E ∨ F do A, G)

7.8. In this exercise “number” stands for “positive integer.”

(a) State informally the meaning of each of the following formulas in Presburger arith-
metic, and determine whether it is always true. Justify your answers.

χ1 : forallX (X = 1 ∨ existsY (X = Y + 1))
χ2 : forallX forallY existsZ (X = Y + Z)
χ3 : ∼forallX existsY existsZ (X = Y + Z)
χ4 : existsX (X + X = X)
χ5 : forallX forallY

((existsU (X = U + U) & existsV (Y = V + V)) →
existsW (X + Y = W + W))

χ6 : existsX forallY (existsZ (Y = Z + Z) ∨ existsZ ′ (X = Y + Z ′))
(b) State in Presburger arithmetic the following facts, and determine their truth or falsity:

i. “The sum of any three odd numbers is even.”
ii. “Every number other than 1 is the sum of two numbers.”

iii. “There are infinitely many numbers divisible by 4.”
iv. “There are finitely many odd numbers divisible by 3.”

7.9. Prove that a map can be colored by two colors precisely when every border point touches
an even number of countries. (The “rest of the world” is considered to be a country too;
a country that touches a border point “twice” is counted twice too.)

7.10. Explain why the optimization version of the graph coloring problem (the problem of
finding the minimal number of colors required to color a given graph) is at least as hard
as the yes/no version (finding whether a given graph is K -colorable for a given K).

7.11. In the text description reducing the Hamiltonian path problem to the traveling salesman
problem, a given graph G with N nodes is transformed into a corresponding network T .
Show that T admits a salesman tour of length at most N + 1 precisely when G contains
a Hamiltonian path.

Let G be a given undirected graph consisting of a set of nodes N and a set of edges E . A
subset N ′ of the nodes N is called a vertex cover for G, if for every edge in E , at least
one of its endpoints is in N ′. A subset N ′ of the nodes N is called a dominating set for
G, if every node is either in N ′ or is connected by some edge from E to a node in N ′. A
subset N ′ of the nodes N is called a clique of G, if every two nodes in N ′ are connected
by some edge from E .

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

7. Inefficiency and Intractability 189

The vertex cover problem is, given a graph G and a positive integer K , to find whether
there is a vertex cover for G with at most K nodes. Similarly, the dominating set problem
is, given a graph G and a positive integer K , to find whether there is a dominating set for
G with at most K nodes. The clique problem is, given a graph G and a positive integer
K , to find whether there is a clique of G with at least K nodes.

You are given the fact (which can be proved by reduction from the propositional
satisfiability problem) that the vertex cover problem is as hard as the NP-complete
problems.

7.12. (a) Show that the vertex cover problem is, in fact, NP-complete.
(b) Prove that the clique problem is NP-complete, using the NP-completeness of the

vertex cover problem to establish hardness.
(c) Prove that the dominating set problem is NP-complete, using the NP-completeness

of the vertex cover problem for showing hardness.
(d) Prove that the dominating set problem, when restricted to graphs G that are trees, is

solvable in polynomial time.
A tasks instance consists of a set T of tasks, a positive integer d(t) for every t in T ,
indicating the deadline of task t , and a (noncircular) set of precedence constraints on T of
the form “t precedes t ′.” A schedule for the task instance is an arrangement of the tasks of
T in a sequence σ : t1, t2, . . . , tl (every task appears in the sequence precisely once), such
that all the precedence constraints are satisfied, that is, for any constraint “ti precedes t j ,”
the task ti precedes t j in σ , namely, i < j .

The task sequencing problem is, given a tasks instance and a positive integer K , to
find whether there exists a schedule σ as above, such that at most K tasks are overtime
(task ti is overtime if d(ti) ≤ i).

7.13. (a) Establish the NP-completeness of the task sequencing problem, using the NP-
completeness of the clique problem you proved in Exercise 7.12(b).

(b) Show that the task sequencing problem is solvable in polynomial time when restricted
to K = 0, i.e., when no overtime task is accepted.

(c) What is the complexity of the sequencing problem (i.e., can you show it to be solv-
able in polynomial time or is it NP-complete) when restricted to instances with no
precedence constraints at all?

7.14. Construct a precise version of the twice-optimal algorithm for the traveling salesman
problem hinted at in the text, and establish its correctness (i.e., show that it always
produces a correct tour that is no longer than twice the optimal one).

7.15. (a) Prove the following containments and equalities between complexity classes:
i. PTIME = co-PTIME.

ii. PTIME ⊆ NPTIME.
iii. NPSPACE ⊆ PSPACE.
iv. PSPACE = NPSPACE.

(b) Explain why your proof of the equality “PTIME = co-PTIME” in part (a) does not
work for showing “NPTIME = co-NPTIME.”

7.16. (a) Prove the following containments between complexity classes:
i. LOGTIME ⊆ LOGSPACE.

ii. LOGSPACE ⊆ PTIME.
iii. PTIME ⊆ PSPACE.
iv. NPTIME ⊆ PSPACE.
v. NPSPACE ⊆ EXPTIME.

(b) Show that a problem is provably time-nonelementary precisely when it is provably
space-nonelementary.

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

190 III. Limitations and Robustness

7.17. How would you go about showing that the double-exponential-time lower bound on
determining truth in Presburger arithmetic implies an exponential-space lower bound on
the problem?

Multitudes, multitudes in the valley of decision

JOEL 4: 14

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

C H A P T E R 8

Noncomputability and
Undecidability

or, Sometimes You Can’t Get It Done At All!

This thing is too
heavy for thee

EXODUS 18: 18

though a man labor
to seek it out, yet he
shall not find it

ECCLESIASTES 8: 17

In April 1984, Time Magazine ran a cover story on computer software. In the oth-
erwise excellent article, there was a paragraph that quoted the editor of a software
magazine as saying:

Put the right kind of software into a computer, and it will do whatever you want
it to. There may be limits on what you can do with the machines themselves,
but there are no limits on what you can do with software.

In a way, the results of Chapter 7 already contradict this claim, by showing certain
problems to be provably intractable. We might argue, however, that intractability
is really a consequence of insufficient resources. Given enough time and memory
space (albeit, unreasonably large amounts), perhaps any algorithmic problem can,
in principle, be solved by the right software. Indeed, the reasons that people often
fail in getting their computers to do what they want seem to fall roughly into three
categories: insufficient money, insufficient time, and insufficient brains. With more
money one could buy a larger and more sophisticated computer, supported by better
software, and perhaps then get the job done. With more time one could wait longer
for time-consuming algorithms to terminate, and with more brains one could perhaps
invent algorithms for problems that seem to defy solution.

The algorithmic problems we wish to discuss in this chapter are such that no
amount of money, time, or brains will suffice to yield solutions. We still require, of
course, that algorithms terminate for each legal input within some finite amount of
time, but we now allow that time to be unlimited. The algorithm can take as long as
it wishes on each input, but it must eventually stop and produce the desired output.
Similarly, while working on an input, the algorithm will be given any amount of
memory it asks for. Even so, we shall see interesting and important problems, for
which there simply are no algorithms, and it doesn’t matter how clever we are, or
how sophisticated and powerful our computers are.

Such facts have deep philosophical implications, not only on the limits of man-
made machines, but also on our own limits as mortals with finite mass. Even if we

191

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

192 III. Limitations and Robustness

were given unlimited pencil and paper, and an unlimited life span, there would be
precisely-defined problems we could not solve. There are people who are opposed
to drawing such extended conclusions from mere algorithmic results for various
reasons. In consideration of the fact that the issue in this extended form definitely
deserves a much broader treatment, we shall stick to pure algorithmics here, and
leave the deeper implications to philosophers and neurobiologists. However, you
should keep the existence of such implications in mind.

� The Rules of the Game

Just to reclarify things, it should be emphasized that questions regarding the com-
puter’s ability to run companies, make good decisions, or love, are not relevant
to our present discussions, since they do not involve precisely-defined algorithmic
problems.

Another fact worth recalling is the requirement that an algorithmic problem be
associated with a set of legal inputs, and that a proposed solution apply to all inputs
in the set. As a consequence, if the set of inputs is finite, the problem always admits
a solution. As a simple example, for a decision problem whose sole legal inputs are
the items I1, I2, . . . , IK , there is an algorithm that “contains” a table with the K
answers. The algorithm might read:

(1) if the input is I1 then output “yes” and stop;

(2) if the input is I2 then output “yes” and stop;

(3) if the input is I3 then output “no” and stop;

· · ·
(K) if the input is IK then output “yes” and stop.

This works, of course, because the finiteness of the set of inputs makes it possible
to tabulate all input/output pairs and “hardwire” them into the algorithm. It might
be difficult to carry out the tabulation (that is, to construct such a table-driven
algorithm), but we are not interested in this “meta-difficulty” here. For our present
purposes it suffices that finite problems always have solutions. It is the problems with
infinitely many inputs that are really interesting. In such cases, a finite algorithm
must be able to cope with infinitely many cases, prompting one to question the very
existence of such algorithms for all problems.

To be able to state our claims as precisely, yet as generally, as possible, you will
have to put up with a certain kind of terminological looseness in this chapter, to be
fully justified in the next. Specifically, an arbitrary, but fixed, high-level program-
ming language L is hereby implicitly assumed to be the medium for expressing
algorithms, and the word “algorithm” will be used as a synonym for “program in
L .” In particular, when we say “no algorithm exists,” we really mean that no program
can be written in the language L . This convention might look a little pretentious
here, apparently weakening our claims considerably. Not so. In the next chapter we
shall see that, under the unlimited resources assumption, all programming languages

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

8. Noncomputability and Undecidability 193

are equivalent. Thus, if no program can be written in L , no program can be written
in any effectively implementable language, running on any computer of any size or
shape, now or at any time in the future.

� �

� The Tiling Problem: An Example

The following example is reminiscent of the monkey puzzle problem of Chapter 7.
The problem involves covering large areas using square tiles, or cards, with colored
edges, such that adjacent edges are monochromatic. A tile is a 1 by 1 square, divided
into four by the two diagonals, each quarter colored with some color (see Figure 8.1).
As with monkey cards, we assume that the tiles have fixed orientation and cannot
be rotated. (In this case the assumption is, in fact, necessary. Can you see why?)

The algorithmic problem inputs some finite set T of tile descriptions, and asks
whether any finite area, of any size, can be covered using only tiles of the kinds
described in T , such that the colors on any two touching edges are the same. It is
assumed that an unlimited number of tiles of each type is available, but that the
number of types of tiles is finite.

Think of tiling a house. The input T is a description of the various types of tiles
available, and the color-matching restriction reflects a rule enforced by an interior
designer for aesthetic reasons. The question we would like to ask ahead of time
is this: can a room of any size be tiled using only the available tile types, while
adhering to the restriction?

This algorithmic problem and its variants are commonly known as tiling prob-
lems, but are sometimes called domino problems, the reason being the domino-like
restriction on touching edges.

(1) (2) (3)

Figure 8.1

Tile types that can tile
any area.

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

194 III. Limitations and Robustness

(1) (2) (3)

! !

Figure 8.2

Tile types that cannot
tile even small areas.

Figure 8.1 shows three tile types and a 5 by 5 tiling, and you should have no
difficulty verifying that the pattern in the lower portion of the figure can be extended
indefinitely in all directions to yield a tiling of any area whatsoever. In contrast, if
we exchange the bottom colors of tiles (2) and (3) it can be shown quite easily that
even very small rooms cannot be tiled at all. Figure 8.2 is meant as an illustration
of this fact. An algorithm for the tiling problem, then, should answer “yes” on the
inputs of Figure 8.1 and “no” on those of Figure 8.2.

The problem is to somehow mechanize or “algorithmicize” the reasoning em-
ployed in generating these answers. And here comes the interesting fact: this rea-
soning is impossible to mechanize. There is no algorithm, and there never will be, for
solving the tiling problem! More specifically, for any algorithm we might design for
the problem, there will always be input sets T (there will actually be infinitely many
such sets) upon which the algorithm will either run forever and never terminate, or
terminate with the wrong answer.

How can we make such a general claim, without restricting the basic operations
allowed in our algorithms? Surely, if anything is allowed, then the following two-step
procedure solves the problem:

(1) if the types in T can tile any area, output “yes” and stop;

(2) otherwise, output “no” and stop.

The answer lies in our use of “algorithm” here to stand for a program in a conven-
tional programming language L . No program in any effectively executable language
can correctly implement the test in line (1) of the procedure, and hence, for our pur-
poses, such a “procedure” will not be considered an algorithm at all.

An algorithmic problem that admits no algorithm is termed noncomputable; if it
is a decision problem, as is the case here and with most of the examples that follow,
it is termed undecidable. The tiling, or domino, problem is therefore undecidable.
There is no way we can construct an algorithm, to be run on a computer, any
computer, regardless of the amount of time and memory space required, that will
have the ability to decide whether arbitrary finite sets of tile types can tile areas of
any size.

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

8. Noncomputability and Undecidability 195

Problems admitting no
algorithms at allundecidable

(or noncomputable)
problems

intractable
problems

tractable
problems

Problems admitting no
reasonable algorithms

Problems admitting
reasonable (polynomial-time)

algorithms

Figure 8.3

The sphere of
algorithmic problems:
Version II.

We can now refine the sphere of algorithmic problems appearing in Chapter 7 (see
Figure 7.6), taking noncomputable problems into account. Figure 8.3 is the current
version.

It is interesting to observe that the following, slightly different-looking problem,
is actually equivalent to the one just described. In this version, instead of requiring
that T be able to tile finite areas of any size, we require that T be able to tile the entire
integer grid; that is, the entire infinite plane. One direction of the equivalence (if we
can tile the entire plane then we can tile any finite area) is trivial, but the argument
that establishes the other direction is quite delicate, and you are encouraged to try
to find it for yourself.

Interestingly, the undecidability of this version means that there must be tile sets
T that can be used to tile the entire grid, but not periodically. That is, while such
a T admits a complete tiling of the grid, the tiling, unlike that of Figure 8.1, does
not consist of a finite portion that repeats indefinitely in all directions. The reason
for this is that otherwise we could decide the problem by an algorithm that would
proceed to check all finite areas exhaustively, searching either for a finite area that
cannot be tiled at all or for one that admits a repeat in all directions. By “otherwise”
we mean that had it been the case that every tile set that admits a complete tiling
of the grid would also admit a complete periodic tiling, this algorithm would be
guaranteed to terminate for every input with the correct result.

� Unboundedness Can Be Misleading

Some people react to results like this by saying: “Well, obviously the problem is
undecidable, because a single input can give rise to a potentially infinite number of
cases to check, and there is no way you can get an infinite job done by an algorithm
that must terminate after finitely many steps.” And indeed, here a single input T
apparently requires all areas of all sizes to be checked (or, equivalently, as mentioned
above, a single area of infinite size), and there seems to be no way to bound the
number of cases to be checked.

This unboundedness-implies-undecidability principle is quite wrong, and can
be very misleading. It is just like saying that any problem that seems to require

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

196 III. Limitations and Robustness

W

V

Figure 8.4

A domino snake
connecting V to W.

exponentially many checks is necessarily intractable. In Chapter 7 we saw the two
problems of Hamiltonian paths and Eulerian paths, both of which seemed to require
a search through all of the exponentially many paths in the input graph. The second
problem, however, was shown to admit an easy polynomial-time algorithm. With
undecidability it is also possible to exhibit two very similar variants of a problem,
both of seemingly unbounded nature, which contrast in a rather surprising way to
violate the principle.

The inputs in both cases contain a finite set T of tile types and two locations
V and W on the infinite integer grid. Both problems ask whether it is possible to
connect V to W by a “domino snake” consisting of tiles from T , with every two
adjacent tiles having monochromatic touching edges (see Figure 8.4). Notice that
a snake originating from V might twist and turn erratically, reaching unboundedly
distant points before converging on W . Hence, on the face of it, the problem requires
a potentially infinite search, prompting us to conjecture that it, too, is undecidable.

It is interesting, therefore, that the decidability of the domino snake problem de-
pends on the portion of the plane available for laying down the connecting tiles.
Clearly, if this portion is finite the problem is trivially decidable, as there are only
finitely many possible snakes that can be positioned in a given finite area. The
distinction we wish to make is between two infinite portions, and is quite counter-
intuitive. If snakes are allowed to go anywhere (that is, if the allowed portion is the
entire plane), the problem is decidable, but if the allowed area is only a half of the
plane (say, the upper half), the problem becomes undecidable! The latter case seems
to be “more bounded” than the former, and therefore perhaps “more decidable.” The
facts, however, are quite different.

In fact, the domino snake problem has been proved to be undecidable for almost
any conceivable infinite restriction of the plane, as long as the portion under con-
sideration is unbounded in two orthogonal directions. So, it is undecidable not only
in the half-plane, but in the quarter-plane, the one-eighth-plane, etc. The most strik-
ing result can be described as establishing that only a single point stands between
decidability and undecidability: while the problem, as we have seen, is decidable in
the whole plane, it becomes undecidable if even a single point is removed from the
plane! More specifically, the inputs are the finite set T of tile types, the two points V
and W on the infinite integer grid, and a third point U . The problem asks whether it
is possible to connect V to W by a legal domino snake constructed from the tiles in
T , whose tiles are allowed to go anywhere in the plane except through the point U .

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

8. Noncomputability and Undecidability 197

� Word Correspondence and Syntactic Equivalence

Here are two additional undecidable problems. The first, the word correspondence
problem, involves forming a word in two different ways. Its inputs are two groups
of words over some finite alphabet. Call them the Xs and the Y s. The problem
asks whether it is possible to concatenate words from the X group, forming a new
word, call it Z , so that concatenating the corresponding words from among the Y s
forms the very same compound word Z . Figure 8.5(a) shows an example consisting
of five words in each group, where the answer is “yes,” since choosing the words
for concatenation according to the sequence 2, 1, 1, 4, 1, 5 from either the Xs or
the Y s yields the same word, “aabbabbbabaabbaba.” On the other hand, the input
described in Figure 8.5(b), which is obtained from Figure 8.5(a) by simply removing
the first letter from the first word of each group, does not admit any such choice, as
you can verify. Its answer is therefore “no.”

The word correspondence problem is undecidable. There is no algorithm that
can distinguish, in general, between the likes of Figures 8.5(a) and 8.5(b). The
unbounded nature of the problem stems from the fact that the number of words that
need to be chosen to yield the common compound word is not bounded. However,
here too, we can point to a seemingly “less bounded” variant, in which it seems
that there are more cases to check for, but which nevertheless is decidable. In it, the
inputs are as before, but there is no restriction on the way choices are made from
the Xs and Y s; even the number of words selected need not be the same. We are
asking simply if it is possible to form a common compound word by concatenating
some words from X and some words from Y . In Figure 8.5(b), which gave rise
to a “no” for the standard version of the problem, the word “babaa,” for example,
can be obtained from the Xs by the sequence 3, 2, 2, and from the Y s by 1, 2, and
hence is a “yes” in the new version. This more liberal problem actually admits a fast
polynomial-time algorithm!

The second problem concerns the syntax of programming languages. Suppose
someone provides us with the syntax rules of some language, say in the diagrammatic
form of Figure 3.1. If someone else comes along with a different set of rules, we might
be interested in knowing whether the two definitions are equivalent, in the sense
that they define the same language; that is, the same syntactic class of statements

X

Y

abb

bbab

a

aa

bab

ab

baba

aa

aba

a

1 2

(a) Admits a correspondence: 2, 1, 1, 4, 1, 5

3 4 5

X

Y

bb

bab

a

aa

bab

ab

baba

aa

aba

a

1 2

(b) Admits no correspondence

3 4 5

Figure 8.5

Instances of the word
correspondence
problem.

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

198 III. Limitations and Robustness

(or programs). This problem is of relevance to the construction of compilers, since
compilers, among their other chores, are also responsible for recognizing the syn-
tactic validity of their input programs. In order to do so, they have a set of syntactic
rules built in. It is quite conceivable that in the interest of making a compiler more
efficient, its designer would want to replace the set of rules with a more compact
set. Clearly, it is important to know in advance that the two sets are interchangeable.

This problem is also undecidable. No algorithm exists, which, upon reading from
the input two sets of syntax rules, will be able to decide in finite time whether they
define precisely the same language.

� Problems with Outputs Are No Better

We should perhaps re-emphasize the fact that technical convenience is the only
reason for limiting ourselves to decision problems here. Each of the undecidable
problems we describe has variants that ask for outputs, and which are also noncom-
putable. Trivial variants are those that are basically decision problems in (a rather
transparent) disguise. An example is the problem that asks, for a given set of col-
ored tile types T , to output the size of the smallest area not tileable by T , and 0 if
every finite area is tileable. It is clear that this problem cannot be computable, since
the distinction in the output between 0 and all the other numbers is precisely the
distinction between “yes” and “no” in the original problem.

� More sophisticated problems hide the ability to make an undecidable decision far better.
The following problem is noncomputable too. In order to define it, let us say that a finite
portion of the grid is a limited area for a set T of tiles, if it can be tiled legally by T ,
but cannot be extended in any way by more tiles without violating the tiling rules. Now,
the problem involves finding particular sets T that have large limited areas. Specifically,
the algorithmic problem is given a number N (which should be at least 2), and is asked
to output the size of the largest limited area, for any set of tiles, that involves no more
than N colors. You should convince yourself that for any N > 1 this number is well
defined.

It is far from obvious that in order to solve the limited area problem we need the
ability to decide the likes of the tiling problem. And so, although the problem gives rise
to a well-defined, non-yes/no function of N , this function simply cannot be computed
algorithmically.

� �

� Algorithmic Program Verification

In Chapter 5 we asked whether computers can verify our programs for us. That is,
we were after an automatic verifier (see Figure 5.4). Specifically, we are interested
in the decision problem whose inputs are the description of an algorithmic problem
and the text of an algorithm, or program, that is believed to solve the given problem.

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

8. Noncomputability and Undecidability 199

We are interested in determining algorithmically whether the given algorithm solves
the given problem or not. In other words, we want a “yes” if for each of the problem’s
legal inputs the algorithm will terminate and its outputs will be precisely as specified
by the problem, and we want a “no” if there is even one input for which the algorithm
either fails to terminate or terminates with the wrong results. Note that the problem
calls for an algorithm that works for every choice of a problem/algorithm pair.

Clearly, the verification problem cannot be discussed without being more specific
about the allowed inputs. Which programming language is to be used for coding
the input algorithms? Which specification language is to be used for describing the
input algorithmic problems?

As it happens, even very humble choices of these languages render the verification
problem undecidable. Even if the allowed programs can manipulate only integers
or strings of symbols, and can employ only the basic operations of addition or
attachment of symbols to strings, they cannot be verified algorithmically. Candidate
algorithmic verifiers might work nicely for many sample inputs, but the general
problem is undecidable, meaning that there will always be algorithms that the verifier
will not be able to verify. As discussed in Chapter 5, this implies the futility of hoping
for a software system that would be capable of automatic program verification. It
also reduces the hope for optimizing compilers capable of transforming programs
into optimally efficient ones. Such a compiler might not even be able to tell, in
general, whether a new candidate version even solves the same problem as the
original program, let alone whether it is more efficient.

Moreover, it is not only verifying that a program meets its full required specifi-
cation that is undecidable, but even verifying only certain parts thereof. Thus, for
example, checking that programs do not have the Year 2000 bug (see Chapters 5
and 13) is also impossible in general. A candidate Y2K detector could do its job
well for some kinds of input programs, and it might be able to verify limited kinds of
Y2K issues, but as a general solution to the problem it is bound to fail. We can thus
forget about a computerized solution to the Y2K problem or other such sweeping
attempts at establishing our expectations of software by computer.

Taking this even further, not only is full or partial verification undecidable, we
cannot even decide whether a given algorithm merely terminates on its legal inputs.
Moreover, it is not even decidable whether the algorithm terminates on one given
input! These problems of termination deserve special attention.

� The Halting Problem

Consider the following algorithm A:

(1) while X �= 1 do the following: X ← X − 2;

(2) stop.

In other words, A reduces its input X by 2 until X becomes equal to 1. Assuming that
its legal inputs consist of the positive integers 〈1, 2, 3, . . .〉, it is quite obvious that
A halts precisely for odd inputs. An even number will be decreased repeatedly by 2
until it reaches 2, and will then “miss” the 1, running forever through 0, −2, −4, −6,
and so on. Hence, for this particular algorithm, deciding whether a legal input will

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

200 III. Limitations and Robustness

R

if
R(X)↓

if
R(X)↑

does R halt
on X?

program, or
algorithm

potential
input

X

Figure 8.6

The halting problem.

cause it to terminate is trivial: just check whether the input is odd or even and answer
accordingly.

Here is another, similar-looking, algorithm B:

(1) while X �= 1 do the following:
(1.1) if X is even do X ← X/2;
(1.2) otherwise (X is odd) do X ← 3X + 1;

(2) stop.

The algorithm B repeatedly halves X if it is even, but increases it more than threefold
if it is odd. For example, if B is run on 7, the sequence of values is: 7, 22, 11, 34, 17,
52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, eventually resulting in termination. Actually,
if we try running the algorithm on some arbitrary positive integer we will find that
it terminates. The sequence of values is often quite unusual, reaching surprisingly
high values, and fluctuating unpredictably before it reaches 1. Indeed, over the years
B has been tested on numerous inputs and has always terminated. Nevertheless, no
one has been able to prove that it terminates for all positive integers, although most
people believe that it does. The question of whether or not this is the case is actually
a difficult open problem in the branch of mathematics known as number theory.
Now, if indeed B (or any other program) terminates for all its inputs, there is a proof
of this fact, as discussed in Chapter 5, but for B no one has found such a proof yet.
These examples illustrate just how difficult it is to analyze the termination properties
of even very simple algorithms.

Let us now define a specific version of the problem of algorithmic termination,
called the halting problem. We define it here in terms of our agreed-on high-level
programming language L .

The problem has two inputs: the text of a legal program R in the language L
and a potential input X to R.1 The halting problem asks whether R would have
terminated had we run it on the input X , a fact we denote by R(X)↓. The case of R
not terminating, or diverging, on X is denoted R(X)↑ (see Figure 8.6).

1 We can assume that R expects just one input, since a number of inputs can be encoded into a single
string of symbols, with the various parts separated by some special symbol like “#.” This point is
treated in more detail in Chapter 9.

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

8. Noncomputability and Undecidability 201

As already stated, the halting problem is undecidable, meaning that there is no
way to tell, in a finite amount of time, whether a given R will terminate on a given X .
In the interest of solving this problem, it is tempting to propose an algorithm that will
simply run R on X and see what happens. Well, if and when execution terminates,
we can justly conclude that the answer is “yes.” The difficulty is in deciding when
to stop waiting and say “no.” We cannot simply give up at some point and conclude
that since R has not terminated until now it never will. Perhaps if we had left R just
a little longer it would have terminated. Running R on X , therefore, does not do the
job, and, as stated, nothing can do the job, since the problem is undecidable.

� Nothing about Computing is Computable!

The fact that verification and halting are undecidable is only one small part of
a far more general phenomenon, which is actually much deeper and a lot more
devastating. There is a remarkable result, called Rice’s theorem, which shows
that not only can we not verify programs or determine their halting status, but we
can’t really figure out anything about them. No algorithm can decide any nontrivial
property of computations. More precisely, let us say we are interested in deciding
some property of programs, which is (1) true of some programs but not of others,
and (2) insensitive to the syntax of the program and to its method of operation
or algorithm; that is, it is a property of what the program does, of the problem it
solves, and not of the particular form that solution takes. For example, we might
want to know whether a program ever outputs a “yes,” whether it always produces
numbers, whether it is equivalent to some other program, etc. etc.

Rice’s theorem tells us is that no such property of programs can be decided. Not
even one. They are all undecidable. We can really forget about being able to reason
automatically about programs, or to deduce things about what our programs do.
This is true whether our programs are small or large, simple or complex, or whether
what we want to find out is a general property or something petty and idiosyncratic.
Virtually nothing about computation is computable!

Now, how about that?

� �

� Proving Undecidability

How do we prove that a problem P is undecidable? How do we establish the fact that
no algorithm exists for solving P , no matter how clever the algorithm designer is?

This situation is similar to that described in Chapter 7 for the NP-complete prob-
lems. First there has to be one initial problem, whose undecidability is established
using some direct method. In the case of undecidability this role is played by the halt-
ing problem, which we shall prove undecidable later. Once such a first undecidable
problem exists, the undecidability of other problems is established by exhibiting
reductions from problems already known to be undecidable to the problems in

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

202 III. Limitations and Robustness

question. The difference is that here a reduction from problem P to problem Q need
not necessarily be bounded; it can take any amount of time or memory space. All
that is required is that there is an algorithmic way of transforming a P-input into a
Q-input, in such a way that P’s yes/no answer to an input is precisely Q’s answer
to the transformed input. In this way, if P is already known to be undecidable Q
must be undecidable too. The reason is that otherwise we could have solved P by an
algorithm that would take any input, transform it into an input for Q and ask the Q
algorithm for the answer. Such a hypothetical algorithm for Q is called an oracle,
and the reduction can be thought of as showing that P is decidable given an oracle for
deciding Q. In terms of decidability, this shows that P cannot be any better than Q.

� For example, it is relatively easy to reduce the halting problem to the problem of verifica-
tion. Assume that the halting problem is undecidable (we will actually prove this directly
in the next section). To show that the verification problem is undecidable too we have to
show that a verification oracle would enable us to decide the halting problem too. Well,
given an algorithm R and one of its potential inputs X , we transform the pair 〈R, X〉,
which is an input to the halting problem, into the pair 〈P, R〉 which is an input to the
verification problem. The algorithm R remains the same, and the algorithmic problem P
is described by specifying that X is the sole legal input to R, and that the output for this
one input is unimportant. Now, to say that R is (totally) correct with respect to this rather
simplistic problem P is just to say that R terminates on all legal inputs (i.e., on X) and
produces some output, which is really just to say that R terminates on X . In other words,
the verification problem says “yes” to 〈P, R〉 if, and only if, the halting problem says
“yes” to 〈R, X〉. Consequently, the verification problem is undecidable, since otherwise
we could have solved the halting problem by constructing an algorithm that would first
transform any 〈R, X〉 into the corresponding 〈P, R〉, and then use the verification oracle
for deciding the correctness of 〈P, R〉.

Other reductions are far more subtle. What on earth have tiling problems got
to do with algorithmic termination? How do we reduce domino snakes to two-way
word formations? Despite the apparent differences, these problems are all intimately
related, by being interreducible, and in Chapter 9 we shall discuss one of these
reductions in some detail.

� Proving the Undecidability of the Halting Problem

We shall now prove that the halting problem, as described in Figure 8.6, is unde-
cidable. This, as explained earlier, is carried out directly—not by a reduction from
some other problem. Now, faithful to our terminological convention, what we really
have to show is that there is no program in the agreed-on high-level programming
language L that solves the halting problem for programs in L . (As mentioned earlier,
this language-dependent fact will be extended into a far more general statement in
Chapter 9.)

More precisely, we want to prove the following claim:

There is no program in L which, upon accepting any pair 〈R, X〉, consisting of
the text of a legal program R in L and a string of symbols X , terminates after

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

8. Noncomputability and Undecidability 203

some finite amount of time, and outputs “yes” if R halts when run on input X
and “no” if R does not halt when run on input X .

Such a program, if it exists, is itself just some legal program in L; it can use as much
memory space and as much time as it requests, but it must work, as described, for
every pair 〈R, X〉.

We shall prove that a program satisfying these requirements is nonexistent, by
contradiction. In other words, we shall assume that such a program does exist, call
it Q, and shall derive a downright contradiction from that assumption. Throughout,
you should be wary, making sure that anything we do is legal and according to
the rules, so that when the contradiction becomes apparent we shall be justified in
pointing to the assumption about Q’s existence as the culprit.

Let us now construct a new program in L , call it S, as illustrated schematically in
Figure 8.7. This program has a single input, which is a legal program W in L . Upon
reading its input, S makes another copy of it. This copying is obviously possible in
any high-level programming language, given sufficient memory. Recalling that the
(assumed-to-exist) program Q expects two inputs, the first of which is a program,
the next thing that S does is to activate Q on the input pair consisting of the two
copies of W . The first of these is indeed a program, as expected by Q, and the other
is considered to be an input string, though that string just happens to be the text of
the same program, W . This activation of Q can be carried out by calling Q as a
subroutine with parameters W and W , or by inserting the (assumed-to-exist) text

W

Q

(hypothetical)
program Q for

halting problem

new (hypothetical)
program S

input
program

W

W

Figure 8.7

Proving undecidability
of the halting
problem: the
program S.

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

204 III. Limitations and Robustness

of Q into the right place, and assigning the values W and W to its expected input
variables R and X , respectively.

The program S now waits for this activation of Q to terminate, or, in the metaphor-
ical terms used earlier in the book, S’s processor RunaroundS waits for Q’s processor
RunaroundQ to report back to headquarters. The point is that by our assumption Q
must terminate, since, as explained, its first input is a legal program in L , and its
second, when considered as a string of symbols, is a perfectly acceptable potential
input to W . 2 And so, by our hypothesis, Q must eventually terminate, saying “yes”
or “no.” We now instruct the new program S to react to Q’s termination as follows.
If Q says “yes,” S is to promptly enter a self-imposed infinite loop, and if it says
“no,” S is to promptly terminate (the output being unimportant). This can also be
achieved in any high-level language, by the likes of:

. . .

(17) if OUT = “yes” then goto (17), otherwise stop;

where OUT is the variable containing Q’s output. This completes the construction of
the (strange-looking) program S, which, it should be emphasized, is a legal program
in the language L , assuming, of course, that Q is.

We now want to show that there is something quite wrong with S. There is a
logical impossibility in the very assumption that S can be constructed. In exposing
this impossibility we shall rely on the obvious fact that, for every choice of a legal
input program W , the new program S must either terminate or not. We shall show,
however, that there is a certain input program for which S cannot terminate, but it
also cannot not terminate! This is clearly a logical contradiction, and we shall use
it to conclude that our assumption about Q’s existence is faulty, thus proving that
the halting problem is indeed undecidable.

� The input program W that causes this impossibility is S itself. To see why S as an input to
itself causes a contradiction, assume for the moment that S, when given its own text as an
input, terminates. Let us now work through the details of what really happens to S when
given its own text as an input. First, two copies are made of the input S (see Figure 8.8),
and these are then fed into the (assumed-to-exist) program Q. Now, by our hypothesis,
Q must terminate after some finite time, with an answer to the question of whether
its first input terminates on its second. Now, since Q is presently working on inputs
S and S, and since we assumed that S indeed terminates on S, it must halt eventually
and say “yes.” However, once it has terminated and said “yes,” execution enters the
self-imposed infinite loop and never terminates. But this means that on the assumption
that S applied to S terminates (an assumption that caused Q to say “yes”), we have
discovered that S applied to S does not terminate! We thus conclude that it is impossible
that S terminates on S. This leaves us with one remaining possibility, namely, that S
applied to S does not terminate. However, as can easily be verified with the help of
Figure 8.8, this assumption leads in a very similar way to the conclusion that S applied to
S does terminate, since when Q says “no” (and it will say “no” because of our assumption)

2 The fact that the very string W itself is considered an input to the program W should not bother you
too much; it is perhaps a little strange, but not impossible. Any compiler written in the language it
compiles can compile itself.

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

8. Noncomputability and Undecidability 205

S

i.e.,
S(S)↑

 i.e., S(S)↓

S(S)↓ S(S)↑

does S halt
on S?

Contradiction!

Contradiction!

S

S

Figure 8.8

Proving undecidability
of the halting
problem: S
swallowing S.

the execution of S applied to S promptly terminates. Thus, it is also impossible that S
does not terminate when run on S.

In other words, the program S cannot terminate when run on itself and it cannot not
terminate! Consequently, something is very wrong with S itself. However, since all other
parts of S were constructed quite legally, the only part that can be held responsible is
the program Q, whose assumed existence enabled us to construct S the way we did. The
conclusion is that a program Q, solving the halting problem as required, simply cannot
exist.

� The Diagonalization Method

Some people feel a little uneasy with the proof just given, and view it as rather
circular-looking. It is a rigorous mathematical proof nonetheless. We might be
tempted to propose that strange self-referential programs, such as those whose be-
havior is exploited in the proof, be somehow outlawed. In this way, perhaps, the
halting problem for “well-behaved” programs will be decidable. Well, all that can
be said is that the proof holds up very nicely against any such attempts, and, in
fact, the self-referential nature of the argument can be completely hidden from an
observer. The best evidence of this is in the fact that other undecidable problems are

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

206 III. Limitations and Robustness

no no no noyes yes yes yes

yes yes no yesyes yes no yes

no yes no noyes no no yes

no no no no

diagonal
program

complete description
of halting information
for 5th program

yes no yes yes

yes no no yesyes yes yes no

no yes yes noyes no yes yes

yes no no nono no yes no

yes

8

7

6

5

4

3

2

1 yes yes yesno no no no

no yes yes yesno yes yes no

1 2 4 83 5 6 7

all inputsall inputs

all
programs

all
programs

Figure 8.9

The undecidability
proof viewed as
diagonalization.

but disguised versions of the halting problem, although they do not seem to have
anything at all to do with programs that refer to themselves. The tiling problem, for
example, can be shown to encode the halting problem quite directly, as is illustrated
in Chapter 9.

In fact, the underlying self-referential nature of this proof is embodied in a fun-
damental proof technique that goes back to Georg Cantor, a prominent nineteenth-
century mathematician, who used it in a nonalgorithmic context. This technique,
called diagonalization, is used in many other proofs of lower bounds in algorith-
mics. Let us now try to rephrase the proof that the halting problem is undecid-
able by using the idea of diagonalization. You should refer to Figure 8.9 in the
process.

� The proof can be visualized by imagining an infinite table, in which we have plotted all
the programs in our agreed-upon programming language L against all possible inputs. (It
is helpful to imagine inputs to be simply integers.) The programs are listed in the figure
vertically on the left, and the inputs horizontally at the bottom. At the junction of the
I th row and J th column in the figure we have indicated whether the I th program halts
on J or not. In this way, the entire I th row in Figure 8.9 is a complete, albeit infinite,
description of the halting information for the I th program in L .

We now construct a new imaginary program, which will turn out to be a disguised
version of the program S constructed earlier; let us therefore call it S here too. The

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

8. Noncomputability and Undecidability 207

halting behavior of S is the “negative” of the diagonal line in the table of the figure. In
other words, S is constructed so that when run on any input J , it halts just if the J th
program would not have halted on J , and does not halt if the J th program would have
halted on J .

Given this setup it is easy to argue that the halting problem is undecidable. Assume that
it is decidable, meaning that we can decide, with a program Q, whether a given program
in L halts on a given input. This means that the imaginary S could actually be written in
the language L: given J as an input, it would go through the list of programs in L , find
the J th one, and would then submit that program and the input J to the assumed-to-exist
program Q for the halting problem. S itself would then proceed to either halt or enter a
self-imposed infinite loop, depending on the outcome of Q’s run, as described earlier (see
Figure 8.8): the former if Q says “no,” and the latter if it says “yes.” As you can no doubt
see, S indeed behaves as the negative of the diagonal of the table. This, however, leads
to a contradiction, since if S is a program in L then it too has to be one of the programs
on the list of Figure 8.9, since that list contains all programs in L . But it cannot: if S is,
say, the 5th program on the list it cannot halt on input 5, since there is a “no” in the table
at the junction of the 5th row and 5th column. However, by its construction, S does halt
on input 5, and this is a contradiction.

A proof like this can be concisely described by saying that we have diagonalized over
all programs and all inputs, constructing S to be the negative, or opposite, of the diagonal.
The contradiction then follows from the impossibility of this S being one of the programs
on the list.

� �

� Finite Certificates for Undecidable Problems

In Chapter 7 we saw that certain problems that have no known polynomial-time
solutions give rise, nevertheless, to polynomially-sized certificates for inputs that
yield a “yes” answer. Finding such a certificate might take an exponential amount
of time, but, once found, it can be checked easily to be a valid proof of the fact that
the answer is indeed “yes.”

In the context of the present chapter, there is a similar certificate phenomenon, but
without the requirement that certificates have to be polynomial in size; they have to
be finite, but can be unreasonably long. Just as the problems in NP have reasonably
sized certificates, checkable in a reasonable amount of time, despite the fact that they
are not known to admit reasonable algorithms, so do some undecidable problems
have finite certificates, checkable in finite time, despite the fact they have no finitely
terminating algorithms. In fact, most of the undecidable problems described so far
indeed admit finite certificates.

For example, to convince someone that some input yields a “yes” answer to the
word correspondence problem, we can simply exhibit the finite sequence of indices
that gives rise to the same word when formed from either the Xs or the Y s. Moreover,
we can easily check the validity of this (possibly very long, but finite) certificate by
concatenating the Xs prescribed by the indices, and then the Y s in the same way,
and verifying that both of them result in one and the same word.

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

208 III. Limitations and Robustness

As to the halting problem, to convince someone that a program R halts on X ,
we can simply exhibit the sequence of values of all variables and data structures
that constitute a complete trace of a legal, finite, terminating execution of R on X .
We can then check the validity of the certificate by simulating the action of R on
X , comparing the values reached at each step to those in the given sequence, and
making sure that the program indeed terminates at the end of the sequence.

Similarly, it is easy to see that a domino snake leading from point V to point W
is a perfectly good and checkable finite certificate of the fact that the appropriate
inputs to the domino snake problem yield a “yes.” As to the ordinary tiling problem,
here certificates exist for the “no” inputs, rather than for the “yes” ones. If a set T
of tile types cannot tile all finite areas of all sizes, there must be some area that
cannot be tiled by T in any way. The certificate showing that T yields a “no” will
simply be that untileable area itself. To check that this area, call it E , is indeed a
certificate, we have to verify that T cannot tile E . Since both T and E are finite,
there are only finitely many (albeit an unreasonable number of) possible tilings to
try out, and hence the checking can be carried out algorithmically in finite time. In
this sense it is the non-tiling problem that is comparable to the others; namely, the
problem that asks whether it is not the case that T can tile all areas.

� Problems with Two-Way Certificates Are Decidable

Notice that each of these problems has certificates for only one of the directions,
either for “yes”-ness or for “no”-ness. The existence of a certificate for one direction
does not contradict the undecidability of the problem at hand, since without knowing
ahead of time whether an input is a “yes” or a “no,” we cannot exploit the existence
of a certificate for one of these to help find an algorithm for the problem. The reason
is that any attempt at running through all candidate certificates and checking each
for validity will not terminate if the input is of the wrong kind, as it has no certificate
at all, and the search for one will never end. This point was implicitly present when
it was explained earlier why simulating a given program on a given input cannot
serve to decide the halting problem.

The interesting question is whether an undecidable problem can have certificates
for both “yes”-ness and “no”-ness. Well, it cannot, since if certificates exist for both
directions, they can be exploited to yield an algorithm for the problem, rendering
it decidable. To see how, assume that we have a decision problem, for which each
legal input has a finite certificate. The “yes” inputs have certificates of one kind
(call them yes certificates), and the “no” inputs have certificates of another kind
(no certificates). One kind might consist of finite sequences of numbers, another of
certain finite areas of the integer grid, and so on. Assume further that certificates
of both kinds are verifiable as such in finite time. To decide whether the problem
answers “yes” or “no” to a given input, we can proceed by cycling systematically
through all candidate certificates, alternating between those of the two kinds. We
thus consider first a yes certificate, then a no certificate, then another yes certificate,
and so on, without missing a single one (see Figure 8.10). We are actually trying,
simultaneously, to find either a yes certificate or a no certificate, anything that will

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

8. Noncomputability and Undecidability 209

X

input

generate and check
new certificate C

All possible
“yes” certificates

All possible
“no” certificates

C does not
certify X

Figure 8.10

Deciding a problem P
by searching for
certificates of either
kind.

serve to convince us of the status of the problem on the given input. The crucial fact
is that this process is guaranteed to terminate, since every input definitely has either
a yes certificate or a no certificate, and whichever it is, we will find it sooner or later.
Once found, the whole process can be made to terminate, producing “yes” or “no,”
according to the kind of certificate discovered.

Thus, undecidable problems cannot have two-way certificates without contradict-
ing their own undecidability.

Undecidable problems that have one-way certificates, like those we have de-
scribed, are sometimes termed partially decidable, since they admit algorithms
that, in a manner of speaking, come about halfway towards a solution. When ap-
plied to an input, such an algorithm is guaranteed to terminate and say “yes,” if “yes”
is indeed the answer, but might not terminate at all if the answer is “no.” This is the
case for those having yes certificates; the algorithm runs through them all trying to
find a certificate for the “yes”-ness of the input. For problems whose certificates are
of the “no” type, like the tiling problem, the “yes” and “no” switch roles.3

� �

3 The technical term used for problems with yes certificates is recursively enumerable, or r.e. for short.
Thus, the halting and word correspondence problems are r.e., whereas the tiling problem is co-r.e.,
meaning that its dual problem (with “yes” and “no” interchanged) is r.e.

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

210 III. Limitations and Robustness

� Problems that Are Even Less Decidable!

As it turns out, all partially decidable problems, including the halting problem, the
domino snake problem, the word correspondence problem, and the tiling problem
(actually, the non-tiling problem, in which we want a “yes” if the tiles cannot tile
all areas) are computationally equivalent, meaning that each of them is effectively
reducible to each of the others. Consequently, although they are all undecidable,
each one of them can be decided with the aid of an imaginary subroutine, or oracle,
for any one of the others: if we could decide whether a given program halts on a
given input, we could also decide whether a given tile set can tile the integer grid,
and whether we can form a common word by concatenating corresponding X -words
and Y -words, and vice versa.

Again, the situation is similar to that of the NP-complete problems, except that
here we do know the precise status of the problems in the class, whereas there we
do not. All NP-complete problems are polynomially equivalent, since there are
polynomial-time reductions from each of them to all the others. Partially decid-
able problems, on the other hand, are merely algorithmically equivalent, with no
constraints on the time that reductions can take.

Now, just as there are decidable problems that are even worse than the NP-
complete ones, so are there undecidable problems that are even worse than the
partially decidable ones. We saw earlier that halting reduces to verification. The
converse is not true. It is possible to prove that even if we have a hypothetical oracle
for the halting problem, we cannot algorithmically verify programs, nor can we
solve the totality problem, which asks whether a program halts on all its legal
inputs. It follows that the verification and totality problems are even worse than the
halting problem; they are, so to speak, “less decidable.”

Among other things, this means that the totality problem, for example, has no
certificates of any kind. This is actually quite intuitive, as there seems to be no finitely
checkable way to prove either that a program halts on all of its infinitely many inputs,
or that it does not halt (that is, it entails an infinite computation) on at least one of
them. The first of these assertions might seem contradictory to the statement made in
Chapter 5 to the effect that any correct program indeed has a (finite) proof, proving,
in particular, that the program halts on all its inputs. However, while a finite proof of
termination for all inputs is guaranteed to exist, it cannot qualify as a certificate since
it is not necessarily checkable algorithmically. In fact, the logical statements whose
truth we need to establish in order to verify the validity of the proof are formulas in
a logical formalism which itself is undecidable!

Here is another example. Recall the formalism of Presburger arithmetic, which
enables us to talk about the positive integers with “+” and “=”. The problem of
determining truth of formulas in Presburger arithmetic is decidable, but, as stated
in Chapter 7, it has a double-exponential lower bound. Surprisingly, if we add the
multiplication operator “×” to the formalism, obtaining a logic called first-order
arithmetic, the problem becomes undecidable. Moreover, it is not even partially
decidable, so that its status is more akin to that of verification and totality than to
that of halting, word correspondence, domino snakes, or tiling. Actually, it is even
worse than those.

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

8. Noncomputability and Undecidability 211

� Highly Undecidable Problems

Just as decidable problems can be grouped into various complexity classes, so can
undecidable problems be grouped into levels, or degrees, of undecidability. There
are those that are partially decidable, or, we might say, almost decidable, and they are
all computationally equivalent, and then there are those that are worse. The many
worse problems, however, are far from being computationally equivalent among
themselves. In fact, there are infinite hierarchies of undecidable problems, each
level of which contains problems that are worse than all those residing on lower
levels.

Besides the low level of undecidability, that of partial decidability, there is another,
particularly natural and significant level, that turns out to be much higher. Without
getting into too many details, we shall call it simply the level of high undecidabil-
ity, and shall illustrate it here with three examples.4 It is noteworthy, however, that
between these two levels, as well as both below and beyond them, there are many ad-
ditional levels of undecidability. There is actually an infinite hierarchy of problems,
all of which are increasingly “less decidable” than the ones already described but
“more decidable” than the highly undecidable problems we now describe. Among
these intermediate problems are the problems of totality, verification, and truth in
first-order arithmetic. Likewise, there are infinite hierarchies of problems that are
all even worse than the following ones.

Two of the three examples we now describe are somewhat surprising, as they
seem to be but insignificant variants of problems we have already seen. Consider
the satisfiability problem for propositional dynamic logic (PDL). In Chapter 7 the
problem was described as (decidable, and) having both upper and lower bounds of
exponential time. The programs that can appear in PDL formulas are constructed
from unspecified elementary programs using sequencing, conditionals, and iteration.
If we leave all other aspects of the formalism as they are, but allow these schematic
programs to be constructed using recursion too, the satisfiability problem becomes
not only undecidable, but highly undecidable! Thus, it is not decidable even if we
are given free solutions to all the partially decidable problems described earlier or
to the many undecidable problems residing on intermediate levels.

The second example is a subtle variant of the regular tiling, or domino problem,
that asks whether the infinite integer grid can be tiled using only tile types appearing
in the finite input set T . (This version is preferred here, rather than the equivalent one
involving areas of all finite sizes.) In the new variant we add a small requirement:
we would like the tiling, whose existence we are asking about, to contain infinitely
many copies of one particular tile, say the first tile listed in T . We want a “yes” if
there is a tiling of the grid, which contains an infinite recurrence of this special tile,
and we want a “no” if no such tiling exists, even if other tilings of the entire grid do
exist.

It would appear that the extra requirement should make no real difference since,
if a finite set of tile types can indeed tile the entire infinite grid, then some of the
types in the set must occur in the tiling infinitely often. The crucial difference,

4 In technical terms it is called the inductive/coinductive level of undecidability.

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

212 III. Limitations and Robustness

however, is that here we are pointing to a specific tile whose recurrence we are
interested in. Despite the apparent similarity, this recurring dominoes problem is
highly undecidable (in fact, it is computationally equivalent to the aforementioned
problem of PDL with recursion). It, too, is not decidable even with free solutions to
the many other problems on lower levels.

We will discuss our third example of a highly undecidable problem in a moment.

� The Four Fundamental Levels of Algorithmic Behavior

An interesting multi-sided story concerning tiling, or domino, problems emerges.
First there are the bounded problems, such as whether T can tile an N by N square
for a given N . Then there are the unbounded problems, such as whether T can tile
the infinite integer grid. Finally, there are the recurring problems, such as whether
T can tile the infinite grid such that a particular given tile recurs indefinitely. The
bounded problems can be shown to be NP-complete, and hence are presumably
intractable, the unbounded ones are undecidable (but partially decidable), and the
recurring ones are highly undecidable.

To complete the picture, there is also a fixed-width version of the bounded
problem. It asks whether, given the set T and a number N , a rectangle of size C by N
can be formed from T , where the width C is fixed and is not part of the input to the
problem. (Note that in the special case where C is 1 we are asking about the existence
of a line of tiles adhering to the coloring restriction.) For each fixed C this problem
admits a polynomial-time algorithm, which you might enjoy seeking out.

And so, as summarized in the table below, we have four versions of the tiling
problem, which, on the (believable) assumption that P �= NP (that is, that the NP-
complete problems are actually intractable), nicely represent the four fundamental
classes of algorithmic behavior illustrated in Figure 8.11.

Type of problem Algorithmic status

fixed-width bounded tractable
bounded intractable

unbounded undecidable
recurring highly undecidable

It must be emphasized that it is the property appearing in the left column of the
table that is responsible for the fundamental difference in the status of the problems,
and not some petty technicalities in the problem’s definition. Two arguments can be
offered to support this point. First, other problems can similarly be generalized to
yield the same four-level behavior. The word correspondence problem, for example,
becomes NP-complete if the length of the required sequence of indices according to
which the common word is to be constructed is bounded by N ; it becomes tractable
if to obtain a common word we are to use a fixed-in-advance number of Xs but N
of the Y s; and it becomes highly undecidable if we are to detect the existence of an
infinite sequence producing a common infinite word, but with one particular index
required to occur in the sequence infinitely often.

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

8. Noncomputability and Undecidability 213

e.g., recurring dominoes

e.g., unbounded dominoes

highly
undecidable

problems

tractable
problems

intractable
problems

undecidable
problems

e.g., bounded dominoes
(conjectured)

e.g., fixed-width
bounded dominoes

Figure 8.11

The sphere of
algorithmic problems:
Version III.

The other justification can be found in the insensitiveness of these four levels to
technical variations in the definition of the problems themselves. Numerous variants
of these tiling problems can be defined, and as long as the fundamental left-hand
characteristic is retained their algorithmic status, as described in Figure 8.11, usually
does not change. For example, we can work with hexagonal or triangular tiles instead
of squares, and with matching shapes and/or notches instead of colors (so that
monkey puzzles or jigsaw puzzles can be the basis for the four-way phenomenon,
rather than colored tiles). We can require zigzags or spirals of length N in the fixed-
width case, rectangles or triangles of given (input) dimensions in the bounded case,
half-grids or a given start tile in the unbounded case, and a recurring color, rather
than a tile, or the recurrence restricted to a single row, in the recurring case. In all
of these variants, and in many others, the right-hand status in Figure 8.11 remains
the same.

It is, therefore, fair to say that this four-level classification is extremely robust,
and Chapter 9 will, in fact, provide further weighty evidence to support it.

Before closing, we mention the third example of high (in fact, extremely high)
undecidability. What we have in mind is the validity of formulas in a powerful log-
ical formalism, called second-order arithmetic, which is really a combination of
the features found in the three formalisms for reasoning about integers that we dis-
cussed earlier: Presburger arithmetic, with its ability to talk about integers involving
addition; WS1S, with its ability to talk about sets of integers involving addition; and
first-order arithmetic, with its ability to talk about integers involving both addition
and multiplication. Second-order arithmetic has all of these—it is able to talk about
sets of integers with addition and multiplication—and its validity problem is very
much highly undecidable. How should we explain this “very highly” qualifier? Well,
avoiding additional technical details, let us start by saying that first-order arithmetic
is a lot worse than “merely” undecidable; in fact, it contains infinitely many levels of

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

214 III. Limitations and Robustness

increasing undecidability beyond problems like tiling and halting (but it is not quite
as highly undecidable as PDL with recursive programs or recurring dominoes). In a
similar vein, second-order arithmetic is a lot worse than the “merely” highly unde-
cidable problems (like recursive PDL or recurring dominoes) and actually contains
infinitely many levels of increasingly worse complexity than even those!

It is illustrative to summarize the computational complexity of these logics in the
following table, which provides another perspective on the levels of difficulty that
arise when one takes a problem and repeatedly adds features to it.

Logical formalism Talks about Complexity

Presburger arithmetic integers with + doubly intractable (double-exponential)

WS1S sets of integers with + highly intractable (nonelementary)

First-order arithmetic integers with + and × very undecidable (but not quite highly
undecidable)

Second-order arithmetic sets of integers with + and × very highly undecidable

� �

� Research on Undecidability

Besides being of obvious relevance to computer science, the undecidability of al-
gorithmic problems is also of interest to mathematicians. It actually forms the basis
of a branch of mathematical logic known as recursive function theory. (The term
is somewhat unfortunately reminiscent of that used to describe self-calling subrou-
tines.) Perhaps surprisingly, many of the basic results, such as the undecidability
of the halting problem, were obtained by mathematicians in the mid-1930s, long
before working computers were built!

The detailed classification of undecidable problems into the various levels of un-
decidability is still an active research direction. Much work is devoted to refining
and understanding the various hierarchies of undecidability and their interrelation-
ships. Also, scientists are interested in finding simple problems that can serve as
the basis for reductions that exhibit the undecidability or high undecidability of
other problems. For many problems of interest, such as the satisfiability problem for
PDL, or the problem of syntactical equivalence of languages, the line separating the
decidable versions from the undecidable ones is not sufficiently clear, and a deeper
understanding of the relevant issues is required.

� �

Problems that are not solvable by any kind of effectively executable algorithms
actually form the end of the pessimistic part of the story, and it is time to return to
happier, brighter issues. It must be remembered, however, that when trying to solve
an algorithmic problem there is always the chance that it might not be solvable at
all, or might not admit any practically acceptable solution. Figure 8.12 is an attempt
at summarizing the situation.

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

8. Noncomputability and Undecidability 215

highly
undecidable

undecidable
(noncomputable)

tractable

Computability
in principle

Computability
in practice

intractable

Figure 8.12

Computability: the
good and bad news.

� Exercises
8.1. (a) Prove rigorously that the tiles of Figure 8.1 can tile the plane but those of Figure 8.2

cannot.
(b) Why is the assumption that tiles cannot be rotated necessary (i.e., why does the tiling

problem become trivial otherwise)?

8.2. Consider the claim that for any algorithm designed to solve the tiling problem, there is an
input set T upon which the algorithm will either run forever or terminate with the wrong
answer. Why will there actually be infinitely many such sets?

8.3. (a) Prove the following proposition, known as König’s Lemma: A finitely-branching tree
(i.e, a tree with finitely many successors to each node) has an infinite path if-and-only-
if it has infinitely many nodes. (Note that the branching factor need not be bounded,
but merely finite.)

(b) Prove the equivalence of both versions of the unbounded tiling problem (the problem
requiring that the entire integer grid be tileable and the problem requiring that every
N × N grid be tileable) with the aid of König’s Lemma. (Hint: consider a tree of
expanding tilings.)

8.4. It is shown in the text that “unboundedness implies undecidability” is wrong, but how
about:

(a) “Boundedness implies decidability”?
(b) “Undecidability implies unboundedness”?
(c) “Decidability implies boundedness”?

8.5. Determine whether the following versions of the snake problem on the upper half of the
plane are decidable. Given a set T of tile types and three distinct points V , W , and W ′ on
the upper half of the plane,

(a) Are both W and W ′ reachable from V ?
(b) Given specific tiles t and t ′ of T , are both W and W ′ reachable from V , by snakes

having t and t ′ placed at the endpoints W and W ′, respectively?
(c) Is either W reachable or W ′ unreachable from V ?
(d) Given specific tiles t and t ′ of T , is either W or W ′ reachable from V , by a snake

having t or t ′ placed at the endpoints W or W ′, respectively?
(e) Are both W and W ′ reachable from V by snakes containing at least 5 tiles each?
(f) Given N , are both W and W ′ reachable from V by snakes containing at most N tiles

each?

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

216 III. Limitations and Robustness

(g) Given N , are both W and W ′ reachable from V by snakes containing at least N tiles
each?

8.6. (a) Verify that the word correspondence example in Figure 8.5(b) admits no correspon-
dence.

(b) For each of the following instances of the word correspondence problem, find a correct
correspondence whenever it exists, or prove that there is no correspondence otherwise.

Instance Group 1 2 3 4

i. X a ba b abb
Y aaa b bb b

ii. X a ba b ab
Y aaa b bb ba

iii. X bb bccb bbbb abbb
Y bbbb c cb a

iv. X ab a c abca
Y ca abac bb ab

8.7. Prove the decidability of the following variants of the word correspondence problem, and
devise an appropriate algorithm for each problem.

(a) The bounded version of the word correspondence problem.
(b) The word correspondence problem over a one-letter alphabet.

8.8. Show that the following enriched word correspondence problem is undecidable. Over a
two-letter alphabet, we are given three groups of words, the Xs, the Y s and the Zs. The
problem is to find a sequence of indices such that the relevant words satisfy X = Y but
X �= Z .

8.9. For a given set of colored tile types T , let max(T) be the size of the maximal (finite)
square tileable by T , if a maximal such square exists, or 0 otherwise (i.e., when every
square is tileable).

(a) Prove rigorously that the variant of the tiling problem, in which we are asked to output
max(T) for a given input T , is undecidable.

(b) Determine the decidability status of the following problem: Given an integer N > 2,
output a set of tile types T of size N , for which max(T) is the largest among all tile
types of size at most N .

8.10. (a) Write a program which for a given X , terminates with the result “yes” precisely when
the 3 × X + 1 program halts for X .

(b) For each of the following inputs, calculate the highest number reached during the run
of the 3 × X + 1 program, and the number of iterations it takes for the program to
terminate: 256, 101, 55, 103, 151, 383, 71 209.

8.11. (a) Does the variant of the 3 × X + 1 program, in which the assignment “X ← 3×X +1”
is replaced by “X ← 2 × X + 1”, halt for every positive integer X?

(b) Prove that the following program terminates for every positive integer X .

while X is odd do the following:
X ← (3 × X + 1)/2.

(Hint: consider the binary representation of an odd X .)

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

8. Noncomputability and Undecidability 217

8.12. Formulate the reduction of the halting problem to the verification problem, by writing
down the transforming algorithm in detail.

8.13. (a) Assume we never allow a program to be run on precisely its own text. How would
you prove the undecidability of the halting problem nevertheless?

(b) Assume we never allow a program in our programming language L to be run on
any program text in L . Show that even so the halting problem for programs in L is
undecidable.

(c) Assume that programs in the programming language L must always be run on integer
numbers. Show that the halting problem for programs in L is undecidable nevertheless.

8.14. Prove that the following problems are undecidable:
(a) Given a program P and an input X , determine whether either P does not halt on X ,

or it halts and produces 8 as its result.
(b) Given two programs P and Q, and an input X , determine whether either both P and

Q halt on X or both do not halt on X .
(c) Given a program P and two different inputs X and Y , determine whether P halts on

both X and Y .

8.15. Let us consider only programs that halt on all inputs.
(a) Here is a diagonalization “proof” that it is undecidable whether given such a program

P and an input X to P , the result is 17. The “proof” is exactly as the proof in the
text that the halting problem is undecidable, but with the list of all always-halting
programs (instead of all programs) plotted against all inputs, and the yes/no entries
asserting whether the result is 17. What is wrong with this proof?

(b) Show that the problem in part (a) is in fact decidable.

8.16. What would happen to the decidability status of a problem if we were guaranteed that
its certificate was not merely finite, but bounded in size (to be specific, let us say that its
certificate was no larger than 22N

, for inputs of size N)?

8.17. Assume that a problem P has the following strange certificates. An input is a yes-input if
it has at least 7 yes-certificates, and it is a no-input if it has at least 3 no-certificates. (All
certificates are verifiable in finite time.)
(a) Is P decidable?
(b) What can you say about the problem if we replace “at least 7” with “at least 7 × N ,”

where N is the size of the input?
(c) What if we replace “at least 7” with “at most 7”?

8.18. Show how to solve the ordinary unbounded domino problem given the recurring domino
problem as an oracle.

8.19. Devise polynomial-time algorithms for the fixed-width bounded versions of the following
problems.
(a) The domino problem (i.e., K is fixed, T and N are given, and we are asked whether

we can tile an N × K rectangle).
(b) The word correspondence problem (i.e., K is fixed, the Xs, Y s, and N are given,

and we are asked whether we can concatenate K words from the Xs forming a
compound word that can also be formed by concatenating at most N words from the
Y s).

8.20. (a) Is the fixed-width unbounded domino problem decidable? (That is, K is fixed,
and we are given T , and we are asked whether there is a tiling of an infinite strip of
width K .)

(b) How about the analogous word correspondence problem?

P1: GIG

PE002-08drv PE002-Harel PE002-Harel-v4.cls February 25, 2004 14:47

218 III. Limitations and Robustness

8.21. Show that the regular unbounded version of the tiling problem for equilateral triangles is
undecidable.

they shall never see light

PSALM 49: 20

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

C H A P T E R 9

Algorithmic Universality and
Its Robustness

or, The Simplest Machines That Get It Done

he made engines,
invented
by skillful men

II CHRONICLES 26: 15

I know that thou
canst do everything

JOB 42: 2

In this chapter we shall examine algorithmic devices of the simplest imaginable
kind, strikingly primitive in contrast with today’s computers and programming lan-
guages. Nevertheless, they are powerful enough to execute even the most complex
algorithms.

Given the current trend, whereby computers are becoming more intricate and
more sophisticated by the year, this goal might appear to be a mere thought experi-
ment, and probably quite useless. However, our purpose is three-fold. To begin with,
it is intellectually satisfying to discover objects that are as simple as possible yet as
powerful as anything of their kind. Secondly, we should really justify the sweeping
nature of the negative claims made in the last two chapters, concerning problems for
which no reasonable solutions exist, and others for which no solutions whatsoever
exist. The facts described herein will carry weighty evidence to support these state-
ments. Finally, on purely technical grounds, these primitive devices will be shown
to give rise to rigorous proofs of many of the intractability and undecidability results
stated earlier.

Let us first see how far we can go in a direct attempt at simplifying things.

� An Exercise in Simplifying Data

The first thing to notice is that any data item used by an algorithm, whether as an
input, output or intermediate value, can be thought of as a string of symbols. An
integer is but a string of digits, and a fractional number can be defined as two strings
of digits separated by a slash. A word in English is a string of letters, and an entire
text is nothing more than a string of symbols consisting of letters and punctuation
marks, spaces included. Some other items we have had occasion to meet earlier
in the book are colors, nodes in a graph, lines, monkey halves, rings, pegs, sides
of squares, road segments, chess pieces, logical operators, and, of course, the very

219

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

220 III. Limitations and Robustness

15 −4 6 104

6.5 0 −61 3

586 1 7 102

1 5 * − 4 * 6 * 1 0 4 * * 6 . 5 * 0 * − 6 1 * 3 * * 5 8 6 * 1 * 7 * 1 0 2

Figure 9.1

Linearizing a
two-dimensional
array.

texts of programs. In all these cases, we could have easily encoded such objects as
numbers, words, or texts, and treated them symbolically throughout.

The number of different symbols used in all such encodings is actually finite, and
can always be fixed ahead of time. This is the ingenuity of a standard numbering
system, such as the decimal system. We do not need infinitely many symbols, one
for each number—10 symbols suffice to encode them all. (The binary system uses
just two, 0 and 1.) The same obviously applies to words and texts.

Consequently, we can write any data item of interest along a one-dimensional
tape, perhaps a long one, which consists of a sequence of squares, each containing
a single symbol that is a member of some finite alphabet.

This idea can be taken much further. It is not too difficult to see that even the
most complicated data structures can also be “linearized” in this fashion. A vector,
for example, is just a list of data items and can be depicted as a sequence of the
linearized versions of each of the items, separated by a special symbol, such as “∗”.
A two-dimensional array can be spread out row by row along the tape, using “∗” to
separate items within each row and, say, “∗∗” to separate rows (see Figure 9.1).1

Linearizing trees requires more care. If we attempt to naively list the tree’s items
level by level, the precise structure of the tree may be lost, since the number of
items on a given level is not fixed. In the level-by-level encoding in Figure 9.2, for
example, there is no way of knowing whether S is an offspring of V or of G. One
way of avoiding the problem is to adopt a variant of the nested lists approach of LISP,
as illustrated in the examples of SCHEME programs in Chapter 3. (The parentheses
are considered as special symbols, like “∗” and “∗∗”.) This is especially beneficial
when the trees have information only in the leaves. Alternatively, we can refine
the method of Figure 9.2 by marking off clusters of immediate offspring, level by
level, always starting at the left. Here is the resulting linearization for the tree of
Figure 9.2:

(T)(V, G)(Q, R, S)(W, L)()(M, N)()(P)()

You are encouraged to devise algorithms both for representing trees by such lists,
and for reconstructing the trees from the lists.

Similar transformations can be carried out for any kind of data structure, however
complex. A multitude of variables or data structures can be described in linear fashion
using some new symbol to separate their linearized versions from each other. In fact,
entire databases, consisting of scores of tables, records, and files, can be encoded as

1 The memory of most kinds of digital computers is really just a one-dimensional array, and two-
dimensional arrays are indeed stored in one dimension using some kind of encoding.

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

9. Algorithmic Universality and Its Robustness 221

T

T * * V * G * * Q * R * S * W * L * * M * N * P

L

GV

RQ S W

PNM

Figure 9.2

“Steamrolling” a tree
with information loss.

long lists of symbols, with appropriate special-symbol codes signifying breakpoints
between the various parts. Of course, it might be very inefficient to work with a
linear version of a highly structured collection of data. Even the simple clustered-tree
representation just given requires quite an unpleasant amount of running around in
order to carry out standard tree-oriented chores, such as traversing paths or isolating
subtrees rooted at given nodes. However, efficiency is not one of our concerns right
now; conceptual simplification is, and once again we find that a linear tape with
symbols from a finite alphabet suffices.

Now, algorithms do not deal only with fixed amounts of data. They may ask
for more as they go along. Data structures may grow in size, and variables may
be assigned ever-larger data items; information may be stored, to be used later in
the algorithm, and so on. However, given that any such additional data can also
be linearized, all we need is to allow our tape, with its marked-off squares, to be
of unlimited length. Storing some information will be tediously accomplished by
running to some remote, unused part of the tape and storing it there.

The conclusion is this. When it comes to the data manipulated by an algorithm,
any effectively executable algorithm, it suffices to have a one-dimensional tape of
potentially unbounded length, divided into squares, each of which contains a symbol
taken from a finite alphabet. This alphabet includes the “real” symbols that make
up the data items themselves, as well as special symbols for marking breakpoints.
It is also assumed to include a special blank symbol for indicating the absence of
information, which we shall denote by #, and which is understood to be distinct
from the space symbol separating words in a text. Since at any given point in time
an algorithm deals with only a finite amount of data, our tapes will always contain a
finite significant portion of data, surrounded on either side by infinite sequences of
blanks. This portion may be very long, and may grow longer as execution proceeds,
but it will always be finite.

� An Exercise in Simplifying Control

How can we simplify the control part of an algorithm? Various languages, we have
seen, support various control structures, such as sequencing, conditional branching,

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

222 III. Limitations and Robustness

subroutines, and recursion. Our question is really about simplifying the work of the
processor Runaround, who runs around carrying out basic instructions. For now we
shall ignore the basic instructions themselves and concentrate on simplifying the
very chore of running around.

One of the things crucial to simplifying control is the finiteness of an algorithm’s
text. The processor can be in one of only finitely many locations in that text, and
hence we can make do with a rather primitive mechanism, containing some kind of
gearbox that can be in one of finitely many positions, or states. If we think of the
states of the gearbox as encoding locations in the algorithm, then moving around in
the algorithm can be modeled simply by changing states.

At any point during the execution of an algorithm the location to be visited next
depends on the current location, so that the next state of our mechanism’s gearbox
must depend on its current state. However, the new location may also depend on
the values of certain data items; many control structures test the values of variables
in order to channel control to particular places in the text (for example, to the then
or else clauses of an if statement, or to the beginning or end of a while loop). This
means that a change in the state of our mechanism must be allowed to depend on
parts of the data as well as on the current state. But since we have encoded all of our
data along a single lengthy tape, we shall have to allow our primitive mechanism to
inspect the tape before deciding on a new state.

In the interest of minimalism and simplicity, this inspection will be carried out
only one square at a time. At any given moment, only a single symbol will ever be
“read.” Our mechanism can thus be viewed as having an “eye” of very limited power,
contemplating at most one square of the tape at a time, and seeing and recognizing
the symbol residing there. Depending upon that symbol and the mechanism’s current
state, it might “change gear,” entering a new state (see Figure 9.3).

As a consequence of the finiteness of the alphabet, we shall see later that the mech-
anism can actually “remember” the symbol it has seen by entering an appropriately

c c b

d a a b a d a

a
a

b

b

b *

*

* c

c

b c*

*

Figure 9.3

A primitive
mechanism: tape,
gearbox, and narrow
eye.

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

9. Algorithmic Universality and Its Robustness 223

meaningful new state. This enables it to act according to combined information
gathered from several tape squares. However, in order to inspect different parts of
the data, we have to allow our mechanism to move along the tape. Again, we shall be
very ungenerous, allowing movement to take place only one tape square at a time.
The direction of movement (right or left) will also depend both on the current state
of the gearbox and on the symbol the eye has just seen.

These observations simplify the control component of an algorithm considerably.
What we have is a simple mechanism, capable of being in one of a finite number
of gears, or states, chugging along the tape one square at a time. In the process,
it changes states and switches directions as a function of the current state and the
single symbol it happens to see in front of it.

� Simplifying the Basic Operations

Having thus simplified the data and control parts of algorithms, we are left with the
basic operations that actually get things done. If processors were just to run around
reading parts of the data and changing gears, algorithms could not do very much.
We need the ability to manipulate the data, to apply transformations to it, to erase,
write, or rewrite parts of it, to apply arithmetical or textual operations to it, and so on.

Without offering any kind of justification right now, we shall endow our mech-
anism with only the most trivial manipulation capabilities. Other than to change
states and move one square to the right or left, all it will be allowed to do, when in
a particular state and looking at a particular symbol on the tape, is to transform that
symbol into one of the other finitely many symbols available. That’s all.

The mechanism resulting from this long sequence of simplifications is called a
Turing machine, after the British mathematician Alan M. Turing, who invented it
in 1936.

� �

� The Turing Machine

Let us be a little more precise in the definition of Turing machines. A Turing machine
M consists of a (finite) set of states, a (finite) alphabet of symbols, an infinite tape
with its marked-off squares and a sensing-and-writing head that can travel along
the tape, one square at a time. In addition, the heart of the machine is a state
transition diagram, sometimes called simply a transition diagram, containing
the instructions that cause changes to take place at each step.

A transition diagram can be viewed as a directed graph whose nodes represent
the states. We use rounded rectangles (rountangles in the sequel) for states (see
Figure 9.4). An edge leading from state s to state t is called a transition, and is
labeled with a code of the form 〈a/b, L〉 or 〈a/b, R〉, where a and b are symbols.
The a part of the label is called the transition’s trigger, and it denotes the letter
read from the tape. The b part is the action, and denotes the letter written on the

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

224 III. Limitations and Robustness

movea

YESmark returnNO

testa

moveb testb

a/a, R
b/b, R

a/a, R
b/b, R

a/a, L
b/b, L

#/#, L

#/#, L

#/#, L

#/#, L

#/#, L

#/#, R

a/#, L

b/#, L

b/b, L

a/a, L

b/#, R

a/#, R

Figure 9.4

The state transition
diagram of a simple
Turing machine.

tape. Finally, the L and R part provides the direction to move, with L standing for
“left” and R for “right.” The precise meaning of a transition from s to t labeled with
〈a/b, L〉 is as follows (the case for 〈a/b, R〉 is similar):

During its operation, whenever the Turing machine is in state s, and a is the
symbol sensed at that moment by the head, the machine will erase the symbol
a, writing b in its place, will move one square to the left, and will enter state t .

To prevent ambiguity as to the machine’s next move (that is, in order that its
behavior be deterministic), we require that no two transitions with the same trigger
emanate from a single state. One of the states in the diagram (mark in Figure 9.4)
is marked with a special small entering arrow and is called the start state. Also,
states that have no outgoing transitions (YES and NO in Figure 9.4) are called
halting states, and are emphasized by thick rountangles. For convenience, several
labels may be attached to a single transition (as in the three self-cycling arrows of
Figure 9.4).

The machine is assumed to start in its start state on the leftmost nonblank square
of the tape, and to proceed step by step as prescribed by the diagram. It halts if and
when a halting state is entered.

� Detecting Palindromes: An Example

Let us take a closer look at the Turing machine whose transition diagram is shown
in Figure 9.4. In particular, let us simulate its actions on a tape consisting of the
word “a b b a” (surrounded, as explained above, by infinitely many blanks on either
side). The machine’s head is positioned at the leftmost a, and mark is the initial state.
Figure 9.5 shows the entire simulation, step by step, with the current state indicated
by a solid rountangle within the miniature version of the transition diagram.

Intuitively, the machine “remembers” the first symbol it has seen (by entering
movea or moveb, according to whether that symbol was a or b), erases it by replacing

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

9. Algorithmic Universality and Its Robustness 225

#a b b a

1

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

b b a

2

b b a

3

b b a

4

b b a

5

b b a

6

b b

7

b b

8

b b

9

. . . # # # ## b b # . . .

10

b

11

b

12

. . . # # # ## # b # . . .

13

#

14

#

16

#

15

YES!

Figure 9.5

A sample run of the
Turing machine of
Figure 9.4.

it with a blank, and then runs all the way to the right until it reaches a blank (frame 5).
It then moves one symbol to the left, so that it is stationed at the rightmost symbol
in state testa or testb, depending on the symbol it remembered (frame 6). If it were
now to sense a symbol different from the one it remembered it would enter the
special state NO. In our case, however, it remembered an a and now also sees an
a, so it erases this rightmost a, and enters return, which brings it leftwards all the

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

226 III. Limitations and Robustness

way to the first blank, in state mark (frame 9). As before, the machine now moves
one square to the right and remembers the symbol it sees. This symbol, however, is
the second one of the original string, since the first was erased earlier. The current
rightward run will now compare this second symbol with the string’s penultimate
symbol (frame 13). This comparison is also successful, and the machine erases the b
and moves off to the left in search of further symbols. Finding none, and not having
reached the NO state by virtue of a mismatch, it enters YES, indicating that all pairs
matched.

In essence, this Turing machine checks for palindromes; that is, for words that
read the same from either end. (A palindrome would remain the same after being
subjected to the reverse algorithm of Chapter 5.) Whenever started at the leftmost
symbol of a finite word consisting of a’s and b’s, it halts in the YES state if the
word is a palindrome and in NO if it isn’t. You should simulate the machine also on
“a b a b a” and “a b a a b b a a” to get a better feel for its behavior. Observe that
this particular machine uses four fixed states and an additional two for each of the
letters in the alphabet. You may also want to extend Figure 9.5 to deal with the case
of a three-letter alphabet.

� Turing Machines as Algorithms

A careful look reveals that a Turing machine can be viewed as a computer with
a single fixed program. The software is the transition diagram, and the hardware
consists of the tape and head, as well as the (implicit) mechanism that actually moves
through the transition diagram changing states and controlling the head’s reading,
writing, erasing, and moving activities. The computer is thus the same for all Turing
machines; it is the programs that are different. As a consequence, people sometimes
talk about programming a Turing machine, rather than constructing one.

Thus the palindrome example actually shows how a Turing machine can be pro-
grammed to solve a decision problem. For a problem P whose legal set of inputs
has been encoded as a set of linearized strings, we try to devise a Turing machine
M with a start state s and two special states YES and NO, that does the following:

For any legal input string X , if M is started in state s at the leftmost symbol
of X on an otherwise blank tape containing one copy of X , it eventually enters
YES or NO, depending upon whether P ’s answer to X is “yes” or “no.”

Detecting palindromes with a Turing machine may seem easy, but other problems
are not. How do we detect strings with the following property. The only appearances
of a’s in the string are in blocks whose lengths form some initial portion of the
sequence of prime numbers 2, 3, 5, 7, 11, . . . Within X , the blocks are not required
to appear in any particular order. Here we cannot simply run back and forth, erasing
symbols; we need the ability to count and to compute, and a finite number of states is
not sufficient to “remember” arbitrarily large numbers. (The input word, of course,
can be arbitrarily long.)

� The trick is to compute the next prime number on the blank part of the tape, say to the
right of the input word X , and then to go searching for a block of a’s with precisely the
required length. Assuming the current prime has been computed and appears as a string

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

9. Algorithmic Universality and Its Robustness 227

of 1’s to the right of X on the tape,2 the search for the appropriate block of a’s can be
carried out as follows. The machine repeatedly runs through every block of a’s, checking
off each a against one of the 1’s, by running back and forth and changing both temporarily
into some new symbol. If a perfect match is found, the entire block is erased, and the next
prime is computed. If not, the block is restored to its original form and the next block
is tried. If no matching block is found in the entire string, the machine enters NO. If the
block matches and the tape contains no more a’s, the machine enters YES.

Notice how we are using the potentially infinite blank portion of the tape as scrap paper,
both to compute and to jot down our current count of the a’s.

Turing machines can also be programmed to solve non-yes/no algorithmic prob-
lems. The only difference is in the need to produce outputs. By convention, we may
agree that when a Turing machine halts (by virtue of its entering any halting state)
the output is the string contained between two “!”s on the tape. If there are not pre-
cisely two “!”s on the tape at the time of halting we agree that it is as if the machine
had entered an infinite loop, and will thus never halt. In other words, if M wants
to produce an output, it had better see to it that the output is enclosed between two
“!”s, and that it does not use “!”s for any other purpose. (Obviously, it is possible to
use this convention for decision problems also, writing “!yes!” or “!no!” on the tape
and entering some halting state, rather than entering the special YES or NO states,
as we did with the palindrome machine.)

� With this definition in mind, it is an instructive exercise to program a Turing machine to
add two decimal numbers X and Y . One way of proceeding is as follows. The machine
runs to the rightmost digit of X (by reaching the separating symbol “∗” and moving one
square to its left) and erases it, while “remembering” it in its state; it will need 10 different
states to do so, say digit-is-0 through digit-is-9. It then runs to the rightmost digit of Y
and erases it too, while entering a state that remembers the sum digit of the two numbers
and whether or not there is a carry. (These, of course, depend only on the current digit and
the memorized one, and can be encoded into, say, states sum-is-0-nocarry through sum-
is-9-nocarry and sum-is-0-carry through sum-is-9-carry.) The machine then moves to
the left of what remains of X and writes the sum digit down, having prepared a “!” as a
delimiter. The next step is similar, but it involves the currently rightmost digits and takes
the carry into account (if there is one). The new sum digit is written down to the left of
the previous one, and the process continues. Of course, we have to remember that each
of the numbers might run out of digits before the other, in which case after adding the
carry (if there is one) to the remaining portion of the larger number, that portion is just
copied down on the left. Finally, a second “!” is written down on the extreme left and the
machine halts.

Here are the main configurations of the tape for the numbers 736 and 63519:

. . . # # # # # # # # # 7 3 6 ∗ 6 3 5 1 9 # # . . .

. . . # # # # # # # 5 ! 7 3 # ∗ 6 3 5 1 # # # . . .

. . . # # # # # # 5 5 ! 7 # # ∗ 6 3 5 # # # # . . .

. . . # # # # # 2 5 5 ! # # # ∗ 6 3 # # # # # . . .

. . . # # # # 4 2 5 5 ! # # # ∗ 6 # # # # # # . . .

. . . # # # 6 4 2 5 5 ! # # # ∗ # # # # # # # . . .

. . . # # ! 6 4 2 5 5 ! # # # ∗ # # # # # # # . . .

2 The primality problem itself is discussed, e.g., in Chapters 7 and 11.

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

228 III. Limitations and Robustness

Again, the (masochistic) reader might be interested in constructing the entire transition
diagram of a Turing machine for decimal addition.

� �

� The Church/Turing Thesis

These examples might be a little surprising. A Turing machine has only finitely many
states, and can only rewrite symbols on a linear tape one at a time. Nevertheless, we
can program it to add numbers. It might be tedious to do the programming (try to
construct a Turing machine to multiply numbers), and it is no easier to take over the
controls and actually carry out a simulation of the machine’s actions. Nevertheless,
it gets the job done.

With this in mind, let us forget about tedium and efficiency for the time being, and
ask ourselves what indeed can be done with Turing machines, for whatever cost?
Which algorithmic problems can be solved by an appropriately programmed Turing
machine?

The answer is not a little surprising, but very surprising indeed. Turing machines
are capable of solving any effectively solvable algorithmic problem! Put differently,
any algorithmic problem for which we can find an algorithm that can be programmed
in some programming language, any language, running on some computer, any
computer, even one that has not been built yet but can be built, and even one that
will require unbounded amounts of time and memory space for ever-larger inputs,
is also solvable by a Turing machine. This statement is one version of the so-
called Church/Turing thesis, after Alonzo Church and Turing, who arrived at it
independently in the mid-1930s.

It is important to realize that the CT thesis, as we shall sometimes call it (both
for Church/Turing and for Computability Theory), is a thesis, not a theorem, and
hence cannot be proved in the mathematical sense of the word. The reason for this
is that among the concepts it involves there is one that is informal and imprecise,
namely that of “effective computability.” The thesis equates the mathematically
precise notion of “solvable by a Turing machine” with the informal, intuitive notion
of “solvable effectively,” which alludes to all real computers and all programming
languages, those that we know about at present as well as those that we do not.
It thus sounds more like a wild speculation than what it really is: a deep and far-
reaching statement, put forward by two of the most respected pioneers of theoretical
computer science.

It is instructive to draw an analogy between Turing machines and typewriters.
A typewriter is also a very primitive kind of machine, enabling us only to type
sequences of symbols on a piece of paper that is potentially infinite in size and
initially blank. (A typewriter also has finitely many “states” or modes of operation—
upper or lower case, red or black ribbon, etc.) Yet despite this, any typewriter
can be used to type Hamlet or War and Peace, or any other highly sophisticated
string of symbols. Of course, it might take a Shakespeare or a Tolstoy to “instruct”
the machine to do so, but it can be done. In analogy, it might take very talented
people to program Turing machines to solve difficult algorithmic problems, but the

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

9. Algorithmic Universality and Its Robustness 229

basic model, so the CT thesis tells us, suffices for all problems that can be solved
at all.

Our exercises in simplification have thus turned out to have profound conse-
quences. Simplifying data down to sequences over a finite alphabet, simplifying
control down to a finite number of states that prescribe square-by-square moves
along a tape, and adopting symbol rewriting as the only primitive operation, yields
a mechanism that is as powerful as any algorithmic device whatsoever.

� Evidence for the Church/Turing Thesis

Why should we believe this thesis, especially when it cannot be proved? What
evidence is there for it, and how does that evidence fare in an age of day-to-day
advances in both hardware and software?

Ever since the early 1930s researchers have suggested models for the all-powerful
absolute, or universal, computer. The intention was to try to capture that slippery and
elusive notion of “effective computability,” namely the ability to compute mechan-
ically. Long before the first digital computers were invented, Turing suggested his
primitive machines and Church devised a simple mathematical formalism of func-
tions called the lambda calculus (mentioned in Chapter 3 as the basis for functional
programming languages). At about the same time Emil Post defined a certain kind
of symbol-manipulating production system, and Stephen Kleene defined a class of
objects called recursive functions. (As mentioned in the research section of Chap-
ter 8, this “recursive” has a meaning that is somewhat different from the one used
throughout this book.) All these people tried, and succeeded, in using their models
to solve many algorithmic problems for which there were known “effectively exe-
cutable” algorithms. Other people have since proposed numerous different models
for the absolute, universal algorithmic device. Some of these models are more akin
to real computers, having the abstract equivalent of storage and arithmetical units,
and the ability to manipulate data using control structures such as loops and sub-
routines, and some are purely mathematical in nature, defining classes of functions
that are realizable in a step-by-step fashion.

The crucial fact about these models is that they have all been proven equivalent
in terms of the class of algorithmic problems they can solve. And this fact is still
true today, even for the most powerful models conceived.

That so many people, working with such a diversity of tools and concepts, have es-
sentially captured the very same notion is evidence for the profundity of that notion.
That they were all after the same intuitive concept and ended up with different-
looking, but equivalent, definitions is justification for equating that intuitive notion
with the results of those precise definitions. Hence the CT thesis.

� Computability is Robust

The CT thesis implies that the most powerful super-computer, with the most so-
phisticated array of programming languages, interpreters, compilers, assemblers,

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

230 III. Limitations and Robustness

and what have you, is no more powerful than a home computer with its simplistic
programming language! Given an unlimited amount of time and memory space,
both can solve precisely the same algorithmic problems. The noncomputable (or
undecidable) problems of Chapter 8 are solvable on neither, and the computable (or
decidable) problems mentioned throughout are solvable on both.

As a result of the CT thesis the class of computable, effectively solvable, or decid-
able algorithmic problems becomes extremely robust. It is invariant under changes
in the computer model or programming language, a fact alluded to in Chapter 8.
Proponents of a particular computer architecture or programming discipline must
find reasons other than raw computational power to justify their recommendations,
since problems solvable with one are also solvable with the other, and all are equiv-
alent to the primitive machines of Turing or the various formalisms of Church, Post,
Kleene, and others.

The line drawn between the decidable and the undecidable in Chapter 8 (see Fig-
ures 8.3, 8.11 and 8.12) is thus fully justified, as is our reliance on an unspecified
language L for discussing undecidability therein. Moreover, it is intellectually sat-
isfying to be able to point to a most simple model that is as powerful as anything of
its kind.

� �

� Variants of the Turing Machine Model

The robustness afforded by the CT thesis starts with variants of the Turing machines
themselves. As it turns out, it is possible to limit the machines in a number of ways
without reducing the class of problems they can solve. For example, we can require
that (unlike the erasing effect of the palindrome machine) inputs are to be kept intact,
and that the “work areas” of the tape are to be cleared up, so that upon halting, the
tape is to contain only the input and output, surrounded by blanks. We can define
Turing machines with a tape that is infinite to the right only, the input appearing
justified to the left, and the machine being constrained never to attempt to move
“off” the leftmost square. Both variants can solve precisely the same problems as
the basic model, and therefore they are really no weaker.

In a similar vein, adding any powerful (but “effectively executable”) feature to
the machines also yields precisely the same class of solvable problems, so that in the
context of raw computability this extra power is merely an illusion. For example,
we can allow many tapes, each with its own read/write head, in such a way that the
transitions are based on the entire set of symbols seen simultaneously by the heads;
the actions specify a new symbol to be written on each tape and a direction for each
head to move in. Similarly, we can define machines involving two-dimensional
tapes, giving rise to four, not two, possible moving directions, and so on. None of
these extensions can solve problems that the basic model cannot.

One of the most interesting extensions involves nondeterministic Turing ma-
chines. The idea is to allow many transitions with the same trigger to emanate from
a state. The machine then has a choice of which transition to take. The way a non-
deterministic machine is said to solve a decision problem is very similar to the way
“magical nondeterminism” was defined in Chapter 7: whenever there is a choice to

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

9. Algorithmic Universality and Its Robustness 231

be made, the machine can be thought of as making the best one—that is, the one
that will eventually lead to a “yes” answer, if that is at all possible. In this way,
the nondeterministic Turing machine says “yes” to input X precisely if there exists
some sequence of choices that leads to the YES state, even if there are others that
don’t (for example, they lead to NO states or into infinite loops). Thus, what is re-
ally happening is that the machine considers all possible computation paths, saying
“yes” if at least one of them results in a “yes,” and “no” otherwise. Here too, perhaps
somewhat surprisingly, no solving power is gained. Even this “magical” notion of
computation does not enable us to solve any algorithmic problems that could not
have been solved without it.

� Folding Over an Infinite Tape: An Example

As explained earlier, scores of distinct models of computation, often of radically
different nature, have been suggested over the years and have all been proven equiv-
alent, thus providing weighty evidence of the truth of the CT thesis.

How do we establish such equivalences? How do we show that even two similar
variants of the Turing machine model (let alone two completely different models)
give rise to the very same class of solvable problems? The answer lies in the notion
of simulation, whereby we show that for each machine of one type there is an
equivalent machine of the other. In other words, we show how to simulate one type
of machine on another.

For example, suppose we wish to show that machines with a two-way infinite tape
are no more powerful than those with a tape that is infinite only to the right. Assume
we are given a machine that employs a two-way infinite tape. We can construct an
equivalent new machine, whose one-way tape is “viewed” as a two-way tape folded
over into two merged halves. Figure 9.6 shows the correspondence between the
tapes. The simulating machine will first spread out its input so that its contents are
in the odd-numbered squares and the rest contain blanks. This blank portion will
correspond to the left, totally blank, part of the simulated tape, folded over. The
new machine will then simulate the old, but moving two squares at a time, as if it
were on the right-hand part of the original tape, until it reaches the leftmost square.
It then “shifts gear,” also moving two squares at a time, but on the even-numbered
squares, as if it were on the left-hand part of the original tape. The precise details
are somewhat tedious, and are omitted here, but conceptually the simulation is quite
simple. Other simulations can be quite intricate, even conceptually. In all cases,
however, simulation techniques exist; hence there are Turing machines for solving
any problem that can be solved on even the most sophisticated modern computers.

� Counter Programs: Another Very Primitive Model

On the face of it, there is little reason to choose the Turing machine model above
all others to be the one the CT thesis mentions explicitly. The thesis might have
talked about the model underlying a large IBM or Cray computer. In fact, one of the
most striking formulations of the thesis does not mention any particular model at

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

232 III. Limitations and Robustness

. . .

. . .

. . .

. . .

. .
.

. . .b b ca #aa5 7 !*1

2

3

4

b

*

a

5

7

7

5

7 5b a a c a b #*!

! a

b*
a

c a #

! a c

b

a #

b

Figure 9.6

“Folding over” a
two-way infinite tape.

all, but rather states simply that all computers and all programming languages are
equivalent in computational power, given unlimited time and memory space.

However, as we shall see later, there are technical reasons for investigating ex-
tremely primitive models. Accordingly, we now describe the counter program
model, which is another one of the truly simple, yet universal, models of computa-
tion.

Instead of arriving at them by starting out with general algorithms and simplifying
things, we shall first define the counter programs themselves and then try to see how
they relate to Turing machines. A counter program can manipulate non-negative
integers stored in variables. The model, or language, allows just three types of
elementary operations on variables, interpreted in the standard way (where, by
convention, Y − 1 is defined to be 0 if Y is already 0):

X ← 0, X ← Y + 1, and X ← Y − 1

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

9. Algorithmic Universality and Its Robustness 233

The variables are called counters because the limited operations enable them, in
essence, only to count. The control structures of a counter program include simple
sequencing and the conditional goto statement:

if X = 0 goto G

where X is a variable and G is a label that is possibly attached to a statement. A
counter program is just a finite sequence of optionally labeled statements. Execution
proceeds in order, one statement at a time, branching off to the specified statement
when a goto is encountered and the appropriate variable is indeed zero. A counter
program halts if and when it attempts to execute a nonexistent statement, by reaching
the end of the sequence or by trying to go to a nonexistent label.

Here is a counter program that computes X × Y , the product residing in Z upon
termination:

U ← 0
Z ← 0

A : if X = 0 goto G
X ← X − 1
V ← Y + 1
V ← V − 1

B : if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B

You might want to ponder this program for a while. First, there is a goto G but
no statement labeled G. This is in accordance with our convention, and the program
halts in a normal fashion when it attempts to carry out that goto. We have also used
two small tricks, achieving, respectively, the effect of the statement V ← Y and
the unconditional instruction goto b, both of which are not really allowed by the
formal syntax. The product X × Y is computed by two nested loops. The outer loop
repeatedly adds Y to an initially zeroed Z , X times, and the inner one carries out
the addition by repeatedly adding 1 to Z , V times, where V is initialized to Y each
time around. Tricky, maybe, but it works.

How powerful are counter programs? Can they solve really complicated prob-
lems? The answer is: they are precisely as powerful as Turing machines, and hence
as powerful as any computer whatsoever.

� Turing Machines vs. Counter Programs

Since counter programs manipulate numbers only, this last statement requires clari-
fication. It might make sense to claim that counter programs can solve the numerical
problems that are solvable by Turing machines (especially having seen how tediously
Turing machines add numbers). But how, for example, does a counter program find
shortest paths in a graph, or occurrences of “money” in a text? Turing machines
are capable of these feats because, as shown earlier, every kind of data structure,
graphs and texts included, can be encoded as a sequence of symbols on a tape. But

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

234 III. Limitations and Robustness

.# * #a ga a!b e b# # #

3427 and 393014

head position

Assuming the correspondence: # − 0 c − 5
! − 1 d − 6
* − 2 e − 7
a − 3 f − 8
b − 4 g − 9

Figure 9.7

Encoding a Turing
machine’s tape and
position as two
numbers.

can such objects be encoded also as numbers, to be manipulated by mere one-step
increments and decrements?

The answer is yes. If the alphabet used in these sequences were to contain precisely
10 symbols we could easily associate them with the 10 decimal digits, and we would
then have no problem viewing any (finite) sequence as a number. Using standard
methods, the same can be done for an alphabet of any (finite) size, since non-
negative integers can be represented in a uniform and unambiguous way using any
fixed number of digits. Binary numbers involve only two digits, and those involving
16 are called hexadecimal numbers.3 Thus, using an easily programmable encoding
mechanism, any finite sequence of symbols over a finite alphabet can be viewed as
a number.

To see how a Turing machine tape can be viewed as consisting of numbers, recall
that at any point during a Turing machine’s execution (assuming it starts on a finite
input) only a finite portion of the tape contains nonblank information; the rest is
all blank. Consequently, this significant part of the tape, together with the head’s
position, can be represented simply by two numbers, encoding the two portions of
the tape lying on either side of the machine’s head. To make things easier, it is useful
to represent the right-hand portion in reverse, so that the least significant digits of
both numbers are close to the head. Figure 9.7 shows the numerical representation
of a tape assuming, for simplicity, an alphabet of 10 symbols. On this basis, it is
possible to carry out a simulation of any Turing machine with a counter program.

� How? Well, two variables are used to carry the two crucial values encoding the nonblank
portions of the tape on either side of the head and (implicitly) the head position itself;
another variable is used for the state. The subtlety of the simulation is in the fact that

3 The binary representation is particularly useful when real digital computers are involved, because of
the 0/1 nature of bits, and the hexadecimal notation likewise, since one hexadecimal digit is represented
precisely by four binary digits, or bits.

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

9. Algorithmic Universality and Its Robustness 235

the effect of one step of the Turing machine is quite “local.” One side of the tape gets
“longer” because the head moves away from it, adding a new symbol to its “end,” and
the other gets shorter, losing its last symbol (unless the machine moves off the nonblank
portion into the all-blank area, in which case the side which was to become empty gets
a new blank symbol for nothing, in effect making the entire relevant part of the tape one
symbol longer). All these changes can be simulated in the counter program by relatively
straightforward arithmetical manipulation of the two main variables.

As a consequence, the entire transition diagram of the Turing machine can be “worked”
into the counter program by “chunks,” each of which simulates one transition of the dia-
gram. To actually simulate the workings of the machine, the program repeatedly inspects
the state-carrying variable and the symbol seen by the head (that is, the least significant
digit of the right-hand number), executes the relevant chunk, and changes the value of
the state variable.

And so, programs that can merely increment and decrement integers by 1 and test
their value against 0 can be used to do anything any computer can do. Not only can
they calculate numerically, but, in principle, they can also represent, traverse, and
manipulate any kind of data structure, including lists, graphs, trees, and even entire
databases.

As to the other direction, namely that Turing machines can do anything counter
programs can, we can simulate counter programs with Turing machines as follows.
The values of the various counters are spread out on the tape, separated by “∗”s. The
simulating machine uses special states to represent the different statements in the
program. Entering each such state triggers a sequence of transitions that carries out
the statement itself. Again, the details are omitted.

It is perhaps of interest to the minimalists among us that we can always do with
only two counters. It is possible to simulate any counter program with one that uses
only two variables, though this simulation is more complicated.

Turing machines and counter programs both achieve universality by making use of
a potentially infinite amount of memory, but in different ways. With Turing machines,
the number of objects containing information (the tape’s squares) is potentially
unbounded, but the amount of information in each is finite and bounded. With
counter programs it is the other way around. There are only finitely many variables
in any given program, but each can contain an arbitrarily large value, thus, in effect,
encoding a potentially unbounded amount of information.

� �

� Simulations as Reductions

When we say that one computational model can simulate another we are really
saying that we have a reduction (in the sense of Chapter 8) between the two models.
This point of view provides a firm mathematical basis for certain discussions in
earlier chapters. Whenever we talked about programs that accept other programs as
inputs we were not being restrictive at all. Since effective simulations exist between
any two sufficiently powerful models of computation, we can always start with a

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

236 III. Limitations and Robustness

program or algorithm in any language or model and translate it into the language
we happen to be working with.

Consider, for example, the undecidability of the halting problem, as proved in
Chapter 8. Proper use of the reductions associated with the CT thesis enables us
to show that this result is extremely general. It can first be proved rigorously for
Turing machines by (1) assuming that the input program W in Figure 8.7 is the
description of some Turing machine, and (2) constructing the hypothetical program
S also as a Turing machine (quite an easy adaptation of the construction given
therein). The contradictory nature of this construction is then established, resulting
in the seemingly humble conclusion that no Turing machine exists that solves the
halting problem for Turing machines. This result, however, is not humble at all. In
fact, it proves that the halting problem is undecidable in a very strong sense: no
effective language or model L1 can possibly solve the halting problem for programs
in the universal language or model L2. (A special case is when L1 and L2 are one and
the same language.) This is because if, for some universal L1 and L2, this version of
the halting problem were decidable, so would the Turing machine version be. (Can
you see why?)

It is these language- and model-independent facts, coupled with the confidence we
have in the Church/Turing thesis, that justify our use in previous chapters of phrases
concerning the nonexistence, for certain problems, of any algorithms, written in any
languages and run on any computers, now or in the future.

� Universal Algorithms

The CT thesis talks about universal models, or languages. One of its most interesting
consequences is the existence of universal algorithms. A universal algorithm has
the ability to act like any algorithm whatsoever. It accepts as inputs the description
of any algorithm A and any legal input X , and simply runs, or simulates, A on X ,
halting if and when A halts, and producing the outputs that would have been produced
if A had indeed been run on X . Thus, fixing the input algorithm A and letting X
vary has the effect of making the universal algorithm behave precisely like A.

In a sense, a computer, or an interpreter (see Chapter 3), is very much like a
universal algorithm: we present it with a program and an input and it runs the former
on the latter. However, the term “universal” suggests independence, meaning that a
universal algorithm should be insensitive to the choice of a language or machine,
whereas computers and interpreters are not. It would thus appear that no universal
algorithm could ever be implemented, since both the universal algorithm itself and
its input algorithms must be written in some language, intended for some machine.

To our help comes again the CT thesis, with its simulations between models, and
its claim that all programming languages and computation models are equivalent.
To obtain a universal algorithm we have only to use some language L1 to write an
effectively executable program U , which accepts as inputs any program written in
some fixed universal language or model L2, and any input, and simulates the running
of that program on that input. Once written, U can be thought of as being language-
and machine-independent because, by the thesis, (1) it could have been written in any
universal language, running on any machine, and (2) it can simulate any effectively

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

9. Algorithmic Universality and Its Robustness 237

run P
on X

input Xprogram P

output
(if any)

algorithm A

universal program U,
written in language L1;
simulates the effect of a
program in L2 on an input

P implements A;
is written in
language L2

Figure 9.8

A universal program
written in language L1

for programs in L2.

executable algorithm, written in any language. That is, given an algorithm A and
input X , rewrite A in the language L2 (this is possible by the thesis), and submit the
new program with X to U (see Figure 9.8).

Turing machines are a perfect candidate for both L1 and L2, and indeed it is not
too difficult to construct a so-called universal Turing machine—namely, one that
can simulate the effect of arbitrary Turing machines on arbitrary inputs. But to do
so we must first find a way to describe any Turing machine as a linear sequence of
symbols, suitable for input on a tape. In fact, we have only to describe the machine’s
transition diagram, which must be linearized into a sequence of symbols, suitable
for writing down on a Turing machine tape. This is done easily, since each transition
can be given by its source and target states, followed by the 〈a/b, L〉 or 〈a/b, R〉
label. By convention, the list of transitions will be preceded by the name of the start
state. Here, for example, is the initial part of an encoding of the Turing machine of
Figure 9.4:

mark ∗∗ mark YES 〈#/#, L〉 ∗ mark movea 〈a/#, R〉 ∗ movea movea 〈a/a, R〉 ∗ . . .

The universal Turing machine U accepts as inputs such a description of any Turing
machine M , followed by a finite sequence X that is viewed as a potential input to M
(the description of M and the input X are separated, say, by “$”). It then proceeds
to simulate M’s action on a tape that contains the input X surrounded by blanks,
with the very same consequences: if M would not have halted on such a tape, then
neither does U , and if it would, then so does U . Furthermore, if and when U halts,
the tape looks precisely as it would have looked upon M’s termination, including
the output enclosed between “!”s.

To really construct a universal Turing machine is an interesting exercise, not
unlike the task of writing an interpreter for a simple programming language L
in the language L itself. There exist, in fact, extremely concise universal Turing
machines with only very few states. In a similar vein, of course, it is also possible
to construct a universal counter program, which accepts as inputs two numbers,
the first encoding an input counter program, and the other its potential input, and
simulates the one on the other. In fact, being just another counter program itself, the

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

238 III. Limitations and Robustness

universal counter program can therefore be constructed with only two counters, as
already mentioned.

More important than the number of states or counters, however, is the profound
nature of a universal algorithm or machine U . Once constructed, U is a single object
of maximal algorithmic power, and its significance cannot be overestimated. If a uni-
versal algorithm were written for use on a personal desk computer it would literally
be able to simulate even the largest and most sophisticated mainframe computer,
provided that it was given enough time, that a description of the simulated machine
were given as its first input, and that sufficiently many memory units were available.

� �

� A Slight Modification of Counter Programs

We will now make a slight change in the primitive instructions of counter programs;
the reason will become apparent in the next section. As defined earlier, counter
programs can only add or subtract 1 to a counter. Thus, if they are to work on the
numbers that represent Turing machine tapes, they would have to do so one unit
at a time, whereas the Turing machines work on their tapes one symbol at a time.
And since the Turing machine tape is thought of as representing numbers in, say,
decimal notation, Turing machine numbers are manipulated one digit at a time, which
is exponentially more efficient than working on them one unit at a time (unless the
Turing machine operates on a one-letter alphabet, which is a very uninteresting case).
And so, while counter programs based on +1 and −1 instructions alone are indeed
as powerful as Turing machines, they are exponentially slower. This is not because
of some inherent limitation of the counter program model itself, but because the
primitive instructions are exponentially weaker. To remove this discrepancy, counter
programs must be allowed to manipulate whole digits, be they binary, decimal, or
otherwise. (Why is the particular choice of the number base unimportant here?) In
essence, the programs are to be allowed to work on nonunary numbers, and they
must be given the ability to attach and detach digits to numbers in constant time.
Accordingly, let us add two instructions to the repertoire of basic operations of
counter programs:

X ← X × 10 and X ← X/10

(By convention, the division operator ignores fractions.) The new operations clearly
add no computational power to the model, as they could have been simulated by the
+1 and −1 operations. However, they do enable us to compare Turing machines
and counter programs in a more realistic way, as will now be shown.

� Tractability Is also Robust

By providing reductions between all sufficiently powerful models of computation,
we convince ourselves that the class of problems solvable by these models is in-
sensitive to the differences between them. By labeling the problems in the class

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

9. Algorithmic Universality and Its Robustness 239

computable (or decidable, if we are interested in the yes/no case), we express our
opinion that the notion we have captured is important and profound. This is the crux
of the Church/Turing thesis.

With a small effort, however, we can do even better. Careful inspection shows
that if both models involved in such a reduction deal with numbers (or whatever
representation of them the model supports) in a nonunary fashion, then all these re-
ductions take polynomial time; that is, they are reasonable in the sense of Chapter 7.
For example, the transformation described earlier from a Turing machine and its
input into an equivalent counter program and its corresponding input takes time that
is only polynomial in the length of the descriptions of the former. Moreover—and
this fact is not true without allowing the X × 10 and X/10 operations—the time
taken by the resulting counter program to run on the transformed input (assuming
that it halts) is at most only polynomially longer than the time the Turing machine
would have taken to run on the original input.4

It follows, of course, that if the Turing machine solves some algorithmic problem
in polynomial time, then, not only does the corresponding counter program also
solve the problem, it does so in polynomial time too. The converse reduction, from
counter programs to Turing machines, is also polynomial-time, so that the dual fact
holds too: if a counter program solves some problem in polynomial time then so
does the resulting equivalent Turing machine.

The conclusion is that Turing machines and counter programs (with the X × 10
and X/10 instructions) are polynomially equivalent. The class of problems having
reasonable solutions (that is, polynomial-time ones) is the same for both models.
The really surprising fact is that this polynomial-time equivalence holds not only
for the reductions among these very primitive models, but also for the reductions
between them and even the most sophisticated models. Turing machines and counter
programs are obviously very inefficient even for quite trivial tasks, having to either
shuttle back and forth on a tape, or repeatedly increase and decrease counters.
However, they are only polynomially less efficient than even the fastest and most
intricate computers, which support the most advanced programming languages with
the most sophisticated compilers. In solving some algorithmic problem, the Turing
machine or counter program resulting from the appropriate reduction might take
twice as much time as it takes a fast computer, or a thousand times as much, or
even that amount of time squared, cubed, or raised to the power 1000, but not
exponentially as much.

� More concisely, if a fast computer solves a certain problem in time O(f (N)), for some
function f of the input length N , then there is an equivalent Turing machine that will take
no more than time O(p(f (N))), for some fixed polynomial function p. In particular, if f
itself is a polynomial, meaning that the fast computer solves the problem reasonably, then
some very primitive-looking Turing machine also solves it reasonably—in polynomial
time p(f (N)), to be precise. Thus, the time might grow from, say, O(N 2) to O(N 5) or
O(N 85), but not to O(2N). In fact, most known reductions involve lower-order polyno-
mials of no more than about N 4 or N 5, so that “good” polynomial-time algorithms on
one model will not become unacceptably worse on another.

4 For counter programs time is measured by the number of instructions executed, and for Turing machines
by the number of steps taken.

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

240 III. Limitations and Robustness

The conclusion is this: not only is the class of computable problems robust (that
is, insensitive to model or language), but so is the class of tractable problems. This
is really a refinement of the CT thesis that takes running time into consideration
too. We should take note that the refined thesis does not hold for certain models that
incorporate unlimited amounts of concurrency, as explained in Chapter 10, and
for this reason it is sometimes called the sequential computation thesis. The term
“sequential” is meant to capture algorithmic executions that proceed in a sequential,
stepwise manner, rather than by carrying out lots of things simultaneously.

The refined CT thesis thus claims that all sequential universal models of compu-
tation, including those that have not yet been invented, have polynomially-related
time behaviors, so that the class of problems solvable in reasonable time is the same
for all models. Thus, the refined thesis justifies another of the lines appearing in our
sphere of algorithmic problems, the one separating the tractable from the intractable
(see Figures 7.6, 8.3, 8.11, and 8.12).

Many other complexity classes, such as NP, PSPACE, and EXPTIME (see Fig-
ure 7.15) are also robust in the same sense, justifying much of the language- and
model-independent research in complexity theory. However, some classes, like the
problems solvable in linear time, are not, and can be highly sensitive to changes
in the model. A Turing machine with an additional counter, for example, can com-
pare the number of a’s and b’s appearing in a sequence in linear time, but bare
Turing machines require O(N × log N) if a rather clever method is used, and take
quadratic time if they naively run back and forth. (Can you find the O(N × log N)
method?)

Incidentally, the polynomial-time version of the CT thesis could not have been
formulated as early as the 1930s because complexity theory did not exist then. The
significance of the class P was only recognized in the late 1960s, and gained credence
a few years later with the realization of the importance of the P vs. NP problem.

(Although we have not defined it precisely, it happens that the line separating the
undecidable from the highly undecidable in Figures 8.11 and 8.12 is also robust in
the sense of the present discussion. Thus, all universal models of computation give
rise to the same division, and the recurring domino problem, for example, is highly
undecidable in them all.)

� Turing Machines and the P vs. NP Problem

The NP-complete problems of Chapter 7 deserve special mention here. In most
textbooks P and NP are introduced in terms of the rigorous notion of Turing machine
computations; NP is defined to contain precisely those decision problems solvable
by nondeterministic Turing machines running in polynomial time, while P is defined
to contain those solvable by ordinary Turing machines in polynomial time. Once
such formal definitions are given, the refined CT thesis is stated as claiming that all
reasonable sequential computation models are polynomially equivalent to ordinary
Turing machines, and the ramifications of this fact can then be discussed. In contrast,
we have introduced the notions of P and NP in Chapter 7 without a precise model,
stating the CT thesis first, and only later introducing formal models such as Turing
machines. The reasons for this are pedagogic in nature; the consequences remain
the same.

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

9. Algorithmic Universality and Its Robustness 241

Now, had nondeterministic Turing machines satisfied the criterion of sequentiality,
the refined thesis would have implied a positive solution to the P vs. NP problem,
since it would have equated the classes of problems solvable in polynomial time
on both versions of Turing machines. As it happens, nondeterministic machines are
not considered sequential, since they employ “magic” to make the best choices, and
without magic they would have had to try out many possibilities simultaneously
to find the best one. (Trying them out sequentially would take exponential time.)
Therefore, the thesis does not apply to such machines, and it thus cannot help much
with regards to P vs. NP.

Formulating the P vs. NP problem in this formal fashion is interesting because
it implies that to solve the problem in the negative (that is, to show that P
= NP)
we need only show that the simple and primitive model of Turing machines cannot
solve some NP-complete problem in less than exponential time. For example, if
someone were to show that the monkey puzzle problem cannot be solved on any
Turing machine in polynomial time, it would follow from the refined thesis that it
cannot be solved in polynomial time on any sequential model, and hence that it is
truly intractable. And, as we know, if the monkey puzzle problem is intractable, then
so are all the NP-complete problems, yielding P
= NP.

� Using Turing Machines for Lower Bound Proofs

To prove an upper bound on an algorithmic problem—that is, to find a good
algorithm—the richest and most powerful formalism available should be used. In
fact, researchers typically employ very high-level programming constructs and intri-
cate data structures to devise nontrivial algorithms. They then rely on the robustness
afforded by the variants of the Church/Turing thesis to make claims about the impli-
cations of those algorithms to all models. Thus, if someone ever manages to prove
that P = NP, the chances are that it will be done using a very high-level model, with
perhaps complicated data structures, to describe a sophisticated polynomial-time
algorithm for some NP-complete problem. However, when proving lower bounds,
primitive models are much better suited, since they employ only a few extremely
simple constructs and there is less to worry about, so to speak. Thus, if someone
ever proves that P
= NP, the chances are that it will be done using a very primitive
model, like Turing machines or counter programs.

Turing machines are, in fact, used widely in lower bound proofs of all kinds. As
an example, it is instructive to get a feeling for how Turing machines can be used to
show the undecidability of the tiling problem. (Undecidability, of course, is a kind
of lower bound—it brings bad news about the status of the problem.) It is easier to
discuss a version of the tiling problem that is slightly less general than the simple
unbounded domino problem of Chapter 8. This particular version of the problem
asks whether the set T of tile types can be used to tile the upper half of the infinite
integer grid, but with the additional requirement that the first tile in T , call it t , is
to be placed somewhere along the bottom row. To show that this tiling problem is
undecidable we describe a reduction of the halting problem for Turing machines to
it (actually, the nonhalting problem, as explained below). In other words, we want
to show that if we could decide the tiling problem we could also decide whether a
given Turing machine M can halt on a given input X .

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

242 III. Limitations and Robustness

Turing
machine M

aab*bba input X

particular
tile type t

(hypothetical) solution
to half-grid tiling problem

yes: it can

M halts on XYES

YES

NO

NO

M does not
halt on X

no: T cannot tile
upper half-grid with
t appearing on bottom row

finite set T
of tile types

final result:
(hypothetical) solution

to halting problem
for Turing machines

transform
Turing machine and input

into
tile types

solve
half-grid tiling problem
with particular tile on

bottom row

NOYES

Figure 9.9

Reducing halting
Turing machines to
tiling half-grids.
(Notice how “yes” and
“no” switch roles.)

Assume, then, that we have a hypothetical solution to the tiling problem just
described. We are now given a Turing machine M and an input word X . We would
like to show how to construct a set of tile types T , containing a particular tile t , such
that M does not halt on X precisely if T can tile the upper half-grid with t appearing
somewhere along the bottom row. See Figure 9.9. We shall not describe the details
of the transformation itself, only its uderlying idea. You are invited to try to work
out these details.

The idea is very simple. The tile set T is constructed in such a way that tiling the
half-grid in the upward direction corresponds to making progress in the computation
of the Turing machine M on X . The effect is achieved by making each row of tiles
encode, using appropriate colors, the current contents of M’s infinite tape, together
with the current state and the location of the head within the tape. (Since there
are only finitely many states and symbols, combinations of them can be encoded
with finitely many colors.) In this way, each legal tiling of a row represents a legal
configuration (that is, complete status) of the Turing machine. Moreover, the tiles
are constructed to guarantee that progressing upward from tiled row to tiled row
is possible only in precise accordance with the instructions given in M’s transition
diagram. This is done by allowing in T only tiles whose bottom colors (which
merely “copy” M’s previous configuration from the previous row of tiles by the

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

9. Algorithmic Universality and Its Robustness 243

color-matching constraint) are related to the top colors (which encode M’s new
configuration) by the legal transitions in M’s transition diagram. In this way, the
ability to extend part of a tiling upwards by one more row is precisely the same as the
ability to carry out one more step of M’s computation, reaching a new configuration.
The special tile t , the one that has to appear in the bottom row, is constructed to
encode the start state of the Turing machine and the beginning of the input word X .
Other bottom row tiles encode the rest of X , guaranteeing that the first row in any
possible tiling faithfully represents the starting configuration of the machine.

We are thus mapping Turing machine computations onto tiled portions of the
upper half of the grid, where the horizontal dimension corresponds to memory
space (the tape) and the vertical dimension to time. It is then fair to say that tiling
with colored tiles and computing with algorithms are almost the same thing.

Figure 9.10 shows the tiling that results from the tile set constructed for the
palindrome machine of Figure 9.4 and the input sequence “a b b a”. The figure is thus
a faithful tile version of the computation depicted in Figure 9.5. (For conciseness, we
have abbreviated the names of states as follows: mark becomes mk, movea becomes
mva , testa becomes tsa and return becomes r t . Also, to make the connection with
Figure 9.4 clearer, we write the explicit combinations of symbols instead of the
colors that encode them.) Notice how the rows correspond perfectly to the frames
of Figure 9.5. In this example the tiling cannot be continued upwards because the
machine halts and cannot continue its computation.

From all this it follows that any possible tiling of the entire upper half-grid with
the tile types of T , in which t appears in the bottom row, corresponds directly to an
infinite computation of M on X . Consequently, if the half-grid tiling problem were
decidable, i.e., if we could decide whether T can tile the half-grid with t appearing in
the first row, the non-halting problem for Turing machines would be decidable too,
as illustrated in Figure 9.9. But since the halting problem is not decidable, neither
is the nonhalting problem (why?), so that as a result the tiling problem cannot be
decidable either.

� �

� One-Way Turing Machines, or Finite-State Automata

We have seen that certain restrictions on Turing machines (such as using a tape that
is infinite only to the right) do not detract from the universality of the model; the
class of solvable problems remains the same even when the model is so restricted.
Clearly, not all restrictions have this property. Machines that are required to halt
immediately upon starting cannot do very much, and the same goes for those that
are not allowed to halt at all. These examples, however, are not very interesting.
In the interim many kinds of limitations can be imposed on universal models of
computation, and on Turing machines in particular, which result in weaker classes
of problems that are nevertheless of great interest.

One obvious approach is to restrict the machine’s use of resources. We already
know that the class P is obtained by allowing only Turing machines that halt within
a polynomial amount of time. PSPACE is the class obtained by allowing Turing

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

244 III. Limitations and Robustness

tiling cannot be
continued upwards

because nothing can
be placed here! #

#

#

#

#

#
#

#

#

#

#

#

#

#
#

#

#

#

#

#
#

#

#
#

#

#

#

#

#

#

#

#

#
#

#

#

#

#

#

#

#
#

#

#

#

#

#

#

#

#

#
#

#

6

15

16

5

4

3

2

1

YES, #

YES+
YES+

mk, #
mk, #

mk+ mk+

rt,

#

#
#

#
#

#
#

#
#

#
#

#

#
#

#
#

#
#

#
#

#
#

#

#
#

#
#

#
#

#
#

#

#
#

#
#

#
#

#
#

#

#
#

#
#

#
#

#
#

#
#

#
0 0 0 0 0 1 1 2 2 3 3 4 4 4 4 4

mk, a
mk, a

mva, b
mva, b

mvamva

mva, b
mva, b

mva mva

mva mva

mva, #
mva, #

mva, a
mva, a

mva mva

a
ab

b

b
b

b
b

b
b

b
b

b
b

a
a

a
a

a
a

b

b
b

b
b

b tsa,a

ts+
a ts+

a

Figure 9.10

The tiling
corresponding to the
computation of
Figure 9.5.

machines access to only a polynomial amount of tape (any attempt to go beyond the
limit is punished, say, by halting in state NO). Other complexity classes can similarly
be defined as consisting of the problems solvable by appropriately resource-bounded
Turing machines.

There is, however, another approach to restricting the Turing machine model.
It involves limiting the machine’s very mechanism. One of the most interesting of
these downgrades is obtained by allowing Turing machines to travel along the tape in
only one fixed direction—say to the right. The result is a device called a finite-state
automaton, or simply a finite automaton for short.

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

9. Algorithmic Universality and Its Robustness 245

Let us think about this for a moment. If the machine is not allowed to move left
it cannot inspect any square more than once. In particular, it cannot make use of
anything it writes down itself, save to produce output, since it cannot go back to
read its own notes, so to speak. Therefore, if the discussion is restricted to decision
problems, which do not produce outputs anyway, we can assume that finite automata
do not write at all; saying “yes” or “no” can be achieved via two special halting
states, and the new symbols it writes down as it moves along are worthless, having
no effect whatsoever on the automaton’s final verdict. Moreover, to the right of the
input sequence the tape contains only blanks; thus, the automaton might as well stop
when it reaches the end of the input sequence, since it is not going to see anything
new that will make a difference.

In conclusion, a finite automaton solving a decision problem acts as follows. It
simply runs through the input sequence of symbols, one by one, changing states as
a result of the current state and the new symbol it sees. When it reaches the end of
the input sequence it stops, and the answer depends upon whether it stopped in state
YES or NO. (By convention, we shall consider stopping in any other state to be like
saying “no,” so that a finite automaton need not have a NO state; if it is in the YES
state when it reaches the end of the input the answer is “yes,” and otherwise it is
“no.”) We can describe a finite automaton as a state transition diagram, just as we
did for Turing machines, but now we have no need for the 〈b, L〉 or 〈b, R〉 part of
the labels; a transition is labeled only with the symbol that triggers it.

� The Power of Finite Automata

What are finite automata capable of? Figure 9.11 shows a finite automaton that
decides whether or not its input sequence of a’s and b’s contains an even number of
a’s. (What does the automaton of Figure 9.12 do?) Answering questions of parity

YES

b b

a

a

Figure 9.11

A finite automaton
that detects words
with an even number
of a’s.

YES

a

a

a

a

b b b b

Figure 9.12

What does this
automaton detect?

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

246 III. Limitations and Robustness

(that is, evenness and oddness) might appear at first to require the ability to count.
It does not. The automaton of Figure 9.11 does the job not by counting how many
a’s it has seen, but by alternating between two states that indicate the current parity
status of that number.

In fact, it is quite easy to show that finite automata cannot count. As an illustration,
let us convince ourselves that no finite automaton can decide whether its input
sequence contains precisely the same number of a’s and b’s.

� The proof will be by way of contradiction. Assume that some automaton F can indeed
solve this decision problem, meaning that for any sequence of a’s and b’s, F says “yes”
precisely if the number of occurrences of both is equal. Denote by N the number of states
in F . Consider the sequence X that consists of precisely N + 1 a’s followed by N + 1 b’s.
Obviously, our automaton must say “yes” when handed X as an input, since X has the
same number of a’s and b’s.

The argument now uses the so-called pigeonhole principle: if all the pigeons have
to enter pigeonholes, but there are more pigeons than holes, then at least one hole will
have to accommodate more than one pigeon. In our case the pigeons are the N + 1 a’s
constituting the first half of the input sequence X , and the holes are the N states of the
automaton F . As F moves along X there must be at least two different tape squares,
or positions, within the initial sequence of a’s where F will be in the same state. For
definiteness, assume that N is 9, that the two positions are the third and the seventh, and
that the common state entered in the two cases is s (see Figure 9.13). Now, F cannot
move backwards, cannot jot any information down, and acts solely on the basis of the
one symbol it sees and its current state. It is therefore obvious that when it reaches the
seventh square its behavior on the rest of the input will not depend on anything it has
seen earlier except by way of the fact that it is now in state s. Consequently, if we were
to remove squares 3 through 6, resulting in a sequence of 6 a’s, not 10, followed by the
10 b’s, the automaton F would still reach the third a in state s and would proceed just as
if it had reached the seventh a in the original sequence. In particular, since it said “yes”
on the original sequence, it will say “yes” on the new one. But the new sequence has

in state s in state s

in state s

remove these

automaton behaves here
precisely as on

original sequence X

Original sequence X:

New sequence

YES!

YES!
(should be NO!)

a

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

a a a a a a a a a b b b b b b b b b b

a

1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10

a a a a a b b b b b b b b b b

Figure 9.13

Applying the
pigeonhole principle
to a finite automaton.

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

9. Algorithmic Universality and Its Robustness 247

display
time

update
hour

update
10 min.

update
watch

update
min.

stopwatch

display
date

display
alarm

c pressed

c pressed

c pressed
c pressed

c pressed

b pressed

b pressed

b pressed

c pressed

a pressed

a pressed

a pressed

d pressed

d pressed
Figure 9.14

An automaton
describing a simple
digital watch.

6 a’s and 10 b’s, and our assumption to the effect that F says “yes” only on sequences
with the same number of a’s and b’s is thus contradicted. The conclusion is that no finite
automaton can solve this decision problem.

You might enjoy constructing a similar proof, also using the pigeonhole principle,
to show that finite automata cannot detect palindromes.

Finite automata are indeed very limited, but they do capture the way many ev-
eryday systems work. For example, Figure 9.14 shows a finite-state automaton
describing part of the behavior of a simple digital watch, with four control buttons,
a, b, c, and d . The names of the states are self-explanatory, and we can associate with
each state detailed descriptions of the actions that are carried out therein. Notice
that the input symbols are really the signals, or events, that enter the system from
its outside environment—in this case, the user pressing buttons. An input word is
thus just a sequence of incoming signals. In Chapter 14 we shall further discuss this
correspondence.

� �

� Research on Abstract Models of Computation

In a sense, the material of this chapter forms the underpinnings of nearly all the
topics mentioned in the book so far. Primitive models of computation, whether they
are universal, like Turing machines and counter programs, or less powerful, like
finite automata or resource-bounded models, are extremely important objects for
research in computer science. They focus attention on the essential properties of

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

248 III. Limitations and Robustness

real algorithmic devices, such as computers and programming languages, and give
rise to fundamental and robust notions that are insensitive to the particular device
used.

In Chapters 7 and 8 we touched upon the research areas of computational complex-
ity and undecidability, both of which use the likes of Turing machines and counter
programs in an essential way. Finite automata are the basis of a very large body of
research, of both theoretical and practical nature, which has fundamental implica-
tions to such diverse areas as the design of power stations and the understanding of
the brain.

Other restrictions of Turing machines have been, and are still being, heavily stud-
ied, in the research areas of automata and formal language theory. Notable among
these are pushdown automata, which can be viewed as finite automata endowed
with a stack, upon which symbols can be pushed, read off the top, and popped.
Pushdown automata are of importance in a variety of endeavors, including compiler
design and structural linguistics, as they can be used to represent recursively-defined
syntactical structures, such as computer programs or legal sentences in English. It
turns out, for example, that in terms of the classes of problems they can solve, non-
deterministic pushdown automata are more powerful than deterministic ones, a fact
that is not true either for the weaker finite automata or for the stronger Turing ma-
chines. For example, a nondeterministic pushdown automaton can be constructed to
detect palindromes (how?), but it is possible to prove that no deterministic pushdown
automaton can do so.

Researchers are interested in decision problems involving the models themselves.
For example, we know that algorithmic equivalence is undecidable, so that, in
particular, it is undecidable whether two given Turing machines solve the same
algorithmic problem. However, if we go all the way down to finite automata,
equivalence becomes decidable. As to pushdown automata, the story is as fol-
lows. For the nondeterministic case, equivalence is undecidable, which is an old
and well-known result. In contrast, for deterministic pushdown automata the ques-
tion was considered to be one of the hardest unresolved problems in the theory
of automata and formal languages. A few years ago it was finally resolved, in
the affirmative. Hence, we now know that equivalence is decidable for determin-
istic pushdown automata too, resulting in an interesting decidability difference
between the deterministic and nondeterministic versions of the same model of
computation.

By the way, whenever such decision problems are found to be decidable, research
turns to the task of determining their computational complexity, and, here too, many
interesting and applicable results have emerged.

Scientists are also interested in finding the right “CT thesis” for certain variants
of the standard notions of computability and tractability. One case that has been
addressed is that of databases, where the following questions are of interest. What
is the basic universal notion of a “computable” query on a database or knowledge
base? What are the “Turing machines” of databases? There is no real value in trying
to answer the question naively by encoding databases on Turing machine tapes and
appealing to the standard theory of Turing machines. While this can be done, of
course, the resulting linearization of the databases may, by its very nature, enforce
an order on sets of data items that are not intended to be ordered in any particular
way (say a list of equally important employees). Queries should not be allowed to

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

9. Algorithmic Universality and Its Robustness 249

make use of an ordering on such data items, and any proposed universal model or
language for database queries should reflect that fact.

The research areas of computability theory, automata and formal language theory,
recursive function theory, and complexity theory, are thus closely interrelated. Ever
since the pioneering work of the 1930s, abstract models of computation have played
a crucial role in obtaining fundamental results in these areas, thus forming the basis
for many of the most important developments in algorithmics.

� Exercises
9.1. (a) Write an algorithm for “linearizing” a two-dimensional array A. The input includes

two positive integers M and N , and an array A of size M × N . The expression A[I, J]
returns the value of A at the I th row and J th column. The result of the linearization
should be produced in a vector B, such that each B[K] can be a value in the linearized
form, an intra-rows separator, or an end-of-vector marker.

(b) Write an algorithm which, given a linearized list, reconstructs the original two-
dimensional array A. The number of rows and columns is not given as part of the
input; rather, it too should be calculated by the algorithm.

(c) Write subroutines that perform the following operations on a two-dimensional array
given in the linearized form. Do not reconstruct the array.
� Return A[I, J].
� Replace A[I, J] by the new value E .
� Zero all elements of row number I .
� Delete all elements of column number J . (In other words, the array A is “collapsed”

by eliminating the entire column.)
� Add a new column after column J , such that the value of A at row I and the new

column is the maximum value of row I − 1 in the original array. (At the first row
take the maximum of the last row.)

9.2. (a) Write an algorithm for “linearizing” a tree using the method described in the text. The
tree is given by a pointer to its root R, and can be accessed by the operations value(N),
#offspring(N) and offspring(I, N), returning for a (pointer to) node N the value
stored in it, the number of its offspring, and a pointer to its I th offspring, respectively.
The result of the linearization should be produced in a vector B, such that each B[K]
can be a value, a left or right parenthesis symbol, or the end-of-vector marker.

(b) Write an algorithm which, given a linearized tree, reconstructs the original tree.
You may use the operations value(N) ← E , #offspring(N) ← I , and offspring
(I, N) ← M , with the obvious semantics.

(c) Write subroutines that perform the following operations on a linearized tree. Do not
reconstruct the tree.
� Return the index (in B) of the I th offspring of the node stored at index K .
� Return the value of the I th offspring of the node stored at index K .
� Delete the leaf stored at index K .
� Return the number of offspring of the node stored at index K .
� Add an I th offspring with value E to the node stored at index K . That is, the

previous I th offspring becomes the I + 1st, etc. If the node stored at index K has
less than I − 1 offspring, add enough offspring, all with the value E .

9.3. (a) Construct a Turing machine that performs unary addition.
(b) Construct the complete transition table (or diagram) of a Turing machine that performs

binary addition.

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

250 III. Limitations and Robustness

(c) Construct the complete transition table (or diagram) of a Turing machine that performs
decimal addition.

(d) Describe informally an algorithm that, given an integer N > 1, produces a Turing
machine description for performing N -ary addition.

9.4. Describe informally Turing machines that, given a linearized two-dimensional array in
the form shown in Figure 9.1, and the appropriate parameters, perform the operations
described in Exercise 9.1(c).

9.5. Describe informally the operation of a Turing machine that solves the general monkey
puzzle problem.

9.6. Does the CT thesis hold for a computer with an input device of unlimited size, say, a
PC with an unlimited stock of read-only diskettes, but with only a limited amount of
additional memory, say, nothing additional except a 40 MB disk? Justify your answer
rigorously. (Hint: either sketch a simulation of a Turing machine on such a computer, or
exhibit a decidable problem that is not solvable on it.)

9.7. Show that none of the following limitations on Turing machines actually weakens the
formalism. That is, for each Turing machine in the standard formalism, show that there
exists one that obeys the limitation but computes precisely the same function.
(a) The machine is not permitted to simultaneously write on the tape and move its head

on a single transition.
(b) There exists an upper bound of five on the number of times the machine is allowed to

write on any tape square.

9.8. Show that none of the following additions to Turing machines actually adds computational
power to the formalism. That is, for each Turing machine with the additional feature, show
that there exists a standard one that computes precisely the same function.
(a) The machine may, in a single transition, exchange two tape symbols throughout the

entire tape.
(b) The machine may have several tapes, with one head operating on each tape (simulta-

neous transitions).
(c) The machine has two tapes, and can switch tapes at will. That is, the tape presently

considered “first” becomes “second” and vice versa. The head’s position on each
actual tape is preserved.

(d) The machine operates on a two-dimensional tape (a grid), with left, right, up, and
down movements.

9.9. Describe in detail a (possibly nondeterministic) Turing machine that solves the word
correspondence problem whenever a correspondence exists, and may not halt otherwise.
For simplicity, consider only instances with three Xs and three Y s. You may employ any
convenient representation of the input.

9.10. Write counter programs that compute the following:
(a) The integer power function N M .
(b) The least prime number greater than a given integer N .
(c) The integer square root (i.e., the integer part of the square root) of a given inte-

ger N . (For example, the integer square roots of 12, 16, and 26, are 3, 4, and 5,
respectively.)

9.11. Write a modified counter program which, for a given integer N , checks whether the
decimal string representing X forms a palindrome. (For example, 121 and 3663 are palin-
dromes, but 12 is not.)

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

9. Algorithmic Universality and Its Robustness 251

9.12. Write a universal Turing machine simulator in some high-level programming language.

9.13. Write a universal counter program simulator in some high-level programming language.

9.14. Explain why the choice of the number base is unimportant when referring to the modifi-
cation of counter programs that enables them to manipulate whole digits.

9.15. (a) Why does the polynomial-time equivalence of models of computation prove that
EXPTIME is robust too?

(b) Does the same hold for NP and PSPACE? If not, what additional fact do we need to
make it hold?

9.16. Assume we could establish linear-time equivalence of models of computation. What other
complexity classes would become robust in the sense described in the text?

9.17. Find the O(N × log N) method hinted at in the text for comparing the number of a’s and
b’s in a sequence by an ordinary Turing machine.

9.18. (a) Show in detail how to construct the tile set T suggested in the text, with the property
that the given Turing machine halts on the given input precisely if T can tile the upper
half-grid with a specific tile t appearing somewhere along the bottom row.

(b) Enhance the method used in the text to prove that the problem of whether T can tile
the entire grid with t appearing somewhere is undecidable.

(c) Explain why the fact that the halting problem in undecidable implies that the
nonhalting problem is undecidable too?

9.19. Construct in detail finite automata that perform the following tasks.

(a) Recognize a sequence of symbols representing a PASCAL real number.
(b) Recognize a sequence of symbols representing a comment in C, C++, or JAVA.
(c) Add 1 to a binary number. That is, convert a sequence of the form a1, a2, . . . , ak ,

k ≥ 1, where all the ai ’s are either 0 or 1, representing the binary number A =
akak−1 . . . a1, into a sequence b1, b2, . . . , bn , n ≥ k, representing the binary number
B = bnbn−1 . . . b1, such that B = A + 1.

(d) Add 3 to a decimal number.

9.20. Prove that deterministic finite automata (acceptors) are closed under union, intersection,
concatenation, iteration, and complementation. That is, given two deterministic automata
A and B, show that:

(a) There exists a deterministic automaton C which accepts a sequence precisely if at
least one of A or B accepts it.

(b) There exists a deterministic automaton C which accepts a sequence precisely if both
A and B accept it.

(c) There exists a deterministic automaton C which accepts a sequence precisely if it is
the concatenation w = w1w2 of two sequences w1 and w2, such that A accepts w1

and B accepts w2.
(d) There exists a deterministic automaton C which accepts a sequence precisely if it

is the concatenation w = w1w2 . . . wk of k sequences, for some k ≥ 1, such that A
accepts each of the sequences wi .

(e) There exists a deterministic automaton C which accepts a sequence precisely if A
does not accept it.

9.21. Prove that deterministic and nondeterministic finite automata have equivalent computa-
tional power. (Hint: given a nondeterministic automaton A, construct a deterministic one
whose states are labeled by subsets of the set of states of A.)

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

252 III. Limitations and Robustness

9.22. Construct a nondeterministic finite automaton and an equivalent deterministic one, that
accept those sequences over the set of symbols {a, b, c, d}, such that at least one symbol
appears precisely twice along the sequence.

9.23. Prove the decidability of the following problems for finite automata:

(a) The nonemptiness problem (i.e., given an automaton A, does it accept any sequence
at all?).

(b) The equivalence problem (i.e., given two automata A and B, do they accept precisely
the same sequences?).

9.24. Show that for decision problems, Turing machines that are not allowed to write at all are
really equivalent to finite automata.

9.25. Use the results you have proved in Exercises 9.20 and 9.23, in order to prove that the
unrestricted word correspondence problem, described in Chapter 8, is decidable. (Hint:
given the Xs and Y s, construct a nondeterministic automaton that recognizes sequences
that are formed from one or more segments, each segment being one of the Xs, and a
similar automaton for the Y s.)

9.26. Prove that the following sets of symbol sequences cannot be recognized by finite automata:

(a) Well-formed arithmetic expressions, constructed from integers, arithmetic operators
(“+”, “−”, “×”, and “/”), and left and right parentheses.

(b) Legal LISP lists.

The model of pushdown automata is an extension of that of finite automata. We will
consider pushdown acceptors only. A pushdown automaton has, in addition to an internal
state and a read-only, right-moving-only head, an unbounded stack, i.e., a LIFO store of
which symbols from a special finite stack alphabet can be pushed, popped (whenever
there is any element to be popped), and compared against the top element. (Stacks as data
types are described in the text in Chapter 2.)

In addition to using its internal state and input symbol to determine its next transition,
a pushdown automaton also uses the value of the top element of the stack to make the
transition. Upon performing a transition, the automaton may pop the top element from
the stack, and may in addition push another symbol into it.

9.27. Construct (nondeterministic) pushdown automata that recognize the following sets.

(a) Palindromes.
(b) Arithmetic expressions, as defined in Exercise 9.26(a).
(c) Well-formed formulas in the propositional calculus.

9.28. Consider the “programming language” of modified counter programs. A syntactically
legal program is a sequence of symbols as defined in the text, including separating
blanks and end-of-line symbols separating sentences. An identifier or label name is any
nonempty string of letters and digits beginning with a letter. The syntactical part of a
compiler is concerned with recognizing syntactically legal programs.

(a) Construct a pushdown automaton that recognizes syntactically legal counter
programs.

(b) Another method for recognizing programs is to separate the task into two subtasks:
lexical analysis and parsing.
� Construct a lexical analyzer for counter programs, i.e., a deterministic finite

automaton, which inputs a counter program and produces a sequence of token
symbols. These are single symbols that stand for a whole token, such as “an iden-
tifier,” “an assignment arrow,” “a + symbol,” “an end-of-sentence symbol,” “the
goto token,” etc.

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

9. Algorithmic Universality and Its Robustness 253

� Construct a parser, i.e., a pushdown automaton that accepts a sequence of token
symbols precisely if it is produced by the lexical analyzer upon reading a syntacti-
cally legal counter program.

(c) Discuss the methodological and computational differences between the above two
methods for recognizing syntactically legal programs. Can you provide a quantitative
measure that can be used to exhibit some of these differences?

9.29. Show that pushdown automata with two stacks are computationally equivalent to Turing
machines.

All things come alike to all

ECCLESIASTES 9: 2

P1: GDZ

PE002-09drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:24

254

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

P A R T I V

Relaxing the Rules

so shall it be easier for thyself

EXODUS 18: 22

255

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

256

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

C H A P T E R 1 0

Parallelism, Concurrency,
and Alternative Models

or, Getting Lots of Stuff Done at Once

many shall run to
and fro, and
knowledge shall
be increased

DANIEL 12: 4

The fact that computing doesn’t bring only good news has pushed researchers in a
number of directions, intended to try and alleviate the problem. In this chapter we
shall discuss some of the most interesting of these: parallelism and concurrency,
quantum computing, and molecular computing. Each of these represents a new
algorithmic paradigm, and they all do so by relaxing a fundamental assumption un-
derlying conventional computing, namely that an algorithm is carried out by the little
processor Runaround, working all on its own. Parallelism and concurrency concern
setting things up directly so that several processors (or several little Runarounds) do
the work together, in cooperation. Quantum computing transfers computation into
the mysterious realm of quantum mechanics, whereby parallelism stems from the
ability of particles to be in more than one place simultaneously. And molecular, or
biological, computing represents an attempt to have molecules do the work for us
by massive, seemingly redundant, parallelism.

To get a feeling for parallelism, consider the following. Several years ago there was
a contest in the Los Angeles area for the world title in fast house building. Certain
rigid rules had to be adhered to, involving things like the number of rooms, the
utilities required, and allowed building materials. No prefabrication was permitted,
but the foundations could be prepared ahead of time. A house was deemed finished
when people could literally start living in it; all plumbing and electricity had to be
in place and functioning perfectly, trees and grass had to adorn the yard, and so on.
No limit was placed on the size of the building team.

The winning company used a team of about 200 builders, and had the house ready
in a little over four hours!

This is a striking illustration of the benefits of parallelism: a single person working
alone would need a lot more time to complete the house. It was only by working
together, amid incredible feats of cooperation, coordination, and mutual effort, that
the task could be accomplished in so short a time. Parallel computation allows many
computers, or many processors within a single computer, to work on a problem
together, in parallel.

257

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

258 IV. Relaxing the Rules

Quantum computing is a brand new approach to computation, based on quan-
tum mechanics, that tantalizing and paradoxical piece of twentieth-century physics.
So far, a few surprisingly efficient quantum algorithms have been discovered for
problems not known to be tractable in the “classical” sense. However, to work they
require the construction of a special quantum computer, something that as of now
is still very much nonexistent. Molecular computing, another very recent paradigm,
has enabled researchers to coax a molecular solvent to solve instances of certain
NP-complete problems, which raises interesting and exciting possibilities.

The rest of the chapter discusses these ideas, with parallelism and distributed
concurrency—the more classical of them—being treated in quite a bit more detail.

� Parallelism, or Joining Forces

Our main aim in this chapter is to examine the consequences of having many pro-
cessors achieve algorithmic goals jointly, by working together. This relaxation is
motivated in part by the desire to exploit parallelism in hardware, namely, the avail-
ability of so-called parallel computers, which consist of many separate processing
elements, cooperating and working in parallel. Later we shall also generalize the
rigid input/output notion of an algorithmic problem to cases involving perpetuity,
or ongoing behavior, that need not lead to termination at all. Such problems stem
from distributed environments of inherently parallel nature, such as flight reserva-
tion systems or telephone networks, and are also related to the system development
issues discussed in Chapters 13 and 14.

� Parallelism Helps

The house building story makes it obvious that doing things in parallel can work
wonders. Let us see what these wonders boil down to in terms of algorithmic effi-
ciency.

If an algorithm calls for the sequence of instructions:

X ← 3; Y ← 4,

then we could obviously save time by carrying them out simultaneously, in par-
allel. We must be very careful, however, not to “parallelize” just anything; if the
instructions were:

X ← 3; Y ← X

the story would be quite different, since following a parallel execution Y ’s new
value might be X ’s old value, rather than its new one, 3. Here the effect of the
second instruction depends on the results of the first, and hence the two cannot
be parallelized. Of course, they can be modified in ways that will circumvent the
problem, but in their original form they must be carried out in order.

To further illustrate the point, consider the problem of digging a ditch, one foot
deep, one foot wide, and 10 feet long. If a single person can dig a one-by-one-by-one

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

10. Parallelism, Concurrency, and Alternative Models 259

$21,000

$55,400

$138,600

$83,200

$34,400

$18,000

$65,200

$42,550

$68,550

$97,650

$547,200

$26,000

+

+

+

+

+

+

First step
(N/2 processors)

Second step
(N/4 processors)

log2 Nth step
(1 processor)

Figure 10.1

Summing salaries in
logarithmic time.

foot ditch in, say, an hour, 10 people could dig the desired ditch in one hour in the
obvious way. Parallelism is at its best here. However, if the desired ditch is to be
one foot wide, one foot long, and 10 feet deep, parallelism will achieve nothing, and
even 100 people would need 10 hours to get the job done.1

Some algorithmic problems can easily be parallelized, despite the fact that the first
solutions that come to mind are heavily sequential; they are not really inherently
sequential. Many of them can be solved far more efficiently by parallel processing.
Consider the salary summation problem of Chapter 1. It would perhaps appear
necessary to run through the list of employees in order, yielding the linear algorithm
described therein. Not so. A parallel algorithm can be devised that will run in
logarithmic time—a momentous improvement indeed, as shown in Chapter 6. The
method is to first consider the entire list of N employees in pairs, 〈first, second〉,
〈third, fourth〉, and so on, and to sum the two salaries in all pairs simultaneously, thus
yielding a list of N/2 new numbers (recall that N is the total number of employees).
This takes the time of only one addition, which we count here as a single time unit.
The new list is then also considered in pairs, and the two numbers in each are again
added simultaneously, yielding a new list of N/4 numbers. This continues until there
is only one number left; it is the sum of the salaries in the entire list. Figure 10.1
illustrates this simple idea. As explained in Chapter 6, the number of times N can
be divided by 2 until it reaches 1 is about log2 N , and hence the logarithmic time
bound. With the numbers of Chapter 6 in mind, it follows that 1000 salaries can be

1 A similar example involves nine couples trying to have a child in one month, rather than one couple
having it in nine months. . .

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

260 IV. Relaxing the Rules

summed in the time it takes to carry out just 10 additions, and a million salaries can
be summed in the time of only 20 additions.

� Fixed vs. Expanding Parallelism

Notice that to simultaneously carry out the 500 additions required in the first step of
summing 1000 salaries, we need 500 processors. The same ones can then be used to
carry out the 250 additions of the second stage in parallel (half of them, of course,
would be idle), then the 125 additions of the third stage, and so on. Of course, a large
number of processors alone is not enough; we also have to arrange the data in such a
way that the right numbers are quickly accessible to the right processors when they
need them. This is why good data structures and communication methods are crucial
to fast parallel algorithms. However, concentrating on the number of processors at
the moment, we see that in order to achieve the reduction from linear to logarithmic
time we need N/2 processors, a number that depends on N , the length of the input.
Indeed, this is necessarily the case, for if we had only a fixed number of processors
we could not improve things beyond the constant hidden under the big-O: we might
be able to do things twice as fast, or 100 times as fast, but it would still be linear,
that is, O(N), and there would not be an order-of-magnitude improvement.

You might claim that a growing number of processors is just not feasible. But then
neither is a growing amount of time or memory. The purpose of complexity measures
is to provide means for estimating the inherent difficulty of solving algorithmic
problems as inputs become larger, the estimate being given as a function of the
size of the input. If we are going to be summing lists of no more than a million
salaries, and if we have half a million processors at hand, we will need very little
time (roughly that of 20 additions). If we have fewer processors we can parallelize
up to a point; that is, up to a certain depth in the tree of Figure 10.1. From that
point on, a mixture of parallelism and sequentiality will have to be used. Clearly,
the result will not be as good.

To achieve an order-of-magnitude improvement, therefore, requires expanding
parallelism—that is, a number of processors that grows as N grows. However, that
number need not necessarily be N/2. For example, it is possible to add the salaries
in a list of length N in time O(

√
N) if

√
N processors are available—for example,

a million salaries in the time of about 1000 additions with 1000 processors. (Can
you see how?) Of course, the time of 1000 additions is not as good as that of 20, but
then 1000 processors are fewer than half a million, so that we get what we pay for,
so to speak.

� Sorting in Parallel

Sorting a list of length N (for example, putting a jumbled telephone book into order)
is an excellent problem for discussing the benefits of parallel processing. Consider
the mergesort algorithm of Chapter 4 (see Figure 4.3). It called for splitting the

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

10. Parallelism, Concurrency, and Alternative Models 261

input list into halves, sorting them both recursively, and then merging the sorted
halves. The merge is achieved by repeatedly comparing the currently smallest (first)
elements in the halves, resulting in one of them being sent off to the output. The
algorithm can be described schematically as follows:

subroutine sort-L:

(1) if L consists of one element then it is sorted;

(2) otherwise do the following:
(2.1) split L into two halves, L1 and L2;
(2.2) call sort-L1;
(2.3) call sort-L2;
(2.4) merge resulting lists into a single sorted list.

In Chapter 6 it was claimed that the time complexity of this algorithm is O(N ×
log N). Now, obviously, the two activities of sorting the halves (lines (2.2) and (2.3)
in the algorithm) do not interfere with each other, since they involve disjoint sets
of elements. Therefore, they can be carried out in parallel. Even parallelizing the
sorting of the halves only once, on the top level of the algorithm, resulting in the need
for just two processors, would improve things, but only within the big-O constant,
as already explained. However, we can carry out the two sorts in parallel on all
levels of the recursion, yielding the following:

subroutine parallel-sort-L:

(1) if L consists of one element then it is sorted;

(2) otherwise do the following:
(2.1) split L into two halves, L1 and L2;
(2.2) call parallel-sort-L1 and parallel-sort-L2, simultaneously;
(2.3) merge resulting lists into a single sorted list.

If followed meticulously, this algorithm can be seen to work very much like the
tree-based parallel summation algorithm of Figure 10.1. First, after diving down
to the bottom level of the recursion, it simultaneously compares the two elements
in each of the N/2 pairs, arranging each pair in the right order. It then, again
simultaneously, merges each pair of pairs into a sorted four-tuple, then each pair of
four-tuples into an eight-tuple, and so on. The first step takes the time of only one
comparison, the second takes three (why?), the third seven, the fourth fifteen, and
so on. Assuming for simplicity’s sake that N is a power of 2, the total number of
comparisons is:

1 + 3 + 7 + 15 + · · · (N − 1)

which is less than 2N . Hence the total time is linear. The price paid for improving
O(N × log N) to O(N) is the need for N/2 processors. Here, too, there is a tradeoff;
we can sort N elements in time O(N × log N) with one processor, or in linear time
with a linear number of processors. Actually, as we shall see later, we can do even
better.

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

262 IV. Relaxing the Rules

� The Product Complexity: Time × Size

The number of processors required by a parallel algorithm as a function of the length
of its input is one way of measuring the complexity of the hardware required to run
the algorithm. By abusing terminology slightly, we can call this measure simply the
size complexity of the algorithm, with the understanding that we do not mean either
the length of the algorithm or the amount of memory it requires, but, rather, the size
of the required army of processors.

Since both time measure and size play a role in the analysis of parallel algorithms
it is not clear how we should determine the relative superiority of such algorithms.
Is a slightly faster algorithm better, even if it uses many more processors? Or should
we make a small sacrifice in size in order to yield a significant saving in time?
One approach to estimating the quality of a parallel algorithm is to combine both
measures—multiplying time by size (see Figure 10.2). The algorithm with a better
product complexity is considered better. It is noteworthy that the best product
measure cannot be any less than the lower bound on the problem’s sequential-time
complexity, because it is possible to sequentialize any parallel algorithm. This is done
by simulating the actions of the various processors on a single processor, in an order
that is consistent with the order prescribed by the parallel algorithm. (For example,
if we were sequentializing the parallel mergesort algorithm, we would be allowed
to sort the two halves in any order, but both sorts would have to be completed before
the merging could be carried out.) The overall time this simulation takes is roughly
the total of all the time taken by all the processors; that is, the product time ×
size of the original parallel algorithm. Thus, if, hypothetically, we could find a
parallel sorting algorithm that took logarithmic time and used only O(N/ log N)

SEQUENTIAL

PARALLEL

Name

Bubblesort

Mergesort

Parallelized
mergesort

Odd-even
sorting network

“Optimal”
sorting network

1

1

O(N)

O(N)

O(N)

O(N × logN) O(N × logN)
(optimal)

O(N × logN)
(optimal)

O(N × (logN)2) O(N × (logN)4)O((logN)2)

O(logN)

O(N2)

O(N2)O(N2)

Size
(no. of processors)

Time
(worst case)

Product
(time × size)

Figure 10.2

The performance of
some sorting
algorithms.

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

10. Parallelism, Concurrency, and Alternative Models 263

processors, a sequentialized version could be derived that would run in time that
was on the order of the product, which is linear (why?). But this would contradict
the O(N × log N) lower bound on sequential sorting.

The best we can hope for, then, is a parallel sorting algorithm that exhibits the
optimal product performance of O(N × log N). In this sense, the sequential merge-
sort algorithm, for example, is optimal. But then again, it is not a parallel algo-
rithm. Particularly intriguing is the question of whether or not there exists a parallel,
comparison-based, sorting algorithm that runs in logarithmic time but requires only
a linear number of processors. This, in a way, would represent the ideal parallel sort-
ing routine—extremely fast, but of reasonable size. As we shall see, this problem
has been solved in the affirmative.

� �

� Networks: Fixed-Connection Parallelism

So far, we have said nothing about the way different processors cooperate. Obviously,
they do not work in total seclusion, since they have to pass on intermediate results
to each other. Even the simple parallel summation algorithm of Figure 10.1 requires
some kind of cooperation, between the processors that produce intermediate sums
and those that use them next. The performance of a parallel algorithm can vary
greatly under different cooperation methods.

One approach advocates shared memory, which means, roughly, that certain
variables or data structures are shared by many processors. Within this approach, it
is important to specify whether the sharing is only in reading the values from the
relevant memory, or also in writing them. If the latter approach is chosen, we have to
decide how to resolve writing conflicts (for example, two processors attempting to
write simultaneously into the very same variable or memory location), and the par-
ticular method chosen can make quite a difference in the resulting algorithmic power.

Unrestricted shared memory is considered unrealistic, mainly because when it
comes to building real parallel computers the pattern of interconnection becomes
impossibly complicated. Either each processor has to be connected to essentially
every memory location, or (if the memory is physically distributed between the
processors) every processor has to be connected to every other one. In both cases
this is usually a hopeless situation: if the required number of processors grows with
N , as is the case with all nontrivial parallel algorithms, the interconnections quickly
become unreasonably intricate.

A more realistic approach is to use fixed-connection networks, or just networks
for short, and to design parallel algorithms specifically for them. The word “fixed”
implies that each processor is connected to at most some fixed number of neighbor-
ing processors. In many cases it also means that the entire network is constructed
as a special-purpose machine, solving one particular algorithmic problem very ef-
ficiently. The processors in a special-purpose network typically have very limited
computational capabilities.

One well-known class of networks is the boolean networks, or boolean circuits,
named after the nineteenth-century logician George Boole, who invented the rules

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

264 IV. Relaxing the Rules

for manipulating the logical values true and false (and hence also the rules for
manipulating the corresponding bit values, 1 and 0). In a boolean network the
processors are called gates, and they compute simple logical functions of one or
two bit values. An AND gate produces a 1 precisely when both of its inputs are 1s,
an OR gate produces a 1 precisely when at least one of its two inputs is 1, and a
NOT gate inverts the value of its single input.

� In a certain sense, every effectively solvable algorithmic problem P can be solved by an
effectively computable uniform collection of boolean networks. To be able to state this
fact more precisely, think of the inputs of P as being encoded using just 0s and 1s. The
claim is that, for every such problem P , there is an algorithm (say a Turing machine)
that accepts a number input N and outputs the description of a boolean network that
solves the problem P for inputs consisting of N bits. However, this somewhat strange
kind of universality is not our reason for introducing networks. We are more interested in
networks that are especially designed to yield efficient solutions to specific problems.

� The Odd-Even Sorting Network

Special-purpose networks have been found for many problems, but most notably
for sorting and merging. A sorting network can be viewed as a special-purpose
computer architecture, providing a fixed interconnection pattern of extremely simple
processors, which cooperate to sort N elements in parallel. Most sorting networks
employ only one very simple kind of processor, called a comparator, which inputs
two elements and outputs them in order, as shown in Figure 10.3.

Let us illustrate the approach with the so-called odd-even sorting network. This
network is constructed recursively, using a rule for constructing the network for N
elements from networks for N/2 elements. We shall not provide a description of
this general rule here, but will illustrate with an example. Figure 10.4 shows the
network for the case when N is 8, with an example input list written in along the
lines. The portions of the network enclosed in dashed lines represent two odd-even
networks for 4 elements each. In a similar vein, a network for 16 elements would
have at its left-hand side two networks for 8 elements, identical to that of Figure 10.4.
The remaining portions of the odd-even network consist of various subnetworks for
merging sorted lists. What is clever about all of this is the way the subnetworks are
put together, as you will discover if you try to define the general recursive construc-
tion rule.

The time taken by the odd-even sorting network can be shown to be O((log N)2),
and its size (number of processors) is O(N × (log N)2), hence it is not optimal, as
the product of these is more than the optimum (see the table in Figure 10.2). A
breakthrough of sorts was achieved in 1983 with the advent of an ingenious sorting
network that uses O(N × log N) processors and takes only logarithmic time. Later,

X

Y

smaller of X and Y

larger of X and Y

Figure 10.3

A comparator used in
sorting networks.

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

10. Parallelism, Concurrency, and Alternative Models 265

7

7 7
7

7

7

3

3 3

3 3

3
8 8

8

8

6

6 6

6

6

6 6

4

4

4

4

4
4

1 45

5

5

5

5 5

1
2

2
2

2

2

2

1
1

Figure 10.4

The odd-even sorting
network for eight
elements.

this solution was combined with a variation of the odd-even network, to finally
yield an optimal logarithmic-time network of linear size. This, then, is the optimal
parallel sorting algorithm mentioned earlier. Unfortunately, besides being extremely
complicated, the big-O constants in both of these logarithmic-time networks are
huge, rendering them quite useless in practice for reasonably-sized N . In contrast,
the constants for many of the theoretically worse networks are very small; those of
the odd-even network, for example, are less than 1 (about 1

2 for the time measure
and 1

4 for size). Specifically, we can construct an odd-even sorting network with a
little over 1000 comparators, which will sort 100 elements in the time it takes to
carry out just 25 comparisons. For 1000 elements it would take just the time of about
55 comparisons, but we would need about 23,000 comparators. If time is a crucial
factor, and the lists to be sorted will all be of roughly the same length, a sorting
network such as this one becomes quite practical.

� More About Networks: Computing Weighted Averages

In the odd-even network each comparator is used only once in sorting a given
list. The input list arrives all together, and the entire life cycle of each comparator
consists of waiting for its own two inputs, comparing them, sending the maximum
and minimum along the appropriate output lines, and shutting itself off.

Other kinds of networks are characterized by processors that are activated re-
peatedly within a single run, in a regular kind of pattern. Such networks are some-
times termed systolic, the word deriving from the physiological term “systole,”
which refers to the repeated contractions responsible for pumping blood through our
bodies.

As an example, consider a teacher who is interested in computing the final grades
of N students in a course in which there are M examinations. Each examination has
a different weight associated with it, and the final grade is to be the weighted average
of those M examinations. The input grades are arranged in an N by M array, and the
weights are given by a list of M fractions, totaling 1. For each student, it is required
to multiply each grade by the appropriate weight and then to sum the M results.

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

266 IV. Relaxing the Rules

right ← left + (top × bottom)

91

82

70

65

94

80

55

49

81

71

72

74

71

86

90

65

62

81

84

70

(matrix is constantly in downwards motion)

exam 1

 exam 2

 exam 3

 e

xam M

student N

student 4

student 3

student 2

stu
dent 1

0

0.1 0.30.23 0.125

weight 1 weight 2 weight 3 weight M

list
 of
 final
 grades

Figure 10.5

A systolic network for
computing weighted
averages.

The final output is to be a list of the N final grades. A sequential algorithm would
obviously take time O(N × M), since one multiplication has to be performed for
each grade and each of the N students has a grade in each of the M exams.

Figure 10.5 shows a systolic network for solving this problem (which, in mathe-
matical terminology is called the matrix-by-vector multiplication problem). The
network consists of a linear arrangement of M interconnected processors. The array
of grades, the matrix, in technical terms, is fed into the network from the top in the
fashion shown, a diagonal row at a time. Thus, the network first accepts the grade of
student 1 in exam 1, then, simultaneously, student 2’s grade in exam 1 and student

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

10. Parallelism, Concurrency, and Alternative Models 267

1’s grade in exam 2, then, simultaneously, student 3’s grade in exam 1, 2’s grade
in exam 2 and 1’s grade in exam 3, and so on. The final step is to accept student
N ’s grade in exam M . The vector of weights, on the other hand, is constantly avail-
able along the bottom lines. Zeros are fed in from the left, and the output vector is
produced at the right, an element at a time. (This linear configuration is sometimes
called a pipeline arrangement, referring to the way in which each processor pipes
its output to the one to its right.) Each processor on its own is extremely simple:
whenever it receives a set of new inputs it just multiplies its top and bottom ones,
adds the product to the left-hand input and sends the result off to the right. The
algorithm induced by this network is clearly linear in N + M . Figure 10.6 shows
a simple step-by-step simulation of the network for the case of four students and
three exams.

Systolic networks have been constructed to solve many problems. The arrange-
ment of processors is typically linear, rectangular, or diamond shaped, and the
processors are either square, resulting in a so-called mesh-connected array, or
hexagonal, resulting in a beehive, as in Figure 10.7.

� �

� Can Parallelism Be Used to Solve the Unsolvable?

The facts we have discussed so far leave no doubt that parallelism can be used
to improve the time behavior of sequential algorithms. Problems that require a
certain amount of time for sequential solution can be solved faster, even in order-of-
magnitude terms, if (expanding) parallelism is allowed. It is natural to ask whether
parallelism can be used to solve problems that could not have been solved at all
without it. Can we devise a parallel algorithm for an undecidable problem? The
answer is no, since, as explained earlier, every parallel algorithm can be simulated
sequentially by a single processor, running around and doing everyone’s work in an
appropriate order. In this sense, the Church/Turing thesis applies to parallel models
of computation too: the class of solvable problems is insensitive even to the addition
of expanding parallelism.

The next question to ask is whether parallelism can turn intractable problems into
tractable ones. Is there a problem requiring an unreasonable (say, an exponential)
amount of time for sequential solution that can be solved in parallel in a reasonable
(that is, polynomial) amount of time?

To be able to better appreciate the subtlety of this question, let us first consider the
NP problems of Chapter 7. As you may recall, all problems in NP have reasonable
solutions that are nondeterministic; they employ a magic coin, which, if tossed when
confronted with a choice, will use its wizardry to point to the direction that leads to
a positive answer, if there is such a direction. Now, if we have an unlimited number
of processors, we do not need the magic coin: whenever a “crossroad” is reached we
can simply send new processors off to follow both possibilities simultaneously. If
one of the processors sent off ever comes back and says “yes,” the entire process halts
and says “yes” too; if the predetermined polynomial amount of time has elapsed

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

268 IV. Relaxing the Rules

0

0.3 0.45 0.25

0

0.3 0.45 0.25

0

0.3 0.45 0.25

0

0.3 0.45 0.25

55.562.7

0

0.3 0.45 0.25

0

0.3

27.625.5 57.3 53.4

0.45 0.25

0

0.3 0.45 0.25

80

92

85

71

70

78

62

80

70

78

62

80

74

90

96

51

74

90

96

51

74

90

96

51

80

92

70

78

62

70

78

74

90

9680

80

92

85

74

9070

70.05

74

85.2
77.4
70.05

74.0
85.2
77.4
70.05

77.4
70.05

21.3

(a) (b)

(c) (d)

(e) (f)

(g)

24

Figure 10.6

Simulating the
behavior of the
network of Figure
10.5.

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

10. Parallelism, Concurrency, and Alternative Models 269

BeehiveMesh connected

Figure 10.7

Two typical
arrangements of
processors for systolic
networks.

and none has said “yes,” the process halts and says “no.” Since the NP-ness of the
problem guarantees that if the answer is “yes” it will indeed be found by the magic
coin in a polynomial amount of time, our exhaustive, multiple-processor traversal
of all possibilities will find the “yes” in the same amount of time too. If it does not,
then the answer must be “no.”

The consequence is clear. The problems in NP, including the NP-complete ones,
such as monkey puzzles, traveling salesmen, and timetables, all have polynomial-
time parallel solutions. However, three comments should be made, before you rush
off to tell everyone that intractability is but a slightly bothersome consequence of
conventional one-processor models of computation, and that it can be eliminated
by using parallel computation. The first is that the number of processors required
to solve an NP-complete problem in a reasonable amount of time is itself expo-
nential. If we want to find out, in fewer than billions of years of computer time,
whether our local high school can come up with a class schedule to satisfy all
of its constraints, we would need a wholly unreasonable computer containing tril-
lions of intricately connected processors. This is something we shall return to in a
moment.

The second comment is rooted in the fact that the NP-complete problems are not
known to be intractable—they are merely conjectured to be so. Thus, the fact that
we can solve NP-complete problems in parallel in polynomial time does not imply
that parallelism can rid a problem of its inherent intractability, since we do not know
whether or not the NP-complete problems are actually intractable.

Finally, even if we have a parallel algorithm that uses only a polynomial number
of instructions but requires an exponential number of processors, it is far from clear
that we can really run the algorithm in polynomial time on a real parallel computer.
In fact, there are results that show that under quite liberal assumptions about the
width of communication lines and the speed of communication, a super-polynomial
number of processors would require a super-polynomial amount of real time to carry
out even a polynomial number of steps, no matter how the processors are packed
together. These results are based on the inherent limitations of three-dimensional
space. Thus, the complexity analysis of parallel computation with unreasonable size
seems to require more than merely estimating the number of processing steps; the
amount of communication, for example, is also crucial.

The question thus remains: can we use parallelism, even with unreasonably many
processors, to solve in a reasonable amount of time a problem that we can prove

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

270 IV. Relaxing the Rules

to be unsolvable sequentially in reasonable time? And this question is still open, as
will now be shown.

� The Parallel Computation Thesis

In Chapter 9 we saw that the Church/Turing thesis holds also in a refined sense,
whereby, under very natural assumptions, all sequential models of computation are
equivalent to within a polynomial amount of time. As a consequence, tractability,
and not only decidability, is insensitive to the choice of such a model. The thesis
claims that this situation will not change as new models are proposed.

A similar claim holds for parallel models of computation. Under natural assump-
tions, all universal models of expanding parallelism that have been suggested so
far, including numerous variants of shared-memory models, communication-based
models, uniform classes of networks, etc., can be shown to be polynomial-time
equivalent. Each model can be simulated by the other with at most a polynomial
loss of time. This means that, as in the sequential case, the class of problems solv-
able in parallel in polynomial time is also robust, in its own way; it does not depend
on the particular kind of parallel computer model chosen, nor on the programming
language used to program it.

As in the sequential case, we have to be careful here. Models that allow concurrent
reading and writing of the same variable may be exponentially more efficient than
ones which allow only reading and writing by one processor at a time. Without
getting into the details, it should be said that in order for this claim to be true the
basic instructions related to the simultaneous manipulation of low-level elements
must be of similar nature (just as the basic instructions for manipulating numbers
have to be comparable in order for the polynomial-time equivalence of sequential
models to hold).

This fact leads to one part of the so-called parallel computation thesis. It claims
that this situation too will not change as new models are suggested. In other words, up
to polynomial differences, the important complexity classes for parallel computation
are also robust, and will remain so even as science and technology make progress.
This half-thesis, however, is not quite enough, as it talks about parallelism only. We
also want to know whether there is any inherent relationship between sequentiality
and parallelism, as far as efficiency is concerned. All we know is that parallelism
does not help in solving totally unsolvable problems; but just how much better can
it make things for problems that are solvable?

To our help comes the second part of the parallel computation thesis. It claims
that (again, up to polynomial differences) parallel time is the same as sequential
memory space. If we can solve a problem sequentially using a certain amount of
space for inputs of length N , then we can solve it in parallel in time that is no worse
than a polynomial in that amount of space. It might be that amount squared, cubed,
or maybe even raised to the 100th power, but it will not be exponential in it. The
converse holds too: if we can solve a problem in parallel in a certain amount of
time for inputs of length N , we can also solve it sequentially using memory space
that is bounded by a polynomial in that amount of time. Of particular interest is
the special case of this general fact, in which the original amount of space is itself

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

10. Parallelism, Concurrency, and Alternative Models 271

a polynomial: any problem solvable sequentially using only a polynomial amount
of memory space is solvable in parallel in a polynomial amount of time, and vice
versa. Symbolically:

Sequential-PSPACE = Parallel-PTIME

Thus, the question of whether there are intractable problems that become tractable
with the introduction of parallelism boils down to whether the sequential complexity
class PSPACE contains intractable problems; that is, ones that can be proved to admit
no polynomial-time sequential solutions. This question, phrased purely in sequential
terms, is still open, and, like the P vs. NP problem, is probably very difficult too.

� Nick’s Class: Towards Reasonable Parallelism

In general, polynomial-time parallel algorithms cannot be claimed to be reasonable,
since they may require a totally unreasonable (that is, exponential) number of pro-
cessors. Moreover, one of the purposes of introducing parallelism is to drastically
reduce running time. In fact, one of the objectives here is to find sublinear algo-
rithms; that is, algorithms that are parallel to such an extent that they do not even
read the entire input sequentially (otherwise they would require at least linear time).
Hence, it would appear that Parallel-PTIME is not the best choice for the class of
problems that are tractable in the presence of parallelism. What then is the “right”
definition of parallel tractability?

One of the most interesting proposals regarding this question is a class of prob-
lems called NC (Nick’s class, after one of its first investigators). A problem is in
NC if it admits a very fast parallel solution, which requires only polynomially many
processors. “Very fast” is taken to mean that it runs in polylogarithmic time; that is,
in time that is some fixed power of the logarithm of N , like O(log N) or O((log N)2).
Salary summation, sorting, weighted average computation, and a host of other prob-
lems are all in NC (the first two by the algorithms described earlier, and the third by
an algorithm not described here). The NP-complete problems, for example, may or
may not be in NC—we do not know. All we were able to show was that they admit
polynomial-time parallel solutions; being in NC is a stronger requirement.

The class NC is robust in the same sense that classes like P, NP, and PSPACE
are. It remains insensitive to differences between the various models of parallel
computation, and hence can be used in the investigation of the inherent power of
parallelism. It can be shown, for example, that all problems in NC are also in P
(that is, in Sequential-PTIME), but the converse is not known to be true: is there a
problem that is tractable in the sequential sense (that is, in P) but not in this parallel
sense? Here too, as in the P vs. NP question, most researchers believe that the two
classes are distinct, so that P is different from NC. In particular, the problem of
finding the greatest common divisor of two integers (its gcd) is in P—Euclid found
a polynomial-time algorithm for it as early as 2300 years ago, as mentioned in
Chapter 1. However, the gcd problem is suspected not to be in NC. No one knows
how to exploit parallelism to significantly speed up the computation of this most
important quantity, the way we can speed up sorting and salary summation. That is,
each step of the classical gcd algorithm depends on previous steps, and no one has

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

272 IV. Relaxing the Rules

been able to find a way to remove some of this dependence so that parallelism can
be exploited beneficially.

Thus, we have

NC ⊆ P ⊆ NP ⊆ PSPACE

and many computer scientists believe that all three inclusions are actually strict.
Recalling the aforementioned connection between PSPACE and Parallel-PTIME,
this set of conjectured inequalities can be described (from right to left) by saying:

1. There are problems that can be solved in reasonable sequential space—that is, in
reasonable parallel time (but unreasonable hardware size)—that cannot be solved
in reasonable sequential time even with magical nondeterminism.

2. There are problems solvable in reasonable sequential time with magical nonde-
terminism that cannot be solved in such time without it.

3. There are problems solvable in reasonable sequential time that are not solvable
in very little parallel time with reasonable hardware size.

However, none of these inequalities is actually known to be strict, and hence it is
just possible (though very unlikely) that these classes of problems are actually all
equal. It should be mentioned that, as with NP vs. P, the P vs. NC question also gives
rise to a natural notion of completeness. Thus, although we do not know whether
P = NC, it is very helpful to show that a problem is P-complete, implying that if it
is in NC then all the problems in P are in NC too.

� �

� Distributed and Ongoing Concurrency

It would be nice to be able to end the discussion of explicit simultaneity here. And
why not? We have discussed parallel algorithms and their complexity, and have seen
how they can improve things, and to what extent. We have even admitted that we do
not know nearly as much about parallelism as we should. What, then, is missing?

Well, introducing parallelism in order to solve conventional algorithmic problems
more efficiently is only one of its facets. The other has to do with situations in which
parallelism is not something we introduce in order to improve things, but something
we have to live with because it’s just there.2 Also, it has to do with a different kind
of algorithmic problem, which does not always involve transforming inputs that are
given at the start into desired outputs that are produced at the end. Rather, it is what
one finds in many (indeed, most!) of the reactive and embedded systems we shall
discuss in Chapter 14. The problem involves specifying protocols of desired behavior
over time, so that the various properties required of that behavior are guaranteed
to hold. What makes these problems particularly difficult is that in many cases the
protocol that has to be described as their solution is not required to terminate at all.
It merely has to sit there forever, doing things that are always in accordance with
those requirements.

2 To keep the distinction clear we shall use the term concurrency, rather than parallelism, for this case.

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

10. Parallelism, Concurrency, and Alternative Models 273

In contrast with Chapters 13 and 14, here we are not interested in the general
problem of methods and languages for engineering the development of large and
complex systems, but in the small-scale, but ever so subtle, algorithmic problems
that arise therein.

Let us consider an example. Suppose a certain hotel has only one bathroom on each
floor. (Many inexpensive hotels are of this kind.) Also, suppose there is heating only
in the rooms—the corridor is unpleasantly chilly. (Many inexpensive hotels satisfy
this assumption too.) Every now and then guests have to take showers. (Most guests
in such hotels indeed do.) How should they go about satisfying these needs? They
cannot line up in front of the bathroom door, because of the shivering factor involved.

If a guest simply tries the bathroom door once in a while he or she might stay un-
clean forever, since quite possibly it will be occupied whenever the attempt is made.
This is true despite the fact that showers take only a finite amount of time; someone
else might always manage to get in first. We assume that the guests come from a
variety of countries and all speak different languages, so that direct communication
is out of the question.

One apparent solution calls for attaching a small blackboard to the exterior of the
bathroom door. Any guest leaving the bathroom erases the room number written on
the blackboard (it will be his or her own) and writes down the number of the next
room in some fixed order. (Think of the rooms on the floor as being arranged in a
cyclic order, so that each room has a unique predecessor and successor.) Unclean
guests simply walk up to the bathroom door every now and then, entering if their
own room number is written on the blackboard, and returning to their room if it is
not. Apparently, every guest will eventually get a turn to shower.

However, this solution still has severe problems. First, it is possible that room
number 16 is never occupied, that its occupant never wants to take a shower, or
he has just been kidnapped, never to be seen again. The blackboard will then have
a 16 written on it forever, and none of the other guests will ever become clean.
Secondly, even if all rooms are inhabited by live, available people, this solution
imposes an impossible one-shower-per-cycle discipline on all guests, forcing the
more fastidious ones to shower as rarely as those who could not care less.

This problem illustrates some of the main issues arising in the design of sys-
tems that are inherently distributed. Distributivity is a special kind of concurrency,
where the concurrent components are physically remote. Accordingly, people con-
cern themselves not only with figuring out what each component should do, and
doing the software engineering and project management the way it should, but also
with minimizing the amount of communication that takes place between the compo-
nents. Communication, whether explicit or implicit (say in the form of shared mem-
ory), can become extremely expensive in a distributed system. As before, we shall
use the term “processors” for the separate entities, or components, in a distributed
system.

The processors in an inherently concurrent or distributed system are not required
to achieve a mere input/output relationship, but rather to exhibit a certain desired
behavior over time. In fact, the system might not be required to terminate at all,
just as in the shower problem. Parts of the desired behavior can be stated as global
constraints. The shower, for example, carries with it a constraint stating that it can
accommodate at most one person at a time, and another relevant constraint states that
everyone needs the shower from time to time. Thus, the shower is really a crucial
resource, of the kind everyone needs for some finite amount of time, after which it

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

274 IV. Relaxing the Rules

can be given up for the benefit of someone else. Another important constraint in the
shower problem is that we must prevent deadlock situations, in which no progress
can be made by any processor (for example, in the blackboard solution when guest 16
never shows up), and starvation situations—sometimes called lockouts—in which
one or more of the processors, but not every one of them, is prevented from making
progress (for example, when guests are instructed to simply try the bathroom door
once in a while and the unlucky ones might be kept out forever).

These notions are typical of many real-world systems, of the kind discussed in
Chapters 13 and 14. Most standard computers, for example, have several crucial
resources, such as tape and disk drives, printers and plotters, and communication
channels. In a way, a computer’s memory can also be viewed as a crucial resource,
since we would not like two jobs that run together to simultaneously write on to
the same location. A flight reservation system, to give another example, is highly
distributed. It might consist of a worldwide network containing one large computer in
New York, another in Los Angeles, and 2000 terminals. It would be embarrassing if
two of the terminals assigned seat 25D on the same flight to two different passengers.
A flight reservation system is also not permitted to terminate. It has to keep working,
continuously making its resources available to any processors who request them,
while preventing deadlock and starvation.

These are really not algorithmic problems in the usual sense of the word. They
involve different kinds of requirements, and are not solved by ordinary algorithms.
A solution has to dictate algorithmic protocols for the behavior of each of the pro-
cessors, which guarantee fulfillment of all the requirements and constraints specified
in the problem, and for the entire (potentially infinite) lifetime of the system.

� Solving Hotel Shower Problems

The blackboard suggested for the problem of showering in inexpensive hotels can
be thought of as shared memory, and the shower as a crucial resource. Notice that
we have skirted the problem of writing conflicts by allowing no more than one guest
to write on the blackboard at any one time.

Let us now describe a satisfactory solution to this problem. Actually, we shall
solve a more difficult problem, in which there are bathrooms in every room, yet
no more than one guest is allowed to take a shower at any given time. (The reason
might have to do with the pressure or temperature of the water, another reasonable
assumption for inexpensive hotels.) This situation is clearly more delicate, since
there is no direct way of knowing if anyone is indeed taking a shower. Nevertheless,
the solution must ensure that everyone showers, but that two guests never shower
simultaneously.

A more general description of the problem is as follows. There are N processors,
each of which has to repeatedly carry out certain “private” activities, followed by a
critical section:

life cycle of the I th processor:

(1) do the following again and again forever:
(1.1) carry out private activities (for example, eat, read, sleep);
(1.2) carry out critical section (for example, take a shower).

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

10. Parallelism, Concurrency, and Alternative Models 275

The private activities are processor I ’s own business—they have nothing to do
with anyone else. The critical section, on the other hand, is everyone’s business, since
no two processors may be in their critical section simultaneously. The problem is
to find a way to enable the N processors to live their life forever, without deadlock
or starvation, while respecting the critical nature of the critical sections. We must
instruct the processors to carry out certain actions, like inspecting blackboards and
writing on them, before and/or after they enter their critical sections, so that these
requirements are met. When presented in this form, the problem is sometimes called
the mutual exclusion problem, as processors have to be guaranteed exclusivity in
entering the critical sections.

We shall discuss a solution for the case of two guests, or processors, P1 and P2.
The more general case for N processors is presented later. We shall be using three
variables, X1, X2, and Z , which, in the shower example, are represented by three
small areas on a blackboard that hangs in the corridor. Z can be either 1 or 2, and both
processors can change its value. In such cases we say that Z is a shared variable.
The Xs can be either yes or no, and they can be read by both processors but changed
only by the processor with the corresponding index; that is, P1 can change X1 and
P2 can change X2. In such cases we say that the Xs are distributed variables. The
initial value of both the Xs is no, and that of Z is either 1 or 2, it does not matter.
Here are the protocols for the two processors:

protocol for P1:

(1) do the following again and again forever:
(1.1) carry out private activities until entrance to critical section is desired;
(1.2) X1 ← yes;
(1.3) Z ← 1;
(1.4) wait until either X2 becomes no or Z becomes 2 (or both);
(1.5) carry out critical section;
(1.6) X1 ← no.

protocol for P2:

(1) do the following again and again forever:
(1.1) carry out private activities until entrance to critical section is desired;
(1.2) X2 ← yes;
(1.3) Z ← 2;
(1.4) wait until either X1 becomes no or Z becomes 1 (or both);
(1.5) carry out critical section;
(1.6) X2 ← no.

What is happening here? Well, think of X1 as being an indication of P1’s desire to
enter its critical section: X1 being yes means that it would like to enter, and X1 being
no means that it has finished and would like to go back to its private activities. X2

plays the same role for P2. The third variable, Z , is a courtesy indicator of sorts:
after P1 has made it clear that it wants to enter its critical section it immediately
sets Z to 1, indicating, in a very generous fashion, that, as far as it is concerned,
P2 can enter if it wants to. It then waits until either P2 has indicated that it has left
its own critical section and is back to its private activities (that is, X2 is no), or P2

has set the courtesy variable Z to 2, generously giving P1 the right of way. P2 acts

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

276 IV. Relaxing the Rules

in a similar way. (We can think of Z as representing the processors’ signatures in
a logbook. The last to sign in is the one who, most recently, has given the other
the right of way.) The waiting in clause (1.4) is sometimes called busy waiting, as
the processor cannot simply idle until it is prodded by someone else. Rather, it has
to keep checking the values of Z and the other processor’s X variable itself, while
doing nothing else in the meantime.

� Let us now see why this solution is correct. Well, first of all, we claim that P1 and
P2 cannot possibly be in their critical sections simultaneously. Assume that they can.
Obviously, during the time they are in their critical sections together, both X1 and X2

have the value yes, so that the last processor to enter must have entered by virtue of the
Z part of its waiting test in clause (1.4), since the other’s X value was yes. Obviously,
the two processors couldn’t have passed their tests at the very same time. (Why?) Let us
say that P1 passed the test first. Then Z must have been 1 when P2, later, passed its test.
This means that between the moment P2 set Z to 2 in its clause (1.3) and the moment
it passed its test in clause (1.4), P1 must have set Z to 1, and from that point on P2 did
nothing else until it entered its critical section by virtue of the fact that Z is 1. But then
how did P1 manage to enter its critical section earlier? It could not have entered by virtue
of the fact that Z is 2 because, as we have just said, it set Z to 1 after P2 set it to 2.
Also, it could not have entered by virtue of X2 being no because X2 was set to yes by
P2 before it set Z to 2. And so there is no way for P2 to enter its critical section as long
as P1 is in its own critical section. A similar argument holds for the dual possibility,
where P1 enters while P2 is already in. The conclusion is that mutual exclusion indeed
holds.

Let us see why starvation and deadlock are impossible. (Here starvation occurs when
one of the processors wants to enter its critical section but is forever prevented from doing
so, and deadlock occurs when neither processor can make progress.) The first thing to
note is that it is impossible for both processors to be stuck in their (1.4) clauses together,
because Z is always either 1 or 2, and one of them can therefore always free itself from
the wait. Now, assume that P1 is forced to stay in its (1.4) clause, while P2 does not. If
P2 never wants to enter its critical section, that is, it stays in clause (1.1), the value of X2

will be no and P1 will be free to enter whenever it wants to. The only other possibility is
that P2 continues to cycle around its protocol forever. In such a case it will sooner or later
set Z to 2, and since it can never change it back to 1 (only P1 can), P1 will eventually be
able to pass its test and enter (1.5). Thus, starvation and deadlock are prevented, and the
solution satisfies all the requirements.

� Things Are Trickier Than They Seem

This two-processor solution appears at first sight to be quite elementary, and the
correctness argument, while slightly involved, does not look overly complicated
either. However, this kind of simplicity can be quite deceptive. As an illustration of
just how delicate things really are, let us study a minor variation of the foregoing
solution.

What would happen if we switched the order of clauses (1.2) and (1.3) in the
protocols? In other words, when P1, for example, wants to enter its critical section,

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

10. Parallelism, Concurrency, and Alternative Models 277

it first does P2 the courtesy of setting Z to 1, letting it through if it wants, and only
then sets X1 to yes to indicate its own desire to enter. On the face of it, there seems to
be no difference: P1 can still enter its critical section only if P2 is either disinterested
(that is, if X2 is no) or is explicitly giving P1 the right of way (that is, if Z is 2).
What can go wrong?

At this point you should try to work through the informal proof of correctness
given, but for the amended version, to see where it fails. It does fail, and here is a
scenario that leads to both processors being in their critical sections simultaneously.
Initially, as agreed on, X1 is no and X2 is no, and both processors are busy with their
private activities. Now comes the following sequence of actions:

1. P2 sets Z to 2;

2. P1 sets Z to 1;

3. P1 sets X1 to yes;

4. P1 enters its critical section, by virtue of X2 being no;

5. P2 sets X2 to yes;

6. P2 enters its critical section, by virtue of Z being 1.

The problem, of course, is that now P2 can take a shower (that is, enter its critical
section) even though P1 is taking one itself, because P1 was the last to be courteous,
and hence Z ’s value is 1 when P2 indicates its desire to enter. In the original protocol
this was impossible, since the last thing P2 was required to do before entering was
to set Z to the unfavorable value 2.

Thus, even this apparently simple solution for two processors hides a certain
amount of subtlety. Let us now look at the general solution for N processors, which
is even more delicate.

� A Solution to the N-Processor Mutual Exclusion Problem

When there are more than two guests it is not enough just to say “I would like to
take a shower” and then to be courteous to one of the others. Neither will it do any
good to be courteous to all the others together and hope that everything will work
out nicely. We have to make our processors more sophisticated.

� Processors will be instructed to increase their insistence on entering the critical section as
they keep waiting. Each processor will thus run through a loop, each execution of which
will correspond to being at a higher level of insistence. The number of levels is precisely N ,
the total number of processors, and the first level (actually the zeroth) indicates disinterest
in entering the critical section. Each of the insistence levels has its own courtesy variable,
and at each level a processor is courteous to everyone else by writing its own number in
that variable. Once a processor has indicated its desire to increase its level of insistence,
and has been courteous to all the others, it waits to increase the level until either all
the others are less insistent than itself or it has been given the courtesy of proceeding
to the next level by someone else. The critical section is finally entered when the green

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

278 IV. Relaxing the Rules

light for proceeding beyond the highest level appears. Upon leaving the critical section,
a processor starts the whole procedure anew at the zeroth level.

Here is the protocol for the I th processor. In it, the vector Z is indexed by the insistence
levels, not by the processors. Thus, processor I sets Z [J] to I (not Z [I] to J as with the
X vector) to indicate that on level J it gives the right of way to everyone else. It is worth
noting that if N = 2 these protocols are precisely the ones just presented, so that this is
indeed a direct extension of the two-processor solution.

protocol for I th processor, PI :

(1) do the following again and again forever:
(1.1) carry out private activities until entrance to critical section is desired;
(1.2) for each J from 1 to N − 1 do the following:

(1.2.1) X [I] ← J ;
(1.2.2) Z [J] ← I ;
(1.2.3) wait until either X [K] < J for all K �= I , or Z [J] �= I ;

(1.3) carry out critical section:
(1.4) X [I] ← 0.

It is possible to provide an informal proof of correctness for this general case, along
the lines of the proof for the two-processor case. Here we show that at each level the
processors proceed only one at a time, so that, as a special case, there is at most one
processor in the critical section at any given time. Freedom from deadlock and starvation
is established similarly.

� �

� Safety and Liveness Properties

Distributed concurrent systems are in many senses more demanding than normal
sequential systems. The difficulties start with the very task of specifying the problem
and the properties desired of a solution. The “algorithmic problems” associated
with such systems can no longer be defined naively by specifying a set of legal
inputs together with a function describing the desired outputs. Correctness no longer
consists simply of termination plus the generation of correct outputs, and efficiency
can no longer be measured naively as the number of steps taken before termination
or the size of memory used. Consequently, techniques developed for proving the
correctness or estimating the efficiency of conventional algorithms are insufficient
when it comes to protocols that solve problems of concurrent and distributed nature.
Some aspects of these problems are discussed later on, in Chapters 13 and 14.

It turns out that most correctness requirements of protocols for ongoing concur-
rent systems fall into two main categories, safety and liveness properties. Safety
properties state that certain “bad” things must never happen, or, equivalently, that the
corresponding “good” things will always be the case, and liveness properties state
that certain “good” things will eventually happen. Mutual exclusion—preventing
two processors from being in their critical sections simultaneously—is a safety
property, since it asks for a guarantee that there will always be at most one proces-
sor in a critical section, whereas preventing starvation is a liveness property, since

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

10. Parallelism, Concurrency, and Alternative Models 279

it asks for a guarantee that any processor wanting to enter its critical section will
eventually be able to do so.

Interestingly, the partial correctness and termination properties of conventional
algorithms are special cases of safety and liveness. Partial correctness means that the
program must never terminate with the wrong outputs—clearly a safety property—
and termination means that the algorithm must eventually reach its logical end and
terminate—clearly a liveness property.

To show that a given protocol violates a safety property, it is enough to ex-
hibit a finite, legal sequence of actions that leads to the forbidden situation. This
was done for the erroneous version of the two-processor solution to the shower
problem, and is just like showing that an algorithm violates partial correctness by
exhibiting a terminating execution sequence with the wrong results. Showing that
a liveness property is violated is quite a different matter. We must somehow prove
the existence of an infinite sequence of actions that never leads to the promised
situation. This difference is actually one way of characterizing the two classes of
properties.

When it comes to ongoing concurrency, testing techniques are usually of little
help. We can become reasonably convinced of the correctness of an ordinary sorting
algorithm by trying it out on a number of standard lists of elements, and on some
“borderline” cases, such as lists with one element or none, or lists with all elements
equal. On the other hand, many of the errors that turn up in the realm of concurrent
systems have nothing to do with unexpected inputs. They stem from unexpected
interactions between processors, and the unpredictable order in which actions are
carried out. Proving the correctness of such systems, therefore, is more slippery and
error prone than that of conventional, sequential algorithms. A number of published
“solutions” to concurrent programming problems were later found to contain subtle
errors that eluded reviewers and readers alike, despite the presence of seemingly
valid arguments of correctness.

The need for formal verification is thus more acute here than in the sequential case,
and several approaches have indeed been proposed. Typically, those that deal with
safety properties are extensions of the intermediate-assertion method for verifying
partial correctness, and those tailored for liveness properties expand upon the method
of convergents for proving termination (see Chapter 5).

Showing that the parallel mergesort algorithm, for example, is partially correct
requires, among other things, a formal proof that the two processors assigned to
sorting the two halves of a list in parallel, on any level of the recursion, do not
interfere with each other. In this particular case, the processors working in parallel
do not interact at all, and such a proof is relatively easy to come by. When processors
do interact, as in the solution to the shower problem, things become much trickier.
We have to somehow verify the behavior of each individual processor in isolation,
taking into account all possible interactions with others, and then combine the proofs
into one whole.

Intermediate assertions cannot be used here in the usual way. A claim that an
assertion is true whenever a certain point in the protocol of processor P is reached
no longer depends on P’s actions alone. Moreover, even if the assertion is indeed
true at that point, it might become false before P’s next action, because another
processor was quick enough to change the value of some variable in the interim.
Certain formal proof methods overcome this problem by requiring the separate

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

280 IV. Relaxing the Rules

proofs to satisfy some kind of interference freedom property, which has to be proved
separately.

All this sounds quite complicated. In fact, it is. One of the reasons for presenting
only an informal proof of correctness for the simple solution to the two-processor
mutual exclusion problem was the rather technical nature of the formal proofs. In
principle, however, there are adequate proof methods, and, as in the sequential case,
formal proofs do always exist if the solutions are indeed correct, though discovering
them is, in principle, non-computable.

� Temporal Logic

In previous chapters dynamic logics were mentioned. These are formal frameworks
that can be used to specify and prove various properties of algorithms. It would be
nice if we were able to use such logics for specifying and proving the safety and
liveness properties of concurrent systems. As mentioned in Chapter 5, the central
logical construct used in dynamic logics is after(A, F), which means that F is true
after A terminates. Such logics are thus based on the input/output paradigm—that
of relating the situation before executing part of an algorithm to the situation after
the execution. When dealing with concurrency it seems essential to be able to talk
directly also about what is happening during execution.

A formalism that has proved to be far more fitting here is temporal logic, or TL.
It is a variant of a classical logic known to mathematicians as tense logic, especially
tailored for algorithmic purposes. Its formulas make statements about the truth of
assertions as time goes by, and can also refer explicitly to the current location of
control in the protocols. Two of the central constructs here are henceforth(F) and
eventually(F). The first states that F is true from now on—until termination if the
protocol terminates, and forever if it does not—and the second states that F will
eventually become true, that is, at some point in the future. Recalling our use of the
symbol ∼ to denote “not,” the first of these constructs can be used to state safety
properties, by writing henceforth(∼F) (that is, F will never become true), and the
second to state liveness properties.

As an example, consider the solution of the two-processor shower problem, and
the following formulas of TL:3

P1-is-at-(1.4) → eventually(P1-is-at-(1.5))

P2-is-at-(1.4) → eventually(P2-is-at-(1.5))

∼ (P1-is-at-(1.5) & P2-is-at-(1.5))

The first two formulas state that if a processor is waiting to enter the critical
section then it will eventually enter, and the third states that both processors will
never be in their critical section simultaneously. Taken together, and stated to be true
at all points of the computation (using henceforth), these formulas assert that the
solution is correct. A formal proof of this involves logical manipulation that adheres
to the strict axiomatic rules of temporal logic, which we shall not dwell upon here.

3 The fact that processor P is at location G in the protocol is described by the construct P-is-at-G.

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

10. Parallelism, Concurrency, and Alternative Models 281

However, to make a comparison with the proof methods of Chapter 5, it turns out
that pure safety properties (like that in the third formula above) can be proved in
a manner similar to that of the invariant assertion method for partial correctness.
Eventualities (like those in the first two formulas) can be proved by first analyzing
each possible single step of the protocols, and then using mathematical induction to
deduce eventualities that become true within some number of steps from those that
become true in less.

As mentioned, if the protocols are indeed correct, a proof of correctness exists, and
if found, parts of it can be checked algorithmically. Actually, in many applications
of temporal logic each variable has only a finite number of possible values (the
mutual exclusion protocol discussed earlier employs three variables, each with only
two possible values). These finite-state protocols, as they are sometimes called,
can be verified algorithmically. That is, there are algorithms that accept as inputs
certain kinds of protocols and the temporal logic formula asserting correctness, and
verify the former against the latter. Thus, while finding proofs of correctness for the
transformational, or computational, parts of concurrent systems is not possible
in general, it is possible to effectively find proofs of the control parts, such as the
mechanisms for scheduling processors and preventing starvation and deadlock, as
these usually involve variables with a finite range only. However, these automatic
verifiers are not always as efficient as we would hope, since, among other things,
the number of combinations of values grows exponentially with the number of
processors. Thus, even short and innocent-looking protocols may be quite difficult
to verify automatically, and in hand-produced proofs, of course, subtle errors are
the rule, not the exception.

Over the past several years, powerful methods have been developed for verifying
concurrent systems against formulas of temporal logic. Using model checking, for
example, it is possible to construct computer-aided proofs that a system satisfies
temporal logic formulas, including safety and liveness properties. This might come
as something of a surprise, given the undecidability of verification, as discussed in
Chapter 8. Moreover, even if we restrict ourselves to finite-state systems, by, e.g.,
forbidding variables to take on values above a certain finite bound, and by a priori
limiting the number of components in the system, the corresponding verification
problems are intractable. Still, there are ways to deal with these issues, that work
extremely well in many of the cases that arise in practice. There is indeed high hope
for verification, even in the slippery realm of concurrency.

� Fairness and Real-Time Systems

There are two additional issues that deserve mention here, although neither of them
will be treated in any detail. The first concerns a global assumption that is usually
made when dealing with ongoing concurrency. We typically make no assumptions
about the relative speed of the processors involved in solving problems of concur-
rency, but we do assume that they all respond and make progress within some finite,
though possibly lengthy, amount of time. In our solutions to the mutual exclusion
problem we used this assumption, of course, since otherwise P1 could reach clause
(1.3) and never get round to setting Z to 1 and proceeding.

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

282 IV. Relaxing the Rules

This assumption is sometimes called fairness, since if you think of concur-
rency as being implemented by a central processor, sometimes called a scheduler,
who gives each of the concurrent processors a turn in carrying out a few instruc-
tions, then to say that each processor eventually makes progress is just like saying
that the simulating processor is being fair to all, eventually giving each one its
turn.

Consider the following protocols for two processors P and Q.

protocol for P:

(1) X ← 0;

(2) do the following again and again forever:
(2.1) if Z = 0 then stop;
(2.2) X ← X + 1.

protocol for Q:

(1) Z ← 0;

(2) stop.

Let Z ’s initial value be 1. If we do not assume fairness, P may be continuously
given the right to proceed, with poor Q being forever left out of the game. This, of
course, leads to an infinite loop. The only way to ensure that the protocols terminate
is to let Q make progress. On the other hand, under the fairness assumption, this
concurrent algorithm terminates, setting X to some unknown, possibly very large,
non-negative integer. The way it does so is as follows. The scheduler is free to
schedule P and Q to take turns any way it wants, and, in particular, it can let P
execute many times before it lets Q in for the first time. However, it must let Q take
a turn at some point in time, by the fairness assumption. Thus, P will increment X
from 0 some unknown number of times, but once Q gets the green light execution
will terminate. Obviously, the final value of X can be any number from 0 up, but
the process will eventually terminate, as a result of the fairness.

Of course, that these protocols might produce very large numbers is based on
the assumption that some processors can be arbitrarily slower than others. Stronger
notions of fairness are sometimes useful, especially those that bound the delay that
can occur between actions. We might want to say that Q has a slower response than
P , but that it is no worse than twice as slow. Such fairness assertions are quantitative
in nature, and introduce timing issues into the game.

An additional complication arises in systems for which timing constraints are
crucial, particularly in real-time systems. These are required to respond to certain
events immediately, or at least within unnoticeable and negligible amounts of time.
Examples include flight control, missile guidance, and fast communication systems.
Here, too, temporal logic can help, using the special nextstep operator, which talks
about what will be true one time unit from the present instant. It is possible, for
example, to write a TL formula that states that whenever one given fact is true some
other one will become true at most, say, 10 steps later. This still does not solve the
problems of programming such systems, which are usually not only time critical

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

10. Parallelism, Concurrency, and Alternative Models 283

but also large and complex. More will be said about methods for describing their
behavior in Chapter 14.

� �

� The Dining Philosophers Problem

One of the most popular examples of ongoing concurrency, which illustrates many
issues of synchronization and cooperation, is the following. We have a table, around
which are seated N philosophers. In the center there is a large plate containing an
unlimited amount of spaghetti. Half-way between each pair of adjacent philosophers
there is a single fork (see Figure 10.8). Now, since no one, not even a philosopher,
can eat spaghetti with one fork, there is a problem. The desired life cycle of a
philosopher consists of carrying out his private activities (for example, thinking,
and then writing up the results for publication), becoming hungry and trying to eat,
eating, and then back to the private activities, ad infinitum. (A related, but somewhat
less manageable, problem involves Chinese philosophers, with rice and chopsticks
replacing spaghetti and forks.)

How should the philosophers go about their rituals without starving? We can
instruct them to simply lift up the forks on either side when hungry, and eat, laying
the forks down again when finished. This solution will not work, since one or both of
the forks may be taken by neighboring philosophers at the time. Also, two adjacent
philosophers may try to pick up the same fork at the same time. Using forks that are
beyond a philosopher’s reach is forbidden. Here, eating can be considered a critical
section of sorts, as two adjacent philosophers cannot eat simultaneously, and the
forks are crucial resources of sorts, as they cannot be used by two philosophers
simultaneously.

Figure 10.8

The dining
philosophers.

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

284 IV. Relaxing the Rules

This problem also typifies many real-world situations, such as computer oper-
ating systems, for example, in which many processors compete for certain shared
resources. The interconnection pattern of such systems is usually quite sparse (not
all resources are accessible to each processor) and the number of resources is too
small for everyone to be happy together.

One solution to the problem involves introducing a new player into the game, the
dining room doorman. Philosophers are instructed to leave the room when they are
not interested in eating, and to try to re-enter when they are. The doorman is required
to keep count of the philosophers currently in the room, limiting their number to
N − 1. That is, if the room contains all but one philosopher, the last one will be
kept waiting at the door until someone leaves. Now, if at most N − 1 philosophers
are at the table at any one time, then there are at least two philosophers who have at
least one neighbor absent, and thus at least one philosopher can eat. (Why?) When
properly formalized, this solution can be shown to be satisfactory. However, it uses
an additional person (whose monthly salary will probably be more than the sum
needed for buying an additional set of forks, at least for reasonably small N).

Can the dining philosophers problem be solved without a doorman, and with-
out resorting to shared memory or its equivalents? In other words, is there a fully
distributed, fully symmetric solution to the problem, one that does not employ any
additional processors? Here “fully distributed” means that there is no central shared
memory and the protocols may use only distributed variables (shared, say, only by
two neighboring philosophers). “Fully symmetric” means that the protocols for all
the philosophers are essentially identical—we do not allow different philosophers to
act differently, and we do not allow them to start off with different values in their
variables. These conditions might sound a little too restrictive. However, if the
philosophers have different programs or different initial values, it is like saying
that they use their own personal knowledge and talents in the mundane quest for
food. We would like to save all that for thinking and publishing; eating should be a
procedure that is standard and common to all.

The answer to these questions is no. To solve the problem we need something
more, such as shared memory, direct communication between processors, special
centralized controlling processors, or the use of different information for different
philosophers.

� Why? The argument is really quite simple. Think of a correct solution as one that guar-
antees all the desired properties, even against the most malicious scheduler (that is, even
against a scheduler that tries as hard as it can to cause deadlock or starvation). In other
words, to show that there is no fully distributed, fully symmetric solution, it suffices to ex-
hibit one particular order in which the philosophers are scheduled to carry out the actions in
a candidate solution, and then to show that something must go wrong. Assume, therefore,
that we have some such candidate solution. Also, assume we have numbered the philoso-
phers 1, 2, . . . , N . (The philosophers themselves are not aware even of their own numbers;
they are not allowed to have any private information that might turn out to be useful.)

The schedule we adopt is the following. At each stage, every philosopher in the order
1, 2, . . . , N is allowed to carry out one basic action. An action might be a busy wait test,
in which case testing and deciding whether to wait or to proceed are taken together as one
indivisible basic action. It is possible to show that at each stage precisely the same action
is carried out by each processor. This follows from the facts that both the initial situation

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

10. Parallelism, Concurrency, and Alternative Models 285

and the protocols are fully symmetric, there are no processors other than the philosophers
themselves, and the table and its contents are symmetrically cyclic. Consequently, the
situation at the end of each stage will still be fully symmetric; that is, the values of the
variables will be the same for all philosophers, as will their locations within the protocols.
Now, could any philosopher have eaten within one or more of the stages? No, because
stages involve basic actions only, and at the end of a stage the fact that a philosopher is
eating or has eaten will be detectable. But it is impossible for all the philosophers to be
eating at once, and the process of two philosophers eating, one after the other, cannot be
carried out within one stage. It thus follows from the necessary symmetry that at the end
of every stage no philosopher will have eaten. Hence, none ever will.

In Chapter 11 we shall see that the dining philosophers problem can be solved
in a fully distributed and fully symmetric fashion, but with a more liberal notion of
correctness.

� Semaphores

There are many programming languages that support concurrency one way or an-
other, and these include object-oriented languages and visual formalisms for system
development, of the kinds discussed later on, in Chapter 14. We shall not describe
any of these languages here, but shall briefly consider one of the main constructs
invented especially for dealing with concurrency. It underlies parts of the way con-
currency is implemented in some of these languages, and can be used explicitly in
others.

We already know that shared memory and direct communication represent the
two main approaches for describing the cooperation that is to take place between
concurrently executing processes. If the former is used, there must be a mechanism
for solving the writing conflicts that shared memory raises. One of the most popular
of these is the semaphore.

A semaphore is a special kind of programming element that employs two oper-
ations to control the use of critical sections (such as those that entail writing into
a portion of shared memory). An attempt to enter such a section is represented by
the request operation, and release indicates an exit. A semaphore S can actually
be viewed as an integer-valued variable. Executing request(S) is an atomic action
that tries to decrease S by 1, doing so without interruption if its value is positive
and waiting for it to become positive otherwise. The effect of release(S) is simply
to increment S by 1. The important point is that, by its very definition, a semaphore
S yields to only one request or release operation at a time. In a typical use of
semaphores to achieve mutual exclusion, S is given an initial value of 1, and each
processor’s critical section is enclosed as follows:

. . .

request(S);

carry out critical section;

release(S);

. . .

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

286 IV. Relaxing the Rules

This results in allowing only one processor at a time into its critical section. The
first one that tries to enter succeeds in decreasing S to 0 and enters. The others
must wait until the first one exits, incrementing S to 1 in the process. A semaphore
that starts with 1, and hence takes on only the values 1 and 0, is termed a binary
semaphore. A simple way of using semaphores for critical sections that can handle
up to K processors at a time is to use a non-binary semaphore with initial value
K . (Why does this have the desired effect?) In the dining philosophers problem,
for example, the doorman can be modeled by a semaphore with an initial value of
N − 1, controlling a critical section that includes the activities involved in trying to
eat, eating, and leaving the room. The use of each fork can be modeled by a binary
semaphore.

It is noteworthy that this simple definition of semaphores does not assume that all
processors waiting at blocked request operations are eventually given the right to
enter when S becomes nonzero. It is quite possible that a malicious implementation
of semaphores always gives the right of way to the most recently arrived processor,
locking others out forever. This is one of the cases in which some kind of fairness
assumption appears to be necessary, whereby, say, each processor that is waiting is
guaranteed eventual progress.

Semaphores can thus be described as a very simple data type, whose operations
(increment, test-and-decrement) are guarded against writing conflicts by a built-in
mechanism of mutual exclusion. Mutual exclusion for more complicated data types
that employ many operations can be achieved by surrounding each occurrence of a
writing operation with the appropriate semaphore operations. However, in a sense,
semaphores are like goto statements; too many request and release operations
sprinkled all over a lengthy program may become unclear and susceptible to errors.
Semaphores can be used to solve the standard kinds of problems in programming
concurrency, but they do constitute an unstructured programming construct.

� �

� Research on Parallelism and Concurrency

If we have claimed in previous chapters that intensive research is being carried out on
many of the topics discussed, then this is truer than ever in the realm of parallelism
and concurrency. Researchers are trying to come to terms with virtually all aspects
of algorithmic cooperation, and it would not be too much of an exaggeration to
say that the research of most computer scientists has some connection to the topics
discussed in this chapter.

Intensive research is being carried out in finding fast parallel algorithms for a
variety of algorithmic problems, and the solutions employ a wide spectrum of so-
phisticated data structures and mechanisms for concurrency. Many problems (such as
gcd computation) have resisted attempts to usefully exploit any kind of parallelism.
Boolean circuits and systolic networks are also the subject of much current re-
search, and interesting connections have been discovered between these approaches
and conventional sequential algorithmics.

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

10. Parallelism, Concurrency, and Alternative Models 287

The abstract complexity theory of parallelism poses a number of important, and
apparently very difficult, unresolved questions, concerning classes like NC and
PSPACE, some of which were described earlier. While, as we have seen, sequential-
ity already poses many unresolved problems, parallelism undoubtedly raises many
more. In fact, it seems clear that we understand the fundamentals of sequential al-
gorithms far better than those of parallel algorithms, and there is a long and difficult
way ahead.

Other subjects of current research include parallel computer design, proof and
analysis techniques for reasoning about concurrent processes, and the creation of
useful and powerful concurrent programming languages.

As illustrated by the house building story early in the chapter, concurrency is a
fact of life, and the better we understand it the more we can use it to our advantage. In
a way, recent scientific and technological advances in concurrency are ahead of each
other. Many of the best parallel algorithms known cannot be implemented because
existing parallel computers are inadequate in some way. On the other hand, we
still do not know enough about designing concurrent programs and systems to take
full advantage of the features those same computers do offer. The work continues,
however, and significant results are continuously being achieved, though the deep
issues around the true complexity of parallelism remain elusive.

We now turn to two more recent approaches to parallelism, which attack it from
completely different angles.

� �

� Quantum Computing

So what’s all this fashionable new quantum computing stuff? Well, it is a deep and
complicated topic, relying on complex mathematical and physical material, and thus
very hard to describe in the expository fashion of this book. Quantum computing
is based upon quantum mechanics, a remarkable topic in modern physics, which is
unfortunately slippery and difficult to grasp, and is often counterintuitive. A naive
attempt to employ worldly common sense to understand it can easily become a
hindrance to comprehension rather than an aid. The following sections will thus treat
the topic extremely superficially, even applying the standards of this technicality-
avoiding book. We apologize for this. The bibliographic notes, however, contain
several pointers to surveys in the literature for the more curious, mathematically
adept reader.

On the brighter side, there is a chance—a very small one as of the time of writing—
that quantum computing could bring with it good news of the kind alluded to in this
book. How, why, and when, are the questions we shall try to address, very briefly,
as we go along.

One of the main advantages of quantum physics is its ability to make sense out of
certain experimental phenomena on the particle level that classical physics seemed
unable to. Two of the main curiosities of the quantum world, stated very informally,
are that a particle can no longer be considered to be at a single location in space at a
particular time, and that its situation (including locations) can change as a result of

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

288 IV. Relaxing the Rules

merely observing it. The first of these seems like good news for computing: might
we not be able to exploit the property of being at many places together to carry
out massive parallelization of a computation? The second, however, seems like bad
news: trying to “see” or “touch” a value during a computation, say, to carry out a
comparison or an update, could change that value unpredictably!

Quantum computation is a very recent idea. The early work was motivated by
the assertion that if a computer could be built that operates according to the laws of
quantum physics, rather than those of classical physics, one might be able to obtain
an exponential speedup for certain computations.

A quantum computer, like a classical one, is to be based on some kind of finite-
state element, analogous to the classical two-state bit. The quantum analog of a
bit, called a qubit and pronounced “queue-bit,” can be envisioned physically in a
number of ways: by the direction of photon polarization (horizontal or vertical), by
nuclear spin (a special two-valued quantum observable), or by the energy level of an
atom (ground or excited). The two so-called basis states of a qubit, analogous to the
0 and 1 of an ordinary bit, are denoted by |0〉 and |1〉, respectively. What we don’t
have in a quantum system is the simple deterministic notion of the qubit being in one
basis state or another. Rather, its notion of being or not being is indeterminate: all
we can say about the status of a qubit is that it is in both of the states simultaneously,
each with a certain “probability.”4 But, as if to deliberately make things even less
comprehensible to mortals, these are not ordinary, positive-valued probabilities, like
being in state |0〉 with probability 1

4 and in |1〉 with probability 3
4 . These “probabil-

ities” can be negative, even imaginary (i.e., complex numbers that involve square
roots of negatives), and the resulting combination state is called a superposition.
Once we “take a look” at a qubit, i.e., make a measurement, it suddenly decides
where to be, we see it in one basis state or the other, the probabilities disappear, and
the superposition is forgotten.5 This kind of “forced discreteness” is what leads to
the adjective “quantum.”

So much for a single qubit. What happens with many qubits taken together,
side by side, which we need as the basis for true quantum computation? How
are the states of several qubits combined to obtain a compound state of the entire
computing device? In the classical case, any collection of N bits, each of which
can be in two states 0 or 1, gives rise to 2N compound states. In the quantum world
of qubits we also start with the 2N compound states built from the basis states of
N qubits (in the case of two qubits, for example, the four compound states are
denoted |00〉, |01〉, |10〉 and |11〉). To these we then apply complex combinations,
just as we did for a single qubit. However, here, the way the combinations are
defined gives rise to an additional crucial twist called, appropriately, entanglement:
some of the compound states are clean composites that can be obtained—using
an operation called a “tensor product”—from the states of the original qubits, but
some cannot; they are entangled. Entangled qubits, a term that comes with a precise
mathematical rendition, represent an intrinsically nonseparable “mish-mash” of the

4 Perhaps we should call this “To qubee or not to qubee”. . .
5 Specifically, a superposition is what is sometimes called a complex unit-length linear combination of

the basis states. That is, the coefficients are two complex numbers c0 and c1 satisfying |c0|2 + |c1|2 = 1.
After measuring, we will “see” a 0 with probability |c0|2 and a 1 with probability |c1|2.

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

10. Parallelism, Concurrency, and Alternative Models 289

original qubits. They have the weird property of instant communication: observing
one and thus fixing its state causes the other to lock in the dual state simultaneously,
no matter how far away they are from each other. Entanglement turns out to be a
fundamental and indispensable notion in quantum computation, but unfortunately
further discussion of its technicalities and the way it is exploited in the computations
themselves is beyond the scope of this book.

� Quantum Algorithms

What have people been able to do with quantum computation?
A few facts have to be stated up front. First, full, general-purpose quantum com-

puting subsumes classical computation. That is, if and when built, a quantum com-
puter will be able to emulate classical computations without any significant loss of
time. Second, although seemingly weaker, a classical computer can simulate any
quantum computation, but this could entail an exponential loss of time. The fact
that this simulation is possible means that quantum computation cannot destroy the
Church/Turing thesis: computability remains intact in the world of quantum com-
putation too. If and when actual quantum computers are built, they will not be able
to solve problems not solvable without them.

This having been said, the big question is whether the exponential loss of time
in the second statement is indeed insurmountable. Just like we did with parallelism,
we ask whether there are provably intractable problems that become tractable in the
quantum world. That is, is there a problem with an exponential-time lower bound in
the classical models of computation that has a polynomial-time quantum algorithm?
And here too, if we use QP to stand for quantum-PTIME, we have:

PTIME ⊆ QP ⊆ PSPACE (= parallel-PTIME)

Thus, reasonable, i.e., polynomial, quantum time lies around the same place as NP,
i.e., between reasonable deterministic time and reasonable memory space. Unfor-
tunately, as before, we do not know whether either of these inclusions is strict.

Computation complexity aside, and the technological issue of actually building
a quantum computer notwithstanding, there have already been some extremely ex-
citing developments in quantum algorithmics. Here are some of the highlights.

Quantum parallelism has indeed been achieved, whereby a superposition of the
inputs is used to produce a superposition of outputs. Interestingly, although this
seems like one is indeed computing lots of stuff in parallel, the outputs cannot be
naively separated out and read from their superposition; any attempt at reading, or
measuring, will produce only one output and the rest will simply be lost. What is
needed is for the algorithm to cleverly compute joint properties common to all out-
puts, and make do with them. Examples might include certain arithmetical aggregate
values of numerical outputs, or the “and”s and “or”s of logical yes/no outputs.6

6 However, there are results that show that this ability is inherently limited. While the use of quantum
parallelism can often yield significant gains in efficiency, it is unable to deliver each and every desired
joint property.

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

290 IV. Relaxing the Rules

Later, a rather surprising quantum algorithm was discovered for searching in an
unordered list, say a large database. Instead of around N operations, an item can
be found with

√
N operations only (the square root of N). This is counterintuitive,

almost paradoxical, since it would appear necessary to at least look at all N inputs
in order to figure out whether what you are looking for is indeed there.

However, the big surprise, and indeed the pinnacle of quantum algorithms so far, is
Shor’s factoring algorithm. We have mentioned factoring several times in the book,
and its importance as a central algorithmic problem is indisputable. As we have seen,
factoring has not yet been shown to be tractable in the usual sense—it is not known
to be in PTIME (which, as we now know, is not the case for primality testing) and
the very fact that it appears to be computationally difficult plays a critical role in
cryptography, as we shall see in Chapter 12. So much so, in fact, that a significant
part of the walls that hold up modern cryptography would come tumbling down if
an efficient factoring algorithm would be available. It is against this background that
one should view the significance of this work, which provides a polynomial-time
quantum algorithm for the problem.

To appreciate the subtlety of quantum factoring, consider a naive algorithm that
attempts to find the factors of a number N by trial and error, going through all
pairs of potential factors and multiplying them to see if their product is exactly N .
Why shouldn’t we be able to do this using grand-scale quantum parallelism? We
could use quantum variables to hold a superposition of all candidate factors (say, all
numbers between 0 and N − 1), then compute, in parallel, and in the best quantum
spirit, all products of all possible pairs of these numbers. We could then try to check
whether there was a pair that did the job. Unfortunately, this wouldn’t work, since
taking a look at—that is, carrying out a measurement of—this enormous superposed
output would not say much. We might just happen to hit upon a factorization, but we
might also land on any other of the many products that are different from N . And
as we have already mentioned, once you measure, that’s what you get to see, and
the rest is lost. So, just the mish-mashing of lots of information, that alone, is not
enough.

It turns out that things have to be arranged so that there is interference. This is
a quantum notion, whereby the possible solutions “fight” each other for supremacy
in subtle ways. The ones that turn out not to be good solutions (in our case, pairs of
numbers whose product is not N) will interfere destructively in the superposition,
and the ones that are good solutions (their product is N) will interfere constructively.
The results of this fight will then show up as varying amplitudes in the output,
so that measuring the output superposition will give the good solutions a much
better shot at showing up. We should remark that it is the negative numbers in the
definition of superposition that make this kind of interference possible in a quantum
algorithm.

This is easier said than done, and it is here that the mathematics of quantum
computing get complicated and are beyond the scope and level of our exposition.
But what we can say is that the right kind of entanglement has been achieved for
factoring. The algorithm itself is quite remarkable, both in its technique, and as
we shall see later, in its ramifications. Its time performance is roughly cubic, that
is, not much more than M3, where M is the number of digits in the input number
N . For the more technically interested reader, the algorithm involves an efficient

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

10. Parallelism, Concurrency, and Alternative Models 291

quantum method to compute the order of a number Y modulo N , that is, to find the
least integer a such that Y a = 1 (mod N). This is known to be enough to enable fast
factoring, and the rest of the work is done using conventional algorithms.

This algorithm hasn’t yet turned a provably intractable problem into a tractable
one, for two reasons, one of which we have repeatedly mentioned and one of which
we have hinted at but will shortly address in more detail. First, factoring isn’t known
to be intractable; we simply haven’t been able to find a polynomial-time algorithm
for it. It is conjectured to be hard, but we are not sure. Second, the practical difficulties
of building a quantum computer are truly formidable.

� Can There Be a Quantum Computer?

When discussing parallelism earlier, we noted that there is a certain mismatch be-
tween existing parallel algorithms and the parallel computers that have been built to
run them. To be efficiently implemented, many known algorithms require hardware
features not yet available, and, dually, the theory of parallel algorithms has yet to
catch up with what the available hardware is able to do.

In the realm of quantum computation the situation is less symmetric. We have at
our disposal some really nice quantum algorithms, but no machines whatsoever to
run them on.

Why? Again, this issue revolves around deep technicalities, but this time the
barrier preventing a detailed exposition here is not the mathematics but the physics.
So, again, we shall only provide a very brief account, and the interested reader will
have to seek more information elsewhere. The bibliographic notes provide some
pointers.

At the time of writing (mid 2003), the largest quantum “computer” that has
actually been built consists of a mere seven qubits (and it has been able to suc-
cessfully factor the number 15 = 3 × 5 . . .). What is the problem? Why can’t we
scale up?

Despite the fact that the quantum algorithms themselves, and the factoring one
in particular, are designed to work according to rigorous and widely accepted prin-
ciples of quantum physics, there are severe technical problems around the actual
building of a quantum computer. First, experimental physicists have not managed
to be able to put even a small number of qubits (say, 10) together and control
them in some reasonable way. The difficulties seem beyond present-day labora-
tory techniques. A particularly troubling issue is decoherence: even if you could
gather a good number of qubits and cause them to behave nicely themselves, things
that reside close to a quantum system have the pushy habit of affecting it. The
quantum behavior of anything surrounding a quantum computer—the casing, the
walls, the people, the keyboard, anything!—can mess up the delicate setup of
constructive and destructive interference within the quantum computation. Even
a single naughty electron can affect the interference pattern that is so crucial for
the correct execution of the algorithm, by becoming entangled with the qubits
participating in that execution, and as a result the desired superposition could
fail.

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

292 IV. Relaxing the Rules

The computer thus has to be relentlessly isolated from its environment. But it
also has to read inputs and produce an output, and its computational process might
have to be controlled by some external elements. Somehow, these contradictory
requirements have to be reconciled.

What kind of sizes do we really need? Some small-scale quantum coding protocols
require only something like 10 qubits, and even the quantum factoring algorithm
needs only a few thousand qubits to be applicable in real-world situations. But
since experimental physics can deal with only seven qubits right now, and even
that is extremely difficult, many people are pessimistic. A true breakthrough is not
expected any time soon. On the brighter side, the excitement surrounding the topic
is already bringing about a flurry of ideas and proposals, accompanied by complex
laboratory experimentation, so that we are bound to see interesting advances as time
goes by.

In summary, Shor’s polynomial-time quantum factoring algorithm constitutes a
major advance in computing research by any measure. However, at the moment it
must be relegated to the status of shelfware, and it is probably destined to remain
that way for quite some time.

Intractability hasn’t been beaten yet.

� �

� Molecular Computing

To wrap up our discussion of models of computation aimed at trying to alleviate
some of the bad news, we mention one more: molecular computing, sometimes
called DNA computing.

The main approach here is based on letting the computation happen essentially
on its own, in a carefully concocted “soup” of molecules, that play with each other,
splitting, joining, and merging. Thus, you get billions or trillions of molecules to
tackle a hard problem by brute force, setting things up cleverly so that the winning
cases can later be isolated and identified.

In a 1994 experiment molecules were made to solve a small instance of the
Hamiltonian path problem, which, as explained in Chapter 7, is really a sort of unit-
length version of the traveling salesman problem. Later, other problems—essentially
all problems in NP—were shown to be amenable to similar techniques.

That nature can be tuned to solve real-world algorithmic problems, essentially
all by itself, and on a molecular scale, is rather astonishing. While the original
experiment for a seven-city instance took several days in the laboratory, the problem
was solved later by others in less of a brute-force fashion, and for much larger
instances (50–60 cities). Dedicating molecular biology labs to this kind of work
can result in a significant speeding up of the process, and indeed lots of work is
underway to try to get the techniques to scale up.

From a puristic point of view, things are reminiscent of conventional parallel al-
gorithms: although in principle the time complexity of such molecular algorithms is
polynomial because of the high degree of parallelism that goes on within the molec-
ular soup, the number of molecules involved in the process grows exponentially.

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

10. Parallelism, Concurrency, and Alternative Models 293

But on the positive side, one of the main advantages of using DNA is its incredible
information density. Some results show that DNA computations may use a billion
times less energy than an electronic computer doing the same things, and could store
data in a trillion times less space.

In any case, molecular computing is definitely another exciting area of research,
catching the imagination and energy of many talented computer scientists and biol-
ogists. We are bound to see a lot of exciting work in this area in the future, and some
specific difficult problems might very well become doable for reasonably-sized in-
puts. Still, we must remember that it can definitely not eliminate noncomputability,
nor is it expected to do away with the woeful effects of intractability.

� Exercises
10.1. Devise a parallel algorithm that sums N salaries in time O(

√
N) with

√
N processors.

10.2. Can you use parallelism to improve upon the quadratic algorithm given in Chapter 1
(see also Chapter 6) for the salary summation problem, in which we sum only salaries
of employees earning more than their managers? What is the time complexity of your
solution, and how many processors does it require?

10.3. Justify rigorously the time analysis of the parallel version of mergesort given in the text.

10.4. (a) How many processors do you need in order to solve the satisfiability problem for the
propositional calculus in parallel polynomial time? Explain your algorithm.

(b) What additional assumption do you need in order to show that the number of processors
you employed in the previous question is actually necessary?

(c) Is it possible to solve the satisfiability problem for PDL presented in Chapter 7 in
parallel time O(N) and size O(N)?

10.5. (a) Construct an algorithm which, given N a power of 2, outputs the odd-even sorting
network for N elements.

(b) Carry out a rigorous time and size analysis of the odd-even sorting network.

An L by M matrix A is an array of L rows and M columns, with a typical element A[I, J]
located at the intersection of row I and column J . Let A be an L by M matrix and B be
an M by N matrix; that is, the number of columns in A equals the number of rows in B.
The product of A and B is defined to be the L by N matrix C whose elements are given
by

C[I, J] =
M∑

K=1

(A[I, K] × B[K , J]).

That is, the element located at row I and column J of the product matrix C is obtained
by summing the products of all M corresponding pairs of elements of As I th row and Bs
J th column. Thus, the matrix-by-vector multiplication defined in the text is the special
case of the matrix-by-matrix multiplication defined above, in which the matrix B has just
one column (i.e., N = 1, namely, B is a vector).

Consider for example a set of M commercial products, each of which is produced by
every one of a group of N manufacturers. Consider L stores, each of which sells every
one of the M products, but assume that each store buys all the products it sells from
precisely one of the L manufacturers. Let A be the L by M matrix containing at A[I, K]
the quantity of the Kth product bought by the I th store each year. Let B be the M by
L matrix containing at B[K , J] the price of a unit of the K th product sold by the J th

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

294 IV. Relaxing the Rules

manufacturer. Then, if the L by N matrix C is the product of A and B, it contains at
C[I, J] the total price per year of all M products to be paid by the I th store if bought
from the J th manufacturer.

10.6. Devise a systolic array that computes matrix multiplication.

10.7. Show that any problem solvable in NEXPTIME has a parallel algorithm that runs in
exponential time. How many processors may such an algorithm require?

10.8. Consider the search problem, in which a given ordered list of length N (with possible
multiplicities) is to be searched for the index of an item equal to a given value X , if any
such index exists. The binary search algorithm presented in Chapter 6 solves the problem
in sequential time O(log N).

(a) How would you drastically improve the time complexity of the problem by employing
as many processors as you need? Analyze the parallel time and size complexity of
your algorithm.

(b) Consider a stronger model of parallel computation in which many processors can
simultaneously read the contents of any single memory location. How would you
significantly improve upon the time complexity of the binary search algorithm by
employing the more reasonable number of only log N processors? Explain where
exactly in your algorithm do you exploit the “multiple reading” feature of the model,
and why it is necessary there.

10.9. Show that weighted average computation (matrix-by-vector multiplication) is in NC.

10.10. Prove the following relations between complexity classes:

(a) Sequential-PSPACE = Parallel-PTIME.
(b) NC ⊆ Sequential-PTIME.

10.11. Prove the correctness of the protocol for the N -processor mutual exclusion problem given
in the text.

10.12. (a) Construct a protocol for a three-processor mutual exclusion problem, in which the
critical section can accommodate one or two processors simultaneously, but not all
three.

(b) Prove the correctness of your protocol.
(c) Can you generalize your protocol to N processors with at most two in the critical

section simultaneously?
(d) How about N processors with at most L , 1 ≤ L < N , in the critical section simulta-

neously?

10.13. For each of the following formulas in propositional temporal logic, determine if it is
always true.

ϕ1: henceforth(E & F) → eventually(E)
ϕ2: eventually(E & F) → henceforth(E)
ϕ3: henceforth(E & F) → (henceforth(E) & henceforth(F))
ϕ4: (henceforth(E) & henceforth(F)) → henceforth(E & F)
ϕ5: henceforth(E → F) → (henceforth(E) → henceforth(F))
ϕ6: (henceforth(E) → henceforth(F)) → henceforth(E → F)
ϕ7: henceforth(eventually(E)) → eventually(henceforth(E))
ϕ8: eventually(henceforth(E)) → henceforth(eventually(E))
ϕ9: henceforth(∼E) → ∼eventually(E)
ϕ10: eventually(∼E) → ∼henceforth(E)

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

10. Parallelism, Concurrency, and Alternative Models 295

10.14. Consider the doorman solution to the dining philosophers problem.
(a) Formalize the problem to be solved—lack of starvation—by a temporal logic formula

using the following set of atomic assertions:

PrivateI : Philosopher I is carrying out his or her private activity.
HungryI : Philosopher I is hungry.
EatingI : Philosopher I is eating.

(b) Explain why if there are at most N − 1 philosophers at the table at any particular
time, then at least one of them can eat.

(c) Write a rigorous version of the solution and prove its correctness.

Two are better than one; because they have a good
reward for their labour

ECCLESIASTES 4: 9

P1: GIG

PE002-10drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:50

296

P1: GIG

PE002-11drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:52

C H A P T E R 1 1

Probabilistic Algorithms

or, Getting It Done by Tossing Coins

I offer thee three
things: choose one
of them

I CHRONICLES 21: 10

Come, and let us
cast lots

JONAH 1: 7

In the previous chapter we took steps that landed us outside the standard framework
of algorithmic problems and their solutions. We allowed parallel algorithms, ones
that employ a number of little Runarounds rather than a single one. This departure
required little justification, as it can easily be seen to improve performance. We also
discussed harnessing the tantalizing power of quantum mechanics or the forces that
govern molecular interactions in our quest for massive parallelism. All in all, we
concentrated on doing many things at once—not just one.

In this chapter we shall take a more radical step, renouncing one of the most sacred
requisites in all of algorithmics, namely, that a solution to an algorithmic problem
must solve that problem correctly, for all possible inputs. We cannot completely
abandon the need for correctness, since, if we do, any algorithm would “solve” any
problem. Nor can we afford to recommend that people solve algorithmic problems
with algorithms that they hope will work, but whose performance they can only
observe, not analyze. What we are interested in are algorithms that might not always
be correct, but whose possible incorrectness is something that can be safely ignored.
Moreover, we insist that this fact be justifiable on rigorous mathematical grounds.

If we assume that spinning a revolver’s barrel is a truly random way of selecting
one of its six bullet positions, then some people might consider the chances of
getting killed in a single attempt at Russian roulette unlikely. Most people would
not. Let us now suppose that the revolver has 2200 bullet positions, or (equivalently)
that the trigger in an ordinary six-bullet revolver is actually pulled only if the single
bullet always ended up in the shooting position in 77 consecutive spins. In such
a case, the chances of getting killed in a single (77-spin) play are many orders of
magnitude smaller than the chances of achieving the same effect by drinking a glass
of water, driving to work, or taking a deep breath of air. Clearly, in such a case the
chances can be safely ignored; the probability of a catastrophe is unimaginably
minute.

This chapter is concerned with one of the ways that probability theory can be
exploited in algorithmic design. We shall consider algorithms that in the course of

297

P1: GIG

PE002-11drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:52

298 IV. Relaxing the Rules

their action can toss fair coins, yielding truly random outcomes. The consequences
of adding this new facility turn out to be quite surprising. Rather than constituting
a step backwards, leading to algorithms that produce unpredictable results, the new
ability will be shown to be extremely useful and capable of yielding fast probabilistic
solutions to problems that have only very inefficient conventional ones. The price
paid for this is the possibility of error, but, as in the 77-round version of Russian
roulette, this possibility can be safely ignored. Curiously, in Chapter 12 we shall see
that probabilism, or randomization, in algorithmics is most advantageous when used
together with negative results, concerning problems for which no good solutions are
known, not even probabilistic ones.

� More on the Dining Philosophers

In Chapter 10 we became acquainted with the dining philosophers, and saw that the
problem admits no deadlock-free solutions if we insist on total symmetry and use
no centralized variables. The rules prescribed that a candidate solution must work
correctly even against the most malicious scheduler; for example, even for the case
in which everyone becomes hungry and tries to lift up the forks at precisely the same
time.

We now show that the problem is solvable if we let the philosophers toss coins. The
basic idea is to use coin tossing to break the symmetry in the long run. Specifically,
consider the following candidate solution:

protocol for each philosopher:

(1) do the following again and again forever:
(1.1) carry out private activities until hungry;
(1.2) toss coin to choose a direction, left or right, at random;
(1.3) wait until fork lying in chosen direction is available, and then lift it;
(1.4) if other fork is not available do the following:

(1.4.1) put down fork that was lifted;
(1.4.2) go to (1.2);

(1.5) otherwise (i.e., other fork is available) lift other fork;
(1.6) critical section: eat to your heart’s content;
(1.7) put down both forks (and go back to (1.1)).

This solution can be shown to be deadlock free with probability 1. What does
this mean? Well, it means that in the course of an infinite time period, the chances
of a deadlock occurring are zero. Not just small, or negligible, but zero!

This statement requires further clarification. It is possible that the system of
philosophers will deadlock, but the chances that deadlock will occur, relative to the
chances that it will not, are nil. Let us consider a scheduler that causes all philoso-
phers to become hungry simultaneously. Say the philosophers are all positioned at
clause (1.2) together. One way for the system to deadlock is that all philosophers,
simultaneously, choose the same direction in (1.2), say right, lift up their right-hand
fork, discover that the other fork is not available (in (1.4)), put down the right-hand

P1: GIG

PE002-11drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:52

11. Probabilistic Algorithms 299

fork (in (1.4.1)), go back to (1.2) and again, all choose the same direction, perhaps
left this time, again lift up the appropriate fork, then put it down, then choose the
same direction again, and so on, ad infinitum. This is clearly a deadlock situation,
since no philosopher can eat.

That the philosophers are all perfectly synchronized, reaching the same instruc-
tion at one and the same time, is the devious work of this special scheduler, and
scheduling is not something that is chosen at random; our solutions must work even
against the worst of schedulers. Coin tossing may only be used within the protocols
to influence the behavior of individual processors, but not to influence the order or
timing in which they are told to carry out their instructions. It follows that malicious
scheduling cannot be the reason that a particular scenario such as this one has zero
chance of happening; the scheduler might just behave in precisely this way. The real
reason has to do with the probability that certain outcomes will occur as a result of the
coin-tossing activities. To achieve deadlock under this scheduler, all N coins have to
indicate the same direction, each and every time they are tossed. This can be shown
to be a zero-probability event, to use the terminology of probability theory. There is
no real chance that this will indeed happen in the process of tossing N coins, simul-
taneously, and infinitely often. (Is this true for all N? What happens when N is 1?)
In other words, in an infinite execution of these protocols for N philosophers the ap-
parent symmetry will be broken with probability 1, that is, for sure, by some unequal
set of outcomes in one of the coin-tossing stages. It is easy to see that such a break
in symmetry results in at least one eating philosopher, so that deadlock is avoided.

It is important to realize that the preceding argument does not constitute a proof
that the protocol is deadlock free with probability 1. We have only discussed one
particular scheduler, and one particular set of coin tosses that results in deadlock,
showing it to be of zero probability. What if the coin indicates left for even-numbered
philosophers and right for odd-numbered ones, and the scheduler repeatedly gives
the former philosophers one turn and then the latter ones one turn? What if there are
seven philosophers and they are given turns in a cyclic fashion, skipping two each
time? Generalizing the argument to hold for all schedulers is not straightforward, but
it can be done, so that the protocol just presented is indeed deadlock free under any
scheduling. However, this solution is still not satisfactory, since it admits lockouts,
or starvation.

� Here is a scheduler that, with certainty, will cause all but one philosopher to be locked
out; in other words, they will all be deprived of food with probability 1.

The scheduler first arranges a situation in which all philosophers are at (1.2). It will now
work things in such a way as to guarantee that, with probability 1, one of the philosophers,
say Plato, will eat infinitely often, while each of the others will eventually eat a last supper
and thereafter starve forever. The idea is based on the fact that if a philosopher is given
the opportunity of eating repeatedly until his coin toss in (1.2) happens to yield some
particular desired direction, then with probability 1 the desired direction will indeed
eventually appear. Utilizing this fact, the scheduler will now ignore everyone but Plato,
letting him find his forks and eat repeatedly as long as he draws right in the coin toss of
(1.2). Plato will be stopped when he draws left for the first time, and, as mentioned, with
probability 1 this will indeed happen. Plato is now left in limbo after this last execution
of (1.2) but before the check-and-lift instruction of (1.3), and his right-hand neighbor is

P1: GIG

PE002-11drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:52

300 IV. Relaxing the Rules

given the green light. She, too, is allowed to eat repeatedly until she draws left, at which
time he is also left lingering after the completion of (1.2) and the execution of (1.3). This
goes on around the table in cyclic counterclockwise order, giving each philosopher the
floor (and the spaghetti) until he or she draws left. When this is over, all philosophers are
ready to carry out clause (1.3), with left being their chosen direction. Since the probability
is 1 that each philosopher’s eating spree will eventually terminate with the coin showing
left, the probability of reaching this common situation is also 1. Now, all the philosophers
are allowed by the scheduler to materialize their most recent choice of left, and to pick
up their left-hand fork. None yet has started (1.4).

From this point on, our scheduler will only allow Plato to eat; all others will starve
forever. The way to achieve this is as follows. Plato’s right-hand neighbor is allowed to
proceed. She looks to her right, sees that the fork is unavailable (her right-hand neighbor
has it), puts down her left-hand fork and tosses the coin again. This goes on without
her eating until she draws right. She is then left in limbo by the scheduler, before (1.3),
so that she has not even determined that her right-hand fork is unavailable, and control
goes to her right-hand neighbor (the second from Plato). This philosopher is similarly
given the opportunity to proceed (similarly without succeeding to eat) until he also draws
right, and is stopped at the same point, just before (1.3). This procedure is carried out for
all philosophers, in counterclockwise order around the table, up to, but excluding, Plato
himself. The situation now is that all forks are on the table, except Plato’s left-hand one,
which he is holding, and all the other philosophers are ready to look to their right in (1.3).
Now Plato is allowed to proceed, which he does by lifting his right-hand fork and eating.
In fact, he is allowed to go through his entire protocol repeatedly as long as he chooses
left in (1.2), eating well each time, and is stopped by the scheduler when he draws right
for the first time. Now the situation is exactly as it was after Plato’s initial eating spree,
but with right being his latest choice, not left. The scheduler now continues precisely
as before, but with the directions reversed throughout, going around from neighbor to
left-hand neighbor in clockwise order, waiting for them all to draw left, until Plato is
reached. Again, he eats repeatedly until he draws left, and the whole procedure repeats
itself.

Except for Plato, all philosophers clearly starve after the initial round of eating is over.
Plato, on the other hand, eats infinitely often. Furthermore, all the eventualities that were
invoked in describing this most malicious scheduler actually occur with probability 1.
Consequently, all philosophers except for Plato will be starved with probability 1. Thus,
as we said, the protocol presented earlier avoids deadlock but, unfortunately, it admits
starvation.

There is an extension of the protocol that yields zero probability of starvation too.
This version will not be presented here, except to remark that it uses the same coin-
tossing mechanism for choosing directions, as well as variables that are somewhat
similar to those used in the solution to the shower problem. Among these are two
variables for each philosopher—one notifies the two neighbors that he or she desires
to eat, and the other (shared by the philosopher and his or her neighbors) indicates
which of them ate last. None of the variables is centralized, as each is shared by at
most two locally adjacent philosophers.

And so, in fact, there is a fully symmetric, fully distributed solution to the dining
philosophers problem, and it is quite satisfactory, in spite of the proof in Chapter 10

P1: GIG

PE002-11drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:52

11. Probabilistic Algorithms 301

that such a solution does not exist.1 It exists only in the presence of the more liberal
notion of correctness used here: not absolute correctness, but, rather, correctness
with probability 1.

� �

� Probabilistic Algorithms for Conventional
Algorithmic Problems

We have seen that the dining philosophers problem, with the requirements of symme-
try and distributivity, cannot be solved without the help of randomization. However,
there is something a little disconcerting about the probabilistic solutions just dis-
cussed. They seem to rely for their success on the infinite, perpetual nature of the
protocols, since in such solutions what causes certain events to occur with proba-
bility 1 is the fact that we are reasoning about an infinite time span, and things can
happen arbitrarily far into the future. Indeed, we get the feeling that, if presented
with some version of the problem that involves finite time spans only, the entire
probabilistic building constructed above would collapse, and there would not be
much that we could say. Somehow, it appears that the really interesting problem is
this: can probabilism, or randomization, improve things when it comes to ordinary,
conventional algorithmic problems, those that accept inputs and have to halt with
the desired outputs? And the answer to this is also a resounding yes.

Before giving concrete examples, let us imagine the following situation, which
is not unlike the Russian roulette story, except that we prefer to talk about people’s
money, not their lives. Let us assume that, for some unexplained reason, all our
money was tied up to the monkey puzzle problem of Chapter 7 in the following
way. We are given a single large instance of the problem (say 225 monkey cards),
and are told that our money will be doubled if we give the right yes/no answer
to the question of whether the cards can be arranged in a legal 15 by 15 square.
We are also told that we lose the lot if we give the wrong answer. Moreover, our
money is unavailable until we give some answer. Since the monkey puzzle problem
is NP-complete, we have a problem of our own. What shall we do?

We could run our favorite exponential-time algorithm on the input cards, hoping
that this particular set is an easy one, so that the algorithm will be able to deal with
it reasonably fast, or we could position ourselves on the floor and start trying things
out on our own. Given the discussions in Chapter 7, these possibilities have certain
obvious drawbacks. Alternatively, realizing the hopelessness of the situation, we
might simply toss a coin, say yes or no at random, and hope for the best. Is there
any better way?

Remaining in an imaginary mode of thought, suppose we were offered an al-
gorithm that solved the monkey puzzle problem, but with a slight chance of error.

1 The reason the proof there no longer holds in the present context, is that it was crucially based on
the fact that an algorithm always does the very same thing each time it is run on the same inputs.
Probabilistic algorithms can act differently in different runs under the exact same circumstances.

P1: GIG

PE002-11drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:52

302 IV. Relaxing the Rules

Say we were guaranteed that, randomly, once in every 2200 executions, it gave the
wrong answer. This would be an excellent way of resolving the dilemma. We would
undoubtedly just run the algorithm on the input cards and present our tormentor
with the answer. The chances of losing our money would be, as in the 77-round
Russian roulette game, far less than the chances of getting run over in crossing the
road to the computer center, and far, far less than the chances that, during execution,
a hardware error will occur in the computer on which the algorithm is implemented.

The fact is that for many algorithmic problems, including some that appear to be
intractable, such algorithms do exist (not, as far as we know, for the monkey puzzle
problem, but for many similar ones). These algorithms are probabilistic in nature,
as they employ random coin tossing, and are thus sometimes called probabilistic,
or randomized algorithms. For all practical purposes that come to mind such al-
gorithms are perfectly satisfactory, whether it is an individual’s money or life, a
company’s financial future, or an entire country’s security or welfare that is at stake.

Let us now look at an example of a remarkable probabilistic solution to a problem,
which for a very long time was thought to be intractable.

� Generating Large Primes

Chapter 7 mentioned prime numbers, or just primes for short. A prime is a pos-
itive integer whose only factors (that is, numbers that divide it exactly, with no
remainder) are 1 and the number itself. Other numbers are termed composite;
they are just the multiples of the primes. The first few primes are 2, 3, 5, 7,

11, 13, 17, 19, 23, 29, 31, . . . There are infinitely many prime numbers, and they
are spread out over the entire spectrum of positive integers in the following way.
The number of primes less than a given number N is on the order of N/ log N . As
specific examples, there are 168 primes less than 1000, about 78,500 primes less
than a million, and about 51 million primes less than a billion. Among all 100-digit
numbers, roughly one in every 300 is prime, and for 200-digit numbers it is about
one in every 600.

The primes undoubtedly constitute the most interesting class of numbers ever
to have caught mathematicians’ attention. They play a central role in the branch
of mathematics known as number theory, and have many remarkable properties.
Their investigation has led to some of the most beautiful results in all of mathe-
matics. Moreover, as we shall see in Chapter 12, prime numbers are fast becoming
indispensable in several exciting applications of algorithmics, where it is important
to be able to generate large primes reasonably fast.

Suppose now that we are interested in generating a new large prime number, say
150 digits long. If only we had a good way of testing the primality of large numbers,
we would be able to take advantage of the way the primes are distributed among
all positive integers to find a 150-digit prime in a moderate amount of time. To do
so, we would simply generate, at random, odd 150-digit numbers repeatedly (by
tossing coins to choose the digits), and test each one for primality until we hit one
that is prime. There is a very high likelihood (more than 90%) that we will find one
within the first 1000 attempts, and a good chance that we will find one after far less.
In any event, if we are careful not to choose the same number twice we are sure to

P1: GIG

PE002-11drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:52

11. Probabilistic Algorithms 303

find one before long. The problem of generating large primes efficiently is therefore
reduced to that of testing the primality of large numbers.

But how do we test a number for primality? Here is one straightforward way.
Given a number N , divide it by all numbers from 2 all the way to N − 1. If any of
these are found to divide N evenly, stop and say no, since you have just found a
factor of N other than 1 and N itself. If all the N − 2 divisions are found to leave
remainders, stop and say yes, N is a prime. This algorithm is fine, except that it is
unreasonably inefficient. In fact, as explained in Chapter 7, it runs in exponential
time, where the size of the input is taken to be the number of digits in N .2 Testing
numbers of 10 or 15 digits in this way is feasible, but testing 150-digit numbers is
not, as it would take billions of years on the fastest computers (see Chapter 7). Of
course, this algorithm can be improved by dividing the candidate number N only by
2 and by the odd numbers from 3 to the square root of N , or, more significantly, by
carefully leaving out all multiples of divisors already considered. However, no such
naive improvements eliminate the super-polynomial time that the solution takes,
and hence this brute-force approach is quite useless.

Until very recently, primality was not known to be in P. As mentioned in Chapter 7,
it has been known for almost 30 years to be in NP, and thus to have short certificates,
but no one knew of any polynomial-time algorithm for testing primality, and there
was always the possibility that the problem would turn out to be intractable. In
the absence of a truly polynomial-time solution to the problem, several ingenious
circumventing approaches had been developed over the years. They included a
polynomial-time algorithm for primality testing that relied for its correctness on
a deep, but unproven, conjecture in mathematics, called the extended Riemann
hypothesis. Had this conjecture ever been proved to be true, the primality problem
would have automatically become a member of P. Moreover, even without relying
on the Riemann hypothesis, people had been able to come up with algorithms for
primality testing that run in “almost” polynomial time. The one that for a long time
was best in terms of order-of-magnitude performance ran in time O(N O(log log N)),
which can be considered very close to polynomial time, since log log N grows ever
so slowly: if the base of the logarithm is 2, the first N for which log log N reaches
5 is more than four billion.

Very recently, primality was shown to be in P. We shall not describe the algorithm
here, except to make two remarks. First, this is an extremely important result, both
because of the classical nature of the primes and their importance in algorithmics
(see Chapter 12), and because it puts to rest one of the most well-known open
problems in algorithmics. Second, the exponent of the polynomial in this so-called
AKS algorithm is still rather high (12 in the original algorithm, which was later
brought down to 8) and its performance is still painfully slow. In that respect it is not
unlike the polynomial-time algorithm for linear programming, mentioned towards
the end of Chapter 7. Still, given that the polynomial-time primality algorithm is so
new, many people expect it to be refined and improved considerably, so that it will
eventually become practical.

2 We repeat a crucial fact, which appeared in a footnote in Chapter 7: in number-theoretic problems the
size N of the numerical input is not the number itself, but its length in digits, which is essentially its
logarithm.

P1: GIG

PE002-11drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:52

304 IV. Relaxing the Rules

Nevertheless, there are extremely fast and fully practical polynomial-time al-
gorithms for testing primality, which were in fact available long before the AKS
algorithm was discovered. They are probabilistic.

� Probabilistic Algorithms for Testing Primality

In the mid-1970s two very elegant probabilistic algorithms for testing primality
were discovered. These were among the first probabilistic solutions to be found for
hard algorithmic problems, and they have triggered extensive research that has led
to randomized algorithms for many other problems. Both algorithms run in time
that is a (low-order) polynomial in the number of digits in the input number N , and
both can test the primality of a 150-digit number with a negligible probability of
error in a few seconds on a medium-sized computer!

The algorithms are based on searching at random for certain kinds of certificates,
or witnesses, to N ’s compositeness. If such a witness is found, the algorithm can
safely stop and say “no, N is not prime,” since it has acquired indisputable evidence
that N is composite. However, the search must be constructed in such a way that
at some reasonably early point in time the algorithm will be able to stop searching
and declare that N is prime, with a very small chance of being wrong. Notice, of
course, that we cannot simply define a witness to be a number between 2 and N − 1
that divides N exactly, although obviously such a finding constitutes undisputed
evidence that N is composite. The reason is that there are exponentially many
numbers between 2 and N − 1 (that is, exponentially many relative to the number
of digits in N), and if we want to give up and declare N to be prime with a small
chance of being wrong, we would have had to check almost all of them, which is
unreasonable. The idea, therefore, is to find a different definition of a witness, one
that is also rapidly testable, but with the property that, if N is indeed composite, more
than half of the numbers between 1 and N − 1 are witnesses to N ’s compositeness.
In this way, if we choose at random a single number K between 1 and N − 1, and
N is indeed composite, the probability that K will serve to convince us of that fact
is greater than 1

2 . Now we can understand better why the naive idea of making K
a witness if it divides N will not do: in general, far fewer than half of the numbers
between 1 and N − 1 divide a composite number N exactly. The definition of a
witness has to be more subtle.

Before seeing a satisfactory approach to witness definition, it is worth understand-
ing why this “more-than-half-are-witnesses” property is so significant. The secret
lies in the idea of repeatedly testing many different potential witnesses. If we choose
just one K at random, and say “yes, N is prime” if K is found not to be a witness to
N ’s compositeness, we have a chance of less than 1

2 of being wrong, since at least
half of the numbers from which we have chosen would have caused us to say no if
the answer is indeed no. Now, if we choose two such K s at random, independently,
and say yes if neither of them is found to be a witness, the probability that we are
wrong is reduced to 1

4 , the reason being that there is one chance in four that although
N is really composite we have landed twice on a nonwitness, while again, at least
half of the possibilities for each choice would have led us to the right answer. If we
choose three K s the probability of error becomes 1

8 , and so on. This fact translates

P1: GIG

PE002-11drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:52

11. Probabilistic Algorithms 305

input N

NO, N is
not a prime

YES, N is
a prime

have
200 Ks

already been
tested?

K is not
a witness

K is a
witness

if this
is the answer

it is true

if this
is the answer
it is true with
probability
1 − 1/2200

NO

YES

set K to some
random number

between 1 and N − 1

carry out test of
whether K is a
witness to N’s
compositeness

Figure 11.1

The scheme of a
probabilistic
primality-testing
algorithm.

immediately into an algorithm. Choose, say, 200 random numbers between 1 and
N − 1 and test each for being a witness to N ’s compositeness. Stop and say no if
(and when) any one of them is found to be a witness, and stop and say yes if they
all pass the witness-testing procedure in the negative. Since the choices of the K s
are mutually independent, the following statement holds (see Figure 11.1):

Whenever this algorithm is run on a prime number, the answer is sure to be
yes. When it is run on a composite number, the answer will almost certainly
be no, and the probability that it will be yes (when it should not) is less than 1
in 2200.

It seems unnecessary to repeat the Russian roulette story here, or the breathing,
drinking, or crossing-the-road facts, but you will undoubtedly agree that this per-
formance is perfectly satisfactory for any practical purpose, including cases where
a person’s money or life depend on giving a correct answer. If a user is not satisfied

P1: GIG

PE002-11drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:52

306 IV. Relaxing the Rules

with this incredible success probability, he can instruct the algorithm to try 201 K s
instead of 200, and thus halve the chance of error, or, say, 500 K s, making it an
incredibly small 1

2500 . In practice, we might add, running such algorithms on as little
as 50 K s has proved to be quite adequate.

We are left with having to exhibit a workable definition of a witness to N ’s
compositeness, and it is here that the two algorithms differ. Here is a brief description
of one of them.

� We shall need a few notions from elementary number theory. For two positive integers
K and N , we say that K is a quadratic residue modulo N if there is some X such that
X 2 and K yield the same remainder when divided by N . This is denoted by:

X 2 ≡ K (mod N)

If K and N have no common factors and N is odd, we associate a special number (that is
always either 1 or −1) with the pair 〈K , N 〉. This number is known as the Jacobi symbol
of K and N , and we shall denote it here by Js(K , N). If N is a prime, then define Js(K , N)
to be 1 if K is a quadratic residue modulo N , and −1 otherwise. If N is not a prime, then
Js(K , N) is defined to be the grand product of the Jacobi symbols of K and each of the
prime factors of N , where each factor appears in the product as many times as it appears
in N ’s unique decomposition into prime factors. For example, since 261 = 3 × 3 × 29,
we have:

Js(35, 261) = Js(35, 3) × Js(35, 3) × Js(35, 29)

Now, Js(35, 3) and Js(35, 29) can be shown, respectively, to be −1 and 1 (the latter
because 82 = 64, and 64 and 35 yield the same remainder modulo 29). Hence, the final
value for Js(35, 261) is:

−1 × −1 × 1 = 1

If K is the number chosen at random from among 1, 2, . . . , N − 1, first determine if
K and N , the number whose primality we are trying to test, have any factors in common
other than 1. If they do, then obviously N is not a prime and the test is over. Assume,
therefore, that they do not. Now compute:

X ← K (N−1)/2(mod N)

that is, set X to the remainder obtained when K (N−1)/2 is divided by N . Also, compute:

Y ← Js(K , N)

If X 	= Y we say that K is a witness to N ’s compositeness, and the entire procedure stops
and says “no, N is not a prime.” If, on the other hand, X = Y , K is not a witness.

It is possible to show, using number-theoretic arguments, that for every prime N the
resulting X and Y are equal, so that if indeed the K chosen gives rise to X 	= Y we are
fully justified in concluding that N is not prime. On the other hand, X = Y does not
guarantee that N is a prime. However, it so happens (though this is by no means easy to
prove) that if N is really not prime, then the equality X = Y holds for at most half of
the N − 2 numbers between 1 and N − 1. Thus, as required, the probability of erring in
giving the indicated yes/no answers for a randomly chosen K is no more than 1

2 , so that
reiterating the procedure for, say, 200 such K s yields the desired algorithm.

P1: GIG

PE002-11drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:52

11. Probabilistic Algorithms 307

To complete the story, we must be able to tell efficiently whether K and N have any
common factors, and to compute X and Y rapidly. The former can be achieved by applying
Euclid’s fast gcd algorithm, and for the latter there are also fast algorithms that we shall
not dwell upon here.

This completes the brief discussion of a fast probabilistic algorithm for testing
primality. It is noteworthy that the other solution yields even smaller error prob-
abilities, in the sense that the fraction of witnesses to N ’s compositeness among
the numbers from 1 to N − 1 is at least 3

4 , not 1
2 . Thus, as more K s are chosen at

random, the probability of error diminishes twice as fast. A 1-in-2200 effect can thus
be achieved with 100 random K s, not 200.

And so, we have extremely fast probabilistic algorithms for testing primality,
which are far better in practice—at least for the time being—than any others, in-
cluding the recent nonprobabilistic polynomial-time AKS algorithm. In contrast,
the problem of finding the factors of a number, even a number known ahead of time
to be composite, does not seem to admit even a probabilistic solution that runs in
polynomial time. Thus, while primality testing has become tractable both in prin-
ciple (AKS) and in practice (the probabilistic algorithms), factoring has become so
in neither. As promised, we shall see some surprising applications of fast primality
testing in the next chapter, and interestingly, they hinge on precisely this difference
between primality testing and factoring.

� Fast Probabilistic Pattern Matching

Testing for primality is a striking example of a difficult problem that becomes solv-
able when coin tossing is allowed. In a more humble vein, there are many examples
of problems that do have reasonable solutions, but for which randomization can
nevertheless improve things significantly. Let us consider an example.

Suppose we wish to determine whether a given pattern of symbols occurs in a
lengthy text.3 Assume that the pattern is of length M and the text of length N ; see
Figure 11.2. Clearly, any algorithm that solves the problem must, in the worst case,
consider every position in the entire text, so that O(N) is clearly a lower bound
on the time complexity of the problem. (Can you formulate a precise argument to
that end?) A naive algorithm calls for running through the text, and at each position
checking whether the next M symbols of the text match the M symbols of the pattern
perfectly. This may give rise to a worst-case time behavior of O(N × M), which is
inadequate unless the pattern is very short. If we are looking for a short word in the
Encyclopedia Britannica, for example, this procedure may be feasible, even though
N is approximately a billion. However, if the Britannica is to be searched for a
symbol string of length 1000, or a million, the naive algorithm is hopelessly slow.
While there are a number of rather clever linear-time algorithms for this problem,

3 Bioinformatics, the scientific field that deals with the use of computing for analyzing biological
data, requires pattern matching of many different kinds. In fact, it is fair to say that the heart of the
algorithmic difficulties in analyzing DNA sequences, and other results of the various genome-related
projects, lies in pattern matching and data mining (the latter mentioned in Chapter 2).

P1: GIG

PE002-11drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:52

308 IV. Relaxing the Rules

eureka!

Pattern: h e r _ a _ g i v e (M = 10)

(N = 89)

Text: S u p p o s e _ w e _ w i s h _ t o _ d e t e r m i n e _
 w h e t h e r _ a _ g i v e n _ p a t t e r n _ o f _
 s y m b o l s _ o c c u r s _ i n _ a _ l e n g t h y _
 t e x t.

Figure 11.2

The pattern-matching
problem.

they are somewhat intricate, and their constants are too high to be of much help
when M is also large. Most of them also require a considerable amount of memory
space. Enter coin tossing.

The following algorithm uses an idea called fingerprinting. Instead of comparing
the pattern, symbol by symbol, with every possible block of M contiguous symbols
of text, we use a fingerprinting function that associates a number with each symbol
string of length M . Then, as the algorithm runs through the text considering each
M-symbol block in turn, it is these representative numbers, rather than the strings
themselves, that are compared. This sounds quite straightforward, but does not seem
to constitute an improvement over the O(M × N) upper bound, since we still have
to consider each of the M letters in each of the possible N or so potential locations
of the pattern. However, we can improve things if the following two requirements
can be met: (1) the fingerprint number is itself much shorter than M , ideally of
length log N or log M , and (2) the fingerprint of an M-symbol block is computable
in time less than O(M), ideally in constant time. Requirement (1) is not satisfied by
a simple translation of an M-block of symbols into digits (as was done in Chapter 9
in the reductions between Turing machines and counter programs). The fingerprint
function must be more subtle.

Here is what we shall do. A prime number K of about log N binary digits is
chosen at random, and the fingerprint of an M-symbol block B is taken to be the
remainder obtained when the digitized version of B is divided by K . Thus, for the
Britannica we would need a prime number of length about 30 binary digits, or about
10 decimal ones.

� Requirement (1) is satisfied by this definition, because remainders of divisions by K
are between 0 and K − 1, and are hence no longer than log N , which is on the order
of the length of K itself. Requirement (2) is also satisfied. To see how, suppose (as in
Chapter 9) that the text is constructed from an alphabet of 10 symbols, so that it can be
considered simply as a lengthy decimal number. In this way, M-symbol blocks become
simply M-digit numbers, which, to make things a little easier, are considered in reverse,
the least significant digit being the leftmost one. In general, computing the fingerprint of
an M-digit number (i.e., its remainder modulo K) takes a nonconstant amount of time,
depending on M . However, here we are traveling along a lengthy string of digits, and we
can use the fingerprint of one M-digit number to rapidly compute that of the next. For
example, consider the text

9 8 3 3 4 1 1 5 8 6 4 4 9 3 2 2 9 1 6 1 5 . . .

Let M = 6, and assume, as illustrated, that we have reached the ninth position (i.e., the
second 8 from the left), having already computed the fingerprint J to be the remainder

P1: GIG

PE002-11drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:52

11. Probabilistic Algorithms 309

of the number 394,468 modulo the chosen prime K . The new fingerprint, call it J ′, is
the remainder of 239,446 modulo K . Using the fact that the second of these six-digit
numbers is obtained from the first by subtracting 8, dividing by 10 (leaving 39,446) and
then adding 200,000, J ′ can be obtained from J with three simple arithmetical operations,
carried out modulo K , i.e., with remainders modulo K in mind. Each of these operations
takes only constant time, since, for example, there are only 10 possibilities for the number
that has to be added, 200,000 in this example, and the remainders of these modulo K
can be computed in advance and kept in a table. Consequently, the entire algorithm
(which runs through the entire text, comparing every M symbols with the pattern until
it finds matching fingerprints) can easily be seen to run in low-order linear time. More
precisely, it takes time O(N + M), with a very small constant and negligible memory
space.

This is the good news. The bad news is that the algorithm, as it stands, may
err. Obviously, if the fingerprints turn out to be unequal, the real strings (the pat-
tern and the M-symbol block against which it is being checked) must be unequal
too. However, the converse is not necessarily true. Two different M-symbol blocks
might have the very same fingerprint, since they are only required to yield the same
remainder when divided by K , a property shared by many different numbers. The
algorithm might thus find incorrect “matches.” However, like any good story, this
one has a happy ending too.

It can be shown that in our case the probability that one of the M-symbol blocks
in the text will have the same remainder when divided by the random prime number
K as does the M-symbol pattern, although they are unequal as symbol strings, is
about 1 in N . In other words, even if a malicious adversary tries to set up a text
and pattern that will generate many different blocks with the same fingerprint, the
fact that K is chosen at random after the text and pattern are given guarantees that,
probabilistically speaking, a mismatch will erroneously be declared to be a match
only roughly once during an entire run of the algorithm. To make sure that even this
remote event will not lead to the wrong answer, we can modify the algorithm so that
when a fingerprint match is found the algorithm will actually check the supposedly
matching blocks, symbol for symbol, before stopping and declaring a match. If it
so happens that this is the one case in which the fingerprint comparison errs, the
algorithm will continue to search for other matches. As mentioned, there is only a
very small chance that many of these expensive double-checks will be necessary.
Usually there will be roughly one in each run of the algorithm, and this will not
change its O(M + N) performance.

What emerges here is a choice of two versions of this algorithm. The first, in
which no double-check is made when fingerprints are found to match, is guaranteed
to run in linear time but (with low probability) it might err, and the second, in
which double-checks are made, is guaranteed not to err but (with low probability)
it might run for longer than linear time. There are names for these different kinds of
probabilistic algorithms. Those that are always fast and probably correct are dubbed
Monte Carlo, and those that are always correct and probably fast are termed Las
Vegas. The probabilistic primality-testing algorithms are thus of the Monte Carlo
variety, and for pattern matching we have one of each.

� �

P1: GIG

PE002-11drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:52

310 IV. Relaxing the Rules

� Probabilistic Complexity Classes

Probabilistic algorithms can be formalized using probabilistic Turing machines.
These are nondeterministic Turing machines, in which the choices are made by toss-
ing normal, unbiased coins, not magical ones. The class RP (standing for Random
Polynomial-time) is defined as the class of decision problems for which there is
a polynomial-time probabilistic Turing machine with the following property. If the
correct answer for an input X is no, the machine says no with probability 1, and
if the correct answer is yes, the machine says yes with probability greater than 1

2 .
Of course, the interest in RP problems stems from the fact that for any given X
these possibly erroneous algorithms can be reiterated many times, achieving a di-
minishing probability of error, as explained in detail earlier. The complement class,
co-RP, contains those problems whose complements are in RP. A co-RP problem
thus admits a probabilistic polynomial-time Turing machine that with probabil-
ity 1 says yes for yes inputs, and with probability greater than 1

2 says no for no
inputs.

The class RP lies between P and NP. Every tractable problem, that is, one that is
solvable in conventional polynomial time, is in RP (why?), and every RP problem is
in NP, and is thus solvable by magical nondeterminism in polynomial time. (Why?)
The co-RP problems are similarly between P and co-NP (see Figure 11.3, and
compare with Figure 7.15). Here too, some researchers believe that the inclusions
in the sequence:

P ⊆ RP ⊆ NP

are strict, but no one knows for sure. For example, just as primality has turned out to
be in P, so might all the NP problems, causing this three-way hierarchy to collapse.
It is thus interesting that in the realm of reasonable time we do not know whether
coin tossing provides any real additional power, or whether magical coin tossing
provides even more.

PTIME

co-RP RP

NP

co-NP NPC

Figure 11.3

Random
polynomial-time
complexity classes.

P1: GIG

PE002-11drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:52

11. Probabilistic Algorithms 311

As far as universal algorithmic power goes, the Church/Turing thesis extends to
probabilistic algorithms too. Randomization, like concurrency, cannot be used to
solve the noncomputable, or the undecidable, at least not under these definitions: it
is possible to simulate every probabilistic Turing machine by a conventional Turing
machine, and, moreover, this can be done with at most an exponential loss of time.
Thus, coin tossing does not extend our absolute algorithmic capabilities, but it does
allow us to make better use of them. Perhaps it will eventually be possible to exploit
coin tossing to solve in practice provably intractable problems. As of now, however,
we know of no fast probabilistic algorithm for any provably intractable problem.
And some problems that are conjectured to be intractable are also conjectured to
remain so even in the face of probabilism. Factoring numbers is one example, and
we shall have occasion to return to it later.

� �

� Research on Probabilistic Algorithms

Although by now it must sound repetitious, the topics discussed in this chapter are
also the subject of intensive research. Randomization in algorithmics is an extremely
exciting idea. Numerous new applications have been found, and many results have
been established since this area of research started in earnest about 25 years ago.

As with parallelism and concurrency, researchers are working in essentially two
different directions. The first is the search for efficient randomized algorithms for
conventional input/output-oriented algorithmic problems (this is analogous to the
quest for efficient parallelized algorithms for such problems), and the second is
finding ways to utilize coin tossing in the solution of problems of an inherently per-
petual, ongoing nature, which typically involve distributed processing. Probabilistic
primality testing is an example of the former and the coin-tossing protocol for the
dining philosophers is an example of the latter. Researchers are interested in both
kinds of probabilistic algorithms, Monte Carlo and Las Vegas, and in others too,
and also in the relationships between them.

Some of the most difficult problems arise when concurrency and randomization
are combined. If in Chapter 10 we claimed that concurrency renders specification
and verification subtle and slippery, adding coin tossing makes them doubly so. Ver-
ifying formally that the probabilistic dining philosophers protocol is deadlock free
with probability 1, is a very delicate and tedious chore. Researchers are interested in
finding satisfactory proof methods for probabilistic protocols and algorithms, and
also in constructing probabilistic dynamic logics, which enable many different prop-
erties of such algorithms to be stated and proved in rigorous mathematical fashion.

The classification of algorithmic problems into probabilistic complexity classes
is another interesting research topic. Classes such as RP, co-RP, and their intersec-
tion (sometimes called ZPP), as well as a number of additional classes, are being
investigated, both from a concrete point of view and from a more abstract one. In the
concrete approach, the aim is to try to find interesting problems that reside in these
classes and to prove that others do not. In the abstract approach, the aim is to seek

P1: GIG

PE002-11drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:52

312 IV. Relaxing the Rules

the inherent properties of these classes, and their relationship to other complexity
classes, both probabilistic and nonprobabilistic ones.

� As an example, recall the boolean networks of Chapter 10. There we claimed that every
effectively computable algorithmic problem can be solved by a uniform set of boolean
circuits. That is, for every such problem there is an effective way of generating the circuit
that solves the problem for inputs of a given size N . It is easy to see that if the original
problem is in P , that is, it is solvable in polynomial time, then these circuits can be made
to be of size polynomial in N . It has been shown that problems in RP, that is, those
solvable in random polynomial time, also have polynomial-sized circuits, and this is true
even if the problem at hand is not known to be in P. However, we do not know whether
these circuits can be uniformly constructed in polynomial time. If we did, we would have
a proof that any problem in RP is actually in P. (How?)

As we shall see in Chapter 12, a new, extremely interesting aspect of random-
ization and probabilistic computing arises from its use in interactive protocols. The
combination has far-reaching consequences to many issues in complexity theory
and the hardness of algorithmic problems, and was mentioned in Chapter 7 in con-
nection with the hardness of approximating NP-complete problems. These ideas are
the subject of some of the most intensive research in the theory of computing in the
past decade.

A particularly interesting direction of research is the connection between prob-
abilistic algorithms and the probabilistic analysis of conventional algorithms. In
Chapter 6 we briefly discussed the average-case behavior of sequential algorithms
and in Chapter 7 we mentioned certain approximation approaches to NP-complete
and other problems. In both cases probabilistic reasoning is involved, since certain
assumptions have to be made about the probability with which certain inputs occur.
The analysis addresses questions regarding the algorithm’s behavior on average, or
on “almost all” inputs. In this way, probability dictates the form that the inputs will
take, while the algorithm itself is totally deterministic. Here things are the other way
around. Instead of worrying about the probabilistic distribution of the inputs, the al-
gorithm itself, by tossing coins, generates the probabilities that we later reason about.
It turns out that for some purposes, these two approaches are actually equivalent. In
a certain technical sense, the results of the coin tossing can be regarded as additional
inputs, given at the start, and conversely, generating a probabilistic distribution on
the real inputs can be shifted into the algorithm itself. Thus, the probabilistic com-
plexity of conventional algorithms and the conventional complexity of probabilistic
algorithms can be viewed as two sides of the same coin, so to speak.

One issue that has not been addressed at all here is the way in which computers
can be made to toss fair, unbiased coins. Allusion has repeatedly been made to this
ability in the algorithms presented, but the implicit assumption that it can be done is
unjustified, since a real digital computer is a totally deterministic entity, and hence,
in principle, all of its actions can be predicted in advance. Therefore, a computer
cannot generate truly random numbers, and hence cannot simulate the truly random
tossing of fair coins. There are a number of ways of overcoming this problem. One
is to appeal to a physical source. For example, our computer could be attached to a
small robot hand, which in order to choose 0 or 1 at random scoops up a handful of
sand from a large container, counts the sand grains contained therein, decides 0 if

P1: GIG

PE002-11drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:52

11. Probabilistic Algorithms 313

the number is even and 1 otherwise, and then tosses the sand back into the container.
This approach has several obvious drawbacks. However, there are more practical
physical methods of obtaining truly random numbers, employed by smartcards and
similar devices.

Another approach involves so-called pseudo-random numbers. In a word, a
pseudo-random sequence is one that cannot be distinguished from a truly random
sequence in polynomial time. In the next chapter we discuss one-way functions,
which are computable in polynomial time, but whose inverses are intractable to
compute. It can be shown that if provably one-way functions exist (that is, if we
could prove that the hard direction of these functions is really intractable), then
pseudo-random number generators also exist. A generator is given a single num-
ber, the seed, as an input, and it thereafter keeps producing pseudo-random numbers
forever. Thus, rather curiously, the very ability to generate the random numbers that
are needed in probabilistic algorithms also hinges on conjectures regarding the in-
tractability of other problems. If problem P is truly hard, then problem Q can
be made easy by appealing to a probabilistic algorithm that uses P’s hardness to
generate coin tosses that are impossible to distinguish from truly random tosses.

Thus, the last word has not been said even about the most fundamental issue
underlying the application of randomization to algorithmics: the possibility of al-
gorithmically simulating a true, or almost true, random choice.

� �

� Theorems that Are Almost True?

At the end of Chapter 5 we discussed the four-color theorem, whose proof was
carried out in part using a computer program. In a sense, this theorem cannot be
claimed to have been proved in full, since no one has proved the correctness of the
program, the compiler, or the operating system involved. On the other hand, if we
really want to be certain that the theorem is true, we can always try to prove the
correctness of these pieces of software. Thus, the proof of the theorem is amenable
to formal verification, at least in principle.

It is interesting to imagine a different situation, which, as far as we know, has not
occurred yet. What would happen if some important problem in mathematics were
to be resolved with the help of a probabilistic algorithm, say of the Monte Carlo
variety, with a diminishing probability of error? Could we then put a “Q.E.D.” at the
end of the proof? The difficulty here is that even after formally verifying program,
compiler, and operating system, we will only have established rigorously that the
process admits an error with, say, probability 1/2200. What shall we do? Shall we
claim an almost theorem, or a very high probability theorem? Will mathematicians
have sufficient confidence in such a result to base further developments on it? We
shall probably just have to wait and see.

Some people dismiss the whole issue by pointing out that all mathematical proofs
have some chance of being wrong, as they are carried out by error-prone humans.
And indeed, many proofs, even published ones, have been found to be flawed. This
actually happened to the four-color theorem itself on a number of previous occasions.

P1: GIG

PE002-11drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:52

314 IV. Relaxing the Rules

Here the situation is different, since we do have a rigorously verified proof of the
theorem. However, one of its components, the probabilistic algorithm, is provably
correct with very high probability only, a probability that can be made as high
as desired by running the algorithm a little longer. As long as we use probabilistic
algorithms only for petty, down-to-earth matters such as wealth, health, and survival,
we can easily make do with very-likely-to-be-correct answers to our questions. The
same, it seems, cannot be said for our quest for absolute mathematical truth.

� Exercises
11.1. Why is playing Russian roulette with a 2200-bullet revolver the same as playing the 77-

round version described in the text with a normal 6-bullet revolver?

11.2. Here is a recursive version of the quicksort algorithm. It performs in-place sorting of an
array A of size N , and is very efficient on the average, as mentioned in Chapter 6.

call quicksort-of 1 and N .

The subroutine quicksort is defined by:

subroutine quicksort-of F and T :
if F < T then do the following:

call partition-of F and T ;
call quicksort-of F and M − 1;
call quicksort-of M + 1 and T ;

return.

The subroutine partition produces an output value in the variable M and is defined by:

subroutine partition-of F and T :
X ← A[F];
L ← F ;
H ← T + 1;
while L < H do the following:

repeat L ← L + 1 until either A[L] ≥ X or L = T ;
repeat H ← H − 1 until A[H] ≤ X ;
if L < H then do the following:

Y ← A[L];
A[L] ← A[H];
A[H] ← Y ;

A[F] ← A[H];
A[H] ← X ;
M ← H ;
return.

(a) Study the algorithm, and prove its correctness.
(b) Analyze the worst-case time and space complexity of the algorithm.
(c) Show that the average-case time complexity of quicksort is O(N log N), assuming

a uniform probability distribution for the input list. That is, the probability of any
element being the I th smallest one is uniform, for each location I .

11.3. Design an efficient probabilistic algorithm that, given two positive integers A < B, gen-
erates a random integer N in the range A ≤ N ≤ B. You may toss a given fair coin, an
action that takes one time unit. For each of the following cases, calculate how many times

P1: GIG

PE002-11drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:52

11. Probabilistic Algorithms 315

your algorithm tosses the coin and how many bits of working space the algorithm uses
(the space required for storing input and output is not counted).
(a) Assuming that A = 0 and B = 2K − 1 for some positive integer K .
(b) Assuming that 0 = A < B.
(c) Assuming that 0 ≤ A < B.

11.4. Design an efficient probabilistic algorithm which, given an integer N , generates a random
permutation of the integers 1, 2, . . . , N . Again, you have access to a fair coin. What is
the time and space complexity of your algorithm?

11.5. Prove a lower bound of O(N) on the pattern matching problem.

11.6. Consider the fingerprinting idea for pattern matching described in the text.
(a) Prove that the probability that one of the M-symbol blocks will have the same remain-

der when divided by the random number K as does the M-symbol pattern, although
they are not equal, is O(1/N).

(b) Design a detailed Monte Carlo version of the fingerprinting algorithm.
(c) Design a detailed Las Vegas version of the fingerprinting algorithm.

11.7. Design Monte Carlo algorithms that perform the following numerical tasks. You may use
the random number generator you have designed in Exercise 11.3.
(a) Given three positive numbers A, D, and E , approximate the area of the closed figure

formed by the parabola

y = x2

A
and the horizontal line

y = D

in the standard Cartesian grid, up to an error of at most ±E . (Hint: the figure is
bounded by the rectangle whose sides lie on the horizontal lines y = 0 and y = D
and the vertical lines x = A + D and x = −A − D. Therefore, the ratio between the
areas of the figure and the entire rectangle equals the limit of the proportion of random
points within this rectangle that fall into the figure.)

(b) Given a positive integer N , approximate the value of the constant π , the ratio between
the length of a circle and its diameter, up to the N th decimal digit. (Hint: consider
a circle with radius 1 bounded by some square, and draw random points inside the
square.)

11.8. Consider the problem of testing the primality of a given positive integer.
(a) Design a deterministic algorithm for testing primality, following the hints provided in

the text for improving the naive solution, and analyze its time and space complexity.
(b) Division is a relatively complex arithmetic operation. Analyze the complexity of your

algorithm when counting division operations only, and compare it to the naive version.

11.9. (a) Euclid’s fast algorithm for computing the greatest common divisor of two given
positive integers X and Y , is based upon the following arithmetical equality for X ≥ Y :

gcd(X, Y) =
{

Y if X mod Y = 0

gcd(Y, X mod Y) if X mod Y > 0

Design a procedure implementing Euclid’s algorithm and analyze its time complexity.
(b) Design in detail the probabilistic algorithm for testing primality described in the text.

You may use as subroutines Euclid’s fast gcd algorithm and other algorithms you have
supplied as answers to previous exercises.

P1: GIG

PE002-11drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:52

316 IV. Relaxing the Rules

11.10. Show how to simulate a probabilistic Turing machine by a conventional Turing machine.

11.11. Prove the following containments between complexity classes:
(a) P ⊆ RP.
(b) RP ⊆ NP.
(c) P ⊆ co-RP.
(d) co-RP ⊆ co-NP.

And we have cast lots

NEHEMIAH 10: 35

for they have chosen their own ways

ISAIAH 66: 3

P1: IOI

PE002-12drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:10

C H A P T E R 1 2

Cryptography and Reliable
Interaction

or, Getting It Done in Secret

do not reveal the
secret of another

PROVERBS 25: 9

A trusty witness is
he that does not lie

PROVERBS 14: 5

Let us now turn to a new and exciting application area of algorithmics. Its novel
feature is the fact that the methods used to solve problems in this area exploit the
difficulty of solving other problems. This in itself is quite surprising, as we would
expect negative results that establish lower bounds on the solvability of algorithmic
problems to be of no practical value, except in preventing people from trying to
improve on these bounds. Not so. Problems for which no good algorithms are
known are crucial here.

The area in general is that of cryptography, and it concerns the need to commu-
nicate in secure, private, and reliable ways. Cryptography has numerous diverse ap-
plications in military, diplomatic, financial, and industrial circles. The need for good
cryptographic protocols is greatly enhanced by the fast proliferation of computer-
based communication systems, most notably the Internet, of course. Increasingly,
computers are becoming responsible for storing, manipulating, and transmitting
anything from contracts, strategic commands, and business transactions, to ordinary
confidential information such as military, medical, and personal data. This situation,
in turn, makes problems of eavesdropping and tampering all the more acute.

One of the basic problems in cryptography is that of encrypting and decrypting
data. How should we encode an important message in such a way that the receiver
should be able to decipher it, but not an eavesdropper? Moreover, can the message
be “signed” by the sender, so that (1) the receiver can be sure that the sender alone
could have sent it, (2) the sender cannot later deny having sent it, and (3) the receiver,
having received the signed message, cannot sign any message in the sender’s name,
not even additional versions of the very message that has just been received? The
signature issue is relevant to numerous applications, such as money transfer orders
and electronic contracts. We could continue at length with such questions and their
motivating examples, as there are many, and each raises new challenges. For some
of these, elegant and useful solutions have been found, whereas for others there are
none. We shall start by concentrating on the encryption and signature problems.

317

P1: IOI

PE002-12drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:10

318 IV. Relaxing the Rules

Conventional cryptosystems are based on keys. These are used to translate a
message M into its encrypted form, the ciphertext H , and then to decrypt it back
into its original form. If we denote the general encryption procedure associated with
the key by Encr, and the corresponding decryption procedure by Decr, we may
write:

H = Encr (M) and M = Decr (H)

In other words, the encrypted version H is obtained by applying the Encr procedure
to the message M , and the original M can be retrieved from H by applying the Decr
procedure to H . A simple example that we have all used in our childhood calls for
the key K to be some number between 1 and 25, for Encr to be the procedure that
replaces every letter with the one residing K positions further along in the alphabet,
and for Decr to replace every letter with the one residing K positions earlier. In
this way, Encr and Decr are mutually dual; Decr is Encr’s inverse. (For purposes
of counting letters the alphabet is considered to be cyclic; a follows z.)

This standard approach can be illustrated using the metaphor of a locked box.
To exchange secret messages with a friend we should first prepare a box with a
securable latch. Then we should buy a padlock with two keys, one for us and one
for our friend. Thereafter, sending a message involves putting it in the box, locking
the box using the key, and sending the box to its destination. No one can read the
message en route unless they have the key, and since there are only two keys, kept
by the sender and the intended receiver, the system is quite secure.

This approach has several drawbacks. First, it does not address the signature is-
sue. Receivers can make up fake messages of their own and claim that they were
sent by the sender, and the sender in turn can deny having sent authentic messages.
Another major drawback concerns the need to cooperate in the selection and safe
distribution of keys. In general, there are more than two parties involved in a com-
munication network, and to enable privacy between any two there must be some
secure way of distributing pairs of keys, one for each pair of parties. Given that the
main applications of modern cryptography are in computerized environments, the
digital keys cannot be distributed along the same (unsafe) communication channels
as the encrypted messages. It would thus be necessary to resort to other far more
expensive methods, such as personal delivery by a trusted courier. This is clearly
not feasible in applications involving many parties.

� Public-Key Cryptography

In 1976 a novel approach to the encryption, decryption, and signature problems was
proposed, the public-key cryptosystem. It is perhaps best explained by a variant of
the locked box metaphor. The idea is to use a different kind of padlock, one that can
be locked without a key, by simply clicking it shut. Opening such a lock, however,
requires a key. To set up the mechanism for exchanging secret information, each
potential user of the system goes out on his own and purchases such a padlock and
key. He then writes his name on the padlock, and places it on the table, in public
view. The key, however, is kept by the purchaser. Now, assume party B (say, Bob)
wants to send a message to party A (say, Alice). Bob puts the message into a box,

P1: IOI

PE002-12drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:10

12. Cryptography and Reliable Interaction 319

goes to the table, picks up Alice’s padlock and locks the box with it. For this, no
key is needed. The box is then sent to Alice, who uses her key to open the lock
and read the message. No one other than Alice has the key, and thus the message is
safe. Notice that no prior communication or cooperation between Alice and Bob is
needed. Once any party has decided to join the game, has bought a padlock and has
made it public, that party can start receiving messages.

To understand how public-key systems can be used in digital, computerized en-
vironments, let us assume that messages are (perhaps lengthy) sequences of digits.
Thus, some direct and straightforward method of translating symbols into digits
has already been applied. Alice’s padlock is just the encryption function EncrA that
transforms numbers into other numbers, and Alice’s key is a secret way of computing
the decryption function DecrA. Thus, each party makes their encryption procedure
public but keeps their decryption procedure private. To send a message to Alice,
Bob uses Alice’s public encryption procedure EncrA and sends Alice the number
EncrA(M). Now Alice can decipher it using her private procedure DecrA. For the
method to work, both functions must be easy to compute, and the duality equation:

DecrA(EncrA(M)) = M

must hold for every message M . Most importantly, however, it should be impossible
to deduce a method for computing the decryption function DecrA from the publicly
known encryption function EncrA. Here “impossible” really means “computation-
ally infeasible,” so that what we really need is an appropriate kind of one-way
trapdoor function; that is, a function Encr for each user, which is easy to com-
pute, say in low-order polynomial time, but whose inverse function Decr cannot be
computed in polynomial time unless that user’s secret key is known. The analogy to
trapdoors is obvious: a trapdoor cannot be activated unless the existence or location
of the secret lever or button is known. Later we shall discuss such functions.

As far as signatures go, it is obvious that, unlike a handwritten one, a digital sig-
nature that is to be used in a computerized cryptosystem must not only be a function
of the signing party, but also of the message that is being signed. Otherwise, the
receiver could make changes to the signed message before showing it to a neutral
judge, or even attach the signature to a totally different message. If the message is a
money transfer order, the receiver can simply add a couple of crucial zeros to the sum
and claim the new signed message to be authentic. Thus, signatures must be differ-
ent for different messages.

To use one-way trapdoor functions for signing messages we require that the Encr
and Decr functions are commutative that is, not only should the decryption of any
encrypted message yield that message in its original form, but also the encryption
of a decrypted message has to yield the original message. Thus we require, for each
party A, both:

DecrA(EncrA(M)) = M and EncrA(DecrA(M)) = M

Since a message is but a number and both EncrA and DecrA are functions on
numbers, it makes sense, at least mathematically, to apply DecrA to a message M .
But what practical sense does it make? Why would anyone be interested in applying
a decryption function to an unencrypted message? The answer is simple. In order
to sign it! Here is the way it works (see Figure 12.1).

P1: IOI

PE002-12drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:10

320 IV. Relaxing the Rules

BobAlice

“attack at dawn”
Bob’s original

message M

Bob’s original
message M

Bob’s signed
message S

Bob’s signed
message S

Bob’s encrypted
and signed message

DecrB (“attack at dawn”)

DecrB (“attack at dawn”)

“attack at dawn”

basic public-key
cryptographic protocol

Bob encrypts,
using EncrA

Alice decrypts,
using DecrA

Bob decrypts,
using DecrB

Alice encrypts,
using EncrB

EncrA (DecrB (“attack at dawn”))

Figure 12.1

Sending signed and
encrypted messages
using public-key
cryptography.

If Bob wants to send Alice a signed message M , Bob first computes his special
message-dependent signature S, by applying his own private decryption function
DecrB to M . Thus:

S = DecrB(M)

He then encrypts the signature S in the usual public-key fashion, using Alice’s
public encryption function EncrA, and sends the result, namely, EncrA(DecrB(M)),
to Alice. Upon receiving this strange-looking number, Alice first decrypts it using her
private decryption function DecrA. The result is DecrA(EncrA(S)), which is really
DecrA(EncrA(DecrB(M))). However, since DecrA undoes anything that EncrA has
tied up, the result of this will be just S, or DecrB(M). (Notice that Alice cannot yet
read the message M , nor is she in any way convinced that Bob was really the sender.)
Finally, Alice applies Bob’s public encryption function EncrB to S, yielding

EncrB(S) = EncrB(DecrB(M)) = M

P1: IOI

PE002-12drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:10

12. Cryptography and Reliable Interaction 321

Thus, all at once, Alice sees the message M and can also be quite sure that only
Bob could have sent it. This follows from the fact that the functions are such that no
number will result in M when subjected to EncrB unless that number was precisely
DecrB(M), and no one besides Bob could have produced DecrB(M), since the
decryption function DecrB is Bob’s closely guarded secret. Moreover, Alice cannot
sign any other message in Bob’s name, since signing entails applying Bob’s secret
function DecrB to the new message.

However, there is still the possibility that Alice will be able to send the very same
message M to some other party, say Carol, but with Bob’s signature. The reason
is that during the process Alice has possession of DecrB(M), which she can then
encrypt using EncrC , sending the result to Carol, who will think it came from Bob.
This might be critical in case the message M is “I, General Bob, hereby order you
to set out on the following dangerous mission: . . .” To prevent this situation, the
name of the receiver of the message (and possibly also the date) should always be
included, as in “I, General Bob, hereby order you, Major Alice, to set out on the
following dangerous mission: . . .” Such mischief on Alice’s behalf (and at Carol’s
expense) would then become impossible. Of course, this means that it should be
impossible for Alice to compute the function DecrB without the right key, even for
some slightly modified message M ′ which is very close to the message M for which
she has access to DecrB(M).

The concept of public-key cryptography thus sounds very promising. To make it
work, however, requires that we find appropriate definitions of the keys and the cor-
responding Encr and Decr procedures, which enjoy all the nice properties we have
discussed. In other words, we are interested in one-way trapdoor functions, and if we
want to use the signature feature they must also satisfy the mutual inverse property.

It is by no means clear that such functions exist. In fact, it could be argued that
the requirements are paradoxical, almost self-contradictory. Where do we find a
one-way function with a really hard-to-compute inverse? Taking square roots, for
example, is not that much harder than its converse, squaring, and moving backwards
in the alphabet is as easy as moving forwards. In addition, the difficult direction must
become easy to compute if the secret key is known. Are there such functions? We
shall now see that there are, but the difficulty of computing the inverse without the
key will rest on conjectured, not proven, intractability. The question of whether there
are such functions with provably intractable inverses is still open.

� The RSA Cryptosystem

About a year after the concept of public-key cryptosystems emerged, the first method
to implement it was found. The resulting system, called the RSA cryptosystem, after
the initials of its inventors, is described here. Since then, several other definitions
have been suggested, some of which have consequently been shown not to be secure.
The RSA approach, however, remains one of the most interesting of them all, and,
as explained later, there is reason to believe that it is really unbreakable.

It is important to understand what it means for a public-key cryptosystem to
be broken, or cracked. Since the integrity of a public-key system hinges on the
difficulty of computing the Decr functions without the right keys, breaking such

P1: IOI

PE002-12drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:10

322 IV. Relaxing the Rules

a system involves finding a fast algorithm for computing the Decr function given
knowledge of the corresponding Encr function. If signatures are used, one might
also have knowledge of several examples of messages M and their ciphertexts
Decr (M). Thus, while cracking certain kinds of conventional cryptographic meth-
ods might require lucky guesses, or sophisticated ways of finding some secret code
or number, cracking public-key cryptosystems is really tantamount to finding clever
polynomial-time algorithms for certain problems that are believed to be of inherent
super-polynomial time behavior. And this is algorithmic work par excellence.

The RSA system is based on the contrast between testing primality and factoring.
The former, as we have seen, can be carried out very fast, using a probabilistic
algorithm, and perhaps in the future also using a fast version of the new non-
probabilistic polynomial-time algorithm. However, for the latter there are no known
fast methods, not even probabilistic ones, and factoring is actually conjectured not
to be even in the probabilistic/randomized class RP.

Each party, say Alice, secretly and at random, chooses two large prime numbers
P and Q, of length, say, around 300 digits, and multiplies them, resulting in the
product N = P × Q. Alice keeps the primes secret, but makes their product (as well
as another quantity, as explained later) public.1 The crucial fact is that, given the
product, no one except Alice herself can find the two prime factors in a reasonable
amount of time. Here are the details.

� Before choosing the two primes, Alice needs to select another number, G, called the
public exponent. This should be an odd number, preferably prime, and need not be too
large. This number can be the same for all participants; a favorite choice is the prime
216 + 1 = 65,537. When choosing her prime numbers P and Q, Alice needs to make sure
that neither P − 1 nor Q − 1 have any common factors with G, except, of course, the
trivial factor 1. Finally, Alice computes her private exponent, K , to be the multiplicative
inverse of G modulo (P − 1) × (Q − 1), meaning that K × G yields a remainder of 1
when divided by (P − 1) × (Q − 1). Symbolically:

K × G ≡ 1 (mod (P − 1) × (Q − 1))

This completes Alice’s process of going out and buying a padlock and key. The padlock
is the pair 〈G, N 〉, which is made public, and the secret key is K . The prime factors of
N , namely, P and Q, are also kept secret. To be quite precise, we should indicate that
these are all Alice’s numbers, by writing them as PA, Q A, NA, K A, and G A. Other parties
choose their own numbers PB , PC , Q B , QC , etc.

What do the encryption and decryption procedures look like? Well, assume Bob wants
to send a message M to Alice. To encrypt it, he uses Alice’s public pair 〈G A, NA〉. Bob
first breaks M up into blocks of numbers, each between 0 and NA − 1. Hereafter, we can
assume that there is only one such number M , since the entire process is carried out for
each of them. To obtain the ciphertext H , Bob raises M to the power G A, modulo NA:

H = EncrA(M) = MG A (mod NA)

1 We have chosen to describe this process in a somewhat personalized fashion. In actuality, when the
RSA procedure is used in practice—and it is employed extensively by one’s computer when sensitive
information is sent over the Internet—the steps we describe here are done in a way that is transparent
to the user. Hence, for example, the two prime numbers are “chosen” for Alice by the software
implementing the method, and she doesn’t really have to do anything like that on her own.

P1: IOI

PE002-12drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:10

12. Cryptography and Reliable Interaction 323

That is, H is the remainder obtained when MG A is divided by NA. This completes the
definition of the encryption procedure. Notice that since all arithmetic is done modulo NA,
all numbers involved are between 0 and NA − 1 so that both the message and its ciphertext
are within the same range of numbers. Decryption is very similar: Alice, upon receiving
the ciphertext H , raises it to the power of her secret key K A, also modulo NA. Thus:

DecrA(H) = H K A (mod NA)

The origin of the terms public exponent and private exponent should now be clear. It
is now easy to see that:

DecrA(EncrA(M)) = EncrA(DecrA(M)) ≡ MG A×K A (mod NA)

It is not so easy to see, but it is true nevertheless, that by the special way K A was derived
from G A, P , and Q, this last quantity is just M (mod NA), so that decrypting the encrypted
message yields the message in its original form. The fact that not only DecrA(EncrA(M))
yields M but also EncrA(DecrA(M)) and that this is true for any M , is what makes the
RSA method fitting for signatures too.

Of course, we have to show how all the computations involved can indeed be carried
out efficiently, and that DecrA(M) cannot be computed without knowledge of Alice’s key
K A. The entire setting-up process starts with each party choosing two large primes, a feat
that can be achieved quite painlessly using a fast primality-testing algorithm repeatedly
for random 300-digit numbers, as explained earlier. Of course, the chance that two parties
will come up with precisely the same primes is negligible.

The last step of preparation is to compute K from G, P , and Q (we omit the A subscript
here for clarity). This, as well as the actual computations of MG and H K modulo N , can
be carried out quite rapidly using relatively simple procedures for exponentiation modulo
N and for a certain version of the greatest common divisor (gcd) algorithm. The details
are omitted as they are somewhat technical in nature.

As far as the security of the RSA system goes, it can be shown that if we can factor
large numbers in reasonable time the system is immediately broken, since then an
adversary could take the public product N , find its factors (that is, the two secret
primes P and Q), and use them, together with the public exponent G, to compute
the private exponent K . Dually, all the approaches suggested so far for attempting to
break the RSA system have been shown that to work they must yield fast solutions to
the factoring problem too. In other words, as of now, for every approach suggested
as an attack on the security of the RSA system, it has been shown that either it
will not work, or that if in principle it does work, it results in a fast algorithm for
factoring. However, since factoring is strongly conjectured to have no fast algorithm,
not even a probabilistic one, and none of the proposed attacks on the RSA system
have yielded such an algorithm, people strongly believe RSA to be safe.

There is a slightly different version of the RSA system whose security is provably
equivalent to fast factoring. In other words, it has been shown that any method for
cracking that particular cryptosystem will yield a fast factoring algorithm. Obvi-
ously, since we don’t know the precise status of the factoring problem, whether this
cryptosystem is better or worse than the original RSA is unclear.

It is worth re-emphasizing the fundamental facets of algorithmics that are involved
in such ideas as the RSA cryptosystem. They include conventional sequential algo-
rithms, apparently intractable algorithmic problems, probabilistic algorithms, and,

P1: IOI

PE002-12drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:10

324 IV. Relaxing the Rules

if the method is to work reasonably fast on large numbers, then either very efficient
programming or the design of special-purpose hardware.

� Playing Poker Over the Phone

Public-key cryptographic functions can be used in many seemingly unrelated ap-
plications. Consider two people, Alice and Bob, who want to play poker over the
phone. We can assume that each player has access to a computer, in case there are
computations to be carried out during the game, and that digital information can
be transmitted over the telephone line. There is no neutral referee who will deal the
cards or who has global knowledge of the players’ hands and/or of the cards remain-
ing in the deck; everything must be carried out by the two players themselves. It is
not too difficult to imagine less playful situations of similar nature, such as digital
contract negotiations.

Obviously, each player must have some information that can be kept secret during
the game, such as his hand of cards. Now, in an ordinary face-to-face game, a player
cannot claim to have an ace unless he can demonstrate it by actually exposing the
ace as one of the cards being held. The electronic analog of this is to wait until the
game is over, and then allow each player to inspect the other’s entire sequence of
moves, including his private activities. This will prevent ordinary kinds of cheating.

Cheating, however, is not the only problem. A little thought reveals that dealing
the cards constitutes the real challenge. We have to design a protocol that starts out
with 52 (digitally represented) cards, and results in each of the two players holding
a random hand of five cards, with the remaining 42 left in a pile for future use. What
makes the problem far from trivial is that we must ensure that neither of the players
knows the other player’s hand. At first sight this sounds impossible. We can start
out by somehow encrypting and shuffling the cards. However, since at least one of
the players must be able to decrypt the encryption that is used, it would appear that
one of them will know which of the cards has been dealt to the other, or that one of
them will be able to arrange for himself to have a particularly good hand. Can we
prescribe a fair and random deal? The answer is yes.

The idea is to use one-way trapdoor functions, as in public-key cryptography, but
in this case we require them to be commutative; that is, for any message M we must
have:

EncrB(EncrA(M)) = EncrA(EncrB(M))

This ensures that if a message is encrypted by Alice and then by Bob it can be
decrypted first by Alice and then by Bob, since the double encryption will yield
EncrB(EncrA(M)), which is the same as EncrA(EncrB(M)), whereby Alice’s de-
cryption will yield DecrA(EncrA(EncrB(M))), which is just EncrB(M), and fi-
nally, Bob’s decryption will yield DecrB(EncrB(M)), which is simply the origi-
nal M . The RSA functions can be shown to satisfy this additional commutativity
requirement, and hence they would appear to be adequate for the present applica-
tion too.

P1: IOI

PE002-12drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:10

12. Cryptography and Reliable Interaction 325

card 1 card 2 card 3

card 2 card 5 card 1

card 4 card 5 card 6

EA EA EA

card 6 card 3 card 4

EA

card 5

card 5 card 3 card 1 card 6

EA

card 3

EA

card 1
E

A E B

card 6
E

A E B

card 1

EB

card 6

EB

EA EA

Alice shuffles,
and encrypts
using EncrA

original deck
of cards

Bob selects four
and encrypts two

of them
using EncrB

Alice decrypts
all four

using DecrA

Bob decrypts
the two

using DecrB

Bob’s handAlice’s hand

Alice BobFigure 12.2

Dealing cards over the
phone (we use E and
D as abbreviations for
Encr and Decr).

In terms of locked boxes, commutativity means that the latch has enough room
for two padlocks that can be clicked shut, side by side in any order, rather than one
over the other. In this way, the first padlock to be attached need not be the last one
to be removed.

As before, each player starts by selecting his own personal Encr and Decr func-
tions. However, in contrast to public-key cryptography, none of the information is
made public until the game is over, not even the encryption functions. Here is how
our players Alice and Bob go about dealing themselves five cards out of a pack of
52. (Figure 12.2 illustrates the procedure, and for simplicity it shows the dealing of
two cards each, out of a total of six.) First, Alice uses her own encryption function
EncrA to encrypt descriptions of the 52 cards. Recall that the entire game sequence
is later checked, with both players’ functions being exposed, so that Alice cannot
encrypt an illegal set of cards, having, say, 20 aces. Using coin tossing, or any other
means, Alice then shuffles the encrypted deck and sends the resulting list to Bob.
Even though he knows precisely what the 52 encrypted messages look like when

P1: IOI

PE002-12drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:10

326 IV. Relaxing the Rules

decrypted, Bob has no way of knowing which card is which, since they arrive in an
order unknown to him, and EncrA and DecrA are Alice’s closely kept secrets.

Now for the dealing itself. Bob selects 10 encrypted cards, five of which he
encrypts a second time using his own function EncrB . He then sends Alice all 10.
Thus, Bob now has 42 boxes locked with Alice’s padlock, and Alice has 10—five
locked with her own padlock and five locked with both padlocks. Alice now unlocks
her own 10 locks; that is, Alice decrypts the 10 messages received from Bob using
her decryption function Decr. The first five of these now become unencrypted card
descriptions, and henceforth Alice regards them as her hand. The other five are
still locked with EncrB (here is where commutativity is needed—the reader should
check this), and Alice sends them back to Bob. Upon receipt, Bob unlocks them
using DecrB , thus exposing his own five-card hand.

The hands are obviously disjoint, and are all different from the remaining 42 cards.
Moreover, neither player knows what the other player’s hand is. Bob does not know
anything about Alice’s hand, although Bob was the one who actually dealt the cards,
because he selected the 10 cards from a shuffled deck that was encrypted using a
function he has no way of decrypting. Similarly, Alice does not know anything about
Bob’s hand, although Alice does know how to decrypt the original encryptions,
because Bob’s five cards were encrypted a second time (by Bob) using a function
that Alice has no way of decrypting. Thus the deal appears to be valid, fair, and as
secure as any dealing method.

You should now have no difficulty figuring out how the game continues. The only
nontrivial part is when a player has to take a new card from the remaining pile, a
procedure that can be carried out using precisely the same idea as in dealing the
initial hands.

Despite these facts, it turns out that there are rather serious problems when it
comes to implementing this dealing protocol. It has been shown, for example, that
the RSA encryption functions are inadequate here. While messages encrypted using
them cannot, as far as we know, actually be deciphered in reasonable time, certain
partial information can be extracted from them. Thus, it is possible to manipulate
the encrypted version of a card and figure out certain mathematical properties of its
original (digital) version, which follow from the particular way the RSA functions
are defined. For example, it may be possible to find out whether the number encoding
a card has the same remainder when divided by some special prime as some other
square number. This is a little like saying that one player can figure out the color
(red or black) of the other’s cards—clearly an unacceptable compromise in most
card games.

One ad hoc way to overcome such problems is for Alice to describe the cards prior
to encryption in her own informal language, the precise form the description takes
being unknown to Bob ahead of time, or to insert random letters and digits therein; a
similar idea would be used by Bob too. In this way there would appear to be no way
for one player to gain anything from knowing such arithmetical properties of the
original unpredictable descriptions of the other’s cards. We should realize, however,
that this approach might not be really secure, as we cannot prove that no relevant
information about the cards leaks out. Other, more provably secure, protocols for
dealing cards have indeed been discovered. They are themselves probabilistic, but
are considerably more complicated than the simple and elegant one described here.

� �

P1: IOI

PE002-12drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:10

12. Cryptography and Reliable Interaction 327

� Interactive Proofs

Let us return for a moment to the class NP. We have seen that problems in NP
are characterized as being solvable in polynomial time with the help of a magic
coin. Equivalently, the problems in NP are those that admit a “yes”-certificate of
polynomial size. This second characterization can be rephrased in terms of a kind
of game between a prover and a verifier. Alice, the prover, is all-powerful, and she
is trying to convince Bob, the verifier, who has only deterministic polynomial-time
power, that an input X to the problem is a “yes” input. For specificity, let us take a
particular problem in NP, say three-colorability of a graph. Alice wants to convince
Bob that the graph G can be colored with three colors. (Recall that the rule is that
no two adjacent nodes may be monochromatic.) Since Bob has only polynomial-
time power, he cannot verify that fact on his own. Accordingly, Alice, who has
unlimited power, simply sends Bob a three-coloring of G. Clearly, Bob, even with his
limited power, can verify that the coloring is legal and will thus become convinced
that G is indeed three-colorable. Obviously, there is no way Alice can convince Bob
that a graph is three-colorable if it is not. Thus, we may say that a decision problem
P is in NP if, for each input X , whenever X is a “yes” input then Alice can convince
Bob of that fact in polynomial time, but if X is a “no” input then neither Alice nor
any other prover can convince Bob otherwise.

This little game is quite simple, and it requires a single round only: Alice sends
the polynomially-sized certificate to Bob, who promptly verifies that it is indeed
a certificate. This setup has been generalized in several ways, leading to stronger
notions of proving and verifying. The basic idea is to turn the process into an
interactive one, with many rounds, and to allow the verifier to flip coins and ask
the prover questions, all in polynomial time. Thus, Alice remains all-powerful, but
Bob now has the power of a probabilistic polynomial-time machine. Moreover, in
the good spirit of the previous chapter, we also make the basic notion of proving
probabilistic. Specifically, we require only that Alice can convince Bob of the “yes”-
ness of an input to P with overwhelmingly high probability, whereas a prover can
(wrongly) convince Bob that a “no” input is really a “yes” input only with negligibly
low probability. This extension leads to a class of problems known as IP, standing
for interactive polynomial time.

It is worth pausing to assess the significance of this notion. The conventional
game associated with NP is very much like the standard way of proving a statement
to someone in writing, say, as part of a mathematical publication: You supply what
you claim is a complete proof, using all the ingenuity you can muster, and I then
check to see whether I believe it or not. (We shall be returning to this version of
proof a little later on.) The new notion is a powerful, yet very natural, extension,
more akin to the way people prove statements to each other orally: You supply some
information; I ask questions, perhaps involving random elements that you did not
know I would choose; you then supply answers and more information; I continue
to pester you with questions; etc. This continues until I become convinced (in the
probabilistic sense of the word, that is, with very high probability) that you are
right. And, of course, we require that the entire procedure take only a reasonable,
viz. polynomial, amount of time.

What is the precise power of this combination of interaction and coin tossing?
What decision problems can be solved using the new procedure? In other words, we

P1: IOI

PE002-12drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:10

328 IV. Relaxing the Rules

would like to know exactly which problems are in IP. From the previous discussion
it is clear that IP contains all of NP, including, of course, the NP-complete problems.
However, it is not at all clear that the addition of interaction and coin tossing gets us
anything new. Indeed, it is not an easy task to come up with an interactive protocol
for a problem that is not known to be in NP. Nevertheless, recently the question
was settled in its full generality, with the establishment of the surprising result
that IP is, in fact, exactly PSPACE. The power of probabilistic polynomial-time
interaction is thus exactly the same as the power of polynomial space! For each
problem in PSPACE, “yes”-ness can be proved in polynomial time using interaction
and randomness. Put another way, extending the stringent, one-pass proof procedure
to admit a more relaxed probabilistic and interactive proof protocol (required to use
only a reasonable amount of time), is exactly the same as dumping proof protocols
altogether, in favor of a conventional computation that uses a reasonable amount of
memory space (but might require an unreasonable amount of time).

A further liberty has also been taken, with the definition of the class MIP, standing
for multiple-prover interactive proofs. Here, the interactive proofs are allowed to
be carried out by more than one prover (but still only one verifier), though the
provers are not allowed to communicate. This class has been shown to be identical
to NEXPTIME, i.e., the class of problems computable with an exponential amount
of time using a magic coin. This fact is especially interesting, since NEXPTIME is
known to be strictly larger than P or even NP (which is not the case for PSPACE),
so that multi-prover proofs with normal coins are more powerful than direct proofs
with magic coins.

� Zero-Knowledge Protocols

To illustrate interactive proofs it is beneficial to give an example of an exciting
variant thereof. Suppose Alice wants to convince Bob that she knows a certain
secret, but she does not want Bob to end up knowing the secret himself. This sounds
impossible: how do you convince someone that you know, say, what color tie the
President of the United States is wearing right now, without somehow divulging that
priceless piece of information to the other person or to some third party?

As another down-to-earth example, consider the Where’s Waldo? book. Each of
its pages contains a very intricate illustration with many different characters, and the
issue is to find Waldo, a predefined, rather colorful, character. Suppose Alice and
Bob are looking at one of the pages, and Alice claims that she knows where Waldo
is. Bob doesn’t believe her, and Alice wants to convince him that she isn’t lying.
However, she wants to do this without revealing to him Waldo’s actual location,
so that he can go on trying, eating his heart out that she has found Waldo but he
hasn’t . . . How can she do this?

There are many solutions, and here is one. Alice and Bob first photocopy the
relevant page. Bob then prints some regular, but nonforgeable pattern on the back
of the copy (e.g., he repeats some nonsense word densely, and with random direc-
tionality, all over it). With her back to Bob, Alice now cuts out Waldo’s image from
that copy, destroying the leftovers, and triumphantly shows it to Bob, who sees that
it is indeed Waldo, and sees that it has his pattern on the back. Alice could not have

P1: IOI

PE002-12drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:10

12. Cryptography and Reliable Interaction 329

guessed the pattern, so she cannot have been cheating, and Bob cannot discern from
seeing the small cutout where in the large page was this image of Waldo actually
taken from. So she has proved to him that she indeed knows where Waldo is, but
Bob learns nothing (or almost nothing) from what he sees.

Presidents’ ties and Waldo images aside, the issue in question is to devise an inter-
active probabilistic protocol, built around a fixed algorithmic problem P , whereby
Alice can convince Bob in polynomial time that a given X is a “yes” input of P , but
in such a way that when the interactive exchanges are over Bob knows nothing about
the proof of the “yes”-ness of X . He knows, with overwhelming probability, that X
is indeed a “yes,” and hence that Alice was right, but that is the only new informa-
tion he has gained from the process. In particular, he cannot (in polynomial time)
even prove that very fact to someone else! Such seemingly paradoxical protocols
are dubbed zero-knowledge.

Before giving an example of one, it is worth noting that zero-knowledge protocols
have many applications in cryptography and secure communications. For example,
we might want to devise smartcards that will enable workers to enter a sensitive
establishment, but while we want the gates to open only for bearers of a legal
card, we do not want the establishment’s personnel to know exactly who they have
admitted. Or suppose a group of people want to set up a joint bank account. They
would like to be able to withdraw and transfer money electronically, and would like
the bank to enforce certain rules (e.g., a limit on the daily amounts withdrawn).
However, suppose they also want to prevent the bank personnel from being able to
simulate a withdrawal on their own, or even from knowing exactly which of them
withdraws, only that the money was withdrawn legally and according to the rules.
Such cases call for the ability to convince a verifier that you know some secret, some
key or code, but without divulging anything more than that fact itself.

� Zero-Knowledge Three-Coloring

Here, then is a zero-knowledge protocol. It will be described as if it takes place be-
tween two real people, but it is not too difficult to turn it into a full-fledged algorithmic
protocol, suitable for electronic applications. It is based on three-colorability.2

Alice shows Bob a graph G (see Figure 12.3), and claims that it can be colored
with three colors. Bob, in the polynomial time available to him, cannot verify that
fact on his own, so Alice now attempts to prove it to him. She takes the graph away,
and secretly colors it with three colors, say, red, blue, and yellow. She then carefully
covers the colored nodes with small coins, and places the graph in Bob’s view (see
Figure 12.4(a)). She also tells Bob what colors she has used.3 Bob is, of course,
skeptical, but despite the fact that she is interested in eliminating his skepticism,

2 Actually, zero-knowledge protocols can be shown to exist whenever ordinary interactive protocols
exist, i.e., for all problems in PSPACE. However, when one goes beyond NP, the protocols become
far more complicated, and cannot be described in an appealing intuitive manner. Hence the choice of
three-colorability, which is NP-complete, as an example.

3 When this protocol is carried out electronically, the secret coloring and covering, and the stages that
come thereafter, must be carried out using appropriate cryptographic means.

P1: IOI

PE002-12drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:10

330 IV. Relaxing the Rules

Figure 12.3

A graph.

Alice is not willing to expose the coloring. In fact, she is not interested in exposing
the coloring of any three nodes, since this would compromise something of the
coloring strategy itself. Instead, she says that she is willing to expose any pair of
neighboring nodes. So Bob chooses an edge in the graph, at random, and Alice
removes the coins from the nodes at its ends (see Figure 12.4(b)). Bob observes that
there are two different colors on these two nodes, and that the two colors are from
among the three Alice listed. Now, clearly, if he discovers that the exposed nodes
violate one of these properties, then he has shown that the coloring is not legal, thus
shattering Alice’s claim. If the two colors are different and from among the three

10 10

10

10

10

10

10

10

10

10

≈
10

1010

10

10 10

10

Colors

(a)

(b)

≈

≈

≈≈

≈
≈

≈

≈ ≈

≈

≈

≈

≈ ≈

≈
10≈

Figure 12.4

Covering a
three-coloring and
exposing a pair of
adjacent nodes.

P1: IOI

PE002-12drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:10

12. Cryptography and Reliable Interaction 331

Figure 12.5

The three-coloring of
the graph of
Figure 12.3.

Alice listed, Bob cannot complain, but neither is he sure that the entire graph is
colored legally. Now comes the trick. Rather than agreeing to expose more nodes,
Alice takes back the graph, and recolors it, this time using, say, brown, black, and
white, and she again tells him which colors she used, covers the nodes and shows
Bob the graph. He, again, chooses an edge, and Alice promptly uncovers the two
nodes at its ends. Again, Bob sees two different colors from the three she said she
has used. This procedure continues several more times, until Bob is happy.

Should Bob ever be really happy? Well, let us look at things from his point of
view. Let us say that G contains N edges (N can be at most the square of the number
of nodes). After Alice passed the first test, i.e., Bob was happy with the colors he
saw in the first round, he is obviously not sure Alice can three-color the entire
graph, but he knows that he had a chance of 1 in N of catching her if she does not,
since he gets to choose any edge, and Alice had no idea which he would choose
when she colored and covered the nodes. Hence, the probability that she could
pass this first test without really knowing how to color G is 1 − 1/N , which is
actually (N − 1)/N . Now, the second test was completely independent of the first
one, from Alice’s point of view, so that the probability that she could pass the first
two tests without knowing how to color the graph is ((N − 1)/N)2. And, as the
process continues, the probability decreases through increasingly larger powers of
(N − 1)/N , thus rapidly approaching 0 as the number of succesful tests increases.
Bob can therefore stop the process whenever he is satisfied that this probability is
negligably low. He will then be overwhelmingly convinced that Alice can three-
color the graph. (In fact, she can. See Figure 12.5.) In practice, a relatively small
number of rounds suffices, even for large graphs.

What about Bob’s knowledge? Well, since he keeps seeing different colors, and
since Alice does not indicate the correspondence between the color sets in the
various tests, Bob has no knowledge of the color relationships between any three
nodes, and his isolated knowledge about many pairs of nodes is of no help, since
the colors are always different.4 This argument can be formalized to show that Bob
has zero-knowledge of the coloring scheme, and that in polynomial time he cannot
find out anything that he could not have found out without the information he gets
from Alice (unless, of course, P = NP). In particular, as mentioned above, he cannot

4 Actually, Alice can use the same three colors each time, but permuted, so that given any two tests Bob
never knows the actual correspondence between the colors.

P1: IOI

PE002-12drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:10

332 IV. Relaxing the Rules

even prove to someone else that G can be three-colored, although he himself is fully
convinced. Thus, this is a zero-knowledge protocol par excellence, and once again
we have a remarkable application that utilizes in a crucial way both the good news
and the bad that algorithmics has to offer.

� Probabilistically Checkable Proofs

So we know about interactive proofs, in which the verifier becomes convinced of
the correctness of what the prover is trying to prove in the probabilistic sense. And
we also know about doing so without giving the verifier any new information. We
now return to the noninteractive notion of proof, where the proof is given in writing:
we still have a verifier, Bob, but instead of a prover Alice interacting with him, there
is a static, unchanging document of proof that she has prepared in advance and has
given him. This is the kind of certificate we have alluded to when discussing NP in
terms of certificates of “yes”-ness. So the input we are trying to establish as a “yes”
input is of size N , and the length of the proof document is polynomial in N .

The subtlety of the difference is in the fact that a fixed certificate of proof cannot
lie. In the interactive prover/verifier model, Alice can change the proof in midflight,
so to speak, giving different answers to Bob’s probes, in order to make his job more
difficult. A fixed, written proof, on the other hand, does not change. As discussed
earlier, the difference between the two setups is the difference between a person
trying to convey to you a proof of some mathematical statement in an interactive
session, say in front of a blackboard, vs. you trying to become convinced of a written
proof of that statement, say in a published paper. So, the game now is not Alice trying
to turn Bob into a believer, but Bob checking her proof and deciding on his own
whether to believe it or not.

What does Bob do? He reads some parts of the proof, any parts he wants, and
carries out his own thinking, any kind he wants, then reads some more and thinks
some more, and at the end of the day he must be convinced that the proof is correct.
As usual, the day must end within a polynomial amount of time, and the conviction is
in the probabilistic sense, i.e., Bob has to be sure the proof is correct with a negligible
chance of error. In the true spirit of this chapter and the previous one, we also allow
Bob’s thinking itself to be probabilistic; that is, he can carry out a polynomial-time
probabilistic computation with coin tossing to help him decide what he wants to do
next.

To finish formalizing this notion of proof, we must say what we mean by allowing
Bob to read any parts of the proof he wants. The most natural way to model this
kind of activity is to view the proof as a sequence of bits of polynomial length, and
to allow Bob to probe it for information whenever he feels like it. This last phrase
means that from the point of view of anyone other than Bob himself, the probes are
random, because we have no way of knowing in advance which parts of the proof
he will ask to see.

This model of proof is called PCP, standing for probabilistically checkable
proofs. In order to assess the difficulty of checking proofs in this fashion, we measure
two quantities, both as functions of N (the input size): the number of coin tosses Bob

P1: IOI

PE002-12drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:10

12. Cryptography and Reliable Interaction 333

needs in his thinking, and the number of bits from the proof that he needs to probe.
The second of these is particularly important, as it captures how much of a possibly
lengthy proof Bob needs to even look at in order to be convinced of its correctness. It
is not too difficult to show that NEXPTIME, which we know to be equivalent to the
set MIP of problems provable in polynomial time using multi-party interaction, is ac-
tually also the set of problems that admit probabilistically checkable proofs, in which
Bob can toss any number of coins and ask to see any number of bits from the proof.5

The remarkable result about PCP is this: all NP problems can be checked using a
constant number of probes of the proof! Let us say this more carefully. For any prob-
lem in NP, including the most difficult ones therein—the NP-complete problems—
“yes”-ness can be proved by using proof certificates for which the verifier need
only check a portion of fixed size, whose length is unrelated to the particular in-
stance case he is trying to be convinced of. This has the rather amazing consequence
that if you are willing to make do with conviction with overwhelming probability,
most mathematical statements can be proved using reasonably-sized proofs that can
be checked by reading only a very small, fixed-sized, random part of the proof.6

� �

� Research on Cryptography

The subject matter of this chapter constitutes one of the “hottest” research areas in
computer science, and, just as it has always been, it is also an attractive area of work
in more covert establishments, such as intelligence agencies and other, less legal or
acceptable realms too. Cryptography, digital signatures, electronic commerce and
“electronic cash,” computerized contract signing, and the security and fault tolerance
of large systems, are but some of the buzzwords driving such research. As explained
earlier, besides the highly applicative nature of such work, its appeal stems from the
fact that it exploits not only ideas leading to efficient solutions to certain algorithmic
problems, but also negative results regarding the (apparent) difficulty of solving
others. It is of interest that in virtually all of these applications the negative results are
based on deep conjectures concerning non-polynomial-time lower bounds on certain
problems.

Interaction and zero-knowledge proofs are also being researched intensively, and
one of the most active areas of work is in probabilistically checkable proofs. The
reason is that such proofs have a close relationship to issues regarding the difficulty of
approximating NP-complete problems, which were discussed in Chapter 7; actually,
certain PCP results lead to nonapproximability results. However, the connection is
beyond the scope of this book.

5 The phrase “any number” here means a polynomial number, since Bob only has a polynomial amount
of time at his disposal.

6 This fixed fraction can actually be made incredibly small; under certain technical assumptions about
the setup you only need to look at three (!) bits of the proof.

P1: IOI

PE002-12drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:10

334 IV. Relaxing the Rules

� Exercises
12.1. Extend the method described in the text for dealing cards in playing poker over the phone

to three players. The players conduct “conference conversations,” that is, every message
sent by one player goes simultaneously to the other two. Assume a central pile and fixed
turns of the players. The first to move starts the dealing process.

12.2. Assume N employees, N > 2, want to collectively calculate their average salary, but
without any of them discovering the actual salary of any other. Consider the following
probabilistic solution:
The employees are given labels 1 through N , with the I th employee earning salary SI .
They all execute the same procedure. In the first stage, the I th employee privately performs
the following:

� Generate N − 1 random numbers:

X 1
I , . . . , X I−1

I , X I+1
I , . . . , X N

I

� Calculate

X I
I = SI − (

X 1
I + . . . + X I−1

I + X I+1
I + . . . + X N

I

)

� Send X J
I to the J th employee. (Thus, the I th employee receives the values X I

1 , . . . ,

X I
I−1, X I

I+1, . . . , X I
N .)

� Calculate the sum

Y I = X I
1 + X I

2 + . . . + X I
N

� Publish the value Y I.

In the second stage, all employees calculate together

Y = Y 1 + Y 2 + . . . + Y N

N

Prove the following facts, establishing the correctness of the algorithm:

(a) The final value Y is indeed the average salary.
(b) No employee has a way of deducing the salary of any other (that is, there is no

algorithm that, based on the information available to the I th employee, can calculate
the salary of any other employee).

(c) Assume there are L gossips among the employees, who are willing to cooperate by
sharing their information. Then they can compute at most the average of the other
N − L employees. That is, if L < N − 1, they cannot deduce the salary of any of the
other N − L employees, but only their average salary.

12.3. Devise a rigorous version of the zero-knowledge protocol for three-colorability described
in the text. Recall that you have to carry out all the actions electronically, and hence have
to use appropriate cryptographic methods.

A talebearer reveals
secrets: but he that is
of a faithful spirit
conceals the matter

PROVERBS 11: 13

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

P A R T V

The Bigger Picture

greater and mightier than thyself

DEUTERONOMY 9: 1

but hear the small as well as the great

DEUTERONOMY 1: 17

335

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

336

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

C H A P T E R 1 3

Software Engineering

or, Getting It Done When It’s Large

a soft tongue breaks
the bone

PROVERBS 25: 15

Let us rise up and
build

NEHEMIAH 2: 18

A famous anecdote tells of an attempt to give an idea of what computer programming
is to a group of executives in a firm that employed programmers. In one week they
were taught how to program, and were given a small problem to solve. Each executive
was given a professional programmer as an assistant. Having successfully solved
the problems assigned to them with just “a little” help, the executives came out of
this experience with the feeling that programming is after all quite easy, and that
there is no reason why their programmers couldn’t complete their assignments on
time, just as they did themselves.

Of course, there is a big difference between large programming projects, involving
millions of lines of code or even more, and small programming exercises of a few
dozen lines. Such a large quantitative difference makes for a qualitative difference in
the complexity of the task, and requires a completely different kind of management.
One person can easily keep track of all the details of a small problem in his or
her head. As the problem becomes larger, this becomes more difficult, and the need
arises for written records of the purposes of the various components that make up the
project and the relationships between them. Without such documentation, it is easy to
make assumptions about how a certain component is to be used when programming
it, but to violate these assumptions when programming other components that use
it. This can already happen when the program consists of some hundreds of lines.

As projects get larger, they grow beyond the ability of one programmer to handle.
Large projects require a team of programmers working together, or even several
teams, each dealing with a different part of the overall project. Very large projects,
such as modern operating systems, are composed of tens of millions of lines of code
and employ hundreds of programmers or even more. Parts of the overall project
may be developed by different companies. This makes hidden assumptions and
other kinds of errors inevitable. Unfortunately, even employing the best tools and
methods available today does not guarantee bug-free programs, as anyone who has
used a computer for any length of time knows.

337

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

338 V. The Bigger Picture

This chapter discusses the general problems that arise in engineering large soft-
ware systems, and the main processes and methodologies employed in addressing
them.

� Hidden Assumptions in Spaceflight

There are, unfortunately, many examples of hidden assumptions in software de-
velopment leading to sometimes catastrophic failures. The following examples are
famous incidents in the history of spaceflight.

NASA launched the Mars Climate Orbiter in 1998. Its mission was to orbit Mars
and report on its weather conditions, in preparation for the Mars Polar Lander, which
was supposed to land on Mars in 1999. The orbiter reached Mars on September 23,
1999, but was then lost. It has been determined by the investigation board that the
orbiter’s trajectory was about 170 kilometers too low, due to the fact that one part of
the orbiter’s ground-control program used English units while other parts expected
the data in metric units. This happened in spite of the existence of a clear specifica-
tion that indicated the correct units to use, as well as state-of-the-art development
methodologies used by NASA. Among the contributing factors mentioned in the in-
vestigation board’s report was insufficient communication between the development
and operations teams.

The Mars Polar Lander, which was supposed to land on Mars about six weeks
later, was lost as well. The review board has identified a software failure as the most
probable cause for this loss. The lander’s engines must be shut down as soon as it
lands, otherwise it will tip over. Sensors on the landing legs of the Polar Lander
generate a signal upon surface contact. The sensors may occasionally generate spu-
rious signals, and the software is programmed to ignore such signals by comparing
two consecutive signals and acting on them only if both show the same value. How-
ever, when the lander legs are deployed from their stowed position to the landing
position, the sensors may generate longer “contact” signals. This in itself is not a
problem, since the legs are deployed at an altitude of about 1500 meters, while the
software will not shut down the engines until radar reports that the lander is less than
40 meters above the surface. Unfortunately, the spurious signal detected at deploy-
ment is not erased, and causes engine shutdown as soon as the lander reaches an alti-
tude of 40 meters. This is enough to cause it to crash to the surface. The report states:

This behavior was understood and the flight software was required to ig-
nore these events; however, the requirement did not specifically describe these
events, and consequently, the software designers did not properly account for
them.

Another spectacular example of hidden assumptions is the explosion that took
place in the maiden flight of the European Space Agency’s Ariane 5 rocket on June
4, 1996. About 40 seconds after the launch, the rocket made an abrupt change of
path, and as a result broke up and exploded. The inquiry board traced the failure
to a software error of a certain type. The programming language used allowed the
program to recover from such errors, and four possible cases out of seven were indeed
adequately protected. The reason that the other three cases were not protected was
not documented in the code, but was later traced to an analysis that showed that this

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

13. Software Engineering 339

kind of error cannot occur in these cases. As it turned out, this analysis was indeed
correct for earlier models of Ariane, for which the software was written. When this
software was reused for the Ariane 5, which has different flightpath characteristics,
it failed. Without getting into more details here, it should be noted that while this
was the primary fault, it combined with a series of other aspects of the system to
create the catastrophic failure.

� The Problem With Software

These examples clearly demonstrate the need for a disciplined method of writing
programs, to ensure their reliability. The study of such methods is called software
engineering. It involves technical aspects, such as programming languages and tools
for tasks like testing, debugging, and verification, as well as management practices.
Software engineering is different from other engineering disciplines because of
the different nature of its subject matter: algorithms and programs. These are of a
discrete nature; that is, they deal with individual and separate entities, namely, bits.
In contrast, other engineering disciplines deal with physical phenomena, which are
usually of a continuous nature.

An important measure of the complexity of a system is the number of qualitatively
different states it can have. For example, while a car may be driven at an infinite
number of speeds between zero and, say, 150 kilometers per hour, for the purpose of
controlling the car using a manual transmission there are up to just seven different
states: between three and five forward gear ratios, a neutral position, and reverse. In
each of these states, the car’s speed is a simple function of the engine speed.

While the variables of a continuous system can take on infinitely many values,
they usually have a relatively small number of qualitatively different states. Discrete
systems, and particularly computers, have a huge number of states. If you add a single
bit to the computer’s memory, you multiply the number of states by two, since each
old state splits into two new ones: one in which the value of the additional bit is
zero, and another in which it is one. The number of possible states for a computer
with a memory of just 280 bits exceeds the total estimated number of atoms in
the universe! Modern computers have memories containing billions of bits, with an
unimaginable (but nevertheless finite) number of possible states. The complexity of
computer-based systems is therefore much higher than that of continuous systems,
making them less predictable.

As a result of this difference, continuous systems are more amenable to mathe-
matical analysis, and they enable engineers to rely on safety factors. For example,
when designing a bridge for a certain load, the design always assumes a bigger load.
With a safety factor of three, the bridge should theoretically support three times the
required load. This will require sturdier construction, which can even make up for
some design defects. However, a single bit error in a computer program can cause
it to go completely off-track, causing catastrophic failure. This magnification effect
of discrete systems makes the notion of safety factors for software meaningless, and
thus removes one of the most powerful engineering tools from the realm of software
engineering.

Analysis methods for discrete systems also lag behind those for continuous sys-
tems. For example, there is a large body of knowledge related to the verification

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

340 V. The Bigger Picture

of computer programs, as described in Chapter 5. This research has even led to
some commercially successful verification projects. However, these require large
investments of effort by highly-skilled researchers, and it is at present impossible
to formally verify much of the software being written. Such efforts are therefore
mostly focused on the cores of safety-critical systems. For the rest, we must make
do with less effective but more practical methods.1

Software is a much more flexible medium than the physical materials used in other
engineering disciplines. Once a bridge is built, it will take a very substantial reason
to replace it. Similarly, when you buy a computer, you expect to use it for some years
before replacing it with a new one. However, since computer programs are apparently
so easy to change—it only involves changing the contents of the computer’s hard
disk—customers often expect (and many times get) frequent replacements for their
software (usually called “upgrades”). The flip side of this coin is that software
producers do not worry about the quality of their initial product in the same way
that hardware manufacturers do. Instead, they rely on upgrades to provide solutions
to problems discovered after the product is already on the market. This does little
to create a feeling of trust in the software industry.

Worse yet, the assumption that software is easy to modify is fallacious. The great
complexity of software systems on the one hand, and the size of the problems
that such systems are expected to solve on the other, mean that programs are very
complex, way beyond our analysis capability. Typically, therefore, an attempt to
fix one bug may create several others. Software engineering methodologies, such
as those discussed in this chapter, can be used to alleviate this problem. However,
they come with a cost of their own, which should be factored into the total cost of
modification.

A recent famous example is the Y2K bug, which was mentioned in Chapter 5. At
the close of the twentieth century there was a lot of software in operation that was
built on the assumption that years can be represented using two digits. For example,
the number “80” would represent the year 1980; logically, the number “01” would
represent the year 1901. Even though there weren’t any electronic computers in 1901,
it would still be necessary to refer to that date; for example, it could be the birth date
of someone who in 1980 was entitled to social security benefits. However, as the
year 2000 approached, it became obvious that it would also be necessary to represent
years such as 2001, but the number “01” was already taken! (The first actual cases
of this problem occurred in 1998, with some credit cards whose expiration date was
2000 being rejected by computers thinking it was 1900.) This problem is similar to
that underlying the story about the old Danish lady from the beginning of Chapter 5.

At the time the programs were written, this choice of representation was reason-
able. Some of these programs were written in the 1960s, and nobody expected them
still to be in operation more than 30 years later. At the time, memory and disk sizes
were much smaller and more expensive than those of today, and storing the redun-
dant “19” digits in every date field would have been excessively costly. (Amazingly,
some programs written in the early 1990s still continued to use the two-digit rep-
resentation, although there was really no excuse for that so close to 2000.) There

1 One of the things we know about this problem is that it not solvable by a computer in principle (see
Chapter 9). This still does not preclude a partial solution that works for many if not most practical
cases, but even that much is not easily available today.

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

13. Software Engineering 341

were a great many such programs, since dates crop up almost everywhere. To give
just one example, dates occur in the control programs for some elevators since they
must keep track of their maintenance schedule.

Unfortunately, the inexorable march of time turned these programs, which were
correct when written, into erroneous ones. This caused a scramble to rectify the
problem in the mid to late 1990s, which proved to be an immense undertaking.
The assumption that years are represented using two digits was spread throughout
the programs. It was necessary to examine each line of code to determine whether it
manipulated dates in any way. If so, it had to be corrected in a way consistent with
the new strategy for dates. This project, which was very successful on the whole,
took up a large investment of time and money, and delayed other plans for software
development.

As we saw in Chapter 8, the software verification problem is undecidable, and
therefore there is no real hope that somebody will someday write a program that is
able to discover all occurrences of some similar bug. Automatically correcting bugs
is likewise noncomputable. While it is possible to develop tools that help people
discover and correct bugs (and this was indeed done by so-called Y2K factories in
the late 1990s), the process can never be fully automated.

� �

� Modularity and Interfaces

When you buy a new car, you get an owner’s manual, which explains the instruments
and controls, where the fuses are located, how to change tires, and other technical
details. In the section about light controls, you will find explanations about how
to operate the headlights, the turn signals, the parking lights, and so on, but not
instructions that tell you to use the right-turn signal before you wish to turn right,
which fuse to check if the lights don’t turn on, or which countries require you to
drive with your headlights on during the day. These are important issues you need
to know in order to operate your car; however, like many other issues related in one
way or another to the car’s lights, they appear elsewhere in the owner’s manual or
in completely different documents. It may be nice to have all the relevant details
in one place, but there are just too many of them. In order to be able to access this
information quickly and accurately, it must be divided into separate topics, each of
which appears in a different section of some document. And the division must be
logical enough to allow us to figure out where to find anything we need.

The same principle holds for computer programs. An often overlooked aspect of
programs is that they are written for people more than for computers. At first, this
seems absurd: computer programs are obviously written for computers to execute,
and the compiler doesn’t really care how clearly written the program is. However,
programmers need to read and understand these programs while they are writing
them, and while modifying them. Since software modification is so common, any
successful program will have to be modified during its lifetime, and the programmers
responsible for the modifications will not necessarily be those who wrote the program
in the first place. Even the original programmer will typically not remember the

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

342 V. The Bigger Picture

details of the program after a few months. Therefore, organization of the program
by chapter and verse is as important for computer programs as it is for the car’s owner
manual, and for the same reasons: so that people are able to find the information
they need.

Computer programs need to be broken up into small and coherent parts, called
modules, each of which can be understood separately. This is particularly important
when each module has to be developed by a separate programming team. However,
if there are many connections between the modules, they cannot be understood in
isolation, and the teams developing them cannot work separately, because every
decision one team makes may affect many other teams, and the whole process
bogs down. Therefore, modules must be relatively independent; this goal is called
modularity.

Of course, modules cannot be completely independent, since some (the clients)
need to use services provided by other modules (the suppliers). However, modularity
implies that there should be a minimal amount of information that needs to be shared
between the client and supplier modules. This information is called the interface
of the supplier module, and it should include all the details that the clients need to
know about what services the supplier offers, but nothing about how it performs
those services. For example, the interface of a module that implements queues
consists of the methods used to perform the various queue operations (adding and
removing elements, getting the front element, etc.), but not the implementation of
those methods.

Interfaces should be clearly documented, ideally in a formal way that allows the
compiler to check that programmers do not create undesirable dependencies. This
goal is called information hiding, which means that the client is not allowed to
depend on the implementation of the supplier module, only on its interface.2 This
enables a Lego-style approach to building large systems, in which modules may be
replaced by other implementations of the same interface.

Different types of programming languages have different ways of breaking a
program into modules. The notion of a module may be as simple as a collection of
functions written in a single file. It may be more sophisticated, and some languages
distinguish explicitly between the interface and the implementation of a module.
However, a language that does not support modularity in one way or another is
simply unusable for large projects.

For example, in object-oriented languages classes are the natural modular unit.
Abstract classes with no implementation are pure interfaces (and, indeed, this is their
name in JAVA). The Queue class of Chapter 3 is an example. As mentioned there, this
interface can be implemented by such classes as LinkedQueue, and the programmer
of the client module need not be aware of which particular implementation is used.
It is easy for the compiler to check that an appropriate implementation is indeed in
use.

JAVA interfaces contain the names and parameter types of all methods that clients
can invoke on Queue objects. Unfortunately, this is not all the information that the

2 The term “information hiding” is misleading in that it seems to imply that the programmer of the
client module is not allowed to know anything about the implementation. This is not quite true; the
programmer may know everything about the implementation (and he may even be the one writing it),
provided no use is made of this knowledge in the client program.

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

13. Software Engineering 343

programmer of a client module needs to know; missing is the meaning of these
methods, which distinguishes stacks from queues, for example. This is provided by
the assertions of the design-by-contract methodology, as described in Chapter 5. An
interface with a contract contains the full information needed by clients.

There are many methodologies that attempt to guide the process of breaking up a
large problem into relatively independent modules. We will not get into the details
of these methodologies here. Suffice to say that this task is still more of an art than
a science, and requires a lot of experience.

� Life-Cycle Models

In order to develop management methods for software engineering, it is first nec-
essary to understand the process of creating software. This process turns out to
be quite complex and difficult to formalize. There are various models of it, called
life-cycle models; each model takes a different view of the process and as a result
supports different methodologies. All life-cycle models are based on the following
types of activities, which we will illustrate with the example of a word-processing
program.

Requirements acquisition. (Also called requirements analysis.) This is the
process of discovering what the customer really needs. Customers may be
knowledgeable about their own business domain, but they often do not under-
stand the algorithmic and system implications of introducing a computer-based
system into their business. This may lead to misunderstandings, which must
be carefully elucidated in order to lead to a successful result. The result of this
activity is usually a requirements document.

Sometimes there is no customer to work with, as when a company makes
software products to be sold off-the-shelf. In this case, the producer needs to
anticipate customer needs, which makes requirements acquisition harder, not
easier! (And, indeed, quite a few products end up with low sales because this
process failed to anticipate what the customers really needed.)

In our word-processing example, the requirements document will contain a
list of the customer’s specific needs, such as the use of complex mathematical
notation, a spelling checker, and automatic generation of address labels.

Design. In this process, the problem is broken up into modules, and appropriate
algorithms and data structures are chosen to represent the problem domain
and perform the required operations. This activity demands a thorough under-
standing of algorithmics in order to make choices that will ensure correctness
and efficiency of the resulting product.

The design of the example word processor may specify modules for such
tasks as the graphical user interface, text handling, mathematical typesetting,
and letter composition (including the generation of address labels). The design
for the text-handling module would specify the data structure for holding
the contents of the text; this could be, for example, a list of characters, with
special symbols denoting linebreaks, or a list of lines, each of which is a vector

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

344 V. The Bigger Picture

containing the characters that appear in the line. This module will also specify
the algorithms used to perform such actions as justifying lines and checking
the spelling.

Implementation. This is the process of translating the design into a specific
programming language. First, each module is implemented separately. Then,
the modules are put together to form the complete system; this process is
called integration, and is often the stage where hidden assumptions manifest
themselves.

Our word processor is now cast into a specific programming language, and
it is possible to experiment with it (or with parts of it) and see what it really
does.

Validation. This is the process of making sure that each module, as well as the
complete system, fulfill their specifications. Validation can take many forms.
It usually includes extensive testing of the separate modules (called unit test-
ing) and of the complete system (called integration testing). Unfortunately,
as mentioned in Chapter 5, testing is insufficient for finding all bugs. Formal
verification can ensure that the system fulfills its specification, but, as men-
tioned earlier, is not yet practical for general use. Also, the fact that the system
fulfills the specification still does not necessarily mean that it does what the
customer wanted! Verification requires a formal specification to check the pro-
gram against, but translating the requirements into a formal specification is a
hard problem, and as error-prone as programming. There is no foolproof way
to check the specification against the customer’s requirements, since these are
in the customer’s brain and are inaccessible to our formal tools.

In a well-designed process, each module of the word-processing application
can be tested separately. This requires special test programs to be written, since
modules are not designed to work on their own. However, this “extra” work is
well worth the effort, since it is much easier to find and correct problems in a
single module than in a complete system.

Maintenance. This word is used here in a special technical sense. Unlike me-
chanical systems, computer programs are not subject to environmental pro-
cesses that can cause them to overheat, run down, or otherwise lose their
operational characteristics. It isn’t necessary to “overhaul” a program after
200,000 miles or 10 years (whichever comes first)—it will continue to func-
tion indefinitely in exactly the same way as on the first day. This is exactly
the problem! In order to remain useful, programs must change. Changes can
be required because of changes in the program’s operating environment; for
example, when the customer changes from a mainframe to a personal com-
puter, or when upgrading the operating system. The operating environment
includes much more than the computer itself: for example, the program may
need to be modified when state laws that govern the behavior of the application
domain change, as could happen to cashier’s software when a new type of tax
is legislated. Changes may also be the result of new customer requests; as
customers start using a new system, they discover more things they would like
the program to do for them. Finally, and sadly, modifications may be required
to fix bugs that the supplier didn’t discover before the program was released to
customers.

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

13. Software Engineering 345

New customer requests appearing after the system’s deployment are almost
always inevitable, since introducing a computerized system into an environ-
ment that previously didn’t have one changes that environment. What initially
may have been a labor-saving program performing a task that could otherwise
have been carried out manually now becomes an essential part of the business.
For example, an accountant may start using the computer as a convenience.
Discovering that this expedites his or her work might result in a decision to take
on new clients. Now, however, the accountant is dependent on the computer,
and can’t do without it. For example, if unusual tasks that the software couldn’t
handle were previously done manually, with a larger clientele these too must be
automated.

Statistics show that the greatest investment in software is in the mainte-
nance stage; this could reach 80% of the total! It is therefore a good idea to
make a great effort in the other activities mentioned above to facilitate fu-
ture maintenance. Most software engineering methodologies are based on this
premise.

If the postal service changes from five-digit zip codes to nine-digit codes,
we will hasten to the supplier of our word-processing application to modify
the address label generator to support nine-digit codes. If the original design
treated five as a “magic number” without giving thought to the possibility that
it might change, it is quite likely that this assumption is embedded in many
parts of the program. It will then be very difficult to modify, and the supplier
will charge a large fee for doing so. In this case, we might spend our money
better by switching to a different supplier.

In fact, the change to nine-digit zip codes is a real example, which caused
a lot of expense for those suppliers that weren’t prepared for it. It is, however,
dwarfed by the example of the Y2K problem already discussed.

� The Waterfall Model

The most basic life-cycle model is called the waterfall model. It assumes that the
activities mentioned above follow each other in strict order. The name of this model
comes from the view of the activities following each other like water falling off
a cliff in a series of steps (see Figure 13.1). In this view, a requirements docu-
ment must be fully prepared before it is possible to start the design. Furthermore,
once the design has started, the requirements document is frozen, and cannot be
modified. The reason for this is that any changes in the requirements made after de-
sign or, worse yet, after implementation, necessitate going back to the beginning, and
modifying the design (and implementation) accordingly. This could be extremely
costly. Indeed, modifications to early stages of the process require changes in sub-
sequent stages. Later stages add lots of detail, and changing them is therefore more
complicated. As a result, the further back in the process a change is made, the more
costly it is. It has been estimated that the cost of fixing an error in the requirements
phase grows by a factor of 10 if its discovery is delayed until the implementation
phase, and by a factor of 100 if it is discovered when the system is already in
operation.

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

346 V. The Bigger Picture

Requirements
acquisition

Design

Implementation

Validation

Maintenance

Figure 13.1

The waterfall model.

Unfortunately, at the earlier stages, in which we make the most important and in-
fluential choices, we understand the problem only in rather vague terms. As we move
along in the design and implementation, our understanding of the problem grows un-
til, when we get to the point where we really understand it, we have no meaningful
choices to make! In practice, wrong decisions will inevitably be made in early
stages, and these will have to be corrected later. This means that a lot of effort
must be applied to the validation of the requirements and the design, before starting
the implementation. This is quite difficult, and there are not that many satisfactory
formal tools to help in these tasks. Often we have to make do with less precise but
still useful methods, such as design reviews, where the requirements and design are
presented to the most experienced people available, who try to uncover any flaws.

Since the cost of making changes in the requirements and design is so high, it is
necessary to anticipate them in advance. With some experience, it is possible to do
this reasonably well, but clearly changes will have to be made. Consequently, the
waterfall model is usually shown with “backward flow” that admits this reality, but
methodologies based on the waterfall model offer little support when this happens.

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

13. Software Engineering 347

The advantage of the waterfall model is that it makes the process visible and
thus easier to manage. The process is document-oriented, and each stage of the
model has a clear definition of what products (often called deliverables) are to be
available when it is done. These products, which may be documents or programs,
are the obvious points of control for the entire process. Management (and also the
customer) can use the deliverables to keep track of the project’s progress.

This strength of the model is also a weakness, since the effort spent on document-
ing the process is sometimes better spent on ensuring that it will result in a satisfac-
tory product. Furthermore, when requirements change, it is practically impossible
to start the process from scratch. As a result, developers “fake it,” by attempting to
modify existing documents to make them look as if the new requirements had been in
there from the beginning. While this is useful (and has even been legitimized by some
influential methodologists), it is necessarily error-prone. As more changes are made,
the structure becomes riddled with gaps that the patches don’t quite fill. Eventually,
each addition creates more problems than it fixes, at which point the entire process
gets out of control.

� Evolutionary Development

The waterfall model certainly has the order of the activities right; a program written
without a good design will be flawed, and a design done without a good under-
standing of the requirements will not lead to a solution of the customer’s problem.
However, it is only possible to evaluate the final product at the end of this lengthy
process, and as we have said, early errors are very costly to fix. The evolutionary
development model tries to reduce this risk by advocating the production of an
initial working version as quickly as possible. The customer can provide useful feed-
back on the suitability of the product by actually using it. This is much more likely
to uncover hidden assumptions and other problems than any amount of document
reading. The feedback from this is then used to create the second version, which
even lead to a third one.

Each version is produced according to the activities specified by the waterfall
model, but more quickly and with much less documentation. Consequently, the
resulting systems may be less well structured and therefore more costly to maintain.
The model is best applied when the risk of early errors is particularly high, as when
creating a new type of application with which the developer (and possibly even the
customer) has no experience.

In order to get to a working version as quickly as possible, it is usually produced
as a barebones system, concentrating on the most crucial features and omitting the
rest. Such a version is called a prototype. Further versions elaborate on the initial
prototype by adding more features, until a full-featured final system is obtained.
This process is called exploratory programming. A more radical approach is
to throw away the initial prototype and start from scratch the second time. This
approach, called rapid prototyping, has the advantage that the initial prototype can
be created very quickly, since its internal quality is not important. Having learned
from their initial experience, the developers can now build a second prototype of
higher quality, without having to worry about retrofitting new insights into the old
design. Furthermore, the rapid prototype can be written in a different programming

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

348 V. The Bigger Picture

language than the second one. Some languages, such as LISP, are eminently suitable
for rapid prototyping because they relieve the programmer of some of the more
tedious aspects of other languages, such as the need to declare the types of all
variables. The resulting speed of development makes up for the risks inherent in
ignoring these. The second prototype can then be written more carefully in a more
restrictive language.

If the developers have a thorough understanding of the problem domain, evo-
lutionary development may not be necessary, since they could probably produce a
detailed specification without experimentation. This would be the case, for example,
if an experienced software team were to work on a new product that was similar to
ones they had developed previously. Rapid prototyping is particularly useful when
the problem to be solved requires particularly innovative ideas, or is simply not
sufficiently well understood, as, for example, in artificial intelligence.

� The Spiral Model

The spiral life-cycle model is a generalization of the previous ones (see Figure 13.2).
It is based on an iterative process, and thus allows evolutionary development as well
as rapid prototyping, where each cycle can be based on the waterfall model. The
main contribution of the spiral model is its focus on risk management. Each iteration

Determine objectives,
alternatives,
constraints

Evaluate alternatives,
identify, resolve risks

Risk
analysis

Risk
analysis

Risk
analysis

Risk
analysis

Opera-
tional
prototype

Simulations, models, benchmarksSimulations, models, benchmarks

Prototype 3

Prototype 2

Proto-
type 1

Requirements plan
Life-cycle plan Concept of

operation Software
requirements Product

design
Requirements

validation
Development

plan

Integration
and test plan

Design
V&V

Service

Acceptance
test

Integration
test

Detailed
design

Plan next iteration

Develop, verify
next-level product

Unit test

Code

REVIEW

Figure 13.2

The spiral model.
(After Boehm, 19883.)

3 B. W. Boehm, “A spiral model of software development and enhancement,” IEEE Computer, 21(5),
pp. 61–72, 1988.

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

13. Software Engineering 349

in the spiral starts with a phase where the objectives of the iteration are determined,
together with alternative ways of achieving them (top left of Figure 13.2). This
is followed by a risk assessment phase, in which the risks associated with each
alternative are investigated (top right of the figure). For example, the choice of
hardware platforms, programming language, and software tools could be evaluated
at this stage. For new technology, where the risk is particularly high, it may be
necessary to perform a small-scale technology evaluation in order to correctly assess
and reduce the associated risk. After an alternative has been chosen, it is pursued
and evaluated in the third phase (bottom right of the figure). This evaluation is then
used to plan the next iteration (bottom left). The spiral model itself does not specify
the details of each iteration, which could follow the waterfall model, or allocate the
activities some other way.

Like the waterfall model, the spiral model is primarily aimed at process control,
and is therefore also document-based. In fact, it has additional deliverables, resulting
from the additional three phases added for risk management. This is considered a
small price to pay in high-risk projects.

� �

� Object-Oriented Development

As we saw in Chapter 3, object-oriented programming languages grew out of the
need to model real-world events. It is therefore natural that the concepts of classes and
objects are particularly suitable for requirements acquisition and design. The stages
of object-oriented software engineering are similar to those of the other method-
ologies shown above. However, object-oriented methodologies have the important
advantage of employing a common vocabulary across activities, based on the notions
of classes and objects. For example, a program to manage a store in a supermarket
chain is naturally specified in terms of objects denoting customers, cashiers, point-
of-sale terminals, grocery items, warehouses, suppliers, etc. The design phase may
add other types of objects for internal algorithmic purposes, but this is an elaboration
of the specification rather than a completely different type of document.

In earlier methodologies, the transition between activities involves shifts between
different formalisms. This need to switch representations is one of the weak points of
non-object-oriented methodologies, since it is likely to sever the link between related
activities. For example, it is not uncommon for programmers to ignore the designs
laid out for them because they are couched in a formalism that is not directly related
to the programming language they use. The common vocabulary in object-oriented
methodologies makes this much less likely to happen. It also allows some mixing
between activities; for example, design might be interleaved with programming. In
this way, the experience gained in implementing one part of the system may clarify
issues useful in the design of other parts. As long as the process is well managed, this
can speed the development by providing more timely feedback without a negative
impact on quality.

One of the important goals of software engineering has always been reuse: the
ability to use artifacts (programs, designs, and even requirements) generated for
one project in a subsequent project. The advantage of reuse is obvious: it allows the

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

350 V. The Bigger Picture

developer to create new projects quickly after an initial investment in the first project
of its kind.4 Object technology offers a technical means for achieving reuse. Since
classes encapsulate data types with their associated operations, they are the natural
unit to be reused. This is one of the major benefits of object-oriented development.

� Extreme Programming

The basic tenet of the waterfall model is that the cost of change increases dramatically
over time, so that errors early in the development process become more and more
costly to repair as we go from stage to stage. As a result, it is necessary to anticipate
future changes as much as possible, and to account for them in the design. This could
make the design more complex and unwieldy than necessary.

Recently, a technique called refactoring has been developed in order to help solve
this problem. Instead of freezing the design when starting the implementation, this
view takes the opposite approach: the design should be flexible and should change
together with the implementation. This is not easy to do. What usually happens
is that the implementation is modified in response to pressure from customers,
changing environments, and bug discoveries, but it is done by “patches” that attempt
to modify some aspect of the program without an overall view. As a result, the
program drifts away from the original design and becomes harder and harder to
modify. The refactoring methodology attempts to preserve the quality of the design
in spite of changes to the code. Programming alternates between modifications
that add new functionality or fix bugs, and refactoring activity, which improves the
structure of the program without affecting its functionality.

This is similar to what happens when you need to make modifications to your
home. For example, when you add a new electric outlet you first break open the wall
in order to access the wiring. After installing the new wires and outlet, you then cover
up the hole and repaint the wall. These last actions have nothing to do with the way
the new outlet functions; it will supply electricity even if you don’t cover up the hole.
They are done in order to restore the wall to its original condition.

One expert in object technology has compared cleaning up the design to paying
off debts, whereas modifying the program while messing up the design is like taking
a loan. An unpaid loan accrues interest and, if unpaid for a long time, may grow be-
yond the borrower’s ability to pay. Similarly, if the program is allowed to drift away
from the design too much, it becomes unmanageable. Eventually it will become im-
possible to make further modifications, since every such attempt will introduce more
problems than it solves. Occasionally it is useful to borrow money, but the debt should
be paid as soon as possible. Similarly, it is sometimes useful to make quick changes
to the program in order to take advantage of some opportunity. However, the program
should be refactored as soon as possible in order to realign it with a good design.

Refactoring offers a suite of detailed methods for improving the design of a
program without affecting its functionality. In this way, new insights about the
structure of the program are leveraged to improve its design. Such insights may be

4 There are also risks in reuse, as demonstrated by the story of the Ariane 5 explosion mentioned at the
beginning of this chapter. Unfortunately, these are much less obvious.

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

13. Software Engineering 351

gained during the process of adding new functionality, finding and correcting bugs,
or during code reviews.

With refactoring it is possible to correct design errors (or otherwise modify the
initial design) without incurring a great penalty even much later in the process.
This may not be effective in very large projects, but it works quite well in small
to medium-sized projects. Because design errors are not as prohibitive, the initial
design can be kept simple, and this simplifies later stages as well. All this leads to
a completely different style of development, called extreme programming.

The extreme programming methodology highly prizes simplicity. It is called
“extreme” because it takes every good practice to the utmost. For example, it ad-
vocates frequent and automated testing (which is a basic premise for refactoring as
well). Evolutionary development is also taken to its logical conclusion, at a number
of levels. First, system integration is performed often (at least once a day). This
means that a full working system is continuously available. Although such an interim
version of the system may not fulfill all the requirements, it can be used to evaluate
the current status of the development in the most direct way—by actually using it.
Second, development is based on short cycles (of about three weeks), each of which
compresses requirements acquisition, design, implementation, and validation into a
single continuous activity. Finally, customer releases are made every few months,
which means that the customer must be involved in the project all the time, rather
than just at the initial stage. Indeed, an on-site customer representative is a basic
requirement for extreme programming.

In extreme programming, code reviews are performed continuously through the
practice of pair programming, in which every programming activity is carried out
by two people. At any point one of the pair will be using the computer to write or
modify the program, while the other “looks over his (or her) shoulder” to try and
identify problems, from typing mistakes to logical errors. Periodically, the “driver”
and “navigator” switch roles. It might seem that two people doing the work of one
will be half as productive. However, studies have shown that pair programming is
almost as productive as two people working separately in terms of the amount of
work performed, but it results in significantly higher-quality programs.

There is still not enough experience with this methodology for a full evaluation,
but when it works it appears to be very effective. We expect it to gain a significant
place beside the other, more heavyweight, methodologies.

� �

� The Psychology of Software Engineering

Methodology designers often tend to forget the most important factor in software
engineering: the analysts, designers, programmers, and managers. These are all
human, with human strengths and weaknesses. One of the weaknesses is a tendency
to break the rules, which makes it hard to enforce a methodology’s requirements. It
is possible to make programmers produce voluminous documentation; it is almost
impossible to force them to produce useful documentation. People’s tendency to
break rules is also a strength, if used properly. For example, there are many stories

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

352 V. The Bigger Picture

about projects saved by people going beyond their job descriptions to report and
even fix a problem they noticed.

It is well known, though often forgotten, that there are many factors that have a
large impact on people’s performance and productivity apart from methodological
ones. A famous anecdote tells of a large common room for students in a university’s
computing center that had a number of vending machines at one end. When a
couple of students complained about the noise emanating from that corner of the
room, the administration moved the machines to a different location. Immediately
afterwards, a more serious problem manifested itself: the two consultants provided
by the computing center to help students with their problems found themselves
swamped, with long lines forming in front of their room. It turned out that the noise
around the vending machines was often made by students talking to each other about
their computing problems, and since the problems were often similar, most of them
were solved on the spot. Only unusual problems were referred to the consultants.
With the removal of this informal but highly effective service, the whole situation
changed for the worse.

In recent years, several methodologies that try to address the human issue have
appeared. Instead of calling themselves “lightweight methodologies,” which is a
negative term that distinguishes them from other, “heavyweight” methodologies,
they have taken to calling themselves agile. This term underlies the change of focus
from document-based management to people-based management. Agile method-
ologies, of which extreme programming is one example, attempt to give people the
motivation and support they need to do their job, and trust them to do it well. As a
result, they place strong emphasis on communication between customers, designers,
and programmers, and advocate that they all work in close proximity; if possible,
in the same room. When team members communicate effectively, much less paper
documentation is required. Instead of tracking progress by secondary documen-
tation, agile methodologies use working software. It is much easier to evaluate a
working product than a design document. Of course, this implies that the process
must support the production of stable versions frequently. As a result of this philos-
ophy, teams using agile methodologies can respond to changes more readily than
those using fixed plans.

Traditional methodologies following the “production line” strategy and view de-
velopers (such as analysts, designers, coders, and testers) as interchangeable within
their particular categories. Agile methodologies focus instead on individual crafts-
manship, without rigid boundaries, and where developers gain knowledge and ex-
perience by working with others. They start as apprentices, doing the simpler and
more tedious parts of the work, but are not kept away from tasks that require more
expertise. As they make progress, they take on some of the more complex tasks, until
they reach the position where they become craftsmen themselves. It is important to
understand that this does not correspond to the usual progression from programmer
to manager. A craftsman takes on more responsibilities than an apprentice, including
management responsibilities, but that does not preclude him or her from doing what
he does best—actual software development. Needless to say, this approach empha-
sizes the individual rather than the process, and is much favored by the developers
themselves.

It is clear that larger teams, or those developing life-critical applications, must use
more formal processes with more documentation than smaller teams developing less

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

13. Software Engineering 353

critical software. Indeed, there are many varieties of agile methodologies, geared
towards different types of projects. As the approach becomes better known and
more prevalent, it will probably be put to the test in larger organizations, including
those that develop critical applications. Aficionados of agile software development
methodologies claim that there is nothing that cannot be done using these method-
ologies. Time will tell if they are right.

� Professional Ethics

Because of the ever-growing use of software in many critical systems on the one
hand, and our insufficient ability to verify its correctness on the other, great em-
phasis must be put on the integrity and professionalism of the people who specify,
design, and develop computer-based systems. They must do their best to ensure that
the software they develop is of the highest quality according to the best available
practices of the art.

The two major professional computing organizations, the ACM and the IEEE
Computer Society, have prepared ethics codes for computer professionals. These
detail specific responsibilities of system developers with respect to society in general,
and the organizations they work for in particular. For example, they are instructed to
contribute to society and human well-being in their work, to avoid harming others,
to be honest and fair, and to respect privacy, confidentiality, and the intellectual
property of others. They should strive for the highest quality and effectiveness of their
professional work, should educate the public as to the implications of computerized
systems, and should further their own technical education. Managers should create
working environments that make it easy for employees to follow the code, and they
must make sure that the needs of all people who are affected by their products are
taken into account.

A related issue concerns certification. Should computer professionals be certified
by one of the professional societies, and should such certification be a requirement
for working on critical projects? The IEEE Computer Society has a voluntary certi-
fication program for its members, which, in addition to the technical requirements
for certification, also requires adherence to the code of ethics. Such programs, to-
gether with the inclusion of ethics courses in the computer science curriculum, are
expected to lead to higher ethical standards in the profession and thus to higher-
quality products.

� �

� Research on Software Engineering

In the late 1970s a job candidate arrived at one of IBM’s research centers for a job
lecture and interview. The topic he lectured on had something to do with comparing
programming languages. About 15 minutes into his talk it became clear that he was
planning to exhibit a method for comparing the syntax of programming languages.

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

354 V. The Bigger Picture

One of the people in the audience, an expert on formal languages, put up her finger
and said kind of meekly, “But that problem is undecidable.”5 The job-seeker turned
around to her and said, “Oh, but that’s just a theoretical result; I’m going to show
you a real practical algorithm.” Of course he never got the job . . .

In engineering disciplines there tends to be continuous tension between theory
and practice, and it takes time for theoretical ideas to percolate to the practitioners.
Certain ideas catch on quickly, others take more time, and some remain as pure
theory (which often doesn’t detract from their importance).

In algorithmics, efficiency considerations (Chapter 6) have had a more immediate
appeal to practitioners than correctness (Chapter 5). This is probably due to two
reasons. First, a grossly inefficient program is unusable, whereas a program with
some rarely-manifested bugs in it can still be used (albeit with some frustration).
Second, the discovery of a new, more efficient algorithm, something most often
done by the theoreticians, is usually simple to translate into code, and once that is
done, the code can be used in many programs. Proving program correctness, on the
other hand, is notoriously difficult, and has to be carried out separately for each new
program.

Research on the correctness of algorithms has influenced software engineering
in a number of ways. The most intensive use of formal methods in industry is in
verification, that is, formally proving that a product satisfies its specification. We
shall see more of this in Chapter 14. There are also quite sophisticated tools that can
help verify a proof outlined by an expert. These tools have two benefits. First, they
construct completely formal proofs, at a level of detail unachievable by a human (not
because this is too intellectually challenging for humans, but for the opposite reason:
it is too long and tedious). Second, they allow their users to concentrate on high-level
concepts and strategies, letting the tool fill in the details. Still, verification requires a
lot of time and effort, and has been applied mostly by hardware manufacturers, since
hardware errors are much more costly to fix than software errors. For example, all of
the elementary floating point operations on the AMD Athlon microprocessor were
mechanically verified to be compliant with the standard specification. The work
was done at AMD before the Athlon was first fabricated, and discovered several
bugs. Motorola and Intel have also had impressive successes in using verification
tools.

An important contribution of formal research methods to programming practice
is design by contract, which was mentioned in Chapter 5. The assertions that can
be written in languages such as EIFFEL are not strong enough to express all the
mathematical properties of the program needed for verification. However, they are
executable, in the sense that a computer can check that they are true during the
execution of the program. Thus, design by contract is a good example of useful
formal reasoning about programs. It increases the quality of programs as well as
development speed (when taking into account that it allows early discovery of bugs),
and this makes up for the extra effort required in writing the assertions. Furthermore,
it encourages programmers to think about the formal properties of their code, and
even to prove to themselves (without automated assistance, for the time being) that

5 This specific problem is called the equivalence problem for context-free languages, and has been
proved to be undecidable.

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

13. Software Engineering 355

they are correct. As theorem-proving tools become more sophisticated, they will be
able to offer more help in this process.

Research has also led to advances in requirements and specification languages,
mainly ones that are both visual and mathematically formal, and which are used to
specify complex behavior. The next chapter discusses these.

Wisdom has built her house

PROVERBS 9: 1

So he built the house, and finished it

I KINGS 6: 9

P1: IOI

PE002-13.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:29

356

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

C H A P T E R 1 4

Reactive Systems

or, Getting It to Behave Properly Over Time

when I call, answer
me speedily

PSALMS 102: 3

and I set him a time

NEHEMIAH 2: 6

The previous chapter dealt with the general problems that arise when we have
to devise not just algorithms and programs but large and complex systems. In this
chapter, we concentrate on one especially problematic type of system, and on its most
difficult and slippery facet. The kinds of systems we have in mind are predominantly
reactive in nature, and the difficult aspect is to specify, analyze, and implement their
behavior over time.

Some systems are indeed complex, but are transformational in nature; they
are of an input/process/output type, with their prescribed work being carried out
repeatedly for each new set of inputs. This means that they owe their complexity to
computations and to the flow of data. In these cases, we might say that our friend,
little Runaround, has lots of thinking to do or lots of lifting and carrying. A typical
component of such a system waits for all of its input data to arrive, processes it,
sends off its output data to some other components, and goes back to sleep until
prompted by new input data. Systems of this kind can be described and analyzed in
a satisfactory manner by data-flow techniques, which identify the processing taking
place inside the various components and the data that flows between them.1 Thus,
the dynamic behavior of a transformational system is, by and large, determined by
the flow connections between the components or objects.

Far more problematic are those systems (especially the large and complex ones)
that are heavily control driven, or event driven. Such systems have been termed
reactive. Their role in life is to react to many different kinds of events, signals, and
conditions in intricate ways. Reactive systems need not necessarily be concurrent
or distributed, although many of them are. Many are also time-critical, often having
to respond to events in real time. Here, little Runaround, or many of them if the

1 Most of the cloud-like figures in this book are data-flow diagrams of sorts. Typically, they describe
processing activities in clouds and data in rectangles, with arrows prescribing the data flow itself. The
meaning of these diagrams is usually quite obvious, although no rigorous conventions were imposed
regarding when and why the data indeed flows.

357

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

358 V. The Bigger Picture

system is also concurrent, has to be extremely alert, responsive, and fast. In fact, it
is no exaggeration to say that a vast portion of computerized systems are reactive,
or have dominant reactive parts. Examples include relatively small systems, such
as video cassette recorders (VCRs), mobile phones, and ATMs, and far larger and
complex ones, such as automotive and avionics systems, chemical plants, control
systems, telephone and communication controllers, industrial robots, and interactive
software packages such as word processors and program editors. These systems
have to maintain intricate dynamic relationships with their environment, reacting
properly, and on time, to buttons being pressed, temperatures rising above critical
levels, receivers being hung up, cursors being moved on a screen, and so on. Often
they also contain extensive reactive interaction internally; that is, between the various
components constituting the system. And in the age of the Internet, more and more
web-intensive systems are also reactive, with manipulation in one place causing
reactions in another, and with lots of this reactivity happening simultaneously.

Thus, the dominant part of the complexity of a reactive system does not stem
from complex computations or the flow of data, but from intricate cause/effect,
trigger/response patterns, usually coupled with a high degree of concurrency and
timing aspects too.

The main problem with reactivity is to specify the system’s behavior over time,
clearly and correctly, and in ways that can be easily and reliably implemented,
analyzed, and verified. What will happen and when? Why will these things happen,
and what else will they cause to happen in their wake? Can other things happen in the
interim? Are certain things mandatory but others merely allowed to happen? What
are the time constraints on something happening? What is the result of expected
things not happening when they should? What things may not happen, under any
circumstances? And on and on.

Interestingly, reactivity is not an exclusive characteristic of man-made computer-
ized systems. It occurs also in biological systems, which, despite being a lot smaller
than we humans and our home-made artifacts, can also be a lot more complicated.
And it occurs also in economical and social systems, which are a lot larger than a
single human. These, too, have an intricate reactive nature, and being able to fully
understand and analyze them, and possibly to predict their future behavior, involves
the same kind of thinking required for computerized systems. This leads to the belief
that some of the solutions offered by computer science and systems engineering can
also be used to deal with such noncomputerized reactivity. Dually, we might also
be able to learn much about how to deal with computerized reactivity by observing
Mother Nature dealing with her own reactive systems.

� Visual Formalisms for Reactive Behavior

The main artifact needed for developing a reliable reactive system is an overall
system model, which consists of a carefully linked comprehensive representation
of the system’s structural and behavioral aspects. It serves as a vehicle for the
specifiers and designers to capture their thoughts and incorporates elements from
the requirements and the design, and can then lead all the way down to successful

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

14. Reactive Systems 359

implementation. In some ways, a model is like the set of plans drawn by an architect
to describe a house or a bridge. The difference, however, is in the dynamics: reactive
systems change over time; they do things; they behave. And this is not true of
houses or bridges. Thus, while the structural description of a reactive system can
be considered to be its backbone, its behavior is, in a crucial sense, its heart and
soul. Behavior in a reactive system is like the engine in an automobile; neither can
“move” without it. Also, behavior over time is much less tangible than the overall
functionality of a reactive system or its physical structure, and more than anything
else it is this aspect that renders the development of reactive systems so difficult and
error-prone.

One approach to the problem of specifying such systems are visual formalisms,
languages that are diagrammatic and intuitive, yet mathematically rigorous. All other
things being equal, pictures are usually better understood than text or symbols, and if
used properly they can serve to enable thinking on a higher level of abstraction than
text. But these languages are not merely graphics. Just as high-level programming
languages require not only editors and display utilities but also—and far more
importantly!—compilers, interpreters, and debugging tools, so do languages for
modeling the behavior of reactive systems require a lot more than pretty diagrams
with nice graphical editors. We need means for running, or executing, the models,
and means for compiling them down into conventional code, an activity called code
generation or code synthesis.

Thus, visual formalisms for reactive behavior, just like conventional languages for
programming computation, must come complete with a syntax that determines what
is allowed and a semantics that determines what the allowed things mean. Visuality is
often based on the use of boxes and arrows, with topological relationships between
them, such as encapsulation, connectedness, and adjacency. Such languages are
often hierarchical and modular.

There are many languages for specifying reactive behavior, several of which can
be classified as full-fledged visual formalisms. Some of the most interesting are
Petri nets and SDL diagrams—visual formalisms both—and Esterel, Signal and
Lustre, which in appearance are more like programming languages, though they
have graphical front-ends too. We now describe one example of a visual formalism
for reactive behavior, called statecharts.

� Statecharts for Reactive Behavior

Finite state machines and their associated state transition diagrams appear to be a
satisfactory starting point for specifying reactive behavior. We identify the system’s
states, or modes of operation, and proceed to specify the events and conditions
that cause transitions between states, and the actions (for example, the sending and
receiving of data, the starting or stopping of activities, and so on) that are carried
out within them. Chapter 9 contained a simple example of a diagram describing part
of the behavior of a digital watch (see Figure 9.14).

However, there are several problems with the naive use of state diagrams for
complex cases. First, the diagrams are “flat,” whereas reactive behavior of even

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

360 V. The Bigger Picture

relatively small systems falls naturally into levels of detail. (Cutting electrical power
is a very high-level event, whereas moving a screen cursor over some icon is a low-
level one.) These levels are beneficial not only for clarity and comprehension but
also during the development process itself. Consider the watch of Figure 9.14.
We might like to continue specifying it further by describing the behavior of the
stopwatch feature itself (for example, how and when it is started and stopped), and
the various possibilities of updating. All we have for updating is a state named
update-watch, which presumably denotes, or contains, a number of substates that
deal with updating the seconds, minutes, hours, and months, much as there are three
states for updating the alarm.

Second, state diagrams are sequential and do not cater naturally for concurrency.
As an example, suppose our watch has a light for illumination, which can be turned
on or off independently of other things that are happening elsewhere. If the light
is a totally separate entity controlled, say, by a separate button, then all we need
is a new two-state diagram describing it as a separate system. In truth, however,
the light feature in a digital watch is less straightforward. It may not always be
applicable—perhaps it does not work in the stopwatch state.

Of course, it is possible to combine the light information with the rest of the
description, yielding two states for each of the old ones; one for the case where the
light is on, and one for when it is off.2 However, if this approach is adopted in general
for dealing with concurrency, it results in an exponential blow-up in the number of
states that must be explicitly described. (Why?) Obviously, these problems, which
arise even in such small systems as digital watches, are far more acute in large and
complex reactive systems, which typically have huge numbers of states.

In an attempt to address these shortcomings, state diagrams have been ex-
tended, yielding a language called statecharts. Figure 14.1 shows a statechart for
a more detailed version of the watch of Figure 9.14, which now includes a light
component, refinements of the stopwatch and update states, and the beeping sta-
tus. (For brevity, we have omitted the word “pressed” from the button-pressing
events.)

Statecharts allow for multi-level states, decomposed in an and/or fashion, and thus
support compact specification. To capture the hierarchy of states, the rountangles of
regular state diagrams can be arranged in a clustered, encapsulated fashion. The state
update-watch of Figure 14.1, for example, consists of the six enclosed substates,
related among themselves by an exclusive “or”: being in update-watch actually
means being in precisely one of its six substates. We might have grouped these
six states together for clarity, or for purposes of gradual development. We might
have first decided that there will be a state for updating (as indeed we have; see
Figure 9.14) and only later on went ahead and carried out the refinement itself.
Moreover, the six updating states have at least one real property in common: they
all respond to the pressing of b by stopping the updating process and returning to
display-time. If “flat” diagrams were used this would require six separate arrows,
one coming out of each state. If we are in update-watch and button b is pressed, we
leave and enter display-time. However, since being in update-watch is being in any
one of the substates, the desired effect follows. Similarly, if the battery is removed

2 It is also possible to specify the light as a separate object, and to then program the interaction between
the objects. We shall return to this possibility later.

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

14. Reactive Systems 361

dead

battery inserted battery
removed

battery dies

main-component

watch-and-alarm

update-watch

stopwatch

update-alarm

10 min. min. sec.

day

zero

off

(in
on)

(in off)

onlap

regular

hour month

cc

c
c c

c

c

c
c

c

c

b

b

b bdd

d
b

b b released

d

d

a

a

a

display
time

display
date

light
off

light
on

update
10 min.

update
min.

display
alarm

alarm time reachedupdate
hour

displays running-status

light

beeping-status

beeping quietb or c

30 seconds elapsed

Figure 14.1

Statechart for a more
detailed version of
the digital watch of
Figure 9.14.

or if it expires, a transition to the dead state is caused, no matter what state we were
in. These are sometimes called interrupts.3

To specify concurrent state components, statecharts use dashed-line partitioning.
These add the dimension of simultaneity, and are called orthogonal components
of the statechart. The relationship between orthogonal components is not “or” but
“and.” For example, if we are in the stopwatch state of Figure 14.1, but not in zero,
then we must be simultaneously both in displays and in running-status. Within
each of these there are two possibilities, related by “or,” and resulting in a total
of four possible state configurations. To contrast with these four, consider the light
component, where we have added two states instead of the 12 we would have needed
without orthogonal components, and beeping-status, where two are added instead
of 29. (Where did the 12 and 29 come from?) This reduction in size helps overcome
the exponential blow-up problem discussed earlier.

The small arrows denoting start states in ordinary state diagrams can appear
on any level in a statechart. Here they are called defaults. Within the high-level
state main-component, for example, the combined state consisting of the orthogonal

3 Notice that we have not given the six updating states any inner description, and the particular method
by which the updating is carried out is left unspecified. Later, a designer can fill in this lower level
information, or delegate the job to someone else.

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

362 V. The Bigger Picture

components watch-and-alarm and light is the default, so that if a battery is inserted
when in the dead state, we enter this combination, and not stopwatch. (Of course,
we also enter quiet in state beeping-status.) Now, within each of these orthogonal
components there is also a default arrow—there must be one, otherwise we would not
know which of their substates to enter—so that we really end up in the configuration
〈display-time, light-off, quiet〉.

Statecharts have a number of additional features, such as the ability to specify
timing constraints, and the possibility of basing transitions on past behavior. We
should remember, however, that formalisms like statecharts are capable of describing
only the control part of a reactive system, and not its data flow or structural aspects.
The behavioral specification must be combined with a specification of the system’s
structure, just as the nonengine parts of an automobile must be combined with
the engine, and these connections are not that straightforward. One of the most
widely-used approaches to this is to combine a language for reactive behavior,
like statecharts, with the ideas of object-orientation. We shall discuss this approach
later.

� Model Execution

One of the most interesting notions to have come out of research in systems and
software engineering is that of executable specifications, or, to fit in better with
the terminology used here, executable models. Executing a model can be done
either directly, in a manner analogous to running an interpreter on a conventional
computer program, or indirectly, by compiling down into code and running the code.
A number of powerful tools that support such capabilities are available.

The core of model execution is the ability to carry out a single step of the system’s
dynamic operation, with all the consequences taken into account. During a step,
the environment can generate external events, modify the values of conditions and
variables, etc. Such changes then affect the status of the system: they trigger new
events, they activate and deactivate activities, they modify conditions and variables,
and so on. And, of course, each of these changes, in turn, may cause many others,
often yielding intricate chain reactions. In many kinds of systems, time and timing
constraints play an important role in determining how a step is executed.

The semantics of the formalism used to specify behavior must contain all the
information needed to capture these changes precisely. Calculating the effect of
a step from the current status and the changes made by the environment, usually
involves complicated algorithmic procedures, which are derived from, and reflect,
that semantics. In the case of statecharts, the execution mechanism has to be able to
follow the dynamics of all the orthogonal components in all active statecharts,4

taking into account chain reactions of events and state changes, and carrying out all
the changes they prescribe, including any actions that are associated with states or
transitions.

4 As we shall see later, a typical system will have many statecharts active simultaneously, one for each
live system component or object.

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

14. Reactive Systems 363

The simplest way to execute, or “run,” the model using a computerized tool is
in a step-by-step interactive fashion. At each step, the user emulates the system’s
environment, by generating events and changing values. The tool, in turn, responds
by transforming the system into the new resulting status. If the model is represented
visually, the change in status will be reflected visually too, say, by changes in color
or emphasis in the diagrams.

In way of illustration, let us return for a moment to the watch example of Fig-
ure 14.1. One can conclude easily by observing the topological properties of the
chart that the light’s behavior is not applicable to the stopwatch states, since it is
orthogonal to the watch-and-alarm state, and exclusive to stopwatch. However, this
relationship between the light and watch-and-alarm has more subtle implications
that cannot easily be seen without actually executing the model. In particular, sup-
pose we are in the configuration 〈hour, light-off, beeping〉, meaning that we are
updating the hour, the light is off, and the beeper is beeping because the alarm time
has arrived. (This is like saying that we have the watch in our hands and we are
actually “running” it, starting in the described situation.) Now we press button b.
What happens? Well, whether we like it or not, three seemingly unrelated things will
happen simultaneously. The beeping will stop (by virtue of the “b or c” transition
to quiet), the light will turn on until b is released, and the updating will end, with
the watch returning to display-time! When this sequence is run using a tool that
executes statecharts these changes will show up in the statechart in an animated
fashion, usually in a special coloring of the states the system is currently in and the
recently traversed transitions.

By interactively executing scenarios that reflect the way we expect our system to
behave we are able to verify that it will indeed do so, prior to final implementation.
If we find that the system’s response is not as expected, we can go back to the model,
change it, and run the same scenario again. This is analogous to single-step, or batch
debugging of conventional programs. During an execution, the user plays the role
of all parts of the model that are external to the portion being executed, even if those
parts will eventually be specified and thus become internal.

Once we have the basic ability to execute a step, our appetite grows. We might
now want to see the model executing noninteractively. To check, for example, that
a telephone call connects when it should, we may prepare the relevant sequence of
events and signals in a batch file, set up the model to start in the initial status, and
ask our tool to execute steps iteratively, reading in the changes from the file. The
graphic feedback from such a batch execution becomes an (often quite appealing)
animation of the diagrams. In fact, we need not restrict ourselves to running self-
devised scenarios: we might want to see the model executing under circumstances
that we do not care to specify in detail ourselves. We might like to see its performance
under random conditions, and in both typical and less typical situations. We might
want to incorporate breakpoints into the execution mechanism, causing it to suspend
and the tool to take certain actions when particular situations come up. These actions
can range from temporarily entering interactive mode for the purpose of monitoring
careful step-by-step progress, to executing a piece of ready-made code that describes
a low-level activity.

These abilities get to the heart of the need for executable models—to minimize
the unpredictable in the development of complex reactive systems.

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

364 V. The Bigger Picture

All of this can be taken a lot further, with model executions themselves being
programmed, or meta-programmed, using external means. Thus, the executing tool
can be set up to look out for predefined breakpoints and accumulate information
regarding the system’s progress as it takes place. As an example, we might want to
know how many times, in a typical flight of the aircraft we are specifying, the radar
loses a locked-on target. Since it might be difficult for the engineer to put together
a typical flight scenario, we can tap the power of our tool by instructing it to run
many typical scenarios, using the accumulated results to calculate average-case
information. The tool would then follow typical scenarios by generating random
numbers to select new events according to predefined probability distributions. The
statistics are then gathered using appropriate breakpoints and simple calculations.
The basic ideas behind these techniques are, of course, well known in program
testing and debugging. However, the point here is to extend them to apply to high-
level visual formalisms used to model complex reactive behavior, long before the
costly stages of implementation and deployment of the final system.

Executing the model may uncover a bug, i.e., behavior that is different from what
we intended. Obviously, if this happens, we would like to find out what caused the
anomalous behavior. Why did something unexpected happen? Why didn’t something
else happen, even though we thought it should? What would have happened if some
external event had occurred, or had occurred earlier or later? And so on. Many such
questions refer to the behavior of the model before the point at which the bug was
discovered. In order to be able to answer such questions, the tool needs to keep
a history of its past actions, together with the reasons for them. In the absence of
such information, we are reduced to rerunning the model from the start many times,
pausing at various points in order to observe intermediate states and see where its
behavior diverges from what we expect.5

The next step in this growing appetite for analysis capabilities of reactive behavior
is, of course, verification, in the sense of Chapter 5. A typical property that we very
often want to verify is reachability, which determines whether, when started in
some given initial situation, the system can ever reach a situation in which some
specified condition becomes true. This condition can be made to reflect undesired or
desired situations. Moreover, we could imagine the test being set up to report on the
first scenario it finds that leads to the specified condition, or to report on all possible
ones, producing the details of the scenarios themselves. Are such tests realistic?
Could we subject the model to a reachability test, for example, after which we will
know for sure whether there is any possibility of it occurring, under any possible
circumstances?

The answer is just like the one we gave when discussing verification in Chapter 5
and the limitations of computing in Chapters 7 and 8: in principle no, but in many
practical situations yes. Indeed, recent years have seen a considerable amount of
work dedicated toward taking program verification a major step further, leading to
the possibility of verifying visual models for complex reactive behavior. We believe
that automatic verification of critical properties in reactive systems will become

5 The ability to answer “why,” “why not,” and “what if” questions is useful for any type of program, but
particularly so for reactive systems, whose behavior over time is usually a lot more complicated than
that of transformational systems or sequential programs.

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

14. Reactive Systems 365

commonplace, and that the methods and tools for behavioral modeling will become
more and more powerful, offering means to routinely verify properties as the model
gets developed.

� Code Synthesis

As explained earlier, direct model execution is analogous to running programs using
an interpreter. Many tools, however, generate automatically from the model code
in some conventional language, like C++ or JAVA, and then execute that code. This
is the analog of compilation. When you view the model in execution you can’t
really tell the difference.6 One of the main uses of code generator output is in ob-
serving the system performing under circumstances that are close to those of the
real world. For example, the code can be ported to, and executed in, the actual
target environment, or, as is often the case in earlier stages, in a simulated ver-
sion of the target environment. The code can thus be linked to a graphical user
interface (GUI) of the system—an on-screen mock-up of the system’s control
boards, complete with images of displays, switches, levers, dials, and gauges—that
represents the actual user interface of the final system. The GUI can then be ma-
nipulated with mouse and keyboard in a realistic way. An important point is that
the simulated system’s behavior is not driven by hastily-written code prepared es-
pecially for prototype purposes, but by code that was generated automatically from
a model that will typically have been thoroughly tested and analyzed before being
subjected to code generation. Moreover, when parts of the real target environment
are available, they too can be linked to the code, and the runs become even more
realistic.

Code generation from models of reactive behavior built with visual formalisms can
thus be used for goals that go beyond the development team. Code-driven system
GUIs can be used as part of the standard communication between customer and
contractor or contractor and subcontractor. It is not unreasonable for such a running
version of the system model to be a required deliverable in certain development
stages.

A good code-generation facility will also have a debugging mechanism, with
which the user can trace the executing parts of the code back up to the graphical
model. Breakpoints can be inserted to stop the run when specified events occur, at
which point the model’s status can be examined, and elements can be modified on
the fly prior to resuming the run. If substantial problems arise, changes can be made
in the original model, which is then recompiled down into code and rerun. Trace files
can be requested, recording crucial information for future inspection, and so on.

� �

6 The code generated from such models need not necessarily result in software; it could be code in a
hardware description language, leading to hardware designs. Moreover, the code can be tailored for
specific implementations, as is the case, for example, in real-time systems, where some tools are able
to generate code optimized to run on particular real-time operating systems.

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

366 V. The Bigger Picture

� Two Styles of Behavior

How is the structure of a reactive system specified, and how is this specification
combined with its behavior? There have been several methods proposed for this,
and one of the more widespread is to base the entire modeling and development
process on the object-oriented paradigm. This leads to so-called object-oriented
specification and analysis. The main idea is to lift concepts up from the level of
object-oriented programming, as described in Chapter 3, to the modeling level, and
to use visual formalisms. For the system’s structure, a diagrammatic language called
object model diagrams is used to specify classes and their interrelationships. As
to specifying behavior, most object-oriented modeling approaches base an object’s
behavior on a state machine, and many recommend that a statechart be constructed
for each class, capturing the desired behavior of any instance thereof. When an
instance of a class is created, a copy of the class statechart starts its operation,
controlling the behavior of that instance.

The details of this connection between structure and behavior are a lot more
complicated than can be conveyed here. Classes represent dynamically changing
collections of concrete objects, and behavioral modeling must address issues related
to object creation and destruction, message delegation, relationship modification and
maintenance, event queuing, class aggregation, inheritance, multi-thread processing,
and so on. The links between behavior and structure must be defined in sufficient
detail and with enough rigor to support the construction of tools that enable the kinds
of model execution and code generation discussed above.7 Figure 14.2 illustrates
these basic parts of system modeling.

Put in different words, behavior is specified in this setup in an object-by-object
state-based fashion, by providing the reactivity of each object using, say, a statechart.

structure

behavior

system model

code
generation code

model/code
associativity

Figure 14.2

Modeling a reactive
system.

7 When a tool generates code for such a model, each statechart is translated into code for the object
in some object-oriented programming language, such as C++ or JAVA, and these pieces of code are
appropriately inserted into a piece of skeleton code for the system’s structure, most of which is generated
from the object model diagram.

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

14. Reactive Systems 367

If it were a football game we were devising, this approach would require us to
program each of the players in detail—and, for that matter, also the referees, the
ball, the wooden frames of the goals, and so on—specifying the way they respond
and react to each event or happening that comes their way. Once this is done we can
“execute” the system, or simulate the game, since we have full information about
each possible trigger/response pair available for each object.

So far, so good. However, when people think about reactive systems, they most
often think naturally in terms of scenarios of behavior. You do not find too many
people saying things like “Well, the recording mechanism of my VCR can be in idle
mode, or in recording mode, or in mid-selection mode; in the first case, here are
the possible inputs and the VCR’s reactions, . . . ; in the second case, here is what
happens, etc.” Rather, you find them saying things like “If I press this button, and
then turn this dial to point here, then the following shows up on the display,” or less
detailed things like, “Selecting the date and time, and then pressing Record, causes
the VCR to do the following . . . ” They also talk about forbidden scenarios, such as
“As long as it is connected to the power outlet, the VCR will never switch off while
the cassette spool is rotating.” Many people find it a lot more natural to describe and
discuss a reactive system’s behavior by its scenarios rather than by the state-based
reactivity of each of its components. This is particularly true of some of the early and
later stages of the system development process—e.g., during requirements capture
and analysis, and during testing and maintenance.

Thus, we have an interesting and subtle dichotomy here. One side has state-
based behavioral descriptions, which remain within the object, and are based on
providing a complete description of the reactivity of each one. A sort of intra-
object approach: “all pieces of stories for each object.” The other side has scenario-
based behavioral descriptions, which cut across the boundaries of the objects of
the system in order to provide understandable descriptions of scenarios of behavior
(and forbidden behavior). A sort of inter-object approach: “each story given via
all of its relevant objects.” The latter is more intuitive and natural for humans to
grasp and is therefore fitting in the requirement and testing stages, but the former
approach seems to be the one needed for implementation. Indeed, it appears that
implementing a system would require each of the objects to be supplied with the full
description of the behavioral reactions it supports, so that it can be executed directly
or subjected to a process that would generate code that implements that description.

Figure 14.3 is an attempt to illustrate these two approaches graphically. On the left
we have each object filled with all of its little pieces of behavior—the global behavior
of the entire system being derived from the grand combination of all these—and
on the right we have each sequence of behavior moving through all of its relevant
objects.

If we wanted to describe the “behavior” of a typical office, for example, it would
be a lot more natural to describe the inter-object scenarios, such as how an employee
mails off 50 copies of a document (this could involve the employee, the secretary,
the copy machine, the mail room, etc.), the office activities that are not allowed to
occur unless initiated by the top-level boss, or how information about vacation days
and sick leave is organized and forwarded to the payroll office. Contrast this with
the intra-object style, whereby we would have to provide complete information on
the modes of operation and reactivity of the boss, the secretary, the employees, the
copy machine, the mail room, etc.

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

368 V. The Bigger Picture

Intra-object behavior Inter-object behavior

Figure 14.3

Intra-object vs.
inter-object modeling
of reactivity.

Thus, in contrast to scenarios, used typically to specify requirements in the early
stages of the system’s development, modeling with statecharts or directly with code
is typically carried out at a later stage (usually design), and it results in a behavioral
specification for each object instance (or task, or process), providing details of its
behavior under all possible conditions and in all of the “stories.” This object-by-
object specification will later be tested against the scenarios and will evolve into the
system’s implementation, since at the end of the day the final system will consist of
code (or hardware) driving the dynamic behavior of each object.

Underlying this process is the assumption—which we will soon challenge—that
inter-object scenario-based behavior is not executable or implementable. Indeed,
how would a system described by scenarios operate? What would it do in general
dynamic circumstances? How do we know at each point which scenarios should
kick in and start operation? How should we proactively make sure that things that
have to happen indeed happen, things that may happen will sometimes happen, and
things that may not happen will indeed not happen? How do we enforce all of this,
and what do we do when we encounter underspecification (missing information),
overspecification (nondeterminism), and contradictions (clashes between “must”s
and “must-not”s)?

� LSCs for Inter-Object Behavior

A visual formalism that has been used for many years to specify scenarios, orig-
inating in the telecommunications industry, is the language of message sequence
charts (MSCs). Scenarios are specified in MSCs as sequences of message interac-
tions between object instances. MSCs are popular in the object-oriented world in
the requirements phase, where engineers identify the use-cases—general patterns
of high-level behavior—and then specify the scenarios that instantiate them. This
captures the desired interrelationships amongst the object instances and between
them and the external environment (e.g., the user).

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

14. Reactive Systems 369

Keyboard Send key Chip Memory ENV

Click

Click

Sent

Retrieve (digit)

number

signal

Call (number)

Click (digit)

signal not busy

*
Figure 14.4

A message sequence
chart.

Object instances are represented in MSCs by vertical lines, and messages between
these instances are represented by horizontal (or sometimes down-slanted) arrows.
Conditional guards, depicted as elongated hexagons, specify statements that are to
be true when reached. The overall effect of such a chart is to specify a scenario of
behavior, consisting of messages flowing between objects and thing having to be
true along the way. Figure 14.4 shows a simple example of an MSC for the quick-
dial feature of a cellular telephone. The sequence of messages it depicts consists
of the following: the user clicks the ∗ key, and then clicks a digit on the keyboard,
followed by the Send key, which sends a Sent indication to the internal Chip, which,
in turn, sends the digit to the Memory to retrieve the telephone number associated
with the clicked digit. The chip then sends out that number to the environment (e.g.,
the cellular company’s antenna) to carry out a Call, following which a signal is
received from the environment. Finally, the chart contains a guarding condition that
states that the signal is indeed not busy.

The semantics of MSCs is existential: a chart asserts that the scenario it describes
represents a possible sequence of occurrences in the life of the system. The time-
dependent meaning of the scenario itself is determined by two simple rules. First,
along a vertical object line time progresses from top to bottom. Second, the event
of a message being sent precedes the event of it being received.8 Thus, MSCs do
not really say much about what the system will actually do when run. They can
be used to say what might possibly occur, but not what must occur. In the chart
of Figure 14.4, for example, we may ask whether the Memory can “decide” not to
send back a number in response to the request from the Chip? Does the condition

8 There can also be synchronous messages, for which the two events are simultaneous.

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

370 V. The Bigger Picture

that asserts that the signal is not busy really have to be true? What happens if it is
not?

Such charts can indeed be used to capture sample scenarios of expected behavior,
to be checked later against the final executable system. However, they are not enough
if we want to use them to actually state and assert what the system does. We would
like to be able to say what may happen and what must happen, and—as mentioned
above—also what may not happen. Such forbidden behaviors are sometimes called
anti-scenarios. If they occur during system execution there is something very wrong:
either something in the behavioral specification was not properly asserted, or else
the implementation does not correctly satisfy the specification. We would also like
to be able to specify multiple scenarios that combine with each other, or even with
themselves, in subtle ways. We want to be able to specify generic scenarios, i.e.,
ones that stand for many specific scenarios, in that they can be instantiated by
different objects of the same class. We want variables and means for specifying
timing constraints, and so on.

MSCs have been extended in several ways to help remedy some of these issues.
One recent extension, called live sequence charts, or LSCs, takes its name from
the ability to specify liveness, i.e., things that must occur. LSCs allow the distinction
between possible and necessary behavior, both globally, on the level of an entire
chart, and locally, when specifying events, guarding conditions, and progress over
time within a chart.

Thus, there are two types of charts in the LSCs language: universal (annotated
with a solid borderline) and existential (annotated with a dashed borderline). Uni-
versal charts are the more interesting ones, and are used to specify scenario-based
behavior that applies to all possible system runs. A universal chart has two parts,
turning it into a kind of if-then construct: a prechart, which specifies the scenario
which, if satisfied, forces the system to also satisfy the second part, the main chart. A
collection of universal LSCs thus provides a set of action/reaction pairs of scenarios,
which must be satisfied at all times during any system run.9

Within an LSC, the live elements, termed hot, signify things that must occur,
and the others, termed cold, signify things that may occur. Hot elements make
it possible to enforce behavior (and anti-behavior too), and cold elements can be
used to specify control structures like branching and iteration. Figure 14.5 shows
a universal LSC that is actually an enriched version of the MSC in Figure 14.4.
The first three events are in the prechart, and the rest are in the main chart. Hence,
the LSC states that whenever the user clicks ∗, followed by a digit, followed by
the Send key, the rest of the scenario must be satisfied. (In particular, if the three
prechart events are not completed, e.g., the user fails to click the Send key, no harm
is done and nothing is expected from the system.) The messages in the main chart
are hot (depicted by solid arrows, in contrast to the dashed ones in the prechart), as
are the vertical lines. Thus, progress along all lines in the main chart must occur,
and the messages must be sent and received, in order for the chart to be satisfied.
In addition, a loop has been added, within which the chip can make up to three
attempts to receive a non-busy signal from the environment. The loop is controlled
by the cold (dashed line) condition: as long as the signal is busy the three-round loop

9 We will not discuss existential LSCs here, except to note that their main role is to be monitored during
testing, making them similar to conventional MSCs.

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

14. Reactive Systems 371

Keyboard Send key Chip Memory ENV

Click

Click

Retrieve (digit)

number

Call (number)

Click (digit)

signal busy

*

signal

3

Figure 14.5

An LSC.

continues, but if it is not the loop is exited (which means that the entire chart has been
satisfied).

In this example we exploited the semantics of a cold condition: if it is true when
reached during a system run then fine, but even if it is false nothing bad happens
and execution simply moves up one level, out of the innermost chart or subchart.
In contrast, a hot condition must be true when reached. If it is false that is very bad
indeed; in fact, it is an unforgivable error, or violation, and the system must abort.
For example, one nice way to specify an anti-scenario using hot conditions (e.g.,
an elevator door opening when it shouldn’t, or a missile firing when the radar is
not locked on the target) is to include the entire unwanted scenario in the prechart,
followed by a main chart that contains a single hot condition that is always false.
(Why does this work?)

LSCs support many additional features, which will not be described in detail here.
The language is actually powerful enough to specify most aspects of reactive behav-
ior. Figure 14.6 is part of a full specification of a multi-telephone exchange, which
we shall not explain any further. Among other things, it contains symbolic instances
that refer to any phone or channel, binding conditions, if-then-else constructs, a hot
condition, and more.

Figure 14.7 shows a simple use of time in an LSC, coupled with assignment
statements and a cold condition. The prechart shows the Queen of Hearts instructing
the White Rabbit to come to her place in five seconds, and then proceeding to look
at her watch, noting the time. As a result, the White Rabbit meets Alice and tells her
he is late (the message is cold, so he doesn’t have to do this, but can). Alice hurries
the White Rabbit up, and upon arriving at the Queen’s place he dutifully reports his
arrival. The Queen then checks to see whether more than five seconds have elapsed.
If indeed this is the case, she issues an order to remove the White Rabbit’s head;
otherwise (i.e., if the cold condition is false) the scenario terminates peacefully, and
the White Rabbit remains with his anatomy intact . . .

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

372 V. The Bigger Picture

.ID=Caller

Caller := Channel.ID

Channel.Allocated=0

Channel.Allocated>0

Switch.Allocated1=0

Allocate(1)

Allocate(0)

Allocate(0)

Allocate(2)

.ID=Receiver

Call(Num)

CallNum := Phone.Number

Phone::Switch PhoneDBChannel:: Channel::

PhoneDB.QResult=

PhoneDB.QResult=Caller

Receiver := PhoneDB.QResult

ShowError(Illegal Number!)

ShowError(Cannot call yourself!)

ShowError(Calling ...)

Call(CallNum)

Set QResult(RetrieveKey(Num))

Figure 14.6

A more complex LSC.

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

14. Reactive Systems 373

Come in 5 seconds()

T := Time

I’m late!!!()

I’m here()

Off with his head!()

Hurry up()

Time > T + 5

Figure 14.7

Alice in LSC-land.

� The Play-In/Play-Out Approach

A two-faceted methodology has been developed recently around LSCs, called play-
in/play-out. It allows the user to specify scenario-based inter-object behavior conve-
niently, and to then execute it directly. Thus, it is really just a means for programming
a system using LSCs and then running the program. The first technique involves a
user-friendly means to “play in” behavior directly from the system’s GUI (or some
abstract version thereof, such as an object model diagram), during which LSCs
are generated automatically. The second technique makes it possible to “play out”
the behavior, that is, to execute the system as constrained by the grand sum of the
scenario-based information, thus simulating the system’s behavior exactly as if it
were specified in the conventional state-based intra-object fashion. These techniques
are supported by a tool called the Play-Engine.

The main idea of the play-in process is to raise the level of abstraction in behavioral
specification, and to work with a lookalike version of the system under development
not only in running the model but in preparing it too. This enables people who are
unfamiliar with LSCs, or who do not want to work with such formal languages
directly, to specify the behavioral requirements of systems using a high-level and
intuitive mechanism. These could include domain experts, application engineers,
requirements engineers, and even potential users.

What “play-in” means is that the system’s developer first builds the GUI of the
system, with no behavior built into it, but with a division into objects and their basic

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

374 V. The Bigger Picture

isolated capabilities. For example, a switch is given with its ability to be on or off,
and a calculator display is specified as being able to show any sequence of up to,
say, 10 characters. For GUI-less systems, or for sets of internal objects, we can
simply use a structural representation, such as an object model diagram as a GUI. In
any case, the user “plays” the GUI by clicking buttons, rotating knobs, and sending
messages to objects, in an intuitive drag-and-drop manner. By similarly playing the
GUI, often using the mouse to select among possibilities, the user describes the
desired reactions of the system and the conditions that may or must hold. As this
is being done, the corresponding LSCs are constructed automatically. The desired
modalities of the chart being constructed and its elements (universal/existential,
hot/cold) can be selected in the process.

In play-out, the user simply plays the GUI application as he or she would have
done when executing a conventional intra-object state-based model, but limited to
end-user and external environment actions.

The play-out process calls for the play-engine to monitor the applicable precharts
of all universal charts, and if successfully completed to then execute their main
charts, looking out for violations. The underlying mechanism can be likened to an
over-obedient citizen who walks around holding the Grand Book of Rules at all
times. Such people do nothing unless asked to, and never do anything if it violates
some other rule. To achieve this, they constantly scan and monitor all rules at all
times and upon executing any action (e.g., lifting a finger), they repeatedly carry out
any required consequences thereof. Clearly, in so acting, there might be choices to
be made, and inconsistencies in the rules could be discovered.

A stronger means for executing the LSCs, is to use a technique called smart
play-out, in which powerful model-checking techniques from program verification
are utilized to compute the best way for the system to respond to a user action, thus
avoiding many of the pitfalls of naive execution. The details, however, will not be
described here.

There are two ways to exploit the ability to execute LSCs. The first is to view
LSCs as enriching a conventional system development cycle, and the second is to use
them as the implementable behavioral specification itself, which could lead to a new
kind of development cycle. In the first approach, executable scenario-based behavior
offers improvements to some of the standard stages of system development: more
convenient requirement capture, the ability to specify more powerful behavioral
requirements, a means for executing rich use cases, tools for the dynamic testing of
requirements prior to building the actual system model or the implementation, and
a means for testing systems by dynamic and run-time comparison of two dual-view
executables.

The second approach, however, is more radical. It calls for considering the pos-
sibility of an alternative way of designing the actual behavior of a system, which
is scenario-based and inter-object in nature. This view proposes the idea that LSCs
(or some other comparable inter-object language, such as timing diagrams or tem-
poral logic) can actually constitute the implementation of a system. The play-out
mechanism would then constitute a sort of “universal reactive system” that exe-
cutes a collection of LSCs in an interpretive fashion, as if it were a conventional
implementation. In this view, behavioral specification of a reactive system would
not have to involve much intra-object modeling (e.g., by state machines or

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

14. Reactive Systems 375

statecharts or code). This idea is still quite preliminary, but it appears to be promis-
ing, since scenario-based behavior is the way most people think about reactivity.
Once it becomes possible to capture that thinking in a natural way and to execute
it directly, we will have a means for specifying the implementable behavior of our
systems that is well matched to the way we think of it. And this could make a dif-
ference in the quality, reliability, and expedition of complex system development.

� �

� Developing Real-Time Systems

Some reactive systems, called real-time systems, are characterized by the fact that
time plays a crucial role in their behavior. It is not good enough that such a system
react correctly to its stimuli, it must do so within stringent prespecified time limits.
For example, an aircraft collision-avoidance system must issue a warning early
enough to give the pilot time to carry out actions to avoid the collision, and an anti-
braking system in an automobile must operate fast enough to prevent an accident.
Similarly, an anti-missile system must identify the trajectory of the incoming missile
in time to launch its own intercepting weapon.

Developing real-time systems is particularly difficult, since the actual time taken
by each element of the system must be factored into the calculation of its reaction
times. In particular, conventional operating systems are usually inappropriate for
the deployment of real-time systems, since they don’t provide the necessary time
guarantees. Special real-time operating systems exist for this purpose; these typ-
ically offer more limited services than their general-purpose counterparts, but they
guarantee strict response times.

Specifying the behavior of real-time systems is also particularly difficult, since
besides the issues of reactivity and conventional computation, they have to adhere
to the critical timing constraints. While many approaches to reactive system speci-
fication can deal with real-time aspects too, a recent proposal is tailored specifically
for time-dependent reactivity. It is called MASS, an acronym for marionettes acti-
vation scheme specification language. The marionette metaphor suggests separating
the activation mechanism from the actions of the puppets. In MASS, the nonreactive
aspects of the system can be specified using any of a wealth of proposed formalisms
for sequential programs or transformational systems. The reactive aspects, partic-
ularly the time-dependent ones, are captured by a set of reactions, each of which
specifies the response of the system to some event, with a possible time limit. For
example, the reaction

[Switch > On → Activate-furnace] < 2sec

means that within two seconds from the time the switch was turned on, the task
Activate-furnace must be finished. The details of what exactly is involved in this
task are specified separately, since it does not interact with any other activities in
the system.

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

376 V. The Bigger Picture

Reactions can also have aborting events; for example, the reaction

[Train-out → Gate(Open)] : Train-in < 15sec

specifies that the gate must finish opening no more than 15 seconds from when the
train moved out of the railroad crossing; however, if another train enters the crossing
before that task finishes, it is aborted. Another reaction, such as

[Train-in → Gate(Close)] < 10sec

specifies that the gate should finish closing within 10 seconds of the Train-in event.
Here, the first reaction must be aborted, otherwise there will be conflicting require-
ments.

In this example too, the details of how the gate opens and closes can be specified
by other means and can be implemented in any programming language for which
timing constraints can be derived; in practice, this limits the selection to assembly
languages, or low-level languages like C. Thus, MASS allows the designer of a real-
time system to concentrate on the real-time activation aspects of the system without
having to worry about the specifics of the activated tasks at the same time.

� �

� Research on Reactive Systems

Most of the topics mentioned in the research section of the previous chapter apply to
large computerized systems of all kinds, the special case of reactive systems being
no exception. The same applies to the research topics of correctness and verification
from Chapter 5. If anything, many issues become more acute when systems are
reactive, and especially when they also have stringent real-time constraints.

In addition, there is a lot of research being carried out on visual formalisms,
their convenience and power of expression, and their implementation and analysis.
One notable effort is the unified modeling language, the UML, which purports
to collect under a single roof many interrelated diagrammatic notations for system
development (not necessarily reactive systems). The behavioral heart of the UML
is an object-oriented version of statecharts. MSCs are also part of the UML, and are
used for specifying requirements and test sequences, under the name of sequence
diagrams. The UML is an official standard for system development, coordinated
and issued by the Object Management Group. It represents an ongoing effort, with
periodic calls going out for proposals and extensions, and with new versions of the
standard being issued from time to time.

The UML team has made extensive attempts to define and write down the mean-
ings of the various languages that constitute it, and their interconnections, but these
efforts are informal and often incomplete. Another concern some people have with
the UML is its vast scope, involving many different languages used for many dif-
ferent purposes. In particular, the UML provides several different languages for
specifying reactive behavior, and these can easily be used to inadvertently specify
things more than once in different ways. This raises subtle issues of consistency that
have not yet been adequately dealt with. Since the UML is an accepted standard,

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

14. Reactive Systems 377

and will probably only grow in usage, semanticists are busy at work trying to de-
fine some of the more central parts of the UML in a rigorous fashion, rendering it
amenable to computerized analysis, and to figure out ways of ensuring consistency
of UML models.

Verification of reactive systems is a topic of extensive work, and some verification
techniques have been adapted to work for visual reactive models, and are being
incorporated into industry-scale development tools. In all probability, this trend will
continue, and the foreseeable future should bring with it the ability to automatically
verify certain critical properties of complex systems.

The relationship between inter-object and intra-object behavior, and the emer-
gence of languages such as LSCs, raise many issues related to the difference be-
tween requirements on behavior and conventional implementable behavior. While
verification concerns checking that the former is true of the latter, a different topic
of research concerns synthesizing the latter from the former. See Figure 14.8, which
shows the system model from Figure 14.2 on the right, as it relates to the require-
ments on the left. The relationships are (1) making sure that the latter holds for
the former (by testing and verification) and (2) constructing the former from the
latter (by methodologies and synthesis). For example, it would be nice if we could
provide an efficient algorithm for synthesizing compact statecharts from LSCs. Un-
fortunately, the worst-case complexity of most versions of the synthesis problem for
finite-state systems is very bad—at least exponential time. The good news, however,
is that although the same is true for the verification problem for such systems, it has
not prevented the development of extremely useful verification tools. In any case,
synthesis is a topic of much research too.

Figure 14.9 is a modification of Figure 14.2, intended to illustrate the possibility of
using played inter-object behavior as the actual implementation of a reactive system.
This idea requires much further research too, such as: developing methodologies
for doing so and heuristics for figuring out what kinds of systems would be most
amenable to the approach; developing criteria and guidelines for establishing the
completeness of such a specification; and developing algorithms for determining
the internal consistency of a scenario-based specification and the equivalence of
such a specification to a conventional one. In addition, smart play-out seems to be

basic structure

testing
&

verification

requirements
(inter-object) methodologies

&
synthesis

code
generation

final
code

system model

structure

behavior
(intra-object)

Figure 14.8

The system model
vis-à-vis the
requirements.

P1: GIG

PE002-14drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:41

378 V. The Bigger Picture

system
structure

system
behavior

inter-object
behavior

play-out
play-in

Figure 14.9

Basing system
development on
played inter-object
behavior.

an interesting line of future work, whereby verification techniques are used not to
prove something about a model or a program, but to actually help run it, in ways
that avoid violations and pitfalls, thus contributing to a “correct” execution thereof.
It seems that these and other related topics will occupy researchers in this area for
quite a while.

Finally, a tantalizing new area of research involves using techniques, languages,
and tools for reactive system development in order to model nature. It appears that
many kinds of biological systems exhibit reactivity to a great degree and on many
levels of detail, including the molecular and cellular level, as well as the level of an
entire organism. The past few years have seen a surge of work in this area, and it
is possible that we will start seeing intricate models of complex biological systems
built using techniques that come out of computer science. Such models will be used
not only to aid biologists in visualizing and comprehending biological systems in
animated behavior, but also to uncover gaps or errors in biological knowledge, and
even to contribute to actual discoveries by making predictions that will drive lab
experiments.

� Exercises
14.1. Why does the naive approach for combining states to deal with concurrency in reactive

systems yield an exponential blow-up in the number of states?

14.2. Consider Figure 14.1 and the accompanying text. Explain where the numbers 12 and 29
that are mentioned in the text come from.

14.3. Construct statecharts for a simple VCR and a simple ATM.

14.4. Construct LSCs for a simple VCR and a simple ATM.

I will give thee thanks, for thou hast answered me

PSALMS 118: 21

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

C H A P T E R 1 5

Algorithmics and Intelligence

or, Are They Better at It Than Us?

Intelligence is a
wellspring of life to
him who has it

PROVERBS 16: 22

Son of man, can these
bones live?

EZEKIEL 37: 3

The question of whether computers can think, someone once said, is just like the
question of whether submarines can swim. The analogy is quite apt. Although we
all know more or less what submarines are capable of—and indeed they can do
things that are akin to swimming—“real” swimming is something we associate with
entities of organic nature, such as humans and fishes, not with submarines. Similarly,
although by now the reader must have a pretty good idea of what algorithmics is all
about, and hence of the capabilities of computers, real thinking is associated in our
minds with human beings, and perhaps also with apes and dolphins, but not with
silicon-based collections of bits and bytes.

This somewhat less technical chapter is concerned with the relationship between
machine-based computation and human intelligence. The issue is an emotionally
loaded one, and almost anything anyone says about it causes heated controversy. For
our own part, we shall try to avoid these controversies as best as we can. Instead, we
shall discuss the relevance or irrelevance of the field of algorithmics as described in
this book to the computer-based simulation of human intelligence. Mostly problems
and difficulties rather than solutions will be pointed out.

The area of research most relevant to this chapter is artificial intelligence, or AI
for short. In most places, AI is carried out in computer science departments, while
in others there is either a separate department for AI or an interdepartmental group
connected, perhaps, to computer science, cognitive psychology, and neurobiology.
In many universities nowadays, all these disciplines have been amalgamated into
brain science or cognitive science centers. The fact that this is the closing chapter
should not lead the reader to conclude that the sole reason for studying algorithmics
is rooted in the possibility that one day we shall be able to computerize intelligence.
However intriguing this idea may sound, the task of writing this book has not
been undertaken in order to report on the scientific basis for artificial intelligence.
Algorithmics stands on its own merit, and a strong case for its importance, depth,
and applicability can easily be made, whether the subject matter of this chapter is
considered or not. Here we deal with a new, “softer” dimension. It is a fascinating

379

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

380 V. The Bigger Picture

and exciting one, but it is also controversial and speculative. Mainly, as we shall
see, it is quite different.

In purely technical terms, it might be said that the present chapter focuses on
another liberty that can be taken when designing algorithms, to be added to those
of parallelism and coin tossing that were treated in Chapters 10 and 11. This liberty
involves the introduction of rules of thumb, educated guesses of sorts, or, to use
the accepted term, heuristics. The nature of this new facility and its motivating
examples set it apart from virtually all of the issues discussed heretofore, and this
is the reason for its being treated last. While heuristics represent the special nature
of the control part of intelligent programs, there are also difficulties involved in
representing and manipulating the data relevant to them, namely, knowledge in its
various guises.

� Some Robot Stories

Talking of swimming, here is what happened in the 1970s, when in some circles
there was a lot of naive excitement around the possibility of building truly intelligent
robots, in one of the most respectable centers of American computer science. A
delegation from the U.S. Navy visited the center to find out whether they could
use the knowledge accumulated there to build a robot that, all on its own, would
be able to dive underneath ships and carry out submerged maintenance chores.
The scientists proudly showed these people the results of their latest efforts in
robotics—a computerized robot arm connected to a video camera, which could read
in, comprehend, and execute commands such as “build a tower of three blocks,”
or “place the red pyramid on the blue block.” Out of courtesy, the members of the
delegation listened, observed, and then politely took their leave, deeply disappointed.
These people had no idea of the incredible difficulty involved in achieving even
such mundane behavior in an automatic computerized system. At one stage in the
development of its controlling software, the robot arm would try to build three-block
towers starting at the top! It was no small matter to “teach” the robot about gravity,
even within its very limited world of a few blocks and pyramids.

Another story involving the same group of researchers tells of a commercial
company that claimed to have manufactured a robot that would carry out routine
housekeeping tasks in response to commands given in plain English, such as “wash
the dishes,” or “make lunch for four.” The company was to demonstrate the robot’s
abilities in public at one of the local department stores. The scientists of the group,
knowing fully well what could be achieved with the current state of the art, were
certain that this was a fraud. Thus, while the many spectators who had gathered to
behold the miracle were busy up front taking in the scene, they were busy behind the
scene trying to discover the trick. Surely enough, after a while they found the person
who was using a radio transmitter to physically control the robot’s movements,
giving the impression that it was responding to the instructor’s commands.

These stories seem to contradict the statement made in Chapter 1, to the effect
that computers can control extremely sophisticated industrial robots that construct
complex items consisting of numerous components. There is no contradiction. Those

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

15. Algorithmics and Intelligence 381

robots are programmed to carry out long and intricate sequences of operations by
a carefully prepared recipe. In general, they can be reprogrammed to carry out
different tasks, and sometimes they are able to adapt their behavior somewhat to
accommodate changing situations. However, they are not able to take a look at their
surroundings, decide what has to be done, and then make a plan and execute it to
completion. For this reason no one knows how to program a robot to build a bird’s
nest from a pile of twigs. There have been some successes in dealing with very
limited worlds of blocks and pyramids, but not with twigs of all shapes and sizes, or
with a large and diverse array of machine components. Dealing with these requires
levels of intelligence that are far beyond present-day capabilities. Even the ability
to take in a simple scene such as a normal living room (using some visual sensory
equipment) and “understand” it, something every child can do, is far beyond current
possibilities.

Another example given in Chapter 1 concerned the contrast between computerized
tomography (synthesizing a cross-section of the brain from a large number of X-ray
images taken from increasing angles) and the ability to deduce a person’s age from
an ordinary photograph. Here, too, there is no contradiction. While the former task
is carried out with the aid of complex, but well-defined, algorithmic procedures, the
second requires real intelligence. Computerizing intelligence, making it algorithmic,
is something about which we know far too little.

� �

� Algorithmic Intelligence?

What is intelligence? There is nothing to be gained by competing with philoso-
phers, cognitive psychologists, and AI researchers regarding this question. How-
ever, from a layman’s point of view it would appear that the very notion of artificial
intelligence, or, to rename it to fit in with the rest of the book, algorithmic intelli-
gence, is a contradiction in terms. We tend to view intelligence as our quintessential
nonprogrammable, and hence nonalgorithmic, feature. To many people the very idea
of an intelligent machine does not sound right.

Various arguments have been put forward to render unthinkable the concept of
an intelligent thinking machine. To think, some say, necessarily involves emotions
and feelings, and no computer can hate, love, or become angry. Others claim that
thinking intelligently necessarily entails originality, and no computer can originate
anything unless programmed ahead of time to do so, in which case it is no longer
original. In this view, a computer can never be called “intelligent.” On the other hand,
many people believe that the human brain is itself just a machine, albeit a complex
one. Thus, according to the Church/Turing thesis (see Chapter 9), an electronic
computer can in principle simulate the human mind, and can act as though it were
intelligent. This is called the weak AI claim. Going a step further, proponents of
the strong AI claim hold that such a computer would truly be conscious.

We shall have more to say about this debate below. It does appear, however,
that a machine claimed to be intelligent must, at the very least, be able to exhibit

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

382 V. The Bigger Picture

human-like intellectual behavior. For this we do not require it to walk, see, or talk like
a human, only to reason and respond like one. Furthermore, whatever the agreed-on
criteria for intelligence turn out to be, someone ought to be able to check whether a
candidate machine fulfills them. And who, if not a real, intelligent human being, is
qualified to carry out such a test? This brings us to the idea that a machine ought to
be labeled intelligent if it can convince an average human being that in terms of its
intellect it is no different from another average human being.

� The Turing Test

How can we set up things to make such a test possible? In 1950 Alan Turing1

proposed the following method, now commonly called the Turing test. The test
takes place in three rooms. In the first there is a human interrogator, call her Alice,
in the next there is another human, and in the third the candidate computer. The
interrogator Alice knows the other two only by the names Bob and Carol, but
does not know which is the human and which is the computer. The three rooms
are equipped with computer terminals, and Alice’s terminal is connected to those
of Bob and Carol (see Figure 15.1). Now, Alice is given, say, an hour in which
to determine the correct identities of Bob and Carol. Alice is free to address any
questions or statements whatsoever to either of them, and the computer has to make
its best effort to deceive Alice, giving the impression of being human. The computer
is said to pass the test if Alice does not know which of Bob or Carol is really the
computer after the allotted time has elapsed. (Actually, we require the computer to
pass a number of one-session tests, with different interrogators, in order to minimize
the possibility that Alice simply guesses which is which.)

B: human or computer C: human or computer

A: human interrogator

Figure 15.1

The Turing test (A, B,
and C are Alice, Bob,
and Carol).

1 This is the same Turing from the thesis and the machines.

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

15. Algorithmics and Intelligence 383

Let us try to get a feel for the immense difficulty involved. Consider how an
intelligent program would have to react to the following questions by Alice:

1. Are you a computer?

2. What is the time?

3. When was President Kennedy assassinated?

4. What is 2 276 448 × 7 896?

5. Can White win in one move from the following chess position: . . .?

6. Describe your parents.

7. How does the following poem strike you: . . .?

8. What do you think of Charles Dickens?

9. What is your opinion on space exploration programs, in view of the fact that
millions of people around the globe suffer from starvation?

Notice that the programmed computer must be able to converse freely in a natural
language such as English. We waive the need for it to hear and talk, and hence the
electronic links. However, understanding and synthesizing language are considered
to be two of the cornerstones of human intelligence, and thus they are required
prerequisites here.

The first two questions are rather easy. The answer to the first should be “no,”
and for the second the program can utilize a built-in clock that is present in most
computers. Question (3) requires the program to be able to access a very large
pool of knowledge, comparable to the knowledge of a human being. Question (4)
looks easy—computers seem to do best on such questions—but it is nevertheless
subtle, since the computer must wait for a while before answering; an immediate
answer would give away its identity. Question (5), of course, requires it to have
some knowledge of chess, including the ability to reason about a new position.
Although answers to the likes of question (6) could be prepared in advance, Alice
might respond to an answer by pursuing a certain unexpected detail to which the
computer might not have a ready-made answer. Questions (7), (8), and (9) are
far more difficult, as they illustrate the need for exhibiting preferences, opinions,
positions, and emotions, explaining them and relating them to others. In short, the
competing computer must be endowed with a real personality.

One of the difficulties in programming a computer to pass the Turing test is the
great diversity of areas that the conversation can lead to. There have been some
apparent successes in imitating human conversation in very limited areas of dis-
course. A program called ELIZA, written in 1966, was able to give an impressive
performance as a psychoanalyst. So impressive, in fact, that people were known
to actually “confide” in the program in ways they would never confide in a human
being! Here are a couple of typical exchanges:

Person: My wife says I am often depressed.
ELIZA: I’m sorry to hear you are depressed.
Person: The truth is I am quite unhappy.
ELIZA: Do you think coming here will help you not to be unhappy?
Person: Well, perhaps by talking to you I will find out why I hate my brother.
ELIZA: Tell me more about your family.

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

384 V. The Bigger Picture

The interesting thing about ELIZA is the fact that it cannot be said to be intelligent
by any reasonable measure. In fact, despite its apparent sophistication, ELIZA is
really quite dumb, so that insofar as it gives the impression of being a thoughtful
therapist, it is really a shrewd cheat. At times, it simply zeros in on a particular word
or phrase that it has been taught to look out for, and responds by choosing, virtually
at random, one of a small number of fixed responses. An excellent example of this
is the response “Tell me more about your family,” triggered by the word “brother.”
Other times, ELIZA merely turns an incoming sentence into a question or a somewhat
content-free statement, as in the exchange concerning the person’s unhappiness. To
do this, it utilizes a simple mechanism for figuring out the coarse structure of the
input sentences.

Strange things happen on really trying to test ELIZA’s intelligence, instead of just
pouring out one’s problems. In fact, if we said “I was a sister in a monastery in
Burma,” or even “I admire Sister Teresa,” the program might very well respond with
the same irrelevant response: “Tell me more about your family.” Its response to the
question about space exploration programs is bound to be equally amusing. ELIZA,
of course, has no chance of passing the Turing test. In fact, it was not intended to.
The motivation behind ELIZA was to show that it is easy to appear intelligent, at
least for a short while, to a sympathetic observer, and within a narrow domain of
discourse. To be really intelligent, however, is quite a different matter.

To further appreciate the difference between the genuine intelligence required
to pass Turing’s test, and the shallow, yet deviously deceptive nature of ELIZA’s
conversational abilities, here is a hypothetical exchange between the Turing test
interrogator Alice and a really intelligent candidate, say Bob:

Alice: What is a zupchok?
Bob: I have no idea.
Alice: A zupchok is a flying, novel-writing whale. It has been carefully cul-

tivated in a laboratory over several generations to ensure that its fins
evolve into wing-like things that enable it to fly. It has also been grad-
ually taught to read and write. It has a thorough knowledge of modern
literature, and has the ability to write publishable mystery stories.

Bob: How weird!
Alice: Do you think zupchoks exist?
Bob: No way. They cannot.
Alice: Why?
Bob: For many reasons. First of all, our genetic engineering capabilities are far

from adequate when it comes to turning fins into wings, not to mention
our inability to cause 10-ton engineless creatures to defy gravity just by
flapping those things. Secondly, the novel-writing part does not even de-
serve responding to, since writing a good story requires much more than
the technical ability to read and write. The whole idea seems ridiculous
enough. Don’t you have anything more interesting to talk about?

To carry out this conversation, Bob, be it the human or the computer, must display
very sophisticated abilities. It must possess a large amount of knowledge on specific
topics, such as whales, flying, novel writing, and gravity. It must be able to learn
about a totally new concept, taking in the definitions and relating them to what it
already knows. Finally, it must be able to deduce things from all of this, such as the

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

15. Algorithmics and Intelligence 385

fact that genetic engineering is more relevant to zupchoks than, say, mathematics,
or Chinese philosophy. (In this particular case it must also have a sense of humor.)

� Strong AI and the Chinese Room

Suppose a computer program is created, which can pass the Turing test. According
to the strong AI claim, this program would be considered to be intelligent and
conscious. A famous thought experiment, called the Chinese room argument, tries
to refute this kind of claim. Here is how it goes. Consider a modified version of the
program, which converses in Chinese rather than in English. It is essentially a set
of precise instructions to the computer, and can be translated into a series of similar
instructions rendered in English, for a human to follow. (This would be long and
tedious, but still possible in principle, and the Chinese input/output parts of it might
contain “dumb” things like “if you are looking at this Chinese character and square
number 159 in your notebook contains 1, write 0 in square 243 and move to the
next character to the right.”) Suppose now that a book containing the complete set
of English instructions is given to a person, who understands and speaks English but
not Chinese, and who is then locked in a room with a slot for communication with
the outside world. Questions, written in Chinese, are inserted through the slot, and
the person locked in the room follows the instructions in the book in order to produce
an answer, again in Chinese. Since the person is following the original computer
program, his or her responses must be considered to be intelligent according to
the Turing test. However, clearly the occupant of the so-called Chinese room has
no understanding of the content of the communications but is merely following the
instructions in his book. Thus, the Chinese room and its occupant cannot be described
as conscious, or even intelligent, and therefore neither can the original program!

Many articles and books have been written to support one or the other side of
this debate, but we shall not discuss them any further here. While the philosophers
debate and argue, AI researchers are still trying to develop truly intelligent programs.
Still, it should be noted that a program that is able to pass the Turing test will not
put an end to the issue; rather, it will probably only serve to intensify it. If such a
program insisted that it was conscious, would you believe it? For that matter, you
could ask the same question of human beings too: are we truly intelligent, or are we
just simulating intelligence by virtue of the programming of our brains?

� �

� Playing Games

Turing’s test seems to provide a nice sufficient condition for a computer to pos-
sess full human-like intelligence. However, most AI researchers have not set them-
selves the goal of writing programs that can pass the Turing test, since it involves
much that is not directly related to pure intelligence. For example, in order to
pass the Turing test, the computer would have to be programmed to hide its own

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

386 V. The Bigger Picture

super-human proficiencies, as seen in question (4) above. This is similar to what has
happened in other fields. For example, for many years people have tried to achieve
“artificial flight” by trying to imitate birds. Success has been achieved by turning
to completely different methods, and we attribute to modern airplanes the ability to
fly, even though they will not fool anyone for a minute into thinking they are birds.

Modern AI research can be roughly divided into analysis and synthesis. The
goal of the first is to understand the nature of intelligence; often, this involves the
study of how humans learn, reason, deduce, and make plans, and duplicating these
abilities in computer programs. This line of research therefore has a lot in com-
mon with fields such as psychology and neurobiology, in addition to mathematics
and algorithmics. The second approach aims to build “smart” computer programs
that can perform useful tasks. How similar these are to human intelligence is less
important.

Initial work in the 1950s and 1960s was aimed at building general methods
for solving a variety of particular problems. This has been found to be much more
difficult than originally thought, and later work turned to more narrow fields in order
to leverage specialized knowledge associated with specific topics. Game playing is
one of the specialized areas in which AI research has achieved significant results. It
seems proper to start the discussion with a short news bulletin.

� In 1979, a computer program beat the world champion in backgammon. (This
did not make the program the new champion, as the game was not played in an
official tournament, but the win was a win nevertheless.) We must realize that a
backgammon match involves many single games, so that the luck factor, intro-
duced by the tossing of dice, is minimized and the quality of play dominates.

� In 1994, the world champion checkers player, Marion Tinsley, resigned the title to
the computer program Chinook. This program won the Man–Machine Checkers
Championship, which takes place between the best human player and the best
program player. (This special title was created so that it would be possible to have
both a human world champion and a computer world champion.)

� In 1997, the world champion chess player, Gary Kasparov, lost to the computer
Deep Blue by 3.5 to 2.5 in six games. This match followed a 4–2 win by Kasparov
in 1996. In early 2003, Kasparov rallied round and tied 3–3 with Deep Junior,
the program that took the World Computer Chess Championship title in 2002.

While programs can now play superb games of backgammon, checkers, and chess,
they are still not perfect. There are other games, such as Go, at which computers
don’t perform that well at all. Why can’t programs always play a perfect game? Why
can’t a computer run through all possible moves and always make the best one? The
answer lies in game trees, which were mentioned in Chapter 2 (see Figure 15.2). In
tic-tac-toe (noughts and crosses), for example, there is no difficulty. The first player
has nine possible moves, to which his opponent can respond in one of eight ways,
to which the first can respond in one of seven, etc. The game tree thus consists of a
root with nine offspring, each of which has eight offspring, and so on. Some nodes
in this tree are terminal, meaning that they represent either a win for one of the
players or a full board with no win. In any event, any sequence of nine moves leads
to a terminal node. The tree is thus of maximum depth 9, with maximum outdegree

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

15. Algorithmics and Intelligence 387

draw win for A

win for A

win for A win for B

draw

initial position

player A’s moves

player B’s moves

player A’s moves

player B’s moves

Figure 15.2

A game tree.

of 9 at the root. Altogether, there are no more than 9!, or 362,880, possibilities to
check; hence a program can easily be written to efficiently play perfect tic-tac-toe.

With chess, on the other hand, the story is quite different. White has 20 possible
first moves, and the average number of possible next moves from an arbitrary chess
position is around 35. Thus the tree’s outdegree is about 35 on average. The depth
of the tree is the number of moves (twice the number of rounds of the game), which
can easily reach 80 or 100. This means that the number of possibilities to check in a
typical game might be 35100. In Chapter 7 we saw some such numbers, and we recall
that 35100 is many, many orders of magnitude larger than the number of protons in
the universe, or the number of nanoseconds since the Big Bang. Consequently, even
if we ignore the bookkeeping and memory involved in a brute-force trip through
all possible moves, and assume that each of them can be tested in one nanosecond,
no program will ever play perfect chess. The numbers for checkers are not quite
as large, but perfect checkers is also out of the question. The numbers for Go are
even higher than for chess; for example, the number of possible moves in each
position is typically around 200 rather than 35, and the game goes on for about
300 moves!

How, then, do good chess programs operate? Well, they indeed carry out massive
searches through large parts of the game tree, but they also use heuristics, or rules of
thumb. In the context of games, heuristics are used to help decide which parts of the
game tree will be considered in an attempt to choose a good move. A typical heuristic
search uses intuitive rules, incorporated into the program by the programmer, to
ignore certain parts of the game tree. For example, it might be decided that, if in the
last five moves nothing has changed within the four-square vicinity of a certain pawn,
that pawn will not be moved, and hence the search can ignore all parts of the tree that
are located beneath the corresponding node. Such a rule might turn out to be very
insightful—it definitely results in smaller trees to be considered—but, of course, it
could cost the game; Gary Kasparov might have advanced that very pawn to win in

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

388 V. The Bigger Picture

three moves. This is a very simple-minded example, and the heuristics embodied in
real chess-playing programs are usually far more sophisticated. However, they are
heuristics nevertheless, and using them raises the possibility that we might miss the
best move.

� More About Heuristics

A nice way to explain the nature of heuristic search is to consider a person who
has lost a contact lens. One possibility is to carry out a blind search, by bending
over and feeling around for the lens at random. Another possibility is a systematic
search, which involves continuously extending the area searched, in a methodical
and organized manner (say, in ever-larger circles around a central point). This search
is bound to succeed eventually, but might be very time consuming. A third possibility
is an analytic search, whereby the precise mathematical equations governing the
fall of the lens are calculated, taking into account wind, gravity, air friction, and the
precise topography, tension, and texture of the surface. This too, if done correctly,
is guaranteed to succeed, but for obvious reasons it is impractical.

In contrast to these methods, most of us would approach the problem using a
heuristic search. First, we would identify the approximate direction of the fall and
make an educated guess as to the distance the lens could have made by falling, and
then we would limit the search to the resulting area. Here, of course, the search
might not be successful, but there seems to be a reasonably good chance that it will.
(There is, of course, a fifth approach, the lazy search, which calls for searching for
the closest optician and having a new lens made . . .)

The main disadvantage of heuristics is in the fact that they do not guarantee
success. It is always possible that a rule of thumb will fail for a particular case. As
far as advantages go, besides having the potential to drastically reduce running time,
heuristics are usually amenable to improvements or replacement as we become more
acquainted with the problem at hand and the ways human beings tackle it. In the
context of algorithmics, however, the most important characteristic of a heuristic is
the fact that its performance is not subject to analysis. We can decide upon a chess
heuristic, incorporate it into our chess-playing program, and from then on we will
be able to assess its performance only by observation. It might play 100 excellent
games before we discover that it has a serious weakness which, once known to an
opponent, worsens its game dramatically.

In a sense, employing heuristics is a little like tossing coins, in that we do not
necessarily cover all possibilities and might miss out on a good solution as a conse-
quence. In Chapter 11 we saw how things can be improved by following the whims of
random coin tosses. In other words, the search space of all possibilities was reduced,
and some directions were left unexplored. Thus, we were willing to label a number
“prime” although we had not checked all possible witnesses to its nonprimality.
There too, success is not guaranteed; hence it is tempting to view coin tossing as
a blind heuristic, a sort of intuitionless rule of thumb. There is a major difference,
however. In the realm of probabilistic algorithms, analysis replaces intuition. By
employing carefully defined sets of ignorable possibilities, and using randomiza-
tion to decide which to actually ignore, we are able to analyze the probability of

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

15. Algorithmics and Intelligence 389

success rigorously, making precise statements about the algorithm’s performance.
With heuristics we typically cannot.

Although the probabilistic primality-testing algorithm (and for that matter almost
any algorithm, even a simple sorting routine) definitely looks intelligent—indeed,
it does its thing much better than the average human being—we do not think of
it as being truly intelligent. While its construction might have required intuitive
ingenuity on the part of the designer, its performance is not based on intuition, and
can be analytically accounted for. A chess-playing program, on the other hand, might
be considered intelligent, as it uses nonprobabilistic rules of thumb, the results of
which we cannot predict or analyze. This, then, is one possibility for interpreting our
feeling that real intelligence is nonprogrammable; just replace nonprogrammable
by nonanalyzable. AI is typified by programs that are based on rules that appear to
be helpful, but whose helpfulness has not been rigorously analyzed.

This crude attempt to define AI by some property of the resulting programs is
not quite fair. Most people would prefer to define it by subject matter. Moreover,
certain directions in AI research have lately become quite precise and analytic. In
many cases the heuristics employed are more than just educated guesses; they are
actually based on well-defined mathematical models and formulas. In computerized
vision, for example, the heuristics used in detecting motion and in comprehending
stereoscopic pairs of pictures are based on complicated mathematics, and strongly
supported conjectures are made about the way the resulting programs behave on ran-
dom inputs. The same can be said about motion planning in robotics. In such cases,
the heuristic algorithms are closer to the approximation algorithms of Chapter 7
than to probabilistic ones, since the heuristics used are usually conjectured either to
guarantee a good solution on average or to produce a bad one extremely rarely. We
can thus call the resulting algorithms conjectured approximation algorithms—the
only thing missing is a proof of the conjectured property. Obviously, once a proof is
found we would not expect the discipline of AI to give up the algorithm just because
its behavior has been precisely analyzed.

� �

� Evaluating and Searching

The account given of heuristics in computerized chess was also overly simplistic. In
actuality there is much more going on than a few simple rules that cause the program
to ignore parts of the game tree. For example, there has to be a way to evaluate the
quality of positions in the tree. As a simple example, consider a node for which it
has been decided to ignore all but two of White’s possible next moves. Assume that
the first of these can lead eventually to 10 terminal nodes, three of which represent
a win for White, one a win for Black, and six draws, and in the other the numbers
are not 10, 3, 1, and 6, but, say, 8, 4, 3, and 1. How should the program (that plays
White) compare these situations in order to choose the next move? The problem
becomes much more acute when even in the directions that are considered we want
to stop searching at a certain depth. In such a case, the most distant positions reached
in the search do not give rise to definite win/lose/draw information; we only have

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

390 V. The Bigger Picture

the information that is implicit in the board configuration itself. In such a case, the
evaluation function is far less obvious.

The problem of evaluating situations and assigning them numerical values to help
in reaching a decision is one of the main challenges of heuristic programming, and it
is not restricted only to game playing. Consider a program for carrying out medical
diagnosis. Here too, there is a tree, the nodes of which represent combinations of
symptomatic problems and queries to the patient, with the terminal nodes repre-
senting final diagnoses. Here too, the tree is enormous; furthermore, some nodes
correspond to various kinds of medical tests, which carry their own risks. Thus, a
heuristic search must take place, with the patient’s observable symptoms and his
answers to queries prescribing the directions that will be pursued and the tests that
will be performed. The evaluation problem here, which determines how relevant a
particular set of possibilities is to the sought-after final diagnosis, is just as difficult.

Whether in chess, in medicine, or elsewhere, once an evaluation function for the
search tree has been defined, there still remains the problem of exploiting the values
of nodes in the tree to efficiently search through its relevant parts. Here, work in AI
has resulted in a number of powerful search methods that have many applications
in nonheuristic algorithmics too. Many of these are based on a fundamental search
strategy called the minimax method, which is best explained in the framework of
game trees.

Figure 15.3(a) shows part of a game tree for a two-person game, like tic-tac-toe
or chess, together with previously established values for each terminal node. (The
terminal nodes in the figure are either real end positions of the game or intermediate
positions, beyond which we have decided not to search.) The root represents a
board position with player Alice to go, and the values represent the strength of the
positions from Alice’s point of view. Thus, 999 represents a win for Alice and 0 a
win for Bob. Intermediate values reflect the relative chances of Alice winning from
the corresponding positions, as prescribed by some heuristic evaluation function.
One possible move must be chosen for Alice that will maximize her ability to win.

The basic idea is to repeatedly propagate values upwards in the tree, starting at
the bottom. If the current parent node represents an Alice-move then the maximum
of the values of the offspring nodes is attached to the parent, and if it represents
a Bob-move then the minimum value is taken. The rationale for this is clear: Bob
is assumed to play in a reasonable manner, and hence will make every effort to
maximize his own chances of winning, which is to say that he will try to minimize
Alice’s chances of doing so. In other words, Alice should make the best move (that
is, the one with maximal value) under the assumption that, following it, Bob will
make his best move (i.e., the one with minimum value of Alice’s function), following
which Alice will make her best next move, and so on. Figure 15.3(b) shows the tree
with these min and max values inserted.

This process can be shortened by observing that in some cases even partial in-
formation regarding the values of a node’s second-generation offspring (that is, its
grandchildren) is sufficient for determining its final value. In Figure 15.4, for ex-
ample, there is no point in evaluating the rightmost of the five second-generation
subtrees, since the minimum of the three leftmost ones is 42, which is greater than
27, the known value on the right. The minimum of 27 and any possible value of the
root of the rightmost tree will be no more than 27 itself, and hence the maximizing
that will be carried out to determine the value at the root necessarily leads to a value
of 42. A similar case occurs when the node in question represents a Bob-move rather

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

15. Algorithmics and Intelligence 391

0

(a)

999

999 999

999

106 142

999 65

100

0

05

0 5678

74 28

71 15 87

110

0

(b)

999

74 max

78 max

71 min 74 min 15 min 0 min

74 max 999 max

74 max 10 max110 max

0 min 74 min 10 min

999 999

999

106 142

999 65

100

0

05

0 5678

74 28

71 15 87

110

Figure 15.3

Propagating values by
the minimax method.

than an Alice-move, but with maximum and minimum changing places. Methods
have been found to traverse the tree during the propagation process in such a way
as to take advantage of these savings. One of the better known of these, which will
not be described here, is called alpha-beta pruning.

In summary, a heuristic search consists of:

1. heuristics embodied in a valuation function;

2. rules as to how deep the lookahead from any given position will be (this is usually
a function of the position in question); and

3. an efficient propagation procedure for determining the values and actually making
the choices.

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

392 V. The Bigger Picture

max

min

118 42 67 27

?

min

Figure 15.4

A subtree that need
not be evaluated in
the minimax method.

� Knowledge Representation

We need more than just heuristics to achieve algorithmic intelligence. We have to
find ways to represent the knowledge that intelligent algorithms manipulate. If the
control parts of an AI program are special, being based upon the “soft” notion of
heuristics, then the data parts are also special, being based upon the “soft” notion
of knowledge.

That twice four is eight and that France is in Europe is knowledge, but so is
the fact that all giraffes have long necks, that Alan Turing was brilliant, and that
academics who do not publish perish. But what is “long,” and what is “brilliant,”
and is “perish” meant literally? Furthermore, how do we represent such facts in our
minds or in our algorithmic knowledge bases, and how do we use them? No program
can be labeled intelligent, be it one that operates in a narrow domain, such as chess
or blocks and pyramids, or a general-purpose candidate for passing the Turing test,
unless it has an appropriate mechanism for storing, retrieving, and manipulating
knowledge. The problem of knowledge representation is indeed one of the central
issues in artificial intelligence.

The difficulty is rooted in the fact that knowledge does not consist only of a
large collection of facts, but also of the many intricate relationships between them.
These relationships have numerous facets and attributes which in turn, spawn other,
higher-level relationships with other items of knowledge. We know very little about
the way we ourselves store and manipulate the immense quantities of knowledge
accumulated over our lifetimes. In fact, there is evidence that a human’s knowledge
base is dynamic and associative, and does not necessarily work in ways that are
suggestive of the workings of current-day digital computers.

Many models of knowledge have been suggested for use by intelligent programs.
Some are based on pure computer science concepts, such as relational or hierarchi-
cal databases, and others on logical formalisms, such as the predicate calculus or
modal logic. Certain programming languages, such as LISP and PROLOG, which are
discussed in Chapter 3, are more suitable for manipulating knowledge than others.
PROLOG, for example, is quite apt when it comes to knowledge items involving
simple relationships like “John is Mary’s father,” or even “a parent of any ancestor
of Mary is also an ancestor of Mary.” However, once outside a small well-defined
domain of discourse the relationships required become far more intricate, and such

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

15. Algorithmics and Intelligence 393

models become vastly inadequate. Retrieving those knowledge items that are rele-
vant to some decision that the program has to make becomes a formidable task. The
“right” model for the algorithmic representation of knowledge is thus yet to be found.

� Knowledge-Based Systems

One approach to the problem is that of production rules. A simple production rule
might state that if X is a company and Y manages that company then Y works for X .
A more complex one, relevant perhaps to a scene comprehension program, would
state that whenever three lines are found to meet at a single point then it is possible
that they represent the corner of a three-dimensional cube, unless one of the angles is
less than 45◦ and another more than 90◦. Some special-purpose programs have been
dubbed knowledge-based systems, or expert systems,2 as they are based on rules
that a human expert employs in solving a particular problem. A typical knowledge-
based system is constructed by questioning the expert about the ways he utilizes
expertise in tackling the problem at hand. The (human) questioner, sometimes called
a knowledge engineer, attempts to discover and formulate the rules used by the
expert, and the knowledge-based system then uses these rules to guide the search for
a solution to a given instance of the problem. The heart of a knowledge-based system
is the set of rules, given in some format, and a corresponding search mechanism for
finding the rules that are applicable. The resulting systems are also called production
systems or rule-based systems.

Knowledge-based systems with acceptable levels of performance have been con-
structed for carrying out limited forms of medical diagnosis, allocating resources
such as airport gates to arriving flights, planning and scheduling operations for
spacecraft, and logistics planning. Such systems save many millions of dollars for
the corporations that use them. In fact, the U.S. Defense Research Projects Agency
(DARPA), for many years the major funding agency for AI research in the United
States, has stated that the transportation planning and scheduling system used in
the 1991 Gulf War more than paid back for DARPA’s total investment in AI over a
period of 30 years!

We must realize, however, that besides the reliance on heuristic search, the rules
that control the search are formed by questioning experts who might not always
operate according to rigid rules. The chances of unexpected, perhaps catastrophic,
behavior in a knowledge-based system are therefore non-negligible. Some people
put it this way: “Would you be willing to be taken care of by a computerized
intensive care unit that was programmed according to the knowledge-based system
paradigm?” Under a rare set of circumstances, the unit could administer the wrong
medicine or shut a crucial valve at the wrong moment. Its behavior is governed by
rules that were formulated by interviewing expert doctors who might not necessarily

2 The term “expert systems” is inaccurate, though catchy, since it focuses on performance rather than
on mechanisms. Computer programs can perform much better than any human expert on many tasks,
such as sorting a large amount of data. However, these are not considered to be expert systems, because
they are not knowledge-based. On the other hand, some knowledge-based systems are very useful in
practice, even though they may not achieve the performance level of a human expert.

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

394 V. The Bigger Picture

act in an unusual case according to any well-formed rules. (Of course, similar
things have happened with nonheuristic programs because of inadequate software
engineering practices, as we saw in the case of the Therac-25 in Chapter 5.)

Attempts could possibly be made to subject critical knowledge-based systems
to precise analytic techniques, enabling us to verify formally that certain safety
properties hold for any application of the underlying rules. Since, as explained in
Chapter 10, safety properties usually assert that bad things will not happen, it would
appear that rule-based systems would be amenable to such an approach.

� Knowledge in Learning, Planning, and Deduction

The problem of knowledge representation is indeed fundamental to the mecha-
nization of any kind of intelligence, and it resurfaces in learning, planning, and
deduction. Here are some typical examples that further illustrate the need for so-
phisticated representation of knowledge.

No program can be said to be truly intelligent if it never learns, being forever
doomed to repeating its previous mistakes, and never getting any better. Consider a
checkers program that learns. It might be assumed to know the rules and then simply
to learn how to avoid the mistakes it makes as it plays more games. However, even
here an algorithmic point of view presents serious representational problems. Do
we simply make a list of the positions and moves that turned out to be bad, and
henceforth repeatedly run through them to avoid making the same mistakes again?
Or do we try to remember and update more general rules of good play, which
will be used to modify the program’s heuristics? These questions become all the
more difficult when the subject area is wider. How do children learn? How do they
represent the knowledge that enables them to recognize familiar faces or synthesize
new sentences they have never really heard before? How does an adult remember and
retrieve the knowledge that enables him to learn how to write an essay, to organize
personal finances, or to adapt to a new environment?

Earlier we mentioned deduction as one of the kinds of intelligence required for
passing the Turing test. Programs have been written that do a reasonably good job
of proving theorems in high school geometry. They are able to accumulate relevant
facts and deduce new ones from them. How is it done? Do these programs simply
keep a list of known theorems and a few logical inference rules (such as “if P is
true and P always implies Q, then Q is true too”)? Or are they familiar with more
complex chains of reasoning that are geared towards producing interesting theorems?
Again, these questions become all the more difficult when the knowledge relevant
to the desired deductions is not restricted to a narrow domain. How does a person’s
knowledge enable him to conclude that it will probably rain tomorrow, to decide
upon the proper school for a child, or to prove a really deep theorem in algebraic
topology?

Most of our discussion so far has been related to the internal activities of in-
telligent programs. The need for them to talk, walk, or see has been repeatedly
waived, concentrating instead on comprehension, learning, and deduction. How-
ever, a more general view of intelligent machines requires that they also have the
ability to physically imitate humans. In their most general form, they must be able

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

15. Algorithmics and Intelligence 395

to understand and synthesize human speech, as well as to perform physical tasks in
the classical robot-like spirit. Here too, the problem of knowledge representation is
a fundamental one. Some AI systems can understand simple views of blocks and
pyramids using appropriate visual sensory equipment, and others can understand
clearly spoken elementary English using audio equipment. How do they do so?
Do the vision-based programs simply know about every possible combination of
locations for the appropriate objects, or do they recognize various configurations
of line junctions and utilize rules for deducing the overall arrangement from them?
What happens if a new kind of object, say a cylinder, is introduced? Do the speech-
recognition programs have a database consisting of the wave profiles for all possible
pronunciations of each word? Or do they have built-in rules that enable them to com-
bine spoken word segments into a whole? Again, if the domain is much broader,
like those encountered by a human viewing new surroundings or listening to a rich
and diverse conversation, things become far more complicated. How do human be-
ings comprehend the variety of colors, lines, and shapes that make up the interior
of a living room? How do they identify movement and distance from observing
things with two eyes over some short period, and how do they understand foreign
accents?

The ability to plan is another intelligent skill. Some robots that operate within
carefully limited surroundings are capable of planning a sequence of movements
that will take them to their destination. How do they do so? Do they simply carry
out a search through possibilities, heuristic or otherwise? Or do they utilize more
subtle knowledge that enables them to make plans with the aim of achieving more
general goals? Again, wider domains make things much harder. How does a person
plan a trip, outline a scheme for ending the year with a positive balance, or devise
a strategy to win a war?

If intelligence is a wellspring of life, as the book of Proverbs would have it, then
the problem of knowledge representation is definitely its cornerstone, and to find
out whether we can breathe life—so to speak—into a computer requires finding a
suitable solution to that problem.

� Intelligence Without Knowledge Representation?

The “classical” approach to AI, based on the so-called knowledge-representation
hypothesis, assumes that cognition based on internally-represented knowledge is the
key to intelligence. This hypothesis allowed researchers to concentrate on algorithms
for learning, planning, deduction, etc., while largely ignoring the environment in
which the intelligent agent is supposed to be situated. Even research on computer
vision and robotics was conceived of as aiming to develop the mechanisms that
allow the intelligent agent to perceive its environment and act within it, but to be
still no more than input and output for some other central cognitive component.

This basic model was challenged in the mid-1980s. The claim was that the inter-
action between perception and action can create complex behavior, and that there is
no need for a “cognitive” component based on an internal representation of knowl-
edge, which has symbolic reasoning capabilities. Cognition emerges out of this
interaction, but is not programmed in. In this view, the “classical” decomposition

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

396 V. The Bigger Picture

of intelligence followed by most AI researchers is premature. Human-level intelli-
gence is too complex, and we know far too little about it to be able to identify its
components successfully. Instead, researchers following this view attempt to build
complete systems that interact with their environment, starting with small ones,
which are as intelligent as, say, insects, and building upwards.

This approach decomposes intelligent behavior according to its actions rather
than its functions. Thus an intelligent system should not be viewed as consisting of
different functions leading from perception to action through intermediate cognitive
tasks like modeling and planning. Rather, it is made up from various skills, each
of which goes all the way from perception to action. In a robot, for example, such
skills might include avoiding collisions, exploring and parsing the visible space,
searching for specific objects (such as electrical outlets for recharging itself . . .), and
so on.

Indeed, a number of robots (including a commercial autonomous household vac-
uum cleaner) have been produced in this fashion. Their intelligence level can be
compared to that of some insects (which is nothing to sneeze at!), but this is still a
far cry from human-level intelligence. It remains to be seen whether this behavior-
based approach to AI will indeed scale up successfully in future.

� �

� Prospects for Artificial Intelligence

The term “artificial intelligence” was first coined in connection with the 1956
Dartmouth Conference. This was a meeting of leading researchers in a variety of
scientific domains, who tried to set the research agenda for the fledgling field. Their
mood was very optimistic, and they expected major breakthroughs within 10 years.
The most significant outcome of subsequent research was the realization of how
difficult the problems really were. As a consequence, the reputation of the field
inevitably suffered.

How have we been doing in the half-century or so that has elapsed? While nothing
approaching real artificial intelligence has yet been developed, turning to more spe-
cialized problems has produced some impressive successes, both scientifically and
commercially. For example, computers today can understand spoken commands,
recognize faces and objects in pictures, and produce passable translations of tech-
nical documents. As mentioned earlier, knowledge-based systems are used in many
commercial and engineering endeavors, often behind the scenes.

In fact, many things that we have been used to reading about in science fiction
stories3 now appear in newspapers describing ongoing research or sometimes even
existing systems. They include wearable computers that are constantly connected to a
worldwide information network; virtual and augmented reality; “smart dust,” that is,
numerous tiny sensors that function together as a distributed computer; “intelligent

3 Hard science fiction, as distinct from fantasy, refers to explorations of alternative possible futures based
on a self-consistent and scientifically plausible extrapolation of the present.

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

15. Algorithmics and Intelligence 397

rooms” that respond via wall-sized displays to spoken commands, hand gestures,
and facial expressions; and, on a more sombre note, government monitoring of all
internet communications.

In spite of these achievements, AI is as controversial nowadays as it was at the
start. It has become clear that systems built using AI techniques can be very useful in
practice even without achieving human-level intelligence. Some people (including
many AI researchers) believe that the ultimate goal of true machine intelligence is
unachievable. Others foresee a future in which machine intelligence will eventually
surpass human intelligence, possibly even leading to an amalgamation of people
and computers. One famous inventor and author predicted in 1999 that by 2029
there will be direct neural connections between human brains and computers, and
machines’ claims to being conscious will largely be accepted. By 2099, the predic-
tion continues, there will no longer be any clear distinction between humans and
computers. We leave it to the reader to decide whether this is possible, likely, or
even desirable . . .

� �

� Understanding Natural Language

To end this chapter on a lighter note, it seems worthwhile to further illustrate the
difficulty of mechanizing the comprehension of ordinary natural language. The
problem is really much harder than it appears.

We shall concentrate here on understanding the language—not merely recogniz-
ing the words—but it is instructive to first see what can happen when a speech-
recognition program makes mistakes. The sentence “His presence made all the
difference” can be easily misunderstood and interpreted as “His presents made all
the difference.” Similarly, “Any Japanese car responds well” can be heard as “Any
Japanese corresponds well,” and the well-known American statement “I pledge al-
legiance to the flag,” when said fast, can be understood as “I led the pigeons to the
flag.” Speech-recognition programs are a pun lover’s paradise.

When it comes to semantics the subtleties are much greater. A sentence cannot
always be understood without the context in which it appears, and without knowing
about the special nuances, phrases, and slang of the language at hand. Sometimes it
is also necessary to be familiar with the idiosyncrasies of the person who is speaking.
A famous example involves the aphorism “The spirit is willing but the flesh is weak.”
As the story goes, this sentence was subjected first to a program that carried out a
simple dictionary-based translation into Russian and then to one that translated it
back into English. The result was “The vodka is strong but the meat is rotten.” How
inspiring!

Problems can arise when parts of a sentence are ambiguous. Consider the follow-
ing:

Jim sat down at the table and found a large fruit salad on a plate next to the
basket of bread. It took him a while, but he finally managed to eat and digest
it all.

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

398 V. The Bigger Picture

What did Jim eat? Was it the salad, the bread, or both? In some context it might be
the plate, the basket, or even the table! Here grammar alone is of little help; it is the
meaning of things that an intelligent program must be able to grasp. The following
sentences are grammatically identical but they differ in the relationship between
their various parts.

The lost children were found by the searchers.
The lost children were found by the mountain.
The lost children were found by the afternoon.

Obviously, the correct interpretation depends on the meaning of the words
“searchers,” “mountain,” and “afternoon.” The same phenomenon occurs in the
following.

The thieves stole the jewels, and some of them were subsequently sold.
The thieves stole the jewels, and some of them were subsequently caught.
The thieves stole the jewels, and some of them were subsequently found.

In this case, the word “sold” refers to the jewels, “caught” refers to the thieves,
and “found” can refer to either. Actually, even that much is not obvious. It is
possible that the story takes place in a country where thieves are sold as slaves,
rendering the first sentence ambiguous too. If the second sentence had “threw
the jewels out of the window” instead of “stole the jewels,” it would also be
ambiguous.

Again, the knowledge issue appears in all its severity. We utilize an enormous
amount of knowledge in disambiguating and understanding ordinary English, be-
sides just the words and the grammar. Identifying that knowledge, and representing
it in ways that capture its intricate interrelationships, enabling useful retrieval, re-
emerges as the central and fundamental problem.

To emphasize this problem, think of the task of translating a murder mys-
tery from English to Spanish. Certain nouns in English, such as actor/actress or
waiter/waitress, are gender specific, while others, such as teacher or secretary, are
gender neutral. In Spanish, however, “secretary” has two gender-specific forms:
“secretario” and “secretaria.” Now suppose that our famous but eccentric detec-
tive finds the murderer in the last chapter of the book, based on the information
that the secretary is male, whereas we have been subtly led to believe otherwise
up to that point. A clever translation program might discover this information, and
proceed to translate all references to “the secretary” into the male form, “secre-
tario.” This would require quite a bit of intelligence on the part of the program,
since it would need to correlate information appearing in the entire book. Unfortu-
nately, this is a very nonintelligent thing to do, as it spoils the whole point of the
book! Translating the book without totally ruining it for the reader requires a far
deeper understanding of the story. Once that is achieved, perhaps some creative way
of hiding the murderer’s gender can be found. Such deep levels of understanding
require, among other things, reasoning about the readers’ knowledge while read-
ing the book, which is far beyond the capabilities of current story-understanding
systems.

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

15. Algorithmics and Intelligence 399

Let us end our discussion with some hypothetical exchanges between a human
being and a futuristic intelligent phone-answering machine.4

Machine: Hello, this is Jim’s phone.
Voice: Hello. I would like to talk to Jim.
Machine: Jim isn’t here. Can I help you?
Voice: This isn’t stuff I can share with a machine. When will he be here?
Machine: Who is this calling?
Voice: This is Bill Bixlot.
Machine: I’m sorry, Mr. Big-Slut, but Jim will not be here in the foreseeable

future. Thank you for calling, Bill. (Click.)
Voice: Damn!

Machine: Hello, this is Jim’s phone.
Voice: Oh, hello, you darling machine. I just wanted to check that we’re

still on for dinner and whatever.
Machine: Of course, Sue. I have you for Thursday at the usual spot.
Voice: This is Jim’s fiancee, Barbara. Who is Sue?
Machine: Oh, Barbara, I didn’t recognize your voice. I have never heard of

anyone named Sue.
Voice: But you just said he was meeting with Sue on Thursday.
Machine: Oh that Sue. Are you sure you have the right number? This is Bill

Finch’s phone.
Voice: You can’t pull that trick on me. Tell Jim it’s all over!
Machine: You have reached a nonworking number. Please check your listing

and redial. (Click.)

Machine: Hello, this is Jim’s phone.
Voice: Oh, it’s you. Listen, this is his boss. I really need to get Jim right

away. Can you locate him and have him call me?
Machine: I’m sorry, Mr. Hizboss, Jim is playing golf this afternoon and left

orders not to be disturbed.
Voice: He is, is he? Well, look, I’m thin on patience this afternoon. This

is his boss calling, you idiot, not Mr. Hizboss. Get Jim. Now!
Machine: I’m pleased to hear that you are spending time with your patients

this afternoon, Dr. Thin. Business must be good. If you want to
reach Jim’s boss just dial 553–8861. Certainly you would never
find him here in Jim’s office; we have him listed in our directory
under the alias of The Monster.

Voice: Take this message, you son of a chip, and get it straight. Tell him
he is not worth the keys on your keyboard. He is fired! (Click.)

4 These conversations are based on those appearing in a 1986 essay by Robert W. Lucky. They have
been modified, and are included with permission.

P1: GIG

PE002-15.drv PE002-Harel PE002-Harel-v4.cls March 18, 2004 13:44

400 V. The Bigger Picture

Machine: Hello, this is Jim’s phone.
Voice: Are you satisfied with your present investments? Have you con-

sidered the advantages of tax-free municipal bonds? To hear more,
please give your name and address after the beep. (Beep.)

Machine: Er, . . . this is Jim’s phone.
Voice: Thank you Mr. Jimzfone. Let me tell you more about our unusual

investment opportunities . . .

One of the main advantages of pure algorithmics over heuristic-based AI is the
ability to analyze the behavior of its algorithms; namely, to prove that they always
produce the correct result, and to provide analytic lower and upper bounds on their
complexity. Heuristic algorithms don’t usually enjoy these properties. Often, they
run in a reasonable amount of time on only some of their inputs but not on others,
and characterizing in advance which are which is impossible. The usefulness of such
algorithms can only be evaluated empirically, over time, after they have been run
in numerous real-world situations. Safe use of heuristic algorithms is in a setting
where they are allowed to fail. They can be used in an advisory capacity, but should
not be allowed to make final critical decisions on their own; human judgment must
always be applied. If a heuristic algorithm is deemed necessary for the operation of
a critical system like a nuclear reactor, this indicates the need to simplify the system
to the point where a purely analytic algorithm (or a human operator) will do.

Having said that, we must keep in mind that some problems cannot be solved
by a fully analyzable algorithm. A great many interesting and practical problems
are intractable or even undecidable (see Chapters 7 and 8), and we know very little
about whether approximation, parallelism, or randomization can make a significant
difference (see Chapters 7, 10, and 11). Instead of giving up on these problems
altogether, we can try looking for heuristic solutions. A solution that works in only,
say, 80% of the cases may still be useful and can save a lot of manual effort, provided
that it is subject to human supervision. And this is true even if we have no idea how
to identify those 80%.

Perhaps, instead of AI, “artificial intelligence,” the emphasis should be on IA,
intelligence augmentation, which is the development of computerized tools that
enhance human intelligence and improve its functioning. Combining the best aspects
of human and machine intelligence may bring about what neither can do on its own.

Such knowledge is too wonderful for me;
it is high, I cannot attain unto it

PSALM 139: 6

for I am more brutish than a man,
and have not the understanding of a man

PROVERBS 30: 2

P1: GIG

PE002-Postscript.drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:13

Postscript

Better is the end of a
thing than the
beginning of it

ECCLESIASTES 7: 8

Well, we have come a long way. Starting from the basic notion of an algorithmic
problem and its solution, we have discussed the basic ways in which algorithms are
constructed and written, as well as their correctness and efficiency. We have seen
intractable problems and noncomputable ones, and have shown that these notions
are insensitive to the choice of the model of computation and the language in which
solutions are written. We have also discussed concurrency, probabilism, quantum
computing, heuristics, software engineering, and complex systems.

In retrospect, we have identified three distinct kinds of complexity with which
algorithmics tries to cope. In each, there remain serious obstacles that seem to require
significant new ideas in order to be overcome.

The first is computational complexity, where we search for efficient solutions to
well-defined algorithmic problems. Efficiency is based on resources such as com-
putation time, memory space, and hardware size. New algorithmic problems pose
new challenges—to find the most efficient algorithms and to prove matching lower
bounds. This is particularly acute when the problem at hand is conjectured, but not
known, to be intractable. From the fundamentalist’s point of view, the main obstacles
here are reflected in the many open questions involving complexity classes and their
interrelationships. In particular, the P vs. NP and P vs. RP problems stand out as
being not only very difficult but also of great interest, both theoretical and practical.

The second kind of complexity can be termed behavioral complexity, or system
complexity. Here we are interested in designing extremely complex computerized
systems, typically ones that are concurrent, distributed, and reactive in nature. Ef-
ficiency here is secondary; the main problem is in dealing with the intricacy of the
system’s desired behavior. Again, each new system presents a new challenge—to
provide designs, algorithms, and protocols that are clear and well structured, and
that yield the desired behavior under all circumstances. For the fundamentalist, the
problem is to develop rigorous methods, languages, and analysis tools for the sound
and painless development of reliable systems.

401

P1: GIG

PE002-Postscript.drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:13

402 Postscript

The third kind of complexity might be called cognitive complexity. It has to do
with pseudo-algorithmic problems, which, by their very nature, are not amenable to
precise definition, though we need only look around to see them continuously being
solved by noncomputerized beings. They involve knowledge and intelligence, and
are usually aimed at achieving human-like effects. Here too, new problems present
brand new challenges—to design systems that will exhibit intelligent behavior in the
appropriate realms. From a fundamentalist’s point of view, the main problem is to
understand how intelligent beings operate, and to represent the complex knowledge
relevant to that operation in ways that are amenable to algorithmic manipulation and
analysis.

There have been major advances on all of these issues since the first version
of this book was prepared around 20 years ago. However, these three areas of
complexity still stand out as being fundamental in nature, and are still far from being
satisfactorily handled. We can only hope that similar expositions of algorithmics in
the future will be able to report on breakthroughs in coping with the three types of
complexity.

Even the most attentive readers will not have become competent computer pro-
fessionals by reading this book. It is hoped, however, that they have acquired a
reasonably detailed understanding of some of the most fundamental issues in the
young and exciting field of computer science. In the coming years, algorithmics
is expected to emerge as an even more influential area of interest, improving and
expanding the ways computers are applied to real-world problems, and applied even
more extensively to understanding and analyzing nature.

And it shall be,
when thou hast made an end of reading this book,
that thou shalt bind a stone to it, and cast it
into the midst of [the river] Perat

JEREMIAH 51: 63

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

Selected Solutions
Should not the
multitude of
words be answered?

JOB 11: 2

Before they call, I will
answer

ISAIAH 65: 24

� Chapter 2

2.5. (a) The loop

for I going from M to N do S

is simulated by the sequence of statements

I ← M ;
while I ≤ N do the following:

S;
I ← I + 1

where I is a new integer variable, not appearing in S.
(b) The conditional statement

if E is true then do S

is simulated by the sequence of statements

B ← true;
while both E and B are true do the following:

S;
B ← false

where B is a new Boolean variable, not appearing in E and S.
The statement

if E is true then do S else do T

is simulated by the sequence of statements

B ← true;
while both E and B are true do the following:

S;
B ← false;

403

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

404 Selected Solutions

while B is true do the following:
T ;
B ← false

where B is a new Boolean variable, not appearing in E , S, and T .
(c) We introduce two new labels L and M not appearing in S. Now, the loop

while E is true do S

is simulated by the sequence of statements

L: if E is not true then goto M ;
S;
goto L;

M :

(d) The loop

while E is true do S

is simulated by the statement

if E is true then do the following:
repeat S until E is false

2.8. We can simulate the loop

while E is true do S

by a single call to a recursive procedure

call simulate-while

which is defined by

subroutine simulate-while:
if E is true then do the following:

S;
call simulate-while;

return.

2.10. The following algorithm checks whether the vector P of length N represents any permutation
of AN . It uses a vector A of length N that contains Boolean values (true or false) to keep
track of the integers already encountered in P . The result is set into the variable E , which is
true upon termination of the algorithm precisely if P indeed represents a permutation.

for I going from 1 to N do the following:
A[I] ← false;

I ← 1;
E ← true;
while E is true and I ≤ N do the following:

J ← P[I];
if 1 ≤ J ≤ N and A[J] is false then do the following:

A[J] ← true;
I ← I + 1;

otherwise
E ← false.

2.11. Here is an algorithm which, given N , prints all the permutations of AN . It uses two vectors A
and P of length N each. The vector A contains Boolean values and represents those integers
already considered in the current permutation being generated in the vector P .

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

Selected Solutions 405

for I going from 1 to N do the following:
A[I] ← true;

call perms-from 1.

where the subroutine perms, with local variable J , is defined by

subroutine perms-from K :
if K > N then do the following:

print(“New permutation: (”);
for J going from 1 to N do print(P[J]);
print(“)”);

otherwise (i.e., K ≤ N) do the following:
for J going from 1 to N do the following:

if A[J] is true then do the following:
P[K] ← J ;
A[J] ← false;
call perms-from K + 1;
A[J] ← true;

return.

2.12. (b) We prove that the following permutations cannot be obtained by a stack:
i. The permutation (3, 1, 2). In order to print 3 first, the input integers 1 and 2 have to be

previously pushed on to the stack. But this can only happen in the order 1, 2, so that
2 will necessarily be on the top. Now, 2 has to be popped and immediately printed,
otherwise it is lost.

ii. The permutation (4, 5, 3, 7, 2, 1, 6). In order to print 4 first, the integers 1, 2, and 3
must be pushed (in this order) on to the stack. After printing 5, the integer 3 has to
be popped and printed. Now, in order to print 7, the input 6 has to be first pushed on
to the stack. Therefore, the integer at the top of the stack is now 6, and 2 cannot be
printed before it.

(c) It is easy to check all 4! = 24 permutations of A4 and find that precisely 10 of them
cannot be obtained by a stack. Alternatively, the number of permutations of AN that can
be obtained by a stack is given by the formula

(2 × N)!

N ! × (N + 1)!

which we will not prove here. Therefore, A4 has

(2 × 4)!

4! × (4 + 1)!
= 8!

4! × 5!
= 14

permutations obtained by a stack, so that 24 − 14 = 10 permutations are not.

2.15. The following algorithm prints the series of operations on one or two stacks for obtaining a
given input permutation. The variable R is true at the end precisely if the permutation can
be obtained by one stack. The algorithm uses two stacks, S and S′, with the push, pop, and
is-empty operations. The result is produced in the variable E , which is true upon termination
precisely when the input permutation can be obtained by a single stack.

E ← true;
I ← 1;
while input is not empty do the following:

read(Y);
while Y > I do the following:

push(I, S);
print(“read(X)”);

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

406 Selected Solutions

print(“push(X, S)”);
I ← I + 1;

if Y = I then do the following:
print(“read(X)”);
print(“print(X)”);
I ← I + 1;

otherwise (i.e., Y < I) do the following:
pop(Z , S);
print(“pop(X, S)”);
while Z 	= Y do the following:

E ← false;
push(Z , S′);
print(“push(X, S′)”);
pop(Z , S);
print(“pop(X, S)”);

print(“print(X)”);
while is-empty(S′) is false do the following:

pop(Z , S′);
print(“pop(X, S′)”);
push(Z , S);
print(“push(X, S)”).

� Chapter 4

4.2. (b) The following algorithm calculates the number of nodes the tree T has at depth K > 0.
The result is returned in the variable S.

S ← 0;
call count-nodes-of T and 0.

The recursive subroutine count-nodes is defined by

subroutine count-nodes-of N and D:
if D = K then do the following:

S ← S + 1;
otherwise (i.e., D < K) do the following:

DX ← D + 1;
I ← 1;
while N has an I th offspring do the following:

NI ← I th offspring of N ;
call count-nodes-of NI and DX ;
I ← I + 1;

return.

4.3. (a) Here is an algorithm that prints the sum of the contents of the nodes at each depth of
the tree T . We use a special item denoted by $ to separate between nodes from different
depths inside the queue Q. Initially Q is empty.

L ← 0;
add(T, Q);
repeat the following:

L ← L + 1;
S ← 0;
add($, Q);

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

Selected Solutions 407

remove(V, Q);
while V 	= $ do the following:

S ← S + contents of V ;
I ← 1;
while V has an I th offspring do the following:

VI ← I th offspring of V ;
add(VI , Q);
I ← I + 1;

remove(V, Q);
print(“Sum of contents at level ”, L, “ is ”, S);

until is-empty(Q).

4.6. Here is an algorithm that checks whether the expressions represented by the trees E1 and E2

are isomorphic, and returns the result in R. Actually, the algorithm is not limited to binary
trees nor to any specific set of arithmetic operations.

R ← true;
call check-isomorphic-of E1 and E2.

The recursive subroutine check-isomorphic is defined by

subroutine check-isomorphic-of E1 and E2:
if either of E1 or E2 (or both) has first offspring then do the following:

if contents of E1 	= contents of E2 then R ← false;
otherwise (i.e., E1 and E2 have equal contents) do the following:

I ← 1;
repeat the following:

if E1 has an I th offspring then do the following:
EI 1 ← I th offspring of E1;
R1 ← true;

otherwise R1 ← false;
if E2 has an I th offspring then do the following:

EI 2 ← I th offspring of E2;
R2 ← true;

otherwise R2 ← false;
if both R1 and R2 are true then do the following:

call check-isomorphic-of EI 1 and EI 2;
I ← I + 1;

otherwise, if either of R1 or R2 is true then R ← false;
until at least one of R, R1, or R2 is false;

return.

4.7. Here is an algorithm that checks whether the expression represented by the tree T is balanced.
It is based on the observation that the expression is balanced precisely if at every depth of T ,
either all nodes contain integers or they all contain the same arithmetical operation (binary
and unary “−” being considered different). We use a queue Q to perform a breadth-first
traversal of the tree and the special item $ to separate between nodes from different depths
inside the queue Q. Initially Q is empty. The result is set in the variable R, which is true
upon termination precisely if the expression is balanced.

R ← true;
add(T, Q);
while R is true and is-empty(Q) is false do the following:

add($, Q);
remove(V, Q);
I ← 1;

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

408 Selected Solutions

while V has an I th offspring do the following;
VI ← I th offspring of V ;
add(VI , Q);
I ← I + 1;

remove(W, Q);
while R is true and W 	= $ do the following:

if I > 1 and contents of V 	= contents of W then R ← false;
J ← 1;
while R is true and J < I do the following:

if W has a J th offspring then do the following:
WJ ← J th offspring of W ;
add(WJ , Q);
J ← J + 1;

otherwise R ← false;
remove(W, Q).

4.13. (a) Here is a dynamic planning algorithm for the integer-knapsack problem. It operates in
N stages. Let MT be the maximal number of available items of type T that can be put
into the knapsack, i.e., MT is the minimum of Q[T] and C div W [T], where the “div”
operation denotes integer division that returns the integer part of the quotient. The T th
stage of the algorithm consists of MT substages. After executing the J th substage of the
T ′th stage, the algorithm has computed the most profitable fillings for the knapsacks of
capacities K = 1, 2, . . . , C , using only the items of types 1 through T − 1, and at most
J items of type T .

These fillings are represented by a vector A of length C + 1 and a two-dimensional
array B of size (C + 1) by N , as follows. The profit of the best filling for a knapsack of
weight capacity K , where 0 ≤ K ≤ C , is stored at A[K]. The number of items of type
T ′ that are put into the knapsack is B[K , T ′].

The following dynamic rule is used to generate this filling:

At any substage of stage T , A[K] is the maximum of the following two values at
the previous substage:

A[K] and A[K − W [T]] + P[T]

Therefore, after completion of the N ′th stage, the algorithm has computed the most
profitable fillings for all capacities smaller than or equal to C using available items of all
N types.

Here is the algorithm:

for K going from 0 to C do the following:
A[K] ← 0;
for T going from 1 to N do B[K , T] ← 0;

for T going from 1 to N do the following (N stages):
M ← minimum of Q[T] and C div W [T];
for J going from 1 to M do the following (M substages):

for K ′ going from 0 to C − J × W [T] do the following:
K ← C − K ′;
KX ← K − W [T];
AX ← A[KX] + P[T]; (alternative profit)
if A[K] < AX then do the following:

A[K] ← AX;
B[K , T] ← B[KX, T] + 1;

for T ′ going from 1 to T − 1 do B[K , T ′] ← B[KX, T ′];
for T going from 1 to N do F[T] ← B[K , T].

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

Selected Solutions 409

Note that a “for-do” loop does nothing if the initial value of the running variable exceeds
its upper bound.

(b) The output of the dynamic planning algorithm for the given input is F = [0, 1, 3, 2, 1],
with the total profit of the snapsack 194.

4.14. (a) Here is a greedy algorithm for the knapsack problem. It is based on the observation that
a most profitable filling of the knapsack consists of filling the knapsack by as large a
quantity as possible of the “best” type, then as large a quantity as possible of the second
“best” type, etc., where the “quality” of type I is measured by its specific profit (per
weight unit) defined by P[I]/W [I]. This specific profit of type I is calculated and stored
until its use in the vector item S[I].

for I going from 1 to N do the following:
S[I] ← P[I]/W [I];
F[I] ← 0;

I ← 0;
T ← 0;
repeat the following:

I ← I + 1;
call find-max-of S into K ;
S[K] ← 0;
F K ← W [K] × Q[K];
if T + F K ≤ C then do the following:

F[K] ← Q[K];
T ← T + F K ;

otherwise (i.e., T + F K > C) do the following:
F[K] ← (C − T)/W [K];
T ← C ;

until either T = C or I = N .

The subroutine find-max sets K to the index of the maximal element in vector S. Its
implementation is straightforward and we omit it.

(b) The output of the greedy algorithm is F = [0, 1, 1.8, 5, 1], with the total profit of the
knapsack 200.

� Chapter 5

5.2. If the algorithm to be verified does not halt on some input, the proposed verifier will not
halt either. Hence, in order to be able to follow the strategy described we must assume that
algorithms that are input to the verifier halt on all their legal inputs. This assumption cannot,
in general, be tested.

5.9. Here is a possible construction of equal(X, Y). We have inserted invariants in the appropriate
places, which can be used as the basis of a proof of partial correctness, and a convergent for
proving termination.

subroutine equal(X, Y):
{ Invariant: “X = S1 and Y = S2, for some symbol strings S1, S2” }
E ← true;
while X 	= � and E is true do the following:

{ Invariant: “S1 = S2 if-and-only-if both X = Y and E is true” }
{ Convergent: Number of symbols in X }
if Y = � then E ← false;

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

410 Selected Solutions

otherwise (i.e., if Y is not empty)
if eq(head(X),head(Y)) then

X ← tail(X);
Y ← tail(Y);

otherwise E ← false;
if Y 	= � then E ← false;
{ Invariant: “S1 = S2 if-and-only-if E is true” }
return.

5.12. (a) Pal2 is partially correct. Following is an invariant which, when attached to the point prior
to the execution of the loop, can be used to prove partial correctness: “S is a palindrome
if-and-only-if both X is a palindrome and E is true.”

(b) Pal2 does not terminate on nonpalindrome input strings. Take S to be any nonpalindrome,
say “ab”. Algorithm Pal2, when given S as input, will eventually reach a state in which
E is false but X is not empty, and will remain in it forever.

5.13. (a) Pal3 is not partially correct. Take S to be any palindrome composed of an odd number
of symbols, say the one symbol string “a”. Algorithm Pal3, when given this input S, will
terminate with the wrong answer, namely, E is false.

(b) Pal3 terminates on every input string, since the length of X decreases on every iteration
of the loop except the last one.

5.15. For the first three algorithms, we briefly present the invariants and convergents to be used in
the proofs. For the fourth, we show these in place in the text of the algorithm.
� Algorithm Pwr1: Assume we have added a counter C to the algorithm, counting the number

of times the loop has been executed. Then, the invariant to be used is “PW = mC .” Also,
the difference between n, the total number of iterations to be executed, and the current
value of C , is an appropriate convergent.

� Algorithm Pwr2: The assertion “PW = B E ” is invariant upon every return from the sub-
routine compute-power. The depth of nested recursive calls is bounded by the parameter
E , which decreases on every nested call to the subroutine, hence the algorithm terminates.

� Algorithm Pwr3: The assertion “PW × B E = mn” is invariant upon entering the loop. The
variable E at this location is an appropriate convergent.

� Algorithm Pwr4: Here is the annotated version.

subroutine times-power-of Q, B, and E :
{ Invariant: “Q × B E = mn” }
{ Convergent: E }
if E = 0 then PW ← Q;
otherwise, if E is an even number then

call times-power-of Q, B × B, and E/2;
otherwise (i.e., if E is an odd number)

call times-power-of Q × B, B, and E − 1;
{ Invariant: “PW = mn” }
return.

call times-power-of 1, m, and n.
{ Invariant: “PW = mn” }

To prove termination of Pwr4, observe that the value of the parameter E decreases on every
recursive call to times-power, so the depth of recursive calls is bounded by n, the value of E
in the initial call to times-power.

5.19. (a) Define two programs to be equivalent with respect to some agreed-upon output variables,
if the following holds: “for every legal input, either both programs diverge, or they both
terminate and produce the same result in the output variables.”

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

Selected Solutions 411

(b) A partial correctness proof of two algorithms (with respect to some common specification)
does not necessarily establish equivalence under this definition. For example, algorithms
Pal1 and Pal3 given above are both partially correct, yet they are not equivalent according
to this strong definition, since Pal1 terminates on every legal input while Pal3 does not.
Here is a weaker notion of equivalence, with the property that a proof of partial correctness
of two algorithms with respect to the common specification establishes that they are indeed
equivalent: “for every legal input on which both programs terminate, they produce the
same result in the output variables.”

(c) This is a topic for discussion. In one sense, the answer should be “no.” If you are given two
arbitrary algorithms, and you know nothing about their intended role, there is no criterion
against which you can measure their equivalence, especially if they have different sets
of internal variables. You do not even have a way of figuring out which variables in each
program hold the intended results. On the other hand, there is a sense in which you might
want the answer to be “yes.” Assume that one algorithm is incorporated as a subprogram
in a larger system (which may have access to all of its variables), and the other algorithm
(perhaps a more efficient one) is to replace the first one. In order to guarantee that the
behavior of the larger system will not be affected by this change, we want to prove that
both algorithms are equivalent, without having to specify their intended role, and indeed,
without having even to specify output variables. This can be done by first insisting that
both algorithms use exactly the same variables, and then defining them to be equivalent
if for every set of initial values of these variables, either both algorithms diverge, or they
both terminate with the same values in all variables. Due to the absence of a specification
of correctness, this kind of equivalence is much harder to prove.

� Chapter 6

6.2. The least integers are 44, 997, 7, 7, 22, and 6, respectively.

6.6. For simplicity, assume that the input N to the program scheme is a power of 5, i.e. N equals
5L for some integer L ≥ 0 (which means that L is essentially log5 N). Let K1 and K2 be the
constant number of time units required to execute the first and second “. . .”, respectively.
We may also assume that K1 includes the time required for the division of N by 5. When
N > 0, the scheme takes K1 time units to execute the first “. . .”, and then runs for K2 × N
units executing the inner loop. It then repeats this process with N being reduced to N/5, and
so on. This gives rise to the following pair of recurrence equations, where C(N) denotes the
number of time units required to execute the scheme with input N :

C(1) = K1 + K2
C(N) = K1 + (K2 × N) + C(N/5) for N > 1

The solution of this pair of equations for N a power of 5, is

C(N) = C(5L) = K1 × (L + 1) + K2 × (5 × N − 1)/4,

i.e.,

C(N) = O(log5 N + N) = O(N)

It is thus of interest that, although the scheme contains two nested loops, each governed by
N , the time complexity is linear, not quadratic. The reason, of course, is the reduction of N
by a multiplicative constant before re-execution of the outer loop.

6.9. (a) As explained in the text, treesort first transforms its input list into a binary search tree,
and then traverses the tree in a left-first manner, sending the contents of each node to the
output on the second visit. The complexity of the algorithm will be seen to be dominated

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

412 Selected Solutions

by the first stage, since the traversal takes only a constant amount of time for each node,
and is thus linear in total.

As to the construction of the search tree, we observe that in the process of placing an
input value in its final location node in the tree, it is compared with each of the node’s
ancestors (i.e., those residing along the path leading from the root of the tree to the new
location). These are all the comparisons associated with that particular input value. It
follows that the total number of comparisons carried out for the nodes residing along
a given path of the tree can be calculated as follows: 0 comparisons for the root, plus
1 comparison for the immediate successor of the root, plus 2 comparisons for the next
node down, and so on. In general, this sum is O(M2), where M is the length of the path.
The total number of comparisons carried out for all nodes in the tree is the sum of these
totals, taken over all paths of the tree.

Rather than trying to calculate this sum for various kinds of trees, we show that among
all search trees with N nodes (call them N -trees), the most expensive one in terms of the
number of comparisons required for its construction is a “thin” tree, i.e., one containing a
single branch of length N . This we now prove by induction on N . Clearly the only 1-tree
is that containing a single node—the root—which is also a thin tree. Now assuming that
the most expensive N -tree is a thin tree of length N , we show that the most expensive
(N + 1)-tree is a thin tree of length N + 1. Suppose we are about to place the last integer
of a list of length N + 1 in a tree constructed in the first stage of treesort. The total
number of comparisons made when placing the previous N integers in their positions
in the tree cannot be more than the cost of a thin tree of length N , by the induction
hypothesis. Hence, the cost of the (N + 1)-tree cannot be more than the cost of a thin
N -tree plus the cost of placing the last integer in its right place. Obviously, this cost is
maximal when the last integer has to be compared with all the previous N ones; and this,
by the workings of the second stage of treesort, can happen only when the temporary
search tree constructed for the first N integers is a thin tree, and the last node is to be
placed at the end of its single branch, forming a thin (N + 1)-tree.

Thus, as claimed, thin trees are the most expensive. By our remark above concerning
the cost of constructing a single branch in a search tree, it follows that the total complexity
of constructing the tree in the second stage of treesort, and hence also the worst-case
time complexity of the entire algorithm, is bounded by O(N 2).

(b) As is shown in (a), a worst-case input to treesort is a list that yields a thin tree, i.e., one
containing a single branch, when subjected to the first stage of the algorithm. It is easy to
see that if the input is already sorted (in ascending or descending order) this will indeed
happen.

(c) We have to count only comparisons, and these are all performed in the merging stage
of mergesort. An input list of length N can be repeatedly split into halves at most
1 + log2 N times. Thus, there are at most O(log N) stages to the algorithm. We claim
that the total number of comparisons carried out during such a stage is at most N . The
reason is that each comparison causes one of the numbers to be placed on the merged list,
and, moreover, after being placed on the merged list such a number does not participate
in any further comparisons during that stage. Hence, the overall time complexity of the
algorithm is O(N × log N).

(d) Given an input list to mergesort of length N , it will always be split at most log N times.
Now, the number of comparisons carried out during such a split/merge stage is easily seen
to be at least N/2 (this occurs when the input is already sorted). Hence, the algorithm
takes time O(N × log N) for every input of length N , which is thus a bound on the
average-case time complexity too.

6.15. (a) Worst-case time analysis of both algorithms yields upper bounds of O(n), where n is
the length of the string. This bound occurs, for example, on an input string that is a
palindrome.

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

Selected Solutions 413

(b) Palindromes of length n cannot be detected with fewer than n/2 symbol comparisons
in the worst case, otherwise we would be able to exhibit nonpalindrome strings that are
tagged as palindromes by the algorithm in question. Hence, we have a lower bound of
n/2 on the problem.

(c) Algorithm Pal1 requires O(n) comparisons on every string, hence this is also its average-
case complexity.

The average-case analysis of Pal4 is harder. Fix an integer n, and for simplicity assume
that n is even, i.e., n = 2k for some integer k > 0. Let s = a1a2 . . . akbk . . . b2b1 be a
typical string of length n. Call s an i -nonpalindrome, for some i ∈ {1, 2, . . . , k}, if a j = b j

for all j < i , but ai 	= bi . Obviously, every string of length n, is either a palindrome
or an i-nonpalindrome for precisely one i . Now, recalling that we are talking about a
two-symbol alphabet, we note that for every i ∈ {1, 2, . . . , k}, there are precisely 2n−i

i-nonpalindromes, while Pal4 executes i operations when given such a string. Also, there
are 2k palindromes of length n, and Pal4 executes k operations on each. Hence, since we
assume a uniform distribution of strings, the number of operations that algorithm Pal4
executes on the average for strings of length n, is

(k × 2k) + �k
i=1(i × 2n−i)

2n
= (k × 2k) + �k

i=1�
n−i
j=k 2 j

2n

= (k × 2k) + �k
i=1(2n−i+1 − 2k)

2n
= 2n+1 − 2k+1

2n
< 2

In a similar fashion, one can show that if n is odd, the average number of operations is
less than 4. Thus, quite surprisingly, the average-case complexity of Pal4 is O(1), that is,
a constant.

6.18. Here is a construction of LG1:

{ Invariant: “m, n > 1” }
M ← m;
K ← 0;
while M ≤ n do the following:

{ Invariant: “M = mK+1 ≤ n” }
{ Convergent: lgm n − K }
M ← M × m;
K ← K + 1;

{ Invariant: “mK ≤ n < mK+1” }

It can easily be seen that this algorithm takes O(logm n) time and O(1) space.

6.19. Algorithm LG2 can be constructed as follows:

{ Invariant: “m, n > 1” }
M ← 1;
M1 ← m;
K ← 0;
while M1 ≤ n do the following:

{ Invariant: “K = 2l1 + . . . + 2li for some l1 > . . . > li ≥ 0, such that
M = mK ≤ n < mK+2li and M1 = M × m” }

{ Convergent: lgm n − K }
M ← M1;
M1 ← M1 × m;
M2 ← m × m;
K2 ← 1;

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

414 Selected Solutions

while M1 ≤ n do the following:
{ Invariant: “K = 2l1 + . . . + 2li for some l1 > . . . > li ≥ 0, and

K2 = 2l for some l < li − 1, such that
mK+2×K2 ≤ n < mK+2li and
M = mK+K2 and M1 = mK+2×K2 and M2 = m2×K2 ” }

{ Convergent: lgm n − K − K2 }
M ← M1;
M1 ← M1 × M2;
M2 ← M2 × M2;
K2 ← K2 + K2;

M1 ← M × m;
K ← K + K2;

{ Invariant: “mK ≤ n < mK+1” }

For the time complexity analysis, denote the value of lgm n − K at any stage of the compu-
tation by L . Let C1(L) be the time complexity of performing the outer loop with a particular
initial value L , and C2(L , K2) be the time complexity of performing the inner loop with initial
values of L and K2. With the aid of the invariants and convergents listed in the algorithm, we
get the following recurrence equations:

C1(L) =
{

O(1) if L = 0
O(1) + C2(L , 1) + C1(L/2) if L > 0

C2(L , K2) =
{

O(1) if L < 2 × K2

O(1) + C2(L , 2 × K2) otherwise

It can easily be shown that C2(L , 1) = O(log2 L), and thus C1(L) = O((log2 L)2). Hence, if
we remove the bases of the logarithms, we conclude that the total time complexity is bounded
by O((log(log n))2).

Since the algorithm uses only a fixed number of variables, by our convention that storing
an integer takes one memory space unit the space complexity is constant, i.e., O(1).

� Chapter 7

7.2. (a) Assume the cards of the monkey puzzle can be rotated, and let us recalculate the number
of arrangements in a 5 by 5 grid. Since there are 25 cards, each of which can be rotated
into one of 4 orientations, we have 25 possibilities for choosing a card to be placed in the
first location, and for every card we have 4 possibilities for choosing an orientation. Thus,
we have 25 × 4 possibilities for the placement of a card in the first position. Similarly,
there are 24 × 4 possibilities for the second position, 23 × 4 for the third position, and
so on. All together, there are

(25 × 4) × (24 × 4) × . . . × (1 × 4) = 25! × 425

arrangements in the worst case. (This number, written in decimal, has 41 digits!)
(b) An exhaustive search would take over 1.7464 × 1034 seconds, i.e., over 5.5 × 1026 years!
(c) We will prove the following stronger claim, which implies that the number of distinct

cards cannot be the factor that determines the existence of an arrangement:

For every positive integer N ,
� there is a choice of N 2 distinct cards that can be arranged to form a legal N by N

square; and
� there is a choice of (N + 1)2 distinct cards that cannot be arranged into an N + 1 by

N + 1 square.

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

Selected Solutions 415

The proof is by induction on the number of cards N . Clearly, a single card is arrangeable
into a 1 by 1 square, and it is easy to come up with four distinct cards that are not
arrangeable into a 2 by 2 square. Assume the claim holds for some N , and we will prove
it for N + 1. The second part of the claim is trivial, since we can take any (N + 2)2

distinct cards, one of which has colors that do not match any other card at all. For the
first part of the claim, consider an N by N arrangeable instance, existing by the inductive
hypothesis. We can design N + N + 1 new cards that will match the right-hand side and
top edges of the N by N arrangement. All we have to consider is that, for example, a card
designed for the right column will match the right edge of the existing card to its left,
and its bottom and top edges will match its designed neighboring cards. Notice that for
any new card there are no matching constraints whatsoever on either its right-hand side
or top edge. We can use these “free” edges in order to guarantee that all the new cards in
the next step of the induction are distinct, by assigning them some unique new color.

7.3. The least integers are 9, 3, 12, 7, 3, and 2, respectively.

7.5. (a) The naive solution to the traveling salesman problem that considers all possible tours
has time complexity of the order of the number of possible tours in a given graph, since
every tour can be checked in linear time as to whether it satisfies the given constraint.
The number of tours starting at node n0 of the graph equals, in the worst case, the number
of possible arrangements of the other N − 1 nodes of the graph in a sequence, which is
(N − 1)!. Since all tours are actually cyclic, there is no loss of generality in starting at
n0, so that (N − 1)! is the number of tours in general too. The time complexity of the
solution is thus a linear function of N multiplied by (N − 1)!, which is O(N !).

(b) For an Eulerian path, arrangements of the edges of the graph should be considered, rather
than nodes. Since the number of edges is at most N 2 (an edge between every two nodes),
the time complexity of a naive solution to the Eulerian path problem is O((N 2)!).

(c) Euler’s algorithm checks that the given graph satisfies two properties:
� Connectivity—every two nodes that are endpoints of some edges are reachable from

each other.
� The number of edges emanating from any point (except, possibly, two points) is even.
It is easy to see that the existence of an Eulerian path implies the above two properties.
Any point that is internal to the path (i.e., any point in the path that is not an endpoint)
must have an even number of edges emanating from it, since every such edge appears
precisely once along the path, and has the point common with precisely one adjacent
edge on the path. If the endpoints are distinct (i.e., the Eulerian path is not a cycle), then
by the same argument each endpoint has an even number of internal edges, plus a single
end-edge.

The claim that a graph that satisfies the above two properties has an Eulerian path is
proved by induction on the number of edges in the graph, as follows. A graph with one
edge obviously satisfies both properties, and has an Eulerian path—the single edge itself.
Assume now that the claim holds for all graphs with at most K edges, for some positive
K , and prove it for graphs with K + 1 edges. Let G be a given graph with K + 1 edges
that satisfies both properties. If there are two points in G with an odd number of edges
emanating from each one, pick an edge e emanating from any one of these two points,
otherwise pick any edge e of G. Denote by G ′ the graph resulting from the deletion of e
from G. It is easy to see that G ′ satisfies the second property, and it is either connected or
consists of two connected subgraphs. If G ′ is connected, then by the inductive hypothesis,
G ′ has an Eulerian path with an endpoint belonging to e. Hence the path can be extended
by attaching e to its endpoint to form an Eulerian path in G. If G ′ is not connected, it
consists of two connected subgraphs, each of which has an Eulerian path by the inductive
hypothesis. Since both endpoints of e are endpoints of these two paths in G ′, they can be
merged via e into a single Eulerian path of G.

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

416 Selected Solutions

7.8. As in the exercise, “number” stands for “positive integer” here.
(a) Meaning and truth of formulas.

χ1 : “Every number other than 1 is the successor of some number.”
The formula is always true.

χ2 : “The sum of every two numbers is a number too.”
The formula is always true.

χ3 : “Not every number is the sum of two numbers.”
The formula is always true—1 is not the sum of any two numbers.

χ4 : “Some number equals twice itself.”
The formula is false—no such number exists. (Recall that here zero is not considered
a number.)

χ5 : “The sum of two even numbers is even.”
The formula is always true.

χ6 : “There exists a number X that is greater than every odd number.”
The formula is false—every given X is smaller than the odd number X + X + 1.

(b) Formalization in Presburger arithmetic.
i. “forallX forallY forallZ

(∼existsU (X = U + U ∨ Y = U + U ∨ Z = U + U) →
existsV (X + Y + Z = V + V))”

This formula is false. Actually, the sum of any three odd numbers is odd too.
ii. “forallX (X = 1 ∨ existsY existsZ (X = Y + Z))”

This formula is always true.
iii. “forallX existsY existsZ (X + Y = Z + Z + Z + Z)”

This formula is always true—the numbers 4, 8, 12, 16, . . ., are all divisible by 4.
iv. “∼forallX existsY

(existsZ (X + Y = Z + Z + Z) & ∼existsZ ′ (X + Y = Z ′ + Z ′))”
This formula is false—the odd numbers 3, 9, 15, 21, . . ., are all divisible by 3.

7.9. Let us define the order of a border point in a map to be the number of countries it touches.
The order of an entire map is the maximal order of any border point on the map. It is easy
to see that in any map that can be colored by two colors, the order of every border point is
even. For the other direction, we prove by induction on the order of maps, that if the order of
all border points is even then the map can be colored by two colors.

Let M be a map of order two. We can certainly color the “rest of the world” by, say, white.
Then, every country that has a common border with this white “rest of the world” is colored
by, say, black. Two such countries can have no common border, since otherwise there should
be a border point that touches both and the rest of the world as well, thus having order at least
three, which is impossible by our assumption of maximal order two. We now continue and
color white all countries that touch a black colored country, and again, no borders may exist
between two such countries. The process of alternately coloring by white and black continues
until all the map M is colored.

Assume now that the claim holds for all maps of order at most K , and we prove it for
maps of order K + 1. If K is even then the claim holds vacuously for the odd number K + 1.
Therefore, assume that K is odd, hence K + 1 is even. Let M be a map of order K + 1 all of
whose border points are of even order. Choose a point P on M of order K + 1. Let C1, C2, C3

be three countries that P touches, such that C1 is adjacent to C2 with a borderline that ends at
P and similarly C2 is adjacent to C3. Let us join C1 and C3 into a single country via a narrow
strip taken out of the part of C2 that touches P . Now P has order K − 1. Since we consider
maps with a finite number of countries only, there are finitely many points with order K + 1
in M . Perform similar changes to these points, and call the resulting map M̂ . The order of M̂
is K − 1 and all its border points have even order, thus, by the inductive hypothesis M̂ can
be colored by two colors. Note that, by the construction, C2 must be colored by a different

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

Selected Solutions 417

color than the joint country consisting of C1, C3, and the strip. Hence, if we now restore the
situation to the original map M , removing all strips but leaving the coloring (except for the
strips, which are recolored by the color of their original country), the map will be legally
colored by two colors.

7.12. (a) Since we are given the NP-hardness of the vertex cover problem, we have to show only
that it is in NP. We provide a nondeterministic polynomial-time algorithm for the problem.
Given a graph G and a positive integer N , the algorithm guesses a subset N ′ of N of
size at most K , and then verifies in polynomial time that N ′ is a vertex cover by simply
examining all edges of G.

(b) The clique problem is in NP, since any subset N ′ of the nodes of a graph can be tested for
being a clique in polynomial time. For the NP-hardness direction, we employ a polynomial
reduction from the NP-hard vertex cover problem. That is, we provide a polynomial
transformation from instances 〈G, K 〉 of the vertex cover problem to instances 〈Ĝ, K̂ 〉
of the clique problem, such that G has a vertex cover of size at most K precisely when Ĝ
has a clique of size at least K̂ , thus showing that the clique problem is at least as hard as
the vertex cover problem (up to a polynomial). In fact, the proof shows that, in a certain
technical sense, the two problems are mutually dual.

Given the graph G with nodes N and edges E , we construct Ĝ whose set of nodes N̂
is exactly N , and whose set of edges Ê is the complement of E , i.e., Ê contains an edge
between n and n′ precisely when E does not. Without loss of generality, we may assume
that K is smaller than J , the size of N . We thus set K̂ = J − K . Assume N ′ is a vertex
cover for G of size at most K and let N ′′ = N − N ′ be the set of all nodes of N not in
N ′. Every two nodes in N ′′ have an edge connecting them in Ê , since otherwise, by the
construction of Ê , these nodes would have an edge connecting them in E , in contradiction
to the fact that N ′ is a vertex cover for G. Therefore, N ′′ is a clique in Ĝ of size at least
K̂ . Similarly, if N ′′ is a clique in Ĝ of size at least K̂ , the set N ′ = N − N ′′ of all nodes
of N not in N ′′ is a vertex cover for G of size at most K .

7.16. (a) i. A deterministic algorithm that takes at most logarithmic time cannot use more than a
logarithmic amount of space, since it can ask for at most one space unit at each step
of its computation.

ii. An algorithm that uses logarithmic space has a number of possible configurations (i.e.,
“snapshots” of the entire current situation) that is at most exponential in this amount,
i.e., polynomial. Here is why. Say we are talking about a fixed Turing machine that
uses K squares of its tape. The number of possible symbols (including a blank) that
each square can contain is fixed, say C1. The number of internal states of the machine
is fixed, say C2, and the head can be in any of the K positions. The total number of
configurations is therefore C2 × C K

1 . Since K is a logarithmic function of N , the size
of the input, this expression is polynomial in N .

Now, since the algorithm is deterministic, it does not repeat any configuration twice
(otherwise it enters an infinite loop). Hence, it runs in polynomial time.

iii. A deterministic algorithm that takes at most polynomial time cannot use more than
a polynomial amount of space; see the solution to the first part above.

iv. A nondeterministic polynomial-time algorithm uses a polynomial amount of space,
since space is counted as the maximal amount used in any of the possible computa-
tions. We can deterministically trace all possible computations of such an algorithm
by traversing its tree of configurations without any additional amount of space other
than a small amount for the bookkeeping involved.

v. According to Exercise 7.15(a), PSPACE = NPSPACE, thus it is enough to consider
deterministic polynomial-space bounded algorithms. Such an algorithm has at most
an exponential number of configurations. Thus, similarly to the solution to the second
part above, the algorithm runs in exponential time. Alternatively, we may want to

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

418 Selected Solutions

directly consider nondeterministic polynomial-space bounded algorithms. The num-
ber of possible configurations of such an algorithm is exponential as well. Since no
configuration has to be repeated along a halting computation, we can deterministically
traverse its tree of configurations in exponential time.

(b) In the spirit of the solutions in part (a), if a problem is solvable by an algorithm that
runs in time bounded by a K -fold exponential, then its space is bounded by a K -fold
exponential. Similarly, if an algorithm uses an amount of space that is bounded by a K -fold
exponential, then it can be simulated by an algorithm that runs in time bounded by a
(K + 1)-fold exponential. Therefore, a problem is provably time-nonelementary, i.e., it
has no algorithm whose time complexity is any K -fold exponential, precisely when the
problem has no algorithm whose space complexity is any J -fold exponential, namely, it
is provably space-nonelementary.

7.17. Suppose the problem of determining truth in Presburger arithmetic has an algorithm that
requires O(f (N)) space, where f (N) is less than an exponential. This algorithm has time
complexity 2O(f (N)), since no configuration has to be repeated. Thus the problem is solvable
in time less than double-exponential, which is a contradiction. Therefore, the problem has an
exponential-space lower bound.

� Chapter 8

8.3. (a) One direction of the lemma is trivial, since an infinite path contains infinitely many nodes.
For the other direction, assume that a finitely-branching tree T has infinitely many nodes.
We will exhibit an infinite path n0, n1, . . . in T . Every node n in this path will have the
following infinity property: The subtree of T rooted at n has infinitely many nodes. To
construct the path, we start by letting n0 be the root of T . Since T has infinitely many
nodes, n0 has the infinity property, and since n0 has finitely many siblings, it has at least
one sibling that has the infinity property. Take one such sibling to be n1. Similarly, for
every integer i , once we have shown the existence of the finite path n0, n1, . . . , ni , such
that each node in it has the infinity property, it follows from the finite branching of T that
ni has a sibling ni+1 with the infinity property too. Thus, this finite path can be extended
indefinitely, providing the desired infinite path.

(b) The existence of a tiling for the entire integer grid certainly implies the existence of a
tiling for every finite square (N × N grid). For the other direction, assume the existence
of tilings for every finite square. Consider the tree whose nodes represent legal tilings,
constructed as follows: The root of the tree is the trivial tiling of the 0 × 0 (empty) grid.
If a node of the tree represents an N × N tiling, then its siblings are precisely all the
(N + 2) × (N + 2) tilings that can be formed by taking the parent’s tiling and surrounding
it legally by another “layer” of tiles. (That is, the sibling contains the tiling of its parent
as the tiling of its internal N × N subgrid.) Now, since every node represents a tiling of
a finite portion of the integer grid and there are only finitely many given tile types, the
constructed tree is finitely (although not necessarily boundedly!) branching. Moreover,
each legal finite tiling must occur somewhere in this tree. Now, since there are infinitely
many finite tileable squares, the tree has infinitely many nodes. Thus, by König’s Lemma,
there is an infinite path in the tree. But such a path can easily be seen to represent a tiling
of the entire infinite integer grid.

8.5. (a) We show the undecidability of the problem presented in the exercise (call it problem (a))
by reduction from the undecidable ordinary snake problem on the upper half of the plane
(call it simply the snake problem). Here is an algorithm that solves the snake problem

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

Selected Solutions 419

using an oracle Q for problem (a). Given an input 〈T, V, W 〉 for the snake problem,
the algorithm asks the oracle Q for its answers to inputs of the form 〈T, V, W, W ′〉,
where W ′ is a point adjacent to W on the upper half of the plane. The algorithm answers
“yes” precisely when Q answers “yes” for some of these inputs. (There are three or four
possibilities for W ′, depending on whether W is adjacent to the borderline of the half-
grid). It is easy to show that this algorithm is correct, since any acceptable snake from V
to W must pass through one such W ′.

(d) We show problem (d) undecidable by reduction from the ordinary snake problem.
Assuming an oracle Q for problem (d), the following algorithm solves the snake problem
given the input 〈T, V, W 〉. Choose arbitrarily a new distinct point W ′ on the upper half
of the plane, and let T ′ be T augmented with an additional tile type t ′, defined to have
new distinct colors on each of its sides. Thus, no tiled snake can reach a point tiled with
t ′. For each tile type t of T , the algorithm asks the oracle Q whether either of W or W ′

is reachable from V by a snake constructed using the tile types T ′, and having a tile of
type t placed at W or a tile of type t ′ placed at W ′. Since no legal snake of length greater
than 1 can contain type t ′, it follows that W is reachable from V using tile types from T
precisely when there exists a tile t of T such that the corresponding question posed to the
oracle has a “yes” answer. Thus, the algorithm answers “yes” precisely when Q answers
“yes” at least once.

(e) We show the undecidability of problem (e) by reduction from the ordinary snake problem.
Assume an oracle Q for problem (e), and construct an algorithm for the snake problem
as follows. Given an input 〈T, V, W 〉, the algorithm uses Q to check whether there exists
an acceptable snake of length at least 5 from V to W passing through some of the points
W ′ adjacent to W . If there exists such a snake, the algorithm answers “yes.” Otherwise
it checks whether there exists a snake shorter than 5 from V to W by performing an
exhaustive search through all possible “short” snakes, and answering “yes” if such a
snake is found and “no” otherwise.

(f) Since for every given N there are finitely many snakes of length at most N departing from
any point on the grid, the problem can be shown decidable by employing an exhaustive
search algorithm. The algorithm simply iterates through all the bounded length snakes
departing from V , and answers “yes” precisely when there exist two such snakes on the
upper half of the grid reaching W and W ′.

8.8. We show undecidability by reduction from the ordinary word correspondence problem.
Assume an oracle Q for the enriched problem, and construct an algorithm for the ordinary
problem as follows: Given input words groups Xs and Y s, construct the Zs so that each Z
word is longer than the corresponding X word, say by adding one letter to the X word. Now
the algorithm runs the oracle Q with these given Xs and Y s and constructed Zs, and answers
the same answer as Q. Obviously, there is a sequence of indices such that X = Y precisely
if there is a sequence of indices such that X = Y and X 	= Z , since no sequence of indices
will ever satisfy X = Z .

8.10. (b) The following table contains the results of the required calculations.

Input Highest number Number of iterations

256 256 8
101 304 25

55 9232 112
103 9232 87
151 1024 15
383 13,120 45

71,209 3,079,780 174

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

420 Selected Solutions

8.11. (a) No. It is easy to see that among the positive integers the “2 × X + 1” program halts
precisely on the powers of 2 (i.e., on the inputs 1, 2, 4, 8, . . .). Thus, it does not halt on
integers that have odd divisors, such as 3, 5, 6, . . .

(b) For a positive integer N , denote by oddity(N), the length of the rightmost string of
consecutive 1 digits in the binary representation of N , if N is odd, and 0 otherwise.
(For example, oddity(183) = 3, since the binary representation of 183 is 10110111,
oddity(36) = 0, and oddity(15) = 4.) It is easy to see that for every odd integer X ,
oddity(X) = 1 + oddity((3 × X + 1)/2), and thus “oddity(X)” is an appropriate conver-
gent for the given program.

8.13. (a) If programs are not allowed to be run on precisely their own text, a proof of the unde-
cidability of the halting problem can proceed similarly to the proof presented in the text,
except that whenever the original proof assumes some program P to be run on its own
text P , we run it on the text of another program P ′, which is just P prefixed by some
vacuous statement, say “X ← X .”

(b) If programs are not allowed to be run on any program text in L , we change the proof of
the undecidability of the halting problem as follows: Whenever a program P is assumed
to run on its own text in the original proof, we instead run a program P ′ on the text P ′′.
P ′′ is the text of P prefixed by some agreed upon symbol, say ¶, such that the new text
P ′′ =¶P is not a legal program text in L . P ′, on the other hand, is the legal program in L
that ignores any ¶ symbol which prefixes its input, and afterwards proceeds exactly as P .

(c) The diagonalization proof of the undecidability of the halting problem described in the
text (see Figure 8.9) can be applied to L programs (programs that accept only integer
inputs) as well. It only remains to show that integer numbers can effectively represent all
programs of L . Specifically, we have to show that there exists a computable, one-to-one
correspondence between the set of all L programs and the set of all positive integers. This
means that we have to order the programs in L in some fashion, and then exhibit two
effective procedures. The first inputs any integer i , and halts, producing the i th program
in the ordering of L , and the second (which cannot itself be in L!) inputs any program
L , and if it is the i th program in our ordering, it outputs the integer i .

To order L , consider the lexicographical ordering between programs. That is, assume
all programs of L are listed in an infinite dictionary in which every program is but a
long (but finite) word, composed of symbols from a fixed finite alphabet. The alphabet
contains letters, digits, special symbols, blanks, etc. (See the discussion on simplifying
data in Chapter 9 of the text.) The programs are sorted in the standard lexicographical
manner, extended to handle the special symbols of L . Since the alphabet is finite, it is
possible to compute, for any given integer i , which is the i th program in the dictionary,
and vice versa. Thus, the correspondence between L programs and their index in the
dictionary is effectively computable, as desired.

8.17. (a) P is decidable. The proof is the same as for the problems with two-way certificates
described in the text, except that instead of searching for some yes- or no-certificate for
the given input, the search is for either 7 yes-certificates or 3 no-certificates.

(b) Given the input, its size N is determined, and thus the search for either 7 × N yes-
certificates or 3 no-certificates is also guaranteed to terminate, hence the problem is
decidable too.

(c) The problem is not necessarily decidable, since there is not enough information for
deciding that an input is a no-input, just from searching through the list of certificates. At
any stage in such a process, additional no-certificates might still be found if the search is
continued, so that we can never be sure that we can stop and say “no.”

8.18. Given an oracle Q for the recurring domino problem, the ordinary domino problem can be
solved by repeatedly asking the oracle for the existence of a tiling with the recurring tile type

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

Selected Solutions 421

t , for each of the tile types t in the input set T . Since any tiling must have some tile type t
recurring in it, there exists a tiling precisely when the oracle answers “yes” to some t . And
since there are only finitely many such questions to be addressed to Q, the process, given Q,
terminates.

8.20. (a) The problem is decidable. Given T , we can construct all legal tilings of 1 × K rectangles.
Say there are n such tilings. Then, an exhaustive search through all strips of width K and
height at most n + 1 can determine whether there is a way of stacking these rectangles
atop each other, so that one of them occurs twice. Such a repeat appearance is a necessary
and sufficient condition for the existence of a tiling of the infinite strip of width K .

� Chapter 9

9.3. (a) The unary addition of M and N means simply the concatenation of two strings formed of
M and N consecutive “1” symbols, respectively. Assume that input to the Turing machine
is given by these two unary numbers listed on the tape with some delimiter in between.
To form their sum, the machine only needs to replace the delimiter by a “1” symbol and
then delete the last “1” symbol to the right.

(d) Given an integer N > 1, the algorithm constructs a Turing machine whose inputs are
X and Y , two N -ary integers, and its output is their sum X + Y , all numbers written
using the appropriate N digits. The input is listed on its tape from left to right as follows:
the number X , the special delimiter $, the number Y , the special delimiter #. Assume
that both X and Y have the same number of digits, by padding the smaller number with
enough “0” symbols on its left.

The Turing machine is constructed so that it cycles in a loop, performing the following
sequence of operations at each cycle, as long as it is applicable. Upon entering the cycle,
the machine records one carry digit C , initially set to 0, in its internal state.
� Move to the square adjacent on the left to the leftmost $ symbol. It contains the current

digit D1 of X to be added. Record the sum T1 = C + D1 in the internal state (there are
only finitely many possible values for this sum) and write $ on this square.

� Move to the square adjacent on the left to the leftmost # symbol. It contains the current
digit D2 of Y to be added. Record the sum T2 = T1 + D2 in the internal state and write
on this square. Note that T2 might be a two-digit number.

� Move to the rightmost # symbol. Write the rightmost (less significant) digit of T2 on
this square, and record the left digit of T2 (or 0 if there is no digit) as the carry C for
the next cycle.

When the machine exits the above loop, its tape contains a block of several $ and #
symbols, followed by the N -ary representation of X + Y . The delimiters may now be
replaced by “0” symbols or blanks.

9.6. The CT thesis does not hold for a computer with a limited amount of memory. This can
be proved from the existence of problems that are hard in complexity space classes. Take
for example a problem that is EXPSPACE-hard, such as determining the truth of formulas
in Presburger arithmetic. Since the problem is doubly-exponential-time complete, it is also
exponential-space hard. Thus, there exist infinitely many formulas in Presburger arithmetic
that require more work space than is available in the main memory of the computer plus the
40 MB disk. Yet, each of these formulas is presentable to the computer via its unlimited input
device. Therefore, the decidable problem of determining the truth of formulas in Presburger
arithmetic is unsolvable on the limited computer.

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

422 Selected Solutions

9.7. (b) Given a standard Turing machine M , construct an equivalent machine M̂ that writes on
any tape square at most five times. The tape symbols of M̂ are those of M except that
they contain an additional coded “counter” that counts the number of times the square
has been written. (For example, for any symbol a of M , the machine M̂ has the symbols
a.1, a.2, a.3, a.4, and a.5.) M̂ operates similarly to M but keeps updating these counters
each time it writes on its tape. Once any such counter reaches four, M̂ puts a special
delimiter # on the right of the written part of its tape, then copies the whole written tape
to the right of the delimiter, turning all symbols into their “.1” versions in the process. It
then resumes its simulation of M without ever passing to the left of the # symbol again.

9.8. (c) By part (b), a Turing machine with several tapes is equivalent to a standard one. Given a
machine M with two tapes that can switch heads, we construct an equivalent machine M̂
that has two tapes but cannot switch heads. The transition table of M̂ contains two copies
of the transition table of M , where in the second copy the operations on the first and
second tape are interchanged. M̂ operates similarly to M , except that when M switches
tapes, the internal control of M̂ switches from a state in one copy of the transition table
to the corresponding state in the other copy.

(d) We simulate a Turing machine M that operates on a two-dimensional tape by a machine
M̂ that operates on an ordinary one-dimensional tape as follows. Each square of M is
represented by a square of M̂ containing the same symbol and preceded by an unbounded
(but finite) number of squares with symbols that encode the coordinates of M’s square
relative to the grid, using, say, two decimal numbers and appropriate delimiters. Of course,
the set of symbols used to encode the coordinates has to be disjoint from the original set
of tape symbols of M . In carrying out a move of M , M̂ calculates the coordinates of the
neighboring square that the machine has to move to on a separate tape, and then searches
for it on its one-dimensional tape. If such a square does not appear then it is added on
the right.

9.9. We describe a nondeterministic Turing machine that solves the word correspondence problem
but may not halt. That is, if there exists a correspondence for a given instance of the problem,
then the machine has a computation that determines that fact, but other legal computations
of the machine on this instance may diverge (i.e., the machine does not halt). For instances
with no correspondence, the machine always diverges.

The machine has the Xi and Yi words written appropriately on its input tape. In addition,
it has a working tape on which it tries to write a word that exhibits a correspondence of
the given input instance. (By Exercise 9.8, this does not add any computational power.) The
working tape may contain symbols from the words alphabet and blanks, possibly marked by
either of the special symbols $X and $Y , denoting the ends of the words formed by Xs and
Y s, respectively. The machine performs the following sequence of operations repeatedly:
� Guess (a nondeterministic choice) an integer i between 1 and 3.
� Move to the square marked by $X (initially the beginning of the tape) and erase the $X

marker.
� Write Xi beginning from the previously marked square, but in doing so, if a square is

already written and contains a word symbol, verify that the written symbol and the current
Xi symbol are identical. If they are not identical—diverge.

� Mark by $X the square following the last symbol of Xi .
� Carry out the above operations with Yi and the marker $Y .
� Halt and output “yes” if both markers $X and $Y are now placed on the same square.

9.11. Here is a modified counter program that checks whether the decimal representation of X is a
palindrome. The result is produced in the variable U , where the value 0 is interpreted as “no”
and 1 is interpreted as “yes.” The comments on the right provide a higher-level description
of the program.

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

Selected Solutions 423

U ← 0 } U ← 0
Y ← 0 } Y ← 0
Z ← X + 1
Z ← Z − 1

}
Z ← X

repeat
A : V ← Z + 1

V ← V − 1
V ← V/10
V ← V × 10
W ← Z + 1
W ← W − 1

B : if V = 0 goto C
W ← W − 1
V ← V − 1
if U = 0 goto B




W ← Z mod 10

C : Y ← Y × 10
D : if W = 0 goto E

W ← W − 1
Y ← Y + 1
if U = 0 goto D




Y ← Y × 10 + W

E : Z ← Z/10 } Z ← Z/10
if Z = 0 goto F
if U = 0 goto A

}
until Z = 0

F : if Y = 0 goto G
if X = 0 goto J
Y ← Y − 1
X ← X − 1
if U = 0 goto F

G : if X = 0 goto H
if U = 0 goto J




if X = Y

H : U ← U + 1 } then U ← 1

The reader is urged to turn this program into a more efficient one, similarly to the modification
asked for in Exercise 5.14.

9.15. (a) It follows from the rules of arithmetic that a polynomial function applied to an exponential
function is an exponential function too. (For example, the fourth power of 2N is (2N)4 =
24×N .) This applies to big-O notations too. Thus, an exponential-time algorithm in one
model of computation has an exponential-time version in any other polynomial-time
equivalent model of computation.

(b) The polynomial-time equivalence of models on its own does not suffice for proving
the robustness of NP and PSPACE. For showing the robustness of NP, we need a non-
deterministic polynomial-time equivalence of models of computation, requiring that a
nondeterministic algorithm in one model has an equivalent algorithm in any other model,
whose nondeterministic time is at most polynomial in that of the first algorithm. Simi-
larly, for showing the robustness of PSPACE, we need a polynomial-space equivalence
of models of computation.

We should add that both kinds of reductions do indeed exist, and hence both classes
NP and PSPACE are robust.

9.21. A deterministic automaton is just a special case of a nondeterministic one. For the other
direction, let A be a nondeterministic automaton (an acceptor). We will show how to construct

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

424 Selected Solutions

a deterministic automaton Â that accepts an input sequence precisely when A does. The proof
can easily be extended to finite automata that are not acceptors.

Let S be the set of states of A. The set of states T of Â consists of (representations of) all
the subsets of S. For a subset t1 in T and an input symbol a, let t2 be the subset in T consisting
of all states s2 in S for which there exists a state s1 in t1 and a transition of the automaton A
from s1 to s2 labeled by a. We then construct a transition of Â from t1 to t2 labeled by a. The
single initial state of Â consists of the set containing precisely the initial state of A. A state
t in T is terminal if it contains at least one terminal state s of A. Note that this construction
yields a deterministic automaton Â.

It is now possible to prove that an input sequence x is accepted by Â precisely when there
exists an accepting run of A on x .

9.24. For one direction, the model of finite automata acceptors is just a special case of that of
Turing machines that are not allowed to write at all. For the other direction, let M be a
(deterministic) Turing machine that does not write at all. We sketch the construction of a
(nondeterministic) finite automaton M̂ that accepts precisely the same input sequences as
M . By Exercise 9.21, the automaton M̂ , and thus the machine M too, is equivalent to a
deterministic finite automaton. Slight modifications to the proof show that the above claim
holds for nondeterministic Turing machines that are not allowed to write as well.

Let Q be the set of states of M and q0 its initial state. The set of states Q̂ of M̂ consists of
(representations of) all the sequences of the form p1, q1, p2, q2, . . . , pk, qk, pk+1, consisting
of 2 × k + 1 elements of Q, for some k ≥ 0, such that no two p’s and no two q’s are identical.
Since Q is finite, it follows that Q̂ is finite too. The sequence p1, q1, p2, q2, . . . , pk, qk, pk+1

is intended to represent, for a given boundary between two consecutive tape squares, any
computation of M that “crosses” this boundary, as follows:
� In the first crossing, M crosses from left to right (a right crossing) while entering internal

state p1.
� In the second crossing, M crosses from right to left (a left crossing) while changing its

internal state to q1.
·
·
·

� In the last crossing, M right-crosses the specified boundary while changing the internal
state to pk+1. Note that this is the (2 × k + 1)th crossing, but only the (k + 1)th right
crossing.

Thus, the p’s depict the right crossings of the specified boundary while the q’s depict the
left crossings. The odd length of the sequence guarantees that the computation eventually
right-crosses without left-crossing any more, that is, the head “remains” on the portion of the
tape to the right of the specified boundary.

We can now construct a transition of M̂ from one sequence in Q̂ to another sequence in
Q̂ labeled by a, if these two sequence can be merged in a way that consecutive states in the
merged sequence are consistent with the transitions of M labeled by a, and all right moves
are from some p to some q while all left moves are from some q to some p. We leave further
details of the construction of the transitions to the reader.

Finally, we set the singleton sequence q0 to be the initial state of M̂ , and all singleton
sequences q, where q is a terminal state of M , to be the final states of M̂ . It can now be shown
that any accepting computation of M can be simulated by an accepting computation of M̂
and vice versa.

9.25. Let the Xs and Y s be given. For any i , it is easy to construct a deterministic automaton Ai

that recognizes one word only—Xi . By Exercise 9.20(a), we can construct a deterministic
automaton A that accepts a sequence precisely if it is one of the Xs. By Exercise 9.20(d), we
can construct a deterministic automaton A+ that accepts a sequence precisely if it consists

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

Selected Solutions 425

of the concatenation of one or more of the Xs. We can similarly construct a deterministic
automaton B+ that accepts repetitions of the Y s.

Finally, the existence of an unrestricted correspondence between the Xs and Y s is repre-
sented by a word accepted by both A+ and B+. For this, we construct an automaton A+ ∩ B+

accepting their intersection (Exercise 9.20(b)), and check its emptiness (Exercise 9.23(a)).

9.27. (c) We describe a pushdown automaton M that recognizes fully-parenthesized propositional
formulas. That is, a well-formed formula is either:

i. a propositional variable, formed by a letter followed by zero or more letters and
digits;

ii. the negation “(∼ϕ)” of a well-formed formula ϕ;
iii. an application “(ϕ ∨ ψ)”, “(ϕ & ψ)”, “(ϕ → ψ)”, or “(ϕ ≡ ψ)” of a binary operator

to two well-formed formulas ϕ and ψ .
The automaton has nine states: q0, q1, q2, q3, q4, q5, q6, q7, and q8. The initial state is
q0 while q7 and q8 are the terminal ones. The stack alphabet consists of three symbols:
“{”, “[”, and “(”. The following table contains the transitions of M :

Conditions Operations

Current state Input Top of stack Next state Operation on stack

q0 letter q7

q0 “(” q1 push “{”
q1 letter q2

q1 “(” q1 push “[”
q1 “∼” q3

q2 letter or digit q2

q2 binary operator q3

q3 letter q4

q3 “(” q1 push “(”
q4 letter or digit q4

q4 “)” “(” q5 pop “(”
q4 “)” “[” q6 pop “[”
q4 “)” “{” q8 pop “{”
q5 “)” “(” q5 pop “(”
q5 “)” “[” q6 pop “(”
q5 “)” “{” q8 pop “{”
q6 binary operator q3

q7 letter or digit q7

The intended purpose of the states is as follows:
� At q0, M records the first left parenthesis by pushing “{” into the stack.
� At q1, M checks the first symbol of a left subformula. A left parenthesis in this stage

is recorded by pushing “[” into the stack.
� At q2, M looks for a binary operator following a propositional variable.
� At q3, M checks the first symbol of a right subformula. A left parenthesis in this stage

is recorded by pushing “(” into the stack.
� At q4 and q5, M checks that right parentheses properly match left parentheses as

recorded in the stack.
� At q6, M looks for a binary operator following a right parenthesis.
� At q7 and q8, M is ready to accept its input.
It can now be shown that M has an accepting run on an input sequence precisely when
the sequence is a well-formed formula.

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

426 Selected Solutions

9.29. Pushdown automata with two stacks can easily be simulated by Turing machines with two
working tapes used to store the stacks. For the other direction, we sketch the idea of simulating
a given Turing machine M by a pushdown automaton A with two stacks: a “left” stack and
a “right” stack.

A configuration of M is represented as follows:
� The state of A records the state of M and the current symbol on the tape square pointed to

by M’s head.
� The left stack contains the portion of the tape to the left of M’s head, with the rightmost

symbol on the top of the stack.
� The right stack contains the portion of the tape to the right of the head, with the leftmost

symbol on the top.
A move of M to the left is simulated by popping one symbol from the left stack, pushing the
symbol written by M on the current square onto the right stack, and appropriately updating
A’s internal state. A move to the right is similarly simulated by a pop from the right stack
and a push onto the left one.

The automaton A begins by reading its input tape from left to right and pushing all the
symbols it encounters into the left stack. It then transfers all these symbols (in reverse order)
into its right stack, ending in a situation representing the initial configuration of M . Now A
simply proceeds to simulate the operations of M , as described above.

� Chapter 10

10.1. The algorithm employs
√

N processors, and its N input salaries are equally distributed
between the processors, namely,

√
N input salaries each. At the first stage, in parallel, each

processor sums its
√

N input salaries. Each processor needs sequential-time O(
√

N) for this,
so that the first stage takes parallel-time O(

√
N). At the second stage, one of the processors

sums the
√

N results obtained in the first stage. The entire execution requires parallel-time
O(

√
N).

10.4. (a) The number of processors needed is exponential in the number of distinct propositional
variables in the input formula, that is, exponential in the size of the input in general. Every
processor considers a different truth assignment to the variables and then evaluates the
truth value of the entire formula in this particular assignment. This takes parallel poly-
nomial time. The algorithm answers “yes,” namely the formula is satisfiable, precisely
when at least one processor evaluates it to true. Additional polynomial time is required
for the processors to come to an agreement on the answer, since they can be arranged in
the leaves of a tree of polynomial depth, and pipeline their results towards the root of the
tree.

(b) What is needed is an exponential-time lower bound on sequential solutions to the prob-
lem, since this will imply that it cannot be solved in parallel polynomial time using less
than an exponential number of processors. The reason is that a solution employing less
than an exponential number of processors can be simulated on a single processor re-
quiring less than exponential time (the product complexity), thus contradicting the lower
bound.

(c) The satisfiability problem for PDL is exponential-time complete, thus, as explained in
part (b), its exponential-time lower bound implies that it cannot be solved in parallel
polynomial time with a polynomial number of processors. In particular, it cannot be
solved in parallel time O(N) and size O(N).

10.7. A problem solvable in nondeterministic exponential time has an algorithm that runs in
exponential time but may make at most an exponential number of nondeterministic decisions.

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

Selected Solutions 427

Every decision is among at most a polynomial number of alternative choices. Such an algo-
rithm can be simulated deterministically by employing a polynomial number of processors
at each decision point, each of which simulates the computation resulting from deciding on
one particular choice.

The number of processors required for this simulation is at most as the number of nodes
in a tree of exponential depth and polynomial branching, which is double-exponential.

10.8. (a) The search problem can be solved in parallel constant time O(1). This is done by assigning
one processor to each of the N items in the input list. Now, any processor whose item has
value X , checks whether it has the highest index in the list whose item is X , by examining
the next item in the list. The processor with the highest index whose item is X (and there
can be at most one such processor), outputs its index. Now, if the item of a processor
is not X , then the processor attempts to detect whether X does not appear in the list at
all, by checking if its own item is smaller than X and the next one is larger than X . If it
determines that this is indeed the case (and there can be at most one such processor), it
outputs “no.” This is a parallel constant-time algorithm that employs N processors.

(b) The following algorithm uses the idea of binary search, but instead of halving the list it
divides it into log N parts. The algorithm works as follows: At the first stage it divides
the input sorted list containing N items into log N equal-sized regions, and allocates
each of the log N processors to one such region. These processors determine (in parallel)
whether the value X should appear within their regions by examining the items at the
boundaries of the region. Then the processor J in whose region X should appear (or the
first-numbered one that has actually found X) writes its index and status on a special
memory location M .

At the second stage, all log N processors simultaneously read the contents of the
location M . If X has been found, they all terminate. Otherwise, the algorithm further
divides the J th region into log N subregions, with each processor working on its own
subregion in parallel as before. This stage would require parallel time O(log(log N)) had
the processors not been able to read location M simultaneously. In the stronger model
considered here both stages take parallel constant time.

These stages are repeated until X is found or until each subregion has length 1 and X
is not found therein. The number of repeated divisions of a list of size N by log N is at
most

log
log N

N = log N

log(log N)

Therefore, the parallel-time complexity of the algorithm is O(log N/ log(log N)).

10.12. (a) We extend the solution to the two-processor mutual exclusion problem presented in the
text to a solution to the three-processor mutual exclusion problem in which the critical
section can accommodate at most two processors simultaneously.

The processors are P1, P2, and P3. Each processor PI can write in its own distributed
variable X [I], whose value can be either yes or no. We use a shared variable Z that can
be 1, 2, or 3. Initially, all the X [I]s are set to no. The protocols for the three processors
are symmetric.

protocol for the I th processor, PI :
do the following again and again forever:

carry out private activities until entrance to critical section is desired;
X [I] ← yes;
Z ← I ;
wait until either X [K] = no or Z = K (or both) for some K 	= I ;
carry out critical section;
X [I] ← no.

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

428 Selected Solutions

(b) We first prove mutual exclusion. Assume the requirement of mutual exclusion is not
satisfied, that is, all three processors are in their critical sections simultaneously. When
entering the critical section, processor PI has already set the variable X [I] to yes. Assume
Z = K for some K from among 1, 2, or 3. The setting of Z to K was obviously performed
by PK before continuing to its waiting phase, and no processor could have changed Z
since then. Therefore, PK should have entered its critical section by virtue of another
processor, PL , having not set X [L] to yes yet. But in order for PL to enter its critical
section, it has to first change Z to L , which is a contradiction.

To show the impossibility of both starvation and deadlock, it is enough to show that no
processor can be stuck in its waiting phase, provided no processor is stuck in its critical
section. In case all three processors are waiting, since Z = K for some K , both processors
with an index different from K can enter the critical section. This means that there is no
deadlock. Moreover, since once in its critical section, a processor PK is guaranteed to
exit it, any other processor PL waiting to enter the critical section will eventually enter it
by virtue of either X [K] being set to no or Z being set a value other than L . Therefore,
no starvation can occur either.

(c) We generalize the protocol of part (a) to N processors with at most two in the critical
section simultaneously. The idea is, as in the analogous generalization in the text, to have
several levels of insistence, with the processor passing from one level to a higher one until
entering its critical section. However, since two processors can be in their critical sections
simultaneously, we need one level less, namely, N − 1 levels (including the zeroth level
of private activities).

Again, each processor PI has a distributed variable X [I] that can be any integer between
0 and N − 2, the initial value of which is 0. The vector Z consists of the shared variables
Z (1) through Z (N − 2), each of which can be an integer between 1 and N .

protocol for the I th processor, PI :
do the following again and again forever:

carry out private activities until entrance to critical section is desired;
for each J from 1 to N − 2 do the following:

X [I] ← J ;
Z [J] ← I ;
wait until either X [K] < J for N − 2 processor indices K ,
or Z [J] 	= I ;

carry out critical section;
X [I] ← 0.

(d) The solution given in part (c) can be extended to N processors with at most L in the
critical section simultaneously, by simply having N − L + 1 levels of insistence in the
protocols.

10.14. (a) For every philosopher I , we define two formulas. The first, ϕI , states that once the
philosopher is granted the possibility of eating, he or she eventually finishes eating (i.e.,
gets back to his or her private activities). It is formalized by

ϕI : EatingI → eventually(PrivateI)

The second formula, ψI , states that once the philosopher is hungry, he or she eventually
gets to eat. It is formalized by

ψI : HungryI → eventually(EatingI)

Now, lack of starvation for a system of N philosophers is formalized by

henceforth(ϕ1 & . . . & ϕN) → henceforth(ψ1 & . . . & ψN)

(b) Any philosopher who cannot eat must have at least one neighbor holding a common
fork. Suppose, without loss of generality, that the right neighbor holds her left fork. If

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

Selected Solutions 429

this philosopher cannot eat either, then her right neighbor must hold his left fork, and so
on. Finally, the first philosopher is shown to hold his left fork too. Therefore, a situation
where no philosopher can eat is one in which either all N philosophers hold their left
forks or all hold their right forks. But if there are at most N − 1 philosophers at the table
and N forks at any particular time, such a situation is impossible, and at that time at least
one philosopher can eat.

� Chapter 11

11.3. The following is an algorithm for generating a random integer N in the range A ≤ N ≤ B.
It uses the arithmetic function lg2 X , which denotes the integer part of the logarithm base 2
of X . (See Exercises 6.18–6.20 for the calculation of this function.)

H ← B − A;
N ← 0;
while H > 0 do the following:

L ← lg2(H + 1);
H ← H + 1 − 2L ;
M ← 0;
do the following L times:

R ← choose 0 or 1 at random;
M ← 2 × M + R;

N ← N + M ;
N ← N + A.

The number of coin tosses the algorithm requires is

lg2 H + 1 + lg2(H + 1 − 2lg2(H+1)) + . . . + 1 ≤ log2 H × (1 + log2 H)

2

namely, O((log(B − A))2). A careful construction of a Turing machine that performs this
algorithm requires only log2(B − A) bits for the generation of a random number between
0 and B − A. Since this number should be added to A, the total number of working bits is
log2 B. Now to the special cases (a) and (b):
(a) When A = 0 and B = 2K − 1, the algorithm tosses precisely K coins and uses K bits.
(b) When 0 = A < B, the algorithm tosses at most log2 B×(1+log2 B)

2 coins and uses at most
log2 B bits.

11.7. We employ the algorithm from Exercise 11.3 as a subroutine, and call it random-int-between
A and B. It generates a random integer N in the range A ≤ N ≤ B. We define a subroutine
random which, given three numbers L , H , and E , with L < H and E > 0, generates in X
a random number from among the set

{L , L + E, L + 2 × E, . . . , L + K × E}
where K is the largest integer for which L + K × E ≤ H .

subroutine random-of L , H , and E :
C ← integer part of (H − L)/E ;
call random-int-between 0 and C ;
X ← L + X/E ;
return.

(a) The following program produces in S an approximation of the required area. It repeatedly
generates random points (X, Y) in the rectangle represented by 0 ≤ X ≤ A + D and
0 ≤ Y ≤ D. The variable T counts the current number of such points generated, while

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

430 Selected Solutions

F counts the number of those points that fall inside the figure, namely, those that satisfy
Y ≥ X 2/A. The variable R records the previous ratio between F and T . The algorithm
initially sets this ratio to be 1/2, and terminates when the last point generated has changed
the ratio by an amount that would not affect the calculation of the area by more than the
given error E . Finally, the area is calculated in S as the computed ratio R of the area the
figure and that of the bounding rectangle. Note that the required figure is symmetric with
respect to the y-axis, thus the correct ratio needs to be calculated for its right half only.

E ← E/(2 × (A + D) × D);
T ← 2;
F ← 1;
repeat the following:

R ← F/T ;
call random-of 0, D, and E ;
Y ← X ;
call random-of 0, A + D, and E ;
T ← T + 1;
if Y ≥ X 2/A then F ← F + 1;

until R − F/T ≤ E ;
S ← 2 × (A + D) × D × R.

(b) The following program produces in P an approximation of π . The idea is that a quarter
of the circle with radius 1 can be bounded inside a square of size 1 by 1 whose sides lie
on the axes and the lines x = 1 and y = 1. The area of this circle is precisely π .

E ← (0.1)N+1;
T ← 2;
F ← 1;
do the following:

R ← F/T ;
call random-of 0, 1, and E ;
Y ← X ;
call random-of 0, 1, and E ;
T ← T + 1;
if X 2 + Y 2 ≤ 1 then F ← F + 1;

until R − F/T ≤ E ;
P ← 4 × R.

11.10. We show how to simulate a given probabilistic Turing machine M , defined to accept an input
precisely if it halts in a “yes” state with probability greater than 1/2, on a conventional Turing
machine as follows. We construct a Turing machine M̂ that operates on two-dimensional tapes
and accepts an input precisely if M accepts it. We can then deduce, using the result of Exercise
9.8(d), that M is equivalent to a conventional Turing machine.

The machine M̂ simulates a possible execution of M using a pair of consecutive rows,
one for simulating the single-dimensional tape of M and one for recording the probability
of the particular execution. Initially, only one pair of rows exists: the input row, and the
probability row containing 1. M̂ uses a “time-sharing” method for simulating repeatedly one
move of each of the executions of M . Whenever a coin toss is to be performed, the simulation
duplicates the row representing the tape, one copy for each outcome of the coin toss, and
attaches the correct probability (i.e., half of the probability of the duplicated execution) to
each copy. Whenever a “yes” state is reached, M̂ sums the probabilities of all executions
reaching a “yes” state so far. If this sum is larger than 1/2, M̂ halts in an accepting state;
otherwise it proceeds. Clearly, M̂ halts in an accepting state on a given input precisely if M
accepts it.

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

Selected Solutions 431

� Chapter 12

12.2. (a) To show that Y is indeed the average salary, consider the following equalities based on
the performance of the algorithm:

N × Y =
N∑

I=1

Y I

=
N∑

I=1

N∑
J=1

X I
J

=
N∑

I=1

(
X I

I +
N∑

J=1
J 	=I

X I
J

)

=
N∑

I=1

(
SI −

N∑
J=1
J 	=I

X J
I +

N∑
J=1
J 	=I

X I
J

)

=
N∑

I=1

SI −
N∑

I=1

N∑
J=1
J 	=I

X J
I +

N∑
I=1

N∑
J=1
J 	=I

X I
J

=
N∑

I=1

SI

That is,

Y =

N∑
I=1

SI

N

as required.
(b) We prove the claim by contradiction. Assume the I th employee has an algorithm A that,

given the information available to her, calculates the salary of another employee—the
J th one (i.e., I 	= J).

The information available to the I th employee includes:
� her salary SI

� N − 1 random numbers she generates:

X 1
I , . . . , X I−1

I , X I+1
I , . . . , X N

I

� N − 1 values she receives:

X I
1 , . . . , X I

I−1, X I
I+1, . . . , X I

N

� N published values:

Y 1, . . . , Y I−1, Y I+1, . . . , Y N

We first observe that the result of the algorithm cannot depend on the value X J
I sent to

the J th employee. The reason is that since the number of employees N is larger than
2, there is at least one more employee, say the K th one, who sends a value X J

K to the
J th employee, to which the I th employee has no direct access. Consider the situation in
which the sum X J

K + X J
I is constant, and all other values do not change. In particular,

the value of SJ , which is unknown to the I th employee, and Y J , which is known to her,
do not change, and therefore algorithm A should return the same value, SJ , regardless of
any change to X J

I .

P1: GIG

PE002-SSdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:18

432 Selected Solutions

Consider now a different salary ŜJ of the J th employee, and a run of our probabilistic
distributed algorithm that generates precisely the same random numbers except for X J

I .
Since this is a random number, we are free to consider any value for it, and require
algorithm A to calculate ŜJ correctly. We thus choose the value generated by the I th
employee and sent to the J th one to be X̂ J

I = X J
I + SJ − ŜJ . It is easy to see that the

value published by the J th employee, Y J does not change either, and therefore, according
to our first observation, algorithm A must return the old salary, SJ , which contradicts the
assumption.

(c) The proof that when L < N − 1 there is no algorithm for computing the salary of any
employee outside the group of L gossips is the same as in part (b). It is based on the fact
there are at least two nongossips and the values sent among them are not known to the
gossips.

Without loss of generality, assume the gossips are the employees labeled 1 through L .
Then they can compute the the average salary of the other N − L employees as follows.
Since they know each other’s salary, they can compute the average salary Yg of the gossips
by

Yg =

L∑
I=1

SI

L

Let Yn be the average salary of the nongossips. It is easy to see that the average salary of
all N employees satisfies the following equation:

N × Y = L × Yg + (N − L) × Yn

Therefore, the L gossips can calculate the average salary of the other employees by

Yn = N × Y − L × Yg

N − L

� Chapter 14

14.2. The light component is attached as an orthogonal component to watch-and-alarm, which
has 12 internal states. In order to represent the fact that the two internal states of the light
component are independent of these 12 without orthogonal states, we would need to duplicate
them, and have a copy of each of them for each of the two states of light. We thus have 12
additional states.

We have just shown that without orthogonal states the main-component would have 24
states. Similarly, the stopwatch would have 2 × 2 + 1 = 5 states. Thus, the two-state beeping-
status component, which is orthogonal to all of these, would require the duplication of these
29 states, namely, the addition of 29 new ones.

Like a kiss on the lips, it is when one gives a right answer

PROVERBS 24: 26

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes
Give them according
to their deeds

PSALM 28: 4

For in thy book all
things are written

PSALM 139: 16

� General

The purpose of these bibliographic notes is twofold. The first is to provide the reader with
additional sources in which to find more detailed accounts of the topics discussed. The
second is to credit the people responsible for the research reported and to point to the original
publications outlining their ideas and results.

This introductory section provides information about books relevant to the entire field of
algorithmics, as well as the names and publishers of periodicals and newsletters that publish
papers spanning the field. The sections following provide detailed bibliographic notes for each
chapter. These notes are structured so that general information about books and periodicals
relevant to the subject matter of the chapter appears first. The notes are then developed, in
parallel with the chapter itself, providing credits for the results mentioned, with pointers to
their original published versions. Whenever appropriate, additional pointers to particularly
informative, important, or influential publications have been included. We use the novel
method of having the bibliographic notes point back to the page numbers of the relevant parts
of the text, which we feel significantly increases the convenience of use.

Obviously, it is impossible to even come close to covering all that is relevant to algorithmics.
Moreover, many profound and fundamental results do not get referred to here at all, since
considerations of space and structure have prevented their inclusion in the text itself. Many
of these can be found by following the references that appear in the papers and books that
are included.

One final background comment. Since the first edition of this book appeared in 1987,
there has been a major change in the way people search for information, including scien-
tific information. We mean, of course, the internet. The change is profound, sweeping, and
revolutionary. People visit technical libraries much less, browsing the internet extensively
for what they are looking for. There are essentially two kinds of browsing: (1) looking for
the information itself on the internet, and (2) searching the the internet for pointers to where
in the conventional published literature the information appears. The second of these might
be termed “meta-browsing.” In fact, when revising and extending these bibliographic notes,
working from the version that appeared in the second edition of this book, extensive use was

433

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

434 Bibliographic Notes

made of meta-browsing; in seeking new books and papers, in double-checking details of the
references themselves, etc. However, very little of the first kind of browsing was done, so that
with very few exceptions information that appears on the internet but has not been published
in the usual scholarly fashion (as books, or as articles in archival journals and conference
proceedings) will not be reflected in these bibliographic notes. There are many reasons for
this, one of which has to do with reliability of the contents.

� �

The Biblical quotations in this book are all taken from a translation prepared by the main
author’s late father, Harold Fisch:

� The Holy Scriptures, English text revised and edited by H. Fisch, Koren Publishers,
Jerusalem, 1969.

As will be seen, there are excellent textbooks on almost all of the specific subareas of algo-
rithmics. However, there are precious few that attempt to provide a more general treatment.
Three exceptions are:

� J. G. Brookshear, Computer Science: An Overview, 6th edn, Addison-Wesley, 1999.

� L. Goldshlager and A. Lister, Computer Science: A Modern Introduction, 2nd edn,
Prentice-Hall International, 1988.

� I. Pohl and A. Shaw, The Nature of Computation: An Introduction to Computer Science,
W. H. Freeman & Co., 1981.

These are textbooks for introductory computer science courses and contain brief but informa-
tive accounts of many of the subjects treated in this book. In addition, they discuss a number
of other topics, such as operating systems and computer architecture.

The following book is a hands-on introduction to computer science, which touches on
many of the topics discussed in this book, such as programming paradigms, abstraction,
compilation and interpretation, and more.

� H. Abelson and G. J. Sussman, Structure and Interpretation of Computer Programs,
2nd edn, MIT Press, 1996.

There is an excellent handbook of theoretical topics in computer science, though by now
some of its chapters might be a little dated. Its two volumes contain detailed technical articles
on many of the topics discussed in this book. We shall refer to several of these in the appropriate
chapters. The general reference is:

� Handbook of Theoretical Computer Science, vols A and B, J. van Leeuwen, ed., Elsevier
and MIT Press, 1990.

Turning for a moment from the spirit of computing to its flesh and bones and the link
between the three, one of the best places to read about computers and the difficulty people
have in getting acquainted with them is:

� J. Shore, The Sachertorte Algorithm and Other Antidotes to Computer Anxiety, Viking
Penguin, 1985.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 435

There are several periodicals that publish papers in virtually all areas of algorithmics:

� Journal of the Association for Computing Machinery, often abbreviated J. Assoc. Com-
put. Mach., or just J. ACM; published by the ACM.

� SIAM Journal on Computing, abbreviated SIAM J. Comput., or sometimes just
SICOMP; published by SIAM, the Society for Industrial and Applied Mathematics.

� Information and Computation (formerly Information and Control), abbreviated Inf. and
Comput., or Inf. and Cont.; published by Elsevier.

� Journal of Computer and System Sciences, abbreviated J. Comput. Syst. Sci., or some-
times just JCSS; published by Elsevier.

� Theoretical Computer Science, abbreviated Theor. Comput. Sci., or sometimes just TCS;
published by Elsevier.

� The Computer Journal, abbreviated Comput. J.; published by Oxford University Press.

� Fundamenta Informaticae, abbreviated Fund. Inf.; published by IOS Press, under the
auspices of the European Association for Theoretical Computer Science (EATCS).

� Information Processing Letters, abbreviated Inf. Proc. Lett., or sometimes just IPL;
contains short papers or communications and is published by Elsevier.

� Computing Surveys, abbreviated Comput. Surv.; contains lengthy survey papers and is
published by the ACM.

� International Journal of Foundations of Computer Science, abbreviated Int. J. Found.
Comput. Sci., or sometimes just IJFCS; published by World Scientific.

The following journals are of a somewhat more elementary and widespread nature, and
occasionally contain relevant articles:

� Communications of the Association for Computing Machinery, abbreviated Comm.
Assoc. Comput. Mach., or sometimes just CACM; published by the ACM.

� Computer, sometimes called IEEE Computer; published by the IEEE.

The following non-refereed newsletters contain short papers, communications, and an-
nouncements relevant to many aspects of algorithmics:

� ACM SIGACT News; published by ACM’s Special Interest Group on Automata and
Computability Theory.

� Bulletin of the EATCS; published by the European Association for Theoretical Computer
Science.

In addition to these, the following journal publishes short reviews of books and papers in
computer science, algorithmics included:

� Computing Reviews, abbreviated Comput. Rev., or sometimes just CR; published by the
ACM.

There are several annual or biannual conferences, symposia, and colloquia that are devoted
to algorithmics at large, and numerous others that concentrate on specific subjects. They will
not be listed here, but will be referenced as the occasion arises. Nevertheless, the reader
should keep in mind that many are sponsored by the various subgroups of the ACM and the
IEEE, and the proceedings of many others appear in the Springer-Verlag series of Lecture
Notes in Computer Science.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

436 Bibliographic Notes

� Chapter 1

The following books shed light on the history of computing:

� A History of Computing in the Twentieth Century, N. C. Metropolis et al., eds, Academic
Press, 1980.

� F. G. Ashherst, Pioneers of Computing, Frederick Muller, 1983.

� W. Aspray, John von Neumann and the Origins of Modern Computing (History of
Computing), MIT Press, 1990.

� M. R. Williams, A History of Computing Technology, 2nd edn, Wiley-IEEE Press, 1997.

� M. Campbell-Kelly and W. Aspray, Computer: A History of the Information Machine,
Basic Books, 1997.

� G. Ifrah, The Universal History of Computing: From the Abacus to the Quantum Com-
puter, John Wiley & Sons, 2002.

� C. Wurster, Computers: An Illustrated History, TASCHEN America Llc, 2002.

It is also worth reading the following biographies of two of the most influential pioneers
of computer science:

� A. Hyman, Charles Babbage, Pioneer of the Computer, Princeton University Press,
1985.

� A. Hodges, Alan Turing: The Enigma, Simon & Schuster, 1983.

The following journals are devoted entirely to the history of computation, and often contain
illuminating papers on the origins and insights of the early researchers:

� IEEE Annals of the History of Computing, abbreviated Ann. Hist. Comput.; a quarterly
published by IEEE.

� Journal of the Association for History and Computing, abbreviated J. Assoc. Hist.
Comput.; published by AAHC, the American Association for History and Computing.

� History and Computing; published by Edinburgh University Press and AHC, the As-
sociation for History and Computing.

� �

The analogy between computer science and surgery [p. 6] appears in:

� E. W. Dijkstra, “On a Cultural Gap,” The Mathematical Intelligencer 8 (1986), pp.
48–52.

A detailed, illustrated account of Babbage’s analytical engine [p. 7] appears in:

� A. G. Bromley, “Charles Babbage’s Analytical Engine, 1838,” Ann. Hist. Comput. 4
(1982), pp. 196–217.

The latest ACM curriculum of the core part of computer science, and reports of a joint
IEEE/ACM task force on curricula for computing [p. 8] can be found in:

� P. J. Denning et al., “Computing as a Discipline,” Comm. Assoc. Comput. Mach. 32
(1989), pp. 9–23.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 437

� http://www.acm.org/education/curr91/homepage.html

� http://www.computer.org/education/cc2001

The mousse recipe [p. 10] is from page 73 of:

� P. C. Sinclair and R. K. Malinowski, French Cooking, Weathervane Books, 1978.

� Chapter 2

There are numerous excellent textbooks devoted to algorithms and data structures. In the
notes for Chapters 4, 5, and 6 a number of those that emphasize design methods, design
through correctness proofs, and design for efficiency, respectively, are listed. Here are some
that are fitting for this less specific chapter:

� A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms, Addison-
Wesley, 1983.

� E. Horowitz and S. Sahni, Fundamentals of Data Structures in Pascal, 4th edn, W. H.
Freeman & Co., 1999.

� D. E. Knuth, The Art of Computer Programming, vol. 1: Fundamental Algorithms, 3rd
edn, Addison-Wesley, 1997.

� T. A. Standish, Data Structures, Algorithms and Software Principles, Addison-Wesley,
1994.

� N. Wirth, Algorithms and Data Structures, Prentice-Hall, 1986.

� T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
2nd edn, MIT Press, 2001.

The following early monographs have been extremely influential:

� E. W. Dijkstra, “Notes on Structured Programming,” in Structured Programming, Aca-
demic Press, 1972.

� C. A. R. Hoare, “Notes on Data Structuring,” in Structured Programming, Academic
Press, 1972.

The following are expositions of several of the issues treated in this chapter:

� D. E. Knuth, “Algorithms,” Scientific American 236:4 (1977), pp. 63–80.

� N. Wirth, “Data Structures and Algorithms,” Scientific American 251:3 (1984),
pp. 60–9.

Apart from the general periodicals listed earlier, here are some additional journals that
publish papers on algorithms and data structures:

� Journal of Algorithms, abbreviated J. Algs.; published by Elsevier.

� Journal of Complexity, abbreviated J. Complex.; published by Elsevier.

� Discrete & Computational Geometry, abbreviated Disc. Comput. Geom.; published by
Springer-Verlag.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

438 Bibliographic Notes

� Combinatorica; published by Springer-Verlag.

� Journal of Symbolic Computation, abbreviated J. Symb. Comput.; published by Elsevier.

� Computing; published by Springer-Verlag.

� BIT; published by Kluwer Academic Publishers.

� �

The bubblesort algorithm [pp. 21–3], as well as a host of other sorting methods, is described
in detail in Knuth’s encyclopedic volume:

� D. E. Knuth, The Art of Computer Programming, vol. 3: Sorting and Searching, 2nd
edn, Addison-Wesley, 1998.

The controversy surrounding the “goto” statement [pp. 23–4] is generally considered to
have originated in the following letter to the editor:

� E. W. Dijkstra, “Go To Statement Considered Harmful,” Comm. Assoc. Comput. Mach.
11 (1968), pp. 147–8.

More about this controversy, as well as the possibility of eliminating certain control struc-
tures in favor of a set of minimal ones [pp. 32–3], can be found in the following papers:

� D. E. Knuth, “Structured Programming with go to Statements,” Comput. Surv. 6 (1974),
pp. 261–301.

� D. Harel, “On Folk Theorems,” Comm. Assoc. Comput. Mach. 23 (1980), pp. 379–89.

The following book is devoted to the idea (put forward by many researchers) of writing
only well-structured programs that use only a few selected control constructs:

� R. C. Linger, H. D. Mills, and B. I. Witt, Structured Programming: Theory and Practice,
Addison-Wesley, 1979.

A good place to read about various flowchart techniques and notations [pp. 24–6] is:

� T. R. G. Green, “Pictures of Programs and Other Processes, or How To Do Things with
Lines,” Behaviour and Information Technology 1 (1982), pp. 3–36.

There are many places to read about gradual, top-down design of large algorithms and
programs, using subroutines or other similar means [pp. 26–30]. Apart from Dijkstra’s notes
on structured programming, the following have been particularly influential:

� N. Wirth, “Program Development by Stepwise Refinement,” Comm. Assoc. Comput.
Mach. 14 (1971), pp. 221–7.

� D. L. Parnas, “A Technique for Software Module Specification with Examples,” Comm.
Assoc. Comput. Mach. 15 (1972), pp. 330–6.

� E. Yourdon and L. L. Constantine, Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design, Prentice-Hall, 1979.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 439

Recursion [pp. 30–1] is a fascinating subject and a wealth of interesting material about it
can be found in:

� E. Roberts, Thinking Recursively, John Wiley & Sons, 1986.

� D. R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid, Basic Books, 1979.

The recursive solution to the Towers of Hanoi problem [pp. 31–2] appears in almost any
elementary book on algorithms, including several of those already mentioned.

Treesort [pp. 40–3] is described in detail and is traced back to its many independent
inventors in Knuth’s volume on sorting and searching previously mentioned, where it is
called tree insertion sort.

Self-adjusting data structures [p. 43] appear routinely in many of the algorithms described
in the general books listed for this chapter. Perhaps the most well known are balanced binary
trees, which are discussed in detail in Knuth’s volume on sorting and searching. The following
chapter contains material on this subject too.

� K. Mehlhorn and A. Tsakalidis, “Data Structures,” in Handbook of Theoretical Com-
puter Science, vol. A, J. van Leeuwen, ed., Elsevier and MIT Press, 1990, pp. 301–41.

There are numerous books devoted to databases [pp. 44–5]. They contain a wealth of
information on various database models, languages, and design methods. Here are some:

� C. J. Date, An Introduction to Database Systems, 8th edn, Addison-Wesley, 2004.

� J. D. Ullman, Principles of Database and Knowledge-Base Systems: The New Tech-
nologies, W. H. Freeman & Co., 1989.

� R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, 3rd edn, Addison-
Wesley, 2002.

� D. Maier, The Theory of Relational Databases, Computer Science Press, 1983.

� A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Concepts, 3rd edn,
McGraw-Hill, 1999.

The following paper is considered to have been one of the most influential in shaping the
prevalent approaches to databases:

� E. F. Codd, “A Relational Model for Large Shared Data Banks,” Comm. Assoc. Comput.
Mach. 13 (1970), pp. 377–87.

The following periodicals and newsletter publish papers about database systems:

� ACM Transactions on Database Systems, abbreviated ACM Trans. Database Syst., or
sometimes just TODS; published by the ACM.

� Data and Knowledge Engineering, abbreviated Data & Knowl. Eng.; published by
Elsevier.

� Information Systems, abbreviated Inf. Syst.; published by Elsevier.

� ACM SIGMOD Record; published by ACM’s Special Interest Group on Management
of Data.

Data mining and data warehousing [p. 45] are discussed in:

� T. Hastie, T. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Springer-Verlag, 2001.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

440 Bibliographic Notes

� J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann,
2000.

� Advances in Knowledge Discovery and Data Mining, U. M. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, and R. Uthurusamy, eds., AAAI Press, 1996.

� B. Devlin, Data Warehouse: From Architecture to Implementation, Addison-Wesley,
1996.

The following periodical publishes articles on data mining and knowledge discovery:

� ACM SIGKDD Explorations; published by the ACM’s Special Interest Group on Knowl-
edge Discovery and Data Mining.

� Chapter 3

There are a number of books on the general principles of designing programming languages.
Here are some:

� T. W. Pratt and M. V. Zelkowitz, Programming Languages: Design and Implementation,
4th edn, Prentice-Hall, 2001.

� H. F. Ledgard and M. Marcotty, The Programming Language Landscape, 2nd edn,
Science Research Associates, 1986.

� J. E. Nicholls, The Structure and Design of Programming Languages, Addison-Wesley,
1975.

� M. L. Scott, Programming Language Pragmatics, Morgan Kaufmann, 2000.

� R. D. Tennent, Principles of Programming Languages, Prentice-Hall International,
1981.

The following one emphasizes abstract data types:

� D. M. Harland, Polymorphic Programming Languages, Halstead Press, 1984.

In addition, the following volume contains an extensive collection of some of the central
papers in the programming language area, discussing both principles and specific languages:

� Programming Languages: A Grand Tour, 3rd edn, E. Horowitz, ed., W. H. Freeman &
Co., 1995.

The history of programming languages is described in a paper by P. Wegner in this “grand
tour,” and also in:

� History of Programming Languages, R. L. Wexelblat, ed., Academic Press, 1981.

� History of Programming Languages, vol. 2, T. J. Bergin and R. G. Gibson, eds., Addison-
Wesley, 1996.

� J. E. Sammet, Programming Languages: History and Fundamentals, Prentice-Hall,
1969.

An exposition of several issues related to programming languages and their structure is:

� L. G. Tesler, “Programming Languages,” Scientific American 251:3 (1984), pp. 70–8.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 441

The following periodicals contain papers about the principles of programming languages:

� ACM Transactions on Programming Languages and Systems, abbreviated ACM Trans.
Prog. Lang. Syst., or simply TOPLAS; published by the ACM.

� Computer Languages, Systems and Structures, abbreviated Comput. Lang., Syst. Struc.;
published by Elsevier.

� Science of Computer Programming, abbreviated Sci. Comput. Prog.; published by El-
sevier.

� ACM SIGPLAN Notices; published by ACM’s Special Interest Group on Programming
Languages.

� Formal Aspects of Computing, abbreviated Form. Aspects Comput.; published by
Springer-Verlag.

� �

The BNF notation for syntax definitions [p. 51] appears in:

� J. Backus, “The Syntax and Semantics of the Proposed International Algebraic Lan-
guage of the Zurich ACM-GAMM Conference,” Proc. Int. Conf. on Information Pro-
cessing, UNESCO, pp. 125–32, 1959.

It was used extensively in the celebrated and extremely influential definition of the language
ALGOL 60:

� P. Naur, ed., “Revised Report on the Algorithmic Language Algol 60,” Comm. Assoc.
Comput. Mach. 6 (1963), pp. 1–17.

Syntax diagrams for defining the syntax of programming languages [Figure 3.1, p. 51]
appear in:

� K. Jensen and N. Wirth, PASCAL User Manual and Report, 3rd edn, Springer-Verlag,
1984.

Turning to semantics [pp. 52–3], the following early papers have been particularly influ-
ential in research on the semantics of programming languages:

� D. S. Scott and C. Strachey, “Towards a Mathematical Semantics for Computer Lan-
guages,” Proc. Symp. on Computers and Automata, Polytechnic Inst. of Brooklyn Press,
pp. 19–46, 1971.

� D. S. Scott, “Mathematical Concepts in Programming Language Semantics,” Proc. 1972
Spring Joint Computer Conference, AFIPS Press, Montvale, NJ, pp. 225–34, 1972.

Several books treat the semantics of programming languages in depth, among which are:

� J. E. Stoy, Denotational Semantics: The Scott–Strachey Approach to Programming
Language Theory, MIT Press, 1977.

� J. W. de Bakker, Mathematical Theory of Program Correctness, Prentice-Hall Interna-
tional, 1980.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

442 Bibliographic Notes

� D. A. Schmidt, Denotational Semantics: A Methodology for Language Development,
McGraw-Hill, 1988.

� L. Allison, A Practical Introduction to Denotational Semantics, Cambridge University
Press, 2002.

Good early survey papers on semantics are:

� R. D. Tennent, “The Denotational Semantics of Programming Languages,” Comm.
Assoc. Comput. Mach. 19 (1976), pp. 437–53.

� D. S. Scott, “Logic and Programming Languages,” Comm. Assoc. Comput. Mach. 20
(1977), pp. 634–41.

The following books discuss the compilation process in detail [pp. 55–7]:

� A. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley, 1986.

� S. S. Muchnick, Advanced Compiler Design and Implementation, Morgan Kaufmann,
1997.

� A. W. Appel and J. Palsberg, Modern Compiler Implementation in Java, 2nd edn,
Cambridge University Press, 2002.

The following influential early paper discusses the possibility of defining special, self-
tailored abstract data types [pp. 58–9]:

� J. V. Guttag and J. J. Horning, “The Algebraic Specification of Abstract Data Types,”
Acta Inf. 10 (1978), pp. 27–52.

Books on specific programming paradigms are mentioned later. However, the following
one introduces and contrasts a number of paradigms, including imperative, functional, and
logic programming:

� H. Abelson and G. J. Sussman, Structure and Interpretation of Computer Programs,
2nd edn, MIT Press, 1996.

FORTRAN [pp. 60–1] was designed by J. Backus and a team of scientists from IBM in 1954.
One of the many books describing it is:

� D. D. McCracken, A Guide to FORTRAN Programming, John Wiley & Sons, 1961.

Later versions are described in:

� W. Brainerd, “FORTRAN 77,” Comm. Assoc. Comput. Mach. 21 (1978), pp. 806–20.

� J. C. Adams, W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L. Wagener, Fortran 95
Handbook, MIT Press, 1997.

COBOL [pp. 60–1] was designed in 1959 by a technical committee sponsored by the US
Department of Defense. Two of the many books describing it are:

� D. D. McCracken and U. Garbassi, A Guide to COBOL Programming, 2nd edn, John
Wiley & Sons, 1970.

� D. M. Collopy, Introduction to COBOL: A Guide to Modular Structured Programming,
Prentice-Hall, 1999.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 443

There are many books on PL/I, [pp. 61–4] most of which are out of print. One classic is:

� G. M. Weinberg, PL/I Programming: A Manual of Style, McGraw-Hill, 1970.

A more recent book is:

� R. A. Vowels, Introduction to PL/I, Algorithms, and Structured Programming, 3rd edn,
Vowels, 1997.

PASCAL [p. 63] was designed by N. Wirth and was first described in:

� N. Wirth, “The Programming Language PASCAL,” Acta Informatica 1 (1971), pp.
35–63.

An important paper assessing the language, and written by its inventor, is:

� N. Wirth, “An Assessment of the Programming Language PASCAL,” IEEE Trans. Soft.
Eng. SE-1 (1975), pp. 192–8.

The C language [pp. 63–4] was designed by B. W. Kernighan and D. M. Ritchie. Their
book is the classic reference for the language:

� B. W. Kernighan and D. M. Ritchie, The C Programming Language, 2nd edn, Prentice-
Hall, 1988.

In the following influential paper, J. Backus (mentioned above as the developer of FORTRAN

and the BNF notation) called for the development of functional programming languages
[pp. 65–8] based on a small set of strong primitives, in order to facilitate reasoning about
such programs and proving them correct:

� J. Backus, “Can Programming Be Liberated from the von Neumann Style? A Functional
Style and Its Algebra of Programs,” Comm. Assoc. Comput. Mach. 21 (1978), pp. 613–
41.

LISP [pp. 65–7] was designed by J. McCarthy in 1960, based on the lambda calculus [p. 67]
of A. Church and S. C. Kleene. An excellent reference to the lambda calculus is:

� H. P. Barendregt, The Lambda Calculus: Its Syntax and Semantics, 2nd edn, North
Holland, 1984.

The LISP language is described in many places, among which are:

� J. Allen, The Anatomy of LISP, McGraw-Hill, 1978.

� P. H. Winston and B. K. P. Horn, LISP, 3rd edn, Addison-Wesley, 1989.

� G. L. Steele, Common Lisp, the Language, 2nd edn, Digital Press, 1990.

In addition to Abelson and Sussman’s book mentioned above, the following books describe
the SCHEME dialect of LISP:

� B. Harvey and M. Wright, Simply Scheme, 2nd edn, MIT Press, 1999.

� R. K. Dybvig, The Scheme Programming Language, 3rd edn, MIT Press, 2003.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

444 Bibliographic Notes

Here are introductions to functional programming using HASKELL and MIRANDA:

� P. Hudak, The Haskell School of Expression, Cambridge University Press, 2000.

� S. Thompson, Haskell: The Craft of Functional Programming, 2nd edn, Addison-
Wesley, 1999.

� S. Thompson, Miranda: The Craft of Functional Programming, Addison-Wesley, 1995.

PROLOG [pp. 68–70] was designed by A. Colmerauer in 1970, based upon ideas of R. Kowal-
ski. The underlying approach is described in:

� R. Kowalski, “Algorithm = Logic + Control,” Comm. Assoc. Comput. Mach. 22 (1979),
pp. 424–36.

� J. W. Lloyd, Foundations of Logic Programming, 2nd edn, Springer-Verlag, 1987.

Good books for reading about the language are:

� W. F. Clocksin and C. S. Mellish, Programming in PROLOG, 5th edn, Springer-Verlag,
2003.

� L. Sterling and E. Shapiro, The Art of Prolog, 2nd edn, MIT Press, 1994.

The following two books are good places to read about object-oriented programming
[pp. 70–5]. The first is based on EIFFEL (although the word “EIFFEL” appears in it only once),
and the second on JAVA:

� B. Meyer, Object-Oriented Software Construction, 2nd edn, Prentice-Hall, 1997.

� B. Liskov with J. Guttag, Program Development in Java: Abstraction, Specification,
and Object-Oriented Design, Addison-Wesley, 2000.

A critical look at the principles of object-oriented programming through a comparison of
the strengths and weaknesses of three influential languages is:

� I. Joyner, Objects Unencapsulated: Java, Eiffel, and C++??, Prentice-Hall, 1999.

SIMULA [p. 70] was developed by O.-J. Dahl and K. Nygaard. It is described in:

� O.-J. Dahl and K. Nygaard, “SIMULA—an ALGOL-Based Simulation Language,”
Comm. Assoc. Comput. Mach. 9 (1966), pp. 671–8.

� G. M. Birtwistle, O.-J. Dahl, B. Myhrhaug, and K. Nygaard, Simula Begin, Van Nostrand
Reinhold, 1973.

SMALLTALK [p. 72] was developed by the Learning Research Group at XEROX PARC
(Palo Alto Research Center), as part of the pioneering development of a personal computer
that included a bit-mapped display, a mouse, and overlapping windows. This was done years
before the ideas were commercialized by other companies. The following books describe the
language and its innovative programming environment:

� A. Goldberg and D. Robson, Smalltalk-80: The Language, Addison-Wesley, 1989.

� A. Goldberg, Smalltalk-80: The Interactive Programming Environment, Addison-
Wesley, 1984.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 445

C++ [p. 72] was developed by B. Stroustrup at AT&T Bell Labs. His definitive book on
the language is:

� B. Stroustrup, The C++ Programming Language, 3rd edn, Addison-Wesley, 2000.

JAVA [pp. 72–4] was developed at Sun Microsystems by J. Gosling, and was originally
intended for programming “smart” consumer electronic devices. The official description of
the language is:

� K. Arnold and J. Gosling, The Java Programming Language, 3rd edn, Addison-Wesley,
2000.

EIFFEL [pp. 74–5] was developed by B. Meyer, according to his theoretical approach to
object-oriented programming. The general approach is described in his textbook cited above,
and the language itself is described in the following book:

� B. Meyer, Eiffel: The Language, Prentice-Hall, 1992.

The design of the EIFFEL libraries is interesting in its own right; it is described in:

� B. Meyer, Reusable Software: The Base Object-Oriented Component Libraries,
Prentice-Hall, 1994.

� Chapter 4

There are several excellent books on algorithms, which, among other things, emphasize design
paradigms and methods. They include:

� A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.

� E. Horowitz, S. Sahni and S. Rajasekaran, Computer Algorithms, Computer Science
Press, 1997.

� T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
2nd edn, MIT Press, 2001.

� S. Baase and A. Van Gelder, Computer Algorithms: Introduction to Design and Analysis,
3rd edn, Addison-Wesley, 1999.

� D. Kozen, The Design and Analysis of Algorithms, Springer-Verlag, 1992.

� U. Manber, Introduction to Algorithms: A Creative Approach, Addison-Wesley, 1989.

� A. V. Aho and J. D. Ullman, Foundations of Computer Science, W. H. Freeman & Co.,
1995.

� M. Sipser, Introduction to the Theory of Computation, Brooks Cole, 1996.

� G. Brassard and P. Bratley, Fundamentals of Algorithmics, Prentice-Hall, 1995.

A more elementary book is:

� R. G. Dromey, How to Solve it by Computer, Prentice-Hall, 1982.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

446 Bibliographic Notes

Apart from these, there are many books that are organized around specific kinds of algo-
rithms, but implicitly contain also a wealth of information about algorithmic methods. Here
are some:

� S. Even, Graph Algorithms, Computer Science Press, 1979.

� G. H. Gonnet, Handbook of Algorithms and Data Structures, Addison-Wesley, 1984.

� T. C. Hu and M. T. Shing, Combinatorial Algorithms, Dover Publications, 2002.

� K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching, Springer-
Verlag, 1984.

� K. Mehlhorn, Data Structures and Algorithms 2: Graph Algorithms and NP-
Completeness, Springer-Verlag, 1987.

� K. Mehlhorn, Data Structures and Algorithms 3: Multi-Dimensional Searching and
Computational Geometry, Springer-Verlag, 1990.

� D. E. Knuth, The Art of Computer Programming, vol. 1: Fundamental Algorithms, 3rd
edn, Addison-Wesley, 1997.

� D. E. Knuth, The Art of Computer Programming, vol. 2: Seminumerical Algorithms,
3rd edn, Addison-Wesley, 1997.

� D. E. Knuth, The Art of Computer Programming, vol. 3: Sorting and Searching, 2nd
edn, Addison-Wesley, 1998.

� E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Dover Publications,
2001.

� C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity, Prentice-Hall, 1982.

� E. M. Reingold Combinatorial Algorithms: Theory and Practice, Prentice-Hall, 1977.

� R. Sedgewick and P. Flajolet, An Introduction to the Analysis of Algorithms, Addison-
Wesley, 1995.

� R. E. Tarjan, Data Structures and Network Algorithms, CBMS-NSF Regional Conf.
Series in Appl. Math., SIAM Press, 1983.

� �

Two books on computational geometry [pp. 83–5] are Mehlhorn’s third volume above and:

� F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-
Verlag, 1991.

An excellent survey is:

� F. F. Yao, “Computational Geometry,” in Handbook of Theoretical Computer Science,
vol. A, J. van Leeuwen, ed., Elsevier and MIT Press, 1990, pp. 343–89.

The mergesort algorithm [pp. 86–7] is described in many of the books listed, but (as
mentioned earlier in connection with bubblesort and treesort) Knuth’s volume on sorting and
searching is by far the most comprehensive reference.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 447

The greedy spanning tree algorithm [pp. 88–9] is from:

� R. C. Prim, “Shortest Connection Networks and Some Generalizations,” Bell Syst. Tech.
J. 36 (1957), pp. 1389–401.

Another important paper on minimal spanning trees is:

� J. B. Kruskal, Jr. , “On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem,” Proc. Amer. Math. Soc. 7 (1956), pp. 48–50.

An early paper relevant to both spanning trees and shortest path algorithms is:

� E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,” Numerische
Mathematik 1 (1959), pp. 269–71.

The history of spanning tree algorithms, which apparently starts well before Prim and
Kruskal, is traced in:

� R. L. Graham and P. Hell, “On the History of The Minimal Spanning Tree Problem,”
Ann. Hist. Comput. 7 (1985), pp. 43–57.

Here are books in which dynamic programming (called dynamic planning in the text)
[pp. 89–91] is outlined in more detail:

� R. E. Bellman, Dynamic Programming, Princeton University Press, 1957 (paperback
edition, Dover Publications, 2003).

� S. E. Dreyfus and A. M. Law, The Art and Theory of Dynamic Programming, Academic
Press, 1977.

� D. Bertsekas, Dynamic Programming and Optimal Control, 2nd edn, Athena Scientific,
2001.

Two very influential papers concerning algorithmic problems on graphs are:

� R. E. Tarjan, “Depth First Search and Linear Graph Algorithms,” SIAM J. Comput. 1
(1972), pp. 146–60.

� J. E. Hopcroft and R. E. Tarjan, “Efficient Algorithms for Graph Manipulation,” Comm.
Assoc. Comput. Mach. 16 (1973), pp. 372–8.

Good surveys of graph algorithms appear in:

� T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
2nd edn, MIT Press, 2001.

� J. van Leeuwen, “Graph Algorithms,” in Handbook of Theoretical Computer Science,
vol. A, J. van Leeuwen, ed., Elsevier and MIT Press, 1990, pp. 525–631.

Heaps [pp. 91–2] are discussed in great detail in most books on algorithms and data
structures. See, e.g., the books listed at the beginning of the notes for Chapter 2.

The following book describes nondestructive algorithms [pp. 92–4] and appropriate ana-
lysis methods:

� C. Okasaki, Purely Functional Data Structures, Cambridge University Press, 1998.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

448 Bibliographic Notes

On-line algorithms [pp. 94–5] are described in:

� A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis, Cambridge
University Press, 1998.

� Chapter 5

There are several books devoted to methods and tools for the verification of algorithms and
programs. Here are some:

� Z. Manna, Mathematical Theory of Computation, McGraw-Hill, 1974.

� S. Alagić and M. A. Arbib, The Design of Well-Structured and Correct Programs,
Springer-Verlag, 1978.

� J. W. de Bakker, Mathematical Theory of Program Correctness, Prentice-Hall Interna-
tional, 1980.

� J. Loeckx and K. Sieber, The Foundations of Program Verification, 2nd edn, John Wiley
& Sons, 1987.

� N. Francez, Program Verification, Addison-Wesley, 1991.

� K. R. Apt and E.-R. Olderog, Verification of Sequential and Concurrent Programs,
Springer-Verlag, 1991.

� Z. Manna and A. Pnueli, Temporal Verification of Reactive Systems: Safety, Springer-
Verlag, 1995.

� E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking, MIT Press, 2000.

In addition, the following early books contain informative chapters on correctness and
verification:

� R. Bird, Programs and Machines: An Introduction to the Theory of Computation, John
Wiley & Sons, 1976.

� J. M. Brady, The Theory of Computer Science: A Programming Approach, Chapman
& Hall, 1977.

� S. A. Greibach, Theory of Program Structures: Schemes, Semantics, Verification,
Springer-Verlag, 1975.

� E. V. Krishnamurthy, Introductory Theory of Computer Science, Springer-Verlag, 1983.

Apart from the general periodicals listed earlier, the following more specific journals
publish many papers pertaining to algorithmic correctness:

� ACM Transactions on Programming Languages and Systems, sometimes abbreviated
ACM Trans. Prog. Lang. Syst., or simply TOPLAS; published by the ACM.

� Acta Informatica, abbreviated Acta Inf.; published by Springer-Verlag.

� Science of Computer Programming, abbreviated Sci. Comput. Prog.; published by
Elsevier.

� Journal of Automated Reasoning, abbreviated J. Autom. Reas.; published by Kluwer
Academic Publishers.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 449

� IEEE Transactions on Software Engineering, abbreviated IEEE Trans. Soft. Eng.; pub-
lished by the IEEE.

� Formal Aspects of Computing, abbreviated Form. Aspects Comput.; published by
Springer-Verlag.

� Software and System Modeling, abbreviated Soft. Syst. Modeling, or simply SoSyM;
published by Springer-Verlag.

� �

Some of the stories of computer errors [p. 99] are among numerous ones that are reported
regularly in:

� ACM Software Engineering Notes; published by ACM’s Special Interest Group on
Software Engineering.

Good places to read about syntactic analysis and error handling in compilation [pp. 101–3]
include:

� A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley, 1986.

� R. Allen, K. Kennedy, and J. R. Allen, Optimizing Compilers for Modern Architectures:
A Dependence-Based Approach, Morgan Kaufmann, 2001.

� S. S. Muchnick, Advanced Compiler Design and Implementation, Morgan Kaufmann,
1997.

Good places to read about testing [pp. 103–4] are:

� C. Kaner, J. Falk, and H. Q. Nguyen, Testing Computer Software, 2nd edn, John Wiley
& Sons, 1999.

� B. Hetzel, The Complete Guide to Software Testing, 2nd edn, John Wiley & Sons, 1993.

� R. V. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools, Addison-
Wesley, 1999.

� B. Marick, The Craft of Software Testing: Subsystem Testing, Including Object-Based
and Object-Oriented Testing, Prentice-Hall, 1994.

� G. J. Myers, The Art of Software Testing, John Wiley & Sons, 1979.

The mermaid aphorism [p. 104] appears on page 17 of:

� G. D. Bergland, “A Guided Tour of Program Design Methodologies,” Computer 14
(1981), pp. 13–37.

The aphorism about the absence/presence of errors [p. 104] appears on page 6 of:

� E. W. Dijkstra, “Notes on Structured Programming,” in Structured Programming, Aca-
demic Press, 1972.

The notion of partial correctness [p. 106] appears in:

� Z. Manna, “The Correctness of Programs,” J. Comput. Syst. Sci. 3 (1969), pp. 119–27.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

450 Bibliographic Notes

The statement about the time software is released for use [p. 107] appears on page 1330
of:

� D. L. Parnas, “Software Aspects of Strategic Defense Systems,” Comm. Assoc. Comput.
Mach. 28 (1985), pp. 1326–35.

Provocative but important papers on the (im)possibility of proving correctness of programs
are:

� R. A. De Millo, R. J. Lipton, and A. J. Perlis, “Social Processes and Proofs of Theorems
and Programs,” Comm. Assoc. Comput. Mach. 22 (1979), pp. 271–80.

� J. H. Fetzer, “Program Verification: The Very Idea,” Comm. Assoc. Comput. Mach. 31
(1988), pp. 1048–63.

Both the intermediate assertion (invariant) method for proving partial correctness
[pp. 108–9], and the convergence method (sometimes called the well-founded sets method)
for proving termination [pp. 109–14] are due to R. W. Floyd. They were first described as
proof methods in the following paper, although they have their roots in much earlier work of
Turing, von Neumann, and others:

� R. W. Floyd, “Assigning Meanings to Programs,” Proc. Symp. on Applied Math. (vol. 19:
“Mathematical Aspects of Computer Science”), American Math. Soc., Providence, RI,
pp. 19–32, 1967.

Three important and influential papers expounding upon Floyd’s methods are:

� C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,” Comm. Assoc.
Comput. Mach. 12 (1969), pp. 576–83.

� S. Cook, “Soundness and Completeness of an Axiom System for Program Verification,”
SIAM J. Comput. 7 (1978), pp. 70–90.

� E. M. Clarke, “Programming Language Constructs for which it is Impossible to Obtain
Good Hoare-Like Axioms,” J. Assoc. Comput. Mach. 26 (1979), pp. 129–47.

Besides the books on verification recommended earlier, excellent surveys of the methods
and ideas that originated in the work of Floyd, Hoare, and Cook are:

� K. R. Apt, “Ten Years of Hoare’s Logic: A Survey,” ACM Trans. Prog. Lang. Syst. 3
(1981), pp. 431–83.

� P. Cousot, “Methods and Logics for Proving Programs,” in Handbook of Theoretical
Computer Science, vol. B, J. van Leeuwen, ed., Elsevier and MIT Press, 1990, pp. 841–
993.

An efficient algorithm for finding a minimal set of checkpoints to which assertions can be
attached for proving correctness [p. 114] appears in:

� A. Shamir, “Finding Minimum Cutsets in Reducible Graphs,” SIAM J. Comput. 8
(1979), p. 645–55.

That a partially correct program can, in principle, always be proved correct [p. 114]—a
kind of completeness result—is established in Cook’s paper above. That a totally correct

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 451

program can also be so proved is established in:

� D. Harel, “Arithmetical Completeness in Logics of Programs,” Proc. Int. Colloq. on
Automata, Lang. and Prog., Lecture Notes in Computer Science, vol. 62, Springer-
Verlag, pp. 268–88, 1978.

A large amount of information on a variety of such completeness results can be found in:

� D. Harel, D. Kozen, and J. Tiuryn, Dynamic Logic, MIT Press, 2000.

A good place to read about mathematical induction [p. 116] and the ways it is used in
program verification is:

� M. Wand, Induction, Recursion, and Programming, Elsevier Science, 1980.

The simple iterative solution to the Towers of Hanoi problem [p. 118] appears in:

� R. E. Allardice and A. Y. Fraser, “La tour d’Hanoı̈ ” Proc. Edinburgh Math. Soc., 2
(1884), pp. 50–3.

The following books contain detailed approaches to as-you-go verification [pp. 118–19],
by providing methodologies for constructing well-structured and correct programs:

� E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.

� D. Gries, The Science of Programming, Springer-Verlag, 1981.

� J. C. Reynolds, The Craft of Programming, Prentice-Hall International, 1981.

� Z. Manna and R. Waldinger, The Deductive Foundations of Computer Programming,
Addison-Wesley, 1993.

The design by contract methodology [pp. 119–20] is elucidated in:

� B. Meyer, Object-Oriented Software Construction, 2nd edn, Prentice-Hall, 1997.

� R. Mitchell and J. McKim, Design by Contract, by Example, Addison-Wesley, 2002.

Here are some pointers to early work on computer-aided program verification [pp. 120–1]:

� R. S. Boyer and J S. Moore, The Computational Logic Handbook, Academic Press,
1997.

� R. L. Constable et al., Implementing Mathematics with the Nuprl Proof Development
System, Prentice-Hall, 1986.

� M. J. Gordon, A. J. R. G. Milner, and C. P. Wadsworth, Edinburgh LCF: A Mechanised
Logic of Computation, Lecture Notes in Computer Science, vol. 78, Springer-Verlag,
1979.

Model checking [p. 121] is discussed in detail in:

� K. L. McMillan, Symbolic Model Checking: An Approach to the State Explosion Prob-
lem, Kluwer Academic Publishers, 1993.

� E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking, MIT Press, 2000.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

452 Bibliographic Notes

Three basic papers on dynamic logics [pp. 22–3] are:

� A. Salwicki, “Formalized Algorithmic Languages,” Bull. Acad. Polon. Sci., Ser. Sci.
Math. Astron. Phys. 18 (1970), pp. 227–32.

� V. R. Pratt, “Semantical Considerations on Floyd-Hoare Logic,” Proc. 17th IEEE Symp.
on Foundations of Computer Science, IEEE Press, pp. 109–21, 1976.

� M. J. Fischer and R. E. Ladner, “Propositional Dynamic Logic of Regular Programs,”
J. Comput. Syst. Sci. 18 (1979), pp. 194–211.

The entire area has been surveyed in:

� D. Harel, D. Kozen, and J. Tiuryn, Dynamic Logic, MIT Press, 2000.

Good places to read about program synthesis [p. 123] are:

� N. Dershowitz, The Evolution of Programs, Birkhäuser, 1983.

� Z. Manna and R. Waldinger, The Deductive Foundations of Computer Programming,
Addison-Wesley, 1993.

Two early papers on program transformations [p. 123] are:

� J. Darlington and R. M. Burstall, “A System which Automatically Improves Programs,”
Proc. 3rd Int. Conf. on Artificial Intelligence, pp. 479–85, 1973.

� S. L. Gerhart, “Proof Theory of Partial Correctness Verification Systems,” SIAM J.
Comput. 5 (1976), pp. 355–77.

An early survey of implemented systems that aid in program testing is:

� H. Partsch and R. Steinbrüggen, “Program Transformation Systems,” Comput. Surv. 15
(1983), pp. 199–236.

Building upon the work of many predecessors, the four-color problem [pp. 123–5] was
finally solved by K. I. Appel and W. Haken, and was first announced in:

� K. I. Appel and W. Haken, “Every Planar Map is Four Colorable,” Bull. Amer. Math.
Soc. 82 (1976), pp. 711–12.

A detailed account of the problem and its solution can be found in:

� T. L. Saaty and P. C. Kainen, The Four Color Problem: Assaults and Conquest, Dover,
1986.

� Chapter 6

Most of the books recommended in the notes for Chapter 4 are also relevant here, since they
typically spend considerable time analyzing the efficiency of the algorithms they present.
Four of them are mentioned here again, followed by several additional books. These all

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 453

contain a good overview of the subject of algorithmic efficiency, with examples of a variety
of algorithms:

� T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
2nd edn, MIT Press, 2001.

� D. Kozen, The Design and Analysis of Algorithms, Springer-Verlag, 1992.

� A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.

� E. Horowitz, S. Sahni, and S. Rajasekaran, Computer Algorithms, Computer Science
Press, 1997.

� M. Hofri, Analysis of Algorithms: Computational Methods & Mathematical Tools,
Oxford University Press, 1995.

� P. W. Purdom, Jr., and C. A. Brown, The Analysis of Algorithms, Holt, Rinehart &
Winston, 1997.

� G. J. E. Rawlings, Compared to What?: An Introduction to the Analysis of Algorithms,
W. H. Freeman & Co., 1991.

� R. Sedgewick and P. Flajolet, An Introduction to the Analysis of Algorithms, Addison-
Wesley, 1995.

� C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

A useful book whose title speaks for itself is:

� J. L. Bentley, Writing Efficient Programs, Prentice-Hall, 1982.

Its author, J. L. Bentley, has written a column on efficient algorithms in the Comm. Assoc.
Comput. Mach. Some of these appear in:

� J. L. Bentley, Programming Pearls, 2nd edn, Addison-Wesley, 1999.

� J. L. Bentley, More Programming Pearls: Confessions of a Coder, Addison-Wesley,
1988.

Two handbooks containing much of the mathematics used in typical analysis of algorithmic
efficiency are:

� D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms, 3rd edn,
Birkhäuser, 1990.

� R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: Foundation for
Computer Science, 2nd edn, Addison-Wesley, 1994.

As far as periodicals are concerned, besides the ones listed in the general section of the
notes, those listed in the notes for Chapter 2 are relevant here too.

� �

The history of the big-O notation (which, strictly speaking, should be called the big-
Omicron notation) [pp. 132–3] and its adoption in computer science is traced in:

� D. E. Knuth, “Big Omicron and Big Omega and Big Theta,” SIGACT News 8:2 (1976),
pp. 18–24.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

454 Bibliographic Notes

Several variants of binary search [pp. 133–6, 146–8], as well as their analysis and origins,
appear in Knuth’s volume on searching and sorting:

� D. E. Knuth, The Art of Computer Programming, vol. 3: Sorting and Searching, 2nd
edn, Addison-Wesley, 1998.

Treesort, mergesort, and heapsort [pp. 142–3] are also analyzed in detail in Knuth’s volume,
as is quicksort [p. 136]. Quicksort was invented by C. A. R. Hoare and first appeared in:

� C. A. R. Hoare, “Quicksort,” Comput. J. 5 (1962), pp. 10–15.

An extensive survey of methods for average-case analysis [pp. 143–4] is:

� J. S. Vitter and P. Flajolet, “Average-Case Analysis of Algorithms and Data Structures,”
in Handbook of Theoretical Computer Science, vol. A, J. van Leeuwen, ed., Elsevier
and MIT Press, 1990, pp. 431–524.

The convex hull algorithm [pp. 149–51], sometimes called the Graham scan, appears in:

� R. L. Graham, “An Efficient Algorithm for Determining the Convex Hull of a Finite
Planar Set,” Inf. Proc. Lett. 1 (1972), pp. 132–3.

Two books devoted to computational geometry, which among many other topics include
more efficient convex hull algorithms, are:

� F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-
Verlag, 1991.

� K. Mehlhorn, Data Structures and Algorithms 3: Multi-Dimensional Searching and
Computational Geometry, Springer-Verlag, 1990.

A survey of the subject is:

� F. F. Yao, “Computational Geometry,” in Handbook of Theoretical Computer Science
vol. A, J. van Leeuwen, ed., Elsevier and MIT Press, 1990, pp. 343–89.

Almost linear algorithms for the spanning tree problem [p. 152] appear in:

� M. L. Fredman and R. E. Tarjan, “Fibonacci Heaps and their Uses in Improved Network
Optimization Algorithms,” J. Assoc. Comput. Mach. 34 (1987), pp. 596–615.

� H. N. Gabow, Z. Galis, T. H. Spencer, and R. E. Tarjan, “Efficient Algorithms for Finding
Minimal Spanning Trees in Undirected and Directed Graphs,” Combinatorica 6 (1986)
pp. 106–22.

� Chapter 7

The following book is devoted in its entirety to intractability. It concentrates on the class of
NP-complete problems and related issues and, in addition, contains a detailed annotated list

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 455

of the numerous problems known in 1979 to have been NP-complete:

� M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to NP-
Completeness, W. H. Freeman & Co., 1979.

Between 1981 and 1992, one of the authors of this book, D. S. Johnson, wrote a periodical
column in the Journal of Algorithms, called “The NP-Completeness Column: An Ongoing
Guide.” Together, the book and the many columns provide a list of hundreds of known NP-
complete problems, which, as of the early 1990s came as close to being really complete as
anything of its kind.

Many books contain chapters that discuss intractable problems and NP-completeness. They
include:

� M. D. Davis, R. Sigal, and E. J. Weyuker, Computability, Complexity, and Languages:
Fundamentals of Theoretical Computer Science, 2nd edn, Academic Press, 1994.

� J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory, Lan-
guages and Computation, 2nd edn, Addison-Wesley, 2001.

� E. Horowitz, S. Sahni, and S. Rajasekaran, Computer Algorithms, Computer Science
Press, 1997.

� E. V. Krishnamurthy, Introductory Theory of Computer Science, Springer-Verlag, 1983.

� H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation, 2nd edn,
Prentice-Hall, 1997.

� M. Machtey and P. Young, An Introduction to the General Theory of Algorithms, North
Holland, Amsterdam, 1978.

� K. Mehlhorn, Data Structures and Algorithms 2: Graph Algorithms and NP-
Completeness, Springer-Verlag, 1984.

� C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity, Prentice-Hall, 1982.

� C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

Two excellent expository articles on the subject of intractability, which were an inspiring
source in the preparation of parts of Chapter 7, are:

� H. R. Lewis and C. H. Papadimitriou, “The Efficiency of Algorithms,” Scientific Amer-
ican 238:1 (1978), pp. 96–109.

� L. J. Stockmeyer and A. K. Chandra, “Intrinsically Difficult Problems,” Scientific Amer-
ican 240:5 (1979), pp. 140–59.

The following survey papers, written by three researchers who have made fundamental
contributions to the subject matter of this chapter, are very informative:

� M. O. Rabin, “Complexity of Computations,” Comm. Assoc. Comput. Mach. 20 (1977),
pp. 625–33.

� S. A. Cook, “An Overview of Computational Complexity,” Comm. Assoc. Comput.
Mach. 26 (1983), pp. 401–8.

� R. M. Karp, “Combinatorics, Complexity, and Randomness,” Comm. Assoc. Comput.
Mach. 29 (1986), pp. 98–109.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

456 Bibliographic Notes

Here is an additional extensive survey:

� D. S. Johnson, “A Catalog of Complexity Classes,” in Handbook of Theoretical
Computer Science vol. A, J. van Leeuwen, ed., Elsevier and MIT Press, 1990,
pp. 67–161.

� �

The tables and graph appearing in Figures 7.3, 7.4, 7.5, and 7.7, [pp. 163–6] are based in
part on those appearing in Garey and Johnson’s book and the two Scientific American articles
previously mentioned.

The following early papers have been most influential in laying the foundations for com-
plexity theory and in recognizing the importance of the dichotomy between polynomial and
super-polynomial time [pp. 163–5]:

� M. O. Rabin, “Degree of Difficulty of Computing a Function and a Partial Ordering of
Recursive Sets,” Technical Report No. 2, Hebrew University, Branch of Applied Logic,
Jerusalem, 1960.

� A. Cobham, “The Intrinsic Computational Difficulty of Functions,” Proc. 1964 Int.
Congress for Logic, Methodology, and Phil. of Sci., Y. Bar-Hillel, ed., North Holland,
pp. 24–30, 1965.

� J. Edmonds, “Paths, Trees, and Flowers,” Canad. J. Math. 17 (1965), pp. 449–67.

� J. Hartmanis and R. E. Stearns, “On the Computational Complexity of Algorithms,”
Trans. Amer. Math. Soc. 117 (1965), pp. 285–306.

� M. Blum, “A Machine Independent Theory of the Complexity of Recursive Functions,”
J. Assoc. Comput. Mach. 14 (1967), pp. 322–36.

The identification of the class of NP-complete problems [p. 167], together with the land-
mark result (Cook’s Theorem) that established the NP-completeness of the satisfiability prob-
lem [pp. 170–1, 176], appears in:

� S. A. Cook, “The Complexity of Theorem Proving Procedures,” Proc. 3rd ACM Symp.
on Theory of Computing, ACM Press, pp. 151–8, 1971.

Similar results were obtained independently, but a little later, by L. A. Levin in:

� L. A. Levin, “Universal Search Problems,” Problemy Peredaci Informacii 9 (1973),
pp. 115–16 (in Russian). English translation in Problems of Information Transmission
9 (1973), pp. 265–6.

The significance of these discoveries was recognized in the following extremely important
paper, in which several other problems (including the traveling salesman problem, three-
colorability, and Hamiltonian paths [pp. 168–70]) were shown to be NP-complete using
polynomial-time reductions:

� R. M. Karp, “Reducibility Among Combinatorial Problems,” in Complexity of Com-
puter Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, pp. 85–104,
1972.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 457

That the traveling salesman problem remains NP-complete not only for general graphs but
even for city networks with Euclidean distances is shown in:

� C. H. Papadimitriou, “The Euclidean Traveling Salesman Problem is NP-Complete,”
Theor. Comput. Sci. 4 (1977), pp. 237–44.

That the timetable problem is NP-complete [p. 170] is shown in:

� S. Even, A. Itai, and A. Shamir, “On the Complexity of Timetable and Multicommodity
Flow Problems,” SIAM J. Comput. 5 (1976), pp. 691–703.

The nursery rhyme on the brave old Duke of York (often misquoted, called the grand old
Duke of York) [p. 174] can be found on p. 138 of:

� W. S. Baring-Gould and C. Baring-Gould, Annotated Mother Goose, Clarkson N. Potter,
1962.

That the primality problem is in NP [p. 178] is shown in:

� V. R. Pratt, “Every Prime has a Succint Certificate,” SIAM J. Comput. 4 (1975), pp.
214–20.

The polynomial-time algorithm for primality (the AKS algorithm), was proved in:

� M. Agrawal, N. Kayal, and N. Saxena, “PRIMES is in P,” manuscript, August 2002.

This paper has not been officially published yet, but you can find it easily—as well as many
descriptions thereof and even some simplifications—on the internet. (Try searching for the
phrase “Primes is in P”.)

Approximation algorithms [pp. 178–80] appear in many of the books and papers mentioned
above. The following books are devoted to the subject:

� V. V. Vazirani, Approximation Algorithms, Springer-Verlag, 2001.

� G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi, Complexity and Approximation: Combinatorial Optimization Problems and
Their Approximability Properties, Springer-Verlag, 1999.

� Approximation Algorithms for NP-Hard Problems, D. S. Hochbaum, ed., Brooks Cole,
1996.

The 1.5-times-the-optimum algorithm for the traveling salesman problem [p. 179] is due
to N. Christofides. The heuristic algorithm for the same problem, which is almost always
good [p. 179], appears in:

� R. M. Karp, “The Probabilistic Analysis of Partitioning Algorithms for the Traveling-
Salesman Problem in the Plane,” Math. Oper. Res. 2 (1977), pp. 209–24.

An excellent collection of papers on the traveling salesman problem is:

� The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, E.
L. Lawler et al., eds., John Wiley & Sons, 1985.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

458 Bibliographic Notes

That certain NP-complete problems cannot be approximated unless P = NP [pp. 179–80]
was proved in the following series of papers:

� U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy, “Approximating Clique
is Almost NP-Complete,” J. Assoc. Comput. Mach., 43 (1996), pp. 268–92.

� S. Arora and S. Safra, “Probabilistic Checking of Proofs: A New Characterization of
NP,” J. Assoc. Comput. Mach., 45 (1998), pp. 70–122.

� S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, “Proof Verification
and Intractability of Approximation Problems” J. Assoc. Comput. Mach. 45 (1998),
pp. 501–55.

The proof that establishes this fact for graph coloring [pp. 179–80] appears in:

� C. Lund and M. Yannakakis, “On the Hardness of Approximating Minimization Prob-
lems,” J. Assoc. Comput. Mach. 41 (1994), pp. 960–81.

An early influential inapproximability result for graph coloring appears in:

� M. R. Garey and D. S. Johnson, “The Complexity of Near-Optimal Graph Coloring,”
J. Assoc. Comput. Mach. 23 (1976), pp. 43–9.

The first proof that a problem of interest has an exponential-time lower bound [p. 180]
appears in:

� A. R. Meyer and L. J. Stockmeyer, “The Equivalence Problem for Regular Expressions
with Squaring Requires Exponential Time,” Proc. 13th Ann. Symp. on Switching and
Automata Theory, IEEE Press, pp. 125–9, 1972.

That generalized chess and checkers are provably intractable [p. 180] is shown, respectively,
in:

� A. S. Fraenkel and D. Lichtenstein, “Computing a Perfect Strategy for n × n Chess
Requires Time Exponential in n,” J. Combinatorial Theory, Series A31 (1981), pp. 199–
214.

� J. M. Robson, “N by N Checkers is Exptime Complete,” SIAM J. Comput. 13 (1984),
pp. 252–67.

Roadblock [pp. 180–1] is described in the Scientific American paper by Stockmeyer and
Chandra previously mentioned and was proved to be intractable in:

� L. J. Stockmeyer and A. K. Chandra, “Provably Difficult Combinatorial Games,” SIAM
J. Comput. 8 (1979), pp. 151–74.

Propositional dynamic logic [p. 182] was defined and shown to be intractable in:

� M. J. Fischer and R. E. Ladner, “Propositional Dynamic Logic of Regular Programs,”
J. Comput. Syst. Sci. 18 (1979), pp. 194–211.

That Presburger arithmetic requires double-exponential time [p. 183] is shown in:

� M. J. Fischer and M. O. Rabin, “Super-Exponential Complexity of Presburger Arith-
metic,” in Complexity of Computation, R. M. Karp, ed., Amer. Math. Soc., Providence,
RI, pp. 27–41, 1974.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 459

That WS1S requires nonelementary time [p. 183] is shown in:

� A. R. Meyer, “Weak Monadic Second Order Theory of Successor is not Elementary
Recursive,” in Logic Colloquium, R. Parikh, ed., Lecture Notes in Mathematics, vol.
453, Springer-Verlag, pp. 132–54, 1975.

A good survey of many upper and lower bounds on the complexity of certain satisfiability
problems is:

� J. Ferrante and C. W. Rackoff, The Computational Complexity of Logical Theories,
Lecture Notes in Mathematics, vol. 718, Springer-Verlag, 1979.

The simplex method for linear programming [p. 184] was discovered in the early 1950s
by G. B. Dantzig and a detailed account appears in:

� G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, 1963.

The first polynomial-time algorithm for the problem appeared in the influential paper:

� L. G. Khachiyan, “A Polynomial Algorithm in Linear Programming,” Doklady
Akademiia Nauk SSSR 244 (1979), pp. 1093–6 (in Russian). English translation in
Soviet Mathematics Doklad 20 (1979), pp. 191–4.

Another polynomial-time algorithm for linear programming, which performs better than
Khachiyan’s in practice, appears in:

� N. Karmarkar, “A New Polynomial-Time Algorithm for Linear Programming,” Com-
binatorica 4 (1984), pp. 373–95.

� Chapter 8

Historically, the interest in noncomputability and undecidability dates back to a plan devised
by the great mathematician David Hilbert. At the turn of the last century, Hilbert proposed
that all mathematical problems should be encoded in some suitable logical formalism, and
an algorithm be found for determining truth therein. That this is essentially impossible was
proved in 1931 by K. Gödel in the following landmark paper, which showed that truth in the
first-order predicate calculus is not even partially decidable (a result sometimes referred to
as Gödel’s Incompleteness Theorem):

� K. Gödel, “Über formal unentscheidbare Sätze der Principia Mathematica und ver-
wandter Systeme, I,” Monatshefte für Mathematik und Physik 38 (1931), pp. 173–98.

An English translation of this paper, entitled “On Formally Undecidable Propositions of
Principia Mathematica and Related Systems,” appears in the following book, which con-
stitutes a collection of many of the early pioneering papers on the subject matter of this
chapter:

� The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems
and Computable Functions, M. Davis, ed., Raven Press, 1965.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

460 Bibliographic Notes

An early and clear exposition of the subject matter of this and the next chapter is:

� B. A. Trakhtenbrot, Algorithms and Automatic Computing Machines, D. C. Heath &
Co., 1963.

Many books contain material about undecidable and noncomputable problems. Here are
some:

� R. Bird, Programs and Machines: An Introduction to the Theory of Computation, John
Wiley & Sons, 1976.

� G. S. Boolos, J. P. Burgess, and R. C. Jeffrey, Computability and Logic, 4th edn,
Cambridge University Press, 2002.

� W. S. Brainerd and L. H. Landweber, Theory of Computation, John Wiley & Sons,
1974.

� J. M. Brady, The Theory of Computer Science: A Programming Approach, Chapman
& Hall, 1977.

� N. J. Cutland, Computability: An Introduction to Recursive Function Theory, Cam-
bridge University Press, 1980.

� G. Rozenberg and A. Salomaa, Cornerstones of Undecidability, Prentice-Hall, 1994.

� M. D. Davis, R. Sigal, and E. J. Weyuker, Computability, Complexity, and Languages:
Fundamentals of Theoretical Computer Science, 2nd edn, Academic Press, 1994.

� F. C. Hennie, Introduction to Computability, Addison-Wesley, 1977.

� J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory, Lan-
guages and Computation, 2nd edn, Addison-Wesley, 2001.

� A. J. Kfoury, R. N. Moll, and M. A. Arbib, A Programming Approach to Computability,
Springer-Verlag, 1982.

� E. V. Krishnamurthy, Introductory Theory of Computer Science, Springer-Verlag, 1983.

� H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation, 2nd edn,
Prentice-Hall, 1997.

� M. Machtey and P. Young, An Introduction to the General Theory of Algorithms, North
Holland, 1978.

� R. Sommerhalder and S. C. van Westrhenen, The Theory of Computability: Programs,
Machines, Effectiveness and Feasibility, Addison-Wesley, 1988.

� R. W. Floyd and R. Beigel, The Language of Machines: An Introduction to Computabil-
ity and Formal Languages, W. H. Freeman & Co., 1994.

The most mathematically detailed and comprehensive treatment of recursive function the-
ory, which includes noncomputability as a subarea, is:

� H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill,
1967 (reprinted by MIT Press, 1987).

Three influential early books are:

� S. C. Kleene, Introduction to Metamathematics, North Holland, 1952 (eighth reprint,
1980).

� M. Davis, Computability and Unsolvability, McGraw-Hill, 1958. (Second edition pub-
lished by Dover Publications in 1982).

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 461

� M. L. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, 1967.

The following book contains a somewhat unusual and entertaining account of the subject:

� D. R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid, Basic Books, 1979.

In addition to the periodicals mentioned in the general section of these notes, the following
journals contain papers on recursive function theory, and hence also on undecidability and
noncomputability:

� Journal of Symbolic Logic, abbreviated J. Symb. Logic, or sometimes just JSL; published
by the Association for Symbolic Logic.

� Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, abbreviated
Zeitschr. Math. Logik und Grundlagen Math., or sometimes simply ZML; published
in Berlin by VEB Deutscher Verlag der Wissenschaften.

� �

The quotation from Time Magazine [p. 191] is by E. Baxter, managing editor of Personal
Software magazine, and appeared on pages 44–5 of the April 16, 1984 issue.

Tiling, or domino problems [pp. 193–5] were introduced by H. Wang in the following
paper, which also contains a proof of the undecidability of a slightly restricted version:

� H. Wang, “Proving Theorems by Pattern Recognition,” Bell Syst. Tech. J. 40 (1961),
pp. 1–42.

The unrestricted version was proved undecidable in:

� R. Berger, “The Undecidability of the Domino Problem,” Memoirs Amer. Math. Soc.
66 (1966).

A fascinating book about tilings of the plane is:

� B. Grünbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman & Co., 1987.

The two results stating that the domino snake problem is undecidable in the half-plane but
is actually decidable in the whole plane [p. 196] appear, respectively, in:

� H.-D. Ebbinghaus, “Undecidability of Some Domino Connectability Problems,”
Zeitschr. Math. Logik und Grundlagen Math. 28 (1982), pp. 331–6.

� Y. Etzion-Petrushka, D. Harel, and D. Myers, “On the Solvability of Domino Snake
Problems,” Theoret. Comput. Sci. 131 (1994), pp. 243–69.

The second-listed paper also contains the stronger undecidability results about domino snakes
[p. 196], including the one that talks about removing a single point only.

The word correspondence problem [pp. 197–8], sometimes called Post’s correspondence
problem, or simply PCP, was introduced and proven undecidable by E. L. Post in:

� E. L. Post, “A Variant of a Recursively Unsolvable Problem,” Bull. Amer. Math. Soc.
52 (1946), pp. 264–8.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

462 Bibliographic Notes

The problem of deciding the equivalence of syntactic definitions of programming languages
[pp. 197–8] is known better as the equivalence problem for context-free grammars and was
proven undecidable in:

� Y. Bar-Hillel, M. Perles, and E. Shamir, “On Formal Properties of Simple Phrase
Structure Grammars,” Zeit. Phonetik, Sprachwiss. Kommunikationsforsch. 14 (1961),
pp. 143–72.

That program verification is noncomputable [pp. 198–9] follows from the fact that truth in
the first-order predicate calculus is undecidable, and is thus due, in essence, to K. Gödel, as
discussed at the beginning of this section.

The following paper discusses the 3x + 1 algorithm [p. 194] and its variants in great detail:

� J. C. Lagarias, “The 3x + 1 Problem and its Generalizations,” Amer. Math. Monthly 92
(1985), pp. 3–23.

Its author, Lagarias, has also written an unpublished manuscript titled “3x + 1 Problem
Annotated Bibliography.”

That the halting problem is undecidable [pp. 199–201, 202–205] is due, in essence, to A.
Turing, in his extremely important paper:

� A. Turing, “On Computable Numbers with an Application to the Entscheidungsprob-
lem,” Proc. London Math. Soc. 42 (1936), pp. 230–65. Corrections appeared in: ibid.,
43 (1937), pp. 544–6.

Rice’s theorem [p. 201] is from:

� H. G. Rice, “Classes of Recursively Enumerable Sets and Their Decision Problems,”
Trans. Amer. Math. Soc. 74 (1953), pp. 358–66.

Rogers’ book referenced earlier contains detailed accounts of the results on recursive
enumerability [pp. 208–9] and hierarchies of undecidable problems, as well as the fact that
the totality problem is not r.e. [p. 210]. Many of these results are based on important early
work of S. C. Kleene in:

� S. C. Kleene, “Recursive Predicates and Quantifiers,” Trans. Amer. Math. Soc. 53 (1943),
pp. 41–73.

That PDL with recursion is highly undecidable [p. 211] is proved in:

� D. Harel, A. Pnueli, and J. Stavi, “Propositional Dynamic Logic of Non Regular Pro-
grams,” J. Comput. Syst. Sci. 26 (1983), pp. 222–43.

Recurring domino problems are defined and shown to be highly undecidable [pp. 211–12]
in:

� D. Harel, “Effective Transformations on Infinite Trees, with Applications to High Un-
decidability, Dominoes, and Fairness,” J. Assoc. Comput. Mach. 33 (1986), pp. 224–48.

The high undecidability of second-order arithmetic [pp. 213–14], and many related facts,
are established in Kleene’s paper cited above.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 463

� Chapter 9

The material of this chapter is traditionally treated together with that of the previous one.
Consequently, the list of books and periodicals mentioned at the beginning of the notes for
Chapter 8 serves this chapter too.

� �

Turing machines [pp. 223–8] were invented by Alan Turing and were first described in his
fundamental paper:

� A. Turing, “On Computable Numbers with an Application to the Entscheidungsprob-
lem,” Proc. London Math. Soc. 42 (1936), pp. 230–65. Corrections appeared in: ibid.,
43 (1937), pp. 544–6.

The Church/Turing thesis [pp. 228–9] is named after Alonzo Church and Alan Turing.
Ideas leading to it appear in Turing’s paper and in the following extremely important paper:

� A. Church, “An Unsolvable Problem of Elementary Number Theory,” Amer. J. Math.
58 (1936), pp. 345–63.

Fascinating historical accounts of the evolution of the lambda calculus, recursive function
theory, and the Church/Turing thesis are:

� S. C. Kleene, “Origins of Recursive Function Theory,” Ann. Hist. Comput. 3 (1981),
pp. 52–67.

� M. Davis, “Why Gödel Didn’t Have Church’s Thesis,” Inf. and Cont. 54 (1982), pp.
3–24.

� J. B. Rosser, “Highlights of the History of the Lambda-Calculus,” Ann. Hist. Comput.
6 (1984), pp. 337–49.

An interesting approach to modifying the thesis so as to capture terminating computations
in real programming languages appears in:

� Y. Gurevich, “Logic and the Challenge of Computer Science,” in Current Trends in
Theoretical Computer Science, E. Börger, ed., Computer Science Press, 1988.

The following paper proposes a definition of computable queries for databases [pp. 248–9].
It actually applies to most kinds of structures, including sets, trees, graphs, and hierarchical
directory structures. Thus it implicitly establishes an appropriate CT thesis for computing on
structures:

� A. K. Chandra and D. Harel, “Computable Queries for Relational Data Bases,” J.
Comput. Syst. Sci. 21 (1980), pp. 156–78.

The lambda calculus [p. 229] was the result of work by Church and Kleene, appearing
explicitly in:

� S. C. Kleene, “A Theory of Positive Integers in Formal Logic,” Amer. J. Math. 57 (1935),
pp. 153–73, 219–44.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

464 Bibliographic Notes

It is described in great detail in:

� H. P. Barendregt, The Lambda Calculus: Its Syntax and Semantics, 2nd edn, North
Holland, 1984.

Post’s production systems [p. 229] appear in the following important paper:

� E. L. Post, “Formal Reductions of the General Combinatorial Decision Problem,” Amer.
J. Math. 65 (1943), pp. 197–215.

Kleene’s definition of recursive functions [p. 229] is based on that of Gödel, and appears in:

� S. C. Kleene, “General Recursive Functions of Natural Numbers,” Math. Ann. 112
(1936), pp. 727–42.

Three of the first papers to prove the equivalence of these formalisms are:

� S. C. Kleene, “λ-Definability and Recursiveness,” Duke Math. J. 2 (1936), pp. 340–53.

� E. L. Post, “Finite Combinatory Processes—Formulation 1,” J. Symb. Logic 1 (1936),
pp. 103–5.

� A. M. Turing, “Computability and λ-Definability,” J. Symb. Logic 2 (1937), pp. 153–63.

As mentioned earlier, the definitive reference on recursive functions and their properties is:

� H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill,
1967 (reprinted by MIT Press, 1987).

Many variants of Turing machines, in particular, nondeterministic and multi-tape machines
[pp. 230–1], as well as the reduction from two-way to one-way infinite tapes [pp. 231–2],
are described in many books, the most influential of which is the following (which, as listed
earlier, was published more than 20 years later in a second edition):

� J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and
Computation, Addison-Wesley, 1979.

Counter programs, sometimes called counter machines [pp. 231–3], are described in many
of the aforementioned books, but constitute a particularly important part of:

� M. L. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, 1967.

That two counters suffice [p. 235] is proved in Minsky’s book, and originally in:

� M. L. Minsky, “Recursive Unsolvability of Post’s Problem of ‘Tag’ and Other Topics
in the Theory of Turing Machines,” Annals Math. 74 (1961), pp. 437–55.

A more elegant proof (which forms the basis of the treatment herein) is given in:

� P. C. Fischer, “Turing Machines with Restricted Memory Access,” Inf. and Cont. 9
(1966), pp. 364–79.

An important paper related to particularly interesting sublanguages of the language of
counter programs (a hierarchy of primitive recursive variants) is:

� A. R. Meyer and R. Ritchie, “The Complexity of Loop Programs,” Proc. ACM National
Conf., ACM Press, pp. 465–9, 1967.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 465

The concept of a universal program [pp. 236–8] is, again, due to Alan Turing. In his 1936
paper, he actually constructed a universal Turing machine and argued its importance.

The following is an exposition of Turing machines and related topics:

� J. E. Hopcroft, “Turing Machines,” Scientific American 250:5 (1984), pp. 70–80.

A good survey of machines and simulations between them is:

� P. van Emde Boas, “Machine Models and Simulations,” in Handbook of Theoreti-
cal Computer Science, vol. A, J. van Leeuwen, ed., Elsevier and MIT Press, 1990,
pp. 1–66.

The connection between Turing machines and complexity classes such as PTIME was
made in the early work on complexity theory; for example, in:

� J. Hartmanis and R. E. Stearns, “On the Computational Complexity of Algorithms,”
Trans. Amer. Math. Soc. 117 (1965), pp. 285–306.

The class NP has been defined using nondeterministic Turing machines [pp. 240–1] ever
since Cook’s original paper:

� S. A. Cook, “The Complexity of Theorem Proving Procedures,” Proc. 3rd ACM Symp.
on Theory of Computing, ACM Press, pp. 151–8, 1971.

The reduction of the halting problem to a half-plane tiling problem [pp. 241–4] is based
on the original proof in:

� H. Wang, “Proving Theorems by Pattern Recognition,” Bell Syst. Tech. J. 40 (1961),
pp. 1–42.

Finite automata [pp. 244–7] seem to have originated in the following pioneering work on
modeling nervous activity:

� W. S. McCulloch and W. Pitts, “A Logical Calculus of the Ideas Immanent in Nervous
Activity,” Bull. Math. Biophysics 5 (1943), pp. 115–33.

Two important early papers are:

� S. C. Kleene, “Representation of Events in Nerve Nets and Finite Automata,” in Au-
tomata Studies, C. E. Shannon and J. McCarthy, eds., Ann. Math. Studies 34 (1956),
pp. 3–41. (Earlier version: RAND Research Memorandum RM-704, 1951.)

� M. O. Rabin and D. Scott, “Finite Automata and their Decision Problems,” IBM J. Res.
3 (1959), pp. 115–25.

Proving limitations of finite automata by the pigeonhole principle [p. 246] (leading to the
so-called pumping lemma) is based upon proofs in:

� Y. Bar-Hillel, M. Perles, and E. Shamir, “On Formal Properties of Simple Phrase
Structure Grammars,” Zeit. Phonetik, Sprachwiss. Kommunikationsforsch. 14 (1961),
pp. 143–72.

Pushdown automata [p. 248] first appeared in explicit form in:

� A. G. Oettinger, “Automatic Syntactic Analysis and the Pushdown Store,” Proc. Symp.
in Applied Math. 12, Amer. Math. Soc., pp. 104–29, 1961.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

466 Bibliographic Notes

Several important papers on the subject were written in the late 1950s by N. Chomsky,
among which are:

� N. Chomsky, “Three Models for the Description of Language,” IRE Trans. Inf. Theory
2 (1956), pp. 113–24.

� N. Chomsky, “On Certain Formal Properties of Grammars,” Inf. and Cont. 2 (1959),
pp. 137–67.

That equivalence for DPDAs is decidable [p. 248] was proved in:

� G. Sénizergues, “The Equivalence Problem for Deterministic Pushdown Automata is
Decidable,” Proc. Int. Colloq. on Automata, Lang. and Prog., Lecture Notes in Com-
puter Science, vol. 1256, Springer-Verlag, pp. 671–81, 1997.

A strengthening of this result appears in:

� C. Sterling, “An Introduction to Decidability of DPDA Equivalence,” Proc. 21st Conf.
on Foundations of Software Technology and Theoretical Computer Science, Lecture
Notes in Computer Science, vol. 2245, Springer-Verlag, pp. 42–56, 2001.

� C. Sterling, “Deciding DPDA Equivalence is Primitive Recursive,” Proc. Int. Colloq. on
Automata, Lang. and Prog., Lecture Notes in Computer Science, vol. 2380, Springer-
Verlag, pp. 821–32, 2002.

A detailed and insightful historical survey of the development of formal languages and
automata theory is:

� S. A. Greibach, “Formal Languages: Origins and Directions,” Ann. Hist. Comput. 3
(1981), pp. 14–41.

Many of the books mentioned in the notes for Chapter 8 contain thorough treatments of
finite automata, pushdown automata, and related formalisms. There are also many books
devoted exclusively to automata and formal language theory. They include:

� S. Ginsburg, Algebraic and Automata-Theoretic Properties of Formal Languages, North
Holland, 1975.

� M. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, 1978.

� A. Salomaa, Jewels of Formal Language Theory, Computer Science Press, 1981.

� Chapter 10

This chapter is really divided into several parts: parallelism (that is, solving algorithmic prob-
lems efficiently using parallel processes), concurrency (that is, dealing with the design and
behavior of concurrent protocols and systems), and then quantum and molecular computing.

Here are some books devoted to parallel algorithms:

� J. JaJa, An Introduction to Parallel Algorithms, Addison-Wesley, 1992.

� F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes, Morgan Kaufmann, 1992.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 467

� S. G. Akl, Parallel Computation: Models and Methods, Prentice-Hall, 1996.

� M. J. Quinn, Designing Efficient Algorithms for Parallel Computers, McGraw-Hill,
1987.

� I. Parberry, Parallel Complexity Theory, John Wiley & Sons, 1987.

� A. Gibbons and W. Rytter, Efficient Parallel Algorithms, Cambridge University Press,
1988.

Here are some books that treat the specification and design of concurrent protocols:

� M. Ben-Ari, Principles of Concurrent Programming, Prentice-Hall, 1982.

� R. E. Filman and D. P. Friedman, Coordinated Computing: Tools and Techniques for
Distributed Software, McGraw-Hill, 1984.

� G. R. Andrews, Concurrent Programming: Principles and Practice, Pearson Education,
1991.

� N. Lynch, Distributed Algorithms, Morgan Kaufmann, 1997.

� R. Milner, Communication and Concurrency, Prentice-Hall, 1989.

� C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

� R. Milner, Communicating and Mobile Systems: The Pi-Calculus, Cambridge Univer-
sity Press, 1999.

� K. M. Chandy and J. Misra, Parallel Program Design: A Foundation, Addison-Wesley,
1988.

� F. Andre, D. Herman, and J.-P. Verjus, Synchronization of Parallel Programs, MIT
Press, 1985.

� E. V. Krishnamurthy, Parallel Processing: Principles and Practice, Addison-Wesley,
1989.

The following books contain articles relevant to parallelism and concurrency:

� Concurrency Verification: Introduction to Compositional and Noncompositional Meth-
ods, W.-P. de Roever et al., eds., Cambridge University Press, 2001.

� Algorithms, Software and Hardware of Parallel Computers, V. E. Kotov and J. Miklosko,
eds., Springer-Verlag, 1984.

� Logics and Models of Concurrent Systems, K. R. Apt, ed., NATO ASI Series, vol. 13,
Springer-Verlag, 1985.

� The Origins of Concurrent Programming: From Semaphores to Remote Procedure
Calls, P. Brinch Hansen, ed., Springer-Verlag, 2002.

A good book that discusses parallel computers is:

� R. W. Hockney and C. R. Jesshope, Parallel Computers 2: Architecture, Programming
and Algorithms, 2nd edn, Adam Hilger Ltd, 1988.

Here are some books on quantum and molecular computation:

� C. P. Williams and S. H. Clearwater, Explorations in Quantum Computing, Springer-
Verlag, 1998.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

468 Bibliographic Notes

� M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information,
Cambridge University Press, 2000.

� M. Hirvensalo, Quantum Computing, Springer-Verlag, 2000.

� C. S. Calude and G. Pãun, Computing with Cells and Atoms: An Introduction to Quan-
tum, DNA and Membrane Computing, Taylor & Francis, 2001.

� G. Pãun, G. Rozenberg, and A. Salomaa, DNA Computing: New Computing Paradigms,
Springer-Verlag, 1998.

� M. Sipper, Machine Nature: The Coming Age of Bio-Inspired Computing, McGraw-Hill,
2002.

� A. Ehrenfeucht, T. Harju, I. Petre, D. M. Prescott and G. Rozenberg, Computation in
Living Cells: Gene Assembly in Ciliates, Springer-Verlag, 2004.

Some surveys are:

� D. Aharonov, “Quantum Computation,” Annual Reviews of Computational Physics VI,
D. Stauffer, ed., World Scientific, 1998.

� A. Berthiaume, “Quantum Computation,” in Complexity Theory Retrospective II,
L. A. Hemaspaandra and A. L. Selman, eds., Springer-Verlag, 1997, pp. 23–51.

� D. P. DiVincenzo, “Quantum Computation,” Science 270 (1995), pp. 255–61.

� S. A. Kurtz, S. R. Mahaney, J. S. Royer, and J. Simon, “Biological Computing,” in
Complexity Theory Retrospective II, L. A. Hemaspaandra and A. L. Selman, eds.,
Springer-Verlag, 1997, pp. 179–95.

� L. Kari, “DNA Computing: The Arrival of Biological Mathematics,” The Mathematical
Intelligencer 19:2 (1997), pp. 9–22.

Apart from the periodicals mentioned in the general section, the following journals publish
papers relevant to the subjects of this chapter:

� Journal of Parallel and Distributed Computing, abbreviated J. Par. Dist. Comput.;
published by Elsevier.

� International Journal of Parallel Programming, abbreviated Int. J. Parallel Prog.; pub-
lished by Kluwer/Plenum.

� Distributed Computing, abbreviated Dist. Comput.; published by Springer.

� ACM Transactions on Programming Languages and Systems, abbreviated ACM Trans.
Prog. Lang. Syst., or sometimes simply TOPLAS; published by the ACM.

� Science of Computer Programming, abbreviated Sci. Comput. Prog.; published by El-
sevier.

� Software: Practice and Experience, abbreviated Softw. Pract. Exp.; published by John
Wiley & Sons.

� Journal of Systems and Software, abbreviated J. Syst. Softw.; published by Elsevier.

� IEEE Transactions on Software Engineering, abbreviated IEEE Trans. Soft. Eng.; pub-
lished by the IEEE.

� IEEE Transactions on Computers, abbreviated IEEE Trans. Comput.; published by the
IEEE.

� IEEE Transactions on Parallel & Distributed Systems, abbreviated IEEE Trans. Par.
Dist. Syst.; published by the IEEE.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 469

� Concurrency and Computation: Practice & Experience; published by John Wiley &
Sons.

� Quantum Information & Computation, abbreviated Quant. Inf. Comput.; published by
Rinton Press.

� International Journal of Quantum Information, abbreviated Int. J. Quant. Inf.; published
by World Scientific.

� Quantum Computers and Computing; published by the Russian Academy of Science.

� Journal of Computational Biology, abbreviated J. Comput. Biol.; published by Mary
Ann Liebert, Inc.

� �

The ditch-digging example [pp. 258–9] is due to A. Pnueli, and the child-having one
[p. 259: footnote] is based on a sentence appearing on page 17 of the following insightful
book (this is the original version; a new edition was published in 1995):

� F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, 1979.

There are three places in which to read in detail about parallel sorting algorithms [pp.
260–7]. The first, of course, is:

� D. E. Knuth, The Art of Computer Programming, vol. 3: Sorting and Searching, 2nd
edn, Addison-Wesley, 1998.

The second is the following survey:

� D. Bitton, D. J. DeWitt, D. K. Hsaio, and J. Menon, “A Taxonomy of Parallel Sorting,”
Comput. Surv. 16 (1984), pp. 287–318.

The third source for parallel sorting algorithms is the entire April 1985 issue (vol. C-34, no. 4)
of IEEE Transactions on Computers, which contains several articles on parallel sorting.

An influential paper on boolean networks [pp. 263–4] is:

� A. Borodin, “On Relating Time and Space to Size and Depth,” SIAM J. Comput. 6
(1977), pp. 733–44.

The odd-even sorting network [pp. 264–5] was invented by K. E. Batcher and is described
in:

� K. E. Batcher, “Sorting Networks and their Applications,” Proc. 1968 Spring Joint
Comput. Conf., AFIPS Press, pp. 307–14, 1968.

The logarithmic-time sorting network with O(N × log N) processors [pp. 264–5], some-
times called the AKS network, after its inventors (not to be confused with the inventors of the
AKS primality algorithm), appears in:

� M. Ajtai, J. Komlós, and E. Szemerédi, “Sorting in c log n Parallel Steps,” Combina-
torica 3 (1983), pp. 1–19.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

470 Bibliographic Notes

The optimal sorting network [pp. 264–5] is based on the AKS network and appears in:

� T. Leighton, “Tight Bounds on the Complexity of Parallel Sorting,” IEEE Trans. Com-
put. C-34 (1985), pp. 344–54.

An excellent survey of the AKS network and related issues is:

� N. Pippenger, “Communication Networks,” in Handbook of Theoretical Computer Sci-
ence, vol. A, J. van Leeuwen, ed., Elsevier and MIT Press, 1990, pp. 805–33.

A relatively early survey of parallel algorithms on graphs, including ones for finding
minimal spanning trees and traveling salesman paths, is:

� M. J. Quinn and N. Deo, “Parallel Graph Algorithms,” Comput. Surv. 16 (1984),
pp. 319–48.

Systolic networks [pp. 265–8] were first studied in:

� H. T. Kung, “Let’s Design Algorithms for VLSI Systems,” Proc. Conf. Very Large Scale
Integration: Architecture, Design, Fabrication, California Inst. Tech., pp. 65–90, 1979.

� H. T. Kung and C. E. Leiserson, “Algorithms for VLSI Processor Arrays,” in Introduc-
tion to VLSI Systems, C. Mead and L. Conway, eds., Addison-Wesley, 1980, pp. 271–92.

A good exposition is:

� H. T. Kung, “Why Systolic Architectures?” Computer 15-1 (1982), pp. 37–46.

The results about the limitations of parallelism when it comes to actually configuring
processors in three-dimensional space [p. 269] appear in:

� P. M. B. Vitányi, “Locality, Communication and Interconnect Length in Multicomput-
ers,” SIAM J. Comput. 17 (1988), pp. 659–72.

The parallel computation thesis [pp. 270–1] was first proposed in:

� A. K. Chandra and L. J. Stockmyer, “Alternation,” Proc. 17th IEEE Symp. on Founda-
tions of Computer Science, IEEE Press, pp. 98–108, 1976.

Additional evidence for it appears in:

� L. M. Goldschlager, “A Universal Interconnection Pattern for Parallel Computers,” J.
Assoc. Comput. Mach. 29 (1982), pp. 1073–86.

An important paper leading to this thesis is:

� V. R. Pratt and L. J. Stockmeyer, “A Characterization of the Power of Vector Machines,”
J. Comput. Syst. Sci. 12 (1976), pp. 198–221.

The class NC [pp. 271–2], Nick’s Class, is named after N. Pippenger, who first defined and
investigated it. The two relevant papers are:

� N. Pippenger, “On Simultaneous Resource Bounds (preliminary version),” Proc. 20th
IEEE Symp. on Foundations of Computer Science, IEEE Press, pp. 307–11, 1979.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 471

� S. A. Cook, “Towards a Complexity Theory of Synchronous Parallel Computation,”
L’Enseignement Mathématique 27 (1981), pp. 99–124.

The following are detailed and informative surveys of results and open questions concerning
NC and several of its interesting subclasses:

� S. A. Cook, “A Taxonomy of Problems with Fast Parallel Algorithms,” Inf. and Cont.
64 (1985), pp. 2–22.

� D. S. Johnson, “A Catalog of Complexity Classes,” in Handbook of Theoretical Com-
puter Science, vol. A, J. van Leeuwen, ed., Elsevier and MIT Press, 1990, pp. 67–161.

� R. M. Karp and V. Ramachandran, “Parallel Algorithms for Shared-Memory Machines,”
in Handbook of Theoretical Computer Science, vol. A, J. van Leeuwen, ed., Elsevier
and MIT Press, 1990, pp. 869–941.

Several solutions to mutual exclusion problems [pp. 274–6] are surveyed in many of the
books mentioned earlier. The solution presented here, both the two-processor version and the
general version [pp. 277–8], appears in:

� G. L. Peterson, “Myths about the Mutual Exclusion Problem,” Inf. Proc. Lett. 12 (1981),
pp. 115–16.

Safety and liveness [p. 278] are discussed in many of the books on concurrent protocols
listed above. The early papers on these include:

� L. Lamport, “Proving the Correctness of Multiprocess Programs,” IEEE Trans. Soft.
Eng. SE-3 (1977), pp. 125–43.

� S. Owicki and L. Lamport, “Proving Liveness Properties of Concurrent Programs,”
ACM Trans. Prog. Lang. Syst. 4 (1982), pp. 455–95.

Here are some more of the basic papers that discuss correctness proofs for concurrent
protocols [pp. 279–80]:

� S. Owicki and D. Gries, “Verifying Properties of Parallel Programs: An Axiomatic
Approach,” Comm. Assoc. Comput. Mach. 19 (1976), pp. 279–85.

� K. R. Apt, N. Francez, and W. P. de Roever, “A Proof System for Communicating
Sequential Processes,” ACM Trans. Prog. Lang. Syst. 2 (1980), pp. 359–85.

� J. Misra and K. M. Chandy, “Proofs of Networks of Processes,” IEEE Trans. Soft. Eng.
SE-7 (1981), pp. 417–26.

A good survey is:

� L. Lamport and N. Lynch, “Distributed Computing: Models and Methods,” in Handbook
of Theoretical Computer Science, vol. A, J. van Leeuwen, ed., Elsevier and MIT Press,
1990, pp. 1157–99.

Temporal logic [pp. 280–1] was suggested for use in the context of algorithmic specification
and verification in:

� A. Pnueli, “The Temporal Semantics of Concurrent Programs,” Theor. Comput. Sci. 13
(1981), pp. 45–60.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

472 Bibliographic Notes

The following books discuss temporal logic in detail:

� Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems:
Specification, Springer-Verlag, 1992.

� D. M. Gabbay, I. Hodkinson, and M. Reynolds, Temporal Logic: Mathematical Foun-
dations and Computational Aspects, vol. 1, Oxford University Press, 1994.

� D. M. Gabbay, M. A. Reynolds, and M. Finger, Temporal Logic: Mathematical Foun-
dations and Computational Aspects, vol. 2, Oxford University Press, 2000.

Here are some detailed surveys of temporal logic and its uses:

� A. Pnueli, “Applications of Temporal Logic to the Specification and Verification of
Reactive Systems: A Survey of Current Trends,” in Current Trends in Concurrency,
J. de Bakker et al., eds., Lecture Notes in Computer Science, vol. 224, Springer-Verlag,
pp. 510–84, 1986.

� E. A. Emerson, “Temporal and Modal Logic,” in Handbook of Theoretical Computer
Science, vol. B, J. van Leeuwen, ed., Elsevier and MIT Press, 1990, pp. 995–1072.

An interesting recent approach to dealing with concurrency, which is different from tem-
poral logic, can be found in:

� V. R. Pratt, “Modelling Concurrency with Partial Orders,” Int. J. Parallel Prog. 15
(1986), pp. 33–71.

There are many good places to read about the automatic verification of finite-state protocols
[p. 281]. Here are some:

� E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications,” ACM Trans. Prog. Lang.
Syst. 8 (1986), pp. 244–63.

� E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking, MIT Press, 2000.

� R. P. Kurshan, Computer-Aided Verification of Coordinating Processes: The Automata-
Theoretic Approach, Princeton University Press, 1995

The definitive reference on fairness in its various guises [pp. 281–3] is:

� N. Francez, Fairness, Springer-Verlag, 1986.

The dining philosophers problem [pp. 283–5] was introduced by E. W. Dijkstra and is
described, for example, in:

� E. W. Dijkstra, “Hierarchical Ordering of Sequential Processes,” Acta Inf. 1 (1971), pp.
115–38.

Solutions to it appear in many of the books on concurrency mentioned earlier. That there
is no fully distributed, fully symmetric solution with no new processors [pp. 284–5] was
observed in:

� N. A. Lynch, “Fast Allocation of Nearby Resources in a Distributed System,” Proc.
12th ACM Symp. on Theory of Computing, ACM Press, pp. 70–81, 1980.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 473

A good survey of the features present in many concurrent programming languages
[pp. 285–6] is:

� G. R. Andrews and F. B. Schneider, “Concepts and Notations for Concurrent Program-
ming,” Comput. Surv. 15 (1983), pp. 3–43.

Two extremely influential books on language constructs for concurrency are:

� R. Milner, A Calculus of Communicating Systems, Springer-Verlag, 1980.

� C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

Semaphores [pp. 285–6] were described in:

� E. W. Dijkstra, “Cooperating Sequential Processes,” in Programming Languages,
F. Genuys, ed., Academic Press, 1968.

Some of the earliest proposals pertaining to quantum computation [pp. 287–92] are:

� C. Bennett, “Logical Reversibility of Computation,” IBM J. Research and Development
17 (1973), pp. 525–32.

� P. Benioff, “The Computer as a Physical System: A Microscopic Quantum Mechanical
Hamiltonian Model of Computers as Represented by Turing Machines,” J. Stat. Phys.
22 (1980), pp. 563–91.

� R. Feynman, “Quantum Mechanical Computers,” Optics News 11 (1985), pp. 11–20.

� D. Deutsch, “Quantum Theory, the Church-Turing Principle, and the Universal Quan-
tum Computer,” Proc. R. Soc. London A400 (1985), pp. 97–117.

Some early results on the limitations of quantum parallelism [p. 289; footnote] appear in:

� R. Josza, “Characterizing Classes of Functions Computable by Quantum Parallelism,”
Proc. R. Soc. London A435 (1991), pp. 563–74.

The
√

N quantum search algorithm [p. 290] was described in:

� L. Grover, “A Fast Quantum Mechanical Algorithm for Database Search,” Proc. 28th
Ann. ACM Symp. on Theory of Computing, ACM Press, pp. 212–19, 1996.

Shor’s polynomial-time quantum factoring algorithm [pp. 290–1] is from:

� P. Shor, “Algorithms for Quantum Computation: Discrete Logarithms and Factoring,”
Proc. 35th IEEE Ann. Symp. on Foundations of Computer Science, IEEE Press, pp.
124–34, 1994.

� P. Shor, “Polynomial-time Algorithms for Prime Factorization and Discrete Logarithms
on a Quantum Computer,” SIAM J. Comp. 26 (1997), pp. 1484–509.

Shor’s work is based on:

� D. Simon, “On the Power of Quantum Computation,” Proc. 35th Ann. IEEE Symp. on
Foundations of Computer Science, IEEE Press, pp. 116–23, 1994.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

474 Bibliographic Notes

There is quite a lot of information on the difficulties of building a quantum computer
[pp. 291–2] in the books and surveys listed at the beginning of the notes for this chapter. The
7-qubit machine [p. 291] is described in:

� E. Knill, R. Laflamme, R. Martinez, and C.-H. Tseng, “An Algorithmic Benchmark for
Quantum Information Processing,” Nature 404 (2000), pp. 368–70.

The first molecular computation, solving a seven-city instance of the traveling salesman
problem [p. 292], was carried out by L. M. Adelman, and reported upon in:

� L. M. Adelman, “Molecular Computation of Solutions to Combinatorial Problems,”
Science 266 (1994), pp. 1021–4.

See also:

� L. M. Adelman, “Computing with DNA,” Scientific American 279 :2 (1998), pp. 54–61.

The stronger results regarding NP-complete problems in general [p. 292] appear in:

� R. J. Lipton, “DNA Solution of Hard Computational Problems,” Science 268 (1994),
pp. 542–5.

Some results on the energy-saving potential of molecular computers appear in:

� E. Baum, “Building an Associative Memory Vastly Larger Than the Brain,” Science
268 (1995), pp. 583–5.

� Chapter 11

Many of the books on algorithms listed in the notes for earlier chapters contain material
on probabilistic algorithms and the probabilistic analysis of conventional algorithms. The
following concentrate on these topics:

� R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press,
1995.

� N. Alon and J. H. Spencer, The Probabilistic Method, 2nd edn, John Wiley & Sons,
2000.

� M. Hofri, Probabilistic Analysis of Algorithms, Springer-Verlag, 1987.

As far as periodicals go, the ones listed in the general section and in the notes for Chapter
2 are relevant here too.

� �

The probabilistic solutions to the dining philosophers problem [pp. 298–301], including
the argument that the first one admits lockouts [pp. 299–300], appear in:

� D. Lehmann and M. O. Rabin, “The Advantages of Free Choice: A Symmetric and
Fully Distributed Solution to the Dining Philosophers Problem,” Proc. 8th ACM Symp.
on Principles of Programming Languages, ACM Press, pp. 133–8, 1981.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 475

That the primality problem is in NP [p. 303] is shown in:

� V. R. Pratt, “Every Prime has a Succint Certificate,” SIAM J. Comput. 4 (1975),
pp. 214–20.

The primality-testing algorithm that runs in polynomial time but depends on the extended
Riemann hypothesis [p. 303] appears in:

� G. L. Miller, “Riemann’s Hypothesis and Tests for Primality,” J. Comput. Syst. Sci. 13
(1976), pp. 300–17.

The O(N O(log log N)) algorithm for the problem [p. 303] appears in:

� L. Adelman, C. Pomerance, and R. S. Rumely, “On Distinguishing Prime Numbers
from Composite Numbers,” Ann. Math. 117 (1983), pp. 173–206.

The polynomial-time algorithm for primality (the AKS algorithm) [p. 303], was presented
in:

� M. Agrawal, N. Kayal, and N. Saxena, “PRIMES is in P,” manuscript, August 2002.

The first papers containing nontrivial randomized, probabilistic algorithms appear to be
the following, containing the two independent algorithms for testing primality [pp. 304–7].

� M. O. Rabin, “Probabilistic Algorithm for Testing Primality,” J. Number Theory 12
(1980), pp. 128–38.

� R. Solovay and V. Strassen, “A Fast Monte-Carlo Test for Primality,” SIAM J. Comput.
6 (1977), pp. 84–5.

A preliminary version of Rabin’s algorithm appeared in the following influential paper:

� M. O. Rabin, “Probabilistic Algorithms,” in Algorithms and Complexity: Recent Results
and New Directions, J. F. Traub, ed., Academic Press, pp. 21–40, 1976.

Two important papers on nonprobabilistic pattern matching [p. 313] are:

� D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast Pattern Matching in Strings,” SIAM J.
Comput. 6 (1977), pp. 323–50.

� R. S. Boyer and J. S. Moore, “A Fast String Searching Algorithm,” Comm. Assoc.
Comput. Mach. 20 (1977), pp. 762–72.

The probabilistic fingerprinting algorithm for the problem [pp. 308–9] appears in:

� R. M. Karp and M. O. Rabin, “Efficient Randomized Pattern-Matching Algorithms,”
IBM J. Res. Dev. 31 (1987), pp. 249–60.

The following paper surveys pattern-matching algorithms, including the two mentioned
above:

� A. V. Aho, “Algorithms for Finding Patterns in Strings,” in Handbook of Theoretical
Computer Science, vol. A, J. van Leeuwen, ed., Elsevier and MIT Press, 1990, pp.
255–300.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

476 Bibliographic Notes

The following paper contains a short, but informative, survey of the various approaches to
probabilistic algorithms:

� R. M. Karp, “Combinatorics, Complexity, and Randomness,” Comm. Assoc. Comput.
Mach. 29 (1986), pp. 98–109.

An influential paper on probabilistic Turing machines and probabilistic complexity classes
[p. 310] is:

� J. Gill, “Computational Complexity of Probabilistic Turing Machines,” SIAM J. Com-
put. 6 (1977), pp. 675–95.

Here are three good places to read about these complexity classes and their interrelation-
ships:

� D. S. Johnson, “A Catalog of Complexity Classes,” in Handbook of Theoretical Com-
puter Science, vol. A, J. van Leeuwen, ed., Elsevier and MIT Press, 1990, pp. 67–161.

� S. Zachos, “Robustness of Probabilistic Computational Complexity Classes under Def-
initional Perturbations,” Inf. and Cont. 54 (1982), pp. 143–54.

� U. Schöning, Complexity and Structure, Lecture Notes in Computer Science, vol. 211,
Springer-Verlag, 1986.

Important work towards providing proof methods for verifying probabilistic algorithms
[p. 311] appears in:

� D. Kozen, “Semantics of Probabilistic Programs,” J. Comput. Syst. Sci. 22 (1981),
pp. 328–50.

� D. Lehmann and S. Shelah, “Reasoning with Time and Chance,” Inf. and Cont. 53
(1982), pp. 165–98.

� S. Hart, M. Sharir, and A. Pnueli, “Termination of Probabilistic Concurrent Programs,”
ACM Trans. Prog. Lang. Syst. 5 (1983), pp. 352–80.

� Y. A. Feldman and D. Harel, “A Probabilistic Dynamic Logic,” J. Comput. Syst. Sci.
28 (1984), pp. 193–215.

� Y. A. Feldman, “A Decidable Propositional Probabilistic Dynamic Logic with Explicit
Probabilities,” Inf. and Cont. 63 (1984), pp. 11–38.

That problems in RP have polynomial-sized boolean circuits [p. 312] is proved in:

� L. Adleman, “Two Theorems on Random Polynomial Time,” Proc. 19th IEEE Symp.
on Foundations of Computer Science, IEEE Press, pp. 75–83, 1978.

An interesting paper that discusses the two approaches to probabilism in algorithmics and
their relationship [p. 312] is:

� A. C. Yao, “Probabilistic Computations: Towards a Unified Measure of Complexity,”
Proc. 18th IEEE Symp. on Foundations of Computer Science, IEEE Press, pp. 222–7,
1977.

An early and extremely influential paper related to random and pseudo-random numbers
[pp. 312–13] is:

� A. Kolmogorov, “Three Approaches to the Concept of the Amount of Information,”
Probl. Inf. Transm. 1 (1965), pp. 1–7.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 477

Information about pseudo-random numbers in the polynomial-time sense discussed in the
text [p. 313] can be found in:

� A. Shamir, “On the Generation of Cryptographically Secure Pseudo-Random Se-
quences,” ACM Transactions on Computer Systems 1 (1983), pp. 38–44.

� A. C. Yao, “Theory and Applications of Trapdoor Functions,” Proc. 23rd IEEE Symp.
on Foundations of Computer Science, IEEE Press, pp. 80–91, 1982.

� M. Blum and S. Micali, “How to Generate Cryptographically Strong Sequences of
Pseudo-Random Bits,” SIAM J. Comput. 13 (1984), pp. 850–64.

Detailed accounts of random and pseudo-random numbers appear in:

� D. E. Knuth, The Art of Computer Programming, vol. 2: Seminumerical Algorithms,
3rd edn, Addison-Wesley, 1997.

� O. Goldreich and L. Lovasz, Modern Cryptography, Probabilistic Proofs and Pseudo-
randomness, Springer-Verlag, 1999.

An interesting exposition of some related issues is:

� G. J. Chaitin, “Randomness and Mathematical Proof,” Scientific American 232:5 (1975),
pp. 47–52.

� Chapter 12

There are many books that deal extensively with cryptography. Here are some of the ones
that provide good treatment of the scientific aspects of the topic:

� A. G. Konheim, Cryptography: A Primer, John Wiley & Sons, 1981.

� D. E. R. Denning, Cryptography and Data Security, Addison-Wesley, 1982.

� O. Goldreich and L. Lovasz, Modern Cryptography, Probabilistic Proofs and Pseudo-
randomness , Springer-Verlag, 1999.

� O. Goldreich, Foundations of Cryptography: Basic Tools, Cambridge University Press,
2001.

A very useful survey article is:

� R. L. Rivest, “Cryptography,” in Handbook of Theoretical Computer Science, vol. A,
J. van Leeuwen, ed., Elsevier and MIT Press, 1990, pp. 717–55.

There are several periodicals that publish papers on cryptography. Two that are devoted to
the subject are:

� Journal of Cryptology, abbreviated J. Crypt.; published by Springer-Verlag.

� Cryptologia; published by the United States Military Academy.

� �

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

478 Bibliographic Notes

Public-key cryptography [pp. 318–21], together with the idea of using the scheme for
signatures [pp. 321–2], was proposed in the following important paper:

� W. Diffie and M. Hellman, “New Directions in Cryptography,” IEEE Trans. Inform.
Theory IT-22 (1976), pp. 644–54.

The RSA cryptosystem [pp. 321–4] is named after its inventors, and appears in:

� R. L. Rivest, A. Shamir, and L. M. Adleman, “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,” Comm. Assoc. Comput. Mach. 21 (1978),
pp. 120–6.

The version that is provably as difficult to crack as it is to factor large numbers [p. 323]
appears in:

� M. O. Rabin, “Digitalized Signatures and Public-Key Functions as Intractable as
Factorization,” Technical Report MIT/LCS/TR-212, Mass. Inst. of Tech., Cambridge,
MA, 1979.

An early expository survey of public-key cryptography is:

� M. E. Hellman, “The Mathematics of Public-Key Cryptography,” Scientific American
241:2 (1979), pp. 146–57.

The card-dealing protocol [pp. 324–6] appears in:

� A. Shamir, R. L. Rivest, and L. M. Adleman, “Mental Poker,” in The Mathematical
Gardner, D. A. Klarner, ed., Wadsworth International, Belmont, CA, 1981.

That information might leak when cryptographic functions, such as the RSA ones, are used
naively in the card dealing protocol [p. 326] was shown in:

� R. J. Lipton, “How to Cheat at Mental Poker,” Proc. AMS Short Course on Cryptology,
American Mathematical Society, 1981.

A more complex probabilistic protocol for dealing cards, which does not suffer from these
drawbacks, appears in the following paper:

� S. Goldwasser and S. Micali, “Probabilistic Encryption,” J. Comput. Syst. Sci. 28 (1984),
pp. 270–99.

Three of the many interesting “how to” papers on cryptographic protocols, secret-keeping
protocols and similar issues are:

� A. Shamir, “How to Share a Secret,” Comm. Assoc. Comput. Mach. 22 (1979),
pp. 612–13.

� M. Blum, “How to Exchange (Secret) Keys,” ACM Trans. Comput. Syst. 1 (1983),
pp. 175–93.

� A. C. Yao, “How to Generate and Exchange Secrets,” Proc. 27th IEEE Symp. on Foun-
dations of Computer Science, IEEE Press, pp. 162–7, 1986.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 479

Interactive proofs and zero-knowledge protocols [pp. 327–29] were first considered in:

� S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity of Interactive
Proof Systems,” SIAM J. Comput. 18 (1989), pp. 186–208.

For the proof that IP = PSPACE [p. 328], one has to read the following two papers:

� C. Lund, L. Fortnow, H. Karloff, and N. Nisan, “Algebraic Methods for Interactive
Proof Systems,” J. Assoc. Comput. Mach. 39 (1992), pp. 859–68.

� A. Shamir, “IP = PSPACE,” J. Assoc. Comput. Mach. 39 (1992), pp. 869–77.

The zero-knowledge approach to playing Where’s Waldo is from:

� M. Naor, Y. Naor, and O. Reingold, “Applied Kid Cryptography, or How to Convince
Your Children That You Are Not Cheating,” unpublished manuscript, 1999.

The zero-knowledge protocol for three-coloring a graph [pp. 329–32] appears in:

� O. Goldreich, S. Micali, and A. Wigderson, “Proofs that Yield Nothing But Their
Validity, or All Languages in NP Have Zero-Knowledge Proof Systems,” J. Assoc.
Comput. Mach. 38 (1991), pp. 691–729.

One of the most important papers on probabilistically checkable proofs [pp. 332–3] is:

� U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy, “Approximating Clique
is Almost NP-complete,” J. Assoc. Comput. Mach., 43 (1996), pp. 268–92.

The ultimate result on these, that problems in NP can be checked using only a constant
number of probed bits, is from:

� S. Arora and S. Safra, “Probabilistic Checking of Proofs: A New Characterization of
NP,” J. Assoc. Comput. Mach., 45 (1998), pp. 70–122.

� Chapter 13

There are many books devoted to the various aspects of software engineering. The two most
popular ones are:

� R. S. Pressman, Software Engineering: A Practitioner’s Approach, 5th edn, McGraw-
Hill, 2001.

� I. Sommerville, Software Engineering, 6th edn, Addison-Wesley, 2000.

The following books focus on object-oriented software engineering:

� B. Liskov with J. Guttag, Program Development in Java: Abstraction, Specification,
and Object-Oriented Design, Addison-Wesley, 2000.

� B. Meyer, Object-Oriented Software Construction, 2nd edn, Prentice-Hall, 1997.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

480 Bibliographic Notes

� I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard, Object-Oriented Software
Engineering: A Use Case Driven Approach, Addison-Wesley, 1992.

� B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering: Conquering
Complex and Changing Systems, Prentice-Hall, 2000.

The following book concentrates on the economic aspects of software development:

� B. W. Boehm, Software Engineering Economics, Prentice-Hall, 1981.

For many years, F. P. Brooks managed some of IBM’s largest software projects, including
the OS/360 mainframe operating system. His insights from this experience (both good and
bad, including the infamous “multi-million dollar mistake”) are discussed in his influential
book:

� F. P. Brooks, Jr., The Mythical Man-Month: Essays on Software Engineering, special
anniversary edn, Addison-Wesley, 1995.

The following journals publish articles on software engineering:

� IEEE Transactions on Software Engineering, abbreviated IEEE Trans. Soft. Eng.; pub-
lished by the IEEE.

� ACM Transactions on Software Engineering and Methodology, abbreviated ACM Trans.
Soft. Eng. Meth., or simply TOSEM; published by the ACM.

� IEEE Software; published by the IEEE.

� Advances in Engineering Software, abbreviated Adv. in Eng. Soft.; published by Elsevier.

� Information and Software Technology, abbreviated Inf. Soft. Tech.; published by Else-
vier.

� Software: Practice and Experience, abbreviated Softw. Pract. Exp.; published by John
Wiley & Sons.

� International Journal on Software Tools for Technology Transfer, abbreviated Int. J.
Soft. Tools for Tech. Transfer, or simply STTT; published by Springer-Verlag.

� Software and System Modeling, abbreviated Soft. Syst. Modeling, or simply SoSyM;
published by Springer-Verlag.

A collection of computer-related failures, categorized and analyzed, appears in:

� P. G. Neumann, Computer-Related Risks, Addison-Wesley, 1995.

The following monthly column reports on computer-related risks:

� “Inside Risks,” Comm. Assoc. Comput. Mach., ACM Press.

An analysis of technology-related accidents used to outline a methodology for building
safety-critical systems is:

� N. G. Leveson, Safeware: System Safety and Computers, Addison-Wesley, 1995.

� �

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 481

The “executive programmers” anecdote, [p. 337] is from page 124 of:

� G. M. Weinberg, The Psychology of Computer Programming: Silver Anniversary Edi-
tion, Dorset House, 1998.

Extreme programming [pp. 350–1] is discussed in a number of books. The first introduction
to the topic is:

� K. Beck, Extreme Programming Explained, Addison-Wesley, 2000.

A critical evaluation of extreme programming is:

� P. McBreen, Questioning Extreme Programming, Addison-Wesley, 2003.

The concept of refactoring [pp. 350–1] is introduced in:

� M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley, 2000.

The idea of comparing refactoring to paying off debts [p. 350] is due to W. Cunningham,
and is quoted on page 222 of:

� A. Cockburn, Agile Software Development, Addison-Wesley, 2002.

The technique of pair programming [p. 351] is discussed in depth in:

� L. Williams and R. Kessler, Pair Programming Illuminated, Addison-Wesley, 2003.

Psychological issues in software development [pp. 352–3] were introduced in the first
edition of Weinberg’s book mentioned above, which although first published in 1971 is as
relevant now as it was then. Other books on the topic include:

� G. M. Weinberg, Understanding the Professional Programmer, Dorset House, 1988.

� T. DeMarco and T. Lister, Peopleware: Productive Projects and Teams, 2nd edn, Dorset
House, 1999.

� L. L. Constantine, The Peopleware Papers: Notes on the Human Side of Software,
Prentice-Hall, 2001.

The “vending machines” anecdote [p. 352] is from page 49 of:

� G. M. Weinberg, The Psychology of Computer Programming: Silver Anniversary Edi-
tion, Dorset House, 1998.

The philosophy behind agile methodologies [p. 352] is explained in Cockburn’s book
mentioned above.

A view of programmers as individual craftsmen, rather than interchangeable elements in
a production line [p. 352], is:

� P. McBreen, Software Craftsmanship: The New Imperative, Addison-Wesley, 2000.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

482 Bibliographic Notes

An early influential book on ethical aspects of programming [p. 353], written after
J. Weizenbaum became dismayed by the way people anthropomorphized his ELIZA program
(discussed in Chapter 15), is:

� J. Weizenbaum, Computer Power and Human Reason: From Judgment to Calculation,
W. H. Freeman, 1976.

An engaging yet thought-provoking introduction to professional ethics in software devel-
opment, which also contains extensive further bibliographic references on this topic, is:

� R. G. Epstein, The Case of the Killer Robot, John Wiley & Sons, 1997.

� Chapter 14

Some of the general books on software engineering listed in the notes for Chapter 13 contain
material relevant to reactive systems too. Here are some books that concentrate on the special
difficulties arising in the development of such systems:

� Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems:
Specification, Springer-Verlag, 1992.

� N. Halbwachs, Synchronous Programming of Reactive Systems, Kluwer Academic Pub-
lishers, 1993.

� D. Harel and M. Politi, Modeling Reactive Systems with Statecharts: The Statemate
Approach, McGraw-Hill, 1998.

� R. J. Wieringa, Design Methods for Reactive Systems: Yourdon, Statemate, and the
UML, Morgan Kaufmann, 2002.

� K. Schneider, Verification of Reactive Systems: Formal Methods and Algorithms,
Springer-Verlag, 2003.

The periodicals mentioned in the notes for Chapter 13 publish papers on reactive systems
too.

� �

The term “reactive system” [pp. 357–8] was first discussed in the following papers:

� D. Harel and A. Pnueli, “On the Development of Reactive Systems,” in Logics and
Models of Concurrent Systems, K. R. Apt, ed., NATO ASI Series, vol. F-13, Springer-
Verlag, pp. 477–98, 1985.

� A. Pnueli, “Applications of Temporal Logic to the Specification and Verification of
Reactive Systems: A Survey of Current Trends,” in Current Trends in Concurrency,
J. de Bakker et al., eds., Lecture Notes in Computer Science, vol. 224, Springer-Verlag,
pp. 510–84, 1986.

Visual formalisms [pp. 358–9] are discussed in:

� D. Harel, “On Visual Formalisms,” Comm. Assoc. Comput. Mach. 31 (1988), pp. 514–
30.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 483

Petri nets [p. 359] were invented by C. A. Petri, and were first described in his influential
thesis:

� C. A. Petri, Kommunikation mit Automaten, PhD thesis, Institut für Instrumentelle
Mathematik, Bonn, 1962.

There are many books and papers about them; two of the best accounts are:

� W. Reisig, Petri Nets: An Introduction, Springer-Verlag, 1985.

� W. Reisig, Elements of Distributed Algorithms: Modeling and Analysis with Petri Nets,
Springer-Verlag, 1998.

SDL diagrams [p. 359] were part of a 1976 standard originating in the International
Telecommunication Union (ITU; formerly the CCITT). For an updated version, see:

� “ITU-T Recommendation Z.100: Formal Description Techniques (FDT)—
Specification and Description Language (SDL),” International Telecommunication
Union (ITU), Geneva, 1999.

Esterel [p. 359] was described in:

� G. Berry and G. Gonthier, “The Esterel Synchronous Programming Language: Design,
Semantics, Implementation,” Sci. Comput. Program. 19 (1992), pp. 87–152.

See also:

� G. Berry, “The Foundations of Esterel,” in Proof, Language, and Interaction: Essays in
Honour of Robin Milner, G. Plotkin, C. Stirling, and M. Tofte, eds., MIT Press, 2000,
pp. 425–54.

Lustre [p. 359] is described in:

� P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice, “Lustre: A Declarative Language for
Programming Synchronous Systems,” Proc. 14th Symp. on Principles of Programming
Languages, ACM Press, pp. 178–88, 1987.

� N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud, “The Synchronous Dataflow Pro-
gramming Language Lustre, Proc. of the IEEE 79 (1991), pp. 1305–20.

A detailed account can be found in Halbwach’s book cited earlier.
Signal [p. 359] was described in:

� A. Benveniste and P. Le Guernic, “Hybrid Dynamical Systems Theory and the Signal
Language,” IEEE Trans. on Automatic Control, AC-35 (1990), pp. 535–46.

A good survey of it can be found in:

� P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire, “Programming Real-Time
Applications with Signal,” Proc. of the IEEE 79 (1991), pp. 1321–36.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

484 Bibliographic Notes

An interesting account of such so-called synchronous languages can be found in:

� A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic and R. de Simone,
“The Synchronous Languages Twelve Years Later,” Proc. of the IEEE 91 (2003), pp. 64–
83.

Two extremely influential approaches to specifying concurrency and interaction (which
are therefore directly relevant to reactivity) are CSP and CCS. They are due, respectively, to
C. A. R. Hoare and R. Milner. They are described in detail in these authors’ books, listed in
the notes for Chapter 10.

Statecharts [pp. 359–62] were introduced in the following paper, which also discusses the
drawbacks of classical state diagrams and contains (a more intricate version of) the digital
watch example [pp. 360–2]:

� D. Harel, “Statecharts: A Visual Formalism for Complex Systems,” Sci. Comput. Prog.
8 (1987) pp. 231–74.

There are several full-fledged computerized tools that are able to execute system models
based on visual formalisms and to generate running code from them [p. 359]. The earliest
was released in 1987, and is described in:

� D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtul-Trauring,
and M. Trakhtenbrot, “STATEMATE: A Working Environment for the Development
of Complex Reactive Systems,” IEEE Trans. on Software Engineering 16 (1990),
pp. 403–14.

The discussion of model execution and code generation [pp. 362–5] is adapted from:

� D. Harel, “Biting the Silver Bullet: Toward a Brighter Future for System Development,”
Computer 25:1 (1992), IEEE Press, pp. 8–20.

Verification of complex reactive behavior [pp. 364–5] is discussed in Schneider’s book
listed earlier. Here are a few of the many papers on the subject:

� N. Bjorner et al., “STeP: Deductive-Algorithmic Verification of Reactive and Real-time
Systems,” Proc. Int. Conf. on Computer Aided Verification, Lecture Notes in Computer
Science, vol. 1102, Springer-Verlag, pp. 415–18, 1996.

� T. Bienmller, W. Damm, and H. Wittke, “The STATEMATE Verification Environment—
Making it Real,” Proc. 12th Int. Conf. on Computer Aided Verification, Lecture Notes
in Computer Science, vol. 1855, Springer-Verlag, pp. 561–7, 2000.

� F. Levi, “Compositional Verification of Quantitative Properties of Statecharts,” J. of
Logic and Computation 11 (2001), pp. 829–78.

A system that records histories that include causes, and can thus help debugging systems
by answering “why,” “why not,” and “what if” questions [p. 364], is described in:

� Y. A. Feldman and H. Schneider, “Simulating Reactive Systems by Deduction,” ACM
Trans. Soft. Eng. Meth. 2 (1993), pp. 128–75.

Object-oriented modeling, with its use of object model diagrams and statecharts [pp. 366–
7], was given a significant push by the following two influential books:

� J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorenson, Object-Oriented
Modeling and Design, Prentice-Hall, 1990.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 485

� G. Booch, Object-Oriented Analysis and Design with Applications, 2nd edn, Addison-
Wesley, 1993.

The first tools that were able to execute object-oriented models based on visual formalisms
and to generate running code from them, were ObjecTime and Rhapsody. They are described,
respectively, in:

� B. Selic, G. Gullekson, and P. T. Ward, Real-Time Object-Oriented Modeling, John
Wiley & Sons, 1994.

� D. Harel and E. Gery, “Executable Object Modeling with Statecharts,” Computer 30:7
(1997), IEEE Press, pp. 31–42.

Message sequence charts (MSCs) [pp. 368–9] were developed as a standard by the In-
ternational Telecommunication Union (ITU; formerly the CCITT). A recent report on them
appears in:

� “ITU-TS Recommendation Z.120: Formal Description Techniques (FDT)—Message
Sequence Chart (MSC),” International Telecommunication Union (ITU), Geneva, 1996.

Use cases are described and discussed extensively in:

� I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard, Object-Oriented Software
Engineering: A Use Case Driven Approach, Addison-Wesley, 1992.

Live sequence charts (LSCs) [pp. 370–3] were defined in the following paper, which also
discusses the drawbacks of MSCs in specifying actual system behavior:

� W. Damm and D. Harel, “LSCs: Breathing Life into Message Sequence Charts,” Formal
Methods in System Design 19 (2001), pp. 45–80.

Play-in, play-out, and the Play-Engine tool [pp. 373–5] are described in detail in:

� D. Harel and R. Marelly, Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine, Springer-Verlag, 2003.

That book also defines extensions of LSCs for dealing with symbolic instances and time
[p. 374], and provides an operational semantics for the extended LSCs language.

Smart play-out [p. 374] is described in:

� D. Harel, H. Kugler, R. Marelly, and A. Pnueli, “Smart Play-Out of Behavioral Require-
ments,” Proc. 4th Int. Conf. on Formal Methods in Computer-Aided Design, Lecture
Notes in Computer Science, vol. 2517, Springer-Verlag, pp. 378–98, 2002.

There are many books on real-time systems [pp. 375–6]. Here are some:

� H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applica-
tions, Kluwer Academic Publishers, 1997.

� J. W. S. Liu, Real-Time Systems, Prentice-Hall, 2000.

� Q. Li with C. Yao, Real-Time Concepts for Embedded Systems, CMP Books, 2003.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

486 Bibliographic Notes

The MASS specification formalism for real-time systems [pp. 375–6] is from:

� V. Gafni, A. Yehudai, and Y. A. Feldman, “Activation-Oriented Specification of Real-
time Systems,” Proc. 3rd Int. School and Symposium on Formal Techniques in Real
Time and Fault Tolerant Systems, pp. 19–23, 1994.

The UML [pp. 376–7] is described in numerous books and papers, including the following:

� J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language Reference
Manual, Addison-Wesley, 1999.

� M. Fowler with K. Scott, UML Distilled: A Brief Guide to the Standard Object Modeling
Language, 2nd edn, Addison-Wesley, 1999.

Up-to-date versions of the UML are described in great detail on the website of the object
management group (OMG):

� http://www.omg.org

Some of the many attempts at providing parts of the UML with rigorous semantics
[pp. 376–7] appear in:

� R. Eshuis and R. J. Wieringa,“Requirements-Level Semantics for UML Statecharts,”
Proc. 4th Int. Conf. on Formal Methods for Open Object-Based Distributed Systems,
Kluwer, pp. 121–40, 2000.

� G. Reggio, M. Cerioli, and E. Astesiano, “Towards a Rigorous Semantics of UML Sup-
porting its Multiview Approach,” Fundamental Approaches to Software Engineering,
Lecture Notes in Computer Science, vol. 2029, Springer-Verlag, pp. 171–86, 2001.

� I. Ober, “An ASM Semantics of UML Derived from the Meta-model and Incorporat-
ing Actions,” Proc. 10th Int. Workshop on Abstract State Machines, Lecture Notes in
Computer Science, vol. 2589, Springer-Verlag, pp. 356–71, 2003.

� W. Damm, B. Josko, A. Pnueli, and A. Votintseva, “Understanding UML: A Formal
Semantics of Concurrency and Communication in Real-Time UML,” Proc. Formal
Methods for Components and Objects, Lecture Notes in Computer Science, vol. 2852,
Springer-Verlag, pp. 71–98, 2003.

Synthesizing state machines from rich behavioral requirements—most often from temporal
logic—is a topic that has been discussed extensively in the literature. Synthesizing from LSCs
[p. 377] was addressed in:

� D. Harel and H. Kugler, “Synthesizing State-Based Object Systems from LSC Speci-
fications,” Int. J. of Foundations of Computer Science 13 (2002), pp. 5–51.

Some of the possibilities raised by the idea of viewing biological systems as reactive
systems are discussed in:

� D. Harel, “A Grand Challenge for Computing: Full Reactive Modeling of a Multi-
Cellular Animal,” EATCS Bulletin, European Association for Theoretical Computer
Science, no. 81, pp. 226–35, 2003.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 487

� Chapter 15

There are numerous books on artificial intelligence (AI). Here are some:

� N. J. Nilsson, Artificial Intelligence: A New Synthesis, Morgan Kaufmann, 1998.

� P. H. Winston, Artificial Intelligence, 3rd edn, Addison-Wesley, 1992.

� E. Rich and R. Knight, Artificial Intelligence, 2nd edn, McGraw-Hill, 1990.

� S. Russel and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd edn, Prentice-
Hall, 2002.

� E. Charniak and D. McDermott, Introduction to Artificial Intelligence, Addison-Wesley,
1985.

� T. Dean, J. Allen, and Y. Aloimonos, Artificial Intelligence: Theory and Practice,
Pearson Education, 2002.

Two encyclopedic compilations of early articles on artificial intelligence are:

� The Handbook of Artificial Intelligence, 4 vols, A. Barr, P. R. Cohen, and E. A. Feigen-
baum, eds., Addison-Wesley, 1981, 1982, 1989.

� The Encyclopedia of Artificial Intelligence, 2 vols, 2nd edn, S. C. Shapiro, ed., John
Wiley & Sons, 1992.

A good early exposition of the subject is:

� D. L. Waltz, “Artificial Intelligence,” Scientific American 247:4 (1982), pp. 118–33.

In addition to these, there are numerous books and papers that discuss the social, philo-
sophical, and historical aspects of computerized intelligence. Some of the most interesting
and provocative of these are:

� J. R. Lucas, “Minds, Machines, and Gödel,” Philosophy 36 (1961), pp.112–17.

� H. Dreyfus, What Computers Can’t Do: The Limits of Artificial Intelligence, revised
edn, Harper & Row, 1979.

� H. Dreyfus, What Computers Still Can’t Do: A Critique of Artificial Reason, MIT Press,
1992.

� Y. Wilks, “Dreyfus’s Disproofs,”British J. Philos. Sci. 27 (1976), pp. 177–85.

� D. R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid, Basic Books, 1979.

� S. Turkle, The Second Self: Computers and the Human Spirit, Simon & Schuster, 1984.

� H. Gardner, Frames of Mind: The Theory of Multiple Intelligences , 10th edn, Basic
Books, 1993.

� J. V. Grabiner, “Computers and The Nature of Man: A Historian’s Perspective on
Controversies about Artificial Intelligence,” Bull. Amer. Math. Soc. 15 (1986), pp. 113–
26.

� R. Penrose, The Emperor’s New Mind: Concerning Computers, Minds, and the Laws
of Physics, Penguin Books, 1999.

� J. R. Searle, Minds, Brains, and Science, Harvard University Press, 1984.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

488 Bibliographic Notes

The following books contain some of the original papers in the field of AI, including
influential papers by A. Turing, A. Newell, M. Minsky, and H. A. Simon:

� Computers and Thought, E. A. Feigenbaum and J. Feldman, eds., McGraw-Hill, 1961.

� Semantic Information Processing, M. Minsky, ed., MIT Press, 1968.

� Readings in Artificial Intelligence, B. L. Webber and N. J. Nilsson, eds., Morgan Kauf-
mann, 1994.

� Readings in Knowledge Representation, R. J. Brachman and H. J. Levesque, eds.,
Morgan Kaufmann, 1985.

� Mind Design II: Philosophy, Psychology, and Artificial Intelligence, J. Haugeland, ed.,
MIT Press, 2000.

An influential early book is:

� A. Newell and H. A. Simon, Human Problem Solving, Prentice-Hall, 1972.

An interesting theory of intelligence, put forward by one of the founders of the field is
presented in:

� M. Minsky, The Society of Mind, Simon & Schuster, 1987.

An interesting account of the early history of AI is:

� P. McCorduck, Machines Who Think, W. H. Freeman & Co., 1979.

The following are some of the many periodicals that publish papers about AI:

� Artificial Intelligence, abbreviated Artif. Intel.; published by Elsevier.

� Cognitive Science, abbreviated Cogn. Sci.; published by the Cognitive Science Society,
Inc.

� Computational Intelligence, abbreviated Comput. Intel.; published by Blackwell.

� IEEE Transactions on Systems, Man and Cybernetics, abbreviated IEEE Trans. Syst.,
Man, Cybern.; published by the IEEE.

� IEEE Transactions on Pattern Analysis and Machine Intelligence, abbreviated IEEE
Trans. Pat. Anal. Mach. Intel.; published by the IEEE.

� International Journal of Pattern Recognition and AI, abbreviated Int. J. Patt. Recog.
AI; published by World Scientific.

� Computers and Artificial Intelligence, abbreviated Comput. Art. Intel.; published by the
Slovak Academy of Sciences.

In addition, the following publish short papers, anecdotes, and announcements relevant to
AI:

� ACM SIGART Newsletter; published by ACM’s Special Interest Group on Artificial
Intelligence.

� The AISB Quarterly; published by the Society for the Study of Artificial Intelligence
and the Simulation of Behaviour (SSAISB).

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 489

� �

The aphorism relating thinking computers to swimming submarines [p. 379] is due to E.
W. Dijkstra. The term artificial intelligence [p. 379] is generally believed to have been coined
by J. McCarthy in 1956. The two robot stories [p. 380] were related by a member of the AI
Laboratory at the Massachusetts Institute of Technology.

The following paper by Alan Turing is considered to be one of the most insightful and
fundamental papers on AI. It outlines and then counters several standard arguments against
AI [p. 381], and goes on to propose the Turing test [pp. 382–5]:

� A. M. Turing, “Computing Machinery and Intelligence,” Mind 59 (1950), pp. 433–60.
(Reprinted on pp. 11–35 of the aforementioned book, Computers and Thought).

Most of the books on AI contain discussions of the Turing test and elaborations thereof.
ELIZA [pp. 383–4] was written by J. Weizenbaum, and is described in the following influ-

ential paper:

� J. Weizenbaum, “ELIZA—A Computer Program for the Study of Natural Language
Communication between Man and Machine,” Comm. Assoc. Comput. Mach. 9 (1966),
pp. 36–45.

The hypothetical exchange concerning zupchoks [pp. 384–5] was inspired by a similar one
(concerning cyborgs) that appears on page 317 of:

� I. Pohl and A. Shaw, The Nature of Computation: An Introduction to Computer Science,
Computer Science Press, 1981.

Searle’s Chinese room argument [p. 385] was first presented in:

� J. Searle, “Minds, Brains, and Programs,” Behavioral and Brain Sciences 3 (1980),
pp. 417–57.

The AI books listed earlier discuss game playing and game trees [pp. 385–8] in detail. The
“artificial flight” analogy [p. 386] is taken from the first of the following two books, and also
appears in somewhat different form in the second:

� S. Russel and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd edn, Prentice-
Hall, 2002.

� R. A. Brooks, Cambrian Intelligence, MIT Press, 1999.

The following are collections of papers on game playing by computers, including papers
on chess, checkers, backgammon, Go, and other games:

� Chess, Computers, and Cognition, T. Marsland and J. Schaeffer, eds., Springer-Verlag,
1990.

� Computer Games, 2 vols., D. N. L. Levy, ed., Springer-Verlag, 1988.

An interesting expository article about computerized backgammon [p. 386] is:

� H. Berliner, “Computer Backgammon,” Scientific American 242:6 (1980), pp. 64–72.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

490 Bibliographic Notes

An account of the program beating the world champion in backgammon [p. 386] appears in:

� H. Berliner, “Backgammon Computer Program Beats World Champion,” Artif. Intel.
14 (1980), pp. 205–20.

The following extremely important early papers on computerized checkers [p. 386] describe
a system that actually learns:

� A. L. Samuel, “Some Studies in Machine Learning using the Game of Checkers,” IBM
J. Res. Develop. 3 (1959), pp. 211–29. (Reprinted on pp. 71–105 of the aforementioned
book, Computers and Thought.)

� A. L. Samuel, “Some Studies in Machine Learning using the Game of Checkers. II—
Recent Progress,” IBM J. Res. Develop. 11 (1967), pp. 601–17.

A candid account of the construction of the program Chinook and the events leading to its
becoming the checkers world champion, appears in:

� J. Schaeffer, One Jump Ahead: Challenging Human Supremacy in Checkers, Springer-
Verlag, 1997.

Good places to read about computerized chess [pp. 386–8], including the highly publicized
matches between Kasparov and Deep Blue, are:

� D. Levy and M. Newborn, How Computers Play Chess, Computer Science Press, 1991.

� B. Pandolfini, Kasparov and Deep Blue: The Historic Chess Match Between Man and
Machine, Fireside, 1997.

� M. Newborn, Deep Blue: An Artificial Intelligence Milestone, Springer-Verlag, 2003.

The story about searching for a contact lens [p. 388] was inspired by page 318 of Pohl and
Shaw’s book mentioned above.

Some of the early influential books on computerized vision and robotics [p. 389] are:

� D. Marr, Vision: A Computational Investigation into the Human Representation and
Processing of Visual Information, W. H. Freeman & Co., 1982.

� B. K. P. Horn, Robot Vision, MIT Press, 1986.

� S. Ullman, The Interpretation of Visual Motion, MIT Press, 1979.

� J. J. Craig, Introduction to Robotics: Mechanics and Control, Addison-Wesley, 1985.

� R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control, MIT Press,
1981.

More up-to-date books include:

� D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Prentice-Hall, 2002.

� S. Ullman, High-Level Vision: Object Recognition and Visual Cognition, MIT Press,
1996.

� R. Jain, R. Kasturi, and B. G. Schunck, Machine Vision, McGraw-Hill, 1995.

� V. S. Nalwa, A Guided Tour of Computer Vision, Addison-Wesley, 1993.

� O. Faugeras, Three-Dimensional Computer Vision: A Geometric Viewpoint, MIT Press,
1993.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 491

� P. J. McKerrow, Introduction to Robotics, Addison-Wesley, 1991.

� R. C. Arkin, Behavior-Based Robotics, MIT Press, 1998.

� R. R. Murphy, An Introduction to AI Robotics, MIT Press, 2000.

There are also many periodicals devoted to vision and robotics. Some examples are:

� International Journal of Computer Vision, abbreviated Int. J. Comput. Vis.; published
by Kluwer Academic Publishers.

� Computer Vision and Image Understanding; published by Elsevier.

� Journal of Robotic Systems, abbreviated J. Robot. Syst.; published by John Wiley &
Sons.

� International Journal of Robotics Research, abbreviated Int. J. Robot. Res.; published
by Sage Publications.

Virtually every textbook on AI discusses the minimax idea and its corresponding
algorithm—the alpha-beta procedure [pp. 390–2]. The term “alpha-beta procedure” appears
to be due to J. McCarthy, and the use of the minimax idea in searching goes back to Shannon’s
important paper:

� C. E. Shannon, “Programming of a Computer for Playing Chess,” Phil. Magazine 41
(1950), pp. 256–75.

A thorough and detailed account of heuristic search procedures, including their mathemat-
ical analysis and history, is:

� J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving,
Addison-Wesley, 1984.

The collection edited by Brachman and Levesque cited above is devoted to the problem
of knowledge representation [pp. 392–3], a topic discussed in many additional books and
papers.

The following contain a wealth of material on expert systems [pp. 393–4]:

� R. Duda and E. Shortliffe, “Expert Systems Research,” Science 220 (1983), pp. 261–8.

� Building Expert Systems, F. Hayes-Roth et al., eds., Addison-Wesley, 1983.

� D. A. Waterman, A Guide to Expert Systems, Addison-Wesley, 1986.

� P. Jackson, Introduction to Expert Systems, 3rd edn, Addison-Wesley, 1999.

� J. C. Giarratano, Expert Systems: Principles and Programming, 3rd edn, Brooks Cole,
1998.

The following books and collections of papers concentrate on computerized learning
[pp. 394–5]:

� T. Mitchell, Machine Learning, McGraw-Hill, 1987.

� S. M. Weiss and C. A. Kulikowsky, Computer Systems That Learn, Morgan Kaufmann,
1991.

� M. J. Kearns and U. V. Vazirani, An Introduction to Computational Learning Theory,
MIT Press, 1994.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

492 Bibliographic Notes

� Machine Learning: An Artificial Intelligence Approach, R. S. Michalski et al., eds.,
Tioga Publishing Co., 1983.

� Machine Learning: An Artificial Intelligence Approach, vol. II, R. S. Michalski et al.,
eds., Morgan Kaufmann Publishers, 1986.

Two influential early papers on computerized deduction [pp. 394–5] are:

� A. Newell and H. A. Simon, “The Logic Theory Machine,” IRE Trans. Infor. Theory
IT-2 (1956), pp. 61–79.

� H. Gelernter, “Realization of a Geometry Theorem-Proving Machine,” Proc. Western
Joint Computer Conf., WJCC, pp. 273–82, 1959.

The behavior-based approach to AI [pp. 395–6] is described in:

� R. A. Brooks, Cambrian Intelligence, MIT Press, 1999.

� R. A. Brooks, Flesh and Machines: How Robots Will Change Us, Pantheon Books,
2002.

The predictions for the future of AI [p. 397] are from:

� R. Kurzweil, The Age of Spiritual Machines: When Computers Exceed Human Intelli-
gence, Penguin, 2000.

Here are some books and collections of papers that describe the problems and achievements
in the computerized understanding of natural language [pp. 397–400]:

� J. Allen, Natural Language Understanding, 2nd edn, Addison-Wesley, 1995.

� Natural Language Processing and Knowledge Representation: Language for Knowl-
edge and Knowledge for Language, L. M. Iwanska and S. C. Shapiro, eds., AAAI Press,
2000.

� R. Schank, The Cognitive Computer: On Language, Learning, and Artificial Intelli-
gence, Addison-Wesley, 1984.

� J. F. Sowa, Conceptual Structures: Information Processing in Mind and Machine,
Addison-Wesley, 1983.

Important early work on the subject is described in:

� T. Winograd, Understanding Natural Language, Academic Press, 1972.

Hearing the pledge of allegiance as having to do with pigeons [p. 397] is an idea used by
W. Safire in one of his “On Language” columns in The New York Times many years ago.

The discussions with Jim’s phone [pp. 399–400] are based on those appearing in the
following delightful essay:

� R. W. Lucky, “The Phone Surrogate,” IEEE Spectrum 23:5 (1986), p. 6.

It was reprinted in:

� R. W. Lucky, Lucky Strikes . . . Again, IEEE Press, New York, 1993.

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

Bibliographic Notes 493

An interesting paper relevant to the remarks about analytic AI [p. 400] is:

� A. Goldberg and I. Pohl, “Is Complexity Theory of Use to AI?” in Artificial and Human
Intelligence, A. Elithorn and R. Banerji, eds., Elsevier Science, 1984.

A somewhat different approach to solving some of the problems raised in the chapter,
dubbed connectionism, and related to neural networks, is described in:

� D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, vol. 1: Foundations, MIT
Press, 1986.

An exposition of some of the ideas can be found in:

� D. W. Tank and J. J. Hopfield, “Collective Computation in Neuronlike Circuits,” Sci-
entific American 257:6 (1987), pp. 62–70.

Of making many books there is no end

ECCLESIASTES 12: 12

P1: GIG

PE002-BIBdrv PE002-Harel PE002-Harel-v4.cls March 17, 2004 20:58

494

P1: GDZ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

PE002-Index PE002-Harel PE002-Harel-v1.cls March 17, 2004 21:3

Index

For I am full of words

JOB 32: 18

A
abort sequence, 101
abstraction, 11–12, 29, 50, 58–59, 359
ACM, see Association for Computing Machinery
adding numbers, 227–228, 233
after (in dynamic logic), 122, 181, 280
after-the-fact-verification, see verification
agents, 70
AI, see artificial intelligence
Aiken, Howard, 7
airline puzzles, 167
AKS algorithm, 303–304, 322
al-Khowârizmı̂, Mohammed, 6
ALGOL, 60–61
algorithmic errors, see correctness of algorithms;

errors; verification
algorithmic Esperanto, 58
algorithmic gap, 148–149, 159, see also

efficiency of algorithms; complexity
classes; complexity theory,

algorithmic intelligence, 381–382, see also
artificial intelligence,

algorithmic methods, 81–98
algorithmic paradigm, see algorithmic method
algorithmic problem, 13–17, 105, 107–108,

297
algorithms as solutions to, 13–17
bounds on, 144–146, see also complexity

classes; complexity theory
complexity of, 144–146, see also complexity

classes; complexity theory

definition of, 16
size of, 134

algorithmic protocols, see protocols
algorithmic universality, 219–253, see also

universal algorithms
algorithmic verification, see verification
algorithmics, 3–402

in biology, 45
definition of, 5
relationship to artificial intelligence, 379–380
relationship to computer science, 5–6

algorithms, 3–402
analysis of, 99–156, see also correctness of

algorithms; efficiency of algorithms
clarity in, see clarity in algorithms and programs
concurrent, see concurrency; parallel

algorithms
correctness of, see correctness of algorithms;

errors; verification
definition of, 4
efficiency of, see complexity theory; efficiency

of algorithms
functional, 92–94
gradual development of, 28–30, 118–119, see

also clarity in algorithms and programs;
structured programming; subroutines

high-level, 28–30
limitations of, see limitations
nondestructive, 92–94
on-line, 94–95
origin of name, 6

495

P1: GDZ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

PE002-Index PE002-Harel PE002-Harel-v1.cls March 17, 2004 21:3

496 Index

algorithms, (Cont.)
probabilistic, see probabilistic algorithms
quantum, see quantum algorithms
randomized, see randomized algorithms
as solutions to algorithmic problems, 13–17
structure of, see also clarity in algorithms and

programs; structured programming
depicted as a tree, 40

table-driven, 192
universal, 236–238
well-structured, see algorithms, structure of

Alice in LSC-land, 373
almost optimal solutions, 178–180
almost theorem, 313–314
alpha-beta pruning, 391
alphabet, 197, 220, 223
AMD Athlon microprocessor, 354
amortized cost, 94
analysis of algorithms, 99–156, see also

correctness of algorithms; efficiency of
algorithms

analytic geometry, 85
analytical engine, 7
annotated flowchart, 111
approximation algorithms, 178, 186

conjectured, 389
relationship to probabilistic algorithms, 312

Ariane 5 failure, 120, 338–339
arrangement problems, 167–168, see also

puzzles; monkey puzzles; tiling problems
arrays, 36–38, 83

in C, 64
defining, 52
in FORTRAN, 60
indices into, see index
linearizing, 220
one-dimensional, see vectors
in PL/I, 64
relationship to nested loops, 36
subscripts of, see index
three-dimensional, 37
two-dimensional, 36–37
upper triangular portion of, 38

artificial intelligence (AI), 58, 348, 379–402
arguments against, 381–382
relationship to algorithmics, 379

as-you-go verification, see verification
assembly language, 55–57
assertion languages, see sprcification languages
assignment statement, 50, 51, 62
Association for Computing Machinery (ACM),

8, 353

code of ethics, 353
curriculum published by, 8, 353

asymptotic behavior, 152, see also big-O
notation; complexity classes

automata theory, 248, see also finite automata;
pushdown automata; Turing machines

average-case complexity, 143–144, 152–153
relationship to probabilistic algorithms, 312

B
Babbage, Charles, 7
Backgammon, 386
backtracking, 41–43, 82, 121, 172
Backus-Naur form (BNF), 51
bad news, 153, 159–218, 241, 309
bank account

author’s, 102
reader’s, 159

barricading sleeping tigers, 149–151
base of logarithm, 135, 138
basic actions, 10–12, see also elementary

instructions
bounds on, 15–16

beehive, 267
behavior over time, see ongoing behavior
behavioral modeling, see reactive systems,

modeling
Big Bang, 162–164, 387
big-O notation, 132–133

robustness of, 138–139
bin packing, see truck fitting
binary comparisons, 147–148
binary number system, 220
binary numbers, 33, 220, 234, 308, see also bits
binary search, 133–136, 146–148, 159
binary search tree, 40–43, 142–143

left-first traversal of, 40–43
second visit marking of, 40–43

Bioinformatics, 307
biological computing, see molecular computing
biological systems, 358, 378
bits, 3–4, 12, 49, 50, 55, 234

operations on, 3–4, 49, 50, 54–55
black-box abstraction, 14, 29
blackboard, 273–275
blocks world, 381, 392, 395
BNF, see Backus-Naur form
book writing, 166, 283
Boole, George, 263
boolean circuits, 263, 286
boolean networks, 263–264
bottom-up design, 29

P1: GDZ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

PE002-Index PE002-Harel PE002-Harel-v1.cls March 17, 2004 21:3

Index 497

bounded iteration, 20–23, 36, see also for
statement; looping constructs; while
statement

bounded problems, 212–213
branch, 39
breakpoints, 363–365
bridges

building, 129
crossing, 119

bubblesort, 21–24, 34, 35, 61–63, 139–140,
144

bugs, 59, 104, 113, 364, see also errors;
logical errors

busy waiting, 276, 284
byte, 12

C
C, 61, 63–64
C++, 72
cake baking, 4
Cantor, Georg, 206
centralized variables, see shared memory;

variables
certificates

for NP-complete problems, 172–173, 176,
181, 333

in PCP, 332–333
two-way, 208–209
for undecidable problems, 207–209

cheating, 324
checkers, 386, 387, 394

generalized, 180, 182
Checkers Championship, 386
checkpoints, 107–114, 136–138

finding automatically, 114
in textual algorithms, 113
use in time analysis, 136–138
use in verification, 107–114

chemistry, 12
chess, 9, 16, 68, 383, 386–390

game tree for, 40, 180, 387
generalized, 180, 182

children
algorithms for having, 259
capabilities of, 9, 118
requests by, 8

Chinese room argument, 385
Church, Alonzo, 7, 228–230
Church/Turing thesis (CT thesis), 228–231,

236, 239–241, 267, 270, 289, 310
evidence for, 229
for querying databases, 248

refined parallel version of, see parallel
computation thesis

refined version of, see sequential computation
thesis

ciphertext, 318
clarity in algorithms and programs, 24, 29, 33,

38, 61, 75–77, 286, 341
class (in object-oriented programming), 60,

71–74, 349, 366
absract, 71–72
abstract, 119–120, 342

class invariants, see design by contract
classical physics, 287
clique, 172
closed problems, 148–149
co-NP, 186, 310
co-r.e., 209
co-RP, 310, 311
COBOL, 60–62
code generation, 359, 365
code reuse, 120, see also software engineering,

reuse
code synthesis, 359
coding, 55, 90, see also programming
cognitive psychology, 379
coin tossing, 297–302, 307, 310–313, 332–333,

380, 388, see also probabilistic
algorithms

coloring
graphs, 171–172

minimal coloring, 172, 179–180
three-coloring, 172, 327, 329–332

maps, 123–125
combinatorial optimization, 178
combinatorics, 167
COMMON LISP, 67
communication, 273

amount of, 269
direct, 273, 284, 285
lines, 269
methods of, 260
models, 270
speed of, 269

commutativity, 324–326
comparator, 264, 265
comparison tree, 147–148
compilation, 55–57, see also compiler
compiler, 53, 57, 101, 120, 124, 130, 131, 138,

198, 229, 248, 313
compiling itself, 204
optimizing, 130, 199

complex systems, 401

P1: GDZ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

PE002-Index PE002-Harel PE002-Harel-v1.cls March 17, 2004 21:3

498 Index

complexity, fundamental kinds of
cognitive, 401, 402, see also artificial

intelligence
computational, 401, see also computational

complexity
descriptive, 401, see also behavioral

description; complex systems
complexity classes

interactive, 327–328
parallel, 262–263, 270–272, 286–287
probabilistic, 310–311
robustness of, 238–240
sequential, 184–186

complexity measure, 129, see also product
complexity; size; space; time

complexity theory, 152, 165, 240, see also
complexity classes; efficiency of
algorithms; intractability

concrete, 152
research on, 184–186, 248, 287

composite numbers, 302–307
computability, 214, see also decidability

effective, 228
robustness of, 229–230, see also

Church/Turing thesis
computability theory thesis, see Church/Turing

thesis; parallel computation thesis;
sequential computation thesis

computable query, 248
computational complexity, 152, 401, see also

complexity theory
computational geometry, 83, 149
computational problem, see algorithmic problem
computer graphics, 149
computer literacy, 8
computer program, see programs
computer programming, see programming
computer science, 3–402

curriculum for, 8
history of, 6–8
names for, 6
relationship to algorithmics, 5–6

computers, 3–4, 49–50, 214, 219, 228, 236, 274,
312, 317, 324, 382–385

architecture of, 230
binary numbers in, 234
errors in, 103, 302
mainframe, 61, 229, 231, 238
molecular, see molecular computing
parallel, see parallel computer
personal, 8, 230, 238
quantum, see quantum computing

speed of, 130, 139, 166, 239
thinking ability of, 379, see also artificial

intelligence
Turing machines as, 226–228
as universal algorithms, 229, 236

concatenation, 110–111
concurrency, 119, 240, 257, 272–287, 310,

311, 401
languages for, see concurrent programming

languages
research on, 286–287

concurrent algorithms, see parallel algorithms
concurrent programming languages, 58, 76
concurrent reading and writing, 270
concurrent state components, 361–362
conditional branching, 20, 182, 211, 221, see also

cond; if
conditional iteration, 20–21, see also while
constructor, 73
contact lens

search for, 388
control-driven systems, see reactive systems
control flow, see control structures
control part of a protocol, 281
control structures, 19–33, 36, see also

concurrency; conditional branching;
looping constructs; sequencing;
subroutines

combining, 21
minimal sets, 32
simplifying, 221–223

convergence, see termination
convergents, 107, 109, 110, 113, 114, 120, 121,

279
convex hull, 149, 151, see also barricading

sleeping tigers
convex polygon, 83–85
Cook’s theorem, 176
correctness of algorithms, 99–129, 313–314, 401,

see also verification
abandoning the requirement for, 297
partial, see partial correctness
with probability 1 (one), 301
proofs of, see verification
research on, 121–123, 354–355
total, see total correctness

counter programs, 231–233
equivalence to Turing machines, 233–235, 308
modification of, 238
universal, 237

counters, 26, 101, 102
counting, 233, 246, 313

P1: GDZ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

PE002-Index PE002-Harel PE002-Harel-v1.cls March 17, 2004 21:3

Index 499

courtesy variable, 275
Cray computer, 231
critical section, 274–280, 285–286
cryptography, 317–324, see also public-key

cryptography
cryptosystems, 318, see also RSA cryptosystem
CT thesis, see Church/Turing thesis
cubic time, 144
customer, 343–345, 347, 351, 365

D
DAG (directed acyclic graph), 89
data, 33–45

flow of, see data-flow
items of, see data item
large pools of, see databases
linearizing, 219–221
significant portion of, 221
simplifying, 219–221
stryctures of, see data structures
types of, see data types

data base, see databases
data element, see data item
data-flow, 122, 357
data-flow diagrams, 357
data item, 33, 219–222, 248
data manipulation languages, 76
data mining, 45
data structures, 33–40, 129, 241, 260, 286, see

also arrays; graph; queue; stack; trees;
vectors

linearizing, 219–221
non-modifiable, 92–94
self-adjusting, 43, 142
shared, 263

data types, 33–34, 59, see also numbers; symbol
strings

data warehouse, 45
databases, 44–45, 76, 392

computability theory for, 248–249
linearizing, 220, 248–249
models of, 44–45, see also hierarchical model;

relational model
querying, 44, 76, 248

dataflow, see data-flow
dataflow diagrams, see data-flow diagrams
datum, see data item
deadlock, 274–276, 278, 284, 298–300, 311
dealing cards, 324–326
debugging, 103–105, 107, 121, 122, 365
decidability, 196, 229–230, see also

computability

partial, 209, 211
robustness of, 229–230
rpobustness of, see also Church/Turing thesis

decimal number system, 220
decimal numbers, 33, 220, 227–228, 234
decision making, see also deduction
decision problems, 160, 226, 227, 230, 240,

245, 248
decription, see also cryptography
decryption, 317–324
deduction, 384, 394–395
default arrow, 362
denotational semantics, 76
depth of recursion, see recursion
design by contract, 75, 119–120, 343, 355
diagonal program, 207
diagonalization, 205–207
diagrammatic techniques, 24–26, see also

cloud-like diagrams; data-flow diagrams;
flowcharts; statecharts; syntax diagrams

difference engine, 7
digital watch, 247, 360–363
dining philosophers, 283–285

probabilistic solution to, 298–301, 311
direct sequencing, see sequencing
discrete systems vs. continuous systems, 339

analysis methods, 339–340
flexibility, 340
number of different states, 339
safety factors, 339

distributed systems, 272–287, 401
distributed variables, 275, 284
ditch digging, 258
divergence, 105, 200, see also infinite

computation
divide and conquer, 85–87, 91, 134
DNA computing, see molecular computing
documantation, see language manual
dominant term, 140
domino problems, see tiling problems
domino snakes, 196, 202, 210

certificates for, 208
double-exponential time (2EXPTIME), 183–185,

see also Presburger arithmetic
DPDA, 248
dual complexity classes, 186, see also co-NP;

co-r.e.; co-RP
dynamic logics, 122–123, 181–182, 280, 311,

see also PDL
dynamic planning, 89–91, 129
dynamic programming, 89–91, see dynamic

planning

P1: GDZ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

PE002-Index PE002-Harel PE002-Harel-v1.cls March 17, 2004 21:3

500 Index

E
Eckert, Presper J., 7
economical systems, 358
economics, 167
effective computability, 228, see also

computability; decidability
effective reductions, 201–202, 210, 235–236,

241–243
efficiency of algorithms, 123, 129–190, 278, 401,

see also complexity theory; lower bounds;
upper bounds

research on, 151–153, 354
EIFFEL, 74, 120
elections in Quebec, 99
electrical engineering, 6
elementary instructions, 10–12, 33, 270

as related to time complexity, 129, 138–139,
146

sequence of, 19
simplifying, 223
unspecified, 182, 211

ELIZA, 65, 383–384
encapsulation, 359, 360
encoding inputs

as numbers, 233–234
as strings, see linearizing inputs

encription, see also cryptography
encryption, 317–324
encyclopedia lookup, 307, see also pattern

matching
equivalence

of algorithmic problems
polynomial, see polynomial equivalence

of models of computation, 229, 238–240, 248
of syntactic definitions, see syntactic

equivalence
equivalence of algorithmic problems

computational (algorithmic), 210
equivalence problem, 118, 122, 248
error messages, 50, 64
errors, 99–104, 132, 281, 286, 337, see also

correctness of algorithms; verification
algorithmics, see errors, logical
design, 351
in hardware, 103, 302, 354
in software, 100, 338–339, 354
language, 101
logical, 101–103, see also bugs; elections in

Quebec; Mariner space probe; salary
summation

with low probability, 301–309
semantic, 102

stage of discovery, 345, 347, 350
syntax, see errors, language

escape clause, 51, 115
Esterel, 359
ethics, code of, 353
Euclid, 6, 271
Euclidean algorithm, 6, 307
Euler, Leonard, 170
Eulerian paths, 169–170, 196

polynomial-time algorithm for, 169–170
evaluating situations, 389–391
event-driven systems, see reactive systems
events, 247, 357, 358, 360, 362–365, 369, 370,

375–376
executable models, see model execution
executable specifications, see model execution
execution of algorithm, see run of algorithm
execution sequence, 112, see also run of algorithm
exhaustive search, 82
expanding parallelism, 260, see also parallelism
expert systems, 393–394
exponential blow-up, 360, 362
exponential function, 160, 162–165
exponential space (EXPSPACE), 184–185
exponential time (EXPTIME), 162–165,

184–185, 267–270, 302, see also
intractability

nondeterministic, see NEXPTIME
robustness of, 240

EXPSPACE, see exponential-space
EXPTIME, see exponential time
extended Riemann hypothesis, 303
external elements

finding, see min&max finding
eye, 222–223

F
factorial function, 161, 162, 387
factoring numbers, 130, 290–291, 307, 311,

322–323
factors, 302
fairness, 281–282, 286
family tree, 39
FIFO (first-in-first-out), see queue
Fifth-Generation Project, 70
file, 36, 62, 63, 220
file structure (in PL/I), 62
fingerprinting, 308–309
finite automata, 243–247, 359, see also transition

diagram
drawbacks of, 246–247
power of, 245–247

P1: GDZ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

PE002-Index PE002-Harel PE002-Harel-v1.cls March 17, 2004 21:3

Index 501

research on, 247–249
with stack, see pushdown automata

finite certificates, 207–208
finite-state automaton, see finite automata
finite-state protocol, 281
first-order arithmetic, 210
fixed parallelism, 260, see also parallelism
fixed-connection networks, see networks
fixed-width problems, 212
flight reservation system, 44, 274
Floid’s method, see intermediate assertion

method
flowcharts, 24–27, 100, 110, 111, 134
for statement, 36, 50–53, 55–56, 131
formal language theory, 248
formal language thory, 248
FORTRAN, 60–61
four-color problem, 123–125
four-color theorem, 123–125, 313
function

bad, 163, 164
bounded from above, 163
exponential, 160, 162–165
growth rates of, 162–164
linear, 132–133
logarithmic, 135–136
polynomial, 163
super-polynomial, 163–164

function describing program, 76
functional algorithms, 92–94
functional language, 92
functional programming, 59, 65–68, 92
functional queue, 92–94
functional stack, 92–93
fundamental levels of computability, 212–213,

see also sphere of algorithmic problems
robustness of, 213

G
game playing, 385–388
game theory, 167
game tree, 40, 180, 386–391
games, see backgammon; checkers; chess;

puzzles; roadblock; tic-tac-toe
garbage collector, 67
gates, 264
gcd, see greatest common divisor
gearbox, 222, 223
generating primes, 302–304, 322, 323, see also

primality testing
genetic engineering, 385
genome project, 45

geometry
analytic, 85
computational, 83, 149
high school, 394

global constraints, 273
Gödel, Kurt, 7
Goldstine, Herman, 7
goto statement, 23–24, 233, 286
grade normalization, 130
graph, 88

coloring, 171–172, see also coloring
directed, 89
directed acyclic, 89
problems, see coloring; Eulerian paths;

Hamiltonian paths; minimal spanning
tree; shortest paths; traveling salesman
problem

graph theory, 167
graphical languages, see visual formalisms
graphical user interface (GUI), 365, 373–374
graphics, see computer graphics
greatest common divisor (gcd), 6, 271, 286, 307
greedy algorithms, 87–89
greedy method, see greedy algorithms
guarding conditions, 369, 370

H
half-grid, 213, 241–243
halting problem, 199–201, 210, 214, 236,

see also termination
certificates for, 207–208
proof of undecidability, 202–207
reduction to tiling half-grids, 241–244
reduction to verification, 202, 210

Hamiltonian paths, 169, 172–175, 196, 292
reduction to traveling salesman, 174–175

hardware, 4, 103, 124, 226, 229, 258, 262,
302, 324

HASKELL, 67
head, 223–226, 230, 242

of White Rabbit, 373
head, 110–113
heap, 91–92, 143

vector representation, 92
heapsort, 143, 148
heuristic search, 387–391, 393
heuristics, 136, 179, 186, 380, 387–391,

400–401
hidden assumptions, 337, 344, 347, see also

software, errors
in spaceflight, 338–339

hierarchical model, 44, 392

P1: GDZ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

PE002-Index PE002-Harel PE002-Harel-v1.cls March 17, 2004 21:3

502 Index

hierarchy, see trees
in databases, see hierarchical model
in diagrams, 357

high undecidability, 211–214
highly undecidable problems, 211–214, 240,

see also propositional dynamic logic
with recursion; recurring dominoes

history of computer science, 6–8
Hollerith, Herman, 7
hotels

corridors in, as metaphor for vectors, 35, 37
as metaphor for arrays, 36–38
rooms in, as metaphor for variables, 34, 37
taking showers in, 273–274, see also mutual

exclusion
house

building, 257, 287
tiling, 193

I
IBM (International Business Machines), 8, 231
IEEE Computer Society, 353

code of ethics, 353
if statement, 20, 222
imperative programming, 58–59

programming languages, 60–64
index, 35–36, 122, 495–513
induction, 116
inductive hypothesis, 116
inductive/coinductive level of undecidability, see

high undecidability
inefficiency, see intractability
infinite computation, 105–106, 279, see also

halting problem
infinite loop, see infinite computation; loops
information hiding, 73, 342
inherent limitations of algorithms, see limitations
inherent sequentiality, 259
inheritance, 71
input/output paradigm, 192, 273, 280, 311
inputs, 4, see also input/output framework

borderline cases of, 103, 279
distribution of, 136, 143–144
finite number of, 192
infinite number of, 13
legality of, 14
length of, 129, 133, see also size of algorithmic

problem
linearizing, see linearizing inputs
probabilistic distribution of, 312
signals and events as, 247
specification of, 14–15, 106

telltale, 103
undesirable, 15

integer grid, 195, 211, 241–243, see also tiling
integer part, 135
intelligence

artificial, see artificial intelligence
human, 379–402

interactive polynomial time (IP, MIP), 327–328
interactive proofs, 327–332
interactive systems, 76, 104, 121
interactive verification, see verification
interface, see modules, interface
interference freedom, 280
intermediate assertion method, 107–115, 279

variant for recursion, 115–117
intermediate assertions, 107–115, see also

invariants
International Business Machines Corporation

(IBM), 8, 231
internet, 358
interpolation search, 83, 136
interpreter, 57, 101, 229, 236
interrupts, 361
intractability, 159–191, 269, see also intractable

problems
intractable problems, 165, 212–213, 267–270,

302, 401, see also exponential time;
nonelementary time; provably intractable
problems; super-polynomial time

invariant assertion method, see intermediate
assertion method

invariants, 107–109, 111–113
finding, 114–115

iterations, 20–21, 182, 211, see also looping
constructs; loops

J
Jacobi symbol, 306
Jacquard, Joseph M, 7
Jacquard’s loom, 7
JAVA, 72–75, 120, 342
jigsaw puzzles, 167–168, 213
Jim’s phone, 399–400
joint time/space complexity, 153

K
keys, 317–323
Kleene, Stephen C., 7, 229, 230
knowledge, 45, 380, 383, 384, 386, 392–396,

398, 402
items, 45
representating, see knowledge representation

P1: GDZ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

PE002-Index PE002-Harel PE002-Harel-v1.cls March 17, 2004 21:3

Index 503

knowledge base, 45, 248, 392
knowledge engineer, 393
knowledge representation, 392–396, 398,

402

L
labyrinth traversal, 39
lambda calculus, 67, 229
language errors, see errors
language manual, 53
Las Vegas algorithms, 309, 311
Las Vegas algrithms, see also probabilistic

algorithms
lazy railroad contractor, see minimal spanning

tree
leaf, 39
learning, 384, 386, 394–395
legal inputs, 14, 192
levels of a tree, 39, 40, 220–221, 386, 387
levels of computability, see fundamental levels

of computability
levels of detail, 10–11
LIFO (last-in-first-out), see stack
limitations

of algorithms, 16
of algorithms, 6, 7, 191, see also

Church/Turing thesis; intractability;
noncomputability

of computers, 6, 9, 50, 191, 269
our own, 6, 191–192
of three-dimensional space, 269

line segment, 149
linear planning, 184–185
linear programming, see linear planning
linear search, 131–133, 159
linear size, 263, 265
linear time, 132–133, 140, 148–149, 152, 159,

167, 240, 261
linearizing inputs, 200, 219–221, 237, 248
linguistics, 6, 248
linked list, 72, 74
LISP, 65–67, 220, 347–348, 392
list, see linked list; vectors

in LISP, 65–67
liveness, 278–280, 370–372
loan taking, 350
locations in an algorithm, 222
locked box metaphor, 318–319, 324–325
lockout, see starvation
logarithm, 135, 138, 178

base of, 135, 138
logarithmic time, 135–138, 185, 259–264

logic, 6, 122, 167, 214, see also dynamic logics;
first-order arithmetic; modal logic;
propositional dynamic logic; predicate
calculus; Presburger arithmetic;
propositional calculus; recursion theory;
temporal logic; tense logic; WS1S

logic programming, 59, 68–70
logical deduction, see deduction
logical errors, 101–103, see also errors
logics of programs, 122–123, see also dynamic

logics; propositional dynamic logic;
temporal logic

LOGSPACE, 185
LOGTIME, see logarithmic time
loop invariants, 107–109, 111–113, 120
loop-free segment, 112, 114, 122, 136
looping constructs, 20–23, 229, see also bounded

iteration; conditional iteration; for
statement; while statement

indexed versions of, 36
power of, relative to recursion, 33
relationship to vectors, 36
as tools for describing long processes, 20–21

loops, see also looping constructs
going to midst of, 24
infinite, 105–106
inner, 21–23
nested, 21–23, 233

time analysis of, 139–140, 151
oscillating, 105
outer, 21–23

lower bounds, 144–146, 401, see also efficiency
of algorithms; intractability

exponential-time, 166
research on, 152
for searching, 146–148
for sorting, 148
using Turing machines to prove, 241–243

Lustre, 359

M
machine code, 56, 64
machine language, 50, 54–56, 139
machine level, 55
magic, 32, 42, 172–173, 230–231, 241, 267, 269,

272, 310
malicious scheduling, see scheduler
Mariner space probe, 99
Markov, Andreı̆ A., 7
Mars Climate Orbiter, 338
Mars Polar Lander, 338
matching problems, 170

P1: GDZ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

PE002-Index PE002-Harel PE002-Harel-v1.cls March 17, 2004 21:3

504 Index

mathematical induction, see induction
mathematical logic, see logic
mathematical truth

absolute, 125, 314
mathematics, 6, see also algorithmics; automata

theory; combinatorics; formal language
theory; game theory; geometry; graph
theory; logic; number theory; probability
theory; recursion theory; topology

matrix, 36, 266, see also arrays
matrix multiplication

by vector, 266
Mauchly, John W., 7
maximal polygonal distance, 83–85, 140, 148
medicine, 390, 393
memory

in algorithms, 34, 129–130, 153, 184, see also
shared memory; space

in computers, 55, 58, 59
mergesort, 86–87, 134, 142–144, 148, 260–261

parallel version of, 260–262, 279
merging lists, 86–87, 261
mermaids, 104, 107
mesh-connected array, 267, 269
method postconditions, see design by contract
method preconditions, see design by contract
methods (in object-oriented programming), 72,

342–343, see also design by contract
methods, algorithmic, 81–98, see also divide and

conquer; dynamic planning; greedy
method; searches

research on, 95
min&max finding, 85–86, 134, 140–142, 148, 160

efficient iterative solution, 141–142
recursive solution, 85–86, 140–141

minimal colorability, 179–180, see also coloring
minimal paths, see shortest paths
minimal spanning tree, 87–89, 148–149, 152, 168
minimax method, 390–392
MIRANDA, 67
modal logic, 392
model checking, 121, 123
model execution, 362–365
modularity, 74, 341–343, see also modules
modules, 342–344

clients, 342–343
integration, 344
interface, 342
suppliers, 342

molecular biology, 12
molecular computing, 257, 292–293
money counting, 26–28, 101–102, 119, 140, 233

monkey puzzles, 160–162, 165–167, 176, 193,
241, 269, 301–302

certificates for, 172
trivial, 162

Monte Carlo algorithms, 309, 311, 313, see also
probabilistic algorithms

Mother Nature, 358
mousseline au chocolat, 10, 14, 16, 19–20, 29, 33
multiplication

of matrix by vector, 266, see also weighted
average computation

of numbers, 10–11, 228, 233, 383
mutual exclusion, 275–278, 280, 281, 285–286,

see also dining philosophers; shower
taking

mutual inverse, 319, 321

N
nanosecond, 139, 161, 163, 164
natural languages

ambiguity in, 397–400
inability of computers to understand, 50,

397–400
NC, see Nick’s class
neighboring processors, 263
nest building, 9, 381
nested loops, see loops
networks, 263–270, see also beehive;

mesh-connected array; pipeline
arrangement

boolean, see also boolean circuits
sorting, see sorting networks
systolic, see systolic arrays

neurobiology, 12, 192, 379, 386
newspaper distribution, 16
NEXPTIME, see nondeterministic exponential

time
Nick’s class (NC), 271–272, 287
node, 39, see also vertex

terminal, 386, 389, 390
noncomputability, 191–218, 311, 401, see also

undecidability
nondestructive algorithms, 92–94
nondeterminism, 173, see also nondeterministic

polynomial time
nondeterministic exponential time (NEXPTIME),

328, 333
nondeterministic polynomial time (NP,

NPTIME), 173, 177–178, 185–186, 207,
240–241, 267–269, 272, 303, 310

defined via Turing machines, 240–241
robustness of, 240

P1: GDZ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

PE002-Index PE002-Harel PE002-Harel-v1.cls March 17, 2004 21:3

Index 505

nondeterministic polynomial time(NP, NPTIME),
see also NP-complete problems

nonelementary space, 184
nonelementary time, 183, see also WS1S
noted number, 34
noted numbers, 12–13, 19–21, 26, 33, see also

counters; variables
NP, see nondeterministic polynomial time;

NP-complete problems
NP problems, 177–178, 292, 333
NP-complete problems, 166–180, 201, 210, 212,

258, 269, 271, 301, 302, 312, see also
arrangement problems; coloring;
matching problems; satisfiability
problems; scheduling problems

NP-completeness, 173–180, see also
NP-complete problems

proving, 174–177
NPC, 167, see also NP-complete problems;

NP-completeness
NPTIME, 185–186, see also nondeterministic

polynomial time
number theory, 200, 302
numbers, 33

binary, 33, see also bits
composite, 302, see also composite numbers;

factoring numbers
decimal, see decimal numbers
fractional, 219
hexadecimal, 234
integer, 219
length of, 178
non-unary, 238
prime, see prime numbers
pseudo-random, 313
random, see random numbers

numerical problems, 233

O
Object Management Group, 376
object model diagrams, 366
object-oriented databases, 45
object-oriented development, 349–350
object-oriented programming, 34, 59–60, 64,

70–75, 120, 349–350
object-oriented programming languages, 70,

72–75
objects, 59–60, 71–74, 119–120, 349,

366–375
odd-even sorting network, 264–265
off-line algorithms, see omniscient algorithms
offspring, 39, 40, 386, 390

omniscient algorithms, 94, 95, see also on-line
algorithms

on-line algorithms, 94–95
one-way trapdoor function, 319, 321, 324
ongoing behavior, 258, 272–287, 311, see also

behavioral description
operating system, 64, 284, 313, 337

Unix, 64
operational semantics, 76
operations research, 167
optimal algorithm, 144, 262–263, see also closed

problems; lower bounds; upper bounds;
almost optimal solutions

optimizing compiler, 130, 199
oracle, 202, 210
order of, on the, 132, see also big-O notation
order-of-magnitude

improvements, 132–133, see also efficiency
ordered list search, see telephone book search
orthogonal state components, 361–362
outdegree, 40, 386–387
output, 4, 198, 227, see also input/output

paradigm

P
P, see polynomial time
P vs. NC question, 271–272, 401, see also Nick’s

class
P vs. NP question, 177–178, 185–186, 240–241,

271–272, 401, see also NP-completeness
beliefs about, 212, 269, 272

P-completeness, 272
pair programming, 351
palindromes, 224–226, 247
parallel algorithms, 258–272, 292, see also

parallelism
sequentializing, 262–267

parallel computation thesis, 270–271, see also
Church/Turing thesis, refined parallel
version of

parallel computer, 58, 258, 263, 269, 270, 287
parallel mergesort, 260–261, 279
parallel PTIME, 270–272

relationship to PSPACE, 270–271
robustness of, 270

parallelism, 257–272, 311, 380
expanding, 260
fixed, 260
quantum, 289–291
research on, 286–287

parameters, 26, 101, see also subroutines
parity, 245–246

P1: GDZ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

PE002-Index PE002-Harel PE002-Harel-v1.cls March 17, 2004 21:3

506 Index

partial correctness, 106, 108–117, 279, see also
verification

partial information, 326
partial solution, 162, 167, 168, 172–173
partially decidable problems, 209
particles in the universe, number of, 152, 163,

183, 184, 339, 387
PASCAL, 63
path-finding problems, 168–170
paths, 39

between checkpoints, 112–113
minimal, 89–91, see also shortest paths

pattern matching
probabilistic, 307–309

PCP (Probabilistically Checkable Proofs),
332–333

PDL, see propositional dynamic logic
perpetuity, 258, see also ongoing behavior
Petri nets, 359
philosophy, 6, 191–192, 385, see also dining

philosophers
physics, 6, 12

quantum, see quantum physics
Pi, approximate value for, 53
pigeon hole principle, 246–247
pipeline arrangement, 267
PL/I, 61–64
planning, 394–395
pointer, 26–28, 33
poker playing, 324–326
polylogarithmic time, 271
polynomial equivalence, 173–176, 210, 239
polynomial function, 163
polynomial reducability, see also polynomial

equivalence
polynomial reducibility, 174–175
polynomial space (PSPACE), 185–186

defined via Turing machines, 243–244
relationship to parallel time, 270–271, 287
robustness of, 240

polynomial time (P, PTIME), 164, 177–178,
271–272, see also tractable problems

certificates, 172–173
completeness, 272
defined via Turing machines, 240, 243
interactive (IP, MIP), 327–328
low order, 319
nondeterministic, see NP
parallel, 267–272, see also parallel-PTIME
random, 310, see also random-polynomial time
reductions, 174–177, 210
relationship to NC, 271–272
relationship to RP, 310

relevance to breaking cryptographic systems,
321–322

robustness of, 238–240
significance of, 240

popping, 38, 39, 248
Post, Emil L., 7, 229, 230
predicate (in PROLOG), 68–70
predicate calculus, 392
Presburger arithmetic, 183, 210
primality testing, 303–307, 309, 311, 322, 389

polynomial-time algorithm for, 303, see also
AKS algorithm

prime numbers, 130, 302–307, 388, see also
factoring numbers; generating primes;
primality testing

probabilism, 186, 298, 301, 311, 401, see also
probabilistic algorithms

probabilistic algorithms, 297–334, 388–389,
see also Dining philosophers; pattern
matching; primality testing

Las Vegas, 309, 311
Monte Carlo, 309, 311, 313
research on, 311–313
use in cryptography, 322–324
verification of, 311

probability
0 (zero), 298–300
1 (one), 298–301, 311
negligible, 297, 298, 302, 304–307, 323,

327, 331
probability theory, 297
problems, see algorithmic problem
process

as prescribed by algorithms, 4, 12–13, 19–21, 24
processors, 19, see also Runaround

multiple, 257–287
product complexity, 262–263
production rules, 393
production system

a la Post, 229
production systems

rule-based, 393
professional ethics, 353
program editor, 358
program state, 76
program transformations, 123, 130
program verification, see verification
programmer, 50, 351–352, see also pair

programming
programming, 90, 282, 337
programming environments, 76, 104
programming languages, 49–229, see also

assembly language; machine language;

P1: GDZ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

PE002-Index PE002-Harel PE002-Harel-v1.cls March 17, 2004 21:3

Index 507

ALGOL; C; C++; JAVA; COBOL; EIFFEL;
FORTRAN; LISP; PASCAL; PROLOG

concurrent, 58, see also concurrent
programming languages

documentation of, 53
downward transformations of, 54–57
high-level, 50, 54–56, 192
object-oriented, 70, 72–75, 342
parallel, see programming languages,

concurrent
research on, 75–77
semantics of, 52–53, 76, 123, see also semantics
syntax of, 50–52, 215
universality of, 77, see also Church/Turing

thesis
visual, 76, see also visual formalisms

programming paradigms, 58–61
programming tricks, 131–132, 139
programs, 5, 49

breaking up into modules, see modules
clarity in, see clarity in algorithms and

programs
errors in, 99–103, see also errors
modification, see software, modification
punctuation in, 52, see also semicolon

syndrome
statements in, 50–52
transformations of, 123, 130–131

PROLOG, 68–70, 392
proof, see also verification

by contradiction, 202–205
by induction, 116–117
circular-looking, 205
interactive, 123
probabilistically checkable, 123

proof checking, 120–121
proof of correctness, see verification
propositional calculus, 170–171

certificates for, 172
satisfiability problem for, 170–171, 181–183

propositional dynamic logic (PDL), 181–182, 215
with recursion, 211

protein folding, 58
protocols, 272, 274–280, 401

cryptographic, 317, see also cryptography
finite-state, 281
fully distributed, 284, 298–301
fully symmetric, 284, 298–301
interactive, 327–332
probabilistic, 298–301

protons, 163, 183, 184, 387
provably intractable problems, 180–183, 311,

see also checkers; chess; propositional

dynamic logic; Presburger arithmetic;
roadblock; WS1S

pseudo-random numbers, 313
PSPACE, see polynomial space
psychology, 12
PTIME, see polynomial time
public-key cryptography, 318–324, see also

poker playing; RSA cryptosystem
punctuation, 52, see also semicolon syndrome
pushdown automata, 248

equivalence problem for, 248
pushing, 38, 39, 248
puzzles

airline, 167
jigsaw, 167–168
monkey, 160–162, see also monkey puzzles
moving rings, 30–32, see also towers of Hanoi

Q
Q.E.D. (quod erat demonstrandum), 124,

313–314
QP (quantum-PTIME), 289
quadratic time, 139–140, 159
quantifiers, 183
quantum algorithms, 289–291

interference, 290
Shor’s factoring algorithm, 290–292

quantum computer, 288, 291–292
decoherence, 291

quantum computing, 257, 287–292
quantum parallelism, 289–291
quantum physics, 287
qubits, 288–289, 291–292

basis states, 288
entanglement, 288
superposition, 288

Queen of Hearts, 373
query languages, 76, see also databases
queue, 38

as a class, 119–120
defined as a class, 71–74

in JAVA, 72–74
functional, 92–94
implemented as a linked list, 73–75
implemented as two stacks, 92–94
in a supermarket, 70–71

quicksort, 144

R
r.e. problems, see partially decidable problems
random numbers, 305, 313, 364, see also

pseudo-random numbers
random polynomial time (RP), 310–311

P1: GDZ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

PE002-Index PE002-Harel PE002-Harel-v1.cls March 17, 2004 21:3

508 Index

randomization, 298, 301, 310, 312–313, 388,
see also probabilistic algorithms

randomized algorithms, see probabilistic
algorithms

reactive systems, 26, 357–378, 401
anti-scenarios, 370, 371
behavior, 357–378

aircraft, 364
cellular phone, 369, 371
football game, 367
multi-telephone exchange, 372
office, 367
VCR, 367

development of, 358–359, 364, 367,
374–375

implementation of, 367
inter-object behavior, 367–375, 377, 378
intra-object behavior, 367, 368, 377
live sequence charts (LSCs), 368–375,

377
cold conditions, 370–371, 373
existential, 370
hot conditions, 370–372
main chart, 370–374
play-engine, 373, 374
play-in, 373–374, 378
play-out, 373–374, 378
prechart, 370–374
smart play-out, 374, 378
universal, 370

message sequence charts (MSCs), 368–370,
376

modeling, 366–375
of nature, 378

object-oriented specification and analysis,
366–375

reachability, 364–365
research on, 376–378

implementation, 377–378
verification, 377

scenarios, 363–365, 367–375
vs. transformational systems, 357–358, 364

reading, 263, 270
real-time systems, 130, 282–283, 375–376

aircraft collision-avoidance system, 375
anti-braking system, 375
anti-missile system, 375
development of, 375
MASS (Marionettes Activation Scheme

Specification Language), 375–376
reactions, 375–376
specification of, 375–376

reasonable time, 162–165, 267, 270, see also
polynomial time; tractable problems

for parallel algorithms, see Nick’s class
reasoning, 65

commonsense, 58
recipes, 4–6, 10–11, 14, 16, 19–20, 29, 103, 381,

see also mousseline au chocolat
record, 12, 220
recurrence, 211, see also recurring dominos
recurrence relations, 141
recurring dominos, 211–213
recursion, 30–32, 222, see also self-reference

depth of, 32, 115
implementing with a stack, 38–39
in LISP, 66
power of, relative to iteration, 33
in propositional dynamic logic, 211
relationship to trees, 43
time analysis of, 140–143
verification of, 115–117, 119

recursive function theory, 214, 249
recursive functions, 229
recursively enumerable problems (r.e.), see

partially decidable problems
reductions

effective, 201–202, 210, 235–236, 241–243
polynomial-time, 174–177, 210

relational model, 44, 392
release, 285–286
request, 285–286
requirements analysis, see software, development

of, requirements acquisition
requirements document, 343
research

on algorithmic methods, 95
on complexity classes, 184–186, 286–287,

311–312
on concurrency, 286–287
on correctness, 121–123, 354–355
on efficiency, 151–153, 354
on intractability, 184–186
on models of computation, 247–249
on parallelism, 286–287
on probabilistic algorithms, 311–313
on programming languages, 75–77
on reactive systems, 376–378
on system development, 353–355
on undecidability, 214–215

resort area, as metaphor for three-dimensional
array, 38

reverse, 110–113
reversing a string, 110–113

P1: GDZ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

PE002-Index PE002-Harel PE002-Harel-v1.cls March 17, 2004 21:3

Index 509

Riemann hypothesis, extended, 303
roadblocks, 180–181
robotics, 380, 389, 394–395
robots, 9, 358, 380–381, 395, 396
robustness

of big-O notation, 138–139
of complexity classes, 238–240
of computability, 229–230, see also

Church/Turing thesis
of parallel complexity classes, 270, see also

parallel computation thesis
of tractability, 238–240, see also sequential

computation thesis
root, 39
rountangles, 223
routines, see subroutines
RP, see random polynomial time
RSA cryptosystem, 321–324, 326

different version of, 323
rule-based systems, 393, see also production

system
rules

breaking, 351
Grand Book of, 374
in logic programming, 68–70
of thumb, 380, 387–389

run of algorithm, 14, 22–23, 41–42, 55, 89, 112,
137, 225, 227–228, 268

run of model, 362–365
interactive mode, 363
non-interactive mode, 363–364

run-time errors, 104
Runaround, Little R., 19, 23, 24, 27, 50, 204, 222,

257, 297, 357, 358
running time, see time
Russian roulette, 297, 301, 302, 305

S
safety, 278–280
salary summation, 12–15, 20–21, 24–25, 49,

65–67, 81–82, 129, 148
erroneous version of, 100, 102–104
parallel algorithm for, 259–261, 271
time analysis of, 140, 144

satisfiability problems, 170–171, see also
first-order arithmetic; propositional
dynamic logic; Presburger arithmetic;
propositional calculus; WS1S

scheduler, 282, 284, 298–300
malicious, 284, 298, 300

scheduling problems, 170
SCHEME, 65–68

SDL diagrams, 359
searches, 81–85

analytic, 388
binary, see binary search
blind, 388
breadth-first, 82
depth-first, 82
heuristic, 388
lazy, 388
linear, see linear search
systematic, 388, see also binary search

seed, 313
self-adjusting data structures, 43, 142
self-reference, 12, 30, 33, 51, 54, 204–207, 502,

509
semantic errors, see errors
semantics

of natural language, 397–400
of programs, 52–53, 76, 123

denotational, 76
operational, 76

of visual formalisms, 362
semaphore, 285–286

binary, 286
semicolon syndrome, 52
sequence diagrams, 376
sequence of instructions, 19
sequencing, 19, 182, 211, 221
sequential computation thesis, 239–240, see also

Church/Turing thesis, refined version
sequentializing parallel algorithms, 262–267
sets, 182
Shakespeare, 288
shared memory, 263, 270, 275, 284, 300, see also

blackboard
short certificates, 172–173, 181
shortest paths, 89–91, 168, 233
shower taking, 273–278, 300, see also mutual

exclusion
N-processor solution, 277–278
proof of correctness, 276
two-processor solution, 275–276

signals, 247
signatures, 317–321, 333
simplex method, 184
SIMULA, 70
simulations, 231, 235–238, 262, 270, 311
simultaneity, 241, 272, see also concurrency
simultaneous state components, see also

orthogonal state components
size, 262, 401, see also product complexity

exponential, 269

P1: GDZ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

PE002-Index PE002-Harel PE002-Harel-v1.cls March 17, 2004 21:3

510 Index

size (Cont.)
linear, 263, 265
multiplied by time, see product complexity
reasonable, 263
unreasonable, 269

size of algorithmic problem, 133, 178, 303
reasonable, 185

ski rental, 94–95
SMALLTALK, 72
social systems, 358
software, 4, 191, see also programming

development of, see software engineering
errors, see errors, in software
gradual development of, 118–119
modification, 340, 344–345, 350–351
transition diagram as, 226

software engineering, 337–355
deliverables, 347, 349
design, 343–344, 346, 349–351
documentation, 347, 349, 351
implementation, 344, 350–351
integration, 344, 351
life-cycle models, 343–351
maintenance, 107, 344–345
methodologies, 337–353

agile, 352–353
evolutionary development, 347–348, 351
exploratory programming, 347
extreme programming, 350–352
rapid prototyping, 347, 348
the spiral model, 348–349
the waterfall model, 345–347, 350

process control, 347, 349
prototype, 347
psychology of, 351–353
refactoring, 350–351
requirements acquisition, 343, 349
research on, 353–355
reuse, 349–350
risk management, 348
validation, 344, see also verification,

as-you-go
sorting, 21–22, 106, 108, 159, see also

bubblesort; mergesort; odd-even sorting
network; parallel mergesort; quicksort;
sorting networks; treesort

in parallel, 260–265, 271
time complexity of, 139–140, 142–143, 148,

262–263
unexpected use of, 149–151

sorting networks, 264–265
odd-even, 264–265
optimal, 262, 264–265

space, 129, 144, 185–186, 243–244, 308, 401
exponential, 184–185
joint with time, 153, see also time/space

tradeoff
research on, 153
unlimited amount of, 230, 235
unreasonable, 184

spaceflight, 120, 338–339
spanning tree, 88

finding minimal, 87–89
specification formalisms, see specification

languages
specification languages, 121–122, 199, 355
specification of inputs, 14–15, 106
specifications, 107, 122, 311

behavioral, see behavioral description
erroneous, 107

speech recognition, 395, 397
spell-checking, 12
sphere of algorithmic problems, 165, 167,

194–195, 212, 240, see also fundamentals
levels of computability

version I, 165
version II, 195
version III, 213

spirit of computing, 5, 9, see also
algorithmics

square roots, 260, 321
stack, 38–39

functional, 92–93
implemented as a linked list, 92–93
in pushdown automata, 248
as used to implement recursion, 38–39, 248

starvation, 274–276, 283–285, 299
state-transition diagram, see statecharts;

transition diagram
statecharts, 359–362, 371–373, see also states
statements, 50–52, see also programming

languages
states

in finite automaton, 245–247
in program, 76
in Turing machine, 222–228

halting, 224
start, 224

step, 362
storage space, see memory
story understanding, 58
strong AI, 381, 385
structured programming, see clarity in algorithms

and programs
submarines, 379
subrecipe, 29, see also subroutines

P1: GDZ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

PE002-Index PE002-Harel PE002-Harel-v1.cls March 17, 2004 21:3

Index 511

subroutines, 26–30, 120, 203, 222, 229
elimination of, 33
interface of, 119
parameters of, 26–28, 101, 203
recursive, see recursion
virtues of, 28–30, 118

subscript, see index
substates, 360
subtree, 42–43
summing numbers, 50
summing salaries, see salary summation
super-computer, 229, 231
super-polynomial function, 163–164
super-polynomial time, 163–164, 167, 269, 303,

322, see also exponential time
symbol strings, 26–28, 33, 110–113,

219–221
symbolic computation, 65
symmetry breaking, 298–299
synchronization, 299, see also concurrency
syntactic equivalence, 197–198, 215, 354
syntax, 50–52, 101, 197
syntax diagrams, 51
syntax errors, see errors
syntax rules, 51, 101
synthesis of algorithms, 123
system development, see software

engineering
system software, 57, 64, 124
systolic arrays, 265–269

T
table-driven algorithm, 192
tables, see arrays
tail, 65, 110–113
tape, 220–224, 242–245, 248

folding over, 231
multiple, 230
two-dimensional, 230

telephone book search, 132–136, 144–148,
159

temporal logic, 280–281, 374
tense logic, 280
termination, 106, 109–110, 114–116, 199, 279,

see also halting problem
test sets, 104
testing, 104, 121, 279

integration testing, 344
unit testing, 344

text, 219
theorem proving, 122, 354, 394
three-colorability, 172, 327, 329–332
Tibet, 30, 160

tic-tac-toe, 386–387, 390
tiling problems (domino problems), 193–195,

198, 202, 210
bounded, 212
certificates for, 208
co-r.e.-ness, 209
fixed-width bounded, 212
half-grid version, 241–244
non, 208, 210
proving undecidability of, 241–244
recurring, 211–213, see also recurring

dominoes
reduction from halting problem, 241–244
snakes, see domino snakes
unbounded, 193–195, 202, 208, 210–212
variants of, 213

time, 129–218, 401
almost linear, 152
almost polynomial, 303
average-case, see average-case complexity
bounds on, 144–146, see also lower bounds;

upper bounds
constant, 136–138, 308
cubic, 144
definition of, 129
depicted as progress of tiling, 243, 244
double-exponential, 183, see also

double-exponential time
exponential, 162–165, see also exponential

time
interactive, 327–328
joint with space, 153, see also time/space

tradeoff
linear, 132–133, see also linear time
logarithmic, 135–138, see also logarithmic

time
multiplied by size, see product comlexity
nondeterministic, see nondeterministic

polynomial time
nonelementary, 183, see also nonelementary

time
of nested loops, 139–140
of recursion, 140–143
parallel, 260–261, 267–272, see also

parallel-PTIME
polylogarithmic, 271, see also polylogarithmic

time
polynomial, 164, see also polynomial time
quadratic, 139–140, see also quadratic time
random, 310–311
reasonable, 162–165, see also polynomial

time; tractable problems
unlimited amount of, 230

P1: GDZ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

PE002-Index PE002-Harel PE002-Harel-v1.cls March 17, 2004 21:3

512 Index

time (Cont.)
unreasonable, 162–165, see also exponential

time; intractablity; nonelementary time;
super-polynomial time; unreasonable
amounts of time

worst-case, see worst-case analysis
time analysis, see complexity theory; efficiency

of algorithms; time
time efficiency, see complexity theory; efficiency

of algorithms; time
Time Magazine, 191
time/space tradeoff, 153
timetables, 170, 176, 269
timing issues, 282
TL, see temporal logic
tomography, computerized, 9, 381
top-down design, 29
topology, 124, 394
total correctness, 106, 114–115
totality problem, 210, 211
tour, 168–170, see also Eulerian paths;

Hamiltonian paths; traveling salesman
problem

Towers of Hanoi, 30–32, 38, 43, 85, 115–118,
159–160, 180

iterative solution, 32, 118
proof of correctness, 115–117
recursive solution, 31–32, 69
time analysis of, 159–160

trace, 208
tractability, see polynomial time; reasonable

time; tractable problems
robustness of, 238–240

tractable problems, 165, 212–213, see also
polynomial time

transition, 223
transition diagram

of finite automaton, 245, 247, see also
statecharts

linearizing, 237
of Turing machine, 223–225, 235

traveling salesman problem, 130, 168–169,
178, 269

approximation algorithms for, 179
reduction from Hamiltonian paths,

174–175
traversals, 40–43, 81–85, see also searches
trees, 39–43

balanced, 142
binary, 40, 147–148, see also binary search

tree
comparison, 147–148

empty, 42
family, 39
full, 43
game, 40, 180, 386–391
imbalanced, 142
levels of, 40, 220–221, 386
linearizing, 220–221
relationship to recursion, 43
spanning, see minimal spanning tree
traversing, 40–43

treesort, 40–43, 82, 142–144, 148
trigger, 223
triple-exponential function, 183
truck fitting, 170
truth assignment, 171, see also satisfiability

problems
truth propagation, 112–113
Turing machines, 223–243, 311

as computers, 226–228
with counter, 240
deterministic, 224
equivalence to counter programs, 233–235,

308
nondeterministic, 230–231, 240–241
one-way, see finite automata
probabilistic, 310–311
programming, 226
resource-bounded, 243–244
time-bounded, 238–241, 243
universal, 237–238
use in proving lower bounds, 241–243
variants of, 230–231

Turing test, 382–385, 392, 394
Turing, Alan M., 7, 223, 228–230, 382, 392
two-way certificates, see certificates
typewriters, 228

U
unbounded iteration, see conditional iteration
unboundedness of problem, 195–196, 211, 212
undecidability, 191–218, 267, 311, see also

noncomputability
degrees of, 211, 214, see also high

undecidability; inductive/coinductive
level of undecidability; partially decidable
problems

hierarchies of, 211, 214
high, 211–214
proving, 201–207, 241–244
research on, 214–215

undecidable problems, 193–201, 211–213, 230,
248, see also undecidability

P1: GDZ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

PE002-Index PE002-Harel PE002-Harel-v1.cls March 17, 2004 21:3

Index 513

unified modeling language (UML), 376–377
universal algorithms, 236–238
universality of programming languages, 77,

see also Church/Turing thesis
unlimited intractability, see nonelementary time
unreasonable amounts of time, 130, 159–165,

see also intractability
upper bounds, 144–146, 241, see also efficiency

of algorithms
use-cases, 368

V
values, see variables
variable, 58–59
variables, 34–35, 129

centralized, see variables, shared
in counter programs, 232–233
courtesy, 275
distributed, 275, 284
shared, 263, 270, 275, 300, see also

blackboard; shared memory
values of, 12–13, 34–35

vectors, 35–36, 131, see also list; queue; stack
in FORTRAN, 60
indices into, see index
linearizing, 220
of vectors, 37
relationship to loops, 35, 36

verification, 99–128, 354–355, see also
correctness of algorithms; errors

after-the-fact, 114–115, 118–119
algorithmic, see verification, automatic
as algorithmic problem, 198–199, 210

reduction from halting problem, 202, 210
undecidability of, 107, 199, 341

as-you-go, 115, 118–119
automatic, 107, 114, 120–121, 123, 198–199,

281, 341, 365
of concurrency, 276, 278–283
examples of proofs, 110–117, 276
interactive, 120–121
the need for, 107, 124–125, 279
of probabilistic algorithms, 311
of reactive behavior, 364–365
of recursion, 115–117
research on, 121–123, 311
verification conditions, 109, 112–114, 121

feasibility of checking, 114, 122

vertex, 84–85
neighboring, 84

virtual reality, 58
viruses, 64
vision, 381, 389, 395
visual algorithmics, see also diagrammatic

techniques
visual formalisms, 24, 26, 76, 358–378

research on, 376–377
synthsis, 377

visual languages, see visual formalisms
von Neumann model, 58
von Neumann, John, 7

W
weary travelers, see shortest paths
weighted average computation, 265–268, 271
Where’s Waldo, 328–329, see zero-knowledge
while statement, 20, 222, see also looping

constructs
winning strategy, 180–181
witness, 304–307
word correspondences

bounded version of, 212
fixed-width version of, 212
recurring version of, 212

word corrspondences, 197–198, 202, 210
certificates for, 207

word-processing program, 343–345, 358
words, see symbol strings
worst-case analysis, 94, 132, 161, see also time
worst-case complexity, 132, 143–144, 307,

see also complexity classes
worst-case running time, see worst-case

complexity
writing, 263, 270
WS1S, 183

Y
Y2K bug, see Year 2000 Problem
Year 2000 Problem, 99, 340–341
yes/no problems, see decision problems

Z
zero-knowledge, 328–332
zero-probability, 298–300
ZPP, 311
zupchocks, 384–385

P1: GDZ/FFX P2: GDZ/FFX QC: GDZ/FFX T1: GDZ

PE002-Index PE002-Harel PE002-Harel-v1.cls March 17, 2004 21:3

514

	Cover
	Algorithmics: The Spirit of Computing
	Title
	Copyright
	Contents
	Preface
	Acknowledgments
	Part I Preliminaries
	1 Introduction and Historical Review
	2 Algorithms and Data
	3 Programming Languages and Paradigms

	Part II Methods and Analysis
	4 Algorithmic Methods
	5 The Correctness of Algorithms
	6 The Efficiency of Algorithms

	Part III Limitations and Robustness
	7 Inefficiency and Intractability
	8 Noncomputability and Undecidability
	9 Algorithmic Universality and Its Robustness

	Part IV Relaxing the Rules
	10 Parallelism, Concurrency, and Alternative Models
	11 Probabilistic Algorithms
	12 Cryptography and Reliable Interaction

	Part V The Bigger Picture
	13 Software Engineering
	14 Reactive Systems
	15 Algorithmics and Intelligence

	Postscript
	Selected Solutions
	Bibliographic Notes
	Index

